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Preface

Preface

This review paper was developed as part of a missing data toolkit supported by Institute of
Educational Sciences award R305D22000. The toolkit includes two additional components: a
Software Tutorials document with annotated analysis scripts and outputs from several software
programs, and a series of YouTube videos demonstrating missing data analyses with the Blimp
application (www.appliedmissingdata.com/videos). Blimp was developed with support from
Institute awards R305D150056 and R305D190002. The software is available as a free download for

MacOS, Windows, and Linux (www.appliedmissingdata.com/blimp).

This review paper catalogs and describes a collection of missing data procedures that represent
the current state of the methodological art. The goal is to provide educational researchers with a
springboard for accessing the most up-to-date missing data handling methodologies. The paper
primarily focusses on three approaches that have gained broad support in the missing data
literature: maximum likelihood estimation, Bayesian estimation, and multiple imputation. I
henceforth refer to this basket of methods as the “Big Three”. Classic incarnations of the Big Three
have been available in software programs for more than 20 years. Not surprisingly, missing data
methodologies have evolved and improved, and contemporary variants of these methods readily

pair with most analytic procedures that enjoy widespread use in educational research applications.

Procedurally, the Big Three appear to be very different. Maximum likelihood integrates missing
data handling into its estimation machinery, deducing optimal parameter estimates directly from
an incomplete data set without ever filling in the missing values. Bayesian estimation similarly
identifies optimal parameter estimates from the data, but it does so with an iterative imputation
scheme. Multiple imputation requires a preliminary analytic step that creates a collection of filled-
in data sets for the subsequent analyses. Procedural differences aside, the Big Three usually produce
equivalent numeric estimates, given the same data and assumptions. All things being equal,
choosing among competing methods is often a matter of personal preference. Ultimately, the
composition of the focal analysis model—in particular, whether it includes nonlinear effects such
as interactions, curvilinear terms, or random coefficients—usually determines the type of missing
data strategy that works best. This important take-home message appears repeatedly throughout

the document.

The structure of the review paper is as follows. Section 1 provides a brief summary of missing
data theory, as described by Rubin and colleagues (Little & Rubin, 2020; Rubin, 1976). This section
introduces the concept of missing data auxiliary variables, and it describes simple steps to prepare
for a missing data analysis. The second section describes an emerging modeling framework called

factored regression specification. Unlike classic versions of the Big Three, which often adopt a
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multivariate normal distribution for incomplete variables, factored specifications invoke
distributional assumptions on a variable-by-variable basis. This flexibility addresses longstanding
limitations of classic missing data methods. The next three sections describe the Big Three missing
data methods: maximum likelihood, Bayesian estimation, and multiple imputation. These sections
describe classic approaches that are widely available in software packages, and they highlight how
the frameworks have evolved in the past two decades. Section 6 describes missing data handling
for multilevel models that are ubiquitous in educational research. Examples include data where
students are nested in schools and data with repeated measurements nested in students. The
seventh section describes analyses for a particularly challenging missingness process where the
propensity for missing data relates to the unseen score value itself (called missing not at random).
The final section provides a summary of some current software options. Most sections include
analysis examples, and the Software Tutorials document includes annotated analysis scripts and

outputs for 20 common analyses (see www.appliedmissingdata.com/videos).
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Introduction to Missing Data 1

Introduction to Missing Data

As outlined in the Preface, this review paper focusses on three approaches that have gained broad
support in the missing data literature: maximum likelihood, Bayesian estimation, and multiple
imputation. I henceforth refer to this basket of methods as the “Big Three”. Relative to older
approaches, the Big Three offer substantial advantages, including greater power and unbiased
estimates under a broader range of applications. However, it is important to understand when they
work and what assumptions are required to reap these benefits. To that end, this section
summarizes Rubin and colleagues’ theoretical framework for missing data problems (Little &
Rubin, 2020; Mealli & Rubin, 2016; Rubin, 1976). This classification system defines three
mechanisms or processes by which the probability of nonresponse relates to the data: missing
completely at random, missing at random, and missing not at random. In practical terms, these
foundational concepts function as assumptions for a missing data analysis. Although these
assumptions are mostly untestable, there are steps we can take to make their key propositions more

plausible.

1.1  Older Missing Data Handling Methods

Of course, the missing data literature outlines numerous other approaches beyond the Big Three.
Some have enjoyed widespread use, and others are little more than a historical footnote. Broadly
speaking, these methods deal with missing data either by removing incomplete data records or
replacing the missing scores with imputations. Deletion options include removing cases with any
missing values (listwise deletion or complete-case analysis) or removing cases on an analysis-by-
analysis basis (pairwise deletion). Outdated imputation approaches include arithmetic mean
imputation, regression imputation, person-mean imputation for questionnaire items, and last

observation forward imputation for repeated measures data, among others.
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Deletion methods have two important limitations: they reduce power and require a completely
unsystematic nonresponse process where missingness is unrelated to the data. For these reasons,
the American Psychological Association’s Taskforce on Statistical Inference characterized deletion
as “among the worst methods available for practical applications” (Wilkinson and Task Force on
Statistical Inference, 1999, p. 598). In truth, there are a few situations where deletion produces
optimal estimates under the same assumptions as the Big Three (Vach, 1994; von Hippel, 2007;
White & Carlin, 2010). However, these occur too infrequently to consider this strategy as a viable

option for most missing data problems.

Single imputation methods like mean imputation and regression imputation fill in the data
with a one set of replacement scores. These approaches also have substantial limitations. Many
single imputation methods introduce bias, even when missingness is purely unsystematic.
Virtually all distort standard errors and significance tests, even if they sometimes produce unbiased
estimates. A problematic version of regression imputation labeled “EM imputation” in the popular
SPSS programs deserves a brief discussion. The procedure is potentially misleading because it first
uses maximum likelihood estimation' to estimate the means, variances, and covariances. Next, the
procedure converts these summary statistics to regression equations, then it uses these models to
compute predicted values that replace the missing scores. Regression imputation introduces bias
because it attenuates variation, and using maximum likelihood to estimate the initial summary
statistics does not mitigate this problem. von Hippel (2004) provides a thorough discussion of “EM
imputation” in SPSS.

1.2  Missing Data Processes (Mechanisms)

Rubin and colleagues (Little & Rubin, 2020; Mealli & Rubin, 2016; Rubin, 1976) outlined a
classification system for missing data problems that describes three ways nonresponse can relate
to the data. These so-called missing data mechanisms or processes are missing completely at
random, missing at random, and missing not at random. These terms can be confusing because
the word “random” implies a probabilistic rather than haphazard process. For example, a missing
at random process (the default assumption for most Big Three applications) describes a systematic

relation between the data and nonresponse.

Rubin’s theoretical framework conceptualizes a data set as consisting of observed and unseen

(missing) score values. To illustrate, Table 1 shows a data excerpt for 10 observations and three

! The EM abbreviation references the expectation-maximization or EM optimization algorithm
used to get the maximum likelihood estimates.
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variables. The values in the leftmost set of columns comprise the observed data, and the middle set
of columns contain the would-be values of the missing data. I refer to these partitions as Y ,},5) and
Y(mis)> respectively. The rightmost set of columns in Table 1 display indicators that recode the
observed data as 0 = observed and 1 = missing. I collectively refer to the missing data indicators as
M below.

TABLE 1. Observed and Missing Data Partition

Observed Missing Indicators

Y1 Y2 Y3 Y1 Yz Y3 M 1 M 2 M 3

- 91 -- 63 -- 59 1 0 1
76 82 82 -- -- -- 0 0 0
97 109 81 -- -- -- 0 0 0
66 -- 81 - 77 -- 0 1 0
63 69 -- -- - 91 0 0 1
83 8 78 -- -- -- 0 0 0
73 - 77 - 67 -- 0 1 0
63 72 76 -- o -- 0 0 0
- 69 74 -- -- -- 1 0 0
68 85 -- -- -- 98 0 0 1

Formally, Rubin’s mechanisms are defined by statements that indicate whether the observed
or missing scores relate to binary missing data indicators. This mechanism is what researchers

think of as purely unsystematic missingness. The formal definition of MCAR is as follows.
Pr(M = 1]Y (5b5)> Yomis)) = Pr(M = 1) (1)

The left side of the expression says that the probability of a missing score (i.e., a missing data
indicator equal to one) could depend on both the observed and missing parts of the data to the
right of the vertical pipe. The right side of the equality is a simplified function where nonresponse
is unrelated to both parts of the data. In practical terms, the right side of Equation 1 says that all

participants have the same chance of missing data. As alluded to previously, most deletion
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applications invoke an MCAR mechanism, and estimates are prone to bias when this restriction

assumption is violated.

The missing at random (MAR) mechanism states that nonresponse depends on the observed

data but not the unseen scores. The right side of the equality encodes this definition.
Pr(M = 1Y (gps), Yomis)) = Pr(M = 1Y (gpy)) (2)

Counterintuitively, the MAR mechanism defines a systematic process where missingness varies
across observed score profiles. That is, two participants with identical observed score profiles share
the same chance of missing values, whereas two participants with different observed scores have
different missingness rates. To clarify that missingness is random after conditioning on or
controlling for the observed data, Graham (2009) referred to this process as conditionally missing
atrandom (CMAR). I adopt his terminology to enhance clarity. The key advantage of the Big Three
is that they produce unbiased estimates when the process is CMAR (or MCAR)* Unfortunately,
we cannot demonstrate that missingness is unrelated to the unseen scores because doing so would
require knowing their values. Consequently, this default assumption for most Big Three

applications does not have testable propositions.

Finally, a missing not at random (MNAR) process states that nonresponse depends on the
unseen scores, even after accounting for one’s observed score profile. The formal definition below
says that the missing data indicators can depend on either the observed or missing parts of the
data.

Pr(M = 1|Y (obs)» Y(miS)) G)

Under such a process, two participants with identical observed score profiles no longer have the
same likelihood of missing data, as the would-be scores carry important information not contained
in the observed data. Section 7 describes modeling frameworks that pair the Big Three with missing

not at random processes.

To illustrate some possible realizations of Rubin’s missing data mechanisms, consider a cluster-
randomized trial that assigns a sample of middle schools to receive either the district-standard
math curriculum or a new cognitive strategy instructional intervention designed to enhance math

problem-solving (Montague et al., 2014). The researchers collected seven monthly assessments of

? Technically, estimates are “consistent”, meaning that bias decreases to zero when the sample
size gets large enough. Of course, the definition of “large enough” varies by model. In many cases,
estimates are approximately unbiased with sample sizes that are typical for educational research.
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an IRT-calibrated math problem-solving test during the school year. As is typical for longitudinal

designs, the proportion of missing test scores increased over time.

To begin, a subset of participants had incomplete data because researchers used a planned
missing data design (Graham et al., 2001; Graham et al., 2006; Mistler & Enders, 2011) where they
intentionally administered only four of the seven monthly assessments. These values are missing
completely at random because nonresponse was determined by the researchers and not the data.
Other scores were missing for reasons beyond the researchers’ control. Housing mobility was a
potential determinant of missingness because students from low-income households were more
likely to move out of the participating district. This source of missingness would be conditionally
missing at random if nonresponse is unrelated to a student’s unseen problem-solving score. Finally,
a missing not at random mechanism could produce item-level missingness if students skipped
problem-solving questions because they did not possess adequate knowledge to formulate a
response (Finch, 2008; Mislevy & Wu, 1996). To reiterate, the observed data do not contain the
information needed to identify, confirm, or differentiate CMAR and MNAR processes because
both involve propositions about the unseen score values. Unfortunately, the default CMAR
assumption invoked by most Big Three applications is inherently untestable. Only expert judgment
and substantive knowledge can rule out an MNAR mechanism. When in doubt, sensitivity analyses
involving the selection or pattern mixture modeling procedures described in Chapter 7 can be a

useful adjunct to CMAR-based analyses.

1.3  Missing Data Auxiliary Variables

Practically speaking, the conditionally missing at random (CMAR) assumption for a Big Three
application requires that all important determinants of missingness are contained within a model’s
observed data. Failing to satisfy this assumption can produce biased estimates. However, some of
these determinants may be variables that would not have been considered had the data been
complete. Returning to the randomized control trial scenario, consider an ANCOVA model that
evaluates intervention group differences with baseline scores as a student-level covariate. If
researchers believed that socioeconomic status is a potential determinant of missingness, then this
variable could be important for missing data handling even though it was not part of the analytic

plan.

Extraneous variables like socioeconomic status are known as auxiliary variables.
Methodologists routinely recommend a so-called inclusive analysis strategy that incorporates these
additional variables into a missing data handling procedure (Collins et al., 2001; Rubin, 1996;

Schafer & Graham, 2002). Leveraging auxiliary variables can fine-tune a missing data analysis in
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two important ways. Expanding the observed data can reduce nonresponse bias by making the
CMAR assumption more plausible, and introducing additional sources of sources of correlation
can improve power by recouping lost information. However, not all auxiliary variables are created
equal. Collins et al. (2001) provide a hierarchy that helps prioritize their selection. To illustrate,
Figure 1 depicts a bivariate analysis involving X and Y and single auxiliary variable A. The outcome
variable Y has missing values, and My is its missing data indicator. The solid arrow represents the

focal analysis parameter, and dashed arrows are auxiliary variable assocations.

Category A auxiliary variable

X Y

A "' ---------- > MY

Category B auxiliary variable

X —| v

A 7 My

Category C auxiliary variable

X Y

A peeeeeeee- > My

FIGURE 1. Auxiliary variable classification system from Collins, Schafer, and
Kim (2001). Dashed arrows depict possible associations between an
extraneous variable A, a missingness indicator My, and an incomplete
variable Y.
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To begin, the top panel of the Figure 1 depicts a category A auxiliary variable. The arrow from
A to Y conveys that the auxiliary variable contains unique covariation not contained in X, and the
arrow from A to My indicates that it also predicts missingness. Incorporating category A variables
into a Big Three application is a priority because doing so can reduce nonresponse bias. Next, the
middle panel shows a category B auxiliary variable that uniquely correlates with Y but does not
predict its missingness. Although category B auxiliary variables do not mitigate bias, they can
improve power by leveraging additional sources of correlation. Finally, the bottom panel depicts a
category C auxiliary variable that predicts missingness but has no unique relation with Y. Although
type C variables are useful for certain types of MNAR analyses, they are not otherwise beneficial as

auxiliary variables.

As a practical matter, the number of additional variables in many data sets is often so large that
an inclusive strategy can be daunting to implement. One possibility is to reduce a candidate set of
auxiliary variables into one or two principal components and use the component scores as auxiliary
variables (Howard et al., 2015). However, software packages that create component scores usually
require complete data, thus precluding the use of incomplete auxiliary variables. Fortunately, a
targeted approach that selects one or two salient auxiliary variables often works just as well as
casting a broad net. Unused repeated measures variables are often excellent auxiliary variables

because of their beneficial collinearity.

1.4  Preparing for a Missing Data Analysis

Returning to Figure 1, important category A auxiliary variables have two features: they are
correlates of missingness and provide unique sources of covariation beyond that contained in a
model’s observed data. This section describes some simple strategies for identifying such patterns.
These methods are imperfect, but selecting auxiliary variables need not be an exact science.

To begin, researchers routinely use a pattern mean difference approach to identify potential
correlates of nonresponse. To implement this strategy, you first create a binary missing data
indicator for each incomplete analysis variable with substantial missing data’. Treating the
indicator as a grouping variable, you then examine whether the incomplete cases exhibit mean

differences on other variables. For example, the next section illustrates a multiple regression where

* Although “substantial” is a clearly a subjective term, applying this method to a variable with
a very small amount of missing data will produce a near-constant indicator comprised mostly of
zeros. Unless the sample size is very large, such an indicator would produce noisy pattern mean
difference estimates. Moreover, auxiliary variables would not be beneficial for such a variable

because there is little missing information to recover.
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I create a missing data indicator by recoding the dependent variable as 0 = observed and 1 =
missing. I then examined whether the two groups exhibited mean differences on a set of auxiliary
variables. There is no need to examine mean differences for variables already in the analysis (e.g.,
the predictors) because the Big Three automatically leverage on this information.

Most often, significance tests are not very useful for evaluating mean differences because
unbalanced group sizes (e.g., an indicator with a preponderance of zeros) decrease power. Instead,
standardized mean difference effect sizes or bivariate correlations can provide a practical metric
for evaluating pattern differences. There is no harm in adopting a conservative approach that flags
candidate auxiliary variables that produce a small effect size (e.g., |d|> 0.20 or |r| > .10). I adopt

this approach in the subsequent example.

Logistic regression is another common approach for identifying correlates of missingness. This
strategy reverses the role of the variables, treating the missingness indicator as the outcome and
candidate auxiliary variables as predictors. Logistic regression can yield different conclusions from
the pattern mean difference approach because it considers a multivariate system where each
coefficient reflects a partial effect that controls for other predictors. As such, selecting extraneous
variables based on their odds ratios or statistical significance will likely identify a smaller auxiliary

set than the pattern mean difference approach, which is inherently bivariate.

Regardless of method, it important to emphasize that a salient association between a missing
data indicator and auxiliary variable does not mean that the extraneous variable is a potential
source of nonresponse bias—that conclusion also requires a residual correlation between the
incomplete variable and auxiliary variable (see Figure la). However, identifying a correlate of
missingness does rule out a purely haphazard missing completely at random process. In fact, the
Little’s (1988) MCAR test available in some software packages is simply a multivariate version of
the pattern mean difference approach. Although such a test may seem appealing, evaluating the
null hypothesis that missingness is unsystematic has limited practical utility because the Big Three
do not require this strict assumption. Moreover, finding evidence for or against haphazard
missingness does not change the recommendation to use the Big Three. Raykov (2011, p. 428)
emphasized this point, stating that “the desirability of the MCAR condition has been frequently

overrated in empirical social and behavioral research”.

As mentioned previously, the presence or absence of residual or semipartial correlation
between an auxiliary variable and an incomplete analysis variable largely determines the extra
variable’s worth. Conceptually, these correlations are computed by first regressing an incomplete
variable on all other variables in the analysis, then correlating its residuals with a set of auxiliary
variables. Statistical packages readily compute these semipartial correlations, although they

generally use listwise or pairwise deletion to do so. Noisier estimates that require unsystematic
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missingness are not necessarily a problem at the initial data screening stage. Alternatively, Raykov
and West (2015) outlined a latent variable modeling approach to estimating semipartial
correlations that readily pairs with maximum likelihood and Bayesian estimation. These
approaches use all available data and accommodate a systematic conditionally missing at random

process.

A remarkable semipartial correlation signals that an auxiliary variable contains unique
information about the missing values not contained in a model’s observed data. How large does a
residual correlation need to be? Computer simulations from Collins et al. (2001) suggest |r| > .30
as an approximate rule of thumb. Their study showed that ignoring category A variables with
weaker correlations generally produced parameter estimates with little to no bias, whereas
adjusting for sources of stronger correlation reduced or eliminated nonresponse bias. We are often
taught that collinearity is detrimental, but it is beneficial in this context—the stronger the
semipartial correlations, the more missing information there is to recover. Practical experience
suggests that one or two “good” auxiliary variables is usually sufficient. In truth, it is often difficult
to find beneficial variables because our models usually capture most salient covariation in the data.
Finally, incomplete auxiliary variables can still be beneficial if their scores are mostly observed in
the data records where the analysis variables are missing (Enders, 2008). Auxiliary variables that

are missing in conjunction with the analysis variables have no information to contribute.

1.5 Analysis Example

I use multiple regression analyses to illustrate Big Three applications throughout the report. This
section demonstrates the process of evaluating candidate auxiliary variables for these analyses. The
illustration uses the behaviorachievement.dat data set from a longitudinal study that followed
138 students from primary through middle school. The file includes three annual assessments of
broad reading and math achievement beginning in the first grade, seventh grade standardized
achievement test scores taken from a statewide assessment, and a final measure of broad reading
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms
and learning problems were also obtained in the first grade. The Software Tutorials document
provides additional information about this data set. Table 2 below shows the specific variables for

this analysis example.
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TABLE 2. Variables for the Multiple Regression Analysis

Name Definition Missing  Scale

Focal Analysis Variables
BEHSYMP; 1+t grade emotional/behavior problems 2.2% Numeric (17 to 92)
LRNPROB, 1 grade learning problems 2.2% Numeric (31 to 88)
READ; 1+ grade broad reading 6.5% Numeric (39 to 153)
READ, 9% grade broad reading 17.4% Numeric (41 to 123)

Auxiliary Variables

READ:, 27 grade broad reading 9.4% Numeric (20 to 150)
READ:; 3t grade broad reading 14.5% Numeric (46 to 138)
STANREAD; 7% grade standardized reading 19.6% Numeric (100 to 399)

The analysis model features ninth grade broad reading scores regressed on three academic and
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning

problems, and teacher-rated behavioral problems.
READ, = B, + B(READ,) + B(LRNPROB,) + 8;(BEHPROB,) + ¢ (4)

To reiterate, the conditionally missing at random assumption requires that missingness is fully
determined by the model’s observed data—unseen score values carry no additional information.
Introducing missing data auxiliary variables into a Big Three analysis broadens the observed data,
potentially making this assumption more plausible. Selecting auxiliary variables for ninth grade
reading scores is the priority because the outcome has substantial missing data. Conversely, the
learning and behavioral problems measures would not benefit from extraneous variables because

they have very little missing information.

