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BLIMP VIDEQ SERIES

The Blimp video series and corresponding YouTube channel provide researchers with training for using
the Blimp software.Each video provides a short, step-by-step tutorial that walks viewers through a
particular aspect of a missing data analysis. Check back for updates, as new videos are
continually added.
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INSTALLING BLIMP 1es M2 nstitute of

//ll\\\ Education Sciences
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BLIMP 3.0

Blimp 3 offers powerful latent variable modeling and imputation
for incomplete data sets with up to three levels. Blimp's unique
Bayesian computational architecture allows easy specification
of complex analyses that are difficult or impossible to fit in

other software packages.



http://www.appliedmissingdata.com/blimp

INSTALLING R PACKAGES

® The CARS Analysis.R script includes package installation
commands at the top of the file

o0
i - % &- B B & A Gotofile/function - IR ins ~ ) Project: (None) ~

BB CARS Analyses.R* Y Envi
i AA [ @ sourceonSave @& 2. B un - - B B - @Q85MB - €
R ~

install.packages('summarytools") ¥ Clobal Environment - [Q
install.packages('ggplot2') Files Plots Packages He _ =
install.packages('psych') W Export -
install.packages('lavaan')

install.packages('semTools")

install.packages('mice')

install.packages('remotes')

remotes: :install_github('bkeller2/fdir")

ronment  History Conn _ ™

remotes::install_github('blimp-stats/rblimp"')




Modern Missing Data Methods

Missing Data Mechanisms

Maximum Likelihood Estimation

Analysis Example 1: Descriptive Statistics and Repeated Measures

Analysis Example 2: Repeated Measures With Between-Subjects Predictor
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Analysis Example 3: Multiple Regression




MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression
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MODERN MISSING DATA METHODS

Maximum likelihood

the
Big
Three

Bayesian MCMC estimation

Multiple imputation



KEY ADVANTAGES OF BIG THREE

® Achieve unbiasedness with a more realistic assumption about
the missing data process

® Allow for alternate assumptions about nonresponse process
® Use all available data, no wasted resources

® Maximize power



CHOOSING A MISSING DATA METHOD

@ All things being equal—same data, same variables, same
assumptions—the Big Three rarely produce different results

® Missing data analyses require distributional assumptions for
variables that wouldn't usually require them (e.g., predictors)

® How we represent those distributions is what matters



MODELING FRAMEWORKS

Multivariate modeling

c versions of the Big Three typically

® (lassi
assume multivariate normality
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MODELING FRAMEWORKS

Multivariate modeling
Factored regression specification

® Factored specifications invoke a unique
submodel and distribution for each variable

® Submodels can include terms that are at odds
with multivariate normality (e.g., discrete
variables, interactions, random slopes)




MISSING DATA DECISION TREE

1. Analysis features a nonlinear
effect (interaction, curvilinear,
random slope)

-3

Big 3 with a factored
regression specification

!

2. Analysis Is restricted to
normal variables

3. Analysis features zero-order
or additive effects with mixed
variable types

Big 3 with
multivariate normality

FCS/MICE multiple imputation
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HOW MUCH MISSING DATA IS TOO MUCH?

@ The Big Three can tolerate substantial amounts of missing data

@ The Big Three are increasingly better than ad hoc methods
(e.g., deleting iIncomplete records) as missingness increases

® The amount of missing data Is less important than why the
data are missing (the missingness process or mechanism)



RUBIN'S MISSING DATA MECHANISMS

@ Missing data mechanisms (processes) describe different ways
in which the data relate to nonresponse

® Missingness may be completely random or systematically
related to different parts of the data

® Mechanisms function as statistical assumptions that determine
our ability to accurately recover the parameter values



PARTITIONING THE DATA

Complete
Y; Yy Y3
4 4 3
3 3 5
! ] b
2 ] b
H 9 3
3 2 2
1 b !
9 4 9
2 9 b

* see Rubin (1976) in Biometrica

Observed
Y Y, Y;
4 4 3
3 NA H
/ ] b
NA ] §
H 9 3
3 NA NA
] b !
9 4 9
2 NA b

Missing
Y; Ys Y3
3
2
2 2
5

Indicators
M Mo  Ms
0 0 0
0 1 0
0 0 0
] 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0




MISSING COMPLETELY AT RANDOM “_>

® The probability of missing values is

Missingness | Predictors of nonresponse
completely unrelated to the data

Indicators Observed  Missing
f(M =] ‘ dataobs, datamis) = f(M = ]) “31 |\(/)|2 I\(/;B
0 1 0
©® MCAR Is purely random missingness 0 0 0
1 0 0
| 0 0 0 0 0
@ We don't care about this process or 0 1 1
testing for it (e.g,, Little's MCAR test) 8 8 8
0 1 0




(CONDITIONALLY) MISSING AT RANDOM

L Missingness | Predictors of nonresponse
® Systematic missingness related to the

observed data but unrelated to the unseen Indicators Observed  Missing
M1 |V|2 |V|3 Y] Yz Y3
latent data uL ——
0 1 0 3 NA 5
f(M = 1| dataobs, datamis) = f(M = 1| dataons) 0 0 0 71 6
1 0 0 NA 6

0 0 0 5 9 3 0
® Most Big Three applications assume CMAR 0 1 1 3 NA NA
0 0 0 1 6 7
0 0 0 9 4 9
0 1 0 2 NA 6




CONDITIONALLY MAR EXAMPLE

® CARS is interested in assessing whether information literacy
scores differ across the three time points.

® Transfer students are missing the first-year assessment
@ Students who drop out are missing later assessments

® These examples could classity as CMAR if the reasons for
missingness are unrelated to the unseen literacy scores



MISSING NOT AT RANDOM “ix
~ 2

L Missingness | Predictors of nonresponse
® Systematic missingness related to the

Indicator rv Missin
observed data and the unseen latent data dicators Observed >3IN9
Mi My Ms Yo Y2 Vs Yi. Y2 Vs
0 0 O 4 4 3
f(M =1 dataobs, datamis) 0 1 0 3 NA 5 3
0 0 O 7 1 6
. 2
® The Big Three also allow MNAR processes (') 8 8 N‘S\ ' g
(selection and pattern mixture models) U 3 NA NA 2 2
0 0 O 1 6 7
0 0 O 9 4 ¢
0 1 0 2 NA 6 S




CARS Is interested in assessing whether information literacy
scores differ across the three time points. A missing not at
random process would occur If a student’s unseen literacy score
relates to whether they have a score (missingness). In small
groups, discuss whether you think this process is plausible.



TESTING THE CMAR ASSUMPTION

® The CMAR assumption Is untestable because It stipulates no
relation between missingness and the unseen scores

@ We must rely on logical arguments about why the unseen
scores should not be related to missingness

@ When in doubt, conduct sensitivity analyses that compare the
estimates from CMAR and MNAR assumptions



MNAR MODELING

® Missing not at random processes require an explicit model that
Incorporates missing data indicators into the analysis

Selection Model Pattern Mixture Model

B




MNAR-BY-OMISSION PROCESS

@ CMAR is satisfled when'Y and My are
uncorrelated

® Analyzing the data without A induces a
spurious correlation between Y and its
indicator My (an MNAR process)

® \ariable A must be in the missing data
analysis to avoid nonresponse bias

B = analysis variables
B = unused variable

Data-Generating Model

i

MNAR-by-Omission Process

“—>->



AUXILIARY VARIABLES

® The CMAR assumption holds when the observed data In a
particular analysis model completely explain missingness

® The analysis variables usually constitute a small subset of
the available variables in a data set

® The literature often recommends an inclusive strategy that
includes auxiliary variables that are not in the focal analysis



AUXILIARY VARIABLE TYPOLOGY My = Tif missing
- My = 0 if complete

@ Auxiliary variables may correlate with only
the residuals of Y (Type B), only the
missingness of Y (Type C), or both (Type A)

-

® Type A variables are most important
because they can induce bias if ignored -
My

® Type B variables can improve power, and
type C variables are unhelpful

* see Collins et al. (2001) in Psychological Methods



SATURATED CORRELATES MODEL

B =analysis variables
B =auxiliary variables

@ Auxiliary variables enter a model via
correlations and residual correlations

N
1. Each other “_"_

2. Exogenous predictors B —
3. The residual(s) of any outcomes

® Available in the R semlools package

® Auxiliary variables correlate with ...

