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Data File Descriptions 

The analysis examples use synthetic data sets created to closely resemble those from educational 
studies described in Montague et al. (2005) and Montague et al. (2014). The data and analysis 
scripts are available for download from the project website: www.appliedmissingdata.com/ 
videos. 

The behaviorachievement.dat file is taken from a longitudinal study that followed 138 
students from primary to middle school. The file includes three annual assessments of broad 
reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade.  

The mathachievement.dat data set is taken from an educational intervention where 250 
students were assigned to an intervention and comparison condition. The file includes pretest 
and posttest math achievement scores, a measure of math self-efficacy, standardized reading 
scores taken from a statewide assessment, and several sociodemographic variables. 

The problemsolving2level.dat data set is taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 982 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. 

The problemsolving3level.dat data set is taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 6874 within-subjects data records include seven monthly measures of math 
problem-solving and self-efficacy, standardized math scores taken from a statewide assessment, 
and several sociodemographic variables. 
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Variable Definitions for behaviorachievement.dat File 

Name Definition Missing % Scale 

ID Individual identifier 0 Integer index 

MALE Gender dummy code 1.5 0 = Female, 1 = Male 

HISPANIC Hispanic dummy code 5.1 0 = African American, 1 = Hispanic 

RISKGRP Emotion/behavior disorder risk 2.2 1 = Low, 2 = Medium, 3 = High 

ATRISK Emotion/behavior disorder risk 2.2 0 = Low, 1 = Medium/high 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric (17 to 92) 

LRNPROB1 1st grade learning problems 2.2 Numeric (31 to 88) 

READ1 1st grade reading composite 6.5 Numeric (39 to 153) 

READ2 2nd grade reading composite 9.4 Numeric (20 to 150) 

READ3 3rd grade reading composite 14.5 Numeric (46 to 138) 

READ9 9th grade reading composite 17.4 Numeric (41 to 123) 

READGRP9 9th grade reading classification 17.4 0 = Below average, 1 = Average 

STANREAD7 7th grade standardized reading 19.6 Numeric (100 to 399) 

MATH1 1st grade math composite 6.5 Numeric (60 to 149) 

MATH2 2nd grade math composite 9.4 Numeric (76 to 138) 

MATH3 3rd grade math composite 14.5 Numeric (71 to 143) 

MATH9 9th grade math composite 17.4 Numeric (55 to 127) 

MATHGRP9 9th grade math classification 17.4 0 = Below average, 1 = Average 

STANMATH7 7th grade standardized math 19.6 Numeric (100 to 421) 
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Variable Definitions for mathachievement.dat File 

Name Definition Missing % Scale 

ID Individual identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Comparison, 1 = Intervention 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance dummy code 4.4 0 = None, 1 = Lunch assistance 

ATRISK Emotion/behavior disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric (27 to 69) 

EFFICACY Math self-efficacy rating scale 9.6 Ordinal (1 to 6) 

ANXIETY Math anxiety composite 8.4 Numeric (0 to 44) 

MATHPRE Math achievement pretest  0 Numeric (26 to 76) 

MATHPOST Math achievement posttest  18.0 Numeric (37 to 85) 
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Variable Definitions for problemsolving2level.dat File 

Name Definition Missing % Scale 

SCHOOL School identifier 0 Integer index 

STUDENT Student identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental  

TEACHEXP Teacher years of experience 10.8 Numeric (4.3 to 24.6) 

ESLPCT % English as second language 0 Numeric (10 to 100) 

HISPANIC Ethnicity/race 9.0 0 = White/Black, 1 = Hispanic 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code  4.7 0 = None, 1 = Lunch assistance 

LOWACH Low achievement code 5.2 0 = Typically achieving, 1 = Low achieving 

STANMATH Standardized math scores  7.4 Numeric (5.3 to 87.8) 

EFFICACYPRE Math self-efficacy pretest 0 Numeric (0 to 12) 

EFFICACYPST Math self-efficacy posttest 20.5 Numeric (0 to 12) 

PSOLVEPRE Math problem-solving pretest  0 Numeric (37 to 66) 

PSOLVEPST Math problem-solving posttest  20.5 Numeric (37 to 65) 
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Variable Definitions for problemsolving3level.dat File 

Name Definition Missing % Scale 

SCHOOL School identifier 0 Integer index 

STUDENT Student identifier 0 Integer index 

WAVE Monthly wave identifier 0 Integer index (1 to 7) 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 

TEACHEXP Teacher years of experience 10.8 Numeric (4.3 to 24.6) 

ESLPCT % English as second language 0 Numeric (10 to 100) 

HISPANIC Ethnicity/race 9.0 0 = Non-Hispanic, 1 = Hispanic 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance 

LOWACH Low achievement code 5.2 0 = Typically achieving, 1 = Low achieving 

STANMATH Standardized reading  7.4 Numeric (5.3 to 87.8) 

MONTH Time scores (baseline = 0) 0 Numeric (0 to 6) 

MONTH7 Time scores (endpoint = 0) 0 Numeric (–6 to 0) 

EFFICACY Math self-efficacy 11.4 Numeric (0 to 14) 

PROBSOLVE Math problem-solving 11.4 Numeric (37 to 68) 
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Getting Started With Software 

The tutorial examples use the Blimp (Keller & Enders, 2021) application for MCMC estimation 
and multiple imputation. Blimp’s development was supported by the Institute of Education 
Sciences, U.S. Department of Education, through Grant R305D150056 & R305D190002 to 
UCLA. Blimp is freely available at www.appliedmissingdata.com/blimp. The Blimp User Guide is 
available from the same website and from the Help > Help pull-down. Blimp scripts can be 
executed from the Blimp Studio graphical interface (macOS and Windows), and the rblimp 
package is also available for the R environment (Keller, 2024). The rblimp package is currently 
available for download at Brian Keller’s github, and a forthcoming version will be available 
through CRAN. The standalone version of Blimp must be installed prior to downloading and 
installing rblimp.  

The tutorial examples use Mplus for maximum likelihood estimation and for analyzing 
multiply imputed data sets. A free demo version of Mplus is available at 
www.statmodel.com/demo.shtml. Many of the scripts run on the demo version, which is limited 
to six variables. The tutorial examples also use various R packages for maximum likelihood 
estimation and for analyzing multiply imputed data sets. The installation commands for the R 
packages used in this document are as follows. 

 
install.packages('lavaan', dependencies = T) 
install.packages('semTools', dependencies = T) 
install.packages('rockchalk', dependencies = T) 
install.packages('mitml', dependencies = T) 
install.packages('mdmb', dependencies = T) 
install.packages('remotes', dependencies = T) 
remotes::install_github('bkeller2/fdir') 
remotes::install_github('blimp-stats/rblimp') 
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FIML: Regression With Multivariate Normal Data 

 

 

 

 

This example illustrates a multiple regression analysis with multivariate normal incomplete data. 
The analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

1.1 Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (1) 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors.  The Mplus and R scripts below assign a multivariate 
normal distribution to the set of analysis variables.  

1.2 Mplus FIML Script 

The code block below shows Mplus script Ex1.1.inp. 

 
Mplus Script Ex1.1.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5     read1 read2 read3 read9 read9grp stanread7  
 6      math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1; 
 8  missing = all(999); 
 9  ANALYSIS: 
10  estimator = ml; 
11  MODEL:   
12  read1 lrnprob1 behsymp1; 
13  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
14  MODEL TEST: 
15  0 = beta1; 0 = beta2; 0 = beta3; 
16  OUTPUT: 
17  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data set is in the same directory as the script, as it is here. The VARIABLE command provides 
information about the data. Beginning on line 4, the names subcommand assigns names to the 
variables in the input data, the usevariables subcommand selects variables for the analysis, and 
the missing subcommand gives the global missing value code. The ANALYSIS command and 
estimator subcommand specify full information maximum likelihood estimation. These 
commands are optional because the maximum likelihood missing data handling is the default. If 
the variables are nonnormal, specifying estimator = mlr on line 10 generates robust test 
statistics and standard errors.  
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The MODEL section of the script consists of two lines. Listing all predictors by name on line 12 
is important because doing so invokes a multivariate normal distribution for these variables. As 
mentioned previously, assigning distributional assumptions to predictors is necessary for missing 
data handling. On line 13, the outcome variable appears to the left of the on keyword, and the 
predictors appear to the right. The end of this line includes labels for the slope parameters in 
parentheses. The subsequent MODEL TEST command uses these labels to specify a custom 
significance test of the omnibus null hypothesis that all three population slopes equal zero. 
Finally, the OUTPUT command specifies four keywords on line 17 that request a summary of the 
missing data patterns, maximum likelihood estimates of sample statistics, standardized 
coefficients, and confidence intervals. 

1.3 Mplus Output 

Information about the missing data patterns is found near the top of the output file. The table in 
the excerpt below shows the analysis variables in the rows and missing data patterns in the 
columns. The output also displays the frequency of each missing data pattern. 

 
SUMMARY OF MISSING DATA PATTERNS 
 
 
     MISSING DATA PATTERNS (x = not missing) 
 
           1  2  3  4  5  6  7 
 READ9     x  x  x  x 
 READ1     x  x  x     x  x 
 LRNPROB1  x  x     x  x  x  x 
 BEHSYMP1  x     x  x  x     x 
 
 
     MISSING DATA PATTERN FREQUENCIES 
 
    Pattern   Frequency     Pattern   Frequency     Pattern   Frequency 
          1          99           4           8           7           1 
          2           4           5          22 
          3           3           6           1 
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Next, the covariance coverage matrix displays the proportion of observed data for each 
variable on the diagonal and the proportion of observed data for each variable pair on the off-
diagonals. A low value on the off-diagonal indicates that the data contain little information about 
a bivariate association. 

 
COVARIANCE COVERAGE OF DATA 
 
Minimum covariance coverage value   0.100 

 
     PROPORTION OF DATA PRESENT 

 
           Covariance Coverage 
              READ9         READ1         LRNPROB1      BEHSYMP1 
              ________      ________      ________      ________ 
 READ9          0.826 
 READ1          0.768         0.935 
 LRNPROB1       0.804         0.913         0.978 
 BEHSYMP1       0.797         0.899         0.942         0.964 
 

The MODEL TEST command in the previous script requested an analogous Wald chi-square 
statistic that evaluates the null hypothesis that all population slopes equal zero. The chi-square 
statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT INFORMATION 
section under the Wald Test of Parameter Constraints heading. The test statistic is 
statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       14 

  ... 
 
Wald Test of Parameter Constraints 
 
          Value                            159.666 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
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The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. These supporting 
parameters are not of substantive interest, and they do not need to be reported. The first two 
columns display the unstandardized estimates and their standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READ9    ON 
    READ1              0.503      0.045     11.230      0.000 
    LRNPROB1          -0.224      0.132     -1.703      0.089 
    BEHSYMP1          -0.222      0.110     -2.023      0.043 
 
 LRNPROB1 WITH 
    READ1             -5.643     19.063     -0.296      0.767 
 
 BEHSYMP1 WITH 
    READ1            -11.235     20.841     -0.539      0.590 
    LRNPROB1          92.048     13.548      6.794      0.000 
 
 Means 
    READ1             86.732      1.709     50.739      0.000 
    LRNPROB1          52.328      0.914     57.224      0.000 
    BEHSYMP1          49.483      1.039     47.631      0.000 
 
 Intercepts 
    READ9             66.901      6.465     10.349      0.000 
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Variances 
    READ1            387.270     48.040      8.061      0.000 
    LRNPROB1         114.162     13.820      8.260      0.000 
    BEHSYMP1         146.318     17.738      8.249      0.000 
 
 Residual Variances 
    READ9             86.095     11.813      7.288      0.000 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading slope. The model predicts that two individuals who 
differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.50 
points on the outcome. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.23, p < .001). 

Specifying the stdyx keyword as an option prints the table of standardized estimates and R -
squared statistic shown below. The slope coefficients convey the expected change in standard 
deviation units for a one standard deviation increase in each predictor. For example, the model 
predicts that two individuals who differ by one standard deviation on READ1 but are the same on 
LRNPROB1 and BEHSYMP1 should differ by 0.68 standard deviations on the outcome. The R-
squared statistic at the bottom of this section indicates that the collection predictors explain 59% 
of the variation in ninth-grade reading scores. 

 
STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READ9    ON 
    READ1              0.683      0.049     13.901      0.000 
    LRNPROB1          -0.165      0.097     -1.698      0.089 
    BEHSYMP1          -0.185      0.091     -2.032      0.042 
 
 LRNPROB1 WITH 
    READ1             -0.027      0.091     -0.296      0.767 
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BEHSYMP1 WITH 
    READ1             -0.047      0.087     -0.541      0.588 
    LRNPROB1           0.712      0.042     16.784      0.000 

 
 Means 
    READ1              4.407      0.287     15.339      0.000 
    LRNPROB1           4.897      0.309     15.864      0.000 
    BEHSYMP1           4.091      0.262     15.594      0.000 
 
 Intercepts 
    READ9              4.620      0.575      8.032      0.000 
 
 Variances 
    READ1              1.000      0.000    999.000    999.000 
    LRNPROB1           1.000      0.000    999.000    999.000 
    BEHSYMP1           1.000      0.000    999.000    999.000 
 
 Residual Variances 
    READ9              0.411      0.059      6.974      0.000 

 
R-SQUARE 
 
    Observed                                        Two-Tailed 
    Variable        Estimate       S.E.  Est./S.E.    P-Value 
 
    READ9              0.589      0.059     10.014      0.000 
 

1.4 R lavaan FIML Script 

The R input file for the analysis is Ex1.1.R. The example requires the lavaan package. 

 
R Script Ex1.1.R 

 
1 library(lavaan) 
2 load('behaviorachievement.rda') 
3  
4 model <- 'read9 ~ b1*read1 + b2*lrnprob1 + b3*behsymp1' 
5 fit <- sem(model, behaviorachievement, fixed.x = F, missing = 'fiml') 
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6  
7 inspect(fit, 'patterns') 
8 inspect(fit, 'coverage') 
9 summary(fit, rsquare = T, standardize = T) 
10  
11 wald.constraints <- 'b1 == 0; b2 == 0; b3 == 0;' 
12 lavTestWald(fit, constraints = wald.constraints) 
 

The model variable on line 4 defines a text string specifying the regression model, with the 
outcome variable on the left side of the tilde and the predictors to the right. Each predictor’s 
slope is preceded by a label (i.e., b1, b2, and b3). A subsequent command uses these labels to 
specify a custom significance test of the null hypothesis that the population slopes equal zero. On 
line 5, the model string and data frame are passed into the sem function. The fixed.x = F 
parameter specifies that the predictors are treated as normally distributed variables, and missing 
= 'fiml' requests missing data estimation. The fixed.x specification is important because it 
invokes a multivariate normal distribution for the analysis variables. As mentioned previously, 
assigning distributions to incomplete predictors is necessary for missing data handling.  

The inspect functions on lines 7 and 8 produce a table of missing data patterns and a 
covariance coverage matrix with the proportion of observed data for each variable or variable 
pair, respectively. The summary function on line 9 produces tabular results with standardized 
estimates and the R-squared statistic. Finally, the wald.constraints variable on line 11 defines a 
text string that uses the aforementioned labels to specify the null hypothesis that all three 
population slopes equal zero. The lavTestWald function on line 12 uses that text string to 
generate a chi-square statistic, degrees of freedom, and p-value. 

1.5 R Output 

The inspect functions in the previous script request information about the missing data patterns 
and missing data rates. The missing data pattern table in output below shows the analysis 
variables in the columns and missing data patterns in the rows (1 = observed, 0 = missing).  

 
     read9 read1 lrnpr1 bhsym1 
[1,]     1     1      1      1 
[2,]     0     1      1      1 
[3,]     1     0      1      1 
[4,]     1     1      1      0 
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[5,]     1     1      0      1 
[6,]     0     0      1      1 
[7,]     0     1      1      0 
 

The covariance coverage matrix displays the proportion of observed data for each variable on the 
diagonal and the proportion of observed data for each variable pair on the off-diagonals. A low 
value on the off-diagonal indicates that the data contain little information about a bivariate 
association. 

 
         read9 read1 lrnpr1 bhsym1 
read9    0.826                     
read1    0.768 0.935               
lrnprob1 0.804 0.913 0.978         
behsymp1 0.797 0.899 0.942  0.964 
  

The table of parameter estimates is shown below. Because the analysis specifies a multivariate 
normal distribution for the predictors, the means, variances, and covariances of these variables 
are printed along with the focal model estimates. These supporting parameters are not of 
substantive interest, and they do not need to be reported. The first two columns display the 
unstandardized estimates and their standard errors, and the third and fourth columns display the 
corresponding z-statistics and p-values. The rightmost column gives the standardized 
coefficients. The focal model results are shown in bold typeface. 

 
  Regressions: 

                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  read9 ~                                                                
    read1     (b1)    0.503    0.045   11.230    0.000    0.503    0.683 
    lrnprob1  (b2)   -0.224    0.132   -1.702    0.089   -0.224   -0.165 
    behsymp1  (b3)   -0.222    0.110   -2.023    0.043   -0.222   -0.185 
 
Covariances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  read1 ~~                                                               
    lrnprob1         -5.637   19.063   -0.296    0.767   -5.637   -0.027 
    behsymp1        -11.228   20.841   -0.539    0.590  -11.228   -0.047 
  lrnprob1 ~~                                                            
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    behsymp1         92.048   13.548    6.794    0.000   92.048    0.712 
 

Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .read9            66.901    6.465   10.349    0.000   66.901    4.620 
    read1            86.732    1.709   50.739    0.000   86.732    4.407 
    lrnprob1         52.328    0.914   57.225    0.000   52.328    4.897 
    behsymp1         49.483    1.039   47.631    0.000   49.483    4.091 
 
Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .read9            86.096   11.813    7.288    0.000   86.096    0.411 
    read1           387.275   48.041    8.061    0.000  387.275    1.000 
    lrnprob1        114.160   13.820    8.260    0.000  114.160    1.000 
    behsymp1        146.317   17.738    8.249    0.000  146.317    1.000 

 
R-Square: 
                   Estimate 
    read9             0.589 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading slope. The model predicts that two individuals who 
differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.50 
points on the outcome. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.23, p < .001).  

The standardized coefficients in the Std.all column convey the expected change in standard 
deviation units for a one standard deviation increase in each predictor. For example, the model 
predicts that two individuals who differ by one standard deviation on READ1 but are the same on 
LRNPROB1 and BEHSYMP1 should differ by 0.68 standard deviations on the outcome. The R-
squared statistic at the bottom of this section indicates that the collection predictors explain 59% 
of the variation in ninth-grade reading scores. 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The lavTestWald function in the previous script requested an analogous 
Wald chi-square statistic that evaluates the null hypothesis that all population slopes equal zero. 
The chi-square statistic, degrees of freedom, and p-value appear on the output as follows. The test 
statistic is statistically significant, thus refuting the null hypothesis. 
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$stat 
[1] 159.6636 
 
$df 
[1] 3 
 
$p.value 
[1] 0 
 

1.6 Adding Auxiliary Variables 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). The next part of example introduces two auxiliary variables using the saturated correlates 
approach described by Graham (2003). The analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 
 

A path diagram of the saturated correlates model is shown below. The curved arrows depict 
correlations and residual correlations that connect the auxiliary variables to each other and to the 
residuals of the focal variables. Both Mplus and R have facilities that automatically introduce 
auxiliary variables according to this model. Note that the saturated correlates approach assumes 
that all variables are multivariate normal. 
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1.7 Mplus FIML Script and Output 

The code block below shows Mplus script Ex1.2.inp. The only change to the script is the 
auxiliary subcommand on line 8, which functions as a second variable list containing just the 
auxiliary variables. The (m) specification indicates that the additional variables are missing data 
auxiliary variables (Mplus uses this command for other purposes unrelated to missing data). 
Finally, note that the additional variables are omitted from the usevariables line. 

 
Mplus Script Ex1.2.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5     read1 read2 read3 read9 read9grp stanread7  
 6     math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1; 
 8  auxiliary = (m) read2 stanread7; 
 9  missing = all(999); 
10  ANALYSIS: 
11  estimator = ml; 
12  MODEL:   

READING9

BEHSYMP1

READING2

READING1

STANREAD7

LRNPROB1

FIGURE 6. Solid lines denote the focal regression model parameters, and 
dashed lines are auxiliary variable parameters. The path diagram depicts a 
saturated correlates model that connects the analysis variables to the 
auxiliary variables via correlated residuals.
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13  read1 lrnprob1 behsymp1; 
14  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
15  MODEL TEST: 
16  0 = beta1; 0 = beta2; 0 = beta3; 
17  OUTPUT: 
18  patterns sampstat stdyx cinterval; 
 

The only indication that auxiliary variables are included in the model appears in the SUMMARY 
OF ANALYSIS table near the top of the output file. The main body of the output doesn’t change 
with auxiliary variables, as the additional parameters (e.g., the curved arrows, or correlations) are 
suppressed. The estimates and standard errors may change, which is expected when including 
auxiliary variables that have salient semipartial correlations with the incomplete variables. 

 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         138 
 
Number of dependent variables                                    1 
Number of independent variables                                  3 
Number of continuous latent variables                            0 
 

 
 
Observed dependent variables 
 
  Continuous 
   READ9 
 
Observed independent variables 
   READ1       LRNPROB1    BEHSYMP1 
 
Observed auxiliary variables 
   READ2       STANREAD7 
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1.8 R lavaan FIML Script and Output 

The R input file that incorporates auxiliary variables is Ex1.2.R. The example requires the 
lavaan and semTools packages. 

 
R Script Ex1.2.R 

 
1 library(lavaan) 
2 load('behaviorachievement.rda') 
3  
4 model <- 'read9 ~ b1*read1 + b2*lrnprob1 + b3*behsymp1' 
5 fit <- sem.auxiliary(model, behaviorachievement, fixed.x = F,  
6   aux = c('read2','stanread7')) 
7  
8 inspect(fit, 'patterns') 
9 inspect(fit, 'coverage') 
10 summary(fit, rsquare = T, standardize = T) 
 

The model text string remains the same with auxiliary variables. The major change is that the 
sem.auxiliary function replaces the sem function in Ex1.1.R. The aux parameter defines a 
vector of auxiliary variable names for the saturated correlates model. Unlike Mplus, the R output 
includes the auxiliary variable parameters. The additional estimates can be ignored because they 
are not the substantive focus. 
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FIML: Binary Logistic Regression 

 

 

 

 

This example illustrates a binary logistic regression analysis with incomplete data. The analysis 
uses the behaviorachievement.dat data set taken from a longitudinal study that followed 138 
students from primary through middle school. The file includes three annual assessments of 
broad reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The data description at the 
beginning of this document provides additional details. The variables for this analysis are as 
follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READGRP9 9th grade reading classification 17.4 0 = Below average, 1 = Average 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

2.1 Analysis Model 

The analysis model features a binary classification of ninth grade reading performance regressed 
on first grade reading achievement and teacher-rated learning problems and behavioral 
symptoms. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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logit(𝑅𝐸𝐴𝐷𝐺𝑅𝑃9) = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) (2) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Models with mixtures of categorical and numeric 
variables require a factored regression specification that separates the likelihood function into 
separate components for each variable type. Mplus assigns a multivariate normal distribution to 
the predictors, whereas the R script links predictors to one another using a sequence of univariate 
regression models. 

2.2 Mplus FIML Script 

The code block below shows Mplus script Ex2.1.inp. 

 
Mplus Script Ex2.1.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5     read1 read2 read3 read9 read9grp stanread7  
 6      math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9grp read1 lrnprob1 behsymp1; 
 8  categorical = read9grp; 
 9  missing = all(999); 
10  ANALYSIS: 
11  estimator = ml; 
12  link = logit; 
13  integration = montecarlo; 
14  MODEL:   
15  read1 lrnprob1 behsymp1; 
16  read9grp on read1 lrnprob1 behsymp1 (beta1-beta3); 
17  MODEL TEST: 
18  0 = beta1; 0 = beta2; 0 = beta3; 
19  OUTPUT: 
20  patterns sampstat stdyx cinterval; 
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The DATA command specifies the name of the input text file. No file path is required when the 
data file is in the same directory as the script, as it is here. The VARIABLE command provides 
information about the data. Beginning on line 4, the names subcommand assigns names to the 
variables in the input data file, the usevariables subcommand selects variables for the analysis, 
and the missing subcommand gives the global missing value code. The categorical 
subcommand on line 8 defines the outcome as a binary variable. The ANALYSIS command and 
estimator subcommand specify full information maximum likelihood estimation. Additionally, 
the link = logit subcommand specifies a logistic regression for the outcome variable, and 
integration = montecarlo invokes an algorithmic method for models with mixed variable 
types. 

The MODEL section of the script consists of two lines. Listing all predictors by name on line 15 
is important because doing so invokes a multivariate normal distribution for these variables. As 
mentioned previously, assigning distributional assumptions to predictors is necessary for missing 
data handling. On line 16, the outcome variable appears to the left of the on keyword, and the 
predictors appear to the right. The end of this line includes labels for the slope parameters in 
parentheses. The subsequent MODEL TEST command uses these labels to specify a custom 
significance test of the omnibus null hypothesis that all three population slopes equal zero. 
Finally, the OUTPUT command specifies four keywords on line 20 that request a summary of the 
missing data patterns, maximum likelihood estimates of sample statistics, standardized 
coefficients, and confidence intervals. 

2.3 Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these tables is the same as those 
shown in Section 1.3.  

The MODEL TEST command in the previous script requested an analogous Wald chi-square 
statistic that evaluates the null hypothesis that all population slopes equal zero. The chi-square 
statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT INFORMATION 
section under the Wald Test of Parameter Constraints heading. The test statistic is 
statistically significant, thus refuting the null hypothesis. 

 

 



FIML: Binary Logistic Regression     

 

24 

MODEL FIT INFORMATION 
 
Number of Free Parameters                       13 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                             21.889 
          Degrees of Freedom                     3 
          P-Value                           0.0001 
 

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. These supporting 
parameters are not of substantive interest, and they do not need to be reported. The first two 
columns display the unstandardized estimates and their standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READGRP9   ON 
    READ1              0.069      0.016      4.446      0.000 
    LRNPROB1          -0.018      0.033     -0.549      0.583 
    BEHSYMP1          -0.028      0.028     -1.014      0.311 
 
 LRNPROB1 WITH 
    READ1              3.085     19.553      0.158      0.875 
 
BEHSYMP1 WITH 
    READ1             -5.194     21.046     -0.247      0.805 
    LRNPROB1          92.088     13.554      6.794      0.000 
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 Means 
    READ1             86.974      1.719     50.598      0.000 
    LRNPROB1          52.319      0.914     57.267      0.000 
    BEHSYMP1          49.488      1.041     47.544      0.000 
 
 Thresholds 
    READGRP9$1         3.874      1.729      2.240      0.025 
 
 Variances 
    READ1            384.526     47.859      8.035      0.000 
    LRNPROB1         113.906     13.775      8.269      0.000 
    BEHSYMP1         146.740     17.818      8.235      0.000 
 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ 
by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (z = 4.45, p < .001). Note that Mplus reports a threshold parameter instead of the usual 
regression intercept. The threshold from a binary logistic model has the same value as the 
intercept but the opposite sign (i.e., 𝛽0̂ = –3.87). 

Finally, the printed output also includes the table of odds ratios that reflect multiplicative 
changes to the odds. For example, a one-point increase in first grade reading scores increases the 
odds of achieving an average ninth grade reading level by a factor 1.07, holding first grade 
learning problems and behavioral symptoms constant. 

 
LOGISTIC REGRESSION ODDS RATIO RESULTS 
 
                                                95% C.I. 
                    Estimate       S.E.  Lower 2.5% Upper 2.5% 
 
 READGRP9   ON 
    READ1              1.072      0.017      1.040      1.105 
    LRNPROB1           0.982      0.032      0.921      1.047 
    BEHSYMP1           0.972      0.027      0.921      1.027 
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2.4 Adding Auxiliary Variables 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). The saturated correlates model from Section 1.6 is not applicable to logistic regression 
models because it assumes multivariate normality. Instead, auxiliary variables enter the model as 
additional outcomes that are predicted by the analysis variables and by each other.  

The additional regression equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷𝐺𝑅𝑃9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷𝐺𝑅𝑃9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (3) 

 

Along with the logistic regression model from Equation 2, the collection of regression equations 
can be viewed as the path model shown below, where the dashed lines are the additional 
regressions. With this method, the focal model is one part of a larger network of variables.  
Importantly, the path model does not represent substantive theory, but is simply a tool for 
linking the auxiliary variables to the focal variables and to each other. 

 

 

 

READING2

READING1

STANREAD7

READGRP9LRNPROB1

BEHSYMP1
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2.5 Mplus FIML Script 

The code block below shows an excerpt from Mplus script Ex2.2.inp. The MODEL command 
includes two new regression equations, but the script is otherwise similar to Ex2.1.inp.  

 
MODEL:   
read1 lrnprob1 behsymp1; 
read9grp on read1 lrnprob1 behsymp1 (beta1-beta3); 
read2 on read9grp read1 lrnprob1 behsymp1; 
stanread7 on read2 read9grp read1 lrnprob1 behsymp1; 
 

The main table of results expands to include summaries of the auxiliary variable regression 
models. However, these additional parameters can be ignored because they are not the 
substantive focus. The logistic model’s estimates and standard errors change, which is expected 
when including auxiliary variables that have salient semipartial correlations with the incomplete 
variables. 

2.6 R mdmb FIML Script 

The lavaan package currently does not offer maximum likelihood estimation for models with 
incomplete categorical variables. The example instead uses the mdmb package. This package 
leverages a factored regression specification that links incomplete predictors to one another using 
a sequence of univariate regression models. The additional regression equations are as follows. 

 

𝐵𝐸𝐻𝑆𝑌𝑀𝑃1 = 𝛾01 + 𝜖1 

𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾02 + 𝛾12(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (4) 

𝑅𝐸𝐴𝐷1 = 𝛾03 + 𝛾13(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾23(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖3 

 

These equations essentially comprise a path model where first grade behavioral symptom ratings 
predict learning problems, and both variables then predict first grade reading scores. 

The R input file for the analysis is Ex2.R. The example requires the mdmb package. 
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R Script Ex2.R 
 

1 library(mbmb) 
2 load('behaviorachievement.rda') 
3  
4 summary(behaviorachievement) 
 

The mdmb package requires the user to specify 'nodes' for the missing values. These nodes are 
essentially a fixed list of plausible score values that span each variable’s range. Specifying these 
values is necessary for the optimization algorithm, which uses an imputation-like algorithm 
called numerical integration. The summary function on line 4 generates a table displaying the 
observed values of the numeric variables. The summary table is as follows. 

 

   stanread7         read2            read1           lrnprob1        behsymp1     

 Min.   :100.0   Min.   : 20.00   Min.   : 39.00   Min.   :31.00   Min.   :17.00   

 1st Qu.:228.0   1st Qu.: 83.00   1st Qu.: 74.00   1st Qu.:45.00   1st Qu.:41.00   

 Median :263.0   Median : 92.00   Median : 86.00   Median :51.00   Median :48.00   

 Mean   :264.5   Mean   : 93.74   Mean   : 86.81   Mean   :52.36   Mean   :49.47   

 3rd Qu.:314.0   3rd Qu.:108.00   3rd Qu.: 99.00   3rd Qu.:60.50   3rd Qu.:58.00   

 Max.   :399.0   Max.   :150.00   Max.   :153.00   Max.   :88.00   Max.   :92.00   

 NA's   :27      NA's   :13       NA's   :9        NA's   :3       NA's   :5 

 

The next part of the code creates variables that contain vectors of plausible replacement scores 
(nodes, pseudo-imputations) that span the entire range of the distributions. The binary outcome 
has only two possible scores, so its node vector on line 7 consists of 0s and 1s. For continuous 
variables, specifying 20 to 40 nodes is usually sufficient. For example, nodes.read1 is a vector of 
plausible scores ranging from 30 to 160 in increments of two, and nodes.lrnprb1  is a sequence 
of scores between 20 and 100 in increments of two. To account for the possibility that the 
missing scores fall outside the observed range, the vectors specify values beyond the minimum 
and maximum scores from the data. 

 
R Script Ex2.R, continued 
 
5 nodes.stanread7 <- seq(80, 420, by = 5) 
6 nodes.read2 <- seq(10, 160, by = 2) 
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7 nodes.read9grp <- c(0,1) 
8 nodes.read1 <- seq(30, 160, by = 2) 
9 nodes.lrnprob1 <- seq(20, 100, by = 2) 
10 nodes.behsymp1 <- seq(10, 100, by = 2) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 4 are listed first, followed by the logistic model 
from Equation 2. The auxiliary variable regressions from Equation 3 are last. Each model object 
includes three arguments: the type of regression (linear or logistic), an equation, and the 
incomplete variable’s vector of nodes or pseudo-imputations. Linear regressions are specified 
with 'model' = 'linreg' parameter, and the binary logistic regression is specified using 
'model' = 'logistic'.  

 
R Script Ex2.R, continued 
 
11 model.behsymp1 <- list('model' = 'linreg',  
12   'formula' = behsymp1 ~ 1, nodes = nodes.behsymp1) 
13 model.lrnprob1 <- list('model' = 'linreg',  
14   'formula' = lrnprob1 ~ behsymp1, nodes = nodes.lrnprob1) 
15 model.read1 <- list('model' = 'linreg',  
16   'formula' = read1 ~ lrnprob1 + behsymp1, nodes = nodes.read1) 
17 model.read9grp <- list('model' = 'logistic',  
18   'formula' = read9grp ~ read1 + lrnprob1 + behsymp1, 
19   nodes = nodes.read9grp) 
20 model.read2 <- list('model' = 'linreg',  
21   'formula' = read2 ~ read9grp + read1 + lrnprob1 + behsymp1,  
22   nodes = nodes.read2) 
23 model.stanread7 <- list('model' = 'linreg',  
24   'formula' = stanread7 ~ read2 + read9grp + read1 + lrnprob1 +   
25   behsymp1, nodes = nodes.stanread7) 

 

The mdmb package views stanread7 (the auxiliary variable in the final regression model) as 
the ultimate 'dependent' variable in the sequence, and it considers all other variables 
'independent variables'. Starting on line 26, the final part of the code combines the independent 
variable models into a list. On lines 29 and 30, the data frame and the predictor list are passed 
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into the frm_em function, which fits the sequence of models. Finally, the summary function on line 
31 requests tables of parameter estimates. 

 
R Script Ex2.R, continued 
 
26 predictor.models <- list(behsymp1 = model.behsymp1,  
27   lrnprob1 = model.lrnprob1, read1 = model.read1,  
28   read9grp = model.read9grp, read2 = model.read2) 
29 fit <- frm_em(dat = behaviorachievement, dep = model.stanread7,  
30   ind = predictor.models)  
31 summary(fit) 
 

2.7 R Output 

The mdmb output includes a table of results for every fitted regression model. In this example, the 
output tables summarize linear regressions for the three incomplete predictors, a logistic 
regression for the binary dependent variable, and a pair of linear regressions for the auxiliary 
variables. These supporting model parameters are not of substantive interest, and they do not 
need to be reported. The output below shows the parameter estimates from the focal logistic 
model. The first two columns display the unstandardized estimates and their standard errors, the 
third and fourth columns display the corresponding t-statistics and p-values, and the rightmost 
columns contain 95% confidence interval limits. 

 

Model 4: mdmb::logistic_regression( read9grp ~ read1 + lrnprob1 + behsymp1 )  

 

  index       dv                    parm ON     est     se       t      p lower95 upper95 

1    14 read9grp read9grp ON (Intercept)  1 -3.9045 1.6291 -2.3968 0.0165 -7.0974 -0.7117 

2    15 read9grp       read9grp ON read1  1  0.0675 0.0149  4.5252 0.0000  0.0383  0.0968 

3    16 read9grp    read9grp ON lrnprob1  1 -0.0225 0.0308 -0.7330 0.4636 -0.0828  0.0377 

4    17 read9grp    read9grp ON behsymp1  1 -0.0192 0.0251 -0.7664 0.4434 -0.0685  0.0300 

 

Pseudo R^2 (McKelvey & Zavoina)=0.4944 

 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ 
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by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (t = 4.53, p < .001). 
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FIML: Regression With Binary and Ordinal Predictors 

 

 

 

 

This example illustrates a multiple regression analysis with incomplete categorical predictors. 
The analysis uses the mathachievement.dat data set taken from an educational intervention 
where 250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 

MATHPOST Math achievement posttest  18.0 Numeric 

CONDITION Experimental condition 0 0 = Comparison, 1 = Intervention 

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 

EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 

MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 

ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

3.1 Analysis Model 

The analysis model features math posttest scores regressed on the experimental condition and 
lunch assistance dummy codes, math self-efficacy ratings, and math pretest scores. 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20



FIML: Regression With Binary and Ordinal Predictors     

 

33 

 

𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛽2(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) 

+ 𝛽3(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛽4(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 (5) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. In this case, the predictor set includes incomplete binary 
and ordinal variables, so assigning a normal distribution to the variables is questionable.  

The analysis instead uses a factored regression specification that separates the likelihood 
function into separate components for each variable type. In practical terms, this specification 
uses a sequence of univariate regression models to link incomplete predictors. The additional 
regression equations are logistic and linear models. 

 

logit(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) = 𝛾01 + 𝛾11(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛾21(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 = 𝛾02 + 𝛾12(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾22(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛾32(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖2 (6) 

 

These equations essentially comprise a path model where the intervention indicator and math 
pretest scores predict the lunch assistance indicator, and all three variables, in turn, predict self-
efficacy. The two complete variables are always on the right side of regression equations because 
they do not require a model. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following Section 2.4, auxiliary variables enter the model as additional outcomes that are 
predicted by the analysis variables and by each other. The additional regression equations are as 
follows. 

 

logit(𝐴𝑇𝑅𝐼𝑆𝐾) = 𝛾03 + 𝛾13(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾23(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

+ 𝛾33(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾43(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛾53(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾04 + 𝛾14(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾24(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾34(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) (7) 

+ 𝛾44(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾54(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾64(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖4 

 

Again, the entire collection of regression equations can be viewed as a path model (see the 
auxiliary variable path diagram from Section 2.4). The key difference is that the path coefficients 
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are just a tool for linking variables with different metrics and do not represent a substantive 
theory. 

3.2 Mplus FIML Script 

The code block below shows Mplus script Ex3.inp. 

 
Mplus Script Ex3.inp 
 
 1  DATA:  
 2  file = mathachievement.dat; 
 3  VARIABLE:  
 4  names = id condition male frlunch atrisk  
 5   stanread efficacy anxiety mathpre mathpost; 
 6  usevariables = mathpost condition frlunch efficacy  
 7   mathpre atrisk stanread; 
 8  categorical = frlunch efficacy atrisk;  
 9  missing = all(999); 
10  ANALYSIS: 
11  estimator = ml; 
12  link = logit; 
13  integration = montecarlo; 
14  MODEL: 
15  frlunch on condition mathpre; 
16  efficacy on frlunch condition mathpre; 
17  mathpost on condition frlunch efficacy mathpre (beta1-beta4); 
18  atrisk on mathpost condition frlunch efficacy mathpre; 
19  stanread on atrisk mathpost condition frlunch efficacy mathpre; 
20  MODEL TEST: 
21  0 = beta1; 0 = beta2; 0 = beta3; 0 = beta4; 
22  OUTPUT: 
23  patterns sampstat cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data file is in the same directory as the script, as it is here. The VARIABLE command provides 
information about the data. Beginning on line 4, the names subcommand assigns names to the 
variables in the input data file, the usevariables subcommand selects variables for the analysis, 
and the missing subcommand gives the global missing value code. The categorical 
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subcommand on line 8 defines three variables as either binary or ordinal. The ANALYSIS 
command and estimator subcommand specify full information maximum likelihood 
estimation. Finally, the link = logit option specifies a logistic regression for the outcome 
variable, and integration = montecarlo invokes an algorithmic method for models with mixed 
variable types (and a factored regression specification for the likelihood). 

