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To Jeremy Butterfield



Preface

‘Der Kopf, so gesehen, hat mit dem Kopf, so gesehen, auch nicht die leiseste Ähnlichkeit
(. . . ) Der Aspektwechsel. “Du würdest doch sagen, dass sich das Bild jetzt gänzlich
geändert hat!” Aber was ist anders: mein Eindruck? meine Stellungnahme? (. . . ) Ich
beschreibe die Änderung wie eine Wahrnehmung, ganz, als hätte sich der Gegenstand vor
meinen Augen geändert.’ (Wittgenstein, Philosophische Untersuchungen II, §§127, 129).1

As the well-known picture above is meant to allegorize, some physical systems
admit a dual description in either classical or quantum-mechanical terms. According
to Bohr’s “doctrine of classical concepts”, measurement apparatuses are examples
of such systems. More generally—as hammered down by decoherence theorists—
the classical world around us is a case in point. As will be argued in this book, the
measurement problem of quantum mechanics (highlighted by Schrödinger’s Cat) is
caused by this duality (rather than resolved by it, as Bohr is said to have thought).

1 ‘The head seen in this way hasn’t even the slightest similarity to the head seen in that way (. . . )
The change of aspect. “But surely you’d say that the picture has changed altogether now! But what
is different: my impression? my attitude? (. . . ) I describe the change like a perception; just as if the
object has changed before my eyes.’ Translation: G.E.M. Anscombe, P.M.S. Hacker, & J. Schulte
(Wittgenstein, 2009/1953, pp. 205–206).
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The aim of this book is to analyze the foundations of quantum theory from the
point of view of classical-quantum duality, using the mathematical formalism of
operator algebras on Hilbert space (and, more generally, C*-algebras) that was orig-
inally created by von Neumann (followed by Gelfand and Naimark). In support of
this analysis, but also as a matter of independent interest, the book covers many of
the traditional topics one might expect to find in a treatise on the foundations of
quantum mechanics, like pure and mixed states, observables, the Born rule and its
relation to both single-case probabilities and long-run frequencies, Gleason’s Theo-
rem, the theory of symmetry (including Wigner’s Theorem and its relatives, culmi-
nating in a recent theorem of Hamhalter’s), Bell’s Theorem(s) and the like, quantiza-
tion theory, indistinguishable particle, large systems, spontaneous symmetry break-
ing, the measurement problem, and (intuitionistic) quantum logic. One also finds
a few idiosyncratic themes, such as the Kadison–Singer Conjecture, topos theory
(which naturally injects intuitionism into quantum logic), and an unusual emphasis
on both conceptual and mathematical aspects of limits in physical theories.

All of this is held together by what we call Bohrification, i.e., the mathematical
interpretation of Bohr’s classical concepts by commutative C*-algebras, which in
turn are studied in their quantum habitat of noncommutative C*-algebras.

Thus the book is mostly written in mathematical physics style, but its real subject
is natural philosophy. Hence its intended readership consists not only of mathemati-
cal physicists, but also of philosophers of physics, as well as of theoretical physicists
who wish to do more than ‘shut up and calculate’, and finally of mathematicians who
are interested in the mathematical and conceptual structure of quantum theory.

To serve all these groups, the native mathematical language (i.e. of C*-algebras)
is introduced slowly, starting with finite sets (as classical phase spaces) and finite-
dimensional Hilbert spaces. In addition, all advanced mathematical background that
is necessary but may distract from the main development is laid out in extensive
appendices on Hilbert spaces, functional analysis, operator algebras, lattices and
logic, and category theory and topos theory, so that the prerequisites for this book
are limited to basic analysis and linear algebra (as well as some physics). These
appendices not only provide a direct route to material that otherwise most readers
would have needed to extract from thousands of pages of diverse textbooks, but they
also contain some original material, and may be of interest even to mathematicians.

In summary, the aims of this book are similar to those of its peerless paradigm:

‘Der Gegenstand dieses Buches ist die einheitliche, und, soweit als möglich und angebracht,
mathematisch einwandfreie Darstellung der neuen Quantenmechanik (. . . ). Dabei soll das
Hauptgewicht auf die allgemeinen und prinzipiellen Fragen, die im Zusammenhange mit
dieser Theorie entstanden sind, gelegt werden. Insbesondere sollen die schwierigen und
vielfach noch immer nicht restlos geklärten Interpretationsfragen näher untersucht werden.’
(von Neumann, Mathematische Grundlagen der Quantenmechanik, 1932, p. 1).2

2 ‘The object of this book is to present the new quantum mechanics in a unified presentation which,
so far as it is possible and useful, is mathematically rigorous. (. . . ) Therefore the principal emphasis
shall be placed on the general and fundamental questions which have arisen in connection with this
theory. In particular, the difficult problems with interpretation, many of which are even now not
fully resolved, will be investigated in detail.’ Translation: R.T. Beyer (von Neumann, 1955, p. vii).
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Two other quotations the author often had in mind while writing this book are:

‘And although the whole of philosophy is not immediately evident, still it is better to add
something to our knowledge day by day than to fill up men’s minds in advance with the
preconceptions of hypotheses.’ (Newton, draft preface to Principia, 1686).3

‘Juist het feit dat een genie als DESCARTES volkomen naast de lijn van ontwikkeling is bli-
jven staan, die van GALILEI naar NEWTON voert (. . . ) [is] een phase van den in de historie
zoo vaak herhaalden strijd tusschen de bescheidenheid der mathematisch-physische meth-
ode, die na nauwkeurig onderzoek de verschijnselen der natuur in steeds meer omvattende
schemata met behulp van de exacte taal der mathesis wil beschrijven en den hoogmoed van
het philosophische denken, dat in één genialen greep de heele wereld wil omvatten (. . . ).’
(Dijksterhuis, Val en Worp, 1924, p. 343).4
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Introduction

After 25 years of confusion and even occasional despair, in March 1926 physicists
suddenly had two theories of the microscopic world (Heisenberg, 1925; Schrödinger,
1926ab), which hardly could have looked more differently. Heisenberg’s matrix me-
chanics (as it came to be called a bit later) described experimentally measurable
quantities (i.e., “observables”) in terms of discrete quantum numbers, and appar-
ently lacked a state concept. Schrödinger’s wave mechanics focused on unobserv-
able continuous matter waves apparently playing the role of quantum states; at the
time the only observable within reach of his theory was the energy. Einstein is even
reported to have remarked in public that the two theories excluded each other.

Nonetheless, Pauli (in a letter to Jordan dated 12 April 1926), Schrödinger
(1926c) himself, Eckart (1926), and Dirac (1927) argued—it is hard to speak of
a complete argument even at a heuristic level, let alone of a mathematical proof
(Muller, 1997ab)— that in fact the two theories were equivalent! A rigorous equiv-
alence proof was given by von Neumann (1927ab), who (at the age of 23) was the
first to unearth the mathematical structure of quantum mechanics as we still under-
stand it today. His effort, culminating in his monograph Mathematische Grundlagen
der Quantenmechanik (von Neumann, 1932), was based on the abstract concept of
a Hilbert space, which previously had only appeared in examples (i.e. specific real-
izations) going back to the work of Hilbert and his school on integral equations.

The novelty of von Neumann’s abstract approach may be illustrated by the advice
Hilbert’s former student Schmidt gave to von Neumann even at the end of the 1920s:

‘Nein! Nein! Sagen Sie nicht Operator, sagen Sie Matrix!” (Bernkopf, 1967, p. 346).5

Von Neumann proposed that observables quantities be interpreted as (possibly un-
bounded) self-adjoint operators on some Hilbert space, whilst pure states are real-
ized as rays (i.e. unit vectors up to a phase) in the same space; finally, the inner prod-
uct provides the probabilities introduced by Born (1926ab). In particular, Heisen-
berg’s observables were operators on �2(N), whereas Schrödinger’s wave-functions
were unit vectors in L2(R3). A unitary transformation between these Hilbert spaces
then provided the mathematical equivalence between their competing theories.

5 ‘No! No! You shouldn’t say operator, you should say matrix!’
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2 Introduction

This story is well known, but it is worth emphasizing (cf. Zalamea, 2016, §I.1)
that the most significant difference between von Neumann’s mathematical axiom-
atization of quantum mechanics and Dirac’s heuristic but beautiful and systematic
treatment of the same theory (Dirac, 1930) was not so much the lack of mathemat-
ical rigour in the latter—although this point was stressed by von Neumann (1932,
p. 2) himself, who was particularly annoyed with Dirac’s δ -function and his closely
related assumption that every self-adjoint operator can be diagonalized in the naive
way of having a basis of eigenvectors—but the fact that Dirac’s approach was rela-
tive to the choice of a (generalized) basis of a Hilbert space, whereas von Neumann’s
was absolute. In this sense, as a special case of his (and Jordan’s) general transfor-
mation theory, Dirac showed that Heisenberg’s matrix mechanics and Schrödinger’s
wave mechanics were related by a (unitary) transformation, whereas for von Neu-
mann they were two different realizations of his abstract (separable) Hilbert space.
In particular, von Neumann’s approach a priori dispenses with a basis choice alto-
gether; this is precisely the difference between an operator and a matrix Schmidt al-
luded to in the above quotation. Indeed, von Neumann’s abstract approach (which as
a co-founder of functional analysis he shared with Banach, but not with his mentor
Hilbert) was remarkable even in mathematics; in physics it must have been dazzling.

It is instructive to compare this situation with special relativity, where, so to
speak, Dirac would write down the theory in terms of inertial frames of reference,
so as to subsequently argue that due to Poincaré-invariance the physical content of
the theory does not depend on such a choice. Von Neumann, on the other hand (had
he ever written a treatise on relativity), would immediately present Minkowski’s
space-time picture of the theory and develop it in a coordinate-free fashion.

However, this analogy is also misleading. In special relativity, all choices of iner-
tial frames are genuinely equivalent, but in quantum mechanics one often does have
preferred observables: as Bohr would argue from his Como Lecture in 1927 onwards
(Bohr, 1928), these observables are singled out by the choice of some experimental
context, and they are jointly measurable iff they commute (see also below). Though
not necessarily developed with Bohr’s doctrine in mind, Dirac’s approach seems
tailor-made for this situation, since his basis choice is equivalent to a choice of
“preferred” physical observables, namely those that are diagonal in the given basis
(for Heisenberg this was energy, while for Schrödinger it was position).

Von Neumann’s abstract approach can deal with preferred observables and ex-
perimental contexts, too, though the formalism for doing so is more demanding.
Namely, for reasons ranging from quantum theory to ergodic theory via unitary
group representations on Hilbert space, from 1930 onwards von Neumann devel-
oped his theory of “rings of operators” (nowadays called von Neumann algebras),
partly in collaboration with his assistant Murray (von Neumann, 1930, 1931, 1938,
1940, 1949; Murray & von Neumann, 1936, 1937, 1943). For us, at least at the
moment the point is that Dirac’s diagonal observables are formalized by maximal
commutative von Neumann algebras A on some Hilbert space. These often come
naturally with some specific realization of a Hilbert space; for example, on Heisen-
berg’s Hilbert space �2(N) on has Ad = �∞(N), while Schrödinger’s L2(R3) is host
to Ac = L∞(R3), both realized as multiplication operators (cf. Proposition B.73).
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Although the second (1931) paper in the above list shows that von Neumann was
well aware of the importance of the commutative case of his theory of operator al-
gebras, he—perhaps deliberately—missed the link with Bohr’s ideas. As explained
in the remainder of this Introduction, providing this link is one of the main themes
of this book, but we will do so using the more powerful formalism of C*-algebras.
Introduced by Gelfand & Naimark (1943), these are abstractions and generaliza-
tions of von Neumann algebras, so abstract indeed that Hilbert spaces are not even
mentioned in their definition. Nonetheless, C*-algebras remain very closely tied to
Hilbert spaces through the GNS-construction originating with Gelfand & Naimark
(1943) and Segal (1947b), which implies that any C*-algebra is isomorphic to a
well-behaved algebra of bounded operators on some Hilbert space (see §C.12).

Starting with Segal (1947a), C*-algebras have become an important tool in math-
ematical physics, where traditionally most applications have been to quantum sys-
tems with infinitely many degrees of freedom, such as quantum statistical mechan-
ics in infinite volume (Ruelle, 1969; Israel, 1979; Bratteli & Robinson, 1981; Haag,
1992; Simon, 1993) and quantum field theory (Haag, 1992; Araki, 1999).

Although we delve from the first body of literature, and were at least influenced
by the second, the present book employs C*-algebras in a rather different fashion,
in that we exploit the unification they provide of the commutative and the noncom-
mutative “worlds” into a single mathematical framework (where one should note
that as far as physics is concerned, the commutative or classical case is not purely
C*-algebraic in character, because one also needs a Poisson structure, see Chapter
3). This unified language (supplemented by some category theory, group(oid) the-
ory, and differential geometry) gives a mathematical handle on Wittgenstein’s As-
pektwechsel between classical and quantum-mechanical modes of description (see
Preface), which in our view lies at the heart of the foundations of quantum physics.
This “change of perspective”, which roughly speaking amounts to switching (and
interpolating) between commutative and noncommutative C*-algebras, is added to
Dirac’s transformation theory (which comes down to switching between generalized
bases, or, equivalently, between maximal commutative von Neumann algebras).

The central conceptual importance of the Aspektwechsel for this book in turn
derives from our adherence to Bohr’s doctrine of classical concepts, which forms
part of the Copenhagen Interpretation of quantum mechanics (here defined strictly
as a body of ideas shared by Bohr and Heisenberg). We let the originators speak:

‘It is decisive to recognize that, however far the phenomena transcend the scope of classical
physical explanation, the account of all evidence must be expressed in classical terms. The
argument is simply that by the word experiment we refer to a situation where we can tell
others what we have done and what we have learned and that, therefore, the account of
the experimental arrangements and of the results of the observations must be expressed in
unambiguous language with suitable application of the terminology of classical physics.’
(Bohr, 1949, p. 209)

‘The Copenhagen interpretation of quantum theory starts from a paradox. Any experiment
in physics, whether it refers to the phenomena of daily life or to atomic events, is to be
described in the terms of classical physics. The concepts of classical physics form the lan-
guage by which we describe the arrangement of our experiments and state the results. We
cannot and should not replace these concepts by any others.’ (Heisenberg 1958, p. 44)
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The last quotation even opens Heisenberg’s only systematic presentation of the
Copenhagen Interpretation, which forms Chapter III of his Gifford Lectures from
1955; apparently this was the first occasion where the name “Copenhagen Interpre-
tation” was used (Howard, 2004). In our view, several other defining claims of the
Copenhagen Interpretation appear to be less well founded, if not unwarranted, al-
though they may have been understandable in the historical context where they were
first proposed (in which the new theory of quantum mechanics needed to get going
even in the face of the foundational problems that all of the originators—including
Bohr and Heisenberg—were keenly aware of). These spurious claims include:

• The emphatic rejection of the possibility to analyze what is going on during mea-
surements, as expressed in typical Bohr parlance by claims like:

‘According to the quantum theory, just the impossibility of neglecting the interaction
with the agency of measurement means that every observation introduces a new uncon-
trollable element.’ (Bohr, 1928, p. 584),

or, with similar (but somehow less off-putting) dogmatism by Heisenberg:

‘So we cannot completely objectify the result of an observation’ (1958, p. 50).

• The closely related interpretation of quantum-mechanical states (which Heisen-
berg indeed referred to as “probability functions”) as mere catalogues of the prob-
abilities attached to possible outcomes of experiments, as in:

‘what one deduces from observation is a probability function, a mathematical expression
that combines statements about possibilities or tendencies with statements about our
knowledge of facts’ (Heisenberg 1958, p. 50),

In addition, there are two ingredients of the avowed Copenhagen Interpretation Bohr
and Heisenberg actually seem to have disagreed about. These include:

• The collapse of the wave-function (i.e., upon completion of a measurement),
which was introduced by Heisenberg (1927) in his paper on the uncertainty rela-
tions. As we shall see in Chapter 11, this idea was widely adopted by the pioneers
of quantum mechanics (and it still is), but apparently it was never endorsed by
Bohr, who saw the wave-function as a “symbolic” expression (cf. Dieks, 2016a).

• Bohr’s doctrine of Complementarity, which—though never precisely articulated—
he considered to be a revolutionary philosophical insight of central importance to
the interpretation of quantum mechanics (and even beyond). Heisenberg, on the
other hand, regarded complementary descriptions (which Bohr saw as incompat-
ible) as mathematically equivalent and at best paid lip-service to the idea. The
reason for this discord probably lies in the fact that Heisenberg was typically
guided by (quantum) theory, whereas Bohr usually started from experiments;
Heisenberg once even referred to his mentor as a ‘philosopher of experiment’.
Therefore, Heisenberg was satisfied that for example position and momentum
were related by a unitary operator (i.e. the Fourier transform), whereas Bohr had
the incompatible experimental arrangements in mind that were required to mea-
sure these quantities. Their difference, then, contrasted theory and experiment.
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Let us now review the philosophical motivation Bohr and Heisenberg gave for their
mutual doctrine of classical concepts. First, Bohr (in his typical convoluted prose):

‘The elucidation of the paradoxes of atomic physics has disclosed the fact that the unavoid-
able interaction between the objects and the measuring instruments sets an absolute limit
to the possibility of speaking of a behavior of atomic objects which is independent of the
means of observation. We are here faced with an epistemological problem quite new in nat-
ural philosophy, where all description of experience has so far been based on the assump-
tion, already inherent in ordinary conventions of language, that it is possible to distinguish
sharply between the behavior of objects and the means of observation. This assumption
is not only fully justified by all everyday experience but even constitutes the whole basis
of classical physics. (. . . ) As soon as we are dealing, however, with phenomena like indi-
vidual atomic processes which, due to their very nature, are essentially determined by the
interaction between the objects in question and the measuring instruments necessary for
the definition of the experimental arrangement, we are, therefore, forced to examine more
closely the question of what kind of knowledge can be obtained concerning the objects. In
this respect, we must, on the one hand, realize that the aim of every physical experiment—
to gain knowledge under reproducible and communicable conditions—leaves us no choice
but to use everyday concepts, perhaps refined by the terminology of classical physics, not
only in all accounts of the construction and manipulation of the measuring instruments but
also in the description of the actual experimental results. On the other hand, it is equally
important to understand that just this circumstance implies that no result of an experiment
concerning a phenomenon which, in principle, lies outside the range of classical physics
can be interpreted as giving information about independent properties of the objects.’

This text has been taken from Bohr (1958, p. 25), but very similar passages appear
in many of Bohr’s writings from his famous Como Lecture (Bohr, 1928) onwards.
In other words, the (supposedly) unavoidable interaction between the objects and
the measuring instruments, which for Bohr represents the characteristic feature of
quantum mechanics (and which we would now express in terms of entanglement,
of which concept Bohr evidently had an intuitive grasp), threatens the objectivity
of the description that is characteristic of (if not the defining property of) of classi-
cal physics. However, this threat can be countered by describing quantum mechanics
through classical physics, which (or so the argument goes) restores objectivity. Else-
where, we see Bohr also insisting on the need for classical concepts in defining any
meaningful theory whatsoever, as these are the only concepts we really understand
(though, as he always insists, classical concepts are at the same time challenged by
quantum theory, as a consequence of which their use is necessarily limited).

Although Heisenberg’s arguments for the necessity of classical concepts start
similarly, they eventually take a conspicuously different direction from Bohr’s:

‘To what extent, then, have we finally come to an objective description of the world, espe-
cially of the atomic world? In classical physics science started from the belief—or should
one say from the illusion?—that we could describe the world or at least parts of the world
without any reference to ourselves. This is actually possible to a large extent. We know that
the city of London exists whether we see it or not. It may be said that classical physics
is just that idealization in which we can speak about parts of the world without any ref-
erence to ourselves. Its success has led to the general ideal of an objective description of
the world. Objectivity has become the first criterion for the value of any scientific result.
Does the Copenhagen interpretation of quantum theory still comply with this ideal? One
may perhaps say that quantum theory corresponds to this ideal as far as possible. Certainly
quantum theory does not contain genuine subjective features, it does not introduce the mind
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of the physicist as a part of the atomic event. But it starts from the division of the world
into the object and the rest of the world, and from the fact that at least for the rest of the
world we use the classical concepts in our description. This division is arbitrary and his-
torically a direct consequence of our scientific method; the use of the classical concepts is
finally a consequence of the general human way of thinking. But this is already a reference
to ourselves and in so far our description is not completely objective. (. . . )

The concepts of classical physics are just a refinement of the concepts of daily life and are
an essential part of the language which forms the basis of all natural science. Our actual
situation in science is such that we do use the classical concepts for the description of the
experiments, and it was the problem of quantum theory to find theoretical interpretation of
the experiments on this basis. There is no use in discussing what could be done if we were
other beings than we are. (. . . )

Natural science does not simply describe and explain nature; it is a part of the interplay
between nature and ourselves; it describes nature as exposed to our method of questioning.’
(Heisenberg, 1958, p. 55–56, 56, 81)

The well-known last part may indeed have been the source of the crucial ‘I’m the
one who knocks’ episode in the superb tv-series Breaking Bad (whose criminal main
character operates under the cover name of “Heisenberg”). This is worth mentioning
here, because Heisenberg (and to a lesser extent also Bohr) displays a puzzling
mixture between the hubris of claiming that quantum mechanics has restored Man’s
position at the center of the universe and the modesty of recognizing that nonetheless
Man has to know his limitations (in necessarily relying on the classical concepts he
happens to be familiar with at the current state of evolution and science).

Our own reasons for favoring the doctrine of classical concepts are threefold.
The first is closely related to Heisenberg’s and may be expressed even better by the
following passage from a book by the renowned Dutch primatologist Frans de Waal:

‘Die Verwandlung [i.e., The Metamorphosis by Franz Kafka, in which Gregor Samsa fa-
mously wakes up to find himself transformed into an insect], published in 1915, was an
unusual take-off for a century in which anthropocentrism declined. For metaphorical rea-
sons, the author had picked a repulsive creature, forcing us from the first page onwards to
feel what it would be like to be an insect. Around the same time, the German biologist
Jakob von Uexküll drew attention to the fact that each particular species has its own per-
spective, which he called its Umwelt. To illustrate this new idea, Uexküll took his readers
on a tour through the worlds of various creatures. Each organism observes its environment
in its own peculiar way, he argued. A tick, which has no eyes, climbs onto a grass blade,
where it awaits the scent of butyric acid off the skin of mammals that pass by. Experiments
have demonstrated that ticks may survive without food for as long as 18 years, so that a tick
has ample time to wait for her prey, jump on it, and suck its warm blood, after which she
is ready to lay her eggs and die. Are we in a position to understand the Umwelt of a tick?
Its seems unbelievably poor compared to ours, but Uexküll regarded its simplicity rather as
a strength: ticks have set themselves a narrow goal and hence cannot easily be distracted.
Uexküll analysed many other examples, and showed how a single environment offers hun-
dreds of different realities, each of which is unique for some given species. (. . . ) Some
animals merely register ultraviolet light, others live in a world of odors, or of touch, like a
star nose mole. Some animals sit on a branch of an oak, others live underneath the bark of
the same oak, whilst a fox family digs a hole underneath its roots. Each animal observes the
tree differently.’ (De Waal, 2016, pp. 15–16. Translation by the author).

Indeed, it is hardly an accident that De Waal preceded this passage by a quotation
from Heisenberg almost identical to the last one above.
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A second argument in favour of the doctrine lies in the possibility of a peaceful
outcome of the Bohr–Einstein debate, or at least of an important part of it; cf. Lands-
man (2006a), which was inspired by earlier work of Raggio (1981, 1988) and Bac-
ciagaluppi (1993). This debate initially centered on Einstein’s attempts to debunk
the Heisenberg uncertainty relations, and subsequently, following Einstein’s grudg-
ing acceptance of their validity, entered its most famous and influential phase, in
which Einstein tried to prove that quantum mechanics, although admittedly correct,
was incomplete. One could argue that both antagonists eventually lost this part of
the debate, since Einstein’s goal of a local realistic (quantum) physics was quashed
by the famous work of Bell (1964), whereas against Bohr’s views, deterministic ver-
sions of quantum mechanics such as Bohmian mechanics and the Everett (i.e. Many
Worlds) Interpretation turned out to be at least logical possibilities.

However incompatible the views of Einstein and Bohr on physics and its goals
may have been, unknown to them a common battleground did in fact exist and could
even have led to a reconciliation of at least the epistemological views of the great ad-
versaries. The common ground referred to concerns the problem of objectification,
which at first sight Bohr and Einstein approached in completely different ways:

• Bohr objectified a quantum system through the specification of a classical exper-
imental context, i.e. by looking at it through appropriate classical glasses.

• Einstein objectified any physical system by claiming its independent existence:

‘The belief in an external world independent of the perceiving subject is the basis of all
natural science.’ (Einstein, 1954, p. 266).

On a suitable mathematical interpretation, these conditions for the objectification
of the system turn out to be equivalent! Namely, identifying Bohr’s apparatus with
Einstein’s perceiving subject, calling its algebra of observables A, and denoting the
algebra of observables of the quantum system to be objectified by B, our reading of
the doctrine of classical concepts (to be explained in more detail below) is simply
that A be commutative. Einstein, on the other hand, insists that the system under
observation has its own state, so that there must be no entangled states on the tensor
product A⊗B that describes the composite system. Equivalently, every pure state on
A⊗B must be a product state, so that both A and B have states that together deter-
mine the joint state of A⊗B. This is the case if and only if A or B is commutative,
and since B is taken to be a quantum system, it must be A (see the notes to §6.5 for
details). Thus Bohr’s objectification criterion turns out to coincide with Einstein’s!

Thirdly, the doctrine of classical concepts describes all known applications to
date of quantum theory to experimental physics; and therefore we simply have to
use it if we are interested in understanding these applications. This is true for the
entire range of empirically accessible energy and length scales, from molecular and
condensed matter physics (including quantum computation) to high-energy physics
(in colliders as well as in the context of astro-particle physics). So if people working
in a field like quantum cosmology complain about the Copenhagen Interpretation
then perhaps they should ask themselves if their field is more than a chimera.

Given its clear empirical relevance, it is a moot point whether the doctrine of
classical concepts is as necessary as Bohr and Heisenberg claimed it was:
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‘In their attempts to formulate the general content of quantum mechanics, the representa-
tives of the Copenhagen School often used formulations with which they do not merely
say how things are in their opinion, but beyond that, they say that things must be thus and
so (. . . ) They chose formulations for the mere communication of an item in which at the
same time the inevitability of what is communicated is asserted. (. . . ) The assertion of the
necessity of a proposition adds nothing to its content.’ (Scheibe, 2001, pp. 402–403)

The doctrine of classical concepts implies in particular that the measuring appa-
ratus is to be described classically; indeed, along with its coupling to the system
undergoing measurement, it is its classical description which turns some device—
which a priori is a quantum system like anything else—into a measuring apparatus.
This point was repeated over and over by Bohr and Heisenberg, but in our view the
clearest explanation of this crucial point has been given by Scheibe:

‘It is necessary to avoid any misunderstanding of the buffer postulate [i.e., the doctrine
of classical concepts], and in particular to emphasize that the requirement of a classical
description of the apparatus is not designed to set up a special class of objects differing
fundamentally from those which occur in a quantum phenomenon as the things examined
rather than measuring apparatus. This requirement is essentially epistemological, and af-
fects this object only in its role as apparatus. A physical object which may act as apparatus
may in principle also be the thing examined. (. . . ) The apparatus is governed by classical
physics, the object by the quantum-mechanical formalism.’ (Scheibe, 1973, p. 24–25)

Thus it is essential to the Copenhagen Interpretation that one can describe at least
some quantum-mechanical devices classically: those for which this is possible in-
clude the candidate-apparatuses (i.e. measuring devices). In view of its importance
for their interpretation of quantum mechanics, it is remarkable how little Bohr,
Heisenberg, and their followers did to seriously address this problem of a dual de-
scription of at least part of the world, although they were clearly aware of this need:

‘In the system to which the quantum mechanical formalism is to be applied, it is of course
possible to include any intermediate auxiliary agency employed in the measuring process.
Since, however, all those properties of such agencies which, according to the aim of mea-
surements have to be compared with the corresponding properties of the object, must be
described on classical lines, their quantum mechanical treatment will for this purpose be
essentially equivalent with a classical description.’ (Bohr, 1939, pp. 23–24; quotation taken
from Camilleri & Schlosshauer, 2015, p. 79)

In defense of this alleged equivalence, we read almost circular explanations like:

‘the necessity of basing the description of the properties and manipulation of the measur-
ing instruments on purely classical ideas implies the neglect of all quantum effects in that
description.’ (Bohr, 1939, p. 19)

Since it delineates an appropriate regime, the following is slightly more informative:

‘Incidentally, it may be remarked that the construction and the functioning of all apparatus
like diaphragms and shutters, serving to define geometry and timing of the experimental
arrangements, or photographic plates used for recording the localization of atomic objects,
will depend on properties of materials which are themselves essentially determined by the
quantum of action. Still, this circumstance is irrelevant for the study of simple atomic phe-
nomena where, in the specification of the experimental conditions, we may to a very high
degree of approximation disregard the molecular constitution of the measuring instruments.
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If only the instruments are sufficiently heavy compared with the atomic objects under inves-
tigation, we can in particular neglect the requirement of the [uncertainty] relation as regards
the control of the localization in space and time of the single pieces of the apparatus relative
to each other. (Bohr, 1948, pp. 315–316).

Even Heisenberg restricted himself to very general comments like:

‘This follows mathematically from the fact that the laws of quantum theory are for the
phenomena in which Planck’s constant can be considered as a very small quantity, approx-
imately identical with the classical laws. (Heisenberg, 1958, pp. 57).

Notwithstanding these vague or even circular explanations, the connection between
classical and quantum mechanics was at the forefront of research in the early days
of quantum theory, and even predated quantum mechanics. For example, Jammer
(1966, p. 109) notes that already in 1906 Planck suggested that

‘the classical theory can simply be characterized by the fact that the quantum of action
becomes infinitesimally small.’

In fact, in the same context as Planck, namely his radiation formula, Einstein made
a similar point already in 1905. Subsequently, Bohr’s Correspondence Principle,
which originated in the context of atomic radiation, suggested an asymptotic re-
lationship between quantum mechanics and classical electrodynamics. As such, it
played a major role in the creation of quantum mechanics (Bohr, 1976, Jammer,
1966, Mehra & Rechenberg, 1982; Hendry, 1984; Darrigol, 1992), but the contem-
porary (and historically inaccurate) interpretation of the Correspondence Principle
as the idea that all of classical physics should be a certain limiting case of quantum
physics seems of much later date (cf. Landsman, 2007a; Bokulich, 2008).

Ironically, the possibility of giving a dual classical–quantum description of mea-
surement apparatuses, though obviously crucial for the consistency of the Copen-
hagen Interpretation, simply seems to have been taken for granted, whereas also the
more ambitious problem of explaining at least the appearance of the classical world
(i.e. beyond measurement devices) from quantum theory—which is central to cur-
rent research in the foundations of quantum mechanics—is not to be found in the
writings of Bohr (who, after all, saw the explanation of experiments as his job).

Perhaps Heisenberg could have used the excuse that he regarded the problem as
solved by his 1927 paper on the uncertainty relations; but on both technical and con-
ceptual grounds it would have been a feeble excuse. One of the few expressions of at
least some dissatisfaction with the situation from within the Copenhagen school—if
phrased ever so mildly—came from Bohr’s former research associate Landau:

‘Thus quantum mechanics occupies a very unusual place among physical theories: it con-
tains classical mechanics as a limiting case, yet at the same time it requires this limiting
case for its own formulation.’ (Landau & Lifshitz, 1977, p. 3)

In other words, the relationship between the (generalized) Correspondence Principle
and the doctrine of classical concepts needs to be clarified, and such a clarification
should hopefully also provide the key for the solution of the grander problem of
deriving the classical world from quantum theory under appropriate conditions.
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As a first step to this end, Bohr’s conceptual ideas should be interpreted within
the formalism of quantum mechanics before they can be applied to the physical
world, an intermediate step Bohr himself seems to have considered superfluous:

‘I noticed that mathematical clarity had in itself no virtue for Bohr. He feared that the
formal mathematical structure would obscure the physical core of the problem, and in any
case, he was convinced that a complete physical explanation should absolutely precede the
mathematical formulation.’ (Heisenberg, 1967, p. 98)

Fortunately, von Neumann did not return the compliment, since beyond its brilliant
mathematical content, his Mathematische Grundlagen der Quantenmechanik from
1932 devoted considerable attention to conceptual issues. For example, he gave the
most general form of the Born rule (which is the central link between experimen-
tal physics and the Hilbert space formalism), he introduced density operators for
quantum statistical mechanics (which are still in use), he conceptualized projection
operators as yes-no questions (paving the way for his later development of quantum
logic with Birkhoff, as well as for Gleason’s Theorem and the like), in his analysis
of hidden variables he introduced the mathematical concept of a state that became
pivotal in operator algebras (including the algebraic approach to quantum mechan-
ics), en passant also preparing the ground for the theorems of Bell and Kochen &
Specker (which exclude hidden variables under physically more relevant assump-
tions than von Neumann’s), and, last but not least, his final chapter on the measure-
ment problem formed the basis for all serious subsequent literature on this topic.

Nonetheless, much as Bohr’s philosophy of quantum mechanics would benefit
from a precise mathematical interpretation, von Neumann’s mathematics would be
more effective in physics if it were supplemented by sound conceptual moves (be-
yond the ones he provided himself). Killing two birds with one stone, we implement
the doctrine of classical concepts in the language of operator algebras, as follows:

The physically relevant aspects of the noncommutative operator algebras of quantum-
mechanical observables are only accessible through commutative algebras.

Our Bohrification program, then, splits into two parts, which are distinguished by
the precise relationship between a given noncommutative operator algebra A (rep-
resenting the observables of some quantum system, as detailed below) and the com-
mutative operator algebras (i.e. classical contexts) that give physical access to A.

While delineated mathematically, these two branches also reflect an unresolved
conceptual disagreement between Bohr and Heisenberg about the status of clas-
sical concepts (Camilleri, 2009b). According to Bohr—haunted by his idea of
Complementarity—only one classical concept (or one coherent family of classi-
cal concepts) applies to the experimental study of some quantum object at a time.
If it applies, it does so exactly, and has the same meaning as in classical physics;
in Bohr’s view, any other meaning would be undefined. In a different experimental
setup, some other classical concept may apply. Examples of such “complementary”
pairs are particle versus wave (an example Bohr stopped using after a while), space-
time description versus “causal description” (by which Bohr means conservation
laws), and, in his later years, one “phenomenon” (i.e., an indivisible unit of a quan-
tum object plus an experimental arrangement) against another. For example:
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‘My main purpose (. . . ) is to emphasize that in the phenomena concerned we are (. . . ) deal-
ing with a rational discrimination between essentially different experimental arrangements
and procedures which are suited either for an unambiguous use of the idea of space loca-
tion, or for a legitimate application of the conservation theorem of momentum (. . . ) which
therefore in this sense may be considered as complementary to each other (. . . ) Indeed we
have in each experimental arrangement suited for the study of proper quantum phenomena
not merely to do with an ignorance of the value of certain physical quantities, but with the
impossibility of defining these quantities in an unambiguous way. (Bohr, 1935, p. 699).

Heisenberg, on the other hand, seems to have held a more relaxed attitude towards
classical concepts, perhaps inspired by his famous 1925 paper on the quantum-
mechanical reinterpretation (Umdeutung) of mechanical and kinematical relations,
followed by his equally great paper from 1927 already mentioned. In the former,
he introduced what we now call quantization, in putting the observables of classical
physics (i.e. functions on phase space) on a new mathematical footing by turning
them into what we now call operators (initially in the form of infinite matrices),
where they also have new properties. In the latter, Heisenberg tried to find some op-
erational meaning of these operators through measurement procedures. Since quan-
tization applies to all classical observables at once, all classical concepts apply si-
multaneously, but approximately (ironically, like most research on quantum theory
at the time, the 1925 paper was inspired by Bohr’s Correspondence Principle).

To some extent, then, Bohr’s view on classical concepts comes back mathemati-
cally in exact Bohrification, which studies (unital) commutative C*-subalgebras C
of a given (unital) noncommutative C*-algebra A, whereas Heisenberg’s interpreta-
tion of the doctrine resurfaces in asymptotic Bohrification, which involves asymp-
totic inclusions (more specifically, deformations) of commutative C*-algebras into
noncommutative ones. So the latter might have been called Heisenbergification in-
stead, but in view of both the ugliness of this word and the historical role played by
Bohr’s Correspondence Principle just alluded to, the given name has stuck.

The precise relationship between Bohr’s and Heisenberg’s views, and hence also
between exact and asymptotic Bohrification, remains to be clarified; their joint ex-
istence is unproblematic, however, since the two programs complement each other.

• Exact Bohrification turns out to be an appropriate framework for:

– The Born rule (for single case probabilities).
– Gleason’s Theorem (which justifies von Neumann’s notion of a state as a pos-

itive linear expectation value, assuming the operator part of quantum theory).
– The Kochen–Specker Theorem (excluding non-contextual hidden variables).
– The Kadison–Singer Conjecture (concerning uniqueness of extensions of pure

states from maximal commutative C*-subalgebras of the algebra B(H) of all
bounded operators on a separable Hilbert space H to B(H)).