* see Graham (2003) in Structural Equation Modeling



SEQUENTIAL SPECIFICATION

B =analysis variables
B =auxiliary variables

® Auxiliary variables enter model as extra
dependent variables

® Auxiliary variables are regressed on ...

1. Analysis variables
2. Each other in a sequence

® Flexible and simple to implement

* see Ludtke et al. (2020) in Psychological Methods



Modern Missing Data Methods

Missing Data Mechanisms

Maximum Likelihood Estimation

Analysis Example 1: Descriptive Statistics and Repeated Measures

Analysis Example 2: Repeated Measures With Between-Subjects Predictor
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MAXIMUM LIKELIHOOD

® Maximum likelihood estimation identifies that parameter
values that are most likely to have produced the sample data

® Like OLS In the sense that estimation minimizes squared
distances between a model’s predictions and the data

® The normal distribution quantifies the size of the residuals



MOTIVATING EXAMPLE

® CARS staff want to assess whether information literacy
changes between the first and third assessment

® Descriptive statistics (means, variances, and the covariance)
are estimated from incomplete data

@ For now, we focus on the mechanics of maximum likelithood
with complete data



MULTIVARIATE NORMAL LIKELIHOOD
® The multivariate normal distribution function provides the
mathematical machinery for maximum likelihood estimation

Standardized distances
etween the data and parameters

Scaling term that makes
area under curve equal 1
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DISTRIBUTION KERNEL

® The kernel of the distribution Is key, as it defines a person’'s
data-model fit as the sum of squared standardized distances

exp(— % sum of squared z-scores) = exp (- % (Y, - p)'Z“ (Y; - p))

= ex ] nfoy; - '(012 013)_] Inioy; - 1
-0 72 nfog - W, ) \oy, o3/ \infog -,



MULTIVARIATE NORMAL CONTOURS
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LIKELIHOOD IS A HEIGHT COORDINATE

e Likelihood(Y =65and 67 | w, o, p) =.0007
o Likelihood(Y =45and 50 | w, o, p) =.0003

95 -

® Assume p = (60, 65), o =15,and p = .40
80 -
® Substituting parameters and data into

the function returns height coordinates

65 -

50

Information Literacy T3

@ Likelithood = size of residual distance
(fit) expressed as a height coordinate

35 -

30 45 60 75 90
Information Literacy T1



INDIVIDUAL LOG-LIKELIHOOD

® Taking the natural log of each person’s likelihood expresses
probability-like fit quantities on a more tractable metric

Scaling term that makes Standardized distances
area under curve equal 1 between the data and parameters

Y S -

v | | -
E'“(Zﬂ) - §|n|z‘ - E(Yi - X (Y- p)

. . . 1
height coordinate; = scaling terms + (—Esum of squared z-scores)

log-likelihood, = -



LOG-LIKELIHOOD CONTOURS
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LOG-LIKELIHOOD IS ALSO A HEIGHT COORDINATE

® Assume p = (60, 65), o =15,and p = .40

® Substituting parameters and data into
the function returns height coordinates

® |og-Likelihood = size of residual (fit)
expressed as a height coordinate

Information Literacy T3

95 -

80 -

65 -

50

35 -

Likelihood(Y = 65 and 67 | w, o, p) = .0007

e log-Likelihood(Y = 65 and 67 | w, o, p) = -7.22

Likelihood(Y = 45 and 50 | w, o, p) =.0003
® |og-Likelihood(Y = 45and 50 | u, o, p) = -7.88

30

45 60 75 90
Information Literacy T1



SAMPLE LOG-LIKELIHOOD

® The sample log-likelihood is the sum of the individual fits
N N

log-likelihood = z In(likelihood,) = E(individualdata-model fit)
=1 =1

® Higher (less negative) values imply smaller residuals

@ The goal is to find the values of u and X that maximize the
log-likelihood (minimize standardized residual distances)



LOG-LIKELIHOOD SURFACES

® The log-likelihood surface shows changes to fit as different
parameters are substituted into the normal curve function

30 45 60 /5 90 225 35 50 65 80 85 200 225 250
T1 Mean T1 Variance T3 Mean T3 Variance

Log Likelihood (Fit)



NEWTON'S ALGORITHM

® The peak of the log-likelihood function Updated estimate

resembles the peak of a parabola Current estimate

=] .
@ Newton's algorithm iteratively projects %
a parabola through the current estimate <
— o
® The point below the peak of the
parabola Is the updated estimate 200 205 25() 275

Variance



e Current
e Previous

® The updated parameter estimates improve fit and move
closer to the maximum of the log-likelihood surfaces

Log Likelihood (Fit)
.
.
.
.

30 45 60 75 90 200 225 250 275 35 50 65 80 85 200 225 250 275
T1 Mean T1 Variance T3 Mean T3 Variance



e Current
e Previous

® The updated parameter estimates improve fit and move
closer to the maximum of the log-likelihood surfaces
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30 45 60 75 90 200 225 250 275 35 50 65 80 85 200 225 250 275
T1 Mean T1 Variance T3 Mean T3 Variance



FINAL UPDATING STEP * Updated

e Current
e Previous

® The final updating step occurs when the peak of the parabola
s at the same location as the peak of the log-likelihood

Log Likelihood (Fit)
\
\

30 45 60 75 90 200 225 250 275 35 50 65 80 85 200 225 250 275
T1 Mean T1 Variance T3 Mean T3 Variance



STANDARD ERRORS

[ '] Larger standard error

] Smaller standard error
® Standard errors depend on the curvature

at the peak of the log-likelihood (0
® Steeper functions have smaller standard i
errors (the summit is more obvious), and S
flatter functions imply more uncertainty =
® Large second derivatives = more peaked r
30 45 60 75

Mean



MISSING DATA PREVIEW

® ML identifies the parameter values that minimize squared
distances between a model's predictions and the data

® Estimation uses incomplete data, no imputation performed
® People contribute different numbers of data points

@ Each observation's contribution to estimation Is restricted to
the subset of parameters for which there Is data



[0 Cases with T3 data only
[] Cases with complete data

BIVARIATE CARS ILLUSTRATION

@ CARS staff want to assess whether
Information literacy changes between the
first and third assessment

® T1scores are iIncomplete

Information Literacy T1

® The scatterplot shows the hypothetically
complete data

Information Literacy T3



[0 Cases with T3 data only
[] Cases with complete data

OBSERVED DATA

90 -
® A subset of students has information
literacy scores observed at T1and T3 = 75
® T1scores are missing for another subset g 60
® The partial T3 scores tend to be located in £ )
the lower tail of the distribution "

35 50 65 80 95
Information Literacy T3



OBSERVED-DATA LOG-LIKELIHOOD

@ The complete- and observed-data log-likelihood equations
are the same except for the 1 subscripts on the parameters

® The parameter subscripts convey that each person's fit is
computed using only the parameters for which there is data

complete-data log-likelihood. = - gln(Zn) - %In\Z\ - %(Yi - p)'2‘1(Yi - W)

v

observed-data log-likelihood, = - > In(2m) - %In\zi\ - %(Yi - pi)'z;‘(vi - )



LOG-LIKELIHOOD WITH MISSING DATA

® The log-likelithood (data-model fit) for Incomplete records
includes only parameters for which there is observed data

log-likelihood, = -
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SAMPLE LOG-LIKELIHOOD

® The sample log-likelihood is the sum of the individual fits

Ty Nmis

log-likelihood = Z (individual fit with complete data) + Z (Individual fit with partial data)
=1 =]

® The goal is to find the values of w and X that maximize fit

@ The observed data contain more information about some
parameters than others



HOW DO PARTIAL DATA RECORDS HELP?