The MODEL section of the script consists of five lines. Lines 15 and 16 are logistic regressions 
linking the discrete predictors to the complete variables and each other (see Equation 6), and line 
17 is the focal regression model from Equation 5. The end of this line includes parameter labels 
in parentheses. Finally, lines 18 and 19 are the auxiliary variable regressions shown in Equation 7. 
As noted previously, the collection of regressions can be viewed as a path model, with the focal 
regression as one part of a larger network (see the path diagram from Section 2.4). Next, the 
MODEL TEST command uses the labels from line 17 to specify a custom significance test of the null 
hypothesis that all three population slopes equal zero. Finally, the OUTPUT command specifies 
three keywords on line 23 that request a summary of the missing data patterns, maximum 
likelihood estimates of sample statistics, and confidence intervals (standardized coefficients are 
not available for this analysis). 

3.3 Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these tables is the same as those 
shown in Section 1.3.  

The MODEL TEST command in the previous script requested an analogous Wald chi-square 
statistic that evaluates the null hypothesis that all population slopes equal zero. The chi-square 
statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT INFORMATION 
section under the Wald Test of Parameter Constraints heading. The test statistic is 
statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       31 
 
... 
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Wald Test of Parameter Constraints 
 
          Value                            149.182 
          Degrees of Freedom                     4 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. These supporting 
parameters are not of substantive interest, and they do not need to be reported. The first two 
columns display the unstandardized estimates and their standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 FRLUNCH    ON 
    CONDITION          0.011      0.265      0.041      0.967 
    MATHPRE           -0.020      0.015     -1.290      0.197 
 
 EFFICACY   ON 
    FRLUNCH           -0.031      0.246     -0.125      0.901 
    CONDITION          0.506      0.240      2.107      0.035 
    MATHPRE            0.056      0.014      3.881      0.000 

 
 MATHPOST   ON 
    CONDITION          2.306      1.023      2.255      0.024 
    FRLUNCH           -5.498      1.063     -5.173      0.000 
    EFFICACY           0.833      0.340      2.448      0.014 
    MATHPRE            0.526      0.061      8.594      0.000 

 
ATRISK     ON 
    MATHPOST          -0.028      0.025     -1.141      0.254 
    CONDITION         -0.080      0.342     -0.233      0.815 
    FRLUNCH            0.898      0.399      2.248      0.025 
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    EFFICACY          -0.337      0.115     -2.925      0.003 
    MATHPRE           -0.018      0.024     -0.722      0.470 
 
 STANREAD   ON 
    ATRISK           -13.492      1.231    -10.957      0.000 
    MATHPOST           0.349      0.078      4.466      0.000 
    CONDITION          1.493      1.019      1.466      0.143 
    FRLUNCH           -2.435      1.177     -2.068      0.039 
    EFFICACY          -0.478      0.351     -1.361      0.173 
    MATHPRE            0.006      0.073      0.076      0.939 
 
 Intercepts 
    MATHPOST          29.375      3.016      9.739      0.000 
    STANREAD          44.135      4.035     10.938      0.000 
 
 Thresholds 
    FRLUNCH$1         -0.623      0.780     -0.799      0.425 
    EFFICACY$1         1.308      0.748      1.748      0.080 
    EFFICACY$2         2.213      0.752      2.942      0.003 
    EFFICACY$3         3.250      0.770      4.222      0.000 
    EFFICACY$4         4.186      0.786      5.324      0.000 
    EFFICACY$5         4.976      0.800      6.217      0.000 
    ATRISK$1          -4.351      1.317     -3.304      0.001 
 
 Residual Variances 
    MATHPOST          51.270      5.185      9.888      0.000 
    STANREAD          52.261      5.226     10.000      0.000 
  

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.31 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (z = 2.26, p = .02). 

3.4 R mdmb FIML Script  

The R input file for the analysis is Ex3.R. The example requires the mdmb package. 
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R Script Ex3.R 

 
1 library(mbmb) 
2 load('mathachievement.rda') 
3  
4 summary(mathachievement) 
 

The mdmb package requires the user to specify 'nodes' for the missing values. These nodes are 
essentially a fixed list of plausible score values that span each variable’s range. Specifying these 
values is necessary for the optimization algorithm, which uses an imputation-like algorithm 
called numerical integration. The summary function on line 4 generates a table displaying the 
observed values of the numeric variables. The summary table is as follows. 

 
    frlunch        efficacy        mathpost         atrisk          stanread     
 Min.   :0.00   Min.   :1.000   Min.   :37.00   Min.   :0.0000   Min.   :27.00   
 1st Qu.:0.00   1st Qu.:2.000   1st Qu.:52.00   1st Qu.:1.0000   1st Qu.:45.00   
 Median :0.00   Median :3.000   Median :57.00   Median :1.0000   Median :55.00   
 Mean   :0.41   Mean   :3.394   Mean   :57.45   Mean   :0.7637   Mean   :52.52   
 3rd Qu.:1.00   3rd Qu.:5.000   3rd Qu.:63.00   3rd Qu.:1.0000   3rd Qu.:60.50   
 Max.   :1.00   Max.   :6.000   Max.   :85.00   Max.   :1.0000   Max.   :69.00   
 NA's   :11     NA's   :24      NA's   :45      NA's   :13       NA's   :23  
   

The next part of the code creates variables that contain vectors of plausible replacement scores 
(nodes, pseudo-imputations) that span the entire range of the distributions. The binary variables 
have only two possible scores, so their node vectors on lines 8 and 11 consist of 0s and 1s. On line 
9, the efficacy scores similarly use integer nodes between 1 and 6. For continuous variables, 
specifying 20 to 40 nodes is usually sufficient. For example, nodes.stanread is a vector of 
plausible scores ranging from 20 to 80 in increments of two, and nodes.mathpost  is a sequence 
of scores between 30 and 90 in increments of two. To account for the possibility that the missing 
scores fall outside the observed range, the vectors specify values beyond the minimum and 
maximum scores from the data. 
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R Script Ex3.R, continued 
 

5 nodes.frlunch <- c(0,1) 
6 nodes.efficacy <- seq(1, 6, by = 1) 
7 nodes.mathpost <- seq(30, 90, by = 2) 
8 nodes.atrisk <- c(0,1) 
9 nodes.stanread <- c(20, 80, by = 2) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 6 are listed first, followed by the focal model 
from Equation 5. The auxiliary variable regressions from Equation 7 are last. Each model object 
includes three arguments: the type of regression (linear or logistic), an equation, and the 
incomplete variable’s nodes. Linear regressions are specified with 'model' = 'linreg' 
parameter, and the binary logistic regression is specified using 'model' = 'logistic'.  

 
R Script Ex3.R, continued 
 
10 model.frlunch <- list('model' = 'logistic',  
11   'formula' = frlunch ~ condition + mathpre,  
12   nodes = nodes.frlunch) 
13 model.efficacy <- list('model' = 'linreg', 
14   'formula' = efficacy ~ frlunch + condition + mathpre,  
15   nodes = nodes.efficacy) 
16 model.mathpost <- list('model' = 'linreg',  
17   'formula' = mathpost ~ condition + frlunch + efficacy + mathpre,  
18   nodes = nodes.mathpost) 
19 model.atrisk <- list('model' = 'logistic',  
20   'formula' = atrisk ~ mathpost + condition + frlunch + efficacy +   
21   mathpre, nodes = nodes.atrisk) 
22 model.stanread <- list('model' = 'linreg',  
23   'formula' = stanread ~ atrisk + mathpost + condition + frlunch +  
24   efficacy + mathpre, nodes = nodes.stanread) 

 

The mdmb package views stanread (the auxiliary variable in the final regression model) as the 
ultimate 'dependent' variable, and it considers all other variables 'independent variables'. Starting 
on line 25, the final part of the code combines the independent variable models into a list. On 
lines 28 and 29, the data frame and the predictor list are passed into the frm_em function, which 
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fits the sequence of models. Finally, the summary function on line 30 requests tables of parameter 
estimates. 

 
R Script Ex3.R, continued 
 
25 predictor.models <- list(frlunch = model.frlunch,  
26   efficacy = model.efficacy, mathpost = model.mathpost,  
27   atrisk = model.atrisk) 
28 fit <- frm_em(dat = mathachievement, dep = model.stanread,  
29   ind = predictor.models)  
30 summary(fit) 
 

3.5 R Output 

The mdmb output includes a table of results for every fitted regression model. The supporting 
model parameters are not of substantive interest, and they do not need to be reported. The 
output below shows the parameter estimates from the focal regression model. The first two 
columns display the unstandardized estimates and their standard errors, the third and fourth 
columns display the corresponding t-statistics and p-values, and the rightmost columns contain 
95% confidence interval limits. 

 

Model 3: stats::lm( mathpost ~ condition + frlunch + efficacy + mathpre )  

 

  index       dv                    parm ON     est     se       t      p lower95 upper95 

1    15 mathpost mathpost ON (Intercept)  1 29.0504 3.0085  9.6562 0.0000 23.1539 34.9469 

2    16 mathpost   mathpost ON condition  1  2.2939 1.0226  2.2431 0.0249  0.2895  4.2982 

3    17 mathpost     mathpost ON frlunch  1 -5.2352 1.0592 -4.9427 0.0000 -7.3111 -3.1593 

4    18 mathpost    mathpost ON efficacy  1  0.7966 0.3391  2.3490 0.0188  0.1319  1.4612 

5    19 mathpost     mathpost ON mathpre  1  0.5200 0.0607  8.5687 0.0000  0.4011  0.6390 

6    20 mathpost          mathpost sigma  0  7.1076 0.3524 20.1691 0.0000  6.4169  7.7983 

 

Explained variance R^2=0.4197 

 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, the positive coefficient for the treatment assignment 
predictor indicates that, for two students who share the same covariate profile (i.e., lunch 
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assistance, self-efficacy, and pretest scores), the model predicts that the student in the 
experimental condition should score 2.29 points higher than the student in the control group. 
The corresponding test statistic indicates that the slope coefficient is statistically different from 
zero (t = 2.24, p = .03). 
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FIML: Moderated Regression With an Interaction 

 

 

 

 

This example illustrates a multiple regression analysis with an incomplete interaction effect. The 
analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 

ATRISK Emotion/behavior disorder risk 2.2 0 = No risk, 1 = At risk 

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

4.1 Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement, teacher-rated learning problems, and the product of first grade reading scores and 
learning problems, and a binary risk indicator. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 

+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜀 (8) 

 

Moderated regression models (and models with non-linearities more generally) require a 
factored regression specification that splits the likelihood into separate parts for the outcome 
model and predictors. 

Unlike a complete-data regression analysis, incomplete variables also require distributional 
assumptions and models that define those distributions. The analysis uses a factored regression 
specification that separates the likelihood function into separate components for each variable. 
The analysis uses a logistic regression for the binary covariate and linear models for the other two 
predictors. In practical terms, this specification uses a sequence of univariate regression models 
to link incomplete predictors. The additional regression equations are as follows. 

 

logit(𝐴𝑇𝑅𝐼𝑆𝐾) = 𝛾01 

𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾02 + 𝛾12(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜖2 (9) 

𝑅𝐸𝐴𝐷1 = 𝛾03 + 𝛾13(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾23(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖3 

 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜖4 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜖5 (10) 

 

Along with the other models, the collection of regression equations can be viewed as a path 
model where the focal analysis is one part of a larger network (see the path diagram from Section 
2.4). The key difference is that the path coefficients are just a tool for linking incomplete variables 
and do not represent a substantive theory. 
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4.2 R mdmb FIML Script 

The example uses the lavaan and mdmb packages. The latter leverages a factored regression 
specification that links incomplete predictors to one another using a sequence of univariate 
regression models. R input file for the analysis is Ex4.R. The code block below shows the 
commands that import and modify the data. 

 
R Script Ex4.R 

 
1 library(lavaan) 
2 library(mbmb) 
3 load('behaviorachievement.rda') 
4  
5 model <- 'stanread7 ~ 1; read2 ~ 1; read9 ~ 1; read1 ~ 1;  
6   lrnprob1 ~ 1; atrisk ~ 1;' 
7 descriptives <- inspectSampleCov(model, behaviorachievement,  
8   missing = 'fiml') 
9  
10 behaviorachievement$read1.cgm <-  
11   behaviorachievement$read1 - descriptives$mean['read1'] 
12 behaviorachievement$lrnprob1.cgm <-  
13   data$lrnprob1 - descriptives$mean['lrnprob1'] 
14  
15 summary(behaviorachievement) 
 

The analysis centers the two predictors involved in the interaction at their grand means. 
Because the predictors are incomplete, the script uses lavaan to obtain maximum likelihood-
estimated means for centering.  The model variable on lines 5 and 6 defines a text string 
describing a set of empty regression models with only an intercept (the ~ 1 after each variable 
name). Along with the data frame, this model is passed into lavaan’s inspectSampleCov 
function on line 7. The resulting maximum likelihood estimates of the means, which are stored 
in the object called descriptives, are used to create new centered variables called read1.cgm 
and lrnprob1.cgm beginning on line 10. 

The mdmb package requires the user to specify 'nodes' for the missing values. These nodes are 
essentially a fixed list of plausible score values that span each variable’s range. Specifying these 
values is necessary for the optimization algorithm, which uses an imputation-like algorithm 
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called numerical integration. The summary function on line 15 generates a table displaying the 
observed values of the numeric variables. The summary table is as follows. 

 

   stanread7         read2            read9          read1.cgm         lrnprob1.cgm           atrisk       

 Min.   :100.0   Min.   : 20.00   Min.   : 41.00   Min.   :-47.1819   Min.   :-21.34409   Min.   :0.0000   

 1st Qu.:228.0   1st Qu.: 83.00   1st Qu.: 81.00   1st Qu.:-12.1819   1st Qu.: -7.34409   1st Qu.:0.0000   

 Median :263.0   Median : 92.00   Median : 89.00   Median : -0.1819   Median : -1.34409   Median :1.0000   

 Mean   :264.5   Mean   : 93.74   Mean   : 88.55   Mean   :  0.6243   Mean   :  0.01147   Mean   :0.6519   

 3rd Qu.:314.0   3rd Qu.:108.00   3rd Qu.: 97.00   3rd Qu.: 12.8181   3rd Qu.:  8.15591   3rd Qu.:1.0000   

 Max.   :399.0   Max.   :150.00   Max.   :123.00   Max.   : 66.8181   Max.   : 35.65591   Max.   :1.0000   

 NA's   :27      NA's   :13       NA's   :24       NA's   :9          NA's   :3           NA's   :3  

 

The next part of the code creates variables that contain vectors of plausible replacement scores 
that span the entire range of the distributions. For continuous variables, specifying 20 to 40 
nodes is usually sufficient. For example, nodes.read1 is a vector of plausible centered scores 
ranging from –55 to 75 in increments of two, and nodes.lrnprb1  is a sequence of centered 
scores between –30 and 50 in increments of two. To account for the possibility that the missing 
scores fall outside the observed range, the vectors specify values beyond the minimum and 
maximum scores from the data. The binary predictor has only two node values. 

 
R Script Ex4.R, continued 
 
16 nodes.stanread7 <- seq(80, 420, by = 5) 
17 nodes.read2 <- seq(10, 160, by = 5) 
18 nodes.read9 <- seq(30, 130, by = 2) 
19 nodes.read1 <- seq(-55, 75, by = 2) 
20 nodes.lrnprob1 <- seq(-30, 50, by = 2) 
21 nodes.atrisk <- c(0,1) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 9 are listed first, followed by the focal 
moderated regression model from Equation 8. The auxiliary variable regressions from Equation 
10 are last. Each model object includes three arguments: the type of regression (linear or logistic), 
an equation, and the incomplete variable’s vector of nodes or pseudo-imputations. Note that the 
focal model list beginning on line 31 includes the product of two centered variables. 
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R Script Ex4.R, continued 
 
22 model.behsymp1 <- list( 'model' = 'logistic',  
23   'formula' = atrisk ~ 1,  
24   nodes = nodes.atrisk) 
25 model.lrnprob1 <- list( 'model' = 'linreg',  
26   'formula' = lrnprob1.cgm ~ behsymp1,  
27   nodes = nodes.lrnprob1) 
28 model.read1 <- list( 'model' = 'linreg',  
29   'formula' = read1.cgm ~ lrnprob1.cgm + behsymp1,  
30   nodes = nodes.read1) 
31 model.read9 <- list( 'model' = 'linreg',  
32   'formula' = read9 ~ read1.cgm + lrnprob1.cgm +  
33   read1.cgm*lrnprob1.cgm + behsymp1,  
34   nodes = nodes.read9) 
35 model.read2 <- list('model' = 'linreg',  
36   'formula' = read2 ~ read9 + read1.cgm + lrnprob1.cgm + behsymp1,  
37   nodes = nodes.read2) 
38 model.stanread7 <- list('model' = 'linreg',  
39   'formula' = stanread7 ~ read2 + read9 + read1.cgm  
40   + lrnprob1.cgm + behsymp1, nodes = nodes.stanread7) 
 

The mdmb package views stanread7 (the auxiliary variable in the final regression model) as the 
ultimate 'dependent' variable in the sequence, and it considers all other variables as 'independent 
variables'. Starting on line 41, the final part of the code combines the independent variable 
models into a list. On line 44, the data frame and the predictor list are passed into the frm_em 
function, which fits the sequence of models. Finally, the summary function on line 46 requests 
tables of parameter estimates. 

 
R Script Ex4.R, continued 
 
41 predictor.models <- list(atrisk = model.atrisk,  
42   lrnprob1 = model.lrnprob1, read1 = model.read1, read9 = model.read9,  
43   read2 = model.read2) 
44 fit <- frm_em(dat = behaviorachievement, dep = model.stanread7,  
45   ind = predictor.models)  
46 summary(fit) 
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4.3 R Output 

The mdmb output includes a table of results for every fitted regression model. The supporting 
model parameters are not of substantive interest, and they do not need to be reported. The 
output below shows the parameter estimates from the focal model. The first two columns display 
the unstandardized estimates and their standard errors, the third and fourth columns display the 
corresponding t-statistics and p-values, and the rightmost columns contain 95% confidence 
interval limits. 

 

Model 4: stats::lm( read9 ~ read1.cgm + lrnprob1.cgm + read1.cgm * lrnprob1.cgm + atrisk )  

 

  index    dv                            parm ON     est     se       t      p lower95 upper95 

1    14 read9            read9 ON (Intercept)  1 89.0374 1.4195 62.7261 0.0000 86.2553 91.8195 

2    15 read9              read9 ON read1.cgm  1  0.5053 0.0437 11.5510 0.0000  0.4195  0.5910 

3    16 read9           read9 ON lrnprob1.cgm  1 -0.3785 0.0833 -4.5451 0.0000 -0.5417 -0.2153 

4    17 read9                 read9 ON atrisk  1 -1.9092 1.7952 -1.0635 0.2875 -5.4278  1.6093 

5    18 read9 read9 ON read1.cgm:lrnprob1.cgm  1  0.0128 0.0045  2.8247 0.0047  0.0039  0.0216 

6    19 read9                     read9 sigma  0  9.1591 0.6412 14.2841 0.0000  7.9023 10.4158 

 

Explained variance R^2=0.6183 

 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 𝛽1̂ = 0.51) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.38) similarly reflects a conditional effect at the reading score mean. The 
interaction slope captures the change in the first-grade reading slope for each one-unit increase 
in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂ = 0.013) indicates 
that the association between first and ninth grade reading scores becomes stronger (i.e., more 
positive) as learning problems increase. That is, the predictive power of early reading on later 
reading is strongest for students with elevated learning problem ratings in first grade.  
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FIML: Curvilinear Regression 

 

 

 

 

This example illustrates a multiple regression analysis with an incomplete curvilinear effect. The 
analysis uses the mathachievement.dat data set taken from an educational intervention where 
250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 

MATHPOST Math achievement posttest  18.0 Numeric 

ANXIETY Math anxiety composite 8.4 Numeric  

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 

EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 

MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 

ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

5.1 Analysis Model 

The analysis model features math posttest scores regressed on anxiety and its square, the lunch 
assistance dummy code, math self-efficacy ratings, and math pretest scores. 

 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18
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𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 ) + 𝛽2(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 2) 

+ 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛽4(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛽5(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 (11) 

 

Curvilinear regression models (and models with non-linearities more generally) require a 
factored regression specification that splits the likelihood into separate parts for the outcome 
model and predictors. 

Unlike a complete-data regression analysis, incomplete variables also require distributional 
assumptions and models that define those distributions. The analysis uses a factored regression 
specification that separates the likelihood function into separate components for each variable. In 
practical terms, this specification uses a sequence of univariate regression models to link 
incomplete predictors. The additional regression equations, one of which is a logistic model, are 
as follows. 

 

logit(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) = 𝛾01 + 𝛾11(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 = 𝛾02 + 𝛾12(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾22(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖2 (12) 

𝐴𝑁𝑋𝐼𝐸𝑇𝑌 = 𝛾03 + 𝛾13(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛾23(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾33(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖3 

 

These equations essentially comprise a path model where math pretest scores predict the lunch 
assistance indicator, the lunch assistant dummy code and math pretest scores predict efficacy, 
and all three variables, in turn, predict anxiety. The complete variable is always on the right side 
of regression equations because it does not require a model. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

 

logit(𝐴𝑇𝑅𝐼𝑆𝐾) = 𝛾04 + 𝛾14(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾24(𝐴𝑁𝑋𝐼𝐸𝑇𝑌) 

+ 𝛾34(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾44(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾54(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾05 + 𝛾15(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾25(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾35(𝐴𝑁𝑋𝐼𝐸𝑇𝑌) (13) 

+ 𝛾45(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾55(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾65(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖5 
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Again, the entire collection of regression equations can be viewed as a path model where the 
curvilinear regression is one piece of a larger network (see the path diagram from Section 2.4). 
The key difference is that the path coefficients are just a tool for linking incomplete variables and 
do not represent a substantive theory. 

5.2 R mdmb FIML Script 

The example uses the lavaan and mdmb packages. The latter leverages a factored regression 
specification that links incomplete predictors to one another using a sequence of univariate 
regression models. R input file for the analysis is Ex5.R. The code block below shows the 
commands that import and modify the data. 

 
R Script Ex5.R 

 
1 Library(lavaan) 
2 library(mbmb) 
3 load('mathachievement.rda') 
4  
5 model <- 'stanread ~ 1; atrisk ~ 1; mathpost ~ 1; anxiety ~ 1;  
6   frlunch ~ 1; efficacy ~ 1; mathpre ~ 1;' 
7 descriptives <- inspectSampleCov(model, mathachievement,  
8   missing = 'fiml') 
9  
10 mathachievement$anxiety.cgm <-  
11   mathachievement$anxiety - descriptives$mean['anxiety'] 
12  
13 summary(mathachievement) 
 

The analysis centers math anxiety (the curvilinear predictor) at its grand mean. Because the 
predictors are incomplete, the script uses lavaan to obtain maximum likelihood-estimated 
means for centering.  The model variable on lines 5 and 6 defines a text string describing a set of 
empty regression models with only an intercept (the ~ 1 after each variable name). Along with 
the data frame, this model is passed into lavaan’s inspectSampleCov function on line 7. The 
resulting maximum likelihood estimates of the means, which are stored in the object called 
descriptives, are used to create new centered variables called read1.cgm and lrnprob1.cgm 
beginning on line 10. 
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The mdmb package requires the user to specify 'nodes' for the missing values. These nodes are 
essentially a fixed list of plausible score values that span each variable’s range. Specifying these 
values is necessary for the optimization algorithm, which uses an imputation-like algorithm 
called numerical integration. The summary function on line 13 generates a table displaying the 
observed values of the numeric variables. The summary table is as follows. 

    stanread        mathpost      anxiety.cgm          efficacy        frlunch         atrisk       

 Min.   :27.00   Min.   :37.00   Min.   :-18.2628   Min.   :1.000   Min.   :0.00   Min.   :0.0000   

 1st Qu.:45.00   1st Qu.:52.00   1st Qu.: -5.2628   1st Qu.:2.000   1st Qu.:0.00   1st Qu.:1.0000   

 Median :55.00   Median :57.00   Median : -1.2628   Median :3.000   Median :0.00   Median :1.0000   

 Mean   :52.52   Mean   :57.45   Mean   : -0.1056   Mean   :3.394   Mean   :0.41   Mean   :0.7637   

 3rd Qu.:60.50   3rd Qu.:63.00   3rd Qu.:  3.7372   3rd Qu.:5.000   3rd Qu.:1.00   3rd Qu.:1.0000   

 Max.   :69.00   Max.   :85.00   Max.   : 25.7372   Max.   :6.000   Max.   :1.00   Max.   :1.0000   

 NA's   :23      NA's   :45      NA's   :21         NA's   :24      NA's   :11     NA's   :13 

The next part of the code creates variables that contain vectors of plausible replacement scores 
(nodes, pseudo-imputations) that span the entire range of the distributions. For continuous 
variables, specifying 20 to 40 nodes is usually sufficient. For example, nodes.mathpost  is a 
sequence of raw scores between 30 and 90 in increments of two, and nodes.anxiety is a vector of 
plausible centered scores ranging from –30 to 30 in increments of two. To account for the 
possibility that the missing scores fall outside the observed range, the vectors specify values 
beyond the minimum and maximum scores from the data. 

 
R Script Ex5.R, continued 

 
14 nodes.frlunch <- c(0,1) 
15 nodes.efficacy <- seq(1, 6, by = 1) 
16 nodes.mathpost <- seq(30, 90, by = 2) 
17 nodes.anxiety <- seq(-30, 30, by = 2) 
18 nodes.atrisk <- c(0,1) 
19 nodes.stanread <- c(20, 80, by = 2) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 12 are listed first, followed by the focal model 
from Equation 11. The auxiliary variable regressions from Equation 13 are last. Each model 
object includes three arguments: the type of regression (linear or logistic), an equation, and the 
incomplete variable’s vector of nodes or pseudo-imputations. Linear regressions are specified 
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with 'model' = 'linreg' parameter, and the binary logistic regression is specified using 
'model' = 'logistic'. Note that the focal model list beginning on line 29 includes the square 
of the centered variable (i.e., I(anxiety.cgm^2)). 

 
R Script Ex5.R, continued 
 
20 model.frlunch <- list('model' = 'logistic',  
21   'formula' = frlunch ~ mathpre,  
22   nodes = nodes.frlunch) 
23 model.efficacy <- list('model' = 'linreg', 
24   'formula' = efficacy ~ frlunch + mathpre,  
25   nodes = nodes.efficacy) 
26 model.anxiety <- list('model' = 'linreg', 
27   'formula' = anxiety ~ efficacy + frlunch + mathpre,  
28   nodes = nodes.anxiety) 
29 model.mathpost <- list('model' = 'linreg',  
30   'formula' = mathpost ~ anxiety.cgm + I(anxiety.cgm^2) + 
31   frlunch + efficacy + mathpre, nodes = nodes.mathpost) 
32 model.atrisk <- list('model' = 'logistic',  
33   'formula' = atrisk ~ mathpost + anxiety + frlunch + efficacy +   
34   mathpre, nodes = nodes.atrisk) 
35 model.stanread <- list('model' = 'linreg',  
36   'formula' = stanread ~ atrisk + mathpost + anxiety + frlunch +  
37   efficacy + mathpre, nodes = nodes.stanread) 
 

The mdmb package views stanread (the auxiliary variable in the final regression model) as the 
ultimate 'dependent' variable in the sequence, and it considers all other variables 'independent 
variables'. Starting on line 38, the final part of the code combines the independent variable 
models into a list. On line 41, the data frame and the predictor list are passed into the frm_em 
function, which fits the sequence of models. Finally, the summary function on line 43 requests 
tables of parameter estimates. 

 
R Script Ex5.1.R, continued 
 
38 redictor.models <- list(frlunch = model.frlunch,  
39   efficacy = model.efficacy, anxiety = model.anxiety, 
40   mathpost = model.mathpost, atrisk = model.atrisk) 
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41 fit <- frm_em(dat = mathachievement, dep = model.stanread,  
42   ind = predictor.models)  
43 summary(fit) 
 

5.3 R Output 

The mdmb output includes a table of results for every fitted regression model. The supporting 
model parameters are not of substantive interest, and they do not need to be reported. The 
output below shows the parameter estimates from the focal curvilinear model. The first two 
columns display the unstandardized estimates and their standard errors, the third and fourth 
columns display the corresponding t-statistics and p-values, and the rightmost columns contain 
95% confidence interval limits. 

 

Model 4: stats::lm( mathpost ~ anxiety.cgm + I(anxiety.cgm^2) + efficacy + frlunch + mathpre )  

 

  index       dv                         parm ON     est     se       t      p lower95 upper95 

1    15 mathpost      mathpost ON (Intercept)  1 33.2388 3.3678  9.8695 0.0000 26.6380 39.8396 

2    16 mathpost      mathpost ON anxiety.cgm  1  0.0398 0.0793  0.5015 0.6160 -0.1156  0.1952 

3    17 mathpost mathpost ON I(anxiety.cgm^2)  1 -0.0209 0.0059 -3.5452 0.0004 -0.0324 -0.0093 

4    18 mathpost         mathpost ON efficacy  1  1.0629 0.3324  3.1975 0.0014  0.4114  1.7145 

5    19 mathpost          mathpost ON frlunch  1 -5.5373 1.0398 -5.3255 0.0000 -7.5752 -3.4994 

6    20 mathpost          mathpost ON mathpre  1  0.4648 0.0651  7.1361 0.0000  0.3371  0.5925 

7    21 mathpost               mathpost sigma  0  6.9386 0.3460 20.0511 0.0000  6.2604  7.6168 

 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.04). The negative 
quadratic coefficient (𝛽2̂ = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. 
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MCMC: Regression With Multivariate Normal Data 

 

 

 

 

This example illustrates a multiple regression analysis with multivariate normal incomplete data. 
The analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

6.1 Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

1 2 3 4 5 6 7 8 9
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𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (14) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. By default, Blimp invokes a multivariate normal 
distribution for predictors. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples, auxiliary 
variables enter the model as additional outcomes that are predicted by the analysis variables and 
by each other. The additional regression equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (15) 

 

Along with the focal regression model from Equation 14, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

6.2 Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex6.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 

 
Blimp Script Ex6.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  MODEL:  



MCMC: Regression With Multivariate Normal Data     

 

56 

 7  read9 ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
 8  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
 9  WALDTEST: beta1:beta3 = 0; 
10  SEED: 90291; 
11  BURN: 1000; 
12  ITERATIONS: 10000;  
 

The first five lines can be viewed as a set of commands that specify information about the 
data and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a 
global missing value code as 999.  

The MODEL and WALDTEST blocks can be viewed as a set. The MODEL command lists the 
regression models, with outcome variables to the left of the tilde and predictors to the right. Line 
7 assigns labels the slope coefficients using the @ symbol. Blimp automatically configures the 
explanatory variable models under the assumption that they are normally distributed. Line 8 is a 
syntax shortcut that produces the two auxiliary variable regression models in Equation 15; in the 
first model, READ2 is regressed on the focal variables, and the second model features STANREAD7 
regressed on READ2 and the focal variables. The WALDTEST command uses the parameter labels to 
specify a custom hypothesis test that all three slopes equal zero. This so-called Bayesian Wald test 
(Asparouhov & Muthén, 2021) is a frequentist chi-square statistic that mimics its likelihood-
based counterpart, but MCMC generates the point estimates and “standard errors” for the test. 

Finally, lines 10 through 12 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp prints a table of regression results for each outcome variable to the left of a tilde, and it 
orders the tables alphabetically. In this example, the focal model’s table would not appear first on 
the output. Blimp allows users to order tables by assigning labels to blocks of regression 
equations. To illustrate, the code block below assigns the label focal.model to main regression 
and the label auxiliary.models to the auxiliary variable regressions. Because output tables are 
listed in the same order as the labels, the focal results would now appear before the ancillary 
model results. 
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     MODEL: 
     focal.model:  
  read9 ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
     auxiliary.models: 
  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
 

The corresponding rblimp script Ex6.R is shown below. 

 
rblimp Script Ex6.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   model = '   
7     focal.model: 
8     read9 ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
9     auxiliary.models: 
10     stanread7 read2  ~ read9 read1 lrnprob1 behsymp1', 
11   waldtest = 'beta1:beta3 = 0', 
12   seed = 90291, 
13   burn = 1000, 
14   iter = 10000) 
15 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 
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6.3 Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.263            15   
                           51 to 100             1.081            41   
                           76 to 150             1.056            37   
                          101 to 200             1.037            26   
                          126 to 250             1.059            32   
                          151 to 300             1.027            17   
                          176 to 350             1.031            41   
                          201 to 400             1.022            33   
                          226 to 450             1.034            17   
                          251 to 500             1.020            15   
                          276 to 550             1.027            20   
                          301 to 600             1.023            44   
                          326 to 650             1.014            19   
                          351 to 700             1.010            45   
                          376 to 750             1.014            33   
                          401 to 800             1.012            33   
                          426 to 850             1.017            37   
                          451 to 900             1.023            41   
                          476 to 950             1.025            41   
                          501 to 1000            1.016            41 
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The next output excerpt shows information about the variables in the analysis and the models 
used for estimation. The MODELS summary section is reserved for outcome variables that appear 
to the left of a tilde symbol. In this example, Blimp automatically constructs supporting models 
for incomplete predictor variables, so these models are omitted from the table. 

 
DATA INFORMATION: 
 
  Sample Size:              138 
  Missing Data Rates: 
 
                    read9 = 17.39 
                    read2 = 09.42 
                stanread7 = 19.57 
                 behsymp1 = 03.62 
                 lrnprob1 = 02.17 
                    read1 = 06.52 

 
MODEL INFORMATION: 
 
  NUMBER OF PARAMETERS 
    Outcome Models:         18 
    Predictor Models:       12 
 
  PREDICTORS 
    Incomplete continuous:  behsymp1 lrnprob1 read1 

 
MODELS 
 
   focal.model: 
    [1]  read9 ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
   auxiliary.models: 
    [2]  read2 ~ Intercept read9 read1 lrnprob1 behsymp1 
    [3]  stanread7 ~ Intercept read2 read9 read1 lrnprob1 behsymp1 
 

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
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the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      91.648     12.834     70.678    120.824        ---        ---   5905.634  
 
Coefficients:                    
  Intercept                          66.011      6.144     54.152     78.192    115.461      0.000   6878.374  
  read1                               0.504      0.044      0.419      0.590    131.211      0.000   7084.878  
  lrnprob1                           -0.247      0.120     -0.479     -0.001      4.204      0.040   5865.510  
  behsymp1                           -0.183      0.105     -0.389      0.025      2.994      0.084   6365.617  
 
Standardized Coefficients:       
  read1                               0.688      0.040      0.599      0.756    289.341      0.000   6613.583  
  lrnprob1                           -0.178      0.085     -0.341     -0.001      4.265      0.039   5718.193  
  behsymp1                           -0.147      0.084     -0.311      0.020      3.042      0.081   6399.987  
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Proportion Variance Explained    
  by Coefficients                     0.594      0.050      0.485      0.681        ---        ---   6288.304  
  by Residual Variation               0.406      0.050      0.319      0.515        ---        ---   6288.304  
 
                                ------------------------------------------------------------------------------ 
 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue.  

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.50 points on READ9. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is well outside the interval. The frequentist test statistic 
and p-value give the same conclusion. The standardized coefficients convey the expected change 
in standard deviation units for a one standard deviation increase in each predictor. For example, 
the model predicts that two individuals who differ by one standard deviation on READ1 but are 
the same on LRNPROB1 and BEHSYMP1 should differ by 0.69 standard deviations on READ9. 
Collectively, the predictors explain 60% of the variation in ninth-grade reading scores. Note that 
the tabled values are numerically equivalent to the maximum likelihood estimates in Chapter 1. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. The auxiliary variable 
models appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-
generated predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES. An 
example table is shown below. These additionally results are not of substantive interest and 
would not be reported. 

 

PREDICTOR MODEL ESTIMATES: 

 

  Summaries based on 10000 iterations using 2 chains. 
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Missing predictor:  behsymp1    

 

Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  

                                ------------------------------------------------------------------- 

 

Grand Mean                           49.518      1.066     47.435     51.607      1.000   3339.276  

 

Level 1:                                                                                            

  lrnprob1                            0.799      0.070      0.661      0.933      1.000   8912.467  

  read1                              -0.012      0.037     -0.083      0.061      1.000   8446.759  

  Residual Var.                      73.066      9.256     57.795     94.382      1.000   7751.755  

                                                                                                    

                                ------------------------------------------------------------------- 

Finally, recall that the WALDTEST command requested a Bayesian Wald chi-square statistic 
(Asparouhov & Muthén, 2021) that evaluates the null hypothesis that all population slopes equal 
zero. To reiterate, the Wald test is frequentist chi-square statistic that mimics its likelihood-based 
counterpart, but MCMC generates the point estimates and “standard errors” for the test. The 
chi-square statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT 
section under the WALD TEST heading. The test statistic is statistically significant, thus refuting 
the null hypothesis. 

 
MODEL FIT: 
 
 
  INFORMATION CRITERIA 
 
    Marginal Likelihood 
      DIC2                  3425.311 
      WAIC                  3459.204 
 
    Conditional Likelihood 
      DIC2                  3425.311 
      WAIC                  3459.204 
 
  WALD TESTS (Asparouhov & Muthén, 2021) 
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  Test #1 
 
    Full: 
      [1]  read9 ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
    Restricted: 
      [1]  read9 ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
    Constraints in Restricted: 
      [1]  beta1 = 0 
      [2]  beta2 = 0 
      [3]  beta3 = 0 
 
 
    Wald Statistic (Chi-Square)               165.486 
    Number of Parameters Tested (df)                3 
    Probability                                 0.000 
 

6.4 Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex6.2.imp is identical Ex6.1.imp, but it adds the following lines at the bottom of 
the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
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saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
separate = './imps/imp*.dat' 

 
   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  
     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 
stacked = './imps/imps.dat' 
 
   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    
   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex6.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
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4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   model = '   
7     focal.model: 
8     read9 ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
9     auxiliary.models: 
10     stanread7 read2  ~ read9 read1 lrnprob1 behsymp1', 
11   waldtest = 'beta1:beta3 = 0', 
12   seed = 90291, 
13   burn = 1000, 
14   iter = 10000, 
15   nimps = 20, 
16   chains = 20) 
17 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 

6.5 Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex6.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex6.R 
 
11 library(rblimp) 
12 library(mitml) 
13 load('behaviorachievement.rda') 
14  
15 mymodel <- rblimp(...) 
16  
17 implist <- as.mitml(mymodel) 
18 fit <- with(implist, lm(read9 ~ read1 + lrnprob1 + behsymp1)) 
19 estimates <- testEstimates(fit, extra.pars = T, df.com = 134) 
20 estimates 
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21 confint(estimates) 
22  
23 null <- with(implist, lm(read9 ~ 1)) 
24 testModels(fit, null, df.com = 134, method = 'D1') 
 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Line 8 fits the focal regression 
model using the lm function, and line 9 uses the testEstimates function in mitml to implement 
Rubin’s pooling rules and save the results in an object called estimates. The df.com parameter is 
the denominator degrees of freedom that would have resulted had there been no missing data 
(i.e., N–K–1 degrees of freedom, where K is the number of predictors). This argument produces 
Barnard and Rubin degrees of freedom values. Lines 10 and 11 print the pooled estimates and 
confidence intervals. Finally, lines 13 and 14 specify a multiple imputation Wald F statistic 
evaluating the null hypothesis that all population slopes equal zero (Li et al., 1991). The test 
requires an additional model on line 13 that represents the null hypothesis, which in this case is 
an empty regression model with just an intercept. On line 14, the full model and null model 
objects passed into the testModels function, and the D1 keyword requests the Wald test. As 
before, the df.com parameter is the denominator degrees of freedom that would have resulted 
had there been no missing data. This argument produces the Barnard and Rubin (1999) degrees 
of freedom adjustment. 