Researchers usually have large data sets with dozens of possible auxiliary variables. Substantive
knowledge usually allows researchers to identify a smaller number of variables that potentially
correlate with analysis variables. To keep the illustration simple, I consider three candidates:
second and third grading broad reading scores and seventh grade standardized reading scores.
Returning to Table 2, the auxiliary variables themselves have substantial missing data. However,
these variables are still viable because there are relatively few missing data patterns where an

auxiliary variable is concurrently missing with the outcome (a pattern where the auxiliary variable
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carries no additional information). For example, only five students are missing both the

standardized reading test and ninth grade broad reading scores.

To implement the pattern mean difference approach, I created a binary missing data indicator
for the ninth grade test scores, and I then examined whether the two groups exhibited mean
differences on other variables. The first column of Table 3 shows Cohen’s (1988) standardized
mean difference effect sizes from this step*. First, notice that the incomplete cases exhibited
moderate to large mean differences on the learning and behavioral problems measures. The
positive difference implies that elevated academic problems are associated with missingness. These
differences do not require additional action because the Big Three automatically adjust for
systematic missingness among the analysis variables. The incomplete cases also had small, negative
mean differences on the auxiliary variables, such that lower reading scores were associated with

higher rates of missingness.

The pattern mean difference approach is inherently univariate and does not account for shared
covariation among the variables. To examine whether the auxiliary variables uniquely predicted
missingness after controlling for the analysis variables, I conducted a binary logistic regression
analysis with the missing data indicator as the outcome. The middle panel of Table 3 shows the
resulting regression slopes, standard errors, and significance tests. With the important caveat that
the analysis likely suffers from low power, the regression results suggested that learning problems
ratings—a variable already in the focal model—was the most salient correlate of missingness. There
was little or no evidence that the auxiliary variables uniquely determined missingness after
controlling for the predictor variables from the focal model. This does not mean that the auxiliary

variables are unimportant, however. Their semipartial (residual) correlations determine that.

The rightmost column of Table 3 shows the semipartial correlations between ninth grade
reading scores and the auxiliary variables. Conceptually, these correlations link the auxiliary
variables to the unexplained part of ninth grade reading scores that remains after residualizing on
the predictors. As a reminder, computer simulations from Collins et al. (2001) suggest |r| > .30 as
a rough rule of thumb. Two of the correlations exceeded the cutoff, suggesting that they possess
unique information about the missing values not contained in the model’s observed data. Like the
pattern mean difference approach, the residual correlations do not account for shared covariation
among the variables. Because the auxiliary variables are very highly correlated (all rs > .70), there

is probably little benefit to including them all in a Big Three analysis. For this reason, I use second

* Cohen (1988) characterized a small effect size as |d| > .20, medium as |d| > .50, and a large
effect as |d| > .80.
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grade broad reading scores and seventh grade standardized test scores as auxiliary variables in all

subsequent analysis examples.

TABLE 3. Auxiliary Variable Screening Results

Logistic Regression

Variable Cohen’s d Est. SE z p Residual r
Analysis Variables

BEHSYMP, 0.65| -0.01 0.03 -0.37 71 --

LRNPROB, 0.86 0.10 0.04 2.29 .02 --

READ, -0.23 | -0.04 0.04 -0.92 .36 --
Auxiliary Variables

READ, -0.29 0.01 0.04 0.28 .78 .30

READ; -0.19 0.04 0.04 0.86 .39 27

STANREAD; -0.26 | -0.01 0.005 -0.75 45 .38

To summarize, the pattern mean difference approach and logistic regression analysis revealed
a systematic process where students with missing ninth grade scores differed from those with
observed data. These results provide compelling evidence against a purely haphazard missing
completely at random process. Importantly, we cannot conclude that these systematic patterns are
unrelated to the unseen score values—a vital component of the conditionally missing at random
assumption for a Big Three analysis. Returning to the Collins et al. (2001) hierarchy in Figure 1,
the auxiliary variables most closely resemble category B variables because they do not uniquely
predict missingness. In practice, it is not important to precisely categorize auxiliary variables

because a salient residual correlation justifies their inclusion.
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Factored Regression Specifications

Missing data handling is most straightforward in the (perhaps unusual) situation where missing
values are relegated to the outcome variable. The situation becomes more complex when predictor
variables have missing data because the explanatory variables require their own models and
statistical assumptions. Classic versions of the Big Three assume that incomplete variables share a
common distribution, typically multivariate normal. Adopting a multivariate distribution for
missing data handling can be restrictive because it assumes all variables share the same metric. As
an example, this assumption precludes an analysis with an incomplete multicategorical and
numeric variables. Moreover, applying multivariate normal missing data methods to models with

interactive or nonlinear effects can produce substantial bias.

Factored regression specifications express a multivariate distribution as a sequence of simpler
distributions, the collection of which is equivalent to the original joint function. Beyond
acknowledging that a multivariate distribution exists, factorization makes no assumptions about
its shape or form. Rather, distributional assumptions enter on a variable-by-variable or model-by-
model basis. The theory for this framework dates to work by Ibrahim and colleagues (Huang et al.,
2005; Ibrahim, 1990; Ibrahim et al., 2002; Ibrahim et al., 1999; Lipsitz & Ibrahim, 1996). Factored
specifications have received considerable attention in the recent missing data literature because
they solve long-standing problems with classic multivariate normal missing data methods that
came online in the early 2000s (Enders, 2023).

To illustrate the idea behind a factored regression specification, consider a regression model
with two incomplete predictors®. Figure 2 depicts multivariate and factored specifications. Colored

boxes denote variables with the same distribution assumption. Figure 2a is a multivariate

> The term “factored regression” does not imply that the analysis model must be a regression.
These specifications can be applied to a broad range of generalized linear models, measurement
models, and structural equation models.
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a) Multivariate specification

-> X] \
-> X2 /

b) Multivariate by univariate factored specification

/

NS

N\

- X2

¢) Fully univariate (sequential) factored specification

/

N/

l
s
N\

FIGURE 2. Colored boxes enclose variables that share the same distribution.
Panel (a) depicts a multivariate specification where all variables have the
same metric. Panel (b) is a factored specification that assigns a bivariate
distribution for the predictors and a distinct distribution to the outcome.
Panel (c) is a specification where each variable has its own distribution.

specification where all variables share a common distribution (e.g., multivariate normal). Figure
2b separates the original trivariate distribution into two simpler distributions: a bivariate

distribution for the predictors, and a univariate distribution for the outcome. Finally, Figure 2c
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further separates the predictors into distinct models, resulting in a fully univariate specification
(Erler et al., 2016; Ludtke et al., 2020b).

It is useful to establish some shorthand notation to reference the specifications in Figure 2. In
the following equation, each f generically references a distribution comprised of the variables in

parentheses®.
FY, X, %) = f(Y]X1, X,) X f(X1,X,) = f(Y]X1, X5) X f(Xq1X3) X f(X3) ©)

Each term with a vertical pipe represents the univariate conditional distribution of an outcome
variable in a regression equation, and the variables to the right of the pipe are its regressors. At a
high level, the equation says we have three equivalent ways to configure the distributions of the
three incomplete variables in Figure 2. The leftmost term is a trivariate distribution that
corresponds to Figure 2a. The middle pair of terms separate the multivariate distribution into two
simpler distributions: the univariate distribution of Y given the Xs (the focal regression analysis)
and a bivariate distribution for the predictors. These terms align with Figure 2b. Finally, the

rightmost trio of terms corresponds to the fully univariate specification in Figure 2c.

Although the factorizations are symbolically equivalent, they aren’t necessarily the same in
practice. For example, Equation 4 uses academic and behavioral measures collected in first grade
to predict ninth grade reading achievement. Because all variables are numeric with reasonably
symmetric distributions, it makes no difference how the model is specified. Instead, suppose the
analysis is a logistic regression where the outcome is a binary measure of whether the student has
attained average or higher reading proficiency in ninth grade (see Examples 2 and 7 in the Software
Tutorials document). In this case, we do not have an off-the-shelf multivariate distribution that
describes the cooccurrence of binary and numeric variables. Adopting the multivariate
specification on the left side of Equation 5 (or Figure 2a) is not an option. In contrast, either
factored specification is appropriate. The univariate-by-multivariate factorization (the two middle
terms in Equation 5 or Figure 2b) would pair a logistic focal model (Bernoulli outcome
distribution) with a bivariate normal model for the predictors. Finally, the fully univariate
specification (the three rightmost terms in Equation 5 or Figure 2c) would pair the logistic model

with a pair of linear regressions with normal errors.

Analyses with incomplete nonlinear terms are another important use case for factored
specifications. This includes models with interactions, curvilinear effects, and random coefficients,

among others. Such models are incompatible with a multivariate normal distribution (Bartlett et

¢ The factorization is derived by applying the probability chain rule to the multivariate
distribution in the leftmost term.
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al., 2015; Liu et al., 2014), meaning that they require features that are mathematically impossible
with multivariate normal data (e.g., heteroscedasticity). Numerous methodology studies have
demonstrated that applying normal distribution assumptions to interactive effects can introduce
substantial bias (Cham et al., 2017; Enders et al., 2014; Humberg & Grund, 2022; Seaman et al,,
2012; Zhang & Wang, 2017). In contrast, both factored specifications depicted in Figure 2 readily
accommodate interactions and nonlinear terms in the focal analysis model, and the fully univariate
specification in Figure 2¢ additionally allows nonlinear associations among predictors (Liidtke et

al., 2020b). For example, X; could exert a curvilinear effect on X,.

If the data and model allow, we may choose a multivariate missing data handling method
because doing so is convenient (software options abound), and a wealth of supporting literature
has accumulated over the last 25 years. However, the key takeaway from Equation 5 is that we don’t
need to work with a multivariate distribution—whatever the joint function’s shape or form, we can
always reproduce it by adopting a collection of simpler submodels, each with its own distributional
assumption. This flexibility allows us to tailor a missing data handling procedure that preserves
important features of the data and analysis model. The Software Tutorials document features

numerous analysis examples with factored regression specifications.

The flowchart in Figure 3 depicts a decision tree for missing data analyses. Starting on the left,
the first decision point depends on whether the focal analysis features any type of nonlinearity.
This includes interactive effects, curvilinear associations, and random coefficients, among other
things. If the answer to this first question is yes, then factored regression specification is the only
choice. If no, then subsequent steps depend on the variable types. If the analysis is restricted to
normal variables, classic multivariate versions of the Big Three are appropriate, as are newer
factored specifications. Finally, if the analysis includes a mix of discrete and numeric variables,
certain classic multiple imputation methods like fully conditional specification (i.e., the MICE
algorithm; van Buuren, 2007; van Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn, 2011)
are appropriate, as are factored regression specifications. The flowchart oversimplifies a nuanced

issue, but it provides a high-level heuristic for classifying missing data handling options.
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1. Analysis features a 2. Analysis restricted to . .
. - . ) . 3. Analysis features discrete
nonlinearity (interaction, numeric (approximately and numeric variables?
polynomial, random slope)? normal) variables? ’
Factored regression Multivariate normal Classic multiple imputation
specification (Big Three) methods (Big Three) (e.g., “MICE” algorithm)

FIGURE 3. Flowchart depicting decision tree for a missing data analysis. Starting on the left, the first decision point
depends on whether the focal analysis features any type of nonlinearity. The second decision is whether all variables
share the same metric. Although classic methods are not always appropriate, factored specifications are.



Maximum Likelihood Estimation 18

Maximum Likelihood Estimation

The origins of modern maximum likelihood estimators date back as far as the 1950s (Anderson,
1957; Edgett, 1956; Hartley, 1958; Lord, 1955), but the foundational theoretical and computational
advancements mainly occurred in the 1970s (Beale & Little, 1975; Dempster et al., 1977;
Finkbeiner, 1979; Hartley & Hocking, 1971; Orchard & Woodbury, 1972). For researchers in
education (and the social and behavioral sciences more broadly), maximum likelihood estimation
became a practical reality in the 1990s when structural equation modeling software packages
started offering so-called full information maximum likelihood (FIML) estimators based on raw
data (Arbuckle, 1996). Since then, a substantial amount of methodological work has accumulated

that extends FIML’s utility and documents its limitations.

Maximum likelihood estimators have evolved considerably, and factored regression
specifications that accommodate mixtures of categorical and continuous variables are now widely
available (Ibrahim, 1990; Ibrahim et al., 1999; Liidtke et al., 2020a; Muthén et al., 2016; Pritikin et
al., 2018; Rabe-Hesketh et al., 2004; Rockwood & Jeon, 2019). However, this functionality varies
across software packages, and not all combinations of metrics are currently available. Support for
binary and ordinal variables is common, but missing data handling for other variable types is

currently more limited.

3.1 The Classic FIML Estimator

The classic FIML estimator uses an iterative optimization algorithm to identify model parameters
that minimize the sum of squared, standardized distances between a model’s predictions and the
observed data. At a high level, maximum likelihood’s goal is the same as ordinary least squares
(OLS), which is to find estimates that minimize residuals. The normal distribution function—more
accurately, its natural log or log-likelihood—provides a formal metric for quantifying that data-

model fit. The observed-data log-likelihood function for a sample of N cases is shown below.
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N N N
In(¢) = |~ ) Din(2m) ~ 2 3 Inf5 ] |~ 3 3% - )= (Y, — ) ®)

i=1 i=1 i=1
The equation can be understood as follows. First, the multivariate normal distribution function
quantifies each participant’s data-model fit on a probability-like metric called a likelihood. Taking
the natural log of the distribution equation recodes everyone’s fit equation to a logarithmic metric
where higher (less negative) log-likelihood values represent better fit and smaller (standardized
and squared) residuals. Finally, Equation 6 sums the individual log-likelihood (fit) values into a

sample-level summary.

At a high level, the terms in square brackets are scaling factors that ensure the area under the
normal curve equals one. The terms outside the brackets (the distribution’s “kernel”) form the key
part of the equation that captures data-model fit. Setting aside the scaling terms and focusing on
the kernel, (Y; — p;)'Z; "'(Y; — p;) is the sum of squared, standardized residuals between a person’s
data and the model’s predictions’. Because this person-specific sum is a chi-square variable, we can
use the following conceptual expression to simplify the log-likelihood equation and emphasize the

role of the standardized residuals.

N
1
In(¢) = —[sum of N scaling terms]| — 52 x? (7)
i=1
The goal of maximum likelihood is to find the parameter values in p and X that minimize the sum

of the residuals—a goal it shares with least squares estimation.

At a more granular level, Y; is a vector that contains an individual’s observed data, and the V;
in the scaling part is the number of data points in Y;. The variables in Y; can differ across people
due to missing data. Each person’s fit (chi-square) is computed using whatever observed data are
present in Y;. Data are neither imputed nor discarded. When Y; has missing values, only a subset
of the model’s parameters contributes to each chi-square calculation. For example, a person
missing Y; has no information about u; and 0% (or covariances involving Y3), so these parameters
cannot be used to compute y?. Equation 6 uses p; and X; to represent the subset of parameters that

link to the observed data in Y; (i.e., the parameters that determine each person’s fit contribution).

To make the discussion more concrete, reconsider the regression model from Figure 2a.
further, suppose that Y is ninth grade academic achievement and X; and X, are academic and
behavioral measures from first grade. For a student with complete data, the standardized residual

calculation uses all three scores and every model parameter.

7 In multivariate statistics, the square root of (Y; — w)'E;"*(Y; — ;) is known as Mahalanobis
distance.
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As a second example, the data—model fit for students with missing Y values (e.g., ninth grade

achievement) involves just the Xs and their corresponding parameters.

’ -1
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As a final example, the chi-square fit variable for students with missing Xs (e.g., first grade

measures) reflects only Y and its parameters.

1= (7 = (03) 7 =gy = T (10)

Y

As a small clarifying point, the means, variances, and covariances in the previous expressions
are themselves predictions that derive from the regression model parameters in Figure 2a (i.e., the
elements in p and X are functions of the regression model parameters). For example, the outcome
variable’s variance o3 reflects explained variation due to the Xs via their regression slopes plus
unexplained residual variance. Similarly, ¢y is a function of the regression intercept and an
adjustment term that depends on predictor means and regression slopes. These algebraic
mappings from the regression model to p and X follow from viewing the path diagram in Figure

2a as a structural equation model.

The previous equations demonstrate that the classic FIML estimator uses all available data, but
they don’t necessarily convey how the partial data records improve the final estimates. To illustrate,
consider a bivariate scenario involving first grade learning problems and ninth grade reading
scores. Further, suppose that the ninth grade reading scores are predominantly missing for
students in the upper tail of the learning problems distribution. This situation is similar to the one
from the analysis example in Section 1.5. As an aside, this process conforms to a conditionally
missing at random mechanism because missingness in ninth grade is explained by first grade

learning problems ratings.

Figure 4a shows a scatterplot of an artificial data set that depicts the hypothetically-complete
data from the bivariate scenario. The orange circles correspond to students with missing ninth
grade reading scores, and the green circles are students with complete data on both measures. The

black dot represents the “true” means that would have resulted from analyzing a complete data set.
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FIGURE 4. Panel (a) depicts the hypothetically-complete data from a
bivariate analysis. The orange circles correspond to students with missing
ninth grade reading scores, and the green circles are students with complete
data on both measures. Panel (b) shows the sample after deletion, and panel
(c) depicts partial data records as hashmarks on the horizontal axis. Panel
(d) shows the distributions from FIML based on incomplete data records.

Figure 4b is a scatterplot of just the complete data records. Excluding students with incomplete
data truncates the upper tail of the learning problems distribution and the lower tail of the reading
distribution. As a consequence, the distributions in the marginals are distorted—the variances are
too small, and the means are biased—because the complete cases are not representative of the
original sample. The FIML estimator incorporates the partial data records from the upper tail of
the learning problems distribution. Figure 4c shows the partial data as hashmarks along the

horizontal axis. Importantly, the additional scores restore the variation in the learning problems
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variable and recenter the variable’s mean at the correct location on the horizontal axis. In a
bivariate normal distribution with a negative correlation, the high learning problems scores only
make sense if they are paired with low reading scores. Although FIML does not impute the missing
reading scores, this property of the normal distribution implies that the unobserved scores must
fall in the neighborhood of the elipse in Figure 4d. Essentially, the partial data records allow the
estimator to intuit the location of the missing scores, thereby adjusting the mean and variance of

the incomplete variable to match a hypothetical complete-data analysis.
3.2  Fine-Tuning FIML: Auxiliary Variables and Nonnormal Data

The conditionally missing at random assumption described in Section 1.2 requires that the unseen
score values contain no unique information about missingness beyond that contained in the
observed data. Practically speaking, this assumption requires that all important determinants of
missingness are contained within a model’s observed data. In the multiple imputation literature,
the long-standing advice is to include additional auxiliary variables when treating missing data
because doing so minimizes the risk of nonresponse bias (Collins et al., 2001; Rubin, 1996). Porting
this recommendation to maximum likelihood requires care because we need to add the extra
variables in a way that does not affect the interpretation of our focal model’s parameters (the
estimates and standard errors could change due to the influx of additional information). For
example, adding extra auxiliary variables as covariates is undesirable because doing so changes the
composition of the analysis model. Instead, we want to incorporate the additional variables while

maintaining the structure of the model that we would have fit had there been no missing data.

Figure 5 shows two auxiliary variable model specifications for a multiple regression model.
Figure 5a is Graham’s (2003) saturated correlates model for FIML applications with structural
equation modeling software. The curved, dashed arrows are correlations that connect the auxiliary
variables to the residuals of all analysis variables as well as to each other. This specification is
automated in Mplus (Muthén & Muthén, 1998-2017), EQS (Bentler, 2000-2008), and the R
package semTools (Jorgensen et al., 2022). The saturated correlates approach has two noteworthy
limitations: It is restricted to normally distributed variables, and it is known to produce
convergence failures, especially as the number of auxiliary variables increases (Savalei & Bentler,
2009). Convergence issues can be mitigated by using a small number of salient auxiliary variables
or by performing a preliminary data reduction step that reduces a large set of additional variables

into one or two principal components (Howard et al., 2015).