@ Data are not filled in, but the multivariate norma
distribution acts like an imputation machine
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DELETING INCOMPLETE DATA

[] Cases with complete data

® Deleting cases with missing scores .
produces a non-representative sample e
® Scores are systematically missing from g 60
the lower tails of both distributions *‘E
£ 45
® Both means are too high . .
35 50 65 80 95

Information Literacy T3



[0 Cases with T3 data only
[] Cases with complete data

PARTIAL DATA RECORDS

90 -
® Maximum likelihood uses the partial data = 75
for students with missing T1 scores g
g 50
@ The observed T3 scores tend to be g’
located in the lower tail of the distribution £ 43
30

35 50 65 80 95
Information Literacy T3



[0 Cases with T3 data only
[] Cases with complete data

ADJUSTING THE T3 VARIANCE

@ The distribution stretches out to "
accommodate a wider range of scores = 75
@ Adding lower T3 values increases the g 60
variance relative to deletion *E
£ 45
@ The variance Is no longer biased " |
35 50 65 80 95

Information Literacy T3



[0 Cases with T3 data only
[] Cases with complete data

ADJUSTING THE T3 MEAN

90 -
: - . —
® The partial data in the lower tail pull the 5
T3 mean lower than the deletion average = .
@ The T3 mean is no longer biased 5 i
30 .
35 50 65 80 95

Information Literacy T3



[0 Cases with T3 data only

IMPLICIT IMPUTATION [] Cases with complete data
® The normal curve implies probable 90 -
values for the missing scores B
=75
® In a normal curve with a positive S y
correlation, lower T3 scores should pair 2
with lower (missing) T1 scores S 45
@ ML implicitly imputes missing values 30
35

Missing TI scores Information Literacy T3

should fall in this region



[0 Cases with T3 data only
[] Cases with complete data

ADJUSTING THE T1 DISTRIBUTION

® From the positive correlation, ML can 90 - R
: O
Intuit the presence of unseen T1 scores
. . T — 75
In the lower talil of the distribution S
. o = 60
® The estimated T1 variance increases 2
| B £ 15
® Unseen scores in the lower tail imply a
lower T1 mean, eliminating bias 30 -
35 / 50 65 80 95

Missing TI scores Information Literacy T3

should fall in this region



ESTIMATION SUMMARY

95
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MAXIMUM LIKELIHOOD PROS AND CONS

Pros Cons
@ Direct estimation for a wide range of ® Generally limited to normal data, options
analysis models for mixed metrics are less common
® Widely available in software packages ® Normal-theory methods are biased with
(any SEM program) Interactions and non-linear terms

® Easy to use, missing data handling occurs @ MLM software usually discards
behind the scenes observations with missing predictors



Modern Missing Data Methods

Missing Data Mechanisms

Maximum Likelihood Estimation

Analysis Example 1: Descriptive Statistics and Repeated Measures

Analysis Example 2: Repeated Measures With Between-Subjects Predictor
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CARS ANALYSIS EXAMPLE

@ CARS wants to assess whether information
literacy changes over time

® Descriptive statistics are obtained by specifying
a saturated model with all possible means,
variances, and covariances

lavaan's ML estimator assumes that all variables
are multivarnate normal

0
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LAVAAN SCRIPT

# all possible means, variances, and covariances
syntax <- '

info_t1 ~ 7
info_t2 ~ 7
info_t3 ~ -
info_t1 ~~ info_t1
info_t2 ~~ info_t2
info_t3 ~~ 1info_t3
info_t1 ~~ info_t2
info_t1 ~~ 1info_t3

info t2 ~~ info_t3'

mymodel <- sem.auxiliary( # semTools package for auxiliary variables 1n lavaan

model = syntax,

data = carsdat,

fixed.x = FALSE, # ml missing data requires distribution for all variables

aux = c('extra_t3','cont_t3', 'om_t3', 'ag_t3', 'ne_t3', 'male')) # saturated correlates model
summary (mymodel, standardized = TRUE) # summarize results



LAVAAN OUTPUT

Covariances:

info_t1 ~~
info_t2
info_t3

info_t2 ~~
info_t3

Intercepts:

info_t1
info_t2
info_t3

Variances:

info_t1
info_t2
info_t3

Estimate

124.738
105.597

160. 350

Estimate
67.060
63.787
68.737

Estimate
226.500
368.763
298.772

Std.

O1

Std.
0.
0.
0.

Std.
4.
8.
0.

Err

. 831
. 193

. 460

Err
220
309
254

Err
166
877
446

z-value P(>|z|) Std.lv
21.392 0.000 124.738
22.030 0.000 105.597
24.823 0.000 160.350
z-value P(>|z|) Std.lv
305.189 0.000 67.060
206 . 355 0.000 63.787
270.706 0.000 68.737
z-value P(>|z|) Std.lv
47.528 0.000 226.500
41.544 0.000 368.763
46 . 350 0.000 298.772

The lavaan output also includes the means,
variances, and covariances for the auxiliary variables

Std.all

0.432
0.406

0.483

Std.all
4.456
3.322
3.977

Std.all
1.000
1.000
1.000




MEANS WITH STD. DEV. ERROR BARS

ML-Estimated Means with SD Error Bars

80

70

Information Literacy

60

50

info_t1 info_t2 info_t3
Measurement Occasion




INTERPRETATIONS

® Means exhibit a nonlinear pattern with a decrease at T2
@ Standard deviations are unequal with greater variation at T2

® Estimates assume a CMAR process that depends on the
observed repeated measures data and auxiliary variables
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LAVAAN SCRIPT

syntax <-
subjects =~ 1*info_t1 + 1*info_t2 + 1*info_t3 # random subjects factor with loadings = 1
subjects ~ 0*x1 # random subjects factor with mean = 0
info_t1 ~ mul*1 # label the means
info_t2 ~ mu2*T
info_t3 ~ mu3x*’

info_t1 ~~ res*info_t1 # label res sets equal residual variances for compound symmetry assumption
info_t2 ~~ res*info_t?2
info_t3 ~~ res*info_t3'

mymodel <- sem.auxiliary( # semTools package for auxiliary variables in lavaan

model = syntax,

data = carsdat,

fixed.x = FALSE, # ml missing data requires distribution for predictors

aux = c('extra_t3','cont_t3"', 'om_t3"', 'ag_t3', 'ne_t3', 'male')) # saturated correlates auxiliary model
summary(mymodel, standardized = TRUE) # summarize results

lavTestWald(mymodel, 'mul == mu2; mu2 == mu3') # null that all means are equal
lavTestWald(mymodel, 'mul == mu2’) # pairwise comparison null
lavTestWald(mymodel, 'mul == mu3')

lavTestWald(mymodel, 'mu2 == mu3')




LAVAAN OUTPUT

Latent Variables:

subjects =~

info_t1
info_t2
info_t3

Covariances:

extra_t3 ~~

cont_t3
om_t3

Intercepts:

subjects
.info_t1
.info_t2
.1nfo_t3

Variances:

.1nfo_t1

.info_t2

.1nfo_t3
subjects

Estimate

1.000
1.000
1.000

Estimate

0.139
0.101

Estimate
0.000
67.046
63.933
68.749

(mul)
(mu2)
(mu3)

Estimate
167.178
167.178
167.178
123.538

(res)
(res)
(res)

Std.

Std.

Std.

S

Std.

A W w

Err

Err

.007
. 006

Err

. 249
.2176
. 251

Err

. 088
. 088
.088
.210

z-value

z-value

20.226
15.961

z-value

269.753
231.307
273.848

z-value
54.142
54.142
54.142
29.345

PC>1z])

P(>1zl)

0.000
0.000

P(>1zl)

0.000
0.000
0.000

P(>1z]|)
0.000
0.000
0.000
0.000

Std.lv

11.115
11.115
11.115

Std.lv

0.139
0.101

Std.1lv

0.000
67.046
63.933
68.749

Std.1lv
167.178
167.178
167.178

1.000

Std.

S

Std.

Std.
.000
.932
. 150
.032

A W W

Std.
.575
.575

1.

all

.652
.6352
.652

all

.324
. 251

all

all

575
000

The lavaan output also includes the means,
variances, and covariances for the auxiliary variables



WALD SIGNIFICANCE TEST OUTPUT

> lavTestWald(fiml_repeated_aux, 'mul == mu2; mu2 == mu3’) Null that all means are equal

$stat
[1] 229.2187

$df
[1] 2

$p.value
[1] ©



SIGNIFICANCE TEST OUTPUT, CONT.

