
AN INTRODUCTION TO MISSING DATA ANALYSES
Workshop Sponsored by the Center for Assessment and Research Studies

Craig Enders 
UCLA Department of Psychology 



COURSE MATERIAL DOWNLOAD

WWW.APPLIEDMISSINGDATA.COM/BLIMP-PAPERS 



WORKSHOP MATERIALS



IES MISSING DATA TOOLKIT



IES MISSING DATA TOOLKIT

WWW.APPLIEDMISSINGDATA.COM/VIDEOS

http://www.appliedmissingdata.com/videos


INSTALLING BLIMP

WWW.APPLIEDMISSINGDATA.COM/BLIMP

http://www.appliedmissingdata.com/blimp


INSTALLING R PACKAGES

๏ The CARS Analysis.R script includes package installation 
commands at the top of the file
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MODERN MISSING DATA METHODS

the 
Big 

Three

Maximum likelihood

Bayesian MCMC estimation

Multiple imputation



KEY ADVANTAGES OF BIG THREE

๏ Achieve unbiasedness with a more realistic assumption about 
the missing data process 

๏ Allow for alternate assumptions about nonresponse process 

๏ Use all available data, no wasted resources 

๏ Maximize power



CHOOSING A MISSING DATA METHOD

๏ All things being equal—same data, same variables, same 
assumptions—the Big Three rarely produce different results 

๏ Missing data analyses require distributional assumptions for 
variables that wouldn’t usually require them (e.g., predictors) 

๏ How we represent those distributions is what matters



MODELING FRAMEWORKS

Multivariate modeling

๏ Classic versions of the Big Three typically 
assume multivariate normality 

๏ This includes most applications of maximum 
likelihood and multiple imputation



MODELING FRAMEWORKS

Multivariate modeling
Factored regression specification

๏ Factored specifications invoke a unique 
submodel and distribution for each variable 

๏ Submodels can include terms that are at odds 
with multivariate normality (e.g., discrete 
variables, interactions, random slopes)

X2

Y

X1



MISSING DATA DECISION TREE

1. Analysis features a nonlinear 
effect (interaction, curvilinear, 

random slope)

2. Analysis is restricted to  
normal variablesNO

YES

Big 3 with a factored  
regression specification

Big 3 with  
multivariate normality

YES

NO

FCS/MICE multiple imputation

YES

3. Analysis features zero-order 
or additive effects with mixed 

variable types
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HOW MUCH MISSING DATA IS TOO MUCH?

๏ The Big Three can tolerate substantial amounts of missing data 

๏ The Big Three are increasingly better than ad hoc methods 
(e.g., deleting incomplete records) as missingness increases 

๏ The amount of missing data is less important than why the 
data are missing (the missingness process or mechanism)



RUBIN’S MISSING DATA MECHANISMS

๏ Missing data mechanisms (processes) describe different ways 
in which the data relate to nonresponse 

๏ Missingness may be completely random or systematically 
related to different parts of the data 

๏ Mechanisms function as statistical assumptions that determine 
our ability to accurately recover the parameter values



PARTITIONING THE DATA

Y1 Y2 Y3

4 4 3
3 3 5
7 1 6
2 1 6
5 9 3
3 2 2
1 6 7
9 4 9
2 5 6

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

= +

Complete = Observed + Missing Indicators

* see Rubin (1976) in Biometrica



MISSING COMPLETELY AT RANDOM

๏ The probability of missing values is 
completely unrelated to the data 

๏ MCAR is purely random missingness 

๏ We don’t care about this process or 
testing for it (e.g., Little’s MCAR test)

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

Observed MissingIndicators

Predictors of nonresponseMissingness

f(M = 1 | dataobs, datamis) = f(M = 1)

Y1 Y3

MY3

× ×



(CONDITIONALLY) MISSING AT RANDOM

๏ Systematic missingness related to the 
observed data but unrelated to the unseen 
latent data 

๏ Most Big Three applications assume CMAR

f(M = 1 | dataobs, datamis) = f(M = 1 | dataobs)

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

Observed MissingIndicators

Predictors of nonresponseMissingness

Y1 Y3

MY3

×



๏ CARS is interested in assessing whether information literacy 
scores differ across the three time points.  

๏ Transfer students are missing the first-year assessment 

๏ Students who drop out are missing later assessments 

๏ These examples could classify as CMAR if the reasons for 
missingness are unrelated to the unseen literacy scores

CONDITIONALLY MAR EXAMPLE



MISSING NOT AT RANDOM

๏ Systematic missingness related to the 
observed data and the unseen latent data 

๏ The Big Three also allow MNAR processes 
(selection and pattern mixture models)

f(M = 1 | dataobs, datamis)
M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

Observed MissingIndicators

Predictors of nonresponseMissingness

Y1 Y3

MY3



CARS is interested in assessing whether information literacy 
scores differ across the three time points. A missing not at 
random process would occur if a student’s unseen literacy score 
relates to whether they have a score (missingness). In small 
groups, discuss whether you think this process is plausible. 



TESTING THE CMAR ASSUMPTION

๏ The CMAR assumption is untestable because it stipulates no 
relation between missingness and the unseen scores 

๏ We must rely on logical arguments about why the unseen 
scores should not be related to missingness 

๏ When in doubt, conduct sensitivity analyses that compare the 
estimates from CMAR and MNAR assumptions



MNAR MODELING

๏ Missing not at random processes require an explicit model that 
incorporates missing data indicators into the analysis

Y1

Y3

MY3

Y1

Y3

MY3

Selection Model Pattern Mixture Model



MNAR-BY-OMISSION PROCESS

๏ CMAR is satisfied when Y and MY are 
uncorrelated 

๏ Analyzing the data without A induces a 
spurious correlation between Y and its 
indicator MY (an MNAR process) 

๏ Variable A must be in the missing data 
analysis to avoid nonresponse bias

A
X Y

MY

A
X Y

MY

MNAR-by-Omission Process

Data-Generating Model

= analysis variables
= unused variable



AUXILIARY VARIABLES

๏ The CMAR assumption holds when the observed data in a 
particular analysis model completely explain missingness 

๏ The analysis variables usually constitute a small subset of 
the available variables in a data set 

๏ The literature often recommends an inclusive strategy that 
includes auxiliary variables that are not in the focal analysis



AUXILIARY VARIABLE TYPOLOGY

๏ Auxiliary variables may correlate with only 
the residuals of Y (Type B), only the 
missingness of Y (Type C), or both (Type A) 

๏ Type A variables are most important 
because they can induce bias if ignored 

๏ Type B variables can improve power, and 
type C variables are unhelpful

MY = 0 if complete
MY = 1 if missing

X Y B

MY

A
X Y

MY

X Y

CMY

* see Collins et al. (2001) in Psychological Methods



SATURATED CORRELATES MODEL

๏ Auxiliary variables enter a model via 
correlations and residual correlations 

๏ Auxiliary variables correlate with … 

1. Each other 
2. Exogenous predictors 
3. The residual(s) of any outcomes 

๏ Available in the R semTools package

B

A

X Y

* see Graham (2003) in Structural Equation Modeling

= analysis variables
= auxiliary variables



SEQUENTIAL SPECIFICATION

๏ Auxiliary variables enter model as extra 
dependent variables 

๏ Auxiliary variables are regressed on … 

1. Analysis variables 
2. Each other in a sequence 

๏ Flexible and simple to implement

A B

X Y

* see Lüdtke et al. (2020) in Psychological Methods

= analysis variables
= auxiliary variables
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MAXIMUM LIKELIHOOD

๏ Maximum likelihood estimation identifies that parameter 
values that are most likely to have produced the sample data 

๏ Like OLS in the sense that estimation minimizes squared 
distances between a model’s predictions and the data 

๏ The normal distribution quantifies the size of the residuals



MOTIVATING EXAMPLE

๏ CARS staff want to assess whether information literacy 
changes between the first and third assessment 

๏ Descriptive statistics (means, variances, and the covariance) 
are estimated from incomplete data 