6.6 R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    65.487     5.877    11.144   100.498     0.000     0.169     0.161  
read1           0.506     0.043    11.725    92.752     0.000     0.212     0.192  
lrnprob1       -0.231     0.114    -2.022   100.704     0.046     0.168     0.160  
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behsymp1       -0.189     0.102    -1.841    97.962     0.069     0.182     0.171  
 
                   Estimate  
Residual~~Residual   88.944  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 
                 2.5 %      97.5 % 
(Intercept) 53.8288728 77.14584684 
read1        0.4202903  0.59168880 
lrnprob1    -0.4581615 -0.00433096 
behsymp1    -0.3919669  0.01475078 

 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically 
equivalent to those from MCMC and maximum likelihood estimation. Finally, the Wald 
omnibus F statistic is shown in the output table below. The test statistic is statistically significant, 
thus refuting the null hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     58.272       3 123.487   0.000   0.177  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 

6.7 Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
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set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file are as follows. 

 
imp1.dat 
imp2.dat 
imp3.dat 
imp4.dat 
imp5.dat 
imp6.dat 
imp7.dat 
imp8.dat 
imp9.dat 
imp10.dat 
imp11.dat 
imp12.dat 
imp13.dat 
imp14.dat 
imp15.dat 
imp16.dat 
imp17.dat 
imp18.dat 
imp19.dat 
imp20.dat 
 

The Mplus input file for analyzing the imputations is Ex6.inp. The script is virtually identical 
to the Ex1.1.inp file described in Section 1.2 with three exceptions. First, instead of naming the 
raw data set, the DATA command lists the text file containing the names of the imputed data sets 
(the implist.dat file located in the ./imps subdirectory). The type = imputation 
subcommand instructs Mplus that the input data is a list of file names. Second, the missing 
subcommand is omitted because the analysis variables are now complete. Finally, the MODEL 
section no longer specifies a normal distribution for the predictors. Readers can refer back to 
Section 1.2 for a detailed description of the other commands. The code block below shows the 
analysis and pooling script. 
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Mplus Script Ex6.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6      read1 read2 read3 read9 read9grp stanread7  
 7     math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1; 
 9  MODEL:   
10  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
11  MODEL TEST: 
12  0 = beta1; 0 = beta2; 0 = beta3; 
13  OUTPUT: 
14  stdyx cinterval; 
 

6.8 Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter 
Constraints heading. The test statistic is statistically significant, thus refuting the null 
hypothesis. 

 
MODEL FIT INFORMATION 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            175.893 
           
          Degrees of Freedom                     3 
          P-Value                           0.0000 
 



MCMC: Regression With Multivariate Normal Data     

 

70 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown 
below. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.506      0.043     11.868      0.000      0.182 
    LRNPROB1          -0.231      0.113     -2.047      0.041      0.149 
    BEHSYMP1          -0.189      0.101     -1.864      0.062      0.160 
 
 Intercepts 
    READ9             65.487      5.803     11.284      0.000      0.150 
 
 Residual Variances 
    READ9             86.366     11.202      7.710      0.000      0.138 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.87, p < .001). Note that these estimates are numerically 
equivalent to those from MCMC and maximum likelihood estimation. 

Specifying the stdyx keyword with the OPTIONS command prints the table of standardized 
estimates and R -squared statistics shown below. The slope coefficients convey the expected 
change in standard deviation units for a one standard deviation increase in each predictor. For 
example, the model predicts that two individuals who differ by one standard deviation on READ1 
but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.70 standard deviations on READ9. 
Collectively, the predictors explain 61% of the variation in ninth-grade reading scores. 
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STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.701      0.044     15.767      0.000      0.102 
    LRNPROB1          -0.168      0.082     -2.036      0.042      0.157 
    BEHSYMP1          -0.153      0.082     -1.861      0.063      0.159 
 
 Intercepts 
    READ9              4.424      0.531      8.332      0.000      0.152 
 
 Residual Variances 
    READ9              0.394      0.055      7.166      0.000      0.099 
 
R-SQUARE 
 
    Observed                                        Two-Tailed   Rate of 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
    READ9              0.606      0.055     11.033      0.000      0.099 
 

6.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is Ex6.spwb. 
The code block below shows the commands that import the stacked text file produced by Blimp. 
The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex6.spwb 
 
 1  CD '/users/username/desktop'. 
 2   DATA LIST free file =  'imps.dat' 
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 3    /imputation_ id male hispanic riskgrp atrisk 
 4       behsymp1 lrnprob1 read1 read2 read3 read9 read9grp stanread7 
 5       math1 math2 math3 math9 math9grp stanmath7. 
 6  EXE. 
 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 7 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 8 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 9. 

 
SPSS Script Ex6.spwb, continued 
 
 7  SORT CASES by imputation_. 
 8  SPLIT FILE layered by imputation_. 
 9  REGRESSION 
10    /descriptives mean stddev corr sig n 
11    /dependent read9 
12    /method enter read1 lrnprob1 behsymp1. 

 

6.10 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The regression output also includes pooled means and correlations. The relative increase in 
variance is a fraction comparing imputation noise to complete-data sampling variation, and the 
fraction of missing information quantifies the imputation noise in each estimate as proportion of 
its squared standard error. 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically 
equivalent to those from MCMC and maximum likelihood estimation. 

 
  

…
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MCMC: Binary Logistic Regression 

 

 

 

 

This example illustrates a binary logistic regression analysis with incomplete data. The analysis 
uses the behaviorachievement.dat data set taken from a longitudinal study that followed 138 
students from primary through middle school. The file includes three annual assessments of 
broad reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The data description at the 
beginning of this document provides additional details. The variables for this analysis are as 
follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READGRP9 9th grade reading classification 17.4 0 = Below average, 1 = Average 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

7.1 Analysis Model 

The analysis model features a binary classification of ninth grade reading performance regressed 
on first grade reading achievement and teacher-rated learning problems and behavioral 
symptoms. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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logit(𝑅𝐸𝐴𝐷𝐺𝑅𝑃9) = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) (16) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Blimp automatically assigns a multivariate normal 
distribution to the predictors. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples, auxiliary 
variables enter the model as additional outcomes that are predicted by the analysis variables and 
by each other. The additional regression equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷𝐺𝑅𝑃9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷𝐺𝑅𝑃9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (17) 

 

Along with the logistic regression model from Equation 16, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram in Section 2.4). The key difference is that the path coefficients are just a tool for linking 
incomplete variables and do not represent a substantive theory. 

7.2 Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex7.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex7.1.imp 
 
1 DATA: behaviorachievement.dat; 

 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  ORDINAL: read9grp; 
 6  MISSING: 999; 
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 7  MODEL:  
 8  focal.model:  
 9  logit(read9grp) ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
10  auxiliary.models: 
11  stanread7 read2 ~ read9grp read1 lrnprob1 behsymp1; 
12  WALDTEST:beta1:beta3 = 0; 
13  SEED: 90291; 
14  BURN: 1000; 
15  ITERATIONS: 10000;  
 

The first six lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The ORDINAL command on line 5 defines the 
outcome as categorical. Binary variables can be defined as ordinal or nominal, as the statistical 
models are identical. The MISSING command on line 6 defines a global missing value code as 999.  

The MODEL and WALDTEST blocks can be viewed as a set. The MODEL command lists the 
regression models, with outcome variables to the left of the tilde and predictors to the right. The 
code uses labels (focal.model and auxiliary.models) to order output tables, such that the 
logistic model appears first followed by the auxiliary variable models. The focal model listed on 
line 9 assigns labels the slope coefficients using the @ symbol. Listing the dependent variable 
inside the logit function triggers logistic regression rather than the default probit regression. 
Blimp automatically configures the explanatory variable models under the assumption that they 
are normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable 
regression models in Equation 17; in the first model, READ2 is regressed on the focal variables, 
and the second model features STANREAD7 regressed on READ2 and the focal variables. The 
WALDTEST command uses the parameter labels to specify a custom hypothesis test that all three 
slopes equal zero. This so-called Bayesian Wald test (Asparouhov & Muthén, 2021) is a 
frequentist chi-square statistic that mimics its likelihood-based counterpart, but MCMC 
generates the point estimates and “standard errors” for the test. 

Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 
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The corresponding rblimp script Ex7.R is shown below. 

 
rblimp Script Ex7.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   ordinal = 'read9grp ', 
7   model = '   
8     focal.model: 
9     logit(read9grp) ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
10     auxiliary.models: 
11     stanread7 read2  ~ read9grp read1 lrnprob1 behsymp1', 
12   waldtest = 'beta1:beta3 = 0', 
13   seed = 90291, 
14   burn = 1000, 
15   iter = 10000) 
16 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 

7.3 Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
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these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.140             2   
                           51 to 100             1.072             2   
                           76 to 150             1.041             3   
                 ...               ...           ...   
                          451 to 900             1.009            37   
                          476 to 950             1.008            19   
                          501 to 1000            1.008            37 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3.  

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
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Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  logit(read9grp) 
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
 
Coefficients:                    
  Intercept                          -2.721      1.291     -5.281     -0.204      4.452      0.035   4802.329  
  read1                               0.062      0.013      0.038      0.090     22.534      0.000   2686.246  
  lrnprob1                           -0.034      0.030     -0.095      0.024      1.303      0.254   3855.021  
  behsymp1                           -0.021      0.026     -0.073      0.027      0.737      0.391   4501.123  
 
Odds Ratio:                      
  Intercept                           0.066      0.265      0.005      0.816      0.310      0.578   6757.096  
  read1                               1.064      0.014      1.039      1.094   5744.907      0.000   2684.389  
  lrnprob1                            0.966      0.029      0.909      1.025   1100.011      0.000   3857.606  
  behsymp1                            0.979      0.025      0.929      1.027   1539.695      0.000   4502.785  
 
Proportion Variance Explained    
  by Coefficients                     0.152      0.058      0.067      0.288        ---        ---   4354.701  
  by Residual Variation               0.848      0.058      0.712      0.933        ---        ---   4354.701  
 
                                ------------------------------------------------------------------------------ 
 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue. The table 
summarizing the focal regression model is shown below. 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ 
by 0.06. The 95% credible interval limits suggest this effect is statistically different from zero (p < 
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.05) because the null value is well outside the interval. The frequentist test statistic and p-value 
give the same conclusion. The printed output also includes the table of odds ratios that reflect 
multiplicative changes to the odds. For example, a one-point increase in first grade reading 
scores increases the odds of average or higher ninth grade reading by a factor 1.06, holding first 
grade learning problems and behavioral symptoms constant. Collectively, the predictors explain 
15% of the variation in the underlying logistic latent variable. Note that the tabled values are 
numerically equivalent to the maximum likelihood estimates from Section 2.7. 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

Finally, recall that the WALDTEST command requested a Bayesian Wald chi-square statistic 
(Asparouhov & Muthén, 2021) that evaluates the null hypothesis that all population slopes equal 
zero. To reiterate, the Wald test is frequentist chi-square statistic that mimics its likelihood-based 
counterpart, but MCMC generates the point estimates and “standard errors” for the test. The 
chi-square statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT 
section under the WALD TEST heading. The test statistic is statistically significant, thus refuting 
the null hypothesis. 

 
MODEL FIT: 
 
... 
 
  WALD TESTS (Asparouhov & Muthén, 2021) 
 
  Test #1 
 
    Full: 
      [1]  logit(read9grp) ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
    Restricted: 
      [1]  logit(read9grp) ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
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    Constraints in Restricted: 
      [1]  beta1 = 0 
      [2]  beta2 = 0 
      [3]  beta3 = 0 
 
 
    Wald Statistic (Chi-Square)                23.618 
    Number of Parameters Tested (df)                3 
    Probability                                 0.000 
 

7.4 Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex7.2.imp is identical Ex7.1.imp, but it adds the following lines at the bottom of 
the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
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appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
separate = './imps/imp*.dat' 

 
   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  
     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 
stacked = './imps/imps.dat' 
 
   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    
   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex7.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   ordinal = 'read9grp ', 
7   model = '   
8     focal.model: 
9     logit(read9grp) ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
10     auxiliary.models: 
11     stanread7 read2  ~ read9grp read1 lrnprob1 behsymp1', 
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12   waldtest = 'beta1:beta3 = 0', 
13   seed = 90291, 
14   burn = 1000, 
15   iter = 10000) 
16   nimps = 20, 
17   chains = 20) 
18 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 

7.5 Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex7.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('behaviorachievement.rda') 
4  
5 mymodel <- rblimp(...) 
6  
7 implist <- as.mitml(mymodel) 
8 fit <- with(implist,  
9   glm(read9grp ~ read1 + lrnprob1 + behsymp1, family = 'binomial') 
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 134) 
11 estimates 
12 confint(estimates) 
13  
14 null <- with(implist, glm(read9grp ~ 1, family = 'binomial')) 
15 testModels(fit, null, df.com = 134, method = 'D1') 
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To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 8 and 9 fits the focal 
regression model using the lm function, and line 10 uses the testEstimates function in mitml to 
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com 
parameter is the denominator degrees of freedom that would have resulted had there been no 
missing data (i.e., N–K–1 degrees of freedom, where K is the number of predictors). This 
argument produces Barnard and Rubin degrees of freedom values. Lines 11 and 12 print the 
pooled estimates and confidence intervals. Finally, lines 14 and 15 specify a multiple imputation 
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al., 
1991). The test requires an additional model on line 13 that represents the null hypothesis, which 
in this case is an empty regression model with just an intercept. On line 14, the full model and 
null model objects passed into the testModels function, and the D1 keyword requests the Wald 
test. As before, the df.com parameter is the denominator degrees of freedom that would have 
resulted had there been no missing data. This argument produces the Barnard and Rubin (1999) 
degrees of freedom adjustment. 

7.6 R Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third through fifth columns 
display the corresponding test statistics. The focal model results are shown below. The RIV 
column (relative increase in variance) is a fraction comparing imputation noise to complete-data 
sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    -3.602     1.672    -2.154    79.914     0.034     0.294     0.246  
read1           0.068     0.015     4.463    93.795     0.000     0.206     0.188  
lrnprob1       -0.029     0.030    -0.971    90.209     0.334     0.227     0.202  
behsymp1       -0.019     0.025    -0.762   106.973     0.448     0.135     0.135 
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
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                  2.5 %      97.5 % 
(Intercept) -6.92951753 -0.27356800 
read1        0.03751055  0.09763918 
lrnprob1    -0.08980267  0.03082041 
behsymp1    -0.06832451  0.03038596 
 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ 
by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (t = 4.46, p < .001). Note that these estimates are numerically equivalent to those from 
MCMC and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in 
the output table below. The test statistic is statistically significant, thus refuting the null 
hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
      7.359       3 120.633   0.000   0.214 
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 

7.7 Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex7.inp. The script is similar to the 
Ex2.1.inp file described in Section 2.2 with three exceptions. First, instead of naming the raw 
data set, the DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand 
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instructs Mplus that the input data is a list of file names. Second, the missing subcommand is 
omitted because the analysis variables are now complete. Finally, the MODEL section no longer 
specifies a normal distribution for the predictors or models for the auxiliary variables. Readers 
can refer to Section 2.2 for a detailed description of the other commands. The code block below 
shows the analysis and pooling script. 

 
Mplus Script Ex7.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6      read1 read2 read3 read9 read9grp stanread7  
 7      math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9grp read1 lrnprob1 behsymp1; 
 9  categorical = read9grp; 
10  ANALYSIS: 
11  estimator = ml; 
12  link = logit; 
13  MODEL:   
14  read9grp on read1 lrnprob1 behsymp1 (beta1-beta3); 
15  MODEL TEST: 
16  0 = beta1; 0 = beta2; 0 = beta3; 
17  OUTPUT: 
18  stdyx cinterval; 
 

7.8 Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter 
Constraints heading. The test statistic is statistically significant, thus refuting the null 
hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                        4 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                             23.342 
          Degrees of Freedom                     3 
          P-Value                           0.0001 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown 
below. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
READ9GRP   ON 
    READ1              0.068      0.015      4.463      0.000      0.173 
    LRNPROB1          -0.029      0.030     -0.971      0.331      0.188 
    BEHSYMP1          -0.019      0.025     -0.762      0.446      0.121 
 Thresholds 
    READ9GRP$1         3.602      1.672      2.154      0.031      0.231 
 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ 
by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (z = 4.46, p < .001). Note that Mplus reports a threshold parameter instead of the usual 



MCMC: Binary Logistic Regression     

 

88 

regression intercept. The threshold from a binary logistic model has the same value but opposite 
sign as the intercept (i.e., 𝛽0̂ = –3.60). Note that these estimates are numerically equivalent to 
those from MCMC and maximum likelihood estimation. 

Finally, the printed output also includes the table of odds ratios that reflect multiplicative 
changes to the odds. For example, a one-point increase in first grade reading scores increases the 
odds of average or higher ninth grade reading by a factor 1.08, holding first grade learning 
problems and behavioral symptoms constant. 

 

CONFIDENCE INTERVALS OF MODEL RESULTS 
 
                  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%% 
 
READ9GRP ON 
    READ1             0.038       0.043       0.068       0.092       0.097  
    LRNPROB1         -0.089      -0.079      -0.029       0.020       0.030  
    BEHSYMP1         -0.068      -0.060      -0.019       0.022       0.030  
 
 Thresholds 
    READ9GRP$1        0.324       0.851       3.602       6.352       6.879  

 
CONFIDENCE INTERVALS FOR THE LOGISTIC REGRESSION ODDS RATIO RESULTS 
 
 READ9GRP ON 
    READ1             1.039       1.044       1.070       1.097       1.102 
    LRNPROB1          0.915       0.924       0.971       1.021       1.030 
    BEHSYMP1          0.934       0.942       0.981       1.022       1.030 
 

7.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is Ex7.spwb. 
The code block below shows the commands that import the stacked text file produced by Blimp. 
The example assumes that the data file is located on the desktop. 
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SPSS Script Ex7.spwb 
 
 1  CD '/users/username/desktop'. 
 2  DATA LIST free file =  'imps.dat' 
 3    /imputation_ id male hispanic riskgrp atrisk  
 4     behsymp1 lrnprob1 read1 read2 read3 read9 read9grp stanread7  
 5     math1 math2 math3 math9 math9grp stanmath7. 
 6  EXE.  
 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. 

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 7 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 10 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 9. 

 
SPSS Script Ex7.spwb, continued 
 
 7  SORT CASES by imputation_. 
 8  SPLIT FILE layed by imputation_. 
 9  LOGISTIC REGRESSION read9grpNew  
10     /method=enter read1 lrnprob1 behsymp1. 
 

7.10 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The relative increase in variance is a fraction comparing imputation noise to complete-data 
sampling variation, and the fraction of missing information quantifies the imputation noise in 
each estimate as proportion of its squared standard error. 
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The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ 
by 0.07. SPSS does not report the corresponding test statistic for the slope coefficient, but it does 
include the p-value for the test statistic which indicates that the slope coefficient is statistically 
different from zero (p < .001). Note that these estimates are numerically equivalent to those from 
MCMC and maximum likelihood estimation. 

 

  

…
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MCMC: Regression With Binary and Ordinal Predictors 

 

 

 

 

This example illustrates a multiple regression analysis with incomplete categorical predictors. 
The analysis uses the mathachievement.dat data set taken from an educational intervention 
where 250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 

MATHPOST Math achievement posttest  18.0 Numeric 

CONDITION Experimental condition 0 0 = Comparison, 1 = Intervention 

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 

EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 

MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 

ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

8.1 Analysis Model 

The analysis model features math posttest scores regressed on the experimental condition and 
lunch assistance dummy codes, math self-efficacy ratings, and math pretest scores. 

 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛽2(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) 

+ 𝛽3(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛽4(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 (18) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. In this case, the predictor set includes incomplete binary 
and ordinal variables. Blimp uses a probit regression formulation that envisions discrete 
responses as arising from underlying continuous latent response variables. The software assumes 
that continuous predictors and the latent response variables are multivariate normal. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

 

𝐴𝑇𝑅𝐼𝑆𝐾∗ = 𝛾03 + 𝛾13(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾23(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

+ 𝛾33(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾43(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾53(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖3 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾04 + 𝛾14(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾24(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾34(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) (19) 

+ 𝛾44(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾54(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾64(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖4 

 

The ATRISK model is a probit regression, with the binary outcome model as a latent response 
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

8.2 Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex8.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex8.1.imp 
 
 1  DATA: mathachievement.dat; 
 2  VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety  
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 3     mathpre mathpost; 
 4  ORDINAL: condition frlunch atrisk efficacy; 
 5  MISSING: 999; 
 6  FIXED: condition mathpre; 
 7  MODEL:  
 8  focal.model: 
 9  mathpost ~ condition@beta1 frlunch@beta2 efficacy@beta3 mathpre@beta4; 
10  auxiliary.models: 
11  stanread atrisk ~ mathpost condition frlunch efficacy mathpre; 
12  WALDTEST: beta1:beta4 = 0; 
13  SEED: 90291; 
14  BURN: 5000; 
15  ITERATIONS: 10000; 
 

The first five lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The ORDINAL command on line 4 identifies 
binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as the 
statistical models are identical. The MISSING command on line 5 defines a global missing value 
code as 999. 

The FIXED, MODEL, and WALDTEST blocks can be viewed as a set. The FIXED command identifies 
the two complete variables, which do not require a distribution or regression model. Beginning 
on line 7, the MODEL command lists the regression models, with outcome variables to the left of 
the tilde and predictors to the right. The code uses labels (focal.model and auxiliary.models) 
to order output tables, such that the focal model appears first followed by the auxiliary variable 
models. The focal model listed on line 9 assigns labels the slope coefficients using the @ symbol. 
Blimp automatically configures the explanatory variable models under the assumption that they 
are normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable 
regression models in Equation 19; in the first model, READ2 is regressed on the focal variables, 
and the second model features STANREAD7 regressed on READ2 and the focal variables. The 
WALDTEST command uses the parameter labels to specify a custom hypothesis test that all three 
slopes equal zero. This so-called Bayesian Wald test (Asparouhov & Muthén, 2021) is a 
frequentist chi-square statistic that mimics its likelihood-based counterpart, but MCMC 
generates the point estimates and “standard errors” for the test. 
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Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

The corresponding rblimp script Ex8.R is shown below. 

 
rblimp Script Ex8.R 
 
1 library(rblimp) 
2 load(mathachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = mathachievement, 
6   ordinal = 'condition frlunch atrisk efficacy', 
7   fixed = 'condition mathpre', 
8   model = '  
9     focal.model: 
10     mathpost ~ condition@beta1 frlunch@beta2 efficacy@beta3 mathpre@beta4; 
11     auxiliary.models: 
12     stanread atrisk ~ mathpost condition frlunch efficacy mathpre', 
13   waldtest = 'beta1:beta4 = 0', 
14   seed = 90291, 
15   burn = 5000, 
16   iter = 10000) 
17 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 
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8.3 Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.416            59   
                          251 to 500             1.425            57   
                          376 to 750             1.146            57   
                                  ...              ...            .. 
                         2251 to 4500            1.040            57   
                         2376 to 4750            1.016            56   
                         2501 to 5000            1.009            56 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3.  

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
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medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  mathpost    
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      53.303      5.509     43.687     65.369        ---        ---   5636.603  
 
Coefficients:                    
  Intercept                          28.345      3.088     22.308     34.514     84.418      0.000   7012.232  
  condition                           2.263      1.047      0.202      4.311      4.644      0.031   6953.241  
  frlunch                            -5.502      1.095     -7.608     -3.325     25.087      0.000   5344.564  
  efficacy                            0.831      0.346      0.159      1.517      5.773      0.016   4712.974  
  mathpre                             0.530      0.062      0.408      0.653     71.920      0.000   6537.163  
 
Standardized Coefficients:       
  condition                           0.117      0.054      0.010      0.222      4.715      0.030   6897.665  
  frlunch                            -0.281      0.052     -0.378     -0.173     28.538      0.000   5652.427  
  efficacy                            0.139      0.057      0.027      0.248      5.904      0.015   4706.081  
  mathpre                             0.477      0.048      0.378      0.564     98.308      0.000   6400.853  
 
Proportion Variance Explained    
  by Coefficients                     0.426      0.046      0.328      0.510        ---        ---   5954.279  
  by Residual Variation               0.574      0.046      0.490      0.672        ---        ---   5954.279  
 
                                ------------------------------------------------------------------------------ 
 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
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estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue.  

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.26 points higher than the student in the control 
group. The 95% credible interval limits suggest this effect is statistically different from zero (p < 
.05) because the null value is well outside the interval. The frequentist test statistic and p-value 
give the same conclusion. Note that the tabled values are numerically equivalent to the maximum 
likelihood estimates from Section 3.3. 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

Finally, recall that the WALDTEST command requested a Bayesian Wald chi-square statistic 
(Asparouhov & Muthén, 2021) that evaluates the null hypothesis that all population slopes equal 
zero. To reiterate, the Wald test is frequentist chi-square statistic that mimics its likelihood-based 
counterpart, but MCMC generates the point estimates and “standard errors” for the test. The 
chi-square statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT 
section under the WALD TEST heading. The test statistic is statistically significant, thus refuting 
the null hypothesis. 

 
MODEL FIT: 
 
  ... 
 
  WALD TESTS (Asparouhov & Muthén, 2021) 
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  Test #1 
 
    Full: 
      [1]  mathpost ~ Intercept condition@beta1 frlunch@beta2 efficacy@beta3  
                 mathpre@beta4 
 
    Restricted: 
      [1]  mathpost ~ Intercept condition@beta1 frlunch@beta2 efficacy@beta3  
                 mathpre@beta4 
 
    Constraints in Restricted: 
      [1]  beta1 = 0 
      [2]  beta2 = 0 
      [3]  beta3 = 0 
      [4]  beta4 = 0 
 
 
    Wald Statistic (Chi-Square)               142.310 
    Number of Parameters Tested (df)                4 
    Probability                                 0.000 
 

8.4 Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex8.2.imp is identical Ex8.1.imp, but it adds the following lines at the bottom of 
the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
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autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     id condition male frlunch atrisk stanread efficacy anxiety  
     mathpre mathpost 
 
   stacked = './imps/imps.dat' 
 
     imp# id condition male frlunch atrisk stanread efficacy  
     anxiety mathpre mathpost 
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  
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rblimp Script Ex8.R 
 
1 library(rblimp) 
2 load('mathachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = mathachievement, 
6   ordinal = 'condition frlunch atrisk efficacy', 
7   fixed = 'condition mathpre', 
8   model = '  
9     focal.model: 
10     mathpost ~ condition@beta1 frlunch@beta2 efficacy@beta3 mathpre@beta4; 
11     auxiliary.models: 
12     stanread atrisk ~ mathpost condition frlunch efficacy mathpre', 
13   waldtest = 'beta1:beta4 = 0', 
14   seed = 90291, 
15   burn = 5000, 
16   iter = 10000, 
17   nimps = 20, 
18   chains = 20) 
19 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 

8.5 Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex8.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex8.R 
 
1 library(rblimp) 
2 library(mitml) 



MCMC: Regression With Binary and Ordinal Predictors     

 

101 

3 load('mathachievement.rda') 
4  
5 mymodel <- rblimp(...) 
6  
7 implist <- as.mitml(mymodel) 
8 fit <- with(implist,  
9    lm(mathpost ~ condition + frlunch + efficacy + mathpre)) 
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 245) 
11 estimates 
12 confint(estimates) 
13  
14 null <- with(implist, lm(mathpost ~ 1)) 
15 testModels(fit, null, df.com = 245, method = 'D1') 

 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 8 and 9 fit the focal 
regression model using the lm function, and line 10 uses the testEstimates function in mitml to 
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com 
parameter is the denominator degrees of freedom that would have resulted had there been no 
missing data (i.e., N–K–1 degrees of freedom, where K is the number of predictors). This 
argument produces Barnard and Rubin degrees of freedom values. Lines 11 and 12 print the 
pooled estimates and confidence intervals. Finally, lines 14 and 15 specify a multiple imputation 
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al., 
1991). The test requires an additional model on line 13 that represents the null hypothesis, which 
in this case is an empty regression model with just an intercept. On line 14, the full model and 
null model objects passed into the testModels function, and the D1 keyword requests the Wald 
test. As before, the df.com parameter is the denominator degrees of freedom that would have 
resulted had there been no missing data. This argument produces the Barnard and Rubin (1999) 
degrees of freedom adjustment. 

8.6 R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
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data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    28.302     3.183     8.892   125.465     0.000     0.290     0.237  
condition       2.206     1.055     2.091   133.634     0.038     0.263     0.220  
frlunch        -5.392     1.094    -4.928   110.541     0.000     0.348     0.271  
efficacy        0.832     0.356     2.339   103.454     0.021     0.380     0.289  
mathpre         0.532     0.063     8.448   128.385     0.000     0.280     0.231  
 
                   Estimate  
Residual~~Residual   53.133  
 
Hypothesis test adjusted for small samples with df=[245] 
complete-data degrees of freedom. 
 
                 2.5 %     97.5 % 
(Intercept) 22.0026367 34.6005103 
condition    0.1192603  4.2925545 
frlunch     -7.5596123 -3.2237303 
efficacy     0.1266288  1.5376826 
mathpre      0.4071878  0.6562495 

 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.21 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (t = 2.09, p = .04). Note that these estimates are virtually identical to those from 
MCMC and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in 
the output table below. The test statistic is statistically significant, thus refuting the null 
hypothesis that all population slopes equal zero. 
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Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     33.796       4 197.183   0.000   0.332  
 
Hypothesis test adjusted for small samples with df=[245] 
complete-data degrees of freedom. 
 

8.7 Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex8.inp. The script is like the Ex3.inp 
file described in Section 3.2 with three exceptions. First, instead of naming the raw data set, the 
DATA command lists the text file containing the names of the imputed data sets (the implist.dat 
file located in the ./imps subdirectory). The type = imputation subcommand instructs Mplus 
that the input data is a list of file names. Second, the missing subcommand is omitted because the 
analysis variables are now complete. Finally, the MODEL section no longer specifies a normal 
distribution for the predictors or models for the auxiliary variables. Readers can refer back to 
Section 3.2 for a detailed description of the other commands. The code block below shows the 
analysis and pooling script. 

 
Mplus Script Ex8.inp 

 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id condition male frlunch atrisk stanread  
 6   efficacy anxiety mathpre mathpost; 
 7  usevariables = mathpost condition frlunch efficacy mathpre; 
 8  MODEL: 



MCMC: Regression With Binary and Ordinal Predictors     

 

104 

 9  mathpost on condition frlunch efficacy mathpre (beta1-beta4); 
10  MODEL TEST: 
11  0 = beta1; 0 = beta2; 0 = beta3; 0 = beta4; 
12  OUTPUT: 
13  stdyx cinterval; 
 

8.8 Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter 
Constraints heading. The test statistic is statistically significant, thus refuting the null 
hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                        6 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                            125.646 
          Degrees of Freedom                     4 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown 
below. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
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                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 MATHPOST ON 
    CONDITION          2.206      1.047      2.107      0.035      0.215 
    FRLUNCH           -5.392      1.086     -4.965      0.000      0.267 
    EFFICACY           0.832      0.353      2.356      0.018      0.285 
    MATHPRE            0.532      0.062      8.515      0.000      0.226 
  
Intercepts 
    MATHPOST          28.301      3.158      8.962      0.000      0.233 
 
 Residual Variances 
    MATHPOST          52.070      5.500      9.467      0.000      0.287 
 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.21 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (z = 2.11, p = .04). Note that these estimates are virtually identical to those from 
MCMC and maximum likelihood estimation. The output also includes a table with standardized 
coefficients and the R-squared statistic. 

8.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is Ex8.spwb. 
The code block below shows the commands that import the stacked text file produced by Blimp. 
The example assumes that the data file is located on the desktop. 
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SPSS Script Ex8.spwb 
 
 1  CD '/users/username/desktop'. 
 2  DATA LIST free file =  'imps.dat' 
 3   /imputation_ id condition male frlunch atrisk stanread efficacy anxiety 
 4    mathpre mathpost. 
 5  EXE.  
 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 6 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 7 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 8. 

 
SPSS Script Ex8.spwb, continued 
 
 6  SORT CASES by imputation_. 
 7  SPLIT FILE layered by imputation_. 
 8  REGRESSION 
 9     /descriptives mean stddev corr sig n 
10     /dependent mathpost 
11     /method enter condition frlunch efficacy mathpre. 
 

8.8 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The regression output also includes pooled means and correlations. The relative increase in 



MCMC: Regression With Binary and Ordinal Predictors     

 

107 

variance is a fraction comparing imputation noise to complete-data sampling variation, and the 
fraction of missing information quantifies the imputation noise in each estimate as proportion of 
its squared standard error. 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.21 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (t = 2.09, p = .04). Note that these estimates are virtually identical to those from 
MCMC and maximum likelihood estimation. 

 

 

 

…
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MCMC: Regression With Multicategorical Predictors 

 

 

 

 

This example illustrates a multiple regression analysis with an incomplete multicategorical 
predictor. The analysis uses the behaviorachievement.dat data set taken from a longitudinal 
study that followed 138 students from primary through middle school. The file includes three 
annual assessments of broad reading and math achievement beginning in the first grade, seventh 
grade standardized achievement test scores taken from a statewide assessment, and a final 
measure of broad reading and math obtained in ninth grade. The data also contain teacher 
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The 
data description at the beginning of this document provides additional details. The variables for 
this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 

RISKGRP Emotional/behavioral disorder risk 2.2 1 = Low, 2 = Medium, 3 = High 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

 

 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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9.1 Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement, teacher-rated learning problems and behavioral symptoms, and a three-category 
nominal variable indicating risk for emotional or behavioral disorders. 

 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) 

+ 𝛽4(𝑀𝐸𝐷𝑅𝐼𝑆𝐾) + 𝛽5(𝐻𝐼𝐺𝐻𝑅𝐼𝑆𝐾) + 𝜀 (20) 

 

The MEDRISK and HIGHRISK variables are dummy code variables that contrast the medium- and 
high-risk groups, respectively, against the low-risk reference group. Blimp uses a probit 
regression formulation that envisions multicategorical variables as arising from underlying 
continuous latent response difference scores. The software automatically assumes that 
continuous predictors and the latent response variables are multivariate normal. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples, auxiliary 
variables enter the model as additional outcomes that are predicted by the analysis variables and 
by each other. The additional regression equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) 

+ 𝛾51(𝑀𝐸𝐷𝑅𝐼𝑆𝐾) + 𝛾61(𝐻𝐼𝐺𝐻𝑅𝐼𝑆𝐾) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾62(𝑀𝐸𝐷𝑅𝐼𝑆𝐾) + 𝛾72(𝐻𝐼𝐺𝐻𝑅𝐼𝑆𝐾) + 𝜖2 (21) 

 

Along with the focal regression model from Equation 20, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

9.2 Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex9.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  
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Blimp Script Ex9.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7 math1 math2  
 4   math3 math9 math9grp stanmath7; 
 5  NOMINAL: riskgrp; 
 6  MISSING: 999; 
 7  MODEL:  
 8  focal.model: 
 9  read9 ~ read1 lrnprob1 behsymp1 riskgrp; 
10  auxiliary.models: 
11  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1 riskgrp; 
12  SEED: 90291; 
13  BURN: 2000; 
14  ITERATIONS: 10000; 
 

The first five lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The NOMINAL command on line 5 identifies 
the multicategorical nominal predictor. By default, the group with the lowest numeric code 
serves as the reference category (in this example, 1 = low risk), and the user can change this 
specification if desired. The MISSING command on line 6 defines a global missing value code as 
999. 

The MODEL and WALDTEST blocks can be viewed as a set. Beginning on line 7, the MODEL 
command lists the regression models, with outcome variables to the left of the tilde and 
predictors to the right. The code uses labels (focal.model and auxiliary.models) to order 
output tables, such that the focal model appears first followed by the auxiliary variable models. 
The focal model listed on line 9 includes the multicategorical nominal variable, which Blimp 
represents as a pair of dummy codes. Blimp automatically configures the explanatory variable 
models under the assumption that the numeric predictors and latent response variables are 
normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable 
regression models in Equation 21; in the first model, READ2 is regressed on the focal variables, 
and the second model features STANREAD7 regressed on READ2 and the focal variables.  
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Finally, lines 12 through 14 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Previous examples assigned labels to slope coefficients using the @ symbol, and these labels 
were subsequently used in the WALDTEST command to specify custom hypothesis tests. With a 
multicategorical nominal predictor, it is necessary to attach labels to individual dummy codes. To 
do this, you list the nominal variable’s name followed by a period and a numeric suffix with each 
category’s code value. For example, line 9 in the script would be modified as follows 

 
9  read9 ~ read1@b1 lrnprob1@b2 behsymp1@b3 riskgrp.2@b4 riskgrp.3@b5; 
 

where RISKGRP.2 and RISKGRP.3 reference the two dummy variables for the groups coded 2 and 
3 in the data. The WALDTEST command would then be constructed following earlier examples. 

The corresponding rblimp script Ex9.R is shown below. 

 
rblimp Script Ex9.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   nominal = 'riskgrp', 
7   model = '   
8     focal.model: 
9     read9 ~ read1 lrnprob1 behsymp1 riskgrp; 
10     auxiliary.models: 
11     stanread7 read2   ~ read9 read1 lrnprob1 behsymp1 riskgrp', 
12   seed = 90291, 
13   burn = 2000, 
14   iter = 10000) 
15 output(mymodel) 
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Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 

9.3 Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 

 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.305            77   
                          101 to 200             1.200            62   
                          151 to 300             1.064            56   
                                 ...               ...            .. 
                          901 to 1800            1.017            53   
                          951 to 1900            1.014            53   
                         1001 to 2000            1.017            56 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3.  
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The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      91.703     13.152     70.459    121.914        ---        ---   5589.273  
 
Coefficients:                    
  Intercept                          68.621      6.614     55.479     81.676    107.763      0.000   5703.283  
  read1                               0.484      0.049      0.389      0.581     98.268      0.000   7086.883  
  lrnprob1                           -0.250      0.121     -0.485     -0.007      4.205      0.040   5583.683  
  behsymp1                           -0.170      0.107     -0.379      0.041      2.528      0.112   6010.276  
  riskgrp.2                          -1.682      1.991     -5.632      2.220      0.707      0.401   7073.237  
  riskgrp.3                          -2.814      2.707     -8.233      2.511      1.084      0.298   6138.228  
 
Standardized Coefficients:       
  read1                               0.658      0.052      0.544      0.751    155.706      0.000   6469.725  
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  lrnprob1                           -0.178      0.085     -0.340     -0.005      4.277      0.039   5544.858  
  behsymp1                           -0.137      0.085     -0.300      0.033      2.566      0.109   5901.722  
  riskgrp.2                          -0.055      0.065     -0.182      0.073      0.714      0.398   7086.836  
  riskgrp.3                          -0.079      0.075     -0.225      0.072      1.094      0.296   6182.638  
 
Proportion Variance Explained    
  by Coefficients                     0.599      0.050      0.488      0.684        ---        ---   5849.961  
  by Residual Variation               0.401      0.050      0.316      0.512        ---        ---   5849.961  
 
                                ------------------------------------------------------------------------------ 
 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue.  