Alternatively, auxiliary variables can enter a model as additional outcomes that are predicted

by the analysis variables and by each other (Ltidtke et al., 2020b). Figure 5b shows this specification,
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with dashed lines depicting the auxiliary variable regression slopes. With this approach, the focal
analysis model is embedded in larger network of variables. Importantly, the additional regressions
do not align with substantive theory and need not reflect a logical causal order. Rather, the
additional regressions are simply a tool for linking the analysis variables to the auxiliary variables.
Importantly, pairing the additional outcome approach with a factored regression specification

readily accommodates discrete auxiliary variables.
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FIGURE 5. Solid lines denote the focal regression model parameters, and
dashed lines are auxiliary variable parameters. Panel (a) depicts a saturated
correlates model that connects the analysis variables to the auxiliary
variables via correlated residuals. Panel (b) is an alternate specification
where auxiliary variables function as additional outcomes.

The classic maximum likelihood estimator that enjoys widespread use also assumes
multivariate normality. Of course, real data rarely conform to this ideal. A good deal of analytic
and simulation work has clarified that maximum likelihood point estimates are generally unbiased
in large samples (i.e., consistent) when the mechanism is conditionally missing at random.
However, the same is not true for standard errors and test statistics (Savalei, 2010a, 2010b; Takai
& Kano, 2013; Yuan, 2009; Yuan & Bentler, 2010; Yuan & Savalei, 2014; Yuan et al., 2012).

Fortunately, robust (sandwich estimator) standard errors and test statistics have long been
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available for missing data analyses (Arminger & Sobel, 1990; Yuan & Bentler, 2000), and numerous
software packages offer these corrections. Savalei and Rosseel (2022) provide a comprehensive
summary of these technical innovations. Bootstrap standard errors and test statistics are an

alternative corrective procedure for nonnormal missing data (Enders, 2002; Savalei & Yuan, 2009).

Models that feature both discrete and continuous variables are a case where correctives for
nonnormal data may or may not be useful. The complete-data literature suggests that treating
ordinal outcomes as normal is not problematic if the discrete distribution is symmetric and has at
least five response options (Rhemtulla et al., 2012). There is every reason to expect this finding to
hold with missing data. Perhaps surprisingly, computer simulation results suggest that applying
normal distribution assumptions to incomplete binary predictors may not introduce bias in single-
level regression models (Muthén et al., 2016). However, this conclusion does not appear to extend
to multilevel models with discrete level-2 predictors (Grund et al, 2018). Applying normal
distribution assumptions to multicategorical nominal predictors (or their dummy codes) always

produces nonsensical results.
3.3 Factored Regression Specifications

Maximum likelihood has evolved considerably since the classic FIML estimator came online in the
late 1990s. Factored regression estimators (Ibrahim, 1990; Ibrahim et al., 1999) are a particularly
important innovation and a focus of ongoing methodology research. An earlier section explained
that factored regression expresses a multivariate distribution as a collection of submodels, each
with distinct distributional assumptions. In lieu of a multivariate log-likelihood like the one from
Equation 6, factored specifications adopt a chain of distinct log-likelihood functions that follow
the pattern from Equation 5 (in this context, each f represents a likelihood function). These multi-
function expressions are a challenging computational problem. Iterative optimization routines use
numerical or Monte Carlo integration schemes that fill in the missing parts of the data in an
imputation-esque manner. Liidtke et al. (2020a) provide an accessible introduction to maximum

likelihood estimation with factored specifications.

Analyses with combinations of discrete and continuous variables are an important use case for
factored regression specifications. Estimators that accommodate some combinations of categorical
and continuous variables are widely available in software packages (Grund et al., 2021a; Liidtke et
al., 2020a; Muthén et al., 2016; Pritikin et al., 2018; Rabe-Hesketh et al., 2004; Rockwood & Jeon,
2019). Functionality varies substantially, however, and not all combinations of metrics are

currently available. Software programs routinely support binary and ordinal variables, but missing
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data handling for other discrete metrics is more limited. Bayesian MCMC algorithms discussed in

Section 4 are far more capable, at least for now.

Analyses with incomplete nonlinear terms (interactions, curvilinear effects, random
coefficients) are another important use case for factored specifications. Until recently, researchers
have been forced to use a so-called just-another-variable approach that treats product and
polynomial terms as unique, normally distributed variables (Enders et al., 2014; von Hippel, 2009).
Analytic and computer simulation work uniformly demonstrates this strategy’s propensity for bias
(Cham et al,, 2017; Enders et al,, 2014; Humberg & Grund, 2022; Seaman et al., 2012; Zhang &
Wang, 2017). Factored regression estimators instead treat product and curvilinear effects as
deterministic functions of their component variables. The limited research to date suggests that a
factored specifications are uniformly superior to normal-theory FIML estimation with the just-
another-variable strategy (Humberg & Grund, 2022; Liidtke et al., 2020a). The Software Tutorials

document features FIML analysis examples with factored regression specifications.

3.4 Maximum Likelihood Analysis Example 1

The first analysis example illustrates a multiple regression model comprised of incomplete
continuous variables. The analysis uses the behaviorachievement.dat data set from a
longitudinal study that followed 138 students from primary through middle school. The file
includes three annual assessments of broad reading and math achievement beginning in the first
grade, seventh grade standardized achievement test scores taken from a statewide assessment, and
a final measure of broad reading and math obtained in ninth grade. The data also contain teacher
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The
Software Tutorials document provides additional information about this data set. Table 2 from

Section 1.5 shows the specific variables for this analysis example.

The analysis model featured ninth grade broad reading scores regressed on three academic and
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning

problems, and teacher-rated behavioral problems.
READ, = B, + B(READ),) + B(LRNPROB,) + 8;(BEHSYMR) + ¢ (11)

The analysis also included second grade broad reading scores and seventh grade standardized test
scores as auxiliary variables. These additional variables were included because they exhibited
significant residual covariation with the analysis variables (see Section 1.5). Applying the flowchart
from Figure 3, either a multivariate or factored regression specification is appropriate. I use the

classic FIML estimator for multivariate normal data along with a saturated correlates specification
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for the auxiliary variables. Figure 6 shows a path diagram of the analysis model. The dashed arrows
are the residual correlations connecting the auxiliary variables to each other and to the analysis

variables.

BEHSYMP; \
; LRNPROB, READINGs |<—x,
READING, /
. READING,
N
3-->| STANREAD;

FIGURE 6. Solid lines denote the focal regression model parameters, and
dashed lines are auxiliary variable parameters. The path diagram depicts a
saturated correlates model that connects the analysis variables to the
auxiliary variables via correlated residuals.

Example 1 from the Software Tutorials document provides annotated syntax and output files
for the analysis. The top panel of Table 4 shows the parameter estimates, standard errors, and
significance tests from the analysis. The results are interpreted in the same way as a complete-data
regression analysis. For example, consider the first grade reading slope. The model predicts that
two individuals who differ by one point in first grade should differ by 0.50 points on the outcome,
holding constant teacher-rated learning and behavioral problems. The corresponding test statistic
indicates that the slope coefficient is statistically different from zero (z = 12.00, p < .001). Because
they are not of substantive interest, the table omits the auxiliary variable parameters. As a
comparison, the bottom panel also shows the estimates from a fully univariate factored regression
specification. The flowchart in Figure 3 indicates that either specification is appropriate, and the

close correspondence of the two sets of results is consistent with this conclusion.



Maximum Likelihood Estimation 28

TABLE 4. Maximum Likelihood Estimates From a Multiple Regression

Effect Est.  Std. Error z p 25%LCL 97.5% UCL

Multivariate Normal Model

Intercept 66.03 5.85 10.35 <.001 54.57 77.49
READ, 0.50 0.04 12.00 <.001 0.42 0.59
LRNPROB, -0.25 0.12 -2.14 .03 -0.47 -0.02
BEHSYMP, -0.18 0.10 -1.79 .07 -0.38 0.02
R-square .59 -- -- -- -- --

Factored Regression Specification

Intercept 65.72 5.89 11.16 <.001 54.18 77.26
READ, 0.51 0.04 12.11 <.001 0.43 0.59
LRNPROB, -0.26 0.12 -2.22 .03 -0.49 -0.03
BEHSYMP, -0.18 0.10 -1.73 .08 -0.38 0.02
R-square .59 -- -- -- -- --

3.5 Maximum Likelihood Analysis Example 2

The second analysis example illustrates a moderated regression model with an incomplete
interaction effect and an incomplete binary covariate. The analysis uses the same data as the first
example. The Software Tutorials document provides additional information about this data set,

and Table 5 below shows the specific variables for this analysis example.

The analysis model featured ninth grade broad reading scores regressed on academic and
behavioral measures collected in first grade: reading achievement, teacher-rated learning
problems, the product of first grade reading scores and learning problems, and a dummy code
indicating whether a student is considered at risk for developing an emotional or behavioral

disorder.

READ, = f8, + B1(READ,) + 8,(LRNPROB,)
+ B3(READ, Y(LRNPROB,) + B4(ATRISK) + ¢ (12)
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TABLE 5. Variables for the Moderated Regression Analysis

Name Definition Missing  Scale

Focal Analysis Variables

ATRISK Emotion/behavior disorder risk 2.2% 0 = Low risk, 1 = At risk

LRNPROB, 1* grade learning problems 2.2% Numeric (31 to 88)

READ, 1% grade broad reading 6.5% Numeric (39 to 153)

READ, 9™ grade broad reading 17.4% Numeric (41 to 123)
Auxiliary Variables

READ, 2" grade broad reading 9.4% Numeric (20 to 150)

STANREAD; 7™ grade standardized reading 19.6% Numeric (100 to 399)

The analysis also included second grade broad reading scores and seventh grade standardized test
scores as auxiliary variables. These additional variables were included because they exhibited

significant residual covariation with the analysis variables (see Section 1.5).

Applying the flowchart from Figure 3, models with interactive effects require a factored
regression specification that expresses the multivariate distribution into a series of simpler
distributions. This example uses a fully univariate specification where each variable is the outcome
in its own regression model. Using established symbolic notation, the factorization consists of six

regression models, each with its own distribution assumption.

f(STANREAD,|READ,, READ,, READ,, LRNPROB,, ATRISK) X
f(READ,|READ,, READ,, LRNPROB,, ATRISK) X
f(READo|READ,, LRNPROB,, ATRISK) X (13)
f(READ,|LRNPROB,, ATRISK) X f(LRNPROB, |ATRISK) X f(ATRISK)

The first two lines are the regression models for auxiliary variables, and the third line corresponds
to the focal regression from Equation 12. The terms on the last line are regressions linking the

predictors to one another.

Figure 7 shows a path diagram of the analysis model. The solid lines highlight the focal model
regression slopes, with the arrow pointing from learning problems to the first grade reading test
slope denoting the interaction coefficient. The equation and path diagram illustrate a cascading
pattern where the binary risk indicator predicts first grade learning problems, both variables

predict first grade broad reading performance, and all three regressors predict ninth grade reading
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achievement (the focal outcome). The auxiliary variables enter the model as additional outcomes
that are predicted by the analysis variables and by each other. The binary risk indicator required

an empty logistic model, and all other models were linear regressions with normal errors.
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FIGURE 7. Solid lines denote the focal regression model parameters, and
dashed lines are auxiliary variable parameters. The path diagram depicts a
model where auxiliary variables function as additional outcomes. All
analysis variables predict the auxiliary variables, and second grading reading
also predicts seventh grade standardized test scores.

Example 4 from the Software Tutorials document provides annotated syntax and output files
for the analysis. Table 6 displays the parameter estimates, standard errors, and significance tests
from the analysis. The lower-order terms in a moderated regression are conditional effects that
depend on scaling or centering. To facilitate interpretation, the analysis centered the interacting
variables at the maximum likelihood estimates of their grand means. Centering defines the first
grade reading slope (8, = 0.51) as a conditional effect at the mean of the learning problems
distribution, and the learning problems slope (3, = —0.38) similarly reflects a conditional effect at
the reading achievement average. The interaction slope captures the change in the first grade
reading slope for each one-unit increase in learning problems (and vice versa). The positive
coefficient (8; = 0.013) indicates that the association between first and ninth grade reading scores

becomes stronger (i.e., more positive) for students with elevated learning problems.
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TABLE 6. Maximum Likelihood Estimates From a Moderated Regression

0 9
A
Intercept 89.05 142 62.76 <.001 86.27 91.83
READ, 0.51 0.04 11.55 <.001 0.42 0.59
LRNPROB; -0.38 0.08 -454 <.001 -0.54 -0.21
READ, x LRNPROB, 0.013 0.005 2.83 .005 0.003 0.02
ATRISK -1.91 1.79 -1.06 29 -5.43 1.61
R-square .62 -- -- -- -- --

Note. First grade reading scores and learning problems ratings are centered at

the grand mean.
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Bayesian MCMC Estimation

Bayesian Markov chain Monte Carlo (MCMC) estimation is the second member of the Big Three.
Maximum likelihood and Bayesian estimation are similar in the sense that a researcher fits their
desired model to the incomplete data, and the software returns parameter estimates and measures
of uncertainty that assume a conditionally missing at random process. When confronted with
missing values, maximum likelihood uses the normal distribution to deduce the missing parts of
the data as it iterates to a solution (more precisely, the estimator marginalizes or averages over a
distribution of plausible scores for each person). In contrast, Bayesian estimation algorithms
iteratively impute missing values as they update the parameters. The resulting parameter
summaries average over numerous realizations of the missing values. Like maximum likelihood,
missing data handling is integrated into estimation, and the primary goal is to estimate model

parameters.

Bayesian missing data handling routines for multivariate normal data have a long history in
the literature (Schafer, 1997, 2001; Schafer & Graham, 2002; Schafer & Olsen, 1998). The
multivariate normal model has since evolved into a powerful data analytic framework that mimics
the classic FIML estimator in scope (Muthén & Asparouhov, 2012). Long-established methods for
factored regression specifications (Huang et al., 2005; Ibrahim et al., 2002) have similarly evolved.
Among other things, Bayesian factored regression specifications extend to moderated and
curvilinear regression models (Asparouhov & Muthén, 2021a; Keller & Enders, 2023; Lee et al,,
2007; Ludtke et al., 2020b; Zhang & Wang, 2017), models with discrete and nonnormal variables
(Asparouhov & Muthén, 2021b; Lee & Mitra, 2016; Liidtke et al., 2020b), latent variable models
(Aroian et al., 1978; Keller & Enders, 2021; Lee & Shi, 2000; Liidtke et al., 2020b; Merkle & Rosseel,
2018; Palomo et al., 2007), models for missing not at random processes (Du et al., 2021), models
with auxiliary variables (Daniels et al., 2014; Liidtke et al., 2020b), multilevel models (Enders et al.,
2020; Erler et al., 2019; Erler et al., 2016; Goldstein et al., 2014; Grund et al., 2021a), and models

featuring scale scores with missing item responses (Alacam et al., 2023). The development of
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Bayesian missing data handling procedures has arguably outpaced that of maximum likelihood, as
these applications exceed what is currently possible with likelihood-based estimation. The ensuing

discussion focuses strictly on factored regression specifications.
4,1 The Bayesian Paradigm

Maximum likelihood estimation is fundamentally situated in a frequentist paradigm that defines
model parameters as fixed quantities in the population. In this framework, each unique sample of
a given size yields a different estimate of an unknown parameter, and a sampling distribution
describes the hypothetical behavior of estimates from different random samples. The standard
error quantifies the expected difference between an estimate and its true parameter (i.e., the

standard deviation of the estimates).

In contrast, the Bayesian paradigm defines a parameter as an unknown variable rather than a
constant. Through this lens, some realizations of a parameter are more likely to have produced our
data than others. Probability distributions called posteriors encode knowledge about a model’s
parameters after analyzing the data. For example, after fitting a regression model, a normal curve
characterizes slope parameters that are consistent with the data. The center of this distribution (the
posterior mean or median) quantifies the most likely parameter given the data, and its spread (the
posterior standard deviation) quantifies uncertainty. These summary statistics are often
numerically equivalent to maximum likelihood point estimates and standard errors, respectively,

but their interpretations do not reference hypothetical estimates from other samples.

Notice that the frequentist and Bayesian frameworks reverse what varies and what is fixed. In
the frequentist paradigm, estimates from different samples vary around a fixed parameter. In the
Bayesian framework, evidence about different parameter values varies and the sample data are
fixed. Bayes’ theorem is the mathematical device that produces this important reversal. The

theorem’s composition is as follows.

prior X (varying data | fixed parameter)
scaling factor

(varying parameter | fixed data) = (14)
The left term is the posterior distribution, and the numerator of the right side is the product of a
prior distribution and a likelihood function. The prior is a probability distribution that conveys
expectations about a parameter before analyzing the data. This information could come from a
pilot study or meta-analysis, but most Bayesian applications use off-the-shelf diffuse
(noninformative) priors that contain as little information as possible. Finally, the denominator on

the right side is an unnecessary scaling term that does not depend on the parameter.
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Adopting diffuse prior distributions that convey little or no information is straightforward for
estimands like means and coefficients. For example, the normal curve is a common prior for
regression coefficients. Centering the curve at zero and specifying a massive standard deviation
effectively produces a flat function over all slope values that could have produced the data.
Invoking a prior distribution where every parameter value is equally likely effectively nullifies the
influence of the prior, such that the data alone determine the posterior’s shape. In contrast, oft-
the-shelf priors for variance and covariance parameters usually impart information that could
influence the results. For example, common prior distributions for variance parameters tend to
assign higher a priori weights to values close to zero. Fortunately, information from the data
overwhelms the prior as the sample size increases, so the impact of the prior distribution is often
negligible in practice.

From a practical perspective, researchers should be most concerned about prior distributions
when estimating variance and covariance parameters in small samples. Multilevel analyses are a
context where prior distributions can matter. In education applications, multilevel data sets often
feature many students at level-1 nested in a small number of schools at level-2. In such applications,
the choice of prior distribution for the variance-covariance matrix of the school-level random
effects is potentially impactful (Gelman, 2006). In practice, there is no way to know which prior is
best for a given situation. When in doubt, you can perform a sensitivity analysis that examines
whether the choice of prior meaningfully impacts the results. The ensuing data analysis examples

demonstrate this idea.

4.2 Markov Chain Monte Carlo (MCMC) Algorithms

In most cases, the posterior distribution of the parameters on the left side of Equation 14 is a
complicated multivariate function. Bayesian estimation leverages iterative MCMC algorithms that
break a complex problem involving multiple parameters and missing values into separate, simpler
steps. Each step estimates one unknown at a time, treating the current values of all other quantities
as constants. To illustrate, consider a simplified version of an earlier analysis example where ninth
grade broad reading scores are regressed on first grade reading. A factored regression specification
consists of two submodels: one for the focal regression and a secondary model for the incomplete
predictor. Figure 8 shows a schematic of the MCMC algorithm for the analysis. A single MCMC
iteration consists of two broad steps. Using the filled-in data from the previous iteration, the
algorithm first estimates the parameters of each submodel. Parameters can be estimated

individually or in blocks of like terms (e.g., each model’s coefficients can be estimated in a single
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Do for t =1 to T iterations

Estimate regression models 1) Estimate focal model parameters, conditional on the
filled-in data

2) Estimate predictor model parameters, conditional on
the filled-in data

3) Impute missing outcome, conditional on focal model
parameters

4) Impute missing predictors, conditional on two or more
sets of model parameters

Repeat

Impute missing values

Summarize model parameters

FIGURE 8. Schematic of the MCMC algorithm for the analysis. The algorithm first estimates the parameters
of each submodel using the filled-in data from the previous iteration. Having updated the parameter values,
the algorithm then draws imputations from distributions based on the current parameters.

step). Having updated the parameter values, the algorithm then samples replacement scores

(imputations) from distributions based on the current parameters.

Maximum likelihood applications deploy iterative algorithms that successively and
deterministically adjust parameters with the goal of minimizing the sum of squared, standardized
residuals. The algorithm converges when estimates no longer change from one iteration to the
next, at which point the resulting estimates maximize data-model fit. In contrast, MCMC uses
Monte Carlo computer simulation (the second “MC” in MCMC) to sample plausible parameter
values at random from a distribution. For example, a normal distribution usually generates
regression coefficients, and a right-skewed inverse gamma distribution often generates variance
estimates. Conceptually, the process of simulating new parameter values can be understood as
computing predicted parameters from the filled-in data then adding random noise (residuals) to
each. For example, to update the intercept and slope from a linear regression, the MCMC
algorithm uses OLS point estimates and standard errors to define the predicted values and spread
of the random noise terms, respectively. Adding computer-generated normal residuals to the

predicted coefficients gives updated parameter values.