> lavTestWald(fiml_repeated_aux, 'mul == mu2") Pairwise comparison

$stat

[1] 94.87408
$df

[1] 1
$p.value

[1]1 0

> lavTestWald(fiml_repeated_aux, 'mul == mu3') Pairwise Comparison

$stat

[1] 32.48125
$df

[1] 1

$p.value

[1] 1.20348e-08

> lavTestWald(fiml_repeated_aux, 'mu2 == mu3"') Pairwise comparison

$stat

[1] 226.9077
$df

[1] 1
$p.value

[1]1 0



Modern Missing Data Methods

Missing Data Mechanisms

Maximum Likelihood Estimation

Analysis Example 1: Descriptive Statistics and Repeated Measures

Analysis Example 2: Repeated Measures With Between-Subjects Predictor
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Analysis Example 3: Multiple Regression




CARS ANALYSIS EXAMPLE

®

Incomplete predictors require distributional
assumptions for missing data handling

WLS for categorical data assumes MCAR
same bias-inducing assumption as deletion

lavaan’'s ML estimator treats the binary
predictor as normally distributed
Conceptually, this “imputes” the dummy code
with decimals instead of 0s and 1s
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LAVAAN SCRIPT

syntax <-
subjects =~ 1*info_t1 + 1*info_t2 + 1*xinfo_t3 # random subjects factor with loadings = 1
subjects ~ 0*1 # random subjects factor with mean = 0
info_t1 ~ mul*1 + dif1*male # label means and differences
info_t2 ~ mu2*1 + dif2*male
info_t3 ~ mu3*x1 + dif3*male

info_t1 ~~ res*info_t1 # label res sets equal residual variances for compound symmetry assumption
info_t2 ~~ res*info_t2

info_t3 ~~ res*info_t3

fem_mul := mul # define group means

fem_mu2 := mu2

fem_mu3 := mu3

male_mul := mul + dif1

male_mu2 := mu2 + dif?2

male_mu3 := mu3 + dif3’

mymodel <- sem.auxiliary( # semTools package for auxiliary variables in lavaan
model = syntax,
data = carsdat,
fixed.x = FALSE, # ml missing data requires normal distribution for predictors (not optimal for binary predictor)
aux = c('extra_t3','cont_t3','om_t3','ag_t3','ne_t3')) # saturated correlates auxiliary model
summary(mymodel, standardized = TRUE) # summarize results

lavTestWald(mymodel, 'dif1 == dif2; dif2 == dif3') # wald test that group-by-time interaction = 0



LAVAAN OUTPUT

Latent Variables:

Regressions:

info_t1 ~
male

info_t2 ~
male

info_t3 ~
male

Covariances:

extra_t3 ~~

cont_t3
om_t3

Intercepts:

subjects
.info_t1
.info_t2
.info_t3

male

Variances:

.info_t1

.info_t2

.info_t3
subjects
male

(dif1)

(dif3)

Estimate

Estimate

-2.030

(dif2) -5.301

-4.896

Estimate

0.139
0.101

Estimate

0.000

(mul) 67.946
(mu2) 66.218
(mu3) 70.879
0.436

Estimate

(res) 166.359
(res) 166.359
(res) 166.359
120.032

0.246

Std.

Std.

Std.

Std.

(SIS BN c N CS)

Std.
.079
.079
.079
147
.004

S h W W W

Err

Err

. 501

.560

.510

Err

.007
. 006

Err

.324
.361
.328
.006

Err

z-value

z-value

-4.054

-9.474

-9.606

z-value

20.212
15.962

z-value

209.452
183.582
216.146

11.720

z-value

54.037
54.037
54.037
28.941
57.642

PC>1zl)

P(>1zl)
0.000
0.000

0.000

PC>1zl)

0.000
0.000

PC>1zl)

0.000
0.000
0.000
0.000

P(>1z|)
0.000
0.000
0.000
0.000
0.000

Std.1lv

Std.1lv

-2.030

-5.301

-4.896

Std.1lv

0.139
0.101

Std.1lv
0.000
67.946
66.218
70.879
0.436

Std.1lv

166.359
166.359
166.359

1.000
0.246

Std.

Std.

Std.
.000
.008
.867
. 146
.879

S W A~AO

Std.
.579
.567
.569
.000
.000

—_ 200

all

all

.059

.133

. 142

.all

.324
.23

all

all

The lavaan output also includes the means,
variances, and covariances for the auxiliary variables



LAVAAN OUTPUT, CONTINUED

Defined Parameters:

fem_mul
fem_mu?2
fem_mu3
male_muT
male_mu?2
male_mu3

Estimate

o/.
218
10.
05.
00.
05.

06

946

3879
916
917
983

Std.
.324
. 361
.328
. 381
427
. 388

SO ©O O OO O© O

Err

Z-value

209.
183.
216.
173.

142

452
582
146
052

. 166
169.

984

P(>|z])

SO © O©O O© O

. 000
. 000
. 000
. 000
. 000
. 000

Std.lv

o/.
06.

70
05

946
218

.879
.916
00.
05.

917
983

Std.
. 003
. 867
. 146
. 949
113
. 004

A W W pH~ W D

all



WALD SIGNIFICANCE TEST OUTPUT

$stat
[1] 32.65378

$df
[1] 2

$p.value
[1] 8.115618e-08



INTERPRETATIONS

® The group-by-time interaction was
significant (x2 = 32.65, p <.001)

@ Females decreased at T2 then rebounded to
a higher mean at T3

® Males decreased by a larger amount at T2
(about five points versus less than two), and
their T3 mean Is the same as T1

Value Axis

2

70

68
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64
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60

.e- Males .e- Females

\.

T1

s
| /
12 13



Modern Missing Data Methods

Missing Data Mechanisms

Maximum Likelihood Estimation

Analysis Example 1: Descriptive Statistics and Repeated Measures

Analysis Example 2: Repeated Measures With Between-Subjects Predictor
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Analysis Example 3: Multiple Regression




CARS ANALYSIS EXAMPLE

® Are there gender differences in T3
information literacy, controlling for T3 effort?

literacys = o + Pi(efforts) + B2(male) + €

@ WLS for categorical data assumes MCAR
same bias-inducing assumption as deletion

® lavaan's ML estimator treats the binary
predictor as normally distributed
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LAVAAN SCRIPT

# auxiliary variables for use with sem.auxiliary function

auxvars <- c('extra_t3', 'cont_t3','om_t3"', "ag_t3', 'ne_t3', 'admit_type_num')

# regression model syntax

syntax <- 'info_t3 ~ effort_t3 + male’

mymodel <- sem.auxiliary(
model = syntax,
data = carsdat,
fixed.x = FALSE, # missing data requires normal distribution for predictors (not optimal for binary)
aux = auxvars) # saturated correlates auxiliary model

summary(mymodel, standardized = TRUE) # summarize results



REGRESSION SUMMARY TABLE

Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
info_t3 ~
effort_t3 (b1) 10.010 0.337 29.699 0.000 10.010 0.413
male (b2) -2.497 0.488 -5.114 0.000 -2.497 -0.072
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
effort_t3 ~~
male -0.049 0.005 -8.996 0.000 -0.049 -0.139
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.info_t3 33.077 1.312 25.210 0.000 33.077 1.924
effort_t3 3.694 0.011 341.457 0.000 3.694 5.206
male 0.436 0.006 71.741 0.000 0.436 0.880
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.info_t3 241.188 5.20T 46.378 0.000 241.188 0.816
effort_t3 0.504 0.011 46.367 0.000 0.504 1.000
male 0.246 0.004 57.643 0.000 0.246 1.000



INTERPRETATIONS

® (o =33.08 is the mean for a female with zero effort (an
extrapolation because effort has no zero point)

® For two students with the same gender, scoring one point
higher on the effort measure was associated with a 3y =10.01
increase in information literacy

@ For two students with the same effort score, males scored 3, =
-2.50 points lower than females



MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression




WHY CHOOSE MCMC?

