Version No.			ROLL NUMBER						INTERNEDIATE AND SEC.				
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	Sign.	er Sheet of Candi	
9	(8)	(8) (9)	(8) (9)	(8)	(8)	9	9	9	9	(8)	J.g	og	
			-	lsory. A	S T .ll part	ECT: ime a s of t	ION allow	- A (lection	Mark 5 Min are t	xs 12) nutes to be a			s page and hande use lead pencil.
Q.1											ries one		•
	(1)	ir fl	nt a = oat s rintf (s the ou = 15; s = 5.50; ("%f", a 2 3		f follo	owing	code	B. D.	2.7	72	0	
	(2)			one of t s<33"?	the fol	lowin	ng syn	nbols	is us	ed in	flow cha	rt for the	e statement
		A					0		B.		\supset	0	
		C	¦. ∠				0		D.			0	
	(3)	W A C	٠.	one of t scanf() getchar)	lowin	ng fun	ection	s is u B. D.	ge	read str ts() tch()	ing "Con	mputer Science"
	(4)	W A C	٠.	stateme j+=a; j++a;	ent is e	quiva	alent t			n;" ? j=- j=a	+a; a++;	0	
	(5)	W A C	٠.	escape \a \t	sequei	nce ca	an be	used	to ins B. D.	sert a '\b \n	Гаb in "C	C" Lang 〇 〇	uage?
	(6)	W A C	٠.	one of the if states switch	ment		ng is t	he mo	ost su B. D.	if-	for mak else state ested-if s	ement	ways decision?

(7)	How many times "FBISE" will be displayed by the following code? for (int i=1; i<10; i=+2) printf ("FBISE");								
	A. C.	Infinite	0	B. D.	5 The loop will not run	n. O			
(8)	int i; for(i=	is the output of the f 1;i<=2;i++) ("\n i=%d", i);	following	g code?					
	A.	i=2 i =3	0						
	B.	i =1 i =2	0						
	C.	i =1 i =3	0						
	D.	i =2 i =1	0						
(9)	Which A. C.	n one of the followin NAND OR	ng gates h	nas an o B. D.	utput = A.B? NOR AND				
(10)	When A. C.	the input to an inve HIGH or 0 HIGH or 1	rter is LO	DW(0) t B. D.	he output will be: LOW or 0 LOW or 1				
(11)	 N 	is the output of following following in the output of following fo	owing HT	FML cod B. D.	1. Magnetic Disk 2. CD and DVD Magnetic Disk CD and DVD	O O			
(12)		one of the follow ow into 3 columns? <fram col="30%,<br"><framset col="30%,<br"><fram row="30%,</td"><td>30%, 40%, 40%, 30%, 40</td><td>%> 40%> 1%></td><td>HTML statements to</td><td>divide browser</td></fram></framset></fram>	30%, 40%, 40%, 30%, 40	%> 40%> 1%>	HTML statements to	divide browser			

Federal Board SSC-II Examination Computer Science Model Question Paper (Curriculum 2009)

Time allowed: 2.45 hours Total Marks: 43

Note: Answer any nine parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 27)

- Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 3 = 27)$
 - i. Define algorithm. What is the role of algorithm in problem solving?
 - ii. Point out valid and invalid variable names.
 - a. define
- b. 5name
- c. a5

- d US\$
- e. a b
- f. f name
- iii. Write down any three characteristics of High Level Language.
- iv. Evaluate each of the following expression assuming, a = 2, z = 1.3, c = 1 and d = 3:

 a. b = d/a + d % a;

 b. x = (a + c)/(z + 0.3);

 c. y = c / d * a;
- v. Write down the names and purpose of any three format specifiers.
- vi. Define the following.
 - i. Control Statement
- ii. Conditional Statement
- vii. Compare an assignment operator (=) and an equal to (= =) operator by giving an example.
- viii. Write a program using while loop to print odd numbers from 1 to 20.
- ix. What will be the output of the following code?

```
void main()
{
    int u, i;
    for (u = 1; u <= 5; u++)
{
    for (i = 1; i <= u; i++)
    {
        printf("%d \t", i);
        }
        printf("\n");
}</pre>
```

x. Construct Truth Table for the following Boolean Expression:

$$F = \overline{xyz} + \overline{xyz} + \overline{xy}$$

xi. Convert the following code into for loop:

Page 1 of 2

- xii. Write down the three benefits of web portal.
- xiii. Use appropriate text formatting tags to define the following. Write one example of each.
 - a. font size
- b. font colour
- font face

c.

