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Data File Descriptions

The analysis examples use synthetic data sets created to closely resemble those from educational
studies described in Montague et al. (2005) and Montague et al. (2014). The data and analysis
scripts are available for download from the project website: www.appliedmissingdata.com/

videos.

The behaviorachievement.dat file is taken from a longitudinal study that followed 138
students from primary to middle school. The file includes three annual assessments of broad
reading and math achievement beginning in the first grade, seventh grade standardized
achievement test scores taken from a statewide assessment, and a final measure of broad reading
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms

and learning problems were also obtained in the first grade.

The mathachievement.dat data set is taken from an educational intervention where 250
students were assigned to an intervention and comparison condition. The file includes pretest
and posttest math achievement scores, a measure of math self-efficacy, standardized reading

scores taken from a statewide assessment, and several sociodemographic variables.

The problemsolving2level.dat data set is taken from a cluster-randomized educational
intervention where 29 schools were assigned to an intervention and comparison condition. In
addition to the intervention assignment indicator, school-level variables include the average
years of teacher experience and the percentage of learners for whom English is a second
language. The 982 student-level records include pretest and posttest math problem-solving and
self-efficacy scores, standardized math scores taken from a statewide assessment, and several

sociodemographic variables.

The problemsolving3level.dat data set is taken from a cluster-randomized educational
intervention where 29 schools were assigned to an intervention and comparison condition. In
addition to the intervention assignment indicator, school-level variables include the average
years of teacher experience and the percentage of learners for whom English is a second
language. The 6874 within-subjects data records include seven monthly measures of math
problem-solving and self-efficacy, standardized math scores taken from a statewide assessment,

and several sociodemographic variables.



Data File Descriptions

Variable Definitions for behaviorachievement.dat File

Name Definition Missing %  Scale

ID Individual identifier 0 Integer index

MALE Gender dummy code 15 0 = Female, 1 = Male
HISPANIC Hispanic dummy code 5.1 0 = African American, 1 = Hispanic
RISKGRP Emotion/behavior disorder risk 2.2 1 = Low, 2 = Medium, 3 = High
ATRISK Emotion/behavior disorder risk 2.2 0 = Low, 1 = Medium/high
BEHSYMP, 1* grade behavioral symptoms 3.6 Numeric (17 to 92)

LRNPROB, 1* grade learning problems 2.2 Numeric (31 to 88)

READ, 1* grade reading composite 6.5 Numeric (39 to 153)

READ, 2" grade reading composite 9.4 Numeric (20 to 150)

READ; 3" grade reading composite 14.5 Numeric (46 to 138)

READ, 9™ grade reading composite 17.4 Numeric (41 to 123)
READGRPs 9" grade reading classification ~ 17.4 0 = Below average, 1 = Average
STANREAD, 7" grade standardized reading ~ 19.6 Numeric (100 to 399)

MATH, 1* grade math composite 6.5 Numeric (60 to 149)

MATH, 2" grade math composite 94 Numeric (76 to 138)

MATH, 3" grade math composite 14.5 Numeric (71 to 143)

MATH, 9™ grade math composite 17 .4 Numeric (55 to 127)
MATHGRP, 9™ grade math classification 17.4 0 = Below average, 1 = Average
STANMATH, 7™ grade standardized math 19.6 Numeric (100 to 421)




Data File Descriptions

Variable Definitions for mathachievement.dat File

Name Definition Missing %  Scale

ID Individual identifier 0 Integer index

CONDITION  Experimental condition 0 0 = Comparison, 1 = Intervention
MALE Gender dummy code 0 0 = Female, 1 = Male
FRLUNCH Lunch assistance dummy code 4.4 0 = None, 1 = Lunch assistance
ATRISK Emotion/behavior disorder risk 5.2 0 = Low risk, 1 = At-risk
STANREAD  Standardized reading 9.2 Numeric (27 to 69)
EFFICACY Math self-efficacy rating scale 9.6 Ordinal (1 to 6)

ANXIETY Math anxiety composite 8.4 Numeric (0 to 44)

MATHPRE Math achievement pretest 0 Numeric (26 to 76)
MATHPOST  Math achievement posttest 18.0 Numeric (37 to 85)




Data File Descriptions

Variable Definitions for problemsolving2level.dat File

Name Definition Missing %  Scale

SCHOOL School identifier 0 Integer index

STUDENT Student identifier 0 Integer index

CONDITION  Experimental condition 0 0 = Control, 1 = Experimental
TEACHEXP Teacher years of experience 10.8 Numeric (4.3 to 24.6)

ESLPCT % English as second language 0 Numeric (10 to 100)
HISPANIC Ethnicity/race 9.0 0 = White/Black, 1 = Hispanic
MALE Gender dummy code 0 0 = Female, 1 = Male
FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance
LOWACH Low achievement code 52 0 = Typically achieving, 1 = Low achieving
STANMATH Standardized math scores 7.4 Numeric (5.3 to 87.8)
EFFICACYPRE Math self-efficacy pretest 0 Numeric (0 to 12)
EFFICACYPST Math self-efficacy posttest 20.5 Numeric (0 to 12)
PSOLVEPRE Math problem-solving pretest 0 Numeric (37 to 66)
PSOLVEPST Math problem-solving posttest  20.5 Numeric (37 to 65)




Data File Descriptions

Variable Definitions for problemsolving3level.dat File

Name Definition Missing %  Scale

SCHOOL School identifier 0 Integer index

STUDENT Student identifier 0 Integer index

WAVE Monthly wave identifier 0 Integer index (1 to 7)
CONDITION  Experimental condition 0 0 = Control, 1 = Experimental
TEACHEXP  Teacher years of experience 10.8 Numeric (4.3 to 24.6)

ESLPCT % English as second language 0 Numeric (10 to 100)

HISPANIC Ethnicity/race 9.0 0 = Non-Hispanic, 1 = Hispanic
MALE Gender dummy code 0 0 = Female, 1 = Male
FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance
LOWACH Low achievement code 52 0 = Typically achieving, 1 = Low achieving
STANMATH  Standardized reading 7.4 Numeric (5.3 to 87.8)

MONTH Time scores (baseline = 0) 0 Numeric (0 to 6)

MONTH; Time scores (endpoint = 0) 0 Numeric (-6 to 0)

EFFICACY Math self-efficacy 114 Numeric (0 to 14)
PROBSOLVE  Math problem-solving 11.4 Numeric (37 to 68)
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Getting Started With Software

The tutorial examples use the Blimp (Keller & Enders, 2021) application for MCMC estimation
and multiple imputation. Blimp’s development was supported by the Institute of Education
Sciences, U.S. Department of Education, through Grant R305D150056 & R305D190002 to
UCLA. Blimp is freely available at www.appliedmissingdata.com/blimp. The Blimp User Guide is

available from the same website and from the Help > Help pull-down. Blimp scripts can be
executed from the Blimp Studio graphical interface (macOS and Windows), and the rblimp
package is also available for the R environment (Keller, 2024). The rblimp package is currently

available for download at Brian Keller’s github, and a forthcoming version will be available

through CRAN. The standalone version of Blimp must be installed prior to downloading and
installing rblimp.

The tutorial examples use Mplus for maximum likelihood estimation and for analyzing
multiply imputed data sets. A free demo version of Mplus is available at

www.statmodel.com/demo.shtml. Many of the scripts run on the demo version, which is limited

to six variables. The tutorial examples also use various R packages for maximum likelihood
estimation and for analyzing multiply imputed data sets. The installation commands for the R

packages used in this document are as follows.

install.packages('lavaan', dependencies = T)
install.packages('semTools', dependencies = T)
install.packages('rockchalk', dependencies = T)
install.packages('mitml', dependencies = T)
install.packages('mdmb', dependencies = T)
install.packages('remotes', dependencies = T)
remotes::install_github('bkeller2/fdir")
remotes::install_github('blimp-stats/rblimp')
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FIML: Regression With Multivariate Normal Data

This example illustrates a multiple regression analysis with multivariate normal incomplete data.
The analysis uses the behaviorachievement.dat data set taken from a longitudinal study that
followed 138 students from primary through middle school. The file includes three annual
assessments of broad reading and math achievement beginning in the first grade, seventh grade
standardized achievement test scores taken from a statewide assessment, and a final measure of
broad reading and math obtained in ninth grade. The data also contain teacher ratings of
behavioral symptoms and learning problems were also obtained in the first grade. The data
description at the beginning of this document provides additional details. The variables for this

analysis are as follows.

Name Definition Missing %  Scale

BEHSYMP,  1st grade behavioral symptoms 3.6 Numeric
LRNPROB,  1st grade learning problems 2.2 Numeric
READ, Ist grade broad reading composite 6.5 Numeric
READ; 9th grade broad reading composite 17.4 Numeric

1.1 Analysis Model

The analysis model features ninth grade broad reading scores regressed on first grade reading

achievement and teacher-rated learning problems and behavioral symptoms.

READ, = B, + B1(READ,) + B,(LRNPROB,) + B3(BEHSYMR) + ¢ (1)
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Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. The Mplus and R scripts below assign a multivariate

normal distribution to the set of analysis variables.
1.2 Mplus FIML Script

The code block below shows Mplus script Ex1.1.inp.

Mplus Script Ex1.1.inp

1 DATA:

2 file = behaviorachievement.dat;

3 VARIABLE:

4 names = id male hispanic riskgrp atrisk behsymp1 lrnprob1
5 readl read2 read3 read9 read9grp stanread?

6 math1 math2 math3 math9 math9grp stanmath7;

7 usevariables = read9 readl lrnprobl behsympi;

8 missing = all(999);

9 ANALYSIS:

10 estimator = ml;

11 MODEL :

12 readl lrnprob1 behsympl;

13 read9 on readl lrnprobl behsympl (betal-beta3);
14 MODEL TEST:

15 @ = betal; 0 = beta2; 0 = beta3;

16 OUTPUT :

17  patterns sampstat stdyx cinterval;

The DATA command specifies the name of the input text file. No file path is required when the
data set is in the same directory as the script, as it is here. The VARIABLE command provides
information about the data. Beginning on line 4, the names subcommand assigns names to the
variables in the input data, the usevariables subcommand selects variables for the analysis, and
the missing subcommand gives the global missing value code. The ANALYSIS command and
estimator subcommand specify full information maximum likelihood estimation. These
commands are optional because the maximum likelihood missing data handling is the default. If
the variables are nonnormal, specifying estimator = mlr on line 10 generates robust test

statistics and standard errors.
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The MODEL section of the script consists of two lines. Listing all predictors by name on line 12
is important because doing so invokes a multivariate normal distribution for these variables. As
mentioned previously, assigning distributional assumptions to predictors is necessary for missing
data handling. On line 13, the outcome variable appears to the left of the on keyword, and the
predictors appear to the right. The end of this line includes labels for the slope parameters in
parentheses. The subsequent MODEL TEST command uses these labels to specify a custom
significance test of the omnibus null hypothesis that all three population slopes equal zero.
Finally, the OUTPUT command specifies four keywords on line 17 that request a summary of the
missing data patterns, maximum likelihood estimates of sample statistics, standardized

coefficients, and confidence intervals.
1.3 Mplus Output

Information about the missing data patterns is found near the top of the output file. The table in
the excerpt below shows the analysis variables in the rows and missing data patterns in the

columns. The output also displays the frequency of each missing data pattern.

SUMMARY OF MISSING DATA PATTERNS

MISSING DATA PATTERNS (x = not missing)

1 2 3 4 5 6 7
READ9 X X X
READ1 X X X X X
LRNPROBT x x X X X X
BEHSYMP1 x X X X X

MISSING DATA PATTERN FREQUENCIES

Pattern Frequency Pattern Frequency Pattern Frequency
1 99 4 8 7 1
2 4 5 22

3 3 6 T
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Next, the covariance coverage matrix displays the proportion of observed data for each
variable on the diagonal and the proportion of observed data for each variable pair on the oft-
diagonals. A low value on the off-diagonal indicates that the data contain little information about

a bivariate association.

COVARIANCE COVERAGE OF DATA
Minimum covariance coverage value 0.100
PROPORTION OF DATA PRESENT

Covariance Coverage

READS READ1 LRNPROB1 BEHSYMP1
READS 0.826
READ1 0.768 0.935
LRNPROB1 0.804 0.913 0.978
BEHSYMP1 0.797 0.899 0.942 0.964

The MODEL TEST command in the previous script requested an analogous Wald chi-square
statistic that evaluates the null hypothesis that all population slopes equal zero. The chi-square
statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT INFORMATION
section under the Wald Test of Parameter Constraints heading. The test statistic is

statistically significant, thus refuting the null hypothesis.

MODEL FIT INFORMATION

Number of Free Parameters 14

Wald Test of Parameter Constraints

Value 159.666
Degrees of Freedom 3
P-Value 0.0000
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The table of unstandardized parameter estimates is shown below. Because the analysis
specifies a multivariate normal distribution for the predictors, the means, variances, and
covariances of these variables are printed along with the focal model estimates. These supporting
parameters are not of substantive interest, and they do not need to be reported. The first two
columns display the unstandardized estimates and their standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown in

bold typeface.

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

READ9 ON

READ1 0.503 0.045 11.230 0.000

LRNPROB1 -0.224 0.132 -1.703 0.089

BEHSYMP1 -0.222 0.110 -2.023 0.043
LRNPROB1 WITH

READ1 -5.643 19.063 -0.296 0.767
BEHSYMP1 WITH

READ1 -11.235 20.841 -0.539 0.590

LRNPROB1 92.048 13.548 6.794 0.000
Means

READ1 86.732 1.709 50.739 0.000

LRNPROB1 52.328 0.914 57.224 0.000

BEHSYMP1 49.483 1.039 47.631 0.000
Intercepts

READ9 66.901 6.465 10.349 0.000
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Variances
READ1 387.270 48.040 8.061 0.000
LRNPROB1 114.162 13.820 8.260 0.000
BEHSYMP1 146.318 17.738 8.249 0.000

Residual Variances
READ9 86.095 11.813 7.288 0.000

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading slope. The model predicts that two individuals who
differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.50
points on the outcome. The corresponding test statistic indicates that the slope coefficient is

statistically different from zero (z = 11.23, p <.001).

Specifying the stdyx keyword as an option prints the table of standardized estimates and R-
squared statistic shown below. The slope coefficients convey the expected change in standard
deviation units for a one standard deviation increase in each predictor. For example, the model
predicts that two individuals who differ by one standard deviation on READ1 but are the same on
LRNPROB1 and BEHSYMP1 should differ by 0.68 standard deviations on the outcome. The R-
squared statistic at the bottom of this section indicates that the collection predictors explain 59%

of the variation in ninth-grade reading scores.

STANDARDIZED MODEL RESULTS

STDYX Standardization

Two-Tailed
Estimate S.E. Est./S.E. P-Value
READ9 ON
READ1 0.683 0.049 13.901 0.000
LRNPROB1 -0.165 0.097 -1.698 0.089
BEHSYMP1 -0.185 0.091 -2.032 0.042

LRNPROB1 WITH
READ1 -0.027 0.091 -0.296 0.767
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BEHSYMP1 WITH

READ1 -0.047 0.087 -0.541 0.588

LRNPROB1 0.712 0.042 16.784 0.000
Means

READ1 4,407 0.287 15.339 0.000

LRNPROB1 4,897 0.309 15.864 0.000

BEHSYMP1 4,091 0.262 15.594 0.000
Intercepts

READ9 4.620 0.575 8.032 0.000
Variances

READ1 1.000 0.000 999.000 999.000

LRNPROB1 1.000 0.000 999.000 999.000

BEHSYMP1 1.000 0.000 999.000 999.000

Residual Variances

READ9 0.411 0.059 6.974 0.000
R-SQUARE

Observed Two-Tailed

Variable Estimate S.E. Est./S.E. P-Value

READ9 0.589 0.059 10.014 0.000

1.4 Rlavaan FIML Script

The R input file for the analysis is Ex1.1.R. The example requires the lavaan package.

R Script Ex1.1.R

1 library(lavaan)

2 load('behaviorachievement.rda')

3

4 model <- 'read9 ~ bl*readl + b2*lrnprobl + b3*behsympl'

5 fit <- sem(model, behaviorachievement, fixed.x = F, missing = 'fiml')
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6

7 inspect(fit, 'patterns')

8 inspect(fit, 'coverage')

9 summary(fit, rsquare = T, standardize = T)
10

11 wald.constraints <- 'b1 == 0; b2 == 0; b3 == 0;'
12 lavTestWald(fit, constraints = wald.constraints)

The model variable on line 4 defines a text string specifying the regression model, with the
outcome variable on the left side of the tilde and the predictors to the right. Each predictor’s
slope is preceded by a label (i.e., b1, b2, and b3). A subsequent command uses these labels to
specify a custom significance test of the null hypothesis that the population slopes equal zero. On
line 5, the model string and data frame are passed into the sem function. The fixed.x = F
parameter specifies that the predictors are treated as normally distributed variables, and missing
= 'fiml' requests missing data estimation. The fixed.x specification is important because it
invokes a multivariate normal distribution for the analysis variables. As mentioned previously,

assigning distributions to incomplete predictors is necessary for missing data handling.
gning plete p ry g g

The inspect functions on lines 7 and 8 produce a table of missing data patterns and a
covariance coverage matrix with the proportion of observed data for each variable or variable
pair, respectively. The summary function on line 9 produces tabular results with standardized
estimates and the R-squared statistic. Finally, the wald. constraints variable on line 11 defines a
text string that uses the aforementioned labels to specify the null hypothesis that all three
population slopes equal zero. The lavTestWald function on line 12 uses that text string to

generate a chi-square statistic, degrees of freedom, and p-value.
1.5 ROutput

The inspect functions in the previous script request information about the missing data patterns
and missing data rates. The missing data pattern table in output below shows the analysis

variables in the columns and missing data patterns in the rows (1 = observed, 0 = missing).

read9 readl lrnpr1 bhsyml
[1,1] 1 1 1 1
[2,] 0 1 1 1
[3,] 1 0 1 1
[4,] 1 1 1 0
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£5,1 0 1
(6, 1] 0 0
[7,1 0 1 0

The covariance coverage matrix displays the proportion of observed data for each variable on the
diagonal and the proportion of observed data for each variable pair on the off-diagonals. A low
value on the off-diagonal indicates that the data contain little information about a bivariate

association.

read9 readl lrnpr1 bhsyml
read9 0.826
readl 0.768 0.935
lrnprob1 0.804 ©.913 0.978
behsympl 0.797 0.899 0.942 0.964

The table of parameter estimates is shown below. Because the analysis specifies a multivariate
normal distribution for the predictors, the means, variances, and covariances of these variables
are printed along with the focal model estimates. These supporting parameters are not of
substantive interest, and they do not need to be reported. The first two columns display the
unstandardized estimates and their standard errors, and the third and fourth columns display the
corresponding z-statistics and p-values. The rightmost column gives the standardized

coefficients. The focal model results are shown in bold typeface.

Regressions:
Estimate Std.Err z-value P(>|z]|) Std.lv Std.all
read9 -~
readi (b1) 0.503 0.045 11.230 0.000 0.503 0.683

lrnprob1 (b2) -0.224 0.132 -1.702 0.089 -0.224 -0.165
behsymp1 (b3) -0.222 0.110 -2.023 0.043 -0.222 -0.185

Covariances:
Estimate Std.Err z-value P(>|z]|) Std.lv Std.all
readl ~~
lrnprob1 -5.637 19.063 -0.296 0.767 -5.637 -0.027
behsymp1 -11.228 20.841 -0.539 0.590 -11.228 -0.047

lrnprobl ~~
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behsymp1 92.048 13.548 6.794 0.000 92.048 0.712
Intercepts:

Estimate Std.Err z-value P(>|z]|) Std.lv Std.all

.read9 66.901 6.465 10.349 0.000 66.901 4.620

read1l 86.732 1.709 50.739 0.000 86.732 4.407

lrnprob1 52.328 0.914 57.225 0.000 52.328 4.897

behsymp1 49.483 1.039  47.631 0.000 49.483 4.091
Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.read9 86.096 11.813 7.288 0.000 86.096 0.411
readl 387.275  48.041 8.061 0.000 387.275 1.000
lrnprob1 114.160  13.820 8.260 0.000 114.160 1.000
behsymp1 146.317 17.738 8.249 0.000 146.317 1.000

R-Square:
Estimate
read9 0.589

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading slope. The model predicts that two individuals who
differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.50
points on the outcome. The corresponding test statistic indicates that the slope coefficient is

statistically different from zero (z = 11.23, p <.001).

The standardized coefficients in the Std.all column convey the expected change in standard
deviation units for a one standard deviation increase in each predictor. For example, the model
predicts that two individuals who differ by one standard deviation on READ1 but are the same on
LRNPROB1 and BEHSYMP1 should differ by 0.68 standard deviations on the outcome. The R-
squared statistic at the bottom of this section indicates that the collection predictors explain 59%

of the variation in ninth-grade reading scores.

Most software programs that fit regression models report an omnibus F test that evaluates the
set of slope coefficients. The lavTestWald function in the previous script requested an analogous
Wald chi-square statistic that evaluates the null hypothesis that all population slopes equal zero.
The chi-square statistic, degrees of freedom, and p-value appear on the output as follows. The test

statistic is statistically significant, thus refuting the null hypothesis.
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$stat
[1] 159.6636

$df
(113

$p.value
[1]10

1.6 Adding Auxiliary Variables

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). The next part of example introduces two auxiliary variables using the saturated correlates

approach described by Graham (2003). The analysis variables are as follows.

Name Definition Missing %  Scale

Focal Variables

BEHSYMP,  1* grade behavioral symptoms 3.6 Numeric

LRNPROB; 1% grade learning problems 2.2 Numeric

READ, 1* grade broad reading composite 6.5 Numeric

READ; 9 grade broad reading composite 17.4 Numeric
Auxiliary Variables

READ, 2" grade broad reading composite 94 Numeric

STANREAD; 7™ grade standardized math 19.6 Numeric

A path diagram of the saturated correlates model is shown below. The curved arrows depict
correlations and residual correlations that connect the auxiliary variables to each other and to the
residuals of the focal variables. Both Mplus and R have facilities that automatically introduce
auxiliary variables according to this model. Note that the saturated correlates approach assumes

that all variables are multivariate normal.
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1.7 Mplus FIML Script and Output

The code block below shows Mplus script Ex1.2.inp. The only change to the script is the

auxiliary subcommand on line 8, which functions as a second variable list containing just the

auxiliary variables. The (m) specification indicates that the additional variables are missing data

auxiliary variables (Mplus uses this command for other purposes unrelated to missing data).

Finally, note that the additional variables are omitted from the usevariables line.

Mplus Script Ex1.2.inp

O N O O h W N =

_
N —,  © O

DATA:
file = behaviorachievement.dat;
VARIABLE:

names = id male hispanic riskgrp atrisk behsymp1l lrnprob1
readl read2 read3 read9 read9grp stanread?
math1 math2 math3 math9 math9grp stanmath7;

usevariables = read9 readl lrnprob1 behsympl;

auxiliary = (m) read2 stanread7;

missing = all(999);

ANALYSIS:

estimator = ml;

MODEL :
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13 readl lrnprob1 behsympl;

14 read9 on readl lrnprobl behsympl (betal-beta3);
15 MODEL TEST:

16 @ = betal; 0 = beta2; 0 = beta3;

17 OUTPUT :

18  patterns sampstat stdyx cinterval;

The only indication that auxiliary variables are included in the model appears in the SUMMARY
OF ANALYSIS table near the top of the output file. The main body of the output doesn’t change
with auxiliary variables, as the additional parameters (e.g., the curved arrows, or correlations) are
suppressed. The estimates and standard errors may change, which is expected when including

auxiliary variables that have salient semipartial correlations with the incomplete variables.

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 138
Number of dependent variables 1

Number of independent variables
Number of continuous latent variables

Observed dependent variables

Continuous
READ9

Observed independent variables
READ1 LRNPROB1 BEHSYMP1

Observed auxiliary variables
READ2 STANREAD7
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1.8 Rlavaan FIML Script and Output

The R input file that incorporates auxiliary variables is Ex1.2.R. The example requires the

lavaan and semTools packages.

R Script Ex1.2.R

1 library(lavaan)

2 load('behaviorachievement.rda')

3

4 model <- 'read9 ~ bl*readl + b2*lrnprobl + b3*behsympl'
5 fit <- sem.auxiliary(model, behaviorachievement, fixed.x = F,
6 aux = c('read2', 'stanread7'))

7

8 inspect(fit, 'patterns')

9 inspect(fit, 'coverage')

10 summary(fit, rsquare = T, standardize = T)

The model text string remains the same with auxiliary variables. The major change is that the
sem.auxiliary function replaces the sem function in Ex1.1.R. The aux parameter defines a
vector of auxiliary variable names for the saturated correlates model. Unlike Mplus, the R output
includes the auxiliary variable parameters. The additional estimates can be ignored because they

are not the substantive focus.



FIML: Binary Logistic Regression 21

FIML: Binary Logistic Regression

This example illustrates a binary logistic regression analysis with incomplete data. The analysis
uses the behaviorachievement.dat data set taken from a longitudinal study that followed 138
students from primary through middle school. The file includes three annual assessments of
broad reading and math achievement beginning in the first grade, seventh grade standardized
achievement test scores taken from a statewide assessment, and a final measure of broad reading
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms
and learning problems were also obtained in the first grade. The data description at the

beginning of this document provides additional details. The variables for this analysis are as

follows.
Name Definition Missing %  Scale
Focal Variables
BEHSYMP, 1* grade behavioral symptoms 3.6 Numeric
LRNPROB, 1* grade learning problems 22 Numeric
READ, 1* grade broad reading composite 6.5 Numeric
READGRPs 9™ grade reading classification 17.4 0 = Below average, 1 = Average
Auxiliary Variables
READ, 2" grade broad reading composite 9.4 Numeric
STANREAD; 7™ grade standardized math 19.6 Numeric

2.1 Analysis Model

The analysis model features a binary classification of ninth grade reading performance regressed
on first grade reading achievement and teacher-rated learning problems and behavioral

symptoms.
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logit(READGRR,) = f8, + B,(READ)) + f8,(LRNPROB,) + f8;(BEHSYMR) 2)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. Models with mixtures of categorical and numeric
variables require a factored regression specification that separates the likelihood function into
separate components for each variable type. Mplus assigns a multivariate normal distribution to
the predictors, whereas the R script links predictors to one another using a sequence of univariate

regression models.
2.2 Mplus FIML Script

The code block below shows Mplus script Ex2.1.inp.

Mplus Script Ex2.1.inp

1 DATA:

2 file = behaviorachievement.dat;

3 VARIABLE:

4 names = id male hispanic riskgrp atrisk behsympl1 lrnprob1
5 readl read2 read3 read9 read9grp stanread?

6 math1 math2 math3 math9 math9grp stanmath7;

7 usevariables = read9grp readl lrnprobl behsympl;

8 categorical = read9grp;

9 missing = all(999);

10 ANALYSIS:

11 estimator = ml;

12 link = logit;

13 integration = montecarlo;

14 MODEL:

15 readl lrnprob1 behsympl;

16 read9grp on readl lrnprobl behsympl (betal-beta3);
17  MODEL TEST:

18 @ = betal; 0 = beta2; 0 = beta3;

19  OUTPUT:
20  patterns sampstat stdyx cinterval;
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The DATA command specifies the name of the input text file. No file path is required when the
data file is in the same directory as the script, as it is here. The VARIABLE command provides
information about the data. Beginning on line 4, the names subcommand assigns names to the
variables in the input data file, the usevariables subcommand selects variables for the analysis,
and the missing subcommand gives the global missing value code. The categorical
subcommand on line 8 defines the outcome as a binary variable. The ANALYSIS command and
estimator subcommand specify full information maximum likelihood estimation. Additionally,
the link = logit subcommand specifies a logistic regression for the outcome variable, and
integration = montecarlo invokes an algorithmic method for models with mixed variable
types.

The MODEL section of the script consists of two lines. Listing all predictors by name on line 15
is important because doing so invokes a multivariate normal distribution for these variables. As
mentioned previously, assigning distributional assumptions to predictors is necessary for missing
data handling. On line 16, the outcome variable appears to the left of the on keyword, and the
predictors appear to the right. The end of this line includes labels for the slope parameters in
parentheses. The subsequent MODEL TEST command uses these labels to specify a custom
significance test of the omnibus null hypothesis that all three population slopes equal zero.
Finally, the OUTPUT command specifies four keywords on line 20 that request a summary of the
missing data patterns, maximum likelihood estimates of sample statistics, standardized

coefficients, and confidence intervals.
2.3 Mplus Output

Information about the missing data patterns is found near the top of the output file. Following
the missing data pattern table, the output displays a covariance coverage matrix that gives the
proportion of observed data for each variable on the diagonal and the proportion of observed
data for each variable pair on the off-diagonals. The format of these tables is the same as those

shown in Section 1.3.

The MODEL TEST command in the previous script requested an analogous Wald chi-square
statistic that evaluates the null hypothesis that all population slopes equal zero. The chi-square
statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT INFORMATION
section under the Wald Test of Parameter Constraints heading. The test statistic is

statistically significant, thus refuting the null hypothesis.
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MODEL FIT INFORMATION

Number of Free Parameters 13

Wald Test of Parameter Constraints

Value 21.889
Degrees of Freedom 3
P-Value 0.0001

The table of unstandardized parameter estimates is shown below. Because the analysis
specifies a multivariate normal distribution for the predictors, the means, variances, and
covariances of these variables are printed along with the focal model estimates. These supporting
parameters are not of substantive interest, and they do not need to be reported. The first two
columns display the unstandardized estimates and their standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown in

bold typeface.

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value
READGRP9 ON
READ1 0.069 0.016 4.446 0.000
LRNPROB1 -0.018 0.033 -0.549 0.583
BEHSYMP1 -0.028 0.028 -1.014 0.311
LRNPROB1 WITH
READ1 3.085 19.553 0.158 0.875

BEHSYMP1 WITH
READ1 -5.194 21.046 -0.247 0.805
LRNPROB1 92.088 13.554 6.794 0.000
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Means
READ1 86.974
LRNPROB1 52.319
BEHSYMP1 49.488
Thresholds
READGRP9$1 3.874
Variances
READ1 384.526
LRNPROB1 113.906
BEHSYMP1 146.740

The results are interpreted in the same way as a complete-data logistic regression analysis. For
example, consider the first-grade reading score slope. The model predicts that the logits for two
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ
by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (z = 4.45, p < .001). Note that Mplus reports a threshold parameter instead of the usual

regression intercept. The threshold from a binary logistic model has the same value as the

1.719
0.914
1.041

1.729

47.859
13.775
17.818

intercept but the opposite sign (i.e., B, = -3.87).

Finally, the printed output also includes the table of odds ratios that reflect multiplicative
changes to the odds. For example, a one-point increase in first grade reading scores increases the

odds of achieving an average ninth grade reading level by a factor 1.07, holding first grade

50.598
57.267
47.544

2.240

8.035
8.269
8.235

learning problems and behavioral symptoms constant.

LOGISTIC REGRESSION ODDS RATIO RESULTS

Estimate

READGRP9 ON
READ1 1.072
LRNPROB1 0.982

BEHSYMP1 0.972

S.E.

0.017
0.032
0.027

95% C.I.

0.000
0.000
0.000

0.025

0.000
0.000
0.000

Lower 2.5% Upper 2.5%

1.040
0.921
0.921

1.105
1.047
1.027
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2.4 Adding Auxiliary Variables

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). The saturated correlates model from Section 1.6 is not applicable to logistic regression
models because it assumes multivariate normality. Instead, auxiliary variables enter the model as

additional outcomes that are predicted by the analysis variables and by each other.

The additional regression equations are as follows.

READ, = y,, + 7,;(READGRR) + 7,,(READ,) + 75,(LRNPROB,) + y4,(BEHSYMR) + ¢,
STANREAD, = y,, + 71,(READ,) + 7,,(READGRR) + ¥s,(READ,)
+ ¥4,(LRNPROB,) + 75,(BEHSYMR) + ¢, (3)

Along with the logistic regression model from Equation 2, the collection of regression equations
can be viewed as the path model shown below, where the dashed lines are the additional
regressions. With this method, the focal model is one part of a larger network of variables.
Importantly, the path model does not represent substantive theory, but is simply a tool for

linking the auxiliary variables to the focal variables and to each other.
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2.5 Mplus FIML Script

The code block below shows an excerpt from Mplus script Ex2.2.inp. The MODEL command

includes two new regression equations, but the script is otherwise similar to Ex2.1.inp.

MODEL :

readl lrnprob1 behsympl;

read9grp on readl lrnprobl behsympl (betal-beta3);
read2 on read9grp readl lrnprobl behsympl;

stanread7 on read2 read9grp readl lrnprobl behsympl;

The main table of results expands to include summaries of the auxiliary variable regression
models. However, these additional parameters can be ignored because they are not the
substantive focus. The logistic model’s estimates and standard errors change, which is expected
when including auxiliary variables that have salient semipartial correlations with the incomplete

variables.
2.6 R mdmb FIML Script

The lavaan package currently does not offer maximum likelihood estimation for models with
incomplete categorical variables. The example instead uses the mdmb package. This package
leverages a factored regression specification that links incomplete predictors to one another using

a sequence of univariate regression models. The additional regression equations are as follows.

BEHSYMP, = 75, + €
LRNPROBl = yoz + ylz(BEHSWH) + 62 (4)
READ; = yy; + ¥13(LRNPROB,) + y,3(BEHSYMR) + €5

These equations essentially comprise a path model where first grade behavioral symptom ratings

predict learning problems, and both variables then predict first grade reading scores.

The R input file for the analysis is Ex2.R. The example requires the mdmb package.
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R Script Ex2.R

1 library(mbmb)

2 load('behaviorachievement.rda')
3

4 summary (behaviorachievement)

The mdmb package requires the user to specify nodes' for the missing values. These nodes are
essentially a fixed list of plausible score values that span each variable’s range. Specifying these
values is necessary for the optimization algorithm, which uses an imputation-like algorithm
called numerical integration. The summary function on line 4 generates a table displaying the

observed values of the numeric variables. The summary table is as follows.

stanread?7 read2 readl lrnprob1 behsymp1

Min. :100.0  Min. 1 20.00  Min. : 39.00 Min. :31.00  Min. :17.00
1st Qu.:228.0  1st Qu.: 83.00 1st Qu.: 74.00 1st Qu.:45.00 1st Qu.:41.00
Median :263.0 Median : 92.00 Median : 86.00 Median :51.00 Median :48.00
Mean :264.5 Mean : 93.74  Mean : 86.81 Mean :52.36 Mean 149.47
3rd Qu.:314.0  3rd Qu.:108.00 3rd Qu.: 99.00 3rd Qu.:60.50 3rd Qu.:58.00
Max. :399.0  Max. :150.00  Max. :153.00  Max. :88.00  Max. :92.00
NA's  :27 NA's  :13 NA's  :9 NA's  :3 NA's  :5

The next part of the code creates variables that contain vectors of plausible replacement scores
(nodes, pseudo-imputations) that span the entire range of the distributions. The binary outcome
has only two possible scores, so its node vector on line 7 consists of 0s and 1s. For continuous
variables, specifying 20 to 40 nodes is usually sufficient. For example, nodes. read1 is a vector of
plausible scores ranging from 30 to 160 in increments of two, and nodes.1rnprb1 is a sequence
of scores between 20 and 100 in increments of two. To account for the possibility that the
missing scores fall outside the observed range, the vectors specify values beyond the minimum

and maximum scores from the data.

R Script Ex2.R, continued

5 nodes.stanread7 <- seq(80, 420, by = 5)
6 nodes.read2 <- seq(10, 160, by = 2)
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nodes.read9grp <- c(0,1)

nodes.readl <- seq(30, 160, by = 2)

nodes.lrnprobl <- seq(20, 100, by = 2)
10 nodes.behsympl <- seq(10, 100, by = 2)

The next part of the script specifies a model for each analysis variable and auxiliary variable.
The predictor variable regressions from Equation 4 are listed first, followed by the logistic model
from Equation 2. The auxiliary variable regressions from Equation 3 are last. Each model object
includes three arguments: the type of regression (linear or logistic), an equation, and the
incomplete variable’s vector of nodes or pseudo-imputations. Linear regressions are specified
with 'model' = 'linreg' parameter, and the binary logistic regression is specified using

'model' = 'logistic'.

R Script Ex2.R, continued

11 model.behsymp1 <- list('model' = 'linreg',

12 "formula' = behsympl ~ 1, nodes = nodes.behsymp1)

13 model.lrnprobl <- list('model' = 'linreg',

14 "formula' = lrnprobl ~ behsympl, nodes = nodes.lrnprobl)

15  model.readl <- list('model' = 'linreg',

16 "formula' = readl ~ lrnprobl + behsympl, nodes = nodes.readl)
17  model.read9grp <- list('model' = 'logistic',

18 '"formula' = read9grp ~ readl + lrnprobl + behsymp1,

19 nodes = nodes.read9grp)

20  model.read2 <- list('model' = 'linreg',

21 '"formula' = read2 ~ read9grp + readl + lrnprobl + behsympl,
22 nodes = nodes.read2)

23 model .stanread7 <- list('model' = 'linreg',

24 '"formula' = stanread7 ~ read2 + read9grp + readl + lrnprobl +
25 behsymp1, nodes = nodes.stanread7)

The mdmb package views stanread7 (the auxiliary variable in the final regression model) as
the ultimate 'dependent' variable in the sequence, and it considers all other variables
'independent variables'. Starting on line 26, the final part of the code combines the independent

variable models into a list. On lines 29 and 30, the data frame and the predictor list are passed
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into the frm_em function, which fits the sequence of models. Finally, the summary function on line

31 requests tables of parameter estimates.

R Script Ex2.R, continued

26 predictor.models <- list(behsympl = model.behsympl,
model . readl,
28 read9grp = model.read9grp, read2 = model.read2)

27 lrnprob1 = model.lrnprob1, readil

29  fit <- frm_em(dat = behaviorachievement, dep = model.stanread7,
30 ind = predictor.models)
31 summary(fit)

2.7 ROutput

The mdmb output includes a table of results for every fitted regression model. In this example, the
output tables summarize linear regressions for the three incomplete predictors, a logistic
regression for the binary dependent variable, and a pair of linear regressions for the auxiliary
variables. These supporting model parameters are not of substantive interest, and they do not
need to be reported. The output below shows the parameter estimates from the focal logistic
model. The first two columns display the unstandardized estimates and their standard errors, the
third and fourth columns display the corresponding t-statistics and p-values, and the rightmost

columns contain 95% confidence interval limits.

Model 4: mdmb::logistic_regression( read9grp ~ readl + lrnprobl + behsympl )

index dv parm ON est se t p lower95 upper95
1 14 read9grp read9grp ON (Intercept) 1 -3.9045 1.6291 -2.3968 0.0165 -7.0974 -0.7117
15 read9grp read9grp ON readl 1 0.0675 0.0149 4.5252 0.0000 0.0383 0.0968

16 read9grp read9grp ON lrnprobl 1 -0.0225 0.0308 -0.7330 0.4636 -0.0828 0.0377
17 read9grp read9grp ON behsympl 1 -0.0192 0.0251 -0.7664 0.4434 -0.0685 0.0300

A oOow N

Pseudo R*2 (McKelvey & Zavoina)=0.4944

The results are interpreted in the same way as a complete-data logistic regression analysis. For
example, consider the first-grade reading score slope. The model predicts that the logits for two
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ
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by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (t = 4.53, p <.001).
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FIML: Regression With Binary and Ordinal Predictors

This example illustrates a multiple regression analysis with incomplete categorical predictors.
The analysis uses the mathachievement.dat data set taken from an educational intervention
where 250 students were assigned to an intervention and comparison condition. The file includes
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized
reading scores taken from a statewide assessment, and several sociodemographic variables. The

analysis variables are as follows.

Name Definition Missing %  Scale

Focal Variables

MATHPOST  Math achievement posttest ~ 18.0 Numeric
CONDITION  Experimental condition 0 0 = Comparison, 1 = Intervention
FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch
EFFICACY Math self-efficacy rating 9.6 Ordinal (1 to 6)
MATHPRE Math achievement pretest 0 Numeric

Auxiliary Variables
ATRISK Behavioral disorder risk 52 0 = Low risk, 1 = At-risk
STANREAD  Standardized reading 9.2 Numeric

3.1 Analysis Model

The analysis model features math posttest scores regressed on the experimental condition and

lunch assistance dummy codes, math self-efficacy ratings, and math pretest scores.
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MATHPOST = B, + ;(CONDITION) + B,(FRLUNCH)
+ B3(EFFICACY) + B4(MATHPRE) + ¢ (5)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. In this case, the predictor set includes incomplete binary

and ordinal variables, so assigning a normal distribution to the variables is questionable.

The analysis instead uses a factored regression specification that separates the likelihood
function into separate components for each variable type. In practical terms, this specification
uses a sequence of univariate regression models to link incomplete predictors. The additional

regression equations are logistic and linear models.

logit(FRLUNCH) = ¥,, + 7,,(CONDITION) + y,,(MATHPRE)
EFFICACY = ¥y, + y1,(FRLUNCH) + ¥5,(CONDITION) + y3,(MATHPRE) + ¢,  (6)

These equations essentially comprise a path model where the intervention indicator and math
pretest scores predict the lunch assistance indicator, and all three variables, in turn, predict self-
efficacy. The two complete variables are always on the right side of regression equations because

they do not require a model.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following Section 2.4, auxiliary variables enter the model as additional outcomes that are
predicted by the analysis variables and by each other. The additional regression equations are as

follows.

logit(ATRISK) = ¥y + 713(MATHPOST) + ¥,5(CONDITION)
+ ¥33(FRLUNCH) + ¥,3(EFFICACY) + y53(MATHPRE)
STANREAD = Yy, + ¥14(ATRISK) + ¥2,(MATHPOST) + 3,(CONDITION) (7)
+ ¥4u(FRLUNCH) + y5,(EFFICACY) + y,,(MATHPRE) + ¢,

Again, the entire collection of regression equations can be viewed as a path model (see the

auxiliary variable path diagram from Section 2.4). The key difference is that the path coefficients
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are just a tool for linking variables with different metrics and do not represent a substantive

theory.
3.2 Mplus FIML Script

The code block below shows Mplus script Ex3. inp.

Mplus Script Ex3.inp

DATA:

file = mathachievement.dat;

VARIABLE:

names = id condition male frlunch atrisk
stanread efficacy anxiety mathpre mathpost;

usevariables = mathpost condition frlunch efficacy
mathpre atrisk stanread;

categorical = frlunch efficacy atrisk;

O N O O A W N -

9 missing = all(999);

10 ANALYSIS:

11 estimator = ml;

12 1link = logit;

13 integration = montecarlo;

14 MODEL:

15 frlunch on condition mathpre;

16 efficacy on frlunch condition mathpre;

17  mathpost on condition frlunch efficacy mathpre (betal-beta4);
18  atrisk on mathpost condition frlunch efficacy mathpre;

19  stanread on atrisk mathpost condition frlunch efficacy mathpre;
20  MODEL TEST:

21 0 = betal; 0 = beta2; 0 = beta3; 0 = beta4;

22 OUTPUT:

23 patterns sampstat cinterval;

The DATA command specifies the name of the input text file. No file path is required when the
data file is in the same directory as the script, as it is here. The VARIABLE command provides
information about the data. Beginning on line 4, the names subcommand assigns names to the
variables in the input data file, the usevariables subcommand selects variables for the analysis,

and the missing subcommand gives the global missing value code. The categorical
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subcommand on line 8 defines three variables as either binary or ordinal. The ANALYSIS
command and estimator subcommand specify full information maximum likelihood
estimation. Finally, the link = logit option specifies a logistic regression for the outcome
variable, and integration = montecarlo invokes an algorithmic method for models with mixed

variable types (and a factored regression specification for the likelihood).

The MODEL section of the script consists of five lines. Lines 15 and 16 are logistic regressions
linking the discrete predictors to the complete variables and each other (see Equation 6), and line
17 is the focal regression model from Equation 5. The end of this line includes parameter labels
in parentheses. Finally, lines 18 and 19 are the auxiliary variable regressions shown in Equation 7.
As noted previously, the collection of regressions can be viewed as a path model, with the focal
regression as one part of a larger network (see the path diagram from Section 2.4). Next, the
MODEL TEST command uses the labels from line 17 to specify a custom significance test of the null
hypothesis that all three population slopes equal zero. Finally, the OUTPUT command specifies
three keywords on line 23 that request a summary of the missing data patterns, maximum
likelihood estimates of sample statistics, and confidence intervals (standardized coefficients are

not available for this analysis).
3.3 Mplus Output

Information about the missing data patterns is found near the top of the output file. Following
the missing data pattern table, the output displays a covariance coverage matrix that gives the
proportion of observed data for each variable on the diagonal and the proportion of observed
data for each variable pair on the off-diagonals. The format of these tables is the same as those

shown in Section 1.3.

The MODEL TEST command in the previous script requested an analogous Wald chi-square
statistic that evaluates the null hypothesis that all population slopes equal zero. The chi-square
statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT INFORMATION
section under the Wald Test of Parameter Constraints heading. The test statistic is

statistically significant, thus refuting the null hypothesis.

MODEL FIT INFORMATION

Number of Free Parameters 31
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Wald Test of Parameter Constraints

Value 149.182
Degrees of Freedom 4
P-Value 0.0000

The table of unstandardized parameter estimates is shown below. Because the analysis
specifies a multivariate normal distribution for the predictors, the means, variances, and
covariances of these variables are printed along with the focal model estimates. These supporting
parameters are not of substantive interest, and they do not need to be reported. The first two
columns display the unstandardized estimates and their standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown in

bold typeface.

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value
FRLUNCH ON
CONDITION 0.011 0.265 0.041 0.967
MATHPRE -0.020 0.015 -1.290 0.197
EFFICACY ON
FRLUNCH -0.031 0.246 -0.125 0.901
CONDITION 0.506 0.240 2.107 0.035
MATHPRE 0.056 0.014 3.881 0.000
MATHPOST ON
CONDITION 2.306 1.023 2.255 0.024
FRLUNCH -5.498 1.063 -5.173 0.000
EFFICACY 0.833 0.340 2.448 0.014
MATHPRE 0.526 0.061 8.594 0.000
ATRISK ON
MATHPOST -0.028 0.025 -1.141 0.254
CONDITION -0.080 0.342 -0.233 0.815

FRLUNCH 0.898 0.399 2.248 0.025
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EFFICACY -0.337 0.115 -2.925 0.003
MATHPRE -0.018 0.024 -0.722 0.470

STANREAD  ON

ATRISK -13.492 1.231 -10.957 0.000
MATHPOST 0.349 0.078 4.466 0.000
CONDITION 1.493 1.019 1.466 0.143
FRLUNCH -2.435 1.177 -2.068 0.039
EFFICACY -0.478 0.351 -1.361 0.173
MATHPRE 0.006 0.073 0.076 0.939
Intercepts
MATHPOST 29.375 3.016 9.739 0.000
STANREAD 44.135 4.035 10.938 0.000
Thresholds
FRLUNCH$1 -0.623 0.780 -0.799 0.425
EFFICACY$1 1.308 0.748 1.748 0.080
EFFICACY$2 2.213 0.752 2.942 0.003
EFFICACY$3 3.250 0.770 4.222 0.000
EFFICACY$4 4.186 0.786 5.324 0.000
EFFICACY$5 4.976 0.800 6.217 0.000
ATRISK$1 -4.351 1.317 -3.304 0.001
Residual Variances
MATHPOST 51.270 5.185 9.888 0.000
STANREAD 52.261 5.226 10.000 0.000

The results are interpreted in the same way as a complete-data regression analysis with
categorical predictors. For example, consider the slope for the treatment assignment dummy
code. The positive coefficient indicates that, for two students who share the same covariate
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student
in the experimental condition should score 2.31 points higher than the student in the control
group. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (z = 2.26, p = .02).