® MCMC readily handles complex missing data problems, including:
@ Mixed metrics (normal, ordinal, nominal, skewed, count, latent)
@ Nonlinear effects (interactions, curvilinear effects)
@ Multilevel data (random coefficients, interactions)
® Latent variable modeling (interactions)

@ FIML estimators for these scenarios are far more limited



FREQUENTIST VS. BAYESIAN PARADIGMS

Frequentist Bayesian
® The parameter Is a fixed quantity, ® Parameters are random variables with a
estimates vary across different samples distribution of plausible realizations
® Statements about probability, precision, ® Statements about probability, precision,
and confidence refer to estimates and Intervals refer to the parameter
® Probability = long run frequency of ® Probability = our degree of certainty

outcomes across many samples about a parameter after analyzing data



BAYES' THEOREM

Posterior = parameters (A) given the data (B)

Frequentist likelihood = data (B) given the parameters (A)

Unecessary scaling term

Prior = a priori belief about parameters (A)



MCMC ESTIMATION

Estimate model parameters

Impute missing values

Do fort=11010,000 iterations

» Estimate model parameters,
conditional on the filled-in data

» |Impute missing values, conditional
on the model parameters

Repeat

Summarize model parameters



MEANING OF ESTIMATION

® MCMC uses computer simulation to
'sample” parameters from a distribution

® Estimates continually vary across
iterations in a random pattern

® Each Iteration gives plausible parameter
values that could have produced our data
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SIMPLE REGRESSION ILLUSTRATION

® Information literacy at T3 regressed on effort at that occasion
infos = Bo + Pi(efforts) + €

® Each Iteration yields plausible model parameters and unique
iImputations based on those parameters

® The goal Is to summarize the parameter distributions



PRIOR DISTRIBUTIONS

® Bayesian analyses require prior distributions that encode our
beliefs about the parameter values prior to analyzing the data

@ Conceptually, prior distributions function like secondary inputs
that augment the data during estimation

® |t1s common to non-informative (diffuse) priors that impart as
little information as possible (let the data do the talking)



PRIOR DISTRIBUTIONS

@ A diffuse prior for means and coefficients @ Diffuse priors for variances are slightly

conveys that all possible parameter Informative, and different options
values are equally likely a priori function like df adjustments in regression
4 3 2 41 0 1 2 3 4 0 2 4 6 8 10

Coefficient \Variance
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PARAMETERS FROM 200 MCMC CYCLES
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SUMMARIZING MCMC ESTIMATES

@ MCMC iterates for thousands of cycles, and each cycle
produces estimates based on one filed-in data set

® Bayesian estimation yields a distribution of parameters—called
a posterior—that averages over thousands of imputations

® The posterior is a distribution of plausible parameter values
that could have produced our particular data



POSTERIOR MEDIAN AND STD. DEV.

® The posterior median and standard
deviation quantify the most likely |
| Median =5
parameter value and uncertainty Std Dev =1

® Analogous to a point estimate and
standard error but no reference to other

hypothetical samples 12 3 4 5 6 7 8 9
Parameter Value



95% CREDIBLE INTERVALS

® The 95% credible interval gives limits

spanning 95% of the parameter’s range 95% Cl = (3,7)

® Akin to a confidence interval, but
references a range of highly plausible

parameter values for one data set i 9 3 4 5 6 7 8 0

Parameter Value



MISSING DATA IMPUTATION STEP

® Missing scores are imputed by drawing replacement scores at
random from a distribution of plausible values

® The model parameters at each iteration combine to define the
center and spread of the missing data imputations

® Each imputation can be viewed as a predicted score plus a
computer-simulated random noise term



PREDICTED VALUES

90

@o)
O

—

\

Information Literacy

\

/‘ Predicted literacy scores

O
-



RESIDUAL VARIATION
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DISTRIBUTIONS OF IMPUTATIONS o = plausible literacy imputations

90 9
O
690
% O ° O o
D 00 o
2 q 0 A
5 10 9 /"3 0
S O o Sl
T 60 0% S
© ®
O O Oo
= o)
- 50 OO
40

Effort



IMPUTATIONS FOR LOW EFFORT o = plausible literacy imputations
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DRAW IMPUTATION AT RANDOM e = randomly selected imputation

(@) ~J oo
- - -

Information Literacy

O
-

N
-




IMPUTATION = PREDICTION + NOISE
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IMPUTATIONS FOR HIGH EFFORT o = plausible literacy imputations
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DRAW IMPUTATION AT RANDOM e = randomly selected imputation
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IMPUTATION = PREDICTION + NOISE
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INCOMPLETE PREDICTORS

® Incomplete predictors require their own model and
distributional assumptions

® Multivariate normal methods can mis-specify the data
distributions in a way that introduces bias

® Factored regression uses a modular specification where a
sequence of submodels replaces a multivariate model



FACTORED REGRESSION SPECIFICATIONS

© MCMC uses a factored regression
specification that invokes a unique
distribution for each variable

® The analysis consists of a collection of
univariate regression models

@ Each model can include terms that are at
odds with multivariate normality




INCOMPLETE PREDICTORS

® Effort Is the regressor in the focal model and an outcome In its
own empty model

> | efforts literacys |«—

efforts = + e /\ -/\ literacys = Po + Pr(efforts) + €

® Both models inform the distribution of predictor imputations




DISTRIBUTIONS OF IMPUTATIONS O = plausible ettort Imputations
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PREDICTED VALUES AND VARIATION

Multiple sets of model parameters define
the mean and spread of the imputations

Information Literacy




IMPUTATION EXAMPLE e = randomly selected imputation

Imputation = predicted value + random normal noise
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FILLED-IN DATA FROM ONE ITERATION ] Cases with imputed scores

] Cases with complete data
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MCMC ESTIMATION

Estimate model parameters

Impute missing values

Do fort=11010,000 iterations

» Estimate model parameters,
conditional on the filled-in data

» |Impute missing values, conditional
on the model parameters

Repeat

Summarize model parameters



PARAMETER (POSTERIOR) DISTRIBUTIONS

Median = 31.12 Median =10.25 Median = 242.98
Std. Dev. =1.26 Std. Dev, = 0.34 Std. Dev. = 5.23
95% Cl = (28.65, 33.58) 95% Cl = (9.60, 10.91) 95% Cl = (232.45, 252.97)
27 29 31 33 35 9 9.5 10 105 T 11.5 230 240 250 260

Intercept T3 Effort Slope Residual Var.



ESTIMATOR COMPARISON

The two estimators are numerically equivalent!!!

MCMC FIML

Parameter  Median SD 95% ClI Est. SE 95% ClI

Intercept 31.12 126 (28.69, 33.58) 31.12 126 (28.64, 33.58)

Effort 10.25 0.34 (9.60,10.91) 10.25 0.34 (9.60,10.91)

Residual variance  242.98 h.23 (232.85, 253.46) 242.11 523 (232.45,252.97)
R? 18 01 (.16, .20) 18 — —




MCMC AS COMPUTATIONAL FREQUENTISM

® Researchers adopting a computational frequentism view can use
MCMC results as surrogates for frequentist inference (Levy &
McNeish, 2021)

® Inthis scenario, MCMC is a flexible way to estimate frequentist
guantities when FIML solutions are unavailable (e.g., missing data)

Bayesian Inference Computational Frequentism



MCMC CONVERGENCE

@ With missing data, It Is especially important to evaluate
whether MCMC Is converging and producing reasonable results

@ MCMC converges when parameter estimates oscillate around a
stable mean, and variation doesn't change with more iterations

® The potential scale reduction factor (PSRF) compares the
similarity of parameters generated from two MCMC processes



POTENTIAL SCALE REDUCTION FACTOR

DORE — \/mean difference between chains + within-chain variation
; within-chain variation
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BETWEEN-CHAIN MEAN DIFFERENCE MCMC converges when mean estimates

from two chains are the same (PSRF = 1)

— \/mean difference between chains + within-chain variation
; within-chain variation
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WITHIN-CHAIN VARIATION

— \/mean difference between chains + within-chain variation
; within-chain variation
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CONVERGENCE

MCMC has not converged because between- MCMC has converged because between-chain
chain mean difference is large (PSR > 1.05) mean difference is very small (PSR < 1.05)
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MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression




CARS ANALYSIS EXAMPLE

@ CARS wants to assess whether information
literacy changes over time

'
,,¢ =

i s
NN
~~.~.~.~.‘..
IR

@ Descriptive statistics are obtained by specitfyin
a saturated model with all possible means,
variances, and covariances

literacy;

literacy:

@ Blimp's MCMC estimator adopts a multivariate
model for focal variables and univariate
submodes for sequential auxiliary variables

literacys




RBLIMP SCRIPT

mymodel <- rblimp(
data = carsdat,
ordinal = 'male', define binary or ordinal variables
model =
all possible correlations
info_t1 info_t2 info_t3 ~~ info_t1 info_t2 info_t3;
sequential regression models for auxiliary variables
extra_t3 cont_t3 om_t3 ag_t3 ne_t3 male ~ info_t1 info_t2 info_t3",
seed = 90291, integer random number seed
burn = 5000, number of warm-up iterations
1ter = 10000) # number of analysis 1terations
output (mymodel) view output




RBLIMP OUTPUT

Outcome Variable: 1info_t1

Parameters Estimate StdDev 2.5% 97.5% ChiSq PValue N_Eff
Variances:

Residual Var. 226.960 4.864 217.814 236.646 ——— ——= 4878 .289
Coefficients:

Intercept 67.059 0.219 66.627 67.494 93730.685 0.000 3734.402

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000 ——= ——= nan
by Residual Variation 1.000 0.000 1.000 1.000 ——= -—= nan



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t2

Parameters Estimate StdDev 2.5% 97.5% ChiSqg PValue N_Eff
Variances:

Residual Var. 369.317 8.807 352.737 387.329 —== —=c 3445, 387
Coefficients:

Intercept 63.794 0.309 63.179 64.394 42589.707 0.000 2671.121

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000 ——= ——= nan
by Residual Variation 1.000 0.000 1.000 1.000 ——= -—= nan



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t3

Parameters Estimate StdDev 2.5% 97.5% ChiSq PValue N_Eff
Variances:

Residual Var. 299.273 6.430 287.060 312.294 -—= ——= 4579.102
Coefficients:

Intercept 68.752 0.253 68.249 69.238 73828.355 0.000 3195.129

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000 ——= ——= nan
by Residual Variation 1.000 0.000 1.000 1.000 ——= -—= nan



RBLIMP OUTPUT, CONTINUED

Covariance Matrix: info_t1 info_t2 info_t3

Parameters

Covariances:
Cov(info_t1,info_t2)
Cov(info_t1,1info_t3)
Cov(info_t2,1info_t3)

Correlations:
Cor(info_t1,1info_t2)
Cor(info_t1,1info_t3)
Cor(info_t2,info_t3)

Estimate

124.
105.
160.

845
674
611

431
. 406
. 483

StdDev

6350.
108.
1016.

PValue

0.000
0.000
0.000

0.000
0.000
0.000

2115.487
2691.648
2375.172

1750.850
2417.405
1929.971



MEANS WITH STD. DEV. ERROR BARS

MCMC-Estimated Means with SD Error Bars

80
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Information Literacy

60
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info_t1 info_t2 info_t3
Measurement Occasion
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INTERPRETATIONS

® Means exhibit a nonlinear pattern with a decrease at T2
@ Standard deviations are unequal with greater variation at T2

® Estimates assume a CMAR process that depends on the
observed repeated measures data and auxiliary variables



REPEATED MEASURES ANALYSIS

@ MCMC invokes a univariate normal
distribution for each variable

® Blimp's MCMC estimator adopts a
univariate submodel for every variable

® Distributional assumptions enter on a
model-by-model basis

Outcome Models

J\ literacy;

_/\ literacy:

_/\ literacys

Latent Model




RBLIMP SCRIPT

mymodel <- rblimp(
data = carsdat,

ordinal = 'male', # define binary or ordinal variables
latent = 'subjects', # define latent variable for subjects factor
model = '

subjects ~ intercept@d; # random subjects factor with mean = 0 and loadings = 1
info_t1 ~ intercept@mul subjects@l; # @ labels the means and fixes subject factor loadings = 1
info_t2 ~ intercept@mu2 subjects@i;

info_t3 ~ intercept@mu3 subjects@l;

info_t1 ~~ info_t1@res; # @ sets equal residual variances for compound symmetry assumption
info_t2 ~~ info_t2@res;

info_t3 ~~ info_t3@res;

extra_t3 cont_t3 om_t3 ag_t3 ne_t3 male ~ info_t1 info_t2 info_t3', # sequential auxiliaries
waldtest = ¢( "'mul = mu2; mu2 = mu3', 'mul = mu2', 'mul = mu3', 'mu2 = mu3'), # significance tests
seed = 90291, # integer random number seed
burn = 5000, # number of warm-up iterations

iter = 10000) # number of analysis iterations
output(mymodel) # view output



RBLIMP OUTPUT

Latent Variable: subjects

Parameters Estimate StdDev 2.5% 97.5% ChiSq PValue N_Eff
Variances:
Residual Var. 123.561 4.112 115.359 131.540 ——- --— 1047.857

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000 —== ——= nan
by Residual Variation 1.000 0.000 1.000 1.000 ——= ——- nan



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t1

Parameters Estimate StdDev 2.5% 97.5% Ch1iSqg PValue N_Eff
Variances:

Residual Var. 167.366 3.045 161.584 173.545 ——- --—  1281.032
Coefficients:

Intercept 67.046 0.249 66.550 67.528 72212.585 0.000 2373.977

subjects @ 1.000 ——= ——= ——= S = S

Standardized Coefficients:
subjects 0.652 0.008 0.636 0.666 7364.361 0.000 887.714

Proportion Variance Explained
by Coefficients 0.425 0.010 0.405 0.443 —== ——= 887.884
by Residual Variation 0.575 0.012 0.554 0.599 ——= --—  1231.701



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t2

Parameters Estimate StdDev 2.5% 97.5% ChiSqg PValue N_Eff
Variances:

Residual Var. 167.366 3.045 161.584 173.545 ——= --—  1281.032
Coefficients:

Intercept 63.945 Q.27 63.400 64.457 55476.123 0.000 1914.174

subjects @ 1.000 ——= S S S —— —o=

Standardized Coefficients:
subjects 0.652 0.008 0.636 0.666 7364.361 0.000 887.714

Proportion Variance Explained
by Coefficients 0.425 0.010 0.405 0.443 —== ——= 887.884
by Residual Variation 0.575 0.012 0.554 0.599 ——= --—  1231.701



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t3

Parameters Estimate StdDev 2.5% 97.5% Ch1iSqg PValue N_Eff
Variances:

Residual Var. 167.366 3.045 161.584 173.545 ——- --—  1281.032
Coefficients:

Intercept 68.752 0.250 68.264 69.243 75631.476 0.000  2257.328

subjects @ 1.000 ——= ——= ——= S = S

Standardized Coefficients:
subjects 0.652 0.008 0.636 0.666 7364.361 0.000 887.714

Proportion Variance Explained
by Coefficients 0.425 0.010 0.405 0.443 —== ——= 887.884
by Residual Variation 0.575 0.012 0.554 0.599 ——= --—  1231.701



WALD SIGNIFICANCE TEST OUTPUT

MODEL FIT:

WALD TESTS (Asparouhov & Muthén, 2021)
Test #1
Full:

1] info_t1 ~ Intercept@mul info@1
2] 1info_t2 ~ Intercept@mu2 info@T

3 info_t3 ~ Intercept@mu3 info@1
Restricted:

1] 1info_t1 ~ Intercept@mul info@T

2] 1info_t2 ~ Intercept@mu2 info@]

3] 1info_t3 ~ Intercept@mu3 info@]

Constraints in Restricted:

[1] mul = mu2 Omnibus null hypothesis that all means are equal
[2] mu2 = mu3

Wald Statistic (Chi-Square) 228.009
Number of Parameters Tested (df) 2
Probability 0.000



SIGNIFICANCE TEST OUTPUT, CONT.