– Wigner’s Theorem (on unitary implementation of symmetries of pure states
with transition probabilities, and its analogues for other quantum structures).

– Quantum logic (which, if one adheres to the doctrine of classical concepts,
turns out to be intuitionistic and hence distributive, rather than orthomodular).

– The topos-theoretic approach to quantum mechanics (which from our point
of view encompasses quantum logic and implies the preceding claim).
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• Asymptotic Bohrification, on the other hand, provides a mathematical setting for:

– The classical limit of quantum mechanics.
– The Born rule (for probabilities measured as long-run frequencies).
– The infinite-volume limit of quantum statistical mechanics.
– Spontaneous symmetry breaking (SSB).
– The Measurement Problem (highlighted by Schrödinger’s Cat).

On the philosophical side, the limiting procedures inherent in asymptotic Bohrifi-
cation may be seen in the light of the (alleged) phenomenon of emergence. From
the philosophical literature, we have distilled two guiding thoughts which, in our
opinion, should control the use of limits, idealizations, and emergence in physics
and hence play a paramount role in this book. The first is Earman’s Principle:

‘While idealizations are useful and, perhaps, even essential to progress in physics, a sound
principle of interpretation would seem to be that no effect can be counted as a genuine
physical effect if it disappears when the idealizations are removed.’ (Earman, 2004, p. 191)

The second is Butterfield’s Principle, which in a sense is a corollary to Earman’s
Principle, and should be read in the light of Butterfield’s own definition of emer-
gence as ‘behaviour that is novel and robust relative to some comparison class’,
which among other virtues removes the reduction-emergence opposition:

“there is a weaker, yet still vivid, novel and robust behaviour that occurs before we get to
the limit, i.e. for finite N. And it is this weaker behaviour which is physically real.”
(Butterfield, 2011, p. 1065)

Indeed, the link between theory and reality stands or falls with an adherence to these
principles, for real materials (like a ferromagnet or a cat) are described by the quan-
tum theory of finite systems (i.e., h̄ > 0 or N < ∞, as opposed to their idealized
limiting cases h̄ = 0 or N = ∞), and yet they do display the remarkable phenom-
ena that strictly speaking are only possible in the corresponding limit theories, like
symmetry breaking, or the fact that cats are either dead or alive, as a metaphor for
the fact that measurements have outcomes. This simple observation shows that any
physically relevant conclusion drawn from some idealization must be foreshadowed
in the underlying theory already for positive values of h̄ or finite values of N.

Despite their obvious validity, it is remarkable how often idealizations violate
these principles. For example, all rigorous theories of spontaneous symmetry break-
ing in quantum statistical mechanics (Bratteli & Robinson, 1981) and in quantum
field theory (Haag, 1992) strictly apply to infinite systems only, since ground states
of finite quantum systems are typically unique (and hence symmetric), whilst ther-
mal equilibrium states of such systems are even always unique (see also Chapter
10). As explained in Chapter 11, the “Swiss” approach to the measurement problem
based on superselection rules faces a similar problem, and must be discarded for that
reason. Bohr’s doctrine of classical concepts is particularly vulnerable to Earman’s
Principle, since classical physics (in whose language we are supposed to express the
account of all evidence) is not realized in nature but only in the human mind, so to
speak. This necessitates great care in implementing this doctrine.
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Interestingly, in his famous lecture “Über das Unendliche”, in which he ex-
pounded his finitary program intended to save mathematics against the devilish in-
tuitionist challenge of L.E.J. Brouwer, Hilbert (1925) expressed similar principles
controlling the use of infinite idealizations in mathematics:

“Und so wie bei den Grenzprozessen der Infinitesimalrechnung das Unendliche im Sinne
des Unendlichkleinen und des Unendlichgroßen sich als eine bloße Redensart erweisen ließ,
so müssen wir auch das Unendliche im Sinne der Unendlichen Gesamtheit, wo wir es jetzt
noch in den Schlußweisen vorfinden, als etwas bloß scheinbaren erkennen. Und so wie das
Operieren mit dem Unendlichkleinen durch Prozesse im Endlichen ersetzt wurde, welche
ganz dasselbe leisten und zu ganz denselben eleganten formalen Beziehungen führen, so
müssen überhaupt die Schlußweisen mit dem Unendlichen durch endliche Prozesse ersetzt
werden, die gerade dasselbe leisten, d.h. dieselben Beweisgänge und dieselben Methoden
der Gewinning von Formeln und Sätzen ermöglichen.” (Hilbert, 1925, p. 162).6

In addition, asymptotic Bohrification has three rather more technical roots:

1. A new approach to quantization theory developed in the 1970s under the name
of deformation quantization (Berezin, 1975; Bayen et al, 1978), where the non-
commutative algebras characteristic of quantum mechanics arise as deforma-
tions of Poisson algebras. In Rieffel’s (1989, 1994) approach to deformation
quantization, further developed in Landsman (1998a), the deformed algebras are
C*-algebras, and hence the apparatus of operator algebras and noncommutative
geometry (Connes, 1994) becomes available. Deformation quantization gives a
mathematically precise and physically relevant meaning to the limit h̄→ 0, and
shows that quantization and the classical limit are two sides of the same coin.

2. The mathematical analysis of the BCS-model of superconductivity initiated by
Bogoliubov (1958) and Haag (1962), which, in the more general setting of mean-
field models of solid state physics, culminated in the work of Bona (1988, 2000),
Raggio & Werner (1989), and Duffield & Werner (1992). These authors showed
that in the macroscopic limit N → ∞, non-commutative algebras of quantum-
mechanical observables (which are typically tensor powers of matrix algebras
Mn(C)) converge to some commutative algebra (typically consisting of all con-
tinuous functions on the state space of Mn(C)), at least for macroscopic averages.

3. The role of low-lying states and the ensuing instability of ground states under tiny
perturbations in the two limits at hand, discovered by Jona-Lasinio, Martinelli, &
Scoppola (1981) for the classical limit h̄→ 0, and by Koma &Tasaki (1994) for
the macroscopic limit N →∞. In combination with the previous items, this led to
a new approach to the measurement problem (Landsman & Reuvers, 2013) and
to spontaneous symmetry breaking and emergence (Landsman, 2013), which in
particular addresses these issues in the framework of asymptotic Bohrification.

6 ‘Just as in the limit processes of the infinitesimal calculus, the infinite in the sense of the infinitely
large and the infinitely small proved to be merely a figure of speech, so too we must realize that
the infinite in the sense of an infinite totality, where we still find it in deductive methods, is an
illusion. Just as operations with the infinitely small were replaced by operations with the finite
which yielded exactly the same results and led to exactly the same elegant formal relationships,
so in general must deductive methods based on the infinite be replaced by finite procedures which
yield exactly the same results, i.e., which make possible the same chains of proofs and the same
methods of getting formulas and theorems.’ (Benaceraff & Putnam, 1983, p. 184).
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This book is organized into two parts. Rather than following the partition of
our approach into exact and asymptotic Bohrification, these parts reflect the (math-
ematical) sophistication of the material, starting with finite sets, and ending with
a combination of C*-algebras and topos theory. Part I, called C0(X) and B(H),
gives a mathematical introduction to both classical and quantum mechanics from
an operator-algebraic point of view, in which these theories are kept separate, whilst
mathematical analogies are stressed whenever possible. This part emphasizes the
notion of symmetry, and includes some of the main abstract mathematical results
about quantum mechanics (i.e., those not involving the study of Schrödinger op-
erators and concrete models), such as the Born rule, the theorems of Gleason and
Kochen & Specker already mentioned, the one of Wigner (on symmetries) and its
numerous derivatives, including a new one on unitary implementability of symme-
tries of the poset C (B(H)) of unital commutative C*-subalgebras of B(H), and
Stone’s Theorem on unitary implementability of time evolution in quantum me-
chanics. This part may also serve as a reference for such fundamental theorems
about quantum mechanics. An unusual ingredient of this part is our discussion of
the Kadison–Singer Conjecture, included because of its fit into (exact) Bohrification.
Also elsewhere, results are (re)phrased in a language appropriate to this ideology.

Experts in the C*-algebraic approach to quantum mechanics will be able to read
the second part independently of the first (which they might therefore skip if they
find it to be too elementary), but the spirit of Bohrification will only be instilled in
the reader if (s)he reads the entire book; indeed, it is this very spirit that keeps the
two parts together and turns the book into a whole. Part II, entitled Between C0(X)
and B(H), starts with a survey of some known results on the grey area between clas-
sical and quantum, such as Bell’s Theorem(s) and the so-called Free Will Theorem.
It then embarks on the asymptotic Bohrification program, including (deformation)
quantization and the classical limit (including a small excursion into indistinguish-
able particles), large systems and their (thermodynamic) limit, and the Born rule
(revisited). This part centers on a somewhat idiosyncratic treatment of spontaneous
symmetry breaking (SSB) and the closely related measurement problem of quan-
tum mechanics, which is given an unusual but technically precise formulation in the
spirit of the Copenhagen Interpretation, and hence is meant to be relevant to actual
experimental physics (which is what the Copenhagen Interpretation covers).

Our treatment of both quantization and SSB relies mathematically on continu-
ous bundles of C*-algebras, while the principles of Earman and Butterfield provide
philosophical guidance. This is also true for our approach to the measurement prob-
lem, which combines elements of quantization and SSB. Although experiments and
detailed theoretical models are lacking so far, this powerful combination of mathe-
matical and philosophical tools leads to a compelling scenario for solving the mea-
surement problem, harboring the hope of finally laying this problem to rest. Like
dynamical collapse models that require modifications of quantum mechanics, our
scenario looks at the wave-function realistically, and hence describes measurement
as a physical process, including the collapse that settles the outcome (as opposed to
reinterpretations of the uncollapsed state, as in modal or Everettian interpretations).
However, in our approach collapse takes place within unitary quantum theory.
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Insolubility theorems for the measurement problem are circumvented, because
these rely on the counterfactual that if ψn were the initial state, then for each n it
would evolve (linearly) according to the Schrödinger equation with given Hamilto-
nian h, whereas if the initial state were ∑n cnψn, also then it would evolve accord-
ing to the same Hamiltonian h. However, Butterfield’s Principle implies that this
counterfactual is inapplicable precisely in the measurement situations it is meant
for, because the dual description of the apparatus as both classical and quantum-
mechanical causes extreme sensitivity of the wave-function to even the tiniest per-
turbations of the Hamiltonian. Indeed, such perturbations dynamically enforce some
particular outcome of the measurement. Our scenario also rejects the typical way of
looking at measurement as a two-step process (going back to von Neumann himself
and widely adopted in the literature ever since), i.e., of firstly a transition of a pure
state to a mixed one (this is his ill-fated “process 1”), followed by the registration of
a single outcome. In real measurements (like elsewhere), pure states remain pure! If
our scenario is correct, the mistaken impression that quantum theory seems to imply
the irreducible randomness of nature, then arises because measurement outcomes
are merely unpredictable “for all practical purposes”, indeed they are unpredictable
in a way that dwarfs even the apparent randomness of classical chaotic systems.

The final chapter on topos theory and quantum logic elaborates on ideas originat-
ing with Isham and Butterfield. It centers on the poset C (A) of all unital commuta-
tive C*-subalgebras of a unital C*-algebra A, ordered by inclusion; with some good-
will, one might call C (A) the mathematical home of Complementarity (although the
construction applies even when A itself is commutative). The power of this poset is
already clear in Part I, where the special case A = B(H) leads to a new version of
Wigner Theorem on unitary implementability of symmetries. Hamhalter’s Theorem,
which is a far-reaching generalization of this version, then shows that C (A) carries
at least as much information about A as the pure state space. Furthermore, C (A)
enforces a (new) notion of quantum logic that turns out to be intuitionistic in being
distributive but denying the law of the excluded middle (on which both classical
logic and the non-distributive quantum logic of Birkhoff–von Neumann are based).
Finally, C (A) gives rise to a quantum phase space (which is lacking in the usual
formalism), on which observables are functions and states are probability measures,
just like in classical physics (but now “internal” to a particular topos, i.e., a mathe-
matical universe alternative to set theory, in which logic is typically intuitionistic).

About a third of the book is devoted to mathematical appendices. Those on func-
tional analysis and operator algebras give thorough introductions to these subjects,
sparing the reader the effort to study books like Bratteli & Robinson (1981), Con-
way (2007), Dudley (1989), Kadison & Ringrose (1983, 1986), Lance (1995), Ped-
ersen (1989), Reed & Simon (1972), Schmüdgen (2012), and Takesaki (2002, 2003).
The appendices on logic, category theory, and topos theory, on the other hand, are
far from exhaustive (though self-contained): they provide a shortcut to the neces-
sary parts of e.g. Johnstone (1987), Mac Lane (1998), and Mac Lane & Moerdijk
(1992), or, alternatively, of Bell & Machover (1977) and Bell (1988). Though pri-
marily meant to support the main body of the book, these appendices may also be of
some interest by themselves, especially to philosophers, but even to mathematicians.
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As a “Quick Start Guide” for readers in a hurry, we now summarize the main
definitions in the theory of operator algebras. A C*-algebra is an associative algebra
(over C) equipped with an involution (i.e., a real-linear map a �→ a∗ such that

a∗∗ = a, (ab)∗ = b∗a∗, (λa)∗ = λa∗,

for all a,b ∈ A and λ ∈C), as well as a norm in which A is complete (i.e., a Banach
space), such that algebra, involution, and norm are related by the axioms

‖ab‖ ≤ ‖a‖‖b‖;
‖a∗a‖ = ‖a‖2.

The two main classes of C*-algebras are:

• The space C0(X) of all continuous functions f : X →C that vanish at infinity (i.e.,
for any ε > 0 the set {x ∈ X | | f (x)| ≥ ε} is compact), where X is some locally
compact Hausdorff space, with pointwise addition and multiplication, involution

f ∗(x) = f (x),

and a norm
‖ f‖∞ = sup

x∈X
{| f (x)|}.

It is of fundamental importance for physics and mathematics that C0(X) is com-
mutative. Conversely, Gelfand & Naimark (1943) proved that every commutative
C*-algebra is isomorphic to C0(X) for some locally compact Hausdorff space X ,
which is determined by A up to homeomorphism (X is called the Gelfand spec-
trum of A). Note that C0(X) has a unit (i.e. the function 1X that is equal to 1 for
any x) iff X is compact.

• Norm-closed subalgebras A of the space B(H) of all bounded operators on some
Hilbert space H for which a∗ ∈ A iff a∈ A; this includes the case A = B(H). Here
one uses the standard operator norm

‖a‖= sup{‖aψ‖,ψ ∈ H,‖ψ‖= 1},

the algebraic operations are the natural ones, and the involution is the adjoint.
If dim(H) > 1, B(H) is a non-commutative C*-algebra. An important special
case is the C*-algebra B0(H) of all compact operators on H, which has no unit
whenever H is infinite-dimensional (whereas B(H) is always unital). In their
fundamental paper, Gelfand & Naimark (1943) also proved that every C*-algebra
is isomorphic to A⊂ B(H) for some Hilbert space space X .

These classes are related as follows: in the commutative case A =C0(X), take

H = L2(X ,μ),

where the support of the measure μ is X , on which C0(X) acts by multiplication
operators, that is, m fψ = fψ , where f ∈C0(X) and ψ ∈ L2(X ,μ).
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As already noted, C*-algebras were introduced by Gelfand & Naimark (1943),
generalizing the rings of operators studied by von Neumann during 1930–1949,
partly in collaboration with Murray (von Neumann, 1930, 1931, 1938, 1940, 1949;
Murray & von Neumann, 1936, 1937, 1943). These rings are now called von Neu-
mann algebras, and arise as the special case where a C*-algebra A⊂ B(H) satisfies

A = A′′,

in which for any subset S⊂ B(H) the commutant of S is defined by

S′ = {a ∈ B(H) | ab = ba∀b ∈ S},

in terms of which the bicommutant of S is given by S′′ = (S′)′. Equivalently, a C*-
algebra is a von Neumann algebra M iff it is the dual of some Banach space M∗
(which is unique, and contains the so-called normal states on M).

Generalizing von Neumann’s concept of a state on B(H), a state on a C*-algebra
A (as first defined by Segal in 1947) is a linear map

ω : A→ C

that is positive in that
ω(a∗a)≥ 0

for each a ∈ A, and normalized in that, noting that positivity implies boundedness,

‖ω‖= 1,

where ‖ · ‖ is the usual norm on the Banach dual A∗. If A has a unit 1A, then in the
presence of positivity, the above normalization condition is equivalent to

ω(1A) = 1.

The Riesz–Radon representation theorem in measure theory gives a bijective corre-
spondence between states ω on A =C0(X) and probability measures μ on X , viz.

ω( f ) =
∫

X
dμ f ,

for any f ∈ C0(X). At the other end of the operator-algebraic world, if A = B(H),
then any density operator ρ on H gives a state ω on B(H) by

ω(a) = Tr(ρa),

but if H is infinite-dimensional there are other states, which cannot be normal. Such
“singular” states are the C*-algebraic analogues of improper eigenstates for eigen-
values in the continuous spectrum of some self-adjoint operator (think of position or
momentum), and hence they make perfect sense physically. Singular states play an
important role also mathematically, especially in the Kadison–Singer Conjecture.
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Let me close this Introduction with a small personal note on the way this book
came into being. Of the three disciplines relevant to the foundations of physics,
namely mathematics, physics, and philosophy, my expertise has always been lo-
cated within the first two, more specifically in mathematical physics. Nonetheless,
my interest in the foundations of physics was triggered already at school, notably
by books like The Dancing Wu-Li Masters by Gary Zukav, The Tao of Physics by
Fritjof Capra (both of which may appear suspicious in hindsight), and especially
by Werner Heisenberg’s fascinating (though historically unreliable) autobiography
Physics and Beyond (called Der Teil und das Ganze in German). The second auto-
biography that made a huge impression on me at the time was Bertrand Russell’s,
which in particular made me want to go to Cambridge and become a so-called Apos-
tle (i.e. a member of an elitist secret conversation society that once included such
illustrious members as Moore, Keynes, Hardy, and Russell himself); the first dream
was eventually realized (see below), about the second I have to remain silent.

My interest in foundations was reinforced by two books on general relativity
which I read as a first-year physics student, namely Raum · Zeit · Materie by Weyl
(1918) and The Mathematical Theory of Relativity by Eddington (1923). Although
these were beyond my grasp at the time, they were clearly written in the spirit of
Newton’s Principia, in that they were primarily treatises in natural philosophy, for
which mathematical physics just provided the technical underpinning. Nonetheless,
despite an unforgettable seminar by Jan Hilgevoord on the Heisenberg uncertainty
relations in 1984, reporting on his recent joint work with Jos Uffink, foundations
remained dormant during my undergraduate and PhD years (1981–1989).

As a postdoc in Cambridge from 1989 onwards, I initially attended all seminars
in any subject related to mathematics and/or physics I found remotely interesting,
including the so-called Sigma Club, which at the time was organized by Michael
Redhead. Michael was surrounded by a group of people I began to increasingly like,
although I was and still am worried by their deification of John Bell (one speaker
even asked his audience to stand whilst he was reading a passage from Speakable
and Unspeakable in Quantum Mechanics). In any case, I was very kindly invited
to speak at the Sigma Club on my recent paper on superselection rules and the
measurement problem (whose approach I now eschew, since it violates Earman’s
Principle, see above as well as Chapter 11 below), followed by a private dinner in
the posh Riverside Restaurant with Michael (who asked my opinion about David
Lewis, whom I unfortunately had never heard of). Indeed, the generosity of inviting
an absolute beginner in the philosophy of physics to speak in such a prestigious
seminar endeared me even further to both the subject and the community.

My main business remained mathematical physics, but, reinforcing the earlier
spark I had got from reading Weyl and Eddington (and later also from von Neumann
as well as Newton), two people (unfortunately no longer with us) made it clear to
me that the goal of this discipline may include not only mathematics and physics,
but also foundations, i.e., natural philosophy. These were Rob Clifton, who was a
PhD student of Redhead and Butterfield, and Rudolf Haag, in whose group I had
the honour to work during my year at Hamburg (1993-1994) as an Alexander von
Humboldt Fellow (this was Haag’s last active year at the university, cf. Haag, 2010).
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My first book in 1998, which I wrote during my last two years at Cambridge,
when the prospect of having to leave Academia and hence the urge to leave a per-
manent record loomed large, did not yet reflect this attitude. But my lengthy article
on the classical-quantum interface in the Handbook of the Philosophy of Physics
edited by Butterfield and Earman already did, and so does the present book.

There is an inherent danger in a mathematical physics approach to foundations:

‘I’m guided by the beauty of our weapons’ (Leonard Cohen)

Our mathematical weapons, that is; this book is predicated on the idea that operator
algebras provide the right language for quantum theory. If they don’t—for example,
if path integrals are really its essence, as researchers especially in quantum gravity
seem to believe, and there turns out to be a difference between the two toolkits—the
mathematical underpinning of Bohrification would fall. Since our conceptual pro-
gram is closely linked to this mathematical language, it would presumably collapse,
too. Even if operator algebras stand, once some noncommutative alien gets direct
access to the quantum world in defiance of Bohr’s doctrine of classical concepts, the
conceptual framework behind Bohrification (and with it much of this book) would
tremble. So far there has been no evidence for any of this, and as long as physics
remains an empirical science I offer this book to the reader both as an introduction
to modern mathematical methods in physics (in so far as these are relevant to foun-
dational questions), and also as an alternative to various interpretations of quantum
mechanics that seem to philosophize the physics of the problems away.

Notes

Each chapter is followed by a section called Notes, in which background and credits
for the results in the given chapter are given. Such information is therefore absent in
the main text (expect when—typically famous—theorems are named after their dis-
coverers, like Gleason, Wigner, and the like). This Introduction, which anomalously
contains some references, is an exception, but we still provide some notes to it.

Since this book is not an exegesis of Bohr but rather an exposition of some math-
ematical ideas partly inspired by his work (with no claim to retroactive endorsement
by Bohr or his followers), we hardly relied on the secondary literature on his phi-
losophy, except, as already mentioned, on Scheibe (1973) and Beller (1999), both
of which are pretty critical of Bohr. For a more balanced picture, one might consult
monographs like Folse (1985), Murdoch (1987), McEvoy (2001), Brock (2003), the
collection of essays edited by Faye & Folse (2017), as well as Dieks (2016a) and
Zinkernagel (2016). Secondary literature on Heisenberg’s philosophy of physics is
scarce, but includes Camilleri (2009b). Though irrelevant to the present book, one
cannot resist mentioning Landsman (2002) on Heisenberg’s controversial political
war record, from which he tried to escape by writing the intriguing essay Ordnung
der Wirklichkeit, published 50 years later as Heisenberg (1994).

A propos, notes on von Neumann and operator algebras follow §C.25.
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Strictly speaking, no previous knowledge of quantum mechanics is needed to un-
derstand this book, but it is hard to imagine readers of this book without such a back-
ground. Beyond standard undergraduate physics courses, for mathematically seri-
ous introductions to quantum mechanics—further to von Neumann (1932), which
founded the subject—we recommend Bongaarts (2015), Gustafson & Sigal (2003),
Hall (2013), Takhtajan (2008), and Thirring (2002). No previous acquaintance with
the philosophy of quantum theory is required either, but once again it might be
expected that typical readers of the present book have at least some awareness of
this field. In fact, the author himself has only read a few such books from cover to
cover, including Heisenberg (1958), Jammer (1966, 1974), Scheibe (1973), Earman
(1986), van Fraassen (1991), Bub (1997), Beller (1999), and Wallace (2012).

From these books, apart from its obvious source Heisenberg (1958), Bohrifi-
cation (at least in its ‘exact’ variant) is conceptually akin to the program of Bub
(1997), which was based on Clifton & Bub (1996); the past tense seems appropri-
ate here, since Bub has meanwhile abandoned this program in favour of foundations
based on information theory (Bub, 2004). Anyway, given some preferred observable
a ∈ B(H)sa and pure state e ∈P1(H) (i.e., a one-dimensional projection on H), the
Bub–Clifton approach looks for the largest C*-subalgebra A of B(H) on which one
may define something like a hidden variable compatible with the Born probabili-
ties emanating from the given state e (the emphasis on some given e comes form
the modal interpretation(s) of quantum mechanics). For generic states e and observ-
ables a, this typically allows A to be noncommutative, which blasts the conceptual
framework of exact Bohrification. Requiring compatibility with quantum mechanics
for arbitrary states e, on the other hand, would force A to be commutative. All this
relates to the Kochen–Specker Theorem; see the Notes to §6.1 for further details.

Finally, though remote from Wallace (2012) in our attempt to solve (or, in the
light of the first quotation below, one should say “address”) the measurement prob-
lem through physics rather than philosophy, even with this polar opposite author we
share the following attitude towards the foundations of quantum mechanics:

‘The basic thesis of this book is that there is no quantum measurement problem (. . . ) What
I mean is that there is actually no conflict between the dynamics and ontology of (unitary)
quantum theory and our empirical observations. (. . . ) [I do not] wish to be read as offering
yet one more “interpretation of quantum mechanics”.

This book takes an extremely conservative approach to quantum mechanics (. . . ) quantum
mechanics can be taken literally (. . . ) there is just unitary quantum mechanics.

The way in which cats or tables exist is as structures within the underlying microphysics
(. . . ) [they are] emergent objects, higher-order entities.’ (Wallace, 2012, pp. 1, 2, 13, 38, 40)

But although it may indeed apply to the town of Oxford, one might take issue with:

‘It is simply false that there are alternative explanatory theories to Everett-interpreted quan-
tum mechanics which can reproduce the predictions of quantum theory (. . . ) The Everett
interpretation is the only game in town.’ (Wallace, 2012, p. 43)
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C0(X) and B(H)



Chapter 1

Classical physics on a finite phase space

Throughout this chapter, X is a finite set, playing the role of the configuration space
of some physical system, or, equivalently (as we shall see), of its pure state space (in
the continuous case, X will be the phase space rather than the configuration space).
One should not frown upon finite sets: for example, the configuration space of N
bits is given by X = 2N , where for arbitrary sets Y and Z, the set Y Z consists of all
functions x : Z → Y , and for any N ∈ N we write N = {1,2, . . . ,N} (although, fol-
lowing the computer scientists, 2 usually denotes {0,1}). More generally, if one has
a latticeΛ ⊂Zd and each site is the home of some classical object (say a “spin”) that
may assume N different configurations, then X = NΛ , in that x : Λ → N describes
the configuration in which the “spin” at site n ∈Λ takes the value x(n) ∈ N.

Although the setting is a priori deterministic, in that (knowing) some point x ∈
X in its guise as a pure state at least in principle determines everything (there is
to say), the mathematical language will be probabilistic. Even within the confines
of classicality this allows one to do statistical physics, and as such it also sheds
light on e.g. the special status of x as an extreme probability measure (see below).
Furthermore, the use of this language may be motivated by the goal of describing
classical and quantum mechanics as analogously as possible at this elementary level.

The following concepts play a central role in this chapter. Recall that the power
set P(X) of X is the set of all subsets of X (for finite X , these are all measurable).

Definition 1.1. 1. An event is a subset U ⊆ X, i.e., U ∈P(X).
2. A probability distribution on X is a function p : X → [0,1] such that ∑x p(x)= 1.
3. A probability measure on X is a function P : P(X)→ [0,1] such that P(X) = 1

and P(U ∪V ) = P(U)+P(V ) whenever U ∩V = /0.
4. For a given probability measure P on X, and an event V ⊆ X such that P(V )> 0,

the conditional probability P(U |V ) of U given V is defined by

P(U |V ) =
P(U ∩V )

P(V )
. (1.1)

5. A random variable on X is a function f : X → R.
6. The spectrum of a random variable f is the subset σ( f ) = { f (x) | x ∈ X} of R.
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1.1 Basic constructions of probability theory

Probability distributions p and probability measures P determine each other by

P(U) = ∑
x∈U

p(x); (1.2)

p(x) = P({x}), (1.3)

but this is peculiar to finite sets (in general, probability measures will be primary).
Two special classes of probability measures and of random variables stand out:

• Each y ∈ X defines a probability distribution py by py(x) = δxy, or explicitly
py(x) = 1 if x = y and py(x) = 0 if x �= y; for the corresponding probability
measure one has Py(U) = 1 if y ∈U and Py(U) = 0 if y /∈U .

• Each event U ⊂ X defines a random variable 1U (i.e., the characteristic function
of U) by 1U (x) = 1 if x ∈U and 1U (x) = 0 if x /∈U . Clearly, σ(1U ) = {0} when
U = /0, σ(1U ) = {1} when U = X , and σ(1U ) = {0,1} otherwise. Note that
1U (x) = Px(U). Conversely, any random variable f with spectrum σ( f )⊆ {0,1}
is given by f = 1U for some U ⊆ X ; just take U = {x ∈ X | f (x) = 1}. Such
functions may be construed as yes-no questions to the system (i.e. f = 1 versus
f = 0) and will lie at the basis of the logical interpretation of the theory (cf. §1.4).

The single most important construction in probability theory is as follows.

Theorem 1.2. A probability distribution p on X and a random variable f : X → R
jointly yield a probability distribution p f on the spectrum σ( f ) by means of

p f (λ ) = ∑
x∈X | f (x)=λ

p(x). (1.4)

In terms of the corresponding probability measure P on X, one has

p f (λ ) = P( f = λ ), (1.5)

where f = λ denotes the event {x ∈ X | f (x) = λ} in X. Similarly, the probability
measure Pf on σ( f ) corresponding to the probability distribution p f is given by

Pf (Δ) = P( f ∈ Δ), (1.6)

where Δ ⊆ σ( f ) and f ∈ Δ denotes the event {x ∈ X | f (x) ∈ Δ} in X.

The proof is trivial. Instead of f = λ , the notation f−1({λ}) might be used, and
similarly, f−1(Δ) is the same as f ∈ Δ . If λ ∈ σ( f ) is non-degenerate in that there
is exactly one xλ ∈ X such that f (xλ ) = λ , then one simply has P( f = λ ) = p(xλ ).

For example, combining both our special cases P = Py and f = 1U above yields

Py(1U = 1) = 1 and Py(1U = 0) = 0 if y ∈U ; (1.7)
Py(1U = 1) = 0 and Py(1U = 0) = 1 if y /∈U. (1.8)



1.1 Basic constructions of probability theory 25

Given some probability measure P, the expectation value EP( f ) and the variance
ΔP( f ) of a random variable f with respect to P are defined by, respectively,

EP( f ) = ∑
x∈X

f (x)p(x); (1.9)

ΔP( f ) = EP( f 2)−EP( f )2. (1.10)

A simple calculation shows that EP may be written directly in terms of P itself as

EP( f ) = ∑
λ∈σ( f )

P( f = λ ) ·λ . (1.11)

Note that ΔP( f )≥ 0. The special role of the point measures Py may now be clarified:

Proposition 1.3. A probability measure P takes the form P = Py for some y ∈ X iff
ΔP( f ) = 0 for all random variables f : X → R.

Proof. For “⇒”, we compute EPy( f ) = f (y), and hence EPy( f 2) = f (y)2. In the
opposite direction, take f = py, so that f 2 = f and hence ΔP( f ) = p(y)− p(y)2.
The assumption ΔP( f ) = 0 for each f implies that either p(y) = 0 or p(y) = 1 for
each y ∈ X . Definition 1.1.2 then implies that p(y) = 1 for exactly one y ∈ X . �

More generally, a collection f1, . . . , fn of n random variables and a (single) prob-
ability distribution p on X jointly define a probability distribution p f1,..., fn on the
product σ( f1)×·· ·×σ( fn) of the individual spectra by

p f1... fn(λ1, . . . ,λn) = ∑
x∈X | f1(x)=λ1,..., fn(x)=λn

p(x). (1.12)

Once again, this may be rewritten as

p f1... fn(λ1, . . . ,λn) = P( f1 = λ1, . . . , fn = λn), (1.13)

where the argument of P denotes the intersection ∩n
k=1( fk = λk), i.e.,

P( f1 = λ1, . . . , fn = λn) = {x ∈ X | f1(x) = λ1, . . . , fn(x) = λn}. (1.14)

Simple calculations then yield results for the so-called marginal distributions, like

∑
λl+1∈σ( fl+1),...,λn∈σ( fn)

P( f1 = λ1, . . . , fn = λn) = P( f1 = λ1, . . . , fl = λl), (1.15)

where 1 ≤ l < n. The above constructions also apply to the corresponding condi-
tional probabilities: given m additional random variables a1, . . . ,am, one has

∑
λl+1∈σ( fl+1),...,λn∈σ( fn)

P( f1 = λ1, . . . , fn = λn|a1 = α1, . . .am = αm) (1.16)

= P( f1 = λ1, . . . , fl = λl |a1 = α1, . . .am = αm). (1.17)
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1.2 Classical observables and states

Given a finite set X , we may form the set C(X) of all complex-valued functions on
X , enriched with the structure of a complex vector space under pointwise operations:

(λ · f )(x) = λ f (x) (λ ∈ C); (1.18)
( f +g)(x) = f (x)+g(x). (1.19)

We use the notation C(X) with some foresight, anticipating the case where X is no
longer finite, but in any case, since for the moment it is, every function is contin-
uous. Moreover, the vector space structure on C(X) may be extended to that of a
commutative algebra (where, by convention, all our algebras are associative and are
defined over the complex scalars) by defining multiplication pointwisely, too:

( f ·g)(x) = f (x)g(x). (1.20)

Note that this algebra has a unit 1X , i.e., the function identically equal to 1.
For finite X , this structure suffices for X to be recovered from C(X), as follows.

Definition 1.4. The Gelfand spectrum Σ(A) of a (complex) algebra A is the set of
all nonzero linear maps ω : A→ C that satisfy ω( f g) = ω( f )ω(g).

These are, of course, precisely the nonzero algebra homomorphisms from A to C.

Proposition 1.5. The Gelfand spectrum Σ(C(X)) is isomorphic (as a set) to X.

Proof. Each x ∈ X defines a map ωx : C(X)→ C by ωx( f ) = f (x). One obviously
has ωx ∈ Σ(C(X)), so we have a map X → Σ(C(X)), x �→ωx. We show that this map
is a bijection. Injectivity is easy: if ωx = ωy, then f (x) = f (y) for each f ∈ C(X),
so taking f = δz for each z ∈ X gives x = y (here δz(x) = δxz). To prove surjectivity,
we note that since C(X) is finite-dimensional as a vector space, with basis (δy)y∈X ,
each linear functional ω : C(X)→ C takes the form

ω( f ) = ∑
x
μ(x) f (x), (1.21)

for some function μ : X →C. For ω ∈ Σ(C(X)), find some z∈ X for which μ(z) �= 0
(this has to exist, as ω �= 0). For arbitrary w ∈ X , imposing ω(δwδz) = ω(δw)ω(δz)
enforces μ = δz (which also shows that z is unique), and hence ω = ωz. �

The physically relevant set R(X) of all real-valued functions on X is obviously
a real vector space inside C(X). To recover it algebraically, we equip C(X) with an
involution, which on an arbitrary (not necessarily commutative) algebra A is defined
as an anti-linear anti-homomorphism that squares to idA, i.e., a linear map ∗ : A→ A
(written a �→ a∗) that satisfies (λa)∗ = λa∗, (ab)∗ = b∗a∗, and a∗∗ = a. In our case
A =C(X), which is commutative, the latter property simply becomes ( f g)∗ = f ∗g∗.
In any case, we define this involution by pointwise complex conjugation, i.e.,

f ∗(x) = f (x). (1.22)
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We evidently recover the real-valued functions in the involutive algebra C(X) as

R(X)≡C(X)sa = { f ∈C(X) | f ∗ = f}. (1.23)

Finally, although we do not need this yet, we note that C(X) has a natural norm

‖ f‖∞ = sup
x∈X
{| f (x)|}. (1.24)

These structures turn C(X) into a commutative C*-algebra (cf. Definition C.1).

Definition 1.6. The algebra of observables of the physical system described by the
phase space X is C(X), seen as a (commutative) C*-algebra in the above way.

Thence elements of C(X) are called observables (a term that really should be applied
only to its self-adjoint elements, i.e., those satisfying f ∗ = f ).

We have thus equipped the random variables on X with enough structure to re-
cover X itself, and now turn to the other side of the coin, viz. the probability mea-
sures on X . Here the relevant mathematical structure is that of a compact convex set,
a concept we only need to define in the context of an ambient (real) vector space.

Definition 1.7. A subset K of a (real or complex) vector space V is called convex if
the straight line segment between any two points on K lies in K. Expressed formally,
this means that whenever v,w ∈ K and t ∈ (0,1), one has tv+(1− t)w ∈ K.

The following probabilistic reformulation of this notion is very useful.

Proposition 1.8. A set K ⊂V is convex iff for any k, given k probabilities (t1, . . . , tk)
(i.e., ti ≥ 0 and ∑i ti = 1) and k points (v1, . . . ,vk) in K, one has ∑k

i=1 ti · vi ∈ K.