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The 95% credible interval limits suggest this effect is statistically different from 
zero (p < .05) because the null value is well outside the interval. The frequentist test statistic and 
p-value give the same conclusion. The two dummy codes appear as RISKGRP.2 and RISKGRP.3, 
where the numeric suffices correspond to the numeric codes from the data. Consistent with a 
complete-data regression analysis, the dummy code slopes represent mean differences relative to 
the low-risk reference group. For example, holding all other predictors constant, the model 
predicts that a high-risk study would score 2.81 points lower than a low-risk student in the 
comparison group. 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

9.4 Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
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subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex9.2.imp is identical Ex9.1.imp, but it adds the following lines. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
separate = './imps/imp*.dat' 

 
   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  
     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 
stacked = './imps/imps.dat' 
 
   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    
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   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex9.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   nominal = 'riskgrp', 
7   model = '   
8     focal.model: 
9     read9 ~ read1 lrnprob1 behsymp1 riskgrp; 
10     auxiliary.models: 
11     stanread7 read2   ~ read9 read1 lrnprob1 behsymp1 riskgrp', 
12   seed = 90291, 
13   burn = 2000, 
14   iter = 10000, 
15   nimps = 20, 
16   chains = 20) 
17 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 
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9.5 Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex9.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex9.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('behaviorachievement.rda') 
4  
5 mymodel <- rblimp(...) 
6  
7 implist <- as.mitml(mymodel) 
8 fit <- with(implist,  
9   lm(read9 ~ read1 + lrnprob1 + behsymp1 + factor(riskgrp))) 
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 132) 
11 estimates 
12 confint(estimates) 
13 null <- with(implist, lm(read9 ~ 1)) 
14 testModels(fit, null, df.com = 132, method = 'D1') 
 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 8 and 9 fit the focal 
regression model using the lm function, and line 10 uses the testEstimates function in mitml to 
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com 
parameter is the denominator degrees of freedom that would have resulted had there been no 
missing data (i.e., N–K–1 degrees of freedom, where K is the number of predictors). This 
argument produces Barnard and Rubin degrees of freedom values. Lines 11 and 12 print the 
pooled estimates and confidence intervals. Finally, lines 14 and 15 specify a multiple imputation 
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al., 
1991). The test requires an additional model on line 13 that represents the null hypothesis, which 
in this case is an empty regression model with just an intercept. On line 14, the full model and 
null model objects passed into the testModels function, and the D1 keyword requests the Wald 
test. As before, the df.com parameter is the denominator degrees of freedom that would have 
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resulted had there been no missing data. This argument produces the Barnard and Rubin (1999) 
degrees of freedom adjustment. 

9.6 R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
  Final parameter estimates and inferences obtained from 20 imputed data sets. 

 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    69.174     6.337    10.916    98.577     0.000     0.172     0.164  
read1           0.477     0.048     9.928   103.392     0.000     0.146     0.144  
lrnprob1       -0.250     0.117    -2.133    94.276     0.036     0.196     0.181  
behsymp1       -0.166     0.108    -1.539    81.473     0.128     0.276     0.235  
riskgrp2       -1.710     1.921    -0.890   116.647     0.375     0.079     0.088  
riskgrp3       -3.115     2.867    -1.087    72.059     0.281     0.348     0.278  
 
                   Estimate  
Residual~~Residual   89.403  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom. 
 
                 2.5 %      97.5 % 
(Intercept) 56.5999199 81.74779632 
read1        0.3820806  0.57283035 
lrnprob1    -0.4822008 -0.01730107 
behsymp1    -0.3796984  0.04849960 
riskgrp2    -5.5147538  2.09562507 
riskgrp3    -8.8300720  2.59967016 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
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who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (t = 9.93, p < .001). The two dummy codes appear as RISKGRP2 and RISKGRP3. 
Consistent with a complete-data regression analysis, the dummy code slopes represent mean 
differences relative to the low-risk reference group. For example, holding all other predictors 
constant, the model predicts that a high-risk study would score 3.12 points lower than a low-risk 
student in the comparison group. Note that these estimates are virtually identical to those from 
MCMC and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in 
the output table below. The test statistic is statistically significant, thus refuting the null 
hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     33.252       5 123.203   0.000   0.213  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom. 
 

9.7 Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex9.inp. The script is like previous 
Mplus scripts (e.g., the Ex1.1.inp file described in Section 1.2) with four exceptions. First, 
instead of naming the raw data set, the DATA command lists the text file containing the names of 
the imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
imputation subcommand instructs Mplus that the input data is a list of file names. Second, the 
missing subcommand is omitted because the analysis variables are now complete. Third, the 
MODEL section no longer specifies a normal distribution for the predictors or models for the 
auxiliary variables. Finally, lines 9 through 13 use the DEFINE command to create a pair of 
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dummy codes. Lines 10 and 11 initialize a pair of new variables (RISKGRP2 and RISKGRP3) with all 
0s, and lines 12 and 13 recode these variables into dummy variables. Importantly, new variables 
computed with the DEFINE command must appear at the end of the usevariables list on line 8. 
The code block below shows the analysis and pooling script. 

 
Mplus Script Ex9.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6      read1 read2 read3 read9 read9grp stanread7  
 7     math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1 riskgrp2 riskgrp3; 
 9  DEFINE: 
10  riskgrp2 = 0; 
11  riskgrp3 = 0; 
12  if(riskgrp eq 2) then riskgrp2 = 1; 
13  if(riskgrp eq 3) then riskgrp3 = 1; 
14  MODEL:   
15  read9 on read1 lrnprob1 behsymp1 riskgrp2 riskgrp3 (beta1-beta5); 
16  MODEL TEST: 
17  0 = beta1; 0 = beta2; 0 = beta3; 
18  OUTPUT: 
19  stdyx cinterval; 
 

9.8 Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter 
Constraints heading. The test statistic is statistically significant, thus refuting the null 
hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       7 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            173.432 
          Degrees of Freedom                     5 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown 
below. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.477      0.047     10.122      0.000      0.134 
    LRNPROB1          -0.250      0.115     -2.173      0.030      0.172 
    BEHSYMP1          -0.166      0.106     -1.566      0.117      0.228 
    RISKGRP2          -1.710      1.882     -0.908      0.364      0.076 
    RISKGRP3          -3.115      2.820     -1.105      0.269      0.272 
 
 Intercepts 
    READ9             69.174      6.218     11.125      0.000      0.154 
 
 Residual Variances 
    READ9             85.516     11.867      7.206      0.000      0.249 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (z = 10.29, p < .001). The two dummy codes appear as RISKGRP2 and 
RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes represent 
mean differences relative to the low-risk reference group. For example, holding all other 
predictors constant, the model predicts that a high-risk study would score 3.12 points lower than 
a low-risk student in the comparison group. Note that these estimates are virtually identical to 
those from MCMC estimation. The output also includes a table with standardized coefficients 
and the R-squared statistic. 

9.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is Ex9.spwb. 
The code block below shows the commands that import the stacked text file produced by Blimp. 
The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex9.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3  /imputation_ id male hispanic riskgrp atrisk  
4   behsymp1 lrnprob1 read1 read2 read3 read9 read9grp stanread7 
5   math1 math2 math3 math9 math9grp stanmath7. 
6 EXE. 
7  
8 COMPUTE riskgrp2 = 0. 
9 COMPUTE riskgrp3 = 0. 
10 IF (riskgrp = 2) riskgrp2 = 1. 
11 IF (riskgrp = 3) riskgrp3 = 1. 
12 EXE. 
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The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. The dummy 
codes for the RISKGRP variable are created beginning at line 8.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 13 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 14 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 15. 

 
SPSS Script Ex9.spwb, continued 
 
13 SORT CASES by imputation_. 
14 SPLIT FILE layered by imputation_. 
15 REGRESSION 
16   /descriptives mean stddev corr sig n 
17   /dependent read9 
18   /method enter read1 lrnprob1 behsymp1 riskgrp2 riskgrp3. 

 

9.10 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The regression output also includes pooled means and correlations. The relative increase in 
variance is a fraction comparing imputation noise to complete-data sampling variation, and the 
fraction of missing information quantifies the imputation noise in each estimate as proportion of 
its squared standard error. 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically 
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different from zero (t = 9.93, p < .001). The two dummy codes appear as RISKGRP2 and RISKGRP3. 
Consistent with a complete-data regression analysis, the dummy code slopes represent mean 
differences relative to the low-risk reference group. For example, holding all other predictors 
constant, the model predicts that a high-risk study would score 3.12 points lower than a low-risk 
student in the comparison group. Note that these estimates are virtually identical to those from 
MCMC and maximum likelihood estimation. 

 

…
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MCMC: Moderated Regression With an Interaction 

 

 

 

This example illustrates a multiple regression analysis with an incomplete interaction effect. The 
analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing Scale 

Focal Analysis Variables 

ATRISK Emotion/behavior disorder risk 2.2% 0 = Low risk, 1 = At risk 

LRNPROB1 1st grade learning problems 2.2% Numeric (31 to 88) 

READ1 1st grade broad reading  6.5% Numeric (39 to 153) 

READ9 9th grade broad reading  17.4% Numeric (41 to 123) 

Auxiliary Variables 

READ2 2nd grade broad reading  9.4% Numeric (20 to 150) 

STANREAD7 7th grade standardized reading 19.6% Numeric (100 to 399) 

10.1  Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement, teacher-rated learning problems, and the product of first grade reading scores and 
learning problems, and a binary risk indicator. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 

+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜀 (22) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Moderated regression models (and models with non-
linearities more generally) require a factored regression specification that assigns separate 
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal 
distribution for incomplete predictors. Importantly, the product term does not require a unique 
distribution, as missing data imputation generates lower-order variables that preserve the 
interaction effect in the focal model. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜖4 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜖5 (23) 

 

Along with the other models, the collection of regression equations can be viewed as a path 
model where the focal analysis is one part of a larger network (see the path diagram from Section 
2.4). The key difference is that the path coefficients are just a tool for linking incomplete variables 
and do not represent a substantive theory. 

10.2  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex10.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  
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Blimp Script Ex10.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5   ORDINAL: atrisk; 
 6  MISSING: 999; 
 7  CENTER: read1 lrnprob1 atrisk; 
 8  MODEL:  
 9  focal.model: 
10  read9 ~ read1 lrnprob1 read1*lrnprob1 atrisk; 
11  auxiliary.model:  
12  stanread7 read2 ~ read9 read1 lrnprob1 atrisk; 
13  SIMPLE: read1 | lrnprob1; 
14  SEED: 90291; 
15  BURN: 5000; 
16  ITERATIONS: 10000;  

 
The first five lines can be viewed as a set of commands that specify information about the data 

and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns, the ORDINAL command identifies the binary 
risk indicator, and MISSING command on line 6 defines a global missing value code as 999. 

The CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The CENTER command deviates 
the two interacting variables at their iteratively-estimated grand means. Beginning on line 8, the 
MODEL command lists the regression models, with outcome variables to the left of the tilde and 
predictors to the right. The code uses labels (focal.model and auxiliary.models) to order 
output tables, such that the focal model appears first followed by the auxiliary variable models. 
The focal model listed on line 10 includes a product term, which is specified by joining two 
variables with an asterisk. Blimp automatically configures the explanatory variable models under 
the assumption that they are normally distributed. Line 12 is a syntax shortcut that produces the 
two auxiliary variable regression models in Equation 23; in the first model, READ2 is regressed on 
the focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. The SIMPLE command requests the conditional effects (i.e., simple slopes) of READ1 at 
different levels of LRNPROB1. By default, Blimp adopts a pick-a-point approach that uses standard 
deviation units of the moderator variable, although the user can specify custom values. Finally, 
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lines 14 through 16 can be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

The corresponding rblimp script Ex10.R is shown below. 

 
rblimp Script Ex10.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   ordinal = 'atrisk', 
7   center = 'read1 lrnprob1 atrisk', 
8   model = '   
9     focal.model: 
10     read9 ~ read1 lrnprob1 read1*lrnprob1 atrisk ; 
11     auxiliary.models: 
12     stanread7 read2  ~ read9 read1 lrnprob1 atrisk', 
13   simple = 'read1 | lrnprob1', 
14   seed = 90291, 
15   burn = 5000, 
16   iter = 10000) 
17 output(mymodel) 
 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 
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10.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.116            39   
                          251 to 500             1.127            48   
                          376 to 750             1.033            39   
                                  ...              ...            ..   
                         2251 to 4500            1.015            48   
                         2376 to 4750            1.021            48   
                         2501 to 5000            1.014            48 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3.  

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
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medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Grand Mean Centered: atrisk lrnprob1 read1 
 
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      88.856     13.083     67.751    118.695        ---        ---   5042.847  
 
Coefficients:                    
  Intercept                          87.848      1.321     85.187     90.382   4419.067      0.000    653.964  
  read1                               0.500      0.047      0.409      0.593    114.659      0.000   4018.910  
  lrnprob1                           -0.371      0.090     -0.550     -0.196     17.085      0.000   3402.882  
  atrisk                             -1.934      1.871     -5.669      1.631      1.080      0.299   6822.952  
  read1*lrnprob1                      0.012      0.005      0.003      0.022      6.855      0.009   3219.685  
 
Standardized Coefficients:       
  read1                               0.671      0.046      0.573      0.753    212.802      0.000   3846.703  
  lrnprob1                           -0.265      0.062     -0.384     -0.142     18.272      0.000   3280.798  
  atrisk                             -0.061      0.059     -0.177      0.052      1.092      0.296   6854.792  
  read1*lrnprob1                      0.170      0.060      0.047      0.281      7.794      0.005   3919.842  
 
Proportion Variance Explained    
  by Coefficients                     0.610      0.050      0.500      0.698        ---        ---   4529.480  
  by Residual Variation               0.390      0.050      0.302      0.500        ---        ---   4529.480  
 
                                ------------------------------------------------------------------------------ 
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To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue.  

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores (𝛽1 = 0.50) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2 = −0.37) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3 = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
more positive) as learning problems increase. That is, the predictive power of early reading on 
later reading is strongest for students with elevated learning problem ratings in first grade. The 
95% credible interval limits suggest this effect is statistically different from zero (p < .05) because 
the null value is well outside the interval. The frequentist test statistic and p-value give the same 
conclusion. 

The SIMPLE command prints a table of conditional effects (simple slopes) of READ1 at different 
standard deviation units of LRNPROB1. The output is shown below. Consistent with the positive 
interaction coefficient, the simple slopes increase in strength as learning problems ratings 
increase (and vice versa). All the tabled conditional effects are statistically significant at p < .05 
because the null value does not fall within the 95% credible intervals. The frequentist test 
statistics and p-values give the same conclusion. 

 

 

Conditional Effects                  Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
  read1 | lrnprob1 @ +2 SD                                                                                     
    Intercept                        79.745      2.657     74.354     84.811    900.174      0.000   1199.336  
    Slope                             0.767      0.119      0.540      1.007     42.054      0.000   2894.549  
                                                                                                               
  read1 | lrnprob1 @ +1 SD                                                                                     
    Intercept                        83.791      1.833     80.097     87.310   2088.473      0.000    872.529  
    Slope                             0.634      0.074      0.493      0.784     74.314      0.000   2879.088  
                                                                                                               
  read1 | lrnprob1 @ 0                                                                                         
    Intercept                        87.848      1.321     85.187     90.382   4419.067      0.000    653.964  
    Slope                             0.500      0.047      0.409      0.593    114.659      0.000   4018.910  
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  read1 | lrnprob1 @ -1 SD                                                                                     
    Intercept                        91.872      1.488     89.002     94.868   3812.774      0.000   1250.238  
    Slope                             0.368      0.066      0.234      0.494     30.896      0.000   5267.720  
                                                                                                               
  read1 | lrnprob1 @ -2 SD                                                                                     
    Intercept                        95.915      2.183     91.693    100.327   1931.435      0.000   3009.201  
    Slope                             0.234      0.109      0.018      0.439      4.538      0.033   4262.126  
                                                                                                               
                                ------------------------------------------------------------------------------ 
 
                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero. 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

10.4  Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex10.2.imp is identical Ex10.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
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saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
separate = './imps/imp*.dat' 

 
   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  
     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 
stacked = './imps/imps.dat' 
 
   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    
   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex10.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
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4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   ordinal = 'atrisk', 
7   center = 'read1 lrnprob1 atrisk', 
8   model = '   
9     focal.model: 
10     read9 ~ read1 lrnprob1 read1*lrnprob1 atrisk ; 
11     auxiliary.models: 
12     stanread7 read2  ~ read9 read1 lrnprob1 atrisk', 
13   simple = 'read1 | lrnprob1', 
14   seed = 90291, 
15   burn = 5000, 
16   iter = 10000, 
17   nimps = 20, 
18   chains = 20) 
19 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 

10.5  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex10.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex10.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('behaviorachievement.rda') 
4  
5 mymodel <- rblimp(...) 
6  
7 implist <- as.mitml(mymodel) 
8  
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9 mean_read1 <- mean(unlist(lapply(implist, function(df) mean(df$read1)))) 
10 mean_lrnprob1 <- mean(unlist(lapply(implist, function(df) mean(df$lrnprob1)))) 
11 mean_atrisk <- mean(unlist(lapply(implist, function(df) mean(df$atrisk)))) 
12 for (i in 1:length(implist)) { 
13   implist[[i]]$read1.cgm <- implist[[i]]$read1 - mean_read1 
14   implist[[i]]$lrnprob1.cgm <- implist[[i]]$lrnprob1 - mean_lrnprob1 
15   implist[[i]]$atrisk.cgm <- implist[[i]]$atrisk - mean_atrisk 
16 } 
17  
18 fit <- with(implist,  
19   lm(read9 ~ read1.cgm + lrnprob1.cgm + read1.cgm:lrnprob1.cgm + atrisk.cgm)) 
20  
21 estimates <- testEstimates(fit, extra.pars = T, df.com = 133) 
22 estimates 
23 confint(estimates) 
 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 9 through 16 center three 
predictors at their pooled grand means. Lines 18 and 19 fit the focal regression model using the 
lm function, and line 21 uses the testEstimates function in mitml to implement Rubin’s pooling 
rules and save the results in an object called estimates. The df.com parameter is the 
denominator degrees of freedom that would have resulted had there been no missing data (i.e., 
N–K–1 degrees of freedom, where K is the number of predictors). This argument produces 
Barnard and Rubin degrees of freedom values. Lines 22 and 23 print the pooled estimates and 
confidence intervals.  

Following a significant interaction effect, researchers typically examine the slope of the focal 
predictor at different values of the moderator. The final code block below computes these 
conditional effects or simple slopes of first-grade reading scores at the learning problem mean 
and at plus and minus one standard deviation from the mean. 

 
R Script Ex10.R, continued 
 
24 lrnprob1.sd <- mean(unlist(lapply(implist, (function(x) sd(x$lrnprob1.cgm))))) 
25  
26 slp_high <- 'read1.cgm + read1.cgm*lrnprob1.cgm*1*10.77' 
27 testConstraints(fit, constraints = slp_high, df.com = 133) 
28  
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29 slp_mean <- 'read1.cgm + read1.cgm*lrnprob1.cgm*0*10.77' 
30 testConstraints(fit, constraints = slp_mean, df.com = 133) 
31  
32 slp_low <- 'read1.cgm + read1.cgm*lrnprob1.cgm*-1*10.77' 
33 testConstraints(fit, constraints = slp_low, df.com = 133) 
 

Line 24 computes the pooled standard deviation of the moderator. Line 20 prints the value, 
which equals 10.77. Lines 26, 29, and 32 are text strings that define the computation of the 
conditional effect of READ1 at the mean of LRNPROB1 and at plus and minus one standard 
deviation from the mean. Lines 27, 30, and 33 use the testConstraints function in mitml to 
compute the pooled coefficients and test statistics. 

10.6  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

                        Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)               87.916     0.871   100.979    97.473     0.000     0.182     0.171  

read1.cgm                  0.499     0.045    11.041    90.714     0.000     0.220     0.198  

lrnprob1.cgm              -0.372     0.086    -4.321    74.600     0.000     0.331     0.268  

atrisk.cgm                -2.053     1.779    -1.154   121.933     0.251     0.056     0.068  

read1.cgm:lrnprob1.cgm     0.012     0.005     2.547    63.202     0.013     0.437     0.325  

 

                   Estimate  

Residual~~Residual   88.260  

 

Hypothesis test adjusted for small samples with df=[133] 

complete-data degrees of freedom. 

                             2.5 %     97.5 % 

(Intercept)            86.18838273 89.6441345 
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read1.cgm               0.40947708  0.5891414 

lrnprob1.cgm           -0.54303533 -0.2003056 

atrisk.cgm             -5.57347427  1.4681129 

read1.cgm:lrnprob1.cgm  0.00255251  0.0211242 

 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 𝛽1̂ = 0.50) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.37) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂ = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
more positive) as learning problems increase. That is, the predictive power of early reading on 
later reading is strongest for students with elevated learning problem ratings in first grade. Note 
that these estimates are numerically equivalent to those from MCMC and maximum likelihood 
estimation. The output also includes a table with standardized coefficients and the R-squared 
statistic. 

Finally, the printed output also includes the table of conditional effects. The output is shown 
below. Consistent with the positive interaction coefficient, the simple slopes increase in strength 
as learning problems ratings increase (and vice versa). All the tabled conditional effects are 
statistically significant at p < .05. 

 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                                                 Estimate Std. Error  
   read1.cgm + read1.cgm*lrnprob1.cgm*1*10.77:     -1.500      0.482  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
      9.685       1  75.693   0.003   0.345  
 
Hypothesis test adjusted for small samples with df=[133] 
complete-data degrees of freedom. 
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Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                                                 Estimate Std. Error  
   read1.cgm + read1.cgm*lrnprob1.cgm*0*10.77:      0.499      0.045  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
    121.909       1  95.723   0.000   0.220  
 
Hypothesis test adjusted for small samples with df=[133] 
complete-data degrees of freedom. 
 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                                                  Estimate Std. Error  
   read1.cgm + read1.cgm*lrnprob1.cgm*-1*10.77:      2.499      0.514  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
     23.660       1  76.459   0.000   0.339  
 
Hypothesis test adjusted for small samples with df=[133] 
complete-data degrees of freedom. 
 

10.7  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex10.inp.  
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Mplus Script Ex10.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6     read1 read2 read3 read9 read9grp stanread7  
 7     math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 atrisk product; 
 9  DEFINE: 
10  center read1 lrnprob1 atrisk (grandmean); 
11  product = read1 * lrnprob1; 
12  MODEL:   
13  read9 on read1 lrnprob1 product atrisk (beta1-beta4); 
14  MODEL CONSTRAINT: 
15  new(lrnprobvar slp_low slp_mean slp_high); 
16  lrnprobvar = 114.354; 
17  slp_high = beta1 + beta3*1*sqrt(lrnprobvar); 
18  slp_mean = beta1 + beta3*0*sqrt(lrnprobvar); 
19  slp_low =  beta1 - beta3*1*sqrt(lrnprobvar); 
19  OUTPUT: 
20  stdyx cinterval; 
 

The major commands are like those from previous examples (see Section 1.2). Consistent with 
previous multiple imputation analysis scripts, the DATA command lists the text file containing the 
names of the imputed data sets (the implist.dat file located in the ./imps subdirectory). The 
type = imputation subcommand instructs Mplus that the input data is a list of file names. 
Second, the missing subcommand is omitted because the analysis variables are now complete. 
Third, the MODEL section no longer specifies a normal distribution for the predictors or models 
for the auxiliary variables. The code block below shows the analysis and pooling script. 

The script also invokes several new features. On line 10, the center subcommand under the 
DEFINE command centers the two interacting predictors at their grand means, and line 11 
computes a new variable equal to the product of the centered scores. Importantly, new variables 
computed with the DEFINE command must appear at the end of the usevariables list on line 8. 
Beginning on line 14, the MODEL CONSTRAINT command is used to compute conditional effects or 



MCMC: Moderated Regression With an Interaction     

 

140 

simple slopes. First, line 15 assigns names to four new parameters (the variance of the moderator 
and three simple slopes). Line 16 inputs the variance of the moderator (obtained from the 
descriptive statistics on the output), and lines 17 through 20 compute the conditional effect of 
READ1 at the mean of LRNPROB1 and at plus and minus one standard deviation from the mean. 

10.8  Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown below. The 
Rate of Missing column (also called the fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
READ9    ON 
    READ1              0.499      0.044     11.232      0.000      0.185 
    LRNPROB1          -0.372      0.084     -4.420      0.000      0.247 
    PRODUCT            0.012      0.005      2.580      0.010      0.319 
    ATRISK            -2.053      1.748     -1.174      0.240      0.055 
 
 Intercepts 
    READ9             87.917      0.846    103.950      0.000      0.138 
 
 Residual Variances 
    READ9             85.062     11.810      7.203      0.000      0.250 
 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 𝛽1̂ = 0.50) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.37) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂ = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
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more positive) as learning problems increase. That is, the predictive power of early reading on 
later reading is strongest for students with elevated learning problem ratings in first grade. Note 
that these estimates are numerically equivalent to those from MCMC and maximum likelihood 
estimation. The output also includes a table with standardized coefficients and the R-squared 
statistic. 

Finally, the printed output also includes the table of conditional effects, which were computed 
using the MODEL CONSTRAINT command. The output is shown below. Consistent with the positive 
interaction coefficient, the simple slopes increase in strength as learning problems ratings 
increase (and vice versa). All the tabled conditional effects are statistically significant at p < .05. 

 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
... 
 
New/Additional Parameters 
    LRNPROBV         114.354      0.022   5129.998      0.000      1.000 
    SLP_LOW            0.373      0.061      6.079      0.000      0.098 
    SLP_MEAN           0.499      0.044     11.232      0.000      0.185 
    SLP_HIGH           0.626      0.071      8.844      0.000      0.380 
 

10.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex10.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex10.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ id male hispanic riskgrp atrisk 
4    behsymp1 lrnprob1 read1 read2 read3 read9 read9grp stanread7 
5    math1 math2 math3 math9 math9grp stanmath7. 
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6 EXE. 
7  
8 AGGREGATE 
9   /outfile = * mode = addvariables overwrite = yes 
10   /lrnprob1_mean = mean(lrnprob1)  
11   /read1_mean = mean(read1) 
12   /atrisk_mean = mean(atrisk). 
13 EXE. 
14  
15 COMPUTE lrnprob1_cgm = lrnprob1 - lrnprob1_mean. 
16 COMPUTE read1_cgm = read1 - read1_mean. 
17 COMPUTE atrisk_cgm = atrisk - atrisk_mean. 
18 COMPUTE lrnprob1_by_read1 = lrnprob1_cgm * read1_cgm. 
19 EXE. 

 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. On line 8, 
the AGGREGATE command adds the grand means to the data. Then, beginning on line 15, each 
variable is centered at its pooled grand mean.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 20 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 21 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 22. 

 
SPSS Script Ex10.spwb, continued 
 
20  
21 SORT CASES by imputation_. 
22 SPLIT FILE layered by imputation_. 
23 REGRESSION 
24   /descriptives mean stddev corr sig n 
25   /dependent read9 
26   /method enter read1_cgm lrnprob1_cgm lrnprob1_by_read1 atrisk_cgm. 
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10.10 SPSS Output 

 SPSS offers very little customization. Not every estimate on the output is pooled, and 
significance tests are generally limited to univariate t tests of individual parameters. Output tables 
display the analysis results for each data set, and the pooled results are at the bottom of each table 
(if they are produced). The figure below shows the pooled coefficients, standard errors, and test 
statistics. The regression output also includes pooled means and correlations. The relative 
increase in variance is a fraction comparing imputation noise to complete-data sampling 
variation, and the fraction of missing information quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores (𝛽1̂= 0.50) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.37) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂= 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 

…
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more positive) as learning problems increase. That is, the predictive power of early reading on 
later reading is strongest for students with elevated learning problem ratings in first grade. Note 
that these estimates are numerically equivalent to those from MCMC and maximum likelihood 
estimation. The output also includes a table with standardized coefficients and the R-squared 
statistic. Finally, the printed output also includes the table of conditional effects. The output is 
shown below. Consistent with the positive interaction coefficient, the simple slopes increase in 
strength as learning problems ratings increase (and vice versa). All of the tabled conditional 
effects are statistically significant at p < .05. 
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MCMC: Curvilinear Regression 

 

 

 

 

 

This example illustrates a multiple regression analysis with an incomplete curvilinear effect. The 
analysis uses the mathachievement.dat data set taken from an educational intervention where 
250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 

MATHPOST Math achievement posttest  18.0 Numeric 

ANXIETY Math anxiety composite 8.4 Numeric  

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 

EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 

MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 

ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

11.1  Analysis Model 

The analysis model features math posttest scores regressed on anxiety and its square, the lunch 
assistance dummy code, math self-efficacy ratings, and math pretest scores. 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 ) + 𝛽2(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 2) 

+ 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛽4(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛽5(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 (24) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Curvilinear regression models (and models with non-
linearities more generally) require a factored regression specification that assigns separate 
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal 
distribution for numeric predictors and latent response scores. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

 

𝐴𝑇𝑅𝐼𝑆𝐾∗ = 𝛾03 + 𝛾13(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾23(𝐴𝑁𝑋𝐼𝐸𝑇𝑌) 

+ 𝛾33(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾43(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾53(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖3 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾04 + 𝛾14(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾24(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾34(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 ) (25) 

+ 𝛾44(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾54(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾64(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖4 

 

The ATRISK model is a probit regression, with the binary outcome model as a latent response 
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

11.2  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex11.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex11.1.imp 
 
 1  DATA: mathachievement.dat; 
 2  VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety  
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 3     mathpre mathpost; 
 4  ORDINAL: frlunch atrisk efficacy; 
 5  MISSING: 999; 
 6  FIXED: mathpre; 
 7  CENTER: anxiety; 
 8  MODEL:  
 9  focal.model: 
10  mathpost ~ anxiety anxiety^2@beta2 frlunch mathpre efficacy; 
11  auxiliary.models: 
12  stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre; 
13  SEED: 90291; 
14  BURN: 10000; 
15  ITERATIONS: 10000; 
 

The first five lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The ORDINAL command on line 4 identifies 
binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as the 
statistical models are identical. The MISSING command on line 5 defines a global missing value 
code as 999. 

The FIXED, CENTER, and MODEL blocks can be viewed as a set. The FIXED command identifies a 
complete predictor, which does not require a distribution or regression model. The CENTER 
command deviates anxiety scores (the variable with the non-linear term) at their iteratively-
estimated grand mean. Beginning on line 8, the MODEL command lists the regression models, with 
outcome variables to the left of the tilde and predictors to the right. The code uses labels 
(focal.model and auxiliary.models) to order output tables, such that the focal model appears 
first followed by the auxiliary variable models. The focal model listed on line 10 includes a 
squared term, which is specified by appending ^2 to the variable name. The quadratic slope 
coefficient is labeled using the @ symbol. Blimp automatically configures the explanatory variable 
models under the assumption that they are normally distributed. Line 12 is a syntax shortcut that 
produces the two auxiliary variable regression models in Equation 25; in the first model, READ2 is 
regressed on the focal variables, and the second model features STANREAD7 regressed on READ2 
and the focal variables. 

Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
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generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

The corresponding rblimp script Ex11.R is shown below. 

 
rblimp Script Ex11.R 
 
1 library(rblimp) 
2 load('mathachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = mathachievement, 
6   ordinal = 'atrisk frlunch efficacy', 
7   fixed = 'mathpre', 
8   center = 'anxiety', 
9   model = '  
10     focal.model: 
11     mathpost ~ anxiety anxiety^2@beta2 frlunch efficacy mathpre; 
12     auxiliary.models: 
13     stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre', 
14   seed = 90291, 
15   burn = 10000, 
16   iter = 10000) 
17 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 
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11.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          251 to 500             1.045            61   
                          501 to 1000            1.087            58   
                          751 to 1500            1.042            58   
                                  ...              ...            ..   
                         4501 to 9000            1.045            60   
                         4751 to 9500            1.009            58   
                         5001 to 10000           1.012            59 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3.  

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
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medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  mathpost    
 
Grand Mean Centered: anxiety 
 
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      50.966      5.388     41.841     63.021        ---        ---   5413.246  
 
Coefficients:                    
  Intercept                          32.689      3.457     25.967     39.568     89.528      0.000   6410.684  
  anxiety                             0.041      0.084     -0.122      0.206      0.237      0.626   4221.113  
  frlunch                            -5.840      1.073     -7.949     -3.750     29.724      0.000   4993.497  
  efficacy                            1.103      0.342      0.444      1.781     10.449      0.001   5838.380  
  mathpre                             0.471      0.067      0.338      0.602     49.615      0.000   6319.544  
  anxiety^2                          -0.021      0.006     -0.033     -0.009     11.705      0.001   5091.389  
 
Standardized Coefficients:       
  anxiety                             0.031      0.064     -0.093      0.157      0.238      0.626   4228.247  
  frlunch                            -0.298      0.051     -0.394     -0.195     33.903      0.000   5053.969  
  efficacy                            0.184      0.056      0.074      0.292     10.798      0.001   5698.632  
  mathpre                             0.423      0.055      0.309      0.523     59.287      0.000   6522.033  
  anxiety^2                          -0.204      0.058     -0.315     -0.087     12.120      0.000   5054.272  
 
Proportion Variance Explained    
  by Coefficients                     0.453      0.045      0.359      0.539        ---        ---   5780.687  
  by Residual Variation               0.547      0.045      0.461      0.641        ---        ---   5780.687  
 
                                ------------------------------------------------------------------------------ 
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To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue. 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1 = 0.04). The negative 
quadratic coefficient (𝛽2 = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. The 95% credible interval limits suggest this effect is statistically different from 
zero (p < .05) because the null value is well outside the interval. The frequentist test statistic and 
p-value give the same conclusion. 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

11.4  Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex11.2.imp is identical Ex11.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
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The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     id condition male frlunch atrisk stanread efficacy anxiety  
     mathpre mathpost 
 
   stacked = './imps/imps.dat' 
 
     imp# id condition male frlunch atrisk stanread efficacy  
     anxiety mathpre mathpost 
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  
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rblimp Script Ex11.R 
 
1 library(rblimp) 
2 load('mathachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = mathachievement, 
6   ordinal = 'atrisk frlunch efficacy', 
7   fixed = 'mathpre', 
8   center = 'anxiety', 
9   model = '  
10      focal.model: 
11      mathpost ~ anxiety anxiety^2@beta2 frlunch efficacy mathpre; 
12      auxiliary.models: 
13      stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre', 
14   seed = 90291, 
15   burn = 10000, 
16   iter = 10000, 
17   nimps = 20, 
18   chains = 20) 
19 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 

11.5  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex11.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex11.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('mathachievement.rda') 
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4  
5 mymodel <- rblimp(...) 
6  
7 implist <- as.mitml(mymodel) 
8  
9 mean_anxiety <- mean(unlist(lapply(implist, function(df) mean(df$anxiety)))) 
10 for (i in 1:length(implist)) { 
11   implist[[i]]$anxiety.cgm <- implist[[i]]$anxiety - mean_anxiety 
12 } 
13  
14 fit <- with(implist,  
15   lm(mathpost ~ anxiety.cgm + I(anxiety.cgm^2) + frlunch  + efficacy + mathpre)) 
16 estimates <- testEstimates(fit, extra.pars = T, df.com = 244) 
17 estimates 
18 confint(estimates) 
 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 9 through 12 center the 
focal predictor at its grand mean. Lines 14 and 15 fit the focal regression model using the lm 
function, and line 16 uses the testEstimates function in mitml to implement Rubin’s pooling 
rules and save the results in an object called estimates. The df.com parameter is the 
denominator degrees of freedom that would have resulted had there been no missing data (i.e., 
N–K–1 degrees of freedom, where K is the number of predictors). This argument produces 
Barnard and Rubin degrees of freedom values. Lines 17 and 18 print the pooled estimates and 
confidence intervals.  

11.6  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 
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Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    32.943     3.318     9.929   177.001     0.000     0.150     0.140  
anxiety.cgm     0.034     0.084     0.404    96.483     0.687     0.415     0.307  
anxiety.sq     -0.021     0.006    -3.616   147.802     0.000     0.221     0.192  
frlunch        -5.687     1.147    -4.960    76.330     0.000     0.554     0.373  
efficacy        1.052     0.344     3.058   107.170     0.003     0.361     0.279  
mathpre         0.471     0.064     7.336   173.143     0.000     0.159     0.147  
 
 
                   Estimate  
Residual~~Residual   50.358  
 
Hypothesis test adjusted for small samples with df=[244] 
complete-data degrees of freedom.      
                                                        
                  2.5 %       97.5 % 
(Intercept) 26.39566909 39.490858174 
anxiety.cgm -0.13268668  0.200544222 
anxiety.sq  -0.03287417 -0.009639516 
frlunch     -7.97089460 -3.403528840 
efficacy     0.37008949  1.734175237 
mathpre      0.34392328  0.597097949 
 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.03). The negative 
quadratic coefficient (𝛽2̂ = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. Note that these estimates are numerically equivalent to those from MCMC and 
maximum likelihood estimation. 

11.7  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
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set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex11.inp.  

 
Mplus Script Ex11.inp 

 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id condition male frlunch atrisk stanread  
 6   efficacy anxiety mathpre mathpost; 
 7  usevariables = mathpost anxiety frlunch efficacy mathpre anxietysq; 
 8  DEFINE: 
 9  center anxiety (grandmean); 
10  anxietysq = anxiety^2; 
11  MODEL:  
12  mathpost on anxiety anxietysq frlunch efficacy mathpre; 
13  OUTPUT: 
14  stdyx cinterval; 
 

The major commands are described in previous examples. Consistent with previous multiple 
imputation analysis scripts, the DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
imputation subcommand instructs Mplus that the input data is a list of file names. Second, the 
missing subcommand is omitted because the analysis variables are now complete. Finally, the 
MODEL section no longer specifies a normal distribution for the predictors or models for the 
auxiliary variables. The script also invokes one new feature. On line 9, the center subcommand 
under the DEFINE command centers anxiety scores at their grand mean. Line 10 then computes a 
new variable equal to the square of the centered predictor. Importantly, new variables computed 
with the DEFINE command must appear at the end of the usevariables list on line 7. The script 
is shown below. 
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11.8  Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown below. The 
Rate of Missing column (also called the fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 MATHPOST ON 
    ANXIETY            0.034      0.083      0.407      0.684      0.304 
    ANXIETYSQ         -0.021      0.006     -3.652      0.000      0.187 
    FRLUNCH           -5.687      1.138     -4.998      0.000      0.371 
    EFFICACY           1.052      0.341      3.085      0.002      0.276 
    MATHPRE            0.471      0.063      7.414      0.000      0.142 
 
 Intercepts 
    MATHPOST          32.944      3.283     10.035      0.000      0.135 
 
 Residual Variances 
    MATHPOST          49.149      5.588      8.795      0.000      0.388 
 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.03). The negative 
quadratic coefficient (𝛽2̂ = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. The output also includes a table with standardized coefficients and the R-squared 
statistic. Note that these estimates are numerically equivalent to those from MCMC and 
maximum likelihood estimation. 
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11.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex11.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex11.spwb 

 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ id condition male frlunch atrisk stanread  
4    efficacy anxiety mathpre mathpost.  
5 EXE. 
6  
7 AGGREGATE 
8   /outfile = * mode = addvariables overwrite = yes 
9   /anxiety_mean = mean(anxiety). 
10 EXE. 
11  
12 COMPUTE anxiety_cgm = anxiety - anxiety_mean. 
13 COMPUTE anxiety_sq = anxiety_cgm**2. 
14 EXE. 

