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Preface 
This review paper was developed as part of a missing data toolkit supported by Institute of 
Educational Sciences award R305D22000. The toolkit includes two additional components: a 
Software Tutorials document with annotated analysis scripts and outputs from several software 
programs, and a series of YouTube videos demonstrating missing data analyses with the Blimp 
application (www.appliedmissingdata.com/videos). Blimp was developed with support from 
Institute awards R305D150056 and R305D190002. The software is available as a free download for 
MacOS, Windows, and Linux (www.appliedmissingdata.com/blimp). 

This review paper catalogs and describes a collection of missing data procedures that represent 
the current state of the methodological art. The goal is to provide educational researchers with a 
springboard for accessing the most up-to-date missing data handling methodologies. The paper 
primarily focusses on three approaches that have gained broad support in the missing data 
literature: maximum likelihood estimation, Bayesian estimation, and multiple imputation. I 
henceforth refer to this basket of methods as the “Big Three”. Classic incarnations of the Big Three 
have been available in software programs for more than 20 years. Not surprisingly, missing data 
methodologies have evolved and improved, and contemporary variants of these methods readily 
pair with most analytic procedures that enjoy widespread use in educational research applications.  

Procedurally, the Big Three appear to be very different. Maximum likelihood integrates missing 
data handling into its estimation machinery, deducing optimal parameter estimates directly from 
an incomplete data set without ever filling in the missing values. Bayesian estimation similarly 
identifies optimal parameter estimates from the data, but it does so with an iterative imputation 
scheme. Multiple imputation requires a preliminary analytic step that creates a collection of filled-
in data sets for the subsequent analyses. Procedural differences aside, the Big Three usually produce 
equivalent numeric estimates, given the same data and assumptions. All things being equal, 
choosing among competing methods is often a matter of personal preference. Ultimately, the 
composition of the focal analysis model—in particular, whether it includes nonlinear effects such 
as interactions, curvilinear terms, or random coefficients—usually determines the type of missing 
data strategy that works best. This important take-home message appears repeatedly throughout 
the document. 

The structure of the review paper is as follows. Section 1 provides a brief summary of missing 
data theory, as described by Rubin and colleagues (Little & Rubin, 2020; Rubin, 1976). This section 
introduces the concept of missing data auxiliary variables, and it describes simple steps to prepare 
for a missing data analysis. The second section describes an emerging modeling framework called 
factored regression specification. Unlike classic versions of the Big Three, which often adopt a 
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multivariate normal distribution for incomplete variables, factored specifications invoke 
distributional assumptions on a variable-by-variable basis. This flexibility addresses longstanding 
limitations of classic missing data methods. The next three sections describe the Big Three missing 
data methods: maximum likelihood, Bayesian estimation, and multiple imputation. These sections 
describe classic approaches that are widely available in software packages, and they highlight how 
the frameworks have evolved in the past two decades. Section 6 describes missing data handling 
for multilevel models that are ubiquitous in educational research. Examples include data where 
students are nested in schools and data with repeated measurements nested in students. The 
seventh section describes analyses for a particularly challenging missingness process where the 
propensity for missing data relates to the unseen score value itself (called missing not at random). 
The final section provides a summary of some current software options. Most sections include 
analysis examples, and the Software Tutorials document includes annotated analysis scripts and 
outputs for 20 common analyses (see www.appliedmissingdata.com/videos).
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Introduction to Missing Data 
 

 

 

 

 

As outlined in the Preface, this review paper focusses on three approaches that have gained broad 
support in the missing data literature: maximum likelihood, Bayesian estimation, and multiple 
imputation. I henceforth refer to this basket of methods as the “Big Three”. Relative to older 
approaches, the Big Three offer substantial advantages, including greater power and unbiased 
estimates under a broader range of applications. However, it is important to understand when they 
work and what assumptions are required to reap these benefits. To that end, this section 
summarizes Rubin and colleagues’ theoretical framework for missing data problems (Little & 
Rubin, 2020; Mealli & Rubin, 2016; Rubin, 1976). This classification system defines three 
mechanisms or processes by which the probability of nonresponse relates to the data: missing 
completely at random, missing at random, and missing not at random. In practical terms, these 
foundational concepts function as assumptions for a missing data analysis. Although these 
assumptions are mostly untestable, there are steps we can take to make their key propositions more 
plausible.  

1.1 Older Missing Data Handling Methods 

Of course, the missing data literature outlines numerous other approaches beyond the Big Three. 
Some have enjoyed widespread use, and others are little more than a historical footnote. Broadly 
speaking, these methods deal with missing data either by removing incomplete data records or 
replacing the missing scores with imputations. Deletion options include removing cases with any 
missing values (listwise deletion or complete-case analysis) or removing cases on an analysis-by-
analysis basis (pairwise deletion). Outdated imputation approaches include arithmetic mean 
imputation, regression imputation, person-mean imputation for questionnaire items, and last 
observation forward imputation for repeated measures data, among others. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20



Introduction to Missing Data   2 

Deletion methods have two important limitations: they reduce power and require a completely 
unsystematic nonresponse process where missingness is unrelated to the data. For these reasons, 
the American Psychological Association’s Taskforce on Statistical Inference characterized deletion 
as “among the worst methods available for practical applications” (Wilkinson and Task Force on 
Statistical Inference, 1999, p. 598). In truth, there are a few situations where deletion produces 
optimal estimates under the same assumptions as the Big Three (Vach, 1994; von Hippel, 2007; 
White & Carlin, 2010). However, these occur too infrequently to consider this strategy as a viable 
option for most missing data problems. 

Single imputation methods like mean imputation and regression imputation fill in the data 
with a one set of replacement scores. These approaches also have substantial limitations. Many 
single imputation methods introduce bias, even when missingness is purely unsystematic. 
Virtually all distort standard errors and significance tests, even if they sometimes produce unbiased 
estimates. A problematic version of regression imputation labeled “EM imputation” in the popular 
SPSS programs deserves a brief discussion. The procedure is potentially misleading because it first 
uses maximum likelihood estimation1 to estimate the means, variances, and covariances. Next, the 
procedure converts these summary statistics to regression equations, then it uses these models to 
compute predicted values that replace the missing scores. Regression imputation introduces bias 
because it attenuates variation, and using maximum likelihood to estimate the initial summary 
statistics does not mitigate this problem. von Hippel (2004) provides a thorough discussion of “EM 
imputation” in SPSS. 

1.2 Missing Data Processes (Mechanisms) 

Rubin and colleagues (Little & Rubin, 2020; Mealli & Rubin, 2016; Rubin, 1976) outlined a 
classification system for missing data problems that describes three ways nonresponse can relate 
to the data. These so-called missing data mechanisms or processes are missing completely at 
random, missing at random, and missing not at random. These terms can be confusing because 
the word “random” implies a probabilistic rather than haphazard process. For example, a missing 
at random process (the default assumption for most Big Three applications) describes a systematic 
relation between the data and nonresponse. 

Rubin’s theoretical framework conceptualizes a data set as consisting of observed and unseen 
(missing) score values. To illustrate, Table 1 shows a data excerpt for 10 observations and three 

 
1 The EM abbreviation references the expectation-maximization or EM optimization algorithm 

used to get the maximum likelihood estimates.   
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variables. The values in the leftmost set of columns comprise the observed data, and the middle set 
of columns contain the would-be values of the missing data. I refer to these partitions as 𝐘 (𝑜𝑏𝑠) and 
𝐘(𝑚𝑖𝑠), respectively. The rightmost set of columns in Table 1 display indicators that recode the 
observed data as 0 = observed and 1 = missing. I collectively refer to the missing data indicators as 
M below. 

Formally, Rubin’s mechanisms are defined by statements that indicate whether the observed 
or missing scores relate to binary missing data indicators. This mechanism is what researchers 
think of as purely unsystematic missingness. The formal definition of MCAR is as follows. 

Pr(𝐌 = 1|𝐘 (𝑜𝑏𝑠),𝐘(𝑚𝑖𝑠)) = Pr(𝐌 = 1) (1) 

The left side of the expression says that the probability of a missing score (i.e., a missing data 
indicator equal to one) could depend on both the observed and missing parts of the data to the 
right of the vertical pipe. The right side of the equality is a simplified function where nonresponse 
is unrelated to both parts of the data. In practical terms, the right side of Equation 1 says that all 
participants have the same chance of missing data. As alluded to previously, most deletion 

 

TABLE 1. Observed and Missing Data Partition 

Observed  Missing  Indicators 

Y1 Y2 Y3  Y1 Y2 Y3  M1 M2 M3 

-- 91 --  63 -- 59  1 0 1 

76 82 82  -- -- --  0 0 0 

97 109 81  -- -- --  0 0 0 

66 -- 81  -- 77 --  0 1 0 

63 69 --  -- -- 91  0 0 1 

83 89 78  -- -- --  0 0 0 

73 -- 77  -- 67 --  0 1 0 

63 72 76  -- -- --  0 0 0 

-- 69 74  -- -- --  1 0 0 

68 85 --  -- -- 98  0 0 1 
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applications invoke an MCAR mechanism, and estimates are prone to bias when this restriction 
assumption is violated. 

The missing at random (MAR) mechanism states that nonresponse depends on the observed 
data but not the unseen scores. The right side of the equality encodes this definition. 

Pr(𝐌 = 1|𝐘 (𝑜𝑏𝑠),𝐘(𝑚𝑖𝑠)) = Pr(𝐌 = 1|𝐘 (𝑜𝑏𝑠)) (2) 

Counterintuitively, the MAR mechanism defines a systematic process where missingness varies 
across observed score profiles. That is, two participants with identical observed score profiles share 
the same chance of missing values, whereas two participants with different observed scores have 
different missingness rates. To clarify that missingness is random after conditioning on or 
controlling for the observed data, Graham (2009) referred to this process as conditionally missing 
at random (CMAR). I adopt his terminology to enhance clarity. The key advantage of the Big Three 
is that they produce unbiased estimates when the process is CMAR (or MCAR)2. Unfortunately, 
we cannot demonstrate that missingness is unrelated to the unseen scores because doing so would 
require knowing their values. Consequently, this default assumption for most Big Three 
applications does not have testable propositions. 

Finally, a missing not at random (MNAR) process states that nonresponse depends on the 
unseen scores, even after accounting for one’s observed score profile. The formal definition below 
says that the missing data indicators can depend on either the observed or missing parts of the 
data. 

Pr(𝐌 = 1|𝐘 (𝑜𝑏𝑠),𝐘(𝑚𝑖𝑠)) (3) 

Under such a process, two participants with identical observed score profiles no longer have the 
same likelihood of missing data, as the would-be scores carry important information not contained 
in the observed data. Section 7 describes modeling frameworks that pair the Big Three with missing 
not at random processes. 

To illustrate some possible realizations of Rubin’s missing data mechanisms, consider a cluster-
randomized trial that assigns a sample of middle schools to receive either the district-standard 
math curriculum or a new cognitive strategy instructional intervention designed to enhance math 
problem-solving (Montague et al., 2014). The researchers collected seven monthly assessments of 

 
2 Technically, estimates are “consistent”, meaning that bias decreases to zero when the sample 

size gets large enough. Of course, the definition of “large enough” varies by model. In many cases, 
estimates are approximately unbiased with sample sizes that are typical for educational research. 



Introduction to Missing Data   5 

an IRT-calibrated math problem-solving test during the school year. As is typical for longitudinal 
designs, the proportion of missing test scores increased over time. 

To begin, a subset of participants had incomplete data because researchers used a planned 
missing data design (Graham et al., 2001; Graham et al., 2006; Mistler & Enders, 2011) where they 
intentionally administered only four of the seven monthly assessments. These values are missing 
completely at random because nonresponse was determined by the researchers and not the data. 
Other scores were missing for reasons beyond the researchers’ control. Housing mobility was a 
potential determinant of missingness because students from low-income households were more 
likely to move out of the participating district. This source of missingness would be conditionally 
missing at random if nonresponse is unrelated to a student’s unseen problem-solving score. Finally, 
a missing not at random mechanism could produce item-level missingness if students skipped 
problem-solving questions because they did not possess adequate knowledge to formulate a 
response (Finch, 2008; Mislevy & Wu, 1996). To reiterate, the observed data do not contain the 
information needed to identify, confirm, or differentiate CMAR and MNAR processes because 
both involve propositions about the unseen score values. Unfortunately, the default CMAR 
assumption invoked by most Big Three applications is inherently untestable. Only expert judgment 
and substantive knowledge can rule out an MNAR mechanism. When in doubt, sensitivity analyses 
involving the selection or pattern mixture modeling procedures described in Chapter 7 can be a 
useful adjunct to CMAR-based analyses. 

1.3 Missing Data Auxiliary Variables 

Practically speaking, the conditionally missing at random (CMAR) assumption for a Big Three 
application requires that all important determinants of missingness are contained within a model’s 
observed data. Failing to satisfy this assumption can produce biased estimates. However, some of 
these determinants may be variables that would not have been considered had the data been 
complete. Returning to the randomized control trial scenario, consider an ANCOVA model that 
evaluates intervention group differences with baseline scores as a student-level covariate. If 
researchers believed that socioeconomic status is a potential determinant of missingness, then this 
variable could be important for missing data handling even though it was not part of the analytic 
plan. 

Extraneous variables like socioeconomic status are known as auxiliary variables. 
Methodologists routinely recommend a so-called inclusive analysis strategy that incorporates these 
additional variables into a missing data handling procedure (Collins et al., 2001; Rubin, 1996; 
Schafer & Graham, 2002). Leveraging auxiliary variables can fine-tune a missing data analysis in 
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two important ways. Expanding the observed data can reduce nonresponse bias by making the 
CMAR assumption more plausible, and introducing additional sources of sources of correlation 
can improve power by recouping lost information. However, not all auxiliary variables are created 
equal. Collins et al. (2001) provide a hierarchy that helps prioritize their selection. To illustrate, 
Figure 1 depicts a bivariate analysis involving X and Y and single auxiliary variable A. The outcome 
variable Y has missing values, and 𝑀𝑌  is its missing data indicator. The solid arrow represents the 
focal analysis parameter, and dashed arrows are auxiliary variable assocations. 

Category A auxiliary variable

Category B auxiliary variable

FIGURE 1. Auxiliary variable classification system from Collins, Schafer, and 
Kim (2001). Dashed arrows depict possible associations between an 
extraneous variable A, a missingness indicator MY, and an incomplete 
variable Y.

A

YX

MY

A

YX

MY

A

YX

MY

Category C auxiliary variable
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To begin, the top panel of the Figure 1 depicts a category A auxiliary variable. The arrow from 
A to Y conveys that the auxiliary variable contains unique covariation not contained in X, and the 
arrow from A to 𝑀𝑌  indicates that it also predicts missingness. Incorporating category A variables 
into a Big Three application is a priority because doing so can reduce nonresponse bias. Next, the 
middle panel shows a category B auxiliary variable that uniquely correlates with Y but does not 
predict its missingness. Although category B auxiliary variables do not mitigate bias, they can 
improve power by leveraging additional sources of correlation. Finally, the bottom panel depicts a 
category C auxiliary variable that predicts missingness but has no unique relation with Y. Although 
type C variables are useful for certain types of MNAR analyses, they are not otherwise beneficial as 
auxiliary variables. 

As a practical matter, the number of additional variables in many data sets is often so large that 
an inclusive strategy can be daunting to implement. One possibility is to reduce a candidate set of 
auxiliary variables into one or two principal components and use the component scores as auxiliary 
variables (Howard et al., 2015). However, software packages that create component scores usually 
require complete data, thus precluding the use of incomplete auxiliary variables. Fortunately, a 
targeted approach that selects one or two salient auxiliary variables often works just as well as 
casting a broad net. Unused repeated measures variables are often excellent auxiliary variables 
because of their beneficial collinearity. 

1.4 Preparing for a Missing Data Analysis 

Returning to Figure 1, important category A auxiliary variables have two features: they are 
correlates of missingness and provide unique sources of covariation beyond that contained in a 
model’s observed data. This section describes some simple strategies for identifying such patterns. 
These methods are imperfect, but selecting auxiliary variables need not be an exact science.  

To begin, researchers routinely use a pattern mean difference approach to identify potential 
correlates of nonresponse. To implement this strategy, you first create a binary missing data 
indicator for each incomplete analysis variable with substantial missing data3. Treating the 
indicator as a grouping variable, you then examine whether the incomplete cases exhibit mean 
differences on other variables. For example, the next section illustrates a multiple regression where 

 
3  Although “substantial” is a clearly a subjective term, applying this method to a variable with 

a very small amount of missing data will produce a near-constant indicator comprised mostly of 
zeros. Unless the sample size is very large, such an indicator would produce noisy pattern mean 
difference estimates. Moreover, auxiliary variables would not be beneficial for such a variable 
because there is little missing information to recover. 
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I create a missing data indicator by recoding the dependent variable as 0 = observed and 1 = 
missing. I then examined whether the two groups exhibited mean differences on a set of auxiliary 
variables. There is no need to examine mean differences for variables already in the analysis (e.g., 
the predictors) because the Big Three automatically leverage on this information.  

Most often, significance tests are not very useful for evaluating mean differences because 
unbalanced group sizes (e.g., an indicator with a preponderance of zeros) decrease power. Instead, 
standardized mean difference effect sizes or bivariate correlations can provide a practical metric 
for evaluating pattern differences. There is no harm in adopting a conservative approach that flags 
candidate auxiliary variables that produce a small effect size (e.g., |𝑑|> 0.20 or |𝑟| > .10). I adopt 
this approach in the subsequent example. 

Logistic regression is another common approach for identifying correlates of missingness. This 
strategy reverses the role of the variables, treating the missingness indicator as the outcome and 
candidate auxiliary variables as predictors. Logistic regression can yield different conclusions from 
the pattern mean difference approach because it considers a multivariate system where each 
coefficient reflects a partial effect that controls for other predictors. As such, selecting extraneous 
variables based on their odds ratios or statistical significance will likely identify a smaller auxiliary 
set than the pattern mean difference approach, which is inherently bivariate. 

Regardless of method, it important to emphasize that a salient association between a missing 
data indicator and auxiliary variable does not mean that the extraneous variable is a potential 
source of nonresponse bias—that conclusion also requires a residual correlation between the 
incomplete variable and auxiliary variable (see Figure 1a). However, identifying a correlate of 
missingness does rule out a purely haphazard missing completely at random process. In fact, the 
Little’s (1988) MCAR test available in some software packages is simply a multivariate version of 
the pattern mean difference approach. Although such a test may seem appealing, evaluating the 
null hypothesis that missingness is unsystematic has limited practical utility because the Big Three 
do not require this strict assumption. Moreover, finding evidence for or against haphazard 
missingness does not change the recommendation to use the Big Three. Raykov (2011, p. 428) 
emphasized this point, stating that “the desirability of the MCAR condition has been frequently 
overrated in empirical social and behavioral research". 

As mentioned previously, the presence or absence of residual or semipartial correlation 
between an auxiliary variable and an incomplete analysis variable largely determines the extra 
variable’s worth. Conceptually, these correlations are computed by first regressing an incomplete 
variable on all other variables in the analysis, then correlating its residuals with a set of auxiliary 
variables. Statistical packages readily compute these semipartial correlations, although they 
generally use listwise or pairwise deletion to do so. Noisier estimates that require unsystematic 
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missingness are not necessarily a problem at the initial data screening stage. Alternatively, Raykov 
and West (2015) outlined a latent variable modeling approach to estimating semipartial 
correlations that readily pairs with maximum likelihood and Bayesian estimation. These 
approaches use all available data and accommodate a systematic conditionally missing at random 
process. 

A remarkable semipartial correlation signals that an auxiliary variable contains unique 
information about the missing values not contained in a model’s observed data. How large does a 
residual correlation need to be? Computer simulations from Collins et al. (2001) suggest |𝑟| > .30 
as an approximate rule of thumb. Their study showed that ignoring category A variables with 
weaker correlations generally produced parameter estimates with little to no bias, whereas 
adjusting for sources of stronger correlation reduced or eliminated nonresponse bias. We are often 
taught that collinearity is detrimental, but it is beneficial in this context—the stronger the 
semipartial correlations, the more missing information there is to recover. Practical experience 
suggests that one or two “good” auxiliary variables is usually sufficient. In truth, it is often difficult 
to find beneficial variables because our models usually capture most salient covariation in the data. 
Finally, incomplete auxiliary variables can still be beneficial if their scores are mostly observed in 
the data records where the analysis variables are missing (Enders, 2008). Auxiliary variables that 
are missing in conjunction with the analysis variables have no information to contribute. 

1.5 Analysis Example 

I use multiple regression analyses to illustrate Big Three applications throughout the report. This 
section demonstrates the process of evaluating candidate auxiliary variables for these analyses. The 
illustration uses the behaviorachievement.dat data set from a longitudinal study that followed 
138 students from primary through middle school. The file includes three annual assessments of 
broad reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The Software Tutorials document 
provides additional information about this data set. Table 2 below shows the specific variables for 
this analysis example. 
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The analysis model features ninth grade broad reading scores regressed on three academic and 
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning 
problems, and teacher-rated behavioral problems. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) + 𝜀 (4) 

To reiterate, the conditionally missing at random assumption requires that missingness is fully 
determined by the model’s observed data—unseen score values carry no additional information. 
Introducing missing data auxiliary variables into a Big Three analysis broadens the observed data, 
potentially making this assumption more plausible. Selecting auxiliary variables for ninth grade 
reading scores is the priority because the outcome has substantial missing data. Conversely, the 
learning and behavioral problems measures would not benefit from extraneous variables because 
they have very little missing information. 