3.4 Rmdmb FIML Script

The R input file for the analysis is Ex3.R. The example requires the mdmb package.
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R Script Ex3.R

1 library(mbmb)

2 load('mathachievement.rda')
3

4 summary(mathachievement)

The mdmb package requires the user to specify nodes' for the missing values. These nodes are
essentially a fixed list of plausible score values that span each variable’s range. Specifying these
values is necessary for the optimization algorithm, which uses an imputation-like algorithm
called numerical integration. The summary function on line 4 generates a table displaying the

observed values of the numeric variables. The summary table is as follows.

frlunch efficacy mathpost atrisk stanread

Min. :0.00  Min. :1.000  Min. :37.00  Min. :0.0000 Min. :27.00
1st Qu.:0.00 1st Qu.:2.000 1st Qu.:52.00 1st Qu.:1.0000 1st Qu.:45.00
Median :0.00 Median :3.000 Median :57.00 Median :1.0000 Median :55.00
Mean :0.41 Mean :3.394  Mean :57.45 Mean :0.7637  Mean :52.52
3rd Qu.:1.00 3rd Qu.:5.000 3rd Qu.:63.00 3rd Qu.:1.0000 3rd Qu.:60.50
Max. :1.00  Max. :6.000 Max. :85.00 Max. :1.0000 Max. :69.00
NA's 211 NA's 124 NA's 145 NA's 213 NA's :23

The next part of the code creates variables that contain vectors of plausible replacement scores
(nodes, pseudo-imputations) that span the entire range of the distributions. The binary variables
have only two possible scores, so their node vectors on lines 8 and 11 consist of 0s and 1s. On line
9, the efficacy scores similarly use integer nodes between 1 and 6. For continuous variables,
specifying 20 to 40 nodes is usually sufficient. For example, nodes.stanread is a vector of
plausible scores ranging from 20 to 80 in increments of two, and nodes.mathpost is a sequence
of scores between 30 and 90 in increments of two. To account for the possibility that the missing
scores fall outside the observed range, the vectors specify values beyond the minimum and

maximum scores from the data.
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R Script Ex3.R, continued

5 nodes.frlunch <- c(0,1)

6 nodes.efficacy <- seq(1l, 6, by = 1)

7 nodes.mathpost <- seq(30, 90, by = 2)
8 nodes.atrisk <- c(0,1)

9 nodes.stanread <- c(20, 80, by = 2)

The next part of the script specifies a model for each analysis variable and auxiliary variable.
The predictor variable regressions from Equation 6 are listed first, followed by the focal model
from Equation 5. The auxiliary variable regressions from Equation 7 are last. Each model object
includes three arguments: the type of regression (linear or logistic), an equation, and the
incomplete variable’s nodes. Linear regressions are specified with 'model' = 'linreg'

parameter, and the binary logistic regression is specified using 'model' = 'logistic'.

R Script Ex3.R, continued

10 model.frlunch <- list('model' = 'logistic',

11 "formula' = frlunch ~ condition + mathpre,

12 nodes = nodes.frlunch)

13 model.efficacy <- list('model' = 'linreg',

14 '"formula' = efficacy ~ frlunch + condition + mathpre,

15 nodes = nodes.efficacy)

16 model.mathpost <- list('model' = 'linreg',

17 "formula' = mathpost ~ condition + frlunch + efficacy + mathpre,
18 nodes = nodes.mathpost)

19  model.atrisk <- list('model' = 'logistic',

20 "formula' = atrisk ~ mathpost + condition + frlunch + efficacy +
21 mathpre, nodes = nodes.atrisk)

22  model.stanread <- list('model' = 'linreg',

23 "formula' = stanread ~ atrisk + mathpost + condition + frlunch +
24 efficacy + mathpre, nodes = nodes.stanread)

The mdmb package views stanread (the auxiliary variable in the final regression model) as the
ultimate 'dependent’ variable, and it considers all other variables 'independent variables'. Starting
on line 25, the final part of the code combines the independent variable models into a list. On

lines 28 and 29, the data frame and the predictor list are passed into the frm_em function, which
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fits the sequence of models. Finally, the summary function on line 30 requests tables of parameter

estimates.

R Script Ex3.R, continued

25  predictor.models <- list(frlunch = model.frlunch,

26 efficacy = model.efficacy, mathpost = model.mathpost,

27 atrisk = model.atrisk)

28  fit <- frm_em(dat = mathachievement, dep = model.stanread,
29 ind = predictor.models)

30 summary(fit)

3.5 ROutput

The mdmb output includes a table of results for every fitted regression model. The supporting
model parameters are not of substantive interest, and they do not need to be reported. The
output below shows the parameter estimates from the focal regression model. The first two
columns display the unstandardized estimates and their standard errors, the third and fourth
columns display the corresponding ¢-statistics and p-values, and the rightmost columns contain

95% confidence interval limits.

Model 3: stats::1m( mathpost ~ condition + frlunch + efficacy + mathpre )

index dv parm ON est se t p lower95 upper95
1 15 mathpost mathpost ON (Intercept) 1 29.0504 3.0085 9.6562 0.0000 23.1539 34.9469
16 mathpost mathpost ON condition 1 2.2939 1.0226 2.2431 0.0249 0.2895 4.2982
17 mathpost mathpost ON frlunch 1 -5.2352 1.0592 -4.9427 0.0000 -7.3111 -3.1593
18 mathpost mathpost ON efficacy 1 0.7966 0.3391 2.3490 0.0188 ©.1319 1.4612
19 mathpost mathpost ON mathpre 1 0.5200 0.0607 8.5687 0.0000 0.4011 0.6390
20 mathpost mathpost sigma 0 7.1076 0.3524 20.1691 0.0000 6.4169 7.7983

S oW N

Explained variance R*2=0.4197

The results are interpreted in the same way as a complete-data regression analysis with
categorical predictors. For example, the positive coefficient for the treatment assignment

predictor indicates that, for two students who share the same covariate profile (i.e., lunch
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assistance, self-efficacy, and pretest scores), the model predicts that the student in the
experimental condition should score 2.29 points higher than the student in the control group.
The corresponding test statistic indicates that the slope coefficient is statistically different from
zero (t =2.24, p = .03).
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FIML: Moderated Regression With an Interaction

This example illustrates a multiple regression analysis with an incomplete interaction effect. The
analysis uses the behaviorachievement.dat data set taken from a longitudinal study that
followed 138 students from primary through middle school. The file includes three annual
assessments of broad reading and math achievement beginning in the first grade, seventh grade
standardized achievement test scores taken from a statewide assessment, and a final measure of
broad reading and math obtained in ninth grade. The data also contain teacher ratings of
behavioral symptoms and learning problems were also obtained in the first grade. The data
description at the beginning of this document provides additional details. The variables for this

analysis are as follows.

Name Definition Missing %  Scale

Focal Variables

ATRISK Emotion/behavior disorder risk 22 0 = No risk, 1 = At risk
LRNPROB; 1% grade learning problems 2.2 Numeric
READ, 1* grade broad reading composite 6.5 Numeric
READ; 9™ grade broad reading composite 174 Numeric

Auxiliary Variables
READ, 2" grade broad reading composite 94 Numeric
STANREAD; 7™ grade standardized math 19.6 Numeric

4.1 Analysis Model

The analysis model features ninth grade broad reading scores regressed on first grade reading
achievement, teacher-rated learning problems, and the product of first grade reading scores and

learning problems, and a binary risk indicator.
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READ, = f3, + B(READ,) + 8,(LRNPROB;)
+ B3(READ,)(LRNPROB,) + B,(ATRISK) + ¢ (8)

Moderated regression models (and models with non-linearities more generally) require a
factored regression specification that splits the likelihood into separate parts for the outcome

model and predictors.

Unlike a complete-data regression analysis, incomplete variables also require distributional
assumptions and models that define those distributions. The analysis uses a factored regression
specification that separates the likelihood function into separate components for each variable.
The analysis uses a logistic regression for the binary covariate and linear models for the other two
predictors. In practical terms, this specification uses a sequence of univariate regression models

to link incomplete predictors. The additional regression equations are as follows.

logit(ATRISK) = y;
LRNPROBl = 7/02 + ylz(ATRISK) + 62 (9)
READ; = yy3 + ¥13(LRNPROB,) + y,3(BEHSYMR) + €5

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes
that are predicted by the analysis variables and by each other. The additional regression

equations are as follows.

READ, = yy, + )/II(READQ) + }/ZI(READI) + )/31(LRNPROBI) + )/41(ATRISK) +é€,
STANREAD; = ¥y, + Y12(READ,) + 72,(READy) + y3,(READ;)
+ 742(LRNPROB,) + 75,(ATRISK) + €5 (10)

Along with the other models, the collection of regression equations can be viewed as a path
model where the focal analysis is one part of a larger network (see the path diagram from Section
2.4). The key difference is that the path coefficients are just a tool for linking incomplete variables

and do not represent a substantive theory.
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4.2 R mdmb FIML Script

The example uses the lavaan and mdmb packages. The latter leverages a factored regression
specification that links incomplete predictors to one another using a sequence of univariate
regression models. R input file for the analysis is Ex4.R. The code block below shows the

commands that import and modify the data.

R Script Ex4.R

1 library(lavaan)

2 library(mbmb)

3 load('behaviorachievement.rda')

4

5 model <- 'stanread7 ~ 1; read2 ~ 1; read9 ~ 1; readl ~ 1;
6 lrnprobl ~ 1; atrisk ~ 1;'

7 descriptives <- inspectSampleCov(model, behaviorachievement,
8 missing = 'fiml')

9

10 behaviorachievement$readl.cgm <-

11 behaviorachievement$readl - descriptives$mean['readl']
12 behaviorachievement$lrnprobl.cgm <-

13 data$lrnprobl - descriptives$mean['lrnprob1']

14

15 summary (behaviorachievement)

The analysis centers the two predictors involved in the interaction at their grand means.
Because the predictors are incomplete, the script uses lavaan to obtain maximum likelihood-
estimated means for centering. The model variable on lines 5 and 6 defines a text string
describing a set of empty regression models with only an intercept (the ~ 1 after each variable
name). Along with the data frame, this model is passed into lavaan’s inspectSampleCov
function on line 7. The resulting maximum likelihood estimates of the means, which are stored
in the object called descriptives, are used to create new centered variables called read1.cgm

and 1rnprob1.cgm beginning on line 10.

The mdmb package requires the user to specify 'nodes' for the missing values. These nodes are
essentially a fixed list of plausible score values that span each variable’s range. Specifying these

values is necessary for the optimization algorithm, which uses an imputation-like algorithm
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called numerical integration. The summary function on line 15 generates a table displaying the

observed values of the numeric variables. The summary table is as follows.

stanread7 read2 read9 readl.cgm lrnprobl.cgm atrisk
Min. :100.0  Min. : 20.00  Min. : 41.00 Min. :-47.1819  Min. :-21.34409  Min. 10.0000
1st Qu.:228.0 1st Qu.: 83.00 1st Qu.: 81.00 1st Qu.:-12.1819 1st Qu.: -7.34409 1st Qu.:0.0000
Median :263.0 Median : 92.00 Median : 89.00 Median : -0.1819 Median : -1.34409 Median :1.0000
Mean :264.5 Mean : 93.74  Mean : 88.55 Mean : 0.6243 Mean : 0.01147  Mean :0.6519
3rd Qu.:314.0  3rd Qu.:108.00 3rd Qu.: 97.00 3rd Qu.: 12.8181 3rd Qu.: 8.15591 3rd Qu.:1.0000
Max. :399.0  Max. :150.00  Max. :123.00  Max. : 66.8181  Max. : 35.65591  Max. :1.0000

NA's 127 NA's 113 NA's 124 NA's :9 NA's :3 NA's :3

The next part of the code creates variables that contain vectors of plausible replacement scores
that span the entire range of the distributions. For continuous variables, specifying 20 to 40
nodes is usually sufficient. For example, nodes.read1 is a vector of plausible centered scores
ranging from -55 to 75 in increments of two, and nodes.lrnprb1 is a sequence of centered
scores between -30 and 50 in increments of two. To account for the possibility that the missing
scores fall outside the observed range, the vectors specify values beyond the minimum and

maximum scores from the data. The binary predictor has only two node values.

R Script Ex4.R, continued

16  nodes.stanread7 <- seq(80, 420, by = 5)
17 nodes.read2 <- seq(10, 160, by = 5)

18  nodes.read9 <- seq(30, 130, by = 2)

19  nodes.readl <- seq(-55, 75, by = 2)

20 nodes.lrnprobl <- seq(-30, 50, by = 2)
21 nodes.atrisk <- c(0,1)

The next part of the script specifies a model for each analysis variable and auxiliary variable.
The predictor variable regressions from Equation 9 are listed first, followed by the focal
moderated regression model from Equation 8. The auxiliary variable regressions from Equation
10 are last. Each model object includes three arguments: the type of regression (linear or logistic),
an equation, and the incomplete variable’s vector of nodes or pseudo-imputations. Note that the

focal model list beginning on line 31 includes the product of two centered variables.
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R Script Ex4.R, continued

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

model.behsymp1 <- list( 'model' = 'logistic',
"formula' = atrisk ~ 1,
nodes = nodes.atrisk)

model.lrnprobl <- list( 'model' 'linreg',
"formula' = lrnprobl.cgm ~ behsymp1,

nodes = nodes.lrnprobl)
model.readl <- list( 'model' = 'linreg',
"formula' = readl.cgm ~ lrnprobl.cgm + behsympl,
nodes = nodes.readl)
model.read9 <- list( 'model' = 'linreg',
'"formula' = read9 ~ readl.cgm + lrnprobl.cgm +
readl.cgm*lrnprobl.cgm + behsympl,
nodes = nodes.read9)
model.read2 <- list('model' = 'linreg',
'"formula' = read2 ~ read9 + readl.cgm + lrnprobl.cgm + behsymp1,
nodes = nodes.read2)
model.stanread7 <- list('model' = 'linreg',
'"formula' = stanread7 ~ read2 + read9 + readl.cgm
+ lrnprobl.cgm + behsympl, nodes = nodes.stanread7)

The mdmb package views stanread7 (the auxiliary variable in the final regression model) as the

ultimate 'dependent’ variable in the sequence, and it considers all other variables as 'independent

variables'. Starting on line 41, the final part of the code combines the independent variable

models into a list. On line 44, the data frame and the predictor list are passed into the frm_em

function, which fits the sequence of models. Finally, the summary function on line 46 requests

tables of parameter estimates.

R Script Ex4.R, continued

41
42
43
44
45
46

predictor.models <- list(atrisk = model.atrisk,
lrnprobl = model.lrnprobl, readl = model.readl, read9 = model.read9,
read2 = model.read2)

fit <- frm_em(dat = behaviorachievement, dep = model.stanread7,
ind = predictor.models)

summary(fit)
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4.3 ROutput

The mdmb output includes a table of results for every fitted regression model. The supporting
model parameters are not of substantive interest, and they do not need to be reported. The
output below shows the parameter estimates from the focal model. The first two columns display
the unstandardized estimates and their standard errors, the third and fourth columns display the
corresponding t-statistics and p-values, and the rightmost columns contain 95% confidence

interval limits.

Model 4: stats::1m( read9 ~ readl.cgm + lrnprobl.cgm + readl.cgm * lrnprobl.cgm + atrisk )

index dv parm ON est se t p lower95 upper95
1 14 read9 read9 ON (Intercept) 1 89.0374 1.4195 62.7261 0.0000 86.2553 91.8195
2 15 read9 read9 ON readl.cgm 1 0.5053 0.0437 11.5510 0.0000 0.4195 0.5910
3 16 read9 read9 ON lrnprobl.cgm 1 -0.3785 0.0833 -4.5451 0.0000 -0.5417 -0.2153
4 17 read9 read9 ON atrisk 1 -1.9092 1.7952 -1.0635 0.2875 -5.4278 1.6093
5 18 read9 read9 ON readl.cgm:lrnprobl.cgm 1 0.0128 0.0045 2.8247 0.0047 0.0039 0.0216
6 19 read9 read9 sigma © 9.1591 0.6412 14.2841 0.0000 7.9023 10.4158

Explained variance R*2=0.6183

The lower-order terms in a moderated regression are conditional effects that depend on
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 8, = 0.51) is
the effect of that predictor at the mean of the first-grade learning problems, and the learning
problems slope (8, = —0.38) similarly reflects a conditional effect at the reading score mean. The
interaction slope captures the change in the first-grade reading slope for each one-unit increase
in learning problems (and vice versa). Specifically, the positive coefficient (85 = 0.013) indicates
that the association between first and ninth grade reading scores becomes stronger (i.e., more
positive) as learning problems increase. That is, the predictive power of early reading on later

reading is strongest for students with elevated learning problem ratings in first grade.
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FIML: Curvilinear Regression

This example illustrates a multiple regression analysis with an incomplete curvilinear effect. The
analysis uses the mathachievement.dat data set taken from an educational intervention where
250 students were assigned to an intervention and comparison condition. The file includes
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized
reading scores taken from a statewide assessment, and several sociodemographic variables. The

analysis variables are as follows.

Name Definition Missing %  Scale

Focal Variables

MATHPOST  Math achievement posttest 18.0 Numeric
ANXIETY Math anxiety composite 8.4 Numeric
FRLUNCH Lunch assistance code 44 0 = None, 1 = Free/reduced lunch
EFFICACY Math self-efficacy rating 9.6 Ordinal (1 to 6)
MATHPRE Math achievement pretest 0 Numeric
Auxiliary Variables
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk
STANREAD  Standardized reading 9.2 Numeric

5.1 Analysis Model

The analysis model features math posttest scores regressed on anxiety and its square, the lunch

assistance dummy code, math self-efficacy ratings, and math pretest scores.
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MATHPOST = B, + B1(ANXIETY) + B,(ANXIETY?)
+ B3(FRLUNCH) + B,(EFFICACY) + 85(MATHPRE) + ¢ (11)

Curvilinear regression models (and models with non-linearities more generally) require a
factored regression specification that splits the likelihood into separate parts for the outcome

model and predictors.

Unlike a complete-data regression analysis, incomplete variables also require distributional
assumptions and models that define those distributions. The analysis uses a factored regression
specification that separates the likelihood function into separate components for each variable. In
practical terms, this specification uses a sequence of univariate regression models to link
incomplete predictors. The additional regression equations, one of which is a logistic model, are

as follows.

logit(FRLUNCH) = ¥, + 71,(MATHPRE)
EFFICACY = ¥y, + 712(FRLUNCH) + ¥5,(MATHPRE) + €, (12)
ANXIETY = ¥y, + ¥13(EFFICACY) + ,5(FRLUNCH) + 733,(MATHPRE) + ¢,

These equations essentially comprise a path model where math pretest scores predict the lunch
assistance indicator, the lunch assistant dummy code and math pretest scores predict efficacy,
and all three variables, in turn, predict anxiety. The complete variable is always on the right side

of regression equations because it does not require a model.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes
that are predicted by the analysis variables and by each other. The additional regression

equations are as follows.

logit(ATRISK) = ¥, + ¥14(MATHPOST) + 7,,(ANXIETY)
+ ¥34(FRLUNCH) + ¥,,(EFFICACY) + ¥5,(MATHPRE)
STANREAD = ;s + 715(ATRISK) + 7,5(MATHPOST) + 7;5(ANXIETY) (13)
+ ¥4s(FRLUNCH) + ¥55(EFFICACY) + y,s(MATHPRE) + ¢
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Again, the entire collection of regression equations can be viewed as a path model where the
curvilinear regression is one piece of a larger network (see the path diagram from Section 2.4).
The key difference is that the path coefficients are just a tool for linking incomplete variables and

do not represent a substantive theory.
5.2 R mdmb FIML Script

The example uses the lavaan and mdmb packages. The latter leverages a factored regression
specification that links incomplete predictors to one another using a sequence of univariate
regression models. R input file for the analysis is Ex5.R. The code block below shows the

commands that import and modify the data.

R Script Ex5.R

1 Library(lavaan)

2 library(mbmb)

3 load('mathachievement.rda')

4

5 model <- 'stanread ~ 1; atrisk ~ 1; mathpost ~ 1; anxiety ~ 1;
6 frlunch ~ 1; efficacy ~ 1; mathpre ~ 1;'

7 descriptives <- inspectSampleCov(model, mathachievement,
8 missing = 'fiml')

9

10 mathachievement$anxiety.cgm <-

11 mathachievement$anxiety - descriptives$mean['anxiety']
12

13 summary(mathachievement)

The analysis centers math anxiety (the curvilinear predictor) at its grand mean. Because the
predictors are incomplete, the script uses lavaan to obtain maximum likelihood-estimated
means for centering. The model variable on lines 5 and 6 defines a text string describing a set of
empty regression models with only an intercept (the ~ 1 after each variable name). Along with
the data frame, this model is passed into lavaan’s inspectSampleCov function on line 7. The
resulting maximum likelihood estimates of the means, which are stored in the object called
descriptives, are used to create new centered variables called read1.cgm and lrnprobl.cgm

beginning on line 10.
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The mdmb package requires the user to specify 'nodes' for the missing values. These nodes are
essentially a fixed list of plausible score values that span each variable’s range. Specifying these
values is necessary for the optimization algorithm, which uses an imputation-like algorithm
called numerical integration. The summary function on line 13 generates a table displaying the

observed values of the numeric variables. The summary table is as follows.

stanread mathpost anxiety.cgm efficacy frlunch atrisk
Min. :27.00  Min. :37.00  Min. :-18.2628  Min. :1.000  Min. :0.00  Min. :0.0000
1st Qu.:45.00 1st Qu.:52.00 1st Qu.: -5.2628 1st Qu.:2.000 1st Qu.:0.00 1st Qu.:1.0000
Median :55.00 Median :57.00 Median : -1.2628 Median :3.000 Median :0.00 Median :1.0000
Mean :52.52 Mean :57.45 Mean : -0.1056  Mean :3.394 Mean :0.41 Mean :0.7637
3rd Qu.:60.50  3rd Qu.:63.00 3rd Qu.: 3.7372 3rd Qu.:5.000 3rd Qu.:1.00 3rd Qu.:1.0000
Max. :69.00  Max. :85.00  Max. : 25,7372 Max. :6.000  Max. :1.00 Max. :1.0000
NA's  :23 NA's  :45 NA's  :21 NA's :24 NA's 11 NA's  :13

The next part of the code creates variables that contain vectors of plausible replacement scores
(nodes, pseudo-imputations) that span the entire range of the distributions. For continuous
variables, specifying 20 to 40 nodes is usually sufficient. For example, nodes.mathpost is a
sequence of raw scores between 30 and 90 in increments of two, and nodes. anxiety is a vector of
plausible centered scores ranging from -30 to 30 in increments of two. To account for the
possibility that the missing scores fall outside the observed range, the vectors specify values

beyond the minimum and maximum scores from the data.

R Script Ex5.R, continued

14 nodes.frlunch <- c(0,1)

15  nodes.efficacy <- seq(l, 6, by = 1)
16 nodes.mathpost <- seq(30, 90, by
17  nodes.anxiety <- seq(-30, 30, by
18  nodes.atrisk <- c(0,1)

19  nodes.stanread <- c(20, 80, by = 2)

2)
2)

The next part of the script specifies a model for each analysis variable and auxiliary variable.
The predictor variable regressions from Equation 12 are listed first, followed by the focal model
from Equation 11. The auxiliary variable regressions from Equation 13 are last. Each model
object includes three arguments: the type of regression (linear or logistic), an equation, and the

incomplete variable’s vector of nodes or pseudo-imputations. Linear regressions are specified
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with 'model' = 'linreg' parameter, and the binary logistic regression is specified using

'model' = 'logistic'. Note that the focal model list beginning on line 29 includes the square

of the centered variable (i.e., I(anxiety.cgm*2)).

R Script Ex5.R, continued

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

model.frlunch <- list('model' = 'logistic',
"formula' = frlunch ~ mathpre,
nodes = nodes.frlunch)
model.efficacy <- list('model' = 'linreg',
"formula' = efficacy ~ frlunch + mathpre,
nodes = nodes.efficacy)
model.anxiety <- list('model' = 'linreg',
"formula' = anxiety ~ efficacy + frlunch + mathpre,
nodes = nodes.anxiety)
model.mathpost <- list('model' = 'linreg',
"formula' = mathpost ~ anxiety.cgm + I(anxiety.cgm”2) +
frlunch + efficacy + mathpre, nodes = nodes.mathpost)
model.atrisk <- list('model' = 'logistic',
"formula' = atrisk ~ mathpost + anxiety + frlunch + efficacy +
mathpre, nodes = nodes.atrisk)
model.stanread <- list('model' = 'linreg',
"formula' = stanread ~ atrisk + mathpost + anxiety + frlunch +

efficacy + mathpre, nodes = nodes.stanread)

The mdmb package views stanread (the auxiliary variable in the final regression model) as the

ultimate 'dependent’ variable in the sequence, and it considers all other variables 'independent

variables'. Starting on line 38, the final part of the code combines the independent variable

models into a list. On line 41, the data frame and the predictor list are passed into the frm_em

function, which fits the sequence of models. Finally, the summary function on line 43 requests

tables of parameter estimates.

R Script Ex5.1.R, continued

38
39
40

redictor.models <- list(frlunch = model.frlunch,
efficacy = model.efficacy, anxiety = model.anxiety,
mathpost = model.mathpost, atrisk = model.atrisk)
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41 fit <- frm_em(dat = mathachievement, dep = model.stanread,
42 ind = predictor.models)

43 summary(fit)

5.3 ROutput

The mdmb output includes a table of results for every fitted regression model. The supporting

model parameters are not of substantive interest, and they do not need to be reported. The

output below shows the parameter estimates from the focal curvilinear model. The first two

columns display the unstandardized estimates and their standard errors, the third and fourth

columns display the corresponding ¢-statistics and p-values, and the rightmost columns contain

95% confidence interval limits.

Model 4: stats::1m( mathpost ~ anxiety.cgm + I(anxiety.cgm*2) +

index dv

—_

15 mathpost
16 mathpost
17 mathpost
18 mathpost
19 mathpost
20 mathpost

~N oo o A ow N

21 mathpost

parm ON

mathpost ON (Intercept)
mathpost ON anxiety.cgm
mathpost ON I(anxiety.cgm”2)
mathpost ON efficacy
mathpost ON frlunch

mathpost ON mathpre

mathpost sigma

1
1
1

33.
.0398
.0209
.0629
.5373
. 4648
.9386

est

2388

se

.3678
.0793
.0059
.3324
.0398
.0651
. 3460

efficacy + frlunch + mathpre )

t

.8695
.5015
.5452
.1975
.3255
.1361
.0511

S © O © O O o

p

.0000
.6160
.0004
.0014
. 0000
.0000
.0000

lower95
26.6380
-0.1156
-0.0324
0.4114
-7.5752
0.3371
6.2604

upper95
39.8396
0.1952
-0.0093
1.7145
-3.4994
0.5925
7.6168

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect

that depends on scaling or centering. The slope conveys the instantaneous linear change in the

outcome at the anxiety mean, controlling for all other predictors (8, = 0.04). The negative

quadratic coefficient (8, = —0.02) indicates that the positive association at the mean decreases

(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety,

the association becomes negative, such that anxiety has a debilitating effect on math

performance.
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MCMC: Regression With Multivariate Normal Data

This example illustrates a multiple regression analysis with multivariate normal incomplete data.
The analysis uses the behaviorachievement.dat data set taken from a longitudinal study that
followed 138 students from primary through middle school. The file includes three annual
assessments of broad reading and math achievement beginning in the first grade, seventh grade
standardized achievement test scores taken from a statewide assessment, and a final measure of
broad reading and math obtained in ninth grade. The data also contain teacher ratings of
behavioral symptoms and learning problems were also obtained in the first grade. The data
description at the beginning of this document provides additional details. The variables for this

analysis are as follows.

Name Definition Missing %  Scale

Focal Variables

BEHSYMP, 1% grade behavioral symptoms 3.6 Numeric

LRNPROB; 1% grade learning problems 2.2 Numeric

READ, 1* grade broad reading composite 6.5 Numeric

READ; 9™ grade broad reading composite 174 Numeric
Auxiliary Variables

READ, 2" grade broad reading composite 94 Numeric

STANREAD; 7™ grade standardized math 19.6 Numeric

6.1 Analysis Model

The analysis model features ninth grade broad reading scores regressed on first grade reading

achievement and teacher-rated learning problems and behavioral symptoms.
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READ, = f3, + B1(READ,) + B,(LRNPROB,) + 8;(BEHSYMP,) + ¢ (14)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. By default, Blimp invokes a multivariate normal

distribution for predictors.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following the same factored regression specification from earlier examples, auxiliary
variables enter the model as additional outcomes that are predicted by the analysis variables and

by each other. The additional regression equations are as follows.

READ, = ¥y, + y11(READy) + v,;(READ;) + v3,(LRNPROB;) + v4,(BEHSYMP,) + €,
STANREAD; = ¥y, + Y12(READ,) + ¥ (READ,) + y3,(READ,)
+ 74,(LRNPROB,) + y5,(BEHSYMR) + ¢, (15)

Along with the focal regression model from Equation 14, the collection of regressions can be
viewed as a path model, where the focal regression is one part of a larger network (see the path
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for

linking incomplete variables and do not represent a substantive theory.
6.2 Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex6.1. inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex6.1.imp

DATA: behaviorachievement.dat;

VARIABLES: id male hispanic riskgrp atrisk behsymp1l lrnprob1
readl read2 read3 read9 read9grp stanread7
math1 math2 math3 math9 math9grp stanmath7;

MISSING: 999;

MODEL :

S O A W N -
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7 read9 ~ readl@betal lrnprobl@beta2 behsympl@beta3;
8 stanread7 read2 ~ read9 readl lrnprobl behsympl;

9 WALDTEST: betal:beta3 = 0;

10 SEED: 90291;

11 BURN: 1000;

12 ITERATIONS: 10000;

The first five lines can be viewed as a set of commands that specify information about the
data and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a

global missing value code as 999.

The MODEL and WALDTEST blocks can be viewed as a set. The MODEL command lists the
regression models, with outcome variables to the left of the tilde and predictors to the right. Line
7 assigns labels the slope coefficients using the @ symbol. Blimp automatically configures the
explanatory variable models under the assumption that they are normally distributed. Line 8 is a
syntax shortcut that produces the two auxiliary variable regression models in Equation 15; in the
first model, READ2 is regressed on the focal variables, and the second model features STANREAD7
regressed on READ2 and the focal variables. The WALDTEST command uses the parameter labels to
specify a custom hypothesis test that all three slopes equal zero. This so-called Bayesian Wald test
(Asparouhov & Muthén, 2021) is a frequentist chi-square statistic that mimics its likelihood-

based counterpart, but MCMC generates the point estimates and “standard errors” for the test.

Finally, lines 10 through 12 can be viewed as a block of commands that specify features of the
MCMC algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

Blimp prints a table of regression results for each outcome variable to the left of a tilde, and it
orders the tables alphabetically. In this example, the focal model’s table would not appear first on
the output. Blimp allows users to order tables by assigning labels to blocks of regression
equations. To illustrate, the code block below assigns the label focal.model to main regression
and the label auxiliary.models to the auxiliary variable regressions. Because output tables are
listed in the same order as the labels, the focal results would now appear before the ancillary

model results.
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MODEL :

focal.model:

read9 ~ readl@betal lrnprobl@beta2 behsympl@beta3;
auxiliary.models:

stanread7 read2 ~ read9 readl lrnprobl behsympl;

The corresponding rblimp script Ex6.R is shown below.

rblimp Script Ex6.R

1 library(rblimp)

2 load('behaviorachievement.rda')

3

4 mymodel <- rblimp(

5 data = behaviorachievement,

6 model = '

7 focal.model:

8 read9 ~ readl@betal lrnprobl@beta2 behsympl@beta3;

9 auxiliary.models:

10 stanread7 read2 ~ read9 readl lrnprobl behsymp1',
11 waldtest = 'betal:beta3 = 0',

12 seed = 90291,

13 burn = 1000,

14 iter = 10000)

15 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
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6.3 Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
26 to 50 1.263 15
51 to 100 1.081 41
76 to 150 1.056 37

101 to 200 1.037 26
126 to 250 1.059 32
151 to 300 1.027 17
176 to 350 1.031 41
201 to 400 1.022 33
226 to 450 1.034 17
251 to 500 1.020 15
276 to 550 1.027 20
301 to 600 1.023 44
326 to 650 1.014 19
351 to 700 1.010 45
376 to 750 1.014 33
401 to 800 1.012 33
426 to 850 1.017 37
451 to 900 1.023 41
476 to 950 1.025 41
1

501 to 1000 .016 41
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The next output excerpt shows information about the variables in the analysis and the models
used for estimation. The MODELS summary section is reserved for outcome variables that appear
to the left of a tilde symbol. In this example, Blimp automatically constructs supporting models

for incomplete predictor variables, so these models are omitted from the table.

DATA INFORMATION:

Sample Size: 138
Missing Data Rates:

read9 = 17.39
read2 = 09.42
stanread7 = 19.57
behsympl = 03.62
lrnprobl = 02.17
readl = 06.52

MODEL INFORMATION:

NUMBER OF PARAMETERS

Outcome Models: 18
Predictor Models: 12
PREDICTORS

Incomplete continuous: behsymp1 lrnprobl readl
MODELS

focal .model:
[1] read9 ~ Intercept readl@betal lrnprobl@beta2 behsympl@beta3

auxiliary.models:
[2] read2 ~ Intercept read9 readl lrnprobl behsympl
[3] stanread7 ~ Intercept read2 read9 readl lrnprobl behsympl

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each

model parameter. The median and standard deviation columns describe the center and spread of
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the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: read9

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 91.648 12.834 70.678 120.824 -—= ---  5905.634
Coefficients:
Intercept 66.011 6.144 54.152 78.192 115.461 0.000 6878.374
readl 0.504 0.044 0.419 0.590 131.211 0.000 7084.878
lrnprob1 -0.247 0.120 -0.479 -0.001 4.204 0.040 5865.510
behsymp1 -0.183 0.105 -0.389 0.025 2.994 0.084 6365.617
Standardized Coefficients:
readl 0.688 0.040 0.599 0.756 289.341 0.000 6613.583
lrnprob1 -0.178 0.085 -0.341 -0.001 4.265 0.039 5718.193
behsymp1 -0.147 0.084 -0.311 0.020 3.042 0.081 6399.987
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Proportion Variance Explained
by Coefficients 0.594 0.050 0.485 0.681 -—- ---  6288.304
by Residual Variation 0.406 0.050 0.319 0.515 --= ---  6288.304

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are

insufficient, increasing the value on the ITERATIONS command will remedy the issue.

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.50 points on READ9. The 95% credible interval limits suggest this effect is statistically different
from zero (p < .05) because the null value is well outside the interval. The frequentist test statistic
and p-value give the same conclusion. The standardized coefficients convey the expected change
in standard deviation units for a one standard deviation increase in each predictor. For example,
the model predicts that two individuals who differ by one standard deviation on READ1 but are
the same on LRNPROB1 and BEHSYMP1 should differ by 0.69 standard deviations on READ9.
Collectively, the predictors explain 60% of the variation in ninth-grade reading scores. Note that

the tabled values are numerically equivalent to the maximum likelihood estimates in Chapter 1.

The Blimp output also includes tables of regression model parameters for the auxiliary
variables as well as the auto-generated models for incomplete predictors. The auxiliary variable
models appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-
generated predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES. An
example table is shown below. These additionally results are not of substantive interest and

would not be reported.

PREDICTOR MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.
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Missing predictor: behsymp1l

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
Grand Mean 49.518 1.066 47.435 51.607 1.000 3339.276
Level 1:
lrnprob1 0.799 0.070 0.661 0.933 1.000 8912.467
read1l -0.012 0.037 -0.083 0.061 1.000 8446.759
Residual Var. 73.066 9.256 57.795 94,382 1.000 7751.755

Finally, recall that the WALDTEST command requested a Bayesian Wald chi-square statistic
(Asparouhov & Muthén, 2021) that evaluates the null hypothesis that all population slopes equal
zero. To reiterate, the Wald test is frequentist chi-square statistic that mimics its likelihood-based
counterpart, but MCMC generates the point estimates and “standard errors” for the test. The
chi-square statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT
section under the WALD TEST heading. The test statistic is statistically significant, thus refuting
the null hypothesis.

MODEL FIT:

INFORMATION CRITERIA

Marginal Likelihood
DIC2 3425.311
WAIC 3459.204

Conditional Likelihood
DIC2 3425.311
WAIC 3459.204

WALD TESTS (Asparouhov & Muthén, 2021)
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Test #1

Full:
[1] read9 ~ Intercept readl@betal lrnprobl@beta2 behsympl@beta3

Restricted:
[1] read9 ~ Intercept readl@betal lrnprobl@beta2 behsympl@beta3

Constraints in Restricted:
[1] betal = 0

[2] beta2 =0

[3] beta3 =0
Wald Statistic (Chi-Square) 165.486
Number of Parameters Tested (df) 3
Probability 0.000

6.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The

Blimp input file Ex6.2. imp is identical Ex6.1. imp, but it adds the following lines at the bottom of

the script.
NIMPS: 20;
CHAINS: 20;
SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked

keyword creates a stacked file where all imputations are in a single file, and the separate keyword
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saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id male hispanic riskgrp atrisk behsymp1 lrnprobl readl read2 read3
read9 read9grp stanread7 math1l math2 math3 math9 math9grp stanmath7

stacked = './imps/imps.dat'

imp# id male hispanic riskgrp atrisk behsymp1l lrnprob1 readl read2 read3
read9 read9grp stanread7 mathl math2 math3 math9 math9grp stanmath?

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.

rblimp Script Ex6.R

1 library(rblimp)
2 load('behaviorachievement.rda')
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4
5
6
7
8

9

10
11
12
13
14
15
16
17

mymodel <- rblimp(
data = behaviorachievement,
model = '
focal.model:
read9 ~ readl@betal lrnprobl@beta2 behsympl@beta3;
auxiliary.models:
stanread7 read2 ~ read9 readl lrnprobl behsympl',

waldtest = 'betal:beta3 = 0',

seed = 90291,
burn = 1000,
iter = 10000,
nimps = 20,
chains = 20)
output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a

rblimp object called mymodel@imputations. The next sections show how to analyze the multiple

imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.

6.5 Analyzing Multiple ImputationsinR

Continuing with the previous rblimp script, the following excerpt from Ex6.R shows how to

perform multiple imputation inference. The script requires the mitml package (Grund et al.,

2023).
R Script Ex6.R
11 library(rblimp)
12 library(mitml)
13 load('behaviorachievement.rda')
14
15 mymodel <- rblimp(...)
16
17 implist <- as.mitml(mymodel)
18  fit <- with(implist, 1Im(read9 ~ readl + lrnprobl + behsymp1))
19  estimates <- testEstimates(fit, extra.pars = T, df.com = 134)
20  estimates
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21 confint(estimates)

22

23 null <- with(implist, 1lm(read9 ~ 1))

24 testModels(fit, null, df.com = 134, method = 'D1")

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Line 8 fits the focal regression
model using the 1m function, and line 9 uses the testEstimates function in mitml to implement
Rubin’s pooling rules and save the results in an object called estimates. The df.com parameter is
the denominator degrees of freedom that would have resulted had there been no missing data
(i.e., N-K-1 degrees of freedom, where K is the number of predictors). This argument produces
Barnard and Rubin degrees of freedom values. Lines 10 and 11 print the pooled estimates and
confidence intervals. Finally, lines 13 and 14 specify a multiple imputation Wald F statistic
evaluating the null hypothesis that all population slopes equal zero (Li et al., 1991). The test
requires an additional model on line 13 that represents the null hypothesis, which in this case is
an empty regression model with just an intercept. On line 14, the full model and null model
objects passed into the testModels function, and the D1 keyword requests the Wald test. As
before, the df.com parameter is the denominator degrees of freedom that would have resulted
had there been no missing data. This argument produces the Barnard and Rubin (1999) degrees

of freedom adjustment.
6.6 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df  P(C|t]) RIV FMI
(Intercept) 65.487 5.877 11.144  100.498 0.000 0.169 0.161
readi 0.506 0.043 11.725 92.752 0.000 0.212 0.192

lrnprob1 -0.231 0.114 -2.022 100.704 0.046 0.168 0.160



MCMC: Regression With Multivariate Normal Data 67

behsymp1 -0.189 0.102 -1.841 97.962 0.069 0.182 0.171

Estimate
Residual~~Residual 88.944

Hypothesis test adjusted for small samples with df=[134]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 53.8288728 77.14584684
readl 0.4202903 0.59168880
lrnprob1 -0.4581615 -0.00433096
behsymp1 -0.3919669 0.01475078

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically
equivalent to those from MCMC and maximum likelihood estimation. Finally, the Wald
omnibus F statistic is shown in the output table below. The test statistic is statistically significant,

thus refuting the null hypothesis that all population slopes equal zero.

Model comparison calculated from 20 imputed data sets
Combination method: D1

F.value df1 df2  P(>F) RIV
58.272 3 123.487 ©0.000 0.177

Hypothesis test adjusted for small samples with df=[134]
complete-data degrees of freedom.
6.7 Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the

previous Blimp script, the SAVE command and the separate keyword saved each imputed data
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set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). The contents of this file are as follows.

imp1.dat
imp2.dat
imp3.dat
imp4.dat
imp5.dat
imp6.dat
imp7.dat
imp8.dat
imp9.dat
imp10.dat
imp11.dat
imp12.dat
imp13.dat
imp14.dat
imp15.dat
imp16.dat
imp17.dat
imp18.dat
imp19.dat
imp20.dat

The Mplus input file for analyzing the imputations is Ex6. inp. The script is virtually identical
to the Ex1.1.1inp file described in Section 1.2 with three exceptions. First, instead of naming the
raw data set, the DATA command lists the text file containing the names of the imputed data sets
(the implist.dat file located in the ./imps subdirectory). The type = imputation
subcommand instructs Mplus that the input data is a list of file names. Second, the missing
subcommand is omitted because the analysis variables are now complete. Finally, the MODEL
section no longer specifies a normal distribution for the predictors. Readers can refer back to
Section 1.2 for a detailed description of the other commands. The code block below shows the

analysis and pooling script.
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Mplus Script Ex6.inp

1 DATA:

2 file = ./imps/implist.dat;

3  type = imputation;

4 VARIABLE:

5 names = id male hispanic riskgrp atrisk behsympl lrnprob1
6 readl read2 read3 read9 read9grp stanread7

7 math1 math2 math3 math9 math9grp stanmath7;

8 usevariables = read9 readl lrnprobl behsympl;

9 MODEL :

10 read9 on readl lrnprobl behsympl (betal-beta3);
11 MODEL TEST:

12 @ = betal; 0 = beta2; 0 = beta3;

13 OUTPUT :

14 stdyx cinterval;

6.8 Mplus Output

When fitting regression models to complete data sets, researchers often use an omnibus F test to
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter
Constraints heading. The test statistic is statistically significant, thus refuting the null

hypothesis.

MODEL FIT INFORMATION

Wald Test of Parameter Constraints
Value 175.893

Degrees of Freedom 3
P-Value 0.0000
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The table of unstandardized parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown
below. The Rate of Missing column (also called the fraction of missing information in the
literature) quantifies the imputation noise in each estimate as proportion of its squared standard

€rror.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing

READ9 ON

READ1 0.506 0.043 11.868 0.000 0.182

LRNPROB1 -0.231 0.113 -2.047 0.041 0.149

BEHSYMP1 -0.189 0.101 -1.864 0.062 0.160
Intercepts

READ9 65.487 5.803 11.284 0.000 0.150
Residual Variances

READ9 86.366 11.202 7.710 0.000 0.138

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (z = 11.87, p < .001). Note that these estimates are numerically

equivalent to those from MCMC and maximum likelihood estimation.

Specifying the stdyx keyword with the OPTIONS command prints the table of standardized
estimates and R-squared statistics shown below. The slope coefficients convey the expected
change in standard deviation units for a one standard deviation increase in each predictor. For
example, the model predicts that two individuals who differ by one standard deviation on READ1
but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.70 standard deviations on READ9.

Collectively, the predictors explain 61% of the variation in ninth-grade reading scores.
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STANDARDIZED MODEL RESULTS

STDYX Standardization

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing

READ9 ON
READ1 0.701 0.044 15.767 0.000 0.102
LRNPROB1 -0.168 0.082 -2.036 0.042 0.157
BEHSYMP1 -0.153 0.082 -1.861 0.063 0.159

Intercepts
READ9 4.424 0.531 8.332 0.000 0.152

Residual Variances
READ9 0.394 0.055 7.166 0.000 0.099
R-SQUARE

Observed Two-Tailed Rate of
Variable Estimate S.E. Est./S.E. P-Value Missing
READ9 0.606 0.055 11.033 0.000 0.099

6.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is Ex6. spwb.
The code block below shows the commands that import the stacked text file produced by Blimp.
The example assumes that the data file is located on the desktop.

SPSS Script Ex6.spwb

1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
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/imputation_ id male hispanic riskgrp atrisk
behsymp1 lrnprobl readl read2 read3 read9 read9grp stanread7
math1 math2 math3 math9 math9grp stanmath7.
EXE.

S O B~ W

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,

and the pooling routines will not function if the index variable has a different name.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 7 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 8 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 9.
SPSS Script Ex6.spwb, continued
7 SORT CASES by imputation_.

8 SPLIT FILE layered by imputation_.
9  REGRESSION

10 /descriptives mean stddev corr sig n
11 /dependent read9
12 /method enter readl lrnprobl behsympl.

6.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefticients, standard errors, and test statistics.
The regression output also includes pooled means and correlations. The relative increase in
variance is a fraction comparing imputation noise to complete-data sampling variation, and the
fraction of missing information quantifies the imputation noise in each estimate as proportion of

its squared standard error.
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The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically

equivalent to those from MCMC and maximum likelihood estimation.

Coefficients?

Standardized

Unstandardized Coefficients ~ Coefficients ) Relative )
Fraction Increase Relative
imputation_ Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 66.432 5.359 12.397 <.001
readl 492 .038 .703 12.867 <.001
Irnprob1 -.283 .104 -.207 -2.712 .008
behsymp1l -.127 .092 -.105 -1.381 .170
2.00 1 (Constant) 69.162 5.650 12.240 <.001
readl .502 .042 .670 12.060 <.001
Irnprob1 -.296 .108 -.212 -2.737 .007
behsymp1l -.200 .097 -.160 -2.054 .042
coe
20.00 1 (Constant) 66.690 5.270 12.654 <.001
readl .493 .038 .701 12.823 <.001
Irnprob1 -.282 .104 -.211 -2.714 .008
behsymp1 -.134 .093 -.112 -1.442 .152
Pooled 1 (Constant) 65.487 5.877 11.144 <.001 .146 .169 .993
readl .506 .043 11.725 <.001 177 212 .991
Irnprob1 -.231 114 -2.022 .043 .146 .168 .993
behsymp1l -.189 .102 -1.841 .066 .156 .182 .992

a. Dependent Variable: read9
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MCMC: Binary Logistic Regression

This example illustrates a binary logistic regression analysis with incomplete data. The analysis
uses the behaviorachievement.dat data set taken from a longitudinal study that followed 138
students from primary through middle school. The file includes three annual assessments of
broad reading and math achievement beginning in the first grade, seventh grade standardized
achievement test scores taken from a statewide assessment, and a final measure of broad reading
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms
and learning problems were also obtained in the first grade. The data description at the

beginning of this document provides additional details. The variables for this analysis are as

follows.
Name Definition Missing %  Scale
Focal Variables
BEHSYMP, 1* grade behavioral symptoms 3.6 Numeric
LRNPROB, 1+ grade learning problems 2.2 Numeric
READ, 1* grade broad reading composite 6.5 Numeric
READGRPs 9™ grade reading classification 17.4 0 = Below average, 1 = Average
Auxiliary Variables
READ, 2" grade broad reading composite 9.4 Numeric
STANREAD; 7™ grade standardized math 19.6 Numeric

7.1 Analysis Model

The analysis model features a binary classification of ninth grade reading performance regressed
on first grade reading achievement and teacher-rated learning problems and behavioral

symptoms.
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logit(READGRR,) = f8, + B,(READ)) + f8,(LRNPROB,) + f8;(BEHSYMR) (16)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. Blimp automatically assigns a multivariate normal

distribution to the predictors.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following the same factored regression specification from earlier examples, auxiliary
variables enter the model as additional outcomes that are predicted by the analysis variables and

by each other. The additional regression equations are as follows.