Proof. Taking k = 2 recovers Definition 1.7 from its probabilistic version. Con-
versely, one uses induction on k, using the identity (assuming 0 < tk < 1):

t1v1 + · · ·+ tkvk = (1− tk)
(

t1
1− tk

v1 + · · ·+ tk−1

1− tk
vk−1

)
+ tkvk. �

Any linear subspace of V is trivially convex, as is any translate thereof (i.e., any
affine subspace of V ). Another, much more important example is the convex hull
co(S) of any subset S ⊂V ; noting that the intersection of any family of convex sets
is again convex, co(S) may be defined as the intersection of all convex subsets of V
that contain S, or, equivalently, as the smallest convex subset of V that contains S
(whose existence is guaranteed by the previous remark). Proposition 1.8 then yields

co(S) =

{
k

∑
i=1

ti · vi | k ∈ N,(v1, . . . ,vk) ∈ Sk, ti ≥ 0,∑
i

ti = 1

}
. (1.25)

In particular, if S = {v1, . . . ,vk} is a finite set, then one simply has

co({v1, . . . ,vk}) =
{

k

∑
i=1

ti · vi | ti ≥ 0,∑
i

ti = 1

}
. (1.26)
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The convex hull of any finite set of points in Rn+1 is called a convex polytope. Such
convex sets are closed and bounded (since none of the ti ≥ 0 can walk away too far
without violating the condition ∑i ti = 1), and hence are compact. In particular,

Δn = {x ∈ Rn+1 | xi ≥ 0,∑
i

xi = 1} (1.27)

is a convex polytope called a simplex. For example, Δ1 is the line segment from
(0,1) to (1,0) in R2. We would like to say that Δ1 is “isomorphic” to the unit interval
[0,1], so we define two convex sets K1,K2 to be isomorphic (as such) if there is a
bijection f : K1 → K2 that is affine, in that for t ∈ (0,1) and v1,v2 ∈ K1, we have

f (tv1 +(1− t)v2) = t f (v1)+(1− t) f (v2). (1.28)

Then the function f : Δ1→ [0,1] given by f (λ ,1−λ ) = λ , where λ ∈ [0,1], will do.
Similarly, Δ2 ⊂ R3 is isomorphic to any equilateral triangle in R2 with sides of unit
length, whereas Δ3 is just the tetrahedron (which is one of the five Platonic solids).

There are many other convex polytopes (cf. §B.11), but simplices are of prime
importance for us, since Δn is isomorphic to the set Pr(X) of all probability distribu-
tions on a set X = {0, . . . ,n}with n+1 points; the identification Pr(X)� p↔ x∈ Δn
is given by xi = p(i+ 1). In particular, we see that for any finite set X , Pr(X) is a
compact convex set. This is also clear from Definitions 1.1 and 1.7 (and will even
be true for general compact phase spaces X , cf. Corollary B.17 and §C.25).

Definition 1.9. The state space of the physical system described by a (finite) space
X is the set Pr(X) of all probability measures on X (or, equivalently, of all probability
distributions on X), seen as a compact convex set.

Thus a probability measure (or distribution) on X is often called a state (of the
physical system described by X). The operation of passing from states P,Q ∈ Pr(X)
to a new state tP+(1− t)Q ∈ Pr(X), where t ∈ (0,1) as usual, or, more generally,
from a (finite) family of states (Pi) and a set (ti) of probabilities (i.e., ti ≥ 0 and
∑i ti = 1) to the convex sum ∑i tiPi, is called mixing.

It is possible to recover X from its associated state space Pr(X), as follows.

Definition 1.10. The (extreme) boundary ∂eK of a convex set K consists of all
points v ∈ K satisfying the following condition:

if v = tw+(1− t)x for certain w,x ∈ K and t ∈ (0,1), then v = w = x.

Elements v ∈ ∂eK of the boundary are called extreme points of K.

We will now compute the boundary of Pr(X). The result may be expressed by

∂eΔn = {e1, . . . .en+1}, (1.29)

where (e1, . . . .en+1) is the standard basis of Rn+1 (i.e., e1 = (1,0, . . . ,0), etc.). How-
ever, we will give a direct probabilistic proof. We already noted the special proba-
bility measures Px, x ∈ X . The association x �→ Px defines a map from X to Pr(X).
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Proposition 1.11. The set X is isomorphic to the boundary ∂ePr(X) through x �→ Px.

Proof. It is convenient to work with probability distributions p rather than prob-
ability measures P. First, x �→ px is trivially injective from X to Pr(X): if x �= y
then px(x) = 1 whereas py(x) = 0, so px �= py. Second, px ∈ ∂ePr(X). For sup-
pose one has px = t p + (1− t)q for some p,q ∈ Pr(X) and t ∈ (0,1). Hence
px(y) = t p(y)+(1−t)q(y). Taking y �= x yields p(y) = q(y) = 0, so that p = q = px.
Consequently, X ⊆ ∂ePr(X).

The converse inclusion is (contrapositively) equivalent to the property that for
any p �= px (for all x), there are q and r, q �= r, and t ∈ (0,1), with p = tq+(1− t)r.
Indeed, if p �= px, there is some x0 ∈ X with 0 < p(x0) < 1. Now define q, r, and t
by q(x0) = 1 and q(x) = 0 for all x �= x0, r(x0) = 0 and r(x) = p(x)/(1− p(x0)), and
finally t = p(x0). Then p = tq+(1− t)r and q �= r. �

The simplest example would be X = {0,1}, so that Pr(X) ∼= [0,1] by mapping the
distribution p ∈ Pr(X) to p(1). Since one may directly verify that ∂e[0,1] = {0,1},
under the above isomorphism one therefore has ∂ePr(X) ∼= {0,1}. Analogously,
∂e(0,1) = /0, so that the boundary of a convex set may apparently be empty. Hence
we see that one remarkable ingredient of Proposition 1.11 lies in the claim that the
convex set Pr(X) actually has a (nonempty) boundary! This is no accident: by the
Krein-Milman Theorem (cf. §B.10), this is true for any compact convex set (which
is consistent with the counterexample just given). For example in quantum mechan-
ics we will encounter the case of K = B3 (i.e. the closed unit ball in R3) as the state
space of a qubit, whose (extreme) boundary is the two-sphere S2, cf. Proposition
2.9. Something similar is true in any dimension, but beware of surprises: if K = Δ2
is an equilateral triangle in the plane, then its extreme boundary ∂eK consists of the
vertices of K (whereas its faces form the geometric boundary of the triangle).

The general problem arises whether some point v ∈ K of a compact convex set K
may be written as a convex sum (or, more generally, an integral) of extreme points
of K, and if so, to what extent this extremal decomposition

v = ∑
i∈I

tivi, ti ≥ 0, ∑
i

ti = 1, vi ∈ ∂eK, (1.30)

which for simplicity has been assumed to be a finite sum here, is unique. Without
proof, we state a general result of convexity theory, called Caratheodory’s Theorem:

Theorem 1.12. If K is a nonempty compact convex subset of Rn, then ∂eK �= /0, and
each point of K is a convex sum of at most n+1 points in ∂eK.

If K = Δn, then this sum generically has n+1 points and is unique. Probabilistically:

Proposition 1.13. If X is finite, then any probability measure P ∈ Pr(X) may be
written in a unique way as a finite mixture of extreme probability measures, viz.

P = ∑
x∈X

txPx. (1.31)
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Proof. Take tx = P({x}) in the sense of Definition 1.1, or, equivalently, tx = EP(δx)
in the sense of (1.9). To see that this decomposition is unique, use Proposition 1.11,
i.e. ∂ePr(X)∼= X , in (1.30) to force I = X and apply both sides of (1.31) to δx. �

The state space and the algebra of observables may also be defined in terms of
each other. We start with the (re)construction of states from observables, where the
following definition and proposition may leave a hybrid impression. The rationale
behind our approach is that for many purposes it is easier to work with the com-
plex algebra C(X), but on the other hand, compact convex sets are most naturally
defined in terms of real vector spaces. Fortunately, it is easy to switch between the
two: we already know how to obtain the real part R(X) from C(X), see (1.23), and
conversely, C(X) is simply the complexification of the real vector space R(X).

Definition 1.14. A state on C(X) is a linear map ω : C(X)→ C that satisfies:

1. ω( f 2)≥ 0 for each f ∈C(X) with f ∗ = f (positivity);
2. ω(1X ) = 1 (normalization).

The first condition obviously comes down to ω( f )≥ 0 whenever f ≥ 0 pointwise.
Equivalently, we may define a state on R(X) as a real-linear map ωR : R(X)→R

that satisfies the very same conditions. Indeed, a state ωR on R(X) defines a
complex-linear map ω : C(X)→ C by ω( f + ig) = ωR( f )+ iωR(g), where f ,g ∈
R(X). This map satisfies the same conditions of positivity and normalization. Con-
versely, ω may be restricted to the real part R(X) of C(X), so that there is no real
(sic) difference between ω and ωR. Hence we will use these interchangeably, often
even dropping the suffix R on ω . One advantage of this ability to switch is that a
state ω on C(X) may be regarded as an element of the real vector space R(X)∗.
Doing so shows that the terminology of Definitions 1.9 and 1.14 is consistent:

Theorem 1.15. There is a bijective correspondence between states ω on C(X) and
probability measures P on X, given by ω ↔ EP, cf. (1.9) and (1.11). Therefore, as
a subset of the (real) vector space R(X)∗ of all (real-) linear maps from R(X) to R,
the set S(C(X)) of all states on C(X) coincides with the set Pr(X) of all probability
measures on X. In particular, the state space S(C(X)) of C(X) is a compact convex
set in R(X)∗ (as a finite-dimensional vector space with its usual topology).

Proof. Given a state ω , define a function p : X → R by p(x) = ω(δx). Since δx ≥ 0
pointwise, positivity of ω yields p(x) ≥ 0. Noting that 1X = ∑x δx, normaliza-
tion then forces ∑x p(x) = 1, so that p is a probability distribution on X . Hence
P ∈ Pr(X), where P is the probability measure corresponding to p. Conversely,
P ∈ Pr(X) defines a map EP : R(X)→R by (1.9), which is positive and normalized.
Note that compactness and convexity of the set S(C(X)) in R(X)∗ follow directly
from its definition, i.e., even without knowing that it equals Pr(X). �

Consequently, we may refer to S(C(X)) as the state space of C(X) without any
ambiguity, and we will always regard state spaces of (unital) C*-algebras A (cf.
Appendix C) as compact convex sets S(A), where in the present case A =C(X).
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1.3 Pure states and transition probabilities

For any C*-algebra A (with unit), and hence in particular for A =C(X), elements of
the boundary ∂eS(A) are called pure states, and we call

P(A)≡ ∂eS(A) (1.32)

the pure state space of A. States that are not pure are called mixed.

Theorem 1.16. One has P(C(X))∼=X, in that the following map is an isomorphism:

X → P(C(X)), x �→ ωx, ωx( f ) = f (x). (1.33)

Proof. Combine Proposition 1.11 and Theorem 1.15. �

For finite X this isomorphism is merely meant as a bijection between sets (and for
general compact Hausdorff spaces X it will be a homeomorphism of topological
spaces), but we will now introduce some additional structure on pure state spaces
that will enrich Theorem 1.16 to an isomorphism of so-called sets with a transition
probability. This will be necessary in order to reconstruct the observables from the
pure states, but it also clarifies the general probabilistic structure of physics (note
that the following definition is unusual in probability theory!).

Definition 1.17. 1. A transition probability on a set X is a function

τ : X×X → [0,1] (1.34)

that satisfies τ(x,y) = 1 iff x = y and τ(x,y) = τ(y,x) (symmetry).

The simplest example of a transition probability (on any set X) is obviously

τ(x,y) = δxy. (1.35)

The point is that this transition probability may be derived from the classical C*-
algebra of observables C(X) by the following formula (assuming X finite):

δxy = inf{ f (x) | f ∈C(X),0≤ f ≤ 1X , f (y) = 1}. (1.36)

Indeed, for x = y this is a tautology, whereas for x �= y the infimum (which is zero)
is attained by f = δy. In terms of the pure state space P(C(X)), which is isomorphic
to but not equal to X , cf. Theorem 1.16, this formula may be written as

δxy = inf{ωx( f ) | f ∈C(X),0≤ f ≤ 1C(X),ωy( f ) = 1}. (1.37)

Furthermore (and this is the real point, so that we already have to mention it here,
ahead of a more detailed treatment in the context of quantum mechanics), the right-
hand side of (1.37) may be generalized to any finite-dimensional C*-algebra A by

τA(ω,ω ′) = inf{ω(a) | a ∈ A,0≤ a≤ 1A,ω ′(a) = 1}, (1.38)
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where ω,ω ′ ∈ P(A). Since (1.38) clearly generalizes (1.37), for A =C(X) we have

τC(X)(ωx,ωy) = δxy. (1.39)

Note that the symmetry property in Definition 1.17 is not obvious from (1.38), but
in the classical case A = C(C) it is true by computation, and the same will hold in
quantum theory. To motivate these definitions, we recall that f in (1.37), and like-
wise a in (1.38), are yes-no question to the system, so that the transition probability
τA(ω,ω ′) monitors to what extent the states ω and ω ′ may be sharply distinguished
by asking such questions. If they can, there should be some question a for which
ω ′(a) = 1 and ω(a) = 0, so that τA(ω,ω ′) (if ω �= ω ′, of course). As we have seen,
in the classical case this can always be done. However, we shall see this is no longer
the case in quantum mechanics, where pure states may be thus distinguished iff they
correspond to orthogonal unit vectors in Hilbert space. Further motivation for the
expression (1.38) is post hoc, as it turns out to allow a reconstruction of the vec-
tor space of observables A, supplemented by the part of its algebraic structure that
determines its logical and probabilistic structure (viz. the ability to form squares,
a �→ a2) from P(A) with its associated transition probability. See Theorem C.179.

First, we develop some theory that puts both classical and quantum mechanics
into a more general setting. Notwithstanding the formal incorporation of the former,
the underlying Hilbert space thinking will be obvious throughout.

Definition 1.18. Let (X ,τ) be a set with a transition probability.

1. A subset O⊂ X is orthonormal if τ(x,y) = δxy for all x,y ∈ O.
2. A basis of a set X with a transition probability τ is an orthonormal family B⊂ X

such that for each x ∈ X one has

∑
u∈B

τ(x,u) = 1. (1.40)

A basis of a subset S ⊂ X is an orthonormal family B⊂ S such that (1.40) holds
for each x ∈ S. Relative to such a basis B of S, we define τS : X → R by

τS(x) = ∑
u∈B

τ(x,u). (1.41)

As a special case, for S = {u} we write τ{u} ≡ τu, so that

τu(x) = τ(x,u). (1.42)

3. The orthocomplement S⊥ of some subset S⊂ X is defined as

S⊥ = {y ∈ X | τ(x,y) = 0∀x ∈ S}. (1.43)

4. A subset S⊂ X is orthoclosed if S⊥⊥ = S (where S⊥⊥ = (S⊥)⊥).
5. A resolution of the identity in X is a family of orthogonal orthoclosed subsets

(S j) j (i.e., τ(xi,x j) = 0 if xi ∈ Si, x j ∈ S j, and i �= j), for which ∑ j τS j = 1X .
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6. An observable for the pair (X ,τ) is a bounded function f : X → R of the form

f = ∑
i

ci · τyi , ci ∈ R, yi ∈ X . (1.44)

The real vector space of such observables is called �∞(X ,τ).
7. A spectral resolution of an observable f ∈ �∞(X ,τ) is a decomposition

f = ∑
λ
λ · τSλ , (1.45)

where (Sλ )λ is a resolution of the identity and each λ ∈ R occurs at most once.

In the present section X is finite, whilst in the following section on quantum me-
chanics on finite-dimensional Hilbert spaces at least all bases will be finite, so that
there are no convergence issues. In general, B may be infinite, in which case (1.40)
is defined as the least upper bound of all finite partial sums, and all sums in Defi-
nition 1.18 are defined pointwise (i.e., in x). In that case, eq. (1.45) may need to be
adapted through limit constructions. Furthermore, one may worry about the basis-
dependence of τS in (1.41), but fortunately it turns out that in all sets with a transi-
tion probability that arise as pure state spaces defined by C*-algebras according to
(1.38), the function τS is independent of the basis B whenever S is orthoclosed. In
that case, spectral resolutions exists and are unique, and one may turn the real vector
space �∞(X ,τ) of part 6 into a Jordan algebra by defining a product ◦ through

f 2 = ∑
λ
λ 2 · τSλ ; (1.46)

f ◦g = 1
4 (( f +g)2− ( f −g)2). (1.47)

In the classical case this yields the pointwise product (1.20), whereas in quantum
mechanics it recovers the anti-commutator. Both are examples of Jordan products
(cf. §C.25), i.e., commutative products ◦ satisfying the curious axiom (C.619).

All this trivializes if τ = τC(X) is given by (1.35), where X need not even be finite:

1. Any subset O⊂ X is orthonormal.
2. The set B = X itself is the only basis of (X ,τ), and analogously B = S.
3. The orthocomplement S⊥ is the set-theoretic complement Sc ≡ X\S.
4. Hence any subset S⊂ X is orthoclosed.
5. Any partition X =

⊔
j S j yields a resolution of the identity.

6. Any bounded function f : X → R is an observable, so that when X is finite,

�∞(X ,τ) = R(X)≡C(X ,R); (1.48)

7. The spectral resolution (1.45) of f is given (analogously to operator theory) by

f = ∑
λ∈σ( f )

λ · τ f=λ , (1.49)

cf. Definition 1.1.5. In particular, spectral resolutions in (1.48) are unique.
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1.4 The logic of classical mechanics

Whatever one’s route to C(X ,R) as the algebra of observables, i.e. either as a start-
ing point or as a derived concept as in (1.48), it determines the logical structure of
classical mechanics (we here restrict ourselves to propositional logic). According to
the general scheme reviewed in §D.2, apart from the usual logical connectives ¬,
∧, ∨, and → for not, and, or, and implies, a propositional theory needs a set ΣX of
atomic propositions. These are provided by C(X ,R), and ΣX consist of all expres-
sions f ∈ Δ (we expect no confusion between this notation for both propositions in
logic and events in probability theory), where f : X →R is a function, and Δ is some
subset of R. As we shall see, f ∈ Δ is always false if Δ ∩σ( f ) = /0, so we might
as well assume that Δ ⊆ σ( f ). We write f = λ for f ∈ {λ}. From these elemen-
tary propositions, propositions are constructed inductively using the iterative rules
of propositional logic (see §D.2). This produces a set BX ≡ BΣX of propositions.

Of course, there are logical relations between our atomic propositions (and hence
between elements of BX ). For example, if Δ ⊂ Δ ′, then f ∈ Δ should imply f ∈ Δ ′.
Such relations may be formulated as axioms of some propositional theory TX de-
scribing the logic of classical mechanics. These axioms take the following form:

( f ∈ Γ )→ (g ∈ Δ) iff f−1(Γ )⊆ g−1(Δ). (1.50)

This may also be formulated through the notion of semantic entailment. For each
x ∈ X , we define a valuation Vx : ΣX →{0,1} (cf. §D.2) by

Vx( f ∈ Δ) = 1 iff f (x) ∈ Δ , (1.51)

extended to a map Vx : BX →{0,1} through the recursive use of truth tables. Defin-
ing the semantic entailment relation |=X on BX by α |=X β iff Vx(α) = 1 implies
Vx(β ) = 1 for all x ∈ X , it is easy to see that α→ β as defined in (1.50) iff α |=X β .

In order to compute the ensuing Lindenbaum algebra LX ≡ LΣX , we note that

( f ∈ Γ )↔ (g ∈ Δ) iff f−1(Γ ) = g−1(Δ). (1.52)

Writing ∼X for ∼TX (which is the equivalence relation given by |=X , too), we find

( f ∈ Δ)∼X (1 f−1(Δ) = 1), (1.53)

where we recall that 1A is the characteristic (or indicator) function of A. Using the
truth tables for ∧ and for ¬, we also obtain (in terms of the complement Δ c =R\Δ ):

( f ∈ Γ )∧ (g ∈ Δ)∼X (1 f−1(Γ )∩g−1(Δ) = 1); (1.54)

(¬ f ∈ Δ)∼X ( f ∈ Δ c)∼X (1 f−1(Δ c) = 1). (1.55)

Finally, the truth tables yield logical (and hence semantic) equivalences like

α ∨β ∼X ¬(¬α ∧¬β ). (1.56)



1.4 The logic of classical mechanics 35

Combining the specific and the general equivalences (1.53) - (1.56), we have:

Lemma 1.19. Any proposition in BX is logically (and semantically) equivalent (rel-
ative to X) to one of the form 1U = 1, for some event U ⊂ X. Furthermore,

(¬1U = 1)∼X (1Uc = 1); (1.57)
(1U = 1)∧ (1V = 1)∼X (1U∩V = 1); (1.58)
(1U = 1)∨ (1V = 1)∼X (1U∪V = 1). (1.59)

Theorem 1.20. The Lindenbaum algebra LX is isomorphic (as a Boolean algebra)
to the power set P(X) of X under the map ϕ : LX →P(X) induced by

ϕ([ f ∈ Δ ]X ) = f−1(Δ). (1.60)

In particular, the logical connectives ¬, ∧ and ∨ (descended to LX ) turn into set-
theoretic complementation (−)c, intersection ∩, and union ∪, respectively, in that

ϕ([¬α]X ) = ϕ([α]X )c; (1.61)
ϕ([α ∧β ]X ) = ϕ([α]X )∩ϕ([β ]X ; (1.62)
ϕ([α ∨β ]X ) = ϕ([α]X )∪ϕ([β ]X ), (1.63)

and ϕ maps the partial order ≤ on LX into set-theoretic inclusion ⊆, i.e.,

[α]X ≤ [β ]X iff ϕ([α]X )⊆ ϕ([β ]X ). (1.64)

This is immediate from Lemma 1.19. Interestingly, the Boolean algebra structure
just derived as the governor of the (propositional) logic of classical mechanics may
be reformulated in terms of the Jordan algebraic structure (1.46) - (1.47) of �∞(Xτ),
or, when X is finite, of the C*-algebra of observables C(X) itself:

• Events U ⊆X (and hence, by Theorem 1.20, logical equivalence classes of propo-
sitions) correspond bijectively to characteristic functions 1U on X , that is, with
yes-no questions (having spectrum in {0,1}). Algebraically, these are precisely
the idempotents in �∞(X ,τ), i.e., those functions e satisfying e2 = e.

• In terms of those, the partial ordering and the logical connectives are given by

e≤ f iff e◦ f = e; (1.65)
¬e = 1X − e; (1.66)

e∧ f = e◦ f ; (1.67)
e∨ f = e+ f − e◦ f . (1.68)

Indeed, in this case ◦ is pointwise multiplication (1.20). Using 1U · 1V = 1U∩V
yields (1.67), (1.65) comes down to U ⊆V iff U∩V =U , (1.66) is 1X−1U = 1Uc ,
and (1.68) follows by writing its right-hand side as 1X − (1X − e)∧ (1X − f ).
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1.5 The GNS-construction for C(X)

As a bridge from classical to quantum mechanics (as well as a good exercise), we
finally inject some Hilbert space theory into classical physics by discussing the GNS-
construction of C*-algebra theory for the special case of C(X), where X remains
finite. In general, for each state ω on a C*-algebra A, the GNS-construction canon-
ically yields a Hilbert space Hω (which is finite-dimensional for A = C(X) with
finite X) and a representation of A on Hω , in the sense of a (complex) linear map

πω : A→ B(Hω) (1.69)

that satisfies

πω(ab) = πω(a)πω(b); (1.70)
πω(a∗) = πω(a)∗. (1.71)

Furthermore, Hω contains a special unit vector Ωω that is cyclic for πω in that

πω(A)Ωω ≡ {πω(a)Ωω , a ∈ A}= Hω , (1.72)

at least in the relevant case where dim(Hω) < ∞; otherwise, the left-hand side is
merely dense in Hω and one needs to take the (norm) closure to obtain Hω . Further-
more, Ωω realizes the state ω as a quantum-mechanical expectation value by

ω(a) = 〈Ωω ,πω(a)Ωω〉Hω . (1.73)

Given ω ∈ S(A), the GNS-construction starts with the vector spaces

Nω = {a ∈ A | ω(a∗a) = 0}; (1.74)
Hω = A/Nω . (1.75)

Now, if b ∈ Nω and a ∈ A, then ab ∈ Nω , because of the important inequality

ω(b∗a∗ab)≤ ‖a‖2ω(b∗b). (1.76)

This is true for any C*-algebra A, but below we prove it only for our example.
Assuming (1.76) for the moment, the action of A on itself by left multiplication
descends to a well-defined action on Hω , which we call πω . In other words, if bω ∈
Hω is the image of b ∈ A under the canonical projection A→ A/Nω , then

πω(a)bω = (ab)ω . (1.77)

Crucially, this vector space Hω is equipped with a canonical inner product

〈aω ,bω〉= ω(a∗b). (1.78)

Indeed, this form is well defined, and is positive definite because ω is a state.
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In general, Hω as defined by (1.75) with inner product (1.78) is merely a pre-
Hilbert space, which needs to be completed in the associated norm, and it takes some
effort to check that the operators defined by (1.77) are bounded. In our example, on
the other hand, Hω is finite-dimensional and hence complete. In any case, it is easy
to verify the properties (1.70) - (1.73), whilst (1.72) holds with the unit 1 = 1H .

We now prove (1.76) for A =C(X). Fom Theorem 1.15 we have ω = EP, and by
(1.9) and (1.24), the inequality (1.76) comes down to the obviously correct result

∑
x
| f (x)g(x)|2 ≤ ‖ f‖2

∞ ∑
x
|g(x)|2. (1.79)

Writing NEP ≡ NP, we may also check directly that if g ∈ NP and f ∈ C(X), then
f g ∈ NP. Indeed, in terms of the set supp(P)⊆ X defined by

supp(P) = {x ∈ X | p(x)> 0}, (1.80)

we have
NP = { f ∈C(X) | f (x) = 0∀x ∈ supp(P)}, (1.81)

and clearly g = 0 on supp(P) implies f g = 0 on supp(P). We now compute HP and
πP. From (1.81) we have f − g ∈ NP and hence f ∼ g iff f (x) = g(x) for all x ∈
supp(P), where ∼ is the equivalence relation whose equivalence classes fP define
elements of HP =C(X)/NP. Hence fP is simply the restriction of f to supp(P), and

HP = �2(X ,P) (1.82)

is the Hilbert space that consists of these restriction, with inner product

〈 fP,gP〉= ∑
x∈supp(P)

p(x) f (x)g(x). (1.83)

The representation (1.77) then trivially gives

πP( f )gP = fPgP, (1.84)

so that πP( f ) is the multiplication operator defined by f on �2(X ,P). In functional
analysis one often denotes elements gP ∈ �2(X ,P) by the functions g themselves,
and similarly writes πP( f ) as f , so that (1.84) simply reads πP( f )g = f g.

The operator norm of πP( f ) is easily computed to be

‖πP( f )‖= sup{| f (x)|,x ∈ supp(P)}= ‖ f|supp(P)‖∞. (1.85)

Indeed, the bound ‖πP( f )‖ ≤ ‖ f|supp(P)‖∞ is immediate from the definition

‖πP( f )‖= sup{‖πP( f )gP‖,gP ∈ HP,‖gP‖= 1}, (1.86)

and equality in this bound follows from applying the operator πP( f ) to the function
g = 1U , where U ⊂ X is any set where | f | attains its maximum ‖ f|supp(P)‖∞.
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Notes

§1.1. Basic constructions of probability theory

§1.2. Classical observables and states

For (advanced) treatments of convexity theory and probability theory in contexts
relevant to mathematical physics we recommend Israel (1979), Alfsen & Shultz
(2001), and Simon (2001).
§1.3. Pure states and transition probabilities

Transition probabilities (in the abstract sense meant here) were introduced by von
Neumann, but his manuscript from 1937 was only published in 1981 as von Neu-
mann (1981/1937). This remarkable paper has remained largely unused (or even un-
known) in both mathematical physics and operator algebras; Mielnik (1968), Shultz
(1982), and Landsman (1996, 1997) are exceptions. An extensive discussion with
further references may be found in Landsman (1998a).
§1.4. The logic of classical mechanics

Unless one counts Boole (1847), it seems that the logical analysis of classical
mechanics was initiated by the famous paper of Birkhoff & von Neumann (1936),
which was primarily concerned with quantum logic (cf. §2.10). Our use of semantic
implication (also in the quantum case) was inspired by Rédei (1998).
§1.5. The GNS-construction for C(X)

See §C.12 for the GNS-construction in general.



Chapter 2

Quantum mechanics on a finite-dimensional

Hilbert space

The quantum analogue of a finite set X (in its role as a configuration space in clas-
sical mechanics) is the finite-dimensional Hilbert space �2(X), by which we mean
the vector space of functions ψ : X → C, equipped with the inner product

〈ψ,ϕ〉= ∑
x∈X

ψ(x)φ(x). (2.1)

There is no issue of convergence here, but later on we will use the same notation
for infinite sets X , where �2(X) is restricted to those functions (i.e. sequences) for
which ∑x∈X |ψ(x)|2 < ∞ (which also guarantees convergence of the sum in (2.1)).

If X ∼= n as sets (i.e., |X |= n), we have a unitary isomorphism of Hilbert spaces

�2(n)∼= Cn, (2.2)

through the map ψ �→ (ψ(1), . . . ,ψ(n)), where Cn has the standard inner product.
〈w,z〉 = ∑i wizi. In particular, the function δk ∈ �2(n), defined by δk(l) = δkl , is
mapped to the k’th standard basis vector uk ≡ |k〉 of Cn, i.e., u1 = (1,0, . . . ,0), etc.
In the special case X = NΛ considered in Chapter 1, we have |X |= N|Λ | and hence

�2(NΛ )∼= C(N|Λ |) ∼= (CN)⊗|Λ | =⊗
n∈Λ

CN
n ≡

⊗
Λ

CN , (2.3)

where CN
n =CN for each n∈Λ , so that the suffix n merely labels which copy of CN

is meant (see §C.13 for tensor products of Hilbert spaces). Explicitly, a canonical
unitary isomorphism �2(NΛ )→⊗

Λ CN is given by linear extension of the map

δx �→ ⊗n∈Λux(n), (2.4)

where x :Λ →N and hence ux(n) ∈CN . Thus elements of the tensor product
⊗

Λ CN

may be seen as wave-functions on spin configuration space (and vice versa). In par-
ticular, elementary tensor products of basis vectors in

⊗
Λ CM correspond to wave-

functions in �2(MΛ ) that are δ -peaked at some ‘classical’ spin configuration.
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2.1 Quantum probability theory and the Born rule

In preparation for this chapter, the reader would do well to review Appendix A.
The probabilistic setting of quantum mechanics is given by the following coun-

terpart of Definition 1.1 (from which conditional probabilities are lacking, though).

Definition 2.1. Let H be a finite-dimensional Hilbert space.

1. A (quantum) event is a linear subspace L of H (which is automatically closed).
2. A (quantum) probability distribution is a density operator, i.e., a positive

operator ρ on H (in that 〈ψ,ρψ〉 ≥ 0 for all ψ ∈ H) such that

Tr(ρ) = 1. (2.5)

We denote the set of all density operators on H by D(H).
3. A (quantum) random variable is a self-adjoint operator a on H (i.e., a∗ = a).
4. The spectrum of a self-adjoint operator a is the set σ(a)⊂ R of its eigenvalues.

Being positive, a density matrix ρ is self-adjoint, so by Theorem A.10, notably
(A.40), and Definition 2.1.2 we have

ρ = ∑
i

pi|υi〉〈υi|, pi > 0, ∑
i

pi = 1, (2.6)

where the (υi) form an orthonormal set in H and |υi〉〈υi| is the (orthogonal) pro-
jection on the one-dimensional subspace C ·υi. As in the classical case, one special
class of density operators and one special class of random variables stand out:

• Each unit vector ψ ∈ H defines a density operator

ρψ ≡ eψ = |ψ〉〈ψ|, (2.7)

i.e., the (orthogonal) projection eψ on the one-dimensional subspace C ·ψ . A
basis (which by convention always means an orthonormal basis) of eigenvectors
of ρψ consists of υ1 = ψ itself, supplemented by any basis (υ2, . . . ,υdim(H)) of
the orthogonal complement of C ·ψ . The corresponding probabilities in (2.6) are
evidently p1 = 1 and pi = 0 for all i > 1.

• Each quantum event L ⊂ H defines the corresponding projection eL (which is
self-adjoint, i.e. a random variable): If (υ j) is a basis of L, then eL = ∑ j |υ j〉〈υ j|.
If L =H then eL = 1 with σ(eL) = {1}. If L = {0} then eL = 0 with σ(eL) = {0}.
In all other cases, i.e. for proper subspaces L, one has σ(eL) = {0,1}.
Conversely, any self-adjoint operator a with spectrum σ(a)⊆ {0,1} is given by
a= eL for some subspace L⊆H; just take L = {ψ ∈H | aψ = 1}. Such operators
correspond to yes-no questions to the system and lie at the basis of the logical
interpretation of quantum theory due to Birkhoff and von Neumann; see §2.10.

The following quantum analogue of Theorem 1.2 is based on Theorem A.10.
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Theorem 2.2. A density operator ρ on H and a self-adjoint operator a : H → H
jointly yield a probability distribution pa on the spectrum σ(a) by the Born rule

pa(λ ) = Tr(ρeλ ). (2.8)

The associated probability measure Pa is given at Δ ⊆ σ(a) by (cf. (A.42))

Pa(Δ) = Tr(ρeΔ ). (2.9)

Proof. Positivity of the numbers pa(λ ) follows by taking the trace over a basis of
eigenvectors υi of ρ , with corresponding eigenvalues pi ≥ 0. This yields

Tr(ρeλ ) = ∑
i

pi ‖eλυi‖2 ≥ 0.

Eqs. (A.38) and (2.5) then give ∑λ pa(λ ) = 1. Eq. (2.8) follows from the equality
Pa(Δ) = ∑λ∈Δ pa(Δ), cf. (1.2), and (A.42). �

In particular, if ρ = ρψ , writing pψa for the associated probability, (2.8) yields

pψa (λ ) = 〈ψ,eλψ〉= ‖eλψ‖2. (2.10)

If in addition λ ∈σ(a) is non-degenerate, so that eλ = |υλ 〉〈υλ | for some unit vector
υλ with aυλ = λυλ , then the Born rule (2.9) assumes its original form

pψa (λ ) = |〈ψ,υλ 〉|2. (2.11)

Specializing (2.10) to the random variable a = eL defined by an event L⊂ H yields

pψeL
(1) = ‖eLψ‖2. (2.12)

If L = C ·ϕ is one-dimensional, too, in which case we write pψeϕ ≡ pψϕ , we have

pψϕ (1) = |〈ψ,ϕ〉|2; (2.13)

note the following equality of probability distributions on σ(eϕ) = σ(eψ) = {0,1}:

pψϕ (1) = pϕψ(1). (2.14)

Expectation values and variances may be defined as in the classical case, viz.

Eρ(a) = Tr(ρa); (2.15)

Δρ(a) = Eρ(a2)−Eρ(a)2. (2.16)

Similar to (1.11), we may also write the expectation value as

Eρ(a) = ∑
λ∈σ(a)

λ · pa(λ ). (2.17)
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The special case ρ = ρψ , for which we write Eρψ ≡ Eψ , gives the usual formula

Eψ(a) = Tr(ρψa) = 〈ψ,aψ〉. (2.18)

As in the classical case one always has Δρ(a)≥ 0, but a major contrast between
classical and quantum mechanics lies in the following result, cf. Proposition 1.3.

Proposition 2.3. For each density operator ρ there exists a self-adjoint operator b
such that Δρ(b)> 0. On the other hand, if a∗ = a, then Δρ(a) = 0 iff the image of ρ
lies in some fixed eigenspace of a, i.e., in terms of the spectral decomposition (2.6)
we have aυi = λυi where λ is independent of i.

Proof. We first prove the first claim for H = C2. By an appropriate choice of basis,
we may assume that ρ is diagonal, i.e., ρ = diag(p1, p2), with p1, p2 ∈ [0,1] and
p1 + p2 = 1. Now take b = σx (i.e., the first Pauli matrix), so that Tr(ρb) = 0 and
Tr(ρb2) = 1. Hence Δρ(b) = 1. Secondly, for general H ∼= Cn, diagonalize ρ and
order the eigenvectors such that the above 2×2 case forms the upper left block, with
at least one of the eigenvalues p1, p2 strictly positive. Take b to be σx in the upper
left corner, and zero elsewhere. This once again yields Δρ(b) = 1.

