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1.1: Introduction
Thermodynamics is a subject that has a wide variety of applications, including many in practical and engineering contexts.
However, by choice, I shall be treating this subject from a very “academic” point of view, in which disembodied forces will
compress ideal gases with frictionless pistons, seemingly far removed from the real engines of steel and gasoline which engineers
must design. This approach may appeal to those with an academic bent – but is it likely to be useful to the aspiring engineer who
lives and works in the real world? Need the practical engineer know and understand all this airy-fairy mumbo-jumbo? I would just
argue this – that the “academic” approach deals with the fundamental physical principles upon which all practical applications must
be built, and that an engineer above all others must thoroughly understand these principles. The fundamental principles do not
cease to apply in the practical world!

I don’t expect to get down to serious thermodynamics in the opening chapter. Instead I shall just discuss a few isolated, unrelated
miscellaneous bits and pieces that I thought worth doing. Furthermore, anyone who opens a book on thermodynamics will see the
symbol ∂ liberally sprinkled over almost every page, so I thought I’d write a short chapter – Chapter 2 - on partial derivatives. That
will not be intended as a formal course in mathematics, but just a brief summary of the main properties of partial derivatives that
you are likely to need. Thus I shan’t get down to serious thermodynamics until Chapter 3.
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1.2: Caloric, Calories, Heat and Energy
It has long been understood that heat is a form of energy. But this has not always been so, and indeed it was not generally accepted
until the middle of the nineteenth century. Before then, heat was treated as though it were some sort of “imponderable (weightless)
fluid” known as caloric, which could flow out of one body into another. It is true that as long ago as 1799 Humphrey Davy showed
that ice could be melted merely by rubbing two pieces together without the need of any “caloric”, and indeed this could not be
explained by the “caloric” theory. Davy argued – quite correctly – that friction between two bodies must generate “a motion or
vibration of the corpuscles of bodies”, and that the observation of the melting of ice by rubbing alone showed that “we may
reasonably conclude that this motion or vibration is heat”. Likewise at about the same time Benjamin Thompson, Count Rumford,
showed that the boring of cannon continuously produced heat in proportion to the amount of work done in the boring process, and
the amount of heat that could be so produced was apparently inexhaustible. This again should have sounded the death knell of the
caloric theory, and, like Davy, Rumford correctly suggested that heat is a form of motion.

In spite of this evidence and the arguments of Davy and Rumford, it wasn’t until the middle of the nineteenth century that caloric
theory finally died, and this was a result of the famous experiments of James Prescott Joule to determine the mechanical equivalent
of heat.

There is some question as to whether the name should be pronounced “jool” (to rhyme with fool) or “jowl” (to rhyme with fowl).
Joule was from a beer-brewing family in Manchester, in the North of England. In a north of England accent, “jowl” would be a
preferred pronunciation, while “jool” would come more naturally in the south of England, although most modern Mancunians, like
the rest of us, nowadays say “jool”. The uncertainty in the pronunciation is an old one, and was used by the brewery (which no
longer exists) in Joule’s day as an advertising slogan for the beer. I am indebted to Dr Graham McDonald of the Joule Laboratory,
Salford University, who found the actual advertising slogan for Joule’s Ales:

Do you pronounce it Joule’s to rhyme with Schools, Joule’s to rhyme with Bowls, or Joule’s to rhyme with Scowls?
Whatever you call it, by Joule’s, or Joule’s, or Joule’s. It’s GOOD!

In the nineteenth century (and continuing to today) the metric unit of heat was the calorie (the quantity of heat required to raise the
temperature of a gram of water through one Celsius degree), and the imperial unit was the British Thermal Unit (the quantity of
heat required to raise the temperature of a pound of water through one Fahrenheit degree). What Joule did was to show that the
expenditure of a carefully measured amount of work always produced the same carefully measured amount of heat. He did this by
using falling weights to drive a set of rotating paddles to stir up a quantity of water in a calorimeter, the motion (kinetic energy) of
the water being damped by a system of fixed vanes inside the calorimeter. The amount of energy expended was determined by the
loss of potential energy of the falling weights, and the amount of heat generated was determined by the rise in temperature of the
water. He deduced that the “mechanical equivalent of heat” is 772 foot-pounds per British thermal unit. That is, 772 foot-pounds of
work will raise the temperature of a pound of water through one Fahrenheit degree. In more familiar metric units, the mechanical
equivalent of heat is 4.2 joules per calorie. He wrote: “If my views be correct,... the temperature of the river Niagara will be raised
about one fifth of a degree by its fall of 160 feet.”

(Exercise: Verify this by calculation or by measurement, whichever you find more convenient.)

Once we have accepted that heat is but a form of energy, there should be no further need for separate units, and the joule will serve
for both. That being so, we can interpret Joule’s experiment not so much as determining the “mechanical equivalent of heat”, but
rather as a measurement of the specific heat capacity of water.

In spite of this, the calorie is still (regrettably) used extensively today. Part of the reason for this is that, in measuring heat
capacities, we often drop a hot sample into water and measure the rise in temperature of the water. This tells us rather directly what
the heat capacity of the sample is in calories – i.e. the heat capacity relative to that of water. I suspect, however, that the calorie
remains with us not for scientific reasons, but because old habits die hard. There are several problems associated with the continued
use of the calorie. Roughly, the calorie is the heat required to raise the temperature of a gram of water through 1 C . For precise
work, however, it becomes necessary to state not only the isotopic constitution (and the purity) of the water, but also through which
Celsius degree its temperature is raised. Thus in the past we have defined the calorie as “one hundredth of the heat required to raise
the temperature of a gram of water from 0 C to 100 C”; or again as “the heat required to raise the temperature of a gram of water
from 14.5 C to 15.5 C”. This latter is about 4.184 joules, but there is really no need to know this conversion factor, unless you are
specially interested in the specific heat capacity of water (which, by the way is rather larger than many common substances). (You
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may have noticed that I have sometimes written C and sometimes C , and you may have wondered which is correct, or whether
the degree symbol should be used at all. This will be discussed in Chapter 3.)

The “calories” that nutritionists quote when talking about the calorific value of foods, is actually the kilocalorie and it is sometimes
(but by no means always) written Calorie, with a capital C. How much simpler it would all be if all of us just used joules!

There is yet another problem associated with the continued use of “calories”. That is that we often come across formulas and
equations in thermodynamics in which a mysterious factor “J” appears. For example, there is a well-known equation C  − C  =
R/J. This relates the specific heat capacities of an ideal gas at constant pressure and volume to the universal gas constant R. It is
supposed to be understood in the equation that C  and C  are to be expressed in calories and R is to be expressed in joules. The
conversion factor between the two units, J, is the mechanical equivalent of heat, or the number of joules in a calorie. This
conversion factor between units will not be used in these notes, and all quantities expressing heat of energy will be measured in the
same units, which will normally be joules. The equation quoted above will be rendered simply as C  − C  = R. (The letter J, not in
italics, will, of course, continue to be used to denote the unit the joule, but not J, in italics, for a conversion factor.)

This page titled 1.2: Caloric, Calories, Heat and Energy is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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1.3: Extensive and Intensive Quantities
There is a useful and important distinction in thermodynamics between extensive (or “capacitive”) and intensive quantities.

Extensive quantities are those that depend upon the amount of material. Examples would include the volume, or the heat capacity of
a body. The heat capacity of a body is the amount of heat required to raise its temperature by one degree, and might be expressed in
J C .

Intensive quantities do not depend on the amount of material. Temperature and pressure are examples. Another would be the
specific heat capacity of a substance, which is the amount of heat required to raise unit mass of it through one degree, and it might
be expressed in J kg  C . This is what is commonly (though loosely) called “the specific heat”, but we shall use the correct
term: specific heat capacity.

Incidentally, we would all find it much easier to understand each other if we all used the word “specific” in contexts such as these
to mean “per unit mass”.

“Molar” quantities are also intensive quantities. Thus the “molar heat capacity” of a substance is the amount of heat required to
raise the temperature of one mole of the substance through one degree. I shall have to define “mole” in the next section.

Some authors adopt the convention that extensive quantities are written with capital letters, and the corresponding intensive
quantities are written in small letters. Thus C would be the heat capacity of a body in J C  and c would be the specific heat
capacity of a substance in J kg  C . This is undeniably a useful distinction and one that many will find helpful. I have a few
difficulties with it. Among these are the following: Some authors (not many) use the opposite convention – small letters for
extensive quantities, capitals for intensive. Some authors make exceptions, using P and T for the intensive quantities pressure and
temperature. Also, how are we to distinguish between extensive, specific and molar quantities? Three different fonts? This may
indeed be a solution – but there is still a problem. For example, we shall become familiar with the equation dU = T dS − P dV. Here
U, S and V are internal energy, entropy and volume. Yet the equation (and many others that we could write) is equally valid whether
we mean extensive, specific or molar internal energy, entropy and volume. How do we deal with that? Write the equation three
times in different fonts?

Because of these difficulties, I am choosing not to use the capital letter, small letter, convention, and I am hoping that the context
will make it clear in any particular situation. This is, I admit, rather a leap of faith, but let’s see how it works out.

This page titled 1.3: Extensive and Intensive Quantities is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.

o−1

−1 o −1

o −1

−1 o −1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7209?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/01%3A_Introductory_Remarks/1.03%3A_Extensive_and_Intensive_Quantities
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/01%3A_Introductory_Remarks/1.03%3A_Extensive_and_Intensive_Quantities
https://creativecommons.org/licenses/by-nc/
http://orca.phys.uvic.ca/~tatum/index.php


1.4.1 https://phys.libretexts.org/@go/page/7210

1.4: Mole
According to our present state of knowledge, a mass of 12 grams of the C isotope of carbon contains 6.022 141 99 × 10  atoms.
This number is called Avogadro’s number. A mole of an element is the amount of that element that has the same number of atoms
as there are atoms in 12 grams of C, and a mole of a compound is the amount of that compound that has the same number of
molecules as there are atoms in 12 grams of C. Likewise a mole of geese is 6.022 141 99 × 10  geese and a mole of baseball
caps is 6.022 141 99 × 10  baseball caps.

Why do we define Avogadro’s number in terms of 12 grams of carbon-12? This is a long story involving the history of physics and
chemistry. None of us was born with a complete knowledge of physics and chemistry and it took a long time to reach our state of
knowledge today. We did not always proceed along our path with complete logic, and doubtless, if we did, we might have defined
Avogadro’s number differently. I am not going to go into the history of how we arrived at this particular definition. Suffice it to say
that, if you know that the molecular weight of nitrogen gas (a diatomic molecule) is 28, then 28 grams of nitrogen has Avogadro’s
number of molecules in it. Indeed the phrase “molecular weight” is not a happy one; it would be better to call it the “molar mass”,
which is 28 grams.

We might note, however, that when we are doing “SI” calculations, based on MKS units, we shall usually use the kilomole, which
is 6.022 141 99 × 10  molecules.

This page titled 1.4: Mole is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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1.5: Prepositions
Prepositions play an important part in thermodynamics! Heat may be supplied to a system or lost from it. Work may be done on a
gas or by it.

An answer to a question in thermodynamics of “5 joules” is meaningless unless you make it clear and unambiguous whether the
system lost 5 joules of heat or gained 5 joules, or whether the gas did 5 joules of work, or you did 5 joules of work on the gas. And
it is of no avail to say that the answer is “−5 joules” in the vague hope that I might know what you mean by the minus sign. You
must explicitly state in words whether 5 joules was lost or gained – or your reader, or your examiner, will not understand you (and
will give you no marks) or will misunderstand you (and will deduct some marks).

I used to tell students that if they wrote “5 joules” without the necessary preposition, they would get no marks for their answer. If
they used a preposition, but chose the wrong one (the gas lost 5 joules instead of gaining it) I would take a mark off. Be warned!

This page titled 1.5: Prepositions is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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1.6: Applicability of Equations
There seem to be lots and lots of equations in thermodynamics. Some of them are of very general applicability. For example the
equation dU = dQ + dW, which is known as the First Law of Thermodynamics, tells us that the increase in the internal energy of a
system is equal to the heat supplied to it plus the work done on it, and it is obviously of very general applicability and is true
whatever the nature of the system. An equally well known equation is PV = RT. But this equation, which relates pressure, molar
volume and temperature, applies only to an ideal gas. It doesn’t apply to a vapour (which is a gas that is close to the temperature at
which it will condense), and still less does it apply to a liquid or a solid. Although we often deal in thermodynamics with a gas held
inside a cylinder, thermodynamics is by no means confined to gases, let alone ideal gases.

This section is just an advance warning to be conscious, whenever you see or use an equation, whether the equation is of great
generality or whether it applies only to a particular substance or to some special thermodynamic process or to a narrow set of
circumstances.
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2.1: Introduction
Any text on thermodynamics is sure to be liberally sprinkled with partial derivatives on almost every page, so it may be helpful
here to give a brief summary of some of the more useful formulas involving partial derivatives that we are likely to use in
subsequent chapters.
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2.2: Partial Derivatives
The equation

represents a two-dimensional surface in three-dimensional space. The surface intersects the plane y = constant in a plane curve in
which z is a function of x. One can then easily imagine calculating the slope or gradient of this curve in the plane y = constant. This

slope is  - the partial derivative of z with respect to x, with y being held constant. For example, if

then

y being treated as though it were a constant, which, in the plane y = constant, it is. In a similar manner the partial derivative of z
with respect to y, with x being held constant, is

When you have only three variables – as in this example – it is usually obvious which of them is being held constant. Thus ∂z/∂y
can hardly mean anything other than at constant x. For that reason, the subscript is often omitted. In thermodynamics, there are
often more than three variables, and it is usually (I would say always) essential to indicate by a subscript which quantities are being
held constant.

In the matter of pronunciation, various attempts are sometimes made to give a special pronunciation to the symbol ∂. (I have heard
“day”, and “dye”.) My own preference is just to say “partial dz by dy”.

Let us suppose that we have evaluated z at (x , y). Now if you increase x by δx, what will the resulting increase in z be? Obviously,
to first order, it is . And if y increases by δy, the increase in z will be . And if both x and y increase, the corresponding
increase in z, to first order, will be

No great and difficult mathematical proof is needed to “derive” this; it is just a plain English statement of an obvious truism. The
increase in z is equal to the rate of increase of z with respect to x times the increase in x plus the rate of increase of z with respect to
y times the increase in y.

Likewise if x and y are increasing with time at rates  and , the rate of increase of z with respect to time is
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z = z(x,  y) (2.2.1)

( )∂z
∂x y

z = y lnx, (2.2.2)

= ,( )
∂z

∂x y

y

x
(2.2.3)

= lnx( )
∂z

∂y x

(2.2.4)

δx∂x

∂x
δy∂z

∂y

δz = δx+ δy
∂z

∂x

∂z

∂y
(2.2.5)

dx

dt

dy

dt

= + .
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt
(2.2.6)
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2.3: Implicit Differentiation
Equation 2.2.5 can be used to solve the problem of differentiation of an implicit function. Consider, for example, the unlikely
equation

Calculate the derivative dy/dx. It would be easy if only one could write this in the form y = something; but it is difficult (impossible
as far as I know) to write y explicitly as a function of . Equation  implicitly relates  to . How are we going to calculate 

?

The curve  might be considered as being the intersection of the surface  with the plane . Seen thus,
the derivative  can be thought of as the limit as  and  approach zero of the ratio  within the plane ; that is,
keeping z constant and hence  equal to zero. Thus equation 2.2.5 gives us that

For example, show that, for Rquation ,
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ln(xy) = x2y3 (2.3.1)

x 2.3.1 y x

dy/dx

f(x, y) = 0 z = f(x, y) z = 0

dy/dx δx δy δy/δx z = 0

δz

= −( ) /( ) .
dy

dx

∂f

∂x

∂f

∂y
(2.3.2)

2.3.1

= .
dy

dx

y(2 −1)x2y3

x(1 −3 )x2y3
(2.3.3)
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2.4: Product of Three Partial Derivatives
Suppose x, y and z are related by some equation and that, by suitable algebraic manipulation, we can write any one of the variables
explicitly in terms of the other two. That is, we can write

or

or

Then

and

Eliminate δy from Equations  and :

and  from Equations  and :

Since z and x can be varied independently, and x and y can be varied independently, the only way in which Equations  and 
 can always be true is for all of the expressions in parentheses to be zero. Equating the left-hand parentheses to zero shows

that

and

These results may seem to be trivial and “obvious” – and so they are, provided that the same quantity is being kept constant in the
derivatives of both sides of each equation. In thermodynamics we are often dealing with more variables than just x, y and z, and we
must be careful to specify which quantities are being held constant. If, for example, we are dealing with several variables, such as
u, v, w, x, y, z, it is not in general true that , unless the same variables are being held constant on both sides of the
equation.

Return now to Equation . The left hand parenthesis is zero, and this, together with Equation , results in the important
relation:

x = f(y,  z), (2.4.1)

y = y(z,  x), (2.4.2)

z = z(x,  y). (2.4.3)

δx = δy + δz,
∂x

∂y

∂x

∂z
(2.4.4)

δy = δz + δx
∂y

∂z

∂y

∂x
(2.4.5)

δz = δx + δy.
∂z

∂x

∂z

∂y
(2.4.6)

2.4.4 2.4.5

δx(1 − ) = δz( + ) ,
∂x

∂y

∂y

∂x

∂x

∂z

∂x

∂y

∂y

∂z
(2.4.7)

δz 2.4.4 2.4.6

δx(1 − ) = δy( + ) .
∂x

∂z
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∂x
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∂y
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∂z

∂z

∂y
(2.4.8)
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2.4.8

= 1/
∂x
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∂y
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(2.4.9)

= 1/ .
∂x

∂z

∂z

∂x
(2.4.10)
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∂y

∂y
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2.5: Second Derivatives and Exact Differentials
If , we can go through the motions of calculating  and , and we can then further calculate the second derivatives 

, ,  and . It will usually be found that the last two, the mixed second derivatives, are equal; that is, it doesn’t

matter in which order we perform the differentiations.

Let . Show that

Solution

We examine in this section what conditions must be satisfied if the mixed derivatives are to be equal.

Figure II.1 depicts z as a “well-behaved” function of x and y. By “well-behaved” in this context I mean that z is everywhere
single-valued (that is, given x and y there is just one value of z), finite and continuous, and that its derivatives are everywhere
continuous (that is, no sudden discontinuities in either the function itself or its slope). “Good behaviour” in this sense is the
sufficient condition that the mixed second derivatives are equal.

Let us calculate the difference δz in the heights of A and C. We can go from A to C via B or via D, and δz is route-independent.
That is, to first order,

Here the superscript (A) means “evaluated at A”.

Divide both sides by δx δy:

If we now go to the limit as δx and δy approach zero (the equation now becomes exact rather than merely “to first order”), this
becomes:

z = z(x, y) ∂z
∂x

∂z
∂y

z∂ 2

∂x2

x∂ 2

∂y2

z∂ 2

∂y∂x

z∂ 2

∂y∂x

Example 2.5.1

z = x siny

= = cosy.
z∂2

∂x∂y

z∂2

∂y∂x
(2.5.1)

δz = δx+ δy = δy+ δx.( )
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y
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∂z

∂y

(B)

x

( )
∂z

∂y

(A)

x

( )
∂z

∂x

(D)

y

(2.5.2)

= .
−( )∂z

∂y

(B)

x
( )∂z

∂y

(A)

x

∂x

−( )∂z
∂x

(D)

y
( )∂z

∂x

(A)

y

∂y
(2.5.3)

= .
z∂2

∂xδy

z∂2

∂yδx
(2.5.4)
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A further property of a function that is well-behaved in the sense described is that if the differential dz can be written in the
form

then Equation 2.5.3 implies that,

A differential dz is said to be exact if the following conditions are satisfied: The integral of dz between two points is route-
independent, and the integral around a closed path (i.e. you end up where you started) is zero, and if equations 2.5.3 and 2.5.5
are satisfied.

If a differential such as Equation 2.5.4 is exact – i.e., if it is found to satisfy the conditions for exactness – then it should be
possible to integrate it and determine z(x , y). Let us look at an example. Suppose that

It is readily seen that this is exact. The problem now, therefore, is to find z(x, y).

Let 

So that

Note that we are treating y as constant. The “constant” of integration depends on the value of y – i.e. it is an arbitrary function
of y.

Of course u is not the same as z – unless we can find a particular function g(y) such that u indeed is the same as z.

Now ; that is,

Then du = dz (and u = z plus an arbitrary constant) provided that . That is,

Thus

The reader should verify that this satisfies equation 2.5.6. The reader should also try letting

(where did this come from?) and go through a similar argument to arrive again at equation 2.5.10.

Consider another example

You should immediately find that this differential is not exact, and, to emphasize that, I shall use the symbol đz, the special
symbol đ indicating an inexact differential. However, given an inexact differential đz, it is very often possible to find a function
H(x , y) such that the differential dw = H(x , y) đz is exact, and dw can then be integrated to find w as a function of x and y. The
function H(x , y) is called an integrating factor. There may be more than one possible integrating factor; indeed it may be
possible to find one simply of the form F(x) or maybe G(y). There are several ways for finding an integrating factor. We’ll do a

dz = A(x,  y)dx+B(x,  y)dy, (2.5.5)

= .
∂A

∂y

∂B

∂x
(2.5.6)

dz = (4x−3y−1)dx+(−3x+2y+4)dy. (2.5.7)

u = ∫(4x−3y−1)dx

u = 2 −3yx−x+g(y).x2 (2.5.8)

du = + dy∂u
∂x

∂u
∂y

du = (4x−3y−1)dx+(−3x+ ) dy.
dg

dy
(2.5.9)

= 2y+4
dg

dy

g(y) = +4y+constant.y2 (2.5.10)

z = 2 −3xy+ −x+4y+constantx2 y2 (2.5.11)

ν = −3xy+ +4y+f(x)y2 (2.5.12)

Example 2.5.2

dz = 3 lny dx+ dy.
x

y
(2.5.13)
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simple and straightforward one. Let us try and find an integrating factor for the inexact differential đz above. Thus, let dw =
F(x)dz, so that

For dw to be exact, we must have

That is,

Upon integration and simplification we find that

or any multiple thereof, is an integrating factor, and therefore

is an exact differential. The reader should confirm that this is an exact differential, and from there show that

To anticipate – what has this to do with thermodynamics? To give an example, the state of many simple thermodynamical systems
can be specified by giving the values of three intensive state variables, P, V and T, the pressure, molar volume and temperature.
That is, the state of the system can be represented by a point in PVT space. Often, there will be a known relation (known as the
equation of state) between the variables; for example, if the substance involved is an ideal gas, the variables will be related by PV
= RT, which is the equation of state for an ideal gas; and the point representing the state of the system will then be represented by a
point that is constrained to lie on the two-dimensional surface PV = RT in three-dimensional PVT space. In that case it will be
necessary to specify only two of the three variables. On the other hand, if the equation of state of a particular substance is unknown,
you will have to give the values of all three variables.

Now there are certain quantities that one meets in thermodynamics that are functions of state. Two that come to mind are entropy S
and internal energy U. By function of state it is meant that S and U are uniquely determined by the state (i.e. by P, V and T). If you
know P, V and T, you can calculate S and U or any other function of state. In that case, the differentials dS and dU are exact
differentials.

The internal energy U of a system is defined in such a manner that when you add a quantity dQ of heat to a system and also do an
amount of work dW on the system, the increase dU in the internal energy of the system is given by

Here dU is an exact differential, but dQ and dW are clearly not. You can achieve the same increase in internal energy by any
combination of heat and work, and the heat you add to the system and the work you do on it are clearly not functions of the state of
the system.

Some authors like to use a special symbol, such as đ, to denote an inexact differential (but beware, I have seen this symbol used to
denote an exact differential!). I shall not in general do this, because there are many contexts in which the distinction is not
important, or, if it is, it is obvious from the context whether a given differential is exact or not. If, however, there is some context in
which the distinction is important (and there are many) and in which it may not be obvious which is which, I may, with advance
warning, use a special đ for an inexact differential, and indeed I have already done so earlier in this section.
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dw = 3F lny dx+ dy.
xF

y
(2.5.14)

(3F lny) = ( ) .
∂

∂y

∂

∂x

xF

y
(2.5.15)

= (F +x ) .
3F

y

1

y

dF

dx
(2.5.16)

F = ,x2 (2.5.17)

dw = 3 lny dx+ dyx2 x3

y
(2.5.18)

w = lny+constantx3 (2.5.19)

dU = dQ+dW . (2.5.20)
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2.6: Euler's Theorem for Homogeneous Functions
There is a theorem, usually credited to Euler, concerning homogenous functions that we might be making use of.

A homogenous function of degree n of the variables x, y, z is a function in which all terms are of degree n. For example, the
function  is a homogenous function of x, y,
z, in which all terms are of degree three.

The reader will find it easy to evaluate the partial derivatives  and equally easy (if slightly tedious) to evaluate the

expression . Tedious or not, I do urge the reader to do it. You should find that the answer is 

In other words, . If you do the same thing with a homogenous function of degree 2, you will find that 

. And if you do it with a homogenous function of degree 1, such as , you will find that 

. In general, for a homogenous function of x, y, z... of degree n, it is always the case that

This is Euler's theorem for homogenous functions.
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2.7: Undetermined Multipliers
Let ψ(x, y, z) be some function of x, y and z. Then if x, y and z are independent variables, one would ordinarily understand that,
where ψ is a maximum, the derivatives are zero:

However, if x, y and z are not completely independent, but are related by some constraining equation such as f(x, y, z) = 0, the
situation is slightly less simple. (In a thermodynamical context, the three variables may be, for example, three “intensive state
variables”, P, V and T, and ψ might be the entropy, which is a function of state. However the intensive state variables may not be
completely independent, since they are related by an “equation of state”, such as PV = RT.)

If we move by infinitesimal displacements dx, dy, dz from a point where ψ is a maximum, the corresponding changes in ψ and f
will both be zero, and therefore both of the following equations must be satisfied.

Consequently any linear combination of ψ and f, such as Φ = ψ + λf, where λ is an arbitrary constant, also satisfies a similar
equation. The constant λ is sometimes called an “undetermined multiplier” or a “Lagrangian multiplier”, although often some
additional information in an actual problem enables the constant to be identified.

In summary, the conditions that ψ is a maximum (or minimum or saddle point), if x, y and z are related by a functional constraint f
(x, y, z) = 0, are

where

Of course, if ψ is a function of many variables x  , x  , x ..., and the variables are subjected to several constraints, such as f = 0, g =
0, h = 0, etc., where f, g, h, etc., are functions connecting all or some of the variables, the conditions for ψ to be a maximum (etc.)
are
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2.8: Dee and Delta
We have discussed the special meanings of the symbols  and đ, but we also need to be clear about the meanings of the more
familiar differential symbols , , and . It is often convenient to use the symbol  to indicate an increment (not necessarily a
particularly small increment) in some quantity. We can then use the symbol  to mean a small increment. We can then say that if,
for example, , and if  were to increase by a small amount , the corresponding increment in  would be given
approximately by

That is,

This doesn’t become exact until we take the limit as \(δx\) and \(δy\) approach zero. We write this limit as  and then it is exactly
true that

There is a valid point of view that would argue that you cannot write  or  alone, since both are zero; you can write only the
ratio . It would be wrong, for example, to write

or at best it is tantamount to writing 0 = 0. I am not going to contradict that argument, but, at the risk of incurring the wrath of some
readers, I am often going to write equations such as Equation , or, more likely, in a thermodynamical context, equations such
as

even though you may prefer me to say that, for small increments,

I am going to argue that, in the limit of infinitesimal increments, it is exactly true that . After all, the smaller
the increments, the closer it becomes to being true, and, in the limit when the increments are infinitesimally small, it is exactly true,
even if it does just mean that zero equals zero. I hope this does not cause too many conceptual problems.
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CHAPTER OVERVIEW

3: Temperature
During our studies of heat and thermodynamics, we shall come across a number of simple, easy-tounderstand terms such as
entropy, enthalpy, Gibbs free energy, chemical potential and fugacity, and we expect to have no difficulty with these. There is,
however, one concept that is really quite difficult to grasp, and that is temperature. We shall do our best to understand it in this
chapter.

3.1: Zeroth Law of Thermodynamics
3.2: Temperature Scales I
3.3: Temperature Scales II
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3.1: Zeroth Law of Thermodynamics
Perhaps the simplest concept of temperature is to regard it as a potential function whose gradient determines the direction and rate
of flow of heat. If heat flows from one body to another, the first is at a higher temperature than the second. If there is no net flow of
heat from one body to another, the two bodies are in thermal equilibrium, and their temperatures are equal.

We can go further and assert that

If two bodies are separately in thermal equilibrium with a third body, then they are also in
thermal equilibrium with each other.

According to taste, you may regard this as a truism of the utmost triviality or as a fundamental law of the most profound
significance. Those who see it as the latter will refer to it as the Zeroth Law of Thermodynamics (although the "zeroth" does sound
a little like an admission that it was added as an afterthought to the other "real" laws of thermodynamics).

We might imagine that the third body is a thermometer of some sort. In fact it need not even be an accurately calibrated
thermometer. We insert the thermometer into one of our two bodies (we are not thinking particularly of human bodies here), and it
indicates some temperature. Then we insert it into the second body. If it indicates the same temperature as indicated for the first
body, then the Zeroth Law asserts that, if we now place our two bodies into contact with each other, there will be no net flow of
heat from one to the other. There exists some measure which all three bodies have in common and which dictates that there is no
net flow of heat from any one to any other, and the three bodies are in thermal equilibrium. That measure is what we call their
temperature.

To some, this will sound like saying :"if A and C are at the same temperature, and if B and C are at the same temperature, then A
and B are at the same temperature". Others, of philosophical bent, may want to pursue the concept to greater rigor. In any case, at
whatever level of rigor is used, what the Zeroth Law establishes is the existence of some quantity called temperature, but it doesn't
really tell us how to define a temperature scale quantitatively. It is as if we have established the existence of something called
"length" or "mass", but we haven't really specified yet how to measure it or what units to express it in. We could, for example,
discuss the concepts of "length" or of "mass" by describing a test to show whether two lengths, or two masses, were equal, but
without developing any units for expressing such concepts qualitatively. That, I think, is where the Zeroth Law leaves us.
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3.2: Temperature Scales I
In everyday practice, we use either the Celsius or the Fahrenheit temperature scales, depending on what we are used to, or the
fashion of the day, or what our Government tells us we should be using. In the Fahrenheit scale, the freezing point of water is 32 F
and the boiling point is 212 F, so that there are 180 F  between the two fixed points. In the Celsius scale, the freezing point of
water is 0 C and the boiling point is 100 C, so that there are 100 C  between the two fixed points. (When Celsius originally
introduced his scale, he set the temperature of boiling water as 0, and the temperature of melting ice as 100. That was reversed
within a few years!) The Celsius scale was formerly called "the" centigrade scale, but presumably any scale with 100 degrees
between two fixed points could be called a centigrade scale, so we now call it (or are supposed to call it) the Celsius scale.

Conversion is obviously by

and

Note that "a temperature of so many degrees on the Fahrenheit scale" is written F and "a temperature of so many degrees on the
Celsius scale" is written C; whereas "a temperature interval of so many Fahrenheit degrees" is written F  and "a temperature
interval of so many Celsius degrees" is written C . In either case, the degrees symbol ( ) is mandatory.

In scientific work, we generally use the Kelvin temperature scale. The two fixed points on the Kelvin scale are the absolute zero of
temperature, which is assigned the temperature 0 K, and the triple point of the water-ice-steam system, which is assigned the
temperature 273.16 K. Thus it could reasonably be said that the Kelvin scale is not a centigrade scale, since it doesn't have 100
degrees between its two fixed points. However, the size of the degree on the Kelvin scale is almost exactly the same as the size of
the Celsius degree, because the absolute zero of temperature is about –273.15 C and the temperature of the triple point is about
0.01 C. The definition of the Kelvin scale, however, does not mention the Celsius scale, and therefore, although the size of the
degrees is about the same on both scales, this is not inherent in the definition. One might speculate about what might happen in the
far distant future if people no longer use the Celsius scale and it is totally forgotten. People then will wonder what possessed us to
divide the Kelvin scale into 273.16 divisions between its two fixed points!

It would not be good enough to define the upper fixed point of the kelvin scale as the temperature of "melting ice", because this
depends on the pressure. The triple point is the temperature at which ice, water and steam are in equilibrium, and it occurs at a
temperature of about 0.01 C and exactly 273.16 K, and a pressure of about 610.6 Pa.

The Kelvin scale starts at zero at the lowest conceivable temperature. The kelvin (K) is therefore regarded as a unit of temperature,
much as a metre is regarded as a unit of length, or a kilogram as a unit of mass. One therefore does not talk about a temperature of
so many "degrees Kelvin", any more than one would talk about a length of so many "degrees metre" or a mass of so many "degrees
kilogram". When using the Kelvin scale, therefore, we talk simply of a temperature of "280 kelvins" or "280 K". We do not use the
word "degree", nor do we use the symbol .

In the British Engineering System of units, which is used exclusively in the United States and has never been used in Britain, the
Rankine scale is used. The lower fixed point is the absolute zero of temperature, and it is assigned the temperature 0 R, and the size
of the rankine is equal to the size of the Fahrenheit degree. Melting ice at 0 C has a temperature of 459.67 R, and the triple point
has a temperature of 459.688 R.

I doubt whether the Réaumur scale has been used anywhere in the last 50 years, but it has probably been used in the last 100. This
had melting ice at 0 o R and steam at 80 R. I mention this only to point out that if you see a temperature given as so many R, you
might not know whether the Rankine or Réaumur scale is intended! (Strictly, °R would denote degrees Réaumur, while R would
denote rankines – but can you trust that?)

In these notes, the Kelvin scale will be the scale that is normally used. There may be occasional use of the Celsius scale, but we
shall not use the Fahrenheit, Rankine or Réaumur scales.
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3.3: Temperature Scales II
We now know – by definition – the temperatures at the two fixed points on the Celsius and Kelvin scales. But what about
temperatures between the fixed points? We could say that the temperature halfway between the melting point of ice and the boiling
point of water is 50 ºC, or we could divide the temperature between the two fixed points into 100 equal intervals. But: What do we
mean by “halfway” or by “equal intervals” in such a proposal? This leaves us rather stumped.

Here is one suggestion.

We could construct a glass capillary tube with a bulb at the bottom containing mercury, which also extends a short way up the
capillary. We could note the length of the mercury column when the tube was immersed in melting ice and call the temperature 0
ºC, and again when it is in boiling water (100 ºC). We could then divide the length of the tube between these two marks into 100
equal intervals of length, and use that to define our temperature scale. But you may ask: How do we know that mercury expands
(relative to glass) uniformly with temperature? Well, it expands uniformly, by definition, with temperature on the mercury-in-glass
temperature scale. Indeed, we can define the temperature in the mercury-in-glass scale by

(I am going to use the symbol T in these notes for temperature in kelvin. Here I am using t for temperature on the Celsius scale.)

If we place the thermometer (for such it is) in a bowl of warm water, and the length of the mercury column is halfway between l
and l , we could say that the temperature of the water in the bowl is, by definition, 50 ºC on the mercury-in-glass scale.

Now let us repeat the experiment with another type of thermometer, using some different property of matter which is also known to
vary with temperature. We might choose, for example, to use the electrical resistance R of a length of platinum wire; or the
thermoelectric potential difference V that appears when we heat the junction of two different metals; or the pressure P of some gas
when it is heated up but kept at constant volume. We could try immersing each of these thermometers into melting ice and boiling
water and we could interpolate linearly for intermediate temperatures. Thus, using the resistance of the platinum wire, we could
define a platinum resistance temperature scale by

Or we could define a thermoelectric temperature scale by

Or we could define a constant volume gas temperature scale by

But what assurance do we have that all of these temperature scales are the same? What assurance do we have that the resistance of
platinum increases linearly on the temperature scale defined by the mercury-in-glass thermometer? What assurance do we have
that, when we immerse all of these thermometers in the water that registered 50 ºC for the mercury-in-glass thermometer, they will
all register 50 ºC?

The answer is that we have no such assurance.

What we need to do is either choose one particular phenomenon quite arbitrarily to use for our standard temperature scale, or
somehow define an absolute temperature scale which is absolute in the sense that it is defined independently of the properties of
any particular substance. It turns out that it is possible to do the latter, and to define a temperature scale that is absolute and
independent of the properties if any particular substance by means of an idealized theoretical concept called a Carnot Heat
Engine. This imaginary engine uses as its operating medium an equally imaginary substance called an ideal gas, and indeed the
temperature indicated by a constant volume gas thermometer is identical to the absolute temperature defined by a Carnot engine –
provided that the gas used is an ideal gas! The best that can be said for real gases is that, at low pressures, they behave very much
like an ideal gas; and indeed if you somehow extrapolate the behaviour or a gas to its behaviour at zero pressure (when there isn’t
any gas at all!), it would behave exactly like a real gas.

t = 100 × C.
−lt l0

−l100 l0
 o (3.3.1)

0

100

t = 100 × C.
−Rf R0

−R100 R0
 o (3.3.2)

t = 100 × C.
−Vt V0

−V100 V0
 o (3.3.3)

t = 100 × C.
−Pt P0

−P100 P0
 o (3.3.4)
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Until we have discussed what are meant by a real gas and by a Carnot engine, all this has served to do is to underline what we said
in the Introduction to this chapter – namely that there are a number of relatively easy concepts in thermodynamics, but temperature
is not one of them.

If we do eventually understand what a Carnot engine is and we can construct in our minds a definition of what is meant by an
absolute temperature scale, there will remain the problem of reproducing such a scale in practice. That is the purpose of the
International Temperature Scale 1990 (ITS90). On this scale a number of fixed points, such as

the triple point of hydrogen
the triple point of neon
the triple point of water
the freezing point of zinc
the freezing point of silver
the freezing point of gold

etc.,

are assigned certain values. In the cases of the six points listed, these values are

13.8033
24.5561
273.16
692.677
1234.93
1337.33

kelvin respectively.

A number of standard instruments are to be used in different temperature ranges, with defined interpolation formulas for
temperatures between the fixed points. A complete description of ITS90 would be rather lengthy (see, for example,
http://www.omega.com/techref/intltemp.html), but its purpose is to reproduce as precisely as practically possible the absolute
temperature scale as defined by the Carnot engine.
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4.1: Error Function
Before we start this chapter, let’s just make sure that we are familiar with the error function erf a. We may need it during this
chapter.

Here is a graph of the gaussian function

I have chosen the coefficient  so that the area under the curve, from − ∞ to + ∞ is 1. The maximum value, which occurs at x
= 0, is , and it is easy to show that the half width at half the maximum is . Also of some interest
(though not particularly in this chapter) is the square root of the second moment of area around the y-axis. In a mechanical context
this would be called the radius of gyration. In a statistical context it would be called the standard deviation. Either way, its value is

. We shall meet the gaussian function again in Chapter 6.

In the present chapter we shall need to make use of the error function erf a. This is the area under the gaussian curve from x = -a
to x = +a:

The area outside the limits x = ±a, which is the area under the two “tails” of the gaussian function, is sometimes called the
complementary error function:

It will be clear that erf a goes from 0 to 1 as a goes from 0 to infinity. Note also that

erfc (one standard deviation) = 0.3173

erfc (two standard deviations) = 0.0455.

Here are graphs of erf a (continuous line) and erfc a (dashed line) versus a.
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erfca = 1 −erfa (4.1.3)
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4.2: Introduction
While the subject of thermal conduction is an important one, and obviously a proper topic in the theory of heat, it is not really part
of the great logical structure of thermodynamics, not does it require a wide or deep knowledge of thermodynamics to understand it,
at least at an introductory level. In other words, this chapter is more or less a stand-alone chapter. It is not necessary to understand
earlier chapters to understand this one; nor, if your primary interest is in thermodynamics, is it necessary to understand this chapter
before proceeding to later ones. That is – if you wish − you can skip this chapter without compromising your understanding of any
later ones
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4.3: Thermal Conductivity

Figure IV.1 shows heat flowing at a rate dQ/dt along a bar of cross-sectional area A of material. There is a temperature gradient
along the length of the bar (which is why heat is flowing down it). At a distance x from the end of the bar the temperature is T; at a
distance x + δx it is T + δT. Note that, if heat is flowing in the positive direction as shown, δT must be negative. That is, it is cooler
towards the right hand end of the bar. The temperature gradient dT/dx is negative. Heat flows in the opposite direction to the
temperature gradient.