Researchers usually have large data sets with dozens of possible auxiliary variables. Substantive 
knowledge usually allows researchers to identify a smaller number of variables that potentially 
correlate with analysis variables. To keep the illustration simple, I consider three candidates: 
second and third grading broad reading scores and seventh grade standardized reading scores. 
Returning to Table 2, the auxiliary variables themselves have substantial missing data. However, 
these variables are still viable because there are relatively few missing data patterns where an 
auxiliary variable is concurrently missing with the outcome (a pattern where the auxiliary variable 
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carries no additional information). For example, only five students are missing both the 
standardized reading test and ninth grade broad reading scores. 

To implement the pattern mean difference approach, I created a binary missing data indicator 
for the ninth grade test scores, and I then examined whether the two groups exhibited mean 
differences on other variables. The first column of Table 3 shows Cohen’s (1988) standardized 
mean difference effect sizes from this step4. First, notice that the incomplete cases exhibited 
moderate to large mean differences on the learning and behavioral problems measures. The 
positive difference implies that elevated academic problems are associated with missingness. These 
differences do not require additional action because the Big Three automatically adjust for 
systematic missingness among the analysis variables. The incomplete cases also had small, negative 
mean differences on the auxiliary variables, such that lower reading scores were associated with 
higher rates of missingness. 

The pattern mean difference approach is inherently univariate and does not account for shared 
covariation among the variables. To examine whether the auxiliary variables uniquely predicted 
missingness after controlling for the analysis variables, I conducted a binary logistic regression 
analysis with the missing data indicator as the outcome. The middle panel of Table 3 shows the 
resulting regression slopes, standard errors, and significance tests. With the important caveat that 
the analysis likely suffers from low power, the regression results suggested that learning problems 
ratings—a variable already in the focal model—was the most salient correlate of missingness. There 
was little or no evidence that the auxiliary variables uniquely determined missingness after 
controlling for the predictor variables from the focal model. This does not mean that the auxiliary 
variables are unimportant, however. Their semipartial (residual) correlations determine that. 

The rightmost column of Table 3 shows the semipartial correlations between ninth grade 
reading scores and the auxiliary variables. Conceptually, these correlations link the auxiliary 
variables to the unexplained part of ninth grade reading scores that remains after residualizing on 
the predictors. As a reminder, computer simulations from Collins et al. (2001) suggest |𝑟| > .30 as 
a rough rule of thumb. Two of the correlations exceeded the cutoff, suggesting that they possess 
unique information about the missing values not contained in the model’s observed data. Like the 
pattern mean difference approach, the residual correlations do not account for shared covariation 
among the variables. Because the auxiliary variables are very highly correlated (all rs > .70), there 
is probably little benefit to including them all in a Big Three analysis. For this reason, I use second 

 
4 Cohen (1988) characterized a small effect size as |𝑑| > .20, medium as |𝑑| > .50, and a large 

effect as |𝑑| > .80. 
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grade broad reading scores and seventh grade standardized test scores as auxiliary variables in all 
subsequent analysis examples. 

 

To summarize, the pattern mean difference approach and logistic regression analysis revealed 
a systematic process where students with missing ninth grade scores differed from those with 
observed data. These results provide compelling evidence against a purely haphazard missing 
completely at random process. Importantly, we cannot conclude that these systematic patterns are 
unrelated to the unseen score values—a vital component of the conditionally missing at random 
assumption for a Big Three analysis. Returning to the Collins et al. (2001) hierarchy in Figure 1, 
the auxiliary variables most closely resemble category B variables because they do not uniquely 
predict missingness. In practice, it is not important to precisely categorize auxiliary variables 
because a salient residual correlation justifies their inclusion.  
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Factored Regression Specifications 
 

 

 

 

 

Missing data handling is most straightforward in the (perhaps unusual) situation where missing 
values are relegated to the outcome variable. The situation becomes more complex when predictor 
variables have missing data because the explanatory variables require their own models and 
statistical assumptions. Classic versions of the Big Three assume that incomplete variables share a 
common distribution, typically multivariate normal. Adopting a multivariate distribution for 
missing data handling can be restrictive because it assumes all variables share the same metric. As 
an example, this assumption precludes an analysis with an incomplete multicategorical and 
numeric variables. Moreover, applying multivariate normal missing data methods to models with 
interactive or nonlinear effects can produce substantial bias. 

Factored regression specifications express a multivariate distribution as a sequence of simpler 
distributions, the collection of which is equivalent to the original joint function. Beyond 
acknowledging that a multivariate distribution exists, factorization makes no assumptions about 
its shape or form. Rather, distributional assumptions enter on a variable-by-variable or model-by-
model basis. The theory for this framework dates to work by Ibrahim and colleagues (Huang et al., 
2005; Ibrahim, 1990; Ibrahim et al., 2002; Ibrahim et al., 1999; Lipsitz & Ibrahim, 1996). Factored 
specifications have received considerable attention in the recent missing data literature because 
they solve long-standing problems with classic multivariate normal missing data methods that 
came online in the early 2000s (Enders, 2023). 

To illustrate the idea behind a factored regression specification, consider a regression model 
with two incomplete predictors5. Figure 2 depicts multivariate and factored specifications. Colored 
boxes denote variables with the same distribution assumption. Figure 2a is a multivariate 

 
5 The term “factored regression” does not imply that the analysis model must be a regression. 

These specifications can be applied to a broad range of generalized linear models, measurement 
models, and structural equation models. 
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specification where all variables share a common distribution (e.g., multivariate normal). Figure 
2b separates the original trivariate distribution into two simpler distributions: a bivariate 
distribution for the predictors, and a univariate distribution for the outcome. Finally, Figure 2c 

c) Fully univariate (sequential) factored specification

b) Multivariate by univariate factored specification

a) Multivariate specification

FIGURE 2. Colored boxes enclose variables that share the same distribution. 
Panel (a) depicts a multivariate specification where all variables have the 
same metric. Panel (b) is a factored specification that assigns a bivariate 
distribution for the predictors and a distinct distribution to the outcome. 
Panel (c) is a specification where each variable has its own distribution.
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b) Multivariate by univariate factored specification

a) Multivariate specification

FIGURE 2. Colored boxes enclose variables that share the same distribution. 
Panel (a) depicts a multivariate specification where all variables have the 
same metric. Panel (b) is a factored specification that assigns a bivariate 
distribution for the predictors and a distinct distribution to the outcome. 
Panel (c) is a specification where each variable has its own distribution.
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further separates the predictors into distinct models, resulting in a fully univariate specification 
(Erler et al., 2016; Lüdtke et al., 2020b).  

It is useful to establish some shorthand notation to reference the specifications in Figure 2. In 
the following equation, each 𝑓 generically references a distribution comprised of the variables in 
parentheses6. 

𝑓(𝑌 ,𝑋1,𝑋2) = 𝑓(𝑌 |𝑋1,𝑋2) × 𝑓(𝑋1,𝑋2) = 𝑓(𝑌 |𝑋1,𝑋2) × 𝑓(𝑋1|𝑋2) × 𝑓(𝑋2) (5) 

Each term with a vertical pipe represents the univariate conditional distribution of an outcome 
variable in a regression equation, and the variables to the right of the pipe are its regressors. At a 
high level, the equation says we have three equivalent ways to configure the distributions of the 
three incomplete variables in Figure 2. The leftmost term is a trivariate distribution that 
corresponds to Figure 2a. The middle pair of terms separate the multivariate distribution into two 
simpler distributions: the univariate distribution of Y given the Xs (the focal regression analysis) 
and a bivariate distribution for the predictors. These terms align with Figure 2b. Finally, the 
rightmost trio of terms corresponds to the fully univariate specification in Figure 2c.  

Although the factorizations are symbolically equivalent, they aren’t necessarily the same in 
practice. For example, Equation 4 uses academic and behavioral measures collected in first grade 
to predict ninth grade reading achievement. Because all variables are numeric with reasonably 
symmetric distributions, it makes no difference how the model is specified. Instead, suppose the 
analysis is a logistic regression where the outcome is a binary measure of whether the student has 
attained average or higher reading proficiency in ninth grade (see Examples 2 and 7 in the Software 
Tutorials document). In this case, we do not have an off-the-shelf multivariate distribution that 
describes the cooccurrence of binary and numeric variables. Adopting the multivariate 
specification on the left side of Equation 5 (or Figure 2a) is not an option. In contrast, either 
factored specification is appropriate. The univariate-by-multivariate factorization (the two middle 
terms in Equation 5 or Figure 2b) would pair a logistic focal model (Bernoulli outcome 
distribution) with a bivariate normal model for the predictors. Finally, the fully univariate 
specification (the three rightmost terms in Equation 5 or Figure 2c) would pair the logistic model 
with a pair of linear regressions with normal errors. 

Analyses with incomplete nonlinear terms are another important use case for factored 
specifications. This includes models with interactions, curvilinear effects, and random coefficients, 
among others. Such models are incompatible with a multivariate normal distribution (Bartlett et 

 
6 The factorization is derived by applying the probability chain rule to the multivariate 

distribution in the leftmost term. 
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al., 2015; Liu et al., 2014), meaning that they require features that are mathematically impossible 
with multivariate normal data (e.g., heteroscedasticity). Numerous methodology studies have 
demonstrated that applying normal distribution assumptions to interactive effects can introduce 
substantial bias (Cham et al., 2017; Enders et al., 2014; Humberg & Grund, 2022; Seaman et al., 
2012; Zhang & Wang, 2017). In contrast, both factored specifications depicted in Figure 2 readily 
accommodate interactions and nonlinear terms in the focal analysis model, and the fully univariate 
specification in Figure 2c additionally allows nonlinear associations among predictors (Lüdtke et 
al., 2020b). For example, 𝑋1 could exert a curvilinear effect on 𝑋2. 

If the data and model allow, we may choose a multivariate missing data handling method 
because doing so is convenient (software options abound), and a wealth of supporting literature 
has accumulated over the last 25 years. However, the key takeaway from Equation 5 is that we don’t 
need to work with a multivariate distribution—whatever the joint function’s shape or form, we can 
always reproduce it by adopting a collection of simpler submodels, each with its own distributional 
assumption. This flexibility allows us to tailor a missing data handling procedure that preserves 
important features of the data and analysis model. The Software Tutorials document features 
numerous analysis examples with factored regression specifications. 

The flowchart in Figure 3 depicts a decision tree for missing data analyses. Starting on the left, 
the first decision point depends on whether the focal analysis features any type of nonlinearity. 
This includes interactive effects, curvilinear associations, and random coefficients, among other 
things. If the answer to this first question is yes, then factored regression specification is the only 
choice. If no, then subsequent steps depend on the variable types. If the analysis is restricted to 
normal variables, classic multivariate versions of the Big Three are appropriate, as are newer 
factored specifications. Finally, if the analysis includes a mix of discrete and numeric variables, 
certain classic multiple imputation methods like fully conditional specification (i.e., the MICE 
algorithm; van Buuren, 2007; van Buuren et al., 2006; van Buuren & Groothuis–Oudshoorn, 2011) 
are appropriate, as are factored regression specifications. The flowchart oversimplifies a nuanced 
issue, but it provides a high-level heuristic for classifying missing data handling options. 
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NO
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FIGURE 3. Flowchart depicting decision tree for a missing data analysis. Starting on the le, the first decision point 
depends on whether the focal analysis features any type of nonlinearity. e second decision is whether all variables 
share the same metric. Although classic methods are not always appropriate, factored specifications are.

1. Analysis features a 
nonlinearity (interaction, 

polynomial, random slope)?
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normal) variables?

3. Analysis features discrete 
and numeric variables?
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(e.g., “MICE” algorithm)

Multivariate normal  
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Factored regression 
specification (Big ree)
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Maximum Likelihood Estimation 
 

 

 

 

 

The origins of modern maximum likelihood estimators date back as far as the 1950s (Anderson, 
1957; Edgett, 1956; Hartley, 1958; Lord, 1955), but the foundational theoretical and computational 
advancements mainly occurred in the 1970s (Beale & Little, 1975; Dempster et al., 1977; 
Finkbeiner, 1979; Hartley & Hocking, 1971; Orchard & Woodbury, 1972). For researchers in 
education (and the social and behavioral sciences more broadly), maximum likelihood estimation 
became a practical reality in the 1990s when structural equation modeling software packages 
started offering so-called full information maximum likelihood (FIML) estimators based on raw 
data (Arbuckle, 1996). Since then, a substantial amount of methodological work has accumulated 
that extends FIML’s utility and documents its limitations.  

Maximum likelihood estimators have evolved considerably, and factored regression 
specifications that accommodate mixtures of categorical and continuous variables are now widely 
available (Ibrahim, 1990; Ibrahim et al., 1999; Lüdtke et al., 2020a; Muthén et al., 2016; Pritikin et 
al., 2018; Rabe-Hesketh et al., 2004; Rockwood & Jeon, 2019). However, this functionality varies 
across software packages, and not all combinations of metrics are currently available. Support for 
binary and ordinal variables is common, but missing data handling for other variable types is 
currently more limited. 

3.1 The Classic FIML Estimator 

The classic FIML estimator uses an iterative optimization algorithm to identify model parameters 
that minimize the sum of squared, standardized distances between a model’s predictions and the 
observed data. At a high level, maximum likelihood’s goal is the same as ordinary least squares 
(OLS), which is to find estimates that minimize residuals. The normal distribution function—more 
accurately, its natural log or log-likelihood—provides a formal metric for quantifying that data–
model fit. The observed-data log-likelihood function for a sample of N cases is shown below. 
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ln(ℓ) = [−∑
𝑉𝑖
2 ln(2𝜋)

𝑁

𝑖=1
− 1

2∑ ln|𝚺𝑖|
𝑁

𝑖=1
] −

1
2∑(𝐘𝑖 − 𝛍𝑖)

′𝚺𝑖−1(𝐘𝑖 − 𝛍𝑖)
𝑁

𝑖=1
(6) 

The equation can be understood as follows. First, the multivariate normal distribution function 
quantifies each participant’s data–model fit on a probability-like metric called a likelihood. Taking 
the natural log of the distribution equation recodes everyone’s fit equation to a logarithmic metric 
where higher (less negative) log-likelihood values represent better fit and smaller (standardized 
and squared) residuals. Finally, Equation 6 sums the individual log-likelihood (fit) values into a 
sample-level summary. 

At a high level, the terms in square brackets are scaling factors that ensure the area under the 
normal curve equals one. The terms outside the brackets (the distribution’s “kernel”) form the key 
part of the equation that captures data-model fit. Setting aside the scaling terms and focusing on 
the kernel, (𝐘𝑖 − 𝛍𝑖)

′𝚺𝑖−1(𝐘𝑖 − 𝛍𝑖) is the sum of squared, standardized residuals between a person’s 
data and the model’s predictions7. Because this person-specific sum is a chi-square variable, we can 
use the following conceptual expression to simplify the log-likelihood equation and emphasize the 
role of the standardized residuals. 

ln(ℓ) = −[sum of 𝑁 scaling terms] −
1
2∑𝜒𝑖2

𝑁

𝑖=1
(7) 

The goal of maximum likelihood is to find the parameter values in 𝛍 and 𝚺 that minimize the sum 
of the residuals—a goal it shares with least squares estimation. 

At a more granular level, 𝐘𝑖 is a vector that contains an individual’s observed data, and the 𝑉𝑖 
in the scaling part is the number of data points in 𝐘𝑖. The variables in 𝐘𝑖 can differ across people 
due to missing data. Each person’s fit (chi-square) is computed using whatever observed data are 
present in 𝐘𝑖. Data are neither imputed nor discarded. When 𝐘𝑖 has missing values, only a subset 
of the model’s parameters contributes to each chi-square calculation. For example, a person 
missing 𝑌3 has no information about 𝜇3 and 𝜎32 (or covariances involving 𝑌3), so these parameters 
cannot be used to compute 𝜒𝑖2. Equation 6 uses 𝛍𝑖 and 𝚺𝑖 to represent the subset of parameters that 
link to the observed data in 𝐘𝑖 (i.e., the parameters that determine each person’s fit contribution). 

To make the discussion more concrete, reconsider the regression model from Figure 2a. 
further, suppose that Y is ninth grade academic achievement and 𝑋1 and 𝑋2 are academic and 
behavioral measures from first grade. For a student with complete data, the standardized residual 
calculation uses all three scores and every model parameter. 

 
7 In multivariate statistics, the square root of (𝐘 𝑖 − 𝛍𝑖)

′𝚺𝑖−1(𝐘 𝑖 − 𝛍𝑖) is known as Mahalanobis 
distance. 
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(8) 

As a second example, the data–model fit for students with missing Y values (e.g., ninth grade 
achievement) involves just the Xs and their corresponding parameters. 

𝜒𝑖2 = (
𝑋1 − 𝜇𝑋1

𝑋2 − 𝜇𝑋2

)
′

(
𝜎𝑋1
2 𝜎𝑋1𝑋2

𝜎𝑋2𝑋1 𝜎𝑋2
2

)
−1

(
𝑋1 − 𝜇𝑋1

𝑋2 − 𝜇𝑋2

) (9) 

As a final example, the chi-square fit variable for students with missing Xs (e.g., first grade 
measures) reflects only Y and its parameters. 

𝜒𝑖2 = (𝑌 − 𝜇𝑌 )′(𝜎𝑌2 )
−1(𝑌 − 𝜇𝑌 ) = (𝑌 − 𝜇𝑌 )2

𝜎𝑌
2 (10) 

As a small clarifying point, the means, variances, and covariances in the previous expressions 
are themselves predictions that derive from the regression model parameters in Figure 2a (i.e., the 
elements in 𝛍 and 𝚺 are functions of the regression model parameters). For example, the outcome 
variable’s variance 𝜎𝑌2  reflects explained variation due to the Xs via their regression slopes plus 
unexplained residual variance. Similarly, 𝜇𝑌  is a function of the regression intercept and an 
adjustment term that depends on predictor means and regression slopes. These algebraic 
mappings from the regression model to 𝛍 and 𝚺 follow from viewing the path diagram in Figure 
2a as a structural equation model.  

The previous equations demonstrate that the classic FIML estimator uses all available data, but 
they don’t necessarily convey how the partial data records improve the final estimates. To illustrate, 
consider a bivariate scenario involving first grade learning problems and ninth grade reading 
scores. Further, suppose that the ninth grade reading scores are predominantly missing for 
students in the upper tail of the learning problems distribution. This situation is similar to the one 
from the analysis example in Section 1.5. As an aside, this process conforms to a conditionally 
missing at random mechanism because missingness in ninth grade is explained by first grade 
learning problems ratings. 

Figure 4a shows a scatterplot of an artificial data set that depicts the hypothetically-complete 
data from the bivariate scenario. The orange circles correspond to students with missing ninth 
grade reading scores, and the green circles are students with complete data on both measures. The 
black dot represents the “true” means that would have resulted from analyzing a complete data set. 



Maximum Likelihood Estimation   21 

Figure 4b is a scatterplot of just the complete data records. Excluding students with incomplete 
data truncates the upper tail of the learning problems distribution and the lower tail of the reading 
distribution. As a consequence, the distributions in the marginals are distorted—the variances are 
too small, and the means are biased—because the complete cases are not representative of the 
original sample. The FIML estimator incorporates the partial data records from the upper tail of 
the learning problems distribution. Figure 4c shows the partial data as hashmarks along the 
horizontal axis. Importantly, the additional scores restore the variation in the learning problems 
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FIGURE 4. Panel (a) depicts the hypothetically-complete data from a 
bivariate analysis. fie orange circles correspond to students with missing 
ninth grade reading scores, and the green circles are students with complete 
data on both measures. Panel (b) shows the sample aer deletion, and panel 
(c) depicts partial data records as hashmarks on the horizontal axis. Panel 
(d) shows the distributions from FIML based on incomplete data records.
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variable and recenter the variable’s mean at the correct location on the horizontal axis. In a 
bivariate normal distribution with a negative correlation, the high learning problems scores only 
make sense if they are paired with low reading scores. Although FIML does not impute the missing 
reading scores, this property of the normal distribution implies that the unobserved scores must 
fall in the neighborhood of the elipse in Figure 4d. Essentially, the partial data records allow the 
estimator to intuit the location of the missing scores, thereby adjusting the mean and variance of 
the incomplete variable to match a hypothetical complete-data analysis. 

3.2 Fine-Tuning FIML: Auxiliary Variables and Nonnormal Data 

The conditionally missing at random assumption described in Section 1.2 requires that the unseen 
score values contain no unique information about missingness beyond that contained in the 
observed data. Practically speaking, this assumption requires that all important determinants of 
missingness are contained within a model’s observed data. In the multiple imputation literature, 
the long-standing advice is to include additional auxiliary variables when treating missing data 
because doing so minimizes the risk of nonresponse bias (Collins et al., 2001; Rubin, 1996). Porting 
this recommendation to maximum likelihood requires care because we need to add the extra 
variables in a way that does not affect the interpretation of our focal model’s parameters (the 
estimates and standard errors could change due to the influx of additional information). For 
example, adding extra auxiliary variables as covariates is undesirable because doing so changes the 
composition of the analysis model. Instead, we want to incorporate the additional variables while 
maintaining the structure of the model that we would have fit had there been no missing data. 

Figure 5 shows two auxiliary variable model specifications for a multiple regression model. 
Figure 5a is Graham’s (2003) saturated correlates model for FIML applications with structural 
equation modeling software. The curved, dashed arrows are correlations that connect the auxiliary 
variables to the residuals of all analysis variables as well as to each other. This specification is 
automated in Mplus (Muthén & Muthén, 1998–2017), EQS (Bentler, 2000-2008), and the R 
package semTools (Jorgensen et al., 2022). The saturated correlates approach has two noteworthy 
limitations: It is restricted to normally distributed variables, and it is known to produce 
convergence failures, especially as the number of auxiliary variables increases (Savalei & Bentler, 
2009). Convergence issues can be mitigated by using a small number of salient auxiliary variables 
or by performing a preliminary data reduction step that reduces a large set of additional variables 
into one or two principal components (Howard et al., 2015).  