SECTION – C (Marks 16)

Note: Attempt any **TWO** questions.

 $(8 \times 2 = 16)$

- Q.3 i. Draw a flowchart to calculate the exponent of a given number. (4)
 - ii. Explain any four modules of C programming environment. (4)
- Q.4 Simplify the Boolean Function F, using Karnaugh Mapping (K-map).

```
F = xyz + xyz + xyz + xyz + xyz + xyz + xyz
```

Also construct logic circuit for the simplified expression.

(4+4)

(4)

(4)

Q.5 i. Rewrite the following code after removing the errors:

```
# include < std.h>
# include < conio.h>
void main ( );
{
    int p, s;
printf("\n Enter a number:);
scanf("%d", p);
s=p%2;
if(s=0)
printf("even number%d", p)
els
printf("odd number%d", p);
getch( );
```

ii. Convert the following program using switch statement:

```
void main()
{
      char ch; clrscr();
      printf("Enter a single character");
      scanf("%c", &ch);
      if ( ch == 'a' || ch == 'A' ||
            ch == 'e' || ch == 'E' ||
            ch == 'i' || ch == 'I' ||
            ch == 'o' || ch == 'O' ||
            ch == 'u' || ch == 'U')
      printf("It is a vowel");
      else      printf("It is a consonant");
    }
}
```

* * * * *

COMPUTER SCIENCE SSC-II

(Curriculum 2009) Student Learning Outcomes

Sr No	Section: Q. No. (Part no.)	Contents and Scope	Student Learning Outcomes *	Cognitive Level **	Allocated Marks in Model Paper
1	A: 1(i)	3.1 Input / Output functions	iii) Use output functions like: • printf ()	U	1
2	A:1(ii)	1.3 Flow Chart	iv) Use of flow chart symbols	U	1
3	A: 1(iii)	3.1 Input / Output functions	ii) Use input functions like: • scanf () • getch (), getche (), getchar () • gets ()	U	1
4	A: 1(iv)	3.2 Operators	iii) Use the following assignment operators: • Compound assignment operator (+=, -, =, *=, /=, %=)	U	1
5	A: 1(v)	3.1 Input / Output functions	vi) Explain the use of the following escape sequences using programming examples: • Alert - \a • Backspace - \b • Newline - \n • Carrage Return - \r • Tab - \t	K	1
6	A: 1(vi)	4.1 Control Structure	vi) Use if-else statement	K	1
7	A: 1(vii)	5.1 Loop Structure	ii) Know that for loop structure is composed of: • For • Initialization expression • Test expression • Body of the loop • Increment / decrement expression	A	1
8	A: 1(viii)	5.1 Loop Structure	ii) Know that for loop structure is composed of: • For • Initialization expression • Test expression • Body of the loop • Increment / decrement expression	U	1
9	A: 1(ix)	6.2 Logic Gates	iv) Explain the following logic gates with the help of truth tables: • AND • OR • NAND • NOR • NOT	U	1
10	A: 1(x)	6.2 Logic Gates	iv) Explain the following logic gates with the help of truth tables: NOT	K	1
11	A: 1(xi)	7.4 Creating Lists	ii) Create: • Unordered list • Ordered list	U	1
12	A: 1(xii)	7.8 Creating Frames	iii) Create a frameset	U	1