The ratio of the rate of heat flow per unit area to the negative of the temperature gradient is called the thermal conductivity of the
material:

I am using the symbol K for thermal conductivity. Other symbols often seen are k or λ. Its SI unit is W m K .

I have defined it in a one-dimensional situation and for an isotropic medium, in which case the heat flow is opposite to the
temperature gradient. One can imagine that, in an anisotropic medium, the rate of heat flow and the temperature gradient may be
different parallel to the different crystallographic axes. In that case the heat flow and the temperature gradient may not be strictly
antiparallel, and the thermal conductivity is a tensor quantity. Such a situation will not concern us in this chapter.

If, in our one-dimensional example, there is no escape of heat from the sides of the bar, then the rate of flow of heat along the bar
must be the same all along the bar, which means that the temperature gradient is uniform along the length of the wire. It may be
easier to imagine no heat loss from the sides than to achieve it in practice. If the bar were situated in a vacuum, there would be no
loss by conduction or convection, and if the bar were very shiny, there would be little loss by radiation.

Order-of-magnitude values of the thermal conductivities of common substances are

Air 0.03 W m K

Water 0.6

Glass 0.8

Fe 80

Al 240

Cu 400

It is easy to imagine how heat may be conducted along a solid, with the vibrations of the atoms at one end of the solid being
transmitted to the next atoms by one atom nudging the next, and so on. However, it is evident from the table, and in any case is
common knowledge, that some substances (metals) conduct heat much better than others. Indeed, among the metals, there is a close
correlation between the thermal and electrical conductivities (at a given temperature). This suggests that the mechanism for thermal
conductivity in metals is the same as for electrical conductivity. Heat is conducted in a metal primarily by electrons.

It would be an interesting exercise to find, from the Web or from other references, the thermal and electrical conductivities of a
number of metals. It may be found that thermal conductivities, K, are sometimes quoted in unfamiliar “practical” units, such as
BTU per hour per square foot for a temperature gradient of 1 F° per inch, and converting these to SI units of W m K  might be a
bit of a challenge. Electrical conductivities, σ, decrease somewhat with rising temperature (so do thermal conductivities, but rather
less so), so it would be important to find them all at the same temperature. Then you could see whether the ratio K/σ is indeed the
same for all metals at a given temperature. This is known as the Wiedemann-Franz Law. First-order theory (which we do not give
here) predicts that

= −KA .
dQ

dt

dT

dx
(4.3.1)
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Here k is Boltzmann’s constant and e is the electronic charge. This prediction is found to be obeyed well at room temperatures and
higher, but at low temperatures the electrical conductivity increases rapidly with lowering temperature, and the ratio starts to fall
well below the value predicted by equation 4.2.2, approaching zero at 0 K.

The reader may be familiar with the following terms in electricity

Conductivity σ

Conductance G

Resistivity ρ

Resistance R

They are related by G = 1/R, σ = 1/ρ, R = ρl/A, G = σA/l,

where l and A are the length and cross-sectional area of the conductor. The reader probably also knows that resistances add in series
and conductances add in parallel. We may define some analagous quantities related to heat flow. Thus resistivity is the reciprocal of
conductivity, resistance is l/A times resistivity, conductance is A/l times conductivity, and so on. These concepts may come in
useful in the following genre of problems beloved of examiners.

A room has walls of area A , thickness d , thermal conductivity K , a door of area A , thickness d , thermal conductivity K , and a
window of area A , thickness d , thermal conductivity K , The temperature inside is T  and the temperature outside is T . What is
the rate of heat loss from the room?

We have three conductances in parallel: , and , and so we have

Of course, the problem need not be exactly like that. Perhaps you are given the rate of heat loss and asked to find the area of the
window. But you get the general idea, and you can probably concoct a few examples yourself. The rate of heat flow is analogous to
the current, and the temperature difference is like the EMF of a battery.
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4.4: The Heat Conduction Equation
The situation described in Section 4.2 and in figure IV.1 was a steady-state situation, in which the temperature was a function of x
but not of time. We are now going to consider a more general situation in which the temperature may vary in time as well as in
space.

In this case the temperature gradient is written as a partial derivative, \( \frac{\partial T}{\partial x} and is not uniform down the
length of the rod. We'll suppose it is \frac{ \deta T}{\partial x} at x and  at x + δx.

Consider the heat flow into and out of the portion between x and x + δx. The rate of flow into this portion at x is , and the

rate of flow out at x + δx is , so that the net flow of heat into that portion is . This must be equal

to , where ρ is the density (and hence ρAδx is the mass of the portion), and C is the specific heat capacity.

Therefore

This can be written

where

is the thermal diffusivity (m  s ).

Equation 4.3.2 is the heat conduction equation. In three dimensions it is easy to show that it becomes
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4.5: A Solution of the Heat Conduction Equation
Methods of solving the heat conduction equation are commonly given in courses on partial differential equations. Here we shall
look at a simple one-dimensional example.

A long copper bar is initially at a uniform temperature of 0 C. At time t = 0, the left hand end of it is heated to 100 C. Draw
graphs of temperature versus distance x from the hot end of the bar (up to x = 100 cm) at t = 4, 16, 64, 256 and 1024 seconds. Draw
also a graph of temperature versus time at x = 5 cm, up to 1024 seconds. Assume no heat is lost from the sides of the bar.

Data for copper:

K = 400 W m  K

C = 395 J kg  K

ρ = 8900 kg m

whence

D = 1.137 × 10 m  s

The equation to be solved is

From the form of this equation, it is obvious (once it has been pointed out!) that a solution could be found in which T(x, t) is solely
a function of x /t, or, for that matter, x/t . Thus, let

and you will see that equation 4.4.1 reduces to the second order total differential equation

Let T' = dT/du, and it becomes even easier − a first order equation:

Upon integration, we obtain

where ln A is an integration constant, to be determined by the initial and boundary conditions. (What are the dimensions of A?)

That is,

We have to integrate again, with respect to u:

Now, T = 100 C at x = 0 for any t > 0. That is, T = 100 for u = 0.

And T = 0 C at t = 0 for any x > 0. That is, T = 0 for u = ∞.

Therefore

o o

−1 −1

−1 −1

−3

−4 2 −1
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The integral is slightly difficult though well known. I'll just state the answer here; it is . From this, we find that the
integration constant is

We now have

The error function erf(r) is defined by

so that equation 4.4.10 can be written

This function is easy to plot provided that your computer will give you the erf function. The solutions are shown in figures IV.4 and
5.
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by Jeremy Tatum.

− πD
−−−

√

A = −5284 .K m−1s1/2 (4.5.9)

100 −T (x,  t) = A exp[− /(4D)] du.∫
0

xt−1/2

u
2 (4.5.10)

erf(r) = exp(− )ds,
2

π
−−

√
∫

r

0
s

2 (4.5.11)

T (x,  t) = 100 +A erf( ) = 100 [1 −erf( )] .πD
−−−

√
x

2 Dt
−−−

√

x

2 Dt
−−−

√
(4.5.12)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7232?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/04%3A_Thermal_Conduction/4.05%3A_A_Solution_of_the_Heat_Conduction_Equation
https://creativecommons.org/licenses/by-nc/
http://orca.phys.uvic.ca/~tatum/index.php


5.1 https://phys.libretexts.org/@go/page/7241

5: Thermodynamic Processes
We shall be considering what happens when we perform certain processes on various systems. The processes will usually entail
either doing work on a system or adding heat to it, or perhaps we shall allow the system to do work on its surroundings, or the
system may lose heat to its surroundings.

Often the system we have in mind will be a gas enclosed by a movable piston inside a cylinder, but it need not be that. The system
may be a solid or a liquid, in which there is little change in volume. Or the system may have several phases, such as gas, liquid and
solid. There may be several components to the system – for example, a mixture of chemicals. Or the system may be a magnetic
material, and we do work on it by putting it in a magnetic field and magnetizing it. Some fundamental thermodynamical laws apply
to any thermodynamical system and are of great generality. Other laws may apply only to certain specific types of system, and we
must always be on our guard to recognize which are general laws applicable to any system, and which are special equations
applicable only to particular systems.

We shall, in our imagination, carry out processes under various ideal conditions. Thus, we may imagine a process to be isothermal
(carried out at constant temperature) or isobaric (constant pressure) or isochoric (constant volume). We may imagine a process in
which no heat is added to or is lost from the system. Such a process is adiabatic.

A process may be quasistatic or nonquasistatic. Let us imagine that we have a box of gas, and we suddenly heat one wall of the
box by pushing that wall up against a source of heat. Not all of the gas will immediately become hotter. At first, the gas near to the
heated wall will start to warm up, while the gas at the far end of the box will scarcely be aware of what has happened. Eventually,
heat will permeate throughout the box, but this may take some time, and the system is not at all in static equilibrium while these
changes are taking place. Likewise, if we have a gas held inside a cylinder by means of a movable piston, and we suddenly move
the piston inwards. This will not result in an immediate change to a higher pressure throughout the gas. At the very most the
information about the new position of the piston can travel through the gas only at the speed of sound. Considerable local
turbulence is likely to be caused, and it will be some time before the gas settles down to its new uniform pressure throughout. Both
of these processes are nonquasistatic.

For a process to be quasistatic, the pressure and temperature of the system must differ from those of its surroundings by only an
infinitesimal amount at all times during the process; the process must take place slowly, so that the system passes through an
infinite succession of quasi-equilibrium states. The prefix "quasi" is often translated as "almost"; a more precise meaning is "as it
were" or "as if it were". The reader will conclude that there cannot ever literally be any process that is truly static. This is also true
of other processes, such as isothermal and adiabatic processes. Such processes are limiting theoretical processes. A real process
may be intermediate between the ideal extremes, although it may also be quite close to one of the ideal extremes.
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6.1: The Ideal Gas Equation
In 1660, the Honorable Robert Boyle, Father of Chemistry and seventh son of the Earl of Cork, and one of the founders of the
Royal Society of London, conducted certain Experiments Physico-Mechanical Touching the Spring of the Air. He held a quantity of
air in the closed arm of a J-shaped glass tube by means of a column of mercury and he measured the volume of the air as it was
subjected to greater and greater pressures. As a result of these experiments he established what is now known as Boyle's Law:

The pressure of a fixed mass of gas held at constant temperature (i.e. in an isothermal process) is inversely proportional to its
volume.

That is,

Later experiments showed that the volume of a fixed mass of gas held at constant pressure increases linearly with temperature. In
particular, most gases have about the same volume coefficient of expansion. At 0 C this is about 0.00366 C   or 1/273 C .

If you extrapolate the volume of a fixed mass of gas held at constant pressure to lower and lower temperatures, the extrapolated
volume would fall to zero at −273 C. This is not directly the basis of our belief that no temperatures are possible below −273 C.
For one thing, a real gas would liquefy long before that temperature is reached. Nevertheless, for reasons that will be discussed in a
much later chapter, we do believe that this is the absolute zero of temperature. In any case:

The volume of a fixed mass of gas held at constant pressure (i.e. in an isobaric process) is directly proportional to its Kelvin
temperature.

Lastly,

The pressure of a fixed mass of gas held at constant volume (i.e. in an isochoric process) is directly proportional to its Kelvin
temperature.

If P, V and T are all allowed to vary, these three laws become

The value of the constant depends on how much gas there is; in particular, it is proportional to how many moles (hence how many
molecules) of gas there are. That is

where N is the number of moles and R is a proportionality constant, which is found to be about the same for most gases.

Of course real gases behave only approximately as described, and only provided experiments are performed over modest ranges of
temperature, pressure and volume, and provided the gas is well above the temperature at which it will liquefy. Nevertheless,
provided these conditions are satisfied, most gases do conform quite well to equation 6.1.3 with about the same proportionality
constant for each.

A gas that obeys the equation

exactly is called an Ideal Gas, and equation 6.1.4 is called the Equation of State for an Ideal Gas. In this equation, V is the total
volume of the gas, N is the number of moles and R is the Universal Gas Constant. The equation can also be written

In this case, V is the molar volume. Some authors use different symbols (such as V, v and V ) for total, specific and molar volume.
This is probably a good idea, and it is at some risk that I am not going to do this, and I am going to hope that the context will make
it clear which volume I am referring to when I use the simple symbol V in any particular situation. Note that, while total volume is
an extensive quantity, specific and molar volumes are intensive.

It is not impossible to go wrong by a factor of 10  when using equation 6.1.5. If you are using CGS units, P will be expressed in
dynes per square cm, V is the volume of a mole (i.e. the volume occupied by 6.0221 × 10  molecules), and the value of the
universal gas constant is .8.3145×10  erg mole  K . If you are using SI units, P will be expressed in pascal (N m ), V will be the

P V = constant. (6.1.1)

o o −1 o −1

o o

P V /T = constant (6.1.2)

P V /T = RN , (6.1.3)

P V = NRT (6.1.4)

P V = RT . (6.1.5)
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volume of a kilomole (i.e. the volume occupied by 6.0221 x 10  molecules), and the value of the universal gas constant is 8.3145
× 10  J kilomole  K . If you wish to express pressure in Torr, atm. or bars, and energy in calories, you're on your own.

You can write equation 6.1.4 (with V = total volume) as  where N  is Avogadro's number, which is 6.0221 × 10
molecules per mole, or 6.02221 × 10  molecules per kilomole. The first term on the right hand side is the total number of
molecules divided by the volume; that is, it is the number of molecules per unit volume, n. In the second term, R/N  is Boltzmann's
constant, k = 1.3807 10  × J K . Hence the equation of state for an ideal gas can be written

Divide both sides of equation 6.1.5 by the molar mass ("molecular weight”) µ. The density ρ of a sample of gas is equal to the
molar mass divided by the molar volume, and hence the equation of state for an ideal gas can also be written

In summary, equations 6.1.4, 6.1.5, 6.1.6 and 6.1.7 are all commonly-seen equivalent forms of the equation of state for an ideal gas.

From this point on I shall use V to mean the molar volume, unless stated otherwise, so that I shall use equation 6.1.5 rather than
6.1.4 for the equation of state for an ideal gas. Note that the molar volume (unlike the total volume) is an intensive state variable.

In September 2007, the values given for the above-mentioned physical constants on the Website of the National Institute of Science
and Technology (http://physics.nist.gov/cuu/index.html) were:

Molar Gas Constant R = 8314.472 (15) J kmole  K .

Avogadro Constant N  = 6.022 141 79 (30) × 1026 particles kmole .

Boltzmann Constant k = 1.380 6504 (24) × 10−23 J K  per particle.

The number in parentheses is the standard uncertainty in the last two figures.

[There is a proposal, likely to become official in 2015, to give defined exact numerical values to Avogadro’s and Boltzmann’s
constants, namely 6.022 14 x 10  particles mole  and 1.380 6 x 10  J K  per particle. This may at first seem to be somewhat
akin to defining π to be exactly 3, but it is not really like that at all. It is all part of a general shift in defining many of the units used
in physics in terms of fundamental physical quantities (such as the charge on the electron) rather than in terms of rods or cylinders
of platinum held in Paris.]
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6.2: Real Gases
How well do real gases conform to the equation of state for an ideal gas? The answer is quite well over a large range of P, V and T,
provided that the temperature is well above the critical temperature. We'll have to see shortly what is meant by the critical
temperature; for the moment we'll say the ideal gas equation is followed quite well provided that the temperature is well above the
temperature at which it can be liquefied merely by compressing it. Air at room temperature obeys the law quite well. Gases in
stellar atmospheres also obey the law well, because there is no danger there of the gas liquefying. (In the cores of stars, however,
where densities are very large, the gases obey a very different equation of state.)

One measure of how well the law is obeyed by real gases is to measure P, V and T, and see how close  is to 1. The quantity 
is known as the compression factor, and is often given the symbol Z. For most real gases at very high pressures (a few hundred
atmospheres), it is found in fact that Z is rather greater than 1. As the pressure is lowered, Z becomes lower, and then, alas, it
overshoots and is found to be a little less than 1. Then at yet lower pressures Z rises again. The exact shape of the Z : P curve is
different from gas to gas, as is the pressure at which Z is a minimum. Yet, for all gases, as the pressure approaches zero, PV/T
approaches R exactly. For this reason R is sometimes called the Universal Gas Constant as well as the Ideal Gas Constant. In the
limit of very low pressures, all gases behave very closely to the behaviour of an ideal gas. In Section 6.3 we shall be examining
more closely how the compression factor varies with pressure.

Another way to look at how closely real gases obey the ideal gas equation is to plot P versus V for a number of different
temperatures. That is, we draw a set of isotherms. For an ideal gas, these isotherms, PV = constant, are rectangular hyperbolas. So
they are for real gases at high temperatures. At lower temperatures, departures from the ideal gas equation are marked. Typical
isotherms are sketched in figure VI.1. Alas, my limited skills with this infernal computer in front of me allow me only to sketch
these isotherms crudely by hand.

In the PV plane of figure VI.1, you will see several areas marked "gas", "liquid", "vapour", "liquid + vapour". You can follow the
behaviour at a given temperature by starting at the right hand end of each isotherm, and gradually moving to the left – i.e. increase
the pressure and decrease the volume. The hottest isotherm is nearly hyperboloidal. Nothing special happens beyond the volume
decreasing as the pressure is increased, according to Boyle's law. At slightly lower temperatures, a kink develops in the isotherm,
and at the critical temperature the kink develops a local horizontal inflection point. The isotherm for the critical temperature is the
critical isotherm, marked CI on the sketch. Still nothing special happens other than V decreasing as P is increased, though not now
according to Boyle's law.

For temperatures below the critical temperature, we refer to the gas as a vapour. As you decrease the volume, the pressure
gradually increases until you reach the dashed curve. At this point, some of the vapour liquefies, and, as you continue to decrease
the volume, more and more of the vapour liquefies, the pressure remaining constant while it does so. That’s the horizontal portion
of the isotherm. In that region (i.e. outlined by the dashed curve) we have liquid and vapour in equilibrium. Near the right hand end
of the horizontal portion, there is just a small amount of liquid; at the left hand end, most of the substance is liquid, with only a
small amount of vapour left.

After it is all liquid, further increase of pressure barely decreases the volume, because the liquid is hardly at all compressible. The
isotherm is then almost vertical.

The temperature of the critical isotherm is the critical temperature. The pressure and molar volume at the horizontal inflection
point of the critical isotherm are the critical pressure and critical molar volume. The horizontal inflection point is the critical point.

PV

RT

RT

PV
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6.3: Van der Waals and Other Gases
We have seen that real gases resemble an ideal gas only at low pressures and high temperatures. Various attempts have been made
to find an equation that adequately represents the relation between P, V and T for a real gas – i.e. to find an Equation of State for a
real gas. Some of these attempts have been purely empirical attempts to fit a mathematical formula to real data. Others are the
result of at least an attempt to describe some physical model that would explain the behaviour of real gases. A sample of some of
the simpler equations that have been proposed follows:

van der Waals' equation:

Berthelot's equation:

Clausius's equation*:

Dieterici's equation:

Redlich-Kwong:

Virial equation:

*In Clausius’s equation, if we choose c = 3b, we get a fairly good agreement between the critical compression factor of a Clausius
gas and of many real gases. The meaning of “critical compression factor”, and the calculation of its value for a Clausius gas is
described a little later in this section.

There are many others, but by far the best known of these is van der Waals' equation, which I shall
describe at some length.
It is not possible for the voice-box of an English speaker correctly to pronounce the name van der Waals, although the W is pronounced
more like a V than a W, and, to my ear, the v is somewhat intermediate between a v and an f. To hear it correctly pronounced – especially
the vowels − you must ask a native Dutch speaker. The frequent spelling "van der Waal's equation" is merely yet another symptom of the
modern lamentable ignorance of the use of the apostrophe so much regretted by Lynne Truss.

The units in which the constants a and b should be expressed sometimes cause difficulty, and they depend on whether the symbol V
in the equation is intended to mean the specific or molar volume. The following might be helpful.

If V is intended to mean the specific volume, van der Waals’ equation should be written , where µ
is the molar mass (“molecular weight”). In this case the dimensions and SI units of a are M  L  T  and Pa m  kg  and the
dimensions and SI units of b are M  L  and m  kg

If V is intended to mean the molar volume, van der Waals’ equation should be written in its familiar form 
. In this case the dimensions and SI units of a are ML T mole  and Pa m kmole  and the

dimensions and SI units of b are L mole  and m kmole

The van der Waals constants, referred to molar volume, of H2O and CO2 are approximately:

H O: a = 5.5 × 10  Pa m  kmole b = 3.1 × 10  m  kmole

(P + ) (V −b) = RT .
a

V 2
(6.3.1)

(R + ) (V −b) = RT .
a

(T )V 2
(6.3.2)

(P + ) (V −b) = RT .
a

T (V +c)2
(6.3.3)

P (V −b) = RT .e
a

(RTV) (6.3.4)

P = − ( − ) .
RT

V −b

a

bT
1
2

1

V

1

V +b
(6.3.5)

P V = A +BP +C +D +. . .P 2 P 3 (6.3.6)

(P +a/ ) (V −b) = RT /μV 2

−1 5 −2 6 −2

−1 3 3 −1

(P +a/ ) (V −b) = RTV 2 5 −2 −2 6 −2

3 −1 3 −1

2
5 6 −2 . −2 3 −1
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CO : a = 3.7 × 10  Pa m  kmole b = 4.3 × 10  m  kmole

The van der Waals equation has its origin in at least some attempt to describe a physical model of a real gas. The properties of an
ideal gas can be modelled by supposing that a gas consists of a collection of molecules of zero effective size and no forces between
them, and pressure is the result of collisions with the walls of the containing vessel. In the van der Waals model, there are supposed
to be attractive forces between the molecules. These are known as van der Waals forces and are now understood to arise because
when one molecule approaches another, each induces a dipole moment in the other, and the two induced dipoles then attract each
other. This attractive force reduces the pressure at the walls, the reduction being proportional to the number of molecules at the
walls that are being attracted by the molecules beneath, and to the number of molecules beneath, which are doing the attracting.
Both are inversely proportional to V, so the pressure in the equation of state has to be replaced by the measured pressure P plus a
term that is inversely proportional to V . Further, the molecules themselves occupy a finite volume. This is tantamount to saying
that, at very close range, there are repulsive forces (now understood to be Coulomb forces) that are greater than the attractive van
der Waals forces. Thus the volume in which the molecules are free to roam has to be reduced in the van der Waals equation. For
more on the forces between molecules, see Section 6.8.

However convincing or otherwise you find these arguments, they are at least an attempt to describe some physics, they do represent
the behaviour of real gases better that the ideal gas equation, and, if nothing else, they give us an opportunity for a little
mathematics practice.

We shall see shortly how it is possible to determine the constants a and b from measurements of the critical parameters. These
constants in turn give us some indication of the strength of the van der Waals forces, and of the size of the molecules.

Van der Waals' equation, equation 6.3.1, can be written

A horizontal inflection point occurs where  and  are both zero. That is

and

Eliminate RT/a from these to find the critical molar volume of a van der Waals gas:

Substitute this into equation 6.3.8 or 6.3.9 (or both, as a check on your algebra) to obtain the critical temperature:

Substitute equations 6.3.10 and 6.3.11 into equation 6.3.7 to obtain the critical pressure:

From these, we readily obtain

This quantity is often called the critical compression factor or critical compressibility factor, and we shall denote it by the symbol
Z . For many real gases Z  is about 0.28; thus the van der Waals equation, while useful in discussing the properties of gases in a
qualitative fashion, does not reproduce the observed critical compression factor particularly well.

Let us now substitute  and van der Waals' equation, in which the pressure, volume and
temperature are expressed in terms of their critical values, becomes

2
5 6 −2 −2 3 −1

2

P = − .
RT

V −b

a

V 2
(6.3.7)

∂P

∂V

P∂ 2

∂V 2

− + = 0
RT

(V −b)2

2a

V 3
(6.3.8)

− = 0.
2T R

(V −b)3

6a

V 4
(6.3.9)

= 3b.Vc (6.3.10)

= .Tc

8a

27Rb
(6.3.11)

= .Pc

a

27b2
(6.3.12)

= = 0.375.
PcVc

RTc

3

8
(6.3.13)

c c

p = P / ,  v = V / ,  t = T / ,Pc Vc Tc
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This can also be written

For volumes less than a third of the critical volume, this equation does not describe the behaviour of a real gas at all well. Indeed,
you can see that p = ∞ when v = 1/3, which means that you have to exert an infinite pressure to compress a van der Waals gas to a
third of its critical volume. You might want to investigate for yourself the behaviour of equations 6.3.14 and 15 for volumes smaller
than this. You will find that it goes to infinity at v = 0 and 1/3, and it has a maximum between these two volumes. But the equation
is of physical interest only for v > 1/3 , where the variation of pressure, volume and temperature bears at least some similarity to the
behaviour of real gases, if by no means exact. In figure VI.2, I show the behaviour of a van der Waals gas for five temperatures –
one above the critical temperature, one at the critical temperature, and three below the critical temperature. The locus of maxima
and minima is found by eliminating t between equation 6.3.14 and ∂p/∂v = 0. You should try this, and show that the locus of the
maxima and minima (which I have shown by a blue line in figure VI.2) is given by

Don’t confuse the blue curve in this figure (it shows the locus of maxima and minima) with the dashed curve in figure VI.1 (it
shows the boundary between phases.). For the temperatures 0.85, 0.90 and 0.95 I have drawn the constant pressure lines where
liquid and vapour are in equilibrium in the real fluid. These are drawn so that they divide the van ver Waals curve into two equal
areas, above and below. This means that the work done by the real fluid when it changes from liquid to vapour at constant pressure
is equal to the work that would be done by its hypothetical van der Waals equivalent along its wiggly path. We shall later see that
the placement of the horizontal line is a consequence of the fact that the Gibbs function (which we have not yet met) is constant
while the liquid and vapour are in equilibrium. The dashed line of figure VI.1 would correspond on figure VI.2 to the locus of the
ends of the horizontal lines. I have drawn this locus, which outlines the region where liquid and vapour are in equilibrium, in red in
figure VI.2. While the van der Waals equation is only a rough approximation to the behaviour of real gases, it is nevertheless true
that, if pressures, temperatures and molar volumes are expressed in terms of the critical pressures, temperatures and molar volumes,
the actual equations of state of real gases are very similar. Two gases with the same values of p, v and t are said to be in
corresponding states, and the observation that the p : v : t relation is approximately the same for all gases is called the Law of
Corresponding States. We may think of gases as being composed of particles (molecules) and the only difference between different
gases is in the sizes of their molecules (i.e. their different van der Waals b constants) and their dipole moments or their electrical
polarizabilities (i.e. their different van der Waals a constants). In the dimensionless forms of the equation of state, these van der
Waals constants are removed from the equations, and it is not surprising that all gases then conform to the same equation of state.

I leave it to the reader to show that, for a Berthelot gas, the critical molar volume, temperature and pressure and the critical

compression factor are, respectively, 3b, ,  and 0.375, that the equation of state in terms of the dimensionless

variables is

(p +3/ )(v− ) = t.v2 1

3

8

3
(6.3.14)

3p −(p +8t) +9v−3 = 0.v3 v2 (6.3.15)

p = −
3

v2

2

v3
(6.3.16)

8a

27bR

− −−−
√ 1

b

aR

216b

− −−
√
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and that the locus of maxima and minima is

These are shown in figure VI.2a. It will be noted that the critical compression factor is the same as (and hence no better than) for a
van der Waals gas.

For a Clausius gas, the critical molar volume, temperature and pressure and the critical compression factor are, respectively, 3b +
2c,  and .

If c = 3b. these become 3c,  and . I choose c = 3b because that gives a good agreement with the

critical compression factor for many real gases. In dimensionless units, the Clausius equation becomes

The locus of maxima and minima is

These are shown in figure VI.2b

The Clausius equation was hard work. Dieterici’s is a little easier. The critical molar volume, temperature and pressure and the
critical compression factor are, respectively, 2b,  and 2/e  = 0.271. Note that the critical compression factor is much
closer to that of many real gases. The dimensionless form of the Dieterici equation is

p = − ,
8t

3v−1

3

tv2
(6.3.17)

p = ( − ) .
1

v1/2

4

v

6

3v−1
(6.3.18)

,8a

27(b+c)R

− −−−−−
√ 1

(b+c)
aR

216(b+c)

− −−−−−
√

3b+2c

8(b+c)

,2a

9cR

−−−
√ 1

c

aR

512c

− −−
√ = 0.281259

32

p = −
32t

9v−1

48

t(3v+1)2
(6.3.19)

p = ( ) =
1

1 +3v
− −−−−

√

80 −144v

1 −6v−27v2

16(5 −9v)

(1 −9v)(1 +3v)3/2
(6.3.20)

,a
4Rb
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4e2b2
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The locus of maxima and minima is

These are shown in figure VI.2c.

The Redlich-Kwong equation of state, like those of van der Waals, Bethelot and Dieterici, has just two parameters (a and b). All of
them are not too bad at temperatures appreciably above the critical temperature, but, close to the critical temperature, the Redlich-
Kwong empirical equation agrees a little better than the van der Waals equation does with what is observed for real gases.
Obtaining the critical constants in terms of the parameters is done by exactly the same method as for the van der Waals and other
equations, but requires perhaps a little more work and patience. The reader might like (or might not like) to try it. For the critical
constants I get

and

where

and

The critical compression factor is xz/y , which is exactly 1/3. This is not as close to the compression factor of many real gases as
the Dieterici critical compression factor is.

We can invert these equations to obtain expressions for a and b in terms of the critical temperature and pressure (or temperature and
volume, or pressure and volume). Thus

and

p = exp(2 − ).
t

2v−1

2

tv
(6.3.21)

p = exp( ).
1

v2

2(v−1)

2v−1
(6.3.22)

= xb,Vc (6.3.23)

= yTc ( )
a

bR

2/3
(6.3.24)

= z ,Pc ( )
Ra2

b5

1/3

(6.3.25)

x = 3.847322100 (6.3.26)

y = 0.345039996 (6.3.27)

z = 0.029894386. (6.3.28)

a = u( )
R2T

5/2
c

Pc
(6.3.29)

b = w ,
RTc

Pc
(6.3.30)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7244?pdf


6.3.6 https://phys.libretexts.org/@go/page/7244

where

and

(You can also do this for the other equations of state, of course.)

In order to reproduce these results, you’ll have to do a little work to see where all the constants come from. It turns out that the
value of the constant x is the positive real root of the equation

In the above analysis, I obtained all the constants from a numerical solution of equation 6.3.33, but the solution to this equation
(and all subsequent constants) can also be written in surds. Thus, with , the constants
can be calculated from

If we now introduce the dimensionless variables , and substitute these and equations 6.3.23-25
into equation 6.3.6, we obtain the dimensionless Redlich-Kwong equation

where

The dimensionless Redlich-Kwong equation is illustrated in figure VI.2d. I have not tried to find an explicit equation for the locus
of maxima, but instead I calculated it numerically, illustrated by the dashed line in figure VI.2d.

Here is a summary of the results for the two-parameter equations of state:

u = 0.427480233 (6.3.31)

w = 0.086640350. (6.3.32)

−3 −3x −1 = 0.x3 x2 (6.3.33)

f = −1, g = −1, h = −12
–

√3 4
–

√3 16
−−

√3

x = , y = , z = , u =  and w = f .
1

f
g2 3 −5g

g +h

1

9f

1

3
(6.3.34)

p = P / , v = V , t = T /Pc Nc Tc

p = − ( − ) ,
lt

xv−1

1

mt1/2

1

xv

1

xv+1
(6.3.35)

l = y/z = 11.54196631  and  m = gz = 0.017559994. (6.3.36)
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216b
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8a
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3
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1
3
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RTc
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c
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The reader can try to reproduce these (let me know (jtatum@uvic.ca) if you find any mistakes!) or at least (a useful exercise) verify
their dimensions. We mentioned in Section 6.2 that a useful way of indicating how the behaviour of a real gas differs from that of
an ideal gas is by plotting the compression factor  versus pressure. As the pressure approaches zero, the compression
factor approaches 1. This is because the molecules are then so far apart that there are no appreciable forces (attractive or repulsive)
between them. As the pressure is increased from zero, the compression factor generally at first drops a little below 1, and then rises
above 1 as the pressure is increased. It will be interesting to see how the compression factor is expected to vary with pressure for
the various “theoretical” gases that we have been discussing. I’ll do it just for a van der Waals gas, and I’ll use the dimensionless
form of van der Waals’ equation, which was first given as equation 6.3.14:

The compression factor is  and the critical compression factor is . From this, we see that . For a van

der Waals gas, , so that . Unfortunately, in order to plot Z versus p for a given t, we have to be able to express v in
terms of p, which means solving equation 6.3.37, which is a cubic equation in . I have done
this numerically, and I show the resulting graphs of Z versus p for several temperatures, in figure VI.2e. Notice that at p = 1 and t =
1, (i.e. at the critical point), the compression factor is 0.375. The Z versus p curves for real gases have the same general shape, but
the precise agreement in numerical detail is not quite so good. Where Z > 1, the pressure is greater than that of an ideal gas, the b
(repulsive) part of the van der Waals equation being more important than the a (attractive) part. Where Z < 1, the pressure is less
than that of an ideal gas, the a (attractive) part of the van der Waals equation being more important than the b (repulsive) part. I
haven’t investigated whether the other “theoretical” equations of state do appreciably better. Why not have a go yourself?!

Figure VI.2e. The compression factor Z = PV / RT versus p (pressure in units of the critical pressure for a van der Waals gas,
for several values of t (temperature in units of the critical temperature.) For a van der Waals gas the compression factor is
greater than 1 for all temperatures greater than t = 27/8 = 3.375. At this temperature, the compression factor is close to 1 up
to p equals approximately 2, and this temperature is known as the Boyle temperature. At the Boyle temperature, the Z : p
curve is flat and close to 1 for a fairly large range of pressures. Thus, at the Boyle temperature, even a non-ideal gas obeys
Boyle’s law fairly closely. For a van der Waals gas, the critical temperature is 8a/(27Rb), so the Boyle temperature for a van
der Waals is a/(Rb). The reader should calculate this for H O and CO , using the values of the van der Waals constants given
in this Chapter. The dot on the t = 1.00 isotherm at p = 1 and Z = 0.375 corresponds to the critical point. Anyone who feels in
need of more mental exercise might like to ask: For what value of p (other than zero) is Z = 1. For example, can you show
that, for t = 1, Z = 1 for p = 152/27 = 5.630?

The last proposed empirical equation of state that we mentioned is the virial equation, equation 6.3.6: 
 This is sometimes written in the form , but in these notes

we’ll use the form of equation 6.3.6. The coefficients A, B, etc are called the virial coefficients and are functions of temperature.
The first coefficient, A, is just RT. We can also write the virial equation as

Z = PV

RT

(p +3/ )(v− ) = t.v2 1

3

8

3
(6.3.38)

Z = PV

RT
=Zc

PcVc

RTc
Z =

pv

t
Zc

=Zc
3
8

Z =
3pv

8t

v[3p −(p +8t) +9v−3 = 0]v3 v2

2 2

P V = A +BP +C +D +…P 2 P 3 P V = A + + + …B

V

C

V 2

D

V 3

Z = 1 + P + + +…B′ C ′P 2 D′P 3 (6.3.39)
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We could measure the coefficient B' for a real gas by plotting Z as a function of pressure in a similar manner to figure VI.2e. The

initial slope  extrapolated to zero pressure gives the value of B'. At low temperatures B' is negative; at high temperatures B'

is positive. At the Boyle temperature B' is zero, and at that temperature the compression factor is unity for a large range in
pressures, and the gas accordingly closely conforms to Boyle’s law. The coefficient C' is small, so the term C'P  comes into play
only at higher pressures. At higher pressures, Z increases, showing that C' is a positive coefficient. The coefficient D' is smaller still
than C'

All the mathematically “well-behaved” equations of state below the critical temperature have a maximum and a minimum – i.e. the
curve shows a “wiggle”. I illustrate this in figure VI.2f. This is the van der Waals isotherm for t = 0.95 in dimensionless variables.
It is the same as one of the curves shown in figure VI.2, drawn to a different scale so as to emphasize the “wiggle”.

Using the little cylinder and piston to the right of the graph, try and imagine what happens to the enclosed liquid or vapour as you
move the piston in and out at constant temperature, moving from a to e and back again on the graph. Start at e. The cylinder is
filled with vapour. Move the piston inwards, going from e to d; the pressure increases and the volume decreases. Now a real gas
doesn’t follow the van der Waals function all the way. At d, something different happens. Actually it is possible to take a vapour a
little way past d towards (but not beyond) n. That would be a supercooled vapour, such as is used in a cloud chamber. It will
condense immediately into a line of liquid droplets as soon as a charged particle flies through the vapour. However, what usually
happens is that some of the vapour starts to condense as liquid, and we move horizontally from d to b. As we move the piston down
at constant temperature, the volume of course decreases, and more and more liquid condenses in such a manner that the pressure
remains constant. In the portion db, we have liquid and vapour existing together in the piston, in thermodynamic equilibrium. Near
to the d end there is only a little liquid; near to the b end it is nearly all liquid, with only a little vapour left. Beyond b, towards a,
the space is completely filled with liquid. We can push and push, increasing the pressure greatly, but there is very little change in
volume, because the liquid is almost (though not quite) incompressible. The isotherm is very steep there. It is actually possible to
take the liquid a little way from b towards (but not beyond) m without any of it vaporizing. This would be a superheated liquid,
such as is used in a bubble chamber. It will vaporize immediately into a line of bubbles as soon as a charged particle flies through
the liquid.

There will be further important material concerning change of state in Chapters 9 and 14. At present, though, I want to ask: At what
pressure does condensation commence? Putting it another way, what is the height of the line bd in figure VI.2f? I have heard it
argued that the height of bd, (the pressure at which condensation occurs) must be such that the area bmc is equal to the area cnd. I
am not sure that I fully understand the arguments leading to this conclusion. After all, a real gas doesn’t conform exactly to a van
der Waals equation or any of the other theoretical/empirical equations that we have discussed. But perhaps it is not unreasonable to
draw bd such that the areas above and below it are equal, and in any case it makes for an interesting (and challenging)
computational exercise. The van der Waals equation, in dimensionless variables, is given as equation 6.3.14. Can you calculate the
pressure such that the area bmc below bd is equal to the area cnd above it? I make it p = 0.812, which is the height where I have
drawn it in the figure. I haven’t done the calculation for the other equations. I leave that to you!

This page titled 6.3: Van der Waals and Other Gases is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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6.4: Gas, Vapour, Liquid and Solid
Our description of the behaviour of a real substance in section 6.2 was incomplete in many ways, not least because it made no
mention of the solid state. At very low temperatures or at very high pressures, most substances will solidify

In figures VI.3 and 4 I have sketched schematically, by hand, the several regions in the PV-plane in which a substance exists in its
several stages. Unlike in Figure VI.1 and VI.2, I have not drawn isotherms. The various lines are intended to represent the
boundaries between phases, and are therefore more akin to the dashed curves in figures VI.1 and VI.2. The one exception is the
critical isotherm, CI, which is indeed the curve that separates gas from vapour or liquid, but which is also, of course, an isotherm.
The difference between figures VI.3 and VI.4 is that figure VI.3 represents a substance that expands when it melts from solid to
liquid, while figure VI.4 represents a substance that contracts when it melts from solid to liquid (that is, the solid is less dense than
the liquid, and will float upon it.) Most substances expand upon melting, but we have to include those exceptional substances that
contract upon melting, because one such substance is one of the most important of all – water.

You can try to understand the figures a little by moving along a horizontal line (isobar) or along a vertical line (isochor) and
noticing where phase changes take place. Can you see, for example, where a solid will change to a vapour without going through a
liquid phase (sublimation)?

You will note, in the figures, the critical isotherm CI, that separates gas from liquid or vapour, and you will note that, at
temperatures above the critical temperature, the only phase possible is gas, and the substance cannot be liquefied merely by
compression. You will note also the critical point CP. You will also see the triple line TL, along which solid, liquid and vapour co-
exist together. What of the region marked O? The substance cannot exist here in solid, liquid or gaseous phase. To that extent, we
see that the van der Waals equation may be a little bit better than we thought it was, because you will remember that it went up to
infinity at a third of the critical volume. All that this means is that by then the molecules are so tightly jammed together that you
simply cannot compress them any further. Although a substance cannot exist in an ordinary solid, liquid or gas phase in the region
marked O, if the matter is degenerate it will be in this region. The electron structure of the atoms breaks down, so that it then does
became possible to jam the atoms closer together. This may mean something to those of you who are familiar with the concept of
degenerate matter. If you have not heard of it, do not worry; you are unlikely to come across it unless you visit a white dwarf star,
or the core of a massive star, or have to take an examination in astrophysics. For the time being, we shall look the other way and
pretend it doesn't exist.