๏ For now, we focus on the mechanics of maximum likelihood 
with complete data



MULTIVARIATE NORMAL LIKELIHOOD

๏ The multivariate normal distribution function provides the 
mathematical machinery for maximum likelihood estimation

Standardized distances  
between the data and parameters

Scaling term that makes  
area under curve equal 1

'



DISTRIBUTION KERNEL

๏ The kernel of the distribution is key, as it defines a person’s 
data-model fit as the sum of squared standardized distances

'

'
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Likelihood(Y = 45 and 50 | μ, σ, ρ) = .0003

LIKELIHOOD IS A HEIGHT COORDINATE

๏ Assume μ = (60, 65), σ = 15, and ρ = .40 

๏ Substituting parameters and data into 
the function returns height coordinates 

๏ Likelihood = size of residual distance 
(fit) expressed as a height coordinate

Likelihood(Y = 65 and 67 | μ, σ, ρ) = .0007



INDIVIDUAL LOG-LIKELIHOOD

๏ Taking the natural log of each person’s likelihood expresses 
probability-like fit quantities on a more tractable metric

Standardized distances  
between the data and parameters

Scaling term that makes  
area under curve equal 1

'
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LOG-LIKELIHOOD CONTOURS
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log-Likelihood(Y = 45 and 50 | μ, σ, ρ) = –7.88

log-Likelihood(Y = 65 and 67 | μ, σ, ρ) = –7.22
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Likelihood(Y = 45 and 50 | μ, σ, ρ) = .0003

LOG-LIKELIHOOD IS ALSO A HEIGHT COORDINATE

๏ Assume μ = (60, 65), σ = 15, and ρ = .40 

๏ Substituting parameters and data into 
the function returns height coordinates 

๏ log-Likelihood = size of residual (fit) 
expressed as a height coordinate

Likelihood(Y = 65 and 67 | μ, σ, ρ) = .0007



SAMPLE LOG-LIKELIHOOD

๏ The sample log-likelihood is the sum of the individual fits 

๏ Higher (less negative) values imply smaller residuals 

๏ The goal is to find the values of μ and Σ that maximize the 
log-likelihood (minimize standardized residual distances)



LOG-LIKELIHOOD SURFACES

๏ The log-likelihood surface shows changes to fit as different 
parameters are substituted into the normal curve function
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T3 Variance
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NEWTON’S ALGORITHM

Updated estimate

Current estimate
๏ The peak of the log-likelihood function 

resembles the peak of a parabola  

๏ Newton’s algorithm iteratively projects 
a parabola through the current estimate 

๏ The point below the peak of the 
parabola is the updated estimate



UPDATING STEP
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T3 Variance
200 225 250 275

๏ The updated parameter estimates improve fit and move 
closer to the maximum of the log-likelihood surfaces

Updated
Current
Previous



UPDATING STEP
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๏ The updated parameter estimates improve fit and move 
closer to the maximum of the log-likelihood surfaces
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Current
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FINAL UPDATING STEP

T1 Variance
200 225 250 275
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T1 Mean
30 45 60 75 90

T3 Mean
35 50 65 80 85

T3 Variance
200 225 250 275

๏ The final updating step occurs when the peak of the parabola 
is at the same location as the peak of the log-likelihood

μ μσ2 σ2^ ^ ^ ^

Updated
Current
Previous



STANDARD ERRORS

๏ Standard errors depend on the curvature 
at the peak of the log-likelihood 

๏ Steeper functions have smaller standard 
errors (the summit is more obvious), and 
flatter functions imply more uncertainty 

๏ Large second derivatives = more peaked

Smaller standard error

Larger standard error

Lo
g 

Lik
eli

ho
od

 (F
it)

Mean
30 45 60 75 90

μ̂



MISSING DATA PREVIEW

๏ ML identifies the parameter values that minimize squared 
distances between a model’s predictions and the data  

๏ Estimation uses incomplete data, no imputation performed 

๏ People contribute different numbers of data points 

๏ Each observation’s contribution to estimation is restricted to 
the subset of parameters for which there is data



BIVARIATE CARS ILLUSTRATION

๏ CARS staff want to assess whether 
information literacy changes between the 
first and third assessment 

๏ T1 scores are incomplete 

๏ The scatterplot shows the hypothetically 
complete data
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OBSERVED DATA

๏ A subset of students has information 
literacy scores observed at T1 and T3 

๏ T1 scores are missing for another subset 

๏ The partial T3 scores tend to be located in 
the lower tail of the distribution
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OBSERVED-DATA LOG-LIKELIHOOD

๏ The complete- and observed-data log-likelihood equations 
are the same except for the i subscripts on the parameters 

๏ The parameter subscripts convey that each person’s fit is 
computed using only the parameters for which there is data

'

'



LOG-LIKELIHOOD WITH MISSING DATA

๏ The log-likelihood (data-model fit) for incomplete records 
includes only parameters for which there is observed data

✘ ✘✘ ✘

✘

✘ ✘

✘

'

'



SAMPLE LOG-LIKELIHOOD

๏ The sample log-likelihood is the sum of the individual fits 

๏ The goal is to find the values of μ and Σ that maximize fit 

๏ The observed data contain more information about some 
parameters than others



HOW DO PARTIAL DATA RECORDS HELP?

๏ Data are not filled in, but the multivariate normal 
distribution acts like an imputation machine 

๏ Given the observed data, the normal curve 
implies probable locations of the unseen data 

๏ Estimates adjust to account for missing scores
Observed  
variable

Incomplete  
variable



DELETING INCOMPLETE DATA

๏ Deleting cases with missing scores 
produces a non-representative sample 

๏ Scores are systematically missing from 
the lower tails of both distributions 

๏ Both means are too high
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PARTIAL DATA RECORDS

๏ Maximum likelihood uses the partial data 
for students with missing T1 scores 

๏ The observed T3 scores tend to be 
located in the lower tail of the distribution In
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ADJUSTING THE T3 VARIANCE

๏ The distribution stretches out to 
accommodate a wider range of scores  

๏ Adding lower T3 values increases the 
variance relative to deletion 

๏ The variance is no longer biased
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ADJUSTING THE T3 MEAN

๏ The partial data in the lower tail pull the 
T3 mean lower than the deletion average 

๏ The T3 mean is no longer biased
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IMPLICIT IMPUTATION

๏ The normal curve implies probable 
values for the missing scores 

๏ In a normal curve with a positive 
correlation, lower T3 scores should pair 
with lower (missing) T1 scores 

๏ ML implicitly imputes missing values
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ADJUSTING THE T1 DISTRIBUTION

๏ From the positive correlation, ML can 
intuit the presence of unseen T1 scores 
in the lower tail of the distribution 

๏ The estimated T1 variance increases 

๏ Unseen scores in the lower tail imply a 
lower T1 mean, eliminating bias
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ESTIMATION SUMMARY

Biased! Accurate!