READ, = y,, + 7,;(READGRR) + 7,,(READ,) + 75,(LRNPROB,) + y4,(BEHSYMR) + ¢,
STANREAD, = y,, + 71,(READ,) + 7,,(READGRR) + ¥s,(READ))
+ ¥4,(LRNPROB,) + ¥5,(BEHSYMR) + ¢, (17)

Along with the logistic regression model from Equation 16, the collection of regressions can be
viewed as a path model, where the focal regression is one part of a larger network (see the path
diagram in Section 2.4). The key difference is that the path coeftficients are just a tool for linking

incomplete variables and do not represent a substantive theory.
7.2 Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex7.1. inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex7.1.imp

DATA: behaviorachievement.dat;

VARIABLES: id male hispanic riskgrp atrisk behsympl lrnprob1
readl read2 read3 read9 read9grp stanread7
math1 math2 math3 math9 math9grp stanmath7;

ORDINAL: read9grp;

MISSING: 999;

S O AN W N -
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7 MODEL :

8  focal.model:

9 logit(read9grp) ~ readl@betal lrnprobl@beta2 behsympl@beta3;
10 auxiliary.models:

11 stanread7 read2 ~ read9grp readl lrnprobl behsymp1;

12 WALDTEST:betal:beta3 = 0;

13 SEED: 90291;

14 BURN: 1000;

15 ITERATIONS: 10000;

The first six lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The ORDINAL command on line 5 defines the
outcome as categorical. Binary variables can be defined as ordinal or nominal, as the statistical

models are identical. The MISSING command on line 6 defines a global missing value code as 999.

The MODEL and WALDTEST blocks can be viewed as a set. The MODEL command lists the
regression models, with outcome variables to the left of the tilde and predictors to the right. The
code uses labels (focal.model and auxiliary.models) to order output tables, such that the
logistic model appears first followed by the auxiliary variable models. The focal model listed on
line 9 assigns labels the slope coefficients using the @ symbol. Listing the dependent variable
inside the logit function triggers logistic regression rather than the default probit regression.
Blimp automatically configures the explanatory variable models under the assumption that they
are normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable
regression models in Equation 17; in the first model, READ2 is regressed on the focal variables,
and the second model features STANREAD7 regressed on READ2 and the focal variables. The
WALDTEST command uses the parameter labels to specify a custom hypothesis test that all three
slopes equal zero. This so-called Bayesian Wald test (Asparouhov & Muthén, 2021) is a
frequentist chi-square statistic that mimics its likelihood-based counterpart, but MCMC

generates the point estimates and “standard errors” for the test.

Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the
MCMC algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).
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The corresponding rblimp script Ex7.R is shown below.

rblimp Script Ex7.R

1 library(rblimp)

2 load('behaviorachievement.rda')

3

4 mymodel <- rblimp(

5 data = behaviorachievement,

6 ordinal = 'read9grp ',

7 model = '

8 focal.model:

9 logit(read9grp) ~ readl@betal lrnprobl@beta2 behsympl@beta3;
10 auxiliary.models:

11 stanread7 read2 ~ read9grp readl lrnprobl behsympl',
12 waldtest = 'betal:beta3 = 0',

13 seed = 90291,

14 burn = 1000,

15 iter = 10000)

16  output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
7.3 Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest

(worst) PSR value across all parameters in every model. A common recommendation is that
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these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
26 to 50 1.140 2

51 to 100 1.072 2

76 to 150 1.041 3

451 to 900 1.009 37

476 to 950 1.008 19

501 to 1000 1.008 37

The next section of the output displays information about the variables in the analysis and the

models used for estimation. This output table mimics the one from Section 6.3.

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output

also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
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Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: logit(read9grp)

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Coefficients:
Intercept -2.721 1.291 -5.281 -0.204 4.452 0.035  4802.329
readi 0.062 0.013 0.038 0.090 22.534 0.000 2686.246
lrnprobi -0.034 0.030 -0.095 0.024 1.303 0.254  3855.021
behsymp1 -0.021 0.026 -0.073 0.027 0.737 0.391  4501.123
0dds Ratio:
Intercept 0.066 0.265 0.005 0.816 0.310 0.578 6757.096
readi 1.064 0.014 1.039 1.094  5744.907 0.000 2684.389
lrnprobi 0.966 0.029 0.909 1.025 1100.011 0.000 3857.606
behsymp1 0.979 0.025 0.929 1.027  1539.695 0.000  4502.785
Proportion Variance Explained
by Coefficients 0.152 0.058 0.067 0.288 -—- ---  4354.701
by Residual Variation 0.848 0.058 0.712 0.933 --= ---  4354.701

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are
insufficient, increasing the value on the ITERATIONS command will remedy the issue. The table

summarizing the focal regression model is shown below.

The results are interpreted in the same way as a complete-data logistic regression analysis. For
example, consider the first-grade reading score slope. The model predicts that the logits for two
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ
by 0.06. The 95% credible interval limits suggest this effect is statistically different from zero (p <
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.05) because the null value is well outside the interval. The frequentist test statistic and p-value
give the same conclusion. The printed output also includes the table of odds ratios that reflect
multiplicative changes to the odds. For example, a one-point increase in first grade reading
scores increases the odds of average or higher ninth grade reading by a factor 1.06, holding first
grade learning problems and behavioral symptoms constant. Collectively, the predictors explain
15% of the variation in the underlying logistic latent variable. Note that the tabled values are

numerically equivalent to the maximum likelihood estimates from Section 2.7.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.

Finally, recall that the WALDTEST command requested a Bayesian Wald chi-square statistic
(Asparouhov & Muthén, 2021) that evaluates the null hypothesis that all population slopes equal
zero. To reiterate, the Wald test is frequentist chi-square statistic that mimics its likelihood-based
counterpart, but MCMC generates the point estimates and “standard errors” for the test. The
chi-square statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT
section under the WALD TEST heading. The test statistic is statistically significant, thus refuting
the null hypothesis.

MODEL FIT:

WALD TESTS (Asparouhov & Muthén, 2021)
Test #1

Full:
[1] logit(read9grp) ~ Intercept readl@betal lrnprobl@beta2 behsympl@beta3

Restricted:
[1] logit(read9grp) ~ Intercept readl@betal lrnprobl@beta2 behsympl@beta3
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Constraints in Restricted:
[1] betal =0

[2] beta2 = 0

[3] beta3 =0
Wald Statistic (Chi-Square) 23.618
Number of Parameters Tested (df) 3
Probability 0.000

7.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The

Blimp input file Ex7.2. imp is identical Ex7.1. imp, but it adds the following lines at the bottom of

the script.
NIMPS: 20;
CHAINS: 20;
SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order

of the variables in the output data sets. All variables are saved regardless of whether they
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appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id male hispanic riskgrp atrisk behsymp1 lrnprobl readl read2 read3
read9 read9grp stanread7 math1l math2 math3 math9 math9grp stanmath7

stacked = './imps/imps.dat'

imp# id male hispanic riskgrp atrisk behsymp1l lrnprob1 readl read2 read3
read9 read9grp stanread7 mathl math2 math3 math9 math9grp stanmath?

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.

rblimp Script Ex7.R

library(rblimp)
load('behaviorachievement.rda')

mymodel <- rblimp(
data = behaviorachievement,

1

2

3

4

5

6 ordinal = 'read9grp ',
7 model = '

8 focal.model:

9 logit(read9grp) ~ readl@betal lrnprobl@beta2 behsympl@beta3;
10 auxiliary.models:

11

stanread7 read2 ~ read9grp readl lrnprobl behsympl',
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12 waldtest = 'betal:beta3 = 0',

13 seed = 90291,
14 burn = 1000,
15 iter = 10000)

16 nimps = 20,
17 chains = 20)
18 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
7.5 Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex7.R

1 library(rblimp)

2 library(mitml)

3 load('behaviorachievement.rda')

4

5 mymodel <- rblimp(...)

6

7 implist <- as.mitml(mymodel)

8 fit <- with(implist,

9 glm(read9grp ~ readl + lrnprobl + behsympl, family = 'binomial')
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 134)
11 estimates

12 confint(estimates)

13

14 null <- with(implist, glm(read9grp ~ 1, family = 'binomial'))
15 testModels(fit, null, df.com = 134, method = 'D1')
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To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 8 and 9 fits the focal
regression model using the 1m function, and line 10 uses the testEstimates function in mitml to
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com
parameter is the denominator degrees of freedom that would have resulted had there been no
missing data (i.e., N-K-1 degrees of freedom, where K is the number of predictors). This
argument produces Barnard and Rubin degrees of freedom values. Lines 11 and 12 print the
pooled estimates and confidence intervals. Finally, lines 14 and 15 specify a multiple imputation
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al.,
1991). The test requires an additional model on line 13 that represents the null hypothesis, which
in this case is an empty regression model with just an intercept. On line 14, the full model and
null model objects passed into the testModels function, and the D1 keyword requests the Wald
test. As before, the df.com parameter is the denominator degrees of freedom that would have
resulted had there been no missing data. This argument produces the Barnard and Rubin (1999)

degrees of freedom adjustment.
7.6 ROutput

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third through fifth columns
display the corresponding test statistics. The focal model results are shown below. The RIV
column (relative increase in variance) is a fraction comparing imputation noise to complete-data
sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df  P(C|t]) RIV FMI
(Intercept) -3.602 1.672 -2.154 79.914 0.034 0.294 0.246
readi 0.068 0.015 4.463 93.795 0.000 0.206 0.188
lrnprob1 -0.029 0.030 -0.971 90.209 0.334 0.227 0.202
behsymp1 -0.019 0.025 -0.762  106.973 0.448 0.135 0.135

Hypothesis test adjusted for small samples with df=[134]
complete-data degrees of freedom.
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2.5 % 97.5 %
(Intercept) -6.92951753 -0.27356800
readi 0.03751055 0.09763918
lrnprob1 -0.08980267 0.03082041
behsymp1 -0.06832451 0.03038596

The results are interpreted in the same way as a complete-data logistic regression analysis. For
example, consider the first-grade reading score slope. The model predicts that the logits for two
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ
by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (t = 4.46, p < .001). Note that these estimates are numerically equivalent to those from
MCMC and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in
the output table below. The test statistic is statistically significant, thus refuting the null
hypothesis that all population slopes equal zero.

Model comparison calculated from 20 imputed data sets.
Combination method: D1

F.value df1 df2  P(>F) RIV
7.359 3 120.633 0.000 0.214

Hypothesis test adjusted for small samples with df=[134]
complete-data degrees of freedom.

7.7 Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file.

The Mplus input file for analyzing the imputations is Ex7.1inp. The script is similar to the
Ex2.1.1inp file described in Section 2.2 with three exceptions. First, instead of naming the raw
data set, the DATA command lists the text file containing the names of the imputed data sets (the

implist.dat file located in the ./imps subdirectory). The type = imputation subcommand
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instructs Mplus that the input data is a list of file names. Second, the missing subcommand is
omitted because the analysis variables are now complete. Finally, the MODEL section no longer
specifies a normal distribution for the predictors or models for the auxiliary variables. Readers
can refer to Section 2.2 for a detailed description of the other commands. The code block below

shows the analysis and pooling script.

Mplus Script Ex7.inp
1 DATA:
2 file = ./imps/implist.dat;
3  type = imputation;
4 VARIABLE:
5 names = id male hispanic riskgrp atrisk behsympl lrnprob1
6 readl read2 read3 read9 read9grp stanread7
7 math1 math2 math3 math9 math9grp stanmath7;
8 usevariables = read9grp readl lrnprob1 behsympl;
9 categorical = read9grp;
10 ANALYSIS:
11 estimator = ml;
12 1link = logit;
13 MODEL :
14 read9grp on readl lrnprobl behsympl (betal-beta3);
15 MODEL TEST:
16 @ = betal; 0 = beta2; 0 = beta3;
17 OUTPUT :
18  stdyx cinterval;

7.8 Mplus Output

When fitting regression models to complete data sets, researchers often use an omnibus F test to
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter
Constraints heading. The test statistic is statistically significant, thus refuting the null

hypothesis.
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MODEL FIT INFORMATION

Number of Free Parameters 4

Wald Test of Parameter Constraints

Value 23.342
Degrees of Freedom 3
P-Value 0.0001

The table of unstandardized parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown
below. The Rate of Missing column (also called the fraction of missing information in the
literature) quantifies the imputation noise in each estimate as proportion of its squared standard

€rror.

MODEL RESULTS
Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
READ9GRP  ON
READ1 0.068 0.015 4.463 0.000 0.173
LRNPROB1 -0.029 0.030 -0.971 0.331 0.188
BEHSYMP1 -0.019 0.025 -0.762 0.446 0.121
Thresholds
READIGRP$1 3.602 1.672 2.154 0.031 0.231

The results are interpreted in the same way as a complete-data logistic regression analysis. For
example, consider the first-grade reading score slope. The model predicts that the logits for two
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ
by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (z = 4.46, p < .001). Note that Mplus reports a threshold parameter instead of the usual
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regression intercept. The threshold from a binary logistic model has the same value but opposite
sign as the intercept (i.e., B = -3.60). Note that these estimates are numerically equivalent to

those from MCMC and maximum likelihood estimation.

Finally, the printed output also includes the table of odds ratios that reflect multiplicative
changes to the odds. For example, a one-point increase in first grade reading scores increases the
odds of average or higher ninth grade reading by a factor 1.08, holding first grade learning

problems and behavioral symptoms constant.

CONFIDENCE INTERVALS OF MODEL RESULTS
Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5%%

READ9GRP ON

READ1 0.038 0.043 0.068 0.092 0.097

LRNPROB1 -0.089 -0.079 -0.029 0.020 0.030

BEHSYMP1 -0.068 -0.060 -0.019 0.022 0.030
Thresholds

READ9GRP$1 0.324 0.851 3.602 6.352 6.879

CONFIDENCE INTERVALS FOR THE LOGISTIC REGRESSION ODDS RATIO RESULTS

READ9GRP ON

READ1 1.039 1.044 1.070 1.097 1.102
LRNPROB1 0.915 0.924 0.971 1.021 1.030
BEHSYMP1 0.934 0.942 0.981 1.022 1.030

7.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is Ex7. spwb.
The code block below shows the commands that import the stacked text file produced by Blimp.
The example assumes that the data file is located on the desktop.
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SPSS Script Ex7.spwb
1 CD '/users/username/desktop'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ id male hispanic riskgrp atrisk
4 behsymp1 lrnprobl readl read2 read3 read9 read9grp stanread?
5 math1 math2 math3 math9 math9grp stanmath7.
6 EXE.

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,

and the pooling routines will not function if the index variable has a different name.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 7 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 10 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 9.

SPSS Script Ex7.spwb, continued

7 SORT CASES by imputation_.

8 SPLIT FILE layed by imputation_.

9  LOGISTIC REGRESSION read9grpNew

10 /method=enter readl lrnprob1l behsymp1.

7.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefficients, standard errors, and test statistics.
The relative increase in variance is a fraction comparing imputation noise to complete-data
sampling variation, and the fraction of missing information quantifies the imputation noise in

each estimate as proportion of its squared standard error.
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The results are interpreted in the same way as a complete-data logistic regression analysis. For

example, consider the first-grade reading score slope. The model predicts that the logits for two
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 differ
by 0.07. SPSS does not report the corresponding test statistic for the slope coefficient, but it does

include the p-value for the test statistic which indicates that the slope coefficient is statistically

different from zero (p < .001). Note that these estimates are numerically equivalent to those from

MCMC and maximum likelihood estimation.

Variables in the Equation

Relative
Fraction Increase Relative

imputation_ B S.E. Wald df Sig. Exp(B) Missing Info. Variance Efficiency
1.00 Step 1 readl .060 .013 22.145 1 .000 1.061

Irnprob1 -.021 .026 .658 1 417 .979

behsymp1l -.017 .023 .557 1 456 .983

Constant -3.385 1.411 5.753 1 .016 .034
2.00 Step 1* readl .070 .014 25.125 1 .000 1.073

Irnprob1 -.025 .028 .826 1 .363 .975

behsymp1 -.020 .023 .746 1 .388 .980

Constant -3.967 1.499 7.006 1 .008 .019
20.00 Step 1* readl .060 .013 21.439 1 .000 1.061

Irnprob1 -.047 .028 2.841 1 .092 .954

behsymp1 -.011 .023 .248 1 .619 .989

Constant -2.496 1.416 3.107 1 .078 .082
Pooled Step 1° readl .068 .015 .000 1.070 .173 .206 991

Irnprob1 -.029 .030 .332 971 .188 227 991

behsymp1 -.019 .025 446 .981 121 .135 .994

Constant -3.602 1.672 .032 .027 .231 .294 .989

a. Variable(s) entered on step 1: readl, Irnprobl, behsympl.
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MCMC: Regression With Binary and Ordinal Predictors

This example illustrates a multiple regression analysis with incomplete categorical predictors.
The analysis uses the mathachievement.dat data set taken from an educational intervention
where 250 students were assigned to an intervention and comparison condition. The file includes
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized
reading scores taken from a statewide assessment, and several sociodemographic variables. The

analysis variables are as follows.

Name Definition Missing %  Scale

Focal Variables

MATHPOST  Math achievement posttest 18.0 Numeric
CONDITION  Experimental condition 0 0 = Comparison, 1 = Intervention
FRLUNCH Lunch assistance code 44 0 = None, 1 = Free/reduced lunch
EFFICACY Math self-efficacy rating 9.6 Ordinal (1 to 6)
MATHPRE Math achievement pretest 0 Numeric

Auxiliary Variables
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk
STANREAD  Standardized reading 9.2 Numeric

8.1 Analysis Model

The analysis model features math posttest scores regressed on the experimental condition and

lunch assistance dummy codes, math self-efficacy ratings, and math pretest scores.
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MATHPOST = B, + B,(CONDITION) + B,(FRLUNCH)
+ B3(EFFICACY) + B4(MATHPRE) + ¢ (18)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. In this case, the predictor set includes incomplete binary
and ordinal variables. Blimp uses a probit regression formulation that envisions discrete
responses as arising from underlying continuous latent response variables. The software assumes

that continuous predictors and the latent response variables are multivariate normal.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes
that are predicted by the analysis variables and by each other. The additional regression

equations are as follows.

ATRISK* = yy3 + 713(MATHPOST) + 7,3( CONDITION)
+ ¥53(FRLUNCH) + ¥,5(EFFICACY) + ¥s3(MATHPRE) + ¢,
STANREAD = ¥y, + 714(ATRISK) + ¥,,(MATHPOST) + 75,(CONDITION) ~ (19)
+ ¥44(FRLUNCH) + y54(EFFICACY) + y54(MATHPRE) + ¢,

The ATRISK model is a probit regression, with the binary outcome model as a latent response
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be
viewed as a path model, where the focal regression is one part of a larger network (see the path
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for

linking incomplete variables and do not represent a substantive theory.
8.2 Blimp and rblimp MCMC Scripts
The code block below shows Blimp script Ex8. 1. inp. This script is executed in the Blimp Studio
graphical interface. The corresponding R script is shown later in this section.
Blimp Script Ex8.1.imp

1 DATA: mathachievement.dat;
2 VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety
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3 mathpre mathpost;

4 ORDINAL: condition frlunch atrisk efficacy;

5 MISSING: 999;

6 FIXED: condition mathpre;

7 MODEL:

8  focal.model:

9 mathpost ~ condition@betal frlunch@beta2 efficacy@beta3 mathpre@beta4;
10 auxiliary.models:

11 stanread atrisk ~ mathpost condition frlunch efficacy mathpre;
12 WALDTEST: betal:beta4 = 0;

13 SEED: 90291;

14 BURN: 5000;

15  ITERATIONS: 10000;

The first five lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The ORDINAL command on line 4 identifies
binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as the
statistical models are identical. The MISSING command on line 5 defines a global missing value
code as 999.

The FIXED, MODEL, and WALDTEST blocks can be viewed as a set. The FIXED command identifies
the two complete variables, which do not require a distribution or regression model. Beginning
on line 7, the MODEL command lists the regression models, with outcome variables to the left of
the tilde and predictors to the right. The code uses labels (focal.model and auxiliary.models)
to order output tables, such that the focal model appears first followed by the auxiliary variable
models. The focal model listed on line 9 assigns labels the slope coefficients using the @ symbol.
Blimp automatically configures the explanatory variable models under the assumption that they
are normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable
regression models in Equation 19; in the first model, READ2 is regressed on the focal variables,
and the second model features STANREAD7 regressed on READ2 and the focal variables. The
WALDTEST command uses the parameter labels to specify a custom hypothesis test that all three
slopes equal zero. This so-called Bayesian Wald test (Asparouhov & Muthén, 2021) is a
frequentist chi-square statistic that mimics its likelihood-based counterpart, but MCMC

generates the point estimates and “standard errors” for the test.
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Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the
MCMC algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

The corresponding rblimp script Ex8.R is shown below.

rblimp Script Ex8.R

1 library(rblimp)

2 load(mathachievement.rda')

3

4 mymodel <- rblimp(

5 data = mathachievement,

6 ordinal = 'condition frlunch atrisk efficacy',

7 fixed = 'condition mathpre',

8 model = '

9 focal.model:

10 mathpost ~ condition@betal frlunch@beta2 efficacy@beta3 mathpre@beta4;
11 auxiliary.models:

12 stanread atrisk ~ mathpost condition frlunch efficacy mathpre',
13 waldtest = 'betal:betad = 0',

14 seed = 90291,

15 burn = 5000,

16 iter = 10000)

17  output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
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8.3 Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
126 to 250 1.416 59
251 to 500 1.425 57
376 to 750 1.146 57
2251 to 4500 1.040 57
2376 to 4750 1.016 56
2501 to 5000 1.009 56

The next section of the output displays information about the variables in the analysis and the

models used for estimation. This output table mimics the one from Section 6.3.

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although

MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
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medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: mathpost

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 53.303 5.509 43.687 65.369 -—- ---  5636.603
Coefficients:
Intercept 28.345 3.088 22.308 34.514 84.418 0.000 7012.232
condition 2.263 1.047 0.202 4.311 4.644 0.031 6953.241
frlunch -5.502 1.095 -7.608 -3.325 25.087 0.000 5344.564
efficacy 0.831 0.346 0.159 1.517 5.773 0.016  4712.974
mathpre 0.530 0.062 0.408 0.653 71.920 0.000 6537.163
Standardized Coefficients:
condition 0.117 0.054 0.010 0.222 4.715 0.030  6897.665
frlunch -0.281 0.052 -0.378 -0.173 28.538 0.000 5652.427
efficacy 0.139 0.057 0.027 0.248 5.904 0.015  4706.081
mathpre 0.477 0.048 0.378 0.564 98.308 0.000 6400.853
Proportion Variance Explained
by Coefficients 0.426 0.046 0.328 0.510 -—- ---  5954.279
by Residual Variation 0.574 0.046 0.490 0.672 --= --- 5954.279

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC

samples for each parameter. These quantities essentially represent the number of independent
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estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are

insufficient, increasing the value on the ITERATIONS command will remedy the issue.

The results are interpreted in the same way as a complete-data regression analysis with
categorical predictors. For example, consider the slope for the treatment assignment dummy
code. The positive coefficient indicates that, for two students who share the same covariate
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student
in the experimental condition should score 2.26 points higher than the student in the control
group. The 95% credible interval limits suggest this effect is statistically different from zero (p <
.05) because the null value is well outside the interval. The frequentist test statistic and p-value
give the same conclusion. Note that the tabled values are numerically equivalent to the maximum

likelihood estimates from Section 3.3.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.

Finally, recall that the WALDTEST command requested a Bayesian Wald chi-square statistic
(Asparouhov & Muthén, 2021) that evaluates the null hypothesis that all population slopes equal
zero. To reiterate, the Wald test is frequentist chi-square statistic that mimics its likelihood-based
counterpart, but MCMC generates the point estimates and “standard errors” for the test. The
chi-square statistic, degrees of freedom, and p-value appear near the bottom of the MODEL FIT
section under the WALD TEST heading. The test statistic is statistically significant, thus refuting
the null hypothesis.

MODEL FIT:

WALD TESTS (Asparouhov & Muthén, 2021)
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Test #1
Full:
[1] mathpost ~ Intercept condition@betal frlunch@beta2 efficacy@beta3
mathpre@beta4d
Restricted:
[1] mathpost ~ Intercept condition@betal frlunch@beta2 efficacy@beta3
mathpre@beta4d

Constraints in Restricted:
[1] betal = 0

[2] beta2 = 0

[3] beta3 =0

[4] betad = 0
Wald Statistic (Chi-Square) 142.310
Number of Parameters Tested (df) 4
Probability 0.000

8.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The

Blimp input file Ex8.2. imp is identical Ex8.1. imp, but it adds the following lines at the bottom of

the script.
NIMPS: 20;
CHAINS: 20;
SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS

saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
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autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the . /imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id condition male frlunch atrisk stanread efficacy anxiety
mathpre mathpost

stacked = './imps/imps.dat'

imp# id condition male frlunch atrisk stanread efficacy
anxiety mathpre mathpost

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.



MCMC: Regression With Binary and Ordinal Predictors 100

rblimp Script Ex8.R
1 library(rblimp)
2 load('mathachievement.rda')
3
4 mymodel <- rblimp(
5 data = mathachievement,
6 ordinal = 'condition frlunch atrisk efficacy',
7 fixed = 'condition mathpre',
8 model = '
9 focal.model:
10 mathpost ~ condition@betal frlunch@beta2 efficacy@beta3 mathpre@beta4;
11 auxiliary.models:
12 stanread atrisk ~ mathpost condition frlunch efficacy mathpre',
13 waldtest = 'betal:betad = 0',
14 seed = 90291,
15 burn = 5000,
16 iter = 10000,

17 nimps = 20,
18 chains = 20)
19  output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
8.5 Analyzing Multiple Imputationsin R

Continuing with the previous rblimp script, the following excerpt from Ex8.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex8.R

1 library(rblimp)
2 library(mitml)
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load('mathachievement.rda')

mymodel <- rblimp(...)

implist <- as.mitml(mymodel)

fit <- with(implist,

9 Im(mathpost ~ condition + frlunch + efficacy + mathpre))
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 245)

O N O O A W

11 estimates

12 confint(estimates)

13

14 null <- with(implist, lm(mathpost ~ 1))

15  testModels(fit, null, df.com = 245, method = 'D1')

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 8 and 9 fit the focal
regression model using the 1m function, and line 10 uses the testEstimates function in mitml to
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com
parameter is the denominator degrees of freedom that would have resulted had there been no
missing data (i.e., N-K-1 degrees of freedom, where K is the number of predictors). This
argument produces Barnard and Rubin degrees of freedom values. Lines 11 and 12 print the
pooled estimates and confidence intervals. Finally, lines 14 and 15 specify a multiple imputation
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al.,
1991). The test requires an additional model on line 13 that represents the null hypothesis, which
in this case is an empty regression model with just an intercept. On line 14, the full model and
null model objects passed into the testModels function, and the D1 keyword requests the Wald
test. As before, the df.com parameter is the denominator degrees of freedom that would have
resulted had there been no missing data. This argument produces the Barnard and Rubin (1999)

degrees of freedom adjustment.
8.6 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The

RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
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data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error  t.value df  P(C|t]) RIV FMI

(Intercept) 28.302 3.183 8.892  125.465 0.000 0.290 0.237

condition 2.206 1.055 2.091 133.634 0.038 0.263 0.220

frlunch -5.392 1.094 -4.928 110.541 0.000 0.348 0.271

efficacy 0.832 0.356 2.339 103.454 0.021 0.380 0.289

mathpre 0.532 0.063 8.448  128.385 0.000 0.280 0.231
Estimate

Residual~~Residual 53.133

Hypothesis test adjusted for small samples with df=[245]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 22.0026367 34.6005103
condition 0.1192603 4.2925545

frlunch -7.5596123 -3.2237303
efficacy 0.1266288 1.5376826
mathpre 0.4071878 0.6562495

The results are interpreted in the same way as a complete-data regression analysis with
categorical predictors. For example, consider the slope for the treatment assignment dummy
code. The positive coefficient indicates that, for two students who share the same covariate
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student
in the experimental condition should score 2.21 points higher than the student in the control
group. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (t = 2.09, p = .04). Note that these estimates are virtually identical to those from
MCMC and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in
the output table below. The test statistic is statistically significant, thus refuting the null
hypothesis that all population slopes equal zero.
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Model comparison calculated from 20 imputed data sets.
Combination method: D1

F.value df1 df2  P(>F) RIV
33.796 4 197.183 0.000 0.332

Hypothesis test adjusted for small samples with df=[245]
complete-data degrees of freedom.

8.7 Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file.

The Mplus input file for analyzing the imputations is Ex8.inp. The script is like the Ex3.inp
file described in Section 3.2 with three exceptions. First, instead of naming the raw data set, the
DATA command lists the text file containing the names of the imputed data sets (the implist.dat
file located in the ./imps subdirectory). The type = imputation subcommand instructs Mplus
that the input data is a list of file names. Second, the missing subcommand is omitted because the
analysis variables are now complete. Finally, the MODEL section no longer specifies a normal
distribution for the predictors or models for the auxiliary variables. Readers can refer back to
Section 3.2 for a detailed description of the other commands. The code block below shows the

analysis and pooling script.

Mplus Script Ex8.inp

1 DATA:

2 file = ./imps/implist.dat;

3 type = imputation;

4 VARIABLE:

5 names = id condition male frlunch atrisk stanread

6 efficacy anxiety mathpre mathpost;

7 usevariables = mathpost condition frlunch efficacy mathpre;
8  MODEL:
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9 mathpost on condition frlunch efficacy mathpre (betal-beta4);
10 MODEL TEST:

11 0 = betal; 0 = beta2; 0 = beta3; 0 = beta4;

12 OUTPUT :

13 stdyx cinterval;

8.8 Mplus Output

When fitting regression models to complete data sets, researchers often use an omnibus F test to
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter
Constraints heading. The test statistic is statistically significant, thus refuting the null

hypothesis.

MODEL FIT INFORMATION

Number of Free Parameters 6

Wald Test of Parameter Constraints

Value 125.646
Degrees of Freedom 4
P-Value 0.0000

The table of unstandardized parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown
below. The Rate of Missing column (also called the fraction of missing information in the
literature) quantifies the imputation noise in each estimate as proportion of its squared standard

€rror.

MODEL RESULTS
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Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing

MATHPOST ON

CONDITION 2.206 1.047 2.107 0.035 0.215

FRLUNCH -5.392 1.086 -4.965 0.000 0.267

EFFICACY 0.832 0.353 2.356 0.018 0.285

MATHPRE 0.532 0.062 8.515 0.000 0.226
Intercepts

MATHPOST 28.301 3.158 8.962 0.000 0.233
Residual Variances

MATHPOST 52.070 5.500 9.467 0.000 0.287

The results are interpreted in the same way as a complete-data regression analysis with
categorical predictors. For example, consider the slope for the treatment assignment dummy
code. The positive coefficient indicates that, for two students who share the same covariate
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student
in the experimental condition should score 2.21 points higher than the student in the control
group. The corresponding test statistic indicates that the slope coefficient is statistically different
from zero (z = 2.11, p = .04). Note that these estimates are virtually identical to those from
MCMC and maximum likelihood estimation. The output also includes a table with standardized

coefficients and the R-squared statistic.
8.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is Ex8. spwb.
The code block below shows the commands that import the stacked text file produced by Blimp.
The example assumes that the data file is located on the desktop.
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SPSS Script Ex8.spwb
1 CD '/users/username/desktop'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ id condition male frlunch atrisk stanread efficacy anxiety
4 mathpre mathpost.
5 EXE.

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,

and the pooling routines will not function if the index variable has a different name.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 6 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 7 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 8.

SPSS Script Ex8.spwb, continued

SORT CASES by imputation_.
SPLIT FILE layered by imputation_.
REGRESSION
/descriptives mean stddev corr sig n
/dependent mathpost

- o W 0 N O

/method enter condition frlunch efficacy mathpre.

8.8 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate ¢ tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefficients, standard errors, and test statistics.

The regression output also includes pooled means and correlations. The relative increase in
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variance is a fraction comparing imputation noise to complete-data sampling variation, and the

fraction of missing information quantifies the imputation noise in each estimate as proportion of

its squared standard error.

The results are interpreted in the same way as a complete-data regression analysis with
categorical predictors. For example, consider the slope for the treatment assignment dummy
code. The positive coefficient indicates that, for two students who share the same covariate
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student

in the experimental condition should score 2.21 points higher than the student in the control

group. The corresponding test statistic indicates that the slope coefficient is statistically different

from zero (t = 2.09, p = .04). Note that these estimates are virtually identical to those from

MCMC and maximum likelihood estimation.

Coefficients?

Standardized

Unstandardized Coefficients Coefficients ) Relative )
Fraction Increase Relative
imputation_  Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 26.766 2.892 9.256 .000
condition 2.677 971 .134 2.756 .006
frlunch -6.281 977 -.309 -6.429 .000
efficacy .566 .310 .092 1.823 .069
mathpre .575 .058 .498 9.864 .000
2.00 1 (Constant) 28.064 2.819 9.955 .000
condition 2.551 .943 .132 2.704 .007
frlunch -5.846 .950 -.298 -6.153 .000
efficacy .637 311 .104 2.046 .042
mathpre .549 .056 492 9.784 .000
20.00 1 (Constant) 28.652 2.774 10.328 .000
condition 2.067 .929 111 2.224 .027
frlunch -4.662 931 -.247 -5.006 .000
efficacy .821 .307 .138 2.672 .008
mathpre .526 .055 489 9.528 .000
Pooled 1 (Constant) 28.302 3.183 8.892 .000 229 .290 .989
condition 2.206 1.055 2.091 .037 212 .263 .990
frlunch -5.392 1.094 -4.928 .000 .263 .348 .987
efficacy .832 .356 2.339 .020 .281 .380 .986
mathpre .532 .063 8.448 .000 .223 .280 .989

a. Dependent Variable: mathpost
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MCMC: Regression With Multicategorical Predictors

This example illustrates a multiple regression analysis with an incomplete multicategorical
predictor. The analysis uses the behaviorachievement.dat data set taken from a longitudinal
study that followed 138 students from primary through middle school. The file includes three
annual assessments of broad reading and math achievement beginning in the first grade, seventh
grade standardized achievement test scores taken from a statewide assessment, and a final
measure of broad reading and math obtained in ninth grade. The data also contain teacher
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The
data description at the beginning of this document provides additional details. The variables for

this analysis are as follows.

Name Definition Missing %  Scale

Focal Variables

RISKGRP Emotional/behavioral disorder risk 2.2 1 = Low, 2 = Medium, 3 = High
BEHSYMP, Ist grade behavioral symptoms 3.6 Numeric
LRNPROB, Ist grade learning problems 2.2 Numeric
READ, Ist grade broad reading composite 6.5 Numeric
READ; 9th grade broad reading composite ~ 17.4 Numeric

Auxiliary Variables
READ, 2nd grade broad reading composite 9.4 Numeric
STANREAD; 7th grade standardized math 19.6 Numeric
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9.1 Analysis Model

The analysis model features ninth grade broad reading scores regressed on first grade reading
achievement, teacher-rated learning problems and behavioral symptoms, and a three-category

nominal variable indicating risk for emotional or behavioral disorders.

READ, = B, + B,(READ,) + B,(LRNPROB,) + 3;(BEHSYMR)
+ B4(MEDRISK) + 8s(HIGHRISK) + € (20)

The MEDRISK and HIGHRISK variables are dummy code variables that contrast the medium- and
high-risk groups, respectively, against the low-risk reference group. Blimp uses a probit
regression formulation that envisions multicategorical variables as arising from underlying
continuous latent response difference scores. The software automatically assumes that

continuous predictors and the latent response variables are multivariate normal.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following the same factored regression specification from earlier examples, auxiliary
variables enter the model as additional outcomes that are predicted by the analysis variables and

by each other. The additional regression equations are as follows.

READ, = yy; + yu(READg) + )/ZI(READl) + Vgl(LRNPROBl) + )/41(BEHSYJ\4PI)
+ 751(MEDRISK) + y¢,(HIGHRISK) + ¢,
STANREAD; = ¥y, + Y12(READ,) + ¥2,(READy) + y3,(READ;)
+ 745(LRNPROB,) + y5,(BEHSYMR) + 76,(MEDRISK) + 7,,(HIGHRISK) +¢,  (21)

Along with the focal regression model from Equation 20, the collection of regressions can be
viewed as a path model, where the focal regression is one part of a larger network (see the path
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for

linking incomplete variables and do not represent a substantive theory.
9.2 Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex9.1. inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.
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Blimp Script Ex9.1.imp

1 DATA: behaviorachievement.dat;

2 VARIABLES: id male hispanic riskgrp atrisk behsymp1l lrnprob1
3 readl read2 read3 read9 read9grp stanread7 mathl math2
4 math3 math9 math9grp stanmath7;

5 NOMINAL: riskgrp;

6 MISSING: 999;

7 MODEL :

8  focal.model:

9 read9 ~ readl lrnprob1l behsympl riskgrp;

10 auxiliary.models:

11 stanread7 read2 ~ read9 readl lrnprobl behsympl riskgrp;
12 SEED: 90291;

13 BURN: 2000;

14 ITERATIONS: 10000;

The first five lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The NOMINAL command on line 5 identifies
the multicategorical nominal predictor. By default, the group with the lowest numeric code
serves as the reference category (in this example, 1 = low risk), and the user can change this
specification if desired. The MISSING command on line 6 defines a global missing value code as
999.

The MODEL and WALDTEST blocks can be viewed as a set. Beginning on line 7, the MODEL
command lists the regression models, with outcome variables to the left of the tilde and
predictors to the right. The code uses labels (focal.model and auxiliary.models) to order
output tables, such that the focal model appears first followed by the auxiliary variable models.
The focal model listed on line 9 includes the multicategorical nominal variable, which Blimp
represents as a pair of dummy codes. Blimp automatically configures the explanatory variable
models under the assumption that the numeric predictors and latent response variables are
normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable
regression models in Equation 21; in the first model, READ2 is regressed on the focal variables,
and the second model features STANREAD7 regressed on READ2 and the focal variables.
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Finally, lines 12 through 14 can be viewed as a block of commands that specify features of the
MCMC algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

Previous examples assigned labels to slope coefficients using the @ symbol, and these labels
were subsequently used in the WALDTEST command to specify custom hypothesis tests. With a
multicategorical nominal predictor, it is necessary to attach labels to individual dummy codes. To
do this, you list the nominal variable’s name followed by a period and a numeric suffix with each

category’s code value. For example, line 9 in the script would be modified as follows

9 read9 ~ read1@b1 lrnprob1@2 behsymp1@b3 riskgrp.2@b4 riskgrp.3@b5;

where RISKGRP. 2 and RISKGRP. 3 reference the two dummy variables for the groups coded 2 and

3 in the data. The WALDTEST command would then be constructed following earlier examples.

The corresponding rblimp script Ex9.R is shown below.

rblimp Script Ex9.R

1 library(rblimp)

2 load('behaviorachievement.rda')

3

4 mymodel <- rblimp(

5 data = behaviorachievement,

6 nominal = 'riskgrp',

7 model = '

8 focal.model:

9 read9 ~ readl lrnprobl behsympl riskgrp;
10 auxiliary.models:

11 stanread7 read2 ~ read9 readl lrnprobl behsymp1 riskgrp',
12 seed = 90291,

13 burn = 2000,

14 iter = 10000)

15 output(mymodel)
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Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
9.3 Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
51 to 100 1.305 77

101 to 200 1.200 62

151 to 300 1.064 56

901 to 1800 1.017 53

951 to 1900 1.014 53

1001 to 2000 1.017 56

The next section of the output displays information about the variables in the analysis and the

models used for estimation. This output table mimics the one from Section 6.3.
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The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: read9

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 91.703 13.152 70.459 121.914 -—- --- 5589.273
Coefficients:
Intercept 68.621 6.614 55.479 81.676 107.763 0.000 5703.283
readi 0.484 0.049 0.389 0.581 98.268 0.000 7086.883
lrnprobi -0.250 0.121 -0.485 -0.007 4.205 0.040  5583.683
behsymp1 -0.170 0.107 -0.379 0.041 2.528 0.112  6010.276
riskgrp.2 -1.682 1.991 -5.632 2.220 0.707 0.401  7073.237
riskgrp.3 -2.814 2.707 -8.233 2.511 1.084 0.298 6138.228

Standardized Coefficients:
readl 0.658 0.052 0.544 0.751 155.706 0.000 6469.725
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lrnprob1 -0.178 0.085 -0.340 -0.005 4.277 0.039  5544.858

behsymp1 -0.137 0.085 -0.300 0.033 2.566 0.109  5901.722

riskgrp.2 -0.055 0.065 -0.182 0.073 0.714 0.398 7086.836

riskgrp.3 -0.079 0.075 -0.225 0.072 1.094 0.296 6182.638
Proportion Variance Explained

by Coefficients 0.599 0.050 0.488 0.684 -—- ---  5849.961

by Residual Variation 0.401 0.050 0.316 0.512 --= ---  5849.961

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are

insufficient, increasing the value on the ITERATIONS command will remedy the issue.

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48
points on READ9. The 95% credible interval limits suggest this effect is statistically different from
zero (p < .05) because the null value is well outside the interval. The frequentist test statistic and
p-value give the same conclusion. The two dummy codes appear as RISKGRP.2 and RISKGRP. 3,
where the numeric suffices correspond to the numeric codes from the data. Consistent with a
complete-data regression analysis, the dummy code slopes represent mean differences relative to
the low-risk reference group. For example, holding all other predictors constant, the model
predicts that a high-risk study would score 2.81 points lower than a low-risk student in the

comparison group.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
9.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian

estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
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subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The

Blimp input file Ex9.2. imp is identical Ex9. 1. imp, but it adds the following lines.

NIMPS: 20;
CHAINS: 20;
SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id male hispanic riskgrp atrisk behsymp1 lrnprobl readl read2 read3
read9 read9grp stanread7 math1l math2 math3 math9 math9grp stanmath7

stacked = './imps/imps.dat'

imp# id male hispanic riskgrp atrisk behsymp1l lrnprob1 readl read2 read3
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read9 read9grp stanread7 mathl math2 math3 math9 math9grp stanmath?

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.
rblimp Script Ex9.R
1 library(rblimp)
2 load('behaviorachievement.rda')
3
4 mymodel <- rblimp(
5 data = behaviorachievement,
6 nominal = 'riskgrp',
7 model = '
8 focal.model:
9 read9 ~ readl lrnprobl behsympl riskgrp;
10 auxiliary.models:
11 stanread7 read2 ~ read9 readl lrnprobl behsymp1 riskgrp',
12 seed = 90291,
13 burn = 2000,
14 iter = 10000,

15 nimps = 20,
16 chains = 20)
17 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
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9.5 Analyzing Multiple ImputationsinR

Continuing with the previous rblimp script, the following excerpt from Ex9.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex9.R

1 library(rblimp)

2 library(mitml)

3 load('behaviorachievement.rda')
4

5 mymodel <- rblimp(...)

6

7 implist <- as.mitml(mymodel)

8 fit <- with(implist,

9 Im(read9 ~ readl + lrnprobl + behsympl + factor(riskgrp)))
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 132)
11 estimates

12 confint(estimates)

13 null <- with(implist, 1lm(read9 ~ 1))

14 testModels(fit, null, df.com = 132, method = 'D1')

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 8 and 9 fit the focal
regression model using the 1m function, and line 10 uses the testEstimates function in mitml to
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com
parameter is the denominator degrees of freedom that would have resulted had there been no
missing data (i.e., N-K-1 degrees of freedom, where K is the number of predictors). This
argument produces Barnard and Rubin degrees of freedom values. Lines 11 and 12 print the
pooled estimates and confidence intervals. Finally, lines 14 and 15 specify a multiple imputation
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al.,
1991). The test requires an additional model on line 13 that represents the null hypothesis, which
in this case is an empty regression model with just an intercept. On line 14, the full model and
null model objects passed into the testModels function, and the D1 keyword requests the Wald

test. As before, the df.com parameter is the denominator degrees of freedom that would have
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resulted had there been no missing data. This argument produces the Barnard and Rubin (1999)

degrees of freedom adjustment.
9.6 ROutput

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df  P(C|t]) RIV FMI
(Intercept) 69.174 6.337 10.916 98.577 0.000 0.172 0.164
readi 0.477 0.048 9.928 103.392 0.000 0.146 0.144
lrnprob1 -0.250 0.117 -2.133 94.276 0.036 0.196 0.181
behsymp1 -0.166 0.108 -1.539 81.473 0.128 0.276 0.235
riskgrp2 -1.710 1.921 -0.890 116.647 0.375 0.079 0.088
riskgrp3 -3.115 2.867 -1.087 72.059 0.281 0.348 0.278

Estimate

Residual~~Residual 89.403

Hypothesis test adjusted for small samples with df=[132]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 56.5999199 81.74779632
readi 0.3820806 ©.57283035
lrnprob1 -0.4822008 -0.01730107
behsymp1 -0.3796984 0.04849960
riskgrp2 -5.5147538 2.09562507
riskgrp3 -8.8300720 2.59967016

The results are interpreted in the same way as a complete-data regression analysis. For

example, consider the first-grade reading score slope. The model predicts that two individuals
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who differ by one point on READ1 but are the same on all other predictors should differ by 0.48
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically
different from zero (t = 9.93, p <.001). The two dummy codes appear as RISKGRP2 and RISKGRP3.
Consistent with a complete-data regression analysis, the dummy code slopes represent mean
differences relative to the low-risk reference group. For example, holding all other predictors
constant, the model predicts that a high-risk study would score 3.12 points lower than a low-risk
student in the comparison group. Note that these estimates are virtually identical to those from
MCMC and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in
the output table below. The test statistic is statistically significant, thus refuting the null
hypothesis that all population slopes equal zero.

Model comparison calculated from 20 imputed data sets.
Combination method: D1

F.value df1 df2  P(>F) RIV
33.252 5 123.203 0.000 0.213

Hypothesis test adjusted for small samples with df=[132]
complete-data degrees of freedom.

9.7 Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file.

The Mplus input file for analyzing the imputations is Ex9.inp. The script is like previous
Mplus scripts (e.g., the Ex1.1.1inp file described in Section 1.2) with four exceptions. First,
instead of naming the raw data set, the DATA command lists the text file containing the names of
the imputed data sets (the implist.dat file located in the ./imps subdirectory). The type =
imputation subcommand instructs Mplus that the input data is a list of file names. Second, the
missing subcommand is omitted because the analysis variables are now complete. Third, the
MODEL section no longer specifies a normal distribution for the predictors or models for the

auxiliary variables. Finally, lines 9 through 13 use the DEFINE command to create a pair of
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dummy codes. Lines 10 and 11 initialize a pair of new variables (RISKGRP2 and RISKGRP3) with all
0s, and lines 12 and 13 recode these variables into dummy variables. Importantly, new variables
computed with the DEFINE command must appear at the end of the usevariables list on line 8.

The code block below shows the analysis and pooling script.