To illustrate MCMC estimation more concretely, Figure 9 shows line graphs (trace plots) of
the bivariate regression model parameters from 50 MCMC cycles. Notice that the parameters

continually oscillate in a random pattern from one iteration to the next, and they never converge
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FIGURE 9. Trace plots of bivariate regression model parameters from 50 MCMC cycles. Because
they are sampled at random from distributions, parameter values continually oscillate in a
random pattern from one iteration to the next. The posterior distributions on the right side of the
graph depict the accumulation of parameter values across many computational cycles.

on a single, fixed value. The distributions on the right side of the graph depict the accumulation of
parameter values across many computational cycles (the posterior distributions), and the dashed

horizontal lines are the Bayesian point estimates (posterior means or medians).

Whereas maximum likelihood algorithms converge when estimates no longer change across
successive iterations, MCMC estimation converges when the iterative algorithm generates
parameter values that form a stable distribution. Practically speaking, convergence is achieved
when accumulating additional iterations does not change the mean and variance of the simulated
parameter values. The potential scale reduction factor (PSRF; Gelman & Rubin, 1992) is a popular
index that uses ANOV A mean squares expressions to compare parameter distributions generated
from two unique MCMC processes (chains). To illustrate, the trace plots in Figure 10 show 200
parameter estimates (the small black dots) from a pair of MCMC chains with different random
starting values. Figure 10a is consistent with an MCMC process that has not converged because
two independent chains produce parameter values with different means. In contrast, the trace plot
in Figure 10D is consistent with a process that has converged because the distributions have similar
center and spread. Numerically, PSRF values are scaled such that values closer to one (e.g., PSRF

< 1.05) reflect convergence. Keller and Enders (2021, Chapter 3) provide a detailed illustration of



Bayesian Estimation 37

MCMC convergence diagnostics, and the Software Tutorials document similarly uses the PSRF for

this purpose.

a) MCMC has not converged (PSRF > 1.05)
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FIGURE 10. Panel (a) depicts an MCMC algorithm that has not converged
because the mean parameter values from two independent processes are
very different. Panel (b) has converged because the means are very similar.
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4.3 Missing Data Imputation

Returning to Figure 8, each MCMC cycle samples plausible replacement scores from distributions
based on the current parameter values. The missing data imputation step warrants discussion
because it is common to Bayesian analyses and to the multiple imputation procedures discussed in
Section 5. As you will see, the imputation phase of a multiple imputation analysis coopts MCMC
estimation to create and save a small collection filled-in data sets that are subsequently reanalyzed
using frequentist inference. In a Bayesian analysis, the imputations play a supporting role behind
the scenes, as the goal is to obtain parameter summaries that average over thousands of realizations

of the missing data.

To illustrate MCMC’s imputation step, consider a simple regression model where first grade
reading predicts ninth grade performance. Both variables have missing data. MCMC uses a
factored specification that expresses the bivariate distribution as a pair of univariate distributions.
Both are normal in this example, but they need not be. The symbolic expression for the

factorization is shown below with the corresponding regression models.

f(READ,, READ,) = f(READ,|READ,) X f(READ)
READ, = f3, + B1(READ;) + ¢ (15)
READ, =y, +¢€

Symbolically, f(READy|READ;) says that the conditional distribution of ninth grade scores
depends on first grade reading (i.e., ninth grade scores are normally distributed around predicted
values), and f(READ;) is the marginal distribution for the first grade scores alone. The
factorization is central to imputation because it dictates which models contribute to a variable’s
distribution of missing values. The focal regression solely determines ninth grade imputations
because the incomplete outcome appears in only one model. In contrast, first grade scores appear

in two equations, so both models contribute to imputation.

To illustrate imputation, Figure 11a shows the distribution of plausible ninth grade reading
imputations at three levels of first grade performance. The solid black dots on the regression line
are predicted ninth grade scores, and the white circles are plausible imputations. By assumption,
scores are normally distributed around the regression line, and the residual standard deviation
from the regression model (estimated in the first part of each MCMC cycle) dictates the spread of
the three normal curves. Candidate imputations fall exactly on vertical lines, but I added horizontal
jitter to enhance visual clarity. The MCMC algorithm generates an imputation for each person by
randomly selecting a value from their candidate distribution (technically, the algorithm draws

from a full distribution of replacement scores, not just those displayed in the graph). Figure 11b
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shows three imputations drawn at random from these distributions. The straight arrows pointing
from the predicted values to imputed scores are residuals, which MCMC “samples” by simulating
random numbers from a normal curve. Conceptually, each imputation is a predicted value plus a

random noise term.
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FIGURE 11. Panel (a) shows distributions of ninth grade imputations at
three levels of first grade reading. Panel (b) shows three imputations drawn
at random from each distribution. Each imputation can be viewed as the
sum of a predicted value (the black dots) and a normal residual (arrows).
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Returning to Equation 15, the first grade reading variable appears as a predictor in the focal
regression and an outcome in its own supporting model. MCMC again samples replacement scores
at random from a distribution of plausible values. To illustrate, Figure 12a shows the distribution
of first grade reading imputations at three levels of ninth grade performance. The solid black dots
represent predicted values, and the white circles are plausible imputations. The predicted scores

no longer fall on the regression line, and the distributions of imputations are located on horizontal
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FIGURE 12. Panel (a) shows distributions of first grade imputations at three
levels of ninth grade reading. Panel (b) shows three imputations drawn at
random from each distribution. Each imputation can be viewed as the sum
of a predicted value (the black dots) and a normal residual (arrows).
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slices in the bivariate coordinate system. Because the first grade scores appear in two models, the
predicted values and spread of the distributions are now complex functions of two sets of model
parameters (Enders, 2022; Eq. 5.12). This technical detail aside, the composition of the filled-in
data points is the same—each imputation is the sum of a predicted value and random noise term.
To emphasize this point, Figure 12b shows three imputations drawn at random. As before, the
straight arrows pointing from the predicted values to imputed data points are residuals, which
MCMC “samples” by simulating random numbers from a normal curve. After imputing all
missing data points, the MCMC algorithm forwards the filled-in data to the next iteration, where

the model parameters are estimated again from the new data.

4.4 Fine-Tuning MCMC: Auxiliary Variables and Nonnormal Data

The conditionally missing at random assumption described in Section 1.2 requires that the unseen
score values contain no unique information about missingness beyond that contained in the
observed data. Practically speaking, this assumption requires that all important determinants of
missingness are contained within a model’s observed data. Adding extraneous auxiliary variables
can help satisfy this assumption, minimizing the risk of nonresponse bias (Collins et al., 2001;
Rubin, 1996). Like a maximum likelihood analysis, the goal is incorporate the additional variables

while maintaining the structure of the model that we would have fit had there been no missing data.

A straightforward way to leverage auxiliary variables is to treat them as additional outcomes
that are predicted by the analysis variables and by each other. Figure 5b depicts this specification,
with dashed lines depicting the auxiliary variable regression slopes. With this approach, the focal
analysis model is embedded in larger network of variables. The additional regressions do not align
with substantive theory and need not reflect a logical causal order. Rather, they are simply a tool
for linking the analysis variables to the auxiliary variables. This strategy is simple to implement,
and it readily accommodates mixtures of numeric and discrete auxiliary variables. The ensuing
analysis examples illustrate this additional outcome approach, as do the examples in the Software

Tutorials document.

Turning to nonnormal data, Bayesian estimation readily accommodates a variety of variable
metrics, and incomplete variables need not be continuous or normal. Estimators for discrete
variables are broadly available in software programs, and these facilities include support for binary,
ordinal, multicategorical, and count variables (Albert & Chib, 1993; Asparouhov & Muthén,
2021b; Keller & Enders, 2021; Polson et al.,, 2013). For continuous variables, the statistical
justification for robust (sandwich estimator) standard errors and test statistics does not extend

naturally to the Bayesian framework because it presupposes a misspecified model (Bayesian
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estimation assumes that the fitted model and its corresponding distribution is correctly specified).
Some authors argue that Bayesian analyses are robust in the sense that the posterior distributions
of the model parameters naturally reflect features of the data. For example, 95% credible intervals
do not invoke large-sample (asymptotic) arguments, and the interval limits may be asymmetric

around a point estimate.

In lieu of robust corrections, researchers routinely apply normalizing transformations like
taking the natural logarithm of a variable. One of the challenges with transformations is selecting
one that is appropriate for the data’s shape. The Yeo-Johnson normalizing transformation (Yeo &
Johnson, 2000) is a promising option that is gaining traction in the literature (Keller & Enders,
2023; Lidtke et al., 2020b). Briefly, the procedure envisions a nonnormal variable Y that links to a
normalized variable Y* via a shape parameter. In the context of a regression model, the normalized
variable serves as the outcome, and the MCMC algorithm iteratively estimates a shape parameter
that is appropriate for the observed data’s shape. The Yeo-Johnson procedure is attractive because
it subsumes several common functions, including inverse, logarithmic, square root, and Box-Cox
transformations. Moreover, the procedure accommodates negative score values and positively or
negatively skewed distributions. The transformation has shown promise for imputing nonnormal
missing data (Lidtke et al., 2020b), and it is readily available in statistical software (Keller & Enders,
2021; Robitzsch & Ludke, 2023).

4.5 Bayesian Analysis Example 1

The first Bayesian analysis example illustrates a multiple regression model comprised of
incomplete continuous variables. The analysis uses the behaviorachievement.dat data set from
a longitudinal study that followed 138 students from primary through middle school. The file
includes three annual assessments of broad reading and math achievement beginning in the first
grade, seventh grade standardized achievement test scores taken from a statewide assessment, and
a final measure of broad reading and math obtained in ninth grade. The data also contain teacher
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The
Software Tutorials document provides additional information about this data set. Table 2 from

Section 1.5 shows the specific variables for this analysis example.

The analysis model featured ninth grade broad reading scores regressed on three academic and
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning

problems, and teacher-rated behavioral problems.

READ, = f3, + B1(READ,) + B,(LRNPROB,) + 8;(BEHSYMP,) + ¢ (16)
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The analysis also included second grade broad reading scores and seventh grade standardized test
scores as auxiliary variables. These additional variables were included because they exhibited

significant residual covariation with the analysis variables (see Section 1.5).

Applying the flowchart from Figure 3, either a multivariate or factored regression specification
is appropriate. I strictly use the latter for the Bayesian analyses. Following Figure 2b, the focal
variables were represented by two submodels, each with distinct distributional assumptions. For

completeness, the symbolic representation for this two-part factorization is as follows.
f(READ,|READ,, LRNPROB,, BEHPROB,) X f(READ,, LRNPROB,, BEHPROB,)  (17)

The first term corresponds to the univariate regression model from Equation 16, and the second
term represents a multivariate normal distribution for the predictors. The Blimp application used
in the Software Tutorials document automatically configures the predictor distributions; the user
simply needs to specify the focal regression model. Finally, auxiliary variables enter the model as

additional outcomes that are predicted by the analysis variables and by each other. This additional
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FIGURE 13. Solid lines denote the focal regression model parameters, and
dashed lines are auxiliary variable parameters. The path diagram depicts a
model where auxiliary variables function as additional outcomes. All
analysis variables predict the auxiliary variables, and second grading reading
also predicts seventh grade standardized test scores.
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part of the factorization consists of two linear regression models, the symbolic notation for which

is below.

f(STANREAD,|READ,, READ,, LRNPROB,, BEHPROB,) X
f(READ,|READ,, READ,, LRNPROB,, BEHPROB,) (18)

Figure 13 shows a path diagram of the analysis model, with dashed lines denoting the auxiliary

variable regressions.

Example 6 from the Software Tutorials document provides annotated syntax and output files
for the analysis. Table 7 shows the Bayesian parameter summaries. The estimate (posterior
median) and standard deviation columns describe the center and spread of the posterior
distributions. Although they make no reference to drawing repeated samples, these quantities are
analogous to frequentist point estimates and standard errors. The 95% credible interval columns
give ranges that capture 95% of each parameter’s distribution. These are akin to confidence
intervals, but they describe a range of likely parameter values rather than the long-run behavior of
intervals from different random samples. Importantly, the numeric summaries in Table 7 are
effectively identical to the corresponding maximum likelihood estimates from Table 4. This is
exactly what you would expect when applying Big Three approaches that use the same data and
invoke the same assumptions.

TABLE 7. Bayesian Parameter Summaries From a Multiple Regression

0 [o)
Effect Est. Std.  2.5%  97.5% » ,

Dev. LCL UCL

Intercept 66.01 6.05 53.94 77.80  118.94  <.001
READ, 0.50 0.04 0.42 0.59 13429 <.001
LRNPROB, -0.25 0.12 -0.48 -0.01 4.23 .04
BEHSYMP, -0.18 0.11 -0.39 0.03 3.00 .08
R-square .60 .05 49 .68 -- --

To illustrate the interpretations, Figure 14 shows the posterior distributions of the parameter
values from 10,000 MCMC estimation cycles. The solid vertical lines are the medians, and the
shaded regions contain values inside the 95% credible interval limits. To reiterate, the posterior
distributions characterize plausible parameter values that could have produced these data. From a

practical perspective, the posterior summaries have interpretations that parallel any multiple
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FIGURE 14. Posterior distributions of parameter values from 10,000 MCMC
iterations. The solid vertical lines are the medians, and the shaded regions
contain values inside the 95% credible interval limits.

regression analysis. For example, consider the first grade reading slope. The coefficient predicts
that two individuals who differ by one point in first grade should differ by 0.50 points in ninth
grade, holding constant teacher-rated learning and behavioral problems. The posterior standard
deviation (SD = .04) quantifies uncertainty, much like the corresponding standard error from the
maximum likelihood analysis. Finally, the credible interval conveys that there is a .95 probability

that the parameter falls between 0.42 to 0.59. To reiterate, the Bayesian summary of the reading
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slope is numerically equivalent to its maximum likelihood counterpart from Table 4 (; = 0.50, SE
= .04, and CI[0.42, 0.59]).

The Bayesian summaries also lend themselves to familiar hypothesis testing logic. Returning
to the reading slope, the credible interval limits spanning 0.42 to 0.59 included 95% of the area
under the coefficient’s posterior distribution. From this, we can conclude that the parameter is
statistically different from zero (p < .05) because the null value is well outside the 95% interval.
That is, the probability that the parameter is less than 0.42 or greater than 0.59 is .05. Alternately,
(Asparouhov & Muthén, 2021) proposed a Bayesian Wald chi-square statistic that can be used to
evaluate a broad range of hypotheses. For researchers who prefer a frequentist-like test statistic,
the rightmost columns of Table 7 show the chi-square test statistics and p-values for the
coefficients. These quantities lead to the same conclusions as the 95% credible intervals (e.g., the
first grade reading slope is significant with p < .001). Levy and McNeish (2023) use the phrase
“computational frequentism” to describe applications that use MCMC estimation to approximate

frequentist point estimates and test statistics.

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors
for variances and covariances (Keller & Enders, 2021). The prior distributions influence variance
parameters by altering the number of independent data points and/or the residual sums of squares
at each MCMC cycle. Roughly speaking, alternate prior distributions induce differences that are
analogous to those between restricted and full information maximum likelihood (McNeish, 2017;
D. McNeish & L. M. Stapleton, 2016) or least squares and full information maximum likelihood
(Enders, 2022). The choice of prior distribution is potentially impactful in small samples
(McNeish, 2016). To explore the sensitivity of the results to this issue, I fit the model with two
alternate prior distributions (also off-the-shelf options that are invoked with a single keyword).
Changes to the results were generally inconsequential. At a high level, the R-square summaries
were stable across priors (.595 to .604), and differences in the point estimates were generally in the
third decimal. Finally, inferences were similarly unaffected by the prior distribution. For example,
the first grade reading slope’s lower credible limit varied between only 0.421 and 0.423, and the
upper limit ranged from 0.589 to 0.591. Considered as a whole, I conclude that the choice of prior
distribution did not meaningfully impact on the MCMC results.

4.6 Bayesian Analysis Example 2
The second analysis example illustrates a moderated regression model with an incomplete

interaction effect and an incomplete binary covariate. The corresponding maximum likelihood

analysis appears in Section 3.5. To refresh, the analysis model features ninth grade broad reading
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scores regressed on academic and behavioral measures collected in first grade: reading
achievement, teacher-rated learning problems, the product of first grade reading scores and

learning problems, and the at-risk dummy code.

READ, = f3, + B1(READ,) + 8,(LRNPROB;)
+ B3(READ,)(LRNPROB,) + B,(ATRISK) + ¢ (19)

The analysis also included second grade broad reading scores and seventh grade standardized test

scores as auxiliary variables.

Applying the flowchart from Figure 3, models with interactive effects require a factored
regression specification that expresses the multivariate distribution into a series of simpler
distributions. Following Figure 2b, the focal variables were represented by two submodels, each
with distinct distributional assumptions. For completeness, the symbolic representation for this

two-part factorization is as follows.
f(READ,|READ,, LRNPROB,, ATRISK) x f(READ,, LRNPROB,, ATRISK)  (20)

The first term corresponds to the univariate regression model from Equation 19, and the second
term represents a multivariate normal distribution for the predictors. The Blimp application used
in the Software Tutorials document automatically configures the predictor distributions; the user
simply needs to specify the focal regression model. In the multivariate distribution, the binary risk
indicator appears as a normally distributed latent response variable, consistent with the probit
regression framework (Albert & Chib, 1993). The categorical variable model does not impact the
variable’s role in the focal model, where it appears as a dummy code. Finally, auxiliary variables
enter the model as additional outcomes that are predicted by the analysis variables and by each
other. This additional part of the factorization consists of two linear regression models, the

symbolic notation for which is below.

f(STANREAD,|READ,, READ,, LRNPROB,, ATRISK) X
f(READ,|READ,, READ,, LRNPROB,, ATRISK) (21)

Figure 15 shows a path diagram of the analysis model. The focal and auxiliary variables are color
coded, and dashed lines denote the auxiliary variable regressions. The arrow pointing from

learning problems to the first grade reading test slope is the interaction coefficient.
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FIGURE 15. Solid lines denote the focal regression model parameters, and
dashed lines are auxiliary variable parameters. The path diagram depicts a
model where auxiliary variables function as additional outcomes. All
analysis variables predict the auxiliary variables, and second grading reading
also predicts seventh grade standardized test scores.

Example 10 from the Software Tutorials document provides annotated syntax and output files
for the analysis. Table 8 shows the Bayesian parameter summaries. To reiterate, the posterior
distributions characterize plausible parameter values that could have produced these data. The
median of each distribution is the MCMC point estimate, and the standard deviation is the
“Bayesian standard error”, albeit with no reference to repeated sampling. From a practical
perspective, the posterior summaries have interpretations that parallel any moderated regression
analysis. To begin, the lower-order terms in a moderated regression are conditional effects that
depend on scaling or centering. To facilitate interpretation, the analysis centered the interacting
variables at their iteratively-estimated grand means. Centering defines the first grade reading slope
(B; = 0.50) as a conditional effect at the mean of the learning problems distribution, and the
learning problems slope (8, = —0.37) similarly reflects a conditional effect at the reading
achievement average. The interaction slope captures the change in the first grade reading slope for
each one-unit increase in learning problems (and vice versa). The positive coefficient (55 = 0.012)
indicates that the association between first and ninth grade reading scores becomes stronger (i.e.,

more positive) for students with elevated learning problems.
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TABLE 8. Bayesian Parameter Summaries From a Moderated Regression

Std. 2.5% 97.5%

Effect Est. Dev. LCL UCL X p
Intercept 87.85 1.32 85.19 90.38 4419.07 <.001
READ, 0.50 0.05 0.41 0.59 114.66 <.001
LRNPROB, -0.37 0.09 -0.55 -0.20 17.09 <.001

READ; x LRNPROB, 0.012 0.005 0.003 0.022 1.08 <.01
ATRISK -1.93 1.87 -5.67 1.63 6.86 32
R-square 61 .05 .50 .70 -- --

Note. First grade reading scores and learning problems ratings are centered at their
grand means.

As explained previously, the Bayesian summaries also lend themselves to familiar hypothesis
testing logic. Returning to the interaction coefficient, the credible interval limits spanning 0.003 to
0.021 included 95% of the area under the coefficient’s posterior distribution. From this, we can
conclude that the parameter is statistically different from zero (p < .05) because the null value is
outside the 95% interval. One could also adopt a computational frequentism perspective that views
the MCMC summaries as surrogates for frequentist point estimates and standard errors (Levy &
McNeish, 2023). To this end, the rightmost pair of columns in Table 8 show Wald chi-square
statistics (squared z-tests) and frequentist probability values (Asparouhov & Muthén, 2021).