For the second claim we use (2.6), and write ρi ≡ ρυi . We note the inequality

Δρ(a)≥∑
i

piΔρi(a), (2.19)

with equality iff ρi(a) = ρ j(a) for all i, j; this follows from convexity of the function
x �→ x2. We now show that for any unit vector ψ we have Δρψ = 0 iff aψ = λψ .
Assuming the latter gives Eψ(a) = 〈ψ,aψ〉 = λ and likewise Eψ(a2) = λ 2, hence
Δρψ (a) = 0. In the opposite direction, using a∗ = a, elementary manipulations yield

Δρψ (a) = ‖(a−〈ψ,aψ〉)ψ)‖2. (2.20)

This clearly vanishes iff aψ = 〈ψ,aψ〉ψ , so aψ = λψ , with λ = 〈ψ,aψ〉.
Putting ψ = υi gives Δρi = 0 iff aυi = λiυi, and then Δ∑i piρi(a) = 0 iff in addition

ρi(a) = ρ j(a) for all i, j. Since ρi(a) = 〈υi,aυi〉= λi, we obtain λi = λ j. �

As first recognized by von Neumann, Theorem 2.2 may be generalized to a fam-
ily of self-adjoint operators as long as they commute. Thus we obtain the following
counterpart of (1.12) - (1.13): a collection a1, . . . ,an of n commuting self-adjoint
operators and a (single) density operator ρ on H jointly define a probability distri-
bution pa1,...,an on the product σ(a1)×·· ·×σ(an) of the individual spectra by

pa1,...,an(λ1, . . . ,λn) = Tr(ρe(1)λ1
· · ·e(n)λn

). (2.21)

The proof of positivity of these numbers requires the spectral projections e(i)λi
to com-

mute, which they do provided the ai commute (if the ai fail to commute, positivity
of (2.21) is not guaranteed, although they do still sum op to unity; the possibility of
defining joint probabilities is strictly limited to commuting random variables).
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2.2 Quantum observables and states

Given a finite-dimensional Hilbert space H, the set B(H) of all linear operators on H
(which for H =Cn may be identified with the set Mn(C) of complex n×n matrices)
forms an involutive algebra under the natural (pointwise) operations

(λ ·a)ψ = λ (aψ); (2.22)
(a+b)ψ = aψ+bψ; (2.23)

(ab)ψ = a(bψ), (2.24)

and finally with a∗ given by the usual operator adjoint (A.15). Compare the corre-
sponding classical expressions (1.18) - (1.20) and (1.22). Analogous to (1.24), we
also have a norm on B(H), defined by (A.18). It follows that like its classical coun-
terpart C(X), the involutive algebra B(H) (or, in this case, Mn(C)) is a C*-algebra,
cf. Definition C.1 in Appendix C. It crucially differs from C(X) in that B(H) is
non-commutative. For this reason, the Gelfand spectrum, which in the classical case
allowed us to reconstruct X from C(X), turns out to be empty, cf. Proposition 2.10
below. Nonetheless, it makes good sense to copy Definition 1.14, mutatis mutandis:

Definition 2.4. A state on B(H) is a complex-linear map ω : B(H)→ C satisfying:

1. ω(a∗a)≥ 0 for each a ∈ B(H) (positivity);
2. ω(1H) = 1 (normalization).

The state space S(B(H)) is the set of all states ω : B(H)→ C.

Physicists may not like this definition, since it involves non-observable quantities.
As in the classical case, we may introduce the self-adjoint (or ‘real’) part of B(H):

B(H)sa = {a ∈ B(H) | a∗ = a}, (2.25)

which is a real vector space (though not a real algebra in the usual sense, cf. §C.25).

Definition 2.5. A state on B(H)sa is a real-linear map ω : B(H)sa → R satisfying:

1. ω(a2)≥ 0 for each a ∈ B(H) with a∗ = a (positivity);
2. ω(1) = 1 (normalization).

The state space S(B(H)sa) is the set of all states ω : B(H)sa → R.

Fortunately, there is no need for a fight over this point; the discussion is similar to
the one below Definition 1.14 and is settled as follows.

Proposition 2.6. The state spaces S(B(H)) and S(B(H)sa) may be identified: an
element ω of the former defines an element ωR of the latter by restriction, whilst the
unique decomposition c= a+ ib (where a∗= a and b∗= b are given by a= 1

2 (c+c∗)
and b =− 1

2 i(c− c∗), respectively) gives ω(c) = ωR(a)+ iωR(b). Moreover,

‖ω‖= ‖ωR‖= 1. (2.26)
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Here the norm on the dual (Banach) space B(H)∗sa of B(H)sa is given by

‖ω‖= sup{|ω(a)|,a ∈ B(H)sa,‖a‖= 1}. (2.27)

This lemma holds for any Hilbert space H (cf. Theorem C.52), but it is instructive
to restrict our proof to the finite-dimensional setting in which we currently work.

Proof. The first few claims are immediate from Proposition A.22. To prove (2.26),
it suffices to prove that for any a ∈ B(H) one has

|ω(a)| ≤ ‖a‖, (2.28)

since by normalization of states the bound is saturated by a= 1H . Furthermore, even
if ω is seen as an element of B(H)∗ rather than B(H)∗sa, eq. (2.28) needs to be shown
only for self-adjoint a, for positivity of ω implies the Cauchy–Schwarz inequality

|ω(a∗b)|2 ≤ ω(a∗a)ω(b∗b), (2.29)

cf. (A.1), in which we may take a = 1H to find, assuming (2.28) for self-adjoint a,

|ω(b)|2 ≤ ω(b∗b)≤ ‖b∗b‖= ‖b‖2, (2.30)

where the last equality holds for any b ∈ B(H) (turning the latter into a C*-algebra).
Noting that b∗b is self-adjoint, this gives (2.28) for any a. To prove (2.28) for a∗ = a,
then, we firstly use (A.47), and secondly use Theorem 2.7 and eq. (2.6) to obtain

|ω(a)|= |Tr(ρa)|= |∑
i

pi〈υi,aυi〉| ≤∑
i

pi|〈υi,aυi〉|. (2.31)

Now let (ξ j) be a basis of H consisting of eigenvectors of a, so that

〈υi,aυi〉= ∑
j
|〈υi,ξ j〉|2λ j, ∑

j
|〈υi,ξ j〉|2 = 1.

Since |λ j| ≤ ‖a‖ and ∑i pi = 1, the bound (2.28) follows from the estimate

∑
i

pi|〈υi,aυi〉| ≤∑
i

pi ∑
j
|〈υi,ξ j〉|2|λ j| ≤∑

i
pi ∑

j
|〈υi,ξ j〉|2‖a‖= ‖a‖. (2.32)

Finally, combining (2.31) and (2.32) gives (2.28) for self-adjoint a. �

In view of this, we may work with either S(B(H)sa) or S(B(H)); denoting states
simply by ω , the context will usually show if it is defined on B(H)sa or on B(H).

Despite its easy proof, the following result is of fundamental importance.

Theorem 2.7. If H is finite-dimensional, there is a bijective correspondence be-
tween states ω on B(H) or B(H)sa and density operators ρ on H, given by

ω(a) = Tr(ρa). (2.33)
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Proof. First note that linear algebra already yields (2.33) as a bijective correspon-
dence between complex-linear maps ω and operators ρ , for example, because

〈a,b〉= Tr(a∗b) (2.34)

defines an inner product on B(H). Positivity and normalization of ω then translate
to the corresponding properties of ρ . �

The quantum analogue of Theorem 1.15, then, is as follows.

Theorem 2.8. The state space S(B(H)sa) = S(B(H)) forms a compact convex set in
the (real) vector space B(H)∗sa (in its w∗-topology) and, putting the corresponding
topology on D(H), eq. (2.33) defines an affine homeomorphism

S(B(H))∼= D(H). (2.35)

Proof. Convexity of S(B(H)) holds by Definition 2.4. For compactness, by Propo-
sition 2.6 the state space S(B(H)) is contained in the closed unit ball B1 of B(H)∗sa,
which is compact in the w∗-topology (in the case at hand this is simply because
B(H)∗sa is finite-dimensional). It is easy to see that a convergent sequence of states
actually converges to a state, since both conditions in Definition 2.4 are clearly pre-
served by w∗ limits (in which ωn → ω iff ωn(a)→ ω(a) for each a ∈ B(H)). �

For infinite-dimensional Hilbert spaces eq. (2.35) is false; see §4.2. At the opposite
end, the case H = C2 provides a beautiful illustration of this theorem (and more).

Proposition 2.9. The state space S(M2(C)) of the 2×2 matrices is isomorphic (as
a compact convex set) to the closed unit ball B3 = {(x,y,z) ∈R3 | x2 +y2 + z2 ≤ 1}.

On this isomorphism, the extreme boundary (cf. Definition 1.10)

∂eB3 = S2 = {(x,y,z) ∈ R3 | x2 + y2 + z2 = 1} (2.36)

corresponds to the set of all density matrices ρ = ρψ , where ψ ∈ C2 with ‖ψ‖= 1.

Proof. Any self-adjoint 2×2 matrix may be parametrized by (t,x,y,z) ∈ R4 as

ρ(t,x,y,z) = 1
2

(
t + z x− iy
x+ iy t− z

)
. (2.37)

The eigenvalues λi of ρ(t,x,y,z), computed from its characteristic polynomial, are

λ± = 1
2 (t±

√
x2 + y2 + z2). (2.38)

Condition (2.5) yields t = 1. Positivity of ρ(1,x,y,z) is equivalent to positivity of
its eigenvalues λi, which gives x2 + y2 + z2 ≤ 1. For the second claim, note that the
ρψ are just the one-dimensional projections, which in turn are the density matrices
satisfying ρ2 = ρ (or require λ+ = 1, λ− = 0), so x2 + y2 + z2 = 1. Finally, since
convex sums tv+ (1− t)w in B3 (0 ≤ t ≤ 1) are given by straight line segments
connecting w and v in R3, it immediately follows geometrically that ∂eB3 = S2. �



46 2 Quantum mechanics on a finite-dimensional Hilbert space

2.3 Pure states in quantum mechanics

In classical physics, the phase space X arose both as the Gelfand spectrum Σ(C(X))
of the C*-algebra of observables C(X), cf. Definition 1.4 and Proposition 1.5,
and as the pure state space P(C(X)) of C(X), see Definition 1.10 and Theorem
1.16. In particular, Σ(C(X)) ∼= P(C(X)) at least as sets. Because of this, any pure
state ω ∈ P(C(X)) is dispersion-free, since as an element of Σ(C(X)) it satisfies
ω( f 2) =ω( f )2 for any f ∈C(X). These two definitionally different (but classically
coinciding) guises of X will fall apart in quantum mechanics; cf. Proposition 2.3.

Proposition 2.10. If dim(H)> 1, the Gelfand spectrum Σ(B(H)) of B(H) is empty,
i.e., there are no nonzero linear maps ω : B(H)→C that satisfy ω(ab) =ω(a)ω(b).

In particular, there are no nonzero linear maps ω : B(H)→C that are dispersion-

free, i.e., satisfy Δω(a) = 0, with Δω(a) = ω(a2)−ω(a)2.

Proof. Suppose ω ∈ Σ(B(H)). Multiplicativity for b = a = a∗ implies that ω is
positive, whereas for b = 1H it implies that ω is normalized. Hence ω must be a
state. Now use Theorem 2.7 and use multiplicativity for b = a = a∗, implying that
Δρ(a) = 0. This contradicts Proposition 2.3. �

On the other hand, the pure state space of B(H) is by no means empty, and despite
Proposition 2.10, we will see that the special density operators ρψ ≡ eψ in (2.7) to
some extent do play the role of the points x ∈ X . Let us write

P1(H) = {e ∈ B(H) | e2 = e∗ = e,Tr(e) = 1} (2.39)

for the set of all one-dimensional projections on H; note that Tr(e) = dim(eH) for
e∈P(H). Each e∈P1(H) takes the form e= eψ for some unit vector ψ , see (2.7).

Lemma 2.11. A density operator ρ is an extreme point of the convex set D(H) of
all density operators on H iff ρ = ρψ for some unit vector ψ ∈ H.

Proof. The argument is similar to the proof of Proposition 1.11. To show that ρψ ∈
∂eS(B(H)), assume ρψ = tρ1 +(1− t)ρ2 for some t ∈ (0,1) and ρ1,ρ2 ∈ S(B(H)).
Evaluating this equality at a = |ϕ〉〈ϕ|, where ϕ ⊥ψ yields 〈ϕ,ρiϕ〉= 0 for i = 1,2,
so that ρ1 = ρ2 = ρψ . Conversely, the spectral decomposition (2.6) shows that ρ /∈
∂eS(B(H)) whenever ρ �= ρψ for some unit vector ψ ∈ H. �

Consequently, for the moment just as sets (and even as topological spaces), one has

P(D(H)) = P1(H); (2.40)
P(B(H)) ∼= P1(H), (2.41)

where the second isomorphism is given by (2.33). Defining a state ωψ by

ωψ(a) = 〈ψ,aψ〉, (2.42)

cf. (2.18), the isomorphism (2.41) is the correspondence ωψ ↔ eψ , cf. (2.7).
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This isomorphism becomes more interesting if we note that both spaces are nat-
urally equipped with transition probabilities. For P(B(H)) we canonically have

τB(H)(ωψ ,ωϕ) = inf{ωψ(a) | a ∈ B(H),0≤ a≤ 1H ,ωϕ(a) = 1}, (2.43)

as in (1.38) for A = B(H). Furthermore, on P1(H) we define (with some foresight)

τP1(H)(e, f ) = Tr(e f ). (2.44)

Theorem 2.12. The pairs (P(B(H)),τB(H)) and (P1(H),τP1(H)) are isomorphic
as sets with a transition probability. In particular, we have, cf. (2.13),

τB(H)(ωψ ,ωϕ) = |〈ψ,ϕ〉|2 = Tr(eψeϕ) = τP1(H)(eψ ,eϕ). (2.45)

Proof. The last equality is a simple computation. The first follows if we can show
that the infimum in (2.43) is reached at a = eϕ . To this end, we prove that for any
0≤ a≤ 1H with ωϕ(a) = 1 we must have 〈ψ,aψ〉 ≥ |〈ϕ,ψ〉|2. Indeed, the condition
ωϕ(a) = 〈ϕ,aϕ〉 = 1 with ‖a‖ ≤ 1 (which follows from 0 ≤ a ≤ 1H ) and ‖ϕ‖ = 1
imply, by Cauchy–Schwarz, that aϕ = ϕ . Since a∗ = a (by positivity of a), we also
have a : (C ·ϕ)⊥ → (C ·ϕ)⊥, so we may write a = eϕ + a′, with a′ϕ = 0 and a′
mapping (C ·ϕ)⊥ to itself. Then a ≥ 0 implies a′ ≥ 0. If 〈ψ,aψ〉 < |〈ϕ,ψ〉|2, then
〈ψ,a′ψ〉< 0, which contradicts positivity of a′ (and hence of a). �

The theory of observables and spectral resolutions of the kind (1.45) may be
worked out completely for the “quantum” transition probabilities in this theorem:

Proposition 2.13. 1. There is a bijective correspondence between self-adjoint op-
erators a ∈ B(H) and observables f on (P1(H),τP1(H)) à la Definition 1.18.6:

• Given a self-adjoint operator a, define an observable fa at eψ ∈P1(H) by

fa(eψ) = Tr(eψa) = 〈ψ,aψ〉; (2.46)

• Given an observable f = ∑i ciτ
P1(H)
ei , define an operator a f by

a f = ∑
i

ciei. (2.47)

2. Each such observable f = fa has a unique spectral resolution as in (1.45), i.e.,

fa = ∑
λ∈σ(a)

λ · τSλ , (2.48)

where Sλ is the (automatically orthoclosed) subset of P1(H) whose elements e
satisfy eH ⊆ Hλ , where Hλ ⊆ H is the eigenspace for the eigenvalue λ ∈ σ(a).

3. The product defined by (1.46) - (1.47) is equal to

f 2
a = fa2 ; (2.49)

fa ◦ fb = f(ab+ba)/2. (2.50)
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Proof. Any spectral decomposition a = ∑iλi|υi〉〈υi| puts fa as defined in (2.46) in
the general form (1.44), with ci = λi and yi = eυi . The rest should be clear. �

We now turn to the quantum counterpart of Proposition 1.13. The main difference
is that although extremal decompositions of mixed states into pure ones always
exist, they are no longer unique. For example, for H = C2, we have

ρ ≡ diag(2/3,1/3) = 2
3ρu1 +

1
3ρu2 =

1
2 (ρξ1

+ρξ2
),

where (u1,u2) is the standard basis of C2, and

ξ1 = (
√

2/3,
√

1/3), ξ2 = (
√

2/3,−
√

1/3).

More generally, take any basis (wi) of H ∼= Cn, assume (2.6), and for each i for
which

√ρwi �= 0 (where
√ρ = ∑i

√
pi|υi〉〈υi|), define ti = ‖√ρwi‖2, as well as the

unit vector ξi =
√ρwi/‖√ρwi‖. Then ρ = ∑i tiρξi is an extremal decomposition of

ρ . The above example corresponds to the special case t1 = t2 = 1/2, with

n = 2, p1 = 2/3, p2 = 1/3, w1 = (1/
√

2,1/
√

2), w2 = (1/
√

2,−1/
√

2).

One might require the ξi to be mutually orthogonal, but even that does not imply
uniqueness of the extremal decomposition: take, for example, ρ = (1/n) ·1n, where
1n is the n×n unit matrix on H = Cn. Then any basis induces (2.6).

Nonetheless, under appropriate assumptions uniqueness does follow.

Proposition 2.14. 1. Any density operator ρ on H has an extremal decomposition

ρ =
m

∑
i=1

piρψi , (2.51)

where m≤ dim(H), the pi are probabilities, and the ψi are distinct unit vectors.
2. This decomposition can be chosen such that the ψi are mutually orthogonal, in

which case it is unique iff each of the non-zero eigenvalues of ρ is simple.

Proof. The existence of the extremal decomposition (2.51) of ρ follows from its
spectral decomposition (2.6), which also proves claim 2. If ρ has some degenerate
non-zero eigenvalue, the example just given yields non-uniqueness of (2.51). For the
converse direction, use uniqueness of the decomposition (2.6) under the condition
that each of the non-zero eigenvalues of ρ is simple. �

In the light of Theorem 2.7, it would be interesting to reformulate Proposition 2.14
directly in terms of the states on B(H); note our standing assumption dim(H)< ∞!

Proposition 2.15. 1. Any state ω on B(H) has an extremal decomposition

ω =
m

∑
i=1

piωi, (2.52)

into distinct pure states ωi ∈ P(B(H)), where m≤ dim(H), pi > 0, and ∑i pi = 1.
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2. The unit vectors ψi that correspond to the pure states ωi in (2.52) via (2.42) are
mutually orthogonal (and hence are part or all of a basis of H) iff

‖ωi−ω j‖= 2 (i �= j). (2.53)

3. Extremal decompositions (2.52) satisfying (2.53) exist and correspond bijectively
to orthogonal families (ei) of one-dimensional projections on H (i.e., eie j = δi jei
and Tr(ei) = 1, respectively) for which ω(ei)> 0, ∑iω(ei) = 1, and

ω(aei) = ω(eia), a ∈ B(H). (2.54)

In terms of such a family, the decomposition (2.52) is given by

pi = ω(ei); (2.55)

ωi(a) =
ω(aei)

ω(ei)
. (2.56)

Hence an extremal decomposition (2.52) with all ωi mutually orthogonal in the
sense of (2.53) is unique iff the family (ei) with the above properties is.

Proof. Claim 1 clearly follows from no. 3. To prove (2.53), assume (2.42), so that

‖ωi−ω j‖= sup{|〈ψi,aψi〉−〈ψ j,aψ j〉|, a ∈ B(H),‖a‖= 1}. (2.57)

Clearly, |〈ψ,aψ〉| ≤ 1 when ‖a‖ = ‖ψ‖ = 1, hence |〈ψi,aψi〉 − 〈ψ j,aψ j〉| ≤ 2,
and the upper bound ‖ωi −ω j‖ = 2 in (2.57) is reached iff |〈ψ1,aψ1〉| = 1 and
〈ψ2,aψ2〉 = −〈ψ1,aψ1〉. By Cauchy–Schwarz, this holds iff aψ1 = λψ1 as well
as aψ2 = −λψ2 for some λ ∈ T. If ψi ⊥ ψ j, then this is accomplished by the
operator a = |ψi〉〈ψi| − |ψ j〉〈ψ j|; note that σ(a) = {−1,1} for dim(H) = 2 and
σ(a) = {−1,0,1} for dim(H) > 2, so indeed ‖a‖ = 1 by (A.47). If, on the other
hand, 〈ψi,ψ j〉 �= 0, then no a with ‖a‖ = 1 can meet these eigenvalue equations.
One way to see this is to reduce to H =C2, since a in (2.57) can be replaced by eae,
where e is the projection onto the linear span of ψi and ψ j. Picking a basis of C2

(with say υ1 =ψ1), the two eigenvalue equations for a yield a matrix representation
of a, from which ‖a‖2 = ‖a∗a‖ may be computed by calculating the eigenvalues of
a∗a and using (A.47). This gives ‖a‖> 1 unless 〈ψi,ψ j〉= 0.

One direction of the proof of the third claim easily follows from Theorem 2.7:
any spectral decomposition (2.6) of ρ provides the projections

ei = |υi〉〈υi| (2.58)

of the proposition. For example, eq. (2.54) comes down to [ρ,ei] = 0, which is
the case iff ei commutes with all spectral projections of ρ , which clearly holds for
(2.58). Uniqueness of the ei then corresponds to uniqueness of (2.6) and hence to
non-degeneracy of the non-zero eigenvalues pi of ρ , as in Proposition 2.14.

The opposite direction, i.e., proving that (2.58) exhausts all possibilities for
(2.53) - (2.54), is based on the GNS-construction and requires an entire subsection.
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2.4 The GNS-construction for matrices

The proof of Proposition 2.15 may be completed on the basis of the GNS-construction
began in §1.5, which in this subsection we develop for A = B(H), where, as usual,
dim(H)< ∞. In that case, we may use Theorem 2.7 to simplify matters.

First, to prove (1.76) we use (2.33) and cyclicity of the trace, compute the trace
by summing over a basis (υi) of eigenvectors of a∗a, say a∗aυi = μiυi, where μi ≥ 0
by positivity of a∗a, and use (A.47) (for a∗a rather than a) to obtain:

ω(b∗a∗ab) = Tr(ρb∗a∗ab) = ∑
i
〈υi,bρb∗a∗aυi〉= ∑

i
μi〈υi,bρb∗υi〉

≤ ‖a∗a‖∑
i
〈υi,bρb∗υi〉= ‖a‖2Tr(ρb∗b) = ‖a‖2ω(b∗b),

where we used 〈υi,bρb∗υi〉= 〈b∗υi,ρb∗υi〉 ≥ 0 to justify the inequality.
We now explain all cases of interest, paying special attention to the commutant

πω(A)′ = {B ∈ B(Hω) | πω(a)B = Bπω(a)∀a ∈ A}; (2.59)

to distinguish operators on H from operators on Hω , we write the latter in capitals.
For simplicity we also put H = Cn (with the standard inner product), so that

B(H) = Mn(C), (2.60)

and all operators are matrices. Performing a suitable unitary transformation or
change of basis if necessary, we also assume that the unit vectors υi in the spec-
tral decomposition (2.6) of ρ form (all or part of) the standard basis (υ1, . . . ,υn) of
Cn. As in (1.74), we denote the null space by

Nρ = {a ∈ B(H) | Tr(ρa∗a) = 0}. (2.61)

• If ρ = |υ j〉〈υ j|, the corresponding pure state (2.42) is ω(a) = 〈υ j,aυ j〉, with

Nρ = {a ∈ A | aυ j = 0}. (2.62)

Hence a ∈ Nρ iff the j’th column Cj(a) of a vanishes, so we have a− b ∈ Nρ iff
Cj(a) = Cj(b). Thus the equivalence class aρ ∈Mn(C)/Nρ may be identified with
Cj(a). Consequently, we obtain

Hρ = Mn(C)/Nρ ∼= Cn, (2.63)

under the unitary isomorphism u : Hρ →Cn, aρ �→Cj(a), with inverse u−1 : z �→ aρ ,
z ∈ Cn, where a is the matrix with Cj(a) = z and zeros elsewhere (i.e., ai j = zi and
aik = 0 for all i and k �= j). We likewise write u−1w = bρ , with bi j = wi and bik = 0
for all i and k �= j. With uaρ = z and ubρ = w, we obtain (beware: no sum over j!):

〈aρ ,bρ〉= Tr(ρa∗b) = ∑
i

ai jbi j = ∑
i

ziwi = 〈z,w〉Cn = 〈uaρ ,ubρ〉Cn .
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The GNS-representation πρ , originally given on Hρ by (1.77), is accordingly trans-
formed to uπρ(a)u−1 ≡ π̂ρ on Cn, which is given by

π̂ρ(a)w = uπρ(a)bρ = u(ab)ρ =Cj(ab) = aw,

and the cyclic vector uΩρ ∈ Cn is just the basis vector υ j from which we started.
More generally, for a pure state (2.42) the GNS-representation πωψ (Mn(C)) is equiv-
alent to the defining representation on Cn, with canonical cyclic vector ψ . Finally,
since only multiples of the unit matrix commute with all matrices, it follows that

πωψ (Mn(C))′ ∼= C. (2.64)

• The ‘opposite’ case occurs when ρ is invertible, in other words, when the sum
over i in (2.6) has n nonzero terms. Hence

Tr(ρa∗a) =
n

∑
i=1

pi‖aυi‖2 (2.65)

vanishes iff aυi = 0 for each i, i.e., a = 0, so that Nρ = {0} and hence

Hρ = Mn(C). (2.66)

The GNS-constructed inner product on Mn(C), cf. (1.78), given by

〈aρ ,bρ〉= Tr(ρa∗b), (2.67)

may be transformed into the usual one (2.34) by the following linear map:

u : Mn(C)→ Mn(C); (2.68)

uaρ = aρρ1/2. (2.69)

This map is unitary from the Hilbert space (Mn(C),〈·, ·〉ρ) to the Hilbert space
(Mn(C),〈·, ·〉), for it is invertible, with inverse u−1a= aρρ−1/2, as well as isometric:

〈u(a),u(b)〉= Tr(ρ1/2a∗bρ1/2) = Tr(ρa∗b) = 〈aρ ,bρ〉.

The transformed representation π̂ρ = uπρ(a)u−1 on Mn(C) is simply given by

π̂ρ(a)b = ab, (2.70)

and the cyclic vector uΩρ in Mn(C) becomes ρ1/2, so that, as in (1.73),

〈ρ1/2, π̂ρ(a)ρ1/2〉= Tr(ρa). (2.71)

In this case, the commutant is easily computed to be

π̂ρ(Mn(C))′ ∼= Mn(C), (2.72)
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since any linear map C : Mn(C)→ Mn(C) that satisfies C(ab) = aC(b) for each
a,b ∈ Mn(C) is of the form C(a) = ac ≡ Rc(a) for some c ∈ Mn(C), namely c =
C(1); to see this, just take b = 1. Since this involves right multiplication Rc by c,
which messes up the order in that RcRd = Rdc, one has a choice in implementing the
isomorphism (2.72) either as a linear anti-homomorphism (of algebras) C �→ Rc, or
as an anti-linear homomorphism C �→ Rc∗ (see also Theorem C.159).

Further insight into the structure of this representation comes from the realization

Mn(C)∼= Cn⊗Cn, (2.73)

as Hilbert spaces under the unitary map v : a �→ ∑i j ai jυi⊗υ j. This yields

vπ̂ρ(a)v∗ = a⊗1n, (2.74)

as an operator on Cn⊗Cn, and indeed for any Hilbert spaces H1,H2 one has

(B(H1)
⊗

C ·1H2)
′ = C ·1H1

⊗
B(H2). (2.75)

• Finally, in the ‘intermediate’ case the sum in the spectral decomposition (2.6) has
1 < m < n nonzero terms. Using the ensuing (partial) basis (υ1, . . . ,υm) of Cm (viz.
Cn), analogously to (2.66) with (2.73) we obtain, up to unitary equivalence,

Hρ ∼= Cn⊗Cm; (2.76)
πρ(a) ∼= a⊗1m; (2.77)

Ωρ ∼=
n

∑
i=1

√
piυi⊗υi; (2.78)

πρ(Mn(C))′ ∼= Mm(C). (2.79)

The relevance of all this to the decomposition of states on B(H) is as follows.

Proposition 2.16. Let ω be a state on B(H)∼= Mn(C). Then each decomposition

ω = ∑
i

piωi, (2.80)

where the pi are probabilities (but the states ωi are not necessarily pure) is induced
by a family (Ai) of nonzero operators in the commutant πω(B(H))′ that satisfy:

0≤ Ai ≤ 1; (2.81)

∑
i

Ai = 1. (2.82)

Namely, given such a family of operators Ai, the decomposition (2.80) is given by:

pi = 〈Ωω ,AiΩω〉; (2.83)

ωi(a) =
〈Ωω ,πω(a)AiΩω〉
〈Ωω ,AiΩω〉 . (2.84)
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Proof. The claim that such a family yields (2.80) is trivial, except for the remark that
automatically pi > 0, since 〈Ωω ,AiΩω〉= 0 would imply

√
AiΩω = 0 and hence√

Aiaω =
√

Aiπω(a)Ωω = πω(a)
√

AiΩω = 0

for any a ∈ B(H); by (1.72) this gives
√

Ai = 0 and therefore Ai =
√

Ai
2
= 0.

Conversely, each state ωi in (2.80) defines a sesquilinear form Qi on Hω by
Qi(aω ,bω) = ωi(a∗b), which is well defined by ωi(a∗a) ≤ ω(a∗a) and (A.1), and
is positive because ωi is a state. Proposition A.23 then provides us with a positive
operator Ai for which Qi(aω ,bω) = 〈aω ,Aibω〉, hence ωi(a∗b) = 〈aω ,Aibω〉. Next,

〈aω ,Aiπω(c)bω〉= 〈aω ,Ai(cb)ω〉=ωi(a∗cb) = 〈(c∗a)ω ,Aibω〉= 〈aω ,πω(c)Aibω〉,

so Ai ∈ πω(B(H))′. Finally, the bound (2.81) corresponds to 0 ≤ pi ≤ 1 in (2.80),
whilst ω(1) = 1, or equivalently ∑i pi = 1, yields (2.82). �

We now complete the proof of Proposition 2.15. We assume (2.33), where we
initially take ρ to be invertible. We omit the hat in (2.70) as well as the suffix ω
or ρ on vectors. As noted, we then have Ωρ = ρ1/2, and we also know that Ai is
given by Aib = bai for some ai ∈ Mn(C), viz. ai = Ai1n (where 1n = 1H is to be
distinguished from Ωρ = ρ1/2). In this case, (2.81) means 0 ≤ Tr(b∗bai) ≤ 1 for
each b with Tr(b∗b) = 1, which is true iff 0 ≤ ai ≤ 1, whereas (2.82) immediately
yields ∑i ai = 1. In terms of such a family (ai) in Mn(C) itself, the decomposition
(2.80) of ω = Tr(ρ−) into arbitrary states ωi follows from (2.83) - (2.84) as

pi = Tr(ρai); (2.85)
ωi(a) = Tr(ρia); (2.86)

ρi =
ρ1/2aiρ1/2

Tr(ρai)
. (2.87)

To obtain pure and orthogonal states ωi, we subsequently ask when the new density
matrices ρi are mutually orthogonal one-dimensional projections ρi = |υi〉〈υi|.

To answer this, we use the spectral theorem (A.37) - (A.38) applied to ρ , which
gives ρ = ∑ j p je j and hence ρ1/2 = ∑ j

√p je j, so that

ρ1/2aiρ1/2 = ∑
j,k

√
p j pke jaiek. (2.88)

This can only be proportional to a one-dimensional projection if each ai is a one-
dimensional projection that commutes with all spectral projections e j of ρ (and
hence also commutes with ρ itself), and all further constraints on the ai may then
only be satisfied if ai = |υi〉〈υi|, for some basis (υi) of eigenvector υi of ρ .

A similar analysis applies to non-invertible ρ , the only new point being that pro-
jections ei orthogonal to the range of ρ fall into the null space Nρ , cf. (2.76) - (2.79),
and hence do not contribute to (2.52), so that they may be ignored. �
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2.5 The Born rule from Bohrification

The Bohrification approach to quantum mechanics studies noncommutative alge-
bras of observables like B(H) through their commutative subalgebras. In this section
we show how the Born rule (2.8) emerges from that perspective. Our discussion is
based on the interplay between the three kinds of (finite-dimensional) C*-algebras:

• C(X) is a C*-algebra under the pointwise operations (1.18) - (1.20) and the
supremum-norm (1.24); we still assume that X is finite.

• B(H) is a C*-algebra under the pointwise operations (2.22) - (2.24) and the op-
erator norm (A.18); our standing assumption remains dim(H)< ∞.

• C∗(a) is the C*-algebra generated by a∈ B(H) and 1H (i.e., the intersection of all
unital C*-algebras in B(H) that contain a). If a∗ = a, then C∗(a) is commutative.

Each of these is unital, since C(X) has a unit 1X (i.e. the function x �→ 1), B(H)
has a unit 1H (i.e. the operator ψ �→ ψ), and C∗(a) shares the unit 1H . The first
two classes overlap just in case dim(H) = 1 and X is a singleton (in which case
B(C) = C(∗) = C); otherwise, the fundamental difference between the two is that
C(X) is commutative in that f g = g f for all f ,g, whereas B(H) is non-commutative.
However, the system of C*-algebras C∗(a) within B(H), where a ∈ B(H)sa varies,
to some extent bridges the gap between the commutative and the non-commutative
worlds. This relatively simple situation goes to the heart of exact Bohrification.

Theorem 2.17. Let a∗ = a ∈ B(H), where H is a finite-dimensional Hilbert space.

1. The commutative C*-algebra C∗(a) consists of all polynomials in a.
2. Any element of C∗(a) is a linear combination of the spectral projections eλ of a.
3. For functions f : σ(a)→ C, the map f �→ f (a) defined by

f (a) = ∑
λ∈σ(a)

f (λ ) · eλ . (2.89)

gives a (necessarily unital) isomorphism of commutative C*-algebras

C(σ(a))∼= C|σ(a)| ∼=C∗(a). (2.90)

Proof. Noting that any function on the finite subset σ(a) of R is continuous, this is
a restatement of Theorem A.15 for finite-dimensional Hilbert spaces. �

We now come to the main point. States on unital C*-algebras A may be defined
just as in Definitions 1.14 and 2.5, i.e. as positive linear functionals ω : A→ C that
satisfy ω(1A) = 1 (cf. Proposition C.5). Recall Theorem 1.15 and Theorem 2.7.

Theorem 2.18. Let ω be a state on B(H), represented by a density operator ρ via
(2.33), and let a ∈ B(H) be a self-adjoint operator. Then the restriction of ω to
C∗(a) ⊂ B(H) is a state, which also induces a state ω|C(σ(a)) on C(σ(a)) through
(2.89) - (2.90), i.e., ω|C(σ(a))( f ) = ω( f (a)). The probability measure on σ(a) that
corresponds to the state ω|C(σ(a)) on C(σ(a)), then, is given by the Born rule (2.9).
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Proof. First, the restriction of a state on a given unital C*-algebra to a unital C*-
subalgebra remains a state. Second, isomorphisms of unital C*-algebras pull back
to state spaces in that, if ϕ : A→ B is an isomorphism, and ω is a state on B, then
ϕ∗ω : A→ C is a state on A, where ϕ∗(a) = ω(ϕ(a)). We now compute

ω|C(σ(a))( f ) = ω( f (a)) = Tr(ρ f (a))

= ∑
λ∈σ(a)

Tr(ρeλ ) f (λ ) = ∑
λ∈σ(a)

pa(λ ) f (λ )

= EPa( f ), (2.91)

where, from left to right, the first equality is just the definition of ω|C(σ(a)), whereas
the others in turn follow from (2.33), (2.89), (2.8), and (1.9), respectively. �

Note that Theorem 2.18 implies Theorem 2.2. The simplest nontrivial illustration is:

H = Cn; (2.92)
ω = ωψ ; (2.93)

ψ =
n

∑
i=1

ciui; (2.94)

a = diag(λ1, . . . ,λn) =
n

∑
i=1

λi|ui〉〈ui|, (2.95)

with respect to the standard basis (ui) of Cn, with all λi ∈R different, cf. (2.42). The
C*-algebra C∗(a)∼= Cn then consists of all diagonal matrices

b = diag(b1, . . . ,bn). (2.96)

Since obviously
σ(a) = {λ1, . . . ,λn}, (2.97)

the isomorphism (2.90) is given by

f �→ diag( f (λ1), . . . , f (λn)). (2.98)

The computation (2.91) in the proof of Theorem 2.18 then becomes

ωψ|C(σ(a))( f ) = 〈ψ,diag( f (λ1), . . . , f (λn))ψ〉=
n

∑
i=1
|ci|2 f (λi)

=
n

∑
i=1

pa(λi) f (λi), (2.99)

from which the Born probabilities pa may be read off as the familiar expressions

pa(λi) = |ci|2. (2.100)
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For an analogous treatment of the generalized Born rule (2.21), we first refer to
Definition A.16 for the the pertinent definitions, especially of the joint spectrum

σ(a)⊆ σ(a1)×·· ·×σ(an)⊂ Rn

of a family a = (a1, . . . ,an) of commuting self-adjoint operators. As in the case of a
single operator, we define C∗(a) as the smallest unital C*-subalgebra of B(H) that
contains each ai. Generalizing Theorem A.15, we have:

Theorem 2.19. Let a=(a1, . . . ,an) be commuting self-adjoint operators on H. Then
C∗(a) is commutative, and there is a unique isomorphism of C*-algebras

C∗(a)∼=C(σ(a)), (2.101)

under which 1H ∈C∗(a) corresponds to the unit function 1σ(a) : λ �→ 1 in C(σ(a)),
and ai ∈C∗(a) corresponds to the projection πi : λ �→ λi in C(σ(a)).

For further discussion, see Appendix A, Theorem A.17.
Theorem 2.18 may then be generalized in the following way, with similar proof.