Deletion

In
fo

rm
at

ion
 Li

te
ra

cy
 T1

-40

-30

-20

-10

0

Information Literacy T3
0 10 20 30 40

ML estimation

In
fo

rm
at

ion
 Li

te
ra

cy
 T1

-40

-30

-20

-10

0

Information Literacy T3
0 10 20 30 40

60

45

30

75

90

65 80 955035

60

45

30

75

90

65 80 955035



MAXIMUM LIKELIHOOD PROS AND CONS

๏ Direct estimation for a wide range of 
analysis models 

๏ Widely available in software packages 
(any SEM program) 

๏ Easy to use, missing data handling occurs 
behind the scenes

๏ Generally limited to normal data, options 
for mixed metrics are less common 

๏ Normal-theory methods are biased with 
interactions and non-linear terms 

๏ MLM software usually discards 
observations with missing predictors

Pros Cons
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CARS ANALYSIS EXAMPLE

๏ CARS wants to assess whether information 
literacy changes over time 

๏ Descriptive statistics are obtained by specifying 
a saturated model with all possible means, 
variances, and covariances 

๏ lavaan’s ML estimator assumes that all variables 
are multivariate normal

literacy1

literacy2

literacy3



LAVAAN SCRIPT
# all possible means, variances, and covariances 
syntax <- ' 
  info_t1 ~ 1 
  info_t2 ~ 1 
  info_t3 ~ 1 
  info_t1 ~~ info_t1 
  info_t2 ~~ info_t2 
  info_t3 ~~ info_t3 
  info_t1 ~~ info_t2 
  info_t1 ~~ info_t3 
  info_t2 ~~ info_t3' 

mymodel <- sem.auxiliary(  # semTools package for auxiliary variables in lavaan 
  model = syntax,  
  data = carsdat,  
  fixed.x = FALSE,  # ml missing data requires distribution for all variables 
  aux = c('extra_t3','cont_t3','om_t3','ag_t3','ne_t3','male'))  # saturated correlates model 
summary(mymodel, standardized = TRUE)  # summarize results



LAVAAN OUTPUT
Covariances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  info_t1 ~~                                                             
    info_t2         124.738    5.831   21.392    0.000  124.738    0.432 
    info_t3         105.597    4.793   22.030    0.000  105.597    0.406 
  info_t2 ~~                                                             
    info_t3         160.350    6.460   24.823    0.000  160.350    0.483 
... 

Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
    info_t1          67.060    0.220  305.189    0.000   67.060    4.456 
    info_t2          63.787    0.309  206.355    0.000   63.787    3.322 
    info_t3          68.737    0.254  270.706    0.000   68.737    3.977 
... 

Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
    info_t1         226.500    4.766   47.528    0.000  226.500    1.000 
    info_t2         368.763    8.877   41.544    0.000  368.763    1.000 
    info_t3         298.772    6.446   46.350    0.000  298.772    1.000 
...

The lavaan output also includes the means, 
variances, and covariances for the auxiliary variables



MEANS WITH STD. DEV. ERROR BARS



INTERPRETATIONS

๏ Means exhibit a nonlinear pattern with a decrease at T2 

๏ Standard deviations are unequal with greater variation at T2 

๏ Estimates assume a CMAR process that depends on the 
observed repeated measures data and auxiliary variables



REPEATED MEASURES ANALYSIS

๏ Repeated measures ANOVA features a 
random “subjects factor” that quantifies 
differences among person means 

๏ The subjects latent variable has a mean of 
zero and loadings fixed to one 

๏ Each outcome has an intercept (mean) 

๏ lavaan’s ML estimator assumes that all 
variables are multivariate normal

literacy1

literacy2

literacy3

subjects

1

1

1



LAVAAN SCRIPT
syntax <- ' 
  subjects =~ 1*info_t1 + 1*info_t2 + 1*info_t3  # random subjects factor with loadings = 1 
  subjects ~ 0*1  # random subjects factor with mean = 0 
  info_t1 ~ mu1*1  # label the means 
  info_t2 ~ mu2*1 
  info_t3 ~ mu3*1 
  info_t1 ~~ res*info_t1  # label res sets equal residual variances for compound symmetry assumption 
  info_t2 ~~ res*info_t2 
  info_t3 ~~ res*info_t3' 

mymodel <- sem.auxiliary(  # semTools package for auxiliary variables in lavaan 
  model = syntax,  
  data = carsdat,  
  fixed.x = FALSE,  # ml missing data requires distribution for predictors 
  aux = c('extra_t3','cont_t3','om_t3','ag_t3','ne_t3','male'))  # saturated correlates auxiliary model 
summary(mymodel, standardized = TRUE)  # summarize results 

lavTestWald(mymodel, 'mu1 == mu2; mu2 == mu3')  # null that all means are equal 
lavTestWald(mymodel, 'mu1 == mu2’)  # pairwise comparison null 
lavTestWald(mymodel, 'mu1 == mu3') 
lavTestWald(mymodel, 'mu2 == mu3')



LAVAAN OUTPUT
Latent Variables: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  subjects =~                                                            
    info_t1           1.000                              11.115    0.652 
    info_t2           1.000                              11.115    0.652 
    info_t3           1.000                              11.115    0.652 

Covariances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  extra_t3 ~~                                                            
    cont_t3           0.139    0.007   20.226    0.000    0.139    0.324 
    om_t3             0.101    0.006   15.961    0.000    0.101    0.251 
... 

Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
    subjects          0.000                               0.000    0.000 
   .info_t1  (mu1)   67.046    0.249  269.753    0.000   67.046    3.932 
   .info_t2  (mu2)   63.933    0.276  231.307    0.000   63.933    3.750 
   .info_t3  (mu3)   68.749    0.251  273.848    0.000   68.749    4.032 
... 

Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .info_t1  (res)  167.178    3.088   54.142    0.000  167.178    0.575 
   .info_t2  (res)  167.178    3.088   54.142    0.000  167.178    0.575 
   .info_t3  (res)  167.178    3.088   54.142    0.000  167.178    0.575 
    subjects        123.538    4.210   29.345    0.000    1.000    1.000 
...

The lavaan output also includes the means, 
variances, and covariances for the auxiliary variables



WALD SIGNIFICANCE TEST OUTPUT

> lavTestWald(fiml_repeated_aux, 'mu1 == mu2; mu2 == mu3’) 

$stat 
[1] 229.2187 

$df 
[1] 2 

$p.value 
[1] 0

Null that all means are equal



SIGNIFICANCE TEST OUTPUT, CONT.
> lavTestWald(fiml_repeated_aux, 'mu1 == mu2') 

$stat 
[1] 94.87408 
$df 
[1] 1 
$p.value 
[1] 0 

> lavTestWald(fiml_repeated_aux, 'mu1 == mu3') 

$stat 
[1] 32.48125 
$df 
[1] 1 
$p.value 
[1] 1.20348e-08 

> lavTestWald(fiml_repeated_aux, 'mu2 == mu3') 

$stat 
[1] 226.9077 
$df 
[1] 1 
$p.value 
[1] 0

Pairwise comparison

Pairwise comparison

Pairwise comparison
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CARS ANALYSIS EXAMPLE

๏ Incomplete predictors require distributional 
assumptions for missing data handling 

๏ WLS for categorical data assumes MCAR 
(same bias-inducing assumption as deletion) 

๏ lavaan’s ML estimator treats the binary 
predictor as normally distributed 

๏ Conceptually, this “imputes” the dummy code 
with decimals instead of 0s and 1s

literacy1

literacy2

literacy3

subjects

1

1

1

male



LAVAAN SCRIPT
syntax <- ' 
  subjects =~ 1*info_t1 + 1*info_t2 + 1*info_t3  # random subjects factor with loadings = 1 
  subjects ~ 0*1  # random subjects factor with mean = 0 
  info_t1 ~ mu1*1 + dif1*male  # label means and differences 
  info_t2 ~ mu2*1 + dif2*male 
  info_t3 ~ mu3*1 + dif3*male 
  info_t1 ~~ res*info_t1  # label res sets equal residual variances for compound symmetry assumption 
  info_t2 ~~ res*info_t2 
  info_t3 ~~ res*info_t3 
  fem_mu1 := mu1  # define group means 
  fem_mu2 := mu2 
  fem_mu3 := mu3 
  male_mu1 := mu1 + dif1    
  male_mu2 := mu2 + dif2 
  male_mu3 := mu3 + dif3' 

mymodel <- sem.auxiliary(  # semTools package for auxiliary variables in lavaan 
  model = syntax,  
  data = carsdat,  
  fixed.x = FALSE,  # ml missing data requires normal distribution for predictors (not optimal for binary predictor) 
  aux = c('extra_t3','cont_t3','om_t3','ag_t3','ne_t3'))  # saturated correlates auxiliary model 
summary(mymodel, standardized = TRUE)  # summarize results 

lavTestWald(mymodel, 'dif1 == dif2; dif2 == dif3')  # wald test that group-by-time interaction = 0



LAVAAN OUTPUT
Latent Variables: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
... 