Mplus Script Ex9.inp

1 DATA:

2 file = ./imps/implist.dat;

3  type = imputation;

4 VARIABLE:

5 names = id male hispanic riskgrp atrisk behsympl lrnprob1

6 readl read2 read3 read9 read9grp stanread7

7 math1 math2 math3 math9 math9grp stanmath7;

8 usevariables = read9 readl lrnprobl behsymp1 riskgrp2 riskgrp3;
9 DEFINE:

10 riskgrp2 = 0;

11 riskgrp3 = 0;

12 if(riskgrp eq 2) then riskgrp2 = 1;

13 if(riskgrp eq 3) then riskgrp3 = 1;

14 MODEL :

15  read9 on readl lrnprobl behsympl riskgrp2 riskgrp3 (betal-beta5);
16 MODEL TEST:

17 @ = betal; 0 = beta2; 0 = beta3;

18 OUTPUT :

19  stdyx cinterval;

9.8 Mplus Output

When fitting regression models to complete data sets, researchers often use an omnibus F test to
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter
Constraints heading. The test statistic is statistically significant, thus refuting the null

hypothesis.
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MODEL FIT INFORMATION

Number of Free Parameters 7

Wald Test of Parameter Constraints

Value 173.432
Degrees of Freedom 5
P-Value 0.0000

The table of unstandardized parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown
below. The Rate of Missing column (also called the fraction of missing information in the
literature) quantifies the imputation noise in each estimate as proportion of its squared standard

€rror.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing

READ9 ON
READ1 0.477 0.047 10.122 0.000 0.134
LRNPROB1 -0.250 0.115 -2.173 0.030 0.172
BEHSYMP1 -0.166 0.106 -1.566 0.117 0.228
RISKGRP2 -1.710 1.882 -0.908 0.364 0.076
RISKGRP3 -3.115 2.820 -1.105 0.269 0.272

Intercepts
READ9 69.174 6.218 11.125 0.000 0.154

Residual Variances
READ9 85.516 11.867 7.206 0.000 0.249
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The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically
different from zero (z = 10.29, p < .001). The two dummy codes appear as RISKGRP2 and
RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes represent
mean differences relative to the low-risk reference group. For example, holding all other
predictors constant, the model predicts that a high-risk study would score 3.12 points lower than
a low-risk student in the comparison group. Note that these estimates are virtually identical to
those from MCMC estimation. The output also includes a table with standardized coefficients

and the R-squared statistic.
9.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is Ex9. spwb.
The code block below shows the commands that import the stacked text file produced by Blimp.
The example assumes that the data file is located on the desktop.

SPSS Script Ex9.spwb
1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ id male hispanic riskgrp atrisk
4 behsymp1 lrnprobl readl read2 read3 read9 read9grp stanread?
5 math1 math2 math3 math9 math9grp stanmath7.
6 EXE.
7
8 COMPUTE riskgrp2 = 0.
9 COMPUTE riskgrp3 = 0.

1l
—

10 IF (riskgrp = 2) riskgrp2
11 IF (riskgrp = 3) riskgrp3
12 EXE.

1l
—
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The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. The dummy

codes for the RISKGRP variable are created beginning at line 8.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 13 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 14 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 15.

SPSS Script Ex9.spwb, continued

13 SORT CASES by imputation_.

14 SPLIT FILE layered by imputation_.

15 REGRESSION

16 /descriptives mean stddev corr sig n

17 /dependent read9

18 /method enter readl lrnprobl behsymp1l riskgrp2 riskgrp3.

9.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefticients, standard errors, and test statistics.
The regression output also includes pooled means and correlations. The relative increase in
variance is a fraction comparing imputation noise to complete-data sampling variation, and the
fraction of missing information quantifies the imputation noise in each estimate as proportion of

its squared standard error.

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48

points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically
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different from zero (t = 9.93, p <.001). The two dummy codes appear as RISKGRP2 and RISKGRP3.
Consistent with a complete-data regression analysis, the dummy code slopes represent mean
differences relative to the low-risk reference group. For example, holding all other predictors
constant, the model predicts that a high-risk study would score 3.12 points lower than a low-risk
student in the comparison group. Note that these estimates are virtually identical to those from

MCMC and maximum likelihood estimation.

Coefficients®

Standardized

Unstandardized Coefficients Coefficients . Relative )
Fraction Increase Relative
imputation_  Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 69.665 5.345 13.033 .000
readl 481 .041 .685 11.713 .000
Irnprob1 -.226 .099 -.165 -2.283 .024
behsymp1l -.214 .087 -.178 -2.453 .015
riskgrp2 -2.057 1.703 -.070 -1.208 .229
riskgrp3 -3.247 2.308 -.093 -1.407 .162
2.00 1 (Constant) 65.652 6.102 10.760 .000
readl 492 .047 .661 10.372 .000
Irnprob1 -.273 111 -.197 -2.452 .016
behsymp1l -.096 .097 -.080 -.987 .325
riskgrp2 -1.477 1.907 -.050 -.774 .440
riskgrp3 -3.100 2.561 -.088 -1.210 .228
20.00 1 (Constant) 71.467 6.073 11.768 .000
readl 477 .047 .659 10.087 .000
Irnprob1 -.249 114 -.178 -2.186 .031
behsymp1 -.226 .100 -.184 -2.264 .025
riskgrp2 -1.486 1.940 -.049 -.766 445
riskgrp3 -1.177 2.609 -.033 -.451 .653
Pooled 1 (Constant) 69.174 6.337 10.916 .000 .149 172 .993
readl 477 .048 9.928 .000 129 .146 .994
Irnprob1 -.250 117 -2.133 .033 .166 .196 .992
behsymp1 -.166 .108 -1.539 .125 .220 .276 .989
riskgrp2 -1.710 1.921 -.890 .374 .073 .079 .996
riskgrp3 -3.115 2.867 -1.087 .278 .263 .348 .987

a. Dependent Variable: read9
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MCMC: Moderated Regression With an Interaction

This example illustrates a multiple regression analysis with an incomplete interaction effect. The
analysis uses the behaviorachievement.dat data set taken from a longitudinal study that
followed 138 students from primary through middle school. The file includes three annual
assessments of broad reading and math achievement beginning in the first grade, seventh grade
standardized achievement test scores taken from a statewide assessment, and a final measure of
broad reading and math obtained in ninth grade. The data also contain teacher ratings of
behavioral symptoms and learning problems were also obtained in the first grade. The data
description at the beginning of this document provides additional details. The variables for this

analysis are as follows.

Name Definition Missing  Scale

Focal Analysis Variables

ATRISK Emotion/behavior disorder risk 2.2% 0 = Low risk, 1 = At risk

LRNPROB, 1 grade learning problems 2.2% Numeric (31 to 88)

READ, 1* grade broad reading 6.5% Numeric (39 to 153)

READ; 9 grade broad reading 17.4% Numeric (41 to 123)
Auxiliary Variables

READ; 2" grade broad reading 9.4% Numeric (20 to 150)

STANREAD; 7™ grade standardized reading 19.6% Numeric (100 to 399)

10.1  Analysis Model

The analysis model features ninth grade broad reading scores regressed on first grade reading
achievement, teacher-rated learning problems, and the product of first grade reading scores and

learning problems, and a binary risk indicator.
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READ, = B, + 8,(READ,) + B,(LRNPROB,)
+ B3(READ,)(LRNPROB,) + B,(ATRISK) + ¢ (22)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. Moderated regression models (and models with non-
linearities more generally) require a factored regression specification that assigns separate
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal
distribution for incomplete predictors. Importantly, the product term does not require a unique
distribution, as missing data imputation generates lower-order variables that preserve the

interaction effect in the focal model.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes
that are predicted by the analysis variables and by each other. The additional regression

equations are as follows.

READ, = 74, + 711(READq) + ¥,y (READ,) + 75,(LRNPROB,) + 7,;(ATRISK) + ¢,
STANREAD; = ¥y, + Y12(READ,) + 72,(READy) + y3,(READ;)
+ 742(LRNPROB,) + 75,(ATRISK) + €5 (23)

Along with the other models, the collection of regression equations can be viewed as a path
model where the focal analysis is one part of a larger network (see the path diagram from Section
2.4). The key difference is that the path coefficients are just a tool for linking incomplete variables

and do not represent a substantive theory.
10.2  Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex10. 1. inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.
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Blimp Script Ex10.1.imp

1 DATA: behaviorachievement.dat;

2 VARIABLES: id male hispanic riskgrp atrisk behsymp1l lrnprob1
3 readl read2 read3 read9 read9grp stanread7
4 math1 math2 math3 math9 math9grp stanmath7;
5 ORDINAL: atrisk;

6 MISSING: 999;

7 CENTER: readl lrnprobl atrisk;

8 MODEL :

9  focal.model:

10 read9 ~ readl lrnprob1 readl*lrnprob1 atrisk;
11 auxiliary.model:

12 stanread7 read2 ~ read9 readl lrnprobl atrisk;
13 SIMPLE: readl | lrnprobi;

14 SEED: 90291;

15 BURN: 5000;

16 ITERATIONS: 10000;

The first five lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns, the ORDINAL command identifies the binary

risk indicator, and MISSING command on line 6 defines a global missing value code as 999.

The CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The CENTER command deviates
the two interacting variables at their iteratively-estimated grand means. Beginning on line 8, the
MODEL command lists the regression models, with outcome variables to the left of the tilde and
predictors to the right. The code uses labels (focal.model and auxiliary.models) to order
output tables, such that the focal model appears first followed by the auxiliary variable models.
The focal model listed on line 10 includes a product term, which is specified by joining two
variables with an asterisk. Blimp automatically configures the explanatory variable models under
the assumption that they are normally distributed. Line 12 is a syntax shortcut that produces the
two auxiliary variable regression models in Equation 23; in the first model, READ2 is regressed on
the focal variables, and the second model features STANREAD7 regressed on READ2 and the focal
variables. The SIMPLE command requests the conditional effects (i.e., simple slopes) of READ1 at
different levels of LRNPROB1. By default, Blimp adopts a pick-a-point approach that uses standard

deviation units of the moderator variable, although the user can specify custom values. Finally,
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lines 14 through 16 can be viewed as a block of commands that specify features of the MCMC
algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

The corresponding rblimp script Ex10.R is shown below.

rblimp Script Ex10.R

1 library(rblimp)

2 load('behaviorachievement.rda')

3

4 mymodel <- rblimp(

5 data = behaviorachievement,

6 ordinal = 'atrisk',

7 center = 'readl lrnprobl atrisk',

8 model = '

9 focal.model:

10 read9 ~ readl lrnprobl readl*lrnprobl atrisk ;
11 auxiliary.models:

12 stanread7 read2 ~ read9 readl lrnprobl atrisk',
13 simple = 'readl | lrnprobl',

14 seed = 90291,

15 burn = 5000,

16 iter = 10000)

17 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
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10.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
126 to 250 1.116 39
251 to 500 1.127 48
376 to 750 1.033 39
2251 to 4500 1.015 48
2376 to 4750 1.021 48
2501 to 5000 1.014 48

The next section of the output displays information about the variables in the analysis and the

models used for estimation. This output table mimics the one from Section 6.3.

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although

MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
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medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: read9

Grand Mean Centered: atrisk lrnprobl readl

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 88.856 13.083 67.751 118.695 -—- ---  5042.847
Coefficients:
Intercept 87.848 1.321 85.187 90.382  4419.067 0.000 653.964
readi 0.500 0.047 0.409 0.593 114.659 0.000 4018.910
lrnprobi -0.371 0.090 -0.550 -0.196 17.085 0.000  3402.882
atrisk -1.934 1.871 -5.669 1.631 1.080 0.299  6822.952
read1xlrnprob1l 0.012 0.005 0.003 0.022 6.855 0.009  3219.685
Standardized Coefficients:
readi 0.671 0.046 0.573 0.753 212.802 0.000 3846.703
lrnprobi -0.265 0.062 -0.384 -0.142 18.272 0.000 3280.798
atrisk -0.061 0.059 -0.177 0.052 1.092 0.296 6854.792
read1xlrnprob1l 0.170 0.060 0.047 0.281 7.794 0.005 3919.842

Proportion Variance Explained
by Coefficients 0.610 0.050 0.500 0.698 -—- ---  4529.480
by Residual Variation 0.390 0.050 0.302 0.500 --= ---  4529.480
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To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are

insufficient, increasing the value on the ITERATIONS command will remedy the issue.

The lower-order terms in a moderated regression are conditional effects that depend on
scaling or centering. Specifically, the lower-order slope of first grade reading scores (3; = 0.50) is
the effect of that predictor at the mean of the first-grade learning problems, and the learning
problems slope (8, = —0.37) similarly reflects the conditional effect at the reading score mean.
The interaction slope captures the change in the first-grade reading slope for each one-unit
increase in learning problems (and vice versa). Specifically, the positive coefficient (85 = 0.012)
indicates that the association between first and ninth grade reading scores becomes stronger (i.e.,
more positive) as learning problems increase. That is, the predictive power of early reading on
later reading is strongest for students with elevated learning problem ratings in first grade. The
95% credible interval limits suggest this effect is statistically different from zero (p < .05) because
the null value is well outside the interval. The frequentist test statistic and p-value give the same

conclusion.

The SIMPLE command prints a table of conditional effects (simple slopes) of READ1 at different
standard deviation units of LRNPROB1. The output is shown below. Consistent with the positive
interaction coefficient, the simple slopes increase in strength as learning problems ratings
increase (and vice versa). All the tabled conditional effects are statistically significant at p < .05
because the null value does not fall within the 95% credible intervals. The frequentist test

statistics and p-values give the same conclusion.

Conditional Effects Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
readl | lrnprobl @ +2 SD

Intercept 79.745 2.657 74.354 84.811 900.174 0.000 1199.336

Slope 0.767 0.119 0.540 1.007 42.054 0.000  2894.549

readl | lrnprobl @ +1 SD
Intercept 83.791 1.833 80.097 87.310  2088.473 0.000 872.529
Slope 0.634 .074 0.493 0.784 74.314 0.000 2879.088

[

readl | lrnprobl @ @
Intercept 87.848 1.321 85.187 90.382  4419.067 0.000 653.964
Slope 0.500 .047 0.409 0.593 114.659 0.000 4018.910

[
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readl | lrnprobl @ -1 SD
Intercept 91.872 1.488 89.002 94.868 3812.774 0.000 1250.238
Slope 0.368 0.066 0.234 0.494 30.896 0.000 5267.720

readl | lrnprobl @ -2 SD
Intercept 95.915 2.183 91.693 100.327  1931.435 0.000  3009.201
Slope 0.234 0.109 0.018 0.439 4.538 0.033  4262.126

NOTE: Intercepts are computed by setting all predictors

not involved in the conditional effect to zero.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
10.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The
Blimp input file Ex10.2.imp is identical Ex10.1.imp, but it adds the following lines at the bottom
of the script.

NIMPS: 20;

CHAINS: 20;

SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked

keyword creates a stacked file where all imputations are in a single file, and the separate keyword
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saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id male hispanic riskgrp atrisk behsymp1 lrnprobl readl read2 read3
read9 read9grp stanread7 math1l math2 math3 math9 math9grp stanmath7

stacked = './imps/imps.dat'

imp# id male hispanic riskgrp atrisk behsymp1l lrnprob1 readl read2 read3
read9 read9grp stanread7 mathl math2 math3 math9 math9grp stanmath?

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.

rblimp Script Ex10.R

1 library(rblimp)
2 load('behaviorachievement.rda')
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4 mymodel <- rblimp(

5 data = behaviorachievement,

6 ordinal = 'atrisk',

7 center = 'readl lrnprobl atrisk',

8 model = '

9 focal.model:

10 read9 ~ readl lrnprobl readl*lrnprobl atrisk ;
11 auxiliary.models:

12 stanread7 read2 ~ read9 readl lrnprobl atrisk',
13 simple = 'readl | lrnprobl',

14 seed = 90291,

15 burn = 5000,

16 iter = 10000,
17 nimps = 20,

18 chains = 20)
19 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
10.5 Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex10.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex10.R

1 library(rblimp)

library(mitml)
load('behaviorachievement.rda')

mymodel <- rblimp(...)

implist <- as.mitml(mymodel)

O N O O A W N
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9 mean_readl <- mean(unlist(lapply(implist, function(df) mean(df$readl))))

10 mean_lrnprob1 <- mean(unlist(lapply(implist, function(df) mean(df$lrnprob1))))
11 mean_atrisk <- mean(unlist(lapply(implist, function(df) mean(df$atrisk))))

12 for (i in 1:length(implist)) {

13 implist[[i]]$readl.cgm <- implist[[i]]I$readl - mean_read]l

14 implist[[i]1$1lrnprob1.cgm <- implist[[i]J]$1lrnprobl - mean_lrnprob1l

15 implist[[i]]$atrisk.cgm <- implist[[iJ]$atrisk - mean_atrisk

16}

17

18 fit <- with(implist,

19 Im(read9 ~ readl.cgm + lrnprobl.cgm + readl.cgm:lrnprobl.cgm + atrisk.cgm))
20

21 estimates <- testEstimates(fit, extra.pars = T, df.com = 133)
22 estimates

23 confint(estimates)

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 9 through 16 center three
predictors at their pooled grand means. Lines 18 and 19 fit the focal regression model using the
1m function, and line 21 uses the testEstimates function in mitml to implement Rubin’s pooling
rules and save the results in an object called estimates. The df.com parameter is the
denominator degrees of freedom that would have resulted had there been no missing data (i.e.,
N-K-1 degrees of freedom, where K is the number of predictors). This argument produces
Barnard and Rubin degrees of freedom values. Lines 22 and 23 print the pooled estimates and

confidence intervals.

Following a significant interaction effect, researchers typically examine the slope of the focal
predictor at different values of the moderator. The final code block below computes these
conditional effects or simple slopes of first-grade reading scores at the learning problem mean

and at plus and minus one standard deviation from the mean.

R Script Ex10.R, continued

24 lrnprob1.sd <- mean(unlist(lapply(implist, (function(x) sd(x$lrnprobl.cgm)))))
25

26 slp_high <- 'readl.cgm + readl.cgm*lrnprobl.cgm*1x10.77'

27 testConstraints(fit, constraints = slp_high, df.com = 133)

28
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29 slp_mean <- 'readl.cgm + readl.cgm*lrnprobl.cgm*0*x10.77'
30 testConstraints(fit, constraints = slp_mean, df.com = 133)
31

32 slp_low <- 'readl.cgm + readl.cgm*lrnprobl.cgm*-1x10.77"
33 testConstraints(fit, constraints = slp_low, df.com = 133)

Line 24 computes the pooled standard deviation of the moderator. Line 20 prints the value,
which equals 10.77. Lines 26, 29, and 32 are text strings that define the computation of the
conditional effect of READ1 at the mean of LRNPROB1 and at plus and minus one standard
deviation from the mean. Lines 27, 30, and 33 use the testConstraints function in mitml to

compute the pooled coefficients and test statistics.
10.6 ROutput

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df  PC|t]) RIV FMI

(Intercept) 87.916 0.871 100.979 97.473 0.000 0.182 0.171

readl.cgm 0.499 0.045 11.041 90.714 0.000 0.220 0.198

lrnprob1.cgm -0.372 0.086 -4.321 74.600 0.000 0.331 0.268

atrisk.cgm -2.053 1.779 -1.154  121.933 0.251 0.056 0.068

readl.cgm:lrnprob1.cgm 0.012 0.005 2.547 63.202 0.013 0.437 0.325
Estimate

Residual~~Residual 88.260

Hypothesis test adjusted for small samples with df=[133]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 86.18838273 89.6441345
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readl.cgm 0.40947708 0.5891414
lrnprob1.cgm -0.54303533 -0.2003056
atrisk.cgm -5.57347427 1.4681129

readl.cgm:lrnprobl.cgm 0.00255251 0.0211242

The lower-order terms in a moderated regression are conditional effects that depend on
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 8, = 0.50) is
the effect of that predictor at the mean of the first-grade learning problems, and the learning
problems slope (8, = —0.37) similarly reflects the conditional effect at the reading score mean.
The interaction slope captures the change in the first-grade reading slope for each one-unit
increase in learning problems (and vice versa). Specifically, the positive coefficient (33 =0.012)
indicates that the association between first and ninth grade reading scores becomes stronger (i.e.,
more positive) as learning problems increase. That is, the predictive power of early reading on
later reading is strongest for students with elevated learning problem ratings in first grade. Note
that these estimates are numerically equivalent to those from MCMC and maximum likelihood
estimation. The output also includes a table with standardized coefficients and the R-squared

statistic.

Finally, the printed output also includes the table of conditional effects. The output is shown
below. Consistent with the positive interaction coefficient, the simple slopes increase in strength
as learning problems ratings increase (and vice versa). All the tabled conditional effects are

statistically significant at p < .05.

Hypothesis test calculated from 20 imputed data sets. The following
constraints were specified:

Estimate Std. Error
readl.cgm + readl.cgmxlrnprobl.cgm*1%10.77: -1.500 0.482

Combination method: D1

F.value df1 df2  P(CF) RIV
9.685 1 75.693 0.003 0.345

Hypothesis test adjusted for small samples with df=[133]
complete-data degrees of freedom.
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Hypothesis test calculated from 20 imputed data sets. The following
constraints were specified:

Estimate Std. Error
readl.cgm + readl.cgmxlrnprobl.cgm*0*10.77: 0.499 0.045

Combination method: D1

F.value df1 df2  P(F) RIV
121.909 1 95.723 0.000 0.220

Hypothesis test adjusted for small samples with df=[133]
complete-data degrees of freedom.

Hypothesis test calculated from 20 imputed data sets. The following
constraints were specified:

Estimate Std. Error
readl.cgm + readl.cgmxlrnprobl.cgm*-1%10.77: 2.499 0.514

Combination method: D1

F.value df1 df2  P(F) RIV
23.660 1 76.459 0.000 0.339

Hypothesis test adjusted for small samples with df=[133]
complete-data degrees of freedom.

10.7  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file.

The Mplus input file for analyzing the imputations is Ex10. inp.
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Mplus Script Ex10.inp

1 DATA:

2 file = ./imps/implist.dat;

3  type = imputation;

4 VARIABLE:

5 names = id male hispanic riskgrp atrisk behsympl lrnprob1
6 readl read2 read3 read9 read9grp stanread?

7 math1 math2 math3 math9 math9grp stanmath7;

8 usevariables = read9 readl lrnprobl atrisk product;

9  DEFINE:

10 center readl lrnprobl atrisk (grandmean);

11 product = readl * lrnprobi;

12 MODEL:

13 read9 on readl lrnprobl product atrisk (betal-beta4);
14 MODEL CONSTRAINT:

15  new(lrnprobvar slp_low slp_mean slp_high);
16 lrnprobvar = 114.354;

17  slp_high = betal + beta3*1*sqrt(lrnprobvar);
18  slp_mean = betal + beta3*0*sqrt(lrnprobvar);
19  slp_low = betal - beta3x1*sqrt(lrnprobvar);
19  OUTPUT:

20  stdyx cinterval;

The major commands are like those from previous examples (see Section 1.2). Consistent with
previous multiple imputation analysis scripts, the DATA command lists the text file containing the
names of the imputed data sets (the implist.dat file located in the ./imps subdirectory). The
type = imputation subcommand instructs Mplus that the input data is a list of file names.
Second, the missing subcommand is omitted because the analysis variables are now complete.
Third, the MODEL section no longer specifies a normal distribution for the predictors or models

for the auxiliary variables. The code block below shows the analysis and pooling script.

The script also invokes several new features. On line 10, the center subcommand under the
DEFINE command centers the two interacting predictors at their grand means, and line 11
computes a new variable equal to the product of the centered scores. Importantly, new variables
computed with the DEFINE command must appear at the end of the usevariables list on line 8.

Beginning on line 14, the MODEL CONSTRAINT command is used to compute conditional effects or
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simple slopes. First, line 15 assigns names to four new parameters (the variance of the moderator
and three simple slopes). Line 16 inputs the variance of the moderator (obtained from the
descriptive statistics on the output), and lines 17 through 20 compute the conditional effect of

READ1 at the mean of LRNPROB1 and at plus and minus one standard deviation from the mean.
10.8 Mplus Output

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The focal model results are shown below. The
Rate of Missing column (also called the fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
READ9 ON
READ1 0.499 0.044 11.232 0.000 0.185
LRNPROB1 -0.372 0.084 -4.420 0.000 0.247
PRODUCT 0.012 0.005 2.580 0.010 0.319
ATRISK -2.053 1.748 -1.174 0.240 0.055
Intercepts
READ9 87.917 0.846 103.950 0.000 0.138
Residual Variances
READ9 85.062 11.810 7.203 0.000 0.250

The lower-order terms in a moderated regression are conditional effects that depend on
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 8; = 0.50) is
the effect of that predictor at the mean of the first-grade learning problems, and the learning
problems slope (8, = —0.37) similarly reflects the conditional effect at the reading score mean.
The interaction slope captures the change in the first-grade reading slope for each one-unit
increase in learning problems (and vice versa). Specifically, the positive coefficient (,33 =0.012)

indicates that the association between first and ninth grade reading scores becomes stronger (i.e.,
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more positive) as learning problems increase. That is, the predictive power of early reading on
later reading is strongest for students with elevated learning problem ratings in first grade. Note
that these estimates are numerically equivalent to those from MCMC and maximum likelihood
estimation. The output also includes a table with standardized coefficients and the R-squared

statistic.

Finally, the printed output also includes the table of conditional effects, which were computed
using the MODEL CONSTRAINT command. The output is shown below. Consistent with the positive
interaction coefficient, the simple slopes increase in strength as learning problems ratings

increase (and vice versa). All the tabled conditional effects are statistically significant at p < .05.

Two-Tailed Rate of
Estimate S.E. Est./S.E. P-Value Missing

New/Additional Parameters

LRNPROBV 114.354 0.022  5129.998 0.000 1.000
SLP_LOW 0.373 0.061 6.079 0.000 0.098
SLP_MEAN 0.499 0.044 11.232 0.000 0.185
SLP_HIGH 0.626 0.071 8.844 0.000 0.380

10.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex10.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex10.spwb
1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ id male hispanic riskgrp atrisk
4 behsymp1 lrnprobl readl read2 read3 read9 read9grp stanread?
5 math1 math2 math3 math9 math9grp stanmath7.
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6 EXE.

7

8 AGGREGATE

9 /outfile = * mode = addvariables overwrite = yes
10 /lrnprob1_mean = mean(lrnprobl)

11 /readl_mean = mean(readl)

12 /atrisk_mean = mean(atrisk).

13 EXE.

14

15 COMPUTE lrnprobl_cgm = lrnprobl - lrnprobl_mean.

16 COMPUTE readl_cgm = readl - readl_mean.

17 COMPUTE atrisk_cgm = atrisk - atrisk_mean.

18 COMPUTE 1rnprobl_by_readl = lrnprobl_cgm * readl_cgm.
19 EXE.

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. On line 8,
the AGGREGATE command adds the grand means to the data. Then, beginning on line 15, each

variable is centered at its pooled grand mean.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 20 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 21 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 22.

SPSS Script Ex10.spwb, continued

20

21 SORT CASES by imputation_.

22 SPLIT FILE layered by imputation_.

23  REGRESSION

24 /descriptives mean stddev corr sig n

25 /dependent read9

26 /method enter readl_cgm lrnprobl_cgm lrnprobl_by_readl atrisk_cgm.
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10.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and
significance tests are generally limited to univariate ¢ tests of individual parameters. Output tables
display the analysis results for each data set, and the pooled results are at the bottom of each table
(if they are produced). The figure below shows the pooled coefficients, standard errors, and test
statistics. The regression output also includes pooled means and correlations. The relative
increase in variance is a fraction comparing imputation noise to complete-data sampling
variation, and the fraction of missing information quantifies the imputation noise in each

estimate as proportion of its squared standard error.

Coefficients®

Standardized

Unstandardized Coefficients Coefficients ) Relative _
Fraction Increase Relative
imputation_  Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 87.984 .786 111.946 .000
readl_cgm .476 .040 .670 11.964 .000
Irnprob1_cgm -.363 .074 -.266 -4.914 .000
Irnprob1_by readl .010 .004 .150 2.772 .006
atrisk_cgm -2.337 1.701 -.077 -1.374 172
2.00 1 (Constant) 87.702 .801 109.468 .000
readl_cgm Bz .041 .693 12.365 .000
Irnprob1_cgm -.372 .075 -.270 -4.941 .000
Irnprob1_by_readl .014 .004 .186 3.403 .001
atrisk_cgm -1.340 1.726 -.044 -.776 .439
20.00 1 (Constant) 87.891 .788 111.539 .000
readl_cgm .506 .041 .691 12.441 .000
Irnprob1_cgm -.314 .074 -.230 -4.226 .000
Irnprob1_by_read1 .013 .004 .176 3.247 .001
atrisk_cgm -2.160 1.688 -.071 -1.280 .203
Pooled 1 (Constant) 87.916 .871 100.979 .000 .156 .182 .992
read1l_cgm .499 .045 11.041 .000 .183 .220 .991
Irnprob1_cgm -.372 .086 -4.321 .000 .253 .331 .987
Irnprob1_by_read1 .012 .005 2.547 .012 311 437 .985
atrisk_cgm -2.053 1.779 -1.154 .248 .053 .056 .997

a. Dependent Variable: read9

The lower-order terms in a moderated regression are conditional effects that depend on
scaling or centering. Specifically, the lower-order slope of first grade reading scores (8;= 0.50) is
the effect of that predictor at the mean of the first-grade learning problems, and the learning
problems slope (8, = —0.37) similarly reflects the conditional effect at the reading score mean.
The interaction slope captures the change in the first-grade reading slope for each one-unit
increase in learning problems (and vice versa). Specifically, the positive coefficient (B3= 0.012)

indicates that the association between first and ninth grade reading scores becomes stronger (i.e.,
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more positive) as learning problems increase. That is, the predictive power of early reading on
later reading is strongest for students with elevated learning problem ratings in first grade. Note
that these estimates are numerically equivalent to those from MCMC and maximum likelihood
estimation. The output also includes a table with standardized coefficients and the R-squared
statistic. Finally, the printed output also includes the table of conditional effects. The output is
shown below. Consistent with the positive interaction coefficient, the simple slopes increase in
strength as learning problems ratings increase (and vice versa). All of the tabled conditional

effects are statistically significant at p <.05.
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MCMC: Curvilinear Regression

This example illustrates a multiple regression analysis with an incomplete curvilinear effect. The
analysis uses the mathachievement.dat data set taken from an educational intervention where
250 students were assigned to an intervention and comparison condition. The file includes
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized
reading scores taken from a statewide assessment, and several sociodemographic variables. The

analysis variables are as follows.

Name Definition Missing %  Scale

Focal Variables

MATHPOST  Math achievement posttest 18.0 Numeric
ANXIETY Math anxiety composite 8.4 Numeric
FRLUNCH Lunch assistance code 44 0 = None, 1 = Free/reduced lunch
EFFICACY Math self-efficacy rating 9.6 Ordinal (1 to 6)
MATHPRE Math achievement pretest 0 Numeric
Auxiliary Variables
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk
STANREAD  Standardized reading 9.2 Numeric

11.1  Analysis Model

The analysis model features math posttest scores regressed on anxiety and its square, the lunch

assistance dummy code, math self-efficacy ratings, and math pretest scores.
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MATHPOST = B, + B1(ANXIETY) + B,(ANXIETY?)
+ B3(FRLUNCH) + B,(EFFICACY) + 85(MATHPRE) + ¢ (24)

Unlike a complete-data regression analysis, all incomplete variables require distributional
assumptions, including the predictors. Curvilinear regression models (and models with non-
linearities more generally) require a factored regression specification that assigns separate
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal

distribution for numeric predictors and latent response scores.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes
that are predicted by the analysis variables and by each other. The additional regression

equations are as follows.

ATRISK* = yy3 + 713(MATHPOST) + ¥,3(ANXIETY)
+ ¥53(FRLUNCH) + ¥,5(EFFICACY) + ¥s3(MATHPRE) + ¢,
STANREAD = ¥y, + ¥14(ATRISK) + ¥5,(MATHPOST) + ¥3,(ANXIETY) (25)
+ ¥44(FRLUNCH) + y54(EFFICACY) + y54(MATHPRE) + ¢,

The ATRISK model is a probit regression, with the binary outcome model as a latent response
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be
viewed as a path model, where the focal regression is one part of a larger network (see the path
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for

linking incomplete variables and do not represent a substantive theory.
11.2  Blimp and rblimp MCMC Scripts
The code block below shows Blimp script Ex11.1. inp. This script is executed in the Blimp Studio
graphical interface. The corresponding R script is shown later in this section.
Blimp Script Ex11.1.imp

1 DATA: mathachievement.dat;
2 VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety
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3 mathpre mathpost;

4 ORDINAL: frlunch atrisk efficacy;

5 MISSING: 999;

6 FIXED: mathpre;

7 CENTER: anxiety;

8  MODEL:

9  focal.model:

10 mathpost ~ anxiety anxiety”2@beta2 frlunch mathpre efficacy;
11 auxiliary.models:

12 stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre;
13 SEED: 90291;

14 BURN: 10000;

15  ITERATIONS: 10000;

The first five lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The ORDINAL command on line 4 identifies
binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as the
statistical models are identical. The MISSING command on line 5 defines a global missing value
code as 999.

The FIXED, CENTER, and MODEL blocks can be viewed as a set. The FIXED command identifies a
complete predictor, which does not require a distribution or regression model. The CENTER
command deviates anxiety scores (the variable with the non-linear term) at their iteratively-
estimated grand mean. Beginning on line 8, the MODEL command lists the regression models, with
outcome variables to the left of the tilde and predictors to the right. The code uses labels
(focal.model and auxiliary.models) to order output tables, such that the focal model appears
first followed by the auxiliary variable models. The focal model listed on line 10 includes a
squared term, which is specified by appending 2 to the variable name. The quadratic slope
coefficient is labeled using the @ symbol. Blimp automatically configures the explanatory variable
models under the assumption that they are normally distributed. Line 12 is a syntax shortcut that
produces the two auxiliary variable regression models in Equation 25; in the first model, READ2 is
regressed on the focal variables, and the second model features STANREAD7 regressed on READ2

and the focal variables.

Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the

MCMC algorithm: the SEED command gives an integer string that initializes the random number
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generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

The corresponding rblimp script Ex11.R is shown below.

rblimp Script Ex11.R

1 library(rblimp)

2 load('mathachievement.rda')

3

4 mymodel <- rblimp(

5 data = mathachievement,

6 ordinal = 'atrisk frlunch efficacy',

7 fixed = 'mathpre',

8 center = 'anxiety',

9 model = '

10 focal.model:

11 mathpost ~ anxiety anxiety”2@beta2 frlunch efficacy mathpre;
12 auxiliary.models:

13 stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre',
14 seed = 90291,

15 burn = 10000,

16 iter = 10000)

17 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
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11.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
251 to 500 1.045 61

501 to 1000 1.087 58

751 to 1500 1.042 58

4501 to 9000 1.045 60

4751 to 9500 1.009 58

5001 to 10000 1.012 59

The next section of the output displays information about the variables in the analysis and the

models used for estimation. This output table mimics the one from Section 6.3.

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although

MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
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medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: mathpost

Grand Mean Centered: anxiety

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 50.966 5.388 41.841 63.021 -—- --- 5413.246
Coefficients:
Intercept 32.689 3.457 25.967 39.568 89.528 0.000 6410.684
anxiety 0.041 0.084 -0.122 0.206 0.237 0.626  4221.113
frlunch -5.840 1.073 -7.949 -3.750 29.724 0.000  4993.497
efficacy 1.103 0.342 0.444 1.781 10.449 0.001  5838.380
mathpre 0.471 0.067 0.338 0.602 49.615 0.000 6319.544
anxiety*2 -0.021 0.006 -0.033 -0.009 11.705 0.001  5091.389
Standardized Coefficients:
anxiety 0.031 0.064 -0.093 0.157 0.238 0.626  4228.247
frlunch -0.298 0.051 -0.394 -0.195 33.903 0.000 5053.969
efficacy 0.184 0.056 0.074 0.292 10.798 0.001  5698.632
mathpre 0.423 0.055 0.309 0.523 59.287 0.000 6522.033
anxiety*2 -0.204 0.058 -0.315 -0.087 12.120 0.000 5054.272

Proportion Variance Explained
by Coefficients 0.453 0.045 0.359 0.539 -—- --- 5780.687
by Residual Variation 0.547 0.045 0.461 0.641 --= --- 5780.687
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To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are

insufficient, increasing the value on the ITERATIONS command will remedy the issue.

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect
that depends on scaling or centering. The slope conveys the instantaneous linear change in the
outcome at the anxiety mean, controlling for all other predictors (5; = 0.04). The negative
quadratic coefficient (8, = -0.02) indicates that the positive association at the mean decreases
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety,
the association becomes negative, such that anxiety has a debilitating effect on math
performance. The 95% credible interval limits suggest this effect is statistically different from
zero (p < .05) because the null value is well outside the interval. The frequentist test statistic and

p-value give the same conclusion.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
11.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The
Blimp input file Ex11.2.imp is identical Ex11.1.imp, but it adds the following lines at the bottom
of the script.

NIMPS: 20;

CHAINS: 20;

SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;
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The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id condition male frlunch atrisk stanread efficacy anxiety
mathpre mathpost

stacked = './imps/imps.dat'

imp# id condition male frlunch atrisk stanread efficacy
anxiety mathpre mathpost

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.
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rblimp Script Ex11.R

1 library(rblimp)

2 load('mathachievement.rda')

3

4 mymodel <- rblimp(

5 data = mathachievement,

6 ordinal = 'atrisk frlunch efficacy',

7 fixed = 'mathpre',

8 center = 'anxiety',

9 model = '

10 focal.model:

11 mathpost ~ anxiety anxiety”2@beta2 frlunch efficacy mathpre;
12 auxiliary.models:

13 stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre',
14 seed = 90291,

15 burn = 10000,

16 iter = 10000,

17 nimps = 20,
18 chains = 20)
19 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
11.5  Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex11.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex11.R

1 library(rblimp)
2 library(mitml)
3 load('mathachievement.rda')
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4
5 mymodel <- rblimp(...)

6

7 implist <- as.mitml(mymodel)

8

9 mean_anxiety <- mean(unlist(lapply(implist, function(df) mean(df$anxiety))))

10 for (i in 1:length(implist)) {

11 implist[[i]]$anxiety.cgm <- implist[[i]]$anxiety - mean_anxiety

12 3

13

14 fit <- with(implist,

15 Im(mathpost ~ anxiety.cgm + I(anxiety.cgm*2) + frlunch + efficacy + mathpre))

16 estimates <- testEstimates(fit, extra.pars = T, df.com = 244)
17 estimates

18 confint(estimates)

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 9 through 12 center the
focal predictor at its grand mean. Lines 14 and 15 fit the focal regression model using the 1m
function, and line 16 uses the testEstimates function in mitml to implement Rubin’s pooling
rules and save the results in an object called estimates. The df.com parameter is the
denominator degrees of freedom that would have resulted had there been no missing data (i.e.,
N-K-1 degrees of freedom, where K is the number of predictors). This argument produces
Barnard and Rubin degrees of freedom values. Lines 17 and 18 print the pooled estimates and

confidence intervals.
11.6 ROutput

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.
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Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df  P(C|t]) RIV FMI
(Intercept) 32.943 3.318 9.929 177.001 0.000 0.150 0.140
anxiety.cgm 0.034 0.084 0.404 96.483 0.687 0.415 0.307
anxiety.sq -0.021 0.006 -3.616  147.802 0.000 0.221 0.192
frlunch -5.687 1.147 -4.960 76.330 0.000 0.554 0.373
efficacy 1.052 0.344 3.058 107.170 0.003 0.361 0.279
mathpre 0.471 0.064 7.336  173.143 0.000 0.159 0.147

Estimate

Residual~~Residual 50.358

Hypothesis test adjusted for small samples with df=[244]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 26.39566909 39.490858174
anxiety.cgm -0.13268668 0.200544222
anxiety.sq -0.03287417 -0.009639516

frlunch -7.97089460 -3.403528840
efficacy 0.37008949 1.734175237
mathpre 0.34392328 0.597097949

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect
that depends on scaling or centering. The slope conveys the instantaneous linear change in the
outcome at the anxiety mean, controlling for all other predictors (8, = 0.03). The negative
quadratic coefficient (8, = —0.02) indicates that the positive association at the mean decreases
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety,
the association becomes negative, such that anxiety has a debilitating effect on math
performance. Note that these estimates are numerically equivalent to those from MCMC and

maximum likelihood estimation.
11.7  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the

previous Blimp script, the SAVE command and the separate keyword saved each imputed data
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set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). Section 6.7 shows the contents of this file.

The Mplus input file for analyzing the imputations is Ex11. inp.

Mplus Script Ex11.inp

1 DATA:

2 file = ./imps/implist.dat;

3 type = imputation;

4 VARIABLE:

5 names = id condition male frlunch atrisk stanread

6 efficacy anxiety mathpre mathpost;

7 usevariables = mathpost anxiety frlunch efficacy mathpre anxietysq;
8  DEFINE:

9 center anxiety (grandmean);

10 anxietysq = anxiety*2;

11 MODEL :

12 mathpost on anxiety anxietysq frlunch efficacy mathpre;
13 OUTPUT:

14 stdyx cinterval;

The major commands are described in previous examples. Consistent with previous multiple
imputation analysis scripts, the DATA command lists the text file containing the names of the
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type =
imputation subcommand instructs Mplus that the input data is a list of file names. Second, the
missing subcommand is omitted because the analysis variables are now complete. Finally, the
MODEL section no longer specifies a normal distribution for the predictors or models for the
auxiliary variables. The script also invokes one new feature. On line 9, the center subcommand
under the DEFINE command centers anxiety scores at their grand mean. Line 10 then computes a
new variable equal to the square of the centered predictor. Importantly, new variables computed
with the DEFINE command must appear at the end of the usevariables list on line 7. The script

is shown below.



MCMC: Curvilinear Regression 157

11.8  Mplus Output

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The focal model results are shown below. The
Rate of Missing column (also called the fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
MATHPOST ON
ANXIETY 0.034 0.083 0.407 0.684 0.304
ANXIETYSQ -0.021 0.006 -3.652 0.000 0.187
FRLUNCH -5.687 1.138 -4.998 0.000 0.371
EFFICACY 1.052 0.341 3.085 0.002 0.276
MATHPRE 0.471 0.063 7.414 0.000 0.142
Intercepts
MATHPOST 32.944 3.283 10.035 0.000 0.135
Residual Variances
MATHPOST 49.149 5.588 8.795 0.000 0.388

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect
that depends on scaling or centering. The slope conveys the instantaneous linear change in the
outcome at the anxiety mean, controlling for all other predictors (8, = 0.03). The negative
quadratic coefficient (8, = —0.02) indicates that the positive association at the mean decreases
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety,
the association becomes negative, such that anxiety has a debilitating effect on math
performance. The output also includes a table with standardized coefficients and the R-squared
statistic. Note that these estimates are numerically equivalent to those from MCMC and

maximum likelihood estimation.
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11.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex11.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex11.spwb

1 CD '/users/username/desktop"'.

2 DATA LIST free file = 'imps.dat'

3 /imputation_ id condition male frlunch atrisk stanread
4 efficacy anxiety mathpre mathpost.

5 EXE.
6

7

8

AGGREGATE
/outfile = * mode = addvariables overwrite = yes
9 /anxiety_mean = mean(anxiety).
10 EXE.

12 COMPUTE anxiety_cgm = anxiety - anxiety_mean.
13 COMPUTE anxiety_sqg = anxiety_cgm#**2.
14  EXE.

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. On line 7,
the AGGREGATE command adds the grand means to the data. Then, beginning on line 12, a

centered version of the focal predictor is computed along with its square.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.

The SORT command on line 15 sorts the data by the imputation index variable, and the SPLIT
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FILE command on line 16 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 17.

SPSS Script Ex11.spwb, continued

15 SORT CASES by imputation_.

16 SPLIT FILE layered by imputation_.

17 REGRESSION

18 /descriptives mean stddev corr sig n

19 /dependent mathpost

20 /method enter anxiety_cgm anxiety_sqg frlunch efficacy mathpre.

11.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefticients, standard errors, and test statistics.
The regression output also includes pooled means and correlations. The relative increase in
variance is a fraction comparing imputation noise to complete-data sampling variation, and the
fraction of missing information quantifies the imputation noise in each estimate as proportion of

its squared standard error.

In a curvilinear regression model, the lower-order term for math anxiety is a conditional
effect that depends on scaling or centering. The slope conveys the instantaneous linear change in
the outcome at the anxiety mean, controlling for all other predictors (8; = 0.03). The negative
quadratic coefficient (8, = -0.02) indicates that the positive association at the mean decreases
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety,
the association becomes negative, such that anxiety has a debilitating effect on math
performance. Note that these estimates are numerically equivalent to those from MCMC and

maximum likelihood estimation.
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Coefficients®
Standardized X
Unstandardized Coefficients Coefficients . Relative )
Fraction Increase Relative
imputation_ Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 33.999 3.159 10.763 <.001
anxiety_cgm -.070 .072 -.055 -.985 .326
anxiety_sq -.017 .005 -.164 -3.050 .003
frlunch -5.030 .947 -.264 -5.310 <.001
efficacy .650 .303 112 2.142 .033
mathpre .470 .061 434 7.717 <.001
2.00 1 (Constant) 33.888 3.387 10.007 <.001
anxiety_cgm .055 .077 .041 .715 475
anxiety_sq -.021 .006 -.190 -3.510 <.001
frlunch -7.040 1.010 -.345 -6.971 <.001
efficacy 1.038 .325 .166 3.189 .002
mathpre 454 .065 .392 6.941 <.001
co e
20.00 1 (Constant) 31.923 3.099 10.300 <.001
anxiety_cgm -.003 .070 -.002 -.044 .965
anxiety_sq -.022 .005 -.224 -4.285 <.001
frlunch -5.500 .907 -.283 -6.063 <.001
efficacy .890 .293 .149 3.041 .003
mathpre .509 .059 .460 8.597 <.001
Pooled 1 (Constant) 32.943 3.318 9.929 <.001 .132 .150 .993
anxiety_cgm .034 .084 .404 .686 .299 415 .985
anxiety_sq -.021 .006 -3.616 <.001 .184 221 991
frlunch -5.687 1.147 -4.960 <.001 .365 .554 .982
efficacy 1.052 .344 3.058 .002 271 .361 .987
mathpre 471 .064 7.336 <.001 .139 .159 .993

a. Dependent Variable: mathpost
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FCS Multiple Imputation: Paired-Samples Comparison

This example illustrates model-agnostic fully conditional specification multiple imputation for a
paired-samples test involving pretest and posttest scores. The analysis uses the
mathachievement.dat data set taken from an educational intervention where 250 students were
assigned to an intervention and comparison condition. The file includes pretest and posttest
math achievement scores, a measure of math self-efficacy, standardized reading scores taken

from a statewide assessment, and several sociodemographic variables. The analysis variables are

as follows.
Name Definition Missing %  Scale
Focal Variables

MATHPRE Math achievement pretest 0 Numeric
MATHPOST  Math achievement posttest 18.0 Numeric

Auxiliary Variables
FRLUNCH Lunch assistance code 44 0 = None, 1 = Free/reduced lunch
STANREAD  Standardized reading 9.2 Numeric
EFFICACY Math self-efficacy rating 9.6 Ordinal (1 to 6)

12.1 Imputation and Analysis Models

A common goal of model-agnostic imputation is to generate imputations for different purposes
(e.g., descriptive summaries, several analyses within the same project). To illustrate multiple
imputation with the fully conditional specification algorithm (i.e., multiple imputation by
chained equations, or MICE; van Buuren, 2018), suppose that one use of the filled-in data sets
involves a paired-samples test of the changes between pretest and posttest. The analysis can be

cast as an empty regression model with change scores as the outcome variable.
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CHANGE = B, + ¢ (26)

The variable CHANGE is computed as MATHPOST minus MATHPRE.