Alternatively, auxiliary variables can enter a model as additional outcomes that are predicted 
by the analysis variables and by each other (Lüdtke et al., 2020b). Figure 5b shows this specification, 
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with dashed lines depicting the auxiliary variable regression slopes. With this approach, the focal 
analysis model is embedded in larger network of variables. Importantly, the additional regressions 
do not align with substantive theory and need not reflect a logical causal order. Rather, the 
additional regressions are simply a tool for linking the analysis variables to the auxiliary variables. 
Importantly, pairing the additional outcome approach with a factored regression specification 
readily accommodates discrete auxiliary variables. 
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The classic maximum likelihood estimator that enjoys widespread use also assumes 
multivariate normality. Of course, real data rarely conform to this ideal. A good deal of analytic 
and simulation work has clarified that maximum likelihood point estimates are generally unbiased 
in large samples (i.e., consistent) when the mechanism is conditionally missing at random. 
However, the same is not true for standard errors and test statistics (Savalei, 2010a, 2010b; Takai 
& Kano, 2013; Yuan, 2009; Yuan & Bentler, 2010; Yuan & Savalei, 2014; Yuan et al., 2012). 
Fortunately, robust (sandwich estimator) standard errors and test statistics have long been 
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FIGURE 5. Solid lines denote the focal regression model parameters, and 
dashed lines are auxiliary variable parameters. Panel (a) depicts a saturated 
correlates model that connects the analysis variables to the auxiliary 
variables via correlated residuals. Panel (b) is an alternate specification 
where auxiliary variables function as additional outcomes.
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available for missing data analyses (Arminger & Sobel, 1990; Yuan & Bentler, 2000), and numerous 
software packages offer these corrections. Savalei and Rosseel (2022) provide a comprehensive 
summary of these technical innovations. Bootstrap standard errors and test statistics are an 
alternative corrective procedure for nonnormal missing data (Enders, 2002; Savalei & Yuan, 2009). 

Models that feature both discrete and continuous variables are a case where correctives for 
nonnormal data may or may not be useful. The complete-data literature suggests that treating 
ordinal outcomes as normal is not problematic if the discrete distribution is symmetric and has at 
least five response options (Rhemtulla et al., 2012). There is every reason to expect this finding to 
hold with missing data. Perhaps surprisingly, computer simulation results suggest that applying 
normal distribution assumptions to incomplete binary predictors may not introduce bias in single-
level regression models (Muthén et al., 2016). However, this conclusion does not appear to extend 
to multilevel models with discrete level-2 predictors (Grund et al., 2018). Applying normal 
distribution assumptions to multicategorical nominal predictors (or their dummy codes) always 
produces nonsensical results. 

3.3 Factored Regression Specifications 

Maximum likelihood has evolved considerably since the classic FIML estimator came online in the 
late 1990s. Factored regression estimators (Ibrahim, 1990; Ibrahim et al., 1999) are a particularly 
important innovation and a focus of ongoing methodology research. An earlier section explained 
that factored regression expresses a multivariate distribution as a collection of submodels, each 
with distinct distributional assumptions. In lieu of a multivariate log-likelihood like the one from 
Equation 6, factored specifications adopt a chain of distinct log-likelihood functions that follow 
the pattern from Equation 5 (in this context, each 𝑓 represents a likelihood function). These multi-
function expressions are a challenging computational problem. Iterative optimization routines use 
numerical or Monte Carlo integration schemes that fill in the missing parts of the data in an 
imputation-esque manner. Lüdtke et al. (2020a) provide an accessible introduction to maximum 
likelihood estimation with factored specifications. 

Analyses with combinations of discrete and continuous variables are an important use case for 
factored regression specifications. Estimators that accommodate some combinations of categorical 
and continuous variables are widely available in software packages (Grund et al., 2021a; Lüdtke et 
al., 2020a; Muthén et al., 2016; Pritikin et al., 2018; Rabe-Hesketh et al., 2004; Rockwood & Jeon, 
2019). Functionality varies substantially, however, and not all combinations of metrics are 
currently available. Software programs routinely support binary and ordinal variables, but missing 
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data handling for other discrete metrics is more limited. Bayesian MCMC algorithms discussed in 
Section 4 are far more capable, at least for now.  

Analyses with incomplete nonlinear terms (interactions, curvilinear effects, random 
coefficients) are another important use case for factored specifications. Until recently, researchers 
have been forced to use a so-called just-another-variable approach that treats product and 
polynomial terms as unique, normally distributed variables (Enders et al., 2014; von Hippel, 2009). 
Analytic and computer simulation work uniformly demonstrates this strategy’s propensity for bias 
(Cham et al., 2017; Enders et al., 2014; Humberg & Grund, 2022; Seaman et al., 2012; Zhang & 
Wang, 2017). Factored regression estimators instead treat product and curvilinear effects as 
deterministic functions of their component variables. The limited research to date suggests that a 
factored specifications are uniformly superior to normal-theory FIML estimation with the just-
another-variable strategy (Humberg & Grund, 2022; Lüdtke et al., 2020a). The Software Tutorials 
document features FIML analysis examples with factored regression specifications. 

3.4 Maximum Likelihood Analysis Example 1 

The first analysis example illustrates a multiple regression model comprised of incomplete 
continuous variables. The analysis uses the behaviorachievement.dat data set from a 
longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, and 
a final measure of broad reading and math obtained in ninth grade. The data also contain teacher 
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The 
Software Tutorials document provides additional information about this data set. Table 2 from 
Section 1.5 shows the specific variables for this analysis example. 

The analysis model featured ninth grade broad reading scores regressed on three academic and 
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning 
problems, and teacher-rated behavioral problems. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (11) 

The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables. These additional variables were included because they exhibited 
significant residual covariation with the analysis variables (see Section 1.5). Applying the flowchart 
from Figure 3, either a multivariate or factored regression specification is appropriate. I use the 
classic FIML estimator for multivariate normal data along with a saturated correlates specification 
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for the auxiliary variables. Figure 6 shows a path diagram of the analysis model. The dashed arrows 
are the residual correlations connecting the auxiliary variables to each other and to the analysis 
variables.  

Example 1 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. The top panel of Table 4 shows the parameter estimates, standard errors, and 
significance tests from the analysis. The results are interpreted in the same way as a complete-data 
regression analysis. For example, consider the first grade reading slope. The model predicts that 
two individuals who differ by one point in first grade should differ by 0.50 points on the outcome, 
holding constant teacher-rated learning and behavioral problems. The corresponding test statistic 
indicates that the slope coefficient is statistically different from zero (z = 12.00, p < .001). Because 
they are not of substantive interest, the table omits the auxiliary variable parameters. As a 
comparison, the bottom panel also shows the estimates from a fully univariate factored regression 
specification. The flowchart in Figure 3 indicates that either specification is appropriate, and the 
close correspondence of the two sets of results is consistent with this conclusion. 
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STANREAD7
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FIGURE 6. Solid lines denote the focal regression model parameters, and 
dashed lines are auxiliary variable parameters. fie path diagram depicts a 
saturated correlates model that connects the analysis variables to the 
auxiliary variables via correlated residuals.
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3.5 Maximum Likelihood Analysis Example 2 

The second analysis example illustrates a moderated regression model with an incomplete 
interaction effect and an incomplete binary covariate. The analysis uses the same data as the first 
example. The Software Tutorials document provides additional information about this data set, 
and Table 5 below shows the specific variables for this analysis example. 

The analysis model featured ninth grade broad reading scores regressed on academic and 
behavioral measures collected in first grade: reading achievement, teacher-rated learning 
problems, the product of first grade reading scores and learning problems, and a dummy code 
indicating whether a student is considered at risk for developing an emotional or behavioral 
disorder. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 
+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜀 (12) 

 

TABLE 4. Maximum Likelihood Estimates From a Multiple Regression 

Effect Est. Std. Error z p 2.5% LCL 97.5% UCL 

Multivariate Normal Model 

Intercept 66.03 5.85 10.35 < .001 54.57 77.49 

READ1 0.50 0.04 12.00 < .001 0.42 0.59 

LRNPROB1 –0.25 0.12 –2.14 .03 –0.47 –0.02 

BEHSYMP1 –0.18 0.10 –1.79 .07 –0.38 0.02 

R-square .59 -- -- -- -- -- 

Factored Regression Specification 

Intercept 65.72 5.89 11.16 < .001 54.18 77.26 

READ1 0.51 0.04 12.11 < .001 0.43 0.59 

LRNPROB1 –0.26 0.12 –2.22 .03 –0.49 –0.03 

BEHSYMP1 –0.18 0.10 –1.73 .08 –0.38 0.02 

R-square .59 -- -- -- -- -- 
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The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables. These additional variables were included because they exhibited 
significant residual covariation with the analysis variables (see Section 1.5). 

Applying the flowchart from Figure 3, models with interactive effects require a factored 
regression specification that expresses the multivariate distribution into a series of simpler 
distributions. This example uses a fully univariate specification where each variable is the outcome 
in its own regression model. Using established symbolic notation, the factorization consists of six 
regression models, each with its own distribution assumption. 

𝑓(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7|𝑅𝐸𝐴𝐷2,𝑅𝐸𝐴𝐷9,𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) × 
𝑓(𝑅𝐸𝐴𝐷2|𝑅𝐸𝐴𝐷9,𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) × 

𝑓(𝑅𝐸𝐴𝐷9|𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) × (13) 
𝑓(𝑅𝐸𝐴𝐷1|𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) × 𝑓(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1|𝐴𝑇𝑅𝐼𝑆𝐾) × 𝑓(𝐴𝑇𝑅𝐼𝑆𝐾) 

The first two lines are the regression models for auxiliary variables, and the third line corresponds 
to the focal regression from Equation 12. The terms on the last line are regressions linking the 
predictors to one another. 

Figure 7 shows a path diagram of the analysis model. The solid lines highlight the focal model 
regression slopes, with the arrow pointing from learning problems to the first grade reading test 
slope denoting the interaction coefficient. The equation and path diagram illustrate a cascading 
pattern where the binary risk indicator predicts first grade learning problems, both variables 
predict first grade broad reading performance, and all three regressors predict ninth grade reading 

 

TABLE 5. Variables for the Moderated Regression Analysis 

Name Definition Missing Scale 

Focal Analysis Variables 

ATRISK Emotion/behavior disorder risk 2.2% 0 = Low risk, 1 = At risk 

LRNPROB1 1st grade learning problems 2.2% Numeric (31 to 88) 

READ1 1st grade broad reading  6.5% Numeric (39 to 153) 

READ9 9th grade broad reading  17.4% Numeric (41 to 123) 

Auxiliary Variables 

READ2 2nd grade broad reading  9.4% Numeric (20 to 150) 

STANREAD7 7th grade standardized reading 19.6% Numeric (100 to 399) 
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achievement (the focal outcome). The auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The binary risk indicator required 
an empty logistic model, and all other models were linear regressions with normal errors. 

Example 4 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. Table 6 displays the parameter estimates, standard errors, and significance tests 
from the analysis. The lower-order terms in a moderated regression are conditional effects that 
depend on scaling or centering. To facilitate interpretation, the analysis centered the interacting 
variables at the maximum likelihood estimates of their grand means. Centering defines the first 
grade reading slope (𝛽1̂ = 0.51) as a conditional effect at the mean of the learning problems 
distribution, and the learning problems slope (𝛽2̂ = −0.38) similarly reflects a conditional effect at 
the reading achievement average. The interaction slope captures the change in the first grade 
reading slope for each one-unit increase in learning problems (and vice versa). The positive 
coefficient (𝛽3̂ = 0.013) indicates that the association between first and ninth grade reading scores 
becomes stronger (i.e., more positive) for students with elevated learning problems. 
 
 

READING9

ATRISK

READING2

READING1

STANREAD7

LRNPROB1

FIGURE 7. Solid lines denote the focal regression model parameters, and 
dashed lines are auxiliary variable parameters. fie path diagram depicts a 
model where auxiliary variables function as additional outcomes. All 
analysis variables predict the auxiliary variables, and second grading reading 
also predicts seventh grade standardized test scores.
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TABLE 6. Maximum Likelihood Estimates From a Moderated Regression 

Effect Est. Std. 
Error t p 2.5% 

LCL 
97.5% 

UCL 

Intercept 89.05 1.42 62.76 < .001 86.27 91.83 

READ1 0.51 0.04 11.55 < .001 0.42 0.59 

LRNPROB1 –0.38 0.08 –4.54 < .001 –0.54 –0.21 

READ1 × LRNPROB1 0.013 0.005 2.83 .005 0.003 0.02 

ATRISK –1.91 1.79 –1.06 .29 –5.43 1.61 

R-square .62 -- -- -- -- -- 

Note. First grade reading scores and learning problems ratings are centered at 
the grand mean. 
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Bayesian MCMC Estimation 
 

 

 

 

 

Bayesian Markov chain Monte Carlo (MCMC) estimation is the second member of the Big Three. 
Maximum likelihood and Bayesian estimation are similar in the sense that a researcher fits their 
desired model to the incomplete data, and the software returns parameter estimates and measures 
of uncertainty that assume a conditionally missing at random process. When confronted with 
missing values, maximum likelihood uses the normal distribution to deduce the missing parts of 
the data as it iterates to a solution (more precisely, the estimator marginalizes or averages over a 
distribution of plausible scores for each person). In contrast, Bayesian estimation algorithms 
iteratively impute missing values as they update the parameters. The resulting parameter 
summaries average over numerous realizations of the missing values. Like maximum likelihood, 
missing data handling is integrated into estimation, and the primary goal is to estimate model 
parameters. 

Bayesian missing data handling routines for multivariate normal data have a long history in 
the literature (Schafer, 1997, 2001; Schafer & Graham, 2002; Schafer & Olsen, 1998). The 
multivariate normal model has since evolved into a powerful data analytic framework that mimics 
the classic FIML estimator in scope (Muthén & Asparouhov, 2012). Long-established methods for 
factored regression specifications (Huang et al., 2005; Ibrahim et al., 2002) have similarly evolved. 
Among other things, Bayesian factored regression specifications extend to moderated and 
curvilinear regression models (Asparouhov & Muthén, 2021a; Keller & Enders, 2023; Lee et al., 
2007; Lüdtke et al., 2020b; Zhang & Wang, 2017), models with discrete and nonnormal variables 
(Asparouhov & Muthén, 2021b; Lee & Mitra, 2016; Lüdtke et al., 2020b), latent variable models 
(Aroian et al., 1978; Keller & Enders, 2021; Lee & Shi, 2000; Lüdtke et al., 2020b; Merkle & Rosseel, 
2018; Palomo et al., 2007), models for missing not at random processes (Du et al., 2021), models 
with auxiliary variables (Daniels et al., 2014; Lüdtke et al., 2020b), multilevel models (Enders et al., 
2020; Erler et al., 2019; Erler et al., 2016; Goldstein et al., 2014; Grund et al., 2021a), and models 
featuring scale scores with missing item responses (Alacam et al., 2023). The development of 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20



Bayesian Estimation   33 

Bayesian missing data handling procedures has arguably outpaced that of maximum likelihood, as 
these applications exceed what is currently possible with likelihood-based estimation. The ensuing 
discussion focuses strictly on factored regression specifications. 

4.1 The Bayesian Paradigm 

Maximum likelihood estimation is fundamentally situated in a frequentist paradigm that defines 
model parameters as fixed quantities in the population. In this framework, each unique sample of 
a given size yields a different estimate of an unknown parameter, and a sampling distribution 
describes the hypothetical behavior of estimates from different random samples. The standard 
error quantifies the expected difference between an estimate and its true parameter (i.e., the 
standard deviation of the estimates). 

In contrast, the Bayesian paradigm defines a parameter as an unknown variable rather than a 
constant. Through this lens, some realizations of a parameter are more likely to have produced our 
data than others. Probability distributions called posteriors encode knowledge about a model’s 
parameters after analyzing the data. For example, after fitting a regression model, a normal curve 
characterizes slope parameters that are consistent with the data. The center of this distribution (the 
posterior mean or median) quantifies the most likely parameter given the data, and its spread (the 
posterior standard deviation) quantifies uncertainty. These summary statistics are often 
numerically equivalent to maximum likelihood point estimates and standard errors, respectively, 
but their interpretations do not reference hypothetical estimates from other samples. 

Notice that the frequentist and Bayesian frameworks reverse what varies and what is fixed. In 
the frequentist paradigm, estimates from different samples vary around a fixed parameter. In the 
Bayesian framework, evidence about different parameter values varies and the sample data are 
fixed. Bayes’ theorem is the mathematical device that produces this important reversal. The 
theorem’s composition is as follows. 

(varying parameter | fixed data) =
prior × (varying data | fixed parameter)

scaling factor (14) 

The left term is the posterior distribution, and the numerator of the right side is the product of a 
prior distribution and a likelihood function. The prior is a probability distribution that conveys 
expectations about a parameter before analyzing the data. This information could come from a 
pilot study or meta-analysis, but most Bayesian applications use off-the-shelf diffuse 
(noninformative) priors that contain as little information as possible. Finally, the denominator on 
the right side is an unnecessary scaling term that does not depend on the parameter. 
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Adopting diffuse prior distributions that convey little or no information is straightforward for 
estimands like means and coefficients. For example, the normal curve is a common prior for 
regression coefficients. Centering the curve at zero and specifying a massive standard deviation 
effectively produces a flat function over all slope values that could have produced the data. 
Invoking a prior distribution where every parameter value is equally likely effectively nullifies the 
influence of the prior, such that the data alone determine the posterior’s shape. In contrast, off-
the-shelf priors for variance and covariance parameters usually impart information that could 
influence the results. For example, common prior distributions for variance parameters tend to 
assign higher a priori weights to values close to zero. Fortunately, information from the data 
overwhelms the prior as the sample size increases, so the impact of the prior distribution is often 
negligible in practice.  

From a practical perspective, researchers should be most concerned about prior distributions 
when estimating variance and covariance parameters in small samples. Multilevel analyses are a 
context where prior distributions can matter. In education applications, multilevel data sets often 
feature many students at level-1 nested in a small number of schools at level-2. In such applications, 
the choice of prior distribution for the variance–covariance matrix of the school-level random 
effects is potentially impactful (Gelman, 2006). In practice, there is no way to know which prior is 
best for a given situation. When in doubt, you can perform a sensitivity analysis that examines 
whether the choice of prior meaningfully impacts the results. The ensuing data analysis examples 
demonstrate this idea. 

4.2 Markov Chain Monte Carlo (MCMC) Algorithms 

In most cases, the posterior distribution of the parameters on the left side of Equation 14 is a 
complicated multivariate function. Bayesian estimation leverages iterative MCMC algorithms that 
break a complex problem involving multiple parameters and missing values into separate, simpler 
steps. Each step estimates one unknown at a time, treating the current values of all other quantities 
as constants. To illustrate, consider a simplified version of an earlier analysis example where ninth 
grade broad reading scores are regressed on first grade reading. A factored regression specification 
consists of two submodels: one for the focal regression and a secondary model for the incomplete 
predictor. Figure 8 shows a schematic of the MCMC algorithm for the analysis. A single MCMC 
iteration consists of two broad steps. Using the filled-in data from the previous iteration, the 
algorithm first estimates the parameters of each submodel. Parameters can be estimated 
individually or in blocks of like terms (e.g., each model’s coefficients can be estimated in a single 
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step). Having updated the parameter values, the algorithm then samples replacement scores 
(imputations) from distributions based on the current parameters. 

Maximum likelihood applications deploy iterative algorithms that successively and 
deterministically adjust parameters with the goal of minimizing the sum of squared, standardized 
residuals. The algorithm converges when estimates no longer change from one iteration to the 
next, at which point the resulting estimates maximize data–model fit. In contrast, MCMC uses 
Monte Carlo computer simulation (the second “MC” in MCMC) to sample plausible parameter 
values at random from a distribution. For example, a normal distribution usually generates 
regression coefficients, and a right-skewed inverse gamma distribution often generates variance 
estimates. Conceptually, the process of simulating new parameter values can be understood as 
computing predicted parameters from the filled-in data then adding random noise (residuals) to 
each. For example, to update the intercept and slope from a linear regression, the MCMC 
algorithm uses OLS point estimates and standard errors to define the predicted values and spread 
of the random noise terms, respectively. Adding computer-generated normal residuals to the 
predicted coefficients gives updated parameter values. 

To illustrate MCMC estimation more concretely, Figure 9 shows line graphs (trace plots) of 
the bivariate regression model parameters from 50 MCMC cycles. Notice that the parameters 
continually oscillate in a random pattern from one iteration to the next, and they never converge 

FIGURE 8. Schematic of the MCMC algorithm for the analysis. e algorithm first estimates the parameters 
of each submodel using the filled-in data from the previous iteration. Having updated the parameter values, 
the algorithm then draws imputations from distributions based on the current parameters. 

Do for t = 1 to T iterations 

1) Estimate focal model parameters, conditional on the 
filled-in data 

2) Estimate predictor model parameters, conditional on 
the filled-in data 

3) Impute missing outcome, conditional on focal model 
parameters 

4) Impute missing predictors, conditional on two or more 
sets of model parameters 

Repeat 

Summarize model parameters

Estimate regression models

Impute missing values
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on a single, fixed value. The distributions on the right side of the graph depict the accumulation of 
parameter values across many computational cycles (the posterior distributions), and the dashed 
horizontal lines are the Bayesian point estimates (posterior means or medians).  