Regressions: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  info_t1 ~                                                              
    male    (dif1)   -2.030    0.501   -4.054    0.000   -2.030   -0.059 
  info_t2 ~                                                              
    male    (dif2)   -5.301    0.560   -9.474    0.000   -5.301   -0.153 
  info_t3 ~                                                              
    male    (dif3)   -4.896    0.510   -9.606    0.000   -4.896   -0.142 

Covariances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  extra_t3 ~~                                                            
    cont_t3           0.139    0.007   20.212    0.000    0.139    0.324 
    om_t3             0.101    0.006   15.962    0.000    0.101    0.251 
... 

Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
    subjects          0.000                               0.000    0.000 
   .info_t1  (mu1)   67.946    0.324  209.452    0.000   67.946    4.008 
   .info_t2  (mu2)   66.218    0.361  183.582    0.000   66.218    3.867 
   .info_t3  (mu3)   70.879    0.328  216.146    0.000   70.879    4.146 
    male              0.436    0.006   71.720    0.000    0.436    0.879 
... 

Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .info_t1  (res)  166.359    3.079   54.037    0.000  166.359    0.579 
   .info_t2  (res)  166.359    3.079   54.037    0.000  166.359    0.567 
   .info_t3  (res)  166.359    3.079   54.037    0.000  166.359    0.569 
    subjects        120.032    4.147   28.941    0.000    1.000    1.000 
    male              0.246    0.004   57.642    0.000    0.246    1.000 
...

The lavaan output also includes the means, 
variances, and covariances for the auxiliary variables



LAVAAN OUTPUT, CONTINUED

Defined Parameters: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
    fem_mu1          67.946    0.324  209.452    0.000   67.946    4.008 
    fem_mu2          66.218    0.361  183.582    0.000   66.218    3.867 
    fem_mu3          70.879    0.328  216.146    0.000   70.879    4.146 
    male_mu1         65.916    0.381  173.052    0.000   65.916    3.949 
    male_mu2         60.917    0.427  142.766    0.000   60.917    3.713 
    male_mu3         65.983    0.388  169.984    0.000   65.983    4.004



WALD SIGNIFICANCE TEST OUTPUT

> lavTestWald(fiml_repeated_gender_aux, 'dif1 == dif2; dif2 == dif3’) 

 
$stat 
[1] 32.65378 

$df 
[1] 2 

$p.value 
[1] 8.115618e-08

Null hypothesis that group-by-time interaction = 0 (time-specific mean differences are equal)



INTERPRETATIONS
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Males Females๏ The group-by-time interaction was 
significant (χ2 = 32.65, p < .001) 

๏ Females decreased at T2 then rebounded to 
a higher mean at T3 

๏ Males decreased by a larger amount at T2 
(about five points versus less than two), and 
their T3 mean is the same as T1
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CARS ANALYSIS EXAMPLE

๏ Are there gender differences in T3 
information literacy, controlling for T3 effort? 

๏ WLS for categorical data assumes MCAR 
(same bias-inducing assumption as deletion) 

๏ lavaan’s ML estimator treats the binary 
predictor as normally distributed

literacy3

male

effort3

literacy3 = β0 + β1(effort3) + β2(male) + ε



LAVAAN SCRIPT

# auxiliary variables for use with sem.auxiliary function 
auxvars <- c('extra_t3','cont_t3','om_t3','ag_t3','ne_t3','admit_type_num') 

# regression model syntax 
syntax <- 'info_t3 ~ effort_t3 + male' 

mymodel <- sem.auxiliary( 
  model = syntax,  
  data = carsdat,  
  fixed.x = FALSE,  # missing data requires normal distribution for predictors (not optimal for binary) 
  aux = auxvars)  # saturated correlates auxiliary model 
summary(mymodel, standardized = TRUE)  # summarize results



REGRESSION SUMMARY TABLE
Regressions: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  info_t3 ~                                                              
    effort_t3 (b1)   10.010    0.337   29.699    0.000   10.010    0.413 
    male      (b2)   -2.497    0.488   -5.114    0.000   -2.497   -0.072 

Covariances: 
                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  effort_t3 ~~                                                            
    male              -0.049    0.005   -8.996    0.000   -0.049   -0.139 
... 

Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .info_t3          33.077    1.312   25.210    0.000   33.077    1.924 
    effort_t3         3.694    0.011  341.451    0.000    3.694    5.206 
    male              0.436    0.006   71.741    0.000    0.436    0.880 
... 

Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .info_t3         241.188    5.201   46.378    0.000  241.188    0.816 
    effort_t3         0.504    0.011   46.367    0.000    0.504    1.000 
    male              0.246    0.004   57.643    0.000    0.246    1.000 
...



INTERPRETATIONS

๏ β0 = 33.08 is the mean for a female with zero effort (an 
extrapolation because effort has no zero point) 

๏ For two students with the same gender, scoring one point 
higher on the effort measure was associated with a β1 = 10.01 
increase in information literacy 

๏ For two students with the same effort score, males scored β2 = 
–2.50 points lower than females
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WHY CHOOSE MCMC?

๏ MCMC readily handles complex missing data problems, including: 

๏ Mixed metrics (normal, ordinal, nominal, skewed, count, latent) 

๏ Nonlinear effects (interactions, curvilinear effects) 

๏ Multilevel data (random coefficients, interactions) 

๏ Latent variable modeling (interactions) 

๏ FIML estimators for these scenarios are far more limited



FREQUENTIST VS. BAYESIAN PARADIGMS

๏ The parameter is a fixed quantity, 
estimates vary across different samples 

๏ Statements about probability, precision, 
and confidence refer to estimates 

๏ Probability = long run frequency of 
outcomes across many samples

๏ Parameters are random variables with a 
distribution of plausible realizations 

๏ Statements about probability, precision, 
and intervals refer to the parameter 

๏ Probability = our degree of certainty 
about a parameter after analyzing data

Frequentist Bayesian



BAYES’ THEOREM

Frequentist likelihood = data (B) given the parameters (A)

Posterior = parameters (A) given the data (B)

Prior = a priori belief about parameters (A)

Unecessary scaling term



MCMC ESTIMATION

Do for t = 1 to 10,000 iterations 

Estimate model parameters, 
conditional on the filled-in data 

Impute missing values, conditional 
on the model parameters 

Repeat 

Summarize model parameters

Estimate model parameters

Impute missing values



MEANING OF ESTIMATION

๏ MCMC uses computer simulation to 
“sample” parameters from a distribution 

๏ Estimates continually vary across 
iterations in a random pattern 

๏ Each iteration gives plausible parameter 
values that could have produced our data
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SIMPLE REGRESSION ILLUSTRATION

๏ Information literacy at T3 regressed on effort at that occasion 

๏ Each iteration yields plausible model parameters and unique 
imputations based on those parameters 

๏ The goal is to summarize the parameter distributions

info3 = β0 + β1(effort3) + ε



PRIOR DISTRIBUTIONS

๏ Bayesian analyses require prior distributions that encode our 
beliefs about the parameter values prior to analyzing the data 

๏ Conceptually, prior distributions function like secondary inputs 
that augment the data during estimation 

๏ It is common to non-informative (diffuse) priors that impart as 
little information as possible (let the data do the talking)



PRIOR DISTRIBUTIONS
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๏ A diffuse prior for means and coefficients 
conveys that all possible parameter 
values are equally likely a priori

๏ Diffuse priors for variances are slightly 
informative, and different options 
function like df adjustments in regression
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PARAMETER-GENERATING DISTRIBUTIONS

๏ MCMC draws coefficients from a 
multivariate normal distribution, with 
least-squares estimates defining shape

๏ MCMC draws variances from an inverse 
gamma distribution with its shape 
determined by the df and residual SS

Variance
Intercept

Slope



PARAMETERS FROM 200 MCMC CYCLES
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SUMMARIZING MCMC ESTIMATES

๏ MCMC iterates for thousands of cycles, and each cycle 
produces estimates based on one filed-in data set 

๏ Bayesian estimation yields a distribution of parameters—called 
a posterior—that averages over thousands of imputations 

๏ The posterior is a distribution of plausible parameter values 
that could have produced our particular data



POSTERIOR MEDIAN AND STD. DEV.