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors
for variances and covariances (Keller & Enders, 2021). Roughly speaking, alternate prior
distributions induce differences that are analogous to those between restricted and full information
maximum likelihood (McNeish, 2017; D. McNeish & L. M. Stapleton, 2016) or least squares and
full information maximum likelihood (Enders, 2022). To explore the sensitivity of the results to
this issue, I fit the model with two alternate prior distributions (also off-the-shelf options that are
invoked with a single keyword). Changes to the results were generally inconsequential. At a high
level, the R-square summaries were stable across priors (.610 to .619), and differences in the point
estimates were generally in the third decimal. The binary risk indicator’s coefticient exhibited the
most noticeable changes, ranging from -1.88 to —1.93. However, these variations are trivial when
compared to the parameter’s standard deviation or 95% confidence limits. Finally, inferences were
similarly unaffected by the prior distribution. For example, the interaction’s lower credible limit
was consistently 0.003, and the upper limit ranged between 0.021 and 0.022. Considered as a whole,
I conclude that the choice of prior distribution did not meaningfully impact on the MCMC results.
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Multiple Imputation

Maximum likelihood and Bayesian estimation are similar in the sense that a researcher fits a
desired model to the incomplete data, and the software returns estimates and measures of
uncertainty that assume a conditionally missing at random process. When confronted with
missing values, maximum likelihood uses the normal curve to deduce the missing parts of the data
as it iterates to a solution, whereas Bayesian MCMC repeatedly fills in the missing data. In both
cases, missing data handling happens behind the scenes, and the primary goal is to estimate model
parameters. In contrast, multiple imputation prioritizes the imputations, and the goal is to create

filled-in data sets for later analysis.

Multiple imputation’s history traces 1977, when Donald Rubin proposed the procedure to the
Social Security Administration and Census Bureau as a solution for missing survey data®. Rubin
published his seminal multiple imputation book (Rubin, 1987) a decade later, and Joe Schafer’s
subsequent text (Schafer, 1997) fully generalized the methodology. In the 40 years or so since its
inception, multiple imputation has developed into a large collection of diverse methods; modern
texts catalog these various incarnations (Carpenter et al., 2023; van Buuren, 2018). Published
applications of multiple imputation abound, and virtually every general-use software program has

imputation facilities.

A typical multiple imputation application consists of three steps. In the imputation and
analysis phases, the researcher creates multiple copies of the data with different imputations, after
which they fit one or more analysis models to each filled-in data set. Analyzing each data separately
produces multiple sets of estimates and standard errors. The final pooling phase uses “Rubin’s
rules” (Little & Rubin, 2020; Rubin, 1987) to combine the imputation-specific results into a single
set of frequentist point estimates, standard errors, and test statistics. Figure 16 depicts these three

steps.

8 Rubin’s 1977 report is available in a 2004 volume of the American Statistician.
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FIGURE 16. The imputation phase creates multiple filled-in data sets that the researcher
subsequently analyzes in the analysis phase. The imputation-specific estimates from the second step
are subsequently pooled in a single set of frequentist results.

The initial imputation phase coopts Bayesian MCMC estimation described in Section 4.2.
Recall that a Bayesian analysis produces parameter summaries that average over thousands of
filled-in data sets. In a multiple imputation application, the Bayesian parameter summaries are not
the scientific focus. Rather, the main goal is to save a small number of the imputed data sets that
MCMC produces (e.g., 20 is an oft-cited recommendation; Graham et al., 2007). These data sets

are the inputs for obtaining frequentist points estimates, standard errors, and significance tests.

Multiple imputation involves two rounds of model fitting. The researcher first deploys MCMC
to fit an imputation model (usually some type of regression), after which they reanalyze the filled-
in data to obtain frequentist inferences. It is useful to classify multiple imputation procedures
according to whether the initial MCMC analysis is the same or different from the subsequent
frequentist analysis. Borrowing terminology from Enders (2022), a model-agnostic approach
deploys an imputation model that differs from the analysis phase model, whereas a model-based
procedure uses the same model for imputation and reanalysis. Model-agnostic methods include
classic multivariate imputation approaches (Schafer, 1997; Schafer & Olsen, 1998) and fully
conditional specification (van Buuren, 2007, 2018), among others. Newer model-based methods

include substantive model-compatible imputation (Bartlett et al., 2015), fully Bayesian estimation
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(Enders et al., 2020; Zhang & Wang, 2017), and the sequential specification (Erler et al., 2016;
Ludtke et al., 2020b).

To illustrate the key difference between agnostic and model-based imputation strategies,
consider a journal paper that requires multiple imputations for t-tests and a small number of
univariate regression models. A typical application of model-agnostic imputation would create
common imputations for all these analyses. In that scenario, the MCMC imputation model must
be broad enough to incorporate and preserve all associations examined in the paper. Such an
imputation model would necessarily differ from the individual analysis models because it includes
numerous additional parameters and variables. The imputation model usually represents
associations differently too. For example, Schafer’s (1997) classic joint model imputation uses a
multivariate regression model with complete variables predicting incomplete variables.
Alternatively, van Buuren’s (2006) fully conditional specification approach (also called the MICE
algorithm, for Multiple Imputation by Chained Equations) uses a round robin sequence of
univariate regression models where each incomplete variable is predicted by all other variables.
Notice that a variable’s status as an outcome or predictor in the MCMC imputation model depends
on whether it is incomplete or complete. The imputation phase is effectively agnostic about a

variable’s role in the subsequent analysis phase.

In contrast, a researcher adopting a model-based imputation strategy uses the same model to
impute the data as they do to analyze the data. Although the imputation phase may include
additional auxiliary variables, the imputation and analysis phase models are otherwise congruent.
Crafting imputations to align with a specific analytic model implies that each frequentist analysis
requires its own filled-in data sets. Returning to the example, researchers would create unique
imputations for each t-test and regression analysis in the paper. The MCMC imputation phase for
each t-test would deploy a regression model with a dummy code predictor, and the imputation
phase for each regression analysis would deploy a matching regression model. Note that model-
based imputation is analogous to FIML estimation, which also integrates missing data handling on

an analysis-by-analysis basis.

How does one decide between model-agnostic and model-based imputation? The composition
of the focal analysis model—in particular, whether it includes nonlinear effects such as
interactions, polynomial terms, or random coefficients—determines the type of imputation
strategy that works best. The flowchart in Figure 17 depicts a decision tree for selecting a multiple
imputation procedure. Starting on the left, the first decision point depends on whether the focal
analysis features a nonlinear effect. If the answer to this first question is yes, then model-based
multiple imputation based on a factored regression specification is the only choice. If no, then

various model-agnostic procedures are appropriate depending on the variable metrics. The
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FIGURE 17. Flowchart depicting decision tree for choosing agnostic or model-based multiple imputation. Starting on the left,
the first decision point depends on whether the focal analysis features any type of nonlinearity. The second decision is
whether all variables share the same metric. Although classic methods are not always appropriate, factored specifications are.

flowchart oversimplifies a nuanced issue, but it provides a heuristic for classifying multiple
imputation options. The flowchart also parallels the high-level decision tree for missing data
analyses in Figure 3. Finally, it is perfectly fine to use a combination of model-based and model-

agnostic procedures within the same project or paper.

Joseph Schafer’s classic textbook (Schafer, 1997) popularized agnostic imputation based on the
multivariate normal distribution. The MCMC algorithm for his approach repeatedly updates the
model parameters—a mean vector and covariance matrix—conditional on the current filled-in
data, after which it draws new imputations from normal distributions based on the parameter
values. Saving a small number of imputed data sets from a long iterative sequence and performing
analyses on the filled-in data sets gives estimates that average over different realizations of the
missing values. Accessible descriptions of this classic procedure are widely available in the
literature (Schafer, 1999; Schafer & Graham, 2002; Schafer & Olsen, 1998). This paper instead
focuses on model-agnostic fully conditional specification because it is more broadly available in
computer software programs. Finally, a discussion of model-based imputation is relegated to the
analysis example in Section 5.6 because the imputation phase exactly coopts the MCMC algorithm

described earlier in Section 4.2—the only new details involve saving and reanalyzing imputations.
5.1  Model-Agnostic Fully Conditional Specification

Fully conditional specification (van Buuren, 2007; van Buuren et al., 2006; van Buuren &

Groothuis-Oudshoorn, 2011) imputes variables one at a time using a sequence of univariate
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regression models. The composition of these models follows a round robin scheme where each
incomplete variable is predicted by all other variables, complete or previously imputed.
Importantly, each regression in the sequence is tailored to the incomplete variable’s metric,
allowing for a potentially diverse collection of generalized linear imputation models. This
procedure is also known as the MICE algorithm (Multiple Imputation by Chained Equations) after
Stef van Buuren’s popular R program (van Buuren & Groothuis—Oudshoorn, 2011). Variations of
the procedure are available for imputing latent response variables (Enders, 2022; Grund et al.,
2021b; Keller & Enders, 2021), incomplete covariates in moderated regression models (Bartlett &
Morris, 2015; Bartlett et al., 2015), multilevel data structures (Enders et al., 2018; van Buuren,
2011), count and zero-inflated variables (Kleinke & Reinecke, 2013), classification and regression
trees (Doove et al., 2014; Shah et al., 2014), and regularized regression (Deng et al., 2016; Zhao &
Long, 2016), among others. Van Buuren’s multiple imputation book (van Buuren, 2018) details

this framework and some of its extensions (https://stefvanbuuren.name/fimd/).

To illustrate the basic idea behind fully conditional specification, suppose a researcher wants
to obtain descriptive statistics and correlations for three incomplete variables, Y; to Y;, and one
complete variable, Z. Recall from an earlier section that MCMC estimation iteratively repeats two
broad steps: estimate model parameters using the current filled-in data, then create imputations
using the updated parameter values (imputation = predicted value + random noise). The MCMC
algorithm for fully conditional specification applies this estimation-imputation sequence to each

incomplete variable in turn.

For the trivariate imputation problem, each computational cycle fits three regression models,
one per incomplete variable. The imputation regression equations are shown below, and Figure 18

displays these imputation regression models as path diagrams.

Yi =Y+ Yu(Yz(t_l)) + Y12(Y3(t_1)) +7113(Z2) +
Y, =7+ Yzl(Yé(t_l)) + Yzz(Y1(t)) +v23(Z2) + ¢, (22)

Y; =73+ Y31(Y1(t)) + Y32(Y2m) +7v33(Z2) + ¢

Notice that the imputation regression equations follow a round robin scheme where each
incomplete variable takes a turn as the to-be-imputed outcome, after which it functions as a fully
complete predictor in all other equations. Each model invokes estimation and imputation steps
that exactly follow Sections 4.2 and 4.3. The only difference is that each MCMC iteration applies
these updating steps to multiple models in a sequence. The tand ¢ - 1 superscripts indicate whether
the filled-in values on the right side of each equation originate from the current or previous

iteration, respectively. For simplicity, the imputation models are all linear regressions, but the
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FIGURE 18. Fully conditional specification imputation models with three
incomplete variables. Each computational cycle fits three regression models,
one per incomplete variable. Panel (a) is Y1’s imputation model, panel (b) is
Y>’s regression model, and panel (c) is Y3’s imputation model.

procedure readily accommodates discrete metrics as well. For example, if Y; was binary, the first
equation would be a logistic or probit regression that spawns dichotomous imputations. Similarly,
if Y; was multicategorical, the final equation in the sequence would be a multinomial logistic

regression.
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Section 4.3 described MCMC’s imputation procedure, with carries over to fully conditional
specification with no modification. For numeric variables, the algorithm uses Monte Carlo
computer simulation to “sample” replacement scores from a person-specific normal distribution.
A predicted value from a regression equation defines the center of each normal curve, and the
model’s residual standard deviation defines spread. For categorical variables, logistic or probit
imputation models yield predicted probabilities for each discrete response, and MCMC samples
replacement scores from a probability mass function that looks like a bar graph. Figure 11
illustrates the imputation = predicted value + noise concept for an incomplete numeric variable.
Predictive mean matching is a nonparametric alternative that instead draws imputations from a
pool of observed scores taken from people whose predicted values are similar to that of the person
with missing data (Kleinke, 2017; Lee & Carlin, 2017; van Buuren, 2018; Vink et al., 2014). Morris
etal. (2014) catalog variations of predictive mean matching in software programs, and they provide

recommendations about the optimal matching criterion and donor pool size.

Notice that the imputation regression models all differ from the intended frequentist analyses
(descriptive statistics and correlations). This is the defining feature of agnostic imputation.
Although the imputation and analysis models need not match, it is vital that imputation includes
all to-be-analyzed variables and preserves any special features of the frequentist analyses (Collins
et al., 2001; Schafer, 2003). In this example, the three regression equations do not invoke
assumptions or impose restrictions that contradict the intended frequentist analysis; the
imputation phase includes all analysis variables, and the imputation and analysis models both
assume linear associations. Suppose the data are hierarchical with students nested in schools. The
imputation models from Equation 22 would distort the frequentist point estimates and inference
because the fail to incorporate the multilevel structure. Similarly, the imputations would be
inappropriate for a moderated regression analysis because the models assume that all interactions

equal zero.

Two early strategies that integrated nonlinear terms into a fully conditional specification
scheme—just-another-variable imputation and passive imputation—warrant brief discussion due
to their propensity for bias. The so-called just-another-variable approach treats product and
polynomial terms as standalone, normally distributed variables (von Hippel, 2009). Returning to
the variables from Equation 22, suppose the intended frequentist analysis is a moderated regression
where Y] and Y, interact to predict Y3. The product term—which is incomplete whenever Y; or Y,
is missing—would simply appear as an additional incomplete variable in the imputation scheme.
In contrast, passive imputation (also known as impute-then-transform; von Hippel, 2009) would
adopt the imputation models from Equation 22, updating the product term by multiplying the

imputed Y; and Y, scores (Seaman et al,, 2012). Analytic and computer simulation studies
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repeatedly demonstrate that both methods are prone to substantial bias (Cham et al., 2017; Enders
etal., 2014; Humberg & Grund, 2022; Seaman et al., 2012; Zhang & Wang, 2017). A newer variation
of fully conditional specification called substantive model-compatible imputation addresses this
shortcoming (Bartlett et al., 2022; Bartlett & Morris, 2015; Bartlett et al., 2015; Goldstein et al,,
2014). However, I classify this extension as a model-based imputation procedure because the
appropriate sequence of univariate imputation models is inherently built around one analysis with

a specific configuration of interactive or nonlinear effects.
5.2 Saving Imputed Data Sets

A typical MCMC process generates thousands of imputed data sets, one per computational cycle.
The multiple imputation analysis phase requires just a few of these. Classic resources recommend
three to five imputed data sets for frequentist analyses (Rubin, 1987; Schafer, 1997). Graham et al.
(2007) used computer simulations to demonstrate that analyzing 20 or more imputations can
produce nontrivial power gains. Other studies suggest that 100 or more imputations may be
required to achieve precise estimates of quantities like confidence interval half-widths and
probability values (Bodner, 2008; Harel, 2007; von Hippel, 2020). The examples in the Software

Tutorials document use 20 imputed data sets.

After deciding on the number of imputations, we need to extract the data sets from a much
longer MCMC process. Consecutive iterations of the MCMC algorithm produce correlated
estimates and imputations, and this autocorrelation can last for many computational cycles.
Analyzing data sets with correlated imputations should be avoided because doing so can attenuate
frequentist standard errors. A simple way to eliminate autocorrelation is to specify a unique
MCMC process for each data set, then save the filled-in data from the final iteration of each
“chain”. To illustrate, suppose a researcher wants to save 20 imputed data sets. After conducting a
preliminary MCMC run to evaluate convergence (see Section 4.2 and Figure 10), they determine
that the algorithm becomes sufficiently stable within 1,000 iterations. To create multiple
imputations, they would specify 20 parallel MCMC processes and save the filled-in data from the
1,000™ iteration of each unique chain. The Software Tutorials document uniformly adopts this

strategy because the resulting imputations are automatically uncorrelated.
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5.3  Analyzing Imputations and Pooling Results

The product of the initial imputation phase is a collection of filled-in data sets. Although intuition
might suggest averaging the imputations into a single data set, doing so would attenuate standard
errors. Instead, the correct approach is to analyze each data set individually then average the
estimates and standard errors. Fortunately, most major software platforms have facilities for
automating this process. To illustrate, consider an example where the goal is to estimate the mean
change between the first- and ninth grade broad reading assessments. The analysis and pooling

phases involve the following steps: (a) compute difference scores in each imputed data set by

TABLE 9. Imputation-Specific Estimates

Imputation Estimate Std. Error  (Std. Error)?
1 6.652 0.541 0.293
2 6.509 0.526 0.277
3 6.734 0.533 0.284
4 6.376 0.541 0.292
5 6.318 0.549 0.301
6 6.267 0.533 0.284
7 6.698 0.537 0.289
8 6.400 0.534 0.285
9 6.321 0.544 0.296

10 6.563 0.544 0.296
11 6.440 0.554 0.307
12 6.433 0.527 0.278
13 6.374 0.535 0.286
14 6.416 0.536 0.287
15 5.900 0.549 0.301
16 6.659 0.527 0.277
17 6.532 0.543 0.294
18 6.092 0.539 0.291
19 6.388 0.553 0.305
20 6.289 0.543 0.295
Mean 6.418 0.291

Variance 0.041
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subtracting first grade scores from the ninth grade scores, (b) compute the mean difference score
and its standard error in each data set, and (c) pool estimates and standard errors. This section
demonstrates the various components of the pooling process. Example 12 from the Software
Tutorials document provides annotated syntax and output files for model-agnostic fully

conditional specification.

Table 9 shows the mean difference estimates, standard errors, and squared standard errors (i.e.,
sampling variances) from the 20 imputed data sets. These quantities naturally vary because each
data set contains different predictions about the missing values. The estimates and squared
standard errors are the inputs to Rubin’s pooling rules in Table 10 (Little & Rubin, 2020; Rubin,
1987). The pooling formulas use M to denote the number of data sets, in this case M = 20. Focusing
on the mean change score, the multiple imputation point estimate is the arithmetic average of the
imputation-specific estimates. The summary section near the bottom of Table 9 reports the mean
estimate as 6.42. On average, broad reading scores improved by more than six points. Although it
averages over multiple realizations of the missing data, the point estimate has the same

interpretation as one from a complete-data analysis.

TABLE 10. Summary of Rubin’s Pooling Rules

Quantity Description Formula
Pooled point Arithmetic average of the point - 1 i 8
estimate estimates - mz—:1 m
1 Arithmetic average of the M
- 1
Wlthm . . squared standard errors mean(SE?) = — Z SEZ,
imputation variance . M
(complete-data sampling error) m=1
B Variance of parameters across
etween- i ted data sets (missing data var(@ z (
imputation variance ' puied ca & (M 1) & m =
uncertainty)
Pooled standard Complet.ejdata sarpphng error oar (9)
error plps _addltlonal noise due to SE = + [ mean(SE?) + Uar(G) +—" i
missing values
Difference between the pooled 6_6
Test statistic estimate and null value relative = Ho
to the pooled standard error SE

Rubin’s pooling rules for standard errors are more complex because they incorporate two

sources of uncertainty. To begin, each of the squared standard errors in the rightmost column of
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Table 9 estimates the expected amount of random sampling error from a complete data set. The
average of the squared standard errors provides a more precise estimate of this quantity. The
second equation in Table 10 shows this component of the pooling expression, which is commonly
called the within-imputation variance. The summary section near the bottom of Table 9 reports
the average squared standard error as 0.29. Of course, the data are not complete, so taking the
square root of this value would produce an attenuated standard error that fails to acknowledge
missingness. Returning to the point estimates, the mean difference estimates vary for only one
reason—the data sets that spawned the estimates contain different imputations. Leveraging this
fact, computing the variance of the point estimates around their average quantifies additional
uncertainty due to missing data. The third equation in Table 10 shows this component of the
pooling expression, which is often called between-imputation variance. The summary section near

the bottom of Table 7 reports the between-imputation variance of the point estimates as 0.41.

The pooled standard error equation in Table 10 combines the within- and between-imputation
variance into a single measure of uncertainty. Conceptually, the standard error expression starts
with the attenuated estimate of complete-data sampling error, then it uses between-imputation
variance as a correction factor that inflates the standard error according to the amounts and
patterns of missing data. Substituting the within- and between-imputation variance estimates into
the standard error formula gives SE = 0.58. This composite standard error is noticeably larger than
the complete-data standard errors from Table 9 because it appropriately reflects missingness-
induced imprecision. Finally, although their composition is very different, it is important to note
that the multiple imputation standard errors are usually numerically equivalent to those of
maximum likelihood and to Bayesian posterior standard deviations. The subsequent analysis

examples highlight this point.