We can get a little more insight by looking at the PT-plane. Figure VI.5 shows a substance that expands on melting, and figure VI.6
shows a substance (such as water) that expands on freezing. In the PT-plane, the triple point (where solid, liquid and vapour) are in
equilibrium with each other, appears as the triple point, TP. (In PVT-space it is a line, although the critical point CP remains a
genuine point in PVT-space.) The line separating liquid from vapour terminates at the critical point, and the line is often drawn as
though it were somehow left hanging in mid-air, so that one is uncertain whether a given point near the critical point represents a
gas, a vapour or a liquid. But in the PT-plane, the critical isotherm is a vertical line (show as dashed in the figures), and the
liquid/vapour boundary terminates at the critical isotherm, and there is no question what phase is represented by a point near to the
critical point. To the right of the critical isotherm, we have a gas. To the left, we have either a liquid or a vapour, depending on
whether we are above or below the liquid/vapour boundary. As we cross the solid/vapour boundary, below the critical temperature
and below the critical pressure (on Mars!) we have a phase change directly from solid to vapour or vapour to solid – i.e.
sublimation.

(I have often heard that, below the triple point, a solid will "sublime". I think I prefer the verb "to sublimate".)
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Really to appreciate these diagrams you need to see and to handle a three-dimensional model in 3- space. My skills at making
drawings with my computer are nowhere near good enough yet for me to attempt a three-dimensional drawing, but Mr Charles
Card of the University of Victoria was kind enough to photograph for me a model from the University’s collection, and I reproduce
these below as figures VI 7,8 and 9.
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I now give some numerical values for the critical temperature and pressure, the compression factor, and the temperature and
pressure of the triple point for H O and for CO . These are not intended as definitive values. I looked them up in a number of
sources and I found a surprisingly wide range of the numbers quoted. They are given here merely to give the reader a rough idea of
what the values are for these two substances. The temperature quoted for the triple point of H O is, of course, exact, being one of
the fixed points of the Kelvin scale. Recall that one atmospheric pressure is about 1.01 × 10  Pa.

The reader might like to see whether these numbers are compatible with the numbers I gave for the van der Waals constants in
Section 6.3. Exact agreement is not to be expected, because the figures I quote are only approximate and are gleaned from a variety
of sources and also, of course, neither gas can be expected to obey van der Waals’ equation exactly. If the numbers seem to be
wildly discrepant, please let me know.

We who live on the surface of Earth are familiar with water in its solid, liquid and vapour forms, and this might suggest that the
conditions on the surface of Earth, the temperature and pressure, must be close to the triple point of water. We see from the above
table that the triple point of water (which is defined to be 273.16 K = 0.01 ºC in the International Temperature Scale), is indeed near
our typical ambient temperatures, but the triple point pressure of water is 611.73 Pa, which is only about 0.006 atm. However, we
are near the triple point if the partial pressure of water vapour in the atmosphere is close to 0.006 atm, which it often is. So we are
indeed close to the triple point, which is why we so often see water in its three phases. Incidentally, the P : T diagram for the water
system is a good deal more complicated that the ideal diagram of figure VI.6, particularly in the “solid” region, since there are
apparently many (about 15) different forms, or phases, of water ice.

Some idle thoughts on vapours. There is a question of how to spell “vapour”. In the United States, “vapor” is usual, and in the
United Kingdom “vapour” is usual. “Vaporize” is a bit trickier. The spelling “vaporize” is usual in the United States, but what to do
in the United Kingdom? Is it vapourize, vapourise, vaporize or vaporise? Is there a u or no u? Is it z or s? To answer the first
question: In the United Kingdom, the u, as in the United States, is omitted. Only weak spellers and those who would try to be
“more English than the English” would try to insert a u. As for s or z, either seems to be used in the United Kingdom.
Etymologically, z would be the better choice, so the spelling “vaporize” is perfectly acceptable on both sides of the Atlantic Ocean.

More idle thoughts on vapours. Is a “vapour” a “gas? What is a “fluid”? And is glass a liquid? Some authors treat “gas” and
“vapour” as though they were quite different things: a gas is not a vapour, and a vapour is not a gas. Others regard a “vapour” as
being a sort of gas – namely a gas whose temperature is below the critical temperature and which can be liquefied by increasing the
pressure. In that case, what do you call a gas that is above the critical temperature? The term permanent gas is often used. Thus a
vapour is a gas below its critical temperature, and a permanent gas is a gas above its critical temperature.

A fluid is something that flows. Thus liquids and gases (including vapours) are fluids. There is, you would imagine, always a clear
distinction between a liquid and a gas. But is the distinction always so clear? I admit that I have never actually seen the
phenomenon that I am about to describe, but it is described so often that I presume someone has seen it! Consider a closed
container with a liquid in equilibrium with its vapour. The liquid and vapour are separated by a sharp, horizontal boundary. That is
to say, the system is on the line separating liquid and vapour in figures VI.5 and 6. This line can be regarded, if you like, as a graph
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of boiling point versus temperature, or equally of vapour pressure versus temperature. If you raise the pressure, the boiling point
increases; or if you increase the temperature, the vapour pressure increases. More liquid will enter the vapour state, and, as the
pressure of the vapour increases, so does its density. The liquid, on the other hand, is almost incompressible, and, because of
thermal expansion, its density decreases. As we move up the line separating liquid form vapour in the P:T plane, the density of the
vapour increases and the density of the liquid decreases. Their densities become more and more equal until, as we approach the
critical point, the boundary between liquid and vapour becomes less and less distinct, and less constrained by gravity to be
horizontal, until eventually, at the critical point, the distinction between liquid and vapour blurs and ultimately disappears. So –
what have you got then? It is certainly a fluid, but are you going to call it a gas, a vapour or a liquid? Since none of these words
would seem to have a stronger claim than either of the others, some authors refer to the substance when a little above and to the
right of the critical point in the P:T plane as a supercritical fluid.

There is also the question as to whether glass is a solid or a liquid. A famous radio personality many years ago, on a “Brains Trust”
programme broadcast by the British Broadcasting Corporation, Professor C. E. M. Joad, was famous for his sentence: “It all
depends on what you mean by…” So I suppose the question as to whether glass is a liquid or a solid depends on what you mean by
a liquid or a solid. The moment when I drop a tumbler and it shatters into many viciously sharp fragments is not a good moment to
convince me that glass is a liquid. Those who assert that glass is a liquid say that it has not got a solid crystalline structure, and that
it flows, albeit very slowly. It has a very large viscosity. We are told that windows in ancient mediaeval cathedrals are thicker at the
bottom than at the top, as a result of the viscous liquid flow over the centuries. I don’t know if any of the many people who have
told me that have actually personally measured the thickness of a cathedral window.

At any rate, before you started this chapter, you had a very clear idea in your mind about the differences between a solid, liquid and
a gas. Now that I have painstakingly explained it all, you are completely confused, and are no longer at all sure that you know the
difference.

This page titled 6.4: Gas, Vapour, Liquid and Solid is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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6.5: Kinetic Theory of Gases- Pressure
There will be more about macroscopic PVT relations for gases when we go further into thermodynamics. In this section, we deal
with microscopic properties, and how pressure and temperature are related to the number density of molecules and their speed.

We shall consider an ideal gas, containing n molecules per unit volume, each of mass m, held in a cubical box of side l. The
velocity of a particular molecule is to be denoted by c = ui + vj + wk. Here u, v, w are the components of the velocity parallel to the
sides of the box. As ever, I shall use the word velocity to mean "velocity" and the word speed to mean "speed". Thus the velocity of
the molecule is c and its speed is c. We are going to start by calculating the pressure on the walls, assumed to be caused by the
collisions of millions of molecules repeatedly colliding with the walls.

("Why do you keep banging your head against the wall?" "Because it feels so good when I stop.")

Consider the x-motion. Assuming that collisions are elastic, we note that the change of the x-component of momentum when a
molecule bounces off a yz-wall is 2mu. The time taken to cross to the other side of the cube and back again is 2l/u. The number of
collisions that this molecule makes with one yz-wall per unit time is u/(2l). The rate of change of momentum of that molecule at
that wall is therefore 2mu x u/(2l) = mu /l. The rate of change of the x-component of the momentum at that wall of all the nl
molecules in the box is . That is, the force on that wall is , and so the pressure on the wall is 

. But  (that’s assuming that the velocities are isotropic and there’s no wind) and  (that’s

Pythagoras’s theorem), and therefore . So the pressure is

Here ρ is the density = mass ÷ volume = molar mass ÷ molar volume = µ/V, (here V = molar volume) and therefore

But  is  of the translational kinetic energy of a mole of gas, and we already know that PV = RT, so that we deduce that the
translational kinetic energy of the molecules in a mole of gas is equal to . That is to say the mean translational kinetic energy
per molecule is , where k is Boltzmann's constant (see Section 6.1).

This page titled 6.5: Kinetic Theory of Gases- Pressure is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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6.6: Collisions
In this section, we are going to ask: What is the mean time between intermolecular collisions? What is the mean free path between
collisions? How many intermolecular collisions are there per unit volume per unit time? How many collisions with the walls of a
containing vessel are there per unit area per unit time? Since I know little chemistry, I shall assume that molecules are hard spheres
of diameter d. This may not be too bad for monatomic gases such as the rare gases. For others, the assumption is tantamount to
assuming that molecules repel each other when their centres of mass approach within a distance d. In any case, we shall assume
that the collision cross-section is of area πd .

Notice, from the sketch below, that two equal spheres collide when their centres are separated by their diameter d, and
consequently the collision cross section (shown as a dashed circle) is of area πd .

In fact in what follows, I’m just going to call the area of the collision cross section σ; in doing that, I don’t even have to assume that
its shape is circular.

In time t, a molecule moving with speed c sweeps out a cylinder of volume σct. If there are n molecules per unit volume, the
number of collisions that that particular molecule will experience in time t would appear to be σctn, which is to say that the number
of collisions it experiences in unit time is σcn. Thus the mean time τ between collisions would appear to be ), τ = 1/(σcn) and the
mean free path λ between collisions is ). λ = 1/(σn).

But this isn't quite right, because we have not taken into account the fact that all the molecules in the above-mentioned cylinder are
moving. It is not as though our hero molecule were colliding with a set of stationary molecules. The relevant speed to use in this
analysis is the mean relative speed between molecules, and this is a little greater than the speed c of each. Let’s see if we can do a
little better.

Let’s start by supposing that all of the molecules are moving with speed c. There are two extreme sorts of collision:

The “head on” collision:

For such a collision, the relative speed between the molecules is 2c.

Then there is the sort of collision in which one molecule barely catches up with another one:

In that case the relative speed is zero.

The average relative speed is evidently somewhere between 0 and 2c.

These are extreme cases. The “average” situation is somewhat in between. We may argue that the “average” situation is for the two
molecules to be travelling in perpendicular paths:

If we think of this as the “average” situation, then we may argue that the “average” relative speed between two molecules is .
In that case, we may conclude that the mean time between collisions is , and the mean free path is 

2

2

c2
–

√
τ = 1/( σcn)2

–
√
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.

This argument may or may not be completely convincing, but it is probably closer to the mark than our previous effort.

Let’s see if we can make a further improvement. As before, we’ll suppose that each molecule is moving with speed c.

Suppose our hero molecule to be moving upward with speed c, and another molecule approaches at an angle θ, as in the sketch
below.

By vector addition of velocities, it will be seen (a little thought will be needed) that the relative speed of approach between the two
molecules is .

Now the fraction of molecules approaching from angles between θ and θ + dθ is . This is because the area of an elemental
zone of a sphere of unit radius between θ and θ + dθ is 2πsinθdθ, and the total area of the sphere is 4π - see the sketch below:

Thus the mean relative speed of all the molecules is , which works out to be .

In this model, then, the mean time between collisions would be , and the mean free path would be .

However, we have still assumed that all the molecules are moving at the same speed. I am told (but I have not verified it myself)
that, if you take account of the Maxwell-Boltzmann distribution of speeds (see Section 6.7), the mean relative speed of collision is 

, where  is the mean speed of the Maxwell-Boltzmann distribution (equal to .) If that is so, then we obtain 

 and .

In any case, since molecules are not hard spheres (they are neither spheres nor hard) and the details of a “collision” depend on the
shape of the molecules and the force law between them, it may not be meaningful to try to obtain an extremely precise formula for
the mean free path, but instead settle for  and , and if you wish to take , you won’t be far out.

Of more interest would be to calculate the mean time between collisions for various pressures and temperatures, and ask how does
this compare, for example, with the mean lifetime of an atom in an excited atomic level, or a metastable level. Or to compare the
mean free path between collisions with the mean nearest-neighbour distance between molecules in a gas. I think under typical
familiar conditions, you’ll find that the mean free path is rather longer than the mean nearest-neighbour distance.

Also of interest is the number of collisions per unit volume per unit time. If we suppose that a single molecule experiences 
collisions per unit time, and there are n molecules per unit volume, then the number of collisions per unit volume per unit time is

.

The factor of  is necessary so that we don’t count collisions of A with B and of B with A as two different collisions.

Another useful result is that the number of molecules striking the walls of a containing vessel per unit area per unit time is
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To avoid repetition, I don't derive this here, but you will find a derivation in Chapter 1 Section 1.17 of Stellar Atmospheres, where I
do the derivation with photons rather than with molecules. The only difference is that, in the case of the photons, all are moving at
the same speed c (the speed of light), whereas here we have a distribution of speeds, and we use , the mean speed of the
molecules.

This page titled 6.6: Collisions is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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6.7: Distribution of Speeds
I am tempted to start by saying "Let f(u)du be the fraction of molecules of which the x-component of their velocities is between u
and u + du." But we can go a little further than this with the realization that this distribution must be symmetric about u = 0, and
therefore, whatever the function is, it must contain only even powers of u. So we can start with:

Let f(u )du be the fraction of molecules of which the x-component of their velocities is between u and u + du. Then, unless there is
a systematic flow on the x-direction or the x-direction is somehow special, the fraction of molecules with y velocity components
between v and v + dv is f(v )dv, and the fraction of molecules with z velocity components between w and w + dw is f(w )dw. The
fraction of molecules in a box du dv dw of velocity space is f(u )f(v )f(w )du dv dw. Since the distribution of velocity components
is independent of direction, this product must be of the form

or

(Question: Dimensions of f? Of F?)

It is easy to see that this is satisfied by

where A and c  are constants to be determined. It should also be clear that, of the two possible solutions represented by equation
6.7.3, we must choose the one with the minus sign.

Since we must have

it follows that

(To see this, you have to know that .)

Thus we now have

This is the gaussian distribution of a velocity component. We shall shortly find a physical interpretation for the constant c .

The area under the curve represented by equation 6.7.9 is, of course, unity; the maximum value of ( is) /(1 ). 2 f u cm π

Figure VI.10 illustrates this distribution. In this figure, the unit of speed is c . The area under the curve is 1. The maximum (at u =
0) is . Exercise: Show that the FWHM (full width at half maximum) is . This gives one
physical interpretation of c ; we shall soon give another one, which will explain the use of m as a subscript.
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The gaussian distribution deals with velocity components. We deal now with speeds. The fraction of molecules having speeds
between c and c + dc is F(c ) times the volume of a spherical shell in velocity space of radii c and c + dc. (Some readers may recall
a similar argument in the Schrödinger equation for the hydrogen atom, in which the probability of the electron's being at a distance
between r and r + dr is the probability density ψψ* times the volume of a spherical shell.

You'll notice that physics becomes easier and easier, because you have seen it all before in different contexts. In the present context,
F is akin to the ψψ* of wave mechanics, and it could be considered to be a "speed density".) Thus the fraction of molecules having
speeds between c and c + dc is

I shall leave it to those who are skilled at calculus to show that , and also to show that the maximum of this
distribution occurs for a speed of c = c  and that the maximum value of Φ (c ) is . This provides another interpretation
of the constant c . The speed at which the maximum of the distribution occurs is called the mode of the distribution, or the modal
speed – hence the subscript m. Equation 6.7.10 is the Maxwell-Boltzmann distribution of speeds. It is shown in figure VI.7, in
which the unit of speed is c . The area is 1, and the maximum is .

The mean speed  is found from  and the root mean square speed c  is found from . If
you have not encountered integrals of this type before, you may find that the first of them is easier than the second. If you can do
these integrals, you will find that

The root mean square (RMS) speed, for which I am here using the symbol c , is of course the square root of . We have seen
from Section 6.5 that the mean kinetic energy per molecule, , is equal to , so now let's bring it all together:

2

Φ ( )dc = dcc2 4c2

c3
m π−−√

e− /c2 c2
m (6.7.7)

Φ ( )dc = 1∫ ∞
0 c2

m
2 4/ ( e )cm π−−√

m

m 4/(e ) = 0.830π−−√

c̄̄ cΦ ( )dc∫ ∞
0

c2
RMS = Φ ( )dcc2

RMS
∫ ∞

0
c2 c2

=  and  =c̄̄
2

π−−√
cm cRMS

3

2

−−
√ cm (6.7.8)

RMS c2¯ ¯¯̄

m1
2

c2¯ ¯¯̄
kT3

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8588?pdf


6.7.3 https://phys.libretexts.org/@go/page/8588

Gauss:

Maxwell-Boltzmann:

One last thing occurs to me before we leave this section. Can we calculate the median speed c  of the Maxwell-Boltzmann
distribution? This is the speed such that half of the molecules are moving slower than c , and half are moving faster. It is the
speed that divides the area under the curve in half. If we express speeds in units of c , we have to find c  such that

or

That should keep your computer busy for a while. Mine made the answer c = 1.087 65 c .
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6.8: Forces Between Molecules
We described in a qualitative manner in Section 6.3 the forces between molecules – the long-range attractive van der Waals forces
caused by induced-dipole/induced-dipole interaction, and the shortrange repulsive Coulomb forces as the molecules approach each
other closely, and how these intermolecular forces give rise to deviations from the “Boyle’s Law” expectations for the equation of
state for an ideal gas. Presumably, if we knew the exact equation for the force law as a function of intermolecular distance, we
could in principle calculate the equation of state; conversely, if we knew, through measurement, the form of the equation of state,
we could deduce the form of the intermolecular forces. I have not actually done this myself; an early reference worthwhile to look
up would be Lennard-Jones, Proc. Roy, Soc. A112, 214, (1926).

Qualitatively, the force law for the interaction between molecules would show a repulsive force rapidly falling off with distance
when the molecules are very close (the molecules are “hard”) and a longer-range attractive force at larger distances. Two of the
simpler equations that have been used to describe this are the Lennard-Jones potential:

and the Morse potential:

Each of these goes to V → D as r → ∞, and V = 0 when r = re. The Lennard-Jones potential (but not the Morse potential) goes to ∞
as r → 0.

These expressions cannot be “derived” in the usual sense; they are merely expressions that are useful for discussion in that they
describe qualitatively the shape of the potential function that you would expect. The Lennard-Jones expression is often used in
discussions of the van der Waals force: if the van der Waals attractive force is due mostly to induced-dipole/induced-dipole
interaction, an r  term is about right. The Morse potential is used more often in discussion of the force between atoms in a bound
molecule. If the Morse potential is put into the Schrödinger equation for an anharmonic oscillating diatomic molecule, it results in a
simple solution for the eigenfunctions and eigenvalues, with the energy levels being given as quadratic (and no higher) in .

The parameter a in the Morse expression determines how narrow or how broad the minimum is. It is left as an exercise for the
reader to show that the FWHm (full width at half minimum) of the Morse expression is the same as for the Lennard-Jones potential
for

In figure VI.12, I show, as continuous curves, the Morse potentials (in order of increasing width) for a/r  = 0.1, 0.1772, 0.3 and 0.4,
and the Lennard-Jones potential as a dashed curve. Further comparisons between these two potential functions can be found in T.-
C. Lim, Z. Naturforschung, 58a, 615, (2003).
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7.1: The First Law of Thermodynamics, and Internal Energy
The First Law of thermodynamics is:

The increase of the internal energy of a system is equal to the sum of the heat added to the system plus the work done on the
system.

In symbols:

You may regard this, according to taste, as any of the following

A fundamental law of nature of the most profound significance;

or A restatement of the law of conservation of energy, which you knew already;

or A recognition that heat is a form of energy.

or A definition of internal energy.

Note that some authors use the symbol E for internal energy. The majority seem to use U, so we shall use U here.

Note also that some authors write the first law as dU = dQ − dW, so you have to be clear what the author means by dW. A scientist
is likely to be interested in what happens to a system when you do work on it, and is likely to define dW as the work done on the
system, in which case dU = dQ + dW. An engineer, in the other hand, is more likely to be asking how much work can be done by
the system, and so will prefer dW to mean the work done by the system, in which case dU = dQ − dW.

The internal energy of a system is made up of many components, any or all of which may be increased when you add heat to the
system or do work on it. If the system is a gas, for example, the internal energy includes the translational, vibrational and rotational
kinetic energies of the molecules. It also includes potential energy terms arising from the forces between the molecules, and it may
also include excitational energy if the atoms are excited to energy levels above the ground state. It may be difficult to calculate the
total internal energy, depending on which forms of energy you take into account. And of course the potential energy terms are
always dependent on what state you define to have zero potential energy. Thus it is really impossible to define the total internal
energy of a system uniquely. What the first law tells us is the increase in internal energy of a system when heat is added to it and
work is done on it.

Note that internal energy is a function of state. This means, for example in the case of a gas, whose state is determined by its
pressure, volume and temperature, that the internal energy is uniquely determined (apart from an arbitrary constant) by P, V and T –
i.e. by the state of the gas. It also means that in going from one state to another (i.e. from one point in PVT space to another), the
change in the internal energy is route-independent. The internal energy may be changed by performance of work or by addition of
heat, or some combination of each, but, whatever combination of work and energy is added, the change in internal energy depends
only upon the initial and final states. This means, mathematically, that dU is an exact differential (see Chapter 2, Section 2.1). The
differentials dQ and dW, however, are not exact differentials.

Note that if work is done on a Body by forces in the Rest of the Universe, and heat is transferred to the Body from the Rest of the
Universe (also known as the Surroundings of the Body), the internal energy of the Body increases by dQ + dW, while the internal
energy of the Rest of the Universe (the Surroundings) decreases by the same amount. Thus the internal energy of the Universe is
constant. This is an equivalent statement of the First Law. It is also sometimes stated as “Energy can neither be created nor
destroyed”.

This page titled 7.1: The First Law of Thermodynamics, and Internal Energy is shared under a CC BY-NC license and was authored, remixed,
and/or curated by Jeremy Tatum.
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7.2: Work
There are many ways in which you can do work on a system. You may compress a gas; you may magnetize some iron; you may
charge a battery; you may stretch a wire, or twist it; you may stir a beaker of water.

Some of these processes are reversible; others are irreversible or dissipative. The work done in compressing a gas is reversible if it
is quasistatic, and the internal and external pressures differ from each other always by only an infinitesimal amount. Charging a
lead-acid car battery may be almost reversible; charging or discharging a flashlight battery is not, because it has a high internal
resistance, and the chemical reactions are irreversible. Stretching or twisting a wire is reversible as long as you do not exceed the
elastic limit. If you do exceed the elastic limit, it will not return to its original length; that is, it exhibits elastic hysteresis. When you
magnetize a metal sample, you are doing work on it by rotating the little magnetic moments inside the metal. Is this reversible? To
answer this, read about the phenomenon of magnetic hysteresis in Chapter 12, Section 12.6, of Electricity and Magnetism.

Work that is reversible is sometimes called configuration work. It is also sometimes called PdV work, because that is a common
example. Work that is not reversible is sometimes called dissipative work. Forcing an electric current through a wire is clearly
dissipative.

For much of the time, we shall be considering the work that is done on a system by compressing it. Solids and liquids require huge
pressures to change their volumes significantly, so we shall often be considering a gas. We imagine, for example, that we have a
quantity of gas held in a cylinder by a piston. The work done in compressing it in a reversible process is −PdV. If you are asking
yourself "Is P the pressure that the gas is exerting on the piston, or the pressure that the piston is exerting on the gas?", remember
that we are considering a reversible and quasistatic process, so that the difference between the two is at all stages infinitesimal.
Remember also that in calculus, if x is some scalar quantity, the expression dx doesn't mean vaguely the "change" in x (an ill-
defined word), but it means the increment or increase in x. Thus the symbol dV means the increase in volume, which is negative if
we are doing work on the gas by compressing it. In any case whether you adopt the scientist convention or the engineer convention
(try both) the first law, when applied to the compression or expansion of a gas, becomes

This page titled 7.2: Work is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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7.3: Entropy

If an infinitesimal quantity of heat dQ is added to a system at temperature T, and if no irreversible work is done on the system,
the increase in entropy dS of the system is defined by

What are the SI units of entropy?

Note that, since  is supposed to be an infinitesimal quantity of heat, any increase in temperature is also infinitesimal. Note also
that, as with internal energy, we have defined only what is meant by an increase in entropy, so we are not in any position to state
what the entropy of a system is. (Much later, we shall give evidence that the molar entropy of all substances is the same at the
absolute zero of temperature. It may then be convenient to define the zero of the entropy scale as the molar entropy at the absolute
zero of temperature. At present, we have not yet shown that there is an absolute zero of temperature, let alone of entropy.)

To the question "What is meant by entropy?" a student will often respond with "Entropy is the state of disorder of a system." What
a vague, unquantitative and close to meaningless response that is! What is meant by "disorder"? What could possibly be meant by a
statement such as "The state of disorder of this system is 5 joules per kelvin"? Gosh! I would give nought marks out of ten for such
a response! Now it is true, when we come to the subjects of statistical mechanics, and statistical thermodynamics and mixing
theory, that there is a sense in which the entropy of a system is some sort of measure of the state of disorder, in the sense that the
more disordered or randomly mixed a system is, the higher its entropy, and random processes do lead to more disorder and to
higher entropy. Indeed, this is all connected to the second law of thermodynamics, which we haven't touched upon yet. But please,
at the present stage, entropy is defined as I have stated above, and, for the time being, it means nothing less and nothing more.

It will have been noted that, in our definition of entropy so far, we specified that no irreversible work be done on the system. What
if some irreversible work is done? Let us suppose that we do work on a gas in two ways. (I choose a gas in this discussion, because
it is easier to imagine compressing a gas with  work than it is with a solid or a liquid, because the compressibility of a solid or
a liquid is relatively low. But the same argument applies to any substance.) We compress it with the piston, but, at the same time,
we also stir it with a paddle. In that case, the work done on the gas is more than . (Remember that  is positive.) If we
didn't compress it at all, but only stirred it,  would be zero, but we would still have done work on the gas by stirring. Let's
suppose the work done on the gas is

The part  is the irreversible or dissipative part of the work done on the gas; it is unrecoverable as work, and is irretrievably
converted to heat. You cannot use it to turn the paddle back. Nor can you cool the gas by turning the paddle backwards.

We can now define the increase of entropy in the irreversible process by

that is,

In other words, since  is irreversibly converted to heat, it is just as though it were part of the addition of heat.

In summary,

and

Definition: Entropy Differential

dS = .
dQ

T
(7.3.1)

Exercise 7.3.1

dQ

PdV

−PdV −PdV

dV

δW = −PdV +δ .Wirr (7.3.2)

δWirr

TdS = dQ+dWirr (7.3.3)

dS = .
dQ+dWirr

T
(7.3.4)

dWirr

dU = dQ+dW (7.3.5)

dU = TdS−PdV (7.3.6)
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apply whether there is reversible or irreversible work. But only if there is no irreversible (unrecoverable) work does 
and . If there is any irreversible work,

and

Of course there are other forms of reversible work than  work; we just use the expansion of gases as a convenient example.

Note that , , and  are state variables (together, they define the state of the system) and  is a function of state. Thus the
entropy, too, is a function of state. That is to say that the change in entropy as you go from one point in PVT-space to another point
is route-independent. If you return to the same point that you started at (the same state, the same values of ,  and ), there is no
change in entropy, just as there is no change in internal energy.

The specific heat capacity  of a substance is the quantity of heat required to raise the temperature of unit mass of it by one
degree. We shall return to the subject of heat capacity in Chapter 8. For the present, we just need to know what it means, in
order to do the following exercise concerning entropy.

A litre (mass = 1 kg) of water is heated from 0 C to 100 C. What is the increase of entropy? Assume that the specific heat
capacity of water is C = 4184 J kg  K , that it does not vary significantly through the temperature range of the question, and
that the water does not expand significantly, so that no significant amount of work (reversible or irreversible) is done.

Solution

The heat required to heat a mass  of a substance through a temperature range  is . The entropy gained then is 
. The entropy gained over a finite temperature range is therefore

This page titled 7.3: Entropy is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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7.4: The Second Law of Thermodynamics
In a famous lecture entitled The Two Cultures given in 1959, the novelist C. P. Snow commented on a common intellectual attitude
of the day - that true education consisted of familiarity with the humanities, literature, arts, music and classics, and that scientists
were mere uncultured technicians and ignorant specialists who never read any of the great works of literature. He described how he
had often been provoked by such an attitude into asking some of the self-proclaimed intellectuals if they could describe the Second
Law of Thermodynamics – a question to which he invariably received a cold and negative response. Yet, he said, he was merely
asking something of about the scientific equivalent of "Have you read a work of Shakespeare?"

So I suggest that, if you have never read a work of Shakespeare, take a break for a moment from thermodynamics, go and read A
Midsummer Night's Dream, and come back refreshed and ready to complete your well-rounded education by learning the Second
Law of Thermodynamics.

We have defined entropy in such a manner that if a quantity of heat dQ is added reversibly to a system at temperature T, the
increase in the entropy of the system is dS = dQ/T. We also pointed out that if the heat is transferred irreversibly, dS > dQ/T.

Now consider the following situation (figure VII.1).

An isolated system consists of two bodies, A at temperature T  and B at temperature T , such that T  >T . Heat will eventually be
exchanged between the two bodies, and on the whole more heat will be transferred from B to A than from A to B. That is, there
will be a net transference of heat, dQ, from B to A. Perhaps this heat is transferred by radiation. Each body is sending forth
numerous photons of energy, but there is, on the whole, a net flow of photons from B to A. Or perhaps the two bodies are in
contact, and heat is being transferred by conduction. The vibrations in the hot body are more vigorous than those in the cool body,
so there will be a net transfer of heat from B to A. However, since the emission of photons in the first case, and the vibrations in the
second place, are random, it will be admitted that it is not impossible that at some time more photons may move from A to B than
from B to A. Or, in the case of conduction, most of the atoms in A happen to be moving to the right while only a few atoms in B
are moving to the left in the course of their oscillations. But, while admitting that this is in principle possible and not outside the
laws of physics, it is exceedingly unlikely to happen in practice; indeed so unlikely as hardly to be taken seriously. Thus, in any
natural, spontaneous process, without the intervention of an External Intelligence, it is almost certain that there will be a net
transfer of heat from B to A. And this process, barring the most unlikely set of circumstances, is irreversible.

The hot body will lose an amount of entropy dQ/T , while the cool body will gain an amount of entropy dQ/T , which is greater
than dQ/T . Thus the entropy of the isolated system as a whole increases by dQ/T  − dQ/T .

From this argument, we readily conclude that any natural, spontaneous and irreversible thermodynamical processes taking place
within an isolated system are likely to lead to an increase in entropy of the system. This is perhaps the simplest statement of the
Second Law of Thermodynamics.

I have used the phrase "is likely to", although it will be realised that in practice the possibility that the entropy might decrease in a
natural process is so unlikely as to be virtually unthinkable, even though it could in principle happen without violating any
fundamental laws of physics.

You could regard the Universe as an isolated system. Think of a solid Body sitting somewhere in the Universe. If the Body is hot, it
may spontaneously lose heat to the Rest of the Universe. If it is cold, it may spontaneously absorb heat from the Rest of the
Universe. Either way, during the course of a spontaneous process, the entropy of the Universe increases.

The transference of heat from a hot body to a cooler body, so that both end at the same intermediate temperature, involves, in
effect, the mixing of a set of fast-moving molecules and a set of slow-moving molecules. A similar situation arises if we start with
a box having a partition down the middle, and on one side of the partition there is a gas of blue molecules and on the other there is
a gas of red molecules. If we remove the partition, eventually the gases will mix into one homogeneous gas. By only a slight
extension of the idea of entropy discussed in courses in statistical mechanics, this situation can be described as an increase of
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entropy – called, in fact, the entropy of mixing. If you saw two photographs, in one of which the blue and red molecules were
separated, and in the other the two colours were thoroughly mixed, you would conclude that the latter photograph was probably
taken later than the former. But only "probably"; it is conceivable, within the laws of physics, that the velocities of the blue and red
molecules separated themselves out without external intervention. This would be allowed perfectly well within the laws of physics.
Indeed, if the velocities of all the molecules in the mixed gases were to be reversed, the gases would eventually separate into their
two components. But this would seem to be so unlikely as never in practice to happen. The second law says that the entropy of an
isolated system is likely (very likely!) to increase with time. Indeed it could be argued that the increase of entropy is the criterion
that defines the direction of the arrow of time. (For more on the arrow of time, see Section 15.12 of the notes on Electricity and
Magnetism of this series. Also read the article on the arrow of time by Paul Davis, Astronomy & Geophysics (Royal Astronomical
Society) 46, 26 (2005). You’ll probably also enjoy H. G. Wells’s The Time Machine.)

Note that, in the example of our two bodies exchanging heat, one loses entropy while the other gains entropy; but the gain by the
one is greater than the loss from the other, with the result that there is an increase in the entropy of the system as a whole. The
principle of the increase of entropy applies to an isolated system.

In case you have ever wondered (who hasn’t?) how life arose on Earth, you now have a puzzle. Surely the genesis and subsequent
evolution of life on Earth represents an increase in order and complexity, and hence a decrease in the entropy of mixing. You may
conclude from this that the genesis and subsequent evolution of life on Earth requires Divine Intervention, or Intelligent Design,
and that the Second Law of Thermodynamics provides Proof of the Existence of God. Or you may conclude that Earth is not an
isolated thermodynamical system. Your choice.

This page titled 7.4: The Second Law of Thermodynamics is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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8.1: Heat Capacity
Definition: The heat capacity of a body is the quantity of heat required to raise its temperature by one degree. Its SI unit is J K .

Definition: The specific heat capacity of a substance is the quantity of heat required to raise the temperature of unit mass of it by
one degree. Its SI unit is J kg  K .

Definition: The molar heat capacity of a substance is the quantity of heat required to raise the temperature of a molar amount of it
by one degree. (I say "molar amount". In CGS calculations we use the mole – about 6 × 10  molecules. In SI calculations we use
the kilomole – about 6 × 10  molecules.) Its SI unit is J kilomole  K .

Some numerical values of specific and molar heat capacity are given in Section 8.7.

One sometimes hears the expression "the specific heat" of a substance. One presumes that what is meant is the specific heat
capacity.

The above definitions at first glance seem easy to understand – but we need to be careful. Let us imagine again a gas held in a
cylinder by a movable piston. I choose a gas because its volume can change very obviously on application of pressure or by
changing the temperature. The volume of a solid or a liquid will also change, but only by a small and less obvious amount. If you
supply heat to a gas that is allowed to expand at constant pressure, some of the heat that you supply goes to doing external work,
and only a part of it goes towards raising the temperature of the gas. On the other hand, if you keep the volume of the gas constant,
all of the heat you supply goes towards raising the temperature. Consequently, more heat is required to raise the temperature of the
gas by one degree if the gas is allowed to expand at constant pressure than if the gas is held at constant volume and not allowed to
expand. Thus the heat capacity of a gas (or any substance for that matter) is greater if the heat is supplied at constant pressure than
if it is supplied at constant volume. Thus we have to distinguish between the heat capacity at constant volume C  and the heat
capacity at constant pressure C , and, as we have seen C  > C .

If the heat is added at constant volume, we have simply that dU = dQ = C dT.

One other detail that requires some care is this. The specific heat capacity of a substance may well vary with temperature, even, in
principle, over the temperature range of one degree mentioned in our definitions. Therefore, we really have to define the heat
capacity at a given temperature in terms of the heat required to raise the temperature by an infinitesimal amount rather than through
a finite range. Thus it is perhaps easiest to define heat capacity at constant volume in symbols as follows:

(Warning: Do not assume that C  = (∂U/∂T) . That isn’t so. The correct expression is given as equation 9.1.13 in Chapter 9 on
Enthalpy.)

As with many equations, this applies equally whether we are dealing with total, specific or molar heat capacity or internal energy.

If heat is supplied at constant pressure, some of the heat supplied goes into doing external work PdV, and therefore

For a mole of an ideal gas at constant pressure, P dV = R dT, and therefore, for an ideal gas,

where, in this equation, C  and C  are the molar heat capacities of an ideal gas.

We shall see in Chapter 10, Section 10.4, if we can develop a more general expression for the difference in the heat capacities of
any substance, not just an ideal gas. But let us continue, for the time being with an ideal gas.

In an ideal gas, there are no forces between the molecules, and hence no potential energy terms involving the intermolecular
distances in the calculation of the internal energy. In other words, the internal energy is independent of the distances between
molecules, and hence the internal energy is independent of the volume of a fixed mass of gas if the temperature (hence kinetic
energy) is kept constant. That is, for an ideal gas,
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Let us think now of a monatomic gas, such as helium or argon. When we supply heat to (and raise the temperature of) an ideal
monatomic gas, we are increasing the translational kinetic energy of the molecules. If the gas is ideal, so that there are no
intermolecular forces then all of the introduced heat goes into increasing the translational kinetic energy (i.e. the temperature) of
the gas. (Recall that a gas at low pressure is nearly ideal, because then the molecules are so far apart that any intermolecular forces
are negligible.) Recall from Section 6.5 that the translational kinetic energy of the molecules in a mole of gas is . The molar
internal energy, then, of an ideal monatomic gas is

From equation 8.1.1, therefore, the molar heat capacity at constant volume of an ideal monatomic gas is

The molar heat capacities of real monatomic gases when well above their critical temperatures are indeed found to be close to this.

When we are dealing with polyatomic gases, however, the heat capacities are greater. This is because, when we supply heat, only
some of it goes towards increasing the translational kinetic energy (temperature) of the gas. Some of the heat goes into increasing
the rotational kinetic energy of the molecules. (Wait! Some of you are asking yourselves: "But do not atoms of helium and argon
rotate? Do they not have rotational kinetic energy?" These are very good questions, but I am going to pretend for the moment that I
haven't heard you. Perhaps, before I come to the end of this section, I may listen.)

When two molecules collide head on, there is an interchange of translational kinetic energy between them. But if they have a
glancing collision, there is an exchange of translational and rotational kinetic energies. If millions of molecules are colliding with
each other, there is a constant exchange of translational and rotational kinetic energies. When a dynamic equilibrium has been
established, the kinetic energy will be shared equally between each degree of translational and rotational kinetic energy. (This is the
Principle of Equipartition of Energy.) We know that the translational kinetic energy per mole is  - that is,  for each
translational degree of freedom ( \frac{1}{2} m \overline{u}^{2}, \frac{1}{2} m \overline{v^{2}}, \frac{1}{2} m
\overline{w^{2}}\)). There is an equal amount of kinetic energy of rotation (with an exception to be noted below), so that the
internal energy associated with a mole of a polyatomic gas is 3RT plus a constant, and consequently the molar heat capacity of an
ideal polyatomic gas is

It takes twice the heat to raise the temperature of a mole of a polyatomic gas compared with a monatomic gas.

The exception we mentioned is for linear molecules. These are molecules in which all the atoms are in a straight line. This
necessarily includes, of course, all diatomic molecules (the oxygen and nitrogen in the air that we breathe) as well as some heavier
molecules such as CO2, in which all the molecules (at least in the ground state) are in a straight line. (The molecule H2O is not
linear.) In linear molecules, the moment of inertia about the internuclear axis is negligible, so there are only two degrees of
rotational freedom, corresponding to rotation about two axes perpendicular to each other and to the internuclear axis. Thus there are
five degrees of freedom in all (three of translation and two of rotation) and the kinetic energy associated with each degree of
freedom is  per mole for a total of  per mole, so the molar heat capacity is

Summary: A monatomic gas has three degrees of translational freedom and none of rotational freedom, and so we would expect its
molar heat capacity to be .

A diatomic or linear polyatomic gas has three degrees of translational freedom and two of rotational freedom, and so we would
expect its molar heat capacity to be .

A nonlinear polyatomic gas has three degrees of translational freedom and three of rotational freedom, and so we would expect its
molar heat capacity to be 3R.