๏ The posterior median and standard 
deviation quantify the most likely 
parameter value and uncertainty 

๏ Analogous to a point estimate and 
standard error but no reference to other 
hypothetical samples

Parameter Value
1 2 3 4 5 6 7 8 9

Median = 5       
Std. Dev. = 1



95% CREDIBLE INTERVALS

๏ The 95% credible interval gives limits 
spanning 95% of the parameter’s range 

๏ Akin to a confidence interval, but 
references a range of highly plausible 
parameter values for one data set

Parameter Value

1 2 3 4 5 6 7 8 9

95% CI = (3, 7)



MISSING DATA IMPUTATION STEP

๏ Missing scores are imputed by drawing replacement scores at 
random from a distribution of plausible values 

๏ The model parameters at each iteration combine to define the 
center and spread of the missing data imputations 

๏ Each imputation can be viewed as a predicted score plus a 
computer-simulated random noise term 
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RESIDUAL VARIATION

Residual variation
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DISTRIBUTIONS OF IMPUTATIONS
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= plausible literacy imputations



IMPUTATIONS FOR LOW EFFORT = plausible literacy imputations
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DRAW IMPUTATION AT RANDOM = randomly selected imputation
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IMPUTATION = PREDICTION + NOISE
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IMPUTATIONS FOR HIGH EFFORT = plausible literacy imputations
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DRAW IMPUTATION AT RANDOM = randomly selected imputation

In
fo

rm
at

ion
 Li

te
ra

cy

40

50

60

70

80

90

Effort
0 1 2 3 4 5



IMPUTATION = PREDICTION + NOISE
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INCOMPLETE PREDICTORS

๏ Incomplete predictors require their own model and 
distributional assumptions 

๏ Multivariate normal methods can mis-specify the data 
distributions in a way that introduces bias 

๏ Factored regression uses a modular specification where a 
sequence of submodels replaces a multivariate model



FACTORED REGRESSION SPECIFICATIONS

๏ MCMC uses a factored regression 
specification that invokes a unique 
distribution for each variable 

๏ The analysis consists of a collection of 
univariate regression models 

๏ Each model can include terms that are at 
odds with multivariate normality

X2

Y

X1



INCOMPLETE PREDICTORS

๏ Effort is the regressor in the focal model and an outcome in its 
own empty model 

๏ Both models inform the distribution of predictor imputations

literacy3effort3

literacy3 = β0 + β1(effort3) + εeffort3 = μ + e
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DISTRIBUTIONS OF IMPUTATIONS = plausible effort imputations
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PREDICTED VALUES AND VARIATION Multiple sets of model parameters define 
the mean and spread of the imputations
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IMPUTATION EXAMPLE

Imputation = predicted value + random normal noise

= randomly selected imputation
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Cases with complete data

Cases with imputed scores



MCMC ESTIMATION

Do for t = 1 to 10,000 iterations 

Estimate model parameters, 
conditional on the filled-in data 

Impute missing values, conditional 
on the model parameters 

Repeat 

Summarize model parameters

Estimate model parameters

Impute missing values



PARAMETER (POSTERIOR) DISTRIBUTIONS

Intercept
26 27 28 29 30 31 32 33 34 35 36

T3 Effort Slope
9 9.5 10 10.5 11 11.5

Median = 10.25       
Std. Dev. = 0.34 

95% CI = (9.60, 10.91)

Median = 31.12       
Std. Dev. = 1.26 

95% CI = (28.65, 33.58)

Residual Var.
225 230 235 240 245 250 255 260

Median = 242.98      
Std. Dev. = 5.23 

95% CI = (232.45, 252.97)



ESTIMATOR COMPARISON

MCMC FIML
Parameter Median SD 95% CI Est. SE 95% CI

Intercept 31.12 1.26 (28.65, 33.58) 31.12 1.26 (28.64, 33.58)
Effort 10.25 0.34 (9.60, 10.91) 10.25 0.34 (9.60, 10.91)

Residual variance 242.98 5.23 (232.85, 253.46) 242.71 5.23 (232.45, 252.97)
R2 .18 .01 (.16, .20) .18 — —

The two estimators are numerically equivalent!!!



MCMC AS COMPUTATIONAL FREQUENTISM

๏ Researchers adopting a computational frequentism view can use 
MCMC results as surrogates for frequentist inference (Levy & 
McNeish, 2021) 

๏ In this scenario, MCMC is a flexible way to estimate frequentist 
quantities when FIML solutions are unavailable (e.g., missing data)

Computational FrequentismBayesian Inference



MCMC CONVERGENCE

๏ With missing data, it is especially important to evaluate 
whether MCMC is converging and producing reasonable results 

๏ MCMC converges when parameter estimates oscillate around a 
stable mean, and variation doesn’t change with more iterations 

๏ The potential scale reduction factor (PSRF) compares the 
similarity of parameters generated from two MCMC processes
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BETWEEN-CHAIN MEAN DIFFERENCE
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MCMC converges when mean estimates 
from two chains are the same (PSRF ≈ 1)



WITHIN-CHAIN VARIATION
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CONVERGENCE
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MCMC has not converged because between-
chain mean difference is large (PSR > 1.05)

MCMC has converged because between-chain 
mean difference is very small (PSR < 1.05)
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CARS ANALYSIS EXAMPLE

๏ CARS wants to assess whether information 
literacy changes over time 

๏ Descriptive statistics are obtained by specifying 
a saturated model with all possible means, 
variances, and covariances 

๏ Blimp’s MCMC estimator adopts a multivariate 
model for focal variables and univariate 
submodes for sequential auxiliary variables

literacy1

literacy2

literacy3



RBLIMP SCRIPT

mymodel <- rblimp( 
   data = carsdat,  
   ordinal = 'male',  # define binary or ordinal variables 
   model = '       
     # all possible correlations       
     info_t1 info_t2 info_t3 ~~ info_t1 info_t2 info_t3; 
     # sequential regression models for auxiliary variables 
     extra_t3 cont_t3 om_t3 ag_t3 ne_t3 male ~ info_t1 info_t2 info_t3',           
   seed = 90291,  # integer random number seed                                         
   burn = 5000,  # number of warm-up iterations                                              
   iter = 10000) # number of analysis iterations                                              
output(mymodel)   # view output



RBLIMP OUTPUT

Outcome Variable:  info_t1     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     226.960      4.864    217.814    236.646        ---        ---   4878.289  

Coefficients:                    
  Intercept                          67.059      0.219     66.627     67.494  93730.685      0.000   3734.402  

Proportion Variance Explained    
  by Coefficients                     0.000      0.000      0.000      0.000        ---        ---        nan  
  by Residual Variation               1.000      0.000      1.000      1.000        ---        ---        nan  

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t2     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     369.317      8.807    352.737    387.329        ---        ---   3445.387  

Coefficients:                    
  Intercept                          63.794      0.309     63.179     64.394  42589.707      0.000   2671.121  

Proportion Variance Explained    
  by Coefficients                     0.000      0.000      0.000      0.000        ---        ---        nan  
  by Residual Variation               1.000      0.000      1.000      1.000        ---        ---        nan  

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t3     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     299.273      6.430    287.060    312.294        ---        ---   4579.102  

Coefficients:                    
  Intercept                          68.752      0.253     68.249     69.238  73828.355      0.000   3195.129  

Proportion Variance Explained    
  by Coefficients                     0.000      0.000      0.000      0.000        ---        ---        nan  
  by Residual Variation               1.000      0.000      1.000      1.000        ---        ---        nan  

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Covariance Matrix: info_t1 info_t2 info_t3 

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                               ------------------------------------------------------------------------------ 
Covariances:                     
  Cov(info_t1,info_t2)              124.845      5.940    113.184    136.793    441.996      0.000   2115.487  
  Cov(info_t1,info_t3)              105.674      4.775     96.490    115.207    490.340      0.000   2691.648  
  Cov(info_t2,info_t3)              160.611      6.542    147.933    173.700    602.934      0.000   2375.172  