 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. On line 7, 
the AGGREGATE command adds the grand means to the data. Then, beginning on line 12, a 
centered version of the focal predictor is computed along with its square. 

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 15 sorts the data by the imputation index variable, and the SPLIT 
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FILE command on line 16 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 17. 

 
SPSS Script Ex11.spwb, continued 
 
 
15 SORT CASES by imputation_. 
16 SPLIT FILE layered by imputation_. 
17 REGRESSION 
18   /descriptives mean stddev corr sig n 
19   /dependent mathpost 
20   /method enter anxiety_cgm anxiety_sq frlunch efficacy mathpre. 

 

11.10 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The regression output also includes pooled means and correlations. The relative increase in 
variance is a fraction comparing imputation noise to complete-data sampling variation, and the 
fraction of missing information quantifies the imputation noise in each estimate as proportion of 
its squared standard error. 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional 
effect that depends on scaling or centering. The slope conveys the instantaneous linear change in 
the outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.03). The negative 
quadratic coefficient (𝛽2̂  = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. Note that these estimates are numerically equivalent to those from MCMC and 
maximum likelihood estimation.  
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FCS Multiple Imputation: Paired-Samples Comparison 

 

 

 

 

This example illustrates model-agnostic fully conditional specification multiple imputation for a 
paired-samples test involving pretest and posttest scores. The analysis uses the 
mathachievement.dat data set taken from an educational intervention where 250 students were 
assigned to an intervention and comparison condition. The file includes pretest and posttest 
math achievement scores, a measure of math self-efficacy, standardized reading scores taken 
from a statewide assessment, and several sociodemographic variables. The analysis variables are 
as follows. 

Name Definition Missing % Scale 

Focal Variables 

MATHPRE Math achievement pretest  0 Numeric 

MATHPOST Math achievement posttest  18.0 Numeric 

Auxiliary Variables 

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 

STANREAD Standardized reading  9.2 Numeric 

EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 

12.1  Imputation and Analysis Models 

A common goal of model-agnostic imputation is to generate imputations for different purposes 
(e.g., descriptive summaries, several analyses within the same project). To illustrate multiple 
imputation with the fully conditional specification algorithm (i.e., multiple imputation by 
chained equations, or MICE; van Buuren, 2018), suppose that one use of the filled-in data sets 
involves a paired-samples test of the changes between pretest and posttest. The analysis can be 
cast as an empty regression model with change scores as the outcome variable. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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𝐶𝐻𝐴𝑁𝐺𝐸 = 𝛽0 + 𝜀 (26) 

 

The variable CHANGE is computed as MATHPOST minus MATHPRE. 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). The 
imputation models use the two math scores and three auxiliary variables. Difference scores are 
computed from the imputed data prior to analysis. 

12.2  Blimp and rblimp FCS Scripts 

The code block below shows Blimp script Ex12.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 

 
Blimp Script Ex12.imp 
 
1  DATA: mathachievement.dat; 
 2  VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety  
 3     mathpre mathpost; 
 4  ORDINAL: frlunch efficacy; 
 5  MISSING: 999; 
 6  FIXED: mathpre; 
 7  FCS: mathpost mathpre frlunch stanread efficacy;  
 8  SEED: 90291; 
 9  BURN: 5000; 
10  ITERATIONS: 10000; 
11  NIMPS: 20; 
12  CHAINS: 20; 
13  SAVE:  
14  stacked = ./imps/imps.dat; 
15  separate = ./imps/imp*.dat; 
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The first five lines can be viewed as a set of commands that specify information about the 
data and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The ORDINAL command on line 4 identifies a 
pair of binary variables. Binary variables can alternatively be identified using the NOMINAL 
command because the underlying statistical models are identical. Finally, the MISSING command 
on line 5 defines a global missing value code as 999.  

Next, the FCS command lists all variables—complete or incomplete—that are included in the 
imputation phase. The FIXED command identifies a complete variable that does not require 
imputation. This reduces computational time because complete variables do not require a 
regression model. Lines 8 through 10 can also be viewed as a block of commands that specify 
features of the MCMC algorithm: the SEED command gives an integer string that initializes the 
random number generator, the BURN command specifies the number of iterations for the warm-
up or burn-in period, and the ITERATIONS command gives the number of MCMC iterations on 
which the imputation model summaries are based (essentially, the total number of MCMC cycles 
across all chains following the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

The corresponding rblimp script Ex12.R is shown below. 

 
rblimp Script Ex12.R 
 
1 library(rblimp) 
2 load('mathachievement.rda') 
3  
4 mymodel <- rblimp_fcs( 
5   data = mathachievement, 
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6   ordinal = 'frlunch efficacy', 
7   fixed = 'mathpre', 
8   variables = 'mathpost mathpre frlunch stanread efficacy', 
9   seed = 90291, 
10   burn = 5000, 
11   iter = 10000, 
12   nimps = 20, 
13   chains = 20) 
14   output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the 
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is 
omitted because that information is contained in the R data file. The FCS command is replaced by 
a variables parameter that lists the variables to be included in the imputation model. Following 
R convention, the input parameters are separated by commas. Alphanumeric inputs like variable 
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not 
require quotes. Finally, the output(mymodel) function prints the Blimp output. 

12.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.480            23   
                          251 to 500             1.395            24   
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                          376 to 750             1.272            23   
                                  ...              ...            ..   
                         2251 to 4500            1.048            22   
                         2376 to 4750            1.038            23   
                         2501 to 5000            1.042            23 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 

 
DATA INFORMATION: 
 
  Sample Size:              250 
  Missing Data Rates: 
 
                  frlunch = 04.40 
                 stanread = 09.20 
                 efficacy = 09.60 
                 mathpost = 18.00 
 
VARIABLES IN IMPUTATION MODEL: 
 
  Fixed variables:        mathpre 
  Incomplete continuous:  stanread mathpost 
  Incomplete ordinal:     frlunch efficacy 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      26 
 

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The Blimp 
output includes tables of regression parameters for every incomplete variable’s imputation 
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model. The imputation model parameters are not of substantive interest and would not be 
reported. An example table is shown below. 

 

Missing variable:   mathpost    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           56.504      0.555     55.397     57.567      1.005   4353.468  
 
Level 1:                                                                                            
  frlunch                            -2.188      0.575     -3.270     -1.038      1.006   3351.406  
  stanread                            0.189      0.060      0.073      0.306      1.004   4430.891  
  efficacy                            1.222      0.517      0.216      2.252      1.005   4406.012  
  mathpre                             0.476      0.062      0.354      0.596      1.002   6043.712  
  Residual Var.                      45.242      4.994     36.454     56.257      1.004   4585.610  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     id condition male frlunch atrisk stanread efficacy anxiety  
     mathpre mathpost 
 
   stacked = './imps/imps.dat' 
 
     imp# id condition male frlunch atrisk stanread efficacy  
     anxiety mathpre mathpost  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
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not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

12.4  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex12.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex12.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('mathachievement.rda') 
4  
5 mymodel <- rblimp_fcs(...) 
6  
7 implist <- as.mitml(mymodel) 
8  
9 for (i in 1:length(implist)) { 
10   implist[[i]]$change <- implist[[i]]$mathpost -  implist[[i]]$mathpre 
11 } 
12  
13 fit <- with(implist, lm(change ~ 1)) 
14 estimates <- testEstimates(fit, extra.pars = T, df.com = 249) 
15 estimates 
16 confint(estimates) 

 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 9 through 12 compute the 
change scores. Line 13 fits the focal regression model using the lm function, and line 14 uses the 
testEstimates function in mitml to implement Rubin’s pooling rules and save the results in an 
object called estimates. The df.com parameter is the denominator degrees of freedom that 
would have resulted had there been no missing data (i.e., N–K–1 degrees of freedom, where K is 
the number of predictors). This argument produces Barnard and Rubin degrees of freedom 
values. Lines 15 and 16 print the pooled estimates and confidence intervals.  
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12.5  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)     6.418     0.578    11.112   181.675     0.000     0.147     0.137  
 
                   Estimate  
Residual~~Residual   72.732  
 
Hypothesis test adjusted for small samples with df=[249] 
complete-data degrees of freedom. 
 
               2.5 %  97.5 % 
(Intercept) 5.278415 7.55776 
 

The results are interpreted in the same way as a complete-data paired-samples test. For 
example, the intercept represents the mean change from pretest to posttest. The corresponding 
test statistic indicates that the change is statistically different from zero (t = 11.11, p < .001).  

12.6  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). As a reminder, the contents of this file are as follows. 
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imp1.dat 
imp2.dat 
imp3.dat 
imp4.dat 
imp5.dat 
... 
imp16.dat 
imp17.dat 
imp18.dat 
imp19.dat 
imp20.dat 
 

The Mplus input file for analyzing the imputations is Ex12.inp.  

 
Mplus Script Ex12.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id condition male frlunch lowach stanread efficacy  
 6   anxiety mathpre mathpost; 
 7  usevariables =  change; 
 8  DEFINE: 
 9  change = mathpost - mathpre; 
10  MODEL: 
11  change; 
12  OUTPUT: 
13  cinterval; 
 

Following previous imputation analysis examples, the DATA command lists the text file 
containing the names of the imputed data sets (the implist.dat file located in the ./imps 
subdirectory). The type = imputation subcommand instructs Mplus that the input data is a list 
of file names. The usevariables subcommand of the VARIABLE command selects variables for 
the analysis. The DEFINE command beginning on line 8 computes the change or difference score 
by subtracting the pretest from posttest. Importantly, new variables computed with the DEFINE 
command must appear at the end of the usevariables list on line 7. In this example, the new 
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change score is the only variable in the model. Listing the change score variable in the MODEL 
section estimates the mean and variance of the variable. Finally, listing the cinterval keyword 
after OPTION prints confidence intervals. The code block below shows the analysis and pooling 
script. 

12.7  Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown below. The 
Rate of Missing column (also called the fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 Means 
    CHANGE             6.418      0.577     11.131      0.000      0.130 
 
 Variances 
    CHANGE            72.439      6.864     10.554      0.000      0.109 
 

The results are interpreted in the same way as a complete-data paired-samples test. For 
example, the intercept represents the mean change from pretest to posttest. The corresponding 
test statistic indicates that the change is statistically different from zero (z = 11.13, p < .001).  

12.8 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex12.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 
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SPSS Script Ex12.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ id condition male frlunch atrisk stanread  
4    efficacy anxiety mathpre mathpost.  
5 EXE. 

 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 6 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 7 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 8. 

 
SPSS Script Ex12.spwb, continued 
 
6 SORT CASES by imputation_. 
7 SPLIT FILE layered by imputation_. 
8 T-TEST pairs = mathpost with mathpre (paired). 

 

12.9 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The regression output also includes pooled means and correlations. The relative increase in 
variance is a fraction comparing imputation noise to complete-data sampling variation, and the 
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fraction of missing information quantifies the imputation noise in each estimate as proportion of 
its squared standard error. 

The results are interpreted in the same way as a complete-data paired-samples test. For 
example, the intercept represents the mean change from pretest to post test. The corresponding 
test statistic indicates that the change is statistically different from zero (t = 11.11, p < .001). 

 
 

 

  

…
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FCS Multiple Imputation: Multiple Regression  

 

 

 

 

This example illustrates model-agnostic fully conditional specification multiple imputation with 
multivariate normal data. The analysis uses the behaviorachievement.dat data set taken from a 
longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, 
and a final measure of broad reading and math obtained in ninth grade. The data also contain 
teacher ratings of behavioral symptoms and learning problems were also obtained in the first 
grade. The data description at the beginning of this document provides additional details. The 
variables for this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

13.1  Imputation and Analysis Models 

A common goal of model-agnostic imputation is to generate imputations for different purposes 
(e.g., descriptive summaries, several analyses within the same project). To illustrate multiple 
imputation with the fully conditional specification algorithm (i.e., multiple imputation by 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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chained equations, or MICE; van Buuren, 2018), suppose that one use of the filled-in data sets 
involves a model where ninth grade broad reading scores are regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (27) 

 

Chapters 1 and 6 used the same analysis model to illustrate maximum likelihood estimation, 
MCMC estimation, and model-based multiple imputation. 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). The 
imputation models use the four analysis variables and three auxiliary variables.  

13.2  Blimp and rblimp FCS Scripts 

The code block below shows Blimp script Ex13.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 

 
Blimp Script Ex13.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  FCS: read9 read1 lrnprob1 behsymp1 stanread7 read2; 
 7  SEED: 90291; 
 8  BURN: 2000; 
 9  ITERATIONS: 10000;  
10  NIMPS: 20; 
11  CHAINS: 20; 
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12  SAVE:  
13  stacked = ./imps/imps.dat; 
14  separate = ./imps/imp*.dat; 
 

The first five lines can be viewed as a set of commands that specify information about the 
data and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a 
global missing value code as 999.  

Next, the FCS command lists all variables—complete or incomplete—that are included in the 
imputation phase. Using the FIXED command to identify complete variables reduces 
computational time because these variables do not require a regression model. Lines 7 through 9 
can also be viewed as a block of commands that specify features of the MCMC algorithm: the 
SEED command gives an integer string that initializes the random number generator, the BURN 
command specifies the number of iterations for the warm-up or burn-in period, and the 
ITERATIONS command gives the number of MCMC iterations on which the imputation model 
summaries are based (essentially, the total number of MCMC cycles across all chains following 
the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

The corresponding rblimp script Ex13.R is shown below. 

 
rblimp Script Ex13.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
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4 mymodel <- rblimp_fcs( 
5   data = behaviorachievement, 
6   variables = 'read9 read1 lrnprob1 behsymp1 stanread7 read2', 
7   seed = 90291, 
8   burn = 2000, 
9   iter = 10000, 
10   nimps = 20, 
11   chains = 20) 
12   output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the 
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is 
omitted because that information is contained in the R data file. The FCS command is replaced by 
a variables parameter that lists the variables to be included in the imputation model. Following 
R convention, the input parameters are separated by commas. Alphanumeric inputs like variable 
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not 
require quotes. Finally, the output(mymodel) function prints the Blimp output. 

13.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.436            22   
                          101 to 200             1.245            22   
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                          151 to 300             1.132            22   
                                  ...              ...            ..   
                          901 to 1800            1.031            22   
                          951 to 1900            1.024            22   
                         1001 to 2000            1.022            22 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 

 
DATA INFORMATION: 
 
  Sample Size:              138 
  Missing Data Rates: 
 
                 behsymp1 = 03.62 
                 lrnprob1 = 02.17 
                    read1 = 06.52 
                    read2 = 09.42 
                    read9 = 17.39 
                stanread7 = 19.57 

 
VARIABLES IN IMPUTATION MODEL: 
 
  Incomplete continuous:  behsymp1 lrnprob1 read1 read2 read9 stanread7 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      42 
 

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The Blimp 
output includes tables of regression parameters for every incomplete variable’s imputation 
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model. The imputation model parameters are not of substantive interest and would not be 
reported. An example table is shown below. 

 

Missing variable:   behsymp1    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           49.506      1.093     47.355     51.590      1.006   2075.694  
 
Level 1:                                                                                            
  lrnprob1                            0.731      0.071      0.591      0.872      1.002   8316.690  
  read1                              -0.274      0.077     -0.422     -0.121      1.002   8393.286  
  read2                               0.590      0.103      0.386      0.792      1.002   7435.432  
  read9                              -0.457      0.102     -0.657     -0.254      1.003   8587.332  
  stanread7                          -0.018      0.016     -0.048      0.014      1.003   6881.275  
  Residual Var.                      55.104      7.569     42.773     72.497      1.003   7269.684  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
separate = './imps/imp*.dat' 

 
   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  
     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 
stacked = './imps/imps.dat' 
 
   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    
   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
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not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

13.4  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex13.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex13.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('behaviorachievement.rda') 
4  
5 mymodel <- rblimp_fcs(...) 
6  
7 implist <- as.mitml(mymodel) 
8  
9 fit <- with(implist, lm(read9 ~ read1 + lrnprob1 + behsymp1)) 
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 134) 
11 estimates 
12 confint(estimates) 
13  
14 null <- with(implist, lm(read9 ~ 1)) 
15 testModels(fit, null, df.com = 134, method = 'D1') 

 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Line 9 fits the focal regression 
model using the lm function, and line 10 uses the testEstimates function in mitml to implement 
Rubin’s pooling rules and save the results in an object called estimates. The df.com parameter is 
the denominator degrees of freedom that would have resulted had there been no missing data 
(i.e., N–K–1 degrees of freedom, where K is the number of predictors). This argument produces 
Barnard and Rubin degrees of freedom values. Lines 15 and 16 print the pooled estimates and 
confidence intervals. Finally, lines 14 and 14 specify a multiple imputation Wald F statistic 
evaluating the null hypothesis that all population slopes equal zero (Li et al., 1991). The test 
requires an additional model on line 14 that represents the null hypothesis, which in this case is 
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an empty regression model with just an intercept. On line 15, the full model and null model 
objects passed into the testModels function, and the D1 keyword requests the Wald test. As 
before, the df.com parameter is the denominator degrees of freedom that would have resulted 
had there been no missing data. This argument produces the Barnard and Rubin (1999) degrees 
of freedom adjustment. 

13.5  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
  Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    66.190     6.224    10.635    80.586     0.000     0.289     0.243  
read1           0.505     0.046    10.960    71.143     0.000     0.363     0.286  
lrnprob1       -0.251     0.122    -2.056    77.657     0.043     0.310     0.256  
behsymp1       -0.184     0.106    -1.727    82.939     0.088     0.273     0.233  
 
                   Estimate  
Residual~~Residual   90.074  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 
                 2.5 %       97.5 % 
(Intercept) 53.8052534 78.575035473 
read1        0.4130783  0.596798319 
lrnprob1    -0.4944088 -0.007959306 
behsymp1    -0.3955499  0.027924710 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
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who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically 
equivalent to those from MCMC and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     52.329       3 113.521   0.000   0.304  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 

13.6  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.  

The Mplus input file for analyzing the imputations is Ex13.inp.  

 
Mplus Script Ex13.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6      read1 read2 read3 read9 read9grp stanread7  
 7      math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1; 
 9  MODEL:   
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10  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
11  MODEL TEST: 
12  0 = beta1; 0 = beta2; 0 = beta3; 
13  OUTPUT: 
14  stdyx cinterval; 

 

The script is virtually identical to the Ex1.1.inp file described in Section 1.2 with three 
exceptions. First, instead of naming the raw data set, the DATA command lists the text file 
containing the names of the imputed data sets (the implist.dat file located in the ./imps 
subdirectory). The type = imputation subcommand instructs Mplus that the input data is a list 
of file names. Second, the missing subcommand is omitted because the analysis variables are now 
complete. Finally, the MODEL section no longer specifies a normal distribution for the predictors. 
Readers can refer back to Section 1.2 for a detailed description of the other commands. The code 
block below shows the analysis and pooling script. 

13.7  Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter 
Constraints heading. The test statistic is statistically significant, thus refuting the null 
hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       5 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            175.893 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
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The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown 
below. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.506      0.043     11.868      0.000      0.182 
    LRNPROB1          -0.231      0.113     -2.047      0.041      0.149 
    BEHSYMP1          -0.189      0.101     -1.864      0.062      0.160 
 
 Intercepts 
    READ9             65.487      5.803     11.284      0.000      0.150 
 
 Residual Variances 
    READ9             86.366     11.202      7.710      0.000      0.138 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.87, p < .001). Note that these estimates are numerically 
equivalent to those from MCMC and maximum likelihood estimation. 

Specifying the stdyx keyword with the OPTIONS command prints the table of standardized 
estimates and R -squared statistics shown below. The slope coefficients convey the expected 
change in standard deviation units for a one standard deviation increase in each predictor. For 
example, the model predicts that two individuals who differ by one standard deviation on READ1 
but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.70 standard deviations on READ9. 
Collectively, the predictors explain 61% of the variation in ninth-grade reading scores. 
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STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.701      0.044     15.767      0.000      0.102 
    LRNPROB1          -0.168      0.082     -2.036      0.042      0.157 
    BEHSYMP1          -0.153      0.082     -1.861      0.063      0.159 
 
 Intercepts 
    READ9              4.424      0.531      8.332      0.000      0.152 
 
 Residual Variances 
    READ9              0.394      0.055      7.166      0.000      0.099 

 
R-SQUARE 
 
    Observed                                        Two-Tailed   Rate of 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
    READ9              0.606      0.055     11.033      0.000      0.099 
 

13.8 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex13.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex13.spwb 
 
 1  CD '/users/username/desktop'. 
 2   DATA LIST free file =  'imps.dat' 
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 3    /imputation_ id male hispanic riskgrp atrisk 
 4       behsymp1 lrnprob1 read1 read2 read3 read9 read9grp stanread7 
 5       math1 math2 math3 math9 math9grp stanmath7. 
 6  EXE. 
 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 7 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 8 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 9. 

 
SPSS Script Ex13.spwb, continued 
 
 7  SORT CASES by imputation_. 
 8  SPLIT FILE layered by imputation_. 
 9  REGRESSION 
10    /descriptives mean stddev corr sig n 
11    /dependent read9 
12    /method enter read1 lrnprob1 behsymp1. 

 

13.9 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The regression output also includes pooled means and correlations. The relative increase in 
variance is a fraction comparing imputation noise to complete-data sampling variation, and the 
fraction of missing information quantifies the imputation noise in each estimate as proportion of 
its squared standard error. 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 10.96, p < .001). Note that these estimates are numerically 
equivalent to those from MCMC and maximum likelihood estimation.  

  

…



FCS Multiple Imputation: Regression with a Multicategorical Predictor 

     

 

187 

FCS Multiple Imputation: Regression with a Multicategorical 
Predictor 

 

 

 

 

This example illustrates model-agnostic fully conditional specification multiple imputation with 
mixed variable types. The analysis uses the behaviorachievement.dat data set taken from a 
longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, 
and a final measure of broad reading and math obtained in ninth grade. The data also contain 
teacher ratings of behavioral symptoms and learning problems were also obtained in the first 
grade. The data description at the beginning of this document provides additional details. The 
variables for this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 

RISKGRP Emotional/behavioral disorder risk 2.2 1 = Low, 2 = Medium, 3 = High 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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14.1  Imputation and Analysis Models 

A common goal of model-agnostic imputation is to generate imputations for different purposes 
(e.g., descriptive summaries, several analyses within the same project). To illustrate multiple 
imputation with the fully conditional specification algorithm (i.e., multiple imputation by 
chained equations, or MICE; van Buuren, 2018), suppose that one use of the filled-in data sets 
involves a model where ninth grade broad reading scores are regressed on first grade reading 
achievement, teacher-rated learning problems and behavioral symptoms, and a three-category 
nominal variable indicating risk for emotional or behavioral disorders. 

 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) 

+ 𝛽4(𝑀𝐸𝐷𝑅𝐼𝑆𝐾) + 𝛽5(𝐻𝐼𝐺𝐻𝑅𝐼𝑆𝐾) + 𝜀 (28) 

 

The MEDRISK and HIGHRISK variables are dummy code variables that contrast the medium- and 
high-risk groups, respectively, against the low-risk reference group. Chapter 9 used the same 
analysis model to illustrate MCMC estimation and model-based multiple imputation. 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). The 
imputation models use the five analysis variables and three auxiliary variables. Blimp uses the 
latent response variable framework (probit regression) for categorical variables like risk group 
(Enders et al., 2020). 

14.2  Blimp and rblimp FCS Scripts 

The code block below shows Blimp script Ex14.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 
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Blimp Script Ex14.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5   NOMINAL: riskgrp; 
 6  MISSING: 999; 
 7  FCS: read9 read1 lrnprob1 behsymp1 riskgrp stanread7 read2; 
 8  SEED: 90291; 
 9  BURN: 1000; 
10  ITERATIONS: 10000;  
11  NIMPS: 20; 
12  CHAINS: 20; 
13  SAVE:  
14  stacked = ./imps/imps.dat; 
15  separate = ./imps/imp*.dat; 
 

The first six lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The NOMINAL command on line 5 identifies 
the multicategorical nominal predictor, and the MISSING command on line 6 defines a global 
missing value code as 999.  

Next, the FCS command lists all variables—complete or incomplete—that are included in the 
imputation phase. Using the FIXED command to identify complete variables reduces 
computational time because these variables do not require a regression model. Lines 8 through 
10 can also be viewed as a block of commands that specify features of the MCMC algorithm: the 
SEED command gives an integer string that initializes the random number generator, the BURN 
command specifies the number of iterations for the warm-up or burn-in period, and the 
ITERATIONS command gives the number of MCMC iterations on which the imputation model 
summaries are based (essentially, the total number of MCMC cycles across all chains following 
the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
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data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

The corresponding rblimp script Ex14.R is shown below. 

 
rblimp Script Ex14.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp_fcs( 
5   data = behaviorachievement, 
6   nominal = 'riskgrp', 
7   variables = 'read9 read1 lrnprob1 behsymp1 riskgrp stanread7 read2', 
8   seed = 90291, 
9   burn = 2000, 
10   iter = 10000, 
11   nimps = 20, 
12   chains = 20) 
13 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the 
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is 
omitted because that information is contained in the R data file. The FCS command is replaced by 
a variables parameter that lists the variables to be included in the imputation model. Following 
R convention, the input parameters are separated by commas. Alphanumeric inputs like variable 
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not 
require quotes. Finally, the output(mymodel) function prints the Blimp output. 
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14.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 

 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.417            45   
                          101 to 200             1.156            45   
                          151 to 300             1.243            45 
                                 ...               ...            .. 
                          901 to 1800            1.022            54   
                          951 to 1900            1.021            45   
                         1001 to 2000            1.021            45 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 

 
DATA INFORMATION: 
 
  Sample Size:              138 
  Missing Data Rates: 
 
                  riskgrp = 02.17 
                 behsymp1 = 03.62 
                 lrnprob1 = 02.17 
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                    read1 = 06.52 
                    read2 = 09.42 
                    read9 = 17.39 
                stanread7 = 19.57 
 
Nominal Dummy Codes: 
 
                  riskgrp = riskgrp.2 riskgrp.3 
 
 
VARIABLES IN IMPUTATION MODEL: 
 
  Incomplete continuous:  behsymp1 lrnprob1 read1 read2 read9 stanread7 
  Incomplete nominal:     riskgrp 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      68 
 

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The Blimp 
output includes tables of regression parameters for every incomplete variable’s imputation 
model. The imputation model parameters are not of substantive interest and would not be 
reported. An example table is shown below. 

 

Missing variable:   behsymp1    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           49.596      1.101     47.401     51.765      1.007   2184.881  
 
Level 1:                                                                                            
  riskgrp.2                          -0.581      1.093     -2.657      1.578      1.006   3551.667  
  riskgrp.3                           1.574      1.268     -1.031      3.876      1.009   1864.907  
  lrnprob1                            0.705      0.079      0.547      0.856      1.005   4786.167  
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  read1                              -0.217      0.093     -0.393     -0.032      1.004   3349.964  
  read2                               0.593      0.108      0.381      0.807      1.004   5270.399  
  read9                              -0.447      0.105     -0.652     -0.242      1.004   5961.720  
  stanread7                          -0.016      0.016     -0.049      0.016      1.003   5148.240  
  Residual Var.                      52.691      7.826     39.338     70.152      1.005   4634.464  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
separate = './imps/imp*.dat' 

 
   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  
     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 
stacked = './imps/imps.dat' 
 
   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    
   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

14.4  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex14.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 
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R Script Ex14.R 
 
1 library(rblimp) 
2 library(mitml) 
3 load('behaviorachievement.rda') 
4  
5 mymodel <- rblimp_fcs(...) 
6  
7 implist <- as.mitml(mymodel) 
8  
9 fit <- with(implist,  
10   lm(read9 ~ read1 + lrnprob1 + behsymp1 + factor(riskgrp))) 
11 estimates <- testEstimates(fit, extra.pars = T, df.com = 132) 
12 estimates 
13 confint(estimates) 
14  
15 null <- with(implist, lm(read9 ~ 1)) 
16 testModels(fit, null, df.com = 132, method = 'D1') 

 

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 9 and 10 fit the focal 
regression model using the lm function, and line 11 uses the testEstimates function in mitml to 
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com 
parameter is the denominator degrees of freedom that would have resulted had there been no 
missing data (i.e., N–K–1 degrees of freedom, where K is the number of predictors). This 
argument produces Barnard and Rubin degrees of freedom values. Lines 12 and 13 print the 
pooled estimates and confidence intervals. Finally, lines 15 and 16 specify a multiple imputation 
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al., 
1991). The test requires an additional model on line 15 that represents the null hypothesis, which 
in this case is an empty regression model with just an intercept. On line 16, the full model and 
null model objects passed into the testModels function, and the D1 keyword requests the Wald 
test. As before, the df.com parameter is the denominator degrees of freedom that would have 
resulted had there been no missing data. This argument produces the Barnard and Rubin (1999) 
degrees of freedom adjustment. 
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14.5  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

   

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

                  Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)         68.825     6.421    10.719    93.741     0.000     0.199     0.183  

read1                0.481     0.047    10.287   117.185     0.000     0.076     0.086  

lrnprob1            -0.248     0.117    -2.130    99.230     0.036     0.168     0.161  

behsymp1            -0.169     0.100    -1.693   116.399     0.093     0.080     0.089  

factor(riskgrp)2    -1.701     1.943    -0.876   115.037     0.383     0.087     0.095  

factor(riskgrp)3    -2.677     2.700    -0.992    97.107     0.324     0.180     0.169  

 

                   Estimate  

Residual~~Residual   90.306  

 

Hypothesis test adjusted for small samples with df=[132] 

complete-data degrees of freedom. 

 

                      2.5 %      97.5 % 

(Intercept)      56.0763544 81.57453344 

read1             0.3881339  0.57321747 

lrnprob1         -0.4792725 -0.01693990 

behsymp1         -0.3661746  0.02864639 

factor(riskgrp)2 -5.5486638  2.14715922 

factor(riskgrp)3 -8.0350660  2.68060322 

 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
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points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (t = 9.93, p < .001). The two dummy codes appear as RISKGRP2 and RISKGRP3. 
Consistent with a complete-data regression analysis, the dummy code slopes represent mean 
differences relative to the low-risk reference group. For example, holding all other predictors 
constant, the model predicts that a high-risk study would score 3.12 points lower than a low-risk 
student in the comparison group. Note that these estimates are virtually identical to those from 
MCMC and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     34.144       5 125.765   0.000   0.157  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom. 
 

14.6  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6. 
The Mplus input file for analyzing the imputations is Ex14.inp. 

 
Mplus Script Ex14.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
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 6      read1 read2 read3 read9 read9grp stanread7  
 7      math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1 riskgrp2 riskgrp3; 
 9  DEFINE: 
10  riskgrp2 = 0; 
11  riskgrp3 = 0; 
12  if(riskgrp eq 2) then riskgrp2 = 1; 
13  if(riskgrp eq 3) then riskgrp3 = 1; 
14  MODEL:   
15  read9 on read1 lrnprob1 behsymp1 riskgrp2 riskgrp3 (beta1-beta5); 
16  MODEL TEST: 
17  0 = beta1; 0 = beta2; 0 = beta3; 
18  OUTPUT: 
19  stdyx cinterval; 
 

The script is like previous Mplus scripts (e.g., the Ex1.1.inp file described in Section 1.2) 
with four exceptions. First, instead of naming the raw data set, the DATA command lists the text 
file containing the names of the imputed data sets (the implist.dat file located in the ./imps 
subdirectory). The type = imputation subcommand instructs Mplus that the input data is a list 
of file names. Second, the missing subcommand is omitted because the analysis variables are now 
complete. Third, the MODEL section no longer specifies a normal distribution for the predictors or 
models for the auxiliary variables. Finally, lines 9 through 13 use the DEFINE command to create a 
pair of dummy codes. Lines 10 and 11 initialize a pair of new variables (RISKGRP2 and RISKGRP3) 
with all 0s, and lines 12 and 13 recode these variables into dummy variables. Importantly, new 
variables computed with the DEFINE command must appear at the end of the usevariables list 
on line 8. The code block below shows the analysis and pooling script. 

14.7  Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter 
Constraints heading. The test statistic is statistically significant, thus refuting the null 
hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       7 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            173.432 
          Degrees of Freedom                     5 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown 
below. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
READ9    ON 
    READ1              0.481      0.046     10.501      0.000      0.074 
    LRNPROB1          -0.248      0.114     -2.170      0.030      0.152 
    BEHSYMP1          -0.169      0.098     -1.728      0.084      0.078 
    RISKGRP2          -1.701      1.903     -0.894      0.372      0.084 
    RISKGRP3          -2.677      2.649     -1.011      0.312      0.161 
 
 Intercepts 
    READ9             68.826      6.303     10.919      0.000      0.175 
 
 Residual Variances 
    READ9             86.381     12.116      7.129      0.000      0.265 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (z = 10.50, p < .001). The two dummy codes appear as RISKGRP2 and 
RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes represent 
mean differences relative to the low-risk reference group. For example, holding all other 
predictors constant, the model predicts that a high-risk study would score 2.67 points lower than 
a low-risk student in the comparison group. Note that these estimates are virtually identical to 
those from MCMC estimation. The output also includes a table with standardized coefficients 
and the R-squared statistic. 

14.8 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex14.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex14.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3  /imputation_ id male hispanic riskgrp atrisk  
4   behsymp1 lrnprob1 read1 read2 read3 read9 read9grp stanread7 
5   math1 math2 math3 math9 math9grp stanmath7. 
6 EXE. 
7  
8 COMPUTE riskgrp2 = 0. 
9 COMPUTE riskgrp3 = 0. 
10 IF (riskgrp = 2) riskgrp2 = 1. 
11 IF (riskgrp = 3) riskgrp3 = 1. 
12 EXE. 
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The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. The dummy 
codes for the RISKGRP variable are created beginning at line 8.  

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 13 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 14 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 15. 

 
SPSS Script Ex14.spwb, continued 
 
13 SORT CASES by imputation_. 
14 SPLIT FILE layered by imputation_. 
15 regression 
16   /descriptives mean stddev corr sig n 
17   /dependent read9 
18   /method enter read1 lrnprob1 behsymp1 riskgrp2 riskgrp3. 

 

14.9 SPSS Output 

 SPSS offers very little customization. Not every estimate on the output is pooled, and 
significance tests are generally limited to univariate t tests of individual parameters. Output tables 
display the analysis results for each data set, and the pooled results are at the bottom of each table 
(if they are produced). The figure below shows the pooled coefficients, standard errors, and test 
statistics. The regression output also includes pooled means and correlations. The relative 
increase in variance is a fraction comparing imputation noise to complete-data sampling 
variation, and the fraction of missing information quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically 
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different from zero (t = 10.29, p < .001). The two dummy codes appear as RISKGRP2 and 
RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes represent 
mean differences relative to the low-risk reference group. For example, holding all other 
predictors constant, the model predicts that a high-risk study would score 2.67 points lower than 
a low-risk student in the comparison group. Note that these estimates are virtually identical to 
those from MCMC and maximum likelihood estimation. 

 

 

  

…
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FCS Multiple Imputation: Random Intercept Model 

 

 

 

 

This example illustrates model-agnostic fully conditional specification multiple imputation for 
multilevel data with random intercepts. The analysis uses the problemsolving2level.dat data 
set taken from a cluster-randomized educational intervention where 29 schools were assigned to 
an intervention and comparison condition. In addition to the intervention assignment indicator, 
school-level variables include the average years of teacher experience and the percentage of 
learners for whom English is a second language. The 928 student-level records include pretest 
and posttest math problem-solving and self-efficacy scores, standardized math scores taken from 
a statewide assessment, and several sociodemographic variables. The analysis variables are as 
follows. 

Name Definition Missing % Scale 

SCHOOL School identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental  

HISPANIC Ethnicity/race 9.0 0 = Other, 1 = Hispanic 

FRLUNCH Lunch assistance code  4.7 0 = None, 1 = Free/Reduced Lunch 

PSOLVEPRE Math problem-solving pretest  0 Numeric (37 to 66) 

PSOLVEPST Math problem-solving posttest  20.5 Numeric (37 to 65) 

15.1  Imputation and Analysis Models 

To illustrate multilevel fully conditional specification, suppose the ultimate analysis is a random 
intercept regression model. The goal of the analysis is to determine whether the intervention 
groups differ on an end-of-year math problem-solving test after controlling for three student-
level covariates: math problem-solving pre-test scores, a Hispanic dummy code, and a free or 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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reduced lunch assistance dummy code. To convey each variable’s level, the i and j subscripts 
denote students and schools, respectively. 

𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑆𝑇𝑖𝑗 = (γ00 + 𝑢0𝑗) + γ10(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸𝑖𝑗𝑐𝑤𝑐) + γ20(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑖𝑗𝑐𝑤𝑐) 

+ γ30(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗
𝑐𝑤𝑐) + γ01(𝜇𝑗(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸)) + γ02(𝜇𝑗(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶)) (29) 

+ γ03(𝜇𝑗(𝐹𝑅𝐿𝑈𝑁𝐶𝐻)) + γ04(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗 

The analysis model partitions the level-1 covariates into pure within-cluster (group mean 
centered) and between-cluster components. The cwc superscript denotes centering within cluster 
(group mean centering). All coefficients with a leading zero subscript are school-level effects, and 
all coefficients with non-zero leading subscripts are pure within-school effects. The γ04 slope is of 
particular interest because it captures the intervention effect, controlling for covariates. Chapter 
16 uses the same analysis model to illustrate MCMC estimation and model-based multiple 
imputation. 

Fully conditional specification imputation uses a sequence of univariate regression models to 
fill in missing values. Specifically, each MCMC iteration fits a series of models where one 
incomplete variable is regressed on all other variables. The predicted values and residual variance 
from each model define the center and spread of the imputed values, which are drawn at random 
from a normal distribution. After imputing the missing scores, the filled-in variable becomes a 
predictor in all other imputation models in the sequence. The imputation stage should include all 
variables and effects for the subsequent analyses, and it should incorporate auxiliary variables 
that either predict missingness or correlate with the incomplete variables (Collins et al., 2001). 
Blimp’s multilevel fully conditional specification routine also uses the latent cluster means (i.e., 
random intercepts) of level-1 variables in the imputation models (Enders et al., 2020). This 
disaggregated specification preserves unique within- and between-cluster associations in the 
data. 

15.2  Blimp and rblimp FCS Scripts 

The code block below shows Blimp script Ex15.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex15.imp 
 
 1  DATA: problemsolving2level.dat; 
 2  VARIABLES: school student condition teachexp eslpct ethnic male  
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 3   frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst;  
 4  CLUSTERID: school; 
 5  ORDINAL: condition frlunch; 
 6  MISSING: 999; 
 7  FIXED: condition psolvepre; 
 8  FCS: psolvepst psolvepre hispanic frlunch condition;  
 9  SEED: 90291; 
10  BURN: 1000; 
11  ITERATIONS: 10000; 
12  NIMPS: 20; 
13  CHAINS: 20; 
14  SAVE:  
15  stacked = ./imps/imps.dat; 
16  separate = ./imps/imp*.dat; 
 

The first six lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The CLUSTERID command on line 4 lists the 
school-level identifier variable that indicates the clustering of the data records in schools. 
Including the CLUSTERID command automatically introduces random intercepts for all level-1 
variables. When a level-1 variable appears as a predictor of another level-1 variable, its random 
intercepts are used as a level-2 covariate in the imputation model (i.e., imputation uses latent 
contextual effects). When a level-1 variable appears as a predictor of a level-2 variable, just the 
random intercepts are in the imputation model. The ORDINAL command on line 5 identifies 
binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as the 
statistical models are identical. The MISSING command on line 6 defines a global missing value 
code as 999. 