How do real gases behave compared with these predictions? The monatomic gases (helium, neon, argon, etc) behave very well.
The diatomic gases quite well, although at room temperature the molar heat capacities of some of them are a little higher than
predicted, while at low temperatures the molar heat capacities drop below what is predicted. Indeed below about 60 K the molar
heat capacity of hydrogen drops to about  - just as if it had become a monatomic gas or, though still diatomic, the molecules
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were somehow prevented from rotating. The molar heat capacities of nonlinear polyatomic molecules tend to be rather higher than
predicted.

First let us deal with why the molar heat capacities of polyatomic molecules and some diatomic molecules are a bit higher than
predicted. This is because the molecules may vibrate. When we add heat, some of the heat is used up in increasing the rate of
rotation of the molecules, and some is used up in causing them to vibrate, so it needs a lot of heat to cause a rise in temperature
(translational kinetic energy). The possibility of vibration adds more degrees of freedom, and another  to the molar heat
capacity for each extra degree of vibration. To be strictly correct, the "number of degrees of freedom" in this connection is the
number of squared terms that contribute to the internal energy. Each vibrational mode adds two such terms – a kinetic energy term
and a potential energy term. This means that the predicted molar heat capacity for a nonrigid diatomic molecular gas would be 

. Polyatomic gases have many vibrational modes and consequently a higher molar heat capacity.

So – why is the molar heat capacity of molecular hydrogen not  at all temperatures? Why is it about  at room
temperature, as if it were a rigid molecule that could not vibrate? True, at higher temperatures the molar heat capacity does
increase, though it never quite reaches  before the molecule dissociates. Why does the molar heat capacity decrease at lower
temperatures, reaching  at 60 K, as if it could no longer rotate?

Let us ask some further questions, which are related to these. We said earlier that a monatomic gas has no rotational degrees of
freedom. Why not? True, the moment of inertia is very small, but, if we accept the principle of equipartition of energy, should not
each rotational degree of freedom hold as much energy as each translational degree of freedom? Also, we said that a linear
molecule has just two degrees of freedom. It is true that the moment of inertia about the internuclear axis is very small. This is not
the same thing as saying that it cannot rotate about that axis. If all degrees of freedom equally share the internal energy, then the
angular speed about the internuclear axis must be correspondingly large.

Now I could make various excuses about these problems. The fact is, however, that the classical model that I have described may
look good at first, but, when we start asking these awkward questions, it becomes evident that the classical theory really fails to
answer them satisfactorily. In truth, the failure of classical theory to explain the observed values of the molar heat capacities of
gases was one of the several failures of classical theory that helped to give rise to the birth of quantum theory. Quantum theory in
fact accounts spectacularly well and in detail for the specific heat capacities of molecules and how the heat capacities vary with
temperature. This topic is often dealt with on courses on statistical thermodynamics, and I just briefly mention the explanation here.
The solution of Schrödinger's equation for a rigid rotator shows that the rotational energy can exist with a number of separated
discrete values, and the population of these rotational energy levels is governed by Boltzmann's equation in just the same way as
the population of the electronic energy levels in an atom. At temperatures of 60 K, the spacing of the rotational energy levels is
large compared with kT, and so the rotational energy levels are unoccupied. Thus, in that very real sense, the hydrogen molecule
does indeed stop rotating at low temperatures. The spacing of the energy level is inversely proportional to the moment of inertia,
and the moment of inertia about the internuclear axis is so small that the energy of the first rotational energy level about this axis is
larger than the dissociation energy of the molecule, so indeed the molecule cannot rotate about the internuclear axis. Vibrational
energy is also quantised, but the spacing of the vibrational levels is much larger than the spacing of the rotational energy levels, so
they are not excited at room temperatures. This has been only a brief account of why classical mechanics fails and quantum
mechanics succeeds in correctly predicting the observed heat capacities of gases. It is a very interesting subject, and the reader may
well want to learn more about it – but that will have to be elsewhere.

This page titled 8.1: Heat Capacity is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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8.2: Ratio of the Heat Capacities of a Gas
The ratio of the heat capacities of a gas at constant pressure and at constant volume plays an important part in many calculations
involving the expansion and contraction of gases. The ratio appears, for one example of many that could be chosen, in the
theoretical expression for the speed of sound in a gas. The higher the ratio C /C , the faster the speed of sound. The ratio is
generally given the symbol γ:

Apart from any other reason, one reason for its importance is that the ratio is easier to measure precisely than either heat capacity
separately. For example, you could determine it from a measurement of the speed of sound, which is easier than adding heat to a
sample of gas at constant pressure and again at constant volume and measuring the rise in temperature.

We have seen that, for gases that behave as we would like them to behave, the molar heat capacities C  at constant temperatures for
monatomic, diatomic and nonlinear polyatomic gases without molecular vibration are respectively , , and 3R. And since, for
an ideal gas, C  = C  + R, (equation 8.1.3), we expect the corresponding values for C  to be ,  and 4R. and Thus the
expected values of γ are 5/3, 7/5 and 4/3.

This page titled 8.2: Ratio of the Heat Capacities of a Gas is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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8.3: Isothermal Expansion of an Ideal Gas
An ideal gas obeys the equation of state PV = RT (V = molar volume), so that, if a fixed mass of gas kept at constant temperature is
compressed or allowed to expand, its pressure and volume will vary according to PV = constant. That is, Boyle's Law. We can
calculate the work done by a mole of an ideal gas in a reversible isothermal expansion from volume V  to volume V  as follows.

This page titled 8.3: Isothermal Expansion of an Ideal Gas is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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8.4: Reversible Adiabatic Expansion of an Ideal Gas
An adiabatic process is one in which no heat enters or leaves the system, and hence, for a reversible adiabatic process the first law
takes the form dU = − PdV. But from equation 8.1.1, C  = (∂U/∂T) . But the internal energy of an ideal gas depends only on the
temperature and is independent of the volume (because there are no intermolecular forces), and so, for an ideal gas, C  = dU/dT,
and so we have dU = C dT. Thus for a reversible adiabatic process and an ideal gas, C dT = −PdV. (The minus sign shows that as
V increases, T decreases, as expected.) But for a mole of an ideal gas, PV = RT = (C  − C )T, or P = (C  − C )T/V.

Therefore

(You may be wondering whether C and V are molar, specific or total quantities. If you look at the equation you'll agree that it is
valid whether the volume and heat capacities are molar, specific or total.)

Separate the variables and write γ for C /C :

Integrate:

This shows how temperature and volume of an ideal gas vary during a reversible adiabatic expansion or compression. If the gas
expands, the temperature goes down. If the gas is compressed, it becomes hot. Of course the pressure varies also, and the ideal gas
conforms to the equation PV/T = constant. On elimination of T we obtain

On elimination of V we obtain

In figure VIII.1 I draw, as light curves, five isotherms – i.e. the paths that would be taken by an ideal gas in the PV plane in
isothermal processes at five temperatures. I also show, as a heavier line, an adiabat, PV  = constant , which I calculated for γ = 5/3.
The adiabat is steeper than the isotherms, and the curve shows that, as the gas expands adiabatically, the temperature drops. If you
know the original temperature and the old and new volumes, equation 8.4.3 will enable you to calculate the new temperature. If
you know the original temperature and the old and new pressures, equation 8.4.5 will enable you to calculate the new temperature.
While these purely thermodynamic arguments show that a gas becomes hotter if you compress it, this is also to be expected at the
microscopic level. Thus, if a molecule bounces elastically against a piston that is moving towards it, it will gain kinetic energy, and
it will lose kinetic energy if it bounces off a piston that is moving away from it.

Let us calculate the work done by a mole of an ideal gas in a reversible adiabatic expansion from (P  , V ) to (P  , V ):

V V
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V V
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For a reversible adiabatic expansion, PV  = K, and therefore

That is,

(Note that T  < T  in this adiabatic expansion.)

Compare this with equation 8.3.1 for an isothermal expansion.

Note also that, since R = C  − C  and C /C  = γ this can also be written

This is also equal to the heat that would be lost if the gas were to cool from T1 to T2 at constant volume. Think about this! Is it
coincidence, or must it be so?

Here is a useful exercise. In figure VIII.2, a gas goes from (P , V ) to (P , V ) via three different reversible routes:

(a) An isobaric expansion followed by an isochoric decrease in pressure;

(b) An isochoric decrease in pressure followed by an isobaric expansion;

(c) An adiabatic expansion.

At each stage, calculate the work done on or by the gas, the heat gained by the gas or lost from the gas, and the increase or
decrease of the internal energy of the gas. This exercise will illustrate that U is a function of state, but Q and W are not. (I expect
the answers to be in algebra; ignore the numbers on the axes – they don’t mean anything in particular.)

This page titled 8.4: Reversible Adiabatic Expansion of an Ideal Gas is shared under a CC BY-NC license and was authored, remixed, and/or
curated by Jeremy Tatum.
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8.5: The Clément-Desormes Experiment
This is a simple, quick and effective experiment often seen in teaching laboratories for measuring γ for air, or, with some extra
effort, any other gas.

Sometimes this experiment is referred to as the experiment of Clément and Desormes, and sometimes as the experiment of
Clément-Desormes. Apparently Charles-Bernard Desormes was the uncle of Nicolas Clément, and they both worked on the
experiment. Nicolas Desormes later legally changed his name to Nicolas Clément-Desormes. Thus you can refer either to the
experiment of Clément and Desormes or to the experiment of Clément-Desormes!

A bottle of air starts at P , T . P  is a little greater than atmospheric pressure P . T1 is the ambient room temperature. The bottle is
provided with some device for measuring pressure (for example, a manometer). We'll see that there is no need to measure
temperatures. The stopcock is quickly opened and immediately closed. The pressure at that moment is just atmospheric pressure,
which I'll call P , and the temperature is T , which is a little cooler than the original room temperature T1. The bottle of gas is now
allowed slowly to warm up isochorically to its original temperature T , by which time the new pressure P  is greater than
atmospheric pressure P  but not as large as the original pressure P . You should sketch these two stages on a PV diagram.

For the adiabatic process,

For the isochoric process,

I'll leave you to do the algebra and eliminate T /T  from these equations and hence show that

In the above analysis, we assumed that the gas was ideal and the expansion was adiabatic and reversible. The gas is nearly ideal if it
is a long way above its critical temperature and there are no enormous ranges of P and T. The expansion is adiabatic if P  is
measured immediately after the stopcock is opened and closed, so that there is no time for heat to enter or leave the system. It is
reversible only if P  − P  << P . If you want to do the experiment yourself right now without getting up from your comfortable
seat, have a look at http://www.univ-lemans.fr/enseignements/physique/02/thermo/clement.html

This page titled 8.5: The Clément-Desormes Experiment is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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8.6: The Slopes of Isotherms and Adiabats
For an ideal gas in an isothermal process, PV = constant.

In a reversible adiabatic process:

PV  = constant,

TV  − 1 = constant,

P T  = constant.

From these it is easy to see that the ratios of the adiabatic, isothermal, isobaric and isochoric slopes are as follows:

For example: - isothermal: PV = constant. Take logarithms and differentiate: . Hence . adiabatic: PV

= constant. Take logarithms and differentiate: . Hence . The other two relations can be obtained in

a similar manner.

Do these relations hold in general for any equation of state, or are they valid only for an ideal gas? In this section, we shall see that
they are valid in general for any equation of state, and are not restricted to the equation of state for an ideal gas.

Let us imagine that the state of the working substance (be it gas, liquid or solid) starts in PVT space at point A (P, V, T ). We are
going to take it to a new point B (P + δP, V + δV, T ). As I have drawn it in Figure VIII.3, δP is positive, δV is negative, and T  >
T .

We first suppose that we make this move by a single, adiabatic process. In that case no heat is added to or lost from the system, and
the increase in the internal energy is −PδV.

Alternatively, B can be reached in two stages:

An isochoric path from A to a new point C (P + δP, V, T ), followed by

An isobaric path from C to B.

As I have drawn it in Figure VIII.3, T  > T  > T  .

In the isochoric process, no work is done by or on the system, and the increase in the internal energy is equal to the heat added to
the system, C  (T  − T ).

In the isobaric process, the increase in the internal energy is equal to the work done on the system, −PδV, minus the heat lost from
the system, C  (T  − T ); that is, −C  (T  − T ) − PδV.

Therefore, since the total increase in internal energy is route-independent,

Cancel PδV and write γ for C /C , so that

γ

γ

1 − γ γ

= γ ; = − ; = .( )
∂P

∂V S

( )
∂P

∂V T

( )
∂V

∂T S

1

γ−1
( )

∂V

∂T P

( )
∂P

∂T S

γ

γ−1
( )

∂P

∂T V
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But  and .

[Reminder: Here δP means P  − P  (which, in the way in which I have drawn it in figure VIII.3, is positive) and δV means V  −
V  (which, in the way in which I have drawn it in figure VIII.3, is negative).]

Therefore

Divide both sides by δV and go to the infinitesimal limit, recalling that δP and δV are related through an adiabatic path:

Therefore

But , so .

Therefore

Thus, as for the ideal gas, the slope of the adiabat is γ times the slope of the isotherm, only this time we have made no assumption
about the equation of state.

The other two relations (equations 8.6.1 b,c) can be dealt with as follows.

Equation 8.6.3 can be rearranged to read

But  and .

Hence

which is the same as equation 8.6.1 b, but without any assumption about the equation of state.

Note also that

Combine this with equations 8.6.7 and 8.6.9 to obtain

Therefore

Therefore

( − ) = γ ( − ) .TC TA TC TB (8.6.3)
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∂P V
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which is the same as equation 8.6.1 c, but without any assumption about the equation of state.

This page titled 8.6: The Slopes of Isotherms and Adiabats is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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8.7: Scale Height in an Isothermal Atmosphere
The material in this chapter doubtless has countless applications, most of which I am unaware of, in meteorology. Two simple
topics are easy to mention, namely the scale height in an isothermal atmosphere, dealt with in this section, and the adiabatic lapse
rate dealt with in the next section.

Let us imagine a column of air of cross-sectional area A in an isothermal atmosphere – that is to say the temperature T is uniform
throughout. Consider the equilibrium of the portion of the air between heights z and z + dz. The weight of this portion is ρgAdz. Let
P be the pressure at height z and P + dP be the pressure at height z + dz. (Note that dP is negative.) The net upward force on the
portion dz of the air is −AdP. Therefore dP = − ρgdz. But if we regard air as an ideal gas, it obeys the equation of state for an ideal
gas, equation 6.1.7: P = ρRT/µ where ρ and µ are respectively the density and the “molecular weight” (molar mass) of the gas.
Therefore , or . Integrate to obtain

where  is the scale height. It is large if the temperature is high, the gas light and the planet’s gravity feeble. It is the height
at which the density is reduced to a fraction 1/e, or 36.8%. of its ground value. What would it be, in kilometres, for an atmosphere
consisting of 80% N  and 20% O , at a temperature of 20 ºC, where the gravitational acceleration is 9.8 m s ? What fraction is this
of the radius of Earth? If you made a model of Earth one metre in diameter (radius = 50 cm), how thick would be the atmosphere?
You’d better look after it - our atmosphere is a very thin skin clinging to the surface!

This page titled 8.7: Scale Height in an Isothermal Atmosphere is shared under a CC BY-NC license and was authored, remixed, and/or curated
by Jeremy Tatum.
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8.8: Adiabatic Lapse Rate
Earth’s atmosphere is not, of course, isothermal. The temperature decreases with height. The temperature lapse rate in an
atmosphere is the rate of decrease of temperature with height; that is to say, it is −dT/dz.

An adiabatic atmosphere is one in which P/ρ  does not vary with height. In such an atmosphere, if a lump of air is moved
adiabatically to a higher level, its pressure and density will change so that P/ρ  is constant – and will be equal to the ambient
pressure and density at the new height. For such an atmosphere, it is possible to calculate the rate at which temperature decreases
with height – the adiabatic lapse rate. We shall do this calculation, and see how it compares with actual lapse rates.

As in Section 8.7, the condition for hydrostatic equilibrium is

Since we are trying to find a relation between T and z for an adiabatic atmosphere (i.e. one in which P/ρ  doesn’t vary with height),
we need to find the adiabatic relations between P and T and between ρ and T.

These are easily found from the adiabatic relation between P and ρ:

and the ideal gas equation of state:

Eliminate P:

Eliminate ρ:

from which

Substitute equations (8.8.4) and (8.8.6) into equation (8.8.1), to obtain, after a little algebra, the following equation for the adiabatic
lapse rate:

This is independent of temperature.

If you take the mean molar mass for air to be 28.8 kg kmole , and g to be 9.8 m s  for temperate latitudes, you get for the
adiabatic lapse rate for dry air −9.7 K km . The presence of water vapour in humid air reduces the mean value of µ (and hence the
adiabatic lapse rate), and actual lapse rates are usually rather less than the calculated adiabatic lapse rates even for humid air. (The
presence of water vapour also increases slightly the value of γ. This would result in a slightly larger lapse rate, but the effect is not
as great as the reduction in lapse rate caused by the larger value of µ. Try some numbers to convince yourself of this.) The
International Civil Aviation Organization Standard Atmosphere takes the lapse rate in the troposphere (first 11 km) to be −6.3 K
km . What happens if the actual lapse rate is faster than the adiabatic lapse rate? If you imagine a lump of air to be moved
adiabatically to a higher level, its pressure and density will change so that P/ρ  is constant, and it will then find itself in a region
where its new density is less that the new ambient density. Consequently, it will continue to rise, and the atmosphere will be
convectively unstable, and a storm will ensue. The atmosphere is stable as long as the actual lapse rate is less than the adiabatic
lapse rate (which is reduced in humid air) is unstable if the actual lapse rate is greater than the adiabatic lapse rate.
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8.9: Numerical Values of Specific and Molar Heat Capacities
The following table is not intended as a definitive, authoritative table of precise heat capacities. It is intended just to give a rough
idea of the orders of magnitude and the relative magnitudes for a few substances.

For gases, the heat capacities tabulated are at constant pressure. For solids and liquids the difference between C  and C  is much
smaller than for gases, because of the much smaller coefficient of expansion. Notice that the molar heat capacities for gases, when
expressed in terms of R, are about what are expected from the theoretical considerations in this chapter. Notice the relatively large
molar heat capacities of organic liquids (the molecules can rotate and can vibrate in many modes), and that, the more complex the
molecule, the larger its molar heat capacity. Notice, however, that, because water has a low molecular weight (molar mass), water
has the largest specific heat capacity of any common liquid or solid. (The specific heat capacities of gaseous H  and He are,
unsurprisingly, larger still. A kilogram of hydrogen is an enormous number of molecules, so it takes a lot of heat to warm them all
up.) We have not studied the theory of the heat capacities of solids in this chapter, but, when you do so in a course on solid state
physics or on statistical mechanics, you will understand that the expected molar heat capacity of metals would be about 3R, which
is approximately what is shown for the three metals in this table.

Specific Heat Capacity at Constant Pressure Molar Heat Capacity at Constant Pressure

cal g  Cº J kg  K J kmole  K In units of R

Helium (g) 1.25 5250 21000 2.53 R

Argon (g) 0.13 526 21000 2.53 R

H (g) 3.44 14400 28800 3.46 R

O (g) 0.22 919 29400 3.54 R

N (g) 0.25 1040 29100 3.50 R

CO (g) 0.20 843 37100 4.46R

H O (g) 1 4184 75300 9.1 R

C H OH (l) 0.58 2430 112000 13.5 R

CCl (l) 0.20 852 131000 15.8 R

C H (l) 0.42 1740 136000 16.4 R

Al (s) 0.22 941 25400 3.1 R

Cu (s) 0.092 384 24400 2.9 R

Fe (s) 0.11 450 25100 3.0 R

This page titled 8.9: Numerical Values of Specific and Molar Heat Capacities is shared under a CC BY-NC license and was authored, remixed,
and/or curated by Jeremy Tatum.
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8.10: Heat Capacities of Solids
I do not deal a great deal with solid state physics in these notes, particularly in this chapter, which has been concerned mostly with
gases. But the inclusion of the heat capacities of three metals in the above table provides an opportunity for a brief mention of the
heat capacities of metals and of other crystalline solids. In a simple model of a crystalline solid, the solid can be thought of as a
regular lattice of atoms held in position near their neighbors by springs, and the atoms have three degrees of vibrational freedom –
in the x, y and z directions. For each of these vibrational modes there are two squared terms (of the form  and  ) that
contribute to the internal energy. The internal energy associated with each of these six terms is  per mole, which comes to 3RT
per mole, and thus you would expect the molar heat capacity to be about 3R – and you can see from the above table that this is
indeed the case. Indeed at room temperature, most metals and simple crystalline solids have a molar heat capacity of about 3R.
(This is sometimes referred to as “Dulong and Petit’s Rule”.) At low temperatures, however, the molar heat falls below this value,
and eventually approaches zero at 0 K. At very low temperatures, the molar heat capacity varies roughly as the cube of the
temperature. As room temperatures are reached, the molar heat capacity asymptotically approaches the “classical” value of 3R.

The run of molar heat capacity with temperature at low temperatures looks a little like figure VIII.5 for magnesium and figure
VIII.6 for silver bromide. It will be seen that these two curves are the same shape except for a different scale along the temperature
axis – and the same is true for most metals and simple crystalline solids. Indeed we can assign to each solid a characteristic
temperature, known as the Debye temperature, , and then, if we express temperature not in kelvin but in units of the Debye
temperature for the particular solid, then the curves are indeed the same shape. In other words, the molar heat capacity of all solids
(or at least all solids that behave like this!) is the same function of T/θ . I show this function as figure VIII.7.

The theory of the heat capacities of solids was investigated by Einstein and by Debye. (Peter Debye – Dutch-American
physicist/chemist. Nobel Chemistry prize 1936.) The Debye temperature is related to the vibrational frequency of the atoms in their
crystalline lattice. Diamond is a very hard substance, with very strong interatomic bonds. Consequently the vibrational frequencies
are very high, and the Debye temperature for diamond is correspondingly high: θ  = 1860 K. As a result of this the heat capacity
rises very slowly with increasing temperature, and at room temperature is well below the “classical” value of 3R. Most other solids
have weaker bonds and far lower Debye temperatures, and consequently their molar heat capacities have almost reached the
classical Dulong-Petit value of 3R at room temperature. Here are a few Debye temperatures:

Elements Debye temperature

Potassium 100K

Silver bromide 145

Silver 215

Magnesium 290

Copper 315

Iron 420

If it seems that the harder the solid the higher the Debye temperature and the slower the solid is to reach its classical C  of 3R, this
is not coincidence.

I do not derive Debye’s theoretical formula here – it is something to look forward to in courses on solid state physics or statistical
mechanics, but, for interest, the formula (which I used for calculating figures VIII.5-7) is

In this equation C  is in units of R, and T is in units of the Debye temperature.

m1
2

v2 I1
2
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2
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In case you are wondering what the symbol “x” stands for in equation 8.9.1, it is merely a dummy variable, for the integral in that
expression is a function not of x but of T, the upper limit of the integral.

If you try to reproduce figure VIII.7 yourself by evaluating equation 8.9.1 for a number of different temperatures, you will soon
find that it is a good deal more laborious than may at first be evident.

In my first attempt at doing it, for each of the 400 values of T that I used for plotting Figure VIII.7, I used a 1000 point Simpson’s
Rule integration. Thus I evaluated the integrand 400,000 times, and it took the computer almost half a second. Later, I found that
Gaussian quadrature was much, much more efficient, requiring the calculation of the integrand at only a very few points.

However, J. Viswanathan of Chennai, India, has since shown me an even better method than the Gaussian quadrature.
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He uses the theorem

This was a new one on me, but it is very easy to derive and looks almost obvious in hindsight. Applied to our problem, that is,
applied to our equation

it becomes, after a modest amount of work:

where

He evaluates C  at T = 2, using a direct numerical integration of equation 8.9.1 - but this is the only time that he does this! The
answer is 2.9628. Then he moves down by dT at each step and calculates the corresponding dC  by using a fourth order Runge-
Kutta integration on the differential equation 8.9.3. The three methods agree very well, but the Simpson’s Rule method was by far
the most laborious.

Debye’s theory was published in 1912, and they certainly didn’t have electronic computers, or even electronic hand calculators, in
those days. In the 1950s most scientists were using hand-operated mechanical calculators, with electrically-driven mechanical
calculators beginning to come into use towards the end of that decade. I suspect that in 1912 not even hand-operated mechanical
calculators were available, and calculations would have been done using pencil and paper and logarithm and other tables. One must
think of the physical insight and mathematical competence needed to develop the theory of the heat capacity in the first place, and
then the enormous effort needed to calculate the resulting equations.
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9.1: Enthalpy
Enthalpy is sometimes known as "heat content", but "enthalpy" is an interesting and unusual word, so most people like to use it.
Etymologically, the word "entropy" is derived from the Greek, meaning "turning" (I'm not sure why) and "enthalpy" is derived
from the Greek meaning "warming". As for pronunciation, ENtropy is usually stressed on its first syllable, while enTHALpy is
usually stressed on the second. Again, I am not sure why.

Definition: Enthalpy  is defined as

You now know the etymology of enthalpy, you know how to spell it, you know its pronunciation, and you even know its definition.
But you don't yet know what it means. You cannot determine the internal energy of a system to start with (you can only determine
an increase in it), but what on Earth does it mean to add to the (undetermined) internal energy the product of the pressure and the
volume?

Well, let us see how the enthalpy changes if we change the pressure and volume (and hence the internal energy) of a system. We'll
just differentiate Equation .

But , and so the first law becomes

This helps us to see a little more the meaning of enthalpy. In particular, for a reversible process, , and so Equations
7.3.2 and  become, respectively,

and

Thus we can say:

The increase of the internal energy of a system is equal to the heat added to it in an
isochoric process,

and

The increase of the enthalpy of a system is equal to the heat added to it in an isobaric
process.

Experiments carried out in open beakers on a laboratory bench are isobaric. Thus the heat generated during a chemical reaction in
an open beaker represents the generation of enthalpy. You will notice that chemists use the symbol H for heat of reaction, and they
are well aware that this means enthalpy. If the reaction were carried out, however, in an autoclave (also known as a pressure
cooker), the heat generated represents the generation of internal energy.

I hope that this now gives some meaning to the concept of enthalpy.

Internal energy U and enthalpy H are both functions of state. From Equation 7.3.2 (  ) we immediately see the
relations

and

From Equation  (  ) we immediately see the relations

H

H = U +PV . (9.1.1)

9.1.1

dH = dU +PdV +V dP (9.1.2)

dU = TdS−PdV

dH = TdS+V dP (9.1.3)

TdS = dQ

9.1.3

dU = dQ−PdV (9.1.4)

dH = dQ+V dP (9.1.5)

dU = TdS−PdV

= T( )
∂U

∂S V

(9.1.6)

= −P .( )
∂U

∂V s

(9.1.7)

9.1.3 dH = TdS+V dP
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and

Also from Equation 7.3.2 ( ) we obtain (since dU is an exact differential)

and from Equation  (  ) we obtain (since dH is an exact differential)

Equations  and  are two of Maxwell's Thermodynamic Relations. (There are two more to come, in a later chapter.)

We also note that, while the heat capacity at constant volume is

similarly the heat capacity at constant pressure is
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9.2: Change of State
According to my dictionary, the word "latent" means "present or existing and capable of development but not manifest".

In a liquid at its freezing point there is present or existing some heat, which is capable of development but is not manifest. That is,
the liquid secretly holds some latent heat. When the liquid freezes, it gives up this latent heat to its surroundings. The heat is now
manifest.

Definition: The latent heat of freezing of a quantity of liquid at its freezing point is the heat given up to its surroundings when it
freezes. Its SI unit is the joule.

Likewise, we define the specific latent heat and the molar latent heat of a liquid at its freezing point as the heat given up when unit
mass, or a molar amount, respectively, freezes. The SI units are J kg  and J kilomole  respectively.

A distressingly large number of people use the words "latent heat" when they mean "specific latent heat". Thus, when you read
or hear the words "latent heat" you have to be on guard to decide whether this is really what is meant, or whether "specific
latent heat" is intended.

The latent heat of fusion of a solid body at its melting point is the heat required to melt it. This is just equal to the heat given up
when the liquid freezes, so that, numerically, the latent heats of freezing and of fusion (melting) are the same – though somehow
the word "latent" seems less appropriate for freezing, because you are supplying heat to the solid, rather than seeing latent heat
being released by a liquid. If you prefer you could refer to the "latent heat" of fusion simply as the "heat of fusion" – or as the
“enthalpy of fusion”.

Likewise we have a latent heat of condensation of a vapour at its condensation point, and the latent heat of vaporization of a liquid
at its boiling point. These are equal in magnitude. We can also define the specific and molar latent heats of condensation and
vaporization. The term latent heat of transformation will do to cover all four processes. The symbol L (with appropriate subscripts
if need be) can be used for any of the latent heats of transformation.

The specific latent heat of fusion of ice at atmospheric pressure is about 3.36 × 105 J kg  or about 80 cal g .

The specific latent heat of vaporization of water at atmospheric pressure is about 2.27 × 106 J kg  or about 540 cal g .

70 g of ice at 0 C are mixed with 150 g of water at 100 C. What is the final temperature? (I make it 43º C.)

Solution

We'll reluctantly, for once, work in calories and grams, and of course the specific heat capacity of water is about 1 calorie per
gram per Celsius degree. The heat required to melt the 70 g of ice, and then to raise its temperature from 0 C to t C is 70 × 80
+ 70t calories. This heat is supplied by the hot water, which cools from 100 C to t C, is 150 % (100 − t) calories. Equating the
two produces t = 43 C.

Suppose you apply 2.27 × 10  J of energy to a kilogram of water, but, instead of using that energy to vaporize the water, you
use it to raise the water from the ground. How high above the ground could you raise it with this energy? It may surprise you –
it certainly surprised me! If you were to use the energy, not to vaporize the water, and not to raise it above the ground, but to
throw it, how fast, in miles per hour, could you throw it?

For many liquids there is a very rough correlation between molar latent heat of vaporization and boiling point at atmospheric
pressure, the ratio L/T usually being in the range 70,000 to 100,000 J kmole K .

One last point before proceeding. Generally it is only crystalline solids (including metals) that have a rather definite melting point.
Amorphous substances such as plastics and glass generally change from solid to liquid over a rather large range of temperature.
Indeed is not obvious when to cease calling such a substance a solid and to start calling it a liquid. Some writers would describe
glass as a “liquid” even when it has all the obvious appearances of a solid. See also Section 6.4 for a further discussion of this.
Mixtures, alloys and solutions, too, do not have such a definite melting point as a crystalline solid, and a salt solution does not have
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as definite a boiling point (at a given pressure) as a pure liquid does. Thus a salt solution in water at one atmosphere pressure boils
at a little higher temperature than 100 °C. When some of the water boils off, the remaining solution is a little more concentrated,
and so the boiling point becomes a little higher, and so on.
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9.3: Latent Heat and Enthalpy
Consider a liquid of volume V  at its boiling point. Suppose a quantity of heat L is supplied, sufficient to vaporize the liquid. The
new volume (of what is now vapour) is V . If the vapour has expanded against a constant pressure P (e.g. the pressure of the
atmosphere), the work done by it is P(V  − V ). The increase in the internal energy of the system is the heat supplied to the system
minus the work done by it (this is the engineer's version of the first law of thermodynamics). That is, U  − U  = L − P(V  − V ), and
so

So, during a change of state at constant pressure the increase or decrease of enthalpy is equal to the latent heat of transformation.
This, of course, is just a simple example of our earlier statement, in Section 9.1, that the increase of enthalpy of a system is equal to
the heat supplied to it in an isobaric process.
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10.1: Introduction
Equation 8.4.3, TV  = constant , tells us how to calculate the drop in temperature if a gas expands adiabatically and reversibly; it
is expanding against an external pressure (e.g., a piston), and, in pushing the piston back, the molecules are doing external work
and are losing kinetic energy. What happens, however, if a gas expands into a vacuum? Suppose that the gas is held inside a
cylinder not by a metal piston but by a thin membrane, and the membrane breaks, so that the molecules rush out into empty space.
This is obviously an irreversible expansion; it is most unlikely that all of the molecules will ever find their way back to the
cylinder. The molecules are doing no external work. If the gas is an ideal gas, there are no intermolecular forces, so the gas does no
internal work. There is nothing to slow down the molecules in their headlong escape from the cylinder. The temperature will
remain unaltered by the expansion. On the other hand, if the gas is not an ideal gas, there will be van der Waals attractive forces
between the molecules, so the molecules will slow down slightly when the gas expands and there will be a small drop in
temperature. But we also recall, from the van der Waals model, that at close intermolecular distances, the forces between the
molecules are predominantly repulsive Coulomb forces, so it is also possible that, if the gas starts out very dense and it expands
irreversibly as we have described, it may initially become slightly warmer as the repulsive Coulomb forces push the molecules
apart and speed them on their way.

The Joule and Joule-Thomson experiments are concerned with these scenari.
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10.2: The Joule Experiment
In Joule's original experiment, there was a cylinder filled with gas at high pressure connected via a stopcock to a second cylinder
with gas at a low pressure – sufficiently low that, for the purpose of understanding the experiment, we shall assume the second
cylinder to be entirely empty. The two cylinders were immersed in a water bath, and the stopcock was opened so that gas from the
high pressure cylinder flowed into the evacuated cylinder. No heat was supplied to or lost from the system, nor did the gas do any
work, so the internal energy was constant during the expansion. Joule found no temperature fall as a result of the expansion. This,
as we have argued in Section 10.1, is exactly what we would expect for an ideal gas; that is, for an ideal gas, the temperature is
independent of the volume if the internal energy is constant. That is, for an ideal gas,

For a real gas, however, we would expect a small drop in temperature, and , which is called the Joule coefficient, is not

zero. The heat capacity of the water bath and the cylinders in Joule's original experiment, however, was too large for him to detect
any fall of temperature even with a real gas. More sensitive experiments found that almost all gases cool during a Joule expansion
at all temperatures investigated; the exceptions are helium, at temperatures above about 40 K, and hydrogen, at temperatures above
about 200 K.

We should be able to derive an expression for the Joule coefficient, given the equation of state, and we should also be able to show
that, if the equation of state is the equation of state for an ideal gas, the Joule coefficient is zero.

Internal energy and enthalpy are both functions of state; that is, they are functions of P, V and T. However, any particular substance
cannot exist at any arbitrary point in PVT-space, but is constrained to be on the two-dimensional surface represented by its equation
of state. Figures VI.7, 8 and 9 of Chapter 6 represent an example of such a surface. In other words, P, V and T cannot be varied
independently; they are connected by an equation of the form . Thus internal energy and enthalpy can be described
by a function of just two of the state variables P, V and T. In the experiment we are discussing, we are interested in how
temperature varies with volume in an experiment in which the internal energy is constant. We shall therefore choose U as our state
function and V and T as our independent state variables. That is, we shall write , so that

Our aim, of course, is to find an expression for the Joule coefficient , for which I shall be using the symbol η.

The second of these partial derivatives is , and therefore

Now

That is,
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But we also have

Therefore

and

The mixed second derivatives are

and

But entropy is a function of state and dS is an exact differential, so the mixed second derivatives are equal. Whence, after
simplification:

Hence, returning to Equation , we obtain, for the Joule coefficient,

Show that, for an ideal gas, the Joule coefficient is zero.

Show that, for a van der Waals gas, the Joule coefficient is

Hence, for a finite volume change,

Solution

For example, the volume of a kmole of CO  at a temperature of 20 °C (293.15 K) and a pressure of 1 atm (1.013 × 105 Pa) is
V  = RT/P = 24.06 m . (That’s a lot of cubic metres – but then 44 kg of CO  is a lot of carbon dioxide.). If its volume were
doubled to 48.12 m3 in an irreversible Joule-type expansion, what would be its new temperature? From Chapter 6, we find a =
3.7 × 105 Pa m  kmole , and from Chapter 8 we find that C  = 37100 J kmole  K  and therefore let’s take C  = 28786 J
kmole  K , and so we obtain T  = 292.88 K = 19.73 °C. This cooling is a result not of the gas doing external work as in a
reversible adiabatic expansion, but of doing work against the internal van der Waals forces between the molecules. What would
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be the temperature drop in a reversible adiabatic expansion? The new temperature would be given by . Let’s

take γ = 37100 ÷ 28786 = 1.29. Then T  = (1/2)  × 293.15 = 239.77 K = −33.38 °C at which temperature it would easily
have sublimated into solid CO . In this calculation, I used C  − C = R and TV  = constant, which are valid only for an ideal
gas. We’ll shortly derive a more general expression for C  − C , but the correction for nonideality will obviously be quite
small.

This page titled 10.2: The Joule Experiment is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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10.3: The Joule-Thomson Experiment
The experiment is also known as the Joule-Kelvin experiment. William Thomson was created Lord Kelvin. The experiment is also
known as the porous plug experiment.

In the Joule-Thomson experiment a constant flow of gas was maintained along a tube which was divided into two compartments
separated by a porous plug, such that the pressure and molar volume on the upstream side were P , V , and the pressure and molar
volume on the downstream side were P , V . Under such circumstances the net work done on a mole of gas in passing from one
compartment to the other is P V  − P V . (Imagine, for example, that a piston pushes a mole of gas towards the plug from the
upstream side, through a distance x1 ; if A is the crosssectional area of the tube, the work done on the gas is P Ax  = P V . Imagine
also that the gas on the downstream side pushes a piston away from the plug through a distance x . The work done by the gas is
P Ax  = P V . Therefore the net external work done on the gas is P V  − P V .) If no heat is supplied to or lost from the system,
the increase in internal energy of this gas is just equal to this work done on it:

or

That is, there is no change in enthalpy. Therefore, we want to find , which is the Joule-Thomson coefficient, for which I

shall be using the symbol µ.

In the experiment we are discussing, we are interested in how temperature varies with pressure in an experiment in which the
enthalpy is constant. We shall therefore choose H as our state function and P and T as our independent state variables. That is we
shall write H = H(P,T), so that

The second of these partial derivatives is C , and therefore

Now

That is,

But we also have

Therefore

and

1 1

2 2

1 1 2 2

1 1 1 1

2

2 2 2 2 1 1 2 2

− = − ,U2 U1 P1V1 P2V2

+ = + .U1 P1V1 U2 P2V2 (10.3.1)

( )∂T
∂P H

= −1.( )
∂T

∂P H

( )
∂H

∂T P

( )
∂P

∂H T

(10.3.2)

P

= − .( )
∂T

∂P H

1

CP

( )
∂H

∂P T

(10.3.3)

dH = TdS+V dP . (10.3.4)

dS = [dH −V dP ] = [ dP + dT −V dP] .
1

T

1

T
( )

∂H

∂P T

( )
∂H

∂T P

(10.3.5)

dS = [ −V ]dP + dT .
1

T
( )

∂H

∂P T

1

T
( )

∂H

∂T P

(10.3.6)

dS = dP + dT .( )
∂S

∂P T

( )
∂S

∂T P

(10.3.7)

= [ −V ]( )
∂S

∂P T

1

T
( )

∂H

∂P T

(10.3.8)

= .( )
∂S

∂T P

1

T
( )

∂H

∂T p

(10.3.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7272?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/10%3A_The_Joule_and_Joule-Thomson_Experiments/10.03%3A_The_Joule-Thomson_Experiment


10.3.2 https://phys.libretexts.org/@go/page/7272

The mixed second derivatives are

and

But entropy is a function of state and dS is an exact differential, so the mixed second derivatives are equal. Whence, after
simplification:

Hence, returning to equation 10.3.3, we obtain, for the Joule-Thomson coefficient,

Trivial Exercise: Show that, for an ideal gas, the Joule-Thomson coefficient is zero, and also that, for an ideal gas,

This is analogous to equation 8.1.4 for an ideal gas, namely .

Exercise. Show that, for a van der Waals gas, the Joule-Thomson coefficient is

(Verify the dimensions of this expression.) Hint: It is difficult to calculate (∂V/∂T) directly, because it is difficult to express V
explicitly as a function of P and T. It is not actually impossible to do it algebraically, because van der Waals' equation is a cubic
equation in V, and a cubic equation does have an algebraic solution. It is easier, however, to calculate (∂V/∂T)  from 

, or from .

Note also that the Joule-Thomson coefficient may be negative or positive; i.e., it may result in cooling or heating. It will result in
heating if you start above a certain temperature called the inversion temperature, and cooling if you start below the inversion
temperature. The Joule-Thomson effect is used in the Linde method for cooling and ultimately liquefying gases. For most gases, the
inversion temperature is higher than room temperature, so that cooling starts immediately. But for hydrogen, the inversion
temperature is about −80 C, and hydrogen must be cooled below this temperature before the Joule-Thomson effect can be used to
cool it further and to liquefy it. You can see from equation 10.3.14 that the inversion temperature for a van der Waals gas is equal to

. Here V is the molar volume.