Correlations:                    
  Cor(info_t1,info_t2)                0.431      0.017      0.397      0.464    650.657      0.000   1750.850  
  Cor(info_t1,info_t3)                0.406      0.015      0.375      0.436    708.698      0.000   2417.405  
  Cor(info_t2,info_t3)                0.483      0.015      0.453      0.513   1016.530      0.000   1929.971  

                               ------------------------------------------------------------------------------



MEANS WITH STD. DEV. ERROR BARS



INTERPRETATIONS

๏ Means exhibit a nonlinear pattern with a decrease at T2 

๏ Standard deviations are unequal with greater variation at T2 

๏ Estimates assume a CMAR process that depends on the 
observed repeated measures data and auxiliary variables



REPEATED MEASURES ANALYSIS

Outcome Models Latent Model

literacy1

literacy2

literacy3

subjects

๏ MCMC invokes a univariate normal 
distribution for each variable 

๏ Blimp’s MCMC estimator adopts a 
univariate submodel for every variable 

๏ Distributional assumptions enter on a 
model-by-model basis

1
1
1



RBLIMP SCRIPT
mymodel <- rblimp( 
   data = carsdat,  
   ordinal = 'male',  # define binary or ordinal variables 
   latent = 'subjects',  # define latent variable for subjects factor 
   model = '       
     subjects ~ intercept@0;  # random subjects factor with mean = 0 and loadings = 1 
     info_t1 ~ intercept@mu1 subjects@1;  # @ labels the means and fixes subject factor loadings = 1 
     info_t2 ~ intercept@mu2 subjects@1; 
     info_t3 ~ intercept@mu3 subjects@1; 
     info_t1 ~~ info_t1@res;  # @ sets equal residual variances for compound symmetry assumption 
     info_t2 ~~ info_t2@res; 
     info_t3 ~~ info_t3@res; 
     extra_t3 cont_t3 om_t3 ag_t3 ne_t3 male ~ info_t1 info_t2 info_t3',  # sequential auxiliaries  
   waldtest = c( 'mu1 = mu2; mu2 = mu3', 'mu1 = mu2','mu1 = mu3','mu2 = mu3'),  # significance tests 
   seed = 90291,   # integer random number seed                                         
   burn = 5000,   # number of warm-up iterations                                              
   iter = 10000)   # number of analysis iterations                                              
output(mymodel)   # view output



RBLIMP OUTPUT

Latent Variable:  subjects     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     123.561      4.112    115.359    131.540        ---        ---   1047.857  

Proportion Variance Explained    
  by Coefficients                     0.000      0.000      0.000      0.000        ---        ---        nan  
  by Residual Variation               1.000      0.000      1.000      1.000        ---        ---        nan   

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t1     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     167.366      3.045    161.584    173.545        ---        ---   1281.032  

Coefficients:                    
  Intercept                          67.046      0.249     66.550     67.528  72212.585      0.000   2373.977  
  subjects                          @ 1.000        ---        ---        ---        ---        ---        ---  

Standardized Coefficients:       
  subjects                            0.652      0.008      0.636      0.666   7364.361      0.000    887.714  

Proportion Variance Explained    
  by Coefficients                     0.425      0.010      0.405      0.443        ---        ---    887.884  
  by Residual Variation               0.575      0.012      0.554      0.599        ---        ---   1231.701  

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t2     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     167.366      3.045    161.584    173.545        ---        ---   1281.032  

Coefficients:                    
  Intercept                          63.945      0.271     63.400     64.457  55476.123      0.000   1914.174  
  subjects                          @ 1.000        ---        ---        ---        ---        ---        ---  

Standardized Coefficients:       
  subjects                            0.652      0.008      0.636      0.666   7364.361      0.000    887.714  

Proportion Variance Explained    
  by Coefficients                     0.425      0.010      0.405      0.443        ---        ---    887.884  
  by Residual Variation               0.575      0.012      0.554      0.599        ---        ---   1231.701  

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t3     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     167.366      3.045    161.584    173.545        ---        ---   1281.032  

Coefficients:                    
  Intercept                          68.752      0.250     68.264     69.243  75631.476      0.000   2257.328  
  subjects                          @ 1.000        ---        ---        ---        ---        ---        ---  

Standardized Coefficients:       
  subjects                            0.652      0.008      0.636      0.666   7364.361      0.000    887.714  

Proportion Variance Explained    
  by Coefficients                     0.425      0.010      0.405      0.443        ---        ---    887.884  
  by Residual Variation               0.575      0.012      0.554      0.599        ---        ---   1231.701  

                                ------------------------------------------------------------------------------



WALD SIGNIFICANCE TEST OUTPUT
MODEL FIT: 

... 

  WALD TESTS (Asparouhov & Muthén, 2021) 

  Test #1 

    Full: 
      [1]  info_t1 ~ Intercept@mu1 info@1 
      [2]  info_t2 ~ Intercept@mu2 info@1 
      [3]  info_t3 ~ Intercept@mu3 info@1 

    Restricted: 
      [1]  info_t1 ~ Intercept@mu1 info@1 
      [2]  info_t2 ~ Intercept@mu2 info@1 
      [3]  info_t3 ~ Intercept@mu3 info@1 

    Constraints in Restricted: 
      [1]  mu1 = mu2 
      [2]  mu2 = mu3 

    Wald Statistic (Chi-Square)               228.009 
    Number of Parameters Tested (df)                2 
    Probability                                 0.000

Omnibus null hypothesis that all means are equal



SIGNIFICANCE TEST OUTPUT, CONT.
 Test #2 

... 

    Constraints in Restricted: 
      [1]  mu1 = mu2 

    Wald Statistic (Chi-Square)                94.617 
    Number of Parameters Tested (df)                1 
    Probability                                 0.000 

  Test #3 

... 

    Constraints in Restricted: 
      [1]  mu1 = mu3 

    Wald Statistic (Chi-Square)                33.071 
    Number of Parameters Tested (df)                1 
    Probability                                 0.000 

   Test #4 

... 

    Constraints in Restricted: 
      [1]  mu2 = mu3 

    Wald Statistic (Chi-Square)               225.931 
    Number of Parameters Tested (df)                1 
    Probability                                 0.000

Pairwise comparison

Pairwise comparison

Pairwise comparison
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MCMC With Categorical Variables

Analysis Example 1: Descriptive Statistics and Repeated Measures

MCMC Estimation

Analysis Example 2: Repeated Measures With Between-Subjects Predictor

Analysis Example 3: Multiple Regression 

Analysis Example 4: Moderated Regression 



BLIMP VARIABLE TYPES

Normal 
(Manifest) 

Binary Ordinal Nominal

Exogenous Predictors

Normal 
(Manifest or Latent) 

Binary Ordinal

Multivariate Outcomes

Normal 
(Manifest or Latent) 

Binary Ordinal Nominal Skewed 
(Manifest or Latent)

Count Two-Part 
(Floor Effects)

Univariate Outcomes

Skewed 
(Manifest or Latent)



LATENT RESPONSE FRAMEWORK

๏ MCMC methods for discrete data use an underlying latent 
response variable that represents a continuous propensity for 
the construct being measured 

๏ An inverse link function provides a rule for converting the 
continuous propensities to the discrete metric 

๏ Working with latent responses is essentially a computational 
trick that allows simpler estimation routines for linear models



LATENT RESPONSE FORMULATION

Binary Ordinal Multicategorical

Latent Response Latent Response Latent Response

Discrete Response Discrete Response Discrete Response



INCOMPLETE GENDER VARIABLE

๏ Probit regression envisions binary and ordinal variables arising 
from an underlying normal latent response variable 

๏ Applied to the incomplete gender, the latent variable represents 
an unobserved, continuous propensity for being male 

๏ A threshold carves the latent distribution into segments that 
represent the male and female probabilities