Next, the FCS command lists all variables—complete or incomplete at either level—that are 
included in the imputation phase. Using the FIXED command to identify complete variables 
reduces computational time because these variables do not require a regression model. Lines 9 
through 11 can also be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
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imputation model summaries are based (essentially, the total number of MCMC cycles across all 
chains following the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

The corresponding rblimp script Ex15.R is shown below. 

 
rblimp Script Ex15.R 
 
1 library(rblimp) 
2 load('problemsolving2level.rda') 
3  
4 mymodel <- rblimp_fcs( 
5   data = problemsolving2level, 
6   clusterid = 'school', 
7   ordinal = 'condition hispanic frlunch', 
8   fixed = 'condition psolvepre', 
9   variables = 'psolvepst psolvepre hispanic frlunch condition', 
10   seed = 90291, 
11   burn = 1000, 
12   iter = 10000, 
13   nimps = 20, 
14   chains = 20) 
15 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the 
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is 
omitted because that information is contained in the R data file. The FCS command is replaced by 
a variables parameter that lists the variables to be included in the imputation model. Following 
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R convention, the input parameters are separated by commas. Alphanumeric inputs like variable 
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not 
require quotes. Finally, the output(mymodel) function prints the Blimp output. 

15.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.374            14   
                           51 to 100             1.300            19   
                           76 to 150             1.125            12   
                                  ...              ...            .. 
                          451 to 900             1.022            12   
                          476 to 950             1.019            12   
                          501 to 1000            1.015             1 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       school 
  Sample Size:              982 
  Level-2 Clusters:         29 
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  Missing Data Rates: 
 
                 hispanic = 08.96 
                  frlunch = 04.68 
                psolvepst = 20.47 
 
VARIABLES IN IMPUTATION MODEL: 
 
  Fixed variables:        condition psolvepre 
  Incomplete continuous:  psolvepst 
  Incomplete ordinal:     hispanic frlunch 
 
  NUMBER OF PARAMETERS 
    Imputation Models:      25 
   

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The Blimp 
output includes tables of regression parameters for every incomplete variable’s imputation 
model. The imputation model parameters are not of substantive interest and would not be 
reported. An example table is shown below. 

 

Missing variable:   frlunch    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                            1.013      0.138      0.754      1.295      1.008   2339.218  
 
Level 1:                                                                                            
  hispanic                            0.112      0.067     -0.015      0.248      1.018   1013.866  
  psolvepre                           0.010      0.012     -0.013      0.034      1.009   1991.112  
  psolvepst                          -0.025      0.013     -0.050     -0.000      1.012   1781.354  
  Residual Var.                       1.000      0.000      1.000      1.000        nan        nan  
 
Level 2:                                                                                            
  condition                           0.093      0.360     -0.620      0.822      1.005   3010.372  
  hispanic                            0.016      0.256     -0.473      0.538      1.007   2250.809  
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  psolvepst                          -0.124      0.102     -0.333      0.066      1.005   2603.149  
  Residual Var.                       0.269      0.111      0.136      0.563      1.010   1860.140  
Thresholds:                                                                                         
  Tau 1                               0.000      0.000      0.000      0.000        nan        nan 
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
 
   stacked = './imps/imps.dat' 
 
     imp# school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

15.4  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex15.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 
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R Script Ex15.R 
 
1 library(rblimp) 
2 library(rockchalk) 
3 library(lme4) 
4 library(mitml) 
5 load('problemsolving2level.rda') 
6  
7 mymodel <- rblimp(...) 
8  
9 implist <- as.mitml(mymodel) 
10  
11 for (i in 1:length(implist)) { 
12   implist[[i]] <- gmc(implist[[i]], x = c('psolvepre','hispanic','frlunch'),  
13     by = c('school'), FUN = mean, suffix = c('.meanj', '.cwc'),  
14     fulldataframe = TRUE) 
15 } 
16  
17 fit <- with(implist,  
18   lmer(psolvepst ~ psolvepre.cwc + hispanic.cwc + frlunch.cwc  
19   + psolvepre.meanj + hispanic.meanj + frlunch.meanj + condition  
20   + (1 | school), REML = T)) 
21  
22 estimates <- testEstimates(fit, extra.pars = T) 
23 estimates 
24 confint(estimates) 

 

To begin, as.mitml on Line 9 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 11 through 15 use the gmc 
function in the rockchalk package to group mean center three predictors at their manifest 
(arithmetic) cluster means. Lines 17 through 20 fit the focal regression model using the lmer 
function, and line 22 uses the testEstimates function in mitml to implement Rubin’s pooling 
rules and save the results in an object called estimates. Lines 23 and 24 print the pooled 
estimates and confidence intervals.  

15.5  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
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columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

                 Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)        20.215    11.486     1.760  5472.720     0.078     0.063     0.059  

psolvepre.cwc       0.457     0.035    13.235   683.373     0.000     0.200     0.169  

hispanic.cwc        1.024     0.416     2.462   424.087     0.014     0.268     0.215  

frlunch.cwc        -0.714     0.492    -1.451   158.111     0.149     0.531     0.355  

psolvepre.meanj     0.627     0.218     2.880  4712.621     0.004     0.068     0.064  

hispanic.meanj      4.976     1.382     3.601  4473.786     0.000     0.070     0.066  

frlunch.meanj      -2.644     2.506    -1.055  6610.732     0.292     0.057     0.054  

condition           2.371     0.720     3.295  2326.583     0.001     0.099     0.091  

 

                            Estimate  

Intercept~~Intercept|school    2.303  

Residual~~Residual            20.609  

ICC|school                     0.101  

 

Unadjusted hypothesis test as appropriate in larger samples. 

 

> confint(estimates) 

                     2.5 %     97.5 % 

(Intercept)     -2.3018772 42.7319331 

psolvepre.cwc    0.3891564  0.5247364 

hispanic.cwc     0.2063039  1.8414960 

frlunch.cwc     -1.6863210  0.2578444 

psolvepre.meanj  0.2001714  1.0534617 

hispanic.meanj   2.2667656  7.6850867 

frlunch.meanj   -7.5570658  2.2693889 

condition        0.9599550  3.7818573 

 

The random intercept and within-cluster residual variances are denoted 
Intercept~~Intercept|school and Residual~~Residual, respectively. Moving to the 
coefficient section, the primary focus is the γ04 coefficient, which indicates that intervention 
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schools scored 2.37 points higher than control schools, on average, controlling for student- and 
school-level covariates. The corresponding test statistic indicates that the group mean difference 
is statistically different from zero (t = 3.30, p < .001).  

15.6  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6. 
The Mplus input file for analyzing the imputations is Ex15.inp. 

 
Mplus Script Ex15.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student condition teachexp eslpct ethnic male frlunch  
 6   lowach stanmath efficacy1 efficacy2 psolvepre psolvepst; 
 7  usevariables = psolvepst psolvepre hispanic frlunch condition  
 7     psolveprej hispanicj frlunchj; 
 8  cluster = school; 
 9  within = psolvepre hispanic frlunch; 
10  between = psolveprej hispanicj frlunchj condition; 
11  DEFINE: 
12  psolveprej = cluster_mean(psolvepre); 
13  hispanicj = cluster_mean(hispanic); 
14  frlunchj = cluster_mean(frlunch); 
15  center psolvepre hispanic frlunch (groupmean); 
16  center psolveprej hispanicj frlunchj (grandmean); 
17  ANALYSIS: 
18  type = twolevel; 
19  MODEL: 
20  %within% 
21  psolvepst on psolvepre hispanic frlunch; 
22  %between% 
23  psolvepst on psolveprej hispanicj frlunchj condition; 
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24  OUTPUT: 
25  stdyx cinterval; 
 

The DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand 
instructs Mplus that the input data is a list of file names. The VARIABLE command provides 
information about the data. Beginning on line 5, the names subcommand assigns names to the 
variables in the input data file, and the usevariables subcommand selects variables for the 
analysis, with new variables computed on the DEFINE command listed at the end of the line. The 
cluster command on line 8 lists the school-level identifier variable that indicates the clustering 
of the data records in schools. The within and between subcommands on lines 9 and 10 identify 
level-1 and level-2 predictors, respectively. Lines 11 through 14 define new variables that are the 
group means of the level-1 covariates. On lines 15 and 16, the center subcommand under the 
DEFINE command centers the within- and between-cluster covariates at their group and grand 
means, respectively. The ANALYSIS command and the type = twolevel subcommand is 
required for estimating two-level models. The MODEL section of the script consists of two sections: 
the %within% section specifies the regression of the outcome on level-1 predictors, and the 
%between% section specifies the regression of the random intercepts on the level-2 predictors. 
Finally, the OUTPUT command specifies two keywords on line 25 that request standardized 
coefficients and confidence intervals. 

15.7  Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown below. The 
Rate of Missing column (also called the fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
MODEL RESULTS 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
Within Level 
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 PSOLVEPST  ON 
    PSOLVEPRE          0.457      0.032     14.287      0.000      0.197 
    HISPANIC           1.024      0.379      2.701      0.007      0.260 
    FRLUNCH           -0.714      0.469     -1.524      0.128      0.392 
 
 Residual Variances 
    PSOLVEPST         20.539      1.393     14.747      0.000      0.212 
 
Between Level 
 
 PSOLVEPST  ON 
    PSOLVEPREJ         0.629      0.159      3.953      0.000      0.119 
    HISPANICJ          4.980      1.284      3.878      0.000      0.075 
    FRLUNCHJ          -2.618      1.687     -1.552      0.121      0.118 
    CONDITION          2.372      0.660      3.594      0.000      0.107 
 
 Intercepts 
    PSOLVEPST         52.516      0.520    101.066      0.000      0.072 
 
 Residual Variances 
    PSOLVEPST          1.816      0.746      2.436      0.015      0.100 
 

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and 
Between Level, respectively). The primary focus is the γ04 coefficient, which indicates that 
intervention schools scored 2.37 points higher than control schools, on average, controlling for 
student- and school-level covariates. The corresponding test statistic indicates that the group 
mean difference is statistically different from zero (z = 3.59, p < .001). Note that these estimates 
are virtually identical to those from MCMC estimation in the next section. 

15.8 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex15.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 
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SPSS Script Ex15.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ school student condition teachexp eslpct hispanic male 
4    frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst. 
5 EXE. 
6  
7 AGGREGATE 
8   /outfile = * mode = addvariables overwrite = yes 
9   /break=imputation_ school 
10   /psolvepre_meanj = mean(psolvepre)  
11   /hispanic_meanj = mean(hispanic) 
12   /frlunch_meanj = mean(frlunch). 
13 EXE. 
14  
15 AGGREGATE 
16   /outfile = * mode = addvariables overwrite = yes 
17   /psolvepre_mean = mean(psolvepre)  
18   /hispanic_mean = mean(hispanic) 
19   /frlunch_mean = mean(frlunch). 
20 EXE. 
21  
22 COMPUTE psolvepre_cwc = psolvepre - psolvepre_meanj. 
23 COMPUTE hispanic_cwc = hispanic - hispanic_meanj. 
24 COMPUTE frlunch_cwc = frlunch - frlunch_meanj. 
25 COMPUTE psolvepre_meanj = psolvepre_meanj - psolvepre_mean. 
26 COMPUTE hispanic_meanj = hispanic_meanj - hispanic_mean. 
27 COMPUTE frlunch_meanj = frlunch_meanj - frlunch_mean. 
28 EXE. 

 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. On line 7, 
the AGGREGATE command adds the grand means to the data, whereas the AGGREGATE command on 
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line 15 adds the grand means into the data. Beginning on line 22, level-1 predictors are centered 
at their group means, and level-2 predictors are centered at their grand means. 

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 29 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 30 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 31. 

 
SPSS Script Ex15.spwb, continued 
 
29 SORT CASES by imputation_. 
30 SPLIT FILE layered by imputation_. 
31 MIXED psolvepst with psolvepre_cwc hispanic_cwc frlunch_cwc  
32    psolvepre_meanj hispanic_meanj frlunch_meanj condition 
33   /print = solution testcov 
34   /fixed = intercept psolvepre_cwc hispanic_cwc frlunch_cwc  
35    psolvepre_meanj hispanic_meanj frlunch_meanj condition 
36   /random = intercept | subject(school) covtype(id). 

 

15.9 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The output also includes pooled estimates of level-2 variance and covariance parameters. The 
relative increase in variance is a fraction comparing imputation noise to complete-data sampling 
variation, and the fraction of missing information quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

The results are interpreted in the same way as a complete-data multilevel analysis. The pooled 
regression coefficients are in the table labeled Estimates of Fixed Effects. The primary focus 
is the γ!" coefficient, which indicates that intervention schools scored 2.39 points higher than 
control schools, on average, controlling for student-and school-level covariates. The 
corresponding test statistic indicates that the group mean difference is statistically different from 
zero (t = 3.36, p < .001). The pooled random intercept and within-cluster residual variances are 
in the table labeled Estimates of Covariance Parameters. 
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MCMC: Random Intercept Model 

 

 

 

 

This example illustrates a two-level multiple regression with random intercepts. The analysis uses 
the problemsolving2level.dat data set taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. The analysis variables are as follows. 

Name Definition Missing % Scale 

SCHOOL School identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental  

HISPANIC Ethnicity/race 9.0 0 = Other, 1 = Hispanic 

FRLUNCH Lunch assistance code  4.7 0 = None, 1 = Free/Reduced Lunch 

PSOLVEPRE Math problem-solving pretest  0 Numeric (37 to 66) 

PSOLVEPST Math problem-solving posttest  20.5 Numeric (37 to 65) 

16.1  Analysis Model 

The analysis is a random intercept model with a school-level intervention code and three 
student-level covariates: math problem-solving pre-test scores, a Hispanic dummy code, and a 
free or reduced lunch assistance dummy code. The goal of the analysis is to determine whether 
the intervention groups differ on an end-of-year math problem-solving test after controlling for 
three student-level variables. To convey each variable’s level, the i and j subscripts denote 
students and schools, respectively. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑆𝑇𝑖𝑗 = (γ00 + 𝑢0𝑗) + γ10(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸𝑖𝑗𝑐𝑤𝑐) + γ20(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑖𝑗𝑐𝑤𝑐) 

+ γ30(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗
𝑐𝑤𝑐) + γ01(𝜇𝑗(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸)

𝑐𝑔𝑚 ) + γ02(𝜇𝑗(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶)
𝑐𝑔𝑚 ) (30) 

+ γ03(𝜇𝑗(𝐹𝑅𝐿𝑈𝑁𝐶𝐻)
𝑐𝑔𝑚 ) + γ04(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗 

The analysis model partitions the level-1 covariates into pure within-cluster and between-cluster 
components. MCMC centers the student-level covariates at their school-level latent group 
means. All coefficients with a leading zero subscript are school-level effects, and all coefficients 
with non-zero leading subscripts are pure within-school effects. The cwc superscript denotes 
centering within cluster (group mean centering), and cgm indicates centering at the grand mean. 
The γ04 slope is of particular interest because it captures the intervention effect, controlling for 
covariates. Unlike a complete-data regression analysis, all incomplete variables require 
distributional assumptions, including the predictors. Blimp uses a factored regression 
specification that assigns separate distributions to the predictors and outcome. By default, Blimp 
invokes a multivariate normal distribution for numeric predictors and the latent response scores 
for discrete predictors. 

16.2  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex16.1.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex16.1.imp 
 
 1  DATA: problemsolving2level.dat; 
 2  VARIABLES: school student condition teachexp eslpct ethnic male  
 3   frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst;  
 4  CLUSTERID: school; 
 5  ORDINAL: condition hispanic frlunch; 
 6  MISSING: 999; 
 7  FIXED: condition psolvepre; 
 8  CENTER:  
 9  groupmean = psolvepre hispanic frlunch; 
10  grandmean = psolvepre.mean hispanic.mean frlunch.mean; 
11  MODEL: 
12  psolvepst ~ psolvepre hispanic frlunch  
13     psolvepre.mean hispanic.mean frlunch.mean condition; 
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14  SEED: 90291; 
15  BURN: 5000; 
16  ITERATIONS: 10000; 
 

The first six lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns. The CLUSTERID command on line 4 lists the 
school-level identifier variable that indicates the clustering of the data records in schools. 
Including the CLUSTERID command automatically introduces random intercepts. The ORDINAL 
command on line 5 identifies binary and ordinal variables. Binary variables can be defined as 
ordinal or nominal, as the statistical models are identical. The MISSING command on line 6 
defines a global missing value code as 999. 

The FIXED, CENTER, and MODEL blocks can be viewed as a set. The FIXED command identifies 
two complete predictors that do not require a distribution or regression model. The CENTER 
command deviates the student-level covariates at the latent group means, and it centers the 
group means (ending in the .mean suffix) at their iteratively-estimated grand means. Beginning 
on line 11, the MODEL command lists the regression models, with outcome variables to the left of 
the tilde and predictors to the right. Blimp automatically configures the explanatory variable 
models under the assumption that the numeric variables and latent response scores (discrete 
predictors) are normally distributed. Finally, lines 14 through 16 can be viewed as a block of 
commands that specify features of the MCMC algorithm: the SEED command gives an integer 
string that initializes the random number generator, the BURN command specifies the number of 
iterations for the warm-up or burn-in period, and the ITERATIONS command gives the number of 
MCMC iterations on which the analysis summaries are based (essentially, the number of MCMC 
cycles following the warm-up period). 

The corresponding rblimp script Ex16.R is shown below. 

 
rblimp Script Ex16.R 
 
1 library(rblimp) 
2 load('problemsolving2level.rda') 
3  
4 mymodel <- rblimp( 
5   data = problemsolving2level, 
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6   clusterid = 'school', 
7   ordinal = 'condition hispanic frlunch', 
8   fixed = 'condition psolvepre', 
9   center = 'groupmean = psolvepre hispanic frlunch;  
10     grandmean = psolvepre.mean hispanic.mean frlunch.mean', 
11   model = 'psolvepst ~ psolvepre hispanic frlunch  
12     psolvepre.mean hispanic.mean frlunch.mean condition', 
13   seed = 90291, 
14   burn = 5000, 
15   iter = 10000) 
16 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 

16.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
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  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.340            21   
                          251 to 500             1.252            39   
                          376 to 750             1.090            31 
                                  ...              ...            ..   
                         2251 to 4500            1.017             3   
                         2376 to 4750            1.027            21   
                         2501 to 5000            1.029            21 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3, but it 
additionally reports the number of observations at each level. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       school 
  Sample Size:              982 
  Level-2 Clusters:         29 
  Missing Data Rates: 
 
                psolvepst = 20.47 
                 hispanic = 08.96 
                  frlunch = 04.68 
                psolvepre = 00.00 
 

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
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“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  psolvepst   
 
Grand Mean Centered: frlunch.mean[school] hispanic.mean[school] 
                     psolvepre.mean[school] 
Group Mean Centered: frlunch hispanic psolvepre 
 
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  L2 : Var(Intercept)                 2.452      1.204      1.056      5.679        ---        ---   1460.938  
  Residual Var.                      20.586      1.073     18.622     22.787        ---        ---   5882.801  
 
Coefficients:                    
  Intercept                          52.423      0.732     50.928     53.855   5125.493      0.000    335.563  
  psolvepre                           0.456      0.036      0.387      0.527    160.387      0.000   5660.178  
  hispanic                            0.944      0.437      0.087      1.802      4.672      0.031   4201.346  
  frlunch                            -0.782      0.469     -1.698      0.144      2.790      0.095   4545.674  
  psolvepre.mean[school]              0.710      0.335      0.062      1.405      4.585      0.032    494.808  
  hispanic.mean[school]               5.312      1.706      2.014      8.678      9.694      0.002    756.422  
  frlunch.mean[school]               -1.698      3.519     -8.737      5.161      0.234      0.629    553.383  
  condition                           2.423      0.791      0.900      4.017      9.415      0.002    876.374  
 
Standardized Coefficients:       
  psolvepre                           0.361      0.028      0.306      0.414    169.280      0.000   3072.827  
  hispanic                            0.064      0.030      0.006      0.122      4.673      0.031   4124.638  
  frlunch                            -0.049      0.029     -0.106      0.009      2.784      0.095   4432.903  
  psolvepre.mean[school]              0.195      0.087      0.017      0.364      4.982      0.026    523.214  
  hispanic.mean[school]               0.225      0.069      0.085      0.355     10.536      0.001    796.874  
  frlunch.mean[school]               -0.043      0.085     -0.207      0.125      0.245      0.620    553.606  
  condition                           0.201      0.063      0.075      0.321     10.150      0.001    885.531  
 
Proportion Variance Explained    
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  by Coefficients                     0.332      0.040      0.253      0.409        ---        ---   1034.513  
  by Level-2 Random Intercepts        0.071      0.031      0.031      0.149        ---        ---   1432.122  
  by Level-1 Residual Variation       0.594      0.041      0.505      0.669        ---        ---   1142.265  
 
                                ------------------------------------------------------------------------------ 
 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue. 

The results are interpreted in the same way as a complete-data multilevel analysis. The first 
section of the output table displays the variance estimates. The random intercept and within-
cluster residual variances are denoted L2:Var(Intercept) and Residual Var., respectively. 
Moving to the coefficient section, the primary focus is the γ04 coefficient, which indicates that 
intervention schools scored 2.42 points higher than control schools, on average, controlling for 
student- and school-level covariates. The 95% credible interval limits suggest this effect is 
statistically different from zero (p < .05) because the null value is well outside the interval. The 
frequentist test statistic and p-value give the same conclusion. Finally, the bottom section of the 
table displays Rights and Sterba (2019) R-squared effect size values. The fixed effects explain 33% 
of the total variation, and the random intercepts account for 7% of the variability. 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

16.4  Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex16.2.imp is identical Ex16.1.imp, but it adds the following lines at the bottom 
of the script. 
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NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
 
   stacked = './imps/imps.dat' 
 
     imp# school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
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The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex16.R 
 
1 library(rblimp) 
2 load('problemsolving2level.rda') 
3  
4 mymodel <- rblimp( 
5   data = problemsolving2level, 
6   clusterid = 'school', 
7   ordinal = 'condition hispanic frlunch', 
8   fixed = 'condition psolvepre', 
9   center = 'groupmean = psolvepre hispanic frlunch;  
10     grandmean = psolvepre.mean hispanic.mean frlunch.mean', 
11   model = 'psolvepst ~ psolvepre hispanic frlunch  
12     psolvepre.mean hispanic.mean frlunch.mean condition', 
13   seed = 90291, 
14   burn = 5000, 
15   iter = 10000, 
16   nimps = 20, 
17   chains = 20) 
18 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 
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16.5  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex16.R 
 
1 library(rblimp) 
2 library(rockchalk) 
3 library(lme4) 
4 library(mitml) 
5 load('problemsolving2level.rda') 
6  
7 mymodel <- rblimp(...) 
8  
9 implist <- as.mitml(mymodel) 
10  
11 for (i in 1:length(implist)) { 
12   implist[[i]] <- gmc(implist[[i]], x = c('psolvepre','hispanic','frlunch'),  
13     by = c('school'), FUN = mean, suffix = c('.meanj', '.cwc'),  
14     fulldataframe = TRUE) 
15 } 
16  
17 fit <- with(implist,  
18   lmer(psolvepst ~ psolvepre.cwc + hispanic.cwc + frlunch.cwc  
19   + psolvepre.meanj + hispanic.meanj + frlunch.meanj + condition  
20   + (1 | school), REML = T)) 
21  
22 estimates <- testEstimates(fit, extra.pars = T) 
23 estimates 
24 confint(estimates) 
 

To begin, as.mitml on Line 9 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 11 through 15 use the gmc 
function in the rockchalk package to group mean center three predictors at their manifest 
(arithmetic) cluster means. Lines 17 through 20 fit the focal regression model using the lmer 
function, and line 22 uses the testEstimates function in mitml to implement Rubin’s pooling 
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rules and save the results in an object called estimates. Lines 23 and 24 print the pooled 
estimates and confidence intervals.  

16.6  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The RIV column (relative increase in variance) 
is a fraction comparing imputation noise to complete-data sampling variation, and the FMI 
column (fraction of missing information in the literature) quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

 
  Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
                 Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)        18.844    11.351     1.660 11720.210     0.097     0.042     0.040  
psolvepre.cwc       0.457     0.033    13.657  1229.129     0.000     0.142     0.126  
hispanic.cwc        0.884     0.432     2.044   238.166     0.042     0.394     0.288  
frlunch.cwc        -0.763     0.448    -1.702   402.169     0.090     0.278     0.221  
psolvepre.meanj     0.648     0.215     3.017 11590.269     0.003     0.042     0.041  
hispanic.meanj      4.946     1.369     3.612  7380.527     0.000     0.053     0.051  
frlunch.meanj      -2.184     2.483    -0.880  7373.485     0.379     0.053     0.051  
condition           2.385     0.710     3.361  4675.153     0.001     0.068     0.064  
 
                            Estimate  
Intercept~~Intercept|school    2.314  
Residual~~Residual            20.388  
ICC|school                     0.102 
 
Unadjusted hypothesis test as appropriate in larger samples. 
 
                     2.5 %     97.5 % 
(Intercept)     -3.4048602 41.0932538 
psolvepre.cwc    0.3916436  0.5230409 
hispanic.cwc     0.0319088  1.7356905 
frlunch.cwc     -1.6442904  0.1184517 
psolvepre.meanj  0.2268885  1.0686187 
hispanic.meanj   2.2618899  7.6295689 
frlunch.meanj   -7.0510463  2.6833948 
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condition        0.9940498  3.7768751 
 

The random intercept and within-cluster residual variances are denoted 
Intercept~~Intercept|school and Residual~~Residual, respectively. Moving to the 
coefficient section, the primary focus is the γ04 coefficient, which indicates that intervention 
schools scored 2.39 points higher than control schools, on average, controlling for student- and 
school-level covariates. The corresponding test statistic indicates that the group mean difference 
is statistically different from zero (t = 3.36, p < .001). Note that the intercept differs prior the 
MCMC estimate because the cluster means are not centered in the multiple imputation analysis. 

16.7  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6. 
The Mplus input file for analyzing the imputations is Ex16.inp. 

 

 

Mplus Script Ex16.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student condition teachexp eslpct ethnic male frlunch  
 6   lowach stanmath efficacy1 efficacy2 psolvepre psolvepst; 
 7  usevariables = psolvepst psolvepre hispanic frlunch condition  
 7     psolveprej hispanicj frlunchj; 
 8  cluster = school; 
 9  within = psolvepre hispanic frlunch; 
10  between = psolveprej hispanicj frlunchj condition; 
11  DEFINE: 
12  psolveprej = cluster_mean(psolvepre); 
13  hispanicj = cluster_mean(hispanic); 
14  frlunchj = cluster_mean(frlunch); 
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15  center psolvepre hispanic frlunch (groupmean); 
16  center psolveprej hispanicj frlunchj (grandmean); 
17  ANALYSIS: 
18  type = twolevel; 
19  MODEL: 
20  %within% 
21  psolvepst on psolvepre hispanic frlunch; 
22  %between% 
23  psolvepst on psolveprej hispanicj frlunchj condition; 
24  OUTPUT: 
25  stdyx cinterval; 
 

The DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand 
instructs Mplus that the input data is a list of file names. The VARIABLE command provides 
information about the data. Beginning on line 5, the names subcommand assigns names to the 
variables in the input data file, and the usevariables subcommand selects variables for the 
analysis, with new variables computed on the DEFINE command listed at the end of the line. The 
cluster command on line 8 lists the school-level identifier variable that indicates the clustering 
of the data records in schools. The within and between subcommands on lines 9 and 10 identify 
level-1 and level-2 predictors, respectively. Lines 11 through 14 define new variables that are the 
group means of the level-1 covariates. On lines 15 and 16, the center subcommand under the 
DEFINE command centers the within- and between-cluster covariates at their group and grand 
means, respectively. The ANALYSIS command and the type = twolevel subcommand is 
required for estimating two-level models. The MODEL section of the script consists of two sections: 
the %within% section specifies the regression of the outcome on level-1 predictors, and the 
%between% section specifies the regression of the random intercepts on the level-2 predictors. 
Finally, the OUTPUT command specifies two keywords on line 25 that request standardized 
coefficients and confidence intervals. 

16.8  Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown below. The 
Rate of Missing column (also called the fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 
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MODEL RESULTS 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
Within Level 
 
 PSOLVEPST  ON 
    PSOLVEPRE          0.457      0.030     15.065      0.000      0.153 
    HISPANIC           0.884      0.397      2.227      0.026      0.343 
    FRLUNCH           -0.763      0.407     -1.875      0.061      0.269 
 
 Residual Variances 
    PSOLVEPST         20.319      1.309     15.523      0.000      0.145 
 
Between Level 
 
 PSOLVEPST  ON 
    PSOLVEPREJ         0.650      0.153      4.240      0.000      0.079 
    HISPANICJ          4.949      1.289      3.840      0.000      0.057 
    FRLUNCHJ          -2.164      1.635     -1.323      0.186      0.117 
    CONDITION          2.385      0.652      3.656      0.000      0.074 
 
 Intercepts 
    PSOLVEPST         52.532      0.521    100.790      0.000      0.049 
 
 Residual Variances 
    PSOLVEPST          1.819      0.740      2.459      0.014      0.078 
 

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and 
Between Level, respectively). The primary focus is the γ04 coefficient, which indicates that 
intervention schools scored 2.39 points higher than control schools, on average, controlling for 
student- and school-level covariates. The corresponding test statistic indicates that the group 
mean difference is statistically different from zero (z = 3.66, p < .001). Note that these estimates 
are virtually identical to those from MCMC estimation in the next section. 
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16.8 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex16.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex16.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ school student condition teachexp eslpct hispanic male 
4    frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst. 
5 EXE. 
6  
7 AGGREGATE 
8   /outfile = * mode = addvariables overwrite = yes 
9   /break=imputation_ school 
10   /psolvepre_meanj = mean(psolvepre)  
11   /hispanic_meanj = mean(hispanic) 
12   /frlunch_meanj = mean(frlunch). 
13 EXE. 
14  
15 AGGREGATE 
16   /outfile = * mode = addvariables overwrite = yes 
17   /psolvepre_mean = mean(psolvepre)  
18   /hispanic_mean = mean(hispanic) 
19   /frlunch_mean = mean(frlunch). 
20 EXE. 
21  
22 COMPUTE psolvepre_cwc = psolvepre - psolvepre_meanj. 
23 COMPUTE hispanic_cwc = hispanic - hispanic_meanj. 
24 COMPUTE frlunch_cwc = frlunch - frlunch_meanj. 
25 COMPUTE psolvepre_meanj = psolvepre_meanj - psolvepre_mean. 
26 COMPUTE hispanic_meanj = hispanic_meanj - hispanic_mean. 
27 COMPUTE frlunch_meanj = frlunch_meanj - frlunch_mean. 
28 EXE. 
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The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. On line 7, 
the AGGREGATE command adds the grand means to the data, whereas the AGGREGATE command on 
line 15 adds the grand means into the data. Beginning on line 22, level-1 predictors are centered 
at their group means, and level-2 predictors are centered at their grand means. 

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 29 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 30 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 31. 

 
SPSS Script Ex16.spwb, continued 
 
29 SORT CASES by imputation_. 
30 SPLIT FILE layered by imputation_. 
31 MIXED psolvepst with psolvepre_cwc hispanic_cwc frlunch_cwc  
32    psolvepre_meanj hispanic_meanj frlunch_meanj condition 
33   /print = solution testcov 
34   /fixed = intercept psolvepre_cwc hispanic_cwc frlunch_cwc  
35    psolvepre_meanj hispanic_meanj frlunch_meanj condition 
36   /random = intercept | subject(school) covtype(id). 

 

16.9 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The output also includes pooled estimates of level-2 variance and covariance parameters. The 
relative increase in variance is a fraction comparing imputation noise to complete-data sampling 
variation, and the fraction of missing information quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 
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The results are interpreted in the same way as a complete-data multilevel analysis. The pooled 
regression coefficients are in the table labeled Estimates of Fixed Effects. The primary focus 
is the γ!" coefficient, which indicates that intervention schools scored 2.39 points higher than 
control schools, on average, controlling for student-and school-level covariates. The 
corresponding test statistic indicates that the group mean difference is statistically different from 
zero (t = 3.13, p < .001). The pooled random intercept and within-cluster residual variances are 
in the table labeled Estimates of Covariance Parameters. 

…

…
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MCMC: Random Slope Model With an Interaction 

 

 

 

 

This example illustrates a two-level multiple regression with random intercepts. The analysis uses 
the problemsolving3level.dat data set taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. The analysis variables are as follows. 

Name Definition Missing % Scale 

STUDENT Student (level-2) identifier 0 Integer index 

PROBSOLVE Math problem-solving 11.4 Numeric (37 to 68) 

MONTH Time scores (initial = 0) 0 Numeric (0 to 6) 

HISPANIC Ethnicity/race 9.0 0 = Non-Hispanic, 1 = Hispanic 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 

17.1  Analysis Model 

The analysis is a linear growth model that features a repeatedly-measured problem-solving test 
regressed on time scores (months since the start of the school year, a level-1 predictor), 
experimental condition (level-2), the cross-level interaction of the two variables, and two grand 
mean centered student-level dummy codes (the Hispanic and lunch assistance indicators). To 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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convey each variable’s level, the i and j subscripts denote repeated measurements and students, 
respectively. The combined regression model below.  

𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸𝑖𝑗 = (γ00 + 𝑢0𝑗) + (γ10 + 𝑢1𝑗)(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) 

+ γ11(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑗)(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) + γ12(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗)(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) (31) 

+ γ01(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑗) + γ02(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗
𝑐𝑔𝑚) + γ03(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗 

All coefficients with a leading zero subscript are determinants of baseline performance, and all 
coefficients with one as a leading subscript define the monthly change rates. In particular, γ11 is 
the degree to which ethnicity moderates the change rates, and γ12 captures the moderating effect 
of the intervention. The cgm superscript indicates centering at the grand mean. Unlike a 
complete-data regression analysis, all incomplete variables require distributional assumptions, 
including the predictors. Blimp uses a factored regression specification that assigns separate 
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal 
distribution for numeric predictors and the latent response scores for discrete predictors. 

17.2  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex17.1.inp. The first six lines can be viewed as a set of 
commands that specify information about the data and variables. This script is executed in the 
Blimp Studio graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex17.1.imp 
 
 1  DATA: problemsolving3level.dat; 
 2  VARIABLES: school student wave condition teachexp eslpct ethnic  
 3   male frlunch lowach stanmath month month7 probsolve efficacy; 
 4  CLUSTERID: student; 
 5  ORDINAL: hispanic frlunch condition; 
 6  MISSING: 999; 
 7  FIXED: month condition; 
 8  CENTER: grandmean = frlunch; 
 9  MODEL:  
10  month hispanic frlunch condition month*condition month*hispanic | month; 
11  SIMPLE:  
12  month | condition; 
13  month | hispanic; 
14  SEED: 90291; 
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15  BURN: 1000; 
16  ITERATIONS: 20000; 

The DATA command specifies the name of the input text file. No file path is required when the 
data file is in the same directory as the script, as it is here. Starting on line 2, the VARIABLES 
command names the data columns. The CLUSTERID command on line 4 lists the student-level 
identifier variable that indicates the clustering of the repeated measurements within students. 
Including the CLUSTERID command automatically introduces random intercepts. The ORDINAL 
command on line 5 identifies binary and ordinal variables. Binary variables can be defined as 
ordinal or nominal, as the statistical models are identical. The MISSING command on line 6 
defines a global missing value code as 999. 

The FIXED, CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The FIXED command 
identifies complete predictors that do not require a distribution or regression model. The CENTER 
command deviates a covariate at its iteratively-estimated grand mean. Beginning on line 9, the 
MODEL command lists the regression model, with outcome variable to the left of the tilde and 
predictors to the right. The product term is specified by joining the interacting variables with an 
asterisk (i.e., MONTH*CONDITION), and listing MONTH to the right of the vertical pipe specifies this 
variable as a random slope predictor. Starting on line 11, the SIMPLE command requests two sets 
of conditional effects (i.e., simple slopes) that give the effect of MONTH at each level of CONDITION 
and HISPANIC. By default, Blimp computes the simple slope at each level of a binary moderator 
listed on the ORDINAL line. Blimp automatically configures the explanatory variable models under 
the assumption that the numeric variables and latent response scores (discrete predictors) are 
normally distributed. Custom significance tests can be specified using the WALDTEST command, as 
shown in previous examples. Finally, lines 14 through 16 can be viewed as a block of commands 
that specify features of the MCMC algorithm: the SEED command gives an integer string that 
initializes the random number generator, the BURN command specifies the number of iterations 
for the warm-up or burn-in period, and the ITERATIONS command gives the number of MCMC 
iterations on which the analysis summaries are based (essentially, the number of MCMC cycles 
following the warm-up period). 

The corresponding rblimp script Ex17.R is shown below. 

 
rblimp Script Ex17.R 
 
1 library(rblimp) 
2 load('problemsolving3level.rda') 
3  
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4 mymodel <- rblimp( 
5   data = problemsolving3level, 
6   clusterid = 'student', 
7   ordinal = 'hispanic frlunch condition', 
8   fixed = 'month condition', 
9   center = 'grandmean = frlunch', 
10   model = 'probsolve ~ month hispanic frlunch condition  
11     month*condition month*hispanic | month', 
12   simple = 'month | condition; month | hispanic', 
13   seed = 90291, 
14   burn = 10000, 
15   iter = 20000) 
16 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 

17.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          251 to 500             1.124            29   
                          501 to 1000            1.182             3   
                          751 to 1500            1.162             3   
                                  ...              ...            ..   
                         4501 to 9000            1.009             2   
                         4751 to 9500            1.008            13   
                         5001 to 10000           1.009            18 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3, but it 
additionally reports the number of observations at each level. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       student 
  Sample Size:              6874 
  Level-2 Clusters:         982 
  Missing Data Rates: 
 
                probsolve = 11.45 
                 hispanic = 08.96 
                  frlunch = 04.68 
 

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
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describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 20000 iterations using 2 chains. 
 
 
Outcome Variable:  probsolve   
 
Grand Mean Centered: frlunch 
 
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  L2 : Var(Intercept)                11.289      0.810      9.782     12.950        ---        ---   1382.218  
  L2 : Cov(month,Intercept)           0.039      0.118     -0.213      0.247        ---        ---    338.722  
  L2 : Var(month)                     0.108      0.030      0.056      0.175        ---        ---    183.745  
  Residual Var.                      12.567      0.274     12.043     13.119        ---        ---   1549.938  
 
Coefficients:                    
  Intercept                          49.364      0.306     48.770     49.974  26003.056      0.000   1802.836  
  month                               0.274      0.060      0.159      0.392     21.261      0.000   6927.856  
  hispanic                            1.359      0.300      0.766      1.945     20.531      0.000   1575.087  
  frlunch                            -0.954      0.314     -1.566     -0.344      9.195      0.002   1278.934  
  condition                          -0.420      0.280     -0.966      0.135      2.251      0.134   1712.019  
  month*condition                     0.367      0.053      0.262      0.470     47.320      0.000   8135.002  
  month*hispanic                      0.222      0.058      0.108      0.335     14.861      0.000   6372.419  
 
Standardized Coefficients:       
  month                               0.103      0.022      0.060      0.147     21.165      0.000   6594.495  
  hispanic                            0.120      0.026      0.068      0.171     21.025      0.000   1596.832  
  frlunch                            -0.071      0.023     -0.116     -0.026      9.279      0.002   1281.246  
  condition                          -0.038      0.026     -0.088      0.012      2.249      0.134   1712.357  
  month*condition                     0.147      0.021      0.105      0.189     47.391      0.000   8432.508  



MCMC: Three-Level Growth Model     

 

240 

  month*hispanic                      0.090      0.023      0.044      0.136     14.927      0.000   6528.861  
 
Proportion Variance Explained    
  by Coefficients                     0.106      0.010      0.088      0.127        ---        ---   1591.477  
  by Level-2 Random Intercepts        0.437      0.015      0.409      0.467        ---        ---   5856.196  
  by Level-2 Random Slopes            0.015      0.004      0.008      0.024        ---        ---    183.785  
  by Level-1 Residual Variation       0.440      0.013      0.415      0.466        ---        ---   2544.204  
 
                                ------------------------------------------------------------------------------ 
 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue. Unlike 
previous examples, this analysis specified 20,000 iterations because the effective sample size for 
the random slope variance was less than 100 when using 10,000 iterations.  