Theorem 2.20. Let ω be a state on B(H), represented by a density operator ρ , and
let a = (a1, . . . ,an) be commuting self-adjoint operators on H. Then the restriction
of ω to C∗(a)⊂ B(H) is a state, which induces a state ω|C(σ(a)) on C(σ(a)) through
the isomorphism (2.101). Then the probability measure on the joint spectrum σ(a)
that corresponds to ω|C(σ(a)) is given by the generalized Born rule (2.21), i.e.,

pa(λ ) = Tr(ρeλ ). (2.102)

Strictly speaking, in the present context one should restrict (2.21) to λ ∈ σ(a), but
the claim is correct even if one does not, for the (Born) probability assigned to values
λ ∈ σ(a1)×·· ·×σ(an) that do not lie in σ(a) is simply zero.

As shown in Proposition A.19 in Appendix A, the multi-operator case is a spe-
cial case of the single-operator case, in that C∗(a) =C∗(a) for a suitable self-adjoint
operator a. Since the converse is obvious, Theorems 2.18 and 2.20 are equivalent.
Corollary A.20 in Appendix A even shows that any unital commutative C*-algebra
C in B(H) takes the form C =C∗(a) for some self-adjoint operator a ∈ B(H). Com-
paring the restrictions of a state ω on B(H) to C as the latter varies therefore comes
down to asking how the various Born probability distributions pa on C∗(a) are re-
lated to each other as a varies. It is clear from (2.8) that if pa and pb come from the
same density operator ρ (as the notation indicates), then for λ ∈ σ(a) and μ ∈ σ(b),

e(a)λ = e(b)μ ⇒ pa(λ ) = pb(μ). (2.103)

Indeed, this is the only compatibility condition between pa and pb, showing that
pa(λ ) only depends on a and λ through the associated spectral projection e(a)λ . Con-
dition (2.103) is a version of a general property of quantum mechanics called non-
contextuality, which in this case means that, given its spectral projection e(a)λ , the
‘context’ operator a is otherwise irrelevant for the Born probability pa(λ ).
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2.6 The Kadison–Singer Problem

It should be clear from the example in the previous section that pure states ωψ on
B(H) may well give rise to mixed states on C∗(a); referring to (2.94) and (2.100),
this is the case whenever ci �= 0 for more than one value of the index i. If, on the other
hand, ci �= 0 for just a single value i= j, then ψ = u j (up to a phase), or, equivalently,
ωψ(a) = 〈u j,au j〉. In that case, the given state ωψ is pure both on B(H) and on
C∗(a), and the associated probability measure ωψ|C(σ(a)) on the spectrum σ(a) is
supported by a single point, namely λ j ∈ σ(a).

This example suggests a general problem (first posed in the non-trivial case
where H is infinite-dimensional by Kadison and Singer in 1959) that is of great
relevance for the Bohrification program. Namely, let A be a maximal commutative
unital C*-algebra in B(H) and let ωA be a pure state on A. We may then ask:

1. Does ωA have an extension to a state ω on B(H) at all (i.e., ω|A = ωA)?
2. If so, is ω uniquely determined by its restriction ωA?
3. Either way, if ω exists, can it be chosen so as to be pure (assuming ωA is)?

If dim(H)< ∞, all these questions are easy to answer at one stroke:

Theorem 2.21. Let dim(H) < ∞ and let ωA be a pure state on a maximal commu-
tative unital C*-algebra A in B(H). Then ωA has a unique extension to a state ω on
B(H), which is necessarily pure.

Proof. As explained after the proof of Corollary A.20 in Appendix A, we may sim-
ply assume that H = Cn and that A consists of all diagonal matrices; call this col-
lection Dn(C) (for every other case is unitarily equivalent to this one). Clearly,

Dn(C)∼= Cn, (2.104)

from which we see that if ωA is pure, then it must be given on b ∈ Dn(C) by

ωA(b) = b j, (2.105)

for some j, cf. (2.96). If ω exists, it is given by (2.33). Using (2.6), condition (2.105)
then enforces the following constraint on the pi and υi (where (ui) is the standard
basis of Cn and (υi) is an orthonormal set diagonalizing the density operator ρ):

∑
i

pi|〈u j,υi〉|2 = 1. (2.106)

Since ∑i pi = 1 and |〈u j,υi〉| ≤ 1, eq. (2.106) can only hold, for given j, if

|〈u j,υi〉|= 1 (2.107)

for all i with pi > 0. Since u j is a unit vector whilst the (υi) are an orthonormal set,
(2.107) can only be true if there is a single i for which pi > 0, namely i = j (and
hence p j = 1), in which case υ j must equal u j up to a phase. Hence ρ = |u j〉〈u j|,
which shows that ρ exists, is unique, and is pure. �
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At least in operational interpretations of quantum mechanics, this theorem implies
that a pure quantum state (i.e., on B(H)) is completely determined by the outcome
of a measurement of some maximal observable a, whose outcome, after all, gives
one of the eigenvalues λ j in (2.95) and hence fixes the post-measurement state to be
the one given by (2.105). This is, indeed, a typical way of preparing a state.

As one might expect, this is no longer true if A = C∗(a) fails to be maximal (in
which case a measurement of a would not provide enough information about the
quantum state). Namely, suppose a = ∑λ∈σ(a)λ ·eλ , as in (A.37); the maximal case
occurs iff Tr(eλ ) = dim(Hλ ) = 1 for all λ ∈ σ(a) (equivalently, all eigenvalues λi in
(A.37) are different). If not, suppose dim(Hλ )> 1 for some λ . Then any unit vector
ψ ∈ Hλ gives rise to a pure state ωψ on B(H), which remains pure on A (it is given
by ωψ|A(a) = λ and hence induces the Dirac probability measure δλ on σ(a)).

Dropping the purity condition on ωA loses uniqueness of the extension ω , too,
even if A is maximal: take b = diag(b1, . . . ,bn) ∈ A = Dn(C), and assume that

ωA(b) = ∑
i

pibi (2.108)

has more than one term (with pi > 0 and ∑i pi = 1 as always), cf. (2.105). Then:

• any pure state ωψ as in (2.94), such that |ci|2 = pi for all i, extends ωA;
• the “decohered” mixed state ω = ∑i pi|υi〉〈υi| extends ωA, too.

Further insight in the state extension problem comes from the following result.

Proposition 2.22. Let A be any unital C*-algebra in B(H) (i.e., A is not necessarily
commutative) and let ωA be a pure state on A. Then the set

SA = {ω ∈ S(B(H)) | ω|A = ωA} (2.109)

of all states on B(H) whose restriction ω|A to A is the given state ωA, is a compact
convex subspace of the total state space S(B(H)) of B(H), whose extreme boundary
∂eSA consist of pure states on B(H), i.e., ∂eSA ⊂ P(B(H)). Consequently, ωA has a
unique extension to a state on B(H) iff it has a unique pure extension.

Proof. Convexity and (w∗) compactness are obvious. Let ω ∈ ∂eSA and suppose
ω = tω1 + (1− t)ω2 for some t ∈ (0,1) and ω1,ω2 ∈ S(B(H)). By assumption,
ωA =ω|A = tω1|A+(1−t)ω2|A is pure on A, so ω1|A =ω2|A =ωA, hence ω1,ω2 ∈ SA.
Since ω ∈ ∂eSA, this implies ω1 = ω2 = ω . Hence ω is pure on B(H).

Finally, SA is a singleton iff its boundary ∂eSA is (since any state in SA has a
convex decomposition in terms of states in its boundary), yielding the last claim. �

This proposition remains true for infinite-dimensional H (and even for arbitrary
C*-algebras), but Theorem 2.21 becomes much more complicated. As we shall see,
maximal commutative unital C*-subalgebra of B(H) are no longer unique up to
unitary equivalence, and the validity of the claim depends on which type of maximal
subalgebra is considered. Also, the proof of what then is called the Kadison–Singer
Conjecture becomes extremely difficult (with questionable relevance to physics).
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2.7 Gleason’s Theorem

Gleason’s Theorem answers the following question in the positive: given probability
distributions pa on σ(a), for each self-adjoint operator a∈ B(H), satisfying (2.103),
is there a single state ω on B(H) inducing these probabilities through the Born rule?
This question is closely related to various others that involve equivalent structures,
cf. Definition 1.1. We denote the unit sphere in H by H1 = {ψ ∈ H,‖ψ‖= 1}, and
write P(H) = {e ∈ B(H) | e2 = e∗ = e} for the set of all projections on H.

Definition 2.23. Let H be a finite-dimensional Hilbert space, with unit sphere H1.

1. A probability distribution on P(H) is a map p : H1 → [0,1] that satisfies

dimH

∑
i=1

p(υi) = 1, for any basis (υi) of H. (2.110)

2. A probability measure on P(H) is a map P : P(H)→ [0,1] that satisfies:

P(e+ f ) = P(e)+P( f ) whenever e f = 0⇔ eH ⊥ f H; (2.111)
P(1H) = 1. (2.112)

Note that p is really defined on P1(H), for we have p(zυ) = p(υ) for all z ∈ T and
υ ∈H1; to see this, extend zυ and υ to a basis of H in the same way and use (2.110).

As in Definition 1.1, these notions of probability are equivalent, cf. (A.28):

• Given a probability measure P, one obtains a probability distribution p by

p(υ) = P(eυ). (2.113)

• Given a probability distribution p, Lemma 2.24 below guarantees that

P(e) =
dim(eH)

∑
i=1

p(υi), (2.114)

where (υi) is any basis of eH, defines a probability measure P.

Lemma 2.24. If p is a probability distribution on P(H) and L ⊂ H is a linear
subspace, with basis (υi), then ∑dim(L)

i=1 p(υi) is independent of this basis choice.

Proof. Extend (υi) to a basis of H by adding a basis (υ ′j) of L⊥. Take another basis
(υ ′′i ) of L and complete it to a basis of H by using the same basis (υ ′j) of L⊥. Then

∑
i

p(υi)+∑
j

p(υ ′j) = ∑
i

p(υ ′′i )+∑
j

p(υ ′j) = 1, (2.115)

where we once again used (2.110). Hence ∑i p(υi) = ∑i p(υ ′′i ). �
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Clearly, a state ω on B(H) induces a probability measure P on P(H) by

P(e) = ω(e) = Tr(ρe), (2.116)

where ρ is the density operator associated to ω , as in (2.33). Therefore, it is a natural
question if any probability measure on P(H) is induced by some state on B(H) by
(2.116). This question is equivalent to the one above:

Proposition 2.25. • A probability measure P on P(H) induces non-contextual
probability distributions pa on σ(a) for each self-adjoint a ∈ B(H) by

pa(λ ) = P(e(a)λ ); (2.117)

• Conversely, a family (pa) of non-contextual probability distributions (i.e. satisfy-
ing (2.103)) gives rise to a probability measure P on P(H) by

P(e) = pe(1). (2.118)

Proof. As defined by (2.117), pa is a probability distribution on σ(a): by (A.38),

∑
λ∈σ(a)

pa(λ ) = ∑
λ∈σ(a)

P
(

e(a)λ

)
= P

(
∑

λ∈σ(a)
e(a)λ

)
= P(1H) = 1. (2.119)

Conversely, suppose e f = 0. Introduce g = 1− e− f , and consider the self-adjoint
operator a= λ1e+λ2 f +λ3g, for three different real numbers λ1,λ2,λ3. By (2.103),

P(e) = pe(1) = pa(λ1), P( f ) = p f (1) = pa(λ2), P(g) = pg(1) = pa(λ3).

Furthermore, since σ(a) = {λ1,λ2,λ3}, we have pa(λ1)+ pa(λ2)+ pa(λ3) = 1 and
hence P(e)+P( f )+P(g) = 1. Also, P(e+ f )+P(g) = P(e+ f +g) = P(1H) = 1.
The last two equations give P(e+ f ) = P(e)+P( f ). �

Suppose (ei)
N
i=1 is a family of projections on H such that ∑i ei = 1H and eie j =

δi jei. Such a family generates a commutative unital C*-algebra C = C∗(e1, . . . ,eN)
in B(H), which coincides with C∗(a) for a = ∑iλiei, where all λi ∈ R are differ-
ent, so that σ(a) = {λ1, . . . ,λN}. All commutative unital C*-algebras in B(H) arise
in this way, and C is maximally abelian iff N = dim(H), i.e., iff each ei is one-
dimensional. The point is that a probability measure P on P(H) induces a state ωC
on each C =C∗(e1, . . . ,eN) (or, for C =C∗(a), a probability measure Pa on σ(a)):

1. if a ∈C is self-adjoint, then we have unique spectral resolutions (A.37), and put

ωC(a) = ∑
λ∈σ(a)

λP(eλ ). (2.120)

2. if c = a+ ib ∈C with a and b self-adjoint, we define ωC(c) = ωC(a)+ iωC(b).

By Lemma 2.24, the map ωC thus defined coincides with the linear extension of the
map ei �→ P(ei) to C, which also shows that ωC in linear. Clearly, ωC is a state on C.
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Again by Lemma 2.24, the ensuing family of states ωC on all commutative unital
C*-algebras C⊂ B(H) is non-contextual (or, one might say compatible) in the sense
that if b ∈ C∩C′, then ωC(b) = ωC′(b). In particular, if C′ ⊂ C, then ωC|C′ = ωC
(where ωC|C′ is the restriction of ωC to C′). It is convenient to extend this non-
contextual family (ωC) of states to a well-defined map ω : B(H)→ C by putting

ω(a+ ib) = ωC∗(a)(a)+ iωC∗(b)(b), a,b ∈ B(H),a∗ = a,b∗ = b. (2.121)

Definition 2.26. A quasi-state on B(H) is a map ω : B(H)→ C that is positive
(ω(a∗a)≥ 0) and normalized (ω(1H) = 1), cf. Definition 2.4, and otherwise:

1. satisfies ω(a) = ω(a′)+ iω(a′′), where a′ = 1
2 (a+a∗) and a′′ =− 1

2 i(a−a∗).
2. is linear on each commutative unital C*-algebra in B(H).

Note that a′ and a′′ are self-adjoint, so that ω is fixed by its values on B(H)sa. Hence
we have ω(za) = zω(a), z ∈ C, and ω(a+b) = ω(a)+ω(b) whenever ab = ba.

Proposition 2.27. The map ω : B(H)→C defined by (2.120) and (2.121) is a quasi-
state on B(H). Any quasi-state on B(H) arises in this way, giving a bijective corre-
spondence between quasi-states on B(H) and probability measures on P(H).

Proof. The first claim holds by construction. Conversely, a quasi-state ω yields a
probability measure P via P(e) = ω(e), cf. (2.116). �

Theorem 1.15 shows that each state on C(X) is induced by a probability measure
(and, trivially, also the other way round). Although Theorem 2.7 is already a quan-
tum version of Theorem 1.15, an even better parallel would involve the probability
measures of Definition 2.23. This is indeed what Gleason’s Theorem achieves, en
passant answering all versions of our lead question:

Theorem 2.28. Let H be a finite-dimensional Hilbert space of dimension > 2. Then
each probability measure P on P(H) is induced by a unique state ω on B(H) via

P(e) = ω(e). (2.122)

Equivalently, each probability distribution p on P(H) is given by

p(υ) = 〈υ ,ρυ〉, (2.123)

where ρ is a unique density operator on H. Hence every quasi-state is a state.

This completes the following list (of which 1–5 do not require Gleason’s Theorem).

Corollary 2.29. Let H be a finite-dimensional Hilbert space. The following notions
are equivalent (i.e., there are natural bijective correspondence between):

1. Non-contextual families of states on commutative unital C*-algebras C ⊂ B(H);
2. Non-contextual families of probability measures on spectra σ(a), cf. (2.103);
3. Probability distributions on P(H);
4. Probability measures on P(H);
5. Quasi-states on B(H);
6. States on B(H).
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2.8 Proof of Gleason’s Theorem

The difficulty of Theorem 2.28 should already be clear from the fact that it is false
if dim(H) = 2: as we have seen in (2.37), a state on M2(C) = B(C2) is given by
three real parameters, whereas a probability measure P on P(C2) can assign arbi-
trary values P(e) to one-dimensional projections e, as long as P(1− e) = 1−P(e).
Equivalently, this time from the perspective of probability distributions p, each unit
vector in C2 belongs to a unique basis (up to a phase), so that p can assign an arbi-
trary value to one of the two vectors in each basis and is unconstrained otherwise.

In higher dimensions, however, one-dimensional projections always belong to
infinitely many orthogonal sets, whilst unit vectors belong to infinitely many bases.
This constrains the possible values P or p may take, and these constraints turn out
to be strong enough to enforce (2.116).

The proof of Theorem 2.28 consists of two nontrivial parts, the second of which is
notoriously difficult. By exception in quantum-mechanical reasoning, both involve
R3 as a real Hilbert space, whose elements x = (x,y,z) have standard inner product

〈x,x′〉= xx′+ yy′+ zz′, (2.124)

with the ensuing (Pythagorean) norm and (Euclidean) notion of orthogonality.

Proposition 2.30. If Theorem 2.28 holds for the real Hilbert space R3, then it holds
for any complex finite-dimensional Hilbert space of dimension > 2.

Proposition 2.31. Theorem 2.28 holds for the real Hilbert space R3.

Proposition 2.30 is a conjunction of two lemmas.

Lemma 2.32. If (2.123) holds for R3, where ρ is some symmetric operator, then
(2.123) holds for C3, where ρ is a self-adjoint operator.

Neither positivity nor normalization of ρ play a role in the argument; once we have
(2.123) in this more general sense, the conclusion that ρ be a density operator triv-
ially follows from the definition of p. This also applies to the second sublemma.

Lemma 2.33. If (2.123) holds for C3, then it holds for for any complex finite-
dimensional Hilbert space of dimension > 2.

It will be convenient to extend p : H1 → [0,1] to a function Q : H → R by

Q(0) = 0; (2.125)

Q(ψ) = ‖ψ‖2 p
(

ψ
‖ψ‖

)
(ψ �= 0), (2.126)

so that (2.123) is evidently equivalent to the analogous expression

Q(ψ) = 〈ψ,ρψ〉 (ψ ∈ H). (2.127)
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Given (2.127), the minimax principle for real symmetric matrices implies that Q is
maximized on H1 by ψ ∈ H1 iff ρψ = λψ , where λ is the largest eigenvalue of ρ .
Proof of Lemma 2.32. Suppose p : C3

1 → [0,1] is a probability distribution (in the
sense of Definition 2.23). The first step shows that p assumes a maximum on the unit
sphere C3

1 (note that C3
1 is compact, but we do not know yet if p is continuous!).

Since 0 ≤ p(υ) ≤ 1 for υ ∈ C3
1, M = sup{p(υ),υ ∈ C3

1} exists, and there is a
sequence (υn) in C3

1 for which p(υn)→M. Since C3
1 is compact, this sequence has

a convergent subsequence, with limit υ∞ ∈ C3
1. Furthermore, we may assume that

〈υn,υ∞〉 ∈ R, for if not, we change to υ ′n = znυn with zn = 〈υ∞,υn〉/|〈υn,υ∞〉|.
For each fixed n (with υn in the convergent subsequence in question), the real

linear span of υ∞ and υn is isomorphic to R2 as a Hilbert space (with standard inner
product), embedded in any R3⊂C3 one likes (where, once again, R3 is seen as a real
Hilbert subspace in the sense that all inner products of vectors in R3 are real). By
assumption, (2.123) holds on R3 and hence also on R2 ⊂ R3, so that, in particular,

|p(υ∞)− p(υn)| = |〈υ∞,ρυ∞〉−〈υn,ρυn〉|= |〈(υ∞−υn),ρ(υ∞ +υn)〉|
≤ ‖ρ‖‖υ∞ +υn‖‖υ∞−υn‖ ≤ 2‖ρ‖‖υ∞−υn‖,

since ‖υ∞ +υn‖ ≤ ‖υ∞‖+‖υn‖ and ‖υ∞‖= ‖υn‖= 1. Consequently,

|p(υ∞)−M| ≤ |p(υ∞)− p(υn)|+ |p(υn−M| ≤ 2‖ρ‖‖υ∞−υn‖+ |p(υn)−M|,

so letting n→∞ makes both terms on the right-hand side vanish. Hence p(υ∞) =M.
For reasons to become clear soon, we relabel υ∞ ≡ υ1. Take any υ0 ∈ C3

1 with
〈υ0,υ1〉= 0 and consider the real Hilbert space R2 ⊂C3 spanned by υ1 and υ0. By
assumption, (2.127) holds, and by the minimax principle, ρυ1 = λ1υ1 = p(υ1)υ1,
with p(υ1) = M. Hence for any υ = t0υ0 + t1υ1, with t0, t1 ∈ R, we have

Q(υ) = 〈t0υ0 + t1υ1,ρ(t0υ0 + t1υ1)〉= |t0|2 p(υ0)+ |t1|2 p(υ1). (2.128)

We claim that this also holds for complex coefficients t0, t1 ∈ C. Indeed, by (2.126),

Q(t0υ0 + t1υ1) = |t1|2Q
( |t0|
|t1|
|t1|
|t0|

t0
t1
υ0 +υ1

)
= |t0|2 p(υ0)+ |t1|2 p(υ1), (2.129)

where we used (2.128) with υ ′0 = (t0/t1)/|(t0/t1)|υ0 instead of υ0; this is still a
vector orthogonal to υ1, and we also used Q(υ ′0) = p(υ ′0) = p(υ0).

We now repeat this analysis on the part (C3
1)⊥υ1 of C3

1 that consists of all unit
vectors orthogonal to υ1, which remains compact. Thus p assumes a maximum at
some unit vector υ2 ∈ (C3

1)⊥υ1 , and we may complete the pair (υ1,υ2) to a basis
(υ1,υ2,υ3) of C3. With υ0 = t2υ2 + t3υ3, the above argument (on (C3

1)⊥υ1 ) gives

p(υ0) = Q(υ0) = |t2|2 p(υ2)+ |t3|2 p(υ3). (2.130)

Combined with (2.129) at t0 = 1, this gives, for any coefficients t1, t2, t3 ∈ C,
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Q(t1υ1 + t2υ2 + t3υ3) = |t1|2 p(υ1)+ |t2|2 p(υ2)+ |t3|2 p(υ3). (2.131)

Hence (2.127) holds on all of C3, with

ρ = p(υ1)|υ1〉〈υ1|+ p(υ2)|υ2〉〈υ2|+ p(υ3)|υ3〉〈υ3|. �

Proof of Lemma 2.33. Let H be a complex finite-dimensional Hilbert space of di-
mension ≥ 3, equipped with a probability distribution p, and define Q : H → R by
(2.125) - (2.126). We need to prove (2.127) for some self-adjoint operator ρ . By
Propositions A.4 and A.23, this is equivalent to Q being a quadratic form. Since
(A.8) evidently holds, we just need to prove (A.9). Take any three-dimensional
Hilbert space L3 ⊂ H containing v and w. By assumption, there exists a self-adjoint
operator ρL3 on L3 for which (2.127) is valid for all ψ ∈ L3. Taking ψ = v, ψ = w,
ψ = v+w, and ψ = v−w then validates (A.9). This completes the first proof.

This lemma may also be proved without invoking Proposition A.4, as follows.
If v and w are linearly independent, they are contained in a unique two-dimensional

subspace L2 ⊂ H, which in turn is contained in a (non-unique) three-dimensional
subspace L3 ⊂ H. Take ρL3 as above and define a bilinear form B on L2 by
B(v,w) = 〈v,ρL3w〉. Defining the associated quadratic form Q by (A.7), we see that
(2.125) - (2.126) hold, from which we also conclude that B is independent of the
choice of L3 ⊃ L2. If v and w are linearly dependent, a similar argument shows
that B is independent of the choice of the subspace L2 containing v and w. Hence
B : H ×H → C is well defined, and to conclude that it is a self-adjoint form we
need to check that B(v,λw+ x) = λB(v,w)+B(v,x) for all v,w,x ∈ V , λ ∈ C, cf.
Definition A.1. If v,w, and x are linearly independent, this can be done by passing
to the unique three-dimensional subspace L′3 ⊂ H containing these vectors. If they
are not, we are already done by the previous step. Finally, given that B is a bilinear
form, a self-adjoint operator ρ may be reconstructed from Proposition A.23, upon
which (2.127) holds by construction. �

Proposition 2.31 again follows from two lemmas by modus ponens.

Lemma 2.34. Any probability distribution on R3 (vf. Definition 2.23) is continuous.

Lemma 2.35. Any continuous probability distribution in R3 satisfies (2.127), for
some self-adjoint operator ρ .

The operator ρ obtained by Lemma 2.35 is necessarily positive and automatically
has unit trace. Another way to phrase this is to take the complex linear span of all
probability distribution on the unit sphere R3

1 = S2 in R3; this yields a vector space
F (S2), whose elements are called frame functions. These are bounded functions

f : S2 → C,

with the property that for any basis (u1,u2,u3) of R3 one has

f (u1)+ f (u2)+ f (u3) = w( f ), (2.132)
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where w( f ) ∈ C does not depend on the basis and is called the weight of the frame
function f . For a probability distribution p we obviously have w(p) = 1. The natural
norm on F (S2) is the supremum-norm inherited from C(S2), and like the latter,
F (S2) is closed in this norm (and hence is a Banach space in its own right, a fact
that will play an important technical role in Lemma 2.40 below).

As for probability distributions, (2.132) implies a lemma that will often be used:

Lemma 2.36. If (u1,u2) is a basis of some two-dimensional linear subspace of R3,
then f (u1)+ f (u2) is independent of the choice of this pair. Hence if C is some great
circle in S2 and u1 ⊥ u2 for u1,u2 ∈C, then f (u1)+ f (u2) only depends on C.

Furthermore, by similar arguments any frame function is even, i.e., f (−u) = f (u).
The proof of Lemma 2.34 will actually show that every frame function on S2

is continuous, whilst the proof of Lemma 2.35 will establish the property that any
continuous frame function on S2 satisfies (2.127), for some self-adjoint operator ρ .
Proof of Lemma 2.34. Let f : S2 →R be a frame function (the complex-valued case
follows by decomposing f into a real and an imaginary part). Since constants are
frame functions, adding a constant to f if necessary we may assume

inf{ f (x),x ∈ S2}= 0. (2.133)

Hence for given ε > 0 there exists p ∈ S2 with

f (p)< ε/2. (2.134)

Performing a rotation if necessary, we may assume that p = (0,0,1) is the north
pole. It is useful to introduce another frame function g : S2 → R+ by

g(x) = f (x)+ f (Rz(π/2)x), (2.135)

where Rz(π/2) is the (counter-clockwise) rotation around the z-axis by an angle
π/2. It is easy to see that g is constant on the equator E: for x ∈ E, consider the
basis (x,Rz(π/2)x,p) of R3, so that g(x) = w( f )− f (p) is independent of x.

Furthermore, for any U ⊂ S2 consider the oscillation of f at U , defined by

OscU ( f ) = supU ( f )− infU ( f )≡ sup{ f (u),u ∈U}− inf{ f (u),u ∈U}. (2.136)

If, for given x ∈ S2, for any ε > 0 there is a neighbourhood U ⊂ S2 of x on which
OscU ( f )< ε , then | f (x)− f (u)|< ε for all u ∈U , so that f is continuous at x.

The lengthier steps in the proof of Lemma 2.34 are now as follows:

Lemma 2.37. Given that g(p)< ε , there is an open set U ⊂ S2 on which

OscU (g)< 3ε.

Lemma 2.38. For any non-negative frame function h, if OscU (h)≤ ε ′ for some open
U, then each point x ∈ S2 has a neighborhood V where

OscV (h)≤ 4ε ′.
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Assuming these lemmas (to be proved below), continuity of f easily follows:

1. Lemmas 2.37 and 2.38 applied to h = g and x = p yield OscV (g)< 12ε for some
neighbourhood V of p. Now g(p)< ε , hence inf{g(v),v ∈V}< ε , hence

supV ( f )≤ supV (g)≤ OscV (g)+ infV (g)< 13ε.

2. Since f ≥ 0 and hence 0≤ infV ( f )≤ supV ( f ), this yields OscV ( f )< 13ε .
3. Applying Lemmas 2.38 to h = f and U = V gives that each point x ∈ S2 has a

neighborhood W where OscW ( f )< 52ε .
4. Hence | f (x)− f (w)| < 52ε for all w ∈W . Since ε > 0 was arbitrary, it follows

that f is continuous at x, and since x was arbitrary, f is continuous on all of S2.

For p �= u ∈ N, i.e., the open northern hemisphere, let Cu be the unique great
circle through u with one (and hence both) of the following equivalent properties:

• the point of greatest latitude on Cu is u;
• Cu cuts the equator E at two points that are both orthogonal to u.

We write Du =Cu∩N, and for each z ∈ N, we introduce the set

DDz = {x ∈ N | ∃y ∈ Dx,z ∈ Dy}. (2.137)

Geometrically, DDz consists of the points x on the northern hemisphere from which
z can be reached by “double descent”, where we say that y ∈ N may be reached
from some point x at higher latitude by (single) descent if y ∈Cx. The proof of our
lemmas relies on the following two facts from spherical geometry (stated without
proof, as they have nothing to do with frame functions, though the second is easy).

Lemma 2.39. 1. The set DDz in (2.137) has open interior.
2. For any x ∈ S2 there exists y ∈ E such that x lies on the equator Ey relative to y

regarded as the north pole (so in this terminology, E = Ep).

Proof of Lemma 2.37. By definition of the infimum, for each ε > 0 there exists z∈N
such that

inf
N

g≤ g(z)≤ inf
N

g+ ε. (2.138)

The open U in question will be the interior of DDz. The crucial inequality is

g(x)< g(z)+2ε (x ∈ DDz), (2.139)

which together with (2.138) yields infN g ≤ g(x) ≤ infN g+ 3ε for each x ∈ DDz,
whence OscU (g)≤ 3ε . So we need to prove (2.139), given the assumption g(p)< ε ,
which is immediate from (2.134) and (2.135).

To prove (2.139), take r ∈ N and s ∈Cr∩E, so r⊥ s and hence

g(r)+g(s)≤ w(g). (2.140)

Furthermore, take t,u ∈ E, t ⊥ u, so that (t,u,p) is a basis and, g being a frame
function, we have
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g(t)+g(u)+g(p) = w(g). (2.141)

But by construction g is constant on the equator E, so g(t) = g(u) = k, hence 2k+
g(p) = w(g), and (2.140) yields

g(r)≤ w(g)−g(s) = 2k+g(p)−g(s) = k+g(p),

from which
k−g(r)≥−g(p). (2.142)

Furthermore, for q ∈ N, x,r ∈ Dq, x⊥ r, there exists q′ ∈ Dq∩E such that

g(x)+g(r) = g(q)+g(q′) = g(q)+ k,

from which, using (2.142), we obtain

g(x) = g(q)+ k−g(r)≥ g(q)−g(p),

and hence
g(q)≤ g(x)+g(p), q ∈ N,x ∈ Dq. (2.143)

Aplying this twice to the double descent definition domain (2.137), we find

g(x)≤ g(y)+g(p)≤ g(z)+2g(p), y ∈ Dx,z ∈ Dy. (2.144)

Since (2.134) and (2.135) imply g(p)< ε , this yields (2.139). �
Proof of Lemma 2.38. We may assume p ∈U ≡Up. Using Lemma 2.39.2, by the
argument to come we then move Up to a neighborhood of y called Uy, and subse-
quently repeat the argument so as to move Uy to Ux ≡V as specified in the lemma.

We use spherical coordinates (φ ,θ) for x = (x,y,z) ∈ S2, given by

(x = cosφ sinθ ,y = sinφ sinθ ,z = cosθ), φ ∈ [0,2π), θ ∈ [0,π]. (2.145)

Hence the north pole p = (0,0,1) has θ = 0 and φ undefined (note that (φ ,θ) are
essentially (longitude, latitude), except that the latter usually starts counting down-
wards from 1

2π to − 1
2π , with the north pole having latitude 1

2π). Since U is open,
there exists δ > 0 such that all points with 0 ≤ θ < δ belong to U . Pick y ∈ E as
above, and define r as the point with the same φ as y but θr = θy + 1

2δ (so that r lies
a little south of y). Then inspection of S2 shows that one can find a neighborhood
Uy of y with the following property: for any u ∈ Uy there exists a great circle C
through r and u that contains two further points r′ ∈Up and u′ ∈Up such that r⊥ r′
and u ⊥ u′. Hence h(r)+ h(r′) = h(u)+ h(u′). Doing this for two different points
u = u1 and u = u2 gives

h(r)+h(r′1) = h(u1)+h(u′1);
h(r)+h(r′2) = h(u2)+h(u′2).

Hence h(u1)−h(u2) = h(r′1)−h(r′2)− (h(u′1)−h(u′2)), from which we obtain
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|h(u1)−h(u2)| ≤ |h(r′1)−h(r′2)|+ |(h(u′1)−h(u′2)| ≤ OscU (h)+OscU (h)≤ 2ε ′,

for by assumption, OscU (h)≤ ε ′. Since u1 and u2 in Uy were arbitrary, this gives

OscUy(h)≤ 2ε ′. (2.146)

Repeating this with y as the north pole gives OscUx(h)≤ 4ε ′, i.e., the lemma. �
To prove Lemma 2.35, following Gleason himself we consider the natural action

of the rotation group SO(3) (with positive determinant) on R3, written R : x �→ Rx.
This action maps S2 onto itself and hence induces an action U on C(S2) by pullback:

U(R) f (u) = f (R−1u). (2.147)

By Lemma 2.34 we have inclusions

F (S2)⊂Ce(S2)⊂C(S2), (2.148)

where F (S2) are the frame functions and Ce(S2) consists of the even functions in
C(S2); both spaces are obviously stable under the action (2.147). The following
facts, due to Weyl, which we state without proof, follow from elementary represen-
tation theory, but they are also quite easily verified by explicit computation. Let

ψ�(x,y,z) = (x+ iy)�, � ∈ N, (2.149)

and restrict this function to S2, still calling it ψ�. Let H� ⊂C(S2) be the vector space
spanned by all transforms U(R)ψ�, R ∈ SO(3). This vector space:

• consists of all homogeneous polynomials of degree � that are orthogonal (with
respect to the inner product in L2(S2)) to any such polynomials of degree �−2;

• has a basis consisting of the spherical harmonics Y m
� , m=−�,−�+1, . . . , �−1, �;

• accordingly, has finite dimension equal to dim(H�) = 2�+1;
• is irreducible under the natural SO(3)-action (2.147).

Indeed, all (necessarily finite-dimensional) irreducible representations of SO(3)
arise in this way. Now F (S2) is closed under the SO(3)-action (2.147), hence so
must be F (S2)∩H�. Since H� is irreducible, there are merely two possibilities:

H� ⊂ F (S2); (2.150)
H� ∩ F (S2) = {0}. (2.151)

Since for even/odd values of � the space H� consist of even/odd functions, and
F (S2) only has even elements, we immediately see that (2.151) applies if � is odd.
For even values of �, we see at once that (2.150) holds for:

• �= 0, where the constant frame function f (x,y,z) = c = 1
3 w( f ) �= 0 is obviously

induced by the operator ρ = c ·13 (where 13 is the 3×3 unit matrix), cf. (2.127);
• �= 2, which corresponds to frame functions f with weight w( f ) = 0.
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The latter functions are induced by operators ρ with zero trace. To see this, diago-
nalize ρ in C3 as in (2.6), without the constraints on pi. This yields

f (x) = 〈x,ρx〉=
3

∑
i=1

pi|〈x,υi〉|2. (2.152)

For f ∈ H2, since H2 ⊥ H0 in L2(S2) we must have

〈1R3 , f 〉L2(S2) =
∫

S2
d2x f (x) = 0. (2.153)

For any υ ∈ C3, we have ∫
S2

d2x |〈x,υ〉|2 = 4π
3
‖υ‖2; (2.154)

to see this, write |〈x,υ〉|2 = |υx|2x2 + |υy|2y2 + |υz|2z2, and use the surface element
d2x = dφdθ sinθ associated to the spherical coordinates (2.145) to compute∫

S2
d2xx2 =

∫
S2

d2xy2 =
∫

S2
d2xz2 =

4π
3
. (2.155)

Therefore, from (2.152), noting that ‖υi‖2 = 1 for each i = 1,2,3, we obtain

∫
S2

d2x f (x) =
4π
3

3

∑
i=1

pi =
4π
3

Tr(ρ). (2.156)

To settle the case � ≥ 4, all we need to know about the spherical harmonics is
that if � is even, then, once again using spherical coordinates, one has

Y m
� (x,y,z = 0) ∼ eimφ (m even); (2.157)

Y m
� (x,y,z = 0) = 0 (m odd). (2.158)

If (2.150) holds, then Y m
� ∈F (S2) for each m =−�,−�+1, . . . , �−1, �. But for any

(even) �≥ 4, there are values of m for which Y m
� cannot be a frame function. To see

this, take the following family of bases of R3, indexed by φ :

u1 = (cosφ ,sinφ ,0); (2.159)
u2 = (−sinφ ,cosφ ,0); (2.160)
u3 = (0,0,1). (2.161)

For any frame function f , the value of f (u1)+ f (u2) = w( f )− f (u3) must therefore
be independent of φ . However, from (2.157) - (2.158), we find

Y m
� (u1)+Y m

� (u2)∼ eimφ + eim(φ+π/2) = eimφ (1+ im),
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which is independent of φ iff m = 0 or m = 2 (mod 4). For �= 0,2 these are indeed
the only values that occur, but as soon as �≥ 4, the value m = 4 (among others) will
ruin it. So (2.150) holds only for �= 0 and �= 2, whereas (2.151) is the case for all
other � ∈N. Since H0 and H2 occur in C(S2) with multiplicity one, they cannot have
greater multiplicity in F (S2)⊂C(S2), so the above argument suggests that

F (S2) = H0⊕H2, (2.162)

which would prove the lemma. Fortunately, this is indeed the case, but to complete
the argument we need the following technical results (left out by Gleason himself):

Lemma 2.40. 1. Frame functions are uniformly continuous.
2. The representation (2.147) of SO(3) on F (S2) is continuous (in the usual sense

that the map (R, f ) �→U(R) f from SO(3)×F (S2) to F (S2) is continuous) with
respect to the supremum-norm on F (S2).