Whereas maximum likelihood algorithms converge when estimates no longer change across 
successive iterations, MCMC estimation converges when the iterative algorithm generates 
parameter values that form a stable distribution. Practically speaking, convergence is achieved 
when accumulating additional iterations does not change the mean and variance of the simulated 
parameter values. The potential scale reduction factor (PSRF; Gelman & Rubin, 1992) is a popular 
index that uses ANOVA mean squares expressions to compare parameter distributions generated 
from two unique MCMC processes (chains). To illustrate, the trace plots in Figure 10 show 200 
parameter estimates (the small black dots) from a pair of MCMC chains with different random 
starting values. Figure 10a is consistent with an MCMC process that has not converged because 
two independent chains produce parameter values with different means. In contrast, the trace plot 
in Figure 10b is consistent with a process that has converged because the distributions have similar 
center and spread. Numerically, PSRF values are scaled such that values closer to one (e.g., PSRF 
< 1.05) reflect convergence. Keller and Enders (2021, Chapter 3) provide a detailed illustration of 
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FIGURE 9. Trace plots of bivariate regression model parameters from 50 MCMC cycles. Because 
they are sampled at random from distributions, parameter values continually oscillate in a 
random pattern from one iteration to the next. e posterior distributions on the right side of the 
graph depict the accumulation of parameter values across many computational cycles.
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MCMC convergence diagnostics, and the Software Tutorials document similarly uses the PSRF for 
this purpose. 

a) MCMC has not converged (PSRF > 1.05)

b) MCMC has converged (PSRF < 1.05)
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FIGURE 10. Panel (a) depicts an MCMC algorithm that has not converged 
because the mean parameter values from two independent processes are 
very difierent. Panel (b) has converged because the means are very similar.
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4.3 Missing Data Imputation 

Returning to Figure 8, each MCMC cycle samples plausible replacement scores from distributions 
based on the current parameter values. The missing data imputation step warrants discussion 
because it is common to Bayesian analyses and to the multiple imputation procedures discussed in 
Section 5. As you will see, the imputation phase of a multiple imputation analysis coopts MCMC 
estimation to create and save a small collection filled-in data sets that are subsequently reanalyzed 
using frequentist inference. In a Bayesian analysis, the imputations play a supporting role behind 
the scenes, as the goal is to obtain parameter summaries that average over thousands of realizations 
of the missing data. 

To illustrate MCMC’s imputation step, consider a simple regression model where first grade 
reading predicts ninth grade performance. Both variables have missing data. MCMC uses a 
factored specification that expresses the bivariate distribution as a pair of univariate distributions. 
Both are normal in this example, but they need not be. The symbolic expression for the 
factorization is shown below with the corresponding regression models. 

𝑓(𝑅𝐸𝐴𝐷9,𝑅𝐸𝐴𝐷1) = 𝑓(𝑅𝐸𝐴𝐷9|𝑅𝐸𝐴𝐷1) × 𝑓(𝑅𝐸𝐴𝐷1) 
𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝜀 (15) 

𝑅𝐸𝐴𝐷1 = γ0 + 𝜖 

Symbolically, 𝑓(𝑅𝐸𝐴𝐷9|𝑅𝐸𝐴𝐷1) says that the conditional distribution of ninth grade scores 
depends on first grade reading (i.e., ninth grade scores are normally distributed around predicted 
values), and 𝑓(𝑅𝐸𝐴𝐷1) is the marginal distribution for the first grade scores alone. The 
factorization is central to imputation because it dictates which models contribute to a variable’s 
distribution of missing values. The focal regression solely determines ninth grade imputations 
because the incomplete outcome appears in only one model. In contrast, first grade scores appear 
in two equations, so both models contribute to imputation. 

To illustrate imputation, Figure 11a shows the distribution of plausible ninth grade reading 
imputations at three levels of first grade performance. The solid black dots on the regression line 
are predicted ninth grade scores, and the white circles are plausible imputations. By assumption, 
scores are normally distributed around the regression line, and the residual standard deviation 
from the regression model (estimated in the first part of each MCMC cycle) dictates the spread of 
the three normal curves. Candidate imputations fall exactly on vertical lines, but I added horizontal 
jitter to enhance visual clarity. The MCMC algorithm generates an imputation for each person by 
randomly selecting a value from their candidate distribution (technically, the algorithm draws 
from a full distribution of replacement scores, not just those displayed in the graph). Figure 11b 
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shows three imputations drawn at random from these distributions. The straight arrows pointing 
from the predicted values to imputed scores are residuals, which MCMC “samples” by simulating 
random numbers from a normal curve. Conceptually, each imputation is a predicted value plus a 
random noise term. 
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FIGURE 11. Panel (a) shows distributions of ninth grade imputations at 
three levels of first grade reading. Panel (b) shows three imputations drawn 
at random from each distribution. Each imputation can be viewed as the 
sum of a predicted value (the black dots) and a normal residual (arrows).
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Returning to Equation 15, the first grade reading variable appears as a predictor in the focal 
regression and an outcome in its own supporting model. MCMC again samples replacement scores 
at random from a distribution of plausible values. To illustrate, Figure 12a shows the distribution 
of first grade reading imputations at three levels of ninth grade performance. The solid black dots 
represent predicted values, and the white circles are plausible imputations. The predicted scores 
no longer fall on the regression line, and the distributions of imputations are located on horizontal 

FIGURE 12. Panel (a) shows distributions of first grade imputations at three 
levels of ninth grade reading. Panel (b) shows three imputations drawn at 
random from each distribution. Each imputation can be viewed as the sum 
of a predicted value (the black dots) and a normal residual (arrows).
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slices in the bivariate coordinate system. Because the first grade scores appear in two models, the 
predicted values and spread of the distributions are now complex functions of two sets of model 
parameters (Enders, 2022; Eq. 5.12). This technical detail aside, the composition of the filled-in 
data points is the same—each imputation is the sum of a predicted value and random noise term. 
To emphasize this point, Figure 12b shows three imputations drawn at random. As before, the 
straight arrows pointing from the predicted values to imputed data points are residuals, which 
MCMC “samples” by simulating random numbers from a normal curve. After imputing all 
missing data points, the MCMC algorithm forwards the filled-in data to the next iteration, where 
the model parameters are estimated again from the new data. 

4.4 Fine-Tuning MCMC: Auxiliary Variables and Nonnormal Data 

The conditionally missing at random assumption described in Section 1.2 requires that the unseen 
score values contain no unique information about missingness beyond that contained in the 
observed data. Practically speaking, this assumption requires that all important determinants of 
missingness are contained within a model’s observed data. Adding extraneous auxiliary variables 
can help satisfy this assumption, minimizing the risk of nonresponse bias (Collins et al., 2001; 
Rubin, 1996). Like a maximum likelihood analysis, the goal is incorporate the additional variables 
while maintaining the structure of the model that we would have fit had there been no missing data. 

A straightforward way to leverage auxiliary variables is to treat them as additional outcomes 
that are predicted by the analysis variables and by each other. Figure 5b depicts this specification, 
with dashed lines depicting the auxiliary variable regression slopes. With this approach, the focal 
analysis model is embedded in larger network of variables. The additional regressions do not align 
with substantive theory and need not reflect a logical causal order. Rather, they are simply a tool 
for linking the analysis variables to the auxiliary variables. This strategy is simple to implement, 
and it readily accommodates mixtures of numeric and discrete auxiliary variables. The ensuing 
analysis examples illustrate this additional outcome approach, as do the examples in the Software 
Tutorials document. 

Turning to nonnormal data, Bayesian estimation readily accommodates a variety of variable 
metrics, and incomplete variables need not be continuous or normal. Estimators for discrete 
variables are broadly available in software programs, and these facilities include support for binary, 
ordinal, multicategorical, and count variables (Albert & Chib, 1993; Asparouhov & Muthén, 
2021b; Keller & Enders, 2021; Polson et al., 2013). For continuous variables, the statistical 
justification for robust (sandwich estimator) standard errors and test statistics does not extend 
naturally to the Bayesian framework because it presupposes a misspecified model (Bayesian 
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estimation assumes that the fitted model and its corresponding distribution is correctly specified). 
Some authors argue that Bayesian analyses are robust in the sense that the posterior distributions 
of the model parameters naturally reflect features of the data. For example, 95% credible intervals 
do not invoke large-sample (asymptotic) arguments, and the interval limits may be asymmetric 
around a point estimate. 

In lieu of robust corrections, researchers routinely apply normalizing transformations like 
taking the natural logarithm of a variable. One of the challenges with transformations is selecting 
one that is appropriate for the data’s shape. The Yeo–Johnson normalizing transformation (Yeo & 
Johnson, 2000) is a promising option that is gaining traction in the literature (Keller & Enders, 
2023; Lüdtke et al., 2020b). Briefly, the procedure envisions a nonnormal variable Y that links to a 
normalized variable 𝑌∗ via a shape parameter. In the context of a regression model, the normalized 
variable serves as the outcome, and the MCMC algorithm iteratively estimates a shape parameter 
that is appropriate for the observed data’s shape. The Yeo–Johnson procedure is attractive because 
it subsumes several common functions, including inverse, logarithmic, square root, and Box–Cox 
transformations. Moreover, the procedure accommodates negative score values and positively or 
negatively skewed distributions. The transformation has shown promise for imputing nonnormal 
missing data (Lüdtke et al., 2020b), and it is readily available in statistical software (Keller & Enders, 
2021; Robitzsch & Lüdke, 2023). 

4.5 Bayesian Analysis Example 1 

The first Bayesian analysis example illustrates a multiple regression model comprised of 
incomplete continuous variables. The analysis uses the behaviorachievement.dat data set from 
a longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, and 
a final measure of broad reading and math obtained in ninth grade. The data also contain teacher 
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The 
Software Tutorials document provides additional information about this data set. Table 2 from 
Section 1.5 shows the specific variables for this analysis example. 

The analysis model featured ninth grade broad reading scores regressed on three academic and 
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning 
problems, and teacher-rated behavioral problems. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (16) 
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The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables. These additional variables were included because they exhibited 
significant residual covariation with the analysis variables (see Section 1.5).  

 

Applying the flowchart from Figure 3, either a multivariate or factored regression specification 
is appropriate. I strictly use the latter for the Bayesian analyses. Following Figure 2b, the focal 
variables were represented by two submodels, each with distinct distributional assumptions. For 
completeness, the symbolic representation for this two-part factorization is as follows. 

𝑓(𝑅𝐸𝐴𝐷9|𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) × 𝑓(𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) (17) 

The first term corresponds to the univariate regression model from Equation 16, and the second 
term represents a multivariate normal distribution for the predictors. The Blimp application used 
in the Software Tutorials document automatically configures the predictor distributions; the user 
simply needs to specify the focal regression model. Finally, auxiliary variables enter the model as 
additional outcomes that are predicted by the analysis variables and by each other. This additional 
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STANREAD7

LRNPROB1

FIGURE 13. Solid lines denote the focal regression model parameters, and 
dashed lines are auxiliary variable parameters. fie path diagram depicts a 
model where auxiliary variables function as additional outcomes. All 
analysis variables predict the auxiliary variables, and second grading reading 
also predicts seventh grade standardized test scores.

BEHSYMP1
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part of the factorization consists of two linear regression models, the symbolic notation for which 
is below. 

𝑓(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7|𝑅𝐸𝐴𝐷2,𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) × 
𝑓(𝑅𝐸𝐴𝐷2|𝑅𝐸𝐴𝐷9,𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) (18) 

Figure 13 shows a path diagram of the analysis model, with dashed lines denoting the auxiliary 
variable regressions.  

Example 6 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. Table 7 shows the Bayesian parameter summaries. The estimate (posterior 
median) and standard deviation columns describe the center and spread of the posterior 
distributions. Although they make no reference to drawing repeated samples, these quantities are 
analogous to frequentist point estimates and standard errors. The 95% credible interval columns 
give ranges that capture 95% of each parameter’s distribution. These are akin to confidence 
intervals, but they describe a range of likely parameter values rather than the long-run behavior of 
intervals from different random samples. Importantly, the numeric summaries in Table 7 are 
effectively identical to the corresponding maximum likelihood estimates from Table 4. This is 
exactly what you would expect when applying Big Three approaches that use the same data and 
invoke the same assumptions.  

To illustrate the interpretations, Figure 14 shows the posterior distributions of the parameter 
values from 10,000 MCMC estimation cycles. The solid vertical lines are the medians, and the 
shaded regions contain values inside the 95% credible interval limits. To reiterate, the posterior 
distributions characterize plausible parameter values that could have produced these data. From a 
practical perspective, the posterior summaries have interpretations that parallel any multiple 

 

TABLE 7. Bayesian Parameter Summaries From a Multiple Regression 

Effect Est. Std. 
Dev. 

2.5% 
LCL 

97.5% 
UCL χ2 p 

Intercept 66.01 6.05 53.94 77.80 118.94 < .001 

READ1 0.50 0.04 0.42 0.59 134.29 < .001 

LRNPROB1 –0.25 0.12 –0.48 –0.01 4.23 .04 

BEHSYMP1 –0.18 0.11 –0.39 0.03 3.00 .08 

R-square .60 .05 .49 .68 -- -- 
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regression analysis. For example, consider the first grade reading slope. The coefficient predicts 
that two individuals who differ by one point in first grade should differ by 0.50 points in ninth 
grade, holding constant teacher-rated learning and behavioral problems. The posterior standard 
deviation (SD = .04) quantifies uncertainty, much like the corresponding standard error from the 
maximum likelihood analysis. Finally, the credible interval conveys that there is a .95 probability 
that the parameter falls between 0.42 to 0.59. To reiterate, the Bayesian summary of the reading 

Intercept
40 50 60 70 80 90

Reading Slope
0.3 0.4 0.5 0.6 0.7

Learning Problems Slope
-0.85 -0.6 -0.35 -0.1 0.15 0.4

Behavioral Problems Slope
-0.7 -0.5 -0.3 -0.1 0.1 0.3

Residual Variance
55 75 95 115 135 155

R-Squared Statistic
0.3 0.4 0.5 0.6 0.7 0.8

FIGURE 14. Posterior distributions of parameter values from 10,000 MCMC 
iterations. fie solid vertical lines are the medians, and the shaded regions 
contain values inside the 95% credible interval limits.
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slope is numerically equivalent to its maximum likelihood counterpart from Table 4 (𝛽1̂ = 0.50, SE 
= .04, and CI[0.42, 0.59]). 

The Bayesian summaries also lend themselves to familiar hypothesis testing logic. Returning 
to the reading slope, the credible interval limits spanning 0.42 to 0.59 included 95% of the area 
under the coefficient’s posterior distribution. From this, we can conclude that the parameter is 
statistically different from zero (p < .05) because the null value is well outside the 95% interval. 
That is, the probability that the parameter is less than 0.42 or greater than 0.59 is .05. Alternately, 
(Asparouhov & Muthén, 2021) proposed a Bayesian Wald chi-square statistic that can be used to 
evaluate a broad range of hypotheses. For researchers who prefer a frequentist-like test statistic, 
the rightmost columns of Table 7 show the chi-square test statistics and p-values for the 
coefficients. These quantities lead to the same conclusions as the 95% credible intervals (e.g., the 
first grade reading slope is significant with p < .001). Levy and McNeish (2023) use the phrase 
“computational frequentism” to describe applications that use MCMC estimation to approximate 
frequentist point estimates and test statistics. 

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors 
for variances and covariances (Keller & Enders, 2021). The prior distributions influence variance 
parameters by altering the number of independent data points and/or the residual sums of squares 
at each MCMC cycle. Roughly speaking, alternate prior distributions induce differences that are 
analogous to those between restricted and full information maximum likelihood (McNeish, 2017; 
D. McNeish & L. M. Stapleton, 2016) or least squares and full information maximum likelihood 
(Enders, 2022). The choice of prior distribution is potentially impactful in small samples 
(McNeish, 2016). To explore the sensitivity of the results to this issue, I fit the model with two 
alternate prior distributions (also off-the-shelf options that are invoked with a single keyword). 
Changes to the results were generally inconsequential. At a high level, the R-square summaries 
were stable across priors (.595 to .604), and differences in the point estimates were generally in the 
third decimal. Finally, inferences were similarly unaffected by the prior distribution. For example, 
the first grade reading slope’s lower credible limit varied between only 0.421 and 0.423, and the 
upper limit ranged from 0.589 to 0.591. Considered as a whole, I conclude that the choice of prior 
distribution did not meaningfully impact on the MCMC results. 

4.6 Bayesian Analysis Example 2 

The second analysis example illustrates a moderated regression model with an incomplete 
interaction effect and an incomplete binary covariate. The corresponding maximum likelihood 
analysis appears in Section 3.5. To refresh, the analysis model features ninth grade broad reading 
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scores regressed on academic and behavioral measures collected in first grade: reading 
achievement, teacher-rated learning problems, the product of first grade reading scores and 
learning problems, and the at-risk dummy code. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 
+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜀 (19) 

The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables.  

Applying the flowchart from Figure 3, models with interactive effects require a factored 
regression specification that expresses the multivariate distribution into a series of simpler 
distributions. Following Figure 2b, the focal variables were represented by two submodels, each 
with distinct distributional assumptions. For completeness, the symbolic representation for this 
two-part factorization is as follows. 

𝑓(𝑅𝐸𝐴𝐷9|𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) × 𝑓(𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) (20) 

The first term corresponds to the univariate regression model from Equation 19, and the second 
term represents a multivariate normal distribution for the predictors. The Blimp application used 
in the Software Tutorials document automatically configures the predictor distributions; the user 
simply needs to specify the focal regression model. In the multivariate distribution, the binary risk 
indicator appears as a normally distributed latent response variable, consistent with the probit 
regression framework (Albert & Chib, 1993). The categorical variable model does not impact the 
variable’s role in the focal model, where it appears as a dummy code. Finally, auxiliary variables 
enter the model as additional outcomes that are predicted by the analysis variables and by each 
other. This additional part of the factorization consists of two linear regression models, the 
symbolic notation for which is below. 

𝑓(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7|𝑅𝐸𝐴𝐷2,𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) × 
𝑓(𝑅𝐸𝐴𝐷2|𝑅𝐸𝐴𝐷9,𝑅𝐸𝐴𝐷1,𝐿𝑅𝑁𝑃𝑅𝑂𝐵1,𝐴𝑇𝑅𝐼𝑆𝐾) (21) 

Figure 15 shows a path diagram of the analysis model. The focal and auxiliary variables are color 
coded, and dashed lines denote the auxiliary variable regressions. The arrow pointing from 
learning problems to the first grade reading test slope is the interaction coefficient. 
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Example 10 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. Table 8 shows the Bayesian parameter summaries. To reiterate, the posterior 
distributions characterize plausible parameter values that could have produced these data. The 
median of each distribution is the MCMC point estimate, and the standard deviation is the 
“Bayesian standard error”, albeit with no reference to repeated sampling. From a practical 
perspective, the posterior summaries have interpretations that parallel any moderated regression 
analysis. To begin, the lower-order terms in a moderated regression are conditional effects that 
depend on scaling or centering. To facilitate interpretation, the analysis centered the interacting 
variables at their iteratively-estimated grand means. Centering defines the first grade reading slope 
(𝛽1 = 0.50) as a conditional effect at the mean of the learning problems distribution, and the 
learning problems slope (𝛽2 = −0.37) similarly reflects a conditional effect at the reading 
achievement average. The interaction slope captures the change in the first grade reading slope for 
each one-unit increase in learning problems (and vice versa). The positive coefficient (𝛽3 = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
more positive) for students with elevated learning problems. 

READING9

READING2

READING1

STANREAD7

LRNPROB1

FIGURE 15. Solid lines denote the focal regression model parameters, and 
dashed lines are auxiliary variable parameters. fie path diagram depicts a 
model where auxiliary variables function as additional outcomes. All 
analysis variables predict the auxiliary variables, and second grading reading 
also predicts seventh grade standardized test scores.

ATRISK
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 As explained previously, the Bayesian summaries also lend themselves to familiar hypothesis 
testing logic. Returning to the interaction coefficient, the credible interval limits spanning 0.003 to 
0.021 included 95% of the area under the coefficient’s posterior distribution. From this, we can 
conclude that the parameter is statistically different from zero (p < .05) because the null value is 
outside the 95% interval. One could also adopt a computational frequentism perspective that views 
the MCMC summaries as surrogates for frequentist point estimates and standard errors (Levy & 
McNeish, 2023). To this end, the rightmost pair of columns in Table 8 show Wald chi-square 
statistics (squared z-tests) and frequentist probability values (Asparouhov & Muthén, 2021).  

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors 
for variances and covariances (Keller & Enders, 2021). Roughly speaking, alternate prior 
distributions induce differences that are analogous to those between restricted and full information 
maximum likelihood (McNeish, 2017; D. McNeish & L. M. Stapleton, 2016) or least squares and 
full information maximum likelihood (Enders, 2022). To explore the sensitivity of the results to 
this issue, I fit the model with two alternate prior distributions (also off-the-shelf options that are 
invoked with a single keyword). Changes to the results were generally inconsequential. At a high 
level, the R-square summaries were stable across priors (.610 to .619), and differences in the point 
estimates were generally in the third decimal. The binary risk indicator’s coefficient exhibited the 
most noticeable changes, ranging from –1.88 to –1.93. However, these variations are trivial when 
compared to the parameter’s standard deviation or 95% confidence limits. Finally, inferences were 
similarly unaffected by the prior distribution. For example, the interaction’s lower credible limit 
was consistently 0.003, and the upper limit ranged between 0.021 and 0.022. Considered as a whole, 
I conclude that the choice of prior distribution did not meaningfully impact on the MCMC results. 
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Multiple Imputation 
 

 

 

 

 

Maximum likelihood and Bayesian estimation are similar in the sense that a researcher fits a 
desired model to the incomplete data, and the software returns estimates and measures of 
uncertainty that assume a conditionally missing at random process. When confronted with 
missing values, maximum likelihood uses the normal curve to deduce the missing parts of the data 
as it iterates to a solution, whereas Bayesian MCMC repeatedly fills in the missing data. In both 
cases, missing data handling happens behind the scenes, and the primary goal is to estimate model 
parameters. In contrast, multiple imputation prioritizes the imputations, and the goal is to create 
filled-in data sets for later analysis. 