Numerous procedures for conducting frequentist significance tests are available for multiply
imputed data. The familiar ¢-statistic for evaluating single-parameter hypotheses is a ratio that
compares the discrepancy between the point estimate and null parameter value relative to the
standard error. The final equation in Table 10 shows the test statistic. Returning to the reading
achievement analysis, substituting the pooled mean difference and standard error into the
expression gives ¢t = 11.11. Statisticians have developed different degrees of freedom expressions
for the t-statistic. Barnard and Rubin’s (1999) expression provides good performance with small
samples and is widely available in statistical software. Multiple imputation versions of the Wald
(Lietal., 1991; Rubin, 1987) and likelihood ratio test statistics (Chan & Meng, 2021, December 30;
Meng & Rubin, 1992) are also available for multiparameter hypotheses (e.g., omnibus and nested
model tests). The R packages mitml (Grund et al., 2023) and semTools (Jorgensen et al., 2022)
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offer a complete compendium of multiple imputation significance tests that are not widely

available in commercial software.

5.4  Fine-Tuning Multiple Imputation: Auxiliary Variables and Nonnormal Data

The conditionally missing at random assumption described in Section 1.2 requires that the unseen
score values contain no unique information about missingness beyond that contained in the
observed data. Practically speaking, this assumption requires that all important determinants of
missingness are contained within the imputation model’s observed data. Introducing missing data
auxiliary variables broadens the observed data, potentially making this assumption more plausible
(Collins et al., 2001). The ease of introducing auxiliary variables is an oft-cited advantage of
multiple imputation; additional variables are included during imputation and ignored during
analysis. This contrasts maximum likelihood and Bayesian missing data handling approaches that

integrate auxiliary variables on an analysis-by-analysis basis.

In practice, the number of variables that can be included in the imputation model is a complex
function of the sample size and missing data patterns. In the hypothetical limit, regression models
that provide the backbone of MCMC imputation routines require more observations than
variables. Not surprisingly, missing values can dramatically restrict the size of the initial
imputation model. In my experience, a pair of categorical variables with low or zero cell counts in
a two-way contingency table is the most common cause of MCMC convergence failures. Such
patterns imply that the data do not contain sufficient information to estimate bivariate
associations. Collapsing categories, combining multiple variables into one variable, or excluding
problematic variables are possible solutions. Previous studies have also documented difficulties
applying model-agnostic multiple imputation to large numbers of ordered categorical variables
(e.g., test or questionnaire items; Alacam et al., 2023). For many researchers, these practical issues
place a relatively low upper limit on the number of variables multiple imputation can support. For
example, a sample size of 300 participants may support fewer than 20 or 30 variables, especially if

several are categorical .

The classic multivariate multiple imputation approach popularized by Joseph Schafer (Schafer,
1997) assumes multivariate normality. Contemporary variants of this strategy use a latent response
variable (i.e., probit regression) framework to accommodate incomplete binary, ordinal, and
multicategorical nominal variables (Asparouhov & Muthén, 2010; Carpenter & Kenward, 2013;
Demirtas, 2017; Goldstein et al., 2009; Quartagno & Carpenter, 2019). For example, binary and
ordinal responses can be modeled as a normally distributed latent variable, the distribution of

which is carved into discrete regions by one or more threshold parameters (Johnson & Albert,
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1999). Fully conditional specification imputation also accommodates a range of discrete variable
types (Kleinke & Reinecke, 2013; van Buuren, 2007; van Buuren, 2010; van Buuren, 2018).
Returning to the hypothetical imputation scheme in Equation 22, the individual regression
equations would simply become generalized linear models, and MCMC would sample imputations

from probability mass functions that look like bar graphs.

Turning to numeric variables, several methodology studies have examined the impact of
pairing normally distributed imputations with nonnormal observed data (Demirtas et al., 2008;
Lee & Carlin, 2017; von Hippel, 2013; Yuan et al., 2012). Although this approach can produce
imputes outside the range of the data, a common finding is that distributional misspecifications
do not substantially impact means and regression coefficients; it can distort variances and
estimands that quantify the distribution’s tails, however. Related work describes a transform-then-
imputation strategy that first applies normalizing transformations to incomplete variables prior to
imputation then back-transforms the variables prior to analysis (Goldstein et al., 2009; Lee &
Carlin, 2017; Schafer & Olsen, 1998; Su et al., 2011; van Buuren, 2018; von Hippel, 2013). Studies
caution against this strategy because it can exacerbate rather than mitigate bias due to nonnormal
data (Lee & Carlin, 2017; von Hippel, 2013).

An alternate strategy is to sample imputations from a nonnormal distribution. As mentioned
previously, predictive mean matching is a nonparametric approach that draws imputations from
a pool of observed scores taken from people whose predicted values are similar to that of the person
with missing data (Kleinke, 2017; Lee & Carlin, 2017; van Buuren, 2018; Vink et al., 2014). If the
observed data are nonnormal, the resulting imputations will be as well. Morris et al. (2014) catalog
variations of predictive mean matching in software programs, and they provide recommendations
about the optimal matching criterion and donor pool size. The literature also describes various
parametric methods for creating nonnormal imputations (de Jong et al., 2016; Demirtas, 2017;
Demirtas & Hedeker, 2008a, 2008b; He & Raghunathan, 2009), although most of these approaches
are either limited in scope or do not have software implementations. The Yeo-Johnson
transformation (Yeo & Johnson, 2000) is a promising approach that readily pairs with model-based
multiple imputation (Liidtke et al.,, 2020b). The Yeo-Johnson procedure invokes a normally
distributed transformed variable and a shape parameter that maps the normalized scores to a
nonnormal raw score distribution. The MCMC algorithm iteratively estimates the shape
parameter to match the observed-data distribution’s shape. This approach, which is available in
the Blimp application (Keller & Enders, 2021) and R package mdmb (Grund et al., 2021a), subsumes

common transformations such as the inverse, logarithmic, square root, and Box-Cox.
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5.5 Multiple Imputation Analysis Example 1

The first multiple imputation example illustrates a multiple regression analysis comprised of
incomplete continuous variables. The analysis uses the behaviorachievement.dat data set from
a longitudinal study that followed 138 students from primary through middle school. The file
includes three annual assessments of broad reading and math achievement beginning in the first
grade, seventh grade standardized achievement test scores taken from a statewide assessment, and
a final measure of broad reading and math obtained in ninth grade. The data also contain teacher
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The

Software Tutorials document provides additional information about this data set.

Given the same data and assumptions, multiple imputation usually produces estimates and
inferences that are equivalent to maximum likelihood and Bayesian estimation. To underscore this
point, I repeat the same analysis from Sections 3.4 and 4.5. Table 2 from Section 1.5 describes the
specific variables for the multiple regression. To refresh, the analysis model featured ninth grade
broad reading scores regressed on three academic and behavioral measures collected in first grade:
the broad reading composite, teacher-rated learning problems, and teacher-rated behavioral

problems.
READ, = B, + B,(READ,) + B(LRNPROB,) + 8;(BEHPROB,) + ¢ (23)

The analysis also included second grade broad reading scores and seventh grade standardized test

scores as auxiliary variables.

Applying the flowchart from Figure 17, both model-agnostic and model-based multiple
imputation are appropriate, and the two would yield equivalent estimates. To apply model-based
imputation, one would simply fit the regression model from the first Bayesian analysis example
(see Section 4.6), saving imputations for reanalysis. This example instead uses model-agnostic fully
conditional specification (van Buuren, 2018; van Buuren et al.,, 2006). Focusing on the initial
imputation step, each iteration of the MCMC algorithm fits six regression models, one per
incomplete variable. The equations follow the same round-robin schematic described in Section
5.1.

READq = 110 + 711 (READ{'™") + y,,(LRNPROB;' ") + y,5(BEHPROB{' ")
+ 7’14(READ§t_1)) + VIS(STANREAD?_D) +¢

READ; = 75 + ¥21(LRNPROB' ™) + y,,(BEHPROB;' ") + y,5(READ] ")
+ 724(STANREAD§t_1)) + )/ZS(READét)) +¢,
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LRNPROB, =30 + 731(BEHPROBY_1)) + 7/32(READ§t_1))
+ ¥53(STANREAD ™) + y3,(READ,”) + y;5(READ") + €5 (24)

BEHPROB; = y4¢ + 741(READ§t_1)) n V42(STANREAD§t_1))
+ 743(READSU) + 744(READ?)) + )/45(LRNPROB§”) + e,

READ, = ¥so + 751(STANREADY ™) + y5,(READ’) + y55(READ")
+ ¥54(LRNPROBY") + ys5(BEHPROB,") + 5

STANREAD; = Yo + Ye1(READS”) + 752(READ{") + y53(LRNPROB;")
+ Yoa( BEHPROB,”) + yo5(READ}") + €4

The imputation models are all linear regressions in this example, although the algorithm readily

accommodates discrete metrics as well (see Example 14 in the Software Tutorials document).

Example 13 from the Software Tutorials document provides annotated syntax and output files
for the analysis. To summarize, the fully conditional specification imputation algorithm invoked
20 independent MCMC processes (chains), each consisting of 2,500 iterations. The filled-in data
from the final iteration of each chain was saved for reanalysis. Fitting the focal regression model
from Equation 23 to each imputed data set produced 20 sets of estimates and standard errors.
Finally, applying Rubin’s rules gave the pooled results shown in Table 11. The results are
interpreted in the same way as a complete-data regression analysis. For example, consider the slope
of the first grade reading test. The model predicts that two individuals who differ by one point

should differ by 0.51 points on the outcome, holding constant teacher-rated learning and

TABLE 11. Agnostic Multiple Imputation Estimates From a Multiple Regression

Effect Est.  Std. Error t p 25%LCL 97.5% UCL
Intercept 66.19 6.22 10.64 <.001 53.81 78.58
READ, 0.51 0.05 10.96 <.001 0.41 0.60
LRNPROB,; -0.25 0.12 -2.06 .04 -0.49 -0.01
BEHSYMP, -0.18 0.11 -1.73 .09 -0.40 0.03

R-square .61 -- -- -- -- --
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behavioral problems. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero, #(71.14) = 10.96, p < .001.

I have repeatedly stated that the Big Three missing data methods tend to produce numerically
equivalent results, given the same input data and assumptions. To emphasize this point, Table 12
shows the parameter estimates and measures of uncertainty for each procedure. Notwithstanding
their philosophical differences about repeated sampling, the Big Three were identical, as expected.
Returning to decision tree in Figure 3, the choice of missing data method is largely determined by
features of the analysis model. Selecting between two approaches that are equally appropriate is

largely a matter of personal preference.

TABLE 12. Comparison of Regression Results From the Big Three

FIML Bayes MI
Effect Est. SE Median SD Est. SE
Intercept 66.03 5.85 66.01 6.05 66.19 6.22
READ, 0.50 0.04 0.50 0.04 0.51 0.05
LRNPROB, -0.25 0.12 -0.25 0.12 -0.25 0.12
BEHSYMP, -0.18 0.10 -0.18 0.11 -0.18 0.11
R-square .60 -- .60 .05 .61 --

5.6 Multiple Imputation Analysis Example 2

The second analysis example illustrates a moderated regression analysis with an incomplete
interaction effect and an incomplete binary covariate. This example repeats the same analysis from
Sections 3.5 and 4.6. Table 5 from Section 3.5 describes the specific variables for the regression. To
refresh, the analysis model features ninth grade broad reading scores regressed on academic and
behavioral measures collected in first grade: reading achievement, teacher-rated learning
problems, the product of first grade reading scores and learning problems, and the at-risk dummy

code.

READ, = f3, + B1(READ,) + 8,(LRNPROB;)
+ B3(READ,)(LRNPROB,) + B,(ATRISK) + ¢ (25)
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The analysis also included second grade broad reading scores and seventh grade standardized test

scores as auxiliary variables.

Applying the flowchart from Figure 17, models with interactive effects require a factored
regression specification that expresses the multivariate distribution into a series of simpler
distributions. Such specifications are necessarily model-based because the correct sequence of
regression models is constructed around one focal analysis with a particular constellation of
nonlinear terms. Section 4.6 illustrated a Bayesian analysis with an interactive effect and auxiliary
variables. This identical analysis can also produce multiple imputations for a frequentist analysis;
comparable procedures like substantive model-compatible imputation (Bartlett & Morris, 2015;

Bartlett et al., 2015) and the sequential specification (Liidtke et al., 2020b) are equally appropriate.

Example 10 from the Software Tutorials document provides annotated syntax and output files
for the analysis. The MCMC algorithm from the earlier Bayesian analysis was modified to invoke
20 independent computational chains, each consisting of 5,500 iterations. Aside from that small
procedural detail, the imputation phase was identical to the earlier example. The filled-in data from
the final iteration of each MCMC chain was saved for reanalysis, and the moderated regression
model from Equation 22 was then fit to each imputed data set. Finally, using Rubin’s rules to

combine the 20 sets of estimates and standard errors produced the pooled results.

TABLE 13. Model-Based Multiple Imputation
Estimates From a Moderated Regression

9 9
S,
Intercept 87.92 0.87 100.98 <.001 86.19 89.64
READ, 0.50 0.05 11.04 <.001 0.41 0.59
LRNPROB, -0.38 0.09 -432 <.001 -0.54 -0.20
READ, x LRNPROB;  0.012 0.005 2.55 .03 0.002 0.021
ATRISK -2.05 1.78 -1.15 25 -5.57 1.47
R-square 61 -- -- -- -- --

Note. First grade reading scores and learning problems ratings are centered at
the grand mean.

Table 13 shows the multiple imputation analysis results. The lower-order terms in a
moderated regression are conditional effects that depend on scaling or centering. To facilitate

interpretation, the analysis centered the interacting variables at the pooled estimates of their grand
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means. Centering defines the first grade reading slope (8; = 0.51) as a conditional effect at the
mean of the learning problems distribution, and the learning problems slope (8, = —0.38) similarly
reflects a conditional effect at the reading achievement average. The interaction slope captures the
change in the first grade reading slope for each one-unit increase in learning problems (and vice
versa). The positive coefficient (33 = 0.013) indicates that the association between first and ninth
grade reading scores becomes stronger (i.e., more positive) for students with elevated learning

problems.

I have repeatedly stated that the Big Three missing data methods tend to produce numerically
equivalent results, given the same input data and assumptions. To further emphasize this point,
Table 14 shows the parameter estimates and measures of uncertainty for each procedure.
Notwithstanding their philosophical differences about repeated sampling, the Big Three were
identical, as expected. Returning to decision tree in Figure 3, the choice of missing data method is
largely determined by features of the analysis model. Selecting between two approaches that are

equally appropriate is largely a matter of personal preference.

TABLE 14. Comparison of Moderated Regression Estimates From the Big Three

FIML Bayes MI
Effect Est. SE Median SD Est. SE
Intercept 89.05 1.42 87.85 1.32 87.92 0.87
READ, 0.51 0.04 0.50 0.05 0.50 0.05
LRNPROB; -0.38 0.08 -0.37 0.09 -0.38 0.09
READ, x LRNPROB,; 0.013 0.005 0.012 0.005 0.012 0.005
ATRISK -1.91 1.79 -1.93 1.87 -2.05 1.78

R-square .62 -- .61 -- .61 --




Multilevel Missing Data 68

Multilevel Missing Data

Multilevel data structures are ubiquitous in education research. Two-level examples include
repeated measurements at level-1 nested within students at level-2 or students at level-1 nested in
schools at level-2. A prototypical three-level data hierarchy combines repeated measurements
(Ievel-1) within students (level-2) and students within schools (level-3). This section focuses on
multilevel regression models with random effects because they are an exceedingly common data
analytic tool in educational research applications. For example, substantial methodological work
has focused on hierarchical models for cluster-randomized trials where schools are assigned to
experimental conditions (Hedges & Hedberg, 2007; Raudenbush, 1997; Raudenbush & Liu, 2000;
Spybrook et al., 2011; Spybrook et al., 2016). A variety of sources provide information about
alternate modeling approaches for hierarchically structured data sets (Hamaker & Muthén, 2020;
McNeish & Kelley, 2019; McNeish et al., 2017).

The emergence of sophisticated missing data handling methods for multilevel regression
models is an important recent development in the methodology literature (Carpenter et al., 2023;
Carpenter et al., 2011; Enders et al., 2020; Erler et al., 2019; Erler et al., 2016; Goldstein et al., 2009;
Goldstein et al., 2014; Grund et al., 2021a; Quartagno & Carpenter, 2016; Shin, 2013; Shin &
Raudenbush, 2023; Shin & Raudenbush, 2007, 2013; van Buuren, 2011; Yucel, 2008, 2011). I devote
much of this section to Bayesian estimation and model-based multiple imputation because they
currently handle a broader range of multilevel missing data problems than maximum likelihood

estimators.
6.1 Multilevel Missing Data Handling Options
The full and restricted maximum likelihood estimators in general-use mixed modeling programs

readily accommodate incomplete outcomes. When missing values are relegated to the dependent

variable, excluding rows with missing outcome scores yields maximum likelihood estimates with
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a conditionally missing at random assumption (von Hippel, 2007). Missingness simply creates an
unbalanced data set where the number of level-1 observations varies across level-2 units. However,
these programs typically have no capacity for treating incomplete predictors. Methodologists have
developed maximum likelihood routines for random intercept models with continuous predictors
(Shin & Raudenbush, 2007, 2013; Shin & Raudenbush, 2010), and important work on random
slope predictors and interaction effects is ongoing (Rockwood, 2020; Shin & Raudenbush, 2023).
The HLM (Raudenbush et al., 2019) and Mplus programs (Muthén & Muthén, 1998-2017) offer

the most sophisticated maximum likelihood missing data handling options.

Prior to the advent of sophisticated techniques for multilevel missing data, researchers could
dummy code higher-level units (e.g., schools) and include the code variables as predictors in a
single-level imputation scheme. This so-called fixed effect imputation scheme can produce
unbiased parameter estimates in some random intercept applications (Ludtke et al., 2017; Reiter
et al., 2006). However, inflated standard errors and distorted confidence intervals are undesirable
byproducts (Andridge, 2011; van Buuren, 2011). Although newer approaches are far superior,
fixed effect imputation may be useful when the number of higher-level clusters is too small to

support random effect estimation.

As described in Section 5, Schafer’s (1997) classic joint model imputation uses a multivariate
regression model with complete variables predicting incomplete variables. The multilevel
extension of this approach uses a multivariate mixed effects model where incomplete level-1
variables are regressed on complete level-1 and level-2 variables (Schafer, 2001; Schafer & Yucel,
2002). Flexible variations of this approach allow for incomplete categorical variables and missing
values at any level of the data hierarchy (Asparouhov & Muthén, 2010; Carpenter et al., 2011;
Carpenter & Kenward, 2013; Goldstein et al., 2009; Goldstein et al., 2014; Yucel, 2008).
Importantly, most joint model imputation schemes are limited to random intercept analyses and
have no capacity for preserving random slopes for incomplete predictors (Enders et al., 2016). A
notable exception is a joint modeling variant that allows the within-cluster covariance matrix to
vary across level-2 clusters (Quartagno & Carpenter, 2020; Quartagno & Carpenter, 2016; Yucel,
2011).

Fully conditional specification imputation also extends to two- and three-level models
(Audigier et al., 2018; Enders et al., 2018; Keller, 2015; Resche-Rigon & White, 2018; van Buuren,
2011). Like joint model imputation, fully conditional specification should be reserved for random
intercept models, in which case the two agnostic imputation procedures are effectively equivalent
(Grund et al., 2017, 2018; Grund et al., 2019; Ludtke et al., 2017; Mistler & Enders, 2017).
Importantly, computer simulation studies show that applying fully conditional specification to

incomplete random slope predictors—so-called “reverse random coefficient” imputation—can
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introduce substantial bias because it misrepresents variation (Enders et al., 2020; Enders et al,,
2016; Grund et al., 2016a, 2018).

Factored regression specifications like those described in Section 2 provide the greatest
flexibility for addressing incomplete predictors (Enders et al., 2020; Erler et al., 2019; Erler et al,,
2016; Grund et al,, 2021a). To refresh, factored regression specifications express a multivariate
distribution as a sequence of simpler distributions, the collection of which is equivalent the original
joint function. Beyond acknowledging that a multivariate distribution exists, factorization makes
no assumptions about its shape or form. Rather, distributional assumptions enter on a variable-
by-variable via a collection of regression models. Among other things, this factorization readily
accommodates variables with different metrics, random slope predictors, interaction or curvilinear

effects, and incomplete variables at any level of the data hierarchy.