LATENT AND DISCRETE DISTRIBUTIONS

๏ The threshold parameter divides the latent distribution into segments, 
with areas under the curve matching the bar plot probabilities

Pr
op
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tio

n

Male Dummy Code

Female Male

Re
lat

ive
 P

ro
ba

bi
lit

y

Male* (Latent Response)
-4 -3 -2 -1 0 1 2 3 4

Threshold

44%56% 44%56%



ORDINAL VARIABLES

๏ Multiple threshold parameters divide the latent distribution into 
segments, with areas under the curve matching the bar plot 

Pr
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n

1 2 3 4

Re
lat

ive
 P
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ba

bi
lit

y

0.0

0.1

0.2

0.3

0.5

Latent Dimension
-4 -2 0 2 4

Thresholds

Ordered Categories



IMPUTING LATENT RESPONSE SCORES

๏ Latent response scores are 100% missing data that need to be 
imputed for the entire sample 

๏ MCMC uses computer simulation to “sample” latent response 
scores from a normal curve, just like any other incomplete 
variable (imputation = prediction + noise) 

๏ Whether the latent scores are above or below the threshold 
determines whether the discrete impute equals 0 or 1



MCMC ESTIMATION

Do for t = 1 to 10,000 iterations 

Estimate model parameters, conditional 
on the latent and manifest data 

Impute missing values and latent 
response scores, conditional on the 
model parameters 

Assign latent imputes to categories 

Repeat 

Summarize model parameters

Estimate model parameters

Impute missing values



LATENT AND DISCRETE DISTRIBUTIONS

๏ Latent imputations must fall below or above threshold if the 
binary variable is observed, and they are unconstrained if missing

Male* (Latent Dimension)
-4 -3 -2 -1 0 1 2 3 4

Threshold

Male* (Latent Dimension)
-4 -3 -2 -1 0 1 2 3 4

Threshold

0

Male* (Latent Dimension)
-4 -3 -2 -1 0 1 2 3 4

male = 1male = 0 male = NA



Suppose the latent response imputation for 
a student with a missing gender score was 
1.5. What gender group would the probit 
model assign to this person?

Male* (Latent Dimension)
-4 -3 -2 -1 0 1 2 3 4

male* 
impute = 1.5

Threshold
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CARS ANALYSIS EXAMPLE

๏ CARS wants to assess whether information literacy changes 
over time and whether that changes differs by gender 

๏ Incomplete predictors require distributional assumptions for 
missing data handling 

๏ MCMC readily accommodates incomplete variables with 
different metrics



FACTORED REGRESSION SPECIFICATION

Incomplete Predictor Model Outcome Models Latent Model

literacy1

male* literacy2

literacy3

subjectsmale
1
1
1



RBLIMP REPEATED MEASURES SCRIPT
mymodel <- rblimp( 
   data = carsdat,  
   ordinal = 'male',  # define binary or ordinal variables 
   latent = 'subjects',  # define latent variable for subjects factor 
   model = '       
     subjects ~ intercept@0;  # random subjects factor with mean = 0 and loadings = 1 
     info_t1 ~ intercept@mu1 subjects@1 male@dif1; # @ labels means and differences and fixes loadings to 1 
     info_t2 ~ intercept@mu2 subjects@1 male@dif2; 
     info_t3 ~ intercept@mu3 subjects@1 male@dif3; 
     info_t1 ~~ info_t1@res;  # @ sets equal residual variances for compound symmetry assumption 
     info_t2 ~~ info_t2@res; 
     info_t3 ~~ info_t3@res; 
     extra_t3 cont_t3 om_t3 ag_t3 ne_t3 male ~ info_t1 info_t2 info_t3',  # sequential auxiliaries  
   waldtest = 'dif1 = dif2; dif2 = dif3',  # wald test that group-by-time interaction = 0 
   parameters = ' # define group means 
     fem_mu1 = mu1; 
     fem_mu2 = mu2; 
     fem_mu3 = mu3; 
     male_mu1 = mu1 + dif1; 
     male_mu2 = mu2 + dif2; 
     male_mu3 = mu3 + dif3;', 
   seed = 90291,   # integer random number seed                                         
   burn = 5000,   # number of warm-up iterations                                              
   iter = 10000)   # number of analysis iterations                                              
output(mymodel)   # view output



RBLIMP OUTPUT

Outcome Variable:  info_t1     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     166.571      3.161    160.439    172.945        ---        ---   1112.374  

Coefficients:                    
  Intercept                          67.954      0.322     67.322     68.598  44445.588      0.000   2157.623  
  subjects                          @ 1.000        ---        ---        ---        ---        ---        ---  
  male                               -2.038      0.499     -3.024     -1.062     16.695      0.000   2062.233  

Standardized Coefficients:       
  subjects                            0.646      0.008      0.630      0.662   6202.366      0.000    778.239  
  male                               -0.060      0.015     -0.088     -0.031     16.762      0.000   2054.457  

Proportion Variance Explained    
  by Coefficients                     0.421      0.011      0.400      0.441        ---        ---    784.686  
  by Residual Variation               0.579      0.012      0.555      0.603        ---        ---   1052.147   

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t2     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     166.571      3.161    160.439    172.945        ---        ---   1112.374  

Coefficients:                    
  Intercept                          66.233      0.362     65.513     66.938  33523.741      0.000   1569.466  
  subjects                          @ 1.000        ---        ---        ---        ---        ---        ---  
  male                               -5.303      0.562     -6.415     -4.220     89.203      0.000   1587.404  

Standardized Coefficients:       
  subjects                            0.640      0.008      0.623      0.655   6040.640      0.000    815.201  
  male                               -0.154      0.016     -0.185     -0.123     92.286      0.000   1581.583  

Proportion Variance Explained    
  by Coefficients                     0.433      0.011      0.412      0.453        ---        ---    777.480  
  by Residual Variation               0.567      0.012      0.543      0.592        ---        ---   1030.909  

                                ------------------------------------------------------------------------------



RBLIMP OUTPUT, CONTINUED

Outcome Variable:  info_t3     

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     166.571      3.161    160.439    172.945        ---        ---   1112.374  

Coefficients:                    
  Intercept                          70.894      0.326     70.255     71.530  47302.378      0.000   2123.967  
  subjects                          @ 1.000        ---        ---        ---        ---        ---        ---  
  male                               -4.914      0.502     -5.892     -3.921     95.720      0.000   1979.720  

Standardized Coefficients:       
  subjects                            0.641      0.008      0.624      0.656   6143.042      0.000    795.942  
  male                               -0.142      0.014     -0.170     -0.114     98.396      0.000   1971.855  

Proportion Variance Explained    
  by Coefficients                     0.431      0.011      0.410      0.451        ---        ---    791.496  
  by Residual Variation               0.569      0.012      0.546      0.594        ---        ---   1048.678  

                                ------------------------------------------------------------------------------



GROUP MEAN OUTPUT

GENERATED PARAMETERS: 

  Summaries based on 10000 iterations using 2 chains. 
  NOTE: Estimate column based on posterior median. 

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                               ------------------------------------------------------------------------------ 

  fem_mu1                            67.954      0.322     67.322     68.598  44445.588      0.000   2157.623  
  fem_mu2                            66.233      0.362     65.513     66.938  33523.741      0.000   1569.466  
  fem_mu3                            70.894      0.326     70.255     71.530  47302.378      0.000   2123.967  
  male_mu1                           65.918      0.385     65.162     66.672  29283.751      0.000   1986.912  
  male_mu2                           60.924      0.424     60.094     61.763  20657.140      0.000   1547.318  
  male_mu3                           65.984      0.386     65.225     66.747  29225.214      0.000   1752.829  

                               ------------------------------------------------------------------------------



WALD SIGNIFICANCE TEST OUTPUT
MODEL FIT: 

  INFORMATION CRITERIA 

    Conditional Likelihood 
      DIC2                  278349.136 
      WAIC                  288741.492 

  WALD TESTS (Asparouhov & Muthén, 2021) 

  Test #1 

... 