Summary:

Joule coefficient

Joule-Thomson coefficient
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10.4: CP Minus CV
In Section 8.1 we pointed out that the heat capacity at constant pressure must be greater than the heat capacity at constant volume.
We also showed that, for an ideal gas, C  = C  + R, where these refer to the molar heat capacities. We said that in Chapter 10 we
would try and develop a more general expression for C  − C , which was applicable in general and not only for an ideal gas. Some
of the relations that we developed in Sections 10.2 and 10.3 give us the opportunity to try to do that now.

Let us consider an isobaric process and express the internal energy U as a function of V and T. (As we have pointed out, P, V and T
are not independent variables because they are connected through the equation of state, so we may choose any two of them as
independent variables.) Then, if the volume and temperature increase by infinitesimal amounts, the corresponding increase in the
internal energy is given by

I.e.,

Consider how the first law:

In an isobaric process, , and in a reversible process, .

Therefore

Divide by dT, recalling that we are considering an isobaric process:

Hence

This is a useful general expression, as long as we know or can determine (∂U/∂V) . (Note that the extensive quantities can be total,
specific or molar.)

Let us just test this by applying it to an ideal gas to see if it produces the result that it ought to produce. For an ideal gas, the
internal energy at a given temperature is independent of the volume. This is because in an ideal gas there are no intermolecular
forces, so that, as the volume increases and the intermolecular distances increase, there is no change in potential energy; and, if the

temperature is constant, so is the kinetic energy. Thus, for an ideal gas, . The volume of a mole of ideal gas is V =

RT/P, so that .

Therefore

and all is well.

For any substance other than an ideal gas, we shall need to know  before we can make use of equation 10.4.6. But equation

10.2.12, which we developed in Section 10.2 while analysing the Joule effect, enables us to do just this:
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On combining this with equation 10.4.6, we obtain

Depending on the equation of state, it may or may not be easy to evaluate these partial derivatives. For example, for the van der
Waals equation of state (which is a cubic equation in V), it is not easy to evaluate (∂V/∂T)  directly, but one can then make use of

(∂V/∂T)  = (∂V/∂T) or of  in order to get C  − C  in terms of easily evaluable partial derivatives.

For example

or several other variants.

Any of equations 10.4.8 or 10.4.9 can be used to calculate C  − C ; it just depends on which of the derivatives, for a particular
equation of state, are easiest to calculate.

The reader will easily be able to show that, for a mole of an ideal gas, this becomes just C  − C  = R. A little more algebra will be
needed to show that, for a mole of a van der Waals gas,

In the above analysis, we considered an isobaric process and we chose the internal energy as our function of state and we started by
calculating the increment in U corresponding to increments dV and dT in the volume and temperature. It is tempting now to go
through the same analysis, but this time to consider an isochoric process and to choose the enthalpy as our function of state. We
start by calculating the increment in H corresponding to increments dP and dT in the pressure and temperature:

I.e.,

Now

Provided that we include in dQ any irreversible work that is being done on the system (irreversible work has the same effect, as we
have seen, as adding heat), so that dW = − PdV, then

On comparison of equations 10.4.11 and 10.4.12 we obtain

Divide by dT, recalling that we are considering an isochoric process. From this, we obtain an alternative expression for the
difference between the heat capacities:
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This is quite analogous to equation 10.4.6. It is left to the reader to show that, for an ideal gas, this reduces to C −C =R. This will

be easy if you recall equation 10.3.14, for an ideal gas: .

For any substance other than an ideal gas, we shall need to know  before we can make use of equation 10.4.15. But

equation 10.3.12, which we developed in Section 10.3 while analysing the Joule-Thomson effect, enables us to do just this:

On combining this with equation 10.4.15, we obtain again equation 10.4.8. We obtained no new result for C  − C  (although we
did obtain the important result 10.4.16 for an ideal gas), but it is satisfying and instructive to have obtained the same result via
internal energy and via enthalpy.

After this, we can hardly resist the temptation to see what happens if we treat P and V as independent variables. Thus, if U = U(P,
V), then increases of dP and dV in the pressure and volume result in an increase dU of the internal energy given by

But we already know (equation 10.4.1), by choosing the independent variables to be T and V, that

And from the equation of state T = T(P, V) , we derive that

By elimination of dT from equations 10.4.1 and 10.4.18 we obtain

On comparison of equations 10.4.17 and 10.4.19 we deduce the following relations, which are occasionally useful:

(which I hope we already knew!)

and

The first of these is, of course, trivial, and does not require this lengthy derivation. The second is a worthwhile relation, which we
may occasionally find useful.

Summary:
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10.5: Blackbody Radiation
Before we forget all the equations in this chapter, let’s use equation 10.2.12 (which we have already used twice – once in the
derivation of the Joule-Thomson coefficient and once in the derivation of C  − C ) in a totally different application:

This is a very general thermodynamical relation, and is by no means restricted to Joule’s experiment. Let us apply it to
electromagnetic radiation (rather than molecules) in an enclosure.

You may already have studied the theory of radiation in a cavity and the closely-related theory of blackbody radiation. You will
know that classical electromagnetic theory failed to explain the observed characteristics of blackbody radiation, and that it was not
explained fully until the advent of quantum theory. In the middle of the nineteenth century Kirchhoff argued theoretically that the
energy density inside a cavity was independent of the nature of the walls of the cavity and depended only on the temperature and
the wavelength. Stefan had shown experimentally that the radiation density inside a cavity integrated over all wavelengths was
proportional to the fourth power of the temperature. Later on, Lummer and Pringsheim did some detailed measurements which
showed how the radiation density per until wavelength varied with wavelength and temperature. It was shown by Rayleigh and
Jeans that classical electromagnetic theory failed badly at short wavelengths to explain the observed distribution of the cavity
radiation with wavelength. In 1900 Planck, without quite knowing why, showed that, if he regarded radiation as being made up of
quanta of energy hν, the energy density per unit volume per unit wavelength interval would be expected to vary as 

 which agreed very well with the experimental data of Lummer and Pringsheim. You also may know that if you

integrate this expression over all wavelengths (not particularly easy), you find that  is proportional to T , thus also agreeing
with the observations of Stefan.

However, although quantum theory was necessary to explain the Lummer-Pringsheim measurements of how u  varies with
temperature, Boltzmann used classical thermodynamical theory to explain Stefan’s T  law almost immediately after Stefan had
announced his results, and long before the advent of quantum theory. The theory of radiation tells us that the radiation energy per
unit volume u depends only on the temperature (this is Kirchhoff’s radiation law) and that the radiation pressure P is related to the
energy per unit volume by . The derivation of this is very similar to the expression that we derived for the pressure of
molecules in a gas. For this situation, equation 10.2.12 becomes

or

Integration of this (do it!) shows that u ∝ T , without any need for quantum theory.

This is often written as u ∝ aT , but beware, here a is not what it generally known as “Stefan’s constant”. See Chapters 1 and 2
(especially Section 1.17) of my Stellar Atmospheres notes for more on this. Stefan’s Law generally refers to the exitance of a black
body surface, M = σT  , whereas here we are referring to the energy density of radiation in a cavity. The relation between a and
Stefan’s constant σ is a = 4σ/c.

Now suppose that you had some radiation at temperature T in an enclosure (such as The Universe) of volume V. And suppose that
volume were to expand adiabatically, thus diluting the energy density. What would be the new temperature? In what follows, V
means the volume (not the “specific” or “molar” volume) of the enclosure. U is the internal energy of the radiation inside it, and u
is the radiation energy density, such that U = uV, and we shall be making use of  and of .

If the volume were to increase by dV at pressure P, the work done by the radiation would be , and, if we assume
that the expansion is adiabatic, this results (by the first law of thermodynamics) in a decrease of the internal energy. We apply the
first law: dU = −PdV. That is
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Therefore

But u ∝ T  and hence

or the temperature is inversely proportional to the linear dimensions of the enclosure.
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11.1: Introduction
In my rarefied, theoretical, academic and unpractical mind, a heat engine consists of a working substance obeying some idealized
equation of state such as that for an ideal gas, held inside a cylinder by a piston, and undergoing, in a closed cycle, a series of
highly idealized processes, such as reversible adiabatic expansions or isothermal compressions. At various stages of the cycle, the
system may be gaining heat from or losing heat to its surroundings; or we may be doing work on the system by compressing it, or
the system may be expanding and doing external work.

The efficiency η of a heat engine is defined as

By “net” external work, I mean the work done by the engine during that part of the cycle when it is doing work minus the work
done on the engine during that part of the cycle when work is being done on it. Notice that the word “net” does not appear in the
denominator, which refers only to the heat supplied to the engine during that part of the cycle when it is gaining heat.

During the compression part of the cycle, the system gives out heat, and only the difference “heat in minus heat out” is available to
do the external work. Thus efficiency can also be calculated from

although the definition of efficiency remains as equation 11.1.1.

No heat engine is 100% efficient, and we need to ask what is the most efficient heat engine possible, what are the factors that limit
its efficiency, and what is the greatest possible efficiency? Obviously things like friction in the moving parts of the engine limit the
efficiency, but in my academic mind the engine is built with frictionless bearings and all processes in the cycle of compressions and
expansions are reversible.

During a cycle, a heat engine moves in a clockwise closed path in the PV plane, and, if the processes are reversible, the area
enclosed by this clockwise path is the net external work done by the system. It also moves in a clockwise closed path in the TS
plane, and, if the processes are reversible, the area enclosed by this clockwise path is the net heat supplied to the system. The two
are equal, and when the system returns to its original state, there is no change in the internal energy. That is, internal energy is a
function of state.

Depending upon the nature of the various processes during the cycle, the cycle may carry various names, such as the Carnot,
Stirling, Otto, Diesel or Rankine cycles. Of these, the most important from the theoretical point of view is the Carnot cycle. I do not
know whether anyone has ever built a Carnot heat engine. I do know, however, that no one has ever built an engine working
between a hot heat source and a cold heat sink that is more efficient than a Carnot engine; for, for a given temperature difference
between source and sink, the Carnot engine is the most efficient conceivable. There is another important thing about the Carnot
cycle. In Chapter 3, we struggled to understand that most difficult of all the thermodynamic concepts, namely temperature, and we
wondered if we could define an absolute temperature scale that was independent of the properties of any particular substance.
Consideration of the Carnot cycle enables us to do just that.

Of real heat engines I know very little. I know that one pedal of my car makes the car go faster and the other makes it go slower –
but what is under the hood or bonnet is beyond my ken. Real heat engines may resemble some of the theoretical engines of
academia to a greater or lesser extent. Thus a motor car engine may resemble an Otto cycle, or a steam engine may resemble a
Rankine cycle, or a real Diesel engine may resemble the theoretical Diesel cycle. Engineering students may wonder whether they
need bother with learning about “theoretical” engines that bear little resemblance to the metal and fuel that they have to work with
on a practical basis. I cannot answer that, but there is just one thing I do know about real engines, and that is that they are subject to
and follow all the fundamental laws of thermodynamics that theoretical engines have to follow; and I suspect that the engineer who
designed the engine in my car had a pretty thorough knowledge of the fundamental principles of thermodynamics.
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η =
 net external work done by the engine during a cycle 

 heat supplied to the engine during a cycle. 
(11.1.1)

η = .
−Qin Qout

Qin
(11.1.2)
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11.2: The Carnot Cycle
I referred above to one of the uses of the theoretical concept known as the Carnot cycle, namely that it enables us to define an
absolute temperature scale. I suggest that, before you read any further, you re-read Section 3.4 of Chapter 3.

Pause while you re-read Section 3.4

As a temporary measure I am going to use the symbol θ to represent the temperature measured on the ideal gas scale. I shall then
define an absolute temperature scale, T, and show that it is identical with the ideal gas temperature scale.

To start with, I shall suppose that the working substance in our Carnot engine is an ideal gas. We shall refer to figure XI.1, in which
ab and cd are isotherms at temperatures θ  and θ  respectively (θ  > θ ), and bc and da are adiabats. Starting at the point a(P , V ),
a quantity of heat Q  is supplied to the gas as it expands isothermally from a to b(P  ,V ) at temperature θ  on the ideal gas scale.
During this phase, the cylinder is supposed to be uninsulated and placed in a hot bath at temperature θ . As it expands isothermally
it does external work. Since the working substance is an ideal gas, the internal energy at constant temperature is independent of
volume (there is no internal work against van der Waals forces to be done) so the heat supplied to the gas is equal to the external
work that it does. That is, per mole,

After the gas has reached b the cylinder is insulated and the gas expands adiabatically and reversibly to c(P , V ).

It is then placed in a cold bath at temperature θ , uninsulated, and compressed isothermally to d(P , V ). During this stage it gives
out a quantity of heat Q :

Finally it is insulated again and compressed adiabatically and reversibly to its original state a.

For these four stages we have the equations

From these, we readily see that

and therefore

The net heat received is Q  − Q , and this is the heat available for doing external work. A quantity of heat must be supplied at the
beginning of each cycle, and so the efficiency of the cycle is

2 1 2 1 1 1

2 2 2 2

2

= R ln( / ).Q2 θ2 V2 V1 (11.2.1)

3 3

1 4 4

1

= R ln( / ).Q1 θ1 V3 V4 (11.2.2)

l =P1V1 P2V2 (11.2.3)

=P2V
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2 P3V
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Thus the efficiency of the Carnot engine is the fractional temperature difference between source and sink.

We have specified in the above that the working substance is an ideal gas, the temperatures of source and sink being θ  and θ  on
the ideal gas scale. Let us now not specify what the working substance is, but let us set up a system of 100 Carnot engines working
in tandem, with the sink of one being the source for the next. We’ll have the sink for the coldest engine in a bucket of melting ice (0
C) and the source for the hottest engine in a bucket of boiling water (100 C). They will be working between isothermals and

adiabats on an absolute thermodynamic scale, T, defined such that the net work done by each engine (i.e. the area of each PV loop)
per cycle is the same for each of the engines. This will define the temperature on an absolute scale. It would take me a while to use
the computer to do a decent drawing of 100 isotherms and 2 adiabats, so I’m going to try to make do with a hand-drawn sketch
(figure X1.2) of just five isotherms, two adiabats and four linked Carnot cycles to illustrate what I am trying to describe.

We suppose that the efficiency of such a Carnot engine depends solely on the temperature of source and sink:

We are making no assumption about the form of this function, which is completely arbitrary. We are free to define it in any manner
that is useful to us in our attempt to define an absolute temperature scale.

Let us consider two adjacent engines, one working between temperatures T  and T , and the other working between temperatures
T  and T . We have:

and for the pair as a whole considered as a single engine,

From these we find that

This can be only if T  cancels from the right hand side, so that

That is,

And since φ is a completely arbitrary function that we can choose at our pleasure to define an absolute scale, we choose

And, with this choice, the absolute thermodynamic temperature scale is identical with the ideal gas temperature scale. Equation
11.2.17 also implies that entropy in = entropy out. Entropy is conserved around the complete cycle. Entropy is a function of state.

η = = .
−Q2 Q1

Q2

−θ2 θ1

θ2
(11.2.9)

1 2

o o

/ = f ( , ) .Q1 Q2 T1 T2 (11.2.10)

1 2

2 3

l / = f ( , )Q1 Q2 T1 T2 (11.2.11)

/ = f ( , )Q2 Q3 T2 T3 (11.2.12)
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In Sections 11.3 to 11.5 I give examples of some other cycles. These are largely for reference, and readers who wish to continue
without interruption with the theoretical development of the subject can safely skip these and move on to Sections 11.7 and 11.8.
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11.3: The Stirling Cycle
This takes place between two isotherms and two isochors. Note that, provided the working substance is an ideal gas, there is no
change in the internal energy along the isotherms, and that the work done by or on the gas is equal to the heat gained by or lost
from it. No work is done along the isochors. I show the cycle in the PV plane in figure XI.3, and an imaginary schematic engine in
figure XI.4.

The gas is supposed to be held in a cylinder between two pistons. The cylinder is divided into two sections by a porous partition.
One section is kept at a hot temperature T  and the other is kept at a cold temperature T .

In stage a, the cold gas is compressed isothermally. The work done on a mole of the gas is RT ln(V /V ); this is converted into
heat, Q , which is lost from the gas to the cold reservoir.

In stage b, the gas, held at constant volume, is transferred to the hot reservoir. No work is done on or by the gas, but a quantity of
heat Q  = C (T  − T ) per mole is supplied to the gas.

In stage c, the hot gas is expanded isothermally to its original volume. The work done by a mole of the gas is RT ln(V /V ); in
order to prevent the gas from cooling down, it has to absorb an equal amount of heat, Q  from the hot reservoir. Note that Q > Q .

In stage d, the gas, held at constant volume, is transferred back to the cold reservoir. No work is done on or by the gas, but the gas
loses a quantity of heat Q  = C (T  − T ) to the cold reservoir. Note that Q  = Q .

Exercise: Show that the efficiency is

If the gas is an ideal diatomic gas (to which air is an approximation), then , and then

2 1

1 2 1

a

b V 2 1

2 2 1

c c a

d V 2 1 d b

η = .
R ( − ) ln( / )T2 T1 V2 V1

( − ) +R ln( / )CV T2 T1 T2 V2 V1
(11.3.1)
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5
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If helium were used as an ideal gas, the efficiency would be greater, because for helium, .
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11.4: The Otto Cycle
The Otto cycle (to which the engine under the hood of your car bears some slight resemblance) works between two isochors and
two adiabats (figure XI.5).

The cycle starts at A. From A to B the piston recedes and a valve is open, so that a misture of air and petrol (gasoline) is drawn in
at constant (atmospheric) pressure. The temperature is typically somewhat above ambient temperature because of the previous
operation of the cycle. At B, the valve is closes, and now from B to C a fixed mass of gas is compressed adiabatically, the
temperature being a few hundred K. C is the point of maximum compression. At this point a spark is struck and the mixture is
ignited. In effect heat is added to the system and the temperature goes up instantaneously to perhaps 2000 K at constant (small)
volume. The gas, now having reached D, expands adiabatically to E, doing work, and the temperature drops somewhat. At E, a
(second) valve opens, gas is expelled, the pressure drops to atmospheric, and the temperature drops to its original value. We are
now at F. The piston pushes the remaining gas out, and we end at G. The cycle starts anew.

It is left as an exercise to show:

Net work done by the engine per cycle = .

Volume of stroke = .

Maximum pressure = .

Efficiency = .

In principle the efficiency could be very large if the temperature at C, at the end of the adiabatic compression, were high. In
practice the temperature at the end of the adiabatic compression is limited (and therefore so is the efficiency) because, if the
temperature were too high, the air-gasoline mixture would ignite spontaneously.
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11.5: The Diesel Cycle
This difficulty is avoided in the Diesel cycle in that, during the adiabatic compression stage to a high temperature, it is just air (not
an air-fuel mixture) that is compressed. Only then, when the temperature is high, is fuel injected, which then immediately ignites.
The cycle is shown in figure XI.6.

We start at A. A valve opens and the piston moves back, and pure air (no fuel) is sucked into the cylinder. This is followed by an
adiabatic compression from B to C, which can reach a high temperature of 2000 K or so. At C a jet of liquid fuel is forced at high
pressure into the cylinder by a pump that is operated by the engine itself. The fuel immediately ignites. The rate of injection is held
so that the mixture expands at constant pressure until we reach D, at which point the injection of fuel is cut off and the gas expands
adiabatically to E. A valve is then opened so that the pressure drops to atmospheric at F. The piston then pushes the remainder of
the mixture out, and the cycle stars anew.

It is left as an exercise to show:

Net work done by the engine per cycle = .

Volume of stroke = .

Efficiency = .

Have a look at http://www.univ-lemans.fr/enseignements/physique/02/thermo/diesel.html

Exercise: Assuming γ = 1.4, what are the efficiencies of the Carnot, Otto and Diesel cycles running between 350 K and 2000 K?
Assume for the Diesel cycle that the maximum pressure is 30 atmospheres. Assume for the Otto cycle that T  =650 K.
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11.6: The Rankine Cycle (Steam Engine)
The Titfield Thunderbolt runs on an engine that slightly resembles the Rankine cycle.

The amount of work obtainable from an engine depends on the amount of the working substance and on the temperature. Internal
combustion Otto and Diesel engines work at high temperatures, so they can be small. The steam engine is bulky but does not
require high temperatures. The steam engine has a boiler (which, naturally, boils water into steam) and a condenser (which,
naturally, condenses the steam back again to water).

Steam from the boiler is drawn into a cylinder at constant pressure (A to B), at which point the intake valve is closed and the
remaining expansion (B to C) is adiabatic, taking the temperature down to the temperature of the condenser. The section C to D
corresponds to the condensation of the steam. From D to A the condensed water is transferred to the boiler, and the cycle starts
again.
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11.7: A Useful Exercise
It would probably not be a useful exercise to try to memorise the details of the several heat engine cycles described in this chapter.
What probably would be a useful exercise is as follows. Note that in each cycle there are four stages, which, in principle at least (if
not always in practice) are well defined and separated one from the next. These stages are described by one or another of an
isotherm, an adiabat, an isochor or an isobar. It would probably be a good idea to ask oneself, for each stage in each engine, the
values of ∆Q, ∆W and ∆U, noting, of course, that in each case, ∆U = ∆Q + ∆W. In each case take care to note whether heat is added
to or lost from the engine , whether the engine does work or whether work is done on it, and whether the internal energy increases
or decreases. By doing this, one could then easily determine how much heat is supplied to the engine, and how much net work it
does during the cycle, and hence determine the efficiency of the engine.

The following may serve as useful guidelines. In these guidelines it is assumed that any work done is reversible, and that (except
for the steam engine or Rankine cycle) the working substance may be treated as if it were an ideal gas.

Along an isotherm, the internal energy of an ideal gas is unchanged. That is to say, ∆U = 0. The work done (per mole of working
substance) will be an expression of the form RT ln(V /V ), and the heat lost or gained will then be determined by ∆Q + ∆W = 0.

Along an adiabat, no heat is gained or lost, so that ∆Q = 0. The expression for the work done per mole will be of the form 
 where V is the molar volume. Just be sure to understand whether work is done on or by the engine. The

change in the internal energy (be sure to understand whether it is an increase or a decrease) is then given by ∆U = ∆W.

Along an isochor, no work is done. That is, ∆W = 0. The heat lost or gained per mole will be of an expression of the form C (T  −
T ), where C  is the molar heat capacity at constant volume. The change in the internal energy (be sure to understand whether it is
an increase or a decrease) is then given by ∆U = ∆Q.

Along an isobar, none of Q, W or U are unchanged. The work done per mole (by or on the engine?) will be an expression of the
form ∆W = P(V  − V ) = R(T  − T ).

The heat added to or lost from the engine will be an expression of the form C (T − T ), where C  is the molar heat capacity at
constant pressure. The change in the internal energy (be sure to understand whether it is an increase or a decrease) is then given by
∆U = ∆Q + ∆W.

It might also be a good idea to try to draw each cycle in the T : S plane (with the intensive variable T on the vertical axes). Indeed I
particularly urge you to do this for the Carnot cycle, which will look particularly simple. Note that, while the area inside the cycle
in the P : V plane is equal to the net work done on the engine during the cycle, the area inside the cycle in the T : S plane is equal
to the net heat supplied to the engine during the cycle.

This page titled 11.7: A Useful Exercise is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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11.8: Heat Engines and Refrigerators

Figure XI.8 illustrates schematically the path taken by the state of a working substance is a generalized heat engine. In the upper
part of the cycle (continuous curve) the working substance is expanding, and the machine is doing work. The work done by the
engine is ∫PdV, or the area under that part of the curve. In the lower part of the cycle (dashed curve) the working substance is being
compressed; work is being done on it. This work is the area under the dashed portion of the cycle. The net work done by the engine
during the cycle is the work done by the engine while it is expanding minus the work done on it during the compression part of the
cycle, and this is the area enclosed by the cycle.

During one part of any heat engine cycle, heat is supplied to the engine, and during other parts, heat is lost from it. As described in
Section 11.1, the efficiency η of a heat engine is defined by

Note that the word “net” does not appear in the denominator. The efficiency can also be calculated from

though I stress that this is not a definition.

In the Carnot engine, which is the most efficient conceivable engine for given source and sink temperature, the efficiency is

where T  and T  are respectively the temperatures of the hot source and cold sink.

If the working substance is taken round a cycle in the PV-plane in the counterclockwise direction, the device is a refrigerator.

In that case the area enclosed by the cycle is equal to the net work that is done on the working substance. If the refrigerator operates
on a reverse Carnot cycle, the working substance takes in (from whatever it is that it is trying to cool) a quantity of heat Q  as it
expands isothermally from d to c (see figure XI.1, but with the arrows reversed) and expels a (greater) quantity of heat Q  as it is
compressed isothermally from b to a. This quantity Q  is expelled into the room – which is why the room gets warmer when you
switch on the fridge. (What – you never noticed?) The refrigerating effect is Q , since this is the quantity of heat taken in by the
refrigerator from the body that is to be cooled.

The coefficient of performance of a refrigerator is defined by

By the first law of thermodynamics, the denominator of the expression is Q  − Q , and for a reversible Carnot cycle, the entropy in
equals the entropy out, so that Q /Q  = T /T . Therefore the coefficient of performance for a Carnot refrigeration cycle can be
calculated from

η =
 net external work done by the engine during a cycle

heat supplied to the engine during a cycle.
(11.8.1)

η = ,
−Q in  Q out 

Q in 
(11.8.2)

η = ,
−T2 T1

T2
(11.8.3)

2 1

1

2

2

1

 refrigerating effect 

 net work done on the engine during the cycle. 
(11.8.4)

2 1

2 1 2 1

.
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This, of course, can be much greater than 1 – but no refrigerator working between the same source and sink temperatures can have
a coefficient of performance greater that that of a reversible Carnot refrigerator.

Of course the working substance in a real refrigerator (“fridge”) is not an ideal gas, nor does one follow a Carnot cycle – there are
too many practical difficulties in the way of achieving this ideal dream. As mentioned elsewhere in this course, I am not a practical
man and I am not suited to describing real, practical machines. The fundamental principles described in this section do, of course,
still apply in the real world! In a real refrigerator, the working substance (the refrigerant) is a volatile fluid which is vaporized in
one part of the operation and condensed to a liquid in another part. In industrial refrigerators, the refrigerant may be ammonia, but
this is considered to be too dangerous for domestic use. “Freon”, which was a mixture of chlorofluorocarbons, such as CCl F , was
in fashion for a while, but escaping chlorofluorocarbons have been known for some time to cause breakdown of ozone (O ) in the
atmosphere, thus destroying our protection against ultraviolet radiation from the Sun. The chlorofluorocarbons have been largely
replaced by hydrofluorocarbons, such as C H F , which are believed to be less damaging to the ozone layer. The exact formula or
mixture is doubtless a trade secret.

The fluid is forced around a system of tubes by a pump called the compressor. Shortly before the fluid reaches the freezer it is in
liquid form, moving along some rather narrow pipes. It is then forced through a nozzle into a system of wider pipes (the
evaporator) surrounding the freezer, and there it vaporizes, taking heat from the food and from the air in the freezer. A fan may
also distribute the cooled air throughout the rest of the refrigerator. After leaving the freezer, the vapour returns to the compressor,
where it is, of course, compressed (which is why the pump is called the compressor). This produces heat, which is dissipated into
the room as the fluid is forced through a series of pipes and vanes, known as the condenser, at the rear of the fridge, where the fluid
condenses into liquid form again. The cycle then starts anew.

The following summary of Carnot heat engines and refrigerators may be helpful. (But just remember that, while Carnot cycles are
the most efficient engines and refrigerators for given source and sink temperatures, the practical realization of a real engine or
refrigerator may not be identical to this theoretical ideal.)

Notation:

T  = hotter temperature

T  = cooler temperature

Q  = heat gained or lost at T

Q  = heat gained or lost at T

Heat Engine:

Refrigerator:

2 2

3

2 2 4

2

1

2 2

1 1

ΔS = 0 =
Q1

T1

Q2

T2

ΔU = 0  Net work done by engine  = − .Q2 Q1

 Efficiency η = = =
−Qin Q out 

Q in 

−Q2 Q1

Q2

−T2 T1

T2
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Heat Pump:

The principle of a heat pump is the same as that of a refrigerator, except that its purpose is different. The purpose of a refrigerator is
to extract heat from something (e.g. food) and so to make it colder. That the heat so extracted goes into the room to make the room
warmer (at least in principle) is incidental. The important thing is how much heat is extracted from the food, and that is why it is
appropriate to define the coefficient of performance of a refrigerator as the refrigerating effect (i.e. Q ) divided by the net work
done on the refrigerator, per cycle. But with a heat pump, the object is to heat the room by extracting heat from outside. That the
outside may become cooler (at least in principle) is incidental. Thus, for a heat pump, the appropriate definition of the coefficient of
performance is the heating effect (i.e. Q ) divided by the net work done on the refrigerator, per cycle.

You can see from this equation that, the warmer it is outside (T ), the greater the coefficient of performance. You may therefore
wonder if it is practical to use a heat pump to heat a building in a cold climate, such as the Quebec winter. And, if it isn’t, can one
devise an engine that is simultaneously a refrigerator and a heat pump; that is to say, it extracts heats from (i.e. cools) the food, and
transfers this heat (plus a little bit more because of the work that is done on the refrigerator/heat pump) into the room in order to
heat the room effectively. There’s an answer to that in an article in the Victoria Times-Colonist of June 11, 2006, which I
reproduce, with permission, below.

ΔU = 0  Net work done  on refrigerator  = −Q2 Q1

 Coefficient of Performance P = = =
Q in 

−Q oxt  Q in 

Q1

−Q2 Q1

T1

−T2 T1

1

2

ΔU = 0  Net work done on heat pump  = −Q2 Q1

Coefficient of Performance P = = =
Qout

−Qout Qin

Q2

−Q2 Q1

T2

−T2 T1

1
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Air Conditioner

The purpose of a refrigerator (“fridge”) is to pump some heat Q  from the food (or whatever is to be kept cool). The quantity Q  is
the “refrigerating effect”. During the operation of the fridge, a somewhat greater quantity Q  of heat is expelled into the room,

1 1
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though this should not result in a very noticeable rise in temperature of the room, partly because the room has a large thermal
capacity, and partly because much of this heat will be lost through the windows. The coefficient of performance of the fridge is the
refrigerating effect per cycle, Q , divided by the net work done on the fridge per cycle, and, for a Carnot cycle it can be calculated
from T /(T  − T ).

The purpose of a heat pump is to pump some heat Q  from outside, and (from the work done on the pump) to pump a larger
quantity Q  of heat into the room – large enough, indeed to warm the room appreciably, supposing that you don’t keep all the
windows wide open. The coefficient of performance must therefore be defined as Q  divided by the net work done on the fridge per
cycle. For a Carnot cycle it can be calculated from T /(T  − T ).

There is a third possibility, namely an air conditioner. This will incorporate a dehumidifier, but, in our present context we regard it
as a device whose purpose is to pump heat from the room to the outside, rather than from outside to the room. If it is successful, the
room will become cooler than the outside. Thus an air conditioner is more like a refrigerator, in that the coefficient of performance
is the heat Q  extracted per cycle from the room divided by the net work done on the machine per cycle. For a Carnot cycle it can
be calculated from T /(T  − T ).

.

.

Those who have read thus far will have an idea that there are things called heat engines, refrigerators, heat pumps and air
conditioners, which are represented by Carnot cycles or similar cycles, with arrows going in different directions, a few equations
with different subscripts, and subtly different definitions of efficiency or coefficient of performance. Since I prepared these notes I
have discovered that there actually exist in the real world, real, solid machines called heat engines, refrigerators, heat pumps and
air conditioners. I have discovered two very nice little pamphlets describing real heat pumps and real air conditioners, and how you
might install them to heat or to cool your home. They are called Heating and Cooling with a Heat Pump, and Air Conditioning
your Home, each about 50 pages. My copies are dated 1996, revised 2004, though I dare say you might be able to get more recent
ones. They are available free from Energy Publications, Office of Energy Efficiency, Natural Resources Canada, c/o S.J.D.S., 1779
Pink Road, Gatineau, Province of Québec, Canada J9J 3N7. I found them fascinating.

This page titled 11.8: Heat Engines and Refrigerators is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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11.9: Entropy is a Function of State
We have defined temperature on the absolute scale such that the temperature of the source of a reversible Carnot heat engine is
proportional to the heat taken in by the engine during its isothermal expansion at the hot temperature, and the temperature of the
sink is proportional to the heat lost by the engine during its isothermal compression at the cool temperature. No heat is gained or
lost, of course, during the adiabatic phases, and there is no change in internal energy over a complete cycle. Therefore Q /Q  =
T /T .

Now, any cycle can be represented by an infinite number of infinitesimally narrow Carnot cycles operating in tandem. Thus ∫dQ/T
during that part of the cycle in which an engine is losing heat is equal to ∫dQ/T during that part of the cycle in which it is absorbing
heat. Therefore, during the complete cycle, ∫dQ/T is zero. This means that the net change in entropy during a complete cycle is
zero, so that entropy is a function of state. In effect 1/T is an integrating factor which, when it multiplies the inexact differential
đQ, results in the exact differential đQ/T = dS.

This page titled 11.9: Entropy is a Function of State is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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12.1: Review of Internal Energy and Enthalpy
We are by now familiar with the equations

dU = TdS − PdV and dH = TdS + VdP,

and with the ideas that the increase in the internal energy is the heat added at constant volume and the increase in enthalpy is the
heat added at constant pressure, and that U is constant in an adiabatic isochoric process and H is constant in an adiabatic isobaric
process. I am now going to examine these equations and statements a bit more critically. In particular I am going to consider that
there may be several types of configuration work involved in addition to just PdV work of compression or expansion.

The First Law of thermodynamics is dU = dQ + dW.

The work done on a system may comprise an irreversible component dW  (such as stirring with a paddle, or forcing an electric
current through a resistor) plus some reversible components dW . The irreversible component is dissipated as heat and is
tantamount to adding heat to the system. The heat and the irreversible work contribute to the increase in entropy of the system,
according to dS = (dQ + dW )/T. Thus we have dQ = TdS − dW .

The reversible component of the work may consist of work done in compressing the system, −PdV, but there may also be other
kinds of work, such as the work required to create new area, Γdσ , or the work required to twist a rod, τdθ, or the work required to
charge a battery, Edq, or the work required to magnetize a specimen, BdM, and perhaps others. In general the expression for each of
these forms of reversible work is of the form XdY, where X is an intensive state variable and Y is an extensive state variable. All of
these forms of nondissipative work can collectively be called configuration work.

The total work done on the system is therefore of the form

The first law therefore takes the form

If the system is held at constant volume (e.g. in a pressure cooker or in an autoclave), then no PdV work of expansion or
compression is done. And if no other sort of work is done either (either non-PdV reversible work or irreversible work dW ) then the
increase in internal energy of the system is just equal to the heat added to it.

Enthalpy is defined as H = U + PV, so that dH = dU + PdV + VdP. From this, we obtain

If heat is added to a system at constant pressure, then the system expands and does external work. However, provided that the
pressure is held constant and if no other sort of work is done either (either non-PdV reversible work or irreversible work dW ) then
the increase in the enthalpy of the system is just equal to the heat added to it.

In summary, the well-known equations dU = TdS − PdV and dH = TdS + VdP are valid for reversible and for irreversible processes,
provided that the only nondissipative work is PdV work; but in general, if there are other types of work being done (e.g. Γdσ, or
τdθ, etc.), the required relations are

and

This page titled 12.1: Review of Internal Energy and Enthalpy is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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12.2: Free Energy
We shall be learning that there are two sorts of free energy.

There is the Helmholtz free energy. Commonly used symbols for this are A (from the German die Arbeit – work) or F.

And there is the Gibbs free energy. Commonly used symbols for this are G − or F!

It is unfortunate that some writers will use simply the term "free energy”, using the symbol F, without specifying which, or even
giving evidence that they are aware of the difference. I have seen the symbol F used about equally often for Helmholtz, Gibbs or
unspecified free energies.

In these notes I shall use the symbol A for the Helmholtz free energy and G for the Gibbs free energy, and I shall avoid the symbol
F.

This page titled 12.2: Free Energy is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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12.3: Helmholtz Free Energy
The Helmholtz free energy A is defined as

As when we first defined enthalpy, this doesn't seem to mean much until we write it in differential form:

On substitution from equation 12.1.6 (dU = TdS − PdV + ∑XdY), this becomes

This tells us that in an isothermal process (in which dT = 0), the increase in the Helmholtz function of a system is equal to all the
reversible work (−PdV + ∑XdY) done on it. Conversely, if a machine does any reversible work at constant temperature, the
Helmholtz function decreases, and the decrease in the Helmholtz function is equal (if the temperature is held constant) to the
reversible work (of all types) done by the machine. It is in this sense that the Helmholtz function is called the “free energy”. It is
the energy, so to speak, that is free for the performance of external reversible (i.e. useful) work.

This page titled 12.3: Helmholtz Free Energy is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

A = U −TS. (12.3.1)

dA = dU −TdS−SdT . (12.3.2)

dA = −SdT −PdV +∑XdY . (12.3.3)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7287?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/12%3A_Free_Energy/12.03%3A_Helmholtz_Free_Energy
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/12%3A_Free_Energy/12.03%3A_Helmholtz_Free_Energy
https://creativecommons.org/licenses/by-nc/
http://orca.phys.uvic.ca/~tatum/index.php


12.4.1 https://phys.libretexts.org/@go/page/7288

12.4: Gibbs Free Energy
The Gibbs free energy G is defined as

or, what amounts to the same thing,

As when we first defined enthalpy, this doesn't seem to mean much until we write it in differential form:

or

Then, either from equations 12.1.5 (dH = TdS + VdP + ∑XdY) and 12.5.3 or from equation 12.4.3 (dA = −SdT − PdV + ∑XdY) and
12.5.4, we obtain

That is to say that, if the temperature and pressure are constant, the increase in the Gibbs function of a system is equal to the
reversible work (other than PdV work of compression) done on it. Conversely, if the temperature and pressure are held constant,
and a machine is used to do external work (which may include but is not limited to PdV work of expansion), the Gibbs function
decreases by the amount of reversible (i.e.useful) work done by the machine other than the PdV work of expansion.

This page titled 12.4: Gibbs Free Energy is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

G= H −TS (12.4.1)

G= A+PV . (12.4.2)

dG= dH −TdS−SdT (12.4.3)

dG= dA+PdV +V dP . (12.4.4)

dG= −SdT +V dP +∑XdY (12.4.5)
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12.5: Summary, the Maxwell Relations, and the Gibbs-Helmholtz Relations

If the only reversible work done on or by a system is PdV work of expansion or compression, we have the more familiar forms

All four thermodynamic functions are functions of state (and hence their differentials are exact differentials) and therefore

Further, by equating the mixed second derivatives, we obtain the four Maxwell Thermodynamic Relations:

The Gibbs-Helmholtz Relations are trivially found from A = U − TS and together with equations 12.6.11a and 12.6.12a. G = H − TS
They are

This page titled 12.5: Summary, the Maxwell Relations, and the Gibbs-Helmholtz Relations is shared under a CC BY-NC license and was
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dU = TdS−PdV +∑XdY (12.5.1)

dH = TdS+V dP +∑XdY (12.5.2)

dA = −SdT −PdV +∑XdY (12.5.3)

dG= −SdT +V dP +∑XdY (12.5.4)

dU = TdS−PdV (12.5.5)

dH = TdS+V dP (12.5.6)

dA = −SdT −PdV (12.5.7)

dG= −SdT +V dP (12.5.8)
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12.6: The Joule and Joule-Thomson Coefficients
In Chapter 10, we studied the Joule and Joule-Thomson experiments and we calculated the Joule and Joule-Thomson coefficients.
Now that we are familiar with the Helmholtz and Gibbs functions, and, in particular, with two Maxwell relations that can be
derived from them, we can obtain alternative derivations for these two coefficients. These may be easier than the derivations we
gave in Chapter 10. I am indebted to Dr Greg Trayling for the derivation of the Joule coefficient; the derivation of the Joule-
Thomson coefficient follows a parallel argument.

Let us start with the Joule coefficient. Here we are interested in how the temperature changes with volume in an experiment in
which the internal energy is constant. That is, we want to derive the Joule coefficient, η = (∂T/∂V) .