13	B: 2(i)	1.2 Algorithm	i) Define an algorithm ii) Explain role of algorithm in problem solving	K	3
14	B: 2(ii)	2.4 Constants and Variables	ii) Explain the rules for specifying variable names	U	3
15	B: 2(iii)	2.1 Introduction	iii) Elaborate characteristics of High Level Language	K	3
16	B: 2(iv)	3.2 Operators	xi) Define and explain the order of precedence of operators	A	3
17	B: 2(v)	3.1 Input / Output functions	iv) Define Format specifiers • decimal - %d • integer - %i • float - %f • double - %g,e • char - %c • long int - %ld	K	3
18	B: 2(vi)	4.1 Control Structure	i) Define a control statement. ii) Define a conditional statement	K	3
19	B: 2(vii)	3.2 Operators	viii) Differentiate between assignment (=) and equal to operator (= =)	U	3
20	B: 2(viii)	5.1 Loop Structure	viii) Write codes for flowcharts discussed in unit-1 To find a sequence of odd numbers starting from a given number 1.2 (iv)	A	3
21	B: 2(ix)	5.1 Loop Structure	ii) Know that for loop structure is composed of: • For • Initialization expression • Test expression • Body of the loop • Increment / decrement expression	U	3
22	B: 2(x)	6.2 Logic Gates	iv) Explain the following logic gates with the help of truth tables: • AND • OR • NAND • NOR • NOT • Exclusive NOR (XNOR) • Exclusive OR (XOR)	U	3
23	B: 2(xi)	5.1 Loop Structure	ii) Know that for loop structure is composed of: • For • Initialization expression • Test expression • Body of the loop • Increment / decrement expression iv) Know that do while loop structure is composed of: • Do • Body of the loop • While • Test expression • Statement terminator	U	3
24	B: 2(xii)	7.1 Introduction	ii) Explain the following types of websitesPortal	U	3
25	B: 2(xiii)	7. 3 Text Formatting	Use appropriate text formatting tags to define: • Font size • Font colour • Font face	K	2+1

26	C: 3	1.3 Flow Chart 2.2 Programming Environment	(v) Draw flow charts of algorithms discussed earlier in unit-1 (1.2 (iv)) ii) Explain the following modules of the C programming environment • Editor • Compiler • Linker • Loader • Debugger	A+K	4+4
27	C: 4	6.3 Simplification using K Maps	 iii) Simplify three variable Boolean function/expression iv) Build logic circuits from the simplified expressions 	U+A	4+4
28	C: 5	4.1 Control Structure	vi) Use if else statement vii) Know that the switch statement is composed of: • Switch • Case • Default • Break	U	8

* Student Learning Outcomes National Curriculum for Computer Sciences Grades IX-XII, 2009 (Page no. 14-25)

**Cognitive Level
K: Knowledge
U: Understanding
A: Application

COMPUTER SCIENCE SSC-II Table of Specifications

		Unit 1: Programmi ng Technique s	Unit 2: Program ming in C	Unit 3: Input / Output Handling	Unit 4: Control Structur e	Unit 5: Loop Structure 15%	Unit 6: Computer Logic and Gates	Unit 7: World Wide Web and HTML(Major part cover in Practical)	Mark s	Total marks (55 Theory + 25	% Covere d
		10%	10%	15%	15%		15%	20%		Practical)	100%
	Section - A			1(5)(01)	1(6)(01)		1(10)(01)		03		
Knowledge based	Section - B	2(i)(03)	2(iii)(03)	2(v)(03)	2(vi)(03)			2(xiii)(03)	15	22	29.3%
	Section - C		3-(04)						04		
Understanding	Section - A	1(2)(01)		1(1)(01) 1(3)(01) 1(4)(01)		1(8)(01)	1(9)(01)	1(11)(01) 1(12)(01)	08		
based	Section - B		2(ii)(03)	2(vii)(03)		2(ix)(03) 2(xi)(03)	2(x)(03)	2(xii)(03)	18	38	50.7%
	Section - C				5-(08)		4-(04)		12		
Application	Section - A					1(7)(01)			01		
based	Section - B			2(iv)(03)		2(viii)(03)			06	15	20%
	Section - C	3-(04)					4-(04)		08		
Total marks		08	10	13	12	11	13	8		75	100 %

^{*} Unit 7: Major content will examine in Practical paper. 10% covered in Theory paper and remaining will cover in Practical paper. Hence weightage distributed to other units.

KEY: 1(1)(01)

Question No (Part No.) (Allocated Marks)