3. A continuous representation of a compact group G on a Banach space B is com-
pletely reducible (in that B is the closure of the direct sum of all irreducible
representations of G that it contains).

Proof. 1. The first claim follows because S2 is compact. Another proof starts from
the proof of Lemma 2.38, which has the feature that for given ε ′ > 0, if y,y′ ∈ E
with y′ = Rz(φ) for some angle φ , then Uy′ = Rz(φ)Uy (this is immediately clear
from the geometry). Similarly, as x ∈ S2, different neighborhoods V = Ux are
related by a rotation. Hence the size of Ux is independent of x, so that the above
proof of continuity established uniform continuity of frame functions also.

2. Let Rn→R in SO(3) and fm→ f uniformly in F (S2), i.e., ‖ fm− f‖∞→ 0. Then,
subtracting and adding a term U(Rn) f and using isometricity of U , i.e.,

‖U(Rn)( fm− f )‖∞ = ‖ fm− f‖∞,

we obtain the estimate

‖U(Rn) fm−U(R) f‖∞ ≤ ‖ fm− f‖∞ +‖U(Rn) f −U(R) f‖∞,

cf. (2.147). As m→ ∞ the first term on the right-hand side vanishes by assump-
tion, whilst the second vanishes as n→ ∞ by uniform continuity of f .

3. This is a Banach space version of the Peter–Weyl theorem, applied to the Banach
space of frame functions equipped with the supremum-norm (see Notes). �

Something like this is necessary, because one needs to rule out the possibility that
although (by the Stone–Weierstrass Theorem) the polynomial functions on R3, re-
stricted to S2, are uniformly dense in C(S2), so that the linear span of all spherical
harmonics and hence of all H� is uniformly dense in C(S2), some frame functions
might lie in the closure of this direct sum (or, in other words, they are given by uni-
formly convergent infinite sums of certain Y m

� ). Lemma 2.40 clinches the proof of
(2.162), since the third part implies that F (S2) would contain all irreducible repre-
sentations that contribute to the potential infinite sums; but we have already proved
that it only contains H0 and H2. Thus Lemma 2.35 now also follows. �
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2.9 Effects and Busch’s Theorem

Gleason’s Theorem is easy to state but difficult to prove; Busch’s Theorem is a
variation of it, which is more difficult to state but much easier to prove. Logically,
Busch’s Theorem is weaker than Gleason’s, as the assumptions of the latter are con-
tained in those of the former, but physically it appears to be more useful, as it covers
more situations. To wit, Busch’s Theorem revolves around certain generalizations
of projections (which took the centre stage in Gleason’s Theorem) called effects:
these are (necessarily self-adjoint) operators a ∈ B(H) that satisfy 0 ≤ a ≤ 1H , in
the sense defined after Proposition A.22. Thus a ∈ B(H) is an effect iff

0≤ 〈ψ,aψ〉 ≤ 1 (ψ ∈ H). (2.163)

The set of effects on a Hilbert space H is denoted by E (H) or by [0,1]B(H). By
Theorem A.10, we have (2.163) iff a∗ = a and the eigenvalues λ of a lie in the
interval [0,1] (i.e., σ(a)⊂ [0,1]). This implies that ‖a‖≤ 1, and conversely, if a≥ 0,
using the bound a ≤ ‖a‖ · 1H for any self-adjoint operator a, which easily follows
from (A.47), we see that for a≥ 0, the condition ‖a‖ ≤ 1 is equivalent to a ∈ E (H).
In particular, it follows that both projections and density operators are effects.

Proposition 2.41. 1. The set E (H) of effects on H is a compact convex subset of
B(H) in its σ -weak topology, with extreme boundary

∂eE (H) = P(H), (2.164)

i.e., the set of all projections on H (including 0).
2. Each a ∈ E (H) has a (typically non-unique) extremal decomposition

a =
m

∑
i=0

ti fi, (2.165)

in which ti ≥ 0 and ∑i ti = 1, and the fi are projections.

The σ -weak topology on B(H), defined after Corollary A.31, is the right one in this
context, but if H is finite-dimensional, as we assume here, this technicality may be
ignored, as the claim is even true with respect to the norm topology.

Proof. In Part 1, compactness and convexity are easily checked.
The inclusion ∂eE (H) ⊆P(H) is equivalent to the claim that any a ∈ E (H),

a /∈P(H), does not lie in ∂eE (H) and hence admits a convex decomposition

a = ta1 +(1− t)a2, t ∈ (0,1),a1,a2 ∈ E (H),a1 �= a �= a2, (2.166)

or, equivalently, a has a nontrivial decomposition a = ∑i tiai, for certain ti > 0 with
∑i t1 = 1. Indeed, the latter follows from the spectral resolution (A.37), in which the
spectral projections eλ should be rescaled if necessary to as to make the coefficients
sum to unity (note that te ∈ E (H) for any projection e and any t ∈ [0,1]).
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To show the opposite inclusion P(H) ⊆ ∂eE (H), again assume (2.166), where
this time a = e ∈P(H) is a projection. “Sandwiching” between ψ ∈H1, this yields

〈ψ,a1ψ〉 = 〈ψ,a2ψ〉= 0, ψ ∈ (eH)⊥; (2.167)
〈ψ,a1ψ〉 = 〈ψ,a2ψ〉= 1, ψ ∈ eH. (2.168)

Using 0≤ ai ≤ 1, i = 1,2, and (A.37), these equations imply that a1 = a2 = e.
The claim of part 2 is satisfied by picking the ti and fi in terms of the spectral

data associated to a (cf. Theorem A.10), as follows: with m = |σ(a)|, order the
eigenvalues λ ∈ σ(a) according to λ1 < · · ·< λm, and take:

t0 = 1−λm; (2.169)
t1 = λ1; (2.170)
ti = λi−λi−1 (i≥ 2); (2.171)
f0 = 0; (2.172)
f1 = 1H ; (2.173)

fi =
m

∑
j=i

eλi (i≥ 2). (2.174)

The validity of (2.165) is then a trivial verification. �

Note that, in general, the extremal decomposition of a as an effect differs from its
spectral resolutions (A.37) or (A.38) as a self-adjoint operator. If a = ρ is a den-
sity operator, then the latter, i.e., (2.6), does provide an extremal decomposition of
a construed as an effect also, which differs from the one in (2.165). This example
shows that extremal decompositions in E (H) are not necessarily unique. Also, ob-
serve that te, for e ∈P(H) and t ∈ (0,1), does not lie in ∂eE (H), since it admits a
nontrivial decomposition te = te+(1− t) ·0, recalling that 0 ∈P(H)⊂ E (H).

Busch’s Theorem classifies the following objects.

Definition 2.42. A probability distribution on E (H) is a function p : E (H)→ [0,1]
that satisfies the following two conditions:

1. p(1H) = 1;
2. If a (finite) family (ai) of effects satisfies ∑i ai ≤ 1H, then

p

(
∑

i
ai

)
= ∑

i
p(ai). (2.175)

Lemma 2.43. if a (finite) family (ai) of effects satisfies ∑i ai = 1, then ∑i p(ai) = 1.

This trivial observation implies that a probability distribution on E (H) induces a
probability distribution on P(H) ⊂ E (H) by restriction, cf. Definition 2.23. An-
other way to see this from the perspective of probability measures is to note that
any family (ei) of projections that satisfies ∑i ei ≤ 1 is automatically orthogonal.
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Therefore, restricted to P(H), Definition 2.42 reduces to Definition 2.23.2. To see
this, fix j and pick ψ ∈ e jH. The condition ∑i ei ≤ 1 gives

∑
i�= j
〈ψ,eiψ〉= ∑

i �= j
‖eiψ‖2 ≤ 0,

but since each term is positive, this implies eiψ = 0 for each i �= j. Putting ψ = e jϕ ,
where ϕ ∈ H is arbitrary, this gives eie jϕ = 0 for all ϕ and hence eie j = 0.

Clearly, any state ω on B(H) induces a probability distribution pω on E (H) by

pω(a) = ω(a). (2.176)

Busch’s Theorem shows the converse.

Theorem 2.44. Any probability distribution p on E (H) takes the form p = pω for
some state ω on B(H), establishing a bijective correspondence between probability
distributions on E (H) and states on B(H).

Proof. If p : E (H)→ [0,1] can be extended to a linear map ω : B(H)→ C, then
ω is automatically a state, for normalization is assumed and positivity follows from
the fact that any 0 �= b ≥ 0 has the form b = ra for some r ∈ R+ and 0 ≤ a ≤ 1H ,
namely with r = ‖b‖ and a = b/‖b‖; then a≥ 0 and ‖a‖= 1, so that, as explained
earlier, a is an effect. Hence ω(b) = ω(ra) = rp(a)≥ 0. To achieve this extension:

1. We show that p(ra) = rp(a) for all r ∈ Q∩ [0,1] and 0 ≤ a ≤ 1H . Indeed, for
any such a and n ∈ N we write a = (a+ · · ·+a)/n (n terms), so that by (2.175),
p(a) = np(a/n). Similarly, for any m ∈ N and 0≤ b≤ 1H/m, we have p(mb) =
mp(b). Take integers m,n such that (m/n) ∈ [0,1] and put b = a/n, so that

p
(m

n
a
)
= mp

(a
n

)
=

m
n

p(a). (2.177)

2. We next prove that p(ta) = t p(a) for all t ∈ [0,1] and 0≤ a≤ 1H . Positivity of p
yields p(a)≤ p(a′) whenever 0≤ a≤ a′ ≤ 1H . Given t ∈ [0,1], take an increas-
ing sequences of rationals (rn) with rn ≤ t, as well as a decreasing sequence of
rationals (sn) with t ≤ sn, such that rn ↑ t and sn ↓ t in R. With step 1, this gives

rn p(a) = p(rna)≤ p(ta)≤ p(sna)≤ sn p(a).

Letting n→ ∞, this gives t p(a)≤ p(ta)≤ t p(a), and hence equality.
3. Now extend p to all a ≥ 0, calling the extension ω , by ω(a) = ‖a‖p(a/‖a‖)

at a �= 0 and ω(0) = 0; the previous step then easily yields the compatibility
property ω|[0,1]B(H)

= p and the scaling property ω(ta) = tω(a) for each t ≥ 0.
4. For a≥ 0 and b≥ 0, rescaling and (2.175) yield ω(a+b) = ω(a)+ω(b).
5. For general a∗ = a we write a = a+− a−, with a± ≥ 0, as in Proposition A.24,

and define ω on all of B(H)sa by ω(a) = ω(a+)−ω(a−). This is well defined
despite the lack of uniqueness of (A.74), for if a = a+− a− = a′+− a′−, with
a′± ≥ 0, then a++a′− = a′++a−, whence ω(a+)−ω(a−) = ω(a′+)−ω(a′−).
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This argument also shows that ω remains linear on general self-adjoint a and b,
since a+b = (a++b+)− (a−+b−) is a decomposition with (a±+b±)≥ 0.

6. Finally, for general c∈B(H) we (uniquely) decompose c= a+ ib, a∗= a, b∗= b,
cf. the proof of Corollary A.20, and put ω(c) = ω(a)+ iω(b). �

To close, we give a very brief and superficial introduction to effects as they arise
from modern (“operational”) quantum measurement theory. This theory associates
quantum data to classical data through the concept of a Positive Operator Valued
Measure or POVM. Relative to some given “classical” space X (taken finite here)
and Hilbert space H (assumed finite-dimensional), a POVM is defined as a map

A : P(X)→ E (H) (2.178)

that satisfies A(X) = 1H as well as A(U ∪V ) = A(U)+A(V ) whenever U ∩V = /0,
cf. Definition 1.1. Equivalently, a POVM is a map

a : X → E (H) (2.179)

that satisfies
∑
x∈X

a(x) = 1H . (2.180)

As in the classical case, these notions are trivially equivalent through

a(x) = A({x}); (2.181)

A(U) = ∑
x∈U

a(x). (2.182)

The motivating special case of a POVM is given by some self-adjoint operator
a∈ B(H), which yields X = σ(a) and a(λ ) = eλ . In that case, each density operator
ρ induces a probability distribution on σ(a) through the Born rule (2.8). More gen-
erally, a probability distribution p on E (H) and a POVM (2.179) jointly determine a
probability distribution pa on X , given by

pa(x) = p(a(x)). (2.183)

Indeed, pa(x)≥ 0 because a≥ 0, and ∑x∈X pa(x) = 1 by (2.180) and Lemma 2.43.
The idea, then, is that a measurement of some POVM a has (classical) outcome x
with probability pa(x); this generalizes the traditional dogma that a measurement
of an observable a has outcome λ ∈ σ(a) with (Born) probability (2.8). Indeed,
combined with (2.33), Busch’s Theorem shows that we necessarily have

pa(x) = Tr(ρa(x)), (2.184)

for some density operator ρ . So nothing has been gained by introducing Definition
2.42, expect perhaps for the insight that, as in Gleason’s Theorem, it is the non-
contextuality of a probability distribution on E (H)—in that p(a(x)) is independent
of the POVM a which a(x) forms part of—that eventually enforces (2.184).
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2.10 The quantum logic of Birkhoff and von Neumann

In §1.4 we showed that classical mechanics has a classical logical structure, in
which (equivalence classes of) propositions correspond to subsets of phase space.
These subsets form a Boolean lattice in which the logical connectives ¬, ∧, and ∨
fornegation, disjunction, and conjunction, respectively, are interpreted as their nat-
ural set-theoretic counterparts (i.e., complementation, intersection, and union).

In 1936, Birkhoff and von Neumann proposed a strikingly similar quantum logic
for quantum mechanics, in which (closed) linear subspaces of Hilbert space play
the role of (measurable) subsets of phase space, and the basic logical connectives
(except implication, which is queerly lacking in this setting) are interpreted as:

¬L = L⊥; (2.185)
L∧M = L∩M; (2.186)
L∨M = L+M, (2.187)

where L⊥ is the orthogonal complement of L, see (A.29), L∩M is the (set-theoretic)
intersection of L and M, and L + M is the (closed) linear span of L and M. If
dim(H) < ∞, as we continue to assume, any linear subspace of H is automatically
closed, and the infinite-dimensional case an attractive operator-algebraic and lattice-
theoretic structure arises only if the events are taken to be closed linear subspaces.

Although the Brouwer–Hilbert debate on the foundations of mathematics had
somewhat subsided in 1936, with hindsight it may be argued that the quantum
logic of Birkhoff and von Neumann (who had been a “postdoc” avant la lettre with
Hilbert) was predicated on their desire to preserve not only the law of contradiction

α ∧¬α =⊥, (2.188)

where α is any proposition and⊥ is the proposition that is identically false, but also,
against Brouwer, the law of excluded middle (or tertium non datur)

α ∨¬α =#, (2.189)

where # is the proposition that is identically true. Indeed, in the Birkhoff–von Neu-
mann model (2.185) - (2.187), where ⊥ = {0} and # = H, these are identities.
Similarly, their model satisfies the law of double negation

¬¬α = α, (2.190)

which both in classical logic (where it is a tautology) and in intuitionistic logic
(where it is rejected in general) is equivalent to (2.189). Also, De Morgan’s Laws:

¬(α ∨β ) = ¬α ∧¬β ; (2.191)
¬(α ∧β ) = ¬α ∨¬β , (2.192)

hold in their quantum logic (despite their origin in classical propositional logic).
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We will now derive the Birkhoff–von Neumann structure along similar lines as its
classical counterpart (cf. §1.4), except that in the absence of the necessary structure
for a classical propositional calculus we now rely on semantic entailment alone.

In quantum theory, the role of functions f : X → R as observables in classical
physics is played by self-adjoint operators a : H →H on some Hilbert space H, and
hence the quantum analogue of an elementary proposition f ∈ Δ of classical physics
is a ∈ Δ (where Δ ⊂ R), with special case a = λ for a ∈ {λ} (with λ ∈ R).

In analogy to the points x ∈ X of phase space, pure states ωψ as in (2.42), or
the corresponding density operators eψ (where ψ ∈ H is a unit vector), yield truth
assignments to elementary propositions. To start with the simplest case, a = λ is:

• true with respect to ωψ iff pψa (λ ) = 1, see (2.10), or, equivalently, iff ψ ∈ Hλ ,
where Hλ ⊆ H is the eigenspace of a for eigenvalue λ , cf. (A.36);

• false with respect to ωψ iff pψa (λ ) = 0, or, equivalently, iff ψ ⊥ Hλ .

The underlying idea here is arguably that, according to some naive operational in-
terpretation of quantum mechanics, a measurement of a in a state ωψ would give
outcome λ with probability one (zero) iff a = λ is true (false) with respect to ωψ . If
0 < pψa (λ )< 1, the “truthmaker” ωψ actually fails to assign a truth value to a = λ ;
the partial nature of truthmakers marks a significant difference with the classical
case, as does the closely related distinction between false and not true. Similarly,
we say that an elementary proposition a ∈ Δ is true in some state ωψ iff

Pψ
a (Δ)≡ ‖eΔψ‖2 = 1, (2.193)

cf. (2.9) and (A.42), and false if Pψ
a (Δ) = 0. In other words, a ∈ Δ is true in ωψ

iff ψ ∈ HΔ , and false if ψ ⊥ HΔ ,see (A.43). Such propositions may formally be
combined using the connectives ¬, ∧, and ∨ (whose meaning is unfortunately far
from clear in this new setting) according to the same (inductive) formation rules as
in classical propositional logic. However, the classical truth tables for ∧ and ∨ are
unsound with regard to the above rules, at least if one eventually wants to arrive at
(2.185) - (2.187). For example, ωψ may validate neither α nor β , yet it might make
α ∨β true (assuming that α and β correspond to L and M, respectively, this is the
case if ψ /∈ L and ψ /∈M, yet ψ ∈ L+M). Similarly, ωψ may render neither α nor β
false, yet it may falsify α ∧β . Due to this complication, the approach of §1.4 has to
be modified, as follows. Our goal remains to define a semantic equivalence relation
∼H , which is predicated on an inductive definition of truth we first give.

Definition 2.45. 1. a ∈ Δ is true in ωψ iff Pψ
a (Δ) = 1, and false if Pψ

a (Δ) = 0.
2. The negation ¬(a ∈ Δ) of an elementary proposition a ∈ Δ is given by a ∈ Δ c.
3. The negation ¬α is true iff α is false.
4. The conjunction α ∧β is true iff both α and β are true.
5. De Morgan’s Laws (2.191) - (2.192) and the law of double negation (2.190) hold;

in particular, the disjunction α ∨β is true iff ¬(¬α ∧¬β ) is true (as per 1–4).
6. We write α |=H β iff the truth of α implies the truth of β , for each state ωψ .
7. We write α ∼H β iff α |=H β and β |=H α .
8. If α ∼H β , then ¬α ∼H ¬β .
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Lemma 2.46. Definition 2.45 implies the following rules:

1. Our earlier truth attributions for the case a ∈ Δ with Δ = {λ}. In particular,
a = λ is always false when λ /∈ σ(a), and so is a ∈ Δ whenever Δ ∩σ(a) = /0.

2. a ∈ Δ is false relative to ωψ iff ψ ⊥ HΔ .

3. (a ∈ Δ)∧ (b ∈ Γ ) is true in ωψ iff ψ ∈ H(a)
Δ ∩H(b)

Γ .

4. (a ∈ Δ)∨ (b ∈ Γ ) is true in ωψ iff ψ ∈ H(a)
Δ +H(b)

Γ .

Hence conjunctions behave classically, as part 3 states that (a ∈ Δ)∧ (b ∈ Γ ) is true
iff a ∈ Δ and b ∈ Γ are true). The proof of this lemma uses the following notation.

Definition 2.47. If e and f are projections on a Hilbert space H, then:

• e∧ f is the projection onto eH ∩ f H;
• e∨ f is the projection onto eH + f H, i.e., the (closed) linear span of eH and f H.

Note that if e and f commute, these reduce to the algebraic expressions

e∧ f = e f ; (2.194)
e∨ f = e+ f − e f . (2.195)

Furthermore, in case of potential ambiguity we will write e(a)Δ for the spectral pro-

jection eΔ as defined by a, and analogously e(b)Γ , etc. Similarly for H(a)
Δ etc.

Proof. The first and third claims are immediate. The second one follows from the
relation eΔ c = e⊥Δ = 1− eΔ , or, equivalently, HΔ c = H⊥

Δ . For the fourth, use Defini-
tion 2.45.6, 3, and 2 to infer that (a ∈ Δ)∨ (b ∈ Γ ) is true iff (a ∈ Δ c)∧ (b ∈ Γ c) is
false. From the third claim, we note that

(a ∈ Δ)∧ (b ∈ Γ )∼H

(
e(a)Δ ∧ e(b)Γ = 1

)
, (2.196)

so by Definition 2.45.5, (a ∈ Δ c)∧ (b ∈ Γ c) is false iff e(a)Δ c ∧ e(b)Γ c = 1 is false. Since

e(a)Δ c ∧ e(b)Γ c = 1 is true iff ψ ∈ H(a)
Δ c ∩H(b)

Γ c , claim 2 implies e(a)Δ c ∧ e(b)Γ c = 1 is false iff

ψ ∈ (H(a)
Δ c ∩H(b)

Γ c )
⊥ = ((H(a)

Δ )⊥∩(H(b)
Γ )⊥)⊥ = (H(a)

Δ )⊥⊥+(H(b)
Γ )⊥⊥ = H(a)

Δ +H(b)
Γ ,

which finishes the proof. �

Quite analogously to the classical case, Definition 2.45 implies

(a ∈ Δ) |=H (b ∈ Γ ) iff e(a)Δ ⊆ e(b)Γ , (2.197)

which, once again, immediately yields (a ∈ Δ) ∼H (b ∈ Γ ) iff e(a)Δ = e(b)Γ . Taking

b = e(a)Δ and Γ = {1}, analogously to (1.53), as in the above proof we have

a ∈ Δ ∼H e(a)Δ = 1. (2.198)
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Furthermore, as in the proof of Lemma 2.46 we find

(a ∈ Δ)∧ (b ∈ Γ ) ∼H

(
e(a)Δ ∧ e(b)Γ = 1

)
; (2.199)

(a ∈ Δ)∨ (b ∈ Γ ) ∼H

(
e(a)Δ ∨ e(b)Γ = 1

)
. (2.200)

Consequently, we have the following counterpart of Lemma 1.19:

Lemma 2.48. Any elementary or composite proposition is semantically equivalent
(relative to H) to one of the form e = 1, for some projection e. Furthermore,

¬(e = 1) ∼H

(
e⊥ = 1

)
; (2.201)

(e = 1)∧ ( f = 1) ∼H (e∧ f = 1) ; (2.202)
(e = 1)∨ ( f = 1) ∼H (e∨ f = 1) . (2.203)

At last, the quantum version of Theorem 1.20 reads as follows:

Theorem 2.49. The set Q(H) of equivalence classes [·]H of propositions generated
by the elementary propositions a ∈ Δ and the logical connectives ¬, ∨, and ∧, is
isomorphic to the set L (H) of linear subspaces of H, under the map

ϕ : Q(H)
∼=→ L (H); (2.204)

ϕ([a ∈ Δ ]H) = e(a)Δ H. (2.205)

Under this isomorphism, the logical connectives ¬, ∧ and ∨ turn into orthogonal
complementation (−)⊥, intersection ∩, and linear span +, respectively, in that

ϕ([¬α]H) = ϕ([α]X )⊥; (2.206)
ϕ([α ∧β ]H) = ϕ([α]H)∩ϕ([β ]H ; (2.207)
ϕ([α ∨β ]H) = ϕ([α]H)+ϕ([β ]H), (2.208)

Furthermore, if we define a partial order ≤ on Q(X) by saying that [α]H ≤ [β ]H iff
α |=H β (which is well defined), then ϕ maps ≤ into set-theoretic inclusion ⊆, i.e.,

[α]H ≤ [β ]H iff ϕ([α]H)⊆ ϕ([β ]H). (2.209)

With respect to these operations, L (H) is a modular lattice (granted that dim(H)<
∞; otherwise, the lattice is merely orthomodular, cf. §D.1 for terminology).

Proof. Most of this is immediate from Lemma 2.48, expect for the last claim, which
follows from simple computations (and from the Amemiya–Araki Theorem). �

As in the classical case, there is an algebraic reformulation of this result, obtained
from the bijective correspondence between (closed) linear subspaces L of H and
projections e on H, given by L = eH (see Proposition A.8).
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Theorem 2.50. The set Q(H) of equivalence classes [·]H of propositions generated
by the elementary propositions a ∈ Δ and the logical connectives ¬, ∨, and ∧, is
isomorphic to the set P(H) of projections on H, under the map

ϕ ′ : Q(H)
∼=→ P(H); (2.210)

ϕ ′([a ∈ Δ ]H) = e(a)Δ , (2.211)

where (once again) P(H) is the set of all projections on H.
Under this map, the logical connectives¬,∧ and∨ turn into (cf. Definition 2.47):

ϕ ′([¬α]H) = 1−ϕ ′([α]X ) (2.212)
ϕ ′([α ∧β ]H) = ϕ ′([α]H)∧ϕ ′([β ]H); (2.213)
ϕ ′([α ∨β ]H) = ϕ ′([α]H)∨ϕ ′([β ]H), (2.214)

Furthermore, ϕ ′ maps the partial order≤ on Q(H) into the partial order on P(H)
defined by e≤ f iff eH ⊆ f H, or equivalently, iff e f = e.

Finally, with respect to these operations, P(H) is an (ortho)modular lattice.

However, unlike (1.65) - (1.68), this result is somewhat unsatisfactory in not being
purely algebraic. This may partly be remedied through expressions like

e∧ f = lim
n→∞

(e◦ f )n; (2.215)

e∨ f = 1− ((1− e)∧ (1− f )), (2.216)

where e◦ f = e f + f e, and the (strong) limit in (2.215) should be taken on fixed vec-
tors ψ ∈ H (upon which it exists in the norm-topology of H). Even so, this specific
limit still relies on the underlying Hilbert space, and in any case the expressions fail
to be purely algebraic and look pretty artificial. Indeed, the same may be said about
Definition 2.45, which, of course, has been fine-tuned with hindsight in order to ob-
tain the “desired” answer in the form of Theorem 1.20, which in turn vindicates the
mathematically sweet Birkhoff–von Neumann Ansatz (2.185) - (2.187).

In addition, there are serious conceptual objections to this kind of quantum logic:

1. Conjunction∧ and disjunction∨ do not distribute over each other, rendering their
interpretation as “and” and “or” obscure.

2. There are propositions α and β (namely those for which ϕ ′([α]H) and ϕ ′([β ]H)
do not commute) for which the conjunction α ∧β is physically undefined.

3. There are states in which α ∨β is true whilst neither α nor β is true.
4. There are states in which α ∧β is false whilst neither α nor β is false.
5. In view of Schrödinger’s Cat, one would expect the law of excluded middle

(2.189) to fail in quantum mechanics, yet it holds in quantum logic (and this
is possible because neither ∨ nor ¬ has any familiar logical meaning in it).

6. Finally, nothing is said or done about propositions that are neither true nor false.

In Chapter 12, we will therefore replace the doomed quantum logic of Birkhoff and
von Neumann by the intuitionistic logic of Brouwer and Heyting.
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Notes

All operator theory for this chapter may be found in Kadison & Ringrose (1983).
§2.1. Quantum probability theory and the Born rule

The Born rule was first stated by Born (1926b) in the context of scattering the-
ory, following the earlier paper (Born, 1926a) in which Born omitted the absolute
value squared signs (corrected in a footnote added in proof). The application to the
position operator is due to Pauli (1927), who merely spent a footnote on it. The gen-
eral formulation is due to von Neumann (1932, §III), following earlier contributions
by Dirac (1926b) and Jordan (1927). Both Born and Heisenberg acknowledge the
profound influence of Einstein on the probabilistic formulation of quantum mechan-
ics. However, Born and Heisenberg as well as Bohr, Dirac, Jordan, Pauli and von
Neumann differed with Einstein about the fundamental nature of the Born probabil-
ities and hence on the issue of determinism. Indeed, whereas Born and the others
just listed after him believed the outcome of any individual quantum measurement
to be unpredictable in principle, Einstein felt this unpredictability was just caused
by the incompleteness of quantum mechanics (as he saw it). See, for example, the
invaluable correspondence between Einstein and Born (2005).

Mehra & Rechenberg (2000) provide a very detailed reconstruction of the histor-
ical origin of the Born rule within the context of quantum mechanics, whereas von
Plato (1994) embeds a briefer historical treatment of it into the more general setting
of the emergence of modern probability theory and probabilistic thinking. For the
earlier history of probability see Hacking (1975, 1990). See also Landsman (2009).
§2.2. Quantum observables and states

Proposition 2.10 is due to von Neumann; see also Chapter 6.
§2.3. Pure states in quantum mechanics

This kind of thinking goes back to von Neumann (1932) and Segal (1947ab).
§2.4. The GNS-construction for matrices

Again, see §C.12 for the GNS-construction in general.
§2.5. The Born rule from Bohrification

See notes to §4.1.
§2.6. The Kadison–Singer Problem

The Kadison–Singer Problem was first discussed in Kadison & Singer (1959).
See the Notes to §4.3 for more information.
§2.7. Gleason’s Theorem

§2.8. Proof of Gleason’s Theorem

Gleason’s Theorem is due to Gleason (1957), whose proof we largely follow,
with some simplifications due to Varadarajan (1985) and Hamhalter (2004). Lemma
2.40.3 or some analogous result is lacking from these references; it may be found
in Lyubich (1988), Chapter 4, §2, Theorem. It is often claimed that Gleason’s proof
has been superseded by the more elementary one due to Cooke, Keane, & Moran
(1985), which avoids all use of harmonic analysis. A similar proof, following up on
Cooke et al but using constructive analysis only, was given by Richman & Bridges
(1999). However, both because Gleason’s use of rotation invariance is very natural,
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and also since the proof of Cooke et al has already been presented and simplified in
two monographs entirely devoted to Gleason’s Theorem, viz. Dvurec̆enskij (1993)
and Hamhalter (2004), as well as in the highly efficient book by Kalmbach (1998),
we prefer to return to the original source (and add some technical details).
§2.9. Effects and Busch’s Theorem

Busch’s Theorem is from Busch (2003), whose proof we follow almost verbatim.
See also Caves et al (2004). For the use of POVM’s in quantum physics see, e.g.,
Busch, Grabowski, & Lahti (1998), Davies (1976), Holevo (1982), Kraus (1983),
Landsman (1998a, 1999), de Muynck (2002), and Schroeck (1996).
§2.10. The quantum logic of Birkhoff and von Neumann Our discussion is based
on Rédei (1998), with some modifications though. The original source is Birkhoff
& von Neumann (1936).



Chapter 3

Classical physics on a general phase space

Passing from finite phase spaces X to infinite ones yields many fascinating new phe-
nomena, some of which even seem genuinely “emergent” in not having any finite-
dimensional shadow, approximate or otherwise. Nonetheless, practically all results
in the previous chapter remain valid, typically after the inclusion of some technical
condition(s) that restrict the almost unlimited freedom allowed by infinite sets.

One of these restrictions is that in classical physics we assume that our phase
space X is locally compact Hausdorff, where we recall that a space is:

• compact if every open cover has a finite subcover;
• locally compact if every point has a compact neighbourhood;
• Hausdorff (or T2) if every pair of distinct points x,y can be separated by open

sets (i.e., there are disjoint open sets Ux, Uy that contain x and y, respectively).

This combination of topological properties turns out to be very convenient; it in-
corporates spaces like Rk (and more generally all non-pathological manifolds), or
lattices like Zn (the price is that we exclude systems with an infinite number of
degrees of freedom, such as classical field theories). A locally compact Hausdorff
space X is regular in that each x ∈ X and each closed set F ⊂ X not containing x
can be separated by open sets (i.e., there are disjoint open sets Ux � x and UF ⊃ F).

From the perspective of C*-algebras, the main advantage of using this particular
class of spaces is that they are naturally singled out by Gelfand’s Theorem:

Theorem 3.1. Every commutative C*-algebra A is isomorphic to C0(X) for some
locally compact Hausdorff space X, which is unique up to homeomorphism.

A proof may be found in Appendix C; here we just explain the notation and the
main idea behind the proof (cf. Definition C.1, which we do not repeat).

First, C0(X) is the set of all continuous functions f : X →C that vanish at infin-
ity, i.e., for any ε > 0 the set {x∈X | | f (x)| ≥ ε} is compact, or, equivalently, for any
ε > 0 there is a compact set K ⊂ X such that | f (x)|< ε for all x /∈ K. For example,
if X =R, then f (x) = exp(−x2) lies in C0(R). If X is compact, then C0(X) =C(X).

Second, C0(X) is a vector space under pointwise operations (including pointwise
complex conjugation as the involution), and is a Banach space in the sup-norm
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‖ f‖∞ = sup
x∈X
{| f (x)|}. (3.1)

The space X making A isomorphic to C0(X), then, is the Gelfand spectrum Σ(A) of
A, which we already encountered (cf. Definition 1.4) as the set of nonzero algebra
homomorphisms from A to C. This set turns out to be a locally compact Hausdorff
space in the topology of pointwise convergence, and the isomorphism A→C0(X) is
the Gelfand transform a �→ â, where â(ω) = ω(a). Conversely, if X is given, then
we associate the commutative C*-algebra C0(X) to it, as in Chapter 1.

Generalizing Definition 1.14, as a special case of the notion of a state we have:

Definition 3.2. A state on C0(X) is a positive (and hence bounded) linear functional
ω : C0(X)→ C with ‖ω‖= 1.

If X is compact, given positivity one has ‖ω‖= 1 iff ω(1X ) = 1, cf. Lemma C.4.
The appropriate generalization of Theorem 1.15 then reads (cf. Corollary B.21):

Theorem 3.3. Let X be a locally compact Hausdorff space. There is a bijective cor-
respondence between states on C0(X) and probability measures on X, namely

ϕ( f ) =
∫

X
dμ f , f ∈C0(X). (3.2)

Moreover, pure states correspond to Dirac measures and hence to points of X.

In particular, a nonzero linear functional ω : C0(X)→ C is multiplicative iff it is a
pure state. This recovery of probability measures on phase space as states of the as-
sociated algebra of observables C0(X), and of points in phase space as the associated
pure states, already familiar from the finite case, remains of great importance.

As in quantum mechanics, many interesting observables in classical mechanics
fail to be bounded, let alone C0; coordinate functions (on non-compact phase spaces)
and the usual kinetic energy are a case in point. This is not a serious problem, es-
pecially not if, as we shall assume from now on, X is a (smooth) manifold (those
unfamiliar with this notion may always have X =Rk in mind). In that case, there is a
very natural class of (typically unbounded) functions on X , viz. C∞(X)≡C∞(X ,R),
which form a commutative algebra just like C0(X)≡C0(X ,C), and provide the (al-
gebraic) basis for the theory of symmetry and dynamics in classical physics, as we
shall now show (the fact that functions in C∞(X) may be freely added and multiplied
provides a major simplification compared to unbounded operators in quantum me-
chanics, even self-adjoint ones, which are most easily treated by transforming them
into bounded ones, as discussed in §B.21). In fact, the most natural mathematical
setting of classical physics is not operator theory, or even symplectic geometry (as
even mathematically minded people used to think until the 1980s), but rather the
more general and flexible framework of Poisson geometry, to which we now turn.
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3.1 Vector fields and their flows

We do not assume familiarity with differential geometry and analysis on manifolds,
so in what follows one may assume that M = Rk for some k. However, whenever
possible we will phrase definitions and results in such a way that their more general
meaning should be clear to those who are familiar with differential geometry etc.