Now entropy is a function of state – i.e. of the intensive state variables P, V and T. (V = molar volume.) But the intensive state
variables for a particular substance are related by an equation of state, so we need express the entropy as a function of only two of
P, V or T, and, since we are seeking a relation between V and T, let us choose to express S as a function of V and T, so that

Let us look at these three terms in turn.

First, dS. In the Joule experiment, the internal energy of the gas is constant, so that

That is,

For the first term on the right hand side of equation 12.7.1, we make use of the Maxwell relation, equation 12.6.15, which we
derived from the Helmholtz function:

For the second term on the right hand side we obtain

Thus, equation 12.7.1 becomes

Multiply through by T, and divide by dV, taking the infinitesimal limit as dV → 0, recalling that we are dealing with an experiment
in which the internal energy is constant, and we arrive at

from which we immediately obtain

quod erat demonstrandum.

Let us now consider the Joule-Thomson coefficient. Here we are interested in how the temperature changes with pressure in an
experiment in which the enthalpy is constant. That is, we want to derive the Joule-Thomson coefficient, µ = (∂T/∂P) .

Now entropy is a function of state – i.e. of the intensive state variables P, V and T. (V = molar volume.) But the intensive state
variables for a particular substance are related by an equation of state, so we need express the entropy as a function of only two of

U
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P, V or T, and, since we are seeking a relation between P and T, let us choose to express S as a function of P and T, so that

Let us look at these three terms in turn.

First, dS. In the Joule-Thomson experiment, the enthalpy of the gas is constant, so that

That is,

For the first term on the right hand side of equation 12.7.9, we make use of the Maxwell relation, equation 12.6.16, which we
derived from the Gibbs function:

For the second term on the right hand side we obtain

Thus, equation 12.7.9 becomes

Multiply through by T, and divide by dP, taking the infinitesimal limit as dP → 0, recalling that we are dealing with an experiment
in which the enthalpy is constant, and we arrive at

from which we immediately obtain

quod erat demonstrandum.
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12.7: The Thermodynamic Functions for an Ideal Gas
In this section I tabulate the changes in the thermodynamic functions for an ideal gas taken from one state to another.

One mole of an ideal gas going isothermally and reversibly from P V T to P V T or adiabatically and reversibly from
P V T  to P V T .

Isothermal Adiabatic

Work done by gas RT ln(V /V )*

U  − U 0

Heat absorbed by gas RT ln(V /V ) 0

S  − S R ln(V /V ) 0

H  − H 0

A  − A −RT ln(V /V )

G  − G −RT ln(V /V )

*Note that for isothermal processes on an ideal gas, we can write (V /V ) = (P /P ).

A difficulty will be noted in the entries for the increase in the Helmholtz and Gibbs functions for an adiabatic process, in that, in
order to calculate ∆A or ∆G, it is apparently necessary to know S  and S , and not merely their difference. For the time being this is
a difficulty to note on one’s shirt-cuff, and perhaps return to it later.
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12.8: The Thermodynamic Functions for Other Substances
Calculation of the change in the thermodynamic functions of any substance going reversibly from P V T  to P V T .

The first comforting thing to note is that SUHAG are all state functions, and therefore the change in their values is route-
independent.

Entropy.

Entropy is a function of state (i.e. of PVT), but since PVT are related through the equation of state, it is necessary to specify only
two of these quantities. Thus, for example if we express S as a function of T and P, infinitesimal increases in these will give rise to
an infinitesimal increase in S given by

Now  is (for a reversible process)  (see equation 12.7.5), and  is (by a Maxwell relation) equal to . If

we know C  as a function of temperature, and, if we know the equation of state, we can now calculate

This will enable us to calculate the change in entropy of a substance provided that we know how the heat capacity varies with
temperature and provided that we know the equation of state.

For an ideal gas , and so we obtain, for an ideal gas

If we want to express the increase of entropy in terms of the change in temperature and volume, and of C , we can use P  = RT and
C  = C  + R to obtain

This agrees with what we had in the previous section for an isothermal expansion.

Here’s another way or arriving at equation 12.9.4. We want to find the change in entropy of a mole of an ideal gas in going from
(P , V , T ) to (P , V , T ). Since the change in entropy is route-independent, we can choose any simple route for which the
calculation is easy. Let’s go at constant volume from (P , V , T ) to (P , V , T ) and then at constant temperature from (P , V , T )
to (P , V , T ).

To go from (P , V , T ) to (P , V , T ), the gas has to absorb an amount of heat , and so its entropy increases by 

. To go from (P , V , T ) to (P , V , T ). The gas does work RT  ln(V /V ) without any change in internal energy
(because the internal energy of an ideal gas at constant temperature is independent of its volume), and therefore it absorbs this
amount of heat. Therefore its entropy increases by R ln(V /V ). Thus we arrive again at equation 12.9.4.

Example: If the substance is an ideal monatomic gas, then . From this we calculate
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Exercise: Go through the same analysis, but starting from S = S(T, V). Show that the result you get for an ideal gas is the same as
above. It will also, of course, necessarily be the same for any substance, though the equality of the expression you get with equation
12.9.2 may not be immediately apparent.

Exercise: The pressure and volume of an ideal monatomic gas are both doubled. What is the ratio of the new temperature to the
old? What is the increase in the molar entropy?

(I make the answer 2.31 × 10  J kmole  K .) Now try the same problem with an ideal diatomic gas. (I make the answer 3.46 ×
10  J kmole  K .)

Internal Energy and Enthalpy

These can be calculated if we know how C  and C  vary with temperature, because, by definition, C  = (∂U/∂T)  and C  = (∂H/
∂T) .

Therefore

and

Helmholtz and Gibbs Functions

Since A = U − TS, we have

In the special case of an ideal gas, we obtain

Since G = H − TS, we have

In the special case of an ideal gas, we obtain

There is, however, a serious difficulty with equations 12.9.9 and 12.9.11, in that, in order to calculate the change in the Helmholtz
and Gibbs functions, we need to know the initial absolute entropy S .
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12.9: Absolute Entropy
We can, of course, calculate the molar entropy of a substance at some temperature provided that we define the entropy at a
temperature of absolute zero to be zero. By way of example, assuming that the molar entropy of hydrogen at 0 K is zero, calculate
the absolute entropy of a kmole of H2 gas at a temperature of 25 C (298.15 K) and a pressure of one atmosphere. We can do this in
five stages, as follows. You will find it helpful to sketch these stages on a drawing similar to figure VI.5.

1. Heat the solid hydrogen from 0 K to 13.95 K at a pressure of 7173 Pa. (That’s the triple point.) The increase in entropy is ∫C
d(lnT). Assuming that we know C  as a function of temperature in this range, that comes to 2080 J K  kmole .

2. Liquefy it at the same temperature and pressure. The molar latent heat of fusion is 117000 J kmole . Increase in entropy =
117000/13.95 = 8400 J K  kmole .

3. Vaporize it at the same temperature and pressure. The molar latent heat of vaporization is 911000 kmole . Increase in entropy =
911000/13.95 = 65300 J K  kmole .

4. Increase temperature to 298.15 K at constant pressure. See equation 12.9.3. The increase in entropy is ∫C  d(lnT). Assuming that
we know C  as a function of temperature in this range, that comes to 70000 J K  kmole .

5. Increase pressure to 1 atmos = 1.013 × 105 Pa at constant temperature. See equation 12.9.4, from which we see that there is a
decrease of entropy equal to R ln(P /P ) = 8314ln(1.103 × 10  / 7173) = 22000 J K  kmole .

Hence, taking the entropy to be zero at 0 K, the required entropy is 124000 J K  kmole .

Now that we have calculated the absolute entropy at a given temperature and pressure, we can calculate the increase in the
Helmholtz and Gibbs functions from equations 12.9.9 and 12.9.11. But this leaves us in a rather uncomfortable position. After all,
all we have done in this example is to calculate the increase in entropy as we took the sample up to 25 C and 1 atmosphere – we
haven’t really calculated the absolute entropy. The entropy appearing in equations 12.9.9 and 12.9.11 is surely the absolute entropy,
and we cannot calculate this unless we know the entropy at T = 0 K. This slight puzzle will remain with us until Chapter 16, when
we meet Nernst’s Heat Theorem and the Third Law of Thermodynamics.

Many of the examples of thermodynamical calculations have hitherto involved PdV work in a system in which the working
substance has been an ideal gas. Let us now look at two entirely different situations, both involving non-PdV work. Let us look at
charging a battery, and creating new surface by distorting a spherical drop of liquid.
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12.10: Charging a Battery
The concept of “non-PdV work” sometimes causes difficulty, so am going to illustrate it in this section by using the charging of a
battery as an example, and in the next section by a discussion of surface tension. This section will also give us an opportunity of
using a Gibbs-Helmholtz relation.

Suppose that we force a charge q into an electric cell whose electromotive force (EMF) is E, at constant temperature and pressure.
What is the increase in the Gibbs function of the cell? And what is the increase in its enthalpy?

The answer to the first question is easy. It is just qE. The increase in the enthalpy is given by

and, by a Maxwell relation (equation 12.6.12a), this is

which is one of the Gibbs-Helmholtz relations. But since ∆G = qE, this becomes

Thus we can calculate the increase in enthalpy from a measurement of how the EMF of the cell changes with temperature.
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12.11: Surface Energy
For a second example of non-PdV work we shall consider the phenomenon of “surface tension”.

It is well known that a liquid tends to contract to a shape that minimizes its surface area. In the absence of other forces, this means
that it will become spherical. The effect is often conveniently described in terms of “surface tension”. We describe the tendency of
a surface to contract by drawing an imaginary line in the surface, and we say that the surface to one side of the line pulls the surface
of the other, and we call the force per unit length perpendicular to the line the surface tension. It is expressed in dynes per cm or
newtons per metre. In this section I shall use the following symbols:

Surface tension: Γ

Area: σ

However, from the point of view of thermodynamics, it is easier to think of surface energy. How much work is needed to increase
the surface area? And how is this related to what we have described as “surface tension”? It may be noted in passing that energy
per unit area (J m ) is dimensionally similar to force per unit length (N m ).

A non-spherical blob of liquid will, under the action of surface tension, contract into a spherical blob – i.e. a blob of least surface
area for a given volume. It should not come as a surprise to learn that, at least in principle, as the blob adjusts (in an adiabatic
process) to its spherical shape of least surface area, it becomes warmer. Molecules near the surface have a high potential energy. As
many of them fall beneath the surface as the surface area is decreased, this potential energy is converted to kinetic energy.
Conversely, if a spherical drop is distorted from its spherical shape, it becomes cooler.

We have already pointed out that the surface tension can be regarded as the work required to create new area. Increasing the area
will result in a fall in temperature, so, if the temperature is kept constant, some heat must be absorbed from the surroundings, and
hence the increase in the internal energy is a little more than the surface tension. It may at first seem surprising that doing work on
a liquid, in order to create new surface, results in a fall of temperature, but the work is being used not to increase the kinetic energy
of the molecules, but rather to increase their potential energy by pulling them to the surface.

One way in which we can imagine work being done on a liquid to increase its surface area is simply to imagine distorting a
spherical drop into a nonspherical shape. Another way, which might lend itself more easily to the sort of thermodynamical analysis
we are accustomed to in discussing gases, is to imagine a film of soapy water held in a wire frame, constructed of a fixed U-shaped
portion A (see figure XII.1), and a bridge B which we can move in and out, allowing us to do work on the liquid by pulling it to the
right, or the liquid to do work by pulling the bridge to the left. We could even refer to these two parts as the “cylinder” A and the
“piston” B. A difference between this picture and that of a gas inside a real cylinder is that when we pull the “piston” out, we are
doing work on the liquid. Nevertheless, as explained above, the temperature of the liquid then drops. If we allow the film to
contract and to pull the “piston” to the left, the temperature will rise.

If the width of the “cylinder” is a, the surface tension force with which the liquid is pulling on the “piston” is 2aΓ, where Γ is the
surface tension. The factor 2 arises because there are two surfaces, above and below. If we pull the piston to the right through a
distance dx, the work we do on the liquid is 2aΓdx. If we do this adiabatically (quickly), the liquid cools. If we do it isothermally
(slowly), the liquid has to absorb some heat from its surroundings.

−2 −1
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Let us now take the liquid around a Carnot cycle, as shown in figure XII.2. Notice that, as we move the “piston” to the right,
provided that the temperature remains constant the surface tension force between the “piston” and the liquid does not change; thus
the isotherms are horizontal lines, with the warmer isotherms lying lower than the cooler isotherms.

Let us start by moving the piston to the right, isothermally at a temperature T1, through a distance ∆x, being the portion AB of
figure XII.2. The work done on the liquid is 2aΓ  ∆x, where Γ  is the surface tension at temperature T . In order that the process
should be isothermal, the liquid has to absorb an amount of heat Q  from its surroundings. The internal energy increases by 2aΓ ∆x
+ Q .

Now expand the liquid further, but this time adiabatically, from B to C. Work is being done on the liquid, but no heat is being
absorbed. The temperature drops to T . The new surface tension is Γ , which is greater than Γ , because surface tension generally
decreases at warmer temperatures.

Now allow the liquid to contract isothermally at temperature T , from C to D. The liquid does an amount of work 2aΓ ∆x, and it
must lose an amount of heat Q  (which, as we shall see, is less than Q ) to its surroundings. The internal energy decreases by
2aΓ ∆x + Q .

Finally, return the liquid to its original state A along the adiabatic path DA. As many molecules on the surface fall back beneath the
surface, the temperature rises to its original value T . Work is being done by the liquid; the work done by the liquid along DA is
equal to the work done on it along BC.

The net work done by the liquid around the complete cycle is 2a(Γ  − Γ )∆x and the net heat absorbed by the liquid around the
cycle is Q  − Q . Since there is no change in the internal energy around the cycle (because U is a function of state), these two are
equal. Also, there is no change in entropy around the cycle (because S is a function of state), and therefore Q /T  = Q /T . (This
justifies our earlier assertion that Q  < Q .)

From these two equations we obtain

Go to the infinitesimal limit and drop the subscripts, and this becomes

The right hand side is a positive quantity, because  is negative. We have seen that, in order to create new surface isothermally,
heat must be absorbed. What equation 12.12.2 says is that the heat absorbed to create the new area ∆σ = 2a∆x created is equal to 

.

Now the work required to create the new area is Γ ×∆σ.

Thus the increase in internal energy when new area dσ is created at constant temperature is

1 1 1

1 1

1

2 2 1

2 2

2 1

2 2

1

2 1

1 2

2 2 1 1

2 1

( − ) = 2a ( − ) Δx.
Q1

T1
T1 T2 Γ2 Γ1 (12.11.1)

Q = −T ×2aΔx.
dΓ

dT
(12.11.2)

dΓ
dT

Q = −T ×ΔσdΓ
dT

ΔU =(Γ −T )Δσ.
dΓ

dT
(12.11.3)
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This will remind you of equation 12.11.1, , for the increase in enthalpy of a battery when we add charge

to it at constant pressure. This time we are adding new area to a liquid at constant volume.

Here is another way at arriving at the same result: It will remind you of the way in which, in this Chapter, we derived the
expression for the Joule coefficient.

The increase in internal energy and Helmholtz functions of a system when we add heat to it and do work on it is given by the
familiar equations

and

We are most familiar with them when the term ∑XdY is zero, but in this case we are dealing with a liquid at constant volume, and
the one XdY term is Γdσ, so that the equations become

and

Divide equation 12.12.6 by dσ at constant temperature:

From equation 12.12.7 obtain a Maxwell relation:

except that Γ is in any case independent of σ, so the right hand term is actually a total derivative, dΓ/dT.

Substitute this into equation 12.12.8 and we have the same result as in our previous argument:

In summary, the increase in internal energy in creating dσ of new surface at constant temperature is the sum of the work required,
Γdσ, and the heat absorbed, .

Here’s yet another way of getting there! It will remind you of the way in which we derived the expression for the Joule coefficient
in Chapter 10. In general the internal energy of a drop of liquid depends on its volume, temperature and surface area:

However, let us ignore the very small change in energy resulting from the very small amount of PdV work that the drop would do if
it expands a tiny bit as a result of temperature increase. We shall be concerned only with internal energy as a function of
temperature and of surface tension (which may vary with temperature.) Thus, we’ll assume

For infinitesimal increases in temperature and surface tension, the corresponding increase in the internal energy is

The internal energy could increase by the addition of heat to the drop, dQ, plus work done on it, dW. The former is TdS, and the
latter is +Γdσ. Thus

ΔH = ΔG−TΔ( )∂G

∂T P

dU = TdS−PdV +∑XdY (12.11.4)

dA = −SdT −PdV +∑XdY . (12.11.5)

dU = TdS+Γdσ (12.11.6)

dA = −SdT +Γdσ. (12.11.7)

= T +Γ.( )
∂U

∂σ T

( )
∂S

∂σ T

(12.11.8)

= − ,( )
∂S

∂σ T

( )
∂Γ

∂T σ

(12.11.9)

= Γ −T .( )
∂U

∂σ T

dΓ

dT
(12.11.10)

−T dσdΓ
dT

U = U(V ,T , σ). (12.11.11)

U = U(T , σ). (12.11.12)

dU = dT + dσ.( )
∂U

∂T σ

( )
∂U

∂σ T

(12.11.13)

dU = TdS+Γdσ. (12.11.14)
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From these we obtain

Since entropy is a function of state, dS is an exact differential, and therefore

Therefore

Again, we point out that Γ cannot in any case depend on σ, so that last derivative is really a total derivative, so that

Surface tension generally decreases with temperature, so this equation shows that the increase of internal energy at constant
temperature per unit new area is a little greater than the surface tension, as expected.

Can we calculate the fall in temperature if new area is created adiabatically and reversibly (i.e. isentropically)? Yes, because
equation 12.12.15 (with dS = 0) tells us that then

On making use of equation 12.12.19, we obtain

We are assuming that the volume is constant so that , and therefore the increase in temperature with area is

Since  is generally negative, this means that the temperature falls as the area is increased, as expected. In this equation, if dσ
means the increase in area of a sample, in m , then C  means the heat capacity of that sample, in J K .

Measurement of the surface tension of a liquid is very sensitive to how clean the surface is, but, for the record, the following
figures for the surface tension of clean water in contact with air are taken from the Website
www.engineeringtoolbox.com/watersurface-tension-d_597.html

Temperature - t - ( C) Surface Tension in contact with air - Γ - (N/m)

0 0.0756

5 0.0749

10 0.0742

20 0.0728

30 0.0712

40 0.0696

50 0.0679

dS = [ dT +{ −Γ}dσ] .
1

T
( )

∂U

∂T σ

( )
∂U

∂σ T

(12.11.15)

= [ − ] .
1

T

∂

∂σ
( )

∂U

∂T σ

∂

∂T

1

T
( )

∂U

∂σ T

Γ

T
(12.11.16)

= − + + − .
1

T

U∂2

∂σ∂T

1

T 2
( )

∂U

∂σ T

1

T

U∂2

∂T∂σ

Γ

T 2

1

T
( )

∂Γ

∂T σ

(12.11.17)

= Γ −T .( )
∂U

∂σ T

( )
∂Γ

∂T σ

(12.11.18)

= Γ −T( )
∂U

∂σ T

dΓ

dT
(12.11.19)

dT = −[ −Γ]dσ.( )
∂U

∂T σ

( )
∂U

∂σ T

(12.11.20)

dT = T dσ.( )
∂U

∂T σ

( )
∂Γ

∂T σ

(12.11.21)

=( )∂U
∂T 0

CV

dT = dσ = dσ.
T

CV

( )
∂Γ

∂T σ

T

CV

dΓ

dT
(12.11.22)

dΓ
dT

2
V

−1

o
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60 0.0662

70 0.0644

80 0.0626

90 0.0608

100 0.0589

Exercise: A drop of water 1 mm in diameter at 45 °C is broken up into two equal droplets, each half the volume of the original
drop. Calculate the change in temperature, and say whether it is cooler or warmer.

This page titled 12.11: Surface Energy is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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12.12: Fugacity
Problem: The pressure of a mole of an ideal gas is increased isothermally from P0 to P. What is the increase G − G0 in its Gibbs
free energy?

Solution: By integration of equation 12.6.12b, , or by use of , we have

For a mole of an ideal gas, V = RT/P, and hence

which agrees with equation 12.9.11.

Equation 12.13.1 enables us to calculate the change in the Gibbs free energy of a substance while its pressure is increased at
constant temperature. Equation 12.13.2 gives the result for a mole of an ideal gas. If the substance is not an ideal gas, then we need
to know the equation of state, V = V(P , T) in order to integrate equation 12.13.1. For example, the equation of state for a van der
Waals gas is , where V is the molar volume, or .

Integrating equation 12.13.1 with this van der Waals equation of state may appear formidable. I am grateful to Dr J. Visvanathan of
Chennai, India, for pointing out that it is not necessary. Instead one can calculate the change in the Helmholtz function, which, at
constant temperature, is given by , which is easy, and then use . I am

also indebted to Dr Justin Albert for pointing out that this amounts to integrating  by parts, even if you had never heard of
the Helmholtz function!

The fugacity f of a substance is defined in such a manner that, if the molar Gibbs free energy increases from G  to G, the ratio of
the new fugacity to the initial fugacity, f/f , is given by

.

In other words, for a real substance, we can use all (or at least most!) of the equations that we know for an ideal gas as long as we
substitute fugacity for pressure.

That is,

As for internal energy, only the difference between the Gibbs free energies of two states can be defined; likewise, only the ratio of
the fugacities of two states is defined.

Combining equations 12.13.4 and 12.13.1 we obtain

which should enable us to find the relation between pressure and fugacity if we know the equation of state.

We note also that at very low pressures, a real gas behaves more and more like an ideal gas, and we can define the fugacity in units
of pressure (pascal) in such a manner that, in the limit, as the pressure approaches zero, the fugacity equals the pressure. Indeed, we
can then define the ratio of the fugacity to the pressure as the activity coefficient, which has the value unity at zero pressure.

Problem: Show that for a substance having the equation of state P(V − b) = RT (V = molar volume), as the pressure increases from
P0 to P, the ratio of the final to initial fugacities is

That is,

= V( )∂G

∂P T
dG= −SdT +V dP

G− = V dP .G0 ∫
P

P0

(12.12.1)

G− = RT ln(P/ ),G0 P0 (12.12.2)

(P +a/ ) (V −b) = RTV 2 P −(bP +RT ) +aV −ab = 0V 3 V 2

A− = − PdVA0 ∫ V

V0
G− = A− +PV −G0 A0 P0V0

V dP∫ P

P0

0

0

G− = RT ln(f/ )G0 f0 (12.12.3)

f/ = exp( ).f0
G−G0

RT
(12.12.4)

ln(f/ ) = V dP ,f0
1

RT
∫

P

P0

(12.12.5)

ln(f/ ) = ln(P/ ) + .f0 P0
b (P − )P0

RT
(12.12.6)
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Now suppose that P0 is very small, and in the limit, as P  → 0, f  → P . We now find that the fugacity at temperature T and
pressure P is given by

This can be written

The ratio f/P is called the activity coefficient. You can see that f ≈ P if P is small, or if b is small, as expected.

This page titled 12.12: Fugacity is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

lnf −ln = lnP −ln + .f0 P0
b (P − )P0

RT
(12.12.7)

0 0 0

lnf = lnP + .
bP

RT
(12.12.8)

= exp( ).
f

P

bP

RT
(12.12.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8639?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/12%3A_Free_Energy/12.12%3A_Fugacity
https://creativecommons.org/licenses/by-nc/
http://orca.phys.uvic.ca/~tatum/index.php


1

CHAPTER OVERVIEW

13: Expansion, Compression and the TdS Equations

This page titled 13: Expansion, Compression and the TdS Equations is shared under a CC BY-NC license and was authored, remixed, and/or
curated by Jeremy Tatum.

13.1: Coefficient of Expansion
13.2: Compression
13.3: Pressure and Temperature
13.4: The TdS Equations
13.5: Expansion, Compression and the TdS Equations
13.6: Young's Modulus
13.7: Rigidity Modulus (Shear Modulus)
13.8: Volume, Temperature and the Grüneisen Parameter

Topic hierarchy

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations
https://creativecommons.org/licenses/by-nc/
http://orca.phys.uvic.ca/~tatum/index.php
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.01%3A_Coefficient_of_Expansion
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.02%3A_Compression
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.03%3A_Pressure_and_Temperature
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.04%3A_The_TdS_Equations
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.05%3A_Expansion_Compression_and_the_TdS_Equations
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.06%3A_Young's_Modulus
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.07%3A_Rigidity_Modulus_(Shear_Modulus)
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/13%3A_Expansion_Compression_and_the_TdS_Equations/13.08%3A_Volume_Temperature_and_the_Gruneisen_Parameter


13.1.1 https://phys.libretexts.org/@go/page/7291

13.1: Coefficient of Expansion
Notation: In an ideal world, I’d use α, β, γ respectively for the coefficients of linear, area and volume expansion. Unfortunately we
need γ for the ratio of heat capacities. Many people use β for volume expansion, so I’ll follow that. What, then, to use for area
expansion? I’ll use b, so we now have α, b, β, which is very clumsy. However, we shall rarely need b, so maybe we can survive.

Coefficient of linear expansion: α

Coefficient of area expansion: b

Coefficient of volume expansion: β

For small ranges of temperature, the increases in length, area and volume with temperature can be represented by

and

Here  and  are the approximate coefficients of linear, area and volume expansion respectively over the temperature range T
to T . For all three, the units are degree  – that is Cº  or K .

For anisotropic crystals, the coefficient may be different in different directions, but for isotropic materials we can write

Thus for small expansions,  and .

Equations 13.1.1, 2 and 3 define the approximate coefficients over a finite temperature range. The coefficients at a particular
temperature are defined in terms of the derivatives, i.e.

The relations b = 2α and β = 3α are exact.

We specify “at constant pressure” because obviously we don’t want, in our definition, to prevent the material from expanding by
increasing the pressure on it when we heat it.

For solids, the coefficient of linear expansion is usually the appropriate parameter; for liquids and gases the volume coefficient is
usually appropriate. For most familiar common metals the coefficient of linear expansion is of order 10  K . Alloys such as the
nickel-steel alloy, “invar”, used in clock construction, may have much smaller coefficients. Ordinary glass has a coefficient only a
little less than that of metals; pyrex and fused quartz have a much smaller expansion – hence their use in telescope mirrors. For
liquids and gases it is usually the volume coefficient that is quoted. The volume coefficient of mercury is about 0.00018 K . Water
actually contracts between 0 and 4 C, and expands above that temperature. The volume coefficient of air at 0 C is 0.0037 K .

At room temperatures and above, the coefficient of linear expansion of metals doesn’t vary a huge amount with temperature, but at
low temperatures the coefficient of expansion varies much more rapidly with temperature – and so does the specific heat capacity
(see Section 8.10). Indeed, for a given metal, the variation of expansion coefficient and the specific heat capacity vary with
temperature in a rather similar manner, so that, for a given metal, the ratio α/C  is constant over a large temperature range.

= [1 + ( − )]l2 l1 α̂ T2 T1 (13.1.1)

= [1 + ( − )]A2 A1 b̂ T2 T1 (13.1.2)

= [1 + ( − )]V2 V1 β̂ T2 T1 (13.1.3)

,α̂ b̂ β̂ 1

2
−1 −1 −1

= = = [1 +2 ( − ) +…]A2 l22 l21 [1 + ( − )]α̂ T2 T1
2 A1 α~ T2 T1 (13.1.4)

= = = [1 +3 ( − ) +…]V2 l32 l31 [1 + ( − )]α̂ T2 T1
3 V1 α~ T2 T1 (13.1.5)

≈ 2b̂ α~ ≈ 3β̂ α̂

α = ,
1

l
( )

∂l

∂T P

(13.1.6)

b =
1

A
( )

∂A

∂T P

(13.1.7)

β = .
1

V
( )

∂V

∂T P

(13.1.8)
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Exercise: A square metal plate has a circular hole of area 300 cm  in the middle of it. If the coefficient of linear expansion is 2 ×
10  Cº , calculate the area of the hole when the temperature of the plate is raised through 100 degrees.

Exercise: Show that the coefficient of volume expansion of an ideal gas is 1/T. Compare this with the numerical value for air given
above.

Although classical thermodynamics does not deal with detailed microscopic processes, it is of interest to ask why a solid material
expands upon heating. Let us imagine a crystalline solid to be made up of atoms connected to each other by little springs, and each
spring is governed by Hooke’s Law, and consequently each atom is vibrating in a parabolic potential well and is moving in simple
harmonic motion. If we increase the temperature, we increase the amplitude of the vibrations, but we do not change the mean
positions of the atoms. Consequently, in such a model, we would not expect any expansion upon heating. However, the real
potential is not parabolic, but is shaped, at least qualitatively, something like the Lennard-Jones or Morse potentials mentioned in
Chapter 6, Section 6.8. If the material is heated, the amplitude of the vibrations increases, and, because of the higher-order terms in
the potential, which give the potential its asymmetric anharmonic shape, the mean separation of the atoms does indeed increase,
and so we have expansion. Thus the expansion upon heating of a solid material is a consequence of the anharmonicity of the atomic
vibrations and the asymmetry of the potential in which they are moving.

In the next two exercises, I shall be thinking of the expansion of a metal rod as the temperature is increased, and the pressure will
be assumed to be constant at all times. Thus I am going to assume that pressure is not a variable in the discussion, and I shall define

the coefficient of linear expansion as  rather than the more general . A small point that I make at this stage is

this: Suppose that the length of a metal rod increases linearly with temperature, so that  that this does not mean that the
coefficient of expansion is independent of temperature. And if α is independent of temperature, l does not increase linearly with
temperature. The next two exercises will illustrate that, and will also illustrate how the exact coefficient  is related to
what I have called (for want of a better term) the “approximate” coefficient .

Exercise. Suppose that the length of a metal rod increases with temperature according to  where l  is the length at
0 K, and α  is the coefficient at 0 K. This means that  and lα are independent of temperature, and each is equal to l α . Show that
the coefficient at temperature T is given by

Show that , the approximate coefficient over the temperature range T  to T , is equal to the exact coefficient α evaluated at T = T .

Exercise. Suppose that the coefficient α is independent of temperature. Show that the length of the rod increases with temperature

according to , where l  is the length at 0 K. Show also that .

By this time, it may have occurred to the reader that what we have called α ) , for all its usefulness in the equation 
, is not “the” coefficient of expansion at temperature T , nor is it the mean coefficient in the temperature

range T  to T . The mean coefficient in this range must be defined by . So now, one more exercise:

Exercise. Suppose that the length of a metal rod increases with temperature according to , where l  is the length at
0 K, and α  is the coefficient at 0 K. Show that

Summary

2

−5 −1

α = 1
l

dl

dT

1
l
( )∂l

∂T P
dl

dT

α = 1
l

dl

dT

=α̂ 1
l1

−l2 l1
−T2 T1

l = (1 + T )l0 α0 0

0
dl

dT 0 0

α = .
α0

1 + Tα0
(13.1.9)

α̂ 1 2 1

l = l0e
aT

0 =α̂
−1eα( − )Ti T1

−T2 T1

= [1 + ( − )]l2 l1 α̂ T2 T1 1

1 2 ( − ) = αdTᾱ̄̄ T2 T1 ∫ T2
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( − )T2 T1

1+α0T2

1+α0T1

 If α is constant 

l = l0e
αT

α = α0

=α̂ −1eα( −T)Ti

−T2 T1

= αᾱ̄̄
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Of course, you may feel that this distinction between  and  is splitting hairs. Let us discover for ourselves how much they
differ, by putting in some numbers. Let us suppose that α  = 1.7 × 10  K  and that l  = 1 m. Then, assuming that T  = 280 K (6.85
°C) and T  = 380 K (106.85 °C), we obtain

In general, if the length at T  is l , the length l  at T  will be given by

In the case where dl/dT is constant, so that , this becomes

In the case where α is constant, so it becomes

Thus to the first order of small quantities, all varieties of α are equal.

Coefficient of Expansion as a Tensor Quantity. In Chapter 4, I briefly mentioned that, in the case of an anistropic crystal, the
coefficient of thermal conduction is a tensor quantity. The same is true, for an anisotropic crystal, of the coefficient of expansion.
Thus, if, during an physics examination, you were asked to give examples of tensor quantities, you could give these as examples –
though a small risk might be involved if your teacher had not thought of these as tensors! The coefficient of expansion of an
anisotropic crystal may vary in different directions. (In Iceland Spar – calcium carbonate – in one direction the coefficient is
actually negative.) If you cut an anisotropic crystal in the form of a cube, whose edges are not parallel to the crystallographic axis,
the sample, upon heating, will not only expand in volume, but it will change in shape to become a non-rectangular parallelepiped.
However, it is possible to cut the crystal in the form of a cube such that, upon heating, the sample expands to a rectangular
parallelepiped. The edges of the cube (and the resulting parallelepiped) are then parallel to the principal axes of expansion, and the
coefficients in these directions are the principal coefficients of expansion. These directions will be parallel to the crystallographic
axes if the crystal has one of more axes of symmetry (but obviously not otherwise)
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13.2: Compression
The way in which the volume of a material decreases with pressure at constant temperature is described by the isothermal
compressibility, κ:

Note the necessary minus sign.

Later, we shall need to distinguish between “isothermal compressibility” and “adiabatic compressibility”, and we shall need a
subscript to the symbol κ in order to distinguish between the two. For the time being, however, κ with no subscript will be taken to
mean the isothermal compressibility.

The reciprocal of κ is called the isothermal bulk modulus, sometimes (understandably) called the isothermal incompressibility.

Question: What are the SI units for compressibility and bulk modulus?

Exercise: Show that the isothermal compressibility of an ideal gas is 1/P.

Exercise: What is the bulk modulus of air at atmospheric pressure?
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13.3: Pressure and Temperature

The way in which the pressure of a material increases with temperature at constant volume is described by .

Exercise: By making use of equation 2.4.11, show that

Exercise: By making use of equation 10.4.8, show that

Thus we can determine C  − C  from measurements of the expansion coefficient and the isothermal compressibility without
knowing the equation of state. We have already shown that the expansion coefficient of an ideal gas is 1/T, and the isothermal
compressibility of an ideal gas is 1/P. Note that, for an ideal gas, β = 1/T and κ = 1/P, so that equation 13.3.2 reduces to R.

Note that, in equation 13.3.2, κ is the isothermal compressibility. C  and C  may denote the molar heat capacities (in which case V
is the molar volume); or they may denote the specific heat capacities (in which case V is the specific volume or reciprocal of
density); or they may denote the total heat capacities (in which case V is the total volume).

Recall that the physical reason that C  is greater than C  is that when a substance is heated and expands at constant pressure, it
does work, whereas if held at constant volume it does no work. In the case of an ideal gas expanding reversibly, the work done is
all external work. A real gas, or a van der Waals gas, on expanding also does internal work against the intermolecular forces.
Therefore C  is greater than C  by more than R − but only a little more, because the intermolecular (van der Waals) forces are not
very large. In Chapter 10 we developed an explicit expression for C  − C  for a van der Waals gas (equation 10.4.10). When a solid
is heated, it expands very little compared with a gas, and hence does very little external work. The intermolecular forces, however,
are quite large, and hence an expanding solid does quite a lot of internal work. Thus for a gas, most of the work of expansion is
external; for a solid, most of the work of expansion is internal.

Here are order-of-magnitude figures for copper at room temperature (for exact figures, we would have to specify the exact
temperature).

Specific heat capacity at constant pressure = 384 J K  kg

Molar mass (“atomic weight”) = 63.5 kg kmole

Molar heat capacity at constant pressure = 24400 J K  kmole  = 2.93 R.

Density = 8960 kg m

Molar volume = 7.09 × 10  m  kmole

Coefficient of linear expansion = 1.67 × 10  K

Coefficient of volume expansion = 5.00 × 10  K

Isothermal bulk modulus = 1.40 × 10  Pa

Isothermal compressibility = 7.14 × 10  Pa

Equation 13.3.2 will give us, at a temperature of 20 °C = 293.15 K, C  − C  (molar) = 728 J K  kmole  = 0.09R. C  − C
(specific) = 11 J K  kg  This is only about 3 percent of C .

Equation 13.3.2 raises an interesting problem concerning water. It will be understood that the reason why C  for an ideal gas is
greater than C  is as follows. When heat is added to an ideal gas at constant volume, all of the heat goes into raising the
temperature. When heat is added at constant pressure, however, some of the heat goes into doing external work. Hence C  > C .
That argument is correct. However...

Water at 2 ºC (or indeed at any temperature in the range between 0 ºC and 4 ºC) contracts upon heating (i.e. β is negative), so that,
if we add heat at constant pressure, work is done on the water by its surroundings, and hence (we might argue, though erroneously),
for water at 2 ºC, C  < C . Equation 13.3.2, however, shows that C  ≥ C  regardless of the sign of β. (The equality applies where β
= 0, which occurs at 4 ºC.) Thus we have a paradox.
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In fact, equation 13.3.2 is correct, and, at 2 ºC, . C  > C . The explanation is as follows. It is true that, when heat is added to an
ideal gas at constant volume, all of the heat goes into raising the temperature – but this is true only for an ideal gas in which the
internal energy is all kinetic. But for real substances, including water, the correct statement (which is really just the first law of
thermodynamics) is that when heat is added to a substance at constant volume, all of the heat goes into raising the internal energy,
and, for a nonideal substance the internal energy is partly kinetic and partly potential. When we add heat isobarically to water at 2
ºC, more of this heat goes into increasing the potential energy than if we add heat isochorically, and hence C  is still greater than
C . A very clear account of this problem, from both the thermodynamical and statistical mechanical points of view, is to be found
in a paper by McDougall and Feistel, Deep-Sea Research I 50, 1523 (2003).

(You may remember a similar apparent paradox in connection with surface tension of a liquid. When we do work adiabatically and
reversibly to create new surface, the temperature drops. So doing work on a system or adding heat to it doesn’t necessarily result in
a rise in temperature. It does result in an increase of internal energy, which include potential energy.)
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13.4: The TdS Equations
The three TdS equations have been known to generations of students as the “tedious equations” − though they are not at all tedious
to a true lover of thermodynamics, because, among other things, they enable us to calculate the change of entropy during various
reversible processes in terms of either dV and dT, or dP and dT, or dV and dP, and even in terms of directly measurable quantities
such as the coefficient of expansion and the bulk modulus.

i.) We can express entropy in terms of any two of PVT. Let us first express entropy as a function of V and T

Therefore

From a Maxwell relation (equation 12.6.15), . Also, in a constant volume process, TdS = dU so that 

.

Therefore .

This is the first of the TdS equations.

ii.) This time, let us express entropy as a function of P and T

Therefore

From a Maxwell relation (equation 12.6.16), . Also, in a constant pressure process, TdS = dH so that 

.

Therefore

This is the second of the TdS equations.

iii.) If we express entropy as a function of P and V (recall that we can choose to express a function of state as a function of any two
of P, V or T) we have

Therefore

In a constant volume process, TdS = CVdT, so that .

And in a constant pressure process, TdS = CPdT, so that
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Therefore

This is the third of the TdS equations.

In summary, then, these are the three TdS equations:

These equations can be used, for example, to calculate, by integration, the change of entropy between one state and another,
provided that the equation of state is known in order that we can evaluate the partial derivatives.
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13.5: Expansion, Compression and the TdS Equations
It will be recalled, from equations 13.3.1 and 13.1.8, that

That is,

With these, the TdS equations become

and

These equations can be used, for example, to calculate, by integration, the change of entropy between one state and another,
provided that β, κ and the heat capacities are known as functions of temperature and pressure or specific volume. You don’t even
have to know the equation of state.

They won’t tell us anything about an ideal gas that we don’t already know, but let’s just apply them to an ideal gas in any case, just
to see if we have made any mistakes so far. For an ideal gas, as we saw in Sections 13.1 and 13.2, β = 1/T and κ = 1/P. The first
two TdS equations become

and

That is to say,

and

so all is well with the world so far. The third equation becomes

For a reversible adiabatic process, dS = 0, so what do you get if you integrate equation 13.5.10 for a reversible adiabatic process for
an ideal gas? This should complete your happiness – though there is more to come.