Fully conditional specification uses a sequence of regression models to fill in missing values.
Specifically, each MCMC iteration fits a series of models where one incomplete variable is
regressed on all other variables. The predicted values and residual variance from each model
define the center and spread of the imputed values, which are drawn at random from a normal
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all
other imputation models in the sequence. The imputation stage should include all variables and
effects for the subsequent analyses, and it should incorporate auxiliary variables that either
predict missingness or correlate with the incomplete variables (Collins et al., 2001). The
imputation models use the two math scores and three auxiliary variables. Difference scores are

computed from the imputed data prior to analysis.
12.2  Blimp and rblimp FCS Scripts

The code block below shows Blimp script Ex12.inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex12.imp

1 DATA: mathachievement.dat;

VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety
mathpre mathpost;

ORDINAL: frlunch efficacy;

MISSING: 999;

FIXED: mathpre;

FCS: mathpost mathpre frlunch stanread efficacy;

SEED: 90291;

9 BURN: 5000;

10 ITERATIONS: 10000;

11 NIMPS: 20;

12 CHAINS: 20;

13 SAVE:

14 stacked = ./imps/imps.dat;

O N O O B W N

15  separate = ./imps/imp*.dat;
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The first five lines can be viewed as a set of commands that specify information about the
data and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The ORDINAL command on line 4 identifies a
pair of binary variables. Binary variables can alternatively be identified using the NOMINAL
command because the underlying statistical models are identical. Finally, the MISSING command

on line 5 defines a global missing value code as 999.

Next, the FCS command lists all variables—complete or incomplete—that are included in the
imputation phase. The FIXED command identifies a complete variable that does not require
imputation. This reduces computational time because complete variables do not require a
regression model. Lines 8 through 10 can also be viewed as a block of commands that specify
features of the MCMC algorithm: the SEED command gives an integer string that initializes the
random number generator, the BURN command specifies the number of iterations for the warm-
up or burn-in period, and the ITERATIONS command gives the number of MCMC iterations on
which the imputation model summaries are based (essentially, the total number of MCMC cycles

across all chains following the warm-up period).

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

The corresponding rblimp script Ex12.R is shown below.

rblimp Script Ex12.R
1 library(rblimp)
2 load('mathachievement.rda')
3
4 mymodel <- rblimp_fcs(
5 data = mathachievement,
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6 ordinal = 'frlunch efficacy',

7 fixed = 'mathpre',

8 variables = 'mathpost mathpre frlunch stanread efficacy',
9 seed = 90291,

10 burn = 5000,

11 iter = 10000,

12 nimps = 20,
13 chains = 20)
14 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is
omitted because that information is contained in the R data file. The FCS command is replaced by
a variables parameter that lists the variables to be included in the imputation model. Following
R convention, the input parameters are separated by commas. Alphanumeric inputs like variable
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not

require quotes. Finally, the output(mymodel) function prints the Blimp output.
12.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
126 to 250 1.480 23
251 to 500 1.395 24
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376 to 750 1.272 23
2251 to 4500 1.048 22
2376 to 4750 1.038 23
2501 to 5000 1.042 23

The next output excerpt shows information about the data and the variables in the imputation

models.

DATA INFORMATION:

Sample Size: 250
Missing Data Rates:

frlunch = 04.40
stanread = 09.20
efficacy = 09.60
mathpost = 18.00

VARIABLES IN IMPUTATION MODEL:

Fixed variables: mathpre
Incomplete continuous: stanread mathpost
Incomplete ordinal: frlunch efficacy

NUMBER OF PARAMETERS
Imputation Models: 26

MCMC estimation produces a distribution for each parameter in every unique imputation
model. The median and standard deviation columns describe the center and spread of the
posterior distributions; although they make no reference to drawing repeated samples, they are
analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. The Blimp

output includes tables of regression parameters for every incomplete variable’s imputation
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model. The imputation model parameters are not of substantive interest and would not be

reported. An example table is shown below.

Missing variable: mathpost
Parameters Median StdDev 2.5% 97.5% PSR N_Eff
Grand Mean 56.504 0.555 55.397 57.567 1.005 4353.468
Level 1:
frlunch -2.188 0.575 -3.270 -1.038 1.006  3351.406
stanread 0.189 0.060 0.073 0.306 1.004  4430.891
efficacy 1.222 0.517 0.216 2.252 1.005 4406.012
mathpre 0.476 0.062 0.354 0.596 1.002 6043.712
Residual Var. 45.242 4.994 36.454 56.257 1.004 4585.610

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id condition male frlunch atrisk stanread efficacy anxiety
mathpre mathpost

stacked = './imps/imps.dat'

imp# id condition male frlunch atrisk stanread efficacy
anxiety mathpre mathpost

The imputed data sets are subsequently analyzed in another software package, and estimates and

standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
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not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.
12.4  Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex12.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex12.R

1 library(rblimp)

2 library(mitml)

3 load('mathachievement.rda')

4

5 mymodel <- rblimp_fcs(...)

6

7 implist <- as.mitml(mymodel)

8

9 for (i in 1:length(implist)) {

10 implist[[i]]$change <- implist[[i]]$mathpost - implist[[i]I$mathpre
11 }

12

13 fit <- with(implist, Im(change ~ 1))

14  estimates <- testEstimates(fit, extra.pars = T, df.com = 249)
15  estimates

16 confint(estimates)

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 9 through 12 compute the
change scores. Line 13 fits the focal regression model using the 1m function, and line 14 uses the
testEstimates function in mitml to implement Rubin’s pooling rules and save the results in an
object called estimates. The df.com parameter is the denominator degrees of freedom that
would have resulted had there been no missing data (i.e., N-K-1 degrees of freedom, where K is
the number of predictors). This argument produces Barnard and Rubin degrees of freedom

values. Lines 15 and 16 print the pooled estimates and confidence intervals.
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12.5 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df  P(C|t]) RIV FMI
(Intercept) 6.418 0.578 11.112  181.675 0.000 0.147 0.137
Estimate

Residual~~Residual 72.732

Hypothesis test adjusted for small samples with df=[249]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 5.278415 7.55776

The results are interpreted in the same way as a complete-data paired-samples test. For
example, the intercept represents the mean change from pretest to posttest. The corresponding

test statistic indicates that the change is statistically different from zero (t = 11.11, p <.001).
12.6 Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). As a reminder, the contents of this file are as follows.
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imp1.dat
imp2.dat
imp3.dat
imp4.dat
imp5.dat

imp16.dat
imp17.dat
imp18.dat
imp19.dat
imp20.dat

The Mplus input file for analyzing the imputations is Ex12. inp.

Mplus Script Ex12.inp

1 DATA:

2 file = ./imps/implist.dat;

3 type = imputation;

4 VARIABLE:

5 names = id condition male frlunch lowach stanread efficacy
6 anxiety mathpre mathpost;
7 usevariables = change;

8 DEFINE:

9 change = mathpost - mathpre;
10 MODEL :

11 change;

12 OUTPUT :

13 cinterval;

Following previous imputation analysis examples, the DATA command lists the text file
containing the names of the imputed data sets (the implist.dat file located in the ./imps
subdirectory). The type = imputation subcommand instructs Mplus that the input data is a list
of file names. The usevariables subcommand of the VARIABLE command selects variables for
the analysis. The DEFINE command beginning on line 8 computes the change or difference score
by subtracting the pretest from posttest. Importantly, new variables computed with the DEFINE

command must appear at the end of the usevariables list on line 7. In this example, the new
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change score is the only variable in the model. Listing the change score variable in the MODEL
section estimates the mean and variance of the variable. Finally, listing the cinterval keyword
after OPTION prints confidence intervals. The code block below shows the analysis and pooling

script.
12.7  Mplus Output

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The focal model results are shown below. The
Rate of Missing column (also called the fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
Means
CHANGE 6.418 0.577 11.131 0.000 0.130
Variances
CHANGE 72.439 6.864 10.554 0.000 0.109

The results are interpreted in the same way as a complete-data paired-samples test. For
example, the intercept represents the mean change from pretest to posttest. The corresponding

test statistic indicates that the change is statistically different from zero (z = 11.13, p <.001).
12.8 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex12.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.
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SPSS Script Ex12.spwb
1 CD '/users/username/desktop'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ id condition male frlunch atrisk stanread
4 efficacy anxiety mathpre mathpost.
5 EXE.

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,

and the pooling routines will not function if the index variable has a different name.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 6 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 7 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 8.

SPSS Script Ex12.spwb, continued

6  SORT CASES by imputation_.
7 SPLIT FILE layered by imputation_.
8  T-TEST pairs = mathpost with mathpre (paired).

12.9 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefficients, standard errors, and test statistics.
The regression output also includes pooled means and correlations. The relative increase in

variance is a fraction comparing imputation noise to complete-data sampling variation, and the
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fraction of missing information quantifies the imputation noise in each estimate as proportion of

its squared standard error.

Paired Differences Significance
95% Confidence Interval of "
) Relative
Std. Std. Error the Difference Fraction Increase Relative

i . Mean Deviation Mean Lower Upper t df One-Sided p  Two-Sided p Missing Info. Variance Efficiency
1.00 Pair 1  mathpost - mathpre  6.65219 8.56047 54141 5.58586 7.71852 12.287 249 .000 .000

2.00 Pair 1 mathpost - mathpre 6.50856 8.31642 .52598 5.47263 7.54449 12.374 249 .000 .000

20.00 Pair 1  mathpost - mathpre  6.28921 8.58376 .54288 5.21998 7.35844 11.585 249 000 .000

Pooled Pair 1  mathpost - mathpre  6.41809 .57760 5.28482 Ze55135] 11.112 759 .000 129 .147 -994

The results are interpreted in the

same way as a complete-data paired-samples test. For

example, the intercept represents the mean change from pretest to post test. The corresponding

test statistic indicates that the change is statistically different from zero (t = 11.11, p <.001).
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FCS Multiple Imputation: Multiple Regression

This example illustrates model-agnostic fully conditional specification multiple imputation with
multivariate normal data. The analysis uses the behaviorachievement.dat data set taken from a
longitudinal study that followed 138 students from primary through middle school. The file
includes three annual assessments of broad reading and math achievement beginning in the first
grade, seventh grade standardized achievement test scores taken from a statewide assessment,
and a final measure of broad reading and math obtained in ninth grade. The data also contain
teacher ratings of behavioral symptoms and learning problems were also obtained in the first
grade. The data description at the beginning of this document provides additional details. The

variables for this analysis are as follows.

Name Definition Missing %  Scale

Focal Variables

BEHSYMP,  1* grade behavioral symptoms 3.6 Numeric

LRNPROB; 1% grade learning problems 2.2 Numeric

READ, 1* grade broad reading composite 6.5 Numeric

READ; 9 grade broad reading composite 17.4 Numeric
Auxiliary Variables

READ, 2" grade broad reading composite 9.4 Numeric

STANREAD; 7™ grade standardized math 19.6 Numeric

13.1 Imputation and Analysis Models

A common goal of model-agnostic imputation is to generate imputations for different purposes
(e.g., descriptive summaries, several analyses within the same project). To illustrate multiple

imputation with the fully conditional specification algorithm (i.e., multiple imputation by
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chained equations, or MICE; van Buuren, 2018), suppose that one use of the filled-in data sets
involves a model where ninth grade broad reading scores are regressed on first grade reading

achievement and teacher-rated learning problems and behavioral symptoms.
READ, = B, + B,(READ)) + B(LRNPROB,) + 8;(BEHSYMR) + ¢ (27)

Chapters 1 and 6 used the same analysis model to illustrate maximum likelihood estimation,

MCMC estimation, and model-based multiple imputation.

Fully conditional specification uses a sequence of regression models to fill in missing values.
Specifically, each MCMC iteration fits a series of models where one incomplete variable is
regressed on all other variables. The predicted values and residual variance from each model
define the center and spread of the imputed values, which are drawn at random from a normal
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all
other imputation models in the sequence. The imputation stage should include all variables and
effects for the subsequent analyses, and it should incorporate auxiliary variables that either
predict missingness or correlate with the incomplete variables (Collins et al., 2001). The

imputation models use the four analysis variables and three auxiliary variables.
13.2  Blimp and rblimp FCS Scripts

The code block below shows Blimp script Ex13.1inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex13.imp

1 DATA: behaviorachievement.dat;

2 VARIABLES: id male hispanic riskgrp atrisk behsymp1l lrnprob1
3 readl read2 read3 read9 read9grp stanread7

4 math1 math2 math3 math9 math9grp stanmath7;

5 MISSING: 999;

6 FCS: read9 readl lrnprobl behsympl stanread7 read2;
7  SEED: 90291;

8 BURN: 2000;

9 ITERATIONS: 10000;

0  NIMPS: 20;

1 CHAINS: 20;
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12 SAVE:
13 stacked = ./imps/imps.dat;
14 separate = ./imps/imp*.dat;

The first five lines can be viewed as a set of commands that specify information about the
data and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a

global missing value code as 999.

Next, the FCS command lists all variables—complete or incomplete—that are included in the
imputation phase. Using the FIXED command to identify complete variables reduces
computational time because these variables do not require a regression model. Lines 7 through 9
can also be viewed as a block of commands that specify features of the MCMC algorithm: the
SEED command gives an integer string that initializes the random number generator, the BURN
command specifies the number of iterations for the warm-up or burn-in period, and the
ITERATIONS command gives the number of MCMC iterations on which the imputation model
summaries are based (essentially, the total number of MCMC cycles across all chains following

the warm-up period).

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).
The corresponding rblimp script Ex13.R is shown below.
rblimp Script Ex13.R

1 library(rblimp)
2 load('behaviorachievement.rda')
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4 mymodel <- rblimp_fcs(

5 data = behaviorachievement,

6 variables = 'read9 readl lrnprobl behsympl stanread7 read2',
7 seed = 90291,

8 burn = 2000,

9 iter = 10000,

10 nimps = 20,
11 chains = 20)
12 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is
omitted because that information is contained in the R data file. The FCS command is replaced by
a variables parameter that lists the variables to be included in the imputation model. Following
R convention, the input parameters are separated by commas. Alphanumeric inputs like variable
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not

require quotes. Finally, the output(mymodel) function prints the Blimp output.
13.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
51 to 100 1.436 22
101 to 200 1.245 22
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151 to 300 1.132 22
901 to 1800 1.031 22
951 to 1900 1.024 22
1001 to 2000 1.022 22

The next output excerpt shows information about the data and the variables in the imputation

models.

DATA INFORMATION:

Sample Size: 138
Missing Data Rates:

behsympl = 03.62
lrnprobl = 02.17

readl = 06.52
read2 = 09.42
read9 = 17.39

stanread7 = 19.57
VARIABLES IN IMPUTATION MODEL:
Incomplete continuous: behsymp1l lrnprobl readl read2 read9 stanread7

NUMBER OF PARAMETERS
Imputation Models: 42

MCMC estimation produces a distribution for each parameter in every unique imputation
model. The median and standard deviation columns describe the center and spread of the
posterior distributions; although they make no reference to drawing repeated samples, they are
analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. The Blimp

output includes tables of regression parameters for every incomplete variable’s imputation
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model. The imputation model parameters are not of substantive interest and would not be

reported. An example table is shown below.

Missing variable: behsymp1

Parameters Median StdDev 2.5% 97.5% PSR N_Eff

Grand Mean 49.506 1.093 47.355 51.590 1.006 2075.694

Level 1:
lrnprob1 0.731 0.071 0.591 0.872 1.002 8316.690
read1l -0.274 0.077 -0.422 -0.121 1.002 8393.286
read?2 0.590 0.103 0.386 0.792 1.002 7435.432
read9 -0.457 0.102 -0.657 -0.254 1.003  8587.332
stanread? -0.018 0.016 -0.048 0.014 1.003 6881.275
Residual Var. 55.104 7.569 42.773 72.497 1.003 7269.684

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

id male hispanic riskgrp atrisk behsymp1 lrnprobl readl read2 read3
read9 read9grp stanread7 math1l math2 math3 math9 math9grp stanmath7

stacked = './imps/imps.dat'

imp# id male hispanic riskgrp atrisk behsymp1l lrnprob1 readl read2 read3
read9 read9grp stanread7 mathl math2 math3 math9 math9grp stanmath?

The imputed data sets are subsequently analyzed in another software package, and estimates and

standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
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not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.
13.4  Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex13.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex13.R

1 library(rblimp)

2 library(mitml)

3 load('behaviorachievement.rda')

4

5 mymodel <- rblimp_fcs(...)

6

7 implist <- as.mitml(mymodel)

8

9 fit <- with(implist, Im(read9 ~ readl + lrnprobl + behsymp1))
10 estimates <- testEstimates(fit, extra.pars = T, df.com = 134)
11 estimates

12 confint(estimates)

13

14 null <- with(implist, 1lm(read9 ~ 1))

15  testModels(fit, null, df.com = 134, method = 'D1')

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Line 9 fits the focal regression
model using the 1m function, and line 10 uses the testEstimates function in mitml to implement
Rubin’s pooling rules and save the results in an object called estimates. The df.com parameter is
the denominator degrees of freedom that would have resulted had there been no missing data
(i.e., N-K-1 degrees of freedom, where K is the number of predictors). This argument produces
Barnard and Rubin degrees of freedom values. Lines 15 and 16 print the pooled estimates and
confidence intervals. Finally, lines 14 and 14 specify a multiple imputation Wald F statistic
evaluating the null hypothesis that all population slopes equal zero (Li et al., 1991). The test

requires an additional model on line 14 that represents the null hypothesis, which in this case is
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an empty regression model with just an intercept. On line 15, the full model and null model
objects passed into the testModels function, and the D1 keyword requests the Wald test. As
before, the df.com parameter is the denominator degrees of freedom that would have resulted
had there been no missing data. This argument produces the Barnard and Rubin (1999) degrees

of freedom adjustment.
13.5 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error  t.value df  P(C|t]) RIV FMI

(Intercept) 66.190 6.224 10.635 80.586 0.000 0.289 0.243

readi 0.505 0.046 10.960 71.143 0.000 0.363 0.286

lrnprob1 -0.251 0.122 -2.056 77.657 0.043 0.310 0.256

behsymp1 -0.184 0.106 -1.727 82.939 0.088 0.273 0.233
Estimate

Residual~~Residual 90.074

Hypothesis test adjusted for small samples with df=[134]
complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 53.8052534 78.575035473
readi 0.4130783 0.596798319
lrnprob1 -0.4944088 -0.007959306
behsymp1 -0.3955499 0.027924710

The results are interpreted in the same way as a complete-data regression analysis. For

example, consider the first-grade reading score slope. The model predicts that two individuals
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who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically

equivalent to those from MCMC and maximum likelihood estimation.

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is
statistically significant, thus refuting the null hypothesis that all population slopes equal zero.

Model comparison calculated from 20 imputed data sets.
Combination method: D1

F.value df1 df2  P(F) RIV
52.329 3 113.521 0.000 0.304

Hypothesis test adjusted for small samples with df=[134]
complete-data degrees of freedom.

13.6  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called

implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.

The Mplus input file for analyzing the imputations is Ex13. inp.

Mplus Script Ex13.inp

1 DATA:

2 file = ./imps/implist.dat;

3  type = imputation;

4 VARIABLE:

5 names = id male hispanic riskgrp atrisk behsympl lrnprob1
6 readl read2 read3 read9 read9grp stanread7

7 math1 math2 math3 math9 math9grp stanmath7;

8 usevariables = read9 readl lrnprobl behsympl;

9 MODEL :
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10 read9 on readl lrnprobl behsympl (betal-beta3);
11 MODEL TEST:

12 @ = betal; 0 = beta2; 0 = beta3;

13 OUTPUT :

14 stdyx cinterval;

The script is virtually identical to the Ex1.1.inp file described in Section 1.2 with three
exceptions. First, instead of naming the raw data set, the DATA command lists the text file
containing the names of the imputed data sets (the implist.dat file located in the ./imps
subdirectory). The type = imputation subcommand instructs Mplus that the input data is a list
of file names. Second, the missing subcommand is omitted because the analysis variables are now
complete. Finally, the MODEL section no longer specifies a normal distribution for the predictors.
Readers can refer back to Section 1.2 for a detailed description of the other commands. The code

block below shows the analysis and pooling script.
13.7  Mplus Output

When fitting regression models to complete data sets, researchers often use an omnibus F test to
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter
Constraints heading. The test statistic is statistically significant, thus refuting the null

hypothesis.

MODEL FIT INFORMATION

Number of Free Parameters 5

Wald Test of Parameter Constraints

Value 175.893
Degrees of Freedom 3
P-Value 0.0000
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The table of unstandardized parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third and fourth
columns display the corresponding z-statistics and p-values. The focal model results are shown
below. The Rate of Missing column (also called the fraction of missing information in the
literature) quantifies the imputation noise in each estimate as proportion of its squared standard

€rror.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
READ9 ON
READ1 0.506 0.043 11.868 0.000 0.182
LRNPROB1 -0.231 0.113 -2.047 0.041 0.149
BEHSYMP1 -0.189 0.101 -1.864 0.062 0.160
Intercepts
READ9 65.487 5.803 11.284 0.000 0.150
Residual Variances
READ9 86.366 11.202 7.710 0.000 0.138

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (z = 11.87, p < .001). Note that these estimates are numerically

equivalent to those from MCMC and maximum likelihood estimation.

Specifying the stdyx keyword with the OPTIONS command prints the table of standardized
estimates and R-squared statistics shown below. The slope coefficients convey the expected
change in standard deviation units for a one standard deviation increase in each predictor. For
example, the model predicts that two individuals who differ by one standard deviation on READ1
but are the same on LRNPROB1 and BEHSYMP1 should differ by 0.70 standard deviations on READ9.

Collectively, the predictors explain 61% of the variation in ninth-grade reading scores.
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STANDARDIZED MODEL RESULTS

STDYX Standardization

Estimate

READ9 ON
READ1 0.701
LRNPROB1 -0.168
BEHSYMP1 -0.153

Intercepts
READ9 4.424

Residual Variances
READ9 0.394
R-SQUARE

Observed
Variable Estimate
READ9 0.606

13.8 Analyzing Multiple Imputations in SPSS

S.E.

0.044
0.082
0.082

0.531

0.055

S.E.

0.055

Est./S.E.

15.767
-2.036
-1.861

8.332

7.166

Est./S.E.

11.033

Two-Tailed
P-Value

0.000
0.042
0.063

0.000

0.000

Two-Tailed
P-Value

0.000

Rate of
Missing

0.102
0.157
0.159

0.152

0.099

Rate of
Missing

0.099

Multiple imputations for SPSS and other commercial software packages are obtained through the

Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the

stacked keyword saved the imputed data sets to a single stacked file with an index variable in the

first column identifying the individual files. The SPSS workbook file for the analysis is

Ex13.spwb. The code block below shows the commands that import the stacked text file

produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex13.spwb

1 CD '/users/username/desktop"'.

2 DATA LIST free file =

"imps.dat'
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/imputation_ id male hispanic riskgrp atrisk
behsymp1 lrnprobl readl read2 read3 read9 read9grp stanread7
math1 math2 math3 math9 math9grp stanmath7.
EXE.

S O B~ W

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,

and the pooling routines will not function if the index variable has a different name.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 7 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 8 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 9.

SPSS Script Ex13.spwb, continued

7 SORT CASES by imputation_.
8 SPLIT FILE layered by imputation_.
9  REGRESSION

10 /descriptives mean stddev corr sig n
11 /dependent read9
12 /method enter readl lrnprobl behsympl.

13.9 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefticients, standard errors, and test statistics.
The regression output also includes pooled means and correlations. The relative increase in
variance is a fraction comparing imputation noise to complete-data sampling variation, and the
fraction of missing information quantifies the imputation noise in each estimate as proportion of

its squared standard error.



FCS Multiple Imputation: Multiple Regression

186

The results are interpreted in the same way as a complete-data regression analysis. For

example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by

0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is

statistically different from zero (t = 10.96, p < .001). Note that these estimates are numerically

equivalent to those from MCMC and maximum likelihood estimation.

Coefficients?

Standardized

Unstandardized Coefficients Coefficients ) Relative )
Fraction Increase Relative
imputation_  Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 65.621 5.375 12.210 .000
readl 494 .038 .701 12.934 .000
Irnprob1 -.222 .104 -.164 -2.131 .035
behsymp1 -.176 .093 -.146 -1.898 .060
2.00 1 (Constant) 72.405 5.268 13.745 .000
readl .468 .038 671 12.223 .000
Irnprob1 -.323 .103 -.242 -3.146 .002
behsymp1 -.173 .091 -.146 -1.895 .060
coe
20.00 1 (Constant) 59.772 5.837 10.239 .000
readl .543 .041 .716 13.127 .000
Irnprob1 -.149 112 -.101 -1.327 .187
behsymp1 -.223 .099 -.171 -2.245 .026
Pooled 1 (Constant) 66.190 6.224 10.635 .000 .228 .289 .989
readl .505 .046 10.960 .000 272 .363 .987
Irnprob1 -.251 122 -2.056 .041 .241 .310 .988
behsymp1 -.184 .106 -1.727 .085 .218 273 .989

a. Dependent Variable: read9
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FCS Multiple Imputation: Regression with a Multicategorical
Predictor

This example illustrates model-agnostic fully conditional specification multiple imputation with
mixed variable types. The analysis uses the behaviorachievement.dat data set taken from a
longitudinal study that followed 138 students from primary through middle school. The file
includes three annual assessments of broad reading and math achievement beginning in the first
grade, seventh grade standardized achievement test scores taken from a statewide assessment,
and a final measure of broad reading and math obtained in ninth grade. The data also contain
teacher ratings of behavioral symptoms and learning problems were also obtained in the first
grade. The data description at the beginning of this document provides additional details. The

variables for this analysis are as follows.

Name Definition Missing %  Scale

Focal Variables

RISKGRP Emotional/behavioral disorder risk 2.2 1 = Low, 2 = Medium, 3 = High
BEHSYMP, 1% grade behavioral symptoms 3.6 Numeric
LRNPROB, 1* grade learning problems 22 Numeric
READ, 1* grade broad reading composite 6.5 Numeric
READ; 9™ grade broad reading composite ~ 17.4 Numeric
Auxiliary Variables
READ, 2" grade broad reading composite 9.4 Numeric

STANREAD; 7™ grade standardized math 19.6 Numeric
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14.1 Imputation and Analysis Models

A common goal of model-agnostic imputation is to generate imputations for different purposes
(e.g., descriptive summaries, several analyses within the same project). To illustrate multiple
imputation with the fully conditional specification algorithm (i.e., multiple imputation by
chained equations, or MICE; van Buuren, 2018), suppose that one use of the filled-in data sets
involves a model where ninth grade broad reading scores are regressed on first grade reading
achievement, teacher-rated learning problems and behavioral symptoms, and a three-category

nominal variable indicating risk for emotional or behavioral disorders.

READ, = f3, + 1(READ,) + 8,(LRNPROB,) + 8;(BEHSYMR,)
+ B4(MEDRISK) + f85s(HIGHRISK) + ¢ (28)

The MEDRISK and HIGHRISK variables are dummy code variables that contrast the medium- and
high-risk groups, respectively, against the low-risk reference group. Chapter 9 used the same

analysis model to illustrate MCMC estimation and model-based multiple imputation.

Fully conditional specification uses a sequence of regression models to fill in missing values.
Specifically, each MCMC iteration fits a series of models where one incomplete variable is
regressed on all other variables. The predicted values and residual variance from each model
define the center and spread of the imputed values, which are drawn at random from a normal
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all
other imputation models in the sequence. The imputation stage should include all variables and
effects for the subsequent analyses, and it should incorporate auxiliary variables that either
predict missingness or correlate with the incomplete variables (Collins et al., 2001). The
imputation models use the five analysis variables and three auxiliary variables. Blimp uses the
latent response variable framework (probit regression) for categorical variables like risk group
(Enders et al., 2020).

14.2  Blimp and rblimp FCS Scripts

The code block below shows Blimp script Ex14.1inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.
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Blimp Script Ex14.imp

1 DATA: behaviorachievement.dat;

2 VARIABLES: id male hispanic riskgrp atrisk behsymp1l lrnprob1
3 readl read2 read3 read9 read9grp stanread7

4 math1 math2 math3 math9 math9grp stanmath7;

5 NOMINAL: riskgrp;

6 MISSING: 999;

7  FCS: read9 readl lrnprobl behsymp1 riskgrp stanread7 read?2;
8  SEED: 90291;

9 BURN: 1000;

10 ITERATIONS: 10000;

11 NIMPS: 20;

12 CHAINS: 20;

13 SAVE:

14 stacked = ./imps/imps.dat;

15  separate = ./imps/imp*.dat;

The first six lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The NOMINAL command on line 5 identifies
the multicategorical nominal predictor, and the MISSING command on line 6 defines a global

missing value code as 999.

Next, the FCS command lists all variables—complete or incomplete—that are included in the
imputation phase. Using the FIXED command to identify complete variables reduces
computational time because these variables do not require a regression model. Lines 8 through
10 can also be viewed as a block of commands that specify features of the MCMC algorithm: the
SEED command gives an integer string that initializes the random number generator, the BURN
command specifies the number of iterations for the warm-up or burn-in period, and the
ITERATIONS command gives the number of MCMC iterations on which the imputation model
summaries are based (essentially, the total number of MCMC cycles across all chains following

the warm-up period).

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding

autocorrelation among the imputations. The SAVE command provides a name for the imputed
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data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

The corresponding rblimp script Ex14.R is shown below.

rblimp Script Ex14.R

library(rblimp)
load('behaviorachievement.rda')

mymodel <- rblimp_fcs(

nominal = 'riskgrp',

variables = 'read9 readl lrnprobl behsympl riskgrp stanread7 read2',
90291,

9 burn = 2000,

10 iter = 10000,

11 nimps = 20,

12 chains = 20)

13 output(mymodel)

1
2
3
4
5 data = behaviorachievement,
6
7
8

seed

Each command in the Blimp script (each capitalized word) is an input parameter in the
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is
omitted because that information is contained in the R data file. The FCS command is replaced by
a variables parameter that lists the variables to be included in the imputation model. Following
R convention, the input parameters are separated by commas. Alphanumeric inputs like variable
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not

require quotes. Finally, the output(mymodel) function prints the Blimp output.
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14.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
51 to 100 1.417 45

101 to 200 1.156 45

151 to 300 1.243 45

901 to 1800 1.022 54

951 to 1900 1.021 45

1001 to 2000 1.021 45

The next output excerpt shows information about the data and the variables in the imputation

models.

DATA INFORMATION:

Sample Size: 138
Missing Data Rates:

riskgrp = 02.17
behsympl = 03.62
lrnprobl = 02.17
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readl = 06.52
read2 = 09.42
read9 = 17.39
stanread7 = 19.57

Nominal Dummy Codes:

riskgrp = riskgrp.2 riskgrp.3

VARIABLES IN IMPUTATION MODEL:

Incomplete continuous: behsymp1l lrnprobl readl read2 read9 stanread7
Incomplete nominal: riskgrp

NUMBER OF PARAMETERS
Imputation Models: 68

MCMC estimation produces a distribution for each parameter in every unique imputation
model. The median and standard deviation columns describe the center and spread of the
posterior distributions; although they make no reference to drawing repeated samples, they are
analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. The Blimp
output includes tables of regression parameters for every incomplete variable’s imputation
model. The imputation model parameters are not of substantive interest and would not be

reported. An example table is shown below.

Missing variable: behsymp1
Parameters Median StdDev 2.5% 97.5% PSR N_Eff
Grand Mean 49.596 1.101 47.401 51.765 1.007 2184.881
Level 1:
riskgrp.2 -0.581 1.093 -2.657 1.578 1.006  3551.667
riskgrp.3 1.574 1.268 -1.031 3.876 1.009 1864.907

lrnprob1 0.705 0.079 0.547 0.856 1.005 4786.167
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read -0.217 0.093  -0.393  -0.032 1.004  3349.964
read2 0.593 0.108 0.381 0.807 1.004  5270.399
read9 -0.447 0.105  -0.652  -0.242 1.004  5961.720
stanread? -0.016 0.016  -0.049 0.016 1.003  5148.240
Residual Var. 52.691 7.826  39.338  70.152 1.005  4634.464

When saving imputations, the bottom of the Blimp output file displays a table listing the order

of the variables in the output data sets. All variables are saved regardless of whether they

appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other

packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:

separate = './imps/imp*.dat'

id male hispanic riskgrp atrisk behsymp1 lrnprobl readl read2 read3
read9 read9grp stanread7 math1l math2 math3 math9 math9grp stanmath7

stacked = './imps/imps.dat'

imp# id male hispanic riskgrp atrisk behsymp1l lrnprob1 readl read2 read3

read9 read9grp stanread7 mathl math2 math3 math9 math9grp stanmath?

The imputed data sets are subsequently analyzed in another software package, and estimates and

standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does

not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

14.4  Analyzing Multiple Imputationsin R

Continuing with the previous rblimp script, the following excerpt from Ex14.R shows how to

perform multiple imputation inference. The script requires the mitml package (Grund et al.,

2023).
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R Script Ex14.R

1 library(rblimp)

2 library(mitml)

3 load('behaviorachievement.rda')

4

5 mymodel <- rblimp_fcs(...)

6

7 implist <- as.mitml(mymodel)

8

9 fit <- with(implist,

10 Im(read9 ~ readl + lrnprobl + behsympl + factor(riskgrp)))
11 estimates <- testEstimates(fit, extra.pars = T, df.com = 132)
12 estimates

13 confint(estimates)

14

15 null <- with(implist, 1lm(read9 ~ 1))

16 testModels(fit, null, df.com = 132, method = 'D1')

To begin, as.mitml on Line 7 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 9 and 10 fit the focal
regression model using the 1m function, and line 11 uses the testEstimates function in mitml to
implement Rubin’s pooling rules and save the results in an object called estimates. The df.com
parameter is the denominator degrees of freedom that would have resulted had there been no
missing data (i.e., N-K-1 degrees of freedom, where K is the number of predictors). This
argument produces Barnard and Rubin degrees of freedom values. Lines 12 and 13 print the
pooled estimates and confidence intervals. Finally, lines 15 and 16 specify a multiple imputation
Wald F statistic evaluating the null hypothesis that all population slopes equal zero (Li et al.,
1991). The test requires an additional model on line 15 that represents the null hypothesis, which
in this case is an empty regression model with just an intercept. On line 16, the full model and
null model objects passed into the testModels function, and the D1 keyword requests the Wald
test. As before, the df.com parameter is the denominator degrees of freedom that would have
resulted had there been no missing data. This argument produces the Barnard and Rubin (1999)

degrees of freedom adjustment.
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14.5 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df PC|t]) RIV FMI
(Intercept) 68.825 6.421 10.719 93.741 0.000 0.199 0.183
readil 0.481 0.047 10.287 117.185 0.000 0.076 0.086
lrnprob1 -0.248 0.117 -2.130 99.230 0.036 0.168 0.161
behsymp1 -0.169 0.100 -1.693 116.399 0.093 0.080 0.089
factor(riskgrp)2 -1.701 1.943 -0.876 115.037 0.383 0.087 0.095
factor(riskgrp)3 -2.677 2.700 -0.992 97.107 0.324 0.180 0.169

Estimate

Residual~~Residual 90.306

Hypothesis test adjusted for small samples with df=[132]

complete-data degrees of freedom.

2.5 % 97.5 %
(Intercept) 56.0763544 81.57453344
read1 0.3881339 0.57321747
lrnprobi -0.4792725 -0.01693990
behsymp1 -0.3661746 0.02864639

factor(riskgrp)2 -5.5486638 2.14715922
factor(riskgrp)3 -8.0350660 2.68060322

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals

who differ by one point on READ1 but are the same on all other predictors should differ by 0.48
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points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically
different from zero (t = 9.93, p <.001). The two dummy codes appear as RISKGRP2 and RISKGRP3.
Consistent with a complete-data regression analysis, the dummy code slopes represent mean
differences relative to the low-risk reference group. For example, holding all other predictors
constant, the model predicts that a high-risk study would score 3.12 points lower than a low-risk
student in the comparison group. Note that these estimates are virtually identical to those from

MCMC and maximum likelihood estimation.

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is
statistically significant, thus refuting the null hypothesis that all population slopes equal zero.

Model comparison calculated from 20 imputed data sets.
Combination method: D1

F.value df1 df2  P(>F) RIV
34.144 5 125.765 ©.000 0.157

Hypothesis test adjusted for small samples with df=[132]
complete-data degrees of freedom.

14.6 Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.

The Mplus input file for analyzing the imputations is Ex14. inp.

Mplus Script Ex14.inp

1 DATA:

2 file = ./imps/implist.dat;

3  type = imputation;

4 VARIABLE:

5 names = id male hispanic riskgrp atrisk behsympl lrnprob1
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readl read2 read3 read9 read9grp stanread7

math1 math2 math3 math9 math9grp stanmath7;
usevariables = read9 readl lrnprob1 behsympl riskgrp2 riskgrp3;
9 DEFINE:
10 riskgrp2

o N O

o;
o;
12 if(riskgrp eq 2) then riskgrp2

11 riskgrp3

1l
—

13 if(riskgrp eq 3) then riskgrp3
14 MODEL :

15  read9 on readl lrnprobl behsympl riskgrp2 riskgrp3 (betal-beta5);
16 MODEL TEST:

17 @ = betal; 0 = beta2; 0 = beta3;

18 OUTPUT :

19  stdyx cinterval;

1l
—

The script is like previous Mplus scripts (e.g., the Ex1.1.inp file described in Section 1.2)
with four exceptions. First, instead of naming the raw data set, the DATA command lists the text
file containing the names of the imputed data sets (the implist.dat file located in the ./imps
subdirectory). The type = imputation subcommand instructs Mplus that the input data is a list
of file names. Second, the missing subcommand is omitted because the analysis variables are now
complete. Third, the MODEL section no longer specifies a normal distribution for the predictors or
models for the auxiliary variables. Finally, lines 9 through 13 use the DEFINE command to create a
pair of dummy codes. Lines 10 and 11 initialize a pair of new variables (RISKGRP2 and RISKGRP3)
with all Os, and lines 12 and 13 recode these variables into dummy variables. Importantly, new
variables computed with the DEFINE command must appear at the end of the usevariables list

on line 8. The code block below shows the analysis and pooling script.
14.7 Mplus Output

When fitting regression models to complete data sets, researchers often use an omnibus F test to
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal zero
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of Parameter
Constraints heading. The test statistic is statistically significant, thus refuting the null

hypothesis.
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MODEL FIT INFORMATION

Number of Free Parameters

Wald Test of Parameter Constraints

Value

Degrees of Freedom

P-Value

173.

432
5

0.0000

The table of unstandardized parameter estimates is shown below. The first two columns

display the pooled unstandardized estimates and standard errors, and the third and fourth

columns display the corresponding z-statistics and p-values. The focal model results are shown

below. The Rate of Missing column (also called the fraction of missing information in the

literature) quantifies the imputation noise in each estimate as proportion of its squared standard

€rror.

MODEL RESULTS

READS ON
READ1
LRNPROB1
BEHSYMP1
RISKGRP2
RISKGRP3

Intercepts
READ9

Residual Variances
READ9

68.

86.

Estimate

. 481
.248
.169
. 701
.677

826

381

N 2, OO0

12.

S.E.

.046
.114
.098
.903
.649

.303

116

Est./S.E.

10.

.501
.170
.728
.894
.011

919

.129

Two-Tailed

P-Value

S © © O

.000
.030
.084
.372
.312

.000

.000

Rate of
Missing

S & O O

.074
.152
.078
.084
.161

.175

.265
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The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48
points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically
different from zero (z = 10.50, p < .001). The two dummy codes appear as RISKGRP2 and
RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes represent
mean differences relative to the low-risk reference group. For example, holding all other
predictors constant, the model predicts that a high-risk study would score 2.67 points lower than
a low-risk student in the comparison group. Note that these estimates are virtually identical to
those from MCMC estimation. The output also includes a table with standardized coefficients

and the R-squared statistic.
14.8 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex14.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex14.spwb
1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ id male hispanic riskgrp atrisk
4 behsymp1 lrnprobl readl read2 read3 read9 read9grp stanread?
5 math1 math2 math3 math9 math9grp stanmath7.
6 EXE.
7
8 COMPUTE riskgrp2 = 0.
9 COMPUTE riskgrp3 = 0.

1l
—

10 IF (riskgrp = 2) riskgrp2

1l
—

11 IF (riskgrp = 3) riskgrp3
12 EXE.



FCS Multiple Imputation: Regression with a Multicategorical Predictor 200

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. The dummy

codes for the RISKGRP variable are created beginning at line 8.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 13 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 14 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 15.

SPSS Script Ex14.spwb, continued

13 SORT CASES by imputation_.

14 SPLIT FILE layered by imputation_.

15 regression

16 /descriptives mean stddev corr sig n

17 /dependent read9

18 /method enter readl lrnprobl behsymp1l riskgrp2 riskgrp3.

14.9 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and
significance tests are generally limited to univariate ¢ tests of individual parameters. Output tables
display the analysis results for each data set, and the pooled results are at the bottom of each table
(if they are produced). The figure below shows the pooled coefficients, standard errors, and test
statistics. The regression output also includes pooled means and correlations. The relative
increase in variance is a fraction comparing imputation noise to complete-data sampling
variation, and the fraction of missing information quantifies the imputation noise in each

estimate as proportion of its squared standard error.

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48

points on READ9. The corresponding test statistic indicates that the slope coefficient is statistically
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different from zero (¢ = 10.29, p < .001). The two dummy codes appear as RISKGRP2 and

RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes represent

mean differences relative to the low-risk reference group. For example, holding all other

predictors constant, the model predicts that a high-risk study would score 2.67 points lower than

a low-risk student in the comparison group. Note that these estimates are virtually identical to

those from MCMC and maximum likelihood estimation.

Coefficients?

Standardized

Unstandardized Coefficients Coefficients ) Relative )
Fraction Increase Relative
imputation_  Model B Std. Error Beta t Sig. Missing Info. Variance Efficiency
1.00 1 (Constant) 69.856 5.812 12.019 .000
readl 481 .045 .658 10.570 .000
Irnprob1 -.274 .106 -.200 -2.576 .011
behsymp1l -.155 .096 -.126 -1.604 111
riskgrp2 -1.631 1.875 -.054 -.870 .386
riskgrp3 -3.476 2.497 -.099 -1.392 .166
2.00 1 (Constant) 66.203 6.026 10.986 .000
readl .485 .046 671 10.599 .000
Irnprob1 -.182 .110 -.132 -1.646 .102
behsymp1 -.177 .098 -.144 -1.794 .075
riskgrp2 -2.382 1.905 -.080 -1.250 .213
riskgrp3 -3.062 2.545 -.087 -1.204 231
20.00 1 (Constant) 67.727 5.919 11.442 .000
readl 474 .045 .681 10.522 .000
Irnprob1 -.199 111 -.147 -1.790 .076
behsymp1l -.184 .099 -.154 -1.868 .064
riskgrp2 -1.833 1.881 -.063 -.974 .332
riskgrp3 -1.399 2.530 -.041 -.553 .581
Pooled 1 (Constant) 68.825 6.421 10.719 .000 .168 .199 .992
readl 481 .047 10.287 .000 .071 .076 .996
Irnprob1 -.248 117 -2.130 .033 .146 .168 .993
behsympl -.169 .100 -1.693 .091 .074 .080 .996
riskgrp2 -1.701 1.943 -.876 .381 .080 .087 .996
riskgrp3 -2.677 2.700 -.992 .322 .155 .180 .992

a. Dependent Variable: read9
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FCS Multiple Imputation: Random Intercept Model

This example illustrates model-agnostic fully conditional specification multiple imputation for
multilevel data with random intercepts. The analysis uses the problemsolving2level.dat data
set taken from a cluster-randomized educational intervention where 29 schools were assigned to
an intervention and comparison condition. In addition to the intervention assignment indicator,
school-level variables include the average years of teacher experience and the percentage of
learners for whom English is a second language. The 928 student-level records include pretest
and posttest math problem-solving and self-efficacy scores, standardized math scores taken from

a statewide assessment, and several sociodemographic variables. The analysis variables are as

follows.

Name Definition Missing %  Scale

SCHOOL School identifier 0 Integer index

CONDITION  Experimental condition 0 0 = Control, 1 = Experimental
HISPANIC Ethnicity/race 9.0 0 = Other, 1 = Hispanic
FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/Reduced Lunch
PSOLVEPRE Math problem-solving pretest 0 Numeric (37 to 66)

PSOLVEPST  Math problem-solving posttest  20.5 Numeric (37 to 65)

15.1 Imputation and Analysis Models

To illustrate multilevel fully conditional specification, suppose the ultimate analysis is a random
intercept regression model. The goal of the analysis is to determine whether the intervention
groups differ on an end-of-year math problem-solving test after controlling for three student-

level covariates: math problem-solving pre-test scores, a Hispanic dummy code, and a free or



FCS Multiple Imputation: Random Intercept Model 203

reduced lunch assistance dummy code. To convey each variable’s level, the i and j subscripts

denote students and schools, respectively.

PSOLVEPST;; = (Yoo + to;) + Y10(PSOLVEPRE[}®) + y,,( HISPANIC{*®)

+ ¥30(FRLUNC icjwc) + Yor(Mjpsorverre)) + Yoo (Mjcarspanic)) (29)

+ Yos(#j(FRLUNCH)) + Yo4(CONDI TIO]\]j) + &jj

The analysis model partitions the level-1 covariates into pure within-cluster (group mean
centered) and between-cluster components. The cwc superscript denotes centering within cluster
(group mean centering). All coefficients with a leading zero subscript are school-level effects, and
all coefficients with non-zero leading subscripts are pure within-school effects. The y, slope is of
particular interest because it captures the intervention effect, controlling for covariates. Chapter
16 uses the same analysis model to illustrate MCMC estimation and model-based multiple

imputation.

Fully conditional specification imputation uses a sequence of univariate regression models to
fill in missing values. Specifically, each MCMC iteration fits a series of models where one
incomplete variable is regressed on all other variables. The predicted values and residual variance
from each model define the center and spread of the imputed values, which are drawn at random
from a normal distribution. After imputing the missing scores, the filled-in variable becomes a
predictor in all other imputation models in the sequence. The imputation stage should include all
variables and effects for the subsequent analyses, and it should incorporate auxiliary variables
that either predict missingness or correlate with the incomplete variables (Collins et al., 2001).
Blimp’s multilevel fully conditional specification routine also uses the latent cluster means (i.e.,
random intercepts) of level-1 variables in the imputation models (Enders et al., 2020). This
disaggregated specification preserves unique within- and between-cluster associations in the
data.

15.2  Blimp and rblimp FCS Scripts
The code block below shows Blimp script Ex15.inp. This script is executed in the Blimp Studio
graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex15.imp

1 DATA: problemsolving2level.dat;
2 VARIABLES: school student condition teachexp eslpct ethnic male
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3 frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst;
4 CLUSTERID: school;

5 ORDINAL: condition frlunch;

6  MISSING: 999;

7 FIXED: condition psolvepre;

8 FCS: psolvepst psolvepre hispanic frlunch condition;
9  SEED: 90291;

10 BURN: 1000;

11 ITERATIONS: 10000;

12 NIMPS: 20;

13 CHAINS: 20;

14 SAVE:

15  stacked = ./imps/imps.dat;

16  separate = ./imps/imp*.dat;

The first six lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The CLUSTERID command on line 4 lists the
school-level identifier variable that indicates the clustering of the data records in schools.
Including the CLUSTERID command automatically introduces random intercepts for all level-1
variables. When a level-1 variable appears as a predictor of another level-1 variable, its random
intercepts are used as a level-2 covariate in the imputation model (i.e., imputation uses latent
contextual effects). When a level-1 variable appears as a predictor of a level-2 variable, just the
random intercepts are in the imputation model. The ORDINAL command on line 5 identifies
binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as the
statistical models are identical. The MISSING command on line 6 defines a global missing value
code as 999.