Multiple imputation’s history traces 1977, when Donald Rubin proposed the procedure to the 
Social Security Administration and Census Bureau as a solution for missing survey data8. Rubin 
published his seminal multiple imputation book (Rubin, 1987) a decade later, and Joe Schafer’s 
subsequent text (Schafer, 1997) fully generalized the methodology. In the 40 years or so since its 
inception, multiple imputation has developed into a large collection of diverse methods; modern 
texts catalog these various incarnations (Carpenter et al., 2023; van Buuren, 2018). Published 
applications of multiple imputation abound, and virtually every general-use software program has 
imputation facilities. 

A typical multiple imputation application consists of three steps. In the imputation and 
analysis phases, the researcher creates multiple copies of the data with different imputations, after 
which they fit one or more analysis models to each filled-in data set. Analyzing each data separately 
produces multiple sets of estimates and standard errors. The final pooling phase uses “Rubin’s 
rules” (Little & Rubin, 2020; Rubin, 1987) to combine the imputation-specific results into a single 
set of frequentist point estimates, standard errors, and test statistics. Figure 16 depicts these three 
steps.  

 
8 Rubin’s 1977 report is available in a 2004 volume of the American Statistician. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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The initial imputation phase coopts Bayesian MCMC estimation described in Section 4.2. 
Recall that a Bayesian analysis produces parameter summaries that average over thousands of 
filled-in data sets. In a multiple imputation application, the Bayesian parameter summaries are not 
the scientific focus. Rather, the main goal is to save a small number of the imputed data sets that 
MCMC produces (e.g., 20 is an oft-cited recommendation; Graham et al., 2007). These data sets 
are the inputs for obtaining frequentist points estimates, standard errors, and significance tests. 

Multiple imputation involves two rounds of model fitting. The researcher first deploys MCMC 
to fit an imputation model (usually some type of regression), after which they reanalyze the filled-
in data to obtain frequentist inferences. It is useful to classify multiple imputation procedures 
according to whether the initial MCMC analysis is the same or different from the subsequent 
frequentist analysis. Borrowing terminology from Enders (2022), a model-agnostic approach 
deploys an imputation model that differs from the analysis phase model, whereas a model-based 
procedure uses the same model for imputation and reanalysis. Model-agnostic methods include 
classic multivariate imputation approaches (Schafer, 1997; Schafer & Olsen, 1998) and fully 
conditional specification (van Buuren, 2007, 2018), among others. Newer model-based methods 
include substantive model-compatible imputation (Bartlett et al., 2015), fully Bayesian estimation 

Y X Z
4 4 3
3 3.2 5
7 1 6

5.3 1 6
5 9 3
3 8.7 10.1
1 6 7
9 4 9
2 6.5 6

Y X Z
4 4 3
3 5.4 5
7 1 6

6.2 1 6
5 9 3
3 7.1 8.5
1 6 7
9 4 9
2 6.9 6

Y X Z
4 4 3
3 5.1 5
7 1 6

4.6 1 6
5 9 3
3 10.3 6.9
1 6 7
9 4 9
2 7.2 6

Y X Z
4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

MCMC
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20

Imputation Analysis Pooling
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^

^

… … …

FIGURE 16. e imputation phase creates multiple filled-in data sets that the researcher 
subsequently analyzes in the analysis phase. e imputation-specific estimates from the second step 
are subsequently pooled in a single set of frequentist results.
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(Enders et al., 2020; Zhang & Wang, 2017), and the sequential specification (Erler et al., 2016; 
Lüdtke et al., 2020b).  

To illustrate the key difference between agnostic and model-based imputation strategies, 
consider a journal paper that requires multiple imputations for t-tests and a small number of 
univariate regression models. A typical application of model-agnostic imputation would create 
common imputations for all these analyses. In that scenario, the MCMC imputation model must 
be broad enough to incorporate and preserve all associations examined in the paper. Such an 
imputation model would necessarily differ from the individual analysis models because it includes 
numerous additional parameters and variables. The imputation model usually represents 
associations differently too. For example, Schafer’s (1997) classic joint model imputation uses a 
multivariate regression model with complete variables predicting incomplete variables. 
Alternatively, van Buuren’s (2006) fully conditional specification approach (also called the MICE 
algorithm, for Multiple Imputation by Chained Equations) uses a round robin sequence of 
univariate regression models where each incomplete variable is predicted by all other variables. 
Notice that a variable’s status as an outcome or predictor in the MCMC imputation model depends 
on whether it is incomplete or complete. The imputation phase is effectively agnostic about a 
variable’s role in the subsequent analysis phase. 

In contrast, a researcher adopting a model-based imputation strategy uses the same model to 
impute the data as they do to analyze the data. Although the imputation phase may include 
additional auxiliary variables, the imputation and analysis phase models are otherwise congruent. 
Crafting imputations to align with a specific analytic model implies that each frequentist analysis 
requires its own filled-in data sets. Returning to the example, researchers would create unique 
imputations for each t-test and regression analysis in the paper. The MCMC imputation phase for 
each t-test would deploy a regression model with a dummy code predictor, and the imputation 
phase for each regression analysis would deploy a matching regression model. Note that model-
based imputation is analogous to FIML estimation, which also integrates missing data handling on 
an analysis-by-analysis basis. 

How does one decide between model-agnostic and model-based imputation? The composition 
of the focal analysis model—in particular, whether it includes nonlinear effects such as 
interactions, polynomial terms, or random coefficients—determines the type of imputation 
strategy that works best. The flowchart in Figure 17 depicts a decision tree for selecting a multiple 
imputation procedure. Starting on the left, the first decision point depends on whether the focal 
analysis features a nonlinear effect. If the answer to this first question is yes, then model-based 
multiple imputation based on a factored regression specification is the only choice. If no, then 
various model-agnostic procedures are appropriate depending on the variable metrics. The 
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flowchart oversimplifies a nuanced issue, but it provides a heuristic for classifying multiple 
imputation options. The flowchart also parallels the high-level decision tree for missing data 
analyses in Figure 3. Finally, it is perfectly fine to use a combination of model-based and model-
agnostic procedures within the same project or paper. 

Joseph Schafer’s classic textbook (Schafer, 1997) popularized agnostic imputation based on the 
multivariate normal distribution. The MCMC algorithm for his approach repeatedly updates the 
model parameters—a mean vector and covariance matrix—conditional on the current filled-in 
data, after which it draws new imputations from normal distributions based on the parameter 
values. Saving a small number of imputed data sets from a long iterative sequence and performing 
analyses on the filled-in data sets gives estimates that average over different realizations of the 
missing values. Accessible descriptions of this classic procedure are widely available in the 
literature (Schafer, 1999; Schafer & Graham, 2002; Schafer & Olsen, 1998). This paper instead 
focuses on model-agnostic fully conditional specification because it is more broadly available in 
computer software programs. Finally, a discussion of model-based imputation is relegated to the 
analysis example in Section 5.6 because the imputation phase exactly coopts the MCMC algorithm 
described earlier in Section 4.2—the only new details involve saving and reanalyzing imputations.  

5.1 Model-Agnostic Fully Conditional Specification 

Fully conditional specification (van Buuren, 2007; van Buuren et al., 2006; van Buuren & 
Groothuis–Oudshoorn, 2011) imputes variables one at a time using a sequence of univariate 

FIGURE 17. Flowchart depicting decision tree for choosing agnostic or model-based multiple imputation. Starting on the le, 
the first decision point depends on whether the focal analysis features any type of nonlinearity. e second decision is 
whether all variables share the same metric. Although classic methods are not always appropriate, factored specifications are.
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regression models. The composition of these models follows a round robin scheme where each 
incomplete variable is predicted by all other variables, complete or previously imputed. 
Importantly, each regression in the sequence is tailored to the incomplete variable’s metric, 
allowing for a potentially diverse collection of generalized linear imputation models. This 
procedure is also known as the MICE algorithm (Multiple Imputation by Chained Equations) after 
Stef van Buuren’s popular R program (van Buuren & Groothuis–Oudshoorn, 2011). Variations of 
the procedure are available for imputing latent response variables (Enders, 2022; Grund et al., 
2021b; Keller & Enders, 2021), incomplete covariates in moderated regression models (Bartlett & 
Morris, 2015; Bartlett et al., 2015), multilevel data structures (Enders et al., 2018; van Buuren, 
2011), count and zero-inflated variables (Kleinke & Reinecke, 2013), classification and regression 
trees (Doove et al., 2014; Shah et al., 2014), and regularized regression (Deng et al., 2016; Zhao & 
Long, 2016), among others. Van Buuren’s multiple imputation book (van Buuren, 2018) details 
this framework and some of its extensions (https://stefvanbuuren.name/fimd/). 

To illustrate the basic idea behind fully conditional specification, suppose a researcher wants 
to obtain descriptive statistics and correlations for three incomplete variables, 𝑌1 to 𝑌3, and one 
complete variable, 𝑍. Recall from an earlier section that MCMC estimation iteratively repeats two 
broad steps: estimate model parameters using the current filled-in data, then create imputations 
using the updated parameter values (imputation = predicted value + random noise). The MCMC 
algorithm for fully conditional specification applies this estimation–imputation sequence to each 
incomplete variable in turn.  

For the trivariate imputation problem, each computational cycle fits three regression models, 
one per incomplete variable. The imputation regression equations are shown below, and Figure 18 
displays these imputation regression models as path diagrams. 

𝑌1 = γ10 + γ11(𝑌2
(𝑡−1)) + γ12(𝑌3

(𝑡−1)) + γ13(𝑍) + 𝜖1 

𝑌2 = γ20 + γ21(𝑌3
(𝑡−1)) + γ22(𝑌1

(𝑡)) + γ23(𝑍) + 𝜖2 (22) 

𝑌3 = γ30 + γ31(𝑌1
(𝑡)) + γ32(𝑌2

(𝑡)) + γ33(𝑍) + 𝜖3 

Notice that the imputation regression equations follow a round robin scheme where each 
incomplete variable takes a turn as the to-be-imputed outcome, after which it functions as a fully 
complete predictor in all other equations. Each model invokes estimation and imputation steps 
that exactly follow Sections 4.2 and 4.3. The only difference is that each MCMC iteration applies 
these updating steps to multiple models in a sequence. The t and t – 1 superscripts indicate whether 
the filled-in values on the right side of each equation originate from the current or previous 
iteration, respectively. For simplicity, the imputation models are all linear regressions, but the 
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procedure readily accommodates discrete metrics as well. For example, if 𝑌1 was binary, the first 
equation would be a logistic or probit regression that spawns dichotomous imputations. Similarly, 
if 𝑌1 was multicategorical, the final equation in the sequence would be a multinomial logistic 
regression. 

a)

FIGURE 18. Fully conditional specification imputation models with three 
incomplete variables. Each computational cycle fits three regression models, 
one per incomplete variable. Panel (a) is Y1’s imputation model, panel (b) is 
Y2’s regression model, and panel (c) is Y3’s imputation model.
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Section 4.3 described MCMC’s imputation procedure, with carries over to fully conditional 
specification with no modification. For numeric variables, the algorithm uses Monte Carlo 
computer simulation to “sample” replacement scores from a person-specific normal distribution. 
A predicted value from a regression equation defines the center of each normal curve, and the 
model’s residual standard deviation defines spread. For categorical variables, logistic or probit 
imputation models yield predicted probabilities for each discrete response, and MCMC samples 
replacement scores from a probability mass function that looks like a bar graph. Figure 11 
illustrates the imputation = predicted value + noise concept for an incomplete numeric variable. 
Predictive mean matching is a nonparametric alternative that instead draws imputations from a 
pool of observed scores taken from people whose predicted values are similar to that of the person 
with missing data (Kleinke, 2017; Lee & Carlin, 2017; van Buuren, 2018; Vink et al., 2014). Morris 
et al. (2014) catalog variations of predictive mean matching in software programs, and they provide 
recommendations about the optimal matching criterion and donor pool size. 

Notice that the imputation regression models all differ from the intended frequentist analyses 
(descriptive statistics and correlations). This is the defining feature of agnostic imputation. 
Although the imputation and analysis models need not match, it is vital that imputation includes 
all to-be-analyzed variables and preserves any special features of the frequentist analyses (Collins 
et al., 2001; Schafer, 2003). In this example, the three regression equations do not invoke 
assumptions or impose restrictions that contradict the intended frequentist analysis; the 
imputation phase includes all analysis variables, and the imputation and analysis models both 
assume linear associations. Suppose the data are hierarchical with students nested in schools. The 
imputation models from Equation 22 would distort the frequentist point estimates and inference 
because the fail to incorporate the multilevel structure. Similarly, the imputations would be 
inappropriate for a moderated regression analysis because the models assume that all interactions 
equal zero. 

Two early strategies that integrated nonlinear terms into a fully conditional specification 
scheme—just-another-variable imputation and passive imputation—warrant brief discussion due 
to their propensity for bias. The so-called just-another-variable approach treats product and 
polynomial terms as standalone, normally distributed variables (von Hippel, 2009). Returning to 
the variables from Equation 22, suppose the intended frequentist analysis is a moderated regression 
where 𝑌1 and 𝑌2 interact to predict 𝑌3. The product term—which is incomplete whenever 𝑌1 or 𝑌2 
is missing—would simply appear as an additional incomplete variable in the imputation scheme. 
In contrast, passive imputation (also known as impute-then-transform; von Hippel, 2009) would 
adopt the imputation models from Equation 22, updating the product term by multiplying the 
imputed 𝑌1 and 𝑌2 scores (Seaman et al., 2012). Analytic and computer simulation studies 
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repeatedly demonstrate that both methods are prone to substantial bias (Cham et al., 2017; Enders 
et al., 2014; Humberg & Grund, 2022; Seaman et al., 2012; Zhang & Wang, 2017). A newer variation 
of fully conditional specification called substantive model-compatible imputation addresses this 
shortcoming (Bartlett et al., 2022; Bartlett & Morris, 2015; Bartlett et al., 2015; Goldstein et al., 
2014). However, I classify this extension as a model-based imputation procedure because the 
appropriate sequence of univariate imputation models is inherently built around one analysis with 
a specific configuration of interactive or nonlinear effects. 

5.2 Saving Imputed Data Sets 

A typical MCMC process generates thousands of imputed data sets, one per computational cycle. 
The multiple imputation analysis phase requires just a few of these. Classic resources recommend 
three to five imputed data sets for frequentist analyses (Rubin, 1987; Schafer, 1997). Graham et al. 
(2007) used computer simulations to demonstrate that analyzing 20 or more imputations can 
produce nontrivial power gains. Other studies suggest that 100 or more imputations may be 
required to achieve precise estimates of quantities like confidence interval half-widths and 
probability values (Bodner, 2008; Harel, 2007; von Hippel, 2020). The examples in the Software 
Tutorials document use 20 imputed data sets. 

After deciding on the number of imputations, we need to extract the data sets from a much 
longer MCMC process. Consecutive iterations of the MCMC algorithm produce correlated 
estimates and imputations, and this autocorrelation can last for many computational cycles. 
Analyzing data sets with correlated imputations should be avoided because doing so can attenuate 
frequentist standard errors. A simple way to eliminate autocorrelation is to specify a unique 
MCMC process for each data set, then save the filled-in data from the final iteration of each 
“chain”. To illustrate, suppose a researcher wants to save 20 imputed data sets. After conducting a 
preliminary MCMC run to evaluate convergence (see Section 4.2 and Figure 10), they determine 
that the algorithm becomes sufficiently stable within 1,000 iterations. To create multiple 
imputations, they would specify 20 parallel MCMC processes and save the filled-in data from the 
1,000th iteration of each unique chain. The Software Tutorials document uniformly adopts this 
strategy because the resulting imputations are automatically uncorrelated. 
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5.3 Analyzing Imputations and Pooling Results 

The product of the initial imputation phase is a collection of filled-in data sets. Although intuition 
might suggest averaging the imputations into a single data set, doing so would attenuate standard 
errors. Instead, the correct approach is to analyze each data set individually then average the 
estimates and standard errors. Fortunately, most major software platforms have facilities for 
automating this process. To illustrate, consider an example where the goal is to estimate the mean 
change between the first- and ninth grade broad reading assessments. The analysis and pooling 
phases involve the following steps: (a) compute difference scores in each imputed data set by 

 

TABLE 9. Imputation-Specific Estimates 
Imputation Estimate Std. Error (Std. Error)2 

1 6.652 0.541 0.293 
2 6.509 0.526 0.277 
3 6.734 0.533 0.284 
4 6.376 0.541 0.292 
5 6.318 0.549 0.301 
6 6.267 0.533 0.284 
7 6.698 0.537 0.289 
8 6.400 0.534 0.285 
9 6.321 0.544 0.296 

10 6.563 0.544 0.296 
11 6.440 0.554 0.307 
12 6.433 0.527 0.278 
13 6.374 0.535 0.286 
14 6.416 0.536 0.287 
15 5.900 0.549 0.301 
16 6.659 0.527 0.277 
17 6.532 0.543 0.294 
18 6.092 0.539 0.291 
19 6.388 0.553 0.305 
20 6.289 0.543 0.295 

Mean 6.418  0.291 
Variance 0.041   
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subtracting first grade scores from the ninth grade scores, (b) compute the mean difference score 
and its standard error in each data set, and (c) pool estimates and standard errors. This section 
demonstrates the various components of the pooling process. Example 12 from the Software 
Tutorials document provides annotated syntax and output files for model-agnostic fully 
conditional specification. 

Table 9 shows the mean difference estimates, standard errors, and squared standard errors (i.e., 
sampling variances) from the 20 imputed data sets. These quantities naturally vary because each 
data set contains different predictions about the missing values. The estimates and squared 
standard errors are the inputs to Rubin’s pooling rules in Table 10 (Little & Rubin, 2020; Rubin, 
1987). The pooling formulas use M to denote the number of data sets, in this case M = 20. Focusing 
on the mean change score, the multiple imputation point estimate is the arithmetic average of the 
imputation-specific estimates. The summary section near the bottom of Table 9 reports the mean 
estimate as 6.42. On average, broad reading scores improved by more than six points. Although it 
averages over multiple realizations of the missing data, the point estimate has the same 
interpretation as one from a complete-data analysis.  

Rubin’s pooling rules for standard errors are more complex because they incorporate two 
sources of uncertainty. To begin, each of the squared standard errors in the rightmost column of 
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Table 9 estimates the expected amount of random sampling error from a complete data set. The 
average of the squared standard errors provides a more precise estimate of this quantity. The 
second equation in Table 10 shows this component of the pooling expression, which is commonly 
called the within-imputation variance. The summary section near the bottom of Table 9 reports 
the average squared standard error as 0.29. Of course, the data are not complete, so taking the 
square root of this value would produce an attenuated standard error that fails to acknowledge 
missingness. Returning to the point estimates, the mean difference estimates vary for only one 
reason—the data sets that spawned the estimates contain different imputations. Leveraging this 
fact, computing the variance of the point estimates around their average quantifies additional 
uncertainty due to missing data. The third equation in Table 10 shows this component of the 
pooling expression, which is often called between-imputation variance. The summary section near 
the bottom of Table 7 reports the between-imputation variance of the point estimates as 0.41.  

The pooled standard error equation in Table 10 combines the within- and between-imputation 
variance into a single measure of uncertainty. Conceptually, the standard error expression starts 
with the attenuated estimate of complete-data sampling error, then it uses between-imputation 
variance as a correction factor that inflates the standard error according to the amounts and 
patterns of missing data. Substituting the within- and between-imputation variance estimates into 
the standard error formula gives SE = 0.58. This composite standard error is noticeably larger than 
the complete-data standard errors from Table 9 because it appropriately reflects missingness-
induced imprecision. Finally, although their composition is very different, it is important to note 
that the multiple imputation standard errors are usually numerically equivalent to those of 
maximum likelihood and to Bayesian posterior standard deviations. The subsequent analysis 
examples highlight this point. 

Numerous procedures for conducting frequentist significance tests are available for multiply 
imputed data. The familiar t-statistic for evaluating single-parameter hypotheses is a ratio that 
compares the discrepancy between the point estimate and null parameter value relative to the 
standard error. The final equation in Table 10 shows the test statistic. Returning to the reading 
achievement analysis, substituting the pooled mean difference and standard error into the 
expression gives t = 11.11. Statisticians have developed different degrees of freedom expressions 
for the t-statistic. Barnard and Rubin’s (1999) expression provides good performance with small 
samples and is widely available in statistical software. Multiple imputation versions of the Wald 
(Li et al., 1991; Rubin, 1987) and likelihood ratio test statistics (Chan & Meng, 2021, December 30; 
Meng & Rubin, 1992) are also available for multiparameter hypotheses (e.g., omnibus and nested 
model tests). The R packages mitml (Grund et al., 2023) and semTools (Jorgensen et al., 2022) 
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offer a complete compendium of multiple imputation significance tests that are not widely 
available in commercial software. 

5.4 Fine-Tuning Multiple Imputation: Auxiliary Variables and Nonnormal Data 

The conditionally missing at random assumption described in Section 1.2 requires that the unseen 
score values contain no unique information about missingness beyond that contained in the 
observed data. Practically speaking, this assumption requires that all important determinants of 
missingness are contained within the imputation model’s observed data. Introducing missing data 
auxiliary variables broadens the observed data, potentially making this assumption more plausible 
(Collins et al., 2001). The ease of introducing auxiliary variables is an oft-cited advantage of 
multiple imputation; additional variables are included during imputation and ignored during 
analysis. This contrasts maximum likelihood and Bayesian missing data handling approaches that 
integrate auxiliary variables on an analysis-by-analysis basis. 