6.2  Multilevel Analysis Example 1

The first multilevel analysis example illustrates a two-level regression model with random
intercepts. The problemsolving2level.dat data set is taken from a cluster-randomized
educational intervention where 29 schools (level-2 units) were assigned to an intervention and
comparison condition (Montague et al., 2014). The comparison condition (i.e., control schools)
implemented the district’s standard mathematics curriculum, and the intervention schools
implemented a new curriculum designed to enhance math problem-solving skills. The 982
student-level (level-1) records include pretest and posttest math problem-solving and self-efticacy
scores, standardized math scores taken from a statewide assessment, and several sociodemographic

variables. The dependent variable is an end-of-year math problem-solving assessment with IRT-

TABLE 15. Variables for the Multilevel Random Intercept Model

Name Definition Missing  Scale

SCHOOL School (level-2) identifier 0 Integer index

CONDITION  Experimental condition 0 0= C(.)ntml’ 1=

Experimental

HISPANIC Ethnicity/race 9.0 0 = Other, 1 = Hispanic
. 0 =None, 1 = Free or

FRLUNCH Lunch assistance code 4.7 Reduced Lunch

MPSPRE Math problem-solving pretest 0 Numeric (37 to 66)

MPSPOST Math problem-solving posttest 20.5 Numeric (37 to 65)
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scaled scores. The Software Tutorials document provides additional information about this data

set. Table 15 shows the specific variables for this analysis example.

A random intercept model features school-specific intercept coefficients that capture level-2
mean differences. The goal of the analysis is to determine whether the intervention groups differ
on an end-of-year math problem-solving test after controlling for three student-level covariates:
math problem-solving pre-test scores, a Hispanic dummy code, and a free or reduced lunch
assistance dummy code. Following notation from Raudenbush and Bryk (2002), the within-school
model describes score variation among students in the same school.

MPSPOST;; = f; + B1(MPSPRE[}*®) + 8,(HISPANIC{}*®) + B;(FRLUNCH{**) + ¢;;  (26)

The i and j subscripts on the student-level variables index students and schools, respectively. The
Poj coefficient is a school-specific random intercept that represents the average post-test score in school
j. The cwc superscript on the predictors stands for centering within cluster, also known as group
mean centering (Enders & Tofighi, 2007; Kreft et al., 1995). This operation subtracts each student’s

score from their own school’s average, as follows.

The purpose of this type of centering is to disaggregate the student-level scores by removing

school-level variation. The resulting coefficient is a pure within-school association.

Each coefficient on the right side of the within-school regression is an outcome in a school-

level regression, as follows.

cgm cgm cgm
Boj =Yoo + Yor (Hivserey) + Yo Kitttspanicy) + Yos(Miereuncen) + Yos(CONDITION ) + g

B1 = Y10
B2 =720 (28)
B3 = Y30

The expressions for 3;, 8, and 55 indicate that the within-school slopes are constant across schools
(i.e., there are no u terms indicating a random slope residual). In contrast, the random intercepts
(school-level post-test averages) vary as a function of the covariates and the intervention
assignment indicator. To appropriately control for student-level covariates, it is important to
include the school means of all level-1 variables as predictors (Rights et al., 2020). The cgm
superscript indicates that these school-level aggregates are centered at their grand means.

Centering a level-2 variable is largely a cosmetic operation that defines y,, as the average post-test
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problem solving score among comparison schools. Finally, the uo; term is a random intercept

residual that captures the unexplained part of each school’s post-test mean.

Replacing each 8 coefficient in the within-school equation from Equation 26 with the right side

of its school-level equation gives the combined regression model below.
MPSPOST;; = (Yoo + to;) + Y10(MPSPRE[*®) + v,0( HISPANIC{*)
+ 730(FRLUNCHE) + You(Hi6itsere)) + Yoo (WiiHiseantc) (29)

cgm
+ ym(’“j(FRLUNCH)) + 704(CONDITIONJ.) +g;

All coefficients with a leading zero subscript are school-level effects, and all coefficients with non-
zero leading subscripts are pure within-school effects. The y,, slope is of particular interest because

it captures the intervention effect, controlling for covariates.

The incomplete binary predictors complicate missing data handling because existing
maximum likelihood estimators are limited to normally distributed incomplete predictors (Shin &
Raudenbush, 2023; Shin & Raudenbush, 2013). There is currently very little research that
documents the impact of misspecifying incomplete binary predictors as normal in multilevel
analyses (Grund et al., 2018). Applying the flowchart from Figure 3, either fully conditional
specification multiple imputation or estimation based on a factored regression specification are
appropriate. Importantly, fully conditional specification can only preserve the disaggregated
covariate effects in Equation 29 if the school-level averages of the level-1 variables are included in
the imputation regression models (Enders et al., 2018; Grund et al., 2017). This example applies a
version of fully conditional specification that introduces random intercepts (latent cluster means)
for the level-1 variables (Keller & Enders, 2021).

Currently, Bayesian estimation is the only way to deploy a factored regression specification for
this analysis. Following Figure 2b, I adopt a factorization comprised of two submodels, each with
distinct distributional assumptions. The Blimp application used in the Software Tutorials
document automatically configures the distributions, and the user simply needs to specify the focal
regression model in Equation 29. For completeness, the symbolic representation for the underlying

two-part factorization is as follows.

f(MPSPOST|MSPRE, HISPANIC, FRLUNCH, CONDITION)
X f(MSPRE, HISPANIC, FRLUNCH, CONDITION) (30)

The first term corresponds to the univariate regression model from Equation 29. To accommodate

the missing data, this model treats the school-level means as level-2 latent variables or random
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intercepts (Ludtke et al., 2011; Ludtke et al., 2008; Shin & Raudenbush, 2010). The second model
is a multivariate normal distribution for the predictors. This submodel further disaggregates
predictors into within-school and between-school parts, such that the level-1 predictors link to the
level-2 predictors via latent cluster means (random intercepts). Finally, the factored specification
readily accommodates incomplete categorical variables with a latent response variable framework
(probit regression). Detailed descriptions of the model are available in the literature (Enders, 2022;
Enders et al., 2020).

Example 15 from the Software Tutorials document provides annotated syntax and output files
for agnostic fully conditional specification multiple imputation. The algorithm invoked 20
independent MCMC processes (chains), each consisting of 2,500 iterations. Blimp’s version of fully
conditional specification automatically introduces random intercepts (latent cluster means) for the
level-1 variables (Keller & Enders, 2021), so it is appropriate for analysis models that disaggregate
level-1 predictors. The filled-in data from the final iteration of each chain was saved for reanalysis.
Fitting the focal regression model from Equation 29 to each imputed data set produced 20 sets of
estimates and standard errors. Finally, applying Rubin’s rules gave the pooled results shown in
Table 16. The results are interpreted in the same way as a complete-data multilevel regression

analysis. Due to centering, the intercept coefficient (¥, = 52.70) represents the post-test problem-

TABLE 16. Agnostic Multiple Imputation Estimates From a Multilevel Regression

; ]
Bffect Est. Ersrtfr' ‘ p TR
Intercept 5270 052 10087 <.001 5168  53.73
MPSPRE 046 004 1323 <.001 039 052
HISPANIC 1.02 0.42 2.46 .01 0.20 1.84
FRLUNCH -0.71 0.49 -1.45 .15 -1.69 0.26
MPSPRE Means 063 022 28 <0l 020  1.05
HISPANIC Means 501 139 362 <.001 229 772
FRLUNCH Means  -2.65 251  -1.06 29 757 227
CONDITION 237 072 331 001 097 378

Intercept variance 2.29 -- -- -- -- --

Residual variance 20.61 - - - _ -
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solving mean among the comparison schools that received the district’s standard curriculum. The
intervention indicator slope indicates that the intervention schools with the new curriculum scored
Vo4 = 2.37 points higher than comparison schools, on average, holding constant student-level
covariates. corresponding test statistic indicates that the slope coefficient is statistically different
from zero, #(2569.30) = 3.31, p = .001.

Example 16 from the Software Tutorials document provides annotated syntax and output files
for the Bayesian analysis. Table 17 shows the Bayesian parameter summaries. The estimate
(posterior median) and standard deviation columns describe the center and spread of the posterior
distributions; although they make no reference to drawing repeated samples, they are analogous
to frequentist point estimates and standard errors. The 95% credible interval columns give ranges
that capture 95% of each parameter’s distribution. These are akin to confidence intervals, but they
describe a range of likely parameter values rather than the long-run behavior of intervals from

different random samples.

To reiterate, the posterior distributions characterize plausible parameter values that could have

produced these data. From a practical perspective, the posterior summaries have interpretations

TABLE 17. Bayesian Parameter Summaries From a Multilevel Regression

Std.  25%  97.5% ,
Effect Est. Dev. LCL UCL X p

Intercept 52.42 0.73 50.93 53.86 5125.49 <.001
MPSPRE 0.46 0.04 0.39 0.53 160.39 <.001
HISPANIC 0.94 0.44 0.09 1.80 4.67 .03
FRLUNCH -0.78 0.47 -1.70 0.14 2.79 .10
MPSPRE means 0.71 0.34 0.06 1.41 4.59 .03
HISPANIC means 5.31 1.71 2.01 8.68 9.69 .002
FRLUNCH means -1.70 3.52 -8.74 5.16 0.23 .63
CONDITION 2.42 0.79 0.90 4.02 9.42 .002
Intercept variance 2.45 1.20 1.06 5.68 -- --
Residual variance 20.59 1.07 18.62 22.79 -- --
R-square coeftficients .33 .04 .25 41

R-square intercepts .07 .03 .03 15
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that parallel any multilevel regression analysis. Due to centering, the intercept coefficient (yoq =
52.42) represents the post-test problem-solving mean among the comparison schools that received
the district’s standard curriculum. The intervention indicator slope indicates that the intervention
schools with the new curriculum scored yy, = 2.42 points higher than comparison schools, on
average, holding constant student-level covariates. Importantly, the numeric summaries in Table
17 are effectively equivalent to the corresponding multiple imputation estimates from Table 16
(e.g., Yoo = 52.70 and Y4 = 2.37). This is precisely what you would expect when applying Big Three

approaches that use the same data and invoke the same assumptions.

As explained previously, the Bayesian summaries also lend themselves to familiar hypothesis
testing logic. Returning to the intervention coefficient, the credible interval limits spanning 0.90 to
4.02 included 95% of the area under the coefficient’s posterior distribution. From this we can
conclude that the parameter is statistically different from zero (p < .05) because the null value is
outside the interval. That is, the probability that the parameter is less than 0.90 or greater than 4.02
is .05. Alternatively, (Asparouhov & Muthén, 2021) proposed a Bayesian Wald chi-square statistic
that can be used to evaluate a broad range of hypotheses. For researchers who prefer a frequentist-
like test statistic, the rightmost columns of Table 17 show the chi-square test statistics and p-values
for the coefficients. These quantities lead to the same conclusions as the 95% credible intervals
(e.g., the condition effect is significant with p = .002). Levy and McNeish (2023) use the phrase
“computational frequentism” to describe applications that use MCMC estimation to approximate

frequentist point estimates and test statistics.

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors
for variances and covariances (Keller & Enders, 2021). The prior distributions influence variance
parameters by altering the number of independent data points and/or the residual sums of squares
at each MCMC cycle. Roughly speaking, alternate prior distributions induce differences that are
analogous to those between restricted and full information maximum likelihood (McNeish, 2017;
D. McNeish & L. M. Stapleton, 2016; D. M. McNeish & L. M. Stapleton, 2016). The choice of prior
distribution is potentially impactful to variance estimates when the number of level-2 units is small,
as it is here (there are 29 schools at level-2). To explore the sensitivity of the results to this issue, I
tit the model with two alternate prior distributions (also off-the-shelf options that are invoked with
a single keyword). Changes to the coefficients were generally inconsequential and in the second
decimal place. As one might expect, the choice of prior did impact the random intercept residual
variance; both alternatives decreased the variance point estimate from 2.45, producing median
values equal to 1.89 and 2.07. To put these changes in perspective, the R* value in the bottom row
Table 17 reports that residual random intercept variance accounted for approximately 7% of the

total variation in the post-test scores (Rights & Sterba, 2019). Invoking alternate prior distributions
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changed this effect size by less than 1.5% in both cases (R* = .056 and .061). From a practical
perspective, these differences seem relatively minor, and I would conclude that the prior

distributions did not meaningfully impact on the results.

Finally, to apply model-based multiple imputation, one would simply save imputations from
the MCMC algorithm for reanalysis with frequentist inference (Little & Rubin, 2020; Rubin, 1987).
Example 16 from the Software Tutorials document provides the analysis scripts. I omit the pooled
results because they were effectively equivalent to those in Tables 16 and 17. To reiterate, you
would expect this correspondence when applying Big Three approaches that use the same data and

invoke the same assumptions.
6.3  Multilevel Analysis Example 2
The second multilevel analysis example illustrates a two-level linear growth curve model with

repeated measurements at level-1 nested in students at level-2. Students are also nested in schools,

but I ignore the third level to keep the example simple. Example 18 in the Software Tutorials

TABLE 18. Variables for the Multilevel Growth Curve Model

Name Definition Missing  Scale

STUDENT Student (level-2) identifier 0 Integer index

PROBSOLVE  Math problem-solving 11.4 Numeric (37 to 68)

MONTH Time scores 0 Integer index (0 to 6)
HISPANIC Ethnicity/race 9.0 0 = Non-Hispanic, 1 = Hispanic
FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance
CONDITION  Experimental condition 0 0 = Control, 1 = Experimental

document demonstrates a three-level growth curve model. The problemsolving3level.dat data
set is taken from a cluster-randomized educational intervention where 29 schools (level-2 units)
were assigned to an intervention and comparison condition (Montague et al, 2014). The
comparison condition (i.e., control schools) implemented the district’s standard mathematics
curriculum, and the intervention schools implemented a new curriculum designed to enhance
math problem-solving skills. The 6874 within-subjects data records include seven monthly
measures of an IRT-scaled math problem-solving assessment. Table 18 shows the specific variables

for this analysis example.
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A random coefficient growth model features person-specific intercept and slope coefficients
that represent idealized linear change trajectories. Following notation from Raudenbush and Bryk

(2002), the within-person model describes score variation among students in the same school.
PROBSOLVE;; = By + B1;(MONTH;;) + €;; (31)

The i and j subscripts on the student-level variables index repeated measurements and students,
respectively. The MONTH variable is an integer index that codes the timing of the monthly
measurements relative to the baseline assessment. That is, MONTH =0, 1, 2, 3, 4, 5, and 6. These
time scores define fo; as person j’s expected baseline problem-solving and (1 as their monthly

change rate. To keep the example simple, I ignore school-level nesting.

Each coefficient on the right side of the within-school regression is an outcome in a person-
level regression. The expressions for foj and (1 indicate that the random intercepts and slopes
vary as a function of the Hispanic, lunch assistance, and intervention assignment dummy codes.
The random intercept equation includes all three predictors of baseline performance, and the
individual change rates vary as a function of ethnicity and intervention condition. This

configuration treats the slope predictors as moderators and lunch assistance as a covariate.

Boj = Yoo + Yor(HISPANIC;) + vo5(FRLUNCH;*™) + y3(CONDITION;)) + u;
B1j = Y10 + Y11(HISPANIC;) + y,,(CONDITION;) + uy; (32)

The cgm superscript on FRLUNCH indicates that this variable is centered at its grand mean
(Enders & Tofighi, 2007). Centering a level-2 variable is largely a cosmetic operation that defines
Yoo as the expected baseline problem solving score among non-Hispanic students in comparison
schools. In the random slope model, v, is the monthly change rate among non-Hispanic students
in comparison schools, and y,; and y,, are growth rate differences for Hispanic students and
intervention schools, respectively. Finally, the uo; and u1; terms are random intercept and slope

residuals that captures the unexplained part of each person’s growth trajectory.

Replacing each § coefficient in the within-school equation from Equation 31 with the right side

of its student-level model from Equation 32 gives the combined regression model below.

PROBSOLVE;; = (Yoo + Uo;) + (Y10 + 1;)(MONTH;)
+ v1:(HISPANIC;)(MONTH;;) + v,,(CONDITION; )(MONTH;;) (33)
+ Yo1(HISPANIC;) + Yo,(FRLUNCH;?™) + Yo3(CONDITION;) + ¢;;

All coefficients with a leading zero subscript are determinants of baseline performance, and all

coefficients with one as a leading subscript define the monthly change rates. Notice that the
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predictors of random slopes form cross-level, group-by-time interactions after substitution; y,; is
the degree to which ethnicity moderates the change rates, and y,, captures the moderating effect

of the intervention.

The incomplete binary predictors and interaction effects complicate missing data handling
because existing maximum likelihood estimators are limited to normally distributed predictors
(Shin & Raudenbush, 2023; Shin & Raudenbush, 2013). Applying the flowchart from Figure 3, a
factored regression specification is the appropriate option. Currently, Bayesian estimation is the
only way to deploy a factored specification for this analysis. Following Figure 2b, I adopt a
factorization comprised of two submodels, each with distinct distributional assumptions. The
Blimp application used in the Software Tutorials document automatically configures the

distributions, and the user simply needs to specify the focal regression model in Equation 33.

For completeness, the symbolic representation for the underlying two-part factorization is as

follows.

f(PROBSOLVE|MONTH, HISPANIC, FRLUNCH, CONDITION)
X f(MONTH, HISPANIC, FRLUNCH, CONDITION) (34)

The first term corresponds to the univariate growth model from Equation 33. The second model
is a multivariate normal distribution for the predictors. This submodel further disaggregates
predictors into within-school and between-school parts, such that the level-1 predictors link to the
level-2 predictors via latent cluster means (random intercepts). Finally, the dummy codes appear
as normally distributed latent response variables in the predictor submodel (i.e., probit regression).
Detailed descriptions of the model are available in the literature (Enders, 2022; Enders et al., 2020).

Example 17 from the Software Tutorials document provides annotated syntax and output files
for the Bayesian analysis. Table 19 shows the Bayesian parameter summaries. The estimate
(posterior median) and standard deviation columns describe the center and spread of the posterior
distributions; although they make no reference to drawing repeated samples, they are analogous
to frequentist point estimates and standard errors. The 95% credible interval columns give ranges
that capture 95% of each parameter’s distribution. These are akin to confidence intervals, but they
describe a range of likely parameter values rather than the long-run behavior of intervals from

different random samples.
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TABLE 19. Bayesian Parameter Summaries From a Multilevel Growth Curve Model

9 9
Biect Bope ot v X7
Intercept 49.36 031 4877  49.97 26003.06 .001
MONTH 0.27 0.06 0.16 0.39 21.26 .001
MONTH x HISPANIC 0.37 0.05 0.26 0.47 47.32 .001
MONTH x CONDITION 0.22 0.06 0.11 0.34 14.86 .001
HISPANIC 1.36 0.30 0.77 1.95 20.53 .001
FRLUNCH -0.95 031 -1.57 -0.34 9.20 .002
CONDITION -0.42 0.28 -0.97 0.14 2.25 13
Intercept variance 11.29 0.81 9.78 1295 -- --
Slope variance 0.11 0.03 0.06 0.18 -- --
Covariance 0.04 0.12 -0.21 0.25 -- --
Residual variance 12.57 0.27 12.04 13.12 -- --
R-square coefficients 0.11 0.01 0.09 0.13 -- --
R-square intercepts 0.44 0.02 0.41 0.47 -- .
R-square slopes 0.02 0.00 0.01 0.02 -- --

To reiterate, the posterior distributions characterize plausible parameter values that could have

produced these data. From a practical perspective, the posterior summaries have interpretations

that parallel a complete-data growth curve analysis. For example, the intercept coefficient (y4, =

49.36) defines the expected baseline problem-solving score among non-Hispanic students

attending comparison schools (i.e., the predicted value for a student with zero values on all

regressors). Hispanic students scored higher at baseline (yy; = 1.36), and students who received

lunch assistance scored lower (y,, = -0.95). Experimental and control school means were not

significantly different at the study’s outset. Turning to the growth rates, the MONTH coefticient

(Y10 = 0.27) conveys the monthly change rate for non-Hispanic students attending comparison

schools. The group-by-time interaction coefficients were both positive, indicating that Hispanic

students and students attending intervention schools improved more rapidly (y;; = 0.37 and y, =

0.22, respectively).
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As explained previously, the Bayesian summaries also lend themselves to familiar hypothesis
testing logic. Returning to the intervention coefficient, the credible interval limits spanning —0.97
to 0.14 included 95% of the area under the coefficient’s posterior distribution. From this we can
conclude that zero is a plausible parameter because the null value falls inside the interval (p > .05).
As a second example, the condition-by-time interaction was significant (p < .05) because zero fell
outside the 95% credible interval, which spanned from 0.11 to 0.34. One could also adopt a
computational frequentism perspective that views the MCMC summaries as surrogates for
frequentist point estimates and standard errors (Levy & McNeish, 2023). To this end, the rightmost
pair of columns in Table 19 show Wald chi-square statistics (squared z-tests) and frequentist
probability values (Asparouhov & Muthén, 2021).