Next, the FCS command lists all variables—complete or incomplete at either level—that are
included in the imputation phase. Using the FIXED command to identify complete variables
reduces computational time because these variables do not require a regression model. Lines 9
through 11 can also be viewed as a block of commands that specify features of the MCMC
algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
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imputation model summaries are based (essentially, the total number of MCMC cycles across all

chains following the warm-up period).

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the . /imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

The corresponding rblimp script Ex15.R is shown below.

rblimp Script Ex15.R

1 library(rblimp)

2 load('problemsolving2level.rda')

3

4 mymodel <- rblimp_fcs(

5 data = problemsolving2level,

6 clusterid = 'school',

7 ordinal = 'condition hispanic frlunch',
8 fixed = 'condition psolvepre',

9 variables = 'psolvepst psolvepre hispanic frlunch condition',
10 seed = 90291,

11 burn = 1000,

12 iter = 10000,

13 nimps = 20,
14 chains = 20)
15 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the
rblimp_fcs function. The two exceptions are the MISSING and FCS commands. The former is
omitted because that information is contained in the R data file. The FCS command is replaced by

a variables parameter that lists the variables to be included in the imputation model. Following
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R convention, the input parameters are separated by commas. Alphanumeric inputs like variable
lists are enclosed in quotes, and numeric inputs like the seed and number of iterations do not

require quotes. Finally, the output(mymodel) function prints the Blimp output.
15.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
26 to 50 1.374 14

51 to 100 1.300 19

76 to 150 1.125 12

451 to 900 1.022 12

476 to 950 1.019 12

501 to 1000 1.015 1

The next output excerpt shows information about the data and the variables in the imputation

models.

DATA INFORMATION:

Level-2 identifier: school
Sample Size: 982
Level-2 Clusters: 29
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Missing Data Rates:

hispanic = 08.96
frlunch = 04.68
psolvepst = 20.47

VARIABLES IN IMPUTATION MODEL:

Fixed variables: condition psolvepre
Incomplete continuous: psolvepst
Incomplete ordinal: hispanic frlunch

NUMBER OF PARAMETERS
Imputation Models: 25

MCMC estimation produces a distribution for each parameter in every unique imputation
model. The median and standard deviation columns describe the center and spread of the
posterior distributions; although they make no reference to drawing repeated samples, they are
analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. The Blimp
output includes tables of regression parameters for every incomplete variable’s imputation
model. The imputation model parameters are not of substantive interest and would not be

reported. An example table is shown below.

Missing variable:  frlunch
Parameters Median StdDev 2.5% 97.5% PSR N_Eff
Grand Mean 1.013 0.138 0.754 1.295 1.008 2339.218
Level 1:
hispanic 0.112 0.067 -0.015 0.248 1.018 1013.866
psolvepre 0.010 0.012 -0.013 0.034 1.009 1991.112
psolvepst -0.025 0.013 -0.050 -0.000 1.012 1781.354
Residual Var. 1.000 0.000 1.000 1.000 nan nan
Level 2:
condition 0.093 0.360 -0.620 0.822 1.005 3010.372

hispanic 0.016 0.256 -0.473 0.538 1.007  2250.809
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psolvepst -0.124 0.102 -0.333 0.066 1.005 2603.149

Residual Var. 0.269 0.111 0.136 0.563 1.010 1860.140
Thresholds:

Tau 1 0.000 0.000 0.000 0.000 nan nan

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

school student condition teachexp eslpct ethnic male frlunch
lowach stanmath efficacyp efficacyl psolvepre psolvepst

stacked = './imps/imps.dat'

imp# school student condition teachexp eslpct ethnic male frlunch
lowach stanmath efficacyp efficacyl psolvepre psolvepst

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.
15.4  Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex15.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).
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R Script Ex15.R

1 library(rblimp)

2 library(rockchalk)

3 library(1me4)

4 library(mitml)

5 load('problemsolving2level.rda')

6

7 mymodel <- rblimp(...)

8

9 implist <- as.mitml(mymodel)

10

11 for (i in 1:length(implist)) {

12 implist[[i]] <- gmc(implist[[i]], x = c('psolvepre', 'hispanic', 'frlunch'),
13 by = c('school'), FUN = mean, suffix = c('.meanj', '.cwc'),
14 fulldataframe = TRUE)

15 3}

16

17 fit <- with(implist,

18 Imer(psolvepst ~ psolvepre.cwc + hispanic.cwc + frlunch.cwc
19 + psolvepre.meanj + hispanic.meanj + frlunch.meanj + condition
20 + (1 | school), REML = T))

21

22 estimates <- testEstimates(fit, extra.pars = T)

23 estimates

24 confint(estimates)

To begin, as.mitml on Line 9 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 11 through 15 use the gmc
function in the rockchalk package to group mean center three predictors at their manifest
(arithmetic) cluster means. Lines 17 through 20 fit the focal regression model using the 1mer
function, and line 22 uses the testEstimates function in mitml to implement Rubin’s pooling
rules and save the results in an object called estimates. Lines 23 and 24 print the pooled

estimates and confidence intervals.
15.5 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns

display the pooled unstandardized estimates and standard errors, and the third through fifth
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columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error  t.value df  PC|t]) RIV FMI
(Intercept) 20.215 11.486 1.760 5472.720 0.078 0.063 0.059
psolvepre.cwc 0.457 0.035 13.235 683.373 0.000 0.200 0.169
hispanic.cwc 1.024 0.416 2.462  424.087 0.014 0.268 0.215
frlunch.cwc -0.714 0.492 -1.451 158.111 0.149 0.531 0.355
psolvepre.meanj 0.627 0.218 2.880 4712.621 0.004 0.068 0.064
hispanic.meanj 4.976 1.382 3.601 4473.786 0.000 0.070 0.066
frlunch.meanj -2.644 2.506 -1.055 6610.732 0.292 0.057 0.054
condition 2.371 0.720 3.295 2326.583 0.001 0.099 0.091

Estimate

Intercept~~Intercept|school 2.303
Residual~~Residual 20.609
ICC|school 0.101

Unadjusted hypothesis test as appropriate in larger samples.

> confint(estimates)
2.5 % 97.5 %

(Intercept) -2.3018772 42.7319331
psolvepre.cwc 0.3891564 0.5247364
hispanic.cwc 0.2063039 1.8414960
frlunch.cwc -1.6863210 0.2578444
psolvepre.meanj 0.2001714 1.0534617
hispanic.meanj 2.2667656 7.6850867
frlunch.meanj  -7.5570658 2.2693889
condition 0.9599550 3.7818573

The random intercept and within-cluster residual variances are denoted
Intercept~~Intercept|school and Residual~~Residual, respectively. Moving to the

coefficient section, the primary focus is the yy, coefficient, which indicates that intervention
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schools scored 2.37 points higher than control schools, on average, controlling for student- and
school-level covariates. The corresponding test statistic indicates that the group mean difference
is statistically different from zero (t = 3.30, p <.001).

15.6  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.

The Mplus input file for analyzing the imputations is Ex15. inp.

Mplus Script Ex15.inp
1 DATA:
2 file = ./imps/implist.dat;
3 type = imputation;
4 VARIABLE:
5 names = school student condition teachexp eslpct ethnic male frlunch
6 lowach stanmath efficacyl efficacy2 psolvepre psolvepst;
7 usevariables = psolvepst psolvepre hispanic frlunch condition
7 psolveprej hispanicj frlunchj;
8 cluster = school;
9 within = psolvepre hispanic frlunch;
10 between = psolveprej hispanicj frlunchj condition;
11 DEFINE:
12 psolveprej = cluster_mean(psolvepre);
13 hispanicj = cluster_mean(hispanic);
14 frlunchj = cluster_mean(frlunch);
15  center psolvepre hispanic frlunch (groupmean);
16 center psolveprej hispanicj frlunchj (grandmean);
17 ANALYSIS:
18  type = twolevel;
19  MODEL:
20 %within%
21 psolvepst on psolvepre hispanic frlunch;
22 %between%
23 psolvepst on psolveprej hispanicj frlunchj condition;
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24 OUTPUT:
25  stdyx cinterval;

The DATA command lists the text file containing the names of the imputed data sets (the
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand
instructs Mplus that the input data is a list of file names. The VARIABLE command provides
information about the data. Beginning on line 5, the names subcommand assigns names to the
variables in the input data file, and the usevariables subcommand selects variables for the
analysis, with new variables computed on the DEFINE command listed at the end of the line. The
cluster command on line 8 lists the school-level identifier variable that indicates the clustering
of the data records in schools. The within and between subcommands on lines 9 and 10 identify
level-1 and level-2 predictors, respectively. Lines 11 through 14 define new variables that are the
group means of the level-1 covariates. On lines 15 and 16, the center subcommand under the
DEFINE command centers the within- and between-cluster covariates at their group and grand
means, respectively. The ANALYSIS command and the type = twolevel subcommand is
required for estimating two-level models. The MODEL section of the script consists of two sections:
the %within% section specifies the regression of the outcome on level-1 predictors, and the
%between% section specifies the regression of the random intercepts on the level-2 predictors.
Finally, the OUTPUT command specifies two keywords on line 25 that request standardized

coefficients and confidence intervals.
15.7  Mplus Output

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The focal model results are shown below. The
Rate of Missing column (also called the fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

MODEL RESULTS
Two-Tailed Rate of
Estimate S.E. Est./S.E. P-Value Missing

Within Level
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PSOLVEPST ON

PSOLVEPRE 0.457 0.032 14.287 0.000 0.197
HISPANIC 1.024 0.379 2.701 0.007 0.260
FRLUNCH -0.714 0.469 -1.524 0.128 0.392

Residual Variances
PSOLVEPST 20.539 1.393 14.747 0.000 0.212

Between Level

PSOLVEPST ON

PSOLVEPREJ 0.629 0.159 3.953 0.000 0.119

HISPANICJ 4.980 1.284 3.878 0.000 0.075

FRLUNCHJ -2.618 1.687 -1.552 0.121 0.118

CONDITION 2.372 0.660 3.594 0.000 0.107
Intercepts

PSOLVEPST 52.516 0.520 101.066 0.000 0.072
Residual Variances

PSOLVEPST 1.816 0.746 2.436 0.015 0.100

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and
Between Level, respectively). The primary focus is the y, coefficient, which indicates that
intervention schools scored 2.37 points higher than control schools, on average, controlling for
student- and school-level covariates. The corresponding test statistic indicates that the group
mean difference is statistically different from zero (z = 3.59, p < .001). Note that these estimates

are virtually identical to those from MCMC estimation in the next section.
15.8 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex15.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.
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SPSS Script Ex15.spwb
1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ school student condition teachexp eslpct hispanic male
4 frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst.
5 EXE.
6
7 AGGREGATE
8 /outfile = * mode = addvariables overwrite = yes
9 /break=imputation_ school
10 /psolvepre_meanj = mean(psolvepre)
11 /hispanic_meanj = mean(hispanic)
12 /frlunch_meanj = mean(frlunch).
13 EXE.
14
15 AGGREGATE
16 /outfile = * mode = addvariables overwrite = yes
17 /psolvepre_mean = mean(psolvepre)
18 /hispanic_mean = mean(hispanic)
19 /frlunch_mean = mean(frlunch).
20 EXE.
21
22  COMPUTE psolvepre_cwc = psolvepre - psolvepre_meanj.
23 COMPUTE hispanic_cwc = hispanic - hispanic_meanj.
24 COMPUTE frlunch_cwc = frlunch - frlunch_meanj.
25 COMPUTE psolvepre_meanj = psolvepre_meanj - psolvepre_mean.
26 COMPUTE hispanic_meanj = hispanic_meanj - hispanic_mean.
27 COMPUTE frlunch_meanj = frlunch_meanj - frlunch_mean.
28 EXE.

The first line

uses the CD command to change the working directory to the desktop. The

username portion of the file path should be replaced with the user's own account name. The data

command uses a relative file path to read the stacked data file from the desktop. Variable names

are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that

identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,

and the pooling routines will not function if the index variable has a different name. On line 7,
the AGGREGATE command adds the grand means to the data, whereas the AGGREGATE command on
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line 15 adds the grand means into the data. Beginning on line 22, level-1 predictors are centered

at their group means, and level-2 predictors are centered at their grand means.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 29 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 30 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 31.

SPSS Script Ex15.spwb, continued

29 SORT CASES by imputation_.
30 SPLIT FILE layered by imputation_.
31 MIXED psolvepst with psolvepre_cwc hispanic_cwc frlunch_cwc

32 psolvepre_meanj hispanic_meanj frlunch_meanj condition
33 /print = solution testcov

34 /fixed = intercept psolvepre_cwc hispanic_cwc frlunch_cwc
35 psolvepre_meanj hispanic_meanj frlunch_meanj condition

36 /random = intercept | subject(school) covtype(id).

15.9 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate ¢ tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefficients, standard errors, and test statistics.
The output also includes pooled estimates of level-2 variance and covariance parameters. The
relative increase in variance is a fraction comparing imputation noise to complete-data sampling
variation, and the fraction of missing information quantifies the imputation noise in each

estimate as proportion of its squared standard error.

The results are interpreted in the same way as a complete-data multilevel analysis. The pooled
regression coefficients are in the table labeled Estimates of Fixed Effects. The primary focus
is the yg, coefficient, which indicates that intervention schools scored 2.39 points higher than
control schools, on average, controlling for student-and school-level covariates. The
corresponding test statistic indicates that the group mean difference is statistically different from
zero (t = 3.36, p < .001). The pooled random intercept and within-cluster residual variances are

in the table labeled Estimates of Covariance Parameters.
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Estimates of Fixed Effects®
95% Confidence Interval . Relative .
Fraction Increase Relative
imputation_  Parameter Estimate Std. Error df t Sig. Lower Bound ~ Upper Bound Missing Info. Variance Efficiency
1.00 Intercept 52.580433 .495959 26.074 106.018 .000 51.561115 53.599750
psolvepre_cwc .467157 .031442 951.185 14.858 .000 .405452 .528861
hispanic_cwc 1.338000 .364458 951.185 3.671 .000 .622766 2.053234
frlunch_cwc -.645617 .396321 951.185 -1.629 .104 -1.423381 .132148
psolvepre_meanj .563848 .210741 22.763 2.676 .014 .127645 1.000051
hispanic_meanj 5.138691 1.321169 26.070 3.890 .001 2.423344 7.854039
frlunch_meanj -2.426586 2.278931 22.311 -1.065 .298 -7.148983 2.295810
condition 2.752637 .674008 24.410 4.084 .000 1.362789 4.142486
2.00 Intercept 52.722033 .554059 25.758 95.156 .000 51.582627 53.861439
psolvepre_cwc .438724 .031450 951.062 13.950 .000 .377006 .500443
hispanic_cwc .729561 .367351 951.062 1.986 .047 .008649 1.450474
frlunch_cwc -.841150 .403055 951.062 -2.087 .037 -1.632130 -.050169
psolvepre_meanj 644775 .230154 23.088 2.801 .010 .168767 1.120784
hispanic_meanj 5.078729 1.452633 25.164 3.496 .002 2.087966 8.069493
frlunch_meanj -2.810802 2.700134 22.358 -1.041 .309 -8.405346 2.783742
condition 2.537438 .753748 24.403 3.366 .003 .983136 4.091740
cee
20.00 Intercept 52.668203 .507763 25.852 103.726 .000 51.624191 53.712215
psolvepre_cwc 471265 .030876 951.009 15.263 .000 410672 .531857
hispanic_cwc 729314 .360138 951.009 2.025 .043 .022556 1.436072
friunch_cwc -.626613 .389548 951.009 -1.609 .108 -1.391087 .137860
psolvepre_meanj .674558 .214997 22.827 3.138 .005 .229617 1.119500
hispanic_meanj 5.229732 1.308554 25.502 3.997 .000 2.537403 7.922061
frlunch_meanj -1.521656 2.408127 22.697 -.632 .534 -6.506934 3.463622
condition 2.521599 .693632 24.259 3.635 .001 1.090821 3.952377
Pooled Intercept 52.712916 .519739 101.422 .000 51.694050 53.731782 .055 .058 .997
psolvepre_cwc 457342 .033487 13.657 .000 .391644 .523041 .126 .142 .994
hispanic_cwc .883800 .432438 2.044 .042 .031909 1.735691 .288 394 .986
friunch_cwc -.762919 .448334 -1.702 .090 -1.644290 .118452 221 .278 .989
psolvepre_meanj 647754 .214709 3.017 .003 .226889 1.068619 .041 .042 .998
hispanic_meanj 4.945729 1.369106 3.612 .000 2.261890 7.629569 .051 .053 .997
frlunch_meanj -2.183826 2.482914 -.880 .379 -7.051046 2.683394 .051 .053 .997
condition 2.385462 .709734 3.361 .001 .994050 3.776875 .064 .068 997
a. Dependent Variable: psolvepst.
Estimates of Covariance Parameters?
95% Confidence Interval . Relative .
Fraction Increase Relative
putation_  Parameter Estimate Std. Error Wald Z Sig. Lower Bound ~ Upper Bound  Missing Info. Variance Efficiency
00 Residual 20.502350 .940126  21.808 .000 18.740112 22.430301
Intﬁrcle]pt [subject = Variance 2.275789 .839452 2.711 .007 1.104475 4.689301
school
00 Residual 20.552490 .942486  21.807 .000 18.785833 22.485286
Intﬁrc«lalpt [subject = Variance 2.887200 1.016744 2.840 .005 1.447843 5.757478
school
0.00 Residual 19.810977 .908508  21.806 .000 18.108014 21.674095
Intercept [subject = Variance 2.427108 .879182 2.761 .006 1.193314 4.936550
school]
yoled Residual 20.388138 1.059107 .000 18.305865 22.470410 225 .283 .98
Intercept [subject = Variance 2.314333 .884311 .009 .580328 4.048339 .085 .092 .99

school]

a. Dependent Variable: psolvepst.
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MCMC: Random Intercept Model

This example illustrates a two-level multiple regression with random intercepts. The analysis uses
the problemsolving2level.dat data set taken from a cluster-randomized educational
intervention where 29 schools were assigned to an intervention and comparison condition. In
addition to the intervention assignment indicator, school-level variables include the average
years of teacher experience and the percentage of learners for whom English is a second
language. The 928 student-level records include pretest and posttest math problem-solving and
self-efficacy scores, standardized math scores taken from a statewide assessment, and several

sociodemographic variables. The analysis variables are as follows.

Name Definition Missing %  Scale

SCHOOL School identifier 0 Integer index

CONDITION  Experimental condition 0 0 = Control, 1 = Experimental
HISPANIC Ethnicity/race 9.0 0 = Other, 1 = Hispanic
FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/Reduced Lunch
PSOLVEPRE Math problem-solving pretest 0 Numeric (37 to 66)

PSOLVEPST  Math problem-solving posttest 20.5 Numeric (37 to 65)

16.1  Analysis Model

The analysis is a random intercept model with a school-level intervention code and three
student-level covariates: math problem-solving pre-test scores, a Hispanic dummy code, and a
free or reduced lunch assistance dummy code. The goal of the analysis is to determine whether
the intervention groups differ on an end-of-year math problem-solving test after controlling for
three student-level variables. To convey each variable’s level, the i and j subscripts denote

students and schools, respectively.
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PSOLVEPST;; = (Yoo + Uo;) + Y10(PSOLVEPRE{*) + y20(HISPANIC{ )

cgm cgm

+ ¥30(FRLUNCHS ch) +Yo1 (:“ j(PSOLVEPRE)) + Yoz (:“ j(HISPANIC)) (30)

cgm
+ ym(’“j(FRLUNCH)) + 704(CONDITIONJ.) + &

The analysis model partitions the level-1 covariates into pure within-cluster and between-cluster
components. MCMC centers the student-level covariates at their school-level latent group
means. All coefficients with a leading zero subscript are school-level effects, and all coefficients
with non-zero leading subscripts are pure within-school effects. The cwc superscript denotes
centering within cluster (group mean centering), and cgm indicates centering at the grand mean.
The y4 slope is of particular interest because it captures the intervention effect, controlling for
covariates. Unlike a complete-data regression analysis, all incomplete variables require
distributional assumptions, including the predictors. Blimp uses a factored regression
specification that assigns separate distributions to the predictors and outcome. By default, Blimp
invokes a multivariate normal distribution for numeric predictors and the latent response scores

for discrete predictors.
16.2  Blimp and rblimp MCMC Scripts
The code block below shows Blimp script Ex16. 1. inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex16.1.imp

1 DATA: problemsolving2level.dat;

2 VARIABLES: school student condition teachexp eslpct ethnic male
3 frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst;
4 CLUSTERID: school;

5 ORDINAL: condition hispanic frlunch;

6  MISSING: 999;

7 FIXED: condition psolvepre;

8  CENTER:

9  groupmean = psolvepre hispanic frlunch;

10 grandmean = psolvepre.mean hispanic.mean frlunch.mean;

11 MODEL :

12 psolvepst ~ psolvepre hispanic frlunch

13 psolvepre.mean hispanic.mean frlunch.mean condition;
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14 SEED: 90291;
15 BURN: 5000;
16 ITERATIONS: 10000;

The first six lines can be viewed as a set of commands that specify information about the data
and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns. The CLUSTERID command on line 4 lists the
school-level identifier variable that indicates the clustering of the data records in schools.
Including the CLUSTERID command automatically introduces random intercepts. The ORDINAL
command on line 5 identifies binary and ordinal variables. Binary variables can be defined as
ordinal or nominal, as the statistical models are identical. The MISSING command on line 6

defines a global missing value code as 999.

The FIXED, CENTER, and MODEL blocks can be viewed as a set. The FIXED command identifies
two complete predictors that do not require a distribution or regression model. The CENTER
command deviates the student-level covariates at the latent group means, and it centers the
group means (ending in the .mean suffix) at their iteratively-estimated grand means. Beginning
on line 11, the MODEL command lists the regression models, with outcome variables to the left of
the tilde and predictors to the right. Blimp automatically configures the explanatory variable
models under the assumption that the numeric variables and latent response scores (discrete
predictors) are normally distributed. Finally, lines 14 through 16 can be viewed as a block of
commands that specify features of the MCMC algorithm: the SEED command gives an integer
string that initializes the random number generator, the BURN command specifies the number of
iterations for the warm-up or burn-in period, and the ITERATIONS command gives the number of
MCMOC iterations on which the analysis summaries are based (essentially, the number of MCMC

cycles following the warm-up period).

The corresponding rblimp script Ex16.R is shown below.

rblimp Script Ex16.R

1 library(rblimp)

2 load('problemsolving2level.rda')
3

4 mymodel <- rblimp(

5 data = problemsolving2level,
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6 clusterid = 'school',

7 ordinal = 'condition hispanic frlunch',

8 fixed = 'condition psolvepre',

9 center = 'groupmean = psolvepre hispanic frlunch;

10 grandmean = psolvepre.mean hispanic.mean frlunch.mean',
11 model = 'psolvepst ~ psolvepre hispanic frlunch

12 psolvepre.mean hispanic.mean frlunch.mean condition',
13 seed = 90291,

14 burn = 5000,

15 iter = 10000)

16  output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
16.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.
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Comparing iterations across 2 chains Highest PSR  Parameter #
126 to 250 1.340 21
251 to 500 1.252 39
376 to 750 1.090 31
2251 to 4500 1.017 3
2376 to 4750 1.027 21
2501 to 5000 1.029 21

The next section of the output displays information about the variables in the analysis and the
models used for estimation. This output table mimics the one from Section 6.3, but it

additionally reports the number of observations at each level.

DATA INFORMATION:

Level-2 identifier: school
Sample Size: 982
Level-2 Clusters: 29

Missing Data Rates:

psolvepst = 20.47
hispanic = 08.96
frlunch = 04.68
psolvepre = 00.00

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,

standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
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“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: psolvepst

Grand Mean Centered: frlunch.mean[school] hispanic.mean[school]

psolvepre.mean[school]

Group Mean Centered: frlunch hispanic psolvepre

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
L2 : Var(Intercept) 2.452 1.204 1.056 5.679 -—- ---  1460.938
Residual Var. 20.586 1.073 18.622 22.787 -—- --- 5882.801
Coefficients:
Intercept 52.423 0.732 50.928 53.855 5125.493 0.000 335.563
psolvepre 0.456 0.036 0.387 0.527 160.387 0.000 5660.178
hispanic 0.944 0.437 0.087 1.802 4.672 0.031  4201.346
frlunch -0.782 0.469 -1.698 0.144 2.790 0.095 4545.674
psolvepre.mean[school] 0.710 0.335 0.062 1.405 4.585 0.032 494.808
hispanic.mean[school] 5.312 1.706 2.014 8.678 9.694 0.002 756.422
frlunch.mean[school] -1.698 3.519 -8.737 5.161 0.234 0.629 553.383
condition 2.423 0.791 0.900 4.017 9.415 0.002 876.374
Standardized Coefficients:
psolvepre 0.361 0.028 0.306 0.414 169.280 0.000 3072.827
hispanic 0.064 0.030 0.006 0.122 4.673 0.031  4124.638
frlunch -0.049 0.029 -0.106 0.009 2.784 0.095  4432.903
psolvepre.mean[school] 0.195 0.087 0.017 0.364 4.982 0.026 523.214
hispanic.mean[school] 0.225 0.069 0.085 0.355 10.536 0.001 796.874
frlunch.mean[school] -0.043 0.085 -0.207 0.125 0.245 0.620 553.606
condition 0.201 0.063 0.075 0.321 10.150 0.001 885.531

Proportion Variance Explained
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by Coefficients 0.332 0.040 0.253 0.409 -—- ---  1034.513
by Level-2 Random Intercepts 0.071 0.031 0.031 0.149 --= ---  1432.122
by Level-1 Residual Variation 0.594 0.041 0.505 0.669 --= ---  1142.265

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are

insufficient, increasing the value on the ITERATIONS command will remedy the issue.

The results are interpreted in the same way as a complete-data multilevel analysis. The first
section of the output table displays the variance estimates. The random intercept and within-
cluster residual variances are denoted L2:Var(Intercept) and Residual Var., respectively.
Moving to the coefficient section, the primary focus is the y,, coefficient, which indicates that
intervention schools scored 2.42 points higher than control schools, on average, controlling for
student- and school-level covariates. The 95% credible interval limits suggest this effect is
statistically different from zero (p < .05) because the null value is well outside the interval. The
frequentist test statistic and p-value give the same conclusion. Finally, the bottom section of the
table displays Rights and Sterba (2019) R-squared effect size values. The fixed effects explain 33%

of the total variation, and the random intercepts account for 7% of the variability.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
16.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The
Blimp input file Ex16.2.imp is identical Ex16.1.imp, but it adds the following lines at the bottom
of the script.
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NIMPS: 20;

CHAINS: 20;

SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

school student condition teachexp eslpct ethnic male frlunch
lowach stanmath efficacyp efficacyl psolvepre psolvepst

stacked = './imps/imps.dat'

imp# school student condition teachexp eslpct ethnic male frlunch
lowach stanmath efficacyp efficacyl psolvepre psolvepst
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The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.
rblimp Script Ex16.R
1 library(rblimp)
2 load('problemsolving2level.rda')
3
4 mymodel <- rblimp(
5 data = problemsolving2level,
6 clusterid = 'school',
7 ordinal = 'condition hispanic frlunch',
8 fixed = 'condition psolvepre',
9 center = 'groupmean = psolvepre hispanic frlunch;
10 grandmean = psolvepre.mean hispanic.mean frlunch.mean',
11 model = 'psolvepst ~ psolvepre hispanic frlunch
12 psolvepre.mean hispanic.mean frlunch.mean condition',
13 seed = 90291,
14 burn = 5000,
15 iter = 10000,

16 nimps = 20,
17 chains = 20)
18 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
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16.5 Analyzing Multiple Imputationsin R

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex16.R

1 library(rblimp)

2 library(rockchalk)

3 library(1me4)

4 library(mitml)

5 load('problemsolving2level.rda')

6

7 mymodel <- rblimp(...)

8

9 implist <- as.mitml(mymodel)

10

11 for (i in 1:length(implist)) {

12 implist[[i]] <- gmc(implist[[i]], x = c('psolvepre', 'hispanic', 'frlunch'),
13 by = c('school'), FUN = mean, suffix = c('.meanj', '.cwc'),
14 fulldataframe = TRUE)

15}

16

17 fit <- with(implist,

18 Imer(psolvepst ~ psolvepre.cwc + hispanic.cwc + frlunch.cwc
19 + psolvepre.meanj + hispanic.meanj + frlunch.meanj + condition
20 + (1 | school), REML = T))

21

22 estimates <- testEstimates(fit, extra.pars = T)

23 estimates

24 confint(estimates)

To begin, as.mitml on Line 9 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 11 through 15 use the gmc
function in the rockchalk package to group mean center three predictors at their manifest
(arithmetic) cluster means. Lines 17 through 20 fit the focal regression model using the 1mer

function, and line 22 uses the testEstimates function in mitml to implement Rubin’s pooling
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rules and save the results in an object called estimates. Lines 23 and 24 print the pooled

estimates and confidence intervals.

16.6 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns

display the pooled unstandardized estimates and standard errors, and the third through fifth

columns display the corresponding test statistics. The RIV column (relative increase in variance)

is a fraction comparing imputation noise to complete-data sampling variation, and the FMI

column (fraction of missing information in the literature) quantifies the imputation noise in each

estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained

(Intercept)
psolvepre.cwc
hispanic.cwc
frlunch.cwc
psolvepre.meanj
hispanic.meanj
frlunch.meanj

condition

Intercept~~Intercept|school
Residual~~Residual

ICC|school

Unadjusted hypothesis test as

(Intercept)
psolvepre.cwc
hispanic.cwc
frlunch.cwc
psolvepre.meanj
hispanic.meanj

frlunch.meanj

Estimate Std.Error

18.844 11.351
0.457 0.033
0.884 0.432

-0.763 0.448
0.648 0.215
4.946 1.369

-2.184 2.483
2.385 0.710

Estimate
2.314
20.388
0.102

2.5 % 97.5 %
-3.4048602 41.0932538
0.3916436 0.5230409
0.0319088 1.7356905
-1.6442904 0.1184517
0.2268885 1.0686187
2.2618899 7.6295689
-7.0510463 2.6833948

t.value
1.660
13.657
2.044
-1.702
3.017
3.612
-0.880
3.361

11720.
1229.
238.
402.
11590.
7380.
7373.
4675.

from 20 imputed data sets.

df
210
129
166
169
269
527
485
153

PC>1t1)

0.
.000
.042
.090
.003
.000
.379
.001
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appropriate in larger samples.

097
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RIV

.042
.142
.394
.278
.042
.053
.053
.068

S © © ©& O oo .

FMI

.040
.126
.288
.221
.041
.051
.051
.064
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condition 0.9940498 3.7768751

The random intercept and within-cluster residual variances are denoted
Intercept~~Intercept|school and Residual~~Residual, respectively. Moving to the
coefficient section, the primary focus is the yy, coefficient, which indicates that intervention
schools scored 2.39 points higher than control schools, on average, controlling for student- and
school-level covariates. The corresponding test statistic indicates that the group mean difference
is statistically different from zero (t = 3.36, p < .001). Note that the intercept differs prior the

MCMC estimate because the cluster means are not centered in the multiple imputation analysis.
16.7  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.

The Mplus input file for analyzing the imputations is Ex16. inp.

Mplus Script Ex16.inp
1 DATA:
2 file = ./imps/implist.dat;
3 type = imputation;
4 VARIABLE:
5 names = school student condition teachexp eslpct ethnic male frlunch
6 lowach stanmath efficacyl efficacy2 psolvepre psolvepst;
7 usevariables = psolvepst psolvepre hispanic frlunch condition
7 psolveprej hispanicj frlunchj;
8 cluster = school;
9 within = psolvepre hispanic frlunch;
10 between = psolveprej hispanicj frlunchj condition;
11 DEFINE:
12 psolveprej = cluster_mean(psolvepre);
13 hispanicj = cluster_mean(hispanic);
14 frlunchj = cluster_mean(frlunch);
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15  center psolvepre hispanic frlunch (groupmean);

16 center psolveprej hispanicj frlunchj (grandmean);
17 ANALYSIS:

18  type = twolevel;

19  MODEL:

20 %within%

21 psolvepst on psolvepre hispanic frlunch;

22 %between%

23 psolvepst on psolveprej hispanicj frlunchj condition;
24 OUTPUT:

25  stdyx cinterval;

The DATA command lists the text file containing the names of the imputed data sets (the
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand
instructs Mplus that the input data is a list of file names. The VARIABLE command provides
information about the data. Beginning on line 5, the names subcommand assigns names to the
variables in the input data file, and the usevariables subcommand selects variables for the
analysis, with new variables computed on the DEFINE command listed at the end of the line. The
cluster command on line 8 lists the school-level identifier variable that indicates the clustering
of the data records in schools. The within and between subcommands on lines 9 and 10 identify
level-1 and level-2 predictors, respectively. Lines 11 through 14 define new variables that are the
group means of the level-1 covariates. On lines 15 and 16, the center subcommand under the
DEFINE command centers the within- and between-cluster covariates at their group and grand
means, respectively. The ANALYSIS command and the type = twolevel subcommand is
required for estimating two-level models. The MODEL section of the script consists of two sections:
the %within% section specifies the regression of the outcome on level-1 predictors, and the
%between% section specifies the regression of the random intercepts on the level-2 predictors.
Finally, the OUTPUT command specifies two keywords on line 25 that request standardized

coefficients and confidence intervals.
16.8 Mplus Output

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The focal model results are shown below. The
Rate of Missing column (also called the fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.



MCMC: Three-Level Growth Model

230

MODEL RESULTS

Within Level

PSOLVEPST ON
PSOLVEPRE
HISPANIC
FRLUNCH

Residual Variances
PSOLVEPST

Between Level

PSOLVEPST ON
PSOLVEPREJ
HISPANICJ
FRLUNCHJ
CONDITION

Intercepts
PSOLVEPST

Residual Variances
PSOLVEPST

Estimate

0.457
0.884

20.

.763

319

.650

4.949

52.

.164
.385

532

.819

S.E.

.030

0.397

S = = o

.407

.309

.153

.289

.635
.652

.521

. 740

Est./S.E.

15.
.227
.875

15.

065

523

4.240

100.

. 840
.323
.656

790

.459

Two-Tailed

P-Value

.000

0.026

o O O

.061

.000

.000

.000

.186
.000

.000

.014

Rate of
Missing

0.153
0.343
0.269

S O O

.145

.079
.057
117
.074

.049

.078

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and

Between Level, respectively). The primary focus is the y,, coefficient, which indicates that

intervention schools scored 2.39 points higher than control schools, on average, controlling for

student- and school-level covariates. The corresponding test statistic indicates that the group

mean difference is statistically different from zero (z = 3.66, p < .001). Note that these estimates

are virtually identical to those from MCMC estimation in the next section.
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16.8 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex16.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex16.spwb
1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ school student condition teachexp eslpct hispanic male
4 frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst.
5 EXE.
6
7 AGGREGATE
8 /outfile = * mode = addvariables overwrite = yes
9 /break=imputation_ school
10 /psolvepre_meanj = mean(psolvepre)
11 /hispanic_meanj = mean(hispanic)
12 /frlunch_meanj = mean(frlunch).
13 EXE.
14
15 AGGREGATE
16 /outfile = * mode = addvariables overwrite = yes
17 /psolvepre_mean = mean(psolvepre)
18 /hispanic_mean = mean(hispanic)
19 /frlunch_mean = mean(frlunch).
20 EXE.
21
22  COMPUTE psolvepre_cwc = psolvepre - psolvepre_meanj.
23 COMPUTE hispanic_cwc = hispanic - hispanic_meanj.
24 COMPUTE frlunch_cwc = frlunch - frlunch_meanj.
25 COMPUTE psolvepre_meanj = psolvepre_meanj - psolvepre_mean.
26 COMPUTE hispanic_meanj = hispanic_meanj - hispanic_mean.
27 COMPUTE frlunch_meanj = frlunch_meanj - frlunch_mean.

N
o

EXE.
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The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. On line 7,
the AGGREGATE command adds the grand means to the data, whereas the AGGREGATE command on
line 15 adds the grand means into the data. Beginning on line 22, level-1 predictors are centered

at their group means, and level-2 predictors are centered at their grand means.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 29 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 30 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 31.

SPSS Script Ex16.spwb, continued

29 SORT CASES by imputation_.
30 SPLIT FILE layered by imputation_.
31 MIXED psolvepst with psolvepre_cwc hispanic_cwc frlunch_cwc

32 psolvepre_meanj hispanic_meanj frlunch_meanj condition
33 /print = solution testcov

34 /fixed = intercept psolvepre_cwc hispanic_cwc frlunch_cwc
35 psolvepre_meanj hispanic_meanj frlunch_meanj condition

36 /random = intercept | subject(school) covtype(id).

16.9 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefficients, standard errors, and test statistics.
The output also includes pooled estimates of level-2 variance and covariance parameters. The
relative increase in variance is a fraction comparing imputation noise to complete-data sampling
variation, and the fraction of missing information quantifies the imputation noise in each

estimate as proportion of its squared standard error.
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The results are interpreted in the same way as a complete-data multilevel analysis. The pooled
regression coefficients are in the table labeled Estimates of Fixed Effects. The primary focus
is the yg, coefficient, which indicates that intervention schools scored 2.39 points higher than
control schools, on average, controlling for student-and school-level covariates. The
corresponding test statistic indicates that the group mean difference is statistically different from

zero (t = 3.13, p < .001). The pooled random intercept and within-cluster residual variances are

in the table labeled Estimates of Covariance Parameters.

Estimates of Fixed Effects®

95% Confidence Interval . Relative .
Fraction Increase Relative
imputation_ Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound = Missing Info. Variance Efficiency
1.00 Intercept 52.580 .496  26.076 106.019 <.001 51.561 53.600
psolvepre_cwc 467 .031 951.185 14.858 <.001 .405 .529
hispanic_cwc 1.338 .364 951.185 3.671 <.001 .623 2.053
frlunch_cwc -.646 .396  951.185 -1.629 .104 -1.423 811372
psolvepre_meanj .564 211 22.764 2.676 .014 .128 1.000
hispanic_meanj 5.139 1.321 26.071 3.890 <.001 2.423 7.854
frlunch_meanj -2.427 2.279 22.312 -1.065 .298 -7.149 2.296
condition 2.753 674 24.411 4.084 <.001 1.363 4.142
2.00 Intercept 52.722 .554  25.785 95.179 <.001 51.583 53.861
psolvepre_cwc .439 .031 951.063 13.950 <.001 377 .500
hispanic_cwc .730 .367 951.063 1.986 .047 .009 1.450
frlunch_cwc -.841 .403  951.063 -2.087 .037 -1.632 -.050
psolvepre_meanj .645 .230 23.111 2.802 .010 .169 1.121
hispanic_meanj 5.079 1.452  25.190 3.497 .002 2.089 8.069
frlunch_meanj -2.811 2.699 22.380 -1.041 .309 -8.404 2.782
condition 2.537 754 24.428 3.367 .003 .984 4.091
20.00 Intercept 52.668 .508  25.853 103.726 <.001 51.624 53.712
psolvepre_cwc 471 .031 951.009 15.263 <.001 411 .532
hispanic_cwc .729 .360 951.009 2.025 .043 .023 1.436
frlunch_cwc -.627 .390 951.009  -1.609 .108 -1.391 .138
psolvepre_meanj .675 .215 22.828 3.138 .005 .230 1.119
hispanic_meanj 5.230 1.309  25.503 3.997 <.001 2.537 7.922
frlunch_meanj =18522) 2.408 22.697 -.632 .534 -6.507 3.464
condition 2.522 694  24.260 3.635 .001 1.091 3.952
Pooled Intercept 52.713 .520 101.440 <.001 51.694 53.732 .055 .058 997
psolvepre_cwc 457 .033 13.657 <.001 .392 .523 .126 .142 .994
hispanic_cwc .884 432 2.044 .042 .032 1.736 .288 .394 .986
frlunch_cwc -.763 448 -1.702 .090 -1.644 .118 221 278 .989
psolvepre_meanj .648 .215 3.017 .003 227 1.069 .041 .042 .998
hispanic_meanj 4.946 1.369 3.613 <.001 2.262 7.629 .051 .053 .997
frlunch_meanj -2.184 2.482 -.880 .379 -7.050 2.682 .051 .053 .997
condition 2.385 .710 3.362 <.001 .994 3.777 .064 .068 .997
a. Dependent Variable: psolvepst.
Estimates of Covariance Parameters®
95% Confidence Interval . Relative .
Fraction Increase Relative
imputation_ Parameter Estimate  Std. Error  Wald Z Sig. Lower Bound Upper Bound = Missing Info. Variance Efficiency
1.00 Residual 20.502 .940  21.808 <.001 18.740 22.430
Intercept [subject = Variance 2.276 .839 2.711 .007 1.104 4.689
school]
2.00 Residual 20.552 942 21.807 <.001 18.786 22.485
Intercept [subject = Variance 2.885 1.016 2.841 .005 1.447 5.752
school]
20.00 Residual 19.811 .909  21.806 <.001 18.108 21.674
Intercept [subject = Variance 2.427 .879 2.761 .006 1.193 4.936
school]
Pooled Residual 20.388 1.059 <.001 18.306 22.470 .225 .283 .989
Intercept [subject = Variance 2.313 .883 .009 .581 4.045 .085 .092 .996

school]

a. Dependent Variable: psolvepst.
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MCMC: Random Slope Model With an Interaction

This example illustrates a two-level multiple regression with random intercepts. The analysis uses
the problemsolving3level.dat data set taken from a cluster-randomized educational
intervention where 29 schools were assigned to an intervention and comparison condition. In
addition to the intervention assignment indicator, school-level variables include the average
years of teacher experience and the percentage of learners for whom English is a second
language. The 928 student-level records include pretest and posttest math problem-solving and
self-efficacy scores, standardized math scores taken from a statewide assessment, and several

sociodemographic variables. The analysis variables are as follows.

Name Definition Missing %  Scale

STUDENT Student (level-2) identifier 0 Integer index

PROBSOLVE  Math problem-solving 114 Numeric (37 to 68)

MONTH Time scores (initial = 0) 0 Numeric (0 to 6)

HISPANIC Ethnicity/race 9.0 0 = Non-Hispanic, 1 = Hispanic
FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance
CONDITION  Experimental condition 0 0 = Control, 1 = Experimental

17.1  Analysis Model

The analysis is a linear growth model that features a repeatedly-measured problem-solving test
regressed on time scores (months since the start of the school year, a level-1 predictor),
experimental condition (level-2), the cross-level interaction of the two variables, and two grand

mean centered student-level dummy codes (the Hispanic and lunch assistance indicators). To
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convey each variable’s level, the i and j subscripts denote repeated measurements and students,

respectively. The combined regression model below.

PROBSOLVE;; = (Yoo + Uo;) + (Y10 + t1;)(MONTH;;)
+ v1,(HISPANIC;)(MONTH;;) + v,,(CONDITION; )(MONTH;;) (31)
+ Yo1(HISPANIC;) + Yoo(FRLUNCH¥™) + y3(CONDITION;) + ¢;;

L

All coefficients with a leading zero subscript are determinants of baseline performance, and all
coefficients with one as a leading subscript define the monthly change rates. In particular, y;; is
the degree to which ethnicity moderates the change rates, and y;, captures the moderating effect
of the intervention. The cgm superscript indicates centering at the grand mean. Unlike a
complete-data regression analysis, all incomplete variables require distributional assumptions,
including the predictors. Blimp uses a factored regression specification that assigns separate
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal

distribution for numeric predictors and the latent response scores for discrete predictors.
17.2  Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex17.1. inp. The first six lines can be viewed as a set of
commands that specify information about the data and variables. This script is executed in the

Blimp Studio graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex17.1.imp

1 DATA: problemsolving3level.dat;

2 VARIABLES: school student wave condition teachexp eslpct ethnic
3 male frlunch lowach stanmath month month7 probsolve efficacy;
4 CLUSTERID: student;

5 ORDINAL: hispanic frlunch condition;

6  MISSING: 999;

7 FIXED: month condition;

8  CENTER: grandmean = frlunch;

9  MODEL:

10 month hispanic frlunch condition month*condition monthxhispanic | month;
11 SIMPLE:

12 month | condition;

13 month | hispanic;

14 SEED: 90291;



MCMC: Three-Level Growth Model 236

15 BURN: 1000;
16 ITERATIONS: 20000;

The DATA command specifies the name of the input text file. No file path is required when the
data file is in the same directory as the script, as it is here. Starting on line 2, the VARIABLES
command names the data columns. The CLUSTERID command on line 4 lists the student-level
identifier variable that indicates the clustering of the repeated measurements within students.
Including the CLUSTERID command automatically introduces random intercepts. The ORDINAL
command on line 5 identifies binary and ordinal variables. Binary variables can be defined as
ordinal or nominal, as the statistical models are identical. The MISSING command on line 6

defines a global missing value code as 999.

The FIXED, CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The FIXED command
identifies complete predictors that do not require a distribution or regression model. The CENTER
command deviates a covariate at its iteratively-estimated grand mean. Beginning on line 9, the
MODEL command lists the regression model, with outcome variable to the left of the tilde and
predictors to the right. The product term is specified by joining the interacting variables with an
asterisk (i.e., MONTH*CONDITION), and listing MONTH to the right of the vertical pipe specifies this
variable as a random slope predictor. Starting on line 11, the SIMPLE command requests two sets
of conditional effects (i.e., simple slopes) that give the effect of MONTH at each level of CONDITION
and HISPANIC. By default, Blimp computes the simple slope at each level of a binary moderator
listed on the ORDINAL line. Blimp automatically configures the explanatory variable models under
the assumption that the numeric variables and latent response scores (discrete predictors) are
normally distributed. Custom significance tests can be specified using the WALDTEST command, as
shown in previous examples. Finally, lines 14 through 16 can be viewed as a block of commands
that specify features of the MCMC algorithm: the SEED command gives an integer string that
initializes the random number generator, the BURN command specifies the number of iterations
for the warm-up or burn-in period, and the ITERATIONS command gives the number of MCMC
iterations on which the analysis summaries are based (essentially, the number of MCMC cycles

following the warm-up period).
The corresponding rblimp script Ex17.R is shown below.
rblimp Script Ex17.R

1 library(rblimp)
2 load('problemsolving3level.rda')
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4 mymodel <- rblimp(

5 data = problemsolving3level,

6 clusterid = 'student',

7 ordinal = 'hispanic frlunch condition',

8 fixed = 'month condition',

9 center = 'grandmean = frlunch',

10 model = 'probsolve ~ month hispanic frlunch condition
11 monthxcondition month*hispanic | month',

12 simple = 'month | condition; month | hispanic',
13 seed = 90291,

14 burn = 10000,

15 iter = 20000)

16  output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output(mymodel) function prints the Blimp output.
17.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.



MCMC: Three-Level Growth Model 238

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
251 to 500 1.124 29
501 to 1000 1.182
751 to 1500 1.162
4501 to 9000 1.009 2
4751 to 9500 1.008 13
5001 to 10000 1.009 18

The next section of the output displays information about the variables in the analysis and the
models used for estimation. This output table mimics the one from Section 6.3, but it

additionally reports the number of observations at each level.