In practice, the number of variables that can be included in the imputation model is a complex 
function of the sample size and missing data patterns. In the hypothetical limit, regression models 
that provide the backbone of MCMC imputation routines require more observations than 
variables. Not surprisingly, missing values can dramatically restrict the size of the initial 
imputation model. In my experience, a pair of categorical variables with low or zero cell counts in 
a two-way contingency table is the most common cause of MCMC convergence failures. Such 
patterns imply that the data do not contain sufficient information to estimate bivariate 
associations. Collapsing categories, combining multiple variables into one variable, or excluding 
problematic variables are possible solutions. Previous studies have also documented difficulties 
applying model-agnostic multiple imputation to large numbers of ordered categorical variables 
(e.g., test or questionnaire items; Alacam et al., 2023). For many researchers, these practical issues 
place a relatively low upper limit on the number of variables multiple imputation can support. For 
example, a sample size of 300 participants may support fewer than 20 or 30 variables, especially if 
several are categorical . 

The classic multivariate multiple imputation approach popularized by Joseph Schafer (Schafer, 
1997) assumes multivariate normality. Contemporary variants of this strategy use a latent response 
variable (i.e., probit regression) framework to accommodate incomplete binary, ordinal, and 
multicategorical nominal variables (Asparouhov & Muthén, 2010; Carpenter & Kenward, 2013; 
Demirtas, 2017; Goldstein et al., 2009; Quartagno & Carpenter, 2019). For example, binary and 
ordinal responses can be modeled as a normally distributed latent variable, the distribution of 
which is carved into discrete regions by one or more threshold parameters (Johnson & Albert, 
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1999). Fully conditional specification imputation also accommodates a range of discrete variable 
types (Kleinke & Reinecke, 2013; van Buuren, 2007; van Buuren, 2010; van Buuren, 2018). 
Returning to the hypothetical imputation scheme in Equation 22, the individual regression 
equations would simply become generalized linear models, and MCMC would sample imputations 
from probability mass functions that look like bar graphs. 

Turning to numeric variables, several methodology studies have examined the impact of 
pairing normally distributed imputations with nonnormal observed data (Demirtas et al., 2008; 
Lee & Carlin, 2017; von Hippel, 2013; Yuan et al., 2012). Although this approach can produce 
imputes outside the range of the data, a common finding is that distributional misspecifications 
do not substantially impact means and regression coefficients; it can distort variances and 
estimands that quantify the distribution’s tails, however. Related work describes a transform-then-
imputation strategy that first applies normalizing transformations to incomplete variables prior to 
imputation then back-transforms the variables prior to analysis (Goldstein et al., 2009; Lee & 
Carlin, 2017; Schafer & Olsen, 1998; Su et al., 2011; van Buuren, 2018; von Hippel, 2013). Studies 
caution against this strategy because it can exacerbate rather than mitigate bias due to nonnormal 
data (Lee & Carlin, 2017; von Hippel, 2013). 

An alternate strategy is to sample imputations from a nonnormal distribution. As mentioned 
previously, predictive mean matching is a nonparametric approach that draws imputations from 
a pool of observed scores taken from people whose predicted values are similar to that of the person 
with missing data (Kleinke, 2017; Lee & Carlin, 2017; van Buuren, 2018; Vink et al., 2014). If the 
observed data are nonnormal, the resulting imputations will be as well. Morris et al. (2014) catalog 
variations of predictive mean matching in software programs, and they provide recommendations 
about the optimal matching criterion and donor pool size. The literature also describes various 
parametric methods for creating nonnormal imputations (de Jong et al., 2016; Demirtas, 2017; 
Demirtas & Hedeker, 2008a, 2008b; He & Raghunathan, 2009), although most of these approaches 
are either limited in scope or do not have software implementations. The Yeo–Johnson 
transformation (Yeo & Johnson, 2000) is a promising approach that readily pairs with model-based 
multiple imputation (Lüdtke et al., 2020b). The Yeo–Johnson procedure invokes a normally 
distributed transformed variable and a shape parameter that maps the normalized scores to a 
nonnormal raw score distribution. The MCMC algorithm iteratively estimates the shape 
parameter to match the observed-data distribution’s shape. This approach, which is available in 
the Blimp application (Keller & Enders, 2021) and R package mdmb (Grund et al., 2021a), subsumes 
common transformations such as the inverse, logarithmic, square root, and Box–Cox. 
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5.5 Multiple Imputation Analysis Example 1 

The first multiple imputation example illustrates a multiple regression analysis comprised of 
incomplete continuous variables. The analysis uses the behaviorachievement.dat data set from 
a longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, and 
a final measure of broad reading and math obtained in ninth grade. The data also contain teacher 
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The 
Software Tutorials document provides additional information about this data set. 

Given the same data and assumptions, multiple imputation usually produces estimates and 
inferences that are equivalent to maximum likelihood and Bayesian estimation. To underscore this 
point, I repeat the same analysis from Sections 3.4 and 4.5. Table 2 from Section 1.5 describes the 
specific variables for the multiple regression. To refresh, the analysis model featured ninth grade 
broad reading scores regressed on three academic and behavioral measures collected in first grade: 
the broad reading composite, teacher-rated learning problems, and teacher-rated behavioral 
problems. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) + 𝜀 (23) 

The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables.  

Applying the flowchart from Figure 17, both model-agnostic and model-based multiple 
imputation are appropriate, and the two would yield equivalent estimates. To apply model-based 
imputation, one would simply fit the regression model from the first Bayesian analysis example 
(see Section 4.6), saving imputations for reanalysis. This example instead uses model-agnostic fully 
conditional specification (van Buuren, 2018; van Buuren et al., 2006). Focusing on the initial 
imputation step, each iteration of the MCMC algorithm fits six regression models, one per 
incomplete variable. The equations follow the same round-robin schematic described in Section 
5.1. 

𝑅𝐸𝐴𝐷9 = 𝛾10 + 𝛾11(𝑅𝐸𝐴𝐷1
(𝑡−1)) + 𝛾12(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1

(𝑡−1)) + 𝛾13(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1
(𝑡−1)) 

+ 𝛾14(𝑅𝐸𝐴𝐷2
(𝑡−1)) + 𝛾15(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7

(𝑡−1)) + 𝜖1 

𝑅𝐸𝐴𝐷1 = 𝛾20 + 𝛾21(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1
(𝑡−1)) + 𝛾22(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1

(𝑡−1)) + 𝛾23(𝑅𝐸𝐴𝐷2
(𝑡−1)) 

+ 𝛾24(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7
(𝑡−1)) + 𝛾25(𝑅𝐸𝐴𝐷9

(𝑡)) + 𝜖2 
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𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾30 + 𝛾31(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1
(𝑡−1)) + 𝛾32(𝑅𝐸𝐴𝐷2

(𝑡−1)) 
+ 𝛾33(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7

(𝑡−1)) + 𝛾34(𝑅𝐸𝐴𝐷9
(𝑡)) + 𝛾35(𝑅𝐸𝐴𝐷1

(𝑡)) + 𝜖3 (24) 

𝐵𝐸𝐻𝑃𝑅𝑂𝐵1 = 𝛾40 + 𝛾41(𝑅𝐸𝐴𝐷2
(𝑡−1)) + 𝛾42(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7

(𝑡−1)) 
+ 𝛾43(𝑅𝐸𝐴𝐷9

(𝑡)) + 𝛾44(𝑅𝐸𝐴𝐷1
(𝑡)) + 𝛾45(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1

(𝑡)) + 𝜖4 

𝑅𝐸𝐴𝐷2 = 𝛾50 + 𝛾51(𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7
(𝑡−1)) + 𝛾52(𝑅𝐸𝐴𝐷9

(𝑡)) + 𝛾53(𝑅𝐸𝐴𝐷1
(𝑡)) 

+ 𝛾54(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1
(𝑡)) + 𝛾55(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1

(𝑡)) + 𝜖5 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾60 + 𝛾61(𝑅𝐸𝐴𝐷9
(𝑡)) + 𝛾62(𝑅𝐸𝐴𝐷1

(𝑡)) + 𝛾63(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1
(𝑡)) 

+ 𝛾64(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1
(𝑡)) + 𝛾65(𝑅𝐸𝐴𝐷2

(𝑡)) + 𝜖6 

The imputation models are all linear regressions in this example, although the algorithm readily 
accommodates discrete metrics as well (see Example 14 in the Software Tutorials document). 

Example 13 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. To summarize, the fully conditional specification imputation algorithm invoked 
20 independent MCMC processes (chains), each consisting of 2,500 iterations. The filled-in data 
from the final iteration of each chain was saved for reanalysis. Fitting the focal regression model 
from Equation 23 to each imputed data set produced 20 sets of estimates and standard errors. 
Finally, applying Rubin’s rules gave the pooled results shown in Table 11. The results are 
interpreted in the same way as a complete-data regression analysis. For example, consider the slope 
of the first grade reading test. The model predicts that two individuals who differ by one point 
should differ by 0.51 points on the outcome, holding constant teacher-rated learning and 

 

TABLE 11. Agnostic Multiple Imputation Estimates From a Multiple Regression 

Effect Est. Std. Error t p 2.5% LCL 97.5% UCL 

Intercept 66.19 6.22 10.64 < .001 53.81 78.58 

READ1 0.51 0.05 10.96 < .001 0.41 0.60 

LRNPROB1 –0.25 0.12 –2.06 .04 –0.49 –0.01 

BEHSYMP1 –0.18 0.11 –1.73 .09 –0.40 0.03 

R-square .61 -- -- -- -- -- 
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behavioral problems. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero, t(71.14) = 10.96, p < .001.  

I have repeatedly stated that the Big Three missing data methods tend to produce numerically 
equivalent results, given the same input data and assumptions. To emphasize this point, Table 12 
shows the parameter estimates and measures of uncertainty for each procedure. Notwithstanding 
their philosophical differences about repeated sampling, the Big Three were identical, as expected. 
Returning to decision tree in Figure 3, the choice of missing data method is largely determined by 
features of the analysis model. Selecting between two approaches that are equally appropriate is 
largely a matter of personal preference. 

5.6 Multiple Imputation Analysis Example 2 

The second analysis example illustrates a moderated regression analysis with an incomplete 
interaction effect and an incomplete binary covariate. This example repeats the same analysis from 
Sections 3.5 and 4.6. Table 5 from Section 3.5 describes the specific variables for the regression. To 
refresh, the analysis model features ninth grade broad reading scores regressed on academic and 
behavioral measures collected in first grade: reading achievement, teacher-rated learning 
problems, the product of first grade reading scores and learning problems, and the at-risk dummy 
code. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 
+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝜀 (25) 

 

TABLE 12. Comparison of Regression Results From the Big Three  

 FIML  Bayes  MI 

Effect Est. SE  Median SD  Est. SE 

Intercept 66.03 5.85  66.01 6.05  66.19 6.22 

READ1 0.50 0.04  0.50 0.04  0.51 0.05 

LRNPROB1 –0.25 0.12  –0.25 0.12  –0.25 0.12 

BEHSYMP1 –0.18 0.10  –0.18 0.11  –0.18 0.11 

R-square .60 --  .60 .05  .61 -- 
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The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables.  

Applying the flowchart from Figure 17, models with interactive effects require a factored 
regression specification that expresses the multivariate distribution into a series of simpler 
distributions. Such specifications are necessarily model-based because the correct sequence of 
regression models is constructed around one focal analysis with a particular constellation of 
nonlinear terms. Section 4.6 illustrated a Bayesian analysis with an interactive effect and auxiliary 
variables. This identical analysis can also produce multiple imputations for a frequentist analysis; 
comparable procedures like substantive model-compatible imputation (Bartlett & Morris, 2015; 
Bartlett et al., 2015) and the sequential specification (Lüdtke et al., 2020b) are equally appropriate. 

Example 10 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. The MCMC algorithm from the earlier Bayesian analysis was modified to invoke 
20 independent computational chains, each consisting of 5,500 iterations. Aside from that small 
procedural detail, the imputation phase was identical to the earlier example. The filled-in data from 
the final iteration of each MCMC chain was saved for reanalysis, and the moderated regression 
model from Equation 22 was then fit to each imputed data set. Finally, using Rubin’s rules to 
combine the 20 sets of estimates and standard errors produced the pooled results. 

 Table 13 shows the multiple imputation analysis results. The lower-order terms in a 
moderated regression are conditional effects that depend on scaling or centering. To facilitate 
interpretation, the analysis centered the interacting variables at the pooled estimates of their grand 
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means. Centering defines the first grade reading slope (𝛽1̂ = 0.51) as a conditional effect at the 
mean of the learning problems distribution, and the learning problems slope (𝛽2̂ = −0.38) similarly 
reflects a conditional effect at the reading achievement average. The interaction slope captures the 
change in the first grade reading slope for each one-unit increase in learning problems (and vice 
versa). The positive coefficient (𝛽3̂ = 0.013) indicates that the association between first and ninth 
grade reading scores becomes stronger (i.e., more positive) for students with elevated learning 
problems. 

I have repeatedly stated that the Big Three missing data methods tend to produce numerically 
equivalent results, given the same input data and assumptions. To further emphasize this point, 
Table 14 shows the parameter estimates and measures of uncertainty for each procedure. 
Notwithstanding their philosophical differences about repeated sampling, the Big Three were 
identical, as expected. Returning to decision tree in Figure 3, the choice of missing data method is 
largely determined by features of the analysis model. Selecting between two approaches that are 
equally appropriate is largely a matter of personal preference. 
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Multilevel Missing Data 
 

 

 

 

 

Multilevel data structures are ubiquitous in education research. Two-level examples include 
repeated measurements at level-1 nested within students at level-2 or students at level-1 nested in 
schools at level-2. A prototypical three-level data hierarchy combines repeated measurements 
(level-1) within students (level-2) and students within schools (level-3). This section focuses on 
multilevel regression models with random effects because they are an exceedingly common data 
analytic tool in educational research applications. For example, substantial methodological work 
has focused on hierarchical models for cluster-randomized trials where schools are assigned to 
experimental conditions (Hedges & Hedberg, 2007; Raudenbush, 1997; Raudenbush & Liu, 2000; 
Spybrook et al., 2011; Spybrook et al., 2016). A variety of sources provide information about 
alternate modeling approaches for hierarchically structured data sets (Hamaker & Muthén, 2020; 
McNeish & Kelley, 2019; McNeish et al., 2017). 

The emergence of sophisticated missing data handling methods for multilevel regression 
models is an important recent development in the methodology literature (Carpenter et al., 2023; 
Carpenter et al., 2011; Enders et al., 2020; Erler et al., 2019; Erler et al., 2016; Goldstein et al., 2009; 
Goldstein et al., 2014; Grund et al., 2021a; Quartagno & Carpenter, 2016; Shin, 2013; Shin & 
Raudenbush, 2023; Shin & Raudenbush, 2007, 2013; van Buuren, 2011; Yucel, 2008, 2011). I devote 
much of this section to Bayesian estimation and model-based multiple imputation because they 
currently handle a broader range of multilevel missing data problems than maximum likelihood 
estimators. 

6.1 Multilevel Missing Data Handling Options 

The full and restricted maximum likelihood estimators in general-use mixed modeling programs 
readily accommodate incomplete outcomes. When missing values are relegated to the dependent 
variable, excluding rows with missing outcome scores yields maximum likelihood estimates with 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20
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a conditionally missing at random assumption (von Hippel, 2007). Missingness simply creates an 
unbalanced data set where the number of level-1 observations varies across level-2 units. However, 
these programs typically have no capacity for treating incomplete predictors. Methodologists have 
developed maximum likelihood routines for random intercept models with continuous predictors 
(Shin & Raudenbush, 2007, 2013; Shin & Raudenbush, 2010), and important work on random 
slope predictors and interaction effects is ongoing (Rockwood, 2020; Shin & Raudenbush, 2023). 
The HLM (Raudenbush et al., 2019) and Mplus programs (Muthén & Muthén, 1998–2017) offer 
the most sophisticated maximum likelihood missing data handling options. 

Prior to the advent of sophisticated techniques for multilevel missing data, researchers could 
dummy code higher-level units (e.g., schools) and include the code variables as predictors in a 
single-level imputation scheme. This so-called fixed effect imputation scheme can produce 
unbiased parameter estimates in some random intercept applications (Lüdtke et al., 2017; Reiter 
et al., 2006). However, inflated standard errors and distorted confidence intervals are undesirable 
byproducts (Andridge, 2011; van Buuren, 2011). Although newer approaches are far superior, 
fixed effect imputation may be useful when the number of higher-level clusters is too small to 
support random effect estimation.  

As described in Section 5, Schafer’s (1997) classic joint model imputation uses a multivariate 
regression model with complete variables predicting incomplete variables. The multilevel 
extension of this approach uses a multivariate mixed effects model where incomplete level-1 
variables are regressed on complete level-1 and level-2 variables (Schafer, 2001; Schafer & Yucel, 
2002). Flexible variations of this approach allow for incomplete categorical variables and missing 
values at any level of the data hierarchy (Asparouhov & Muthén, 2010; Carpenter et al., 2011; 
Carpenter & Kenward, 2013; Goldstein et al., 2009; Goldstein et al., 2014; Yucel, 2008). 
Importantly, most joint model imputation schemes are limited to random intercept analyses and 
have no capacity for preserving random slopes for incomplete predictors (Enders et al., 2016). A 
notable exception is a joint modeling variant that allows the within-cluster covariance matrix to 
vary across level-2 clusters (Quartagno & Carpenter, 2020; Quartagno & Carpenter, 2016; Yucel, 
2011). 

Fully conditional specification imputation also extends to two- and three-level models 
(Audigier et al., 2018; Enders et al., 2018; Keller, 2015; Resche-Rigon & White, 2018; van Buuren, 
2011). Like joint model imputation, fully conditional specification should be reserved for random 
intercept models, in which case the two agnostic imputation procedures are effectively equivalent 
(Grund et al., 2017, 2018; Grund et al., 2019; Lüdtke et al., 2017; Mistler & Enders, 2017). 
Importantly, computer simulation studies show that applying fully conditional specification to 
incomplete random slope predictors—so-called “reverse random coefficient” imputation—can 
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introduce substantial bias because it misrepresents variation (Enders et al., 2020; Enders et al., 
2016; Grund et al., 2016a, 2018).  

Factored regression specifications like those described in Section 2 provide the greatest 
flexibility for addressing incomplete predictors (Enders et al., 2020; Erler et al., 2019; Erler et al., 
2016; Grund et al., 2021a). To refresh, factored regression specifications express a multivariate 
distribution as a sequence of simpler distributions, the collection of which is equivalent the original 
joint function. Beyond acknowledging that a multivariate distribution exists, factorization makes 
no assumptions about its shape or form. Rather, distributional assumptions enter on a variable-
by-variable via a collection of regression models. Among other things, this factorization readily 
accommodates variables with different metrics, random slope predictors, interaction or curvilinear 
effects, and incomplete variables at any level of the data hierarchy. 

6.2 Multilevel Analysis Example 1 

The first multilevel analysis example illustrates a two-level regression model with random 
intercepts. The problemsolving2level.dat data set is taken from a cluster-randomized 
educational intervention where 29 schools (level-2 units) were assigned to an intervention and 
comparison condition (Montague et al., 2014). The comparison condition (i.e., control schools) 
implemented the district’s standard mathematics curriculum, and the intervention schools 
implemented a new curriculum designed to enhance math problem-solving skills. The 982 
student-level (level-1) records include pretest and posttest math problem-solving and self-efficacy 
scores, standardized math scores taken from a statewide assessment, and several sociodemographic 
variables. The dependent variable is an end-of-year math problem-solving assessment with IRT-

 

TABLE 15. Variables for the Multilevel Random Intercept Model 

Name Definition Missing Scale 

SCHOOL School (level-2) identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Control, 1 = 
Experimental  

HISPANIC Ethnicity/race 9.0 0 = Other, 1 = Hispanic 

FRLUNCH Lunch assistance code  4.7 0 = None, 1 = Free or 
Reduced Lunch 

MPSPRE Math problem-solving pretest  0 Numeric (37 to 66) 

MPSPOST Math problem-solving posttest  20.5 Numeric (37 to 65) 
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scaled scores. The Software Tutorials document provides additional information about this data 
set. Table 15 shows the specific variables for this analysis example. 

A random intercept model features school-specific intercept coefficients that capture level-2 
mean differences. The goal of the analysis is to determine whether the intervention groups differ 
on an end-of-year math problem-solving test after controlling for three student-level covariates: 
math problem-solving pre-test scores, a Hispanic dummy code, and a free or reduced lunch 
assistance dummy code. Following notation from Raudenbush and Bryk (2002), the within-school 
model describes score variation among students in the same school. 

𝑀𝑃𝑆𝑃𝑂𝑆𝑇𝑖𝑗 = 𝛽0𝑗 + 𝛽1(𝑀𝑃𝑆𝑃𝑅𝐸𝑖𝑗𝑐𝑤𝑐) + 𝛽2(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑖𝑗𝑐𝑤𝑐) + 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗
𝑐𝑤𝑐) + 𝜀𝑖𝑗 (26) 

The i and j subscripts on the student-level variables index students and schools, respectively. The 
𝛽0𝑗 coefficient is a school-specific random intercept that represents the average post-test score in school 
j. The 𝑐𝑤𝑐 superscript on the predictors stands for centering within cluster, also known as group 
mean centering (Enders & Tofighi, 2007; Kreft et al., 1995). This operation subtracts each student’s 
score from their own school’s average, as follows. 