The results are interpreted in the same way as a complete-data multilevel analysis. The first 
section of the output table displays the variance estimates. The random intercept and slope 
variances are denoted L2:Var(Intercept) and L2:Var(month), respectively, and their 
covariance is labeled L2 : Cov(month,Intercept). The within-cluster residual variance is 
denoted Residual Var. Turning to the coefficients section, lower-order terms in a moderated 
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH (γ10 = 0.27) is the monthly change rate for non-Hispanic students 
(HISPANIC = 0) in the comparison condition (CONDITION = 0). The intervention mean difference 
(γ03 = –0.42) similarly reflects the mean difference when MONTH = 0 (at the first assessment). One 
cross-level interaction effect captures the growth rate difference for students in experimental 
schools. The positive coefficient (γ12 = 0.37) indicates that the growth rate for the experimental 
condition is greater (more positive) than that of the comparison condition. The other interaction 
captures the growth rate difference for Hispanic students. The positive coefficient (γ11 = 0.22) 
indicates that the growth rate for the Hispanic students is greater (more positive) than that of 
non-Hispanics. The 95% credible interval limits suggest that both interaction effects are 
statistically different from zero (p < .05) because the null value is outside the interval. The 
frequentist test statistics and p-values give the same conclusion. Finally, the bottom section of the 
table displays Rights and Sterba (2019) R-squared effect size values. The fixed effects explain 
10.6% of the total variation, the random intercepts account for 43.7% of the variability, and the 
random slopes account for 1.5% of the variation. 
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The SIMPLE command prints a table of conditional effects (simple slopes) of MONTH within 
each intervention condition and ethnicity group. Consistent with the positive interaction 
coefficients, the simple slopes for the experimental schools and Hispanics are higher (more 
positive) than the growth rates for controls and non-Hispanics. All four conditional effects are 
statistically significant at p < .05 because the null value does not fall within the 95% credible 
intervals. The output table is shown below.  

 

Conditional Effects                  Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
  month | condition @ 0                                                                                        
    Intercept                        49.364      0.306     48.770     49.974  26003.056      0.000   1802.836  
    Slope                             0.274      0.060      0.159      0.392     21.261      0.000   6927.856  
                                                                                                               
  month | condition @ 1                                                                                        
    Intercept                        48.945      0.263     48.434     49.463  34749.384      0.000   1572.191  
    Slope                             0.641      0.048      0.547      0.737    175.765      0.000   7697.318  
                                                                                                               
  month | hispanic @ 0                                                                                         
    Intercept                        49.364      0.306     48.770     49.974  26003.056      0.000   1802.836  
    Slope                             0.274      0.060      0.159      0.392     21.261      0.000   6927.856  
                                                                                                               
  month | hispanic @ 1                                                                                         
    Intercept                        50.724      0.235     50.269     51.191  46749.578      0.000   1747.997  
    Slope                             0.497      0.045      0.409      0.586    121.749      0.000   8389.335  
                                                                                                               
                                ------------------------------------------------------------------------------ 
 
                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero. 
 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

17.4  Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
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Blimp input file Ex17.2.imp is identical Ex17.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
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   stacked = './imps/imps.dat' 
 
     imp# school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex17.R 
 
1 library(rblimp) 
2 load('problemsolving3level.rda') 
3  
4 mymodel <- rblimp( 
5   data = problemsolving3level, 
6   clusterid = 'student', 
7   ordinal = 'hispanic frlunch condition', 
8   fixed = 'month condition', 
9   center = 'grandmean = frlunch', 
10   model = 'probsolve ~ month hispanic frlunch condition  
11     month*condition month*hispanic | month', 
12   simple = 'month | condition; month | hispanic', 
13   seed = 90291, 
14   burn = 10000, 
15   iter = 20000, 
16   nimps = 20, 
17   chains = 20) 
18 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
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imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 

17.5  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 

R Script Ex17.R 
 
1 library(rblimp) 
2 library(lme4) 
3 library(mitml) 
4 load('problemsolving3level.rda') 
5  
6 mymodel <- rblimp(...) 
7  
8 implist <- as.mitml(mymodel) 
9  
10 mean_frlunch <- mean(unlist(lapply(implist, function(df) mean(df$frlunch)))) 
11 for (i in 1:length(implist)) { 
12   implist[[i]]$frlunch.cgm <- implist[[i]]$frlunch - mean_frlunch 
13 } 
14  
15 fit <- with(implist,  
16   lmer(probsolve ~ month + frlunch + hispanic + condition  
17   + month:condition + month:hispanic + (1 + month | student), REML = T)) 
18  
19 estimates <- testEstimates(fit, extra.pars = T) 
20 estimates 
21 confint(estimates) 
 

To begin, as.mitml on Line 8 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 10 through 13 center the 
covariate at its grand mean. Lines 15 through 17 fit the focal regression model using the lmer 
function, and line 19 uses the testEstimates function in mitml to implement Rubin’s pooling 
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rules and save the results in an object called estimates. Lines 20 and 21 print the pooled 
estimates and confidence intervals.  

Following a significant group-by-time interaction effect, researchers typically examine the 
slope of the focal predictor at different values of the moderator. The final code block below 
computes these conditional effects or simple slopes of the monthly change rate at each value of 
CONDITION and HISPANIC. The constraints parameter is a text string that defines the 
computation of the conditional growth rate in each subgroup. 

 
R Script Ex17.R, continued 
 
22 testConstraints(fit, constraints = 'month + month*condition*0') 
23 testConstraints(fit, constraints = 'month + month*condition*1') 
24 testConstraints(fit, constraints = 'month + month*hispanic*0') 
25 testConstraints(fit, constraints = 'month + month*hispanic*1') 
 

17.6  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

Considering the coefficients, lower-order terms in a moderated regression are conditional 
effects that depend on scaling or centering. Specifically, the lower-order slope of MONTH (γ1̂0 = 
0.27) is the monthly change rate for non-Hispanic students (HISPANIC = 0) in the comparison 
condition (CONDITION = 0). The intervention mean difference (γ0̂3 = –0.42) similarly reflects the 
mean difference when MONTH = 0 (at the first assessment). One cross-level interaction effect 
captures the growth rate difference for students in experimental schools. The positive coefficient 
(γ1̂2 = 0.37) indicates that the growth rate for the experimental condition is greater (more 
positive) than that of the comparison condition. The other interaction captures the growth rate 
difference for Hispanic students. The positive coefficient (γ1̂1 = 0.22) indicates that the growth 
rate for the Hispanic students is greater (more positive) than that of non-Hispanics. The 
corresponding test statistics indicate that both interaction effects are statistically different from 
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zero (p < .001). Note that these estimates are numerically equivalent to those from MCMC 
estimation. 

 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
                 Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)        49.367     0.309   159.532  1677.585     0.000     0.119     0.107  
month               0.269     0.061     4.437   330.193     0.000     0.316     0.244  
frlunch.cgm        -0.923     0.314    -2.939  2950.749     0.003     0.087     0.081  
hispanic            1.365     0.294     4.644  2516.400     0.000     0.095     0.088  
condition          -0.417     0.278    -1.499  9015.743     0.134     0.048     0.046  
month:condition     0.374     0.053     7.042   867.074     0.000     0.174     0.150  
month:hispanic      0.220     0.056     3.945   656.403     0.000     0.205     0.173  
 
                             Estimate  
Intercept~~Intercept|student   11.171  
month~~month|student            0.107  
Intercept~~month|student        0.053  
Residual~~Residual             12.561  
ICC|student                     0.471  
 
                     2.5 %     97.5 % 
(Intercept)     48.7600507 49.9739434 
month            0.1495981  0.3878664 
frlunch.cgm     -1.5389275 -0.3072803 
hispanic         0.7886026  1.9411189 
condition       -0.9627592  0.1282146 
month:condition  0.2695923  0.4779414 
month:hispanic   0.1103965  0.3291800 
 

Finally, the printed output also includes the table of conditional effects or simple slopes. 
Consistent with the positive interaction coefficient, the monthly growth rate for the experimental 
schools is higher (more positive) that the growth rate for controls. 

 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
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                                Estimate Std. Error  
   month + month*condition*0:      0.269      0.061  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
     19.690       1 224.632   0.000   0.316  
 
Unadjusted hypothesis test as appropriate in larger samples. 
 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                                Estimate Std. Error  
   month + month*condition*1:      0.157      0.090  
 
Combination method: D1  
 
     F.value      df1      df2    P(>F)      RIV  
       3.022        1 2026.971    0.082    0.084  
 
Unadjusted hypothesis test as appropriate in larger samples. 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                               Estimate Std. Error  
   month + month*hispanic*0:      0.269      0.061  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
     19.690       1 224.632   0.000   0.316  
 
Unadjusted hypothesis test as appropriate in larger samples. 
 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
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                               Estimate Std. Error  
   month + month*hispanic*1:      0.636      0.181  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
     12.375       1 397.963   0.000   0.217  
 
Unadjusted hypothesis test as appropriate in larger samples. 
 

17.7  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6. 
The Mplus input file for analyzing the imputations is Ex17.inp. 

 
Mplus Script Ex17.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student wave condition teachexp eslpct ethnic  
 6   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
 7  usevariables = probsolve month hispanic frlunch condition; 
 8  cluster = student; 
 9  within = month male frlunch; 
10  between = hispanic frlunch condition; 
11  DEFINE: 
12  center frlunch (grandmean); 
13  ANALYSIS: 
14  type = twolevel random; 
15  MODEL: 
16  %within% 
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17  ranslope | probsolve on month; 
18  %between% 
19  [ranslope] (beta1); 
20  probsolve on hispanic frlunch condition; 
21  ranslope on hispanic condition (beta5-beta6) 
22  ranslope with probsolve; 
23  MODEL CONSTRAINT: 
24  new(slp_c0h0 slp_hisp1 slp_cond1); 
25  slp_c0h0 = beta1; 
26  slp_hisp1 = beta1 + beta5; 
27  slp_cond1 = beta1 + beta6; 
28  OUTPUT: 
29  cinterval; 
 

The DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand 
instructs Mplus that the input data is a list of file names. The VARIABLE command provides 
information about the data. Beginning on line 5, the names subcommand assigns names to the 
variables in the input data file, and the usevariables subcommand selects variables for the 
analysis. The cluster command on line 8 lists the school-level identifier variable that indicates 
the clustering of the data records in schools. The within and between subcommands on lines 9 
and 10 identify level-1 and level-2 predictors, respectively.  

On line 12, the center subcommand under the DEFINE command centers the three covariates 
at their grand means. The ANALYSIS command and type = twolevel random subcommand is 
required for estimating two-level models with random slopes. The MODEL section of the script 
consists of two sections: the %within% section specifies the regression of the outcome on level-1 
predictors, and the %between% section specifies the regression of the random intercepts on the 
level-2 predictors. In the %within% section, listing ranslope (an arbitrary name) to the left of the 
vertical pipe creates a level-2 latent variable capturing individual growth rates. Regressing this 
latent variable on CONDITION in the %between% model gives the cross-level interaction. Beginning 
on line 23, the MODEL CONSTRAINT command is used to compute conditional effects or simple 
slopes. First, line 24 assigns names to three new parameters (the group-specific growth rates). 
Lines 25 through 27 use parameter labels from the MODEL section to compute the conditional 
effect of MONTH7 in each experimental group. 

17.8  Mplus Output 
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The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The Rate of Missing column (also called 
the fraction of missing information in the literature) quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
Within Level 
 
Residual Variances 
    PROBSOLVE         12.561      0.353     35.534      0.000      0.091 
 
Between Level 
 
 RANSLOPE   ON 
    HISPANIC           0.220      0.055      3.971      0.000      0.175 
    CONDITION          0.374      0.052      7.166      0.000      0.155 
 
 PROBSOLVE  ON 
    HISPANIC           1.365      0.293      4.656      0.000      0.088 
    FRLUNCH           -0.923      0.304     -3.033      0.002      0.086 
    CONDITION         -0.417      0.276     -1.513      0.130      0.047 
 
 RANSLOPE WITH 
    PROBSOLVE          0.057      0.124      0.454      0.650      0.265 
 
 Intercepts 
    PROBSOLVE         49.367      0.304    162.404      0.000      0.112 
    RANSLOPE           0.269      0.059      4.559      0.000      0.258 
 
 Residual Variances 
    PROBSOLVE         11.104      0.803     13.833      0.000      0.083 
    RANSLOPE           0.105      0.033      3.193      0.001      0.294 
 
New/Additional Parameters 
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    SLP_C0H0           0.269      0.059      4.559      0.000      0.258 
    SLP_HISP           0.489      0.043     11.287      0.000      0.201 
    SLP_COND           0.643      0.047     13.575      0.000      0.131 

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and 
Between Level, respectively). Considering the coefficients, lower-order terms in a moderated 
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH (γ1̂0 = 0.27) is the monthly change rate for non-Hispanic students 
(HISPANIC = 0) in the comparison condition (CONDITION = 0). The intervention mean difference 
(γ0̂3 = –0.42) similarly reflects the mean difference when MONTH = 0 (at the first assessment). One 
cross-level interaction effect captures the growth rate difference for students in experimental 
schools. The positive coefficient (γ1̂2 = 0.37) indicates that the growth rate for the experimental 
condition is greater (more positive) than that of the comparison condition. The other interaction 
captures the growth rate difference for Hispanic students. The positive coefficient (γ1̂1 = 0.22) 
indicates that the growth rate for the Hispanic students is greater (more positive) than that of 
non-Hispanics. The corresponding test statistics indicate that both interaction effects are 
statistically different from zero (p < .001). Note that these estimates are numerically equivalent to 
those from MCMC estimation. 

17.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex17.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex17.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ school student wave condition teachexp eslpct hispanic 
4    male frlunch lowach stanmath month month7 probsolve efficacy. 
5 EXE. 
6  
7 AGGREGATE 
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8 /outfile = * mode = addvariables overwrite = yes 
9 /frlunch_mean = mean(frlunch). 
10 EXE. 
11  
12 COMPUTE frlunch_cgm = frlunch - frlunch_mean. 
13 EXE. 

 

The first line uses the CD command to change the working directory to the desktop. The 
username portion of the file path should be replaced with the user's own account name. The data 
command uses a relative file path to read the stacked data file from the desktop. Variable names 
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. On line 7, 
the AGGREGATE command adds the grand mean to the data. On line 12, a new variable is created 
that centers the FRLUNCH predictor at its pooled grand mean. 

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 14 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 15 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 16. 

 
SPSS Script Ex17.spwb, continued 

 
14 SORT CASES by imputation_. 
15 SPLIT FILE layered by imputation_. 
16 MIXED probsolve with month frlunch_cgm hispanic condition 
17   /print = solution testcov 
18   /fixed = month frlunch_cgm hispanic condition  
19    hispanic*condition month*condition 
20   /random = intercept month | subject(student) covtype(un). 

 

17.10 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
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The output also includes pooled estimates of level-2 variance and covariance parameters. The 
relative increase in variance is a fraction comparing imputation noise to complete-data sampling 
variation, and the fraction of missing information quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

The pooled regression coefficients are in the table labeled Estimates of Fixed Effects. 
The results are interpreted in the same way as a complete-data multilevel analysis. Lower-order 
terms in a moderated regression are conditional effects that depend on scaling or centering. 
Specifically, the lower-order slope of MONTH (γ1̂0 = 0.43) is the monthly change rate for non-
Hispanic students (HISPANIC = 0) in the comparison condition (CONDITION = 0). The 
intervention mean difference (γ0̂3 = –0.54) similarly reflects the mean difference when MONTH = 0 
(at the first assessment). One cross-level interaction effect captures the growth rate difference for 
students in experimental schools. The positive coefficient (γ1̂2 = 0.36) indicates that the growth 
rate for the experimental condition is greater (more positive) than that of the comparison 
condition. The other interaction captures the growth rate difference for Hispanic students. The 
positive coefficient (γ1̂1 = 0.24) indicates that the growth rate for the Hispanic students is greater 
(more positive) than that of non-Hispanics. The test statistic corresponding to the interaction 
between the MONTH and CONDITION indicates that this interaction is significant (p < .001), whereas 
the HISPANIC and CONDITION interaction was nonsignificant (p = .68). The pooled variance–
covariance matrix of the random effects and the within-cluster variance are in the table labeled 
Estimates of Covariance Parameters. 
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MCMC: Three-Level Growth Model  

 

 

 

 

This example illustrates a two-level multiple regression with random intercepts. The analysis uses 
the problemsolving3level.dat data set taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. The analysis variables are as follows. 

Name Definition Missing % Scale 

Identifier Variables 

SCHOOL School identifier 0 Integer index 

STUDENT Student identifier 0 Integer index 

Focal Variables 

PROBSOLVE Math problem-solving posttest  11.5 Numeric 

MONTH7 Time scores (end of year = 0) 0 Numeric (–6 to 0) 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/reduced lunch 

TEACHEXP Teacher years of experience 10.8 Numeric 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 

 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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18.1  Analysis Model 

The analysis is a linear growth model that features a repeatedly-measured problem-solving test 
regressed on time scores (months until the end of the school year, a level-1 predictor), 
experimental condition (level-2), the cross-level interaction of the two variables, and three grand 
mean centered covariates: gender and lunch assistance dummy codes (level-1), and years of 
teacher experience (level-2). To convey each variable’s level, the i and j subscripts denote 
repeated measurements and students, respectively, and k is the school-level identifier. 

 

𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸𝑖𝑗𝑘 = (γ00 + 𝑢0𝑗𝑘 + 𝑢0𝑘) + (γ10 + 𝑢1𝑗𝑘 + 𝑢1𝑘)(𝑀𝑂𝑁𝑇𝐻7𝑖𝑗) + γ01(𝑀𝐴𝐿𝐸𝑗
𝑐𝑔𝑚) 

+ γ02(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑗
𝑐𝑔𝑚) + γ03(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗

𝑐𝑔𝑚) + γ04(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) (32) 

+ γ11(𝑀𝑂𝑁𝑇𝐻7𝑖𝑗)(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀 

 

All coefficients with a leading zero subscript are determinants of end-of-year performance (the 
intercept, MONTH7 = 0), and all coefficients with one as a leading subscript define the monthly 
change rates. In particular, γ11 is the degree to which the intervention moderates the change 
rates. The cgm superscript indicates centering at the grand mean. Unlike a complete-data 
regression analysis, all incomplete variables require distributional assumptions, including the 
predictors. Blimp uses a factored regression specification that assigns separate distributions to 
the predictors and outcome. By default, Blimp invokes a multivariate normal distribution for 
numeric predictors and the latent response scores for discrete predictors. 

18.2  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex18.1.inp. The first six lines can be viewed as a set of 
commands that specify information about the data and variables. This script is executed in the 
Blimp Studio graphical interface. The corresponding R script is shown later in this section.  

 
Blimp Script Ex18.1.imp 
 
 1  DATA: problemsolving3level.dat; 
 2  VARIABLES: school student wave condition teachexp eslpct ethnic  
 3   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
 4  CLUSTERID: student school; 
 5  ORDINAL: male frlunch condition; 
 6  MISSING: 999; 
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 7  FIXED: month7 male condition; 
 8  CENTER: grandmean = male frlunch teachexp; 
 9  MODEL:  
10  probsolve ~ month7 male frlunch teachexp condition  
11   month7*condition  | month7; 
12  SIMPLE: month7 | condition; 
13  SEED: 90291; 
14  BURN: 20000; 
15  ITERATIONS: 50000; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data file is in the same directory as the script, as it is here. Starting on line 2, the VARIABLES 
command names the data columns. The CLUSTERID command on line 4 lists the student- and 
school-level identifier variables that indicates the clustering of the data records. The order of the 
identifier variables does not matter. Including the CLUSTERID command automatically introduces 
random intercepts at level-2 and level-3. The ORDINAL command on line 5 identifies binary and 
ordinal variables. Binary variables can be defined as ordinal or nominal, as the statistical models 
are identical. The MISSING command on line 6 defines a global missing value code as 999. 

The FIXED, CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The FIXED command 
identifies a complete predictor, which does not require a distribution or regression model. The 
CENTER command deviates the three covariates at their iteratively-estimated grand means. 
Beginning on line 9, the MODEL command lists the regression model, with outcome variable to the 
left of the tilde and predictors to the right. The product term is specified by joining the 
interacting variables with an asterisk (i.e., MONTH7*CONDITION), and listing MONTH7 to the right of 
the vertical pipe specifies this variable as a random slope predictor. The SIMPLE command 
requests the conditional effects (i.e., simple slopes) of MONTH7 at each level of CONDITION. By 
default, Blimp computes the simple slope at each level of a binary moderator listed on the 
ORDINAL line. Blimp automatically configures the explanatory variable models under the 
assumption that the numeric variables and latent response scores (discrete predictors) are 
normally distributed. Custom significance tests can be specified using the WALDTEST command, as 
shown in previous examples. 

Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
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analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

The corresponding rblimp script Ex18.R is shown below. 

 
rblimp Script Ex18.R 
 
1 library(rblimp) 
2 load('problemsolving3level.rda') 
3  
4 mymodel <- rblimp( 
5   data = problemsolving3level, 
6   clusterid = 'school student', 
7   ordinal = 'male frlunch condition', 
8   fixed = 'month7 male condition', 
9   center = 'grandmean = male frlunch teachexp', 
10   model = 'probsolve ~ month7 male frlunch teachexp  
11     condition month7*condition | month7', 
12   simple = 'month7 | condition', 
13   seed = 90291, 
14   burn = 20000, 
15   iter = 50000) 
16 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output. 

18.3  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
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diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. This analysis required a 
much longer burn-in period that previous examples. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          501 to 1000            1.938            18   
                         1001 to 2000            1.460             3   
                         1501 to 3000            1.159             8   
                                  ...              ...            ..   
                         9001 to 18000           1.019            23   
                         9501 to 19000           1.020            23   
                        10001 to 20000           1.010            27 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Section 6.3, but it 
additionally reports the number of observations at each level. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       student 
  Level-3 identifier:       school 
  Sample Size:              6874 
  Level-2 Clusters:         982 
  Level-3 Clusters:         29 
 

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
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the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 50000 iterations using 2 chains. 
 
Outcome Variable:  probsolve   
 
Grand Mean Centered: frlunch male teachexp 
 
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  L2 : Var(Intercept)                11.082      0.848      9.535     12.841        ---        ---   1038.348  
  L2 : Cov(month7,Intercept)          0.322      0.122      0.098      0.577        ---        ---    285.124  
  L2 : Var(month7)                    0.048      0.024      0.010      0.104        ---        ---    140.169  
  L3 : Var(Intercept)                 7.701      2.876      4.243     15.322        ---        ---   6049.874  
  L3 : Cov(month7,Intercept)          0.643      0.294      0.282      1.412        ---        ---   9861.675  
  L3 : Var(month7)                    0.094      0.039      0.047      0.198        ---        ---  12433.005  
  Residual Var.                      12.569      0.268     12.049     13.102        ---        ---   1308.691  
 
Coefficients:                    
  Intercept                          52.887      0.822     51.230     54.495   4139.747      0.000    324.105  
  month7                              0.455      0.098      0.263      0.649     21.531      0.000   1033.466  
  male                                0.339      0.227     -0.102      0.787      2.217      0.137   3898.624  
  frlunch                            -0.283      0.308     -0.881      0.325      0.845      0.358   3440.410  
  teachexp                            0.000      0.001     -0.002      0.003      0.032      0.858    321.552  
  condition                           1.551      1.100     -0.595      3.724      1.981      0.159    315.515  
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  month7*condition                    0.297      0.131      0.031      0.549      5.100      0.024    939.274  
 
Standardized Coefficients:       
  month7                              0.167      0.036      0.095      0.237     21.338      0.000   1026.031  
  male                                0.031      0.021     -0.009      0.071      2.217      0.136   3904.818  
  frlunch                            -0.021      0.022     -0.064      0.024      0.846      0.358   3436.749  
  teachexp                            0.009      0.067     -0.117      0.147      0.032      0.858    322.860  
  condition                           0.139      0.096     -0.053      0.322      2.046      0.153    316.432  
  month7*condition                    0.116      0.051      0.012      0.212      5.199      0.023    978.851  
 
Proportion Variance Explained    
  by Coefficients                     0.072      0.018      0.045      0.116        ---        ---    450.110  
  by Level-2 Random Intercepts        0.323      0.024      0.271      0.364        ---        ---   2792.166  
  by Level-2 Random Slopes            0.006      0.003      0.001      0.014        ---        ---    140.792  
  by Level-3 Random Intercepts        0.157      0.045      0.094      0.269        ---        ---   5603.249  
  by Level-3 Random Slopes            0.013      0.005      0.006      0.025        ---        ---  12072.560  
  by Level-1 Residual Variation       0.423      0.028      0.359      0.469        ---        ---   1665.135  
 
                                ------------------------------------------------------------------------------ 

To begin, the N_Eff values in rightmost column of the table give the effective number of 
MCMC samples for each parameter. These quantities essentially represent the number of 
independent estimates on which the parameter summaries are based after removing 
autocorrelations from the MCMC process. Gelman et al. (2014, p. 287) recommend values 
greater than 100.  All values in the example table exceed this recommended minimum. In cases 
where the N_Eff values are insufficient, increasing the value on the ITERATIONS command will 
remedy the issue. Unlike previous examples, this analysis specified 20,000 iterations because the 
effective sample size for the random slope variance was less than 100 when using 10,000 
iterations. Unlike previous examples, this analysis specified 50,000 iterations to achieve 
acceptable values.  

The results are interpreted in the same way as a complete-data multilevel analysis. The first 
section of the output table displays the variance estimates. The level-2 random intercept and 
slope variances are denoted L2:Var(Intercept) and L2:Var(month7), respectively, and their 
covariance is labeled L2 : Cov(month7,Intercept). Similarly, the level-3 random intercept and 
slope variances are denoted L3:Var(Intercept) and L3:Var(month7), respectively, and their 
covariance is labeled L3 : Cov(month7,Intercept). The within-cluster residual variance is 
denoted Residual Var. Turning to the coefficients section, lower-order terms in a moderated 
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH7 (γ10 = 0.46) is the monthly change rate for students in the comparison 
condition (CONDITION = 0), and the intervention slope (γ04 = 1.55) similarly reflects the mean 
difference when MONTH7 = 0 (at the final assessment). The interaction effect captures the growth 
rate difference for students in experimental schools. The positive coefficient (γ11 = 0.30) indicates 
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that the growth rate for the experimental condition is greater (more positive) than that of the 
comparison condition. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is well outside the interval. The frequentist test statistic 
and p-value give the same conclusion. Finally, the bottom section of the table displays Rights and 
Sterba (2019) R-squared effect size values. The fixed effects explain 7.2% of the total variation, the 
random intercepts at level-2 and level-3 account for 32.3% and 15.7% of the variability, 
respectively, and the level-2 and level-3 random slopes account for 0.6% and 1.3% of the 
variation. 

The SIMPLE command prints a table of conditional effects (simple slopes) of MONTH7 within 
each intervention condition. Consistent with the positive interaction coefficient, the simple slope 
for the experimental schools is higher (more positive) that the growth rate for controls. Both 
conditional effects are statistically significant at p < .05 because the null value does not fall within 
the 95% credible intervals. The output table is shown below.  

 

Conditional Effects                  Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
  month7 | condition @ 0                                                                                       
    Intercept                        52.887      0.822     51.230     54.495   4139.747      0.000    324.105  
    Slope                             0.455      0.098      0.263      0.649     21.531      0.000   1033.466  
                                                                                                               
  month7 | condition @ 1                                                                                       
    Intercept                        54.466      0.729     52.973     55.886   5576.054      0.000    258.252  
    Slope                             0.749      0.086      0.579      0.915     76.330      0.000    781.490  
                                                                                                               
                                ------------------------------------------------------------------------------ 
 
                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero. 
 

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  

18.4  Saving Model-Based Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (50,000 sets in this example). A 
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subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex18.2.imp is identical Ex18.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS 
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding 
autocorrelation among the imputations. The SAVE command provides a name for the imputed 
data sets. The script illustrates how to save data sets in two common formats. The stacked 
keyword creates a stacked file where all imputations are in a single file, and the separate keyword 
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To 
keep things organized, the ./imps part of the file path points to a subfolder named imps located 
within the same folder as the script and data. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 
   stacked = './imps/imps.dat' 
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     imp# school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 

The imputed data sets are subsequently analyzed in another software package, and estimates and 
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does 
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts 
for analyzing the imputed data sets are found in the next subsections. 

 In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as 
follows.  

 
rblimp Script Ex18.R 
 
1 library(rblimp) 
2 load('problemsolving3level.rda') 
3  
4 mymodel <- rblimp( 
5   data = problemsolving3level, 
6   clusterid = 'school student', 
7   ordinal = 'male frlunch condition', 
8   fixed = 'month7 male condition', 
9   center = 'grandmean = male frlunch teachexp', 
10   model = 'probsolve ~ month7 male frlunch teachexp  
11     condition month7*condition | month7', 
12   simple = 'month7 | condition', 
13   seed = 90291, 
14   burn = 20000, 
15   iter = 50000, 
16   nimps = 20, 
17   chains = 20) 
18 output(mymodel) 

 

The SAVE command is no longer necessary because imputations are automatically stored in a 
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple 
imputations. The multiple imputation point estimates, standard errors, and test statistics will be 
numerically equivalent to those produced by MCMC. 
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18.5  Analyzing Multiple Imputations in R 

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to 
perform multiple imputation inference. The script requires the mitml package (Grund et al., 
2023). 

 
R Script Ex18.R 
 
1 library(rblimp) 
2 library(lme4) 
3 library(mitml) 
4 load('problemsolving3level.rda') 
5  
6 mymodel <- rblimp(...) 
7  
8 implist <- as.mitml(mymodel) 
9  
10 mean_male <- mean(unlist(lapply(implist, function(df) mean(df$male)))) 
11 mean_frlunch <- mean(unlist(lapply(implist, function(df) mean(df$frlunch)))) 
12 mean_teachexp <- mean(unlist(lapply(implist, function(df) mean(df$teachexp)))) 
13 for (i in 1:length(implist)) { 
14   implist[[i]]$male.cgm <- implist[[i]]$male - mean_male 
15   implist[[i]]$frlunch.cgm <- implist[[i]]$frlunch - mean_frlunch 
16   implist[[i]]$teachexp.cgm <- implist[[i]]$teachexp - mean_teachexp 
17 } 
18  
19 fit <- with(implist,  
20   lmer(probsolve ~ month7  + male.cgm + frlunch.cgm + teachexp.cgm  
21   + condition + month7:condition + (1 + month7 | school/student), REML = T)) 
22  
23 estimates <- testEstimates(fit, extra.pars = T) 
24 estimates 
25 confint(estimates)  
 

To begin, as.mitml on Line 8 is an rblimp function that converts the imputation object into a 
list of data sets called implist, as required by the mitml package. Lines 10 through 17 center the 
covariates at at their pooled grand means. Lines 19 through 21 fit the focal regression model 
using the lmer function, and line 23 uses the testEstimates function in mitml to implement 
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Rubin’s pooling rules and save the results in an object called estimates. Lines 24 and 25 print the 
pooled estimates and confidence intervals.  

Following a significant group-by-time interaction effect, researchers typically examine the 
slope of the focal predictor at different values of the moderator. The final code block below 
computes these conditional effects or simple slopes of the monthly change rate at each value of 
CONDITION. The constraints parameter is a text string that defines the computation of the 
conditional growth rate in each subgroup. 

 
R Script Ex18.R, continued 
 
26 testConstraints(fit, constraints = 'month7 + month7*condition*0') 
27 testConstraints(fit, constraints = 'month7 + month7*condition*1') 
 

18.6  R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown below. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

                  Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)         52.872     0.745    70.960 2.156e+04     0.000     0.031     0.030  

month7               0.453     0.090     5.050 2.055e+03     0.000     0.106     0.097  

male.cgm             0.312     0.225     1.389 4.971e+04     0.165     0.020     0.020  

frlunch.cgm         -0.295     0.306    -0.966 2.469e+03     0.334     0.096     0.088  

teachexp.cgm         0.000     0.001     0.144 1.986e+07     0.886     0.001     0.001  

condition            1.559     0.992     1.571 6.291e+04     0.116     0.018     0.017  

month7:condition     0.300     0.118     2.552 4.434e+03     0.011     0.070     0.066  

 

                                    Estimate  

Intercept~~Intercept|student:school   11.012  

month7~~month7|student:school          0.043  
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Intercept~~month7|student:school       0.307  

Intercept~~Intercept|school            6.305  

month7~~month7|school                  0.075  

Intercept~~month7|school               0.532  

Residual~~Residual                    12.588  

 

Unadjusted hypothesis test as appropriate in larger samples. 

 

                       2.5 %       97.5 % 

(Intercept)      51.41139113 54.332267087 

month7            0.27726820  0.629304843 

male.cgm         -0.12836247  0.752495046 

frlunch.cgm      -0.89521085  0.304298130 

teachexp.cgm     -0.00198809  0.002302489 

condition        -0.38575795  3.503709185 

month7:condition  0.06952040  0.530443946 

 

The results are interpreted in the same way as a complete-data multilevel analysis. Lower-
order terms in a moderated regression are conditional effects that depend on scaling or 
centering. Specifically, the lower-order slope of MONTH7 (γ1̂0 = 0.45) is the monthly change rate 
for students in the comparison condition (CONDITION = 0), and the intervention slope (γ0̂4 = 
1.56) similarly reflects the mean difference when MONTH7 = 0 (at the final assessment). The 
interaction effect captures the growth rate difference for students in experimental schools. The 
positive coefficient (γ1̂1 = 0.30) indicates that the growth rate for the experimental condition is 
greater (more positive) than that of the comparison condition. The corresponding test statistic 
indicates that the interaction effect is statistically different from zero (t = 2.55, p = .01). Note that 
these estimates are numerically equivalent to those from MCMC estimation. The output also 
includes pooled estimates of the variance–covariance parameters at all levels. 

Finally, the printed output also includes the table of conditional effects or simple slopes. 
Consistent with the positive interaction coefficient, the monthly growth rate for the experimental 
schools is higher (more positive) that the growth rate for controls. 

 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                                  Estimate Std. Error  
   month7 + month7*condition*0:      0.453      0.090  
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Combination method: D1  
 
     F.value      df1      df2    P(>F)      RIV  
      25.506        1 1332.100    0.000    0.106  
 
Unadjusted hypothesis test as appropriate in larger samples. 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                                  Estimate Std. Error  
   month7 + month7*condition*1:      1.157      0.377  
 
Combination method: D1  
 
      F.value       df1       df2     P(>F)       RIV  
        9.410         1 1.059e+05     0.002     0.011  
 
Unadjusted hypothesis test as appropriate in larger samples. 
 

18.7  Analyzing Multiple Imputations in Mplus 

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the 
previous Blimp script, the SAVE command and the separate keyword saved each imputed data 
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also 
creates a list of file names needed for analysis in Mplus (in this example, a filed called 
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6. 
The Mplus input file for analyzing the imputations is Ex18.inp. 

 
Mplus Script Ex18.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student wave condition teachexp eslpct ethnic  
 6   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
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 7  usevariables = probsolve month7 male frlunch teachexp condition; 
 8  cluster = school student; 
 9  within = month7; 
10  between = (student) male frlunch (school) teachexp condition; 
11  DEFINE: 
12  center male frlunch teachexp (grandmean); 
13  ANALYSIS: 
14  type = threelevel random; 
15  MODEL: 
16  %within% 
17  ranslope | probsolve on month7; 
18  %between student% 
19  probsolve on male frlunch; 
20  probsolve with ranslope; 
21  %between school% 
22  [ranslope] (beta1); 
23  probsolve on teachexp condition; 
24  ranslope on condition (beta6); 
25  ranslope with probsolve; 
26  MODEL CONSTRAINT: 
27  new(slp_cond0 slp_cond1); 
28  slp_cond0 = beta1; 
29  slp_cond1 = beta1 + beta6; 
30  OUTPUT: 
31  cinterval; 
 

The DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand 
instructs Mplus that the input data is a list of file names. The VARIABLE command provides 
information about the data. Beginning on line 5, the names subcommand assigns names to the 
variables in the input data file, and the usevariables subcommand selects variables for the 
analysis. The cluster subcommand on line 8 lists the school- and student-level identifier 
variables that indicate the clustering of the data records. The within and between subcommands 
on lines 9 and 10 identify level-1, level-2, and level-3 predictors.  

On line 12, the center subcommand under the DEFINE command centers the three covariates 
at their grand means. The ANALYSIS command and type = threelevel random subcommand is 
required for estimating three-level models with random slopes at each level. The MODEL section of 
the script consists of three sections: the %within% section specifies the regression of the outcome 
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on level-1 time scores, and the %between student% section specifies the regression of the random 
intercepts on the level-2 predictors, and the %between school% section specifies the regression of 
the random intercepts on the level-3 predictors. In the %within% section, listing ranslope (an 
arbitrary name) to the left of the vertical pipe creates level-2 and level-3 latent variable capturing 
growth rates. Regressing this latent variable on CONDITION in the %between school% model gives 
the cross-level interaction. Beginning on line 26, the MODEL CONSTRAINT command is used to 
compute conditional effects or simple slopes. First, line 27 assigns names to two new parameters 
(the group-specific growth rates). Lines 28 and 29 use parameter labels from the MODEL section to 
compute the conditional effect of MONTH7 in each experimental condition. 