    Constraints in Restricted: 
      [1]  dif1 = dif2 
      [2]  dif2 = dif3 

    Wald Statistic (Chi-Square)                33.123 
    Number of Parameters Tested (df)                2 
    Probability                                 0.000

Null hypothesis that group-by-time interaction = 0 (no time-specific mean differences)



INTERPRETATIONS
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T1 T2 T3

Males Females๏ The group-by-time interaction was 
significant (χ2 = 33.12, p < .001) 

๏ Females decreased at T2 then rebounded to 
a higher mean at T3 

๏ Males decreased by a larger amount at T2 
(about five points versus less than two), and 
their T3 mean is the same as T1
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CARS ANALYSIS EXAMPLE

๏ Are there gender differences in T3 information literacy, 
controlling for T3 effort? 

๏ Maximum likelihood estimation in lavaan treats the discrete 
predictor as normally distributed (conceptually, this “imputes” 
decimal values instead of 0s and 1s) 

๏ MCMC allows mixtures of categorical and continuous variables

literacy3 = β0 + β1(effort3) + β2(male) + ε



FACTORED REGRESSION SPECIFICATION

literacy3

malemale*

Incomplete Predictor Model Outcome Model

effort3



RBLIMP SCRIPT

mymodel <- rblimp( 
   data = carsdat,  
   ordinal = 'male admit_type',  # define binary or ordinal variables 
   center = 'effort_t3',  # iterative grand mean centering 
   model = '  
     # focal model      
     info_t3 ~ effort_t3 male; 
     # sequential regression models for auxiliary variables 
     extra_t3 cont_t3 om_t3 ag_t3 ne_t3 admit_type ~ info_t3 effort_t3 male',           
   seed = 90291,  # integer random number seed                                         
   burn = 5000,  # number of warm-up iterations                                              
   iter = 10000)  # number of analysis iterations                                              
output(mymodel)  # view output



RBLIMP OUTPUT

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                               ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     241.488      5.176    231.542    251.849        ---        ---   4643.665  

Coefficients:                    
  Intercept                          70.061      0.330     69.413     70.705  45175.243      0.000   2561.768  
  effort_t3                          10.010      0.338      9.341     10.679    878.118      0.000   4431.186  
  male                               -2.511      0.488     -3.453     -1.541     26.349      0.000   4143.186  

Standardized Coefficients:       
  effort_t3                           0.413      0.012      0.388      0.436   1128.004      0.000   4108.547  
  male                               -0.072      0.014     -0.099     -0.044     26.567      0.000   4155.379  

Proportion Variance Explained    
  by Coefficients                     0.184      0.010      0.164      0.204        ---        ---   3978.725  
  by Residual Variation               0.816      0.010      0.796      0.836        ---        ---   3978.725  

                               ------------------------------------------------------------------------------



INTERPRETATIONS

๏ The female literacy mean was β0 = 70.06 

๏ For two students with the same gender, scoring one point 
higher on the effort measure was associated with a β1 = 10.01 
increase in information literacy 

๏ For two students with the same effort score, males scored β2 = 
–2.51 points lower than females
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MODERATION

๏ Moderation occurs when a focal predictor’s influence on the 
outcome depends on a third (moderator) variable 

๏ For whom does an effect apply? 

๏ We model moderation effects by including the product of two 
predictors in the regression model (Y = X + M + X × M)



CARS ANALYSIS EXAMPLE

๏ Does the influence of effort on literacy vary by gender? 

๏ β1 and β2 are conditional effects: β1 is the influence of the 
effort when gender (the moderator) equals zero, and β2 is the 
gender difference when effort (the focal predictor) equals zero 

๏ β3 is the change in β1 for a one-unit increase in the moderator

literacy3 = β0 + β1(effort3) + β2(male) + β3(effort3)(male) + ε



INCOMPLETE PRODUCT TERMS

๏ Incomplete products should not be treated as unique variables 
(the “just another variable” method), as this causes bias 

๏ Rather, product terms should be viewed as deterministic 
functions of the incomplete predictors 

๏ When the interaction is non-zero, predictor imputations 
become non-normal (heteroscedastic) to accommodate the 
nonlinearity in the focal model



DISTRIBUTION OF IMPUTATIONS

๏ Multiple sets of model parameters define the mean and spread of the 
imputations, and variation is heteroscedastic (depends on gender)

Effort Imputations



MISSING DATA DECISION TREE

1. Analysis features a nonlinear 
effect (interaction, curvilinear, 

random slope)

2. Analysis is restricted to  
normal variables.NO

YES

Big 3 with a factored  
regression specification

Big 3 with  
multivariate normality

YES

NO

FCS/MICE multiple imputation

YES

3. Analysis features zero-order 
or additive effects with mixed 

variable types.

Interaction and nonlinear effects require factored specifications with specialized software.



FACTORED REGRESSION SPECIFICATION

literacy3

malemale*

Incomplete Predictor Model Outcome Model

effort3



RBLIMP SCRIPT
mymodel <- rblimp( 
   data = carsdat,  
   ordinal = 'male admit_type',  # define binary or ordinal variables 
   center = 'effort_t3',  # iterative grand mean centering 
   model = '  
     # focal model      
     info_t3 ~ effort_t3 male effort_t3*male,  # the * specifies an interaction  
     # sequential regression models for auxiliary variables 
     extra_t3 cont_t3 om_t3 ag_t3 ne_t3 admit_type ~ info_t3 effort_t3 male’, 
   simple = 'effort_t3 | male',  # simple intercepts and slopes           
   seed = 90291,  # integer random number seed                                         
   burn = 5000,  # number of warm-up iterations                                              
   iter = 10000)  # number of analysis iterations                                              
output(mymodel)  # view output 
simple_plot(info_t3 ~ effort_t3 | male, mymodel)  # plot simple intercepts slopes



REGRESSION SUMMARY TABLE

Parameters                         Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                               ------------------------------------------------------------------------------ 
Variances:                       
  Residual Var.                     240.003      5.223    229.951    250.561        ---        ---   4670.446  

Coefficients:                    
  Intercept                          70.204      0.323     69.563     70.824  47153.662      0.000   2803.239  
  effort_t3                           8.353      0.456      7.450      9.241    335.042      0.000   4451.948  
  male                               -2.436      0.489     -3.393     -1.473     24.857      0.000   4488.756  
  effort_t3*male                      3.694      0.677      2.372      5.042     29.863      0.000   4261.002  

...  

Proportion Variance Explained    
  by Coefficients                     0.191      0.010      0.170      0.211        ---        ---   3691.631  
  by Residual Variation               0.809      0.010      0.789      0.830        ---        ---   3691.631  

                               ------------------------------------------------------------------------------



INTERPRETATIONS

๏ The mean for a female with average effort was β0 = 70.20 

๏ For two females, scoring one point higher on the effort is 
associated with a β1 = 8.35 increase in information literacy 

๏ For two students at the mean of the effort distribution, males 
scored β2 = –2.44 points lower than females 

๏ The male regression slope was β3 = 3.69 points higher than the 
female slope



CONDITIONAL EFFECTS SUMMARY TABLE

Conditional Effects                Estimate     StdDev       2.5%      97.5%      ChiSq     PValue      N_Eff  
                                ------------------------------------------------------------------------------ 
  effort_t3 | male @ 0                                                                                         
    Intercept                        70.204      0.323     69.563     70.824  47153.662      0.000   2803.239  
    Slope                             8.353      0.456      7.450      9.241    335.042      0.000   4451.948  
                                                                                                               
  effort_t3 | male @ 1                                                                                         
    Intercept                        67.765      0.392     66.989     68.526  29887.030      0.000   2383.933  
    Slope                            12.041      0.498     11.073     13.024    584.349      0.000   3993.951  
                                                                                                               
                                ------------------------------------------------------------------------------ 

                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero.



CONDITIONAL EFFECT PLOTS



For more information go to

WWW.APPLIEDMISSINGDATA.COM 