𝑀𝑃𝑆𝑃𝑅𝐸𝑖𝑗𝑐𝑤𝑐 = 𝑀𝑃𝑆𝑃𝑅𝐸𝑖𝑗 − 𝜇𝑗(𝑀𝑃𝑆𝑃𝑅𝐸) (27) 

The purpose of this type of centering is to disaggregate the student-level scores by removing 
school-level variation. The resulting coefficient is a pure within-school association.  

Each coefficient on the right side of the within-school regression is an outcome in a school-
level regression, as follows. 

𝛽0𝑗 = γ00 + γ01(𝜇𝑗(𝑀𝑆𝑃𝑅𝐸)
𝑐𝑔𝑚 ) + γ02(𝜇𝑗(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶)

𝑐𝑔𝑚 ) + γ03(𝜇𝑗(𝐹𝑅𝐿𝑈𝑁𝐶𝐻)
𝑐𝑔𝑚 ) + γ04(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝑢0𝑗 

𝛽1 = γ10 
𝛽2 = γ20 (28) 
𝛽3 = γ30 

The expressions for 𝛽1, 𝛽2, and 𝛽3 indicate that the within-school slopes are constant across schools 
(i.e., there are no 𝑢 terms indicating a random slope residual). In contrast, the random intercepts 
(school-level post-test averages) vary as a function of the covariates and the intervention 
assignment indicator. To appropriately control for student-level covariates, it is important to 
include the school means of all level-1 variables as predictors (Rights et al., 2020). The 𝑐𝑔𝑚 
superscript indicates that these school-level aggregates are centered at their grand means. 
Centering a level-2 variable is largely a cosmetic operation that defines γ00 as the average post-test 
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problem solving score among comparison schools. Finally, the 𝑢0𝑗 term is a random intercept 
residual that captures the unexplained part of each school’s post-test mean. 

Replacing each 𝛽 coefficient in the within-school equation from Equation 26 with the right side 
of its school-level equation gives the combined regression model below.  

𝑀𝑃𝑆𝑃𝑂𝑆𝑇𝑖𝑗 = (γ00 + 𝑢0𝑗) + γ10(𝑀𝑃𝑆𝑃𝑅𝐸𝑖𝑗𝑐𝑤𝑐) + γ20(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑖𝑗𝑐𝑤𝑐) 

+ γ30(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗
𝑐𝑤𝑐) + γ01(𝜇𝑗(𝑀𝑆𝑃𝑅𝐸)

𝑐𝑔𝑚 ) + γ02(𝜇𝑗(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶)
𝑐𝑔𝑚 ) (29) 

+ γ03(𝜇𝑗(𝐹𝑅𝐿𝑈𝑁𝐶𝐻)
𝑐𝑔𝑚 ) + γ04(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗 

All coefficients with a leading zero subscript are school-level effects, and all coefficients with non-
zero leading subscripts are pure within-school effects. The γ04 slope is of particular interest because 
it captures the intervention effect, controlling for covariates. 

The incomplete binary predictors complicate missing data handling because existing 
maximum likelihood estimators are limited to normally distributed incomplete predictors (Shin & 
Raudenbush, 2023; Shin & Raudenbush, 2013). There is currently very little research that 
documents the impact of misspecifying incomplete binary predictors as normal in multilevel 
analyses (Grund et al., 2018). Applying the flowchart from Figure 3, either fully conditional 
specification multiple imputation or estimation based on a factored regression specification are 
appropriate. Importantly, fully conditional specification can only preserve the disaggregated 
covariate effects in Equation 29 if the school-level averages of the level-1 variables are included in 
the imputation regression models (Enders et al., 2018; Grund et al., 2017). This example applies a 
version of fully conditional specification that introduces random intercepts (latent cluster means) 
for the level-1 variables (Keller & Enders, 2021). 

Currently, Bayesian estimation is the only way to deploy a factored regression specification for 
this analysis. Following Figure 2b, I adopt a factorization comprised of two submodels, each with 
distinct distributional assumptions. The Blimp application used in the Software Tutorials 
document automatically configures the distributions, and the user simply needs to specify the focal 
regression model in Equation 29. For completeness, the symbolic representation for the underlying 
two-part factorization is as follows. 

𝑓(𝑀𝑃𝑆𝑃𝑂𝑆𝑇|𝑀𝑆𝑃𝑅𝐸,𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶,𝐹𝑅𝐿𝑈𝑁𝐶𝐻,𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 
× 𝑓(𝑀𝑆𝑃𝑅𝐸,𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶,𝐹𝑅𝐿𝑈𝑁𝐶𝐻,𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) (30) 

The first term corresponds to the univariate regression model from Equation 29. To accommodate 
the missing data, this model treats the school-level means as level-2 latent variables or random 
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intercepts (Lüdtke et al., 2011; Lüdtke et al., 2008; Shin & Raudenbush, 2010). The second model 
is a multivariate normal distribution for the predictors. This submodel further disaggregates 
predictors into within-school and between-school parts, such that the level-1 predictors link to the 
level-2 predictors via latent cluster means (random intercepts). Finally, the factored specification 
readily accommodates incomplete categorical variables with a latent response variable framework 
(probit regression). Detailed descriptions of the model are available in the literature (Enders, 2022; 
Enders et al., 2020). 

Example 15 from the Software Tutorials document provides annotated syntax and output files 
for agnostic fully conditional specification multiple imputation. The algorithm invoked 20 
independent MCMC processes (chains), each consisting of 2,500 iterations. Blimp’s version of fully 
conditional specification automatically introduces random intercepts (latent cluster means) for the 
level-1 variables (Keller & Enders, 2021), so it is appropriate for analysis models that disaggregate 
level-1 predictors. The filled-in data from the final iteration of each chain was saved for reanalysis. 
Fitting the focal regression model from Equation 29 to each imputed data set produced 20 sets of 
estimates and standard errors. Finally, applying Rubin’s rules gave the pooled results shown in 
Table 16. The results are interpreted in the same way as a complete-data multilevel regression 
analysis. Due to centering, the intercept coefficient (γ0̂0 = 52.70) represents the post-test problem-

 

TABLE 16. Agnostic Multiple Imputation Estimates From a Multilevel Regression 

Effect Est. Std. 
Error t p 2.5% 

LCL 
97.5% 

UCL 

Intercept 52.70 0.52 100.87 < .001 51.68 53.73 

MPSPRE 0.46 0.04 13.23 < .001 0.39 0.52 

HISPANIC 1.02 0.42 2.46 .01 0.20 1.84 

FRLUNCH –0.71 0.49 –1.45 .15 –1.69 0.26 

MPSPRE Means 0.63 0.22 2.88 < .01 0.20 1.05 

HISPANIC Means 5.01 1.39 3.62 < .001 2.29 7.72 

FRLUNCH Means –2.65 2.51 –1.06 .29 –7.57 2.27 

CONDITION 2.37 0.72 3.31 .001 0.97 3.78 

Intercept variance 2.29 -- -- -- -- -- 

Residual variance 20.61 -- -- -- -- -- 
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solving mean among the comparison schools that received the district’s standard curriculum. The 
intervention indicator slope indicates that the intervention schools with the new curriculum scored 
γ0̂4 = 2.37 points higher than comparison schools, on average, holding constant student-level 
covariates. corresponding test statistic indicates that the slope coefficient is statistically different 
from zero, t(2569.30) = 3.31, p = .001.  

Example 16 from the Software Tutorials document provides annotated syntax and output files 
for the Bayesian analysis. Table 17 shows the Bayesian parameter summaries. The estimate 
(posterior median) and standard deviation columns describe the center and spread of the posterior 
distributions; although they make no reference to drawing repeated samples, they are analogous 
to frequentist point estimates and standard errors. The 95% credible interval columns give ranges 
that capture 95% of each parameter’s distribution. These are akin to confidence intervals, but they 
describe a range of likely parameter values rather than the long-run behavior of intervals from 
different random samples.  

To reiterate, the posterior distributions characterize plausible parameter values that could have 
produced these data. From a practical perspective, the posterior summaries have interpretations 

 

TABLE 17. Bayesian Parameter Summaries From a Multilevel Regression  

Effect Est. Std. 
Dev. 

2.5% 
LCL 

97.5% 
UCL χ2 p 

Intercept 52.42 0.73 50.93 53.86 5125.49 < .001 

MPSPRE 0.46 0.04 0.39 0.53 160.39 < .001 

HISPANIC 0.94 0.44 0.09 1.80 4.67 .03 

FRLUNCH –0.78 0.47 –1.70 0.14 2.79 .10 

MPSPRE means 0.71 0.34 0.06 1.41 4.59 .03 

HISPANIC means 5.31 1.71 2.01 8.68 9.69 .002 

FRLUNCH means –1.70 3.52 –8.74 5.16 0.23 .63 

CONDITION 2.42 0.79 0.90 4.02 9.42 .002 

Intercept variance 2.45 1.20 1.06 5.68 -- -- 

Residual variance 20.59 1.07 18.62 22.79 -- -- 

R-square coefficients .33 .04 .25 .41   

R-square intercepts .07 .03 .03 .15   
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that parallel any multilevel regression analysis. Due to centering, the intercept coefficient (γ00 = 
52.42) represents the post-test problem-solving mean among the comparison schools that received 
the district’s standard curriculum. The intervention indicator slope indicates that the intervention 
schools with the new curriculum scored γ04 = 2.42 points higher than comparison schools, on 
average, holding constant student-level covariates. Importantly, the numeric summaries in Table 
17 are effectively equivalent to the corresponding multiple imputation estimates from Table 16 
(e.g., γ0̂0 = 52.70 and γ0̂4 = 2.37). This is precisely what you would expect when applying Big Three 
approaches that use the same data and invoke the same assumptions. 

As explained previously, the Bayesian summaries also lend themselves to familiar hypothesis 
testing logic. Returning to the intervention coefficient, the credible interval limits spanning 0.90 to 
4.02 included 95% of the area under the coefficient’s posterior distribution. From this we can 
conclude that the parameter is statistically different from zero (p < .05) because the null value is 
outside the interval. That is, the probability that the parameter is less than 0.90 or greater than 4.02 
is .05. Alternatively, (Asparouhov & Muthén, 2021) proposed a Bayesian Wald chi-square statistic 
that can be used to evaluate a broad range of hypotheses. For researchers who prefer a frequentist-
like test statistic, the rightmost columns of Table 17 show the chi-square test statistics and p-values 
for the coefficients. These quantities lead to the same conclusions as the 95% credible intervals 
(e.g., the condition effect is significant with p = .002). Levy and McNeish (2023) use the phrase 
“computational frequentism” to describe applications that use MCMC estimation to approximate 
frequentist point estimates and test statistics. 

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors 
for variances and covariances (Keller & Enders, 2021). The prior distributions influence variance 
parameters by altering the number of independent data points and/or the residual sums of squares 
at each MCMC cycle. Roughly speaking, alternate prior distributions induce differences that are 
analogous to those between restricted and full information maximum likelihood (McNeish, 2017; 
D. McNeish & L. M. Stapleton, 2016; D. M. McNeish & L. M. Stapleton, 2016). The choice of prior 
distribution is potentially impactful to variance estimates when the number of level-2 units is small, 
as it is here (there are 29 schools at level-2). To explore the sensitivity of the results to this issue, I 
fit the model with two alternate prior distributions (also off-the-shelf options that are invoked with 
a single keyword). Changes to the coefficients were generally inconsequential and in the second 
decimal place. As one might expect, the choice of prior did impact the random intercept residual 
variance; both alternatives decreased the variance point estimate from 2.45, producing median 
values equal to 1.89 and 2.07. To put these changes in perspective, the 𝑅2 value in the bottom row 
Table 17 reports that residual random intercept variance accounted for approximately 7% of the 
total variation in the post-test scores (Rights & Sterba, 2019). Invoking alternate prior distributions 
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changed this effect size by less than 1.5% in both cases (𝑅2 = .056 and .061). From a practical 
perspective, these differences seem relatively minor, and I would conclude that the prior 
distributions did not meaningfully impact on the results. 

Finally, to apply model-based multiple imputation, one would simply save imputations from 
the MCMC algorithm for reanalysis with frequentist inference (Little & Rubin, 2020; Rubin, 1987). 
Example 16 from the Software Tutorials document provides the analysis scripts. I omit the pooled 
results because they were effectively equivalent to those in Tables 16 and 17. To reiterate, you 
would expect this correspondence when applying Big Three approaches that use the same data and 
invoke the same assumptions. 

6.3 Multilevel Analysis Example 2 

The second multilevel analysis example illustrates a two-level linear growth curve model with 
repeated measurements at level-1 nested in students at level-2. Students are also nested in schools, 
but I ignore the third level to keep the example simple. Example 18 in the Software Tutorials 

document demonstrates a three-level growth curve model. The problemsolving3level.dat data 
set is taken from a cluster-randomized educational intervention where 29 schools (level-2 units) 
were assigned to an intervention and comparison condition (Montague et al., 2014). The 
comparison condition (i.e., control schools) implemented the district’s standard mathematics 
curriculum, and the intervention schools implemented a new curriculum designed to enhance 
math problem-solving skills. The 6874 within-subjects data records include seven monthly 
measures of an IRT-scaled math problem-solving assessment. Table 18 shows the specific variables 
for this analysis example. 

 

TABLE 18. Variables for the Multilevel Growth Curve Model 

Name Definition Missing Scale 

STUDENT Student (level-2) identifier 0 Integer index 

PROBSOLVE Math problem-solving 11.4 Numeric (37 to 68) 

MONTH Time scores  0 Integer index (0 to 6) 

HISPANIC Ethnicity/race 9.0 0 = Non-Hispanic, 1 = Hispanic 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 
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A random coefficient growth model features person-specific intercept and slope coefficients 
that represent idealized linear change trajectories. Following notation from Raudenbush and Bryk 
(2002), the within-person model describes score variation among students in the same school.  

𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) + 𝜀𝑖𝑗 (31) 

The i and j subscripts on the student-level variables index repeated measurements and students, 
respectively. The MONTH variable is an integer index that codes the timing of the monthly 
measurements relative to the baseline assessment. That is, MONTH = 0, 1, 2, 3, 4, 5, and 6. These 
time scores define 𝛽0𝑗 as person j’s expected baseline problem-solving and 𝛽1𝑗 as their monthly 
change rate. To keep the example simple, I ignore school-level nesting.  

Each coefficient on the right side of the within-school regression is an outcome in a person-
level regression. The expressions for 𝛽0𝑗 and 𝛽1𝑗 indicate that the random intercepts and slopes 
vary as a function of the Hispanic, lunch assistance, and intervention assignment dummy codes. 
The random intercept equation includes all three predictors of baseline performance, and the 
individual change rates vary as a function of ethnicity and intervention condition. This 
configuration treats the slope predictors as moderators and lunch assistance as a covariate. 

𝛽0𝑗 = γ00 + γ01(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑗) + γ02(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑗
𝑐𝑔𝑚) + γ03(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝑢0𝑗 

𝛽1𝑗 = γ10 + γ11(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑗) + γ12(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝑢1𝑗 (32) 

The 𝑐𝑔𝑚 superscript on 𝐹𝑅𝐿𝑈𝑁𝐶𝐻 indicates that this variable is centered at its grand mean 
(Enders & Tofighi, 2007). Centering a level-2 variable is largely a cosmetic operation that defines 
γ00 as the expected baseline problem solving score among non-Hispanic students in comparison 
schools. In the random slope model, γ10 is the monthly change rate among non-Hispanic students 
in comparison schools, and γ11 and γ12 are growth rate differences for Hispanic students and 
intervention schools, respectively. Finally, the 𝑢0𝑗 and 𝑢1𝑗 terms are random intercept and slope 
residuals that captures the unexplained part of each person’s growth trajectory. 

Replacing each 𝛽 coefficient in the within-school equation from Equation 31 with the right side 
of its student-level model from Equation 32 gives the combined regression model below.  

𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸𝑖𝑗 = (γ00 + 𝑢0𝑗) + (γ10 + 𝑢1𝑗)(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) 

+ γ11(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑗)(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) + γ12(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗)(𝑀𝑂𝑁𝑇𝐻𝑖𝑗) (33) 

+ γ01(𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶𝑗) + γ02(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗
𝑐𝑔𝑚) + γ03(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗 

All coefficients with a leading zero subscript are determinants of baseline performance, and all 
coefficients with one as a leading subscript define the monthly change rates. Notice that the 
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predictors of random slopes form cross-level, group-by-time interactions after substitution; γ11 is 
the degree to which ethnicity moderates the change rates, and γ12 captures the moderating effect 
of the intervention. 

The incomplete binary predictors and interaction effects complicate missing data handling 
because existing maximum likelihood estimators are limited to normally distributed predictors 
(Shin & Raudenbush, 2023; Shin & Raudenbush, 2013). Applying the flowchart from Figure 3, a 
factored regression specification is the appropriate option. Currently, Bayesian estimation is the 
only way to deploy a factored specification for this analysis. Following Figure 2b, I adopt a 
factorization comprised of two submodels, each with distinct distributional assumptions. The 
Blimp application used in the Software Tutorials document automatically configures the 
distributions, and the user simply needs to specify the focal regression model in Equation 33.  

For completeness, the symbolic representation for the underlying two-part factorization is as 
follows. 

𝑓(𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸|𝑀𝑂𝑁𝑇𝐻,𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶,𝐹𝑅𝐿𝑈𝑁𝐶𝐻,𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 
× 𝑓(𝑀𝑂𝑁𝑇𝐻,𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶,𝐹𝑅𝐿𝑈𝑁𝐶𝐻,𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) (34) 

The first term corresponds to the univariate growth model from Equation 33. The second model 
is a multivariate normal distribution for the predictors. This submodel further disaggregates 
predictors into within-school and between-school parts, such that the level-1 predictors link to the 
level-2 predictors via latent cluster means (random intercepts). Finally, the dummy codes appear 
as normally distributed latent response variables in the predictor submodel (i.e., probit regression). 
Detailed descriptions of the model are available in the literature (Enders, 2022; Enders et al., 2020). 

Example 17 from the Software Tutorials document provides annotated syntax and output files 
for the Bayesian analysis. Table 19 shows the Bayesian parameter summaries. The estimate 
(posterior median) and standard deviation columns describe the center and spread of the posterior 
distributions; although they make no reference to drawing repeated samples, they are analogous 
to frequentist point estimates and standard errors. The 95% credible interval columns give ranges 
that capture 95% of each parameter’s distribution. These are akin to confidence intervals, but they 
describe a range of likely parameter values rather than the long-run behavior of intervals from 
different random samples. 
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To reiterate, the posterior distributions characterize plausible parameter values that could have 
produced these data. From a practical perspective, the posterior summaries have interpretations 
that parallel a complete-data growth curve analysis. For example, the intercept coefficient (γ00 = 
49.36) defines the expected baseline problem-solving score among non-Hispanic students 
attending comparison schools (i.e., the predicted value for a student with zero values on all 
regressors). Hispanic students scored higher at baseline (γ01 = 1.36), and students who received 
lunch assistance scored lower (γ02 = –0.95). Experimental and control school means were not 
significantly different at the study’s outset. Turning to the growth rates, the 𝑀𝑂𝑁𝑇𝐻 coefficient 
(γ10 = 0.27) conveys the monthly change rate for non-Hispanic students attending comparison 
schools. The group-by-time interaction coefficients were both positive, indicating that Hispanic 
students and students attending intervention schools improved more rapidly (γ11 = 0.37 and γ12 = 
0.22, respectively). 

 

TABLE 19. Bayesian Parameter Summaries From a Multilevel Growth Curve Model 

Effect Est. Std. 
Dev. 

2.5% 
LCL 

97.5% 
UCL χ2 p 

Intercept 49.36 0.31 48.77 49.97 26003.06 < .001 

MONTH 0.27 0.06 0.16 0.39 21.26 < .001 

MONTH × HISPANIC 0.37 0.05 0.26 0.47 47.32 < .001 

MONTH × CONDITION 0.22 0.06 0.11 0.34 14.86 < .001 

HISPANIC 1.36 0.30 0.77 1.95 20.53 < .001 

FRLUNCH –0.95 0.31 –1.57 –0.34 9.20 .002 

CONDITION –0.42 0.28 –0.97 0.14 2.25 .13 

Intercept variance 11.29 0.81 9.78 12.95 -- -- 

Slope variance 0.11 0.03 0.06 0.18 -- -- 

Covariance 0.04 0.12 -0.21 0.25 -- -- 

Residual variance 12.57 0.27 12.04 13.12 -- -- 

R-square coefficients 0.11 0.01 0.09 0.13 -- -- 

R-square intercepts 0.44 0.02 0.41 0.47 -- -- 

R-square slopes 0.02 0.00 0.01 0.02 -- -- 
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As explained previously, the Bayesian summaries also lend themselves to familiar hypothesis 
testing logic. Returning to the intervention coefficient, the credible interval limits spanning –0.97 
to 0.14 included 95% of the area under the coefficient’s posterior distribution. From this we can 
conclude that zero is a plausible parameter because the null value falls inside the interval (p > .05). 
As a second example, the condition-by-time interaction was significant (p < .05) because zero fell 
outside the 95% credible interval, which spanned from 0.11 to 0.34. One could also adopt a 
computational frequentism perspective that views the MCMC summaries as surrogates for 
frequentist point estimates and standard errors (Levy & McNeish, 2023). To this end, the rightmost 
pair of columns in Table 19 show Wald chi-square statistics (squared z-tests) and frequentist 
probability values (Asparouhov & Muthén, 2021).  