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors
for variances and covariances (Keller & Enders, 2021). The prior distributions influence variance
parameters by altering the number of independent data points and/or the residual sums of squares
and cross-products at each MCMC cycle. Roughly speaking, alternate prior distributions induce
differences that are analogous to those between restricted and full information maximum
likelihood (McNeish, 2017; D. McNeish & L. M. Stapleton, 2016; D. M. McNeish & L. M. Stapleton,
2016). The choice of prior distribution is potentially impactful to variance estimates when the
number of level-2 units is small. To explore the sensitivity of the results to this issue, I fit the model
with two alternate prior distributions (also off-the-shelf options that are invoked with a single
keyword). Changes to the coefficients were generally inconsequential and in the second decimal
place. The choice of prior produced small but noticeable differences in the random slope variance
and intercept-slope covariance (e.g., the largest change shifted the random slope variance from
0.11 t0 0.09). To put these changes in perspective, the R* values in the bottom row Table 19 express
the random intercept and slope variance estimates as proportions of the total outcome variation
(Rights & Sterba, 2019). Invoking alternate prior distributions changed these effect size estimates
by less than one half percent. From a practical perspective, these differences seem relatively minor,

and I would conclude that the prior distributions did not meaningfully impact on the results.

Finally, to apply model-based multiple imputation, one would simply save imputations from
the MCMC algorithm for reanalysis with frequentist inference (Little & Rubin, 2020; Rubin, 1987).
Example 17 from the Software Tutorials document provides the analysis scripts. I omit the pooled
results because they were effectively equivalent to those in Table 19. To reiterate, you would expect
this correspondence when applying Big Three approaches that use the same data and invoke the

same assumptions.
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Missing Not at Random Processes

The Big Three applications up to this point have assumed a conditionally missing at random
process. This systematic mechanism requires that unseen score values carry no unique information
about missingness beyond that contained in a model’s observed data. This assumption cannot be
tested or verified because it involves propositions about the unseen (latent) data. Assuming a
conditionally missing at random process is probably reasonable for a broad range of educational
research applications. Certainly, the vast majority of published Big Three applications adopt this
assumption. An alternative assumption is that the unseen score values do carry unique information
about missingness. This process is called missing not at random. Section 1.2 described this
mechanism in detail, and this section describes analytic tools that invoke this alternate assumption

about missingness.
7.1 Missing Not at Random Modeling Frameworks

Returning to Equation 3, the formal definition of a missing not at random process involves binary
missing data indicators (M = 0 if a score is observed, and M = 1 if missing). Accordingly, the two
major frameworks for modeling this process—selection models and pattern mixture models—
introduce a submodel that describes the occurrence of missing data. To illustrate, consider a simple
regression model where first grade broad reading predicts ninth grade reading proficiency.
Further, suppose there is reason to believe that whether a student’s ninth grade score is missing
could depend on their unobserved reading proficiency score (e.g., students with the lowest
proficiency were unable to complete enough exam items to produce a valid score). Figure 20 shows
path diagrams depicting a basic selection model and pattern mixture model for this scenario. The
selection model in Figure 20a features the missing data indicator as an additional outcome variable
in a probit or logistic regression model. The pattern mixture model in Figure 20b instead treats the

indicator as a grouping variable that predicts the outcome and moderates the association between
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the two reading measures (i.e., subgroups defined by missing data pattern have different model

parameters).

a) READ, \
READ;y <«
- MREADY /
b) READ, \
% READy <«
—> MREaDy

FIGURE 20. Panel (a) is a selection model where the binary missing data
indicator is an additional outcome variable in a probit or logistic regression
model. Panel (b) is a pattern mixture model where missingness is a grouping
variable that predicts the outcome and moderates the focal association.

Selection and pattern mixture models have a long history in the literature, especially in the
context of longitudinal data analyses (Diggle & Kenward, 1994; Hedeker & Gibbons, 1997; Little,
1995; Wu & Carroll, 1988). Numerous accessible tutorial papers document these approaches
(Albert & Follmann, 2009; Enders, 2011; Feldman & Rabe-Hesketh, 2012; Muthén et al., 2011; Xu
& Blozis, 2011), most with real-data software demonstrations’. Additionally, a good deal of recent
methodological work enhances our understanding of these modeling frameworks, documenting
their strengths and weaknesses (Gomer & Yuan, 2021; N. C. Gottfredson et al., 2014; Nisha C
Gottfredson et al., 2014; Gottfredson et al., 2017; Sterba & Gottfredson, 2014; Yang & Maxwell,
2014; Yang et al., 2015).

? Software scripts for several selection and pattern mixture model applications are available at

www.appliedmissingdata.com/analyses.
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Selection and pattern mixture models are underutilized analytic tools that are more accessible
than ever. Their application nevertheless requires caution. To begin, both modeling frameworks
force the researcher to model associations between the data and missingness; selection models treat
missing data indicators as outcomes, and pattern mixture models introduce them as predictors.
The validity of the resulting estimates presupposes a correctly specified (or approximately so)
missingness model. Unfortunately, there is no way to verify the correctness of the model, nor is it
possible to formally compare competing missingness models (Molenberghs et al,, 2008;
Molenberghs et al., 1997; Sterba & Gottfredson, 2014; Verbeke & Molenberghs, 2000).
Misspecifying the relations between the data and missingness could exacerbate rather than
mitigate nonresponse bias. Although it is not immediately obvious, the observed data do not
contain the information needed to estimate the association between an incomplete variable and its
missing data indicator. For example, returning to Figure 20b, the arrow connecting the indicator
to READ, is the group mean difference for students without ninth grade data. This path is not
estimable because reading scores are completely missing for that subgroup. The corresponding
arrow in Figure 20a is also inestimable. Selection models overcome this identification problem by
invoking strict distributional assumptions, and pattern mixture models do so with additional input
from user. Despite these potential pitfalls, missing not at random models are useful for contexts
where missingness is plausibly related to the unseen score values. The subsequent examples
demonstrate a sensitivity analysis that examines the stability of a regression model’s parameter

estimates across different assumptions about the missing data process.

7.2  Missing Not at Random Analysis Example 1: Selection Model

The first missing not at random analysis example illustrates a multiple regression paired with a
selection model for the incomplete outcome. The analysis uses the behaviorachievement.dat
data set from a longitudinal study that followed 138 students from primary through middle school.
The file includes three annual assessments of broad reading and math achievement beginning in
the first grade, seventh grade standardized achievement test scores taken from a statewide
assessment, and a final measure of broad reading and math obtained in ninth grade. The data also
contain teacher ratings of behavioral symptoms and learning problems were also obtained in the
tirst grade. The Software Tutorials document provides additional information about this data set.

Table 2 from Section 1.5 shows the specific variables for this analysis example.

The analysis model featured ninth grade broad reading scores regressed on three academic and
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning

problems, and teacher-rated behavioral problems.



Missing Not at Random Processes 84

READ, = f3, + B1(READ,) + B,(LRNPROB,) + 8;(BEHSYMP,) + ¢ (35)

The analysis also included second grade broad reading scores and seventh grade standardized test
scores as auxiliary variables. These additional variables were included because they exhibited

significant residual covariation with the analysis variables (see Section 1.5).

A selection model augments the focal regression with a probit or logistic model where the
missing data indicator is the outcome. At a minimum, this model should include the variable
hypothesized to follow a missing not at random process, ninth grade reading in this case. Selecting
additional variables is difficult because myriad configurations of covariates could appear in the
missingness model. Moreover, reducing nonresponse bias requires that the missingness model is
approximately correctly specified. I offer a few practical guidelines. First, it is generally less harmful
to include unnecessary predictors than to ignore important determinants of missingness.
However, indiscriminately adding predictors can introduce substantial noise, reducing precision
and power. Next, you should avoid situations where the focal regression and the missingness
model share too many of the same variables. Ideally, the selection equation should include
predictors of missingness that do not appear in the analysis model. This ideal can be difficult to
achieve. Finally, building the missingness model by adding regressors and higher-order terms in a
stepwise sequence is often a useful strategy (Ibrahim et al., 2005). Overfitting or grossly
misspecifying a selection model often produces some combination of three symptoms: (a) standard
errors increase dramatically (e.g., 50% or more) from one model to the next, (b) the missingness
model produces an implausibly large pseudo R? value (e.g., .70 or larger), and (c) achieving
convergence requires unusually long iterative sequences (e.g., MCMC burn-in periods of 100,000

iterations or more). A stepwise model-building procedure can reveal these issues.

Section 1.4 described a pattern mean difference approach to identifying potential correlates of
nonresponse. To implement this strategy, you first create a binary missing data indicator M, in this
case for the outcome variable. Treating the indicator as a grouping variable, you then examine
whether the incomplete cases exhibit mean differences on other variables. Applying this strategy
revealed three predictors of missingness at ninth grade: first grade learning problems, first grade
behavior symptoms, and seventh grade math achievement. To avoid excessive overlap between the
focal and missingness models, I used first grade learning problems as an additional regressor in
the missingness model. I did not consider a model with interaction or polynomial terms because
simple models with main effects can provide an adequate approximation (Gomer & Yuan, 2021;
Ibrahim et al., 2005).

M* =y, + 7,(READy) + y,(LRNPROB,) + ¢ (36)
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The M* notation is consistent with probit regression, where the dependent variable is a normally
distributed latent response score rather than the binary indicator. In a logistic regression, M*
corresponds to the log odds or logit, and the errors follow a standard logistic rather than standard
normal distribution (Johnson & Albert, 1999). Figure 21 shows a path diagram of the analysis

model, and it uses an oval to represent the latent M* variable.
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FIGURE 21. Solid lines denote the focal regression model parameters, and
dotted lines are auxiliary variable parameters. Dashed lines pointing to M*
are the missingness model parameters.

Example 19 from the Software Tutorials document provides annotated syntax and output files
for the analysis. The model did not exhibit the telltale symptoms of overfitting or misspecification.
In particular, the MCMC algorithm converged quickly, and the missingness model’s pseudo R?
value of .27 was plausible. The leftmost panel of Table 20 shows the Bayesian analysis results that
invoke the conditionally missing at random assumption (see Section 4.5). The middle panel shows
the corresponding selection model estimates. The two sets of results were effectively identical. As
noted previously, the selection model’s validity hinges on a correctly specified missingness model
with the right variables and correct functional forms. If we are willing to assume that Equation 36
is reasonably correct, we would conclude that the estimates were not sensitive to the assumptions
about the missing data process—at least not this particular missing not at random process. In
situations where two models produce discrepant results, there is no way of knowing whether the
missing not at random analysis is preferable to a simpler analysis that assumes a conditionally

missing at random mechanism. Although the prospect of such discrepancies may seem troubling,
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they simply reflect different, plausible assumptions about the missing data process. Both sets of

results are defensible and could be included in a research report (e.g., in an online supplement).

TABLE 20. Comparison of Missing Not at Random Regression Models

CMAR MNAR (SM) MNAR (PMM)
Effect Est. SD Median SD Est. SD
Intercept 66.01 6.05 66.41 5.99 66.57 6.14
READ, 0.50 0.04 0.51 0.04 0.50 0.04
LRNPROB; -0.25 0.12 -0.25 0.12 -0.24 0.12
BEHSYMP, -0.18 0.11 -0.18 0.10 -0.18 0.11
Residual var. 91.26 12.80 91.78 12.79 91.69 13.05
R-square .60 .05 .60 .05 .59 .05

Note. CMAR = conditionally missing at random, MNAR = missing not at
random, SM = selection model, PMM = pattern mixture model.

7.3  Missing Not at Random Analysis Example 2: Pattern Mixture Model

Selection models treat missingness as an outcome. In contrast, pattern mixture models treat the
missing data indicator as a predictor, such that missing data patterns form qualitatively different
subgroups with distinct parameter values. Building on the focal regression model from Equation
35, this section illustrates a pattern mixture model that posits a missing not at random process

where students with missing scores have a different reading proficiency mean in ninth grade.

The pattern mixture model below features the missing data indicator as an additional predictor

variable.

READ, = [Bo(com) + BO(mis)(M)] + 61(READ1)
+ B5(LRNPROB;) + B3;(BEHPROB;) + ¢ (37)

Focusing on the terms in the square brackets, Bo(com) is the intercept for students with ninth grade
reading scores, and Bg;s) is the mean difference for students with missing data. Collectively, these
terms define a missing not at random process where the students with missing scores in ninth
grade comprise a distinct subpopulation with a unique mean. Figure 22 shows a path diagram of
the model, with the purple rectangle representing the missing data indicator. As shown in the

Software Tutorials document, the analysis uses a sequential specification for the predictors where
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the missingness indicator predicts behavioral symptom ratings, both variables predict learning

problems, then all three variables predict first grade reading.
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FIGURE 22. Solid lines denote the focal regression model parameters, and
dotted lines are auxiliary variable parameters. The dashed line pointing to M
to the dependent variable is a fixed parameter that captures the mean
difference for the cases with missing data.

Equation 37 assumes that all associations—and thus regression slopes—are common to both
groups. The model could be expanded to include pattern-specific slopes as well. For example, if
there was reason to believe that the association between first and ninth grade scores differed by

missingness pattern, and interaction could be added to the model as follows.

READQ = [60(com) + 50(mis)(M)] + ﬁl(com)(READl)
+ ﬁl(mis)(M)(READl) + 3,(LRNPROB;) + B5(BEHPROB;) + ¢ (38)

Returning to Equation 37, the B com) and Bogmis) coefficients are not the parameters of interest
because they define subgroup means. The population-level intercept estimate is a weighted average

over the missing data patterns

60 = ﬂ(com)ﬁo(com) + ﬂ(mis)(ﬁo(com) + ﬁo(mis)) (39)
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where 77 (¢ and 77 (,;5) are weights that capture the subgroup (missing data pattern) proportions.
The group-specific slopes from Equation 38 (i.e., B1(com) and B1com)* Bi(mis)) would similarly pool

into a population-level estimate of 3;.

Still focusing on Equation 37, the ;) mean difference is not estimable because ninth grade
reading scores are completely missing within the M = 1 subgroup. Similarly, both ;) and
Bi(mis) in Equation 38 are inestimable. Pattern mixture models are uniquely challenging because
the researcher needs to provide values for inestimable quantities. In this example, specifying a
reasonable value for B, is vital because this parameter determines the strength of the missing
not at random process. I adopt a simple approach that uses off-the-shelf effect size benchmarks to
specify inestimable quantities (Enders, 2022; Section 9.7). Because S,;5) is @ mean difference,
dividing this coefficient by the outcome variable’s standard deviation (or residual standard
deviation) gives a standardized mean difference like Cohen’s (1988) d effect size. Cohen suggested
the following benchmarks: | d | > 0.20 (small), 0.50 (medium), and 0.80 (large). This link to d

allows us to specify the inestimable mean difference on the standardized metric and solve for

Boimis) = d X/ 03 or d X4/ (40)

The total variation or residual variation (03 and 0?2, respectively) can be estimated directly from

Bo(mis) as follows.

the data, so the researcher simply needs to provide a hypothesized (or purely hypothetical) effect

size.

To illustrate the process of applying Equation 40, suppose I want to investigate the impact of a
missing not at random mechanism where students with missing reading scores have lower ninth
grade reading proficiency. Setting d = —0.30 conveys that the reading mean for the subpopulation
with missing scores is lower by one third of a standard deviation unit. Absent specific knowledge
about the size of the effect, one can perform a sensitivity analysis that implements a range of
standardized effect sizes. Like the selection model, the pattern mixture model’s validity hinges on
a correctly specified missingness model. Even with simple rules for deriving inestimable quantities,
there is no way to verify whether our choices are accurate. Despite this limitation, some
methodologists prefer the pattern mixture approach because it transparently conveys a
researcher’s assumptions about the presumed missingness process (via their choices about the

inestimable parameters).

Example 20 from the Software Tutorials document provides annotated syntax and output files
for the analysis model from Equation 37. Following the previous illustration, I specified a
standardized mean difference of —0.30. The software automatically estimates the reading standard

deviation, fixes Bg(m;s) to the value from Equation 40, and computes the pooled estimate. The
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rightmost panel of Table 20 shows the pattern mixture model parameter summaries. Aside from
very minor differences in the intercept, the estimates were effectively identical to the conditionally
missing at random and selection model results. As noted previously, the model’s validity hinges
on a correctly specified missingness process—in this case, one where the indicator group has a
lower mean but identical associations. If we are willing to assume that Equation 37 is reasonably
correct, we could conclude that the estimates were not sensitive to the assumptions about the
missing data process. We could further probe the robustness of the estimates by modeling a more
complex missingness process where the effect of a key predictor varies by group. Enders (2022;
Section 9.7) demonstrates a sensitivity analysis that implements a model like the one from

Equation 38.
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Current Software Landscape

This closing section provides a summary of current software options. The proliferation of
specialized R packages and numerous but disparate Big Three applications in commercial software
precludes a complete summary. Instead, the goal of this section is to highlight the breadth of
missing data handling tools that educational researchers currently have at their disposal. The

Software Tutorials document demonstrates a few of these options.

Structural equation modeling software programs offer flexible facilities for implementing
maximum likelihood missing data handling. Commercial platforms like SAS (CALIS; SAS Institute
Inc., 2011), SPSS (AMOS; Arbuckle, 2019), and Stata (gllamm; Rabe-Hesketh et al., 2004) offer
structural equation modeling modules, as do specialized programs like EQS (Bentler, 2000-2008),
LISREL (Joreskog & Sorbom, 2018), and Mplus (Muthén & Muthén, 1998-2017). Structural
equation modeling packages on the R platform include OpenMx (Boker et al., 2011), PLmixed
(Rockwood & Jeon, 2019), and lavaan (Rosseel, 2012) with semTools (Jorgensen et al., 2022).
Mplus, OpenMX, gllamm, and PLmixed are notable because they implement factored regression
specifications that accommodate mixtures of discrete and normally distributed variables. The R
package mdmb (Liidtke et al., 2020a) offers factored regression specifications for single-level
regression models with interactive or nonlinear effects, and the moderated latent structural
equation model (Kelava et al., 2011) facilities in Mplus and the R package nlsem (Umbach et al,,

2017) also accommodate certain types of interactive effects (Cham et al., 2017).

Turning to Bayesian estimation, Mplus (Muthén & Asparouhov, 2012) offers a powerful
feature set for multivariate normal data, but that multivariate focus carries the same limitations as
it does with maximum likelihood. Recent extensions integrate factored specifications that
accommodate interaction and nonlinear effects (Asparouhov & Muthén, 2021a). MCMC
estimators abound on the R platform, many of which implement factored regression specifications
with missing data. Options include rstan (Gelman et al., 2015; Guo et al., 2020), rjags (Plummer,
2019), R20penBUGS (Sturtz et al., 2019), brms (Biirkner, 2021), blavaan (Merkle & Rosseel, 2018),
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mdmb (Grund et al., 2021a), nimble (de Valpine et al., 2017), and JointAI (Erler, 2021). The

blavaan, brms, mdmb, and JointAI packages are among the most user-friendly options on this list.

The Software Tutorials document solely relies on the Blimp (Keller & Enders, 2021) application
for MCMC estimation. Blimp’s development was supported by the Institute of Education Sciences,
U.S. Department of Education, through Grant R305D150056 and R305D190002 to UCLA. Blimp
is an all-purpose data analysis and latent variable modeling program that offers factored regression
specifications in a user-friendly application that requires minimal scripting and minimal
knowledge about the Bayesian paradigm. The software accommodates missing data handling for
normally distributed, binary, ordinal, multicategorical, count, and skewed continuous variables in
data sets with up to three levels. The software is freely available for macOS, Windows, and Linux
at www.appliedmissingdata.com/blimp. An R version the software called rblimp is also available
at github.com/blimp-stats. A User Guide with dozens of analysis examples is available from the

application’s Help pull-down menu.

Turning to multiple imputation, commercial software packages typically offer agnostic
multiple imputation facilities that implement joint model imputation or fully conditional
specification. Blimp also offers single-level and multilevel fully conditional specification as well as
model-based multiple imputation based on factored regression specifications. Not surprisingly,
the R platform offers numerous multiple imputation options. A partial list includes the popular
mice package (van Buuren & Groothuis—Oudshoorn, 2011), pan (Grund et al., 2016b; Schafer,
2018), jomo (Quartagno & Carpenter, 2020; Quartagno & Carpenter, 2016), amelia (Honaker et
al., 2021), and smcf's (Bartlett et al., 2022; Bartlett et al., 2015). Finally, the R package mitml (Grund
et al., 2023) provides a comprehensive toolkit for pooling estimates and conducting significance

tests, as does the semTools package.
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