Test #2

Constraints in Restricted:

11 mul = mu2 Pairwise comparison
Wald Statistic (Chi-Square) 94.617
Number of Parameters Tested (df) T
Probability 0.000
Test #3

Constraints in Restricted:

17 mul = mu3 Palrwise comparison
Wald Statistic (Chi-Square) 33.071
Number of Parameters Tested (df) T
Probability 0.000
Test #4

Constraints in Restricted:

11 mu2 = mu3 Palrwise comparison
Wald Statistic (Chi-Square) 225.931
Number of Parameters Tested (df) T

Probability 0.000



MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression




BLIMP VARIABLE TYPES

Exogenous Predictors

/\ <A Ju .n

Normal
(Manifest)

Binary Ordinal Nominal

Univariate Outcomes

. A du I A e K\

Normal Binary Ordinal Nominal Skewed Count Iwo-Part

(Manifest or Latent) (Manifest or Latent) (Floor Effects)

Multivariate Outcomes

AN BN AN

Normal Binary Ordinal Skewed

(Manifest or Latent) (Manifest or Latent)




LATENT RESPONSE FRAMEWORK

@ MCMC methods for discrete data use an underlying latent
response variable that represents a continuous propensity for
the construct being measured

@ An inverse link function provides a rule for converting the
continuous propensities to the discrete metric

® Working with latent responses is essentially a computational
trick that allows simpler estimation routines for linear models



LATENT RESPONSE FORMULATION

Binary

Discrete Response

Latent Response

Ordinal

Discrete Response

Latent Response

Multicategorical

Discrete Response

Latent Response



INCOMPLETE GENDER VARIABLE

® Probit regression envisions binary and ordinal variables arising
from an underlying normal latent response variable

® Applied to the incomplete gender, the latent variable represents
an unobserved, continuous propensity for being male

® Athreshold carves the latent distribution into segments that
represent the male and female probabilities



LATENT AND DISCRETE DISTRIBUTIONS

® The threshold parameter divides the latent distribution into segments,
with areas under the curve matching the bar plot probabilities

Threshold

>

S —
S S
2 =
E S
2

4 -3 2 1 0 1 2 3 4 Female Male

Male* (Latent Response) Male Dummy Code



ORDINAL VARIABLES

® Multiple threshold parameters divide the latent distribution into
segments, with areas under the curve matching the bar plot

Thresholds

0.5
=
S 03 _
= =
0:3 0.2 §_
= —
= O-
o

0.0

-4 -2 0 2 4 1 2 3 4

Latent Dimension Ordered Categories



IMPUTING LATENT RESPONSE SCORES

® Latent response scores are 100% missing data that need to be
imputed for the entire sample

® MCMC uses computer simulation to “sample” latent response
scores from a normal curve, just like any other incomplete
variable (imputation = prediction + noise)

@ Whether the latent scores are above or below the threshold
determines whether the discrete impute equals 0 or 1



MCMC ESTIMATION

Do fort=11010,000 iterations

Estimate model parameters » Estimate model parameters, conditional
on the latent and manifest data

» Impute missing values and latent
response scores, conditional on the
model parameters

» Assign latent imputes to categories

Repeat

Impute missing values

Summarize model parameters



LATENT AND DISCRETE DISTRIBUTIONS

® Latent imputations must fall below or above threshold if the
binary variable is observed, and they are unconstrained if missing

Threshold Threshold

male =0 male = NA

&
.-I -=’

4 -3 2 1 0 1 2 3 4 -4 -3 -2 101 2 3 4-4-3=-2-1201 2 3 4
Male* (Latent Dimension) Male* (Latent Dimension) Male* (Latent Dimension)




Threshold

male*

Suppose the latent response imputation for mpute = 15

a student with a missing gender score was
1.5. What gender group would the probit
model assign to this person?

4 -3 -2 -1 0 1 2 3 4
Male* (Latent Dimension)



MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression




CARS ANALYSIS EXAMPLE

® CARS wants to assess whether information literacy changes
over time and whether that changes differs by gender

® Incomplete predictors require distributional assumptions for
missing data handling

@ MCMC readily accommodates incomplete variables with
different metrics



FACTORED REGRESSION SPECIFICATION

Incomplete Predictor Model Outcome Models Latent Model

J\

literacy;

|| > | literacy; o ||

literacys

J\




RBLIMP REPEATED MEASURES SCRIPT

mymodel <- rblimp(
data = carsdat,

ordinal = 'male', # define binary or ordinal variables
latent = 'subjects', # define latent variable for subjects factor
model = '

subjects ~ intercept@@; # random subjects factor with mean = @ and loadings = 1

info_t1 ~ intercept@mul subjects@l male@dif1; # @ labels means and differences and fixes loadings to 1
info_t2 ~ intercept@mu2 subjects@l male@dif2;

info_t3 ~ intercept@mu3 subjects@l male@dif3;

info_t1 ~~ info_t1@res; # @ sets equal residual variances for compound symmetry assumption

info_t2 ~~ info_t2@res;

info_t3 ~~ info_t3@res;

extra_t3 cont_t3 om_t3 ag_t3 ne_t3 male ~ info_t1 info_t2 info_t3', # sequential auxiliaries
waldtest = 'dif1 = dif2; dif2 = dif3', # wald test that group-by-time interaction = 0
parameters = ' # define group means

fem_mul = mul;

fem_mu2 = mu2;

fem_mu3 = mu3;

male_mul = mul + dif1;

male_mu2 = mu2 + dif2;

male_mu3 = mu3 + dif3;"',
seed = 90291, # integer random number seed
burn = 5000, # number of warm-up iterations
iter = 10000) # number of analysis iterations

output(mymodel) # view output



RBLIMP OUTPUT

Outcome Variable: 1info_t1

Parameters Estimate StdDev 2.5% 97.5% ChiSqg PValue N_Eff
Variances:
Residual Var. 166.571 3.161 160.439 172.945 ——= --— 1112.374
Coefficients:
Intercept 67.954 0.322 67.322 68.598 44445 .588 0.000 2157.623
subjects @ 1.000 ——= S S S —— —o=
male -2.038 0.499 -3.024 -1.062 16.695 0.000 2062.233

Standardized Coefficients:
subjects 0.646 0.008 0.630 0.662 6202.366 0.000 778.239
male -0.060 0.015 -0.088 -0.031 16.762 0.000 2054 . 457

Proportion Variance Explained
by Coefficients 0.421 0.011 0.400 0.447 —== ——= 784 .686
by Residual Variation 0.579 0.012 0.555 0.603 ——= --— 1052.147



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t2

Parameters Estimate StdDev 2.5% 97.5% ChiSqg PValue N_Eff
Variances:
Residual Var. 166.571 3.161 160.439 172.945 ——= --— 1112.374
Coefficients:
Intercept 66.233 0.362 65.513 66.938 33523.741 0.000 1569.466
subjects @ 1.000 ——= S S S —— —o=
male -5.303 0.562 -6.415 -4.220 89.203 0.000 1587.404

Standardized Coefficients:
subjects 0.640 0.008 0.623 0.655 6040 .640 0.000 815.201
male -0.154 0.016 -0.185 -0.123 92.286 0.000 1581.583

Proportion Variance Explained
by Coefficients 0.433 0.011 0.412 0.453 —== ——= 177 .480
by Residual Variation 0.567 0.012 0.543 0.592 ——= --—  1030.909



RBLIMP OUTPUT, CONTINUED

Outcome Variable: 1info_t3

Parameters Estimate StdDev 2.5% 97.5% ChiSqg PValue N_Eff
Variances:
Residual Var. 166.571 3.161 160.439 172.945 ——= --— 1112.374
Coefficients:
Intercept 70.894 0.326 70.255 71.530 47302.378 0.000 2123.967
subjects @ 1.000 ——= S S S —— —o=
male -4.914 0.502 -5.892 -3.921 95.720 0.000 1979.720

Standardized Coefficients:
subjects 0.641 0.008 0.624 0.656 6143.042 0.000 795.942
male -0.142 0.014 -0.170 -0.114 98.396 0.000 1971.855

Proportion Variance Explained
by Coefficients 0.431 0.011 0.410 0.457 —== ——= 791.496
by Residual Variation 0.569 0.012 0.546 0.594 ——= --—  1048.678



GROUP MEAN OUTPUT

GENERATED PARAMETERS:

Summaries based on 10000 iterations using 2 chains.
NOTE: Estimate column based on posterior median.