If a material (be it solid, liquid or gas) is compressed reversibly and adiabatically (i.e. dS = 0), equation 13.5.3 will tell you how
the temperature changes with volume:

If it is the pressure, rather than the volume, that is changed reversibly and adiabatically, equation 13.5.4 will tell you how the
temperature changes with pressure:
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In equation 13.5.11, κ is the isothermal compressibility, defined in equation 13.2.1 as . To emphasize that this is

the isothermal compressibility, I’ll add a subscript: κ . There is also a need to define an adiabatic compressibility, 

. (Note - I used the word adiabatic, but I used the subscript S to the partial derivative. Are the words adiabatic

and isentropic synonymous?) This is going to be less that the isothermal compressibility, because, if you try to compress a material
adiabatically it will become hot and therefore not be as readily compressible as if the compression were isothermal. Now refer to
equation 13.5.5, . Divide both sides by dP and go to the infinitesimal limit, recalling that in a reversible

adiabatic process S is constant, and this equation then gives us . But  is the adiabatic

compressibility, and C /C  = γ, CP CV so we arrive at

where γ is the ratio of the isobaric and isochoric heat capacities. In particular, recall that, for an ideal gas, κ  = 1/P. Hence, for an
ideal gas, κ  = 1/(γP).

In equation 13.3.2, we deduced the relation . In equation 13.5.13, we have deduced an expression for the ratio of
the isothermal to adiabatic compressibilities, the isothermal compressibility being greater. Combining these now with γ = C /C ,
we can now deduce an expression for the difference between the isothermal and adiabatic compressibilities, namely:

In terms of bulk modulus B, which is the reciprocal of compressibility, equations 13.5.13 and 13.5.14 are, of course,  and 

.

Comparison of equations 13.3.2 and 13.5 14 shows that

Sir Isaac Newton in his Principia correctly deduced that the speed of sound in a gas is equal to , where ρ is the density,
and without making any distinction between κ  and κ . The measured speed was faster than predicted from his theory, and
Newton tried, not completely successfully, to account for the difference. I haven’t gone into the history, but there is a story –
probably apocryphal – that, in order to secure agreement between observation and theory, he “fudged his lab” and “adjusted” his
experimental results a little. But the trouble was not with the experimental results. If you take for κ the isothermal value, namely
1/P for an ideal gas (to which air approximates quite well over the small pressure changes involved), the theory gives  for
the sound speed. In fact, however, the compressions and rarefactions in a sound wave are so rapid that they are, in effect, adiabatic,
so that it is the adiabatic compressibility κ  that should be used, giving  as the theoretical expression, which agrees well
with the observed speed.
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13.6: Young's Modulus
This Section is under revision.
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13.7: Rigidity Modulus (Shear Modulus)
When we are discussing the bulk modulus of a material we are usually thinking in terms of applying pressure and noting the
compression, so the adiabatic bulk modulus is usually greater than the isothermal bulk modulus. We could in principle also imagine
a situation in which we are moving a material into a vacuum, thus decreasing the external pressure, and then measuring the
resulting expansion. In that case we would find that the adiabatic bulk modulus is less than the isothermal bulk modulus – but that
is a rather artificial situation. In Section 13.5 we derived (see equation 13.5.14) the usual relation for compression:

in which β is the volume coefficient of expansion, and C  is the specific heat capacity at constant pressure. (Compare this with
equations 13.6.12 and 13.6.20.)

We now must ask ourselves what is the difference between the adiabatic and isothermal rigidity moduli (also known as shear
modulus). If you are unfamiliar with the rigidity modulus, see my Classical Mechanics notes, Chapter 20, Section 20.3.

The rigidity modulus involves no change in volume or length, and hence there is no difference between the adiabatic and
isothermal rigidity moduli.

This page titled 13.7: Rigidity Modulus (Shear Modulus) is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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13.8: Volume, Temperature and the Grüneisen Parameter
If you compress a material adiabatically and reversibly (i.e. isentropically) its temperature goes up. The amount by which it goes up

can be represented by the partial derivative . Here, V could mean the total volume , the specific volume or the molar

volume, according to context, and you would have to specify your units accordingly. The derivative is negative, because the
temperature goes up as the volume is decreased.

[Compare this with the definition of the volume coefficient of expansion , which is positive. Think about the

difference.]

A dimensionless version which also expresses the variation of temperature with volume would be , and

here there is no need to specify whether V means total, specific or molar. The derivative could also be written as ,

where ρ is the density. The positive value,  is called the Grüneisen parameter. We have already used the

symbols G, g, Γ and γ for various things in these notes, so I am stuck for a suitable symbol. Sometimes non-italic symbols are used
for dimensionless parameters, such as R for Reynolds number in aerodynamics. Let’s try Gr for the Grüneisen parameter.

For an ideal gas, the relation between volume and temperature in a reversible adiabatic expansion is TV  = constant, and
therefore the Grüneisen parameter for an ideal gas is γ − 1.

In thinking about volume and temperature changes, we often have some sort of a gas (ideal or otherwise) in mind. However,
geophysicists have to deal with very large pressures in the interior of the Earth, where volume and temperature changes of solids
under pressure are not negligible, and geophysicists often make use of the Grüneisen parameter for solid materials.

For a bit of practice in deriving relationships between some of the quantities described in this chapter, see if you can show that

and

If ρ in these questions stands for density (mass per unit volume), what, precisely, are C  and C ? Total, specific or molar? Or does
it not matter? What do these equations become in the case of an ideal gas?

This page titled 13.8: Volume, Temperature and the Grüneisen Parameter is shared under a CC BY-NC license and was authored, remixed, and/or
curated by Jeremy Tatum.
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14: The Clausius-Clapeyron Equation
Before starting this chapter, it would probably be a good idea to re-read Sections 9.2 and 9.3 of Chapter 9.

The Clausius-Clapeyron equation relates the latent heat (heat of transformation) of vaporization or condensation to the rate of
change of vapour pressure with temperature. Or, in the case of a solid-liquid transformation, it relates the latent heat of fusion or
solidification to the rate of change of melting point with pressure.

Let us imagine a vapour in equilibrium with its liquid held in a cylinder by a piston, at a constant temperature – namely the
temperature at which the liquid and vapour are in equilibrium − that is to say, the boiling (or condensation) point for that pressure.
We imagine the piston to be pulled out, at constant temperature; liquid evaporates and the pressure remains constant. If the piston is
pushed in, vapour condenses, at constant temperature and pressure. During this process the pressure and temperature remain
constant, so the Gibbs free energy of the system is constant.

Let G  be the specific Gibbs free energy for the liquid

and G  be the specific Gibbs free energy for the vapour.

Suppose that a mass dm of the liquid vaporizes, so that the Gibbs free energy for the liquid decreases by G dm and the Gibbs free
energy for the vapour increases by G dm. But the Gibbs free energy for the system is constant. This therefore shows that, when we
have a liquid in equilibrium with its vapour (i.e. at its boiling point) the specific Gibbs free energies of liquid and vapour are equal.
(The same is true, of course, for the molar Gibbs free energies.) That is:

or

in which the enthalpy and entropy are specific. The left hand side is the specific latent heat of vaporization, and we already knew
from Chapter 9 that this was equal to the difference in the specific enthalpies of liquid and vapour.

The equality of the specific Gibbs free energies of liquid and vapour can also be written

or

This shows that the latent heat of vaporization goes into two things: To increase the internal energy upon vaporization (especially
the increase of potential energy as the molecules are pulled apart from each other) and the PdV work done against the external
pressure as the volume increases. Thus we could divide the latent heat into an internal latent heat and an external latent heat.

In the foregoing, we imagined that some liquid vaporized as we withdrew the piston. Now let us imagine that we cause some liquid
to vaporize as we add some heat at constant volume. The specific Gibbs free energies of liquid and vapour both increase, but they
increase by the same amount because, as we have seen, when a liquid and its vapour are in equilibrium at the boiling point, their
specific Gibbs free energies are equal. Thus

or

The left hand side is the rate of increase of vapour pressure with temperature, while S  − S  is equal to L/T, where L is the specific
latent heat of vaporization. Thus we arrive at the Clausius-Clapeyron equation:

Example: At 100 C the rate of increase of vapour pressure of steam is 27.1 mm Hg per Celsius degree, and a gram of steam
occupies 1674 cm . What is the specific latent heat of vaporization?

1

2

1

2

−T = −TH1 S1 H2 S2 (14.1)

T ( − ) = − ,S2 S1 H2 H1 (14.2)

−T +P = −T +P ,U1 S1 V1 U2 S2 V2 (14.3)

T ( − ) = ( − ) +P ( − ) .S2 S1 U2 U1 V2 V1 (14.4)

− dT + dP = − dT + dP ,S1 V1 S2 V2 (14.5)

= .
dP

dT

−S2 S1

−V2 V1
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2 1
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Answer: .

.

.

Hence

.

The same argument can be used to relate the rate of change of melting point with pressure of a solid with its latent heat of fusion.
The Clausius-Clapeyron equation then takes the form

For most substances, the specific volume of the liquid (V ) is greater than the specific volume of the solid (V ); but for H O, Bi and
Ga, V  < V  and dT/dP is negative.

Example: For the ice-water system,

Hence

That’s about −7.4 × 10  kelvins per atmosphere

Solids, Liquids, Gases, Entropy and the Gibbs Function.

Of the three phases, solid, liquid and vapour, solid is the most ordered (has the least entropy) and vapour is the most disordered
(has the most entropy). Now equation 12.6.12a tells us that (∂G/∂T) = −S. This means that, at a given pressure, the Gibbs function
of the vapour decreases rapidly with increasing temperature, whereas the Gibbs function of a solid decreases relatively slowly.
Schematically the Gibbs function of the three phases for H O at atmospheric pressure looks something like this:

Below 0 ºC, the Gibbs function is lowest for the solid, and that is the stable phase. Between 0 ºC and 100 ºC, the Gibbs function is
lowest for the liquid, and that is the stable phase. Above 100 ºC, the Gibbs function is lowest for the vapour, and that is the stable
phase. At 0 ºC, the molar Gibbs function of solid and liquid are equal; the two phases there are in equilibrium. At 100 ºC, the molar
Gibbs function of gas and liquid are equal; the two phases there are in equilibrium.

The slopes and intercepts of these lines vary not only from substance to substance, but also, for a given substance, with pressure.

The Maxwell relation 12.6.16, , tells us that the manner in which entropy changes with pressure is related to

the expansion coefficient. For most substances (water between 0 ºC and 4 ºC is an exception), the coefficient of expansion is
positive, so this tells us that entropy decreases with increasing pressure, and increases with decreasing pressure. The change in
entropy with pressure is greatest for the vapour, so that, at lower pressures the slope of the vapour line in the graph of Gibbs
function with temperature will be much steeper, and the situation will look like this:

L = T ( − )V2 V1
dP

dT

T = 373.15K. − = 1.673V2 V1 m3kg−1

= 1.36 × ×9.81 ×2.71 × = 3.616dP

dT
104 10−2 PaK−1

L = 2.26 × J106 kg−1

– –––––––––––––––––––– –––––––––––––––––––

= .
dT

dP

T ( − )V2 V1

L
(14.8)

2 1 2

2 1

L = 3.36 × J105 kg−1

=V2 10−3m3kg−1

= 1.091 ×V1 10−3m3kg−1

T = 273.15K

= −7.4 ×dT

dP
10−8KPa−1

−3
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At temperatures below A, the Gibbs function is lowest for the solid, and that is the stable phase. At temperature above A, the Gibbs
function is lowest for the vapour, and that is the stable phase. At the pressure represented in the above diagram, the liquid is never
the stable phase. The substance sublimates from solid to vapour as the temperature is raised.

At the pressure corresponding to the triple point line (remind yourself by looking at figures VI.3, VI.4 and VI.8), the diagram looks
like:

At the triple point (A) the molar Gibbs functions of all three phases are equal, and all three phases are in equilibrium. As you
increase the temperature from below A to above A, the substance sublimates directly from solid to vapour, as can also be seen from
figure VI.5.

This page titled 14: The Clausius-Clapeyron Equation is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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15.1: Introduction
One way to cool a gas is as follows. First compress it isothermally. This means compress it in a vessel that isn’t insulated, and wait
for the gas to lose any heat that is generated so that it returns to room temperature. Then insulate the vessel and allow the gas to
expand adiabatically. We could call this cooling by adiabatic decompression.

You can cool a rubber band as follows. First stretch it isothermally. That means, stretch it slowly, so that it has lots of time to lose
any heat that is generated. Then, suddenly destretch it, and before it has time to gain any heat from its surrounding, measure its
temperature by immediately holding it up to your lips. You will find that it has cooled by adiabatic de-stretching. (If you stretch the
band quickly (i.e. adiabatically) and immediately hold it up to your lips, you will find that it is hot. BUT ... before you try that
experiment, close your eyes tightly. You don’t want the stretched elastic band to break and hit you in the eye. Believe me, you do
not want that to happen.)

The method of adiabatic demagnetization has been used to obtain extremely low temperatures. A sample of a paramagnetic salt
(such as cerium magnesium nitrate), already cooled to low temperatures by other means, is magnetized isothermally. The sample is
often suspended in an atmosphere of helium, which can conduct away any heat that is produced, and hence keeps the process
isothermal. It is then insulated (by pumping out the helium) and suddenly and adiabatically demagnetized. This process of
isothermal magnetization followed by adiabatic demagnetization can be repeated over and over again. Temperatures close to 0 K
have been reached in this manner. You could actually reach a temperature of absolute zero if you did this an infinite number of
times – but not for any fewer.

In the analysis that follows, I shall have to assume that you are familiar with the concepts of B, H, magnetic moment and
magnetization from electricity and magnetism.

In brief, the magnetic dipole moment p  of a sample is the maximum torque it experiences in unit field B. That is, the torque is
given by τ = p  × B. The magnetization M of a specimen is defined by B = µH = µ  (H + M). The magnetization is also equal to
the magnetic moment per unit volume.

Now consider the following.

If the tension in an elastic string is F, the work done on the string when its length is increased by dx is F dx.

If the pressure of a gas is P, the work done on the gas when its volume is increased by dV is −P dV.

And the work done per unit volume on an isotropic sample in increasing its magnetization from M to M + dM in a magnetic field B
is BdM. (I am assuming here that the sample is isotropic and that the magnetic moment and the magnetic field are in the same
direction, and hence I am no longer using boldface to indicate vector quantities.)

Note that, in all of these examples, the work done is the product of an intensive state variable (P, F, B) and the differential of an
extensive state variable (dV, dx, dM).

If we add heat to a magnetizable sample, and do work per unit volume on it by putting it in a magnetic field B and thereby
increasing its magnetization by dM, then, provided there is no change in volume, the increase in its internal energy per unit volume
is given by

In this magnetic context, we can define state functions H, A and G per unit volume by

In differential form, these become

m

m 0

dU = TdS+BdM , (15.1.1)

H = U −BM (15.1.2)

A = U −TS (15.1.3)

G= H −TS = A−BM (15.1.4)

dH = TdS−MdB (15.1.5)

dA = −SdT +BdM (15.1.6)

dG= −SdT −MdB (15.1.7)
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Here M is the dipole moment per unit volume, in N m T  m , which is the same as the magnetization, in A m . (Other equivalent
units for magnetization would be Pa T  or T m H , but I recommend N m T  m  as being the most readily understandable in the
present context.)

In Section 15.2 I am going to derive an expression for the lowering of the temperature in an adiabatic decompression, (∂T/∂P) .
And then, in Section 15.3, I am going to derive an expression, by exactly the same argument, step-by-step, for the lowering of the
temperature in an adiabatic demagnetization, (∂T/∂B) .

This page titled 15.1: Introduction is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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15.2: Adiabatic Decompression
We are going to calculate an expression for . The expression will be positive, since T and P increase together. We shall
consider the entropy as a function of temperature and pressure, and, with the variables

we shall start with the cyclic relation

The middle term is the one we want. Let’s find expressions for the first and third partial derivatives in terms of things that we can
measure.

In a reversible process , and, in an isobaric process, . Therefore

Also, we have a Maxwell relation (Equation 12.6.16). . Thus Equation  becomes

Check the dimensions of this. Note also that C  can be total, specific or molar, provided
that V is correspondingly total, specific or molar. (∂T/∂P)  is, of course, intensive.

If the gas is an ideal gas, the equation of state is , so that

Equation  therefore becomes

This page titled 15.2: Adiabatic Decompression is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
Tatum.
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15.3: Adiabatic Demagnetization
We are now going to do the same argument for adiabatic demagnetization.

We are going to calculate an expression for . The expression will be positive, since  and  increase together. We shall
consider the entropy as a function of temperature and magnetic field, and, with the variables

we shall start with the cyclic relation

The middle term is the one we want. Let’s find expressions for the first and third partial derivatives in terms of things that we can
measure.

In a reversible process , and, in a constant magnetic field, . Here I am taking S to mean the entropy per
unit volume, and C  is the heat capacity per unit volume (i.e. the heat required to raise the temperature of unit volume by one
degree) in a constant magnetic field.

Thus we have .

The Maxwell relation corresponding to  is . Thus Equation  becomes

.

Now for a paramagnetic material, the magnetization, for a given field, is proportional to B and it falls off inversely as the

temperature (that’s the equation of state). That is, M = aB/T. and therefore . Equation 15.3.2 therefore

becomes

You should check the dimensions of this equation.

The cooling effect is particularly effective at low temperatures, when  is small.
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15.4: Entropy and Temperature
Cooling by adiabatic demagnetization involves successive isothermal magnetizations followed by adiabatic demagnetizations, and
this suggests that some insight into the process might be obtained by following it on an entropy : temperature (S : T) diagram.

In figure XV.1 I draw schematically with a thin curve the variation of entropy of the specimen with temperature in the absence of a
magnetizing field, and, with a thick curve, the (lesser) entropy of the more ordered state in the presence of a magnetizing field. The
process a represents an isothermal magnetization, and the process b is the following adiabatic (isentropic) demagnetization, and it
is readily seen how this results in a lowering of the temperature.

By the time when we reach the point A, an isothermal magnetization is represented by the process c, and the following adiabatic
demagnetization is the process d, which takes us down to the absolute zero of temperature.

We shall find out in the next Chapter, however, that there is a fundamental flaw in this last argument, and that getting down to
absolute zero isn’t going to be quite so easy.
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16.1: Nernst's Heat Theorem
At the beginning of the twentieth century, Walther Nernst (Nobel Prize in Chemistry 1920) had investigated heat capacities and
heats of reaction at progressively lower temperatures. As a result of his studies, he enunciated an important principle that initially
was restricted to the behaviour of reactions involving solids and liquids but which is now believed to apply to all processes and
substances.

The subject of chemical thermodynamics is dealt with more fully in Chapter 17, but for the present we shall note that some
chemical reactions require an input of heat to initiate them; other chemical reactions generate heat. The former are known as
endothermic reactions; the latter are exothermic reactions. If the reaction takes place at constant pressure (i.e. on an open laboratory
bench) the heat gained or lost is an increase or decrease in enthalpy H. The heat of reaction is usually given as ∆H, being positive
for an endothermic reaction (in which the system gains heat) and negative for an exothermic reaction. It should be noted that
spontaneous reactions are by no means always exothermic; some spontaneous reactions result in the absorption of heat from their
surroundings and in a corresponding increase of enthalpy.

Nernst had noticed that, at progressively lower temperatures, the change in enthalpy and the change in the Gibbs function during a
chemical reaction become more and more equal. And (as we shall see, what amounts to the same thing) the rate of change of the
Gibbs function with temperature becomes less and less as the temperature is lowered. That this amounts to the same thing is
evident from the Gibbs-Helmholtz relation

What Nernst proposed was that, in the limit, as the temperature approaches zero, the changes in the enthalpy and Gibbs function are
equal – or, what amounts to the same thing, the temperature rate of change of the Gibbs function at constant pressure approaches
zero at zero temperature. And since

this implies that chemical reactions at a temperature of absolute zero take place with no change of entropy. This is Nernst’s Heat
Theorem.

Planck later extended this to suppose that, not only does ∆G → ∆H, but that, as T → 0, the enthalpy and the Gibbs function of the
system approach each other asymptotically in such a manner that, in the limit, as T → 0, G → H and (∂G/∂T)  →0.

This has a number of consequences. For example, until now, we had defined only what is meant by a change in entropy. In
particular, in order to state what the entropy of a system is at some temperature, we would need to know what the entropy is at a
temperature of zero kelvin. In Sections 12.8 and 12.9 we attempted to calculate the change in the Helmholtz and Gibbs functions as
a system was changed from one state to another. We found that the right hand sides of equations 12.9.9 and 12.9.11 for calculating
the changes in these functions contained the entropy. We later went on to show how we could calculate the difference in entropy in
some state to that at zero temperature, but there was still a matter of an arbitrary constant, namely – what is the entropy at zero
temperature? We now have the answer, resulting from the observed behaviour of (∂G/∂T)  [= −S] as the temperature approaches
zero – namely that the arbitrary constant is no longer arbitrary, and the entropy approaches zero as the temperature approaches zero.

Another consequence is
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16.2: The Third Law of Thermodynamics
Nernst’s heat theorem and Planck’s extension of it, while originally derived from observing the behaviour of chemical reactions in
solids and liquids, is now believed to apply quite generally to any processes, and, in view of that, it is time to reconsider our
description of adiabatic demagnetization. We see immediately that figure XV.1 needs to be redrawn to reflect the fact that the
entropy of the substance approaches zero whether or not it is situated in a magnetic field. The revised drawing is shown as figure
XVI.1, in which I have drawn three consecutive magnetization-demagnetization operations, and it will be readily seen that we shall
never reach a temperature of exactly zero in a finite number of operations.

The same applies to any operation in which we attempt to lower the temperature by a series of isothermal constraints that decrease
the entropy followed by adiabatic relaxations – whether we are compressing a gas isothermally and then decompressing it
adiabatically, or stretching a rubber band isothermally and loosening it adiabatically. In all cases, owing to the convergence of the
two entropy curves at zero temperature, we are led to conclude:

It is impossible to reduce the temperature of a material body to the absolute zero of temperature in a finite number of operations.

This is the Third Law of Thermodynamics, and it is an inevitable consequence of Planck’s extension of Nernst’s Heat Theorem.

This is usually taken to mean that it is impossible ever to reduce the temperature of anything to absolute zero. From a practical
point of view, that may be true, though that is not strictly what the third law says. It says that it is impossible to do it in a finite
number of operations. I cannot help but think of a bouncing ball (see Classical Mechanics Chapter V), in which the ball bounces an
infinite number of times before finally coming to rest after a finite time. After every bounce, there are still an infinite number of
bounces yet to come, yet it is all over in a finite time. Now, perhaps some reader of these notes one day will devise a method of
performing an infinite number of isothermal stress/adiabatic relaxation operations in a finite time, and so attain absolute zero.

The third law also talks about a finite number of operations – by which I take it is meant operations such as an entropy-reducing
constraint followed by an adiabatic relaxation. I am not sure to what extent this applies to processes such as laser cooling. In such
experiments a laser beam is directed opposite to an atomic beam. The laser frequency is exactly equal to the frequency need to
excite the atoms to their lowest excited level, and so it stops the atoms in their tracks. As the atoms slow down, the required
frequency can be changed to allow for the Doppler effect. Such experiments have reduced the temperature to a fraction of a
nanokelvin. These experiments do not seem to be of the sort of experiment we had in mind when developing the third law of
thermodynamics. We might well ask ourselves if it is conceptually possible or impossible to reduce the speeds of a collection of
atoms to zero for a finite period of time. We might argue that it is conceptually possible – but then we may remember that atoms
attract each other (van der Waals forces), so, if all the atoms are instantaneously at rest, they will not remain so. Of course if we had
an ideal gas (such as a real gas extrapolated to zero pressure!) such that there are no forces between the molecules, the concept of
zero temperature implies that all the atoms are stationary – i.e. each has a definite position and zero momentum. This is, according
the Heisenberg’s uncertainty principle, inconceivable. So I leave it open as a subject for lunchtime conversations exactly how
strictly the third law prevents us from ever attaining the absolute zero of temperature.

Exercise. If the kinetic temperature of a set of hydrogen atoms is reduced to a tenth of a nanokelvin, what is the root-mean-square
speed of the atoms?
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17.1: Equilibrium Constant
There are many types of chemical reaction, but to focus our attention we shall consider a reaction involving two reactants A and B
which, when mixed, form two resultants C and D. The reaction will proceed at a certain rate (fast or slow), and the rate at which
the reaction proceeds is part of the subject of chemical kinetics, which is outside the scope of this chapter, and to some extent,
though by no means entirely, outside the scope of this writer! We shall not, therefore, be concerned with how fast the reaction
proceeds, but with what the final state is, and whether the reaction needs some heat to get it going, or whether it proceeds
spontaneously and generates heat as it does so.

We shall suppose that the reaction is reversible. That is, that either

or

is possible.

That is

The end result is a dynamic equilibrium in which the rates of forward and backward reaction are the same, and there is an
equilibrium amount of A, of B, of C and of D. The question is: How much of A? Of B? Of C? Of D?

Let us suppose that in the equilibrium mixture there are NA moles of A, N  of B, N  of C and N  of D. If we make the reasonable
assumption that the rate of the forward reaction is proportional to N N  and the rate of the backward reaction is proportional to
N N , then, when equilibrium has been achieved and these two rates are equal, we have

The “constant”, which is called the equilibrium constant for the reaction, is constant only for a particular temperature; in general it
is a function of temperature.

A simpler type of reaction is the dissociation-recombination equilibrium of a diatomic molecule:

The dissociation equilibrium constant is then

This “constant” is a function of the temperature and the dissociation energy of the molecule.

A similar consideration obtains for the ionization of an atom:

In this situation,

the ionization equilibrium constant, is a function of the temperature and the ionization energy. The equilibrium constants can be
determined either experimentally or they can be computed from the partition functions of statistical mechanics. Some details of
how to calculate the dissociation and ionization constants and how to use them to calculate the numbers of atoms, ions and
molecules of various species in a hot gas are discussed in Stellar Atmospheres, Chapter 8, as well as in papers by the writer in Publ.
Dom. Astrophys. Obs., XIII (1) (1966) and by A. J. Sauval and the writer in Astrophys. J. Supp., 56, 193 (1984).
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17.2: Heat of Reaction
In some reactions, heat is produced by the reaction, and such reactions are called exothermic. If no heat is allowed to escape from
the system, the system will become hot. In other reactions, heat has to be supplied to cause the reaction. Such reactions are
endothermic.

The heat of reaction is the heat required to effect the reaction, or the heat produced by the reaction – some authors use one
definition, others use the other. Here we shall define the heat of reaction as the heat required to effect the reaction, so that it is
positive for endothermic reactions and negative for exothermic reactions. (In your own writing, make sure that your meaning is
unambiguous – don’t assume that there is some “convention” that everyone uses.) If the reaction is carried out at constant pressure
(i.e. on an open laboratory bench), the heat required to effect the reaction is the increase of enthalpy of the system. In other words,
∆H is positive for an endothermic reaction. If the reaction produces heat, the enthalpy decreases and ∆H is negative. Heats of
reaction are generally quoted as molar quantities at a specific temperature (often 25 C) and pressure (often one atmosphere). The
usual convention is to write

A + B → C ∆H = x J mole

One can make it yet clearer by specifying the temperature and pressure at which the enthalpy of reaction is determined, and
whether the reactants are solid (s), liquid (l) or gas (g).

If the reaction is carried out at constant volume (in a closed vessel), the heat required to effect the reaction is the increase of the
internal energy, ∆U. In either case, in our convention (which seems to be the most common one) ∆H or ∆U is positive for an
endothermic reaction and negative for an exothermic reaction.

The heat of reaction at constant pressure (∆H) is generally a little larger than at constant volume (∆U), though if all reactants are
liquid or solid the difference is very small indeed and often negligible within the precision to which measurements are made.
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17.3: The Gibbs Phase Rule
Up to this point the thermodynamical systems that we have been considering have consisted of just a single component and, for the
most part, just one phase, but we are now going to discuss systems consisting of more than one phase and more than one
component. The Gibbs Phase Law provides a relation between the number of phases, the number of components and the number of
degrees of freedom. But Whoa, there! We have been using several technical terms here: Phase, Component, Degrees of Freedom.
We need to describe what these mean.

The state of a system consisting of a single component in a single phase (for example a single gas – not a mixture of different
gases) can be described by three intensive state variables, P, V and T. (Here V is the molar volume – i.e. the reciprocal of the
density in moles per unit volume – and is an intensive variable.) That is, the state of the system is described by a point in three-
dimensional PVT space. However, the intensive state variables are connected by an equation of state f(P, V, T) = 0, so that the
system is constrained to be on the two-dimensional surface described by this equation. Thus, because of the constraint, only two
intensive state variables suffice to describe the state of the system. Just two of the intensive state variables can be independently
varied. The system has two degrees of freedom.

Definition. A phase is a chemically homogeneous volume, solid, liquid or gas, with a boundary separating it from other phases.

Definition. The number of intensive state variables that can be varied independently without changing the number of phases in a
system is called the number of degrees of freedom of the system.

These are easy. Defining the number of components in a system needs a bit of care. I give a definition, but what the definition
means can, I hope, be made a little clearer by giving a few examples.

Definition. The number of components in a system is the least number of constituents that are necessary to describe the
composition of each phase.

Let us look at a few examples to try and grasp what this means.

First, let us consider an aqueous solution of the chlorides and bromides of sodium and potassium co-existing with the crystalline
solids NaCl, KCl, NaBr, KBr, illustrated schematically in figure XVII.1.

There are five phases – four solid and one liquid – but how many components? There are six elements: H, O, Na, K, Cl, B – but the
quantities of each cannot be varied independently. There are two constraints: n(H) = 2n(O), and n(Na) + n(K) = n(Cl) + n(Br). That
is, if we know the number of hydrogen atoms, then the number of oxygen atoms is known. And if we know the number of any three
of Na, K, Cl or Br, then the fourth is known. Thus the number of constituents that that can be independently varied is four. The
number of components is four.

Or again, consider an aqueous solution of a moles of H SO  in b moles of water. There is just one phase. There are three elements:
H, O and S. These may be distributed among several species, such as H O, H SO , H O , OH , SO , but that doesn’t matter.
There is just one constraint, namely that

2(a + b)n(H) = an(S) + (4a + b)n(O) .

That is, if we know the number of any two of H, O or S, we also know the number of the third. The number of components is two.

Or again, consider the reversible reaction

CaCO  (s) ↔ CaO (s) + CO  (g) .

If the system is in equilibrium, and we know the numbers of any two of these three molecules, the number of the third is
determined by the equilibrium constant. Thus the number of components is two.

2 4

2 2 4 3
+ −

4
−−

3 2
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In each of these three examples, it was easy to state the number of phases and slightly more difficult to determine the number of
components. We now need to ask ourselves what is the number of degrees of freedom. This is what the Gibbs phase law is going to
tell us.

If there are C components in a system, the composition of a particular phase is fully described if we know the mole fraction of C −
1 of the components, since the sum of the mole fractions of all the components must be 1. This is so for each of the P phases, so
that there are in all P(C − 1) mole fractions to be specified, as well as any two of the intensive state variables P, V and T. Thus there
are P(C − 1) + 2 intensive state variables to be specified. (The mole fraction of each component is an intensive state variable.) But
not all of these can be independently varied, because the molar Gibbs functions of each component are the same in all phases. (To
understand this important statement, re-read this argument in Chapter 14 on the Clausius-Clapeyron equation.) For each of the C
components there are P − 1 equations asserting the equality of the specific Gibbs functions in all the phases. Thus the number of
intensive state variables that can be varied independently without changing the number of phases – i.e. the number of degrees of
freedom, F − is P(C − 1) + 2 − C(P − 1), or

This is the Gibbs Phase Rule.

In our example of the sodium and potassium salts, in which there were C = 4 components distributed through P = 5 phases, there is
just one degree of freedom. No more than one intensive state variable can be changed without changing the number of phases.

In our example of sulphuric acid, there was one phase and two components, and hence three degrees of freedom.

In the calcium carbonate system, there were three phases and two components, and hence just one degree of freedom.

If we have a pure gas, there is one phase and one component, and hence two degrees of freedom. (We can vary any two of P, V or T
independently.)

If we have a liquid and its vapour in equilibrium, there are two phases and one component, and hence F = 1. We can vary P or T,
but not both independently if the system is to remain in equilibrium. If we increase T, the pressure of the vapour that remains in
equilibrium with its liquid increases. The system is constrained to lie on a line in PVT space.

If we have a liquid, solid and gas co-existing in equilibrium, there are three phases and one component and hence no degrees of
freedom. The system exists at a single point in PVT space, namely the triple point.

I have often been struck by the similarity of the Gibbs phase rule to the topological relation between the number of faces F, edges E
and vertices V of a solid polyhedron (with no topological holes through it). This relation is F = E − V + 2. E.g.

As far as I know there is no conceivable connection between this and the Gibbs phase rule, and I don’t even find it useful as a
mnemonic. I think we just have to put it down as one of life’s little curiosities.

Since writing this section, I have added some additional material on binary and ternary alloys, which provide additional examples
of the Gibbs phase rule. I have added these at the end of the chapter, as sections 17.9 and 17.10.
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17.4: Chemical Potential
It is a truth universally acknowledged that, if we add some heat reversibly to a closed thermodynamic system at constant volume,

its internal energy will increase by ; or, if we allow it to expand without adding heat, its internal energy will increase by 

. (In most cases the derivative  is negative, so that an increase in volume results in a decrease of internal energy.)

If we do both, the increase in internal energy will be

By application of the first and second laws of thermodynamics, we find that this can be written

Likewise, it is a truism that, if we add some heat reversibly to a closed thermodynamic system at constant pressure, its enthalpy

will increase by ; or if we increase the pressure on it without adding heat, its enthalpy will increase by . If

we do both, the increase in internal energy will be

By application of the first and second laws of thermodynamics, we find that this can be written

Likewise, it is a truism that, if we increase the temperature of a closed thermodynamic system at constant volume, its Helmholtz

function will increase by ; or, if we allow it to expand at constant temperature, its Helmholtz function will increase by 

. (In most cases both of the derivatives are negative, so that an increase in temperature at constant volume, or of volume

at constant temperature, results in a decrease in the Helmholtz function.) If we do both, the increase in the Helmholtz function will
be

By application of the first and second laws of thermodynamics, we find that this can be written

Likewise, it is a truism that, if we increase the temperature of a closed thermodynamic system at constant pressure, its Gibbs

function will increase by . (In most cases the derivative |9 \left(\frac{\partial G}{\partial T}\right)_{P}\) is negative, so

that an increase in temperature at constant pressure results in a decrease in the Gibbs function.) If we increase the pressure on it at

constant temperature, its Gibbs function will increase by . If we do both, the increase in Gibbs function will be

By application of the first and second laws of thermodynamics, we find that this can be written

So much, we are already familiar with. However, we can increase any of these thermodynamical functions of a system without
adding any heat to it or doing any work on it – merely by adding more matter. You will notice that, in the above statements, I
referred to a “closed” thermodynamical system. By a “closed” system, I mean one in which no matter is lost or gained by the
system. But, if the system is not closed, adding additional matter to the system obviously increases the (total) thermodynamical
functions. For example, consider a system consisting of several components. Suppose that we add dN  moles of component i to the
system at constant temperature and pressure, by how much would the Gibbs function of the system increase?
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We might at first make the obvious reply: “dN  times the molar Gibbs function of component i”. This might be true if the
component were entirely inert and did not interact in any way with the other components in the system. But it is possible that the
added component might well interact with other components. It might, for example, shift the equilibrium position of a reversible
reaction A + B ↔ C + D. The best we can do, then, is to say merely that the increase in the (total) Gibbs function of the system

would be . Here, Nj refers to the number of moles of any component other than i.

In a similar manner, if dN  moles of component were added at constant volume without adding any heat, the increase in the internal

energy of the system would be . Or if dN  moles of component were added at constant pressure without adding

any heat, the increase in the enthalpy of the system would be . Or if dN  moles of component were added at

constant temperature and volume, the increase in the Helmholtz function of the system would be . If we added a

little bit more of all components at constant temperature and volume, the increase in the Helmholtz function would be 

, where the sum is over all components.

Thus, if the system is not closed, and we have the possibility of adding or subtracting portions of one or more of the components,
the formulas for the increases in the thermodynamic functions become

The quantity  is the same as  or as  or as , and it is called the chemical potential

of species i, and is usually given the symbol µ . Its SI units are J kmole . (We shall later refer to it as the “partial molar Gibbs
function” of species i − but that is jumping slightly ahead.) If we make use of the symbol µ , and the other things we know from
application of the first and second laws, we can write equations 17.4.9 to 17.4.12 as

and

It will be clear that

i

d( )∂G

∂Ni T ,P,Nj

Ni

i

d( )∂U

∂Ni V,S,Nj

Ni i

d( )∂H
∂Ni P,S,Nj

Ni i

d( )∂A
∂Ni T ,V,Nj

Ni

∑ d( )∂A

∂Ni T ,V,Nj

Ni

dU = dS+ dV +∑ d ,( )
∂U

∂S V,Ni

( )
∂U

∂V S,Ni

( )
∂U

∂Ni V,S,Nj

Ni (17.4.9)

dH = dS+ dP +∑ d ,( )
∂H

∂S P,Ni

( )
∂H

∂P S,Ni

∂H

∂Ni

)S,P,Nj Ni (17.4.10)

dA = dT + dV +∑ d ,( )
∂A

∂T V,Ni

( )
∂A

∂V T ,Ni

( )
∂A

∂Ni T ,V,Nj

Ni (17.4.11)

dG= dT + dP +∑ d .( )
∂G

∂T P,Ni

( )
∂G

∂P T ,Ni

( )
∂G

∂Ni T ,P,Nj

Ni (17.4.12)

( )∂U
∂Ni V,S,Nj

( )∂H
∂Ni P,S,Nj

( )∂A
∂Ni T ,V,Nj

( )∂G
∂Ni T ,P,Nj

i
−1

i

dU = TdS−PdV +∑ dμi Ni (17.4.13)

dH = TdS+V dP +∑ d ,μi Ni (17.4.14)

dA = −SdT −PdV +∑ dμi Ni (17.4.15)

dG= −SdT +V dP +∑ dμi Ni (17.4.16)

= T ;( )∂U

∂S V,Ni

= T ;( )∂H
∂S P,Ni

= −S;( )∂A

∂T V,Ni

= −S;( )∂G
∂T P,Ni

= −P ;( )∂U

∂V S,Ni

= V ;( )∂H
∂P S,Ni

= −P ;( )∂A

∂V T ,Ni

= V ;( )∂G
∂P T ,Ni

= ;( )∂U

∂Ni V,S,Nj

μi

= ;( )∂H
∂Ni P,S,Nj

μi

= ;( )∂A

∂Ni V,T ,Nj

μi

= .( )∂G
∂Ni P,T ,Nj

μi

(17.4.17)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7322?pdf


17.4.3 https://phys.libretexts.org/@go/page/7322

Since the four thermodynamical functions are functions of state, their differentials are exact and their mixed second partial
derivatives are equal. Consequently we have the following twelve Maxwell relations:

Refer to equations 17.4.13 to 17.4.16, and we understand that:

If we add dN  moles of species 1, dN  moles of species 2, dN  moles of species 3, etc., in a insulated constant-volume vessel (dS
and dV both zero), the increase in the internal energy is

If we do the same in an insulated vessel at constant pressure (for example, open to the atmosphere, but in a time sufficiently short
so that no significant heat escapes from the system, and dS and dP are both zero), the increase in the enthalpy is

If we do the same in a closed vessel (e.g. an autoclave or a pressure cooker, so that dV = 0) in a constant temperature water-bath
(dT = 0), the increase in the Helmholtz function is

If we do the same at constant pressure (e.g. in an open vessel on a laboratory bench, so that dP = 0) and kept at constant
temperature (e.g. if the vessel is thin-walled and in a constant-temperature water bath, so that dT = 0), the increase in the Gibbs free
energy is

We have called the symbol µi the chemical potential of component i – but in what sense is it a “potential”? Consider two phases, α
and β, in contact. The Gibbs functions of the two phases are G  and G  respectively, and the chemical potential of species i is µ  in
α and µ  in β. Now transfer dN  moles of i from α to β. The increase in the Gibbs function of the system is µ dN  − µ dN . But for
a system of two phases to be in chemical equilibrium, the increase in the Gibbs function must be zero. In other words, the condition
for chemical equilibrium between the two phases is that µ  = µ  for all species, just as the condition for thermal equilibrium is that
T  = T , and the condition for mechanical equilibrium is that P  = P .