The Blimp application invokes flat priors for the coefficients and common off-the-shelf priors 
for variances and covariances (Keller & Enders, 2021). The prior distributions influence variance 
parameters by altering the number of independent data points and/or the residual sums of squares 
and cross-products at each MCMC cycle. Roughly speaking, alternate prior distributions induce 
differences that are analogous to those between restricted and full information maximum 
likelihood (McNeish, 2017; D. McNeish & L. M. Stapleton, 2016; D. M. McNeish & L. M. Stapleton, 
2016). The choice of prior distribution is potentially impactful to variance estimates when the 
number of level-2 units is small. To explore the sensitivity of the results to this issue, I fit the model 
with two alternate prior distributions (also off-the-shelf options that are invoked with a single 
keyword). Changes to the coefficients were generally inconsequential and in the second decimal 
place. The choice of prior produced small but noticeable differences in the random slope variance 
and intercept–slope covariance (e.g., the largest change shifted the random slope variance from 
0.11 to 0.09). To put these changes in perspective, the 𝑅2 values in the bottom row Table 19 express 
the random intercept and slope variance estimates as proportions of the total outcome variation 
(Rights & Sterba, 2019). Invoking alternate prior distributions changed these effect size estimates 
by less than one half percent. From a practical perspective, these differences seem relatively minor, 
and I would conclude that the prior distributions did not meaningfully impact on the results. 

Finally, to apply model-based multiple imputation, one would simply save imputations from 
the MCMC algorithm for reanalysis with frequentist inference (Little & Rubin, 2020; Rubin, 1987). 
Example 17 from the Software Tutorials document provides the analysis scripts. I omit the pooled 
results because they were effectively equivalent to those in Table 19. To reiterate, you would expect 
this correspondence when applying Big Three approaches that use the same data and invoke the 
same assumptions. 
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Missing Not at Random Processes 
 

 

 

 

 

The Big Three applications up to this point have assumed a conditionally missing at random 
process. This systematic mechanism requires that unseen score values carry no unique information 
about missingness beyond that contained in a model’s observed data. This assumption cannot be 
tested or verified because it involves propositions about the unseen (latent) data. Assuming a 
conditionally missing at random process is probably reasonable for a broad range of educational 
research applications. Certainly, the vast majority of published Big Three applications adopt this 
assumption. An alternative assumption is that the unseen score values do carry unique information 
about missingness. This process is called missing not at random. Section 1.2 described this 
mechanism in detail, and this section describes analytic tools that invoke this alternate assumption 
about missingness. 

7.1 Missing Not at Random Modeling Frameworks 

Returning to Equation 3, the formal definition of a missing not at random process involves binary 
missing data indicators (M = 0 if a score is observed, and M = 1 if missing). Accordingly, the two 
major frameworks for modeling this process—selection models and pattern mixture models—
introduce a submodel that describes the occurrence of missing data. To illustrate, consider a simple 
regression model where first grade broad reading predicts ninth grade reading proficiency. 
Further, suppose there is reason to believe that whether a student’s ninth grade score is missing 
could depend on their unobserved reading proficiency score (e.g., students with the lowest 
proficiency were unable to complete enough exam items to produce a valid score). Figure 20 shows 
path diagrams depicting a basic selection model and pattern mixture model for this scenario. The 
selection model in Figure 20a features the missing data indicator as an additional outcome variable 
in a probit or logistic regression model. The pattern mixture model in Figure 20b instead treats the 
indicator as a grouping variable that predicts the outcome and moderates the association between 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20



Missing Not at Random Processes   82 

the two reading measures (i.e., subgroups defined by missing data pattern have different model 
parameters). 

Selection and pattern mixture models have a long history in the literature, especially in the 
context of longitudinal data analyses (Diggle & Kenward, 1994; Hedeker & Gibbons, 1997; Little, 
1995; Wu & Carroll, 1988). Numerous accessible tutorial papers document these approaches 
(Albert & Follmann, 2009; Enders, 2011; Feldman & Rabe-Hesketh, 2012; Muthén et al., 2011; Xu 
& Blozis, 2011), most with real-data software demonstrations9. Additionally, a good deal of recent 
methodological work enhances our understanding of these modeling frameworks, documenting 
their strengths and weaknesses (Gomer & Yuan, 2021; N. C. Gottfredson et al., 2014; Nisha C 
Gottfredson et al., 2014; Gottfredson et al., 2017; Sterba & Gottfredson, 2014; Yang & Maxwell, 
2014; Yang et al., 2015).  

 
9 Software scripts for several selection and pattern mixture model applications are available at 

www.appliedmissingdata.com/analyses. 

a)

FIGURE 20. Panel (a) is a selection model where the binary missing data 
indicator is an additional outcome variable in a probit or logistic regression 
model. Panel (b) is a pattern mixture model where missingness is a grouping 
variable that predicts the outcome and moderates the focal association.

b)
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Selection and pattern mixture models are underutilized analytic tools that are more accessible 
than ever. Their application nevertheless requires caution. To begin, both modeling frameworks 
force the researcher to model associations between the data and missingness; selection models treat 
missing data indicators as outcomes, and pattern mixture models introduce them as predictors. 
The validity of the resulting estimates presupposes a correctly specified (or approximately so) 
missingness model. Unfortunately, there is no way to verify the correctness of the model, nor is it 
possible to formally compare competing missingness models (Molenberghs et al., 2008; 
Molenberghs et al., 1997; Sterba & Gottfredson, 2014; Verbeke & Molenberghs, 2000). 
Misspecifying the relations between the data and missingness could exacerbate rather than 
mitigate nonresponse bias. Although it is not immediately obvious, the observed data do not 
contain the information needed to estimate the association between an incomplete variable and its 
missing data indicator. For example, returning to Figure 20b, the arrow connecting the indicator 
to 𝑅𝐸𝐴𝐷9 is the group mean difference for students without ninth grade data. This path is not 
estimable because reading scores are completely missing for that subgroup. The corresponding 
arrow in Figure 20a is also inestimable. Selection models overcome this identification problem by 
invoking strict distributional assumptions, and pattern mixture models do so with additional input 
from user. Despite these potential pitfalls, missing not at random models are useful for contexts 
where missingness is plausibly related to the unseen score values. The subsequent examples 
demonstrate a sensitivity analysis that examines the stability of a regression model’s parameter 
estimates across different assumptions about the missing data process. 

7.2 Missing Not at Random Analysis Example 1: Selection Model 

The first missing not at random analysis example illustrates a multiple regression paired with a 
selection model for the incomplete outcome. The analysis uses the behaviorachievement.dat 
data set from a longitudinal study that followed 138 students from primary through middle school. 
The file includes three annual assessments of broad reading and math achievement beginning in 
the first grade, seventh grade standardized achievement test scores taken from a statewide 
assessment, and a final measure of broad reading and math obtained in ninth grade. The data also 
contain teacher ratings of behavioral symptoms and learning problems were also obtained in the 
first grade. The Software Tutorials document provides additional information about this data set. 
Table 2 from Section 1.5 shows the specific variables for this analysis example. 

The analysis model featured ninth grade broad reading scores regressed on three academic and 
behavioral measures collected in first grade: the broad reading composite, teacher-rated learning 
problems, and teacher-rated behavioral problems. 
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𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (35) 

The analysis also included second grade broad reading scores and seventh grade standardized test 
scores as auxiliary variables. These additional variables were included because they exhibited 
significant residual covariation with the analysis variables (see Section 1.5).  

A selection model augments the focal regression with a probit or logistic model where the 
missing data indicator is the outcome. At a minimum, this model should include the variable 
hypothesized to follow a missing not at random process, ninth grade reading in this case. Selecting 
additional variables is difficult because myriad configurations of covariates could appear in the 
missingness model. Moreover, reducing nonresponse bias requires that the missingness model is 
approximately correctly specified. I offer a few practical guidelines. First, it is generally less harmful 
to include unnecessary predictors than to ignore important determinants of missingness. 
However, indiscriminately adding predictors can introduce substantial noise, reducing precision 
and power. Next, you should avoid situations where the focal regression and the missingness 
model share too many of the same variables. Ideally, the selection equation should include 
predictors of missingness that do not appear in the analysis model. This ideal can be difficult to 
achieve. Finally, building the missingness model by adding regressors and higher-order terms in a 
stepwise sequence is often a useful strategy (Ibrahim et al., 2005). Overfitting or grossly 
misspecifying a selection model often produces some combination of three symptoms: (a) standard 
errors increase dramatically (e.g., 50% or more) from one model to the next, (b) the missingness 
model produces an implausibly large pseudo 𝑅2 value (e.g., .70 or larger), and (c) achieving 
convergence requires unusually long iterative sequences (e.g., MCMC burn-in periods of 100,000 
iterations or more). A stepwise model-building procedure can reveal these issues. 

Section 1.4 described a pattern mean difference approach to identifying potential correlates of 
nonresponse. To implement this strategy, you first create a binary missing data indicator M, in this 
case for the outcome variable. Treating the indicator as a grouping variable, you then examine 
whether the incomplete cases exhibit mean differences on other variables. Applying this strategy 
revealed three predictors of missingness at ninth grade: first grade learning problems, first grade 
behavior symptoms, and seventh grade math achievement. To avoid excessive overlap between the 
focal and missingness models, I used first grade learning problems as an additional regressor in 
the missingness model. I did not consider a model with interaction or polynomial terms because 
simple models with main effects can provide an adequate approximation (Gomer & Yuan, 2021; 
Ibrahim et al., 2005). 

𝑀∗ = γ0 + γ1(𝑅𝐸𝐴𝐷9) + γ2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝜖 (36) 
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The 𝑀∗ notation is consistent with probit regression, where the dependent variable is a normally 
distributed latent response score rather than the binary indicator. In a logistic regression, 𝑀∗ 
corresponds to the log odds or logit, and the errors follow a standard logistic rather than standard 
normal distribution (Johnson & Albert, 1999). Figure 21 shows a path diagram of the analysis 
model, and it uses an oval to represent the latent 𝑀∗ variable. 

 

Example 19 from the Software Tutorials document provides annotated syntax and output files 
for the analysis. The model did not exhibit the telltale symptoms of overfitting or misspecification. 
In particular, the MCMC algorithm converged quickly, and the missingness model’s pseudo 𝑅2 
value of .27 was plausible. The leftmost panel of Table 20 shows the Bayesian analysis results that 
invoke the conditionally missing at random assumption (see Section 4.5). The middle panel shows 
the corresponding selection model estimates. The two sets of results were effectively identical. As 
noted previously, the selection model’s validity hinges on a correctly specified missingness model 
with the right variables and correct functional forms. If we are willing to assume that Equation 36 
is reasonably correct, we would conclude that the estimates were not sensitive to the assumptions 
about the missing data process—at least not this particular missing not at random process. In 
situations where two models produce discrepant results, there is no way of knowing whether the 
missing not at random analysis is preferable to a simpler analysis that assumes a conditionally 
missing at random mechanism. Although the prospect of such discrepancies may seem troubling, 
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FIGURE 21. Solid lines denote the focal regression model parameters, and 
dotted lines are auxiliary variable parameters. Dashed lines pointing to M* 
are the missingness model parameters.
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they simply reflect different, plausible assumptions about the missing data process. Both sets of 
results are defensible and could be included in a research report (e.g., in an online supplement). 

7.3 Missing Not at Random Analysis Example 2: Pattern Mixture Model 

Selection models treat missingness as an outcome. In contrast, pattern mixture models treat the 
missing data indicator as a predictor, such that missing data patterns form qualitatively different 
subgroups with distinct parameter values. Building on the focal regression model from Equation 
35, this section illustrates a pattern mixture model that posits a missing not at random process 
where students with missing scores have a different reading proficiency mean in ninth grade. 

The pattern mixture model below features the missing data indicator as an additional predictor 
variable. 

𝑅𝐸𝐴𝐷9 = [𝛽0(𝑐𝑜𝑚) + 𝛽0(𝑚𝑖𝑠)(𝑀)] + 𝛽1(𝑅𝐸𝐴𝐷1) 
+ 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) +  𝛽3(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) + 𝜀 (37) 

Focusing on the terms in the square brackets, 𝛽0(𝑐𝑜𝑚) is the intercept for students with ninth grade 
reading scores, and 𝛽0(𝑚𝑖𝑠) is the mean difference for students with missing data. Collectively, these 
terms define a missing not at random process where the students with missing scores in ninth 
grade comprise a distinct subpopulation with a unique mean. Figure 22 shows a path diagram of 
the model, with the purple rectangle representing the missing data indicator. As shown in the 
Software Tutorials document, the analysis uses a sequential specification for the predictors where 
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the missingness indicator predicts behavioral symptom ratings, both variables predict learning 
problems, then all three variables predict first grade reading.  

Equation 37 assumes that all associations—and thus regression slopes—are common to both 
groups. The model could be expanded to include pattern-specific slopes as well. For example, if 
there was reason to believe that the association between first and ninth grade scores differed by 
missingness pattern, and interaction could be added to the model as follows. 

𝑅𝐸𝐴𝐷9 = [𝛽0(𝑐𝑜𝑚) + 𝛽0(𝑚𝑖𝑠)(𝑀)] + 𝛽1(𝑐𝑜𝑚)(𝑅𝐸𝐴𝐷1) 
+ 𝛽1(𝑚𝑖𝑠)(𝑀)(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) +  𝛽3(𝐵𝐸𝐻𝑃𝑅𝑂𝐵1) + 𝜀 (38) 

Returning to Equation 37, the 𝛽0(𝑐𝑜𝑚) and 𝛽0(𝑚𝑖𝑠) coefficients are not the parameters of interest 
because they define subgroup means. The population-level intercept estimate is a weighted average 
over the missing data patterns 

𝛽0 = 𝜋(𝑐𝑜𝑚)𝛽0(𝑐𝑜𝑚) + 𝜋(𝑚𝑖𝑠)(𝛽0(𝑐𝑜𝑚) + 𝛽0(𝑚𝑖𝑠)) (39) 

FIGURE 22. Solid lines denote the focal regression model parameters, and 
dotted lines are auxiliary variable parameters. fie dashed line pointing to M 
to the dependent variable is a xed parameter that captures the mean 
dierence for the cases with missing data.
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where 𝜋(𝑐𝑜𝑚) and 𝜋(𝑚𝑖𝑠) are weights that capture the subgroup (missing data pattern) proportions. 
The group-specific slopes from Equation 38 (i.e., 𝛽1(𝑐𝑜𝑚) and 𝛽1(𝑐𝑜𝑚)+ 𝛽1(𝑚𝑖𝑠)) would similarly pool 
into a population-level estimate of 𝛽1. 

Still focusing on Equation 37, the 𝛽0(𝑚𝑖𝑠) mean difference is not estimable because ninth grade 
reading scores are completely missing within the M = 1 subgroup. Similarly, both 𝛽0(𝑚𝑖𝑠) and 
𝛽1(𝑚𝑖𝑠) in Equation 38 are inestimable. Pattern mixture models are uniquely challenging because 
the researcher needs to provide values for inestimable quantities. In this example, specifying a 
reasonable value for 𝛽0(𝑚𝑖𝑠) is vital because this parameter determines the strength of the missing 
not at random process. I adopt a simple approach that uses off-the-shelf effect size benchmarks to 
specify inestimable quantities (Enders, 2022; Section 9.7). Because 𝛽0(𝑚𝑖𝑠) is a mean difference, 
dividing this coefficient by the outcome variable’s standard deviation (or residual standard 
deviation) gives a standardized mean difference like Cohen’s (1988) 𝑑 effect size. Cohen suggested 
the following benchmarks: | 𝑑 | > 0.20 (small), 0.50 (medium), and 0.80 (large). This link to 𝑑 
allows us to specify the inestimable mean difference on the standardized metric and solve for 
𝛽0(𝑚𝑖𝑠) as follows. 

𝛽0(𝑚𝑖𝑠) = 𝑑 ×√𝜎𝑌
2   or  𝑑 ×√𝜎𝜀2 (40) 

The total variation or residual variation (𝜎𝑌2  and 𝜎𝜀2, respectively) can be estimated directly from 
the data, so the researcher simply needs to provide a hypothesized (or purely hypothetical) effect 
size. 

To illustrate the process of applying Equation 40, suppose I want to investigate the impact of a 
missing not at random mechanism where students with missing reading scores have lower ninth 
grade reading proficiency. Setting 𝑑 = –0.30 conveys that the reading mean for the subpopulation 
with missing scores is lower by one third of a standard deviation unit. Absent specific knowledge 
about the size of the effect, one can perform a sensitivity analysis that implements a range of 
standardized effect sizes. Like the selection model, the pattern mixture model’s validity hinges on 
a correctly specified missingness model. Even with simple rules for deriving inestimable quantities, 
there is no way to verify whether our choices are accurate. Despite this limitation, some 
methodologists prefer the pattern mixture approach because it transparently conveys a 
researcher’s assumptions about the presumed missingness process (via their choices about the 
inestimable parameters). 

Example 20 from the Software Tutorials document provides annotated syntax and output files 
for the analysis model from Equation 37. Following the previous illustration, I specified a 
standardized mean difference of –0.30. The software automatically estimates the reading standard 
deviation, fixes 𝛽0(𝑚𝑖𝑠) to the value from Equation 40, and computes the pooled estimate. The 
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rightmost panel of Table 20 shows the pattern mixture model parameter summaries. Aside from 
very minor differences in the intercept, the estimates were effectively identical to the conditionally 
missing at random and selection model results. As noted previously, the model’s validity hinges 
on a correctly specified missingness process—in this case, one where the indicator group has a 
lower mean but identical associations. If we are willing to assume that Equation 37 is reasonably 
correct, we could conclude that the estimates were not sensitive to the assumptions about the 
missing data process.  We could further probe the robustness of the estimates by modeling a more 
complex missingness process where the effect of a key predictor varies by group. Enders (2022; 
Section 9.7)  demonstrates a sensitivity analysis that implements a model like the one from 
Equation 38.
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This closing section provides a summary of current software options. The proliferation of 
specialized R packages and numerous but disparate Big Three applications in commercial software 
precludes a complete summary. Instead, the goal of this section is to highlight the breadth of 
missing data handling tools that educational researchers currently have at their disposal. The 
Software Tutorials document demonstrates a few of these options. 

Structural equation modeling software programs offer flexible facilities for implementing 
maximum likelihood missing data handling. Commercial platforms like SAS (CALIS; SAS Institute 
Inc., 2011), SPSS (AMOS; Arbuckle, 2019), and Stata (gllamm; Rabe-Hesketh et al., 2004) offer 
structural equation modeling modules, as do specialized programs like EQS (Bentler, 2000-2008), 
LISREL (Jöreskog & Sörbom, 2018), and Mplus (Muthén & Muthén, 1998–2017). Structural 
equation modeling packages on the R platform include OpenMx (Boker et al., 2011), PLmixed 
(Rockwood & Jeon, 2019), and lavaan (Rosseel, 2012) with semTools (Jorgensen et al., 2022). 
Mplus, OpenMX, gllamm, and PLmixed are notable because they implement factored regression 
specifications that accommodate mixtures of discrete and normally distributed variables. The R 
package mdmb (Lüdtke et al., 2020a) offers factored regression specifications for single-level 
regression models with interactive or nonlinear effects, and the moderated latent structural 
equation model (Kelava et al., 2011) facilities in Mplus and the R package nlsem (Umbach et al., 
2017) also accommodate certain types of interactive effects (Cham et al., 2017). 

Turning to Bayesian estimation, Mplus (Muthén & Asparouhov, 2012) offers a powerful 
feature set for multivariate normal data, but that multivariate focus carries the same limitations as 
it does with maximum likelihood. Recent extensions integrate factored specifications that 
accommodate interaction and nonlinear effects (Asparouhov & Muthén, 2021a). MCMC 
estimators abound on the R platform, many of which implement factored regression specifications 
with missing data. Options include rstan (Gelman et al., 2015; Guo et al., 2020), rjags (Plummer, 
2019), R2OpenBUGS (Sturtz et al., 2019), brms (Bürkner, 2021), blavaan (Merkle & Rosseel, 2018), 
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mdmb (Grund et al., 2021a), nimble (de Valpine et al., 2017), and JointAI (Erler, 2021). The 
blavaan, brms, mdmb, and JointAI packages are among the most user-friendly options on this list.  

The Software Tutorials document solely relies on the Blimp (Keller & Enders, 2021) application 
for MCMC estimation. Blimp’s development was supported by the Institute of Education Sciences, 
U.S. Department of Education, through Grant R305D150056 and R305D190002 to UCLA. Blimp 
is an all-purpose data analysis and latent variable modeling program that offers factored regression 
specifications in a user-friendly application that requires minimal scripting and minimal 
knowledge about the Bayesian paradigm. The software accommodates missing data handling for 
normally distributed, binary, ordinal, multicategorical, count, and skewed continuous variables in 
data sets with up to three levels. The software is freely available for macOS, Windows, and Linux 
at www.appliedmissingdata.com/blimp. An R version the software called rblimp is also available 
at github.com/blimp-stats. A User Guide with dozens of analysis examples is available from the 
application’s Help pull-down menu. 

Turning to multiple imputation, commercial software packages typically offer agnostic 
multiple imputation facilities that implement joint model imputation or fully conditional 
specification. Blimp also offers single-level and multilevel fully conditional specification as well as 
model-based multiple imputation based on factored regression specifications. Not surprisingly, 
the R platform offers numerous multiple imputation options. A partial list includes the popular 
mice package (van Buuren & Groothuis–Oudshoorn, 2011), pan (Grund et al., 2016b; Schafer, 
2018), jomo (Quartagno & Carpenter, 2020; Quartagno & Carpenter, 2016), amelia (Honaker et 
al., 2021), and smcfs (Bartlett et al., 2022; Bartlett et al., 2015). Finally, the R package mitml (Grund 
et al., 2023) provides a comprehensive toolkit for pooling estimates and conducting significance 
tests, as does the semTools package. 
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