Parameters

fem_mu
fem_mu2
fem_mu3
male_muT
male_mu?2
male_mu3

Estimate

o/.
06.
10.
05.
00.
05.

954
233
394
918
924
984

S OO SO

o/.
05.
10.
05.
00.
05.

03.
06.
. 530
06.
. 163
06.

/1

o1

598
938

6/2

147

SO O O OO O




WALD SIGNIFICANCE TEST OUTPUT

MODEL FIT:

INFORMATION CRITERIA
Conditional Likelihood
DIC2 278349.136
WAIC 288741 .492
WALD TESTS (Asparouhov & Muthén, 2021)

Test #1

Constraints in Restricted:
[1] dif1 = dif?2
[2] dif2 = dif3

Null hypothesis that group-by-time interaction = 0 (no time-specific mean differences)

Wald Statistic (Chi-Square) 33.123
Number of Parameters Tested (df) 2
Probability 0.000



INTERPRETATIONS

® The group-by-time interaction was
significant (x2 = 33.12, p <.001)

@ Females decreased at T2 then rebounded to
a higher mean at T3

® Males decreased by a larger amount at T2
(about five points versus less than two), and
their T3 mean Is the same as T1

Value Axis

2

70

68

66

64

62

60

.e- Males .e- Females

\.

T1

s
| /
12 13



MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression




CARS ANALYSIS EXAMPLE

® Are there gender differences in T3 information literacy,
controlling for T3 effort?

literacys = Bo + Pi(efforts) + Bo(male) + €

@ Maximum likelihood estimation in lavaan treats the discrete
predictor as normally distributed (conceptually, this “imputes’
decimal values instead of 0s and 1s)

@ MCMC allows mixtures of categorical and continuous variables



FACTORED REGRESSION SPECIFICATION

Incomplete Predictor Model Outcome Model

literacys

J\




RBLIMP SCRIPT

mymodel <- rblimp(
data = carsdat,

ordinal = 'male admit_type', define binary or ordinal variables
center = 'effort_t3', 1terative grand mean centering
model = '

focal model
info_t3 ~ effort_t3 male;

sequential regression models for auxiliary variables
extra_t3 cont_t3 om_t3 ag_t3 ne_t3 admit_type ~ info_t3 effort_t3 male',

seed = 90291, integer random number seed
burn = 5000, number of warm-up 1terations
1ter = 10000) number of analysis iterations

output (mymodel) view output




RBLIMP OUTPUT

Parameters Estimate
Variances:
Residual Var. 241 .488
Coefficients:
Intercept 70.061
effort_t3 10.010
male -2.511

Standardized Coefficients:
effort_t3 0.413
male -0.072

Proportion Variance Explained
by Coefficients 0.184
by Residual Variation 0.816

StdDev

0.330
0.338
0.488

0.012
0.014

0.010
0.010

231.542

69.413
9.341
-3.453

0.388
-0.099

0.164
0.796

251.

10.
10.
. 541

349

7105
679

436
044

. 204
. 836

45175.
3878.
26.

1128.
26.

243
118
349

004
567

PValue

S

. 000
. 000
. 000

. 000
. 000

4643.665

2561.768
4431.186
4143.186

4108.547
4155.379

3978.725
3978.725



INTERPRETATIONS

® The female literacy mean was [3o = 70.06

® For two students with the same gender, scoring one point
higher on the effort measure was associated with a 3y =10.01
increase in information literacy

@ Fortwo students with the same effort score, males scored 3, =
-2.51 points lower than females



MCMC Estimation
Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC With Categorical Variables

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression
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Analysis Example 4: Moderated Regression




MODERATION

® Moderation occurs when a focal predictor’s influence on the
outcome depends on a third (moderator) variable

® For whom does an eftect apply?

©@ We model moderation effects by including the product of two
predictors in the regression model (Y =X+ M + X x M)



CARS ANALYSIS EXAMPLE

@ Does the influence of effort on literacy vary by gender?
literacys = o + Pi(efforts) + B2(male) + Bs(efforts)(male) + €

® [ and 3, are conditional effects: {3 Is the influence of the
effort when gender (the moderator) equals zero, and {3, is the
gender difference when effort (the focal predictor) equals zero

® [slis the change in (3 for a one-unit increase in the moderator



INCOMPLETE PRODUCT TERMS

® Incomplete products should not be treated as unique variables
(the "just another variable” method), as this causes bias

® Rather, product terms should be viewed as deterministic
functions of the incomplete predictors

@ When the interaction is non-zero, predictor imputations
become non-normal (heteroscedastic) to accommodate the
nonlinearity in the focal model



DISTRIBUTION OF IMPUTATIONS

® Multiple sets of model parameters define the mean and spread of the
iImputations, and variation Is heteroscedastic (depends on gender)

-
2
5 1 ([3] + [33male)
effortsfinfog,male = | 2 T

Yo +ymale* (B, + B,male)(info; - B - ﬁzmale))

effort; = Ggffortglinf03,male . ( 2 2
O¢ O

O~ 00
O OOOO%OQOOOO

Effort Imputations



MISSING DATA DECISION TREE

Interaction and nonlinear effects require factored specifications with specialized software.

1. Analysis features a nonlinear
effect (interaction, curvilinear,
random slope)

Big 3 with a factored
regression specification




FACTORED REGRESSION SPECIFICATION

Incomplete Predictor Model Outcome Model

literacys




RBLIMP SCRIPT

mymodel <- rblimp(
data = carsdat,

ordinal = 'male admit_type', define binary or ordinal variables
center = 'effort_t3", 1terative grand mean centering
model = '

focal model
info_t3 ~ effort_t3 male effort_t3*male, the * specifies an interaction

sequential regression models for auxiliary variables
extra_t3 cont_t3 om_t3 ag_t3 ne_t3 admit_type ~ info_t3 effort_t3 male’,

simple = 'effort_t3 | male', simple intercepts and slopes
seed = 90291, integer random number seed

burn = 5000, number of warm-up 1terations

1ter = 10000) number of analysis 1terations

output(mymodel) view output
simple_plot(info_t3 ~ effort_t3 | male, mymodel) plot simple intercepts slopes




REGRESSION SUMMARY TABLE

Parameters Estimate
Variances:
Residual Var. 240.003
Coefficients:
Intercept 710.204
effort_t3 8.353
male -2.436
effort_t3*male 3.694

Proportion Variance Explained
by Coefficients 0.191
by Residual Variation 0.809

S OO O

.323
. 456
. 489
L6717

.010
.010

.563
. 450
.393
372

170
. 189

250 .56

10.824
9.241
-1.473
5.042

0.211
0.830

47153.
335.
24.
29.

662
042
857
3863

S O O© O

. 000
. 000
. 000
. 000

4670.446

2803.239
4457.948
4488.756
4261.002

3691.631
3691.631



INTERPRETATIONS

@ The mean for a female with average effort was 3o = 70.20

® For two females, scoring one point higher on the effort Is
associated with a (31 = 8.35 increase in information literacy

@ Fortwo students at the mean of the effort distribution, males
scored 32 = -2.44 points lower than females

@ The male regression slope was 33 = 3.69 points higher than the
female slope



CONDITIONAL EFFECTS SUMMARY TABLE

Conditional Effects

effort_t3 | male @ 0
Intercept
Slope

effort_t3 | male @ 1
Intercept
Slope

Estimate

10.204
8.353

67.765
12.047

10.824
9.241

68.526
13.024

NOTE: Intercepts are computed by setting all
not involved in the conditional effect

47153.662
335.042

29887.030
584.349

predictors
to zero.

2803.239
4451 .948

2383.933
3993.951



CONDITIONAL EFFECT PLOTS

info_t3

40-

o Plot Zoom
Plot of Conditional Regressions
Centered variables: effort_t3
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effort_t3
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For more Information go to

WWW.APPLIEDMISSINGDATA.COM