An old-fashioned vector field on X = Rk is a map

ξ : Rk → Rk; (3.3)

ξ (x) = (ξ 1(x), . . . ,ξ k(x)), (3.4)

which describes something like a hyper-arrow at x. However, this is a coordinate-
dependent object, which is hard to generalize to arbitrary manifolds. Therefore, in a
modern approach a vector field is seen as the corresponding first-order differential
operator ξ : C∞(X)→C∞(X) defined by

ξ f (x) =
k

∑
j=1

ξ j(x)
∂ f (x)
∂x j . (3.5)

To make the idea precise that a vector field on X is essentially the same as a first-
order differential operator on C∞(X), we note that it easily follows from (3.5) that

ξ ( f g) = ξ ( f )g+ fξ (g), (3.6)

for any f ,g ∈C∞(X), where the product f g is defined pointwise, i.e.,

( f g)(x) = f (x)g(x). (3.7)

Similarly, we have pointwise addition and scalar multiplication, i.e., for s, t ∈ R,

(s f + tg)(x) = s f (x)+ tg(x). (3.8)

This turns C∞(X) into a commutative algebra (over R, as C∞(X)≡C∞(X ,R).
A derivation of an algebra A (over R) is a linear map δ : A→ A satisfying

δ (ab) = δ (a)b+aδ (b). (3.9)

Thus any vector field on X defines a derivation of the algebra C∞(X) by (3.5). Con-
versely, a deep theorem of differential geometry states that for any manifold X , each
derivation of C∞(X) takes the form (3.5), at least locally (and for X =Rk also glob-
ally). Therefore, either as a definition or as a theorem, we often simply identify
vector fields on X with derivations of C∞(X). Derivations have a rich structure:

Definition 3.4. A (real) Lie algebra is a (real) vector space equipped with a bilinear
map [·, ·] : A×A→ A that satisfies [a,b] =−[b,a] (and hence [a,a] = 0) as well as

[a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0 (Jacobi identity). (3.10)
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It is easy to see that the set Vec(X) of all old-fashioned vector fields ξ on X (i.e.
in the sense (3.5)) forms a real Lie algebra under pointwise vector space operations
(i.e., (sξ + tη)( f ) = sξ f + tη f ) and the natural bracket

[ξ ,η ] = ξη−ηξ . (3.11)

Similarly, the set Der(A) of all derivations on some algebra is a Lie algebra under
pointwise vector space operations and Lie bracket

[δ1,δ2] = δ1 ◦δ2−δ2 ◦δ1. (3.12)

Of course, the identification of Vec(X) with Der(C∞(X)) identifies (3.11) and (3.12).
Vector fields (or, equivalently, derivations) may be “integrated”, at least locally,

in the following sense. First, a curve through x0 ∈ X is a smooth map c : I → X ,
where I ⊂ R is open and c(t0) = x0 for some t0 ∈ I. We usually assume that 0 ∈ I
with t0 = 0 and hence c(0) = x0. We then say that c integrates ξ near x0 if

ċ(t) = ξ (c(t)), (3.13)

a somewhat symbolic equality that can be interpreted in two equivalent ways:

• Describing c : I → Rk by k functions c j : I → R ( j = 1, . . . ,k), eq. (3.13) denotes

dc j(t)
dt

= ξ j(c1(t), . . . ,ck(t)), j = 1, . . . ,k. (3.14)

• More abstractly, eq. (3.13) means that for any f ∈C∞(X) we have

ξ f (c(t)) =
d
dt

f (c(t)). (3.15)

To pass from (3.15) to (3.14), we just have to recall (3.5), and note that

d
dt

f (c(t)) =
d
dt

f (c1(t), . . . ,ck(t)) =
k

∑
j=1

dc j(t)
dt

∂ f (c(t))
∂x j . (3.16)

The theory of ordinary differential equations shows that such local integral curves
exist near any point x0 ∈ X , and that they are unique in the following sense: if two
curves c1 : I1 → X and c2 : I2 → X both satisfy (3.13) with c1(0) = c2(0) = x0, then
c1 = c2 on I1 ∩ I2. However, curves that integrate ξ near some point may not be
defined for all t, i.e., for I =R. This makes the concept of a flow of a vector field ξ ,
which is meant to encapsulate all integral curves of ξ , a bit complicated. We start
with the simplest case. We say that a vector field ξ is complete if for any x0 ∈ X
there is a curve c : R→ X satisfying (3.13) with c(0) = x0. The simplest example
of a complete vector field is X = R and ξ = d/dx, so that ϕt(x) = x+ t. For an
incomplete example, take X = R and ξ (x) = x2d/dx. It can be shown that a vector
field ξ with compact support (in the sense that the set {x∈X | ξ (x) �= 0} is bounded)
is complete. In particular, any vector field on a compact manifold is complete.
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Definition 3.5. Let X be a manifold and let ξ ∈ Vec(X) be a complete vector field.
A flow of ξ is a smooth map ϕ : R×X → X, written

ϕt(x)≡ ϕ(t,x), (3.17)

that satisfies

ϕ0(x) = x; (3.18)
ϕs ◦ϕt = ϕs+t , (3.19)

and that integrates ξ is the sense that for each t ∈ R and x ∈ X,

ξ (ϕt(x)) =
d
dt

ϕt(x). (3.20)

As before, eq. (3.20) by definition means that for each f ∈C∞(X) we have

ξ f (ϕt(x)) =
d
dt

f (ϕt(x)), (3.21)

or, equivalently, that in local coordinates, where

ϕt(x) = (ϕ1
t (x), . . . ,ϕ

k
t (x)), (3.22)

we have
dϕ j

t (x)
dt

= ξ j(ϕt(x)), j = 1, . . . ,k. (3.23)

Indeed, the flow ϕ of ξ gives the integral curve c of ξ through x0 by

c(t) = ϕt(x0). (3.24)

According to the Picard–Lindelöf Theorem in the theory of ordinary differential
equations, any complete vector field has a unique flow. In fact, the uniqueness part
of this theorem implies that (3.19) is a consequence of (3.20) with (3.18), but it
is convenient to state (3.19) separately, so as to make the point that the flow of a
complete vector field ξ on X is a smooth R-action on X , as defined by conditions
(3.18) - (3.19), whose orbits integrate ξ . In particular, each ϕt : X → X is invertible,
with inverse ϕ−1

t = ϕ−t . In particular, X is a disjoint union of the integral curves of
ξ , which can never cross each other because of the uniqueness of the solution of the
initial-value problem (3.13) with c(0) = x0).

If ξ is not complete, we do the best we can by defining the set

Dξ = {(t,x) ∈ R×X | ∃c : I → X ,c(0) = x, t ∈ I} ⊂ R×X , (3.25)

where it is understood that c satisfies (3.13). Obviously {0}×X ⊂ Dξ , and (less
trivially) it turns out that Dξ is open. Then a flow of ξ is a map ϕ : Dξ → X that
satisfies (3.18) for all x, eq. (3.21) for (t,x)∈Dξ , as well as (3.19) whenever defined.
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3.2 Poisson brackets and Hamiltonian vector fields

To obtain flows, classical mechanics requires more than a manifold structure:

Definition 3.6. A Poisson bracket on a manifold X is a Lie bracket {−,−} on (the
real vector space) C∞(X), such that for each h ∈C∞(X) the map

ξh : f �→ {h, f} (3.26)

is a vector field on X (or, equivalently, a derivation of C∞(X ,R) with respect to
its structure of a commutative algebra under pointwise multiplication). A manifold
X equipped with a Poisson bracket is called a Poisson manifold, (C∞(X),{ , }) is
called a Poisson algebra, and ξh is called the Hamiltonian vector field of h.

Unfolding, we have a bilinear map {−,−} : C∞(X)×C∞(X)→C∞(X) that satisfies

{g, f} = −{ f ,g}; (3.27)
{ f ,{g,h}} + {h,{ f ,g}}+{g,{h, f}}= 0; (3.28)
{ f ,gh} = { f ,g}h+g{ f ,h}. (3.29)

Bilinearity and the abstract properties (3.27) - (3.29) imply:

Proposition 3.7. Each Poisson bracket on X defines a Lie algebra homomorphism

C∞(X)→ Der(C∞(X)); (3.30)
h �→ δh, (3.31)

or, equivalently, a Lie algebra homomorphism

C∞(X)→ Vec(X); (3.32)
h �→ ξh. (3.33)

The time-honored example is X = R2n, with coordinates x = (p,q) and bracket

{ f ,g}=
n

∑
j=1

(
∂ f
∂ p j

∂g
∂q j −

∂ f
∂q j

∂g
∂ p j

)
. (3.34)

In that case, the Hamiltonian vector field of h is obviously given by

ξh =
n

∑
j=1

(
∂h
∂ p j

∂
∂q j −

∂h
∂q j

∂
∂ p j

)
. (3.35)

The flow of ξh gives the motion of a system with Hamiltonian h. Writing

ϕt(p,q) = (p(t),q(t)),

we see from (3.23) that this flow is given by Hamilton’s equations
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d p j(t)
dt

= −∂h(p(t),q(t))
∂q j ; (3.36)

dq j(t)
dt

=
∂h(p(t),q(t))

∂ p j
. (3.37)

Hamiltonians of the special form

h(p,q) =
p2

2m
+V (q), (3.38)

where p2 = ∑ j p2
j , give Newton’s equation “F = ma”, where Fj =−∂V/∂q j, viz.

Fj(q(t)) = m
d2q j(t)

dt2 . (3.39)

Proposition 3.8. For any vector field ξ on a manifold X, we say that a function
f ∈ C∞(X) is conserved if f is constant along the flow of ξ . If X is a Poisson
manifold and ξ = ξh is Hamiltonian, then f is conserved iff {h, f}= 0.

The proof is trivial. A Poisson bracket on X may also be defined in terms of a Pois-
son tensor. In coordinates, this is just an anti-symmetric matrix Bi j(x) that satisfies

∑
l

(
Bli ∂B jk

∂xl
+Bl j ∂Bki

∂xl
+Blk ∂Bi j

∂xl

)
= 0, (3.40)

for each (i, j,k). In terms of B, the Poisson bracket is then defined abstractly by

{ f ,g}= B(d f ,dg), (3.41)

using standard notation of differential geometry, or, in coordinates, by

{ f ,g}(x) = ∑
i, j

Bi j(x)
∂ f (x)
∂xi

∂g(x)
∂x j . (3.42)

Conversely, a Poisson bracket must come from a Poisson tensor: for any derivation
δ on C∞(X), the function δ (g) depends linearly on dg, so if δ f (g) = { f ,g}, then
δ f (g) = −δg( f ), so that { f ,g} depends linearly on both d f and dg. This enforces
(3.42), upon which (3.41) implies (3.40). A nice example is X = R3, with

{ f ,g}(x) = x
(
∂ f
∂y

∂g
∂ z
− ∂ f

∂ z
∂g
∂y

)
+ y
(
∂ f
∂ z

∂g
∂x
− ∂ f

∂x
∂g
∂ z

)
+ z
(
∂ f
∂x

∂g
∂y
− ∂ f

∂y
∂g
∂x

)
;

Bi j(x) = ∑
k
εki jxk. (3.43)

Finally, we say that a Poisson manifold is symplectic if the corresponding Poisson
tensor B(x) is given by an invertible matrix, for each x ∈ X . This requires X to be
even-dimensional. For example, R2n with Poisson bracket (3.34) is symplectic.
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3.3 Symmetries of Poisson manifolds

Two equivalent notions of symmetries of classical physics suggest themselves: one
is based on the idea of a Poisson manifold (X ,B), the other comes from the equiva-
lent notion of a Poisson algebra (C∞(X),{ , }).
Definition 3.9. 1. A symmetry of a Poisson manifold (X ,B) is a diffeomorphism

ϕ : X → X (that is, an invertible smooth map with smooth inverse) satisfying

ϕ∗B = B. (3.44)

2. A symmetry of a Poisson algebra (C∞(X),{ , }) is an invertible linear map
α : C∞(X)→C∞(X) that satisfies (for each f ,g ∈C∞(X)):

α( f g) = α( f )α(g); (3.45)
α({ f ,g}) = {α( f ),α(g)}. (3.46)

Let us define the push-forward ϕ∗ in (3.44). We do this in terms of the pullback ϕ∗
of a smooth (i.e., infinitely often differentiable) map ϕ : X → X , defined as

ϕ∗ : C∞(X)→ C∞(X); (3.47)
ϕ∗ f = f ◦ϕ. (3.48)

If ϕ is a diffeomorphism, the push-forward ϕ∗ of ϕ , which acts on derivations, is

ϕ∗ : Der(C∞(X))→ Der(C∞(X)); (3.49)
(ϕ∗δ )( f ) = δ (ϕ∗ f )◦ϕ−1; (3.50)

this may be checked to define a derivation, as follows:

(ϕ∗δ )( f ·g) = (ϕ−1)∗δ (ϕ∗( f ·g))
= (ϕ−1)∗δ (ϕ∗( f )ϕ∗(g))
= (ϕ−1)∗(δ (ϕ∗( f ))ϕ∗(g)+ϕ∗( f )δ (ϕ∗(g)))
= (ϕ∗δ )( f ) ·g+ f · (ϕ∗δ )(g).

If, given coordinates x = (x1, . . . ,xk) on X , we now (without loss of general-
ity) take our derivation δ to be a vector field ξ = ∑ j ξ j∂/∂x j, and write ϕ(x) =
(ϕ1(x), . . . ,ϕ l(x)), for the image ϕ∗(ξ ) we obtain

(ϕ∗ξ )( f )(x) = (ξ (ϕ∗ f ))(ϕ−1(x))

= ∑
j
ξ j(ϕ−1(x))

(
∂
∂x j f ◦ϕ

)
(ϕ−1(x))

= ∑
j,k
ξ k(ϕ−1(x))

∂ f (x)
∂x j

∂ϕ j

∂xk (ϕ
−1(x)),
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so that

ϕ∗ξ j(x) = ∑
k

∂ϕ j

∂xk (ϕ
−1(x))ξ k(ϕ−1(x)), (3.51)

or, equivalently,

ϕ∗ξ j(ϕ(x)) = ∑
k

∂ϕ j

∂xk (x)ξ
k(x), (3.52)

which only depends on ξ (x), so that for each x ∈ X , ϕ∗ may be localized to a linear
map ϕ∗(x) : TxX → Tϕ(x)X . This may be done even if ϕ is not invertible. Physicists
often write this as ϕ(x) ≡ y = y(x1, . . . ,xk), ξ = v, ϕ∗ξ = v′, so that we have a
“covariant” transformation rule (v′)i(y) = ∑k

j=1
∂yi(x)
∂x j v j(x).

Taking tensor products, one obtains similar rules for higher-order tensors. For
example, if N = X , the transformation rule for the Poisson tensor B reads

ϕ∗Bi j(ϕ(x)) =
k

∑
m,n=1

∂ϕ i(x)
∂xm

∂ϕ j(x)
∂xn Bmn(x), (3.53)

so that, in coordinates, the invariance requirement (3.44) reads

k

∑
m,n=1

∂ϕ i(x)
∂xm

∂ϕ j(x)
∂xn Bmn(x) = Bi j(ϕ(x)). (3.54)

Theorem 3.10. The two parts of Definition 3.9 are equivalent, in that:

1. Given a diffeomorphism ϕ : X → X satisfying (3.44), the map

α = ϕ∗, (3.55)

i.e., α( f ) = f ◦ϕ , is linear, invertible, and satisfies (3.45) - (3.46).
2. Given an invertible linear map α : C∞(X)→C∞(X) that satisfies (3.45) - (3.46),

there is a unique diffeomorphism ϕ : X → X inducing α as in (3.55).
3. This correspondence defines an anti-isomorphism between the group Diff(X ,B)

of diffeomorphisms of X satisfying (3.44) and the group Aut(C∞(X),{ , }) of in-
vertible linear maps α : C∞(X)→C∞(X) that satisfy (3.45) - (3.46).

Here an anti-isomorphism of groups is just an isomorphism that inverts the order of
multiplication. This complication may be removed by writing ϕ−1 instead of ϕ in
(3.55), but that change would make the next proposition a bit less natural.

Proof. The first claim is true by construction. The hard part is the second claim,
which follows from a more general result about manifolds (note that in our termi-
nology, manifolds are by definition assumed to be Hausdorff):

Proposition 3.11. Let X and Y be a smooth manifolds. Then (3.55) establishes a
bijective correspondence between linear maps α : C∞(X)→C∞(Y ) satisfying (3.45)
and smooth maps ϕ : Y → X.
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The proof is quite similar to a central part of the proof of Gelfand duality for commu-
tative C*-algebras, in which (3.55) establishes a bijective correspondence between
C*-homomorphisms α : C(X)→ C(Y ) and continuous maps ϕ : Y → X , where X
and Y are compact Hausdorff spaces; see §C.3 and especially Proposition C.22.

For any commutative real algebra A, let Σ(A) be the space of non-zero algebra
homomorphisms ω : A→R (these are just the non-zero multiplicative linear maps),
equipped with the weakest topology that makes each function â : Σ(A)→R contin-
uous, where â(ω) = ω(a). Furthermore, if B is another commutative real algebra,
then any homomorphism α : A→ B induces a continuous map α∗ : Σ(B)→ Σ(A)
in the obvious way, that is, by α∗ω = ω ◦α . In the special case A = C∞(X) (and
similarly if A = C(X)), one has a canonical map evX : X → Σ(C(X)), given by
evX

x ( f ) = f (x). The whole point (in which the entire difficulty of the proof lies)
is that this map is a bijection (see Proposition C.21), which simultaneously equips
X with a smooth structure that makes evX a diffeomorphism (by definition of the
smooth structure on Σ(C(X)). In view of all this, given a multiplicative linear map
α : C∞(X)→C∞(Y ), we obtain a continuous map ϕ : Y → X by

ϕ = (evY )−1 ◦α∗ ◦ evX . (3.56)

Eq. (3.55) then holds by construction. Smoothness of ϕ , then, is a consequence of
the fact that α( f ) = f ◦ϕ must be a smooth function on Y for any f ∈C∞(X).

Applying this to the setting of Theorem 3.10 easily yields all claims. �

In what follows, we look at smooth actions of Lie groups on (Poisson) manifolds
X , in other words, at homomorphisms ϕ : G→Diff(X) or ϕ : G→Diff(X ,B), where
G is a Lie group, Diff(X) is the group of all diffeomorphisms of a manifold, and
Diff(X ,B) is the group of all diffeomorphisms of a Poisson manifold preserving
the Poisson structure. Foregoing the underlying differential geometry, we take a
pragmatic attitude and only study linear Lie groups, defined as closed subgroups G
of GLn(R) or GLn(C), with group multiplication given by matrix multiplication and
hence group inverse being matrix inverse. Here one may think of SU(2)⊂ GL2(C)
or SO(3) ⊂ GL3(R), but also abelian Lie groups like the additive groups Rn fall
under this scope, since one may identify a ∈ Rn with the 2n×2n-matrix

a≡
(

1 a
0 1

)
, (3.57)

in which case matrix multiplication indeed reproduces addition. Similarly, the 2n+
1-dimensional Heisenberg group Hn is the group of real (n+2)× (n+2)-matrices

(a,b,c) =

⎛⎝1 aT c+ 1
2 aT b

0 1n b
0 0 1

⎞⎠ , (3.58)

where a,b ∈ Rn, c ∈ R, and aT b = 〈a,b〉; this gives the multiplication rule

(a,b,c) · (a′,b′,c′) = (a+a′,b+b′,c+ c′ − 1
2 (〈a,b′〉− 〈a′,b〉)). (3.59)
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If G is a linear Lie group, its Lie algebra g may be defined as the vector space

g= {A ∈Mn(K) | etA ∈ G∀t ∈ R}, (3.60)

where K=R or C, as determined by the embedding G⊂GLn(R)) or G⊂GLn(C).
Either way, g is seen as a real vector space, equipped with the Lie bracket

[A,B] = AB−BA. (3.61)

This is trivially a bilinear antisymmetric map g×g→ g satisfying the Jacobi identity

[A, [B,C]]+ [C, [A,B]]+ [B, [C,A]] = 0, (3.62)

which in turn expresses the fact that for fixed A ∈ g the map δA : g→ g defined by

δA(B) = [A,B] (3.63)

is a derivation of g with respect to its Lie bracket, i.e.,

δA([B,C]) = [δA(B),C]+ [B,δA(C)]. (3.64)

The exponential map exp : g→G is then just given by its usual power series, which
for matrices is norm-convergent. Conversely, one may pass from G to g through

A =
d
dt
(etA)|t=0. (3.65)

If G = Rn, we also have g= Rn, and eq. (3.57) implies that exp is the identity map.
For example, since SO(3) is the subgroup of GL3(R) consisting of matrices R

that satisfy RT R = 13, its Lie algebra so(3) consists of all matrices a that satisfy
aT =−a. As a vector space have so(3)∼= R3, which follows by choosing a basis

J1 =

⎛⎝0 0 0
0 0 −1
0 1 0

⎞⎠ , J2 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ , J3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ . (3.66)

of the 3×3 real antisymmeric matrices. The commutators of these elements are

[J1,J2] = J3; [J3,J1] = J2; [J2,J3] = J1. (3.67)

For the Lie algebra of the Heisenberg group we obtain hn = R2n+1, with basis

Pi =

⎛⎝ 0 0 0
0 0 −ei
0 0 0

⎞⎠ , Q j =

⎛⎝ 0 eT
j 0

0 0 0
0 0 0

⎞⎠ , Z =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ , (3.68)

where (e1, . . . ,en) is the usual basis of Rn, satisfying commutation relations

[Pi,Q j] = δi jZ; [Pi,Pj] = [Qi,Q j] = [Pi,Z] = [Q j,Z] = 0. (3.69)
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3.4 The momentum map

Leaving out the Poisson structure for the moment, let X be a manifold, let G be a
Lie group, and let ϕ : G→Diff(X) be a homomorphism; as already mentioned, this
corresponds to a smooth action ϕ̃ : G×X → X , which we simply write as

γ · x≡ ϕγ(x)≡ ϕ̃(γ,x).

In terms of the pullback ϕ∗γ ( f ) = f ◦ϕγ , we then automatically have

ϕ∗γ ( f g) = ϕ∗γ ( f )ϕ∗γ (g). (3.70)

For each A ∈ g we then define a map δA : C∞(X)→C∞(X) by

δA f (x) =
d
dt

f (e−tA · x)|t=0. (3.71)

This map is obviously linear. Moreover, it can be shown that δ is well behaved:

Proposition 3.12. The map δ : g→Der(C∞(X)), A �→ δA is a homomorphism of Lie
algebra, i.e., each δA is a derivation, δ is linear in A, and, for each A,B ∈ g,

[δA,δB] = δ[A,B]. (3.72)

The proof relies on Hadamard’s Lemma, which we only need for complete vector
fields, or, equivalently, for derivations with complete flow (i.e., defined for all t).

Lemma 3.13. If δ is a derivation of C∞(X) with complete flow ϕ , and f ∈C∞(X),
then there is a function g(t,x)≡ gt(x) such that for all x and t,

g0(x) = δ f (x); (3.73)
f (ϕt(x)) = f (x)+ tgt(x). (3.74)

Indeed, if the flow is complete one may take

gt(x) =
∫ 1

0
dsḞ(st,x), (3.75)

where F(t,x) = f (ϕt(x)) and (in Newton’s notation) Ḟ is the time derivative of F .

Proof. To prove that δA is linear in A, let ϕ be the flow of δA, i.e., ϕt(x) = e−tAx.
For B ∈ g, Hadamard’s Lemma with δ � δA and x � e−tBx then gives us

f (e−tAe−tBx) = f (ϕt(e−tBx)) = f (e−tBx)+ tgt(e−tBx);

⇒ d
dt

f (e−tAe−tBx)|t=0 = δB f (x)+g0(x) = δB f (x)+δA f (x). (3.76)

On the other hand, since A and B are matrices, we may use the CBH-formula
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e−tAe−tB = e−t(A+B)+ 1
2 t2[A,B]+O(t3), (3.77)

which gives e−tAe−tB = e−t(A+B)(1+O(t2)), and hence

d
dt

f (e−tAe−tBx)|t=0 =
d
dt

f (e−t(A+B)x)|t=0 = δA+B f (x). (3.78)

Comparing (3.76) with (3.78) gives δA+B = δA +δB. The property δsA = sδA is triv-
ial. We now prove (3.72). Within the (matrix) Lie algebra g we have

[A,B] =− d
dt
(e−tABetA)|t=0 =− lim

t→0

e−tABetA−B
t

. (3.79)

Furthermore, for any g ∈ G one has egBg−1
= geBg−1, so linearity of δ gives

δ[A,B] f (x) = − lim
t→0

1
t
(δe−tABetA f (x)−δB f (x))

= lim
t→0

1
t

(
d
ds

f (e−tAesBetAx)− d
ds

f (esBx)
)

= lim
s,t→0

1
st

(
f (e−tAesBetAx)− f (e−tAetAesBx)

)
= lim

s,t→0

1
st

(
f ◦ϕt(esBetAx)− f ◦ϕt(etAesBx)

)
= lim

s,t→0

(
1
st

(
f (esBetAx)− f (etAesBx)

)
+

1
s

(
gt(esBetAx)−gt(etAesBx)

))
= [δA,δB] f (x),

since in the limit t → 0 the third term in the penultimate line cancels the fourth. �

Now suppose that, in addition, X is a Poisson manifold, and that each ϕγ acts on
X as a Poisson symmetry, in that

ϕ∗γ B = B, (3.80)

cf. (3.44), or, equivalently, cf. (3.46),

ϕ∗γ ({ f ,g}) = {ϕ∗γ ( f ),ϕ∗γ (g)}. (3.81)

This implies, for each A ∈ g, and each f ,g ∈C∞(X),

δA({ f ,g}) = {δA( f ),g}+{ f ,δA(g)}. (3.82)

Compare this with the following property δA already has since it is a derivation:

δA( f g) = δA( f )g+ fδA(g). (3.83)

We may call a derivation δ : C∞(X)→C∞(X) satisfying the like of (3.82), i.e.,
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δ ({ f ,g}) = {δ ( f ),g}+{ f ,δ (g)}, (3.84)

a Poisson derivation. We are already familiar with a large class of Poisson deriva-
tions: for each h ∈C∞(X), the corresponding map δh defined by (3.26) is a Poisson
derivation (this follows from the Jacobi identity). Let us call a Poisson derivation of
the kind δh inner. This raises the question if our derivations δA are inner.

Definition 3.14. A momentum map for a Lie group G acting on a Poisson manifold
X is a map

J : X → g∗ (3.85)

such that for each A ∈ g,
δA = δJA , (3.86)

where the function JA ∈C∞(X) is defined by by

JA(x) = 〈J(x),A〉 ≡ J(x)(A). (3.87)

In other words, for each A ∈ g and f ∈C∞(X) we must have

δA( f ) = {JA, f}. (3.88)

A Lie group action admitting a momentum map is called Hamiltonian.

Equivalently, a momentum map is a linear map

J∗ : g→C∞(X) (3.89)

such that δA = δJ∗(A); the connection between the two definitions is given by

JA = J∗(A). (3.90)

The pullback notation J∗ would suggest that it is a map C∞(g∗)→C∞(X), which is
not quite the case, but it is a near miss: we embed g ↪→ C∞(g∗) by A �→ Â, where
Â(θ) = θ(A), so J∗ : g→C∞(X) is the restriction of the pullback J∗ to g. Another
near miss would be to read J∗ as the adjoint to J, which maps g∗∗ ∼= g to the ‘dual’
X∗, but since X may not be a vector space, this dual cannot be defined as in linear
algebra, so instead of all linear maps from X to R we might as well say that it
consists of all smooth functions on X . Either way, the symbol J∗ seems justified.

Proposition 3.15. Let G be a connected Lie group that acts on a Poisson manifold
X. If this action is Hamiltonian (i.e., if it has a momentum map), then G acts on
(X ,B) by Poisson symmetries (in the sense that (3.81) holds).

Proof. An easy computation shows that (3.82) holds. We omit the proof of the fact
that for connected Lie groups this “infinitesimal” property is equivalent to (3.81);
this relies on the fact that G is generated by the image of the exponential map. �

The converse is not true: if G acts by Poisson symmetries, the action is not neces-
sarily Hamiltonian. For example, take X = R2, with the unusual Poisson bracket
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{ f ,g}(p,q) = p
(
∂ f
∂ p

∂g
∂q
− ∂ f

∂q
∂g
∂ p

)
, (3.91)

and let G = R act on R2 by b · (p,q) = (p,q+ b). This action satisfies (3.81), and
has a single generator δ =−∂/∂q. But there clearly is no function J ∈C∞(R2) such
that {J, f}=−∂ f/∂q (it should be J(p,q) =− log(p), which is singular at p = 0).

However, in most “everyday situations” momentum maps exist:

1. Take X =R6 =R3×R3, with coordinates x = (p,q), where p = (p1, p2, p2) and
q = (q1,q2,q3), equipped with the canonical Poisson bracket (3.34).

a. Let G = R6 act on X by

(a,b) · (p,q) = (p+a,q+b). (3.92)

This action is Hamiltonian, with momentum map

J(p,q) = (q,−p). (3.93)

b. Let G = SO(3) act on the same space X by

R · (p,q) = (Rp,Rq). (3.94)

Also this action is Hamiltonian, with momentum map

J(p,q) = p×q. (3.95)

2. Let G = SO(3) act on X =R3, equipped with the Poisson bracket (3.43), through
its defining representation. This action has a momentum map

J(x) = x, (3.96)

where we have identified g with R3 by choosing the basis (3.66) of g, and have
identified g∗ with g (and hence with R3 also) by the usual inner product on R3.

3. The previous example is a special case of the Lie–Poisson structure. Let G be a
Lie group with Lie algebra g. Choose a basis (Ta) of g, with associated structure
constants Cc

ab defined by the Lie bracket on g as

[Ta,Tb] = ∑
c

Cc
abTc. (3.97)

We write θ in the dual vector space g∗ as θ = ∑a θaωa, where (ωa) is the dual
basis to a chosen basis (Ta) of g, i.e., ωa(Tb) = δab. In terms of these coordinates,
the Lie–Poisson bracket on C∞(g∗) is defined by

{ f ,g}(θ) =Cc
abθc

∂ f (θ)
∂θa

∂g(θ)
∂θb

. (3.98)

Equivalently, the Poisson bracket (3.98) may be defined by the condition
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{Â, B̂}= [̂A,B], (3.99)

where A,B ∈ g and Â ∈C∞(g∗) is the evaluation map Â(θ) = θ(A).
Now G canonically acts on g∗ through the coadjoint representation, defined by

(x ·θ)(A) = θ(x−1Ax). (3.100)

This action is Hamiltonian with respect to the Lie–Poisson bracket (3.98), the
associated momentum map simply being the identity map g∗ → g∗, as in (3.96).
In other words, we have

JA = Â, (3.101)

whose correctness may be verified from the computation

δAB̃(θ) =
d
dt

B̃(e−tA ·θ)|t=0 =
d
dt

θ(etABe−tA)|t=0

= θ([A,B]) = [̂A,B](θ) = {Â, B̂}(θ)
= {JA, B̂}(θ).

4. Let X = T ∗Q for some manifold Q. e.g. Q = Rn and hence X = R2n. We take

G = Diff(Q), (3.102)

i.e., the diffeomorphism group of Q. This is an infinite-dimensional Lie group (if
described in the right way). The defining action of ϕ ∈G on Q induces an action
called ϕ∗ on T ∗Q, given (in coordinates) by

ϕ∗(p,q) = (p′,q′); (3.103)
(qi)′ = ϕ i(q); (3.104)

p′i =
n

∑
j=1

∂ (ϕ−1) j(q)
∂qi p j. (3.105)

This may be taken as a definition, but in the language of differential geometry
this comes down to the neater prescription that if θ = ∑ j p jdq j ∈ T ∗q Q, then
ϕ∗θ ∈ T ∗ϕ(q)Q is the one-form that maps a vector X ∈ Tϕ(q)Q to θ(ϕ−1∗ (X)), i.e.,

(ϕ∗θ)(X) = θ(ϕ−1
∗ (X)), (3.106)

where ϕ−1∗ (X) = ∑ j ϕ−1∗ (X) j∂/∂q j is given componentwise by, cf. (3.52),

ϕ−1
∗ X j = ∑

j

∂ (ϕ−1) j(q)
∂qk Xk. (3.107)

If Q = R3 and ϕ = R ∈ SO(3), then, using R−1 = RT , we find that (3.104) -
(3.105) simply become R∗(p,q) = (Rp,Rq), as in (3.94).
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Furthermore, if ϕ(q) = q+ b, then the partial derivatives in (3.105) form the
identity matrix, so that ϕ∗(p,q) = (p,q+b). To show that the action of Diff(Q)
on T ∗Q is Hamiltonian and compute its momentum map, we need to know that
the Lie algebra of Diff(Q) is the space Vec(X) of all vector fields on Q, with
its canonical Lie bracket (3.61)! We will not prove this, but the exponential map
exp : g→G is given through the flow ϕ of the vector field ξ on Q by (cf. (3.20))

etξ = ϕt . (3.108)

Theorem 3.16. The action of Diff(Q) on T ∗Q has momentum map

JX (p,q) =−∑
j

p jX j(q), (3.109)

and hence is Hamiltonian. Moreover, this momentum map satisfies

{Jξ ,Jη}ξ =−J[ξ ,η ]. (3.110)

Proof. First note that ϕ−1
t = ϕ−t , so from (3.71), (3.108), and (3.104) - (3.105),

δξ f (p,q) =
d
dt

f (ϕ∗−t(p,q))|t=0

= ∑
i, j

∂ f
∂ pi

(p,q)
d
dt

(
∂ϕ j

t (q)
∂qi

)
|t=0

p j +∑
i

∂ f
∂qi (p,q)

d
dt

ϕ i
−t(q)|t=0

= ∑
i, j

p j
∂X j(q)
∂qi

∂ f
∂ pi

(p,q)−∑
j

X j(q)
∂ f
∂q j (p,q).

From this and (3.109), using the canonical Poisson bracket (3.34) we find

{Jξ , f}= δξ f .

Finally, verifying (3.110) is a simple exercise. �.

Thus the momentum map is a generalization of (minus) the momentum, whence
its name; the quantity in (3.95) is (minus) the angular momentum. These annoying
minus signs could be removed by putting a minus sign in (3.86), but that would have
other negative (sic) consequences. For example, with our sign choice one often has

{JA,JB}= J[A,B], (3.111)

in which case the accompanying map (3.89) is a homomorphism of Lie algebras,
or, equivalently, J is a morphism with respect to the given Poisson bracket on X
and the Lie–Poisson bracket on g∗. Such a momentum map is called infinitesimally
equivariant, for if G is connected, (3.111) is equivalent to the equivariance property

J(g · x) = g · J(x). (3.112)
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Here the G-action on g∗ on the right-hand side is the coadjoint representation.
All of this is true for our examples (3.95), (3.96), (3.101), and (3.109); in the

latter case we note that the Lie bracket in the Lie algebra of Diff(Q) is minus the
commutator of vector fields. However, (3.111) does not always hold (in which case
a fortiori also (3.112) fails). For example, it fails for (3.93): if we take the usual
basis (e, f)≡ (e1,e2,e3, f1, f2, f3) of g= R6 and relabel e j ≡ Q j and fi ≡−Pi, then

JPi(p,q) = pi; (3.113)
JQ j(p,q) = q j, (3.114)

cf. (3.93), and hence, although [Pi,Pj] = [Qi,Q j] = [Pi,Q j] = 0, we obtain

{JPi ,JPj} = {JQi ,JQ j}= 0; (3.115)
{JPi ,JQ j} = δi j1R6 . (3.116)

Fortunately, in cases like that one can often find a central extension Gϕ of G (see
§5.10 below for notation) that acts on X through its quotient group G and does have
an infinitesimally equivariant momentum map. In the case at hand, the Heisenberg
group H3 does the job, whose central elements (0,0,c) then act trivially on R6. In
terms of the generators (3.68) we take JPi and JQ j as in (3.113) - (3.114), and add
JZ = 1R6 ; according to (3.69) and (3.115) - (3.116) we then have (3.111), as desired.

Finally, the above formalism leads to a clean formulation of Noether’s Theorem,
providing the well-known link between symmetries and conserved quantities:

Theorem 3.17. Let X be a Poisson action equipped with a Hamiltonian action of
some Lie group G (so that there is a momentum map J : X → g∗). Suppose h∈C∞(X)
is G-invariant, in that h(γ ·x) = h(x) for each γ ∈G and x ∈ X. Then for each A ∈ g,
the function JA is constant along the flow of the vector field Xh. In other words,

JA(ϕt(x)) = JA(x) (3.117)

for any x ∈ X and any t ∈ R for which the flow ϕt(x) of Xh is defined.

Proof. Using all assumptions as well as the definition of a flow, we compute:

d
dt

JA(ϕt(x)) = Xh(JA)(ϕt(x)) = δh(JA)(ϕt(x))

= {h,JA}(ϕt(x)) =−{JA,h}(ϕt(x))

=−δA(h)(ϕt(x)) =
d
ds

h(esAϕt(x))|s=0

=
d
ds

h(ϕt(x))|s=0 = 0. �

For example, a Hamiltonian (3.38) has conserved (angular) momentum if the poten-
tial V is translation (rotation) invariant, reflecting (3.93) and (3.95), respectively.
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Notes

The traditional symplectic approach to classical mechanics, culminating in the mo-
mentum map, is exhaustively covered in Guillemin & Sternberg (1984) and Abra-
ham & Marsden (1985). A founding paper for Poisson geometry is Weinstein
(1983). The modern Poisson approach to mechanics may be found in Marsden &
Ratiu (1994), from which most of the material in this chapter originates.

Our proof of Proposition 3.11 is based on Navarro González & Sancho de Salas
(2003), §2.1. Burtscher (2009) is a nice survey of many similar results.



Chapter 4

Quantum physics on a general Hilbert space

In this chapter we generalize the results of Chapter 2 to infinite-dimensional Hilbert
spaces. So let H be a Hilbert space and let B(H) be the set of all bounded op-
erators on H. Here a notable point is that linear operators on finite-dimensional
Hilbert spaces are automatically bounded, whereas in general they are not. Thus we
impose boundedness as an extra requirement, beyond linearity. This is very con-
venient, because as in the finite-dimensional case, B(H) is a C*-algebra, cf. §C.1.
At the same time, assuming boundedness involves no loss of generality whatsoever,
since we can alway replace closed unbounded operators by bounded ones through
the bounded transform, as explained in §B.21. Nonetheless, even the relatively easy
setting of bounded operators leads to some technical complications we have to deal
with. First, Definition 2.1 must be adjusted as follows:

Definition 4.1. Let H be a Hilbert space.