DATA INFORMATION:

Level-2 identifier: student
Sample Size: 6874
Level-2 Clusters: 982

Missing Data Rates:

probsolve = 11.45
08.96
04.68

hispanic
frlunch

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures

95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
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describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:

Summaries based on 20000 iterations using 2 chains.

Outcome Variable: probsolve

Grand Mean Centered: frlunch

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
L2 : Var(Intercept) 11.289 0.810 9.782 12.950 -—- ---  1382.218
L2 : Cov(month,Intercept) 0.039 0.118 -0.213 0.247 --= --- 338.722
L2 : Var(month) 0.108 0.030 0.056 0.175 -—- --- 183.745
Residual Var. 12.567 0.274 12.043 13.119 -—- ---  1549.938
Coefficients:
Intercept 49.364 0.306 48.770 49.974 26003.056 0.000 1802.836
month 0.274 0.060 0.159 0.392 21.261 0.000 6927.856
hispanic 1.359 0.300 0.766 1.945 20.531 0.000 1575.087
frlunch -0.954 0.314 -1.566 -0.344 9.195 0.002 1278.934
condition -0.420 0.280 -0.966 0.135 2.251 0.134 1712.019
month*condition 0.367 0.053 0.262 0.470 47.320 0.000 8135.002
month*hispanic 0.222 0.058 0.108 0.335 14.861 0.000 6372.419
Standardized Coefficients:
month 0.103 0.022 0.060 0.147 21.165 0.000  6594.495
hispanic 0.120 0.026 0.068 0.171 21.025 0.000 1596.832
frlunch -0.071 0.023 -0.116 -0.026 9.279 0.002  1281.246
condition -0.038 0.026 -0.088 0.012 2.249 0.134 1712.357
month*condition 0.147 0.021 0.105 0.189 47.391 0.000 8432.508
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month*hispanic 0.090 0.023 0.044 0.136 14.927 0.000 6528.861

Proportion Variance Explained

by Coefficients 0.106 0.010 0.088 0.127 -—- ---  1591.477
by Level-2 Random Intercepts 0.437 0.015 0.409 0.467 --= ---  5856.196
by Level-2 Random Slopes 0.015 0.004 0.008 0.024 --= --- 183.785
by Level-1 Residual Variation 0.440 0.013 0.415 0.466 --= ---  2544.204

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are
insufficient, increasing the value on the ITERATIONS command will remedy the issue. Unlike
previous examples, this analysis specified 20,000 iterations because the effective sample size for

the random slope variance was less than 100 when using 10,000 iterations.

The results are interpreted in the same way as a complete-data multilevel analysis. The first
section of the output table displays the variance estimates. The random intercept and slope
variances are denoted L2:Var(Intercept) and L2:Var(month), respectively, and their
covariance is labeled L2 : Cov(month,Intercept). The within-cluster residual variance is
denoted Residual Var. Turning to the coefficients section, lower-order terms in a moderated
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH (y;o = 0.27) is the monthly change rate for non-Hispanic students
(HISPANIC = 0) in the comparison condition (CONDITION = 0). The intervention mean difference
(Yo3 = —0.42) similarly reflects the mean difference when MONTH = 0 (at the first assessment). One
cross-level interaction effect captures the growth rate difference for students in experimental
schools. The positive coefficient (y,, = 0.37) indicates that the growth rate for the experimental
condition is greater (more positive) than that of the comparison condition. The other interaction
captures the growth rate difference for Hispanic students. The positive coefficient (y;; = 0.22)
indicates that the growth rate for the Hispanic students is greater (more positive) than that of
non-Hispanics. The 95% credible interval limits suggest that both interaction effects are
statistically different from zero (p < .05) because the null value is outside the interval. The
frequentist test statistics and p-values give the same conclusion. Finally, the bottom section of the
table displays Rights and Sterba (2019) R-squared effect size values. The fixed effects explain
10.6% of the total variation, the random intercepts account for 43.7% of the variability, and the

random slopes account for 1.5% of the variation.
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The SIMPLE command prints a table of conditional effects (simple slopes) of MONTH within
each intervention condition and ethnicity group. Consistent with the positive interaction
coefficients, the simple slopes for the experimental schools and Hispanics are higher (more
positive) than the growth rates for controls and non-Hispanics. All four conditional effects are
statistically significant at p < .05 because the null value does not fall within the 95% credible

intervals. The output table is shown below.

Conditional Effects Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff

month | condition @ @
Intercept 49.364 0.306 48.770 49.974 26003.056 0.000 1802.836
Slope 0.274 0.060 0.159 0.392 21.261 0.000 6927.856

month | condition @ 1
Intercept 48.945 0.263 48.434 49.463 34749.384 0.000 1572.191
Slope 0.641 0.048 0.547 0.737 175.765 0.000 7697.318

month | hispanic @ @
Intercept 49.364 0.306 48.770 49.974 26003.056 0.000 1802.836
Slope 0.274 0.060 0.159 0.392 21.261 0.000 6927.856

month | hispanic @ 1
Intercept 50.724 0.235 50.269 51.191 46749.578 0.000  1747.997
Slope 0.497 0.045 0.409 0.586 121.749 0.000  8389.335

NOTE: Intercepts are computed by setting all predictors

not involved in the conditional effect to zero.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
17.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A

subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The
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Blimp input file Ex17.2.imp is identical Ex17.1.imp, but it adds the following lines at the bottom
of the script.

NIMPS: 20;

CHAINS: 20;

SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

school student wave condition teachexp eslpct ethnic male
frlunch lowach stanmath month® month7 probsolve efficacy
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stacked = './imps/imps.dat'

imp# school student wave condition teachexp eslpct ethnic male
frlunch lowach stanmath month® month7 probsolve efficacy

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.

rblimp Script Ex17.R

1 library(rblimp)

2 load('problemsolving3level.rda')

3

4 mymodel <- rblimp(

5 data = problemsolving3level,

6 clusterid = 'student',

7 ordinal = 'hispanic frlunch condition',

8 fixed = 'month condition',

9 center = 'grandmean = frlunch',

10 model = 'probsolve ~ month hispanic frlunch condition
11 monthxcondition month*hispanic | month',

12 simple = 'month | condition; month | hispanic',
13 seed = 90291,

14 burn = 10000,

15 iter = 20000,

16 nimps = 20,
17 chains = 20)
18 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a

rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
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imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
17.5  Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex17.R

1 library(rblimp)

2 library(1me4)

3 library(mitml)

4 load('problemsolving3level.rda')

5

6 mymodel <- rblimp(...)

7

8 implist <- as.mitml(mymodel)

9

10 mean_frlunch <- mean(unlist(lapply(implist, function(df) mean(df$frlunch))))
11 for (i in 1:length(implist)) {

12 implist[[i]1$frlunch.cgm <- implist[[i]]$frlunch - mean_frlunch
13}

14

15 fit <- with(implist,

16 Imer(probsolve ~ month + frlunch + hispanic + condition

17 + month:condition + month:hispanic + (1 + month | student), REML = T))
18

19 estimates <- testEstimates(fit, extra.pars = T)

20 estimates

21 confint(estimates)

To begin, as.mitml on Line 8 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 10 through 13 center the
covariate at its grand mean. Lines 15 through 17 fit the focal regression model using the 1mer

function, and line 19 uses the testEstimates function in mitml to implement Rubin’s pooling
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rules and save the results in an object called estimates. Lines 20 and 21 print the pooled

estimates and confidence intervals.

Following a significant group-by-time interaction effect, researchers typically examine the
slope of the focal predictor at different values of the moderator. The final code block below
computes these conditional effects or simple slopes of the monthly change rate at each value of
CONDITION and HISPANIC. The constraints parameter is a text string that defines the

computation of the conditional growth rate in each subgroup.

R Script Ex17.R, continued

22 testConstraints(fit, constraints = 'month + month*condition*0')
23 testConstraints(fit, constraints = 'month + month*condition*1"')
24 testConstraints(fit, constraints = 'month + month*hispanic*@')
25 testConstraints(fit, constraints = 'month + month*hispanicx1')

17.6 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Considering the coefficients, lower-order terms in a moderated regression are conditional
effects that depend on scaling or centering. Specifically, the lower-order slope of MONTH (¥,, =
0.27) is the monthly change rate for non-Hispanic students (HISPANIC = 0) in the comparison
condition (CONDITION = 0). The intervention mean difference (7y; = —0.42) similarly reflects the
mean difference when MONTH = 0 (at the first assessment). One cross-level interaction effect
captures the growth rate difference for students in experimental schools. The positive coefficient
(12 = 0.37) indicates that the growth rate for the experimental condition is greater (more
positive) than that of the comparison condition. The other interaction captures the growth rate
difference for Hispanic students. The positive coefficient (§,; = 0.22) indicates that the growth
rate for the Hispanic students is greater (more positive) than that of non-Hispanics. The

corresponding test statistics indicate that both interaction effects are statistically different from
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zero (p < .001). Note that these estimates are numerically equivalent to those from MCMC

estimation.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error  t.value df  P(C|t]) RIV FMI
(Intercept) 49.367 0.309 159.532 1677.585 0.000 0.119 0.107
month 0.269 0.061 4.437  330.193 0.000 0.316 0.244
frlunch.cgm -0.923 0.314 -2.939 2950.749 0.003 0.087 0.081
hispanic 1.365 0.294 4.644 2516.400 0.000 0.095 0.088
condition -0.417 0.278 -1.499 9015.743 0.134 0.048 0.046
month:condition 0.374 0.053 7.042 867.074 0.000 0.174 0.150
month:hispanic 0.220 0.056 3.945 656.403 0.000 0.205 0.173

Estimate
Intercept~~Intercept|student 11.171

month~~month|student 0.107
Intercept~~month|student 0.053
Residual~~Residual 12.561
ICC|student 0.471

2.5 % 97.5 %
(Intercept) 48.7600507 49.9739434
month 0.1495981 0.3878664
frlunch.cgm -1.5389275 -0.3072803
hispanic 0.7886026 1.9411189
condition -0.9627592 0.1282146
month:condition 0.2695923 0.4779414
month:hispanic 0.1103965 0.3291800

Finally, the printed output also includes the table of conditional effects or simple slopes.
Consistent with the positive interaction coefficient, the monthly growth rate for the experimental

schools is higher (more positive) that the growth rate for controls.

Hypothesis test calculated from 20 imputed data sets. The following

constraints were specified:
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Estimate Std. Error
month + month*condition*0: 0.269 0.061

Combination method: D1

F.value df1 df2  PCF) RIV
19.690 1224.632 0.000 0.316

Unadjusted hypothesis test as appropriate in larger samples.

Hypothesis test calculated from 20 imputed data sets. The following

constraints were specified:

Estimate Std. Error
month + month*condition*1: 0.157 0.090

Combination method: D1

F.value df1 df2  P(F) RIV
3.022 12026.971  0.082  0.084

Unadjusted hypothesis test as appropriate in larger samples.

Hypothesis test calculated from 20 imputed data sets. The following

constraints were specified:

Estimate Std. Error
month + month*hispanic*@: 0.269 0.061

Combination method: D1

F.value df1 df2  PCF) RIV
19.690 1224.632 0.000 0.316

Unadjusted hypothesis test as appropriate in larger samples.

Hypothesis test calculated from 20 imputed data sets. The following

constraints were specified:
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Estimate Std. Error
month + month*hispanic*1: 0.636 0.181

Combination method: D1

F.value df1 df2  PCF) RIV
12.375 1397.963 ©0.000 0.217

Unadjusted hypothesis test as appropriate in larger samples.

17.7  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.

The Mplus input file for analyzing the imputations is Ex17. inp.

Mplus Script Ex17.inp
1 DATA:
2 file = ./imps/implist.dat;
3 type = imputation;
4 VARIABLE:
5 names = school student wave condition teachexp eslpct ethnic
6 male frlunch lowach stanmath month® month7 probsolve efficacy;
7 usevariables = probsolve month hispanic frlunch condition;
8 cluster = student;
9 within = month male frlunch;
10 between = hispanic frlunch condition;
11 DEFINE:
12 center frlunch (grandmean);
13 ANALYSIS:
14 type = twolevel random;
15  MODEL:
16 %within%
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17 ranslope | probsolve on month;

18 %between?%

19 [ranslope] (betal);

20  probsolve on hispanic frlunch condition;
21 ranslope on hispanic condition (beta5-beta6)
22 ranslope with probsolve;

23 MODEL CONSTRAINT:

24 new(slp_cOh@ slp_hispl slp_condl);

25  slp_c6hd = betal;

26  slp_hispl = betal + betab;

27  slp_condl = betal + beta6;

28 OUTPUT :

29  cinterval;

The DATA command lists the text file containing the names of the imputed data sets (the
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand
instructs Mplus that the input data is a list of file names. The VARIABLE command provides
information about the data. Beginning on line 5, the names subcommand assigns names to the
variables in the input data file, and the usevariables subcommand selects variables for the
analysis. The cluster command on line 8 lists the school-level identifier variable that indicates
the clustering of the data records in schools. The within and between subcommands on lines 9

and 10 identify level-1 and level-2 predictors, respectively.

On line 12, the center subcommand under the DEFINE command centers the three covariates
at their grand means. The ANALYSIS command and type = twolevel random subcommand is
required for estimating two-level models with random slopes. The MODEL section of the script
consists of two sections: the %within% section specifies the regression of the outcome on level-1
predictors, and the %between% section specifies the regression of the random intercepts on the
level-2 predictors. In the %within% section, listing ranslope (an arbitrary name) to the left of the
vertical pipe creates a level-2 latent variable capturing individual growth rates. Regressing this
latent variable on CONDITION in the %between% model gives the cross-level interaction. Beginning
on line 23, the MODEL CONSTRAINT command is used to compute conditional effects or simple
slopes. First, line 24 assigns names to three new parameters (the group-specific growth rates).
Lines 25 through 27 use parameter labels from the MODEL section to compute the conditional

effect of MONTH7 in each experimental group.

17.8  Mplus Output
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The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The Rate of Missing column (also called
the fraction of missing information in the literature) quantifies the imputation noise in each

estimate as proportion of its squared standard error.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
Within Level
Residual Variances
PROBSOLVE 12.561 0.353 35.534 0.000 0.091
Between Level
RANSLOPE ON
HISPANIC 0.220 0.055 3.971 0.000 0.175
CONDITION 0.374 0.052 7.166 0.000 0.155
PROBSOLVE ON
HISPANIC 1.365 0.293 4.656 0.000 0.088
FRLUNCH -0.923 0.304 -3.033 0.002 0.086
CONDITION -0.417 0.276 -1.513 0.130 0.047
RANSLOPE WITH
PROBSOLVE 0.057 0.124 0.454 0.650 0.265
Intercepts
PROBSOLVE 49.367 0.304 162.404 0.000 0.112
RANSLOPE 0.269 0.059 4,559 0.000 0.258
Residual Variances
PROBSOLVE 11.104 0.803 13.833 0.000 0.083
RANSLOPE 0.105 0.033 3.193 0.001 0.294

New/Additional Parameters
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SLP_COHO 0.269 0.059 4.559 0.000 0.258
SLP_HISP 0.489 0.043 11.287 0.000 0.201
SLP_COND 0.643 0.047 13.575 0.000 0.131

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and
Between Level, respectively). Considering the coefficients, lower-order terms in a moderated
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH (y,o = 0.27) is the monthly change rate for non-Hispanic students
(HISPANIC = 0) in the comparison condition (CONDITION = 0). The intervention mean difference
(fo3 = —0.42) similarly reflects the mean difference when MONTH = 0 (at the first assessment). One
cross-level interaction effect captures the growth rate difference for students in experimental
schools. The positive coefficient (7,, = 0.37) indicates that the growth rate for the experimental
condition is greater (more positive) than that of the comparison condition. The other interaction
captures the growth rate difference for Hispanic students. The positive coefficient (§,; = 0.22)
indicates that the growth rate for the Hispanic students is greater (more positive) than that of
non-Hispanics. The corresponding test statistics indicate that both interaction effects are
statistically different from zero (p < .001). Note that these estimates are numerically equivalent to
those from MCMC estimation.

17.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex17.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex17.spwb
1 CD '/users/username/desktop"'.
2 DATA LIST free file = 'imps.dat'
3 /imputation_ school student wave condition teachexp eslpct hispanic
4 male frlunch lowach stanmath month month7 probsolve efficacy.
5 EXE.
6
7 AGGREGATE
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8 /outfile = * mode = addvariables overwrite = yes
9  /frlunch_mean = mean(frlunch).

10 EXE.

11

12 COMPUTE frlunch_cgm = frlunch - frlunch_mean.

13 EXE.

The first line uses the CD command to change the working directory to the desktop. The
username portion of the file path should be replaced with the user's own account name. The data
command uses a relative file path to read the stacked data file from the desktop. Variable names
are listed beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. On line 7,
the AGGREGATE command adds the grand mean to the data. On line 12, a new variable is created
that centers the FRLUNCH predictor at its pooled grand mean.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 14 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 15 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 16.

SPSS Script Ex17.spwb, continued

14 SORT CASES by imputation_.
15 SPLIT FILE layered by imputation_.
16 MIXED probsolve with month frlunch_cgm hispanic condition

17 /print = solution testcov
18 /fixed = month frlunch_cgm hispanic condition
19 hispanic*condition monthxcondition

20 /random = intercept month | subject(student) covtype(un).

17.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are

produced). The figure below shows the pooled coefticients, standard errors, and test statistics.
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The output also includes pooled estimates of level-2 variance and covariance parameters. The
relative increase in variance is a fraction comparing imputation noise to complete-data sampling
variation, and the fraction of missing information quantifies the imputation noise in each

estimate as proportion of its squared standard error.

The pooled regression coefficients are in the table labeled Estimates of Fixed Effects.
The results are interpreted in the same way as a complete-data multilevel analysis. Lower-order
terms in a moderated regression are conditional effects that depend on scaling or centering.
Specifically, the lower-order slope of MONTH (},, = 0.43) is the monthly change rate for non-
Hispanic students (HISPANIC = 0) in the comparison condition (CONDITION = 0). The
intervention mean difference (y; = —0.54) similarly reflects the mean difference when MONTH = 0
(at the first assessment). One cross-level interaction effect captures the growth rate difference for
students in experimental schools. The positive coefficient (¥, = 0.36) indicates that the growth
rate for the experimental condition is greater (more positive) than that of the comparison
condition. The other interaction captures the growth rate difference for Hispanic students. The
positive coefficient (f;; = 0.24) indicates that the growth rate for the Hispanic students is greater
(more positive) than that of non-Hispanics. The test statistic corresponding to the interaction
between the MONTH and CONDITION indicates that this interaction is significant (p < .001), whereas
the HISPANIC and CONDITION interaction was nonsignificant (p = .68). The pooled variance-
covariance matrix of the random effects and the within-cluster variance are in the table labeled

Estimates of Covariance Parameters.

Estimates of Fixed Effects®

95% Confidence Interval Relative
Fraction Increase Relative
imputation Parameter Estimate Std. Error df t Sig Lower Bound  Upper Bound Missing Info. Variance Efficiency
1.00 Intercept 49.102575 372571 1067.852 131.794 000 48.371521  49.833630 [ |
month 434736 038773 982.000 11.212 .000 358647 510824
friunch_cgm -.955896 .299979 982.000 -3.187 .001 ~1.544570 -.367221
hispanic 1.602819 .425211 982.000 3.769 .000 .768392 2.437247
condition -.605156 .454661 1071.982 -1.331 183 -1.497282 286970
hispanic * condition 516434 528792 982.000 977 329 -.521259 1.554127
month * condition 338255 .049521 982.000 6.830 .000 241075 435434
2.00 Intercept 49.155520 .374731 1060.911 131.175 .000 48.420222 49.890819
month 395372 039254 982.000 10.072 .000 318340 472404
frlunch_cgm -.847165 297662 982.000 -2.846 .005 -1.431292 -.263037
hispanic 1.700290 427963 982.000 3.973 .000 860464 2.540117
condition -.676620 457116 1064.832 -1.480 139 -1.573571 220331
hispanic * condition .386599 .531993 982.000 727 468 -.657374 1.430573
month * condition .396776  .050135 982.000 7.914 .000 .298391 495160
“ee
20.00 Intercept 48.992897 375527 1061.391 130.464 .000 48.256037 49.729757
month 418570 .038578 982.000 10.850 .000 .342866 494274
friunch_cgm -.820867 .303299 982.000 -2.706 .007 -1.416057 -.225678
hispanic 1.879289 .429429 982.000 4.376 .000 1.036584 2.721993
condition -.304944 458672 1065.249 -.665 .506 -1.204947 .595060
hispanic * condition -.086646 .534367 982.000 -.162 871 -1.135279 961986
month * condition .357953  .049271 982.000 7.265 .000 261264 454642
Pooled Intercept 49.108628 .399230 123.008 .000 48.325256 49.892001 136 .155 993
month 426440 .043437 9.817 .000 .341058 511821 .216 .270 989
friunch_cgm -.922830 .313595 -2.943 .003 -1.537725 -.307935 .082 .089 996
hispanic 1.725232 454848 3.793 .000 .832846 2.617619 127 144 994
condition -.540689 .484923 -1.115 .265 -1.491955 410577 119 133 994
hispanic * condition .236195  .577000 409 .682 -.896440 1.368831 157 .184 992
month * condition .356721  .052855 6.749 .000 .253010 1460431 134 .153 993

a. Dependent Variable: probsolve,
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Estimates of Covariance Parameters?®

95% Confidence Interval ) Relative )
Fraction Increase Relative
imputation_  Parameter Estimate Std. Error  Wald Z Sig. Lower Bound Upper Bound  Missing Info. Variance Efficiency
1.00 Residual 12.492379 252127 49.548  .000 12.007865  12.996443
Intercept + month UN(1,1) 11.180628 .778452 14.363 000  9.754415  12.815371
(Craees=entny UN@1) -.005460 .112582  -.048  .961  -.226117 215197
UN(@2)  .125128 .027309  4.582 000 081579 1191923
20.00 Residual 12.521608 .252717 49.548  .000 12.035961  13.026852
Intercept + month UN(1,]) 11.237643 .780194 14.404 000  9.807967  12.875718
B e UN@,1) 048177 .111309 433 665  -.169985 1266338
UN@2)  .118328 .027071 4371 .000 075570 1185278
Pooled Residual 12.560644 274746 000 12.021394  13.099894 151 175 993
Intercept + month UN(1,1) 11.164051 812605 000  9.570699  12.757403 082 089 996
el UN@,1) 030114 .129172 816 -.224092 .284320 258 338 987
UN@.2)  .115894 .032482 .000 051847 1179942 313 442 985

a. D dent Variable: probsoh
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MCMC: Three-Level Growth Model

This example illustrates a two-level multiple regression with random intercepts. The analysis uses
the problemsolving3level.dat data set taken from a cluster-randomized educational
intervention where 29 schools were assigned to an intervention and comparison condition. In
addition to the intervention assignment indicator, school-level variables include the average
years of teacher experience and the percentage of learners for whom English is a second
language. The 928 student-level records include pretest and posttest math problem-solving and
self-efficacy scores, standardized math scores taken from a statewide assessment, and several

sociodemographic variables. The analysis variables are as follows.

Name Definition Missing %  Scale
Identifier Variables

SCHOOL School identifier 0 Integer index

STUDENT Student identifier 0 Integer index

Focal Variables

PROBSOLVE Math problem-solving posttest 11.5 Numeric

MONTH; Time scores (end of year = 0) 0 Numeric (-6 to 0)

MALE Gender dummy code 0 0 = Female, 1 = Male

FRLUNCH Lunch assistance code 47 0 = None, 1 = Free/reduced lunch
TEACHEXP  Teacher years of experience 10.8 Numeric

CONDITION  Experimental condition 0 0 = Control, 1 = Experimental
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18.1  Analysis Model

The analysis is a linear growth model that features a repeatedly-measured problem-solving test
regressed on time scores (months until the end of the school year, a level-1 predictor),
experimental condition (level-2), the cross-level interaction of the two variables, and three grand
mean centered covariates: gender and lunch assistance dummy codes (level-1), and years of
teacher experience (level-2). To convey each variable’s level, the i and j subscripts denote

repeated measurements and students, respectively, and k is the school-level identifier.

PROBSOLVE; . = (Yoo + Ugjic + tor) + (Y10 + Usjic + U1c)(MONTHy;;) + Y01 (MALE*™)
+ Yo2(FRLUNCH,*™) + v3(TEACHEXP*™) + y,4( CONDITION; ) (32)
+ Y1.(MONTH,;;)(CONDITION;) + €

All coefficients with a leading zero subscript are determinants of end-of-year performance (the
intercept, MONTH7 = 0), and all coefficients with one as a leading subscript define the monthly
change rates. In particular, y;; is the degree to which the intervention moderates the change
rates. The cgm superscript indicates centering at the grand mean. Unlike a complete-data
regression analysis, all incomplete variables require distributional assumptions, including the
predictors. Blimp uses a factored regression specification that assigns separate distributions to
the predictors and outcome. By default, Blimp invokes a multivariate normal distribution for

numeric predictors and the latent response scores for discrete predictors.
18.2  Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex18.1.inp. The first six lines can be viewed as a set of
commands that specify information about the data and variables. This script is executed in the

Blimp Studio graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex18.1.imp

1 DATA: problemsolving3level.dat;

2 VARIABLES: school student wave condition teachexp eslpct ethnic
3 male frlunch lowach stanmath month® month7 probsolve efficacy;
4 CLUSTERID: student school;

5 ORDINAL: male frlunch condition;

6  MISSING: 999;
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7 FIXED: month7 male condition;

8  CENTER: grandmean = male frlunch teachexp;

9  MODEL:

10 probsolve ~ month7 male frlunch teachexp condition
11 month7*condition | month7;

12 SIMPLE: month7 | condition;

13 SEED: 90291;

14 BURN: 20000;

15  ITERATIONS: 50000;

The DATA command specifies the name of the input text file. No file path is required when the
data file is in the same directory as the script, as it is here. Starting on line 2, the VARIABLES
command names the data columns. The CLUSTERID command on line 4 lists the student- and
school-level identifier variables that indicates the clustering of the data records. The order of the
identifier variables does not matter. Including the CLUSTERID command automatically introduces
random intercepts at level-2 and level-3. The ORDINAL command on line 5 identifies binary and
ordinal variables. Binary variables can be defined as ordinal or nominal, as the statistical models

are identical. The MISSING command on line 6 defines a global missing value code as 999.

The FIXED, CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The FIXED command
identifies a complete predictor, which does not require a distribution or regression model. The
CENTER command deviates the three covariates at their iteratively-estimated grand means.
Beginning on line 9, the MODEL command lists the regression model, with outcome variable to the
left of the tilde and predictors to the right. The product term is specified by joining the
interacting variables with an asterisk (i.e., MONTH7*CONDITION), and listing MONTH7 to the right of
the vertical pipe specifies this variable as a random slope predictor. The SIMPLE command
requests the conditional effects (i.e., simple slopes) of MONTH7 at each level of CONDITION. By
default, Blimp computes the simple slope at each level of a binary moderator listed on the
ORDINAL line. Blimp automatically configures the explanatory variable models under the
assumption that the numeric variables and latent response scores (discrete predictors) are
normally distributed. Custom significance tests can be specified using the WALDTEST command, as

shown in previous examples.

Finally, lines 13 through 15 can be viewed as a block of commands that specify features of the
MCMC algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
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analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

The corresponding rblimp script Ex18.R is shown below.

rblimp Script Ex18.R

1 library(rblimp)

2 load('problemsolving3level.rda')

3

4 mymodel <- rblimp(

5 data = problemsolving3level,

6 clusterid = 'school student',

7 ordinal = 'male frlunch condition',

8 fixed = 'month7 male condition',

9 center = 'grandmean = male frlunch teachexp',
10 model = 'probsolve ~ month7 male frlunch teachexp
11 condition month7*condition | month7',

12 simple = 'month7 | condition',

13 seed = 90291,

14 burn = 20000,

15 iter = 50000)

16  output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script. Finally, the output (mymodel) function prints the Blimp output.
18.3  Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has

converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
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diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is
above these cutoffs, then rerun the analysis with a longer burn-in period. This analysis required a

much longer burn-in period that previous examples.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
501 to 1000 1.938 18

1001 to 2000 1.460 3

1501 to 3000 1.159 8

9001 to 18000 1.019 23

9501 to 19000 1.020 23

10001 to 20000 1.010 27

The next section of the output displays information about the variables in the analysis and the
models used for estimation. This output table mimics the one from Section 6.3, but it

additionally reports the number of observations at each level.

DATA INFORMATION:

Level-2 identifier: student
Level-3 identifier: school
Sample Size: 6874
Level-2 Clusters: 982
Level-3 Clusters: 29

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each

model parameter. The median and standard deviation columns describe the center and spread of
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the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 50000 iterations using 2 chains.
Outcome Variable: probsolve

Grand Mean Centered: frlunch male teachexp

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff

Variances:
L2 : Var(Intercept) 11.082 0.848 9.535 12.841 -—- --- 1038.348
L2 : Cov(month7,Intercept) 0.322 0.122 0.098 0.577 --= --- 285.124
L2 : Var(month7) 0.048 0.024 0.010 0.104 -—- --- 140.169
L3 : Var(Intercept) 7.701 2.876 4.243 15.322 -—- ---  6049.874
L3 : Cov(month7,Intercept) 0.643 0.294 0.282 1.412 -—- ---  9861.675
L3 : Var(month7) 0.094 0.039 0.047 0.198 -—- --- 12433.005
Residual Var. 12.569 0.268 12.049 13.102 -—- ---  1308.691

Coefficients:
Intercept 52.887 0.822 51.230 54.495  4139.747 0.000 324.105
month7 0.455 0.098 0.263 0.649 21.531 0.000 1033.466
male 0.339 0.227 -0.102 0.787 2.217 0.137  3898.624
frlunch -0.283 0.308 -0.881 0.325 0.845 0.358  3440.410
teachexp 0.000 0.001 -0.002 0.003 0.032 0.858 321.552
condition 1.551 1.100 -0.595 3.724 1.981 0.159 315.515
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month7*xcondition 0.297 0.131 0.031 0.549 5.100 0.024 939.274

Standardized Coefficients:

month7 0.167 0.036 0.095 0.237 21.338 0.000 1026.031
male 0.031 0.021 -0.009 0.071 2.217 0.136 3904.818
frlunch -0.021 0.022 -0.064 0.024 0.846 0.358  3436.749
teachexp 0.009 0.067 -0.117 0.147 0.032 0.858 322.860
condition 0.139 0.096 -0.053 0.322 2.046 0.153 316.432
month7xcondition 0.116 0.051 0.012 0.212 5.199 0.023 978.851
Proportion Variance Explained
by Coefficients 0.072 0.018 0.045 0.116 -—- --- 450.110
by Level-2 Random Intercepts 0.323 0.024 0.271 0.364 --= --- 2792.166
by Level-2 Random Slopes 0.006 0.003 0.001 0.014 --= --- 140.792
by Level-3 Random Intercepts 0.157 0.045 0.094 0.269 --= ---  5603.249
by Level-3 Random Slopes 0.013 0.005 0.006 0.025 --= --- 12072.560
by Level-1 Residual Variation 0.423 0.028 0.359 0.469 --= ---  1665.135

To begin, the N_Eff values in rightmost column of the table give the effective number of
MCMC samples for each parameter. These quantities essentially represent the number of
independent estimates on which the parameter summaries are based after removing
autocorrelations from the MCMC process. Gelman et al. (2014, p. 287) recommend values
greater than 100. All values in the example table exceed this recommended minimum. In cases
where the N_Eff values are insufficient, increasing the value on the ITERATIONS command will
remedy the issue. Unlike previous examples, this analysis specified 20,000 iterations because the
effective sample size for the random slope variance was less than 100 when using 10,000
iterations. Unlike previous examples, this analysis specified 50,000 iterations to achieve

acceptable values.

The results are interpreted in the same way as a complete-data multilevel analysis. The first
section of the output table displays the variance estimates. The level-2 random intercept and
slope variances are denoted L2:Var(Intercept) and L2:Var(month7), respectively, and their
covariance is labeled L2 : Cov(month7,Intercept). Similarly, the level-3 random intercept and
slope variances are denoted L3:Var(Intercept) and L3:Var(month7), respectively, and their
covariance is labeled L3 : Cov(month7,Intercept). The within-cluster residual variance is
denoted Residual Var. Turning to the coefficients section, lower-order terms in a moderated
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH7 (y;, = 0.46) is the monthly change rate for students in the comparison
condition (CONDITION = 0), and the intervention slope (yy, = 1.55) similarly reflects the mean
difference when MONTH7 = 0 (at the final assessment). The interaction effect captures the growth

rate difference for students in experimental schools. The positive coefficient (y,; = 0.30) indicates
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that the growth rate for the experimental condition is greater (more positive) than that of the
comparison condition. The 95% credible interval limits suggest this effect is statistically different
from zero (p < .05) because the null value is well outside the interval. The frequentist test statistic
and p-value give the same conclusion. Finally, the bottom section of the table displays Rights and
Sterba (2019) R-squared effect size values. The fixed effects explain 7.2% of the total variation, the
random intercepts at level-2 and level-3 account for 32.3% and 15.7% of the variability,
respectively, and the level-2 and level-3 random slopes account for 0.6% and 1.3% of the

variation.

The SIMPLE command prints a table of conditional effects (simple slopes) of MONTH7 within
each intervention condition. Consistent with the positive interaction coefficient, the simple slope
for the experimental schools is higher (more positive) that the growth rate for controls. Both
conditional effects are statistically significant at p < .05 because the null value does not fall within

the 95% credible intervals. The output table is shown below.

Conditional Effects Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff

month7 | condition @ @
Intercept 52.887 0.822 51.230 54.495  4139.747 0.000 324.105
Slope 0.455 0.098 0.263 0.649 21.531 0.000 1033.466

month7 | condition @ 1
Intercept 54.466 0.729 52.973 55.886  5576.054 0.000 258.252
Slope 0.749 0.086 0.579 0.915 76.330 0.000 781.490

NOTE: Intercepts are computed by setting all predictors

not involved in the conditional effect to zero.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
18.4 Saving Model-Based Multiple Imputations

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian

estimates average over thousands of plausible replacement scores (50,000 sets in this example). A



MCMC: Three-Level Growth Model 263

subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The
Blimp input file Ex18.2.imp is identical Ex18.1.imp, but it adds the following lines at the bottom
of the script.

NIMPS: 20;

CHAINS: 20;

SAVE:

stacked = ./imps/imps.dat;
separate = ./imps/imp*.dat;

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to CHAINS
saves a single filled-in data set from the final iteration of a unique MCMC process, thus avoiding
autocorrelation among the imputations. The SAVE command provides a name for the imputed
data sets. The script illustrates how to save data sets in two common formats. The stacked
keyword creates a stacked file where all imputations are in a single file, and the separate keyword
saves each imputed data set to a separate file with the asterisk replaced by a numeric index. To
keep things organized, the ./imps part of the file path points to a subfolder named imps located
within the same folder as the script and data. The separate keyword also creates a list of file
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the

imps folder).

When saving imputations, the bottom of the Blimp output file displays a table listing the order
of the variables in the output data sets. All variables are saved regardless of whether they
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other
packages), the first variable in the file is an integer index that identifies which data set each row

belongs to (e.g., an integer variable that ranges from 1 to 20 in this example).

VARIABLE ORDER IN IMPUTED DATA:
separate = './imps/imp*.dat'

school student wave condition teachexp eslpct ethnic male
frlunch lowach stanmath month® month7 probsolve efficacy

stacked = './imps/imps.dat'
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imp# school student wave condition teachexp eslpct ethnic male
frlunch lowach stanmath month® month7 probsolve efficacy

The imputed data sets are subsequently analyzed in another software package, and estimates and
standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase does
not utilize the auxiliary variables, as their information is embedded in the imputations. Scripts

for analyzing the imputed data sets are found in the next subsections.

In rblimp, the NIMPS and CHAINS commands are added as input parameters to the function as

follows.
rblimp Script Ex18.R
1 library(rblimp)
2 load('problemsolving3level.rda')
3
4 mymodel <- rblimp(
5 data = problemsolving3level,
6 clusterid = 'school student',
7 ordinal = 'male frlunch condition',
8 fixed = 'month7 male condition',
9 center = 'grandmean = male frlunch teachexp',
10 model = 'probsolve ~ month7 male frlunch teachexp
11 condition month7*condition | month7',
12 simple = 'month7 | condition',
13 seed = 90291,
14 burn = 20000,
15 iter = 50000,

16 nimps = 20,
17 chains = 20)
18 output(mymodel)

The SAVE command is no longer necessary because imputations are automatically stored in a
rblimp object called mymodel@imputations. The next sections show how to analyze the multiple
imputations. The multiple imputation point estimates, standard errors, and test statistics will be

numerically equivalent to those produced by MCMC.
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18.5 Analyzing Multiple Imputations in R

Continuing with the previous rblimp script, the following excerpt from Ex7.R shows how to
perform multiple imputation inference. The script requires the mitml package (Grund et al.,
2023).

R Script Ex18.R

1 library(rblimp)

2 library(1me4)

3 library(mitml)

4 load('problemsolving3level.rda')

5

6 mymodel <- rblimp(...)

7

8 implist <- as.mitml(mymodel)

9

10 mean_male <- mean(unlist(lapply(implist, function(df) mean(df$male))))

11 mean_frlunch <- mean(unlist(lapply(implist, function(df) mean(df$frlunch))))
12 mean_teachexp <- mean(unlist(lapply(implist, function(df) mean(df$teachexp))))
13 for (i in 1:length(implist)) {

14 implist[[iJ]$male.cgm <- implist[[i]]$male - mean_male

15 implist[[i]1$frlunch.cgm <- implist[[i]]$frlunch - mean_frlunch

16 implist[[i]]$teachexp.cgm <- implist[[i]]$teachexp - mean_teachexp

17}

18

19 fit <- with(implist,

20 Imer(probsolve ~ month7 + male.cgm + frlunch.cgm + teachexp.cgm

21 + condition + month7:condition + (1 + month7 | school/student), REML = T))
22

23 estimates <- testEstimates(fit, extra.pars = T)

24 estimates

25 confint(estimates)

To begin, as.mitml on Line 8 is an rblimp function that converts the imputation object into a
list of data sets called implist, as required by the mitml package. Lines 10 through 17 center the
covariates at at their pooled grand means. Lines 19 through 21 fit the focal regression model

using the lmer function, and line 23 uses the testEstimates function in mitml to implement
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Rubin’s pooling rules and save the results in an object called estimates. Lines 24 and 25 print the

pooled estimates and confidence intervals.

Following a significant group-by-time interaction effect, researchers typically examine the
slope of the focal predictor at different values of the moderator. The final code block below
computes these conditional effects or simple slopes of the monthly change rate at each value of
CONDITION. The constraints parameter is a text string that defines the computation of the

conditional growth rate in each subgroup.

R Script Ex18.R, continued

26 testConstraints(fit, constraints = 'month7 + month7*condition*Q')

27 testConstraints(fit, constraints = 'month7 + month7*condition*1')

18.6 R Output

The table of unstandardized pooled parameter estimates is shown below. The first two columns
display the pooled unstandardized estimates and standard errors, and the third through fifth
columns display the corresponding test statistics. The focal model results are shown below. The
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

Final parameter estimates and inferences obtained from 20 imputed data sets.

Estimate Std.Error t.value df PC|t]) RIV FMI
(Intercept) 52.872 0.745 70.960 2.156e+04 0.000 0.031 0.030
month7 0.453 0.090 5.050 2.055e+03 0.000 0.106 0.097
male.cgm 0.312 0.225 1.389 4.971e+04 0.165 0.020 0.020
frlunch.cgm -0.295 0.306 -0.966 2.469e+03 0.334 0.096 0.088
teachexp.cgm 0.000 0.001 0.144 1.986e+07 0.886 0.001 0.001
condition 1.559 0.992 1.571 6.291e+04 0.116 0.018 0.017
month7:condition 0.300 0.118 2.552 4.434e+03 0.011 0.070 0.066

Estimate

Intercept~~Intercept|student:school 11.012
month7~~month7|student:school 0.043
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Intercept~~month7|student:school 0.307
Intercept~~Intercept|school 6.305
month7~~month7|school 0.075
Intercept~~month7]|school 0.532
Residual~~Residual 12.588

Unadjusted hypothesis test as appropriate in larger samples.

2.5 % 97.5 %
(Intercept) 51.41139113 54.332267087
month7 0.27726820 0.629304843
male.cgm -0.12836247 0.752495046
frlunch.cgm -0.89521085 0.304298130
teachexp.cgm -0.00198809 0.002302489
condition -0.38575795 3.503709185
month7:condition ©.06952040 0.530443946

The results are interpreted in the same way as a complete-data multilevel analysis. Lower-
order terms in a moderated regression are conditional effects that depend on scaling or
centering. Specifically, the lower-order slope of MONTH7 (§,, = 0.45) is the monthly change rate
for students in the comparison condition (CONDITION = 0), and the intervention slope (Y, =
1.56) similarly reflects the mean difference when MONTH7 = 0 (at the final assessment). The
interaction effect captures the growth rate difference for students in experimental schools. The
positive coefficient (f,; = 0.30) indicates that the growth rate for the experimental condition is
greater (more positive) than that of the comparison condition. The corresponding test statistic
indicates that the interaction effect is statistically different from zero (t = 2.55, p = .01). Note that
these estimates are numerically equivalent to those from MCMC estimation. The output also

includes pooled estimates of the variance-covariance parameters at all levels.

Finally, the printed output also includes the table of conditional effects or simple slopes.
Consistent with the positive interaction coefficient, the monthly growth rate for the experimental

schools is higher (more positive) that the growth rate for controls.

Hypothesis test calculated from 20 imputed data sets. The following
constraints were specified:

Estimate Std. Error
month7 + month7*condition*0: 0.453 0.090
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Combination method: D1

F.value df1 df2 P(>F) RIV
25.506 1 1332.100 0.000 0.106

Unadjusted hypothesis test as appropriate in larger samples.

Hypothesis test calculated from 20 imputed data sets. The following
constraints were specified:

Estimate Std. Error
month7 + month7*conditionx*1: 1.157 0.377

Combination method: D1

F.value df1 df2 P(>F) RIV
9.410 1 1.059e+05 0.002 0.011

Unadjusted hypothesis test as appropriate in larger samples.

18.7  Analyzing Multiple Imputations in Mplus

Multiple imputations for Mplus are created through the Blimp Studio interface. Returning to the
previous Blimp script, the SAVE command and the separate keyword saved each imputed data
set to a separate file with the asterisk replaced by a numeric index. The separate keyword also
creates a list of file names needed for analysis in Mplus (in this example, a filed called
implist.dat located in the imps subfolder). The contents of this file were shown in Section 12.6.

The Mplus input file for analyzing the imputations is Ex18. inp.

Mplus Script Ex18.inp

1 DATA:

2 file = ./imps/implist.dat;

3 type = imputation;

4 VARIABLE:

5 names = school student wave condition teachexp eslpct ethnic

6 male frlunch lowach stanmath month® month7 probsolve efficacy;
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7 usevariables = probsolve month7 male frlunch teachexp condition;
8 cluster = school student;

9 within = month7;

10 between = (student) male frlunch (school) teachexp condition;
11 DEFINE:

12 center male frlunch teachexp (grandmean);
13 ANALYSIS:

14 type = threelevel random;

15  MODEL:

16 %within%

17 ranslope | probsolve on month7;

18 %between student%

19  probsolve on male frlunch;

20  probsolve with ranslope;

21 %between school%

22 [ranslope] (betal);

23 probsolve on teachexp condition;

24 ranslope on condition (beta6);

25 ranslope with probsolve;

26 MODEL CONSTRAINT:

27  new(slp_cond® slp_condl);

28  slp_cond@ = betal;

29  slp_condl = betal + beta6;

30 OUTPUT:

31 cinterval;

The DATA command lists the text file containing the names of the imputed data sets (the
implist.dat file located in the ./imps subdirectory). The type = imputation subcommand
instructs Mplus that the input data is a list of file names. The VARIABLE command provides
information about the data. Beginning on line 5, the names subcommand assigns names to the
variables in the input data file, and the usevariables subcommand selects variables for the
analysis. The cluster subcommand on line 8 lists the school- and student-level identifier
variables that indicate the clustering of the data records. The within and between subcommands

on lines 9 and 10 identify level-1, level-2, and level-3 predictors.

On line 12, the center subcommand under the DEFINE command centers the three covariates
at their grand means. The ANALYSIS command and type = threelevel random subcommand is
required for estimating three-level models with random slopes at each level. The MODEL section of

the script consists of three sections: the %within% section specifies the regression of the outcome
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on level-1 time scores, and the %between student% section specifies the regression of the random
intercepts on the level-2 predictors, and the %between school% section specifies the regression of
the random intercepts on the level-3 predictors. In the %within% section, listing ranslope (an
arbitrary name) to the left of the vertical pipe creates level-2 and level-3 latent variable capturing
growth rates. Regressing this latent variable on CONDITION in the %between school% model gives
the cross-level interaction. Beginning on line 26, the MODEL CONSTRAINT command is used to
compute conditional effects or simple slopes. First, line 27 assigns names to two new parameters
(the group-specific growth rates). Lines 28 and 29 use parameter labels from the MODEL section to

compute the conditional effect of MONTH7 in each experimental condition.
18.8  Mplus Output

The table of unstandardized parameter estimates is shown below. The first two columns display
the pooled unstandardized estimates and standard errors, and the third and fourth columns
display the corresponding z-statistics and p-values. The focal model results are shown below. The
Rate of Missing column (also called the fraction of missing information in the literature)

quantifies the imputation noise in each estimate as proportion of its squared standard error.

MODEL RESULTS

Two-Tailed Rate of

Estimate S.E. Est./S.E. P-Value Missing
Within Level
Residual Variances
PROBSOLVE 12.563 0.812 15.467 0.000 0.013

Between STUDENT Level

PROBSOLVE ON
MALE 0.336 0.258 1.301 0.193 0.017
FRLUNCH -0.304 0.308 -0.986 0.324 0.084

PROBSOLV WITH
RANSLOPE 0.300 0.144 2.084 0.037 0.101

Variances
RANSLOPE 0.042 0.028 1.464 0.143 0.143



MCMC: Three-Level Growth Model 271

Residual Variances
PROBSOLVE 10.970 0.827 13.272 0.000 0.098

Between SCHOOL Level

RANSLOPE ~ ON

CONDITION 0.301 0.113 2.663 0.008 0.058

PROBSOLVE ON
TEACHEXP 0.014 0.073 0.191 0.848 0.033
CONDITION 1.558 0.949 1.642 0.101 0.015

RANSLOPE WITH

PROBSOLVE 0.490 0.180 2.717 0.007 0.052
Intercepts

PROBSOLVE 52.855 0.735 71.869 0.000 0.020

RANSLOPE 0.449 0.080 5.588 0.000 0.083

Residual Variances
PROBSOLVE 5.696 1.905 2.989 0.003 0.026
RANSLOPE 0.070 0.021 3.336 0.001 0.063

New/Additional Parameters
SLP_COND 0.449 0.080 5.588 0.000 0.083
SLP_COND 0.749 0.079 9.545 0.000 0.017

Mplus separates level-specific effects on the output (labeled Within Level and Between
STUDENT Level, and Between SCHOOL Level). Considering the coefficients, lower-order terms in
a moderated regression are conditional effects that depend on scaling or centering. Specifically,
the lower-order slope of MONTH7 (8, = 0.45) is the monthly change rate for students in the
comparison condition (CONDITION = 0), and the intervention slope (85 = 1.56) similarly reflects
the mean difference when MONTH7 = 0 (at the final assessment). The interaction effect captures the
growth rate difference for students in experimental schools. The positive coefficient (8 = 0.30)
indicates that the growth rate for the experimental condition is greater (more positive) than that

of the comparison condition. The corresponding test statistic indicates that the interaction is
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statistically different from zero (z = 2.66, p = .01). Finally, the printed output also includes the
table of conditional effects, which were computed using the MODEL CONSTRAINT command.
Consistent with the positive interaction coefficient, the simple slope for the experimental schools
is higher (more positive) that the growth rate for controls. Note that these estimates are

numerically equivalent to those from MCMC estimation.
18.9 Analyzing Multiple Imputations in SPSS

Multiple imputations for SPSS and other commercial software packages are obtained through the
Blimp Studio interface. Returning to the previous Blimp script, the SAVE command and the
stacked keyword saved the imputed data sets to a single stacked file with an index variable in the
first column identifying the individual files. The SPSS workbook file for the analysis is
Ex18.spwb. The code block below shows the commands that import the stacked text file
produced by Blimp. The example assumes that the data file is located on the desktop.