Students of classical mechanics may see an analogy between equation 17.4.44 and the principle of Virtual Work. One way of
finding the condition of static equilibrium in a mechanical system is to imagine the system to undergo an infinitesimal change in its
geometry, and then to calculate the total work done by all the forces as they are displaced by the infinitesimal geometrical
alteration. If the system were initially in equilibrium, then the work done by the forces, which is an expression of the form ∑F dx ,
is zero, and this gives us the condition for mechanical equilibrium. Likewise, if a system is in chemical equilibrium, and we make
infinitesimal changes dN , at constant temperature and pressure, in the chemical composition, the corresponding change in the
Gibbs function of the system, ∑µ dNi, is zero. At chemical equilibrium, the Gibbs function is a minimum with respect to changes in
the chemical composition.

This page titled 17.4: Chemical Potential is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.
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17.5: Partial and Mean Molar Quantities
Consider a single phase with several components. Suppose there are N  moles of component i, so that the total number of moles of
all species is

The mole fraction of species i is

and of course ∑n  = 1.

Let V be the volume of the phase. What will be the increase in volume of the phase if you add dN  moles of component i at constant
temperature and pressure? The answer, of course, is

If you increase the number of moles of all species at constant temperature and pressure, the increase in volume will be

The quantity  is called the partial molar volume of species i:

Let us suppose that the volume of a phase is just proportional to the number of moles of all species in the phase. It might be thought
that this is always the case. It would indeed be the case if the phase contained merely a mixture of ideal gases. However, to give an
example of a non-ideal case: If ethanol C H OH is mixed with water H O, the volume of the mixture is less than the sum of the
separate volumes of water and ethanol. This is because each molecule has an electric dipole moment, and, when mixed, the
molecules attract each other and pack together more closely that in the separate liquids. However, let us go back to the ideal, linear
case.

In that case, if a volume V contains N moles (of all species) and you add N  moles of species i at constant temperature and pressure,
the ratio of the new volume to the old is given by

and hence

or

Example. (You’ll need to think long and carefully about the next two paragraphs fully to appreciate what are meant by molar
volume and partial molar volume. You’ll need to understand them before you can understand more difficult things, such as partial
molar Gibbs function.)

A volume of 6 m  contains 1 mole of A, 2 moles of B and 3 moles of C. Thus the molar volumes (not the same thing as the partial
molar volumes) of A, B and C are respectively 6, 3 and 2 m .
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Assume that the mixing is ideal. In that case, equation 17.5.8 tells us that the partial molar volume of each is the total volume
divided by the total number of moles. That is, the partial molar volume of each is 1 m . You could imagine that, before the
component were mixed (or if you were to reverse the arrow of time and un-mix the mixture), we had 1 mole of A occupying 1 m ,
2 moles of B occupying 2 m  and 3 moles of C occupying 3 m , the molar volume of each being 1 m .

The mean molar volume per component is

If the components are ideal, each component has the same partial molar volume, and hence the mean molar volume is equal to the
partial molar volume of each – but this would not necessarily be the case for nonideal mixing.

The total volume of a phase, whether formed by ideal or nonideal mixing, is

If you divide each side of this equation by N, you arrive at

Note that the partial molar volume of a component is not just the volume occupied by the component divided by the number of
moles. I.e. the partial molar volume is not the same thing as the molar volume. In our ideal example, the molar volume of the three
components would be, respectively, 6, 3 and 2 m .

Another way of looking at it: In the mixture, N  moles of species i occupies the entire volume V, as indeed does every component,
and its molar volume is V/N . The pressure of the mixture is P. Now remove all but species i from the mixture and then compress it
so that its pressure is still P, it perforce must be compressed to a smaller volume, and the volume of a mole now is its partial molar
volume.

Let Φ be any extensive quantity (such as S, V, U, H, A, G).

Establish the following notation:

Φ = total extensive quantity for the phase;

φ  = partial molar quantity for component i;

φ = mean molar quantity per component.

The partial molar quantity φ  for component i is defined as

The total value of Φ is given by

and the mean value per component is

If the extensive quantity Φ that we are considering is the Gibbs function G, then equation 17.5.12 becomes

Then we see, by comparison with equation 17.4.28 that the chemical potential µ  of component i is nothing other than its partial
molar Gibbs function.

Note that this is not just the Gibbs function per mole of the component, any more than the partial molar volume is the same as the
molar volume.
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Recall (Chapter 14 on the Clausius-Clapeyron equation) that, when we had just a single component distributed in two phases (e.g. a
liquid in equilibrium with its vapour), we said that the condition for thermodynamic equilibrium between the two phases was that
the specific or molar Gibbs functions of the liquid and vapour are equal. In Section 17.5 of this chapter, when we are dealing with
several components distributed between two phases, the condition for chemical equilibrium is that the chemical potential µ  of
component i is the same in the two phases. Now we see that the chemical potential is synonymous with the partial molar Gibbs
function, so that the condition for chemical equilibrium between two phases is that the partial molar Gibbs function of each
component is the same in each phase. Of course, if there is just one component, the partial molar Gibbs function is just the same as
the molar Gibbs function.

Although pressure is an intensive rather than an extensive quantity, and we cannot talk of “molar pressure” or “partial molar
pressure”, opportunity can be taken here to define the partial pressure of a component in a mixture. The partial pressure of a
component is merely the contribution to the total pressure made by that component, so that the total pressure is merely

where p  is the partial pressure of the ith component,

Dalton’s Law of Partial Pressures states that for a mixture of ideal gases, the partial pressure of component j is proportional mole
fraction of component j. That is, for a mixture of ideal gases,

That is,

This page titled 17.5: Partial and Mean Molar Quantities is shared under a CC BY-NC license and was authored, remixed, and/or curated by
Jeremy Tatum.
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17.6: The Gibbs-Duhem Relation
In a mixture of several components kept at constant temperature and pressure, the chemical potential µ  of a particular component
(which, under conditions of constant T and P, is also its partial molar Gibbs function, g ) depends on how many moles of each
species i are present. The Gibbs-Duhem relation tells us how the chemical potentials of the various components vary with
composition. Thus:

We have seen that, if we keep the pressure and temperature constant, and we increase the number of moles of the components by
N , N , N , the increase in the Gibbs function is

We also pointed out in section 17.5 that, provided the temperature and pressure are constant, the chemical potential µ  is just the
partial molar Gibbs function, g , so that the total Gibbs function is

the sum being taken over all components. On differentiation of equation 17.7.2 we obtain

Thus for any process that takes place at constant temperature and pressure, comparison of equations 17.6.1 and 17.6.3 shows that

which is the Gibbs-Duhem relation. It tells you how the chemical potentials change with the chemical composition of a phase.

This page titled 17.6: The Gibbs-Duhem Relation is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
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17.7: Chemical Potential, Pressure, Fugacity
Equation 12.9.11 told us how to calculate the change in the Gibbs function of a mole of an ideal gas going from one state to
another. For N moles it would be

where C  and S are molar, and G is total.

Since we know now how to calculate the absolute entropy and also know that the entropy at T = 0 is zero, this can be written

The “constant” here depends on the temperature, but is not a function of the pressure, being in fact the value of the molar Gibbs
function extrapolated to the limit of zero pressure. Sometimes it is convenient to write Equation  in the form

where  is a function of temperature.

If we have a mixture of several components, the total Gibbs function is

We can now write this in terms of the partial molar Gibbs function of the component i – that is to say, the chemical potential of the
component i, which is given by , and the partial pressure of component i. Thus we obtain

and

Here I have written the “constant” as 0 µ  (T), or as RTφ . The constant µ  (T) is the value of the chemical potential at temperature 
 extrapolated to the limit of zero pressure. If the system consists of a mixture of ideal gases, the partial pressure of the ith

component is related to the total pressure simply by Dalton’s law of partial pressures:

where n  is the mole fraction of the ith component. In that case, equation 17.7.4 becomes

and equation 17.7.5 becomes

However, in a common deviation from ideality, volumes in a mixture are not simply additive, and we write equation 17.7.4 in the
form

or equation 17.7.5 in the form

where f  is the fugacity of component i.
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17.8: Entropy of Mixing, and Gibbs' Paradox
In Chapter 7, we defined the increase of entropy of a system by supposing that an infinitesimal quantity dQ of heat is added to it at
temperature T, and that no irreversible work is done on the system. We then asserted that the increase of entropy of the system is dS
= dQ/T. If some irreversible work is done, this has to be added to the dQ.

We also pointed out that, in an isolated system any spontaneous transfer of heat from one part to another part was likely (very
likely!) to be from a hot region to a cooler region, and that this was likely (very likely!) to result in an increase of entropy of the
closed system − indeed of the Universe. We considered a box divided into two parts, with a hot gas in one and a cooler gas in the
other, and we discussed what was likely (very likely!) to happen if the wall between the parts were to be removed. We considered
also the situation in which the wall were to separate two gases consisting or red molecules and blue molecules. The two situations
seem to be very similar. A flow of heat is not the flow of an “imponderable fluid” called “caloric”. Rather it is the mixing of two
groups of molecules with initially different characteristics (“fast” and “slow”, or “hot” and “cold”). In either case there is likely
(very likely!) to be a spontaneous mixing, or increasing randomness, or increasing disorder or increasing entropy. Seen thus,
entropy is seen as a measure of the degree of disorder. In this section we are going to calculate the increase on entropy when two
different sorts of molecules become mixed, without any reference to the flow of heat. This concept of entropy as a measure of
disorder will become increasingly apparent if you undertake a study of statistical mechanics.

Consider a box containing two gases, separated by a partition. The pressure and temperature are the same in both compartments.
The left hand compartment contains N  moles of gas 1, and the right hand compartment contains N  moles of gas 2. The Gibbs
function for the system is

Now remove the partition, and wait until the gases become completely mixed, with no change in pressure or temperature. The
partial molar Gibbs function of gas 1 is

and the partial molar Gibbs function of gas 2 is

Here the pi are the partial pressures of the two gases, given by and p  = n P, p  = n P where the n  are the mole fractions.

The total Gibbs function is now N µ  + N µ , or

The new Gibbs function minus the original Gibbs function is therefore

This represents a decrease in the Gibbs function, because the mole fractions are less than 1.

The new entropy minus the original entropy is , which is

This is positive, because the mole fractions are less than 1.

Similar expressions will be obtained for the increase in entropy if we mix several gases.

Here’s maybe an easier way of looking at the same thing. (Remember that, in what follows, the mixing is presumed to be ideal and
the temperature and pressure are constant throughout.)

Here is the box separated by a partition:

1 2

G= RT [ (lnP + ) + (lnP + )] .N1 ϕ1 N2 ϕ2 (17.8.1)

= RT (ln + )μ1 p1 ϕ1 (17.8.2)

= RT (ln + ) .μ2 p2 ϕ2 (17.8.3)

1 1 2 2 i

1 1 2 2

G= RT [ (ln +lnP + ) + (ln +lnP + )] .N1 n1 ϕ1 N2 n2 ϕ2 (17.8.4)

ΔG= RT ( ln + ln ) = NRT ( ln + ln ) .N1 n1 N2 n2 n1 n1 n2 n2 (17.8.5)

ΔS = −[ ]
∂(ΔG)

∂T P

ΔS = −NR ( ln + ln ) .n1 n1 n2 n2 (17.8.6)
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Concentrate your attention entirely upon the left hand gas. Remove the partition. In the first nanosecond, the left hand gas expands
to increase its volume by dV, its internal energy remaining unchanged (dU = 0). The entropy of the left hand gas therefore increases
according to . By the time it has expanded to fill the whole box, its entropy has increased by ln( / ). RN
ln(V/V ). Likewise, the entropy of the right hand gas, in expanding from volume V  to V, has increased by RN  ln(V/V ). Thus the
entropy of the system has increased by R[ N  ln(V/V ) ln(V/V )], and this is equal to RN[ n  ln(1/n ) ln(1/n )] = − NR[n ln n  + n
ln n ].

Where there are just two gases, n  = 1 − n , so we can conveniently plot a graph of the increase in the entropy versus mole fraction
of gas 1, and we see, unsurprisingly, that the entropy of mixing is greatest when , when ∆S = NR ln 2 = 0.6931NR.

What is n  if ? (I make it n  = 0.199 710 or, of course, 0.800 290.)

We initially introduced the idea of entropy in Chapter 7 by saying that if a quantity of heat dQ is added to a system at temperature
T, the entropy increases by dS = dQ/T. We later modified this by pointing out that if, in addition to adding heat, we did some
irreversible work on the system, that irreversible work was in any case degraded to heat, so that the increase in entropy was then dS
= (dQ + dW )/T. We now see that the simple act of mixing two or more gases at constant temperature results in an increase in
entropy. The same applies to mixing any substances, not just gases, although the formula −NR[n  ln n  + n  ln n ] applies of course
just to ideal gases. We alluded to this in Chapter 7, but we have now placed it on a quantitative basis. As time progresses, two
separate gases placed together will spontaneously and probably (very probably!) irreversibly mix, and the entropy will increase. It
is most unlikely that a mixture of two gases will spontaneously separate and thus decrease the entropy.

Gibbs’ Paradox arises when the two gases are identical. The above analysis does nothing to distinguish between the mixing of two
different gases and the mixing of two identical gases. If you have two identical gases at the same temperature and pressure in the
two compartments, nothing changes when the partition is removed – so there should be no change in the entropy. Within the
confines of classical thermodynamics, this remains a paradox – which is resolved in the study of statistical mechanics.

Now consider a reversible chemical reaction of the form Reactants ↔ Products − and it doesn’t matter which we choose to call the
“reactants” and which the “products”. Let us suppose that the Gibbs function of a mixture consisting entirely of “reactants” and no
“products” is less than the Gibbs function of a mixture consisting entirely of “products”. The Gibbs function of a mixture of
reactants and products will be less than the Gibbs function of either reactants alone or products alone. Indeed, as we go from
reactants alone to products alone, the Gibbs function will look something like this:

dS = = RPdV

T
N1

dV

V 1

1 2 2 2

1 1 2 1 1 2 1 1 2

2

2 1
= =n1 n2

1
2

1 ΔS = NR1
2 1

irr

1 1 2 2
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The left hand side shows the Gibbs function of the reactants alone. The right hand side shows the Gibbs function for the products
alone. The equilibrium situation occurs where the Gibbs function is a minimum.

If the Gibbs function of the reactants were greater than that of the products, the graph would look something like:

This page titled 17.8: Entropy of Mixing, and Gibbs' Paradox is shared under a CC BY-NC license and was authored, remixed, and/or curated by
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17.9: Binary Alloys
(This section is a little out of order, and might be better read after Section 17.3.)

If two metals are melted together, and subsequently cooled and solidified, interesting phenomena occur. In this section we look at
the way tin and lead mix. I do this in an entirely schematic and idealized way. The details are bit more complicated (and
interesting!) than I present them here. For the detailed description and more exact numbers, the reader can refer to the specialized
literature, such as Constitution of Binary Alloys by M. Hansen and K. Anderko and its subsequent Second Supplement by F. A.
Shunk. In my simplified description I am assuming that when tin and lead are melted, the two liquids are completely miscible, but,
when the liquid is cooled, the two metals crystallize out separately. The phenomena are illustrated schematically in the figure
below, which is a graph of melting point versus composition of the alloy at a given constant pressure (one atmosphere).

The melting point of pure Pb is 327 ºC

The melting point of pure Sn is 232 ºC

In studying the diagram, let us start at the upper end of the dashed line, where the temperature is 350 ºC and we are dealing with a
mixture of 70 percent Pb and 30 percent Sn (by mole – that is to say, by relative numbers of atoms, not by relative mass). If you
review the definitions of phase, component, and degrees of freedom, and the Gibbs phase rule, from Section 17.3, you will agree
that there is just one phase and one component (there’s no need to tell me the percentage of Sn if you have already told me the
percentage of Pb), and that you can vary two intensive state variables (e.g. temperature and pressure) without changing the number
of phases.

Now, keeping the composition and pressure constant, let us move down the isopleth (i.e down the dashed line of constant
composition). Even after the temperature is lower than 327 ºC, the mixture doesn’t solidify. Nothing happens until the temperature
is about 289 ºC. Below that temperature, crystals of Pb start to solidify. The full curve represents the melting point, or solidification
point, of Pb as a function of the composition of the liquid. Of course, as some Pb solidifies, the composition of the liquid changes
to one of a lesser percentage of Pb, and the composition of the liquid moves down the melting point curve. As long as the liquid is
at a temperature and composition indicated along this curve, there is only one remaining degree of freedom (pressure). You cannot
change both the temperature and the composition without changing the number of phases. As the temperature is lowered further
and further, more Pb solidifies, and the composition of the liquid moves further and further along the curve to the left, until it
reaches the eutectic point at a temperature of 183 ºC and a composition of 26% Pb. Below that temperature, both Pb and Sn
crystallize out.

If we had started with a composition of less than 26% Pb, Sn would have started to crystallize out as soon as we had reached the
left hand curve, and the composition of the liquid would move along that curve to the right until it had reached the eutectic point.

Below, we show similar (highly idealized and schematic) eutectic curves for Pb-Bi and for Bi-Sn. (For more precise descriptions,
and more exact numbers, see the literature, such as the references cited above). The data for these three alloys are:

For the pure metals:

Melting point
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Pb 327 ºC

Bi 271

Sn 232

Sn-Pb Eutectic 183 ºC 26% Pb

Pb-Bi Eutectic 125 ºC 56% Bi

Bi-Sn Eutectic 139 ºC 57% Sn
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17.10: Ternary Alloys
In this section we look at what happens with an alloy of three metals, and we shall use as an example Pb-Bi-Sn. Our description is
merely illustrative of the principles; for more exact details, see the specialized literature.

To illustrate the phase equilibria of an alloy of these three metals, I have pasted the eutectic diagrams of the previous section to the
faces of a triangular prism, as shown below. The vertical ordinate is the temperature.
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On each of the three faces only two of the metals are present. The situation where all three metals are present on comparable
quantities would be illustrated by a surface inside the prism, but creating this inner surface is unfortunately beyond my skills.
Anywhere above the surface outlined by the curves on each face is completely liquid. Below it one or other of the constituent
metals solidifies. The surface goes down to a deep well, terminating in a eutectic temperature well below the 125 ºC of the Pb-Bi
eutectic.

In lieu of building a nice three-dimensional model, the next best thing might be to take a horizontal slice through the prism at
constant temperature. If I do that at, say, 200ºC, the ternary phase diagram might look something like this:

You can imagine what happens as you gradually lower the temperature. First a bit of Pb solidifies out. Then a bit of Bi. Lastly a bit
of Sn. You have to try and imagine what this ternary diagram would look like as you lower the temperature. Eventually the
solidification parts spread out from the corners of the triangle, and meet at a single eutectic point where there are no degrees of
freedom. Below that temperature, all is solid, whatever the composition.
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18.1: Introduction
Most of these notes on heat and thermodynamics have been largely theoretical, and almost no attention has been given to
laboratory measurements of the various quantities discussed. This is not because experiment is any less important that theory.
Rather it is more the consequence of my own interests and personal lack of expertise in experiment. Indeed, laboratory physics
equipment has a tendency to disintegrate as soon as I approach it. However, in this chapter we shall endeavour to describe, however
inadequately, some of the early classical experimental measurements.

I am under the impression that today, in order to measure any physical quantity, you purchase some expensive equipment, attach
one end of it to the thing to be measured, and the other end to a computer, and one instantaneously obtains a digital readout of the
quantity in question, without necessarily having any idea how the equipment works. And I, certainly, have little idea how much of
modern high technology works. Consequently I shall restrict this chapter to brief descriptions of some of the earlier classical
historical determinations of thermal quantities, many of which were performed during the nineteenth century or the early twentieth
century.

Of all the many experimental determinations of physical quantities in various branches in physics, accurate determinations in the
laboratory of thermal quantities are among the most difficult classical measurements of all. It would be easy to dismiss the various
early experiments that I shall describe in this chapter as quaint, crude and of no modern interest. Far from it. Some of these
experiments were extremely difficult to carry out accurately, and it is astonishing how accurate many of the early measurements
were, as a result of the careful design, attention to detail and allowance for heat losses. The early experimenters deserve our great
admiration and our gratitude for the important fundamental contributions they made to our understanding of physical science.
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18.2: Thermal Conductivity
18.2.1 Solid Good Conductors (Metals)

The difference between the thermal conductivities of metals and non-metals is so large that different experimental approaches are
needed for the two classes of solids, and in this subsection we deal with metals.

I remember as long ago as when I was in high school one of the experiments we had to do was to measure the conductivity of a
metal rod, which, as far as I remember, was about a foot (30 cm) long and maybe two centimetres in diameter. The experiment was
called Searle's Rod, or Searle's Bar, after an experimenter in the early years of the twentieth century. The experiment was simple in
principle, but very difficult in practice to do accurately, and we were always advised to avoid doing heat experiments in our
matriculation examinations. Heat was supplied by an electrical coil wrapped around one end the rod, and the rate of supply of heat
was determined from the current through the wire and the potential difference across it, measured with an ammeter and voltmeter
respectively. Heat was collected at the other end of the rod by means of a stream of water flowing through a helical tube wrapped
around that end of the rod. Thermometers at the beginning and end of this helical tube measured the rise in temperature of the
water. Hence one could determine the rate of flow of heat out of the cool end of the rod. If no heat were lost from side of the rod,
the rate of flow of heat into the rod (determined electrically) should equal the rate of flow out of it (measured by the rise in
temperature of the stream of water through the helical tube). The difference between the two would be a measure of how much heat
was lost from the side of the rod. The rod was supposedly well lagged with cotton wool to keep the heat loss small. (I am talking of
a high-school experiment here. One could improve on this in a more advanced laboratory by having the rod in a vacuum – so there
is no loss of heat by conduction or convection, and highly polished to reduce heat loss by radiation). The temperature gradient
along the length of the tube was determined by drilling pits at two points along the rod, filling these with mercury (for good thermal
contact), and sticking mercury-in-glass thermometers into these little pools of mercury. One can easily imagine how difficult such
an experiment was! At any rate, there was by then enough information to determine the thermal conductivity, for one knew the
temperature gradient, from the thermometers stuck into the little mercury pools, and one knew the rate of flow of heat into and out
of the rod, and of course one knew the cross-sectional area of the rood. In a more advanced laboratory today, rather than sticking
mercury-in-glass thermometers into two mercuryfilled holes, one could measure the temperature at several points along the length
of the rod by means of thermocouples or thermistors welded into the rod. If there were no heat losses along the length of the rod,
the temperature gradient would be uniform along the rod. In practice, the thermistors would show a nonuniform temperature
gradient, and from this one could calculate and allow for the heat loss along the rod. Likewise the temperatures at the inflow and
outflow ends of the little helical tube could be measured with some tiny modern device, and all of these electrical connections
today would be connected to a computer, which would immediately do all the necessary calculations, including correction of heat
loss, and the thermal conductivity would be instantly displayed!

Lees developed the details of the equipment so that much smaller specimens could be used – e.g. a rod just a few cm in length and
a few mm in diameter – so that he could enclose it in a Dewar flask and make measurements down to the temperature of liquid air.
Three small coils of varnished copper wire were wound round the rod. (By varnished copper wire I mean copper wire whose
surface was painted with a layer of varnish of sufficient thickness to insulate the coils electrically but sufficiently thin that good
thermal contact with the rod was made.) One of these coils was wound round the upper end of the rod, and supplied heat at that
end. The other two coils could be slid up and down to any desired positions on the rod, and they served as resistance thermometers.
That is, the local temperature of the rod could be measured by measuring the resistance if the coils. This set-up provided in
principle what was necessary to determine the thermal conductivity of the rod, for the rate of input of heat to the rod was
determined by the current in the uppermost coil, and the temperature gradient down the rod was measured with the two movable
thermometer coils.

An interesting method that has been used (using a rod of roughly the same dimensions as in Searle's Rod experiment – that is to
say, about a foot (30 cm) long and one or two cm in diameter − is to pass an electrical current along length of the rod, thus heating
it. However, the two ends of the rod are kept at the same temperature (T ) by keeping them in constant-temperature baths. The
temperature of the rod is greatest (T ) at its mid-point. It can be shown, by a solution of the heat conduction equation, that

Here, V is the electrical potential difference, in volts, across the ends of the rod, σ  is the thermal conductivity in W m  K ,
and σ  is the electrical conductivity, in S m−1 . I haven't derived that equation here (if I can, I may do so later!), but at least you
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can (I hope!) show that it is dimensionally correct. This method has been used to measure the ratio of the thermal to the electrical
conductivity down to temperatures of a few kelvin, as well as at high temperatures.

18.2.2 Solid Poor Conductors (Non-metals)

The most obvious modification that has to be made for the measurement of the thermal conductivity of a poor conductor is in the
shape of the sample to be measured. Instead of a long, thin rod, one needs a thin disc. In Lees' Discs experiment, the disc-shaped
sample is clamped between two copper discs, one of which is heated with an electrical coil. The temperatures of the two copper
discs are measured with thermocouples. This gives enough information, in principle, for the determination of the thermal
conductivity, but, as in all thermal experiments, there are numerous refinements both for minimizing heat losses, and for allowing
for what heat losses remain.

18.2.3 Liquids and Gases

Several methods have been used. Here I mention one straightforward method that has been used for both liquids and gases (i.e.
fluids). The fluid is held in a long cylinder of radius b. A wire, of radius a, down the axis of the cylinder is heated electrically. The
temperature T  of the wire can be measured by measuring its resistance, and the temperature T  the wall of the cylinder can be
measured with a thermocouple. The rate of flow of heat  through the fluid is equal to the rate at which electrical energy is
supplied to the wire - I R. Anyone who has been able to work out the electric field between two coaxial cylinders in an elementary
electricity course (see the Electricity and Magnetism section of these Notes) will be able to work out the relevant equations, but
here goes, anyway.

Consider an elemental cylindrical shell, radii r, r + dr. Its area is 2πrl, where l is the length of the cylinder. If the temperature
gradient there is dT/dr (which is negative), the rate of flow of heat,  (which is known, as explained above) is given by

Integrate this from r = a, T = T  to r = b, T = T , and we get

This assumes a very long cylinder, and ignores end effects. End effects can be kept small by using a long, thin tube, and can be
allowed for by experimenting with tubes of several lengths.
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18.3: The Universal Gas Constant
If you had an ideal gas, all you would have to do is to measure its pressure, its temperature, and the volume occupied by a mole, for
then PV = RT. (Measuring P and T is relatively easy. Measuring the volume occupied by a mole is less so.) In real life, however, we
have to make measurements on real gases. What has to be done is to measure the product PV (at a given temperature) at
progressively lower and lower pressures, and extrapolate the value of PV/T to the limit of zero pressure. (See notes in Chapter 6 on
the compression factor.)

This page titled 18.3: The Universal Gas Constant is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy
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18.4: Avogadro's Number and Boltzmann's Constant
Avogadro's number is best determined by electrolytic deposition. That is, you have to measure the quantity of electricity (current
times time) that will deposit a mole of a monovalent element from an electrolytic solution on to an electrode. This quantity of
electricity is generally called a faraday, and is about 96,484 coulombs, and is the product of the electronic charge and Avogadro's
number.

Boltzmann's constant is given by k = R/N .

[It is likely that, in 2015, Avogadro’s Number and Boltzmann’s constant will be given defined values. See Section 6.1 of Chapter
6.]
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18.5: Specific Heat Capacities of Solids and Liquids
In elementary instructional methods often used at high school, the method of mixtures is generally used. For example, to measure
the specific heat capacity of copper, one would need a calorimeter (a small cup) made of copper, and of known mass. Pour a
measured mass of boiling water (100 °C) into this. The temperature of the copper rises from room temperature, t  °C, to a final
temperature, t  °C, while the temperature of the copper falls from 100 °C to t  °C. The specific heat capacity of the copper is then
given by m  C  (t  − t ) = m  (100 − t ). Since the specific heat capacity of water is, by definition, 1 cal g  C°  (at least to
the precision expected at this level of experimentation), the specific heat capacity of the copper is determined.

To determine the specific heat capacity of another liquid, you could pour a measured mass of the hot liquid into the calorimeter
(whose heat capacity is now known), and measure the fall in temperature of the liquid and the rise in temperature of the
calorimeter, and hence deduce the specific heat capacity of the liquid by means of a similar equation to the above.

To determine the specific heat capacity of another metal, for example, iron, one can warm an iron specimen (of measured mass) to
100 °C, and then drop it into the copper calorimeter, which contains water at room temperature, t  °C, and then measure the final
temperature t  °C to which the iron cools down and the copper and water heat up. Then m  C  (t  − t ) + m  C  (t  − t ) =
m  C  (100 − t ).

In all such experiments, precautions must be taken to minimize heat losses, and to allow for such heat losses as remain. Most of us
will remember such experiments from our schooldays, and will remember how difficult it was to get reliable results, and will be
aware that there are much more accurate methods available. Furthermore, the method of mixtures measures the relative values of
the specific heat capacities of the materials being mixed, rather than their absolute specific heat capacities. This is all right if we
accept that the specific heat capacity of water is unity by definition, but, as soon as it is recognized that heat is a form of energy, we
want to be able to measure heat capacities in joules rather than in calories, and the method of mixtures does not do this.

It must not be supposed, however, that the method of mixtures is confined to the schoolroom, and is never used in professional
research laboratories. It has been found particularly useful in the measurement of heat capacities at high temperatures. While the
details of such experiments are much more sophisticated than as described above, the principle of the method of mixtures still
remains.

Nevertheless it remains true that the method of mixtures is really a method of comparing the specific heat capacities of different
materials, or of comparing the specific heat capacity of a substance with that of water. The first reasonably accurate direct
determination of the amount of energy needed to raise the temperature of a measured mass of water through a measured
temperature rise was Joule’s famous experiment. In Joule's experiment, water was warmed by stirring it with paddles, which were
operated by a set of falling weights, and the amount of work done by these falling weights could be accurately calculated in units of
work (which, to Joule, were foot-pounds, but which today, we would calculate in joules.) To Joule, the object of the experiment
was to demonstrate that a given amount of work always produced the same amount of heat, and hence to determine what he called
the mechanical equivalent of heat. Today, we recognize the experiment as a direct measurement, in units of mechanical work, of
the specific heat capacity of water, no longer defined to be 1 calorie per gram per degree, but measured to be 4184 joules per
kilogram per kelvin. We can look back today at Joule's experiment in amazement – amazement not only at how difficult it must
have been and what great experimental skills it entailed, but amazement, too, at how accurate a result he obtained. He wrote: "After
reducing the result to the capacity for heat for a pound of water, it appeared that for each degree of heat evolved by the friction of
water, a mechanical power equal to that which can raise a weight of 890 lbs to the height of one foot had been expended." Bearing
in mind that his "degree of heat" would have been a Fahrenheit degree, this is equivalent to 4790 joules per kilogram per Celsius
degree. In addition to his famous paddle-wheel experiment, Joule performed two other experiments - of a quite different nature – to
determine the "mechanical equivalent of heat", and he took, as the average of the three experiments, a figure of 817 pounds, which,
in modern units, would be equivalent to 4398 joules per kilogram per Celsius degree – only five percent greater than the modern
value.

Of course much more accurate measurements of the energy required to raise the temperature of a solid or a liquid can be made by
heating the sample electrically – that is, in the case of a liquid, immersing a heating coil in the liquid, or, in the case of a solid,
wrapping a heating coil around the solid. Admittedly, this does not have the direct frontal approach of heating the sample by
mechanical work, but at least the heat input (I R) can be accurately measured. Of course, as in all thermal measurements,
precautions must be taken to minimize heat losses, and to allow for what heat losses remain, and these considerations must go into
the detailed design of the experiment and its procedures. One technique is to surround the calorimeter by an outer vessel, which, by
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means of suitably-designed thermostats, is kept always at the same temperature as the calorimeter itself, thus (at least in principle)
avoiding heat losses from the calorimeter altogether.

Quite precise measurements of the specific heat capacities of solids and liquids (relative to that of water) can be made with the
Bunsen Ice Calorimeter, which is described in Section 18.7.

This page titled 18.5: Specific Heat Capacities of Solids and Liquids is shared under a CC BY-NC license and was authored, remixed, and/or
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18.6: Specific Heat Capacities of Gases
We have to consider the measurement of the specific heat capacity at constant pressure and at constant volume.

The most famous of the early experiments to measure directly the specific heat capacity of a gas at constant pressure were
Regnault's experiments of around 1860. Gas from a large storage cylinder was passed at constant pressure (measured with a
manometer) through a series of helical copper tubes. The first helix was immersed in a constant high-temperature bath, which, of
course, warmed the gas up. The warm gas then continued its flow through a smaller helix, which was immersed in a small copper
calorimeter filled with cold water. The gas, of course, cooled down, and the water in the calorimeter warmed up. The fall in
temperature of the gas and the rise in temperature of the water were measured, and hence the specific heat capacity of the gas at
constant pressure was calculated. While the principle of the experiment was simple and straightforward, its actual practical
execution required an experimental skill of the very highest order.

The most famous of the early experiments to measure directly the specific heat capacity of a gas at constant volume is Joly's
differential steam calorimeter of around 1890. Two equal hollow copper spheres were suspended from the arms of a balance. One
of the spheres was filled with the gas under investigation; the other was evacuated (or at least as far as the vacuum technology of
the day could achieve). The two spheres were surrounded by a chamber into which steam could be pumped. I'm not very good at
art, but I'll try to indicate very schematically, in figure XVIII.1, what I am trying to describe.

Steam was pumped into the chamber, and some of it condensed on the two spheres. Naturally, more steam condensed on the sphere
that held the gas, and the mass of extra condensate was measured by adding weights to the other scale pan. The mass of extra
condensate times its specific latent heat of condensation was equated to the heat required to raise the temperature of the gas inside
the filled sphere from its initial room temperature to 100 °C. It was a brilliant experiment requiring superb experimental skill.

This page titled 18.6: Specific Heat Capacities of Gases is shared under a CC BY-NC license and was authored, remixed, and/or curated by
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18.7: Latent Heat of Fusion
The most straightforward method for measuring the specific latent heat L of ice is to drop a lump of

Ice of mass m and specific latent heat L at its melting point T  into a

Calorimeter of mass MC and specific heat capacity CC and initial (warm) temperature T ,

which contains

a mass M  of Water of specific heat capacity C  at the same warm temperature T .

After the ice has melted everything comes to a final (cool) temperature T . Then

If the temperatures in this equation are supposed to be in degrees Celsius, so that T  = 0, and if masses are in grams and heat in
calories, so that C  = 1, this equation becomes

For good results, heat losses must be minimized and allowed for, and precautions must be taken to minimize and allow for any
water initially clinging to the lump of ice.

Quite precise measurements of the latent heat of fusion of ice can be made with the Bunsen Ice Calorimeter, an apparatus that can
also be used to measure specific heat capacities of other substances. My limited artistic skills with the computer do not allow me to
draw all the minute details of the practical construction of a Bunsen ice calorimeter that makes it a precision instrument, but may,
perhaps, suffice to show the general principles, in figure XVIII.2. A test-tube T, is fitted with an outer glass sleeve S, the lower end
of which leads to a manometer M. The portion of the sleeve above the level B is filled with air-free pure water at its freezing point.
The manometer from level A to level B is filled with mercury. The entire apparatus is generally enclosed in a large ice-box, so that
the entire apparatus is at 0°C. Some ice is formed outside the bottom of the test-tube, at I. In order to measure the specific latent
heat of fusion of ice, a measured quantity of hot water is poured into test-tube. This water, in cooling down to 0°C, gives up a
known amount of heat to the ice, some of which melts. So – how do you know how much ice has melted? Water ice contracts on
melting into liquid. Consequently the level B moves up and the level A (which can be in a quite narrow capillary tube) goes down,
so the reduction in volume (and hence the mass of ice melted) can be determined quite accurately. Thus the latent heat of fusion of
ice can be determined. Once the equipment has been calibrated (i.e. when we know how much movement of level A corresponds to
how much transfer of heat), the calorimeter can be used to measure specific heat capacities of other substances, simply by dropping
a known mass of the substance at a known temperature into the test-tube, and measuring the movement of the level A. It will be
understood, I think, that, in using the apparatus to measure the specific latent heat of ice, it is necessary to know the densities of ice
and of water precisely. To use it for measuring the specific heat capacities of other substances, it is not necessary to know this, or
even to know the specific latent heat of fusion of ice. You do have to know the specific heat capacity of water – which is not much
of a burden, especially if you are content to express heat in calories!

This page titled 18.7: Latent Heat of Fusion is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

0

2

W W 2

1

m [L + ( − )] = ( + ) ( − ) .CW T2 T0 MCCC MwCw T2 T1 (18.7.1)

0

2

m (L + ) = ( + ) ( − ) .T2 MCCC MW T2 T1 (18.7.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8678?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/18%3A_Experimental_Measurements/18.07%3A_Latent_Heat_of_Fusion
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/18%3A_Experimental_Measurements/18.07%3A_Latent_Heat_of_Fusion
https://creativecommons.org/licenses/by-nc/
http://orca.phys.uvic.ca/~tatum/index.php


18.8.1 https://phys.libretexts.org/@go/page/8679

18.8: Coefficient of Expansion
If a specimen can be obtained in the form of a long rod, the simplest and most direct method is merely to rest the rod horizontally
on some support, immersed in a water bath by which means the temperature can be varied. Two scratches, one at each end of the
rod, can be observed with a pair of measuring microscopes held on a support at constant temperature. The measuring microscopes
can either be fixed and fitted with a fine scale in the eyepiece of each, or they may be movable by means of a fine precision screw
(96 turns to the inch). The movement of the microscopes can be measured either by means of a wheel fitted with a vernier that
turns the precision screw, or by attaching a corner reflector to each moving microscope, and reflecting a laser beam off the reflector
and counting the number of half wavelengths traversed by the microscope.

If the specimen cannot be obtained in the form of a long rod, but can be obtained in the form of a thin, flat plate with parallel faces,
another method can be used. A hole might be cut in the flat specimen, and the specimen can be rested on top of a flat glass plate. A
second flat glass plate rests on the upper face of the specimen. The arrangement can be illuminated with an extended
monochromatic light source, to create a system of interference fringes. When the temperature is raised, the specimen expands and
the distance between the glass plates increases by an amount that can be measured by measuring the movement of the interference
fringes. Some materials may not be easily obtainable either in the form of a long rod or a thin plate, but perhaps they can be
obtained in the form of a small cube. The specimen is placed side-by-side with a similar cube of quartz, whose expansion
coefficient is very small, the two resting on the horizontal surface of a polished shiny metal or glass block. On top of the two
specimens rests a thin, flat glass plate. A narrow beam of light, preferably from a laser, is directed from above to the arrangement,
and two reflections are observed, one from the thin glass plate that rests on top of the specimen and its quartz companion, the other
from the upper surface of the block on which the specimens are resting. When the specimen and the quartz are warmed, the
specimen expands more than the quartz does, and so the upper thin glass plate tilts, and the reflection from it is deflected. The
displacement of one reflected beam from the other can be measured with a microscope, and hence the tilt of the upper glass plate
can be calculated, and hence the excess of expansion of the specimen over that of the quartz can be determined. The experiment
gives the difference in expansion coefficient between the specimen and the quartz. The latter is very small, and its exact value need
not be known with great precision in order to obtain the absolute coefficient of expansion of the specimen.

For nonvolatile liquids, a weight thermometer can be used. This is a glass (or, better, fused quartz) bulb fitted with a narrow
capillary tube as shown in figure XVIII.3.

The bulb (whose weight empty is known) is completely filled (including the capillary to the very tip) with the liquid, and weighed,
so that the weight, hence mass, of the liquid is known. The temperature is increased, so some liquid escapes, and the bulb is
weighed again. Thus we know the weight of the liquid held by the bulb at two temperatures. If we assume that the volume is
constant (the bulb being made of fused quartz) this enables us to calculate the coefficient of expansion of the liquid. Of course, the
bulb does expand a little, so what we have determined is the difference between the volume expansions of the liquid and the quartz.
If we know the volume expansion of the quartz (which need not be known to high precision, since it is small), we can then
determine the absolute coefficient of expansion of the liquid.

In another method for measuring the coefficient of expansion of liquids, the liquid is contained in a U-tube, the two arms of which
are maintained at different temperatures, as shown in figure XVIII.4. The upper ends of the two arms of the U-tube are connected
to vertical tubes containing mercury for controlling and measuring the pressure. The apparatus is maintained so that the volumes of
the liquids in the two arms of the U-tube are equal – but because the two arms are at different temperatures, their densities (hence
specific volumes) are different, so a little extra mercury is needed to balance the hot arm against the cold arm. Thus it is possible to
determine the difference in densities at the two temperatures, and hence to determine the volume coefficient of expansion. The
figure shows the principle of the method; some practical refinements are needed in the actual equipment.
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