18.8  Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown below. The 
Rate of Missing column (also called the fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 

  Within Level 
 
Residual Variances 
    PROBSOLVE         12.563      0.812     15.467      0.000      0.013 
 
Between STUDENT Level 
 
 PROBSOLVE  ON 
    MALE               0.336      0.258      1.301      0.193      0.017 
    FRLUNCH           -0.304      0.308     -0.986      0.324      0.084 
 
 PROBSOLV WITH 
    RANSLOPE           0.300      0.144      2.084      0.037      0.101 
 
 Variances 
    RANSLOPE           0.042      0.028      1.464      0.143      0.143 
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 Residual Variances 
    PROBSOLVE         10.970      0.827     13.272      0.000      0.098 
 
Between SCHOOL Level 
 
 RANSLOPE   ON 
    CONDITION          0.301      0.113      2.663      0.008      0.058 
 
  

   PROBSOLVE  ON 
    TEACHEXP           0.014      0.073      0.191      0.848      0.033 
    CONDITION          1.558      0.949      1.642      0.101      0.015 
 
 RANSLOPE WITH 
    PROBSOLVE          0.490      0.180      2.717      0.007      0.052 
 
 Intercepts 
    PROBSOLVE         52.855      0.735     71.869      0.000      0.020 
    RANSLOPE           0.449      0.080      5.588      0.000      0.083 
 
 Residual Variances 
    PROBSOLVE          5.696      1.905      2.989      0.003      0.026 
    RANSLOPE           0.070      0.021      3.336      0.001      0.063 
 
New/Additional Parameters 
    SLP_COND           0.449      0.080      5.588      0.000      0.083 
    SLP_COND           0.749      0.079      9.545      0.000      0.017 
 

Mplus separates level-specific effects on the output (labeled Within Level and Between 
STUDENT Level, and Between SCHOOL Level). Considering the coefficients, lower-order terms in 
a moderated regression are conditional effects that depend on scaling or centering. Specifically, 
the lower-order slope of MONTH7 (𝛽1̂ = 0.45) is the monthly change rate for students in the 
comparison condition (CONDITION = 0), and the intervention slope (𝛽5̂ = 1.56) similarly reflects 
the mean difference when MONTH7 = 0 (at the final assessment). The interaction effect captures the 
growth rate difference for students in experimental schools. The positive coefficient (𝛽6̂ = 0.30) 
indicates that the growth rate for the experimental condition is greater (more positive) than that 
of the comparison condition. The corresponding test statistic indicates that the interaction is 
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statistically different from zero (z = 2.66, p = .01). Finally, the printed output also includes the 
table of conditional effects, which were computed using the MODEL CONSTRAINT command. 
Consistent with the positive interaction coefficient, the simple slope for the experimental schools 
is higher (more positive) that the growth rate for controls. Note that these estimates are 
numerically equivalent to those from MCMC estimation. 

18.9 Analyzing Multiple Imputations in SPSS 

Multiple imputations for SPSS and other commercial software packages are obtained through the 
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the 
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the 
first column identifying the individual files. The SPSS workbook file for the analysis is 
Ex18.spwb. The code block below shows the commands that import the stacked text file 
produced by Blimp. The example assumes that the data file is located on the desktop. 

 
SPSS Script Ex18.spwb 
 
1 CD '/users/username/desktop'. 
2 DATA LIST free file =  'imps.dat' 
3   /imputation_ school student wave condition teachexp eslpct ethnic male  
4    frlunch lowach stanmath month0 month7 probsolve efficacy. 
5 EXE. 
6  
7 AGGREGATE 
8   /OUTFILE = * MODE = ADDVARIABLES OVERWRITE = YES 
9   /male_mean = MEAN(male) 
10   /frlunch_mean = MEAN(frlunch)  
11   /teachexp_mean = MEAN(teachexp). 
12  
13 COMPUTE male_cgm = male - male_mean. 
14 COMPUTE frlunch_cgm = frlunch - frlunch_mean. 
15 COMPUTE teachexp_cgm = teachexp - teachexp_mean. 
16 EXE. 

 

The first line uses the CD command to change the working directory to the desktop. username 
portion of the file path should be replaced with the user's own account name. The data command 
uses a relative file path to read the stacked data file from the desktop. Variable names are listed 
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beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that 
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data, 
and the pooling routines will not function if the index variable has a different name. On line 6, 
the AGGREGATE command adds the grand means to the data. Then, beginning on line 13, 
covariates are centered at their pooled grand means. 

The next block of code fits the model to each data set and pools the results using Rubin’s rules. 
The SORT command on line 17 sorts the data by the imputation index variable, and the SPLIT 
FILE command on line 18 triggers Rubin's pooling rules for all analyses that follow. The analysis 
syntax, which can be pasted from the pull-down menus, begins on line 19. 

 
SPSS Script Ex18.spwb, continued 

 
17 SORT CASES by imputation_. 
18 SPLIT FILE layered by imputation_. 
19 MIXED probsolve with month7 male_cgm frlunch_cgm teachexp_cgm condition 
20   /print = solution testcov 
21   /fixed = month7 male_cgm frlunch_cgm teachexp_cgm  
22    condition month7*condition 
23   /random = intercept month7 | subject(school) covtype(un) 
24   /random = intercept month7 | subject(school*student) covtype(un). 

 

18.10 SPSS Output 

SPSS offers very little customization. Not every estimate on the output is pooled, and significance 
tests are generally limited to univariate t tests of individual parameters. Output tables display the 
analysis results for each data set, and the pooled results are at the bottom of each table (if they are 
produced). The figure below shows the pooled coefficients, standard errors, and test statistics. 
The output also includes pooled estimates of level-2 variance and covariance parameters. The 
relative increase in variance is a fraction comparing imputation noise to complete-data sampling 
variation, and the fraction of missing information quantifies the imputation noise in each 
estimate as proportion of its squared standard error. 

The pooled regression coefficients are in the table labeled Estimates of Fixed Effects. 
The results are interpreted in the same way as a complete-data multilevel analysis. Lower-order 
terms in a moderated regression are conditional effects that depend on scaling or centering. 
Specifically, the lower-order slope of MONTH7 (γ1̂0 = 0.46) is the monthly change rate for students 
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in the comparison condition (CONDITION = 0), and the intervention slope (γ0̂4 = 1.55) similarly 
reflects the mean difference when MONTH7 = 0 (at the final assessment). The interaction effect 
captures the growth rate difference for students in experimental schools. The positive coefficient 
(γ1̂1 = 0.30) indicates that the growth rate for the experimental condition is greater (more 
positive) than that of the comparison condition. The corresponding test statistic indicates that 
the interaction effect is statistically different from zero (t = 2.55, p = .011)1. The pooled random 
intercept and within-cluster residual variances are in the table labeled Estimates of 

Covariance Parameters. 

 

 

 

 

 
1 For unknown reasons, the SPSS results differ from the R and Mplus imputation results. This 

is presumably due to differences in optimizers. 

…

…
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FIML and MCMC: Selection Model for Regression 

 

 

 

 

This example illustrates a multiple regression analysis with a selection model that invokes a 
missing not at random process for the outcome. The analysis uses the 
behaviorachievement.dat data set taken from a longitudinal study that followed 138 students 
from primary through middle school. The file includes three annual assessments of broad 
reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The data description at the 
beginning of this document provides additional details. The variables for this analysis are as 
follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Missing Data Indicator 

M 9th grade reading missingness indicator 0 0 = observed, 1 = missing 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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19.1  Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (33) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples, auxiliary 
variables enter the model as additional outcomes that are predicted by the analysis variables and 
by each other. The additional regression equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (34) 

 

Along with the focal regression model from Equation 34, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

 A missing not at random process is invoked by specifying a selection model that links the 
missingness probabilities to the unseen outcome scores. This model features the binary missing 
data indicator regressed on the outcome variable and potentially other variables. To avoid 
excessive overlap between the focal and missingness models, the selection model used first grade 
learning problems as an additional regressor. 

 

𝑀∗ = 𝛾03 + 𝛾13(𝑅𝐸𝐴𝐷9) + 𝛾23(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝜖3 (35) 
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The asterisk superscript denotes a normally distributed latent response variable (i.e., a probit 
regression). A path diagram of the focal and selection models is shown below, with dashed lines 

indicator the missingness model parameters. The oval labeled 𝑀∗ represents latent response 
variable for the missingness indicator. 

19.2  Mplus FIML Script 

The code block below shows Mplus script Ex19.inp. 

 
Mplus Script Ex19.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5     read1 read2 read3 read9 read9grp stanread7  
 6      math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1 read2 stanread7 m; 
 8  missing = all(999); 
 9  categorical = m; 
10  DATA MISSING: 
11  names = read9; 
12  binary = m; 
13  type = missing; 
 

READING2

READING1

LRNPROB1

FIGURE 21. Solid lines denote the focal regression model parameters, and 
dotted lines are auxiliary variable parameters. Dashed lines pointing to M* 
are the missingness model parameters.

BEHSYMP1

READING9

M*

STANREAD7
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14  ANALYSIS: 
15  estimator = ml; 
16  link = probit; 
17  integration = montecarlo; 
18  MODEL:   
19  read1 lrnprob1 behsymp1;  
20  read9 on read1 lrnprob1 behsymp1; 
21  m on read9 lrnprob1; 
22  read2 on read9 read1 lrnprob1 behsymp1; 
23  stanread7 on read2 read9 read1 lrnprob1 behsymp1; 
24  OUTPUT: 
25  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data set is in the same directory as the script, as it is here. The VARIABLE command provides 
information about the data. Beginning on line 4, the names subcommand assigns names to the 
variables in the input data, the usevariables subcommand selects variables for the analysis, and 
the missing subcommand gives the global missing value code. Lines 10 through 13 define a 
binary missing data indicator called M, and the preceding categorical subcommand on line 9 
identifies the new variable as categorical. 

The DATA MISSING command that begins on line 10 creates a binary missing data indicator. 
The names subcommand on line 11 identifies the variable to be recoded, and the binary 
command on line 12 provides a name for the new variable. Finally, the type subcommand on 
line 13 identifies the binary variable as a missing data indicator. As noted previously, the 
missingness indicator is identified as a categorical variable on line 9. 

The ANALYSIS command and estimator subcommand specify full information maximum 
likelihood estimation. The default setting for a binary outcome is logistic regression. For 
consistency with the MCMC analysis in Blimp, line 16 specifies a probit link that defines the 
binary missing data indicator as a normally distributed latent response variable. Finally, the 
integration = montecarlo subcommand invokes an algorithmic method for models with 
mixed variable types. 

The MODEL section of the script consists of five lines. Listing all predictors by name on line 19 
is important because doing so invokes a multivariate normal distribution for these variables. As 
mentioned previously, assigning distributional assumptions to predictors is necessary for missing 
data handling. On line 20, the outcome variable appears to the left of the on keyword, and the 
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predictors appear to the right. The missingness model from Equation 36 appears on line 21, and 
the two auxiliary variable regressions from Equation 35 are on lines 22 and 23. Finally, the 
OUTPUT command specifies four keywords on line 25 that request a summary of the missing data 
patterns, maximum likelihood estimates of sample statistics, standardized coefficients, and 
confidence intervals. 

19.3  Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these tables is the same as those 
shown in Section 1.3.  

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. The table also 
reports regression models for auxiliary variables. These supporting parameters are not of 
substantive interest, and they do not need to be reported. The first two columns display the 
unstandardized estimates and their standard errors, and the third and fourth columns display the 
corresponding z-statistics and p-values. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READ9      ON 
    READ1              0.507      0.042     12.201      0.000 
    LRNPROB1          -0.251      0.116     -2.170      0.030 
    BEHSYMP1          -0.180      0.101     -1.783      0.075 
  
M           ON 
    READ9             -0.006      0.010     -0.633      0.527 
    LRNPROB1           0.042      0.013      3.150      0.002 
  
READ2      ON 
    READ9              0.676      0.065     10.373      0.000 



FIML and MCMC: Selection Model for Regression     

 

281 

    READ1              0.548      0.044     12.474      0.000 
    LRNPROB1          -0.284      0.083     -3.428      0.001 
    BEHSYMP1           0.412      0.076      5.395      0.000 

 
 STANREAD7  ON 
    READ2              1.903      0.924      2.060      0.039 
    READ9              1.559      0.842      1.852      0.064 
    READ1             -0.736      0.608     -1.210      0.226 
    LRNPROB1           0.540      0.662      0.817      0.414 
    BEHSYMP1          -0.753      0.658     -1.144      0.253 
 
 LRNPROB1 WITH 
    READ1            -11.635     19.119     -0.609      0.543 
 
 BEHSYMP1 WITH 
    READ1            -14.114     21.254     -0.664      0.507 
    LRNPROB1          91.527     13.505      6.777      0.000 
 
 Means 
    READ1             86.154      1.752     49.188      0.000 
    LRNPROB1          52.292      0.915     57.121      0.000 
    BEHSYMP1          49.483      1.034     47.851      0.000 

 
Intercepts 
    READ9             65.832      5.832     11.287      0.000 
    READ2            -19.011      5.741     -3.311      0.001 
    STANREAD7         19.329     50.325      0.384      0.701 
 
 Thresholds 
    M$1         2.715      1.305      2.080      0.038 
 
Variances 
    READ1            417.284     51.743      8.065      0.000 
    LRNPROB1         114.548     13.883      8.251      0.000 
    BEHSYMP1         145.486     17.587      8.272      0.000 
  
Residual Variances 
    READ9             86.368     11.474      7.528      0.000 
    READ2             38.774      5.663      6.847      0.000 
    STANREAD7       2206.056    303.868      7.260      0.000 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 12.20, p < .001). Comparing these results to the estimates that 
invoke a conditionally missing at random process provides a sensitivity check (see Section 1.3). 
Because the selection model estimates are virtually identical to those from Chapter 1, one can 
conclude that the regression parameters are somewhat robust to a different missingness process. 
This interpretation presupposes that the missingness model is correctly specified. A different set 
of predictors in the selection equation could change the estimates and the conclusion about 
robustness. 

The table also reports the missingness model parameters. The outcome variable is a latent 
response score that represents a normally distributed propensity for missingness. To establish a 
metric, the latent responses are approximately scaled as a z-score. Thus, the missingness model 
slope coefficients essentially represent the standardized change in the missingness propensities 
for a one-unit increase in the predictors. The negative coefficient for READ9 suggests that students 
with higher ninth grade reading scores have a lower probability of missing data in ninth grade, 
and the positive slope for LRNPROB1 indicates that students with elevated learning problems in 
first grade are more likely to have missing data in middle school. 

19.4  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex19.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 

 
Blimp Script Ex19.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  TRANSFORM: 
 7  m = ismissing(read9); 
 8  ORDINAL: m; 
 9  MODEL:  
10  focal model: 
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11  read9 ~ read1 lrnprob1 behsymp1; 
12  missingness.model: 
13  m ~ read9 lrnprob1; 
14  auxiliary model: 
15  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
16  SEED: 90291; 
17  BURN: 1000; 
18  ITERATIONS: 10000;  
 

The first eight lines can be viewed as a set of commands that specify information about the 
data and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a 
global missing value code as 999. The TRANSFORM command that starts on line 6 uses the 
ismissing function to create a binary missing data indicator called M. The ORDINAL command on 
line 8 identifies the indicator as a binary variable. 

The MODEL command that begins on line 9 lists the regression models, with outcome variables 
to the left of the tilde and predictors to the right. The focal model is listed on line 11, and the 
missingness (selection) model is on line 13. Line 15 is a syntax shortcut that produces the two 
auxiliary variable regression models in Equation 35; in the first model, READ2 is regressed on the 
focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. Finally, note that the MODEL block uses labels to order the regression summary tables on 
the output.  

Lines 16 through 18 can be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

The corresponding rblimp script Ex19.R is shown below. 

 
rblimp Script Ex19.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 



FIML and MCMC: Selection Model for Regression     

 

284 

3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   transform = 'm = ismissing(read9)', 
7   ordinal = 'm', 
8   model = '   
9     focal.model: 
10     read9 ~ read1 lrnprob1 behsymp1; 
11     missingness.model: 
12     m ~ read9 lrnprob1; 
13     auxiliary.model: 
14     stanread7 read2  ~ read9 read1 lrnprob1 behsymp1', 
15   seed = 90291, 
16   burn = 1000, 
17   iter = 10000) 
18 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. 

19.5  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.273            23   
                           51 to 100             1.074            40   
                           76 to 150             1.081            12   
                                 ...               ...            ..   
                          451 to 900             1.011            14   
                          476 to 950             1.007            12   
                          501 to 1000            1.015            17 
 

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 
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OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      91.783     12.981     70.696    121.147        ---        ---   6177.312  
 
Coefficients:                    
  Intercept                          66.409      5.993     54.281     77.590    122.234      0.000   6416.982  
  read1                               0.505      0.043      0.422      0.591    136.863      0.000   6710.053  
  lrnprob1                           -0.254      0.119     -0.486     -0.017      4.533      0.033   5463.375  
  behsymp1                           -0.183      0.103     -0.386      0.016      3.167      0.075   6391.699  
 
Standardized Coefficients:       
  read1                               0.687      0.040      0.599      0.755    297.770      0.000   6461.097  
  lrnprob1                           -0.181      0.084     -0.341     -0.012      4.653      0.031   5414.690  
  behsymp1                           -0.147      0.082     -0.306      0.013      3.220      0.073   6405.638  
 
Proportion Variance Explained    
  by Coefficients                     0.596      0.050      0.487      0.681        ---        ---   6280.850  
  by Residual Variation               0.404      0.050      0.319      0.513        ---        ---   6280.850  
 
                                ------------------------------------------------------------------------------ 

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue. Unlike 
previous examples, this analysis specified 20,000 iterations because the effective sample size for 
the random slope variance was less than 100 when using 10,000 iterations.  

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is well outside the interval. The frequentist test statistic 
and p-value give the same conclusion. Comparing these results to estimates that invoke a 
conditionally missing at random process provides a sensitivity check (see Section 6.3). Because 
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the selection model estimates are virtually identical to those from Chapter 6, one can conclude 
that the regression parameters are somewhat robust to a different missingness process. This 
interpretation presupposes that the missingness model is correctly specified. A different set of 
predictors in the selection equation could change the estimates and the conclusion about 
robustness. 

The table also reports the missingness model parameters. The outcome variable is a latent 
response score that represents a normally distributed propensity for missingness. To establish a 
metric, the latent responses are approximately scaled as a z-score. Thus, the missingness model 
slope coefficients essentially represent the standardized change in the missingness propensities 
for a one-unit increase in the predictors. The negative coefficient for READ9 suggests that students 
with higher ninth grade reading scores have a lower probability of missing data in ninth grade, 
and the positive slope for LRNPROB1 indicates that students with elevated learning problems in 
first grade are more likely to have missing data in middle school. Note that an unusually large R-
squared value in the missingness model (e.g., greater than 70%) is often a symptom of overfitting 
the selection equation with too many predictors. This analysis does not exhibit that symptom. 

 

  missingness.model block: 
 
Outcome Variable:  m           
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                       1.000      0.000      1.000      1.000        ---        ---        nan  
 
Coefficients:                    
  Intercept                          -2.084      1.133     -4.296      0.160      3.379      0.066   2687.691  
  read9                              -0.011      0.009     -0.029      0.007      1.360      0.243   2256.809  
  lrnprob1                            0.038      0.012      0.014      0.062      9.672      0.002   2739.452  
 
Thresholds:                      
  Tau 1                               0.000      0.000      0.000      0.000        ---        ---        nan  
 
Standardized Coefficients:       
  read9                              -0.143      0.119     -0.370      0.099      1.406      0.236   2323.761  
  lrnprob1                            0.361      0.102      0.144      0.543     12.337      0.000   2833.886  
 
Proportion Variance Explained    
  by Coefficients                     0.198      0.081      0.058      0.370        ---        ---   2190.883  
  by Residual Variation               0.802      0.081      0.630      0.942        ---        ---   2190.883  
 
                                ------------------------------------------------------------------------------ 
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The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  
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FIML and MCMC: Pattern Mixture Model For Regression 

 

 

 

 

This example illustrates a pattern mixture regression model that invokes a missing not at random 
process for the outcome. The analysis uses the behaviorachievement.dat data set taken from a 
longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, 
and a final measure of broad reading and math obtained in ninth grade. The data also contain 
teacher ratings of behavioral symptoms and learning problems were also obtained in the first 
grade. The data description at the beginning of this document provides additional details. The 
variables for this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  

LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 

READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 

READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Missing Data Indicator 

M 9th grade reading missingness indicator 0 0 = observed, 1 = missing 

 

 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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20.1  Analysis Model 

The population-level analysis model features ninth grade broad reading scores regressed on first 
grade reading achievement and teacher-rated learning problems and behavioral symptoms. 

 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (36) 

 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. 

 A missing not at random process is invoked by specifying a pattern mixture model that 
links the missingness probabilities to the unseen outcome scores. This model features the binary 
missing data indicator as a predictor and possibly a moderator. The basic idea is that the missing 
data patterns define subgroups with different parameter values. This example illustrates a process 
where students with missing scores in ninth grade have a lower reading mean. It is also possible 
for the regression coefficients to differ by pattern (see Enders, 2022, Section 9.8).  

To invoke a missing data pattern-specific mean difference, the fitted model includes the 
binary missing data indicator as a predictor 

 

𝑅𝐸𝐴𝐷9 = [𝛽0(𝑐𝑜𝑚) + 𝛽0(𝑚𝑖𝑠)(𝑀)] + 𝛽1(𝑅𝐸𝐴𝐷1) 
+ 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) +  𝛽3(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) + 𝜀 (37) 

 

such that 𝛽0(com) is the intercept (mean level) for students with complete reading scores, and 
𝛽0(diff) is outcome mean difference for students with missing data.  

Unlike a complete-data regression analysis, incomplete predictor variables also require 
distributional assumptions and models that define those distributions. The analysis uses a 
factored regression specification that uses a sequence of univariate regression models to link 
incomplete predictors. This specification was introduced throughout previous examples. The 
additional regression equations are as follows. 

 

𝑀∗ = 𝛾01 + 𝜖1 

𝐵𝐸𝐻𝑆𝑌𝑀𝑃1 = 𝛾02 + 𝛾12(𝑀) + 𝜖2 

𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾03 + 𝛾13(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾23(𝑀) + 𝜖# (38) 
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𝑅𝐸𝐴𝐷1 = 𝛾04 + 𝛾14(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾24(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾34(𝑀) + 𝜖4 

 

The asterisk subscript in the M model denotes a latent response variable (i.e., probit regression). 
Listing the missing data indicator first in the sequence is important because pattern proportions 
needed for Equation 39 are a function of the empty model’s regression intercept. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples, auxiliary 
variables enter the model as additional outcomes that are predicted by the analysis variables and 
by each other. The additional regression equations are as follows. 

 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9) + 𝛾21(𝑅𝐸𝐴𝐷1) + 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9) + 𝛾32(𝑅𝐸𝐴𝐷1) 

+ 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (39) 

 

Along with the focal regression from Equation 37 and the predictor models from Equation 40, 
the collection of regressions can be viewed as a path model, where the focal regression is one part 
of a larger network. The key difference is that the path coefficients are just a tool for linking 
incomplete variables and do not represent a substantive theory. A path diagram of the full model 
is shown below. 

FIGURE 22. Solid lines denote the focal regression model parameters, and 
dotted lines are auxiliary variable parameters. e dashed line pointing to M 
to the dependent variable is a fixed parameter that captures the mean 
difference for the cases with missing data.

M

READING9

READING2
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STANREAD7

LRNPROB1

BEHSYMP1
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The intercept coefficient from Equation 37 is a weighted average of the group-specific 
intercepts 

 

𝛽0 = 𝑝(com)𝛽0(com) + 𝑝(mis)(𝛽0(com) + 𝛽0(diff)) = 𝑝(com)𝛽0(com) + 𝑝(mis)𝛽0(mis) (40) 

 

where 𝑝(com)  and 𝑝(mis)  are the proportions of complete and missing outcome scores, 
respectively. Importantly, 𝛽0(diff) is not estimable from the data, and researchers must provide a 
value that induces the posited missing not at random process (e.g., students with missing 
outcome data have lower reading levels). Following the procedure described in Enders (2022), 
the scripts below set 𝛽0(diff) to a value that is 0.20 standard deviation units below 𝛽0(com). That is, 
the average reading level for students with missing outcome scores is lower by an amount 
commensurate with Cohen’s (1988) small effect size benchmark. 

20.2  Mplus FIML Script 

The code block below shows Mplus script Ex20.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 

 
Mplus Script Ex20.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5      read1 read2 read3 read9 read9grp stanread7  
 6      math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1 read2 stanread7 m; 
 8  missing = all(999); 
 9  categorical = m; 
10  DATA MISSING: 
11  names = read9; 
12  binary = m; 
13  type = missing; 
14  ANALYSIS: 
15  estimator = ml; 
16  link = probit; 
17  integration = montecarlo; 
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18  MODEL:  
19  [m$1] (missmean); 
20  behsymp1 on m; 
21  lrnprob1 on behsymp1 m; 
22  read1 on lrnprob1 behsymp1 m; 
23  read9 on m (beta0diff) 
24     read1 lrnprob1 behsymp1; 
25  [read9] (beta0com); read9 (resvar); 
26  read2 on read9 read1 lrnprob1 behsymp1 m; 
27  stanread7 on read2 read9 read1 lrnprob1 behsymp1 m; 
28  MODEL CONSTRAINT: 
29  new(cohensd pcom pmis beta0); 
30  cohensd = -.20; 
31  beta0diff = cohensd * sqrt(resvar); 
32  pmis = phi(-missmean); 
33  pcom = 1 - pmis; 
34  beta0 = (beta0com * pcom) + ((beta0com + beta0diff) * pmis); 
35  OUTPUT: 
36  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data set is in the same directory as the script, as it is here. The VARIABLE command provides 
information about the data. Beginning on line 4, the names subcommand assigns names to the 
variables in the input data, the usevariables subcommand selects variables for the analysis, and 
the missing subcommand gives the global missing value code. Lines 10 through 13 define a 
binary missing data indicator called M, and the preceding categorical subcommand on line 9 
identifies the new variable as categorical. 

The DATA MISSING command that begins on line 10 creates a binary missing data indicator. 
The names subcommand on line 11 identifies the variable to be recoded, and the binary 
command on line 12 provides a name for the new variable. Finally, the type subcommand on 
line 13 identifies the binary variable as a missing data indicator. As noted previously, the 
missingness indicator is identified as a categorical variable on line 9. 

The ANALYSIS command and estimator subcommand specify full information maximum 
likelihood estimation. The default setting for a binary outcome is logistic regression. For 
consistency with the MCMC analysis in Blimp, line 16 specifies a probit link that defines the 
binary missing data indicator as a normally distributed latent response variable. Finally, the 
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integration = montecarlo subcommand invokes an algorithmic method for models with 
mixed variable types. 

The MODEL command that begins on line 18 lists the regression models, with outcome 
variables to the left of the on keyword and predictors to the right. An empty model for the 
missing data indicator is listed on line 19. The label on the threshold parameter from this model 
(missmean) is used later in the code to compute the missing data pattern proportions. The 
remaining predictor models from Equation 40 appear on lines 20 through 22. Next, lines 23 
through 25 list the focal model parameters.  Line 23 assigns a label to the pattern mean difference 
(i.e., the 𝛽0(diff) coefficient from Equation 38), and line 25 labels the complete-case intercept and 
residual variance, respectively. Collectively, the labels are used later in the code to induce the 
desired effect size difference for the missing scores. Finally, lines 26 and 27 produce the two 
auxiliary variable regression models from Equation 41; in the first model, READ2 is regressed on 
the focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. 

The MODEL CONSTRAINT section of the script from lines 28 through 34 includes commands that 
define new parameters and impose constraints. First, line 29 assigns names to four new 
parameters. Line 30 provides the desired effect size difference for the group with missing data, 
and line 31 defines a mean difference parameter beta0diff that is a function of the effect size 
and residual standard deviation (see Enders, 2022, Eq. 9.29). Lines 32 and 33 use the threshold 
parameter from the missing data indicator’s model to compute the missing data pattern 
proportions. Line 34 computes the weighted intercept that averages over the missing data 
patterns (see Equation 39). Finally, the OUTPUT command specifies four keywords on line 36 that 
request a summary of the missing data patterns, maximum likelihood estimates of sample 
statistics, standardized coefficients, and confidence intervals. 

20.3  Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. These tables are illustrated in Section 1.3. 

The table of unstandardized parameter estimates is shown below. The table reports regression 
models for predictor variables and auxiliary variables. These supporting parameters are not of 
substantive interest, and they do not need to be reported. The first two columns display the 
unstandardized estimates and their standard errors, and the third and fourth columns display the 
corresponding z-statistics and p-values. The focal model results are shown in bold typeface. 
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MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 BEHSYMP1   ON 
    M           7.692      2.654      2.898      0.004 
 
 LRNPROB1   ON 
    BEHSYMP1           0.597      0.054     10.967      0.000 
    M           4.241      1.728      2.454      0.014 
 
READ1      ON 
    LRNPROB1          -0.012      0.244     -0.048      0.961 
    BEHSYMP1          -0.064      0.208     -0.306      0.760 
    M          -3.230      4.861     -0.664      0.506 
 
 READ9      ON 
    M          -1.862      0.124    -14.959      0.000 
    READ1              0.504      0.042     11.990      0.000 
    LRNPROB1          -0.248      0.117     -2.108      0.035 
    BEHSYMP1          -0.181      0.101     -1.790      0.073 
 
 READ2      ON 
    READ9              0.674      0.065     10.344      0.000 
    READ1              0.551      0.044     12.563      0.000 
    LRNPROB1          -0.290      0.084     -3.440      0.001 
    BEHSYMP1           0.414      0.077      5.415      0.000 
    M           1.124      2.244      0.501      0.617 
 
 STANREAD7  ON 
    READ2              1.891      0.923      2.048      0.041 
    READ9              1.590      0.841      1.891      0.059 
    READ1             -0.733      0.609     -1.205      0.228 
    LRNPROB1           0.493      0.678      0.728      0.467 
    BEHSYMP1          -0.737      0.659     -1.118      0.264 
    M           6.119     13.186      0.464      0.643 
 
 Intercepts 
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    READ9             66.040      5.887     11.218      0.000 
    READ1             90.485      9.209      9.826      0.000 
    LRNPROB1          21.999      2.715      8.103      0.000 
    BEHSYMP1          48.148      1.104     43.610      0.000 
    READ2            -19.003      5.776     -3.290      0.001 
    STANREAD7         18.400     50.557      0.364      0.716 
 
 Thresholds 
    M$1         0.939      0.126      7.472      0.000 

    
   Residual Variances 

    READ9             86.643     11.584      7.480      0.000 
    READ1            414.570     51.322      8.078      0.000 
    LRNPROB1          54.545      6.727      8.109      0.000 
    BEHSYMP1         137.009     16.565      8.271      0.000 
    READ2             38.759      5.658      6.850      0.000 
    STANREAD7       2200.450    303.283      7.255      0.000 
 
New/Additional Parameters 
    COHENSD           -0.200      0.000  *********      0.000 
    PCOM               0.826      0.032     25.608      0.000 
    PMIS               0.174      0.032      5.389      0.000 
    BETA0             65.716      5.887     11.162      0.000 
 

The regression slopes interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.99, p < .001). The M coefficient from the same table is the 
pattern mean difference 𝛽0(diff) (see Equation 38). The MODEL CONSTRAINT command defined a 
set of new model parameters, including weighted average intercept. The table summarizing the 
additional parameters is shown below. These quantities are found under the table labeled 
New/Additional Parameters. The weighted intercept coefficient that averages over the missing 
data patterns is labeled beta0.  

Comparing these results to estimates that invoke a conditionally missing at random process 
(see Section 1.3) provides a sensitivity check that conveys the impact of a missing not at random 
process where students with missing data have lower mean reading levels in ninth grade. This 
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comparison presupposes that the missingness model is correctly specified. The missing data 
indicator could also moderate associations in the regression model, in which case the estimates 
and conclusions about robustness could change. 

20.4  Blimp and rblimp MCMC Scripts 

The code block below shows Blimp script Ex20.inp. This script is executed in the Blimp Studio 
graphical interface. The corresponding R script is shown later in this section. 

 
Blimp Script Ex20.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  TRANSFORM: 
 7  m = ismissing(read9); 
 8  ORDINAL:  m; 
 9  MODEL:  
10  focal model: 
11  read9 ~ 1@beta0com m@beta0diff read1 lrnprob1 behsymp1; 
12  indicator.model: 
13  m ~ 1@missmean; 
14  predictor.model: 
15  read1 lrnprob1 behsymp1 ~ m; 
16  auxiliary model: 
17  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
18  PARAMETERS: 
19  cohensd = -.20; 
20  beta0diff = cohensd * sqrt(read9.totalvar); 
21  pmis = phi(missmean); 
22  pcom = 1 - pmis; 
23  beta0 = (beta0com * pcom) + ((beta0com + beta0diff) * pmis); 
24  SEED: 90291; 
25  BURN: 1000; 
26  ITERATIONS: 10000;  
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The first eight lines can be viewed as a set of commands that specify information about the 
data and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is in the same directory as the script, as it is here. Starting on line 2, 
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a 
global missing value code as 999. The TRANSFORM command that starts on line 6 uses the 
ismissing function to create a binary missing data indicator called M. The ORDINAL command on 
line 8 identifies the indicator as a binary variable. 

The MODEL command that begins on line 9 lists the regression models, with outcome variables 
to the left of the tilde and predictors to the right. The code uses model block labels (focal.model, 
indicator.model, predictor.model, and auxiliary.model) to group the regressions and order 
output tables. The focal model listed on line 11 assigns labels to intercept and the pattern mean 
difference (i.e., the 𝛽0(com) and 𝛽0(diff) coefficients from Equation 38) using the @ symbol. The 
labels are used later in the code to induce the desired effect size difference for the missing scores. 
An empty model for the missing data indicator is listed on line 13. The label on the intercept 
parameter is used later in the code to compute the missing data pattern proportions. Line 15 is a 
syntax shortcut that produces the predictor regression models in Equation 40; in the first model, 
BEHSYMP1 is regressed on the binary missing data indicator M, the second model features 
LRNPROB1 regressed on BEHSYMP1 and the indicator, and the third regression features READ1 
regressed on all other predictors. Line 17 is a similar syntax shortcut that produces the two 
auxiliary variable regression models in Equation 41; in the first model, READ2 is regressed on the 
focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. 

The PARAMETERS section of the script from lines 18 through 23 includes commands that define 
new parameters and impose constraints. Line 19 provides the desired effect size difference for the 
group with missing data, and line 20 defines a mean difference parameter beta0diff that is a 
function of the effect size and estimated standard deviation, which is obtained by appending 
.totalvar to the focal dependent variable's READ9 (see Enders, 2022, Eq. 9.29). Lines 21 and 22 
use the intercept parameter from the missing data indicator’s model to compute the missing data 
pattern proportions. Finally, line 23 computes the weighted intercept that averages over the 
missing data patterns (see Equation 41). 

Lines 24 through 26 can be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
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analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

The corresponding rblimp script Ex20.R is shown below. 

 
rblimp Script Ex20.R 
 
1 library(rblimp) 
2 load('behaviorachievement.rda') 
3  
4 mymodel <- rblimp( 
5   data = behaviorachievement, 
6   transform = 'm = 1 - ismissing(read9)', 
7   ordinal = 'm', 
8   model = '   
9     focal.model: 
10     read9 ~ 1@beta0com m@beta0diff read1 lrnprob1 behsymp1; 
11     missingness.model: 
12     m ~ 1@missmean; 
13     predictor.model: 
14     read1 lrnprob1 behsymp1 ~ m; 
15     auxiliary.model: 
16     stanread7 read2  ~ read9 m read1 lrnprob1 behsymp1', 
17   parameters = 'cohensd = -.20; 
18     beta0diff = cohensd * sqrt(read9.totalvar); 
19     pmis = phi(missmean); 
20     pcom = 1 - pmis; 
21     beta0 = (beta0com * pcom) + ((beta0com + beta0diff) * pmis)', 
22   seed = 90291, 
23   burn = 1000, 
24   iter = 10000) 
25 output(mymodel) 

 

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp 
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted 
because that information is contained in the R data file. Following R convention, the input 
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists, 
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and 
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number of iterations do not require quotes. Finally, subcommands that are part of the same 
command (e.g., different equations in the MODEL command) are separated by semicolons, as they 
are in the Blimp script. 

20.5  Blimp and rblimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.468            58   
                           51 to 100             1.107            43   
                           76 to 150             1.175             4 
                                 ...               ...            ..   
                          451 to 900             1.008            53   
                          476 to 950             1.009            67   
                          501 to 1000            1.023            67 

The MCMC summary tables include unstandardized coefficients, standardized slopes, and 
variance explained effect size estimates. MCMC estimation produces a distribution for each 
model parameter. The median and standard deviation columns describe the center and spread of 
the posterior distributions; although they make no reference to drawing repeated samples, they 
are analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. Although 
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MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior 
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates, 
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as 
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist 
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses 
are a compelling use case for computational frequentism because optimal likelihood-based 
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output 
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test; 
Asparouhov & Muthén, 2021). These Wald tests are like squared z–statistics from maximum 
likelihood estimation, but MCMC generates the point estimate and “standard error” for the test. 

The table summarizing the focal regression model is shown below. 

 

OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                      91.694     13.046     70.522    121.601        ---        ---   5903.081  
 
Coefficients:                    
  Intercept                          69.026      6.111     57.127     80.988    127.522      0.000   6333.447  
  m                                  -2.983      0.158     -3.313     -2.694    355.535      0.000   6636.674  
  read1                               0.503      0.044      0.419      0.590    133.963      0.000   7164.000  
  lrnprob1                           -0.244      0.122     -0.482     -0.004      4.013      0.045   4863.923  
  behsymp1                           -0.183      0.105     -0.393      0.021      3.083      0.079   6107.174  
 
Standardized Coefficients:       
  m                                  -0.076      0.005     -0.087     -0.067    208.040      0.000  40000.000  
  read1                               0.693      0.040      0.605      0.762    295.885      0.000   6829.250  
  lrnprob1                           -0.176      0.087     -0.343     -0.003      4.086      0.043   4902.866  
  behsymp1                           -0.149      0.084     -0.317      0.018      3.135      0.077   6112.053  
 
Proportion Variance Explained    
  by Coefficients                     0.587      0.051      0.476      0.676        ---        ---   6342.070  
  by Residual Variation               0.413      0.051      0.324      0.524        ---        ---   6342.070  
 
                                ------------------------------------------------------------------------------ 
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To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC 
samples for each parameter. These quantities essentially represent the number of independent 
estimates on which the parameter summaries are based after removing autocorrelations from the 
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in 
the example table exceed this recommended minimum. In cases where the N_Eff values are 
insufficient, increasing the value on the ITERATIONS command will remedy the issue. Unlike 
previous examples, this analysis specified 20,000 iterations because the effective sample size for 
the random slope variance was less than 100 when using 10,000 iterations.  

The regression slopes interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.50 points on READ9. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is well outside the interval. This table does not display 
the regression intercept. Rather, Intercept and M coefficients are the pattern-specific parameters, 
𝛽0(com) and 𝛽0(diff) (see Equation 38).  

The PARAMETERS command defined a set of new model parameters, including weighted 
average intercept. The table summarizing the additional parameters is shown below. 

 

GENERATED PARAMETERS: 

 

  Summaries based on 10000 iterations using 2 chains. 

 

 

Parameters                           Median     StdDev       2.5%      97.5%      ChiSq     pvalue      N_Eff  

                                ------------------------------------------------------------------------------ 

 

  cohensd                            -0.200      0.000     -0.200     -0.200        inf      0.000      2.001  

  beta0diff                          -2.983      0.158     -3.313     -2.694    355.489      0.000   6638.348  

  pmis                                0.826      0.032      0.757      0.883    646.515      0.000   3155.285  

  pcom                                0.174      0.032      0.117      0.243     29.305      0.000   3155.285  

  beta0                              66.565      6.143     54.605     78.557    117.332      0.000   6364.816  

 

                                ------------------------------------------------------------------------------ 

 

The weighted intercept coefficient that averages over the missing data patterns is labeled beta0. 
Comparing these results to estimates that invoke a conditionally missing at random process (see 
Section 6.3) provides a sensitivity check that conveys the impact of a missing not at random 
process where students with missing data have lower mean reading levels in ninth grade. This 
comparison presupposes that the missingness model is correctly specified. The missing data 
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indicator could also moderate associations in the regression model, in which case the estimates 
and conclusions about robustness could change.  

The Blimp output also includes tables of regression model parameters for auxiliary variables 
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES 
section with the focal results, and the auto-generated predictor models are displayed under the 
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these 
supporting models. These additionally results are not of substantive interest and would not be 
reported.  
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