SPSS Script Ex18.spwb

1 CD '/users/username/desktop'.

2 DATA LIST free file = 'imps.dat'

3 /imputation_ school student wave condition teachexp eslpct ethnic male
4 frlunch lowach stanmath month® month7 probsolve efficacy.

5 EXE.

6

7 AGGREGATE

8 /OUTFILE = * MODE = ADDVARIABLES OVERWRITE = YES

9 /male_mean = MEAN(male)

10 /frlunch_mean = MEAN(frlunch)
11 /teachexp_mean = MEAN(teachexp).

13 COMPUTE male_cgm = male - male_mean.

14  COMPUTE frlunch_cgm = frlunch - frlunch_mean.

15 COMPUTE teachexp_cgm = teachexp - teachexp_mean.
16  EXE.

The first line uses the CD command to change the working directory to the desktop. username
portion of the file path should be replaced with the user's own account name. The data command

uses a relative file path to read the stacked data file from the desktop. Variable names are listed
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beginning on line 3. Importantly, the first variable named IMPUTATION_ is the index that
identifies the individual files. SPSS reserves this exact variable name for multiply imputed data,
and the pooling routines will not function if the index variable has a different name. On line 6,
the AGGREGATE command adds the grand means to the data. Then, beginning on line 13,

covariates are centered at their pooled grand means.

The next block of code fits the model to each data set and pools the results using Rubin’s rules.
The SORT command on line 17 sorts the data by the imputation index variable, and the SPLIT
FILE command on line 18 triggers Rubin's pooling rules for all analyses that follow. The analysis

syntax, which can be pasted from the pull-down menus, begins on line 19.

SPSS Script Ex18.spwb, continued

17 SORT CASES by imputation_.
18 SPLIT FILE layered by imputation_.
19 MIXED probsolve with month7 male_cgm frlunch_cgm teachexp_cgm condition

20 /print = solution testcov

21 /fixed = month7 male_cgm frlunch_cgm teachexp_cgm

22 condition month7*condition

23 /random = intercept month7 | subject(school) covtype(un)

24 /random = intercept month7 | subject(school*student) covtype(un).

18.10 SPSS Output

SPSS offers very little customization. Not every estimate on the output is pooled, and significance
tests are generally limited to univariate f tests of individual parameters. Output tables display the
analysis results for each data set, and the pooled results are at the bottom of each table (if they are
produced). The figure below shows the pooled coefficients, standard errors, and test statistics.
The output also includes pooled estimates of level-2 variance and covariance parameters. The
relative increase in variance is a fraction comparing imputation noise to complete-data sampling
variation, and the fraction of missing information quantifies the imputation noise in each

estimate as proportion of its squared standard error.

The pooled regression coefficients are in the table labeled Estimates of Fixed Effects.
The results are interpreted in the same way as a complete-data multilevel analysis. Lower-order
terms in a moderated regression are conditional effects that depend on scaling or centering.

Specifically, the lower-order slope of MONTH7 (7,, = 0.46) is the monthly change rate for students
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in the comparison condition (CONDITION = 0), and the intervention slope (o4 = 1.55) similarly

reflects the mean difference when MONTH7 = 0 (at the final assessment). The interaction effect

captures the growth rate difference for students in experimental schools. The positive coefficient

(11 = 0.30) indicates that the growth rate for the experimental condition is greater (more

positive) than that of the comparison condition. The corresponding test statistic indicates that

the interaction effect is statistically different from zero (t = 2.55, p = .011)". The pooled random

intercept and within-cluster residual variances are in the table labeled Estimates of

Covariance Parameters.

Estimates of Fixed Effects®

95% Confidence Interval . Relative .
Fraction Increase Relative
imputation_  Parameter Estimate Std. Error df t Sig. Lower Bound  Upper Bound Missing Info. Variance Efficiency
1.00 Intercept 52.812656 712383 25.797  74.135 .000 51.347770 54.277541
month7 436529 .085820 28.126 5.087 .000 .260771 612288
malecent .309541 221891  964.407 1.395 .163 -.125904 744985
frlunchcent -.271113 291839  971.145 -.929 .353 -.843820 .301594
teachexpcent .039813 .076504 27.766 .520 .607 -.116958 .196583
condition 1.575874 .957060 25.504 1.647 112 -.393254 3.545002
month?7 * condition .313885 114327 27.016 2.745 .011 .079311 .548459
2.00 Intercept 52.866443 .706710 27.005 74.806 .000 51.416407 54.316480
month7 1436348 .079615 28.574 5.481 .000 273411 .599285
malecent .275508 223543  964.570 1.232 .218 -.163178 714195
frlunchcent -.253860 294999  974.022 -.861 .390 -.832766 .325046
teachexpcent .015963 .080736 27.748 .198 .845 -.149484 .181411
condition 1.520443 .945698 26.412 1.608 .120 -.421995 3.462880
month?7 * condition .305280 .105818 27.222 2.885 .008 .088241 .522319
cee
20.00 Intercept 52.665831 .705523 26.374 74.648 .000 51.216609 54.115053
month?7 .410935 .086035 28.091 4.776 .000 .234727 587144
malecent .294414 221475 964.247 1.329 .184 -.140215 .729042
frlunchcent -.257602 .293433  972.273 -.878 .380 -.833436 .318232
teachexpcent .016738 .082533 27.695 .203 .841 -.152406 .185883
condition 1.790814 .945406 25.902 1.894 .069 -.152854 3.734483
month?7 * condition .349147 .114618 26.986 3.046 .005 .113965 .584329
Pooled Intercept 52.850066 .739177 71.499 .000 51.401269 54.298862 .020 .020 .999
month?7 .449336 .088951 5.052 .000 .274945 .623728 .068 .073 .997
malecent .335567 .225113 1.491 .136 -.105660 776795 .023 .023 .999
frlunchcent -.296345 .305982 -.969 .333 -.896332 .303642 .085 .093 .996
teachexpcent .013961 .079731 175 .861 -.142317 .170238 .028 .029 .999
condition 1.557644 .987679 1.577 115 -.378195 3.493483 .014 .014 .999
month7 * condition .299239 .117588 2.545 .011 .068729 .529750 .054 .057 .997

a. Dependent Variable: probsolve.

! For unknown reasons, the SPSS results differ from the R and Mplus imputation results. This

is presumably due to differences in optimizers.
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Estimates of Covariance Parameters?®
95% Confidence Interval . Relative .
Fraction Increase Relative
nputation_  Parameter Estimate Std. Error Wald Z Sig. Lower Bound  Upper Bound  Missing Info. Variance Efficiency
.00 Residual 12.634262 .254991 49.548 .000 12.144246 13.144051
Intebr_cept + mhcnt|h7 UN (1,1) 5.926969 1.833908 3.232 .001 3.231886 10.869494
IStbiscischoct UN (@1  .504023 .188401  2.675 .007 1134763 873283
UN (2,2) .076779 .025370 3.026 .002 .040177 .146727
Intercept + month7 UN (1,1) 10.612257 .764462 13.882 .000 9.214904 12.221506
[subject = school *
Sl UN (2,1) 237927 108446  2.194 .028 .025377 .450476
UN (2,2) .031698 .023920 1.325 .185 .007223 .139115
.00 Residual 12.540315 .253095 49.548 .000 12.053942 13.046313
Intel)r"cept + mhont|h7 UN (1,1) 5.786742 1.760271 3.287 .001 3.187916 10.504160
s o el UN(@2,1)  .449483  .169397  2.653 .008 117472 781494
UN (2,2) .062542 .021597 2.896 .004 .031786 .123057
Intercept + month7 UN(1,1) 11.461198 .801028  14.308 .000 9.993997 13.143796
[subject = school *
student] UN (2,1) .389335 114642 3.396 .001 .164641 .614029
UN (2,2) .062158 .025041 2.482 .013 .028221 .136904
0.00 Residual 12.764188 257613  49.548 .000 12.269132 13.279219
Intercept + month7 UN (1,1) 5.805647 1.778912 3.264 .001 3.184443 10.584440
[subject = school]
UN (2,1) 1491725 .184857 2.660 .008 .129412 .854039
UN (2,2) .077255 .025515 3.028 .002 .040439 .147588
Intercept + month7 UN (1,1) 10.577117 .765791  13.812 .000 9.177824 12.189753
[subject = school *
student] UN (2,1) 234596 .108686 2.158 .031 .021574 447617
UN (2,2) .026512 .023933 1.108 .268 .004519 .155542
ooled Residual 12.562734 .269812 .000 12.033450 13.092017 .118 132 .994
Intercept + month7 UN (1,1) 6.275891 1.946745 .001 2.460129 10.091652 .030 .030 .999
[subject = school]
UN (2,1) .531770 1199219 .008 .141246 1922293 .050 .052 998
UN (2,2) .076647 .026100 .003 .025485 .127809 .048 .050 998
Intercept + month7 UN (1,1) 10.995674 .821400 .000 9.384785 12.606563 .098 .108 .995
[subject = school *
student] UN (2,1) 299977 119521 .012 .065416 .534537 .144 .166 .993
UN (2,2) .041728 .026462 .115 -.010225 .093681 .165 .194 .992

a. Dependent Variable: probsolve.
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FIML and MCMC: Selection Model for Regression

This example illustrates a multiple regression analysis with a selection model that invokes a
missing not at random process for the outcome. The analysis uses the
behaviorachievement.dat data set taken from a longitudinal study that followed 138 students
from primary through middle school. The file includes three annual assessments of broad
reading and math achievement beginning in the first grade, seventh grade standardized
achievement test scores taken from a statewide assessment, and a final measure of broad reading
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms
and learning problems were also obtained in the first grade. The data description at the

beginning of this document provides additional details. The variables for this analysis are as

follows.
Name Definition Missing % Scale
Focal Variables
BEHSYMP, 1% grade behavioral symptoms 3.6 Numeric
LRNPROB, 1* grade learning problems 22 Numeric
READ, 1* grade broad reading composite 6.5 Numeric
READ; 9™ grade broad reading composite 174 Numeric
Auxiliary Variables
READ, 2" grade broad reading composite 9.4 Numeric
STANREAD; 7™ grade standardized math 19.6 Numeric
Missing Data Indicator

M 9 grade reading missingness indicator 0 0 = observed, 1 = missing
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19.1  Analysis Model

The analysis model features ninth grade broad reading scores regressed on first grade reading

achievement and teacher-rated learning problems and behavioral symptoms.

READ, = B, + B1(READ,) + B,(LRNPROB,) + By(BEHSYMR) + ¢ (33)

Unlike a complete-data regression analysis, all incomplete variables require distributional

assumptions, including the predictors.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following the same factored regression specification from earlier examples, auxiliary
variables enter the model as additional outcomes that are predicted by the analysis variables and

by each other. The additional regression equations are as follows.

READ, = yy, + )/II(READQ) + )/ZI(READI) + )/31(LRNPROBI) + J/41(BEHSWH) +€
STANREAD; = ¥y, + Y12(READ,) + 72,(READy) + y3,(READ;)
+ 74,(LRNPROB,) + y5,(BEHSYMP) + ¢, (34)

Along with the focal regression model from Equation 34, the collection of regressions can be
viewed as a path model, where the focal regression is one part of a larger network (see the path
diagram from Section 2.4). The key difference is that the path coefficients are just a tool for

linking incomplete variables and do not represent a substantive theory.

A missing not at random process is invoked by specifying a selection model that links the
missingness probabilities to the unseen outcome scores. This model features the binary missing
data indicator regressed on the outcome variable and potentially other variables. To avoid
excessive overlap between the focal and missingness models, the selection model used first grade

learning problems as an additional regressor.

M* = yo3 + 713(READg) + 753(LRNPROB; ) + €5 (35)
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The asterisk superscript denotes a normally distributed latent response variable (i.e., a probit

regression). A path diagram of the focal and selection models is shown below, with dashed lines

—>| BEHSYMP;

———>| LRNPROB; READING; |<—

——s| READING, /
; .'.'A "","" :,.~':

t>| READING, |€°

— @ -—

LIPPPPR > STANREAD7

indicator the missingness model parameters. The oval labeled M* represents latent response

variable for the missingness indicator.

19.2

Mplus FIML Script

The code block below shows Mplus script Ex19. inp.

Mplus Script Ex19.inp

O N O O h W N =

—
w N - oo

DATA:
file = behaviorachievement.dat;
VARIABLE:

names = id male hispanic riskgrp atrisk behsymp1l lrnprob1
readl read2 read3 read9 read9grp stanread?
math1 math2 math3 math9 math9grp stanmath7;

usevariables = read9 readl lrnprob1 behsympl read2 stanread7 m;

missing = all(999);
categorical = m;
DATA MISSING:

names = read9;
binary = m;

type = missing;
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14 ANALYSIS:

15  estimator = ml;

16 link = probit;

17 integration = montecarlo;

18  MODEL:

19 readl lrnprob1 behsympl;

20 read9 on readl lrnprobl behsympl;

21 m on read9 lrnprobl;

22 read2 on read9 readl lrnprob1 behsympl;
23 stanread7 on read2 read9 readl lrnprobl behsympl;
24 OUTPUT:

25  patterns sampstat stdyx cinterval;

The DATA command specifies the name of the input text file. No file path is required when the
data set is in the same directory as the script, as it is here. The VARIABLE command provides
information about the data. Beginning on line 4, the names subcommand assigns names to the
variables in the input data, the usevariables subcommand selects variables for the analysis, and
the missing subcommand gives the global missing value code. Lines 10 through 13 define a
binary missing data indicator called M, and the preceding categorical subcommand on line 9

identifies the new variable as categorical.

The DATA MISSING command that begins on line 10 creates a binary missing data indicator.
The names subcommand on line 11 identifies the variable to be recoded, and the binary
command on line 12 provides a name for the new variable. Finally, the type subcommand on
line 13 identifies the binary variable as a missing data indicator. As noted previously, the

missingness indicator is identified as a categorical variable on line 9.

The ANALYSIS command and estimator subcommand specify full information maximum
likelihood estimation. The default setting for a binary outcome is logistic regression. For
consistency with the MCMC analysis in Blimp, line 16 specifies a probit link that defines the
binary missing data indicator as a normally distributed latent response variable. Finally, the
integration = montecarlo subcommand invokes an algorithmic method for models with

mixed variable types.

The MODEL section of the script consists of five lines. Listing all predictors by name on line 19
is important because doing so invokes a multivariate normal distribution for these variables. As
mentioned previously, assigning distributional assumptions to predictors is necessary for missing

data handling. On line 20, the outcome variable appears to the left of the on keyword, and the
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predictors appear to the right. The missingness model from Equation 36 appears on line 21, and
the two auxiliary variable regressions from Equation 35 are on lines 22 and 23. Finally, the
OUTPUT command specifies four keywords on line 25 that request a summary of the missing data
patterns, maximum likelihood estimates of sample statistics, standardized coefficients, and

confidence intervals.
19.3  Mplus Output

Information about the missing data patterns is found near the top of the output file. Following
the missing data pattern table, the output displays a covariance coverage matrix that gives the
proportion of observed data for each variable on the diagonal and the proportion of observed
data for each variable pair on the off-diagonals. The format of these tables is the same as those

shown in Section 1.3.

The table of unstandardized parameter estimates is shown below. Because the analysis
specifies a multivariate normal distribution for the predictors, the means, variances, and
covariances of these variables are printed along with the focal model estimates. The table also
reports regression models for auxiliary variables. These supporting parameters are not of
substantive interest, and they do not need to be reported. The first two columns display the
unstandardized estimates and their standard errors, and the third and fourth columns display the

corresponding z-statistics and p-values.

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value
READ9 ON
READ1 0.507 0.042 12.201 0.000
LRNPROB1 -0.251 0.116 -2.170 0.030
BEHSYMP1 -0.180 0.101 -1.783 0.075
M ON
READ9 -0.006 0.010 -0.633 0.527
LRNPROB1 0.042 0.013 3.150 0.002
READ2 ON

READ9S 0.676 0.065 10.373 0.000
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READ1 0.548 0.044 12.474 0.000
LRNPROB1 -0.284 0.083 -3.428 0.001
BEHSYMP1 0.412 0.076 5.395 0.000

STANREAD7 ON

READ2 1.903 0.924 2.060 0.039
READ9 1.559 0.842 1.852 0.064
READ1 -0.736 0.608 -1.210 0.226
LRNPROB1 0.540 0.662 0.817 0.414
BEHSYMP1 -0.753 0.658 -1.144 0.253
LRNPROB1 WITH
READ1 -11.635 19.119 -0.609 0.543
BEHSYMP1 WITH
READ1 -14.114 21.254 -0.664 0.507
LRNPROB1 91.527 13.505 6.777 0.000
Means
READ1 86.154 1.752 49.188 0.000
LRNPROB1 52.292 0.915 57.121 0.000
BEHSYMP1 49.483 1.034 47.851 0.000
Intercepts
READ9 65.832 5.832 11.287 0.000
READ2 -19.011 5.741 -3.311 0.001
STANREAD7 19.329 50.325 0.384 0.701
Thresholds
M$1 2.715 1.305 2.080 0.038
Variances
READ1 417.284 51.743 8.065 0.000
LRNPROB1 114.548 13.883 8.251 0.000
BEHSYMP1 145.486 17.587 8.272 0.000
Residual Variances
READ9 86.368 11.474 7.528 0.000
READ2 38.774 5.663 6.847 0.000

STANREAD7 2206.056 303.868 7.260 0.000
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The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (z = 12.20, p < .001). Comparing these results to the estimates that
invoke a conditionally missing at random process provides a sensitivity check (see Section 1.3).
Because the selection model estimates are virtually identical to those from Chapter 1, one can
conclude that the regression parameters are somewhat robust to a different missingness process.
This interpretation presupposes that the missingness model is correctly specified. A different set
of predictors in the selection equation could change the estimates and the conclusion about

robustness.

The table also reports the missingness model parameters. The outcome variable is a latent
response score that represents a normally distributed propensity for missingness. To establish a
metric, the latent responses are approximately scaled as a z-score. Thus, the missingness model
slope coefficients essentially represent the standardized change in the missingness propensities
for a one-unit increase in the predictors. The negative coefficient for READ9 suggests that students
with higher ninth grade reading scores have a lower probability of missing data in ninth grade,
and the positive slope for LRNPROB1 indicates that students with elevated learning problems in

first grade are more likely to have missing data in middle school.
19.4  Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex19.inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex19.imp

DATA: behaviorachievement.dat;

VARIABLES: id male hispanic riskgrp atrisk behsympl lrnprob1
readl read2 read3 read9 read9grp stanread7
math1 math2 math3 math9 math9grp stanmath7;

MISSING: 999;

TRANSFORM:

m = ismissing(read9);

ORDINAL: m;

MODEL :

focal model:

S W 00 N O O h W N —

—_
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11 read9 ~ readl lrnprobl behsympl;

12 missingness.model:

13 m ~ read9 lrnprobi;

14 auxiliary model:

15  stanread7 read2 ~ read9 readl lrnprobl behsympl;
16 SEED: 90291;

17 BURN: 1000;

18 ITERATIONS: 10000;

The first eight lines can be viewed as a set of commands that specify information about the
data and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a
global missing value code as 999. The TRANSFORM command that starts on line 6 uses the
ismissing function to create a binary missing data indicator called M. The ORDINAL command on

line 8 identifies the indicator as a binary variable.

The MODEL command that begins on line 9 lists the regression models, with outcome variables
to the left of the tilde and predictors to the right. The focal model is listed on line 11, and the
missingness (selection) model is on line 13. Line 15 is a syntax shortcut that produces the two
auxiliary variable regression models in Equation 35; in the first model, READ2 is regressed on the
focal variables, and the second model features STANREAD7 regressed on READ2 and the focal
variables. Finally, note that the MODEL block uses labels to order the regression summary tables on

the output.
Lines 16 through 18 can be viewed as a block of commands that specify features of the MCMC

algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

The corresponding rblimp script Ex19.R is shown below.

rblimp Script Ex19.R

1 library(rblimp)
2 load('behaviorachievement.rda')
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3

4 mymodel <- rblimp(

5 data = behaviorachievement,

6 transform = 'm = ismissing(read9)’,
7 ordinal = 'm',

8 model = '

9 focal.model:

10 read9 ~ readl lrnprobl behsympl;
11 missingness.model:

12 m ~ read9 lrnprobl;

13 auxiliary.model:

14 stanread7 read2 ~ read9 readl lrnprobl behsympl',
15 seed = 90291,

16 burn = 1000,

17 iter = 10000)

18 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,
transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script.
19.5 Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
26 to 50 1.273 23

51 to 100 1.074 40

76 to 150 1.081 12

451 to 900 1.011 14

476 to 950 1.007 12

501 to 1000 1.015 17

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals
describe parameter distributions rather than characteristics of repeated samples. Although
MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.
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OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

focal.model block:

Outcome Variable: read9

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 91.783 12.981 70.696 121.147 -—- ---  6177.312
Coefficients:
Intercept 66.409 5.993 54.281 77.590 122.234 0.000 6416.982
readi 0.505 0.043 0.422 0.591 136.863 0.000 6710.053
lrnprobi -0.254 0.119 -0.486 -0.017 4.533 0.033  5463.375
behsymp1 -0.183 0.103 -0.386 0.016 3.167 0.075 6391.699
Standardized Coefficients:
readi 0.687 0.040 0.599 0.755 297.770 0.000  6461.097
lrnprob1 -0.181 0.084 -0.341 -0.012 4.653 0.031 5414.690
behsymp1 -0.147 0.082 -0.306 0.013 3.220 0.073  6405.638
Proportion Variance Explained
by Coefficients 0.596 0.050 0.487 0.681 -—- ---  6280.850
by Residual Variation 0.404 0.050 0.319 0.513 --= ---  6280.850

To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are
insufficient, increasing the value on the ITERATIONS command will remedy the issue. Unlike
previous examples, this analysis specified 20,000 iterations because the effective sample size for

the random slope variance was less than 100 when using 10,000 iterations.

The results are interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.51 points on READ9. The 95% credible interval limits suggest this effect is statistically different
from zero (p < .05) because the null value is well outside the interval. The frequentist test statistic
and p-value give the same conclusion. Comparing these results to estimates that invoke a

conditionally missing at random process provides a sensitivity check (see Section 6.3). Because



FIML and MCMC: Selection Model for Regression 287

the selection model estimates are virtually identical to those from Chapter 6, one can conclude
that the regression parameters are somewhat robust to a different missingness process. This
interpretation presupposes that the missingness model is correctly specified. A different set of
predictors in the selection equation could change the estimates and the conclusion about

robustness.

The table also reports the missingness model parameters. The outcome variable is a latent
response score that represents a normally distributed propensity for missingness. To establish a
metric, the latent responses are approximately scaled as a z-score. Thus, the missingness model
slope coefficients essentially represent the standardized change in the missingness propensities
for a one-unit increase in the predictors. The negative coefficient for READ9 suggests that students
with higher ninth grade reading scores have a lower probability of missing data in ninth grade,
and the positive slope for LRNPROB1 indicates that students with elevated learning problems in
first grade are more likely to have missing data in middle school. Note that an unusually large R-
squared value in the missingness model (e.g., greater than 70%) is often a symptom of overfitting

the selection equation with too many predictors. This analysis does not exhibit that symptom.

missingness.model block:

Outcome Variable: m

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:

Residual Var. 1.000 0.000 1.000 1.000 --= --- nan
Coefficients:

Intercept -2.084 1.133 -4.296 0.160 3.379 0.066  2687.691

read9 -0.011 0.009 -0.029 0.007 1.360 0.243  2256.809

lrnprob1 0.038 0.012 0.014 0.062 9.672 0.002  2739.452
Thresholds:

Tau 1 0.000 0.000 0.000 0.000 -—= -—= nan

Standardized Coefficients:
read9 -0.143 0.119 -0.370 0.099 1.406 0.236  2323.761
lrnprob1 0.361 0.102 0.144 0.543 12.337 0.000 2833.886

Proportion Variance Explained

by Coefficients 0.198 0.081 0.058 0.370 -—- ---  2190.883
by Residual Variation 0.802 0.081 0.630 0.942 --= ---  2190.883
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The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
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FIML and MCMC: Pattern Mixture Model For Regression

This example illustrates a pattern mixture regression model that invokes a missing not at random
process for the outcome. The analysis uses the behaviorachievement.dat data set taken from a
longitudinal study that followed 138 students from primary through middle school. The file
includes three annual assessments of broad reading and math achievement beginning in the first
grade, seventh grade standardized achievement test scores taken from a statewide assessment,
and a final measure of broad reading and math obtained in ninth grade. The data also contain
teacher ratings of behavioral symptoms and learning problems were also obtained in the first
grade. The data description at the beginning of this document provides additional details. The

variables for this analysis are as follows.

Name Definition Missing % Scale

Focal Variables

BEHSYMP, 1% grade behavioral symptoms 3.6 Numeric
LRNPROB, 1* grade learning problems 22 Numeric
READ, 1* grade broad reading composite 6.5 Numeric
READ; 9™ grade broad reading composite 174 Numeric
Auxiliary Variables
READ, 2" grade broad reading composite 94 Numeric
STANREAD; 7™ grade standardized math 19.6 Numeric
Missing Data Indicator

M 9™ grade reading missingness indicator 0 0 = observed, 1 = missing




FIML and MCMC: Pattern Mixture Model For Regression 290

20.1  Analysis Model

The population-level analysis model features ninth grade broad reading scores regressed on first

grade reading achievement and teacher-rated learning problems and behavioral symptoms.

READ, = B, + B1(READ,) + B,(LRNPROB,) + By(BEHSYMR) + ¢ (36)

Unlike a complete-data regression analysis, all incomplete variables require distributional

assumptions, including the predictors.

A missing not at random process is invoked by specifying a pattern mixture model that
links the missingness probabilities to the unseen outcome scores. This model features the binary
missing data indicator as a predictor and possibly a moderator. The basic idea is that the missing
data patterns define subgroups with different parameter values. This example illustrates a process
where students with missing scores in ninth grade have a lower reading mean. It is also possible

for the regression coefficients to differ by pattern (see Enders, 2022, Section 9.8).

To invoke a missing data pattern-specific mean difference, the fitted model includes the

binary missing data indicator as a predictor

READQ = [Bo(com) + Bo(mis)(M)] + 61(READ1)
+ B,(LRNPROB,) + f3;(BEHPROB,) + ¢ (37)

such that 8ycom) is the intercept (mean level) for students with complete reading scores, and
Boaitr) is outcome mean difference for students with missing data.

Unlike a complete-data regression analysis, incomplete predictor variables also require
distributional assumptions and models that define those distributions. The analysis uses a
factored regression specification that uses a sequence of univariate regression models to link
incomplete predictors. This specification was introduced throughout previous examples. The

additional regression equations are as follows.

M* =Yy +€
BEHSYMR = yp, + 712(M) + €,
LRNPROB, = y,, + 7,,(BEHSYMP,) +7,,(M) + ¢; (38)
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READ; = Yo4 + 714(LRNPROB;) + y24(BEHSYMR) + y3,(M) + €,

The asterisk subscript in the M model denotes a latent response variable (i.e., probit regression).
Listing the missing data indicator first in the sequence is important because pattern proportions

needed for Equation 39 are a function of the empty model’s regression intercept.

The missing data literature often recommends an inclusive strategy that incorporates auxiliary
variables that either predict missingness or correlate with the incomplete variables (Collins et al.,
2001). Following the same factored regression specification from earlier examples, auxiliary
variables enter the model as additional outcomes that are predicted by the analysis variables and

by each other. The additional regression equations are as follows.

READ, = ¥y, + y1:(READy) + v,;(READ;) + y3;(LRNPROB;) + v,,(BEHSYMP,) + €,
STANREAD; = yy, + 712(READ,) + ¥2,(READg) + y3,(READ)
+ 742(LRNPROB,) + y5,(BEHSYMR) + ¢, (39)

Along with the focal regression from Equation 37 and the predictor models from Equation 40,
the collection of regressions can be viewed as a path model, where the focal regression is one part
of a larger network. The key difference is that the path coefficients are just a tool for linking
incomplete variables and do not represent a substantive theory. A path diagram of the full model

is shown below.
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The intercept coefficient from Equation 37 is a weighted average of the group-specific

intercepts

50 = p(com)ﬁo(com) + p(mis)(ﬁo(com) + Bo(diff)) = p(com)ﬁo(com) + p(mis)ﬁo(mis) (40)

where p(om) and pgmis) are the proportions of complete and missing outcome scores,
respectively. Importantly, 8q4if) is not estimable from the data, and researchers must provide a
value that induces the posited missing not at random process (e.g., students with missing
outcome data have lower reading levels). Following the procedure described in Enders (2022),
the scripts below set Bo(qifr) to a value that is 0.20 standard deviation units below B(com)- That is,
the average reading level for students with missing outcome scores is lower by an amount

commensurate with Cohen’s (1988) small effect size benchmark.
20.2  Mplus FIML Script

The code block below shows Mplus script Ex20. inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Mplus Script Ex20.inp
1 DATA:
2 file = behaviorachievement.dat;
3 VARIABLE:
4 names = id male hispanic riskgrp atrisk behsympl1 lrnprob1
5 readl read2 read3 read9 read9grp stanread7
6 math1 math2 math3 math9 math9grp stanmath7;
7 usevariables = read9 readl lrnprobl behsympl read2 stanread7 m;
8 missing = all(999);
9 categorical = m;
10 DATA MISSING:
11 names = read9;
12 binary = m;
13 type = missing;
14 ANALYSIS:
15  estimator = ml;
16 link = probit;
17 integration = montecarlo;
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18 MODEL :

19  [m$1] (missmean);

20  behsympl on m;

21 lrnprob1 on behsympl m;

22 readl on lrnprobl behsympl m;

23 read9 on m (beta@diff)

24 readl lrnprob1 behsympl;

25  [read9] (beta@com); readd9 (resvar);

26 read2 on read9 readl lrnprob1 behsympl m;

27 stanread7 on read2 read9 readl lrnprobl behsympl m;
28 MODEL CONSTRAINT:

29  new(cohensd pcom pmis betad);

30 cohensd = -.20;

31 betaddiff = cohensd * sqrt(resvar);

32  pmis = phi(-missmean);

33 pcom = 1 - pmis;

34  beta@ = (beta@com * pcom) + ((beta@com + beta@diff) * pmis);
35 OUTPUT :

36  patterns sampstat stdyx cinterval;

The DATA command specifies the name of the input text file. No file path is required when the
data set is in the same directory as the script, as it is here. The VARIABLE command provides
information about the data. Beginning on line 4, the names subcommand assigns names to the
variables in the input data, the usevariables subcommand selects variables for the analysis, and
the missing subcommand gives the global missing value code. Lines 10 through 13 define a
binary missing data indicator called M, and the preceding categorical subcommand on line 9

identifies the new variable as categorical.

The DATA MISSING command that begins on line 10 creates a binary missing data indicator.
The names subcommand on line 11 identifies the variable to be recoded, and the binary
command on line 12 provides a name for the new variable. Finally, the type subcommand on
line 13 identifies the binary variable as a missing data indicator. As noted previously, the

missingness indicator is identified as a categorical variable on line 9.

The ANALYSIS command and estimator subcommand specify full information maximum
likelihood estimation. The default setting for a binary outcome is logistic regression. For
consistency with the MCMC analysis in Blimp, line 16 specifies a probit link that defines the

binary missing data indicator as a normally distributed latent response variable. Finally, the
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integration = montecarlo subcommand invokes an algorithmic method for models with

mixed variable types.

The MODEL command that begins on line 18 lists the regression models, with outcome
variables to the left of the on keyword and predictors to the right. An empty model for the
missing data indicator is listed on line 19. The label on the threshold parameter from this model
(missmean) is used later in the code to compute the missing data pattern proportions. The
remaining predictor models from Equation 40 appear on lines 20 through 22. Next, lines 23
through 25 list the focal model parameters. Line 23 assigns a label to the pattern mean difference
(i.e., the Boitr) coefficient from Equation 38), and line 25 labels the complete-case intercept and
residual variance, respectively. Collectively, the labels are used later in the code to induce the
desired effect size difference for the missing scores. Finally, lines 26 and 27 produce the two
auxiliary variable regression models from Equation 41; in the first model, READ2 is regressed on
the focal variables, and the second model features STANREAD7 regressed on READ2 and the focal

variables.

The MODEL CONSTRAINT section of the script from lines 28 through 34 includes commands that
define new parameters and impose constraints. First, line 29 assigns names to four new
parameters. Line 30 provides the desired effect size difference for the group with missing data,
and line 31 defines a mean difference parameter betaodiff that is a function of the effect size
and residual standard deviation (see Enders, 2022, Eq. 9.29). Lines 32 and 33 use the threshold
parameter from the missing data indicator’s model to compute the missing data pattern
proportions. Line 34 computes the weighted intercept that averages over the missing data
patterns (see Equation 39). Finally, the OUTPUT command specifies four keywords on line 36 that
request a summary of the missing data patterns, maximum likelihood estimates of sample

statistics, standardized coefficients, and confidence intervals.
20.3  Mplus Output

Information about the missing data patterns is found near the top of the output file. Following
the missing data pattern table, the output displays a covariance coverage matrix that gives the
proportion of observed data for each variable on the diagonal and the proportion of observed

data for each variable pair on the off-diagonals. These tables are illustrated in Section 1.3.

The table of unstandardized parameter estimates is shown below. The table reports regression
models for predictor variables and auxiliary variables. These supporting parameters are not of
substantive interest, and they do not need to be reported. The first two columns display the
unstandardized estimates and their standard errors, and the third and fourth columns display the

corresponding z-statistics and p-values. The focal model results are shown in bold typeface.
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MODEL RESULTS

BEHSYMP1
M

ON

LRNPROB1
BEHSYMP1
M

ON

READ1 ON
LRNPROB1
BEHSYMP1
M

READS
M
READ1
LRNPROB1
BEHSYMP1

ON

READ2
READ9S
READ1
LRNPROB1
BEHSYMP1
M

ON

STANREAD7 ON
READ2
READ9S
READ1
LRNPROB1
BEHSYMP1
M

Intercepts

Estimate

7.692

4.241

-1.862

2.654

.597

1.728

.012
.064

4.861

0.124

.504
.248
.181

0.674
0.551

1.124

.290
414

2.244

. 891
.590
.7133
.493
.137

13.186

o 0O O

S © © O

Two-Tailed
S.E. Est./S.E. P-Value
2.898 0.004
.054 10.967 0.000
2.454 0.014
.244 -0.048 0.961
.208 -0.306 0.760
-0.664 0.506
-14.959 0.000
.042 11.990 0.000
117 -2.108 0.035
.101 -1.790 0.073
.065 10.344 0.000
.044 12.563 0.000
.084 -3.440 0.001
.77 5.415 0.000
0.501 0.617
.923 2.048 0.041
.841 1.891 0.059
.609 -1.205 0.228
.678 0.728 0.467
.659 -1.118 0.264
0.464 0.643
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READ9 66.040 5.887 11.218 0.000
READ1 90.485 9.209 9.826 0.000
LRNPROB1 21.999 2.715 8.103 0.000
BEHSYMP1 48.148 1.104 43.610 0.000
READ2 -19.003 5.776 -3.290 0.001
STANREAD7 18.400 50.557 0.364 0.716
Thresholds
M$1 0.939 0.126 7.472 0.000
Residual Variances
READ9 86.643 11.584 7.480 0.000
READ1 414.570 51.322 8.078 0.000
LRNPROB1 54.545 6.727 8.109 0.000
BEHSYMP1 137.009 16.565 8.271 0.000
READ2 38.759 5.658 6.850 0.000
STANREAD7 2200.450 303.283 7.255 0.000
New/Additional Parameters
COHENSD -0.200 0.000 FxxkxkEAxk 0.000
PCOM 0.826 0.032 25.608 0.000
PMIS 0.174 0.032 5.389 0.000
BETAOQ 65.716 5.887 11.162 0.000

The regression slopes interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is
statistically different from zero (z = 11.99, p < .001). The M coefficient from the same table is the
pattern mean difference 8ifr) (see Equation 38). The MODEL CONSTRAINT command defined a
set of new model parameters, including weighted average intercept. The table summarizing the
additional parameters is shown below. These quantities are found under the table labeled
New/Additional Parameters. The weighted intercept coefficient that averages over the missing

data patterns is labeled beta@.

Comparing these results to estimates that invoke a conditionally missing at random process
(see Section 1.3) provides a sensitivity check that conveys the impact of a missing not at random

process where students with missing data have lower mean reading levels in ninth grade. This
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comparison presupposes that the missingness model is correctly specified. The missing data

indicator could also moderate associations in the regression model, in which case the estimates

and conclusions about robustness could change.

20.4

Blimp and rblimp MCMC Scripts

The code block below shows Blimp script Ex20.inp. This script is executed in the Blimp Studio

graphical interface. The corresponding R script is shown later in this section.

Blimp Script Ex20.imp

O N O O A W N -
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DATA: behaviorachievement.dat;

VARIABLES: id male hispanic riskgrp atrisk behsympl lrnprob1
readl read2 read3 read9 read9grp stanread7
math1 math2 math3 math9 math9grp stanmath7;

MISSING: 999;

TRANSFORM:

m = ismissing(read9);

ORDINAL: m;

MODEL :

focal model:

read9 ~ 1@beta@com m@beta@diff readl lrnprobl behsympl;

indicator.model:

m ~ 1@missmean;

predictor.model:

readl lrnprob1l behsympl ~ m;

auxiliary model:

stanread7 read2 ~ read9 readl lrnprobl behsympl;

PARAMETERS:

cohensd = -.20;

beta@diff = cohensd * sqrt(read9.totalvar);

pmis = phi(missmean);

pcom = 1 - pmis;

betad = (betadcom * pcom) + ((beta@com + beta@diff) * pmis);

SEED: 90291;

BURN: 1000;

ITERATIONS: 10000;



FIML and MCMC: Pattern Mixture Model For Regression 298

The first eight lines can be viewed as a set of commands that specify information about the
data and variables. The DATA command specifies the name of the input text file. No file path is
required when the data file is in the same directory as the script, as it is here. Starting on line 2,
the VARIABLES command names the data columns, and the MISSING command on line 5 defines a
global missing value code as 999. The TRANSFORM command that starts on line 6 uses the
ismissing function to create a binary missing data indicator called M. The ORDINAL command on

line 8 identifies the indicator as a binary variable.

The MODEL command that begins on line 9 lists the regression models, with outcome variables
to the left of the tilde and predictors to the right. The code uses model block labels (focal.model,
indicator.model, predictor.model, and auxiliary.model) to group the regressions and order
output tables. The focal model listed on line 11 assigns labels to intercept and the pattern mean
difference (i.e., the Bo(com) and Boaitr) coefficients from Equation 38) using the @ symbol. The
labels are used later in the code to induce the desired effect size difference for the missing scores.
An empty model for the missing data indicator is listed on line 13. The label on the intercept
parameter is used later in the code to compute the missing data pattern proportions. Line 15 is a
syntax shortcut that produces the predictor regression models in Equation 40; in the first model,
BEHSYMP1 is regressed on the binary missing data indicator M, the second model features
LRNPROB1 regressed on BEHSYMP1 and the indicator, and the third regression features READ1
regressed on all other predictors. Line 17 is a similar syntax shortcut that produces the two
auxiliary variable regression models in Equation 41; in the first model, READ2 is regressed on the
focal variables, and the second model features STANREAD7 regressed on READ2 and the focal

variables.

The PARAMETERS section of the script from lines 18 through 23 includes commands that define
new parameters and impose constraints. Line 19 provides the desired effect size difference for the
group with missing data, and line 20 defines a mean difference parameter beta@diff that is a
function of the effect size and estimated standard deviation, which is obtained by appending
.totalvar to the focal dependent variable's READ9 (see Enders, 2022, Eq. 9.29). Lines 21 and 22
use the intercept parameter from the missing data indicator’s model to compute the missing data
pattern proportions. Finally, line 23 computes the weighted intercept that averages over the

missing data patterns (see Equation 41).

Lines 24 through 26 can be viewed as a block of commands that specify features of the MCMC
algorithm: the SEED command gives an integer string that initializes the random number
generator, the BURN command specifies the number of iterations for the warm-up or burn-in
period, and the ITERATIONS command gives the number of MCMC iterations on which the
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analysis summaries are based (essentially, the number of MCMC cycles following the warm-up

period).

The corresponding rblimp script Ex20.R is shown below.

rblimp Script Ex20.R
1 library(rblimp)
2 load('behaviorachievement.rda')
3
4 mymodel <- rblimp(
5 data = behaviorachievement,
6 transform = 'm = 1 - ismissing(read9)’',
7 ordinal = 'm',
8 model = '
9 focal.model:
10 read9 ~ 1@betadcom m@betaddiff readl lrnprobl behsympl;
11 missingness.model:
12 m ~ 1@missmean;
13 predictor.model:
14 readl lrnprobl behsympl ~ m;
15 auxiliary.model:
16 stanread7 read2 ~ read9 m readl lrnprobl behsymp1',
17 parameters = 'cohensd = -.20;
18 betaddiff = cohensd * sqrt(read9.totalvar);
19 pmis = phi(missmean);
20 pcom = 1 - pmis;
21 betad = (beta@com * pcom) + ((beta@com + beta@diff) * pmis)',
22 seed = 90291,
23 burn = 1000,
24 iter = 10000)

25 output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in the rblimp
function. The two exceptions are the VARIABLES and MISSING commands, which are omitted
because that information is contained in the R data file. Following R convention, the input
parameters are separated by commas. Alphanumeric inputs like model statements, variable lists,

transformations, and new parameters are enclosed in quotes. Numeric inputs like the seed and
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number of iterations do not require quotes. Finally, subcommands that are part of the same
command (e.g., different equations in the MODEL command) are separated by semicolons, as they

are in the Blimp script.
20.5 Blimp and rblimp Output

Prior to inspecting the parameter estimates, it is important to investigate the potential scale
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR
diagnostic for every parameter. The table located near the top of the output reports the highest
(worst) PSR value across all parameters in every model. A common recommendation is that
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is

above these cutoffs, then rerun the analysis with a longer burn-in period.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
26 to 50 1.468 58

51 to 100 1.107 43

76 to 150 1.175 4

451 to 900 1.008 53

476 to 950 1.009 67

501 to 1000 1.023 67

The MCMC summary tables include unstandardized coefficients, standardized slopes, and
variance explained effect size estimates. MCMC estimation produces a distribution for each
model parameter. The median and standard deviation columns describe the center and spread of
the posterior distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point estimates and
standard errors. The 95% credible intervals in the rightmost columns give a range that captures
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals

describe parameter distributions rather than characteristics of repeated samples. Although
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MCMC estimation is grounded in the Bayesian statistical paradigm, one can also view posterior
medians, standard deviations, and credible intervals as surrogates for frequentist point estimates,
standard errors, and confidence intervals. Levy and McNeish (2023) describe this perspective as
“computational frequentism”. Essentially, the researcher wants to operate within the frequentist
framework, but they use MCMC to solve a difficult estimation problem. Missing data analyses
are a compelling use case for computational frequentism because optimal likelihood-based
solutions are not always available or easy to use. To facilitate this perspective, the Blimp output
also includes a chi-square statistic and p-value for each model parameter (the Bayesian Wald test;
Asparouhov & Muthén, 2021). These Wald tests are like squared z-statistics from maximum

likelihood estimation, but MCMC generates the point estimate and “standard error” for the test.

The table summarizing the focal regression model is shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
focal.model block:

Outcome Variable: read9

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
Variances:
Residual Var. 91.694 13.046 70.522 121.601 -—- ---  5903.081
Coefficients:
Intercept 69.026 6.111 57.127 80.988 127.522 0.000 6333.447
m -2.983 0.158 -3.313 -2.694 355.535 0.000 6636.674
readi 0.503 0.044 0.419 0.590 133.963 0.000 7164.000
lrnprobi -0.244 0.122 -0.482 -0.004 4.013 0.045  4863.923
behsymp1 -0.183 0.105 -0.393 0.021 3.083 0.079 6107.174
Standardized Coefficients:
m -0.076 0.005 -0.087 -0.067 208.040 0.000 40000.000
readi 0.693 0.040 0.605 0.762 295.885 0.000 6829.250
lrnprobi -0.176 0.087 -0.343 -0.003 4.086 0.043  4902.866
behsymp1 -0.149 0.084 -0.317 0.018 3.135 0.077 6112.053

Proportion Variance Explained
by Coefficients 0.587 0.051 0.476 0.676 -—- ---  6342.070
by Residual Variation 0.413 0.051 0.324 0.524 --= ---  6342.070
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To begin, the N_Eff values in rightmost column of the table give the effective number of MCMC
samples for each parameter. These quantities essentially represent the number of independent
estimates on which the parameter summaries are based after removing autocorrelations from the
MCMC process. Gelman et al. (2014, p. 287) recommend values greater than 100. All values in
the example table exceed this recommended minimum. In cases where the N_Eff values are
insufficient, increasing the value on the ITERATIONS command will remedy the issue. Unlike
previous examples, this analysis specified 20,000 iterations because the effective sample size for

the random slope variance was less than 100 when using 10,000 iterations.

The regression slopes interpreted in the same way as a complete-data regression analysis. For
example, consider the first-grade reading score slope. The model predicts that two individuals
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by
0.50 points on READ9. The 95% credible interval limits suggest this effect is statistically different
from zero (p < .05) because the null value is well outside the interval. This table does not display
the regression intercept. Rather, Intercept and M coefficients are the pattern-specific parameters,
Bocom) and Boaitr) (see Equation 38).

The PARAMETERS command defined a set of new model parameters, including weighted

average intercept. The table summarizing the additional parameters is shown below.

GENERATED PARAMETERS:

Summaries based on 10000 iterations using 2 chains.

Parameters Median StdDev 2.5% 97.5% ChiSq pvalue N_Eff
cohensd -0.200 0.000 -0.200 -0.200 inf 0.000 2.001
beta@diff -2.983 0.158 -3.313 -2.69%4 355.489 0.000 6638.348
pmis 0.826 0.032 0.757 0.883 646.515 0.000 3155.285
pcom 0.174 0.032 0.117 0.243 29.305 0.000 3155.285
betad 66.565 6.143 54.605 78.557 117.332 0.000 6364.816

The weighted intercept coefficient that averages over the missing data patterns is labeled beta@.
Comparing these results to estimates that invoke a conditionally missing at random process (see
Section 6.3) provides a sensitivity check that conveys the impact of a missing not at random
process where students with missing data have lower mean reading levels in ninth grade. This

comparison presupposes that the missingness model is correctly specified. The missing data
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indicator could also moderate associations in the regression model, in which case the estimates

and conclusions about robustness could change.

The Blimp output also includes tables of regression model parameters for auxiliary variables
and incomplete predictors. The auxiliary variable models appear in OUTCOME MODEL ESTIMATES
section with the focal results, and the auto-generated predictor models are displayed under the
heading PREDICTOR MODEL ESTIMATES. Section 6.2 includes a summary table from one of these
supporting models. These additionally results are not of substantive interest and would not be

reported.
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