1. A (quantum) event is a closed linear subspace L of H.
2. A density operator is a positive trace-class operator ρ on H such that Tr(ρ)= 1;

we continue to denote the set of all density operators on H by D(H).
3. A (quantum) random variable is a bounded self-adjoint operator on H.
4. The spectrum σ(a) of a bounded operator a is the set of all λ ∈C for which the

operator a−λ is not invertible in B(H) (cf. Definition B.80).

As shown in Corollary B.88, if H is finite-dimensional this notion of a spectrum
reduces to the set of eigenvalues of a. Even H is infinite-dimensional, the spectrum
of a self-adjoint operator a is real (i.e., σ(a)⊂R); this is also true if a is unbounded
(see Theorem B.93). For any H, unit vectors ψ still define special density matrices
eψ , as in (2.7); we will later see that these are pure states on B(H), although the
set of pure states is no longer exhausted by such density matrices. Finally, quantum
events in H still bijectively correspond with projections on H; see Proposition B.76.
The Born rule as well as the correspondence between density matrices and states
require a separate discussion, to which we now turn.

© The Author(s) 2017
K. Landsman, Foundations of Quantum Theory,

103

Fundamental Theories of Physics 188, DOI 10.1007/978-3-319-51777-3_4



104 4 Quantum physics on a general Hilbert space

4.1 The Born rule from Bohrification (II)

In this section we extend the characterization of the Born rule in §2.5, which was
restricted to finite phase spaces X and finite-dimensional Hilbert spaces H, to the
general case. Recall that a probability space is a measure space (X ,Σ ,μ) for which
μ(X) = 1, and that, for compact X , a state on C(X) is a positive map ϕ : C(X)→ C
that is positive and satisfies ϕ(1X ) = 1. Theorem B.15 and Corollary (B.17) yield:

Theorem 4.2. Let X be a compact Hausdorff space. There is a bijective correspon-
dence between probability measures μ on X and states ω on C(X), given by

ω( f ) =
∫

X
dμ f , f ∈C(X). (4.1)

More precisely, the correspondence in question is between complete regular proba-
bility spaces (X ,Σ ,μ) and states on C(X), and this is understood in what follows.

Second, we recall that if H is a Hilbert space and a ∈ B(H), then C∗(a) is the
C*-algebra generated by a and 1H (i.e., the norm-closure of the algebra of all poly-
nomials in a). Theorems B.84, B.94, and B.93 give the following spectral theorem:

Theorem 4.3. If a∗ = a ∈ B(H), then C∗(a) is commutative, σ(a) ⊂ R is compact,
and there is an isomorphism of (commutative) C*-algebras

C(σ(a))∼=C∗(a), (4.2)

written f �→ f (a), which is unique if it is subject to the following conditions:

1. the unit function 1σ(a) : λ �→ 1 corresponds to the unit operator 1H;
2. the identity function idσ(a) : λ �→ λ is mapped to the given operator a.

Furthermore, this continuous functional calculus satisfies the rules

(t f +g)(a) = t f (a)+g(a); (4.3)
( f g)(a) = f (a)g(a); (4.4)

f (a)∗ = f ∗(a). (4.5)

Combining Theorems 4.2 and 4.3 gives a result of great importance:

Corollary 4.4. Let H be a Hilbert space, let a∗ = a ∈ B(H), and let ψ ∈H be a unit
vector. There exists a unique probability measure μψ on the spectrum σ(a) such that

〈ψ, f (a)ψ〉=
∫
σ(a)

dμψ f , f ∈C(σ(a)). (4.6)

In terms of the spectral projections eΔ = 1Δ (a) (defined for Borel sets Δ ⊆ σ(a))
constructed in (B.305) - (B.307) and Theorem B.102, the Born measure is given by

μψ(Δ) = ‖eΔψ‖2. (4.7)
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More generally, a density operator ρ ∈D(H) induces a unique probability measure
μρ on σ(a) for which

Tr(ρ f (a)) =
∫
σ(a)

dμρ f , f ∈C(σ(a)), ; (4.8)

μρ(Δ) = Tr(ρeΔ ). (4.9)

This measure on σ(a) is called the Born measure (defined by a and ψ or ρ).

Proof. The point is that the map f �→ 〈ψ, f (a)ψ〉 defines a state on C(σ(a)):

• Linearity follows from linearity of the continuous functional calculus f �→ f (a);
• Positivity follows because if f ≥ 0, then f =

√
f ·√ f , so that by (4.4) and (4.5),

〈ψ, f (a)ψ〉= ‖√ f (a)ψ‖2 ≥ 0;
• Unitality follows from Theorem 4.3.1, i.e., 〈ψ,1σ(a)(a)ψ〉= 〈ψ,1Hψ〉= 1.

To prove (4.7), use Lemma B.97 to approximate 1Δ by functions fn ∈ C(σ(a)) as
stated. By Theorem B.13.2 (i.e., the Lebesgue Monotone Convergence Theorem),
we have

∫
σ(a) dμψ fn→

∫
σ(a) dμψ 1Δ = μψ(Δ), whereas by (B.315) with an = fn(a),

one has 〈ψ, fn(a)ψ〉 → 〈ψ,eΔψ〉= ‖eΔψ‖2. Hence (4.7) follows from (4.6).
The proof for density operators is analogous. �

Defining the mean value 〈a〉ψ of a with respect to the Born measure μψ by

〈a〉ψ =
∫
σ(a)

dμψ(x)x, (4.10)

and similarly for ρ , using Theorem 4.3.2 we easily obtain

〈a〉ψ = 〈ψ,aψ〉; (4.11)
〈a〉ρ = Tr(ρa). (4.12)

As an important special case, suppose that σ(a) = σp(a) (i.e., each λ ∈ σ(a) is
an eigenvalue); this always happens if H is finite-dimensional. Eq. (A.57) then gives

〈ψ, f (a)ψ〉= ∑
λ∈σ(a)

f (λ ) · ‖eλψ‖2,

where eλ is the projection onto the eigenspace Hλ = {ψ ∈ H | aψ = λψ}. Thus

μψ(λ ) = ‖eλψ‖2, (4.13)

and using the notation Pψ(a = λ ) for μψ(λ ), eq. (4.11) just becomes

〈a〉ψ = ∑
λ∈σ(a)

λ ·Pψ(a = λ ). (4.14)

It is customary to extend the Born measure on σ(a)⊂ R to a (probability) measure
μ ′ψ on all of R by simply stipulating that
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μ ′ψ(Δ) = μψ(Δ ∩σ(a)); (4.15)

we will often assume this and omit the prime. This obviously implies that μψ(Δ)= 0
for any Borel set Δ ⊂ R disjoint from σ(a); in particular, if σ(a) is discrete, then
μψ is concentrated on the eigenvalues λ of a, in that

μψ(Δ) = ∑
λ∈Δ∩σ(a)

μψ(λ ). (4.16)

To state an interesting property of the Born measure we need Hausdorff’s solu-
tion to the relevant special case of the famous Hamburger Moment Problem:

Theorem 4.5. If K ⊂ R is compact, then any finite measure μ on K is determined
by its moments

αn =
∫

K
dμ(x)xn. (4.17)

Using f (x) = xn in (4.6), we therefore obtain:

Corollary 4.6. The Born measure μψ is determined by its moments

αn = 〈ψ,anψ〉. (4.18)

More precisely, we need to be sure that numbers (αn) of the kind (4.18) are the
moments of some (probability) measure. This follows from the spectral theorem by
running the above argument backwards, but one may also use the general solution
of the Hamburger Moment Problem, which we here state without proof:

Theorem 4.7. A sequence of real numbers (αn) forms the moments of some measure
μ on R iff for all N ∈ N and (β1, . . . ,βN) ∈ CN one has ∑N

n,m=0βnβmαn+m ≥ 0.
Furthermore, if there are constants C and D such that |αn| ≤ CDnn!, then μ is
uniquely determined by its moments (αn).

These conditions are easily checked from (4.18).

If a is unbounded, but still assumed to be self-adjoint (in the sense appropriate
for unbounded operators, cf. Definition B.70), the spectrum σ(a) remains real (see
Theorem B.93) but it is no longer compact. Nonetheless, the Born measure on σ(a)
may be constructed in almost exactly the same way as in the bounded case, this time
invoking Corollary B.21 and Theorem B.158 instead of Theorems 4.2 and B.94,
respectively. Corollary 4.4 then holds almost verbatim for the unbounded case:

Corollary 4.8. Let H be a Hilbert space, let a∗ = a, and let ψ ∈ H be a unit vector.
There exists a unique probability measure μψ on the spectrum σ(a) such that

〈ψ, f (a)ψ〉=
∫
σ(a)

dμψ f , f ∈C0(σ(a)). (4.19)

Also, eqs. (4.7) and (4.9) hold, as does (4.8), with f ∈C0(σ(a)).
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There is no need to worry about domains, since even if a is unbounded, f (a) is
bounded for f ∈Cb(σ(a)), and hence also for f ∈C0(σ(a)).

The physical relevance of the Born measure is given by the Born rule:
If an observable a is measured in a state ρ , then the probability Pρ(a ∈ Δ) that the
outcome lies in Δ ⊂ R is given by the Born measure μρ defined by a and ρ , i.e.,

Pρ(a ∈ Δ) = μρ(Δ). (4.20)

As in the finite-dimensional case, the Born measure may be generalized to fami-
lies (a1, . . . ,an) of commuting self-adjoint operators. Assuming these are bounded,
the C*-algebra C∗(a1, . . . ,an) is defined in the obvious way, i.e., as the smallest C*-
algebra containing each ai, or, equivalently, as the norm-closure of the algebra of all
finite polynomials in the (a1, . . . ,an). This C*-algebra is commutative, as a simple
approximation argument shows: polynomials in the ai obviously commute, and this
property extends to the closure by continuity of multiplication. However, even in the
bounded case, the correct notion of a joint spectrum is not obvious. In order to mo-
tivate the following definition, it helps to recall Definition 1.4, Theorem C.24, and
especially the last sentence before the proof of the latter, making the point that the
spectrum σ(a) of a single (bounded) self-adjoint operator coincides with the image
of the Gelfand spectrum Σ(C∗(a)) in C under the map ω �→ ω(a).

Definition 4.9. 1. The joint spectrum σ(a) = σ(a1, . . . ,an)⊂ Rn of a finite family
a = (a1, . . . ,an) of commuting bounded self-adjoint operators is the image of the
Gelfand spectrum Σ(C∗(a1, . . . ,an)) = Σ(C∗(a)) under the map

Σ(C∗(a1, . . . ,an))→ Rn, ω �→ (ω(a1), . . . ,ω(an)). (4.21)

Since ω(ai) only utilizes the restriction of ω to C∗(ai)⊂C∗(a), we have ω(ai) ∈
σ(ai)⊂ R, so that Σ(C∗(a))⊆ σ(a1)×·· ·×σ(an) is a compact subset of Rn.

To justify this definition, we note that:

• For n = 1, this definition reproduces the usual spectrum, cf. Theorem C.24.
• For n > 1 and dim(H)< ∞, we recover the joint spectrum of Definition A.16.
• For n > 1 and dim(H) = ∞, Weyl’s Theorem B.91 generalizes in the obvious

way: we have λ ∈ σ(a) iff there exists a sequence (ψk) of unit vectors in H with

lim
k→∞

‖(ai−λi)ψk‖= 0, (4.22)

for each i = 1, . . . ,n. The proof is similar.

One way to see the second claim is to use Proposition C.14 joined with the ob-
servation that, as in the case of A = B(H) for finite-dimensional H, any pure state
on a finite-dimensional C*-algebra A ⊂ B(H) is a vector state (2.42), too. To see
this, we first specialize Theorem C.133 to the finite-dimensional case (where the
proof becomes elementary), so that each state on C∗(a) takes the form (2.33). Sub-
sequently, we use the spectral decomposition (2.6), and use the definition of purity:
suppose ω(b) = Tr(ρb) = ∑i pi〈υi,bυi〉 ≡ ∑i piωυi(b) is pure, where b ∈ C∗(a).
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Then ωυi = ω for each i, so that ω is a vector state, say ω(b) = 〈ψ,bψ〉 where ψ is
one of the υi. Once we know this, suppose λ = (λ1, . . . ,λn)∈ σ(a), with λi =ω(ai).
Multiplicativity of ω implies that for any finite polynomial in n real variables we
have 〈ψ, p(a)ψ〉 = p(λ ), which easily gives aiψ = λiψ for each i; for example,
take p(x) = (xi−λi)

2, so that the previous equation gives ‖(ai−λi)ψ‖2 = 0.
Conversely, if λ is a joint eigenvalue of a, then by definition there exists a joint

eigenvector ψ whose vector state ω(b) = 〈ψ,bψ〉 on C∗(a) is multiplicative.
Using this (perhaps contrived) notion of a joint spectrum, Theorem 2.19 now

holds by construction also if dim(H) = ∞, where the pertinent isomorphism f �→
f (a) is given as in the single operator case, that is, by starting with polynomials and
using a continuity argument to pass to arbitrary continuous functions.

Theorem 2.18 and Corollary 4.4 then generalize to:

Theorem 4.10. Let H be a Hilbert space, let a = (a1, . . . ,an) be a finite family of
commuting bounded self-adjoint operators, and let ψ ∈ H be a unit vector. There
exists a unique probability measure μψ on the joint spectrum σ(a) such that

〈ψ, f (a)ψ〉=
∫
σ(a)

dμψ f , f ∈C(σ(a)), (4.23)

or, equivalently, for special Borel sets Δ = Δ1×·· ·×Δn ⊆ σ(a), where Δi ⊂ σ(ai),

μψ(Δ) = ‖eΔ1 · · ·eΔnψ‖2, (4.24)

where the eΔi = 1Δi(ai) are the pertinent spectral projections (which commute).

Similarly for density operators instead of pure states.
If (some of) the operators ai are unbounded, we use the trick of §B.21 and pass

to their bounded transforms bi, see Theorem B.152. We say that the bi commute iff
the corresponding bounded operators bi do; this is equivalent to commutativity of
all spectral projections of the ai. We then define, in self-explanatory notation,

σ(a) = {λ (1−λ 2)−1/2 | λ ∈ σ(b)∩ (−1,1)n}. (4.25)

This leads to Born measures on σ(a) defined either as in (4.23), with f ∈C(σ(a))
replaced by f ∈C0(σ(a)), cf. (4.19), or as in (4.24).

For example, if H = L2(Rn) and aiψ(x) = xiψ(x), defined on the domain

D(ai) = {ψ ∈ L2(Rn) |
∫
Rn

dnxx2
i |ψ(x)|2 < ∞}, (4.26)

as in (B.242), then biψ(x) = xi(1+ x2
i )
−1/2ψ(x), so that σ(b) = [−1,1]n and hence

σ(a) = Rn. For a measurable region Δ ⊂ Rn we then have Pauli’s famous formula

μψ(Δ) =
∫
Δ

dnx |ψ(x)|2 (4.27)

for finding the particle in the region Δ , given that the system is in a pure state ψ .
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4.2 Density operators and normal states

Definition 2.4 of a state still makes good sense in the infinite-dimensional case, as
it simply specializes the general definition of a state on a C*-algebra A to the case
A = B(H). Thus we continue to say that a state on B(H) is a complex-linear map
ω : B(H)→ C satisfying ω(b∗b) ≥ 0 for each b ∈ B(H) and ω(1H) = 1. Despite
this lack of novelty in the definition of a state (i.e., compared to finite-dimensional
Hilbert spaces), Theorem 2.7 no longer holds if H is infinite-dimensional: although
it (almost trivially) remains true that density operators ρ on H define states on B(H)
through the fundamental correspondence ω(a) = Tr(ρa), a∈B(H), cf. (2.33), there
are (many) states that are not given in that way (see below). Fortunately, states that
do arise through (2.33) can be characterized in a simple way.

Definition 4.11. A state ω : B(H) → C is called normal if for each orthogonal
family (ei) of projections (i.e., e∗i = ei and eie j = δi jei) one has

ω

(
∑

i
ei

)
= ∑

i
ω(ei). (4.28)

Here ∑i ei is defined as the projection on the smallest closed subspace K of H that
contains each eiH (that is, ∑i ei = ∨iei, i.e., the supremum in the poset P(H) of all
projections on H with respect to the partial order e≤ f iff eH ⊆ f H). Furthermore,
the sum over i on the right-hand side is defined by (B.11), i.e., as the supremum (in
R) of the set of all sums ∑i∈F ω(ei) over finite subsets F ⊂ I of the index set I in
which i takes values. It is finite because ∑i∈F ei ≤ 1H and hence, since ω is positive,

∑
i∈F

ω(ei)≤ ω(1H) = 1.

For example, let (υi) be a basis of H with associated one-dimensional projections

ei = |υi〉〈υi|. (4.29)

If ω is assumed to be a state, then the additivity condition (4.28) implies

∑
i
ω(ei) = 1, (4.30)

or, equivalently, using Definition B.6 etc. as well as the notation eF ≡ ∑i∈F ei,

lim
F

ω(eF) = 1. (4.31)

If H is separable, any orthogonal family (ei) of projections is necessarily countable,
and (4.28) is analogous to the countable additivity condition defining a measure.

Theorem 4.12. A state ω on B(H) takes the form ω(a) = Tr(ρa) for some (unique)
density operator ρ ∈D(H) iff it is normal.
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Proof. First, eq. (2.33) implies (4.28). To see this, take the trace with respect to
some basis (υ j) of H that is adapted to the family (ei) in the sense that for each j,
either eiυ j = υ j (i.e., υ j ∈ eiH) for one value of i, or eiυ j = υ j for all i. Then

ω

(
∑

i
ei

)
= Tr

(
ρ∑

i
ei

)
= ∑

j
〈υ j,ρ∑

i
eiυ j〉=

′
∑

j
〈υ j,ρυ j〉,

where the sum ∑′j is over those j for which υ j ∈ K ≡ ∨ieiH. On the other hand,
since the basis is adapted, we have υ j ∈K iff there is an i for which eiυ j = υ j (since
otherwise eiυ j = 0 and hence υ j ⊥ eiH for each i, so that υ j ∈ K⊥), so

∑
i
ω(ei) = ∑

i
Tr (ρei) = ∑

i
∑

j
〈υ j,ρeiυ j〉= sup

F⊂I
∑
j∈JF

〈υ j,ρυ j〉=
′

∑
j
〈υ j,ρυ j〉,

where JF consists of those j for which υ j ∈ ∑i∈F eiH. This gives (4.28).
Conversely, assume ω is normal. For the ei in (4.28) we now take the projections

(4.29) determined by some basis (υi). For each a ∈ B(H) we then have

ω(a) = lim
F

ω(eF a). (4.32)

Indeed, using Cauchy–Schwarz for the positive semi-definite form (a,b) = ω(a∗b),
as in (C.197), and using ∑i ei = 1H and hence ω(a) = ω(∑i eia) we have

|ω(a)−ω(eF a)|2 = |ω(eFc a)|2 ≤ ω(a∗a)ω(eFc)≤ ‖a‖2ω(eFc), (4.33)

since eFc ≡ ∑i/∈F ei is a projection. Since ω(eF)+ω(eFc) = ω(1H) = 1, eq. (4.31)
gives limF ω(eFc) = 0, so that (4.33) gives (4.32). For each finite F ⊂ I, the oper-
ator eF a has finite rank and hence is compact. According to Theorem B.146, the
restriction of ω : B(H)→ C to the C*-algebra B0(H) of compact operators on H is
induced by a trace-class operator ρ , which (from the requirement that ω be a state)
must be a density operator. Hence ω(eF a) = Tr(ρeF a), and we finally have

ω(a) = lim
F

ω(eF a) = lim
F

Tr(ρeF a) = Tr(ρa). (4.34)

To derive the final equality, we rewrite Tr(ρeF a) = Tr(eF aρ), cf. (A.78) and Propo-
sition B.144, note that aρ ∈ B1(H), as shown in Corollary B.147, and observe
that for any b ∈ B1(H) we have limF Tr(eF b) = Tr(b). To see this, simply com-
pute the trace in the basis (υi) defining the projections ei through (4.29), so that
Tr(eF b) = ∑i∈F〈υi,bυi〉, and note that by Definition B.6,

lim
F ∑

i∈F
〈υi,bυi〉= ∑

i
〈υi,bυi〉= Tr(b).

Finally, suppose ω(a) = Tr(ρ1a) = Tr(ρ2a) for each a ∈ B(H) and hence for
each a∈ B0(H). It follows from (B.476) that Tr(ρa) = 0 for all a∈ B0(H) iff ρ = 0.
Hence ρ1 = ρ2, i.e., a normal state ω uniquely determines a density operator ρ . �
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If ω is normal, we may therefore use the spectral resolution (2.6) of the corre-
sponding density operator ρ , i.e., ρ = ∑i pi|υi〉〈υi|, where (υi) is some basis of H
consisting of eigenvectors of ρ (which exists because ρ is compact and self-adjoint),
and the corrsponding eigenvalues satisfy pi ≥ 0 and ∑i pi = 1; see the explanation
after Definition B.148. Computing the trace in the same basis gives

Tr(ρa) = ∑
i

pi〈υi,aυi〉. (4.35)

We may characterize normality in a number of other ways. First note that because
of the duality B1(H)∗ ∼= B(H) of Theorem B.146, cf. (B.477), we may equip B(H)
with the w∗-topology in its role as the dual of the trace-class operators B1(H), see
§B.9; this means that aλ → a iff Tr(ρaλ )→ Tr(ρa) for each ρ ∈ B1(H), or, equiva-
lently, for each ρ ∈D(H), since each trace-class operator is a linear combination of
at most four density operators, as follows from Lemma C.53 with (C.8) - (C.9). The
w∗-topology on B(H), seen as the dual of B1(H), is called the σ -weak topology. By
Proposition B.46, the σ -weakly continuous linear functionals ϕ on B(H) are just
those given by ϕ(a) = Tr(ρb) for some trace-class operator b ∈ B1(H).

Secondly, B(H) is monotone complete, in the sense that each net (aλ ) of positive
operators that is bounded (i.e., 0 ≤ aλ ≤ c · 1H for some c > 0 and all λ ∈ Λ ) and
increasing (in that aλ ≤ aλ ′ whenever λ ≤ λ ′) has a supremum a with respect to the
standard ordering ≤ on B(H)+, which supremum coincides with the strong limit of
the net (i.e., limλ aλψ = aψ for each ψ ∈H); the proof is the same as for Proposition
B.98, and also here we write aλ ↗ a to describe this entire situation.

Corollary 4.13. The following conditions on a state ω ∈ S(B(H)) are equivalent:

1. ω is normal, cf. Definition 4.11;
2. ω(a) = limλ ω(aλ ) if aλ ↗ a;
3. ω(a) = Tr(ρa) for some density operator ρ ∈D(H);
4. ω is σ -weakly continuous.

Proof. We have seen 1↔ 3↔ 4, and 2→ 1 is obvious, so establishing 3→ 2 would
complete the proof. To this effect, we first note that because the sum (4.35) is con-
vergent, for ε > 0 we may find a finite subset F ⊂ I for which ∑i/∈F pi < ε/2‖a‖
(assuming a �= 0). Since 0≤ aλ ≤ a also implies aλ ≤ ‖a‖ ·1H (since a≤ ‖a‖ ·1H ),
we therefore have |∑i/∈F pi〈υi,(aλ −a)υi〉|< 2ε/3, uniformly in λ . Moreover, since
F is finite and aλ → a strongly, we can find λ0 such that for all λ ≥ λ0 we have

|∑
i∈F

pi〈υi,(aλ −a)υi〉|< ε/3. (4.36)

Consequently, for such λ ,

|Tr(ρ(aλ −a))| ≤ |∑
i∈F

pi〈υi,(aλ −a)υi〉|+ |∑
i/∈F

pi〈υi,(aλ −a)υi〉|< 2
3
ε+

1
3
ε = ε.

This shows that limλ |Tr(ρ(aλ −a))|= 0, so that assumption 3 implies no. 2. �
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We denote the normal state space of B(H), i.e., the set of all normal states on
B(H) by Sn(B(H)). It is easy to see from Definition B.148 that Sn(B(H)) is a convex
(but not necessarily compact!) subset of the total state space S(B(H)).

Corollary 4.14. The relation ω(a) = Tr(ρa) induces an isomorphism

Sn(B(H))∼= D(H) (4.37)

of convex sets (i.e., ω↔ ρ). Furthermore, for the corresponding pure states we have

Pn(B(H))∼= P1(H), (4.38)

i.e., any pure state ω on B0(H), as well as any normal pure state on B(H), is given
by ω = ωψ for some unit vector ψ ∈ H, where ω(a) = 〈ψ,aψ〉, cf. (2.42).

The proof of (4.38) is practically the same as in the finite-dimensional case. From
Theorem B.146 we obtain another characterization of Sn(B(H)) and hence of D(H):

Corollary 4.15. If B0(H) is the C*-algebra of compact operators on H, we have

S(B0(H)) = Sn(B(H)); (4.39)
P(B0(H)) = Pn(B(H)), (4.40)

in the sense that any (pure) state ω on B0(H) has a unique normal extension to a
(pure) state ω ′ on B(H), given by the same density operator ρ that yields ω .

It can be shown that any state ω ∈ S(B(H)) has a convex decomposition

ω = tωn +(1− t)ωs, (4.41)

where t ∈ [0,1], ωn is a normal state, and ωs is called a singular state. In particular,
since for t ∈ (0,1) the state ω is mixed, a pure state is either normal or singular.

Singular states are not as aberrant as the terminology may suggest: such states are
routinely used in the physics literature and are typically denoted by |λ 〉, where λ lies
in the continuous spectrum of some self-adjoint operator (that has to be maximal for
this notation to even begin to make sense, see §4.3 below). Examples of such “im-
proper eigenstates” are |x〉 and |p〉, which many physicists regard as idealizations.
However, mathematically such states are at least defined, namely as singular pure
states on B(H). The key to the existence of such states lies in Proposition C.15 and
its proof, which should be reviewed now; we only need the case a∗ = a.

Proposition 4.16. Let a = a∗ ∈ B(H) have non-empty continuous spectrum, so that
there is some λ ∈ σ(a) that is not an eigenvalue of a. Then ωλ ( f (a)) = f (λ ) defines
a pure state on A =C∗(a), whose extension to B(H) by any pure state is singular.

Proof. Normal pure states on B(H) take the form ωψ(b) = 〈ψ,bψ〉, where ψ ∈H is
a unit vector and b∈B(H). We know from Proposition C.14 that ωλ is multiplicative
on C∗(a). However, if some multiplicative state ω on C∗(a) has the form ω = ωψ ,
then ψ must be eigenvector of a; cf. the proof of Proposition 2.3. �
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4.3 The Kadison–Singer Conjecture

To obtain deeper insight into singular pure states, and as a matter of independent
interest, we return to the Kadison–Singer problem, cf. §2.6. Recall that this problem
asks if some abelian unital C*-algebra A⊂ B(H) has the Kadison–Singer property,
stating that a pure state ωA on A has a unique pure extension ω to B(H). Here the is-
sue is uniqueness rather than existence, since at least one such extension exists: since
A is necessarily unital (with 1A = 1H ) and ωA is a state on A, so that in particular
ωA(1A) = ‖ωA‖ = 1, Corollary B.41 gives the existence of a bounded extension ω
satisfying ω(1H) = ‖ω‖= 1, which by Proposition C.5 is a state on B(H). Proposi-
tion 2.22 then gives the existence of a pure extension ω . As in the finite-dimensional
case, the Kadison–Singer property forces A to be maximal (in the poset C (B(H)) of
all abelian unital C*-subalgebras of B(H), ordered by inclusion):

Proposition 4.17. If some abelian unital C*-subalgebra A of B(H) has the Kadison–
Singer property, then A is necessarily maximal.

Proof. We use the Gelfand isomorphism A∼=C(P(A)), where P(A) is the pure state
space of A, cf. Theorem C.8 and Proposition C.14. If A has the Kadison–Singer
property and A⊆ B⊂ B(H), where B is an abelian unital C*-subalgebra A of B(H),
then ωA has a unique pure extension ω on B(H), which restricts to some state ωB on
B. The same reasoning as in the proof of Proposition 2.22 shows that ωB is a pure
state on B, so that we obtain a unique map

P(A) �→ P(B); (4.42)
ωA �→ ωB. (4.43)

The inverse of this map is simply the pullback of the inclusion A ↪→ B, i.e., ωB ∈
P(B) defines ωA ∈ P(A) by restriction, so that we have a bijection P(A) ∼= P(B),
ωA ↔ ωB. Since for any pair of C*-algebras A ⊆ B the pullback S(B)→ S(A) is
continuous (in the pertinent w∗-topology), the map ωB �→ ωA is continuous. As in
Lemma C.20, this implies that it is in fact a homeomorphism, so that A∼= B through
the inclusion A ↪→ B. This gives A = B, and hence A is maximal. �

Maximality of A implies A′ = A, so that A is a von Neumann algebra, sharing the
unit of B(H). To see the relevance of singular states for the Kadison–Singer prob-
lem, we first settle the normal case. We know what it means for a state on B(H)
to be normal (cf. Definition 4.11 and Corollary 4.13); for arbitrary von Neumann
algebras A ⊂ B(H) the situation is exactly the same: we define normality by (4.28)
and characterize it by the equivalent properties in Corollary 4.13, where the σ -weak
topology on A may be defined either as the one inherited from B(H), or, more in-
trinsically, and the w∗-topology from the duality A = A∗∗, where the Banach space
A∗ is the so-called predual of A, e.g., �∞∗ ∼= �1 and L∞(0,1)∗ = L1(0,1), cf. §B.9.

Theorem 4.18. Let H be a separable Hilbert space and let ωA be a normal pure
state on a maximal commutative unital C*-algebra A in B(H). Then ωA has a unique
extension to a state ω on B(H), which is necessarily pure and normal.
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Proof. As noted after (4.41), a pure state on B(H) is either normal or singular. The
possibility that ωA is normal whereas ω is singular is excluded by Corollary 4.13.3,
so ω must be normal and hence given by a density operator. The proof of uniqueness
is then the same as in the finite-dimensional case, cf. Theorem 2.21. �

We now recall the classification of maximal maximal abelian ∗-algebras (and
hence of maximal abelian von Neumann algebras) A in B(H) up to unitary equiva-
lence (cf. Theorem B.118). This classification is the relevant one for the Kadison–
Singer problem, since, as is easily seen, A⊂ B(H) has the Kadison–Singer property
iff uAu−1 ⊂ B(uH) has it. The uniqueness of the finite-dimensional case will be lost:

Theorem 4.19. If H is separable and infinite-dimensional, and A⊂ B(H) is a maxi-
mal abelian ∗-algebra, then A is unitarily equivalent to exactly one of the following:

1. L∞(0,1)⊂ B(L2(0,1));
2. �∞ ⊂ B(�2);
3. L∞(0,1)⊕ �∞(κ)⊂ B(L2(0,1)⊕ �2(κ)),

where �∞ ≡ �∞(N), �2 ≡ �2(N), and κ is either {1, . . . ,n}, in which case �2(κ) =Cn

and �∞(κ) = Dn(C), or κ = N, in which case �2(κ) = �2 and �∞(κ) = �∞.

This classification sheds some more light on Theorem 4.18. Since L∞(0,1) has no
pure normal states and Dn(C) has been dealt with in Theorem 2.21, the interesting
case is �∞. Using Corollary 4.13.3 (or the analysis below), it is easy to check that
the normal pure states on �∞ are given by ωA( f ) = f (x) for some x ∈ N; these are
vector state of the kind ωA( f ) = 〈ψ,m fψ〉 with ψ = δx, or, in other words, they are
given by ωA( f ) = Tr(ρm f ) with ρ = |δx〉〈δx|. We now invoke a fairly deep result:

Proposition 4.20. A pure state ω on B(H) is singular iff one (and hence all) of the
following equivalent conditions is satisfied:

• ω(a) = 0 for each a ∈ B0(H);
• ω(e) = 0 for each one-dimensional projection e;
• ∑iω(ei) = 0 for the projections ei = |υi〉〈υi| defined by some basis (υi).

One direction is easy: a normal pure state certainly does not satisfy the condition
in question. For example, given (2.42) one may take a = |ψ〉〈ψ|, which as a one-
dimensional projection lies in B0(H), so that ωψ(a) = 1. We omit the other direction
of the proof. We conclude from this proposition that a pure singular state on B(�2)
cannot restrict to a normal pure state on �∞, which reconfirms Theorem 4.18.

We now study the Kadison–Singer property for each of the three cases in Theo-
rem 4.19 (where the third will be an easy corollary of the first and the second). Since
the proofs of the first two cases are formidable, we just sketch the argument.

Theorem 4.21. • There exist (necessarily singular) pure states on L∞(0,1) that do
not have a unique extension to B(L2(0,1)), and similarly for L∞(0,1)⊕ �∞(κ).

• Any pure state on �∞ has a unique extension to B(�2).
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The statement about �∞ is the Kadison–Singer Conjecture, which dates from 1959
but was only proved in 2013. The first claim (which was already known to Kadison
and Singer themselves) is equally remarkable, however, as is the contrast between
the two parts of Theorem 4.21. In particular, Dirac’s notation |λ 〉may be ambiguous.

The key to the proof of the first claim lies in the choice of a total countable
family of normal states on L∞(0,1), from which all pure states may be constructed
by a limiting operation. Here we call a (countable) family (ωn)n∈N of states on some
C*-algebra A total if, for any self-adjoint a ∈ A, the conditions ωn(a)≥ 0 for each n
imply a≥ 0 (the converse is trivial). For example, the well-known Haar basis (hn)
of L2(0,1) provides such a family. The functions forming this basis are defined via
some bijection β between the set of pairs (k, l) and N, e.g., β (k, l) = k+2l , by

hn = χβ−1(n), (n ∈ N= {1,2, . . .}); (4.44)

χk,l(x) = 2k/2g(2kx− l), (k ∈ N∪{0}, 0≤ l < 2k); (4.45)
g(x) = 1[0,1/2)−1[1/2,1]. (4.46)

Basic analysis then shows that the Haar functions hn form a basis of L2(0,1) and
that the associated vector states ωn on L∞(0,1) form a total set, where obviously

ωn( f ) = 〈hn,m f hn〉=
∫ 1

0
h2

n f . (4.47)

The relevance of total sets to the conjecture is explained by the following lemma.

Lemma 4.22. If T ⊂ S(A) is a total set of states on a unital C*-algebra A, then

S(A) = co(T )−; (4.48)
P(A) ⊆ T−, (4.49)

where co(T )− is the w∗-closure of the convex hull of T in A∗ or in S(A).

Proof. The inclusion co(T )− ⊆ S(A) is obvious, since T ⊆ S(A) and S(A) is a com-
pact (and hence a closed) convex set. To prove the converse inclusion, suppose
a = a∗ ∈ A and s ∈R are such that ω(a)≥ s for each ω ∈ T . Then ω(a− s ·1A)≥ 0
and hence ω(a) ≥ s for each ω ∈ S(A). Using Theorem B.43 (of Hahn–Banach
type), this property would lead to a contradiction if S(A) were not contained in
co(T )−.

The second claim, which is the one we will use, follows from the first through a
corollary of the Krein–Milman Theorem B.50, stating that if T ⊂ K is any subset of
a compact convex set K such that K = co(T )−, then ∂eK ⊆ T−. This corollary may
be proved (by contradiction) from Theorem B.43 in a similar way. �

Our next aim is to get rid of the closure in (4.49). The Haar basis yields a map

h : N → S(L∞(0,1)); (4.50)
n �→ ωn, (4.51)



116 4 Quantum physics on a general Hilbert space

with image T , i.e., the set of Haar states. Since S(A) is a compact Hausdorff space (in
its w∗-topology), the universal property (B.135) of the Čech–Stone compactification
βN of N implies that h extends (uniquely) to a continuous map

βh : βN→ S(A),

whose image is compact and hence closed (since βN is compact). Since T = h(N)⊂
S(A) we have T ⊆ βh(βN) and hence T− ⊆ βh(βN), so that, from (4.49),

P(L∞(0,1))⊆ βh(βN). (4.52)

Hence each pure state ωc ≡ ωL∞(0,1) on L∞(0,1) takes the form ωc = ω(U)
c , where

ω(U)
c ( f ) = lim

U
ωn( f ) =

⋂
A∈U

{ωn( f ) | n ∈ A}−, f ∈ L∞(0,1), (4.53)

and U ∈ βN is some ultrafilter on N, cf. (B.136). The point of this analysis, then, is
that ωU can immediately be extended to B(L2(0,1)) by the same formula, i.e.,

ω(U)(a) = lim
U

ωn(a) =
⋂

A∈U

{ωn(a) | n ∈ A}−, a ∈ B(L2(0,1)), (4.54)

where ωn(a) = 〈hn,ahn〉. If L∞(0,1) had the Kadison–Singer property, this were the
unique extension of ωU , and we will show that this leads to a contradiction.

Apart from the use of ultrafilters, the technically most challenging part of the
argument disproving the Kadison–Singer property for L∞(0,1) is as follows. If A =
C([0,1]), for any f ∈ A and any pure state ω ∈ P(A) there is some x ∈ [0,1] such
that ω( f ) = f (x); see Propositions C.14 and C.19. For A = L∞(0,1) the situation is
not that simple due to measure zero complications. Nonetheless, it is easy to show
that for each positive f ∈ L∞(0,1) and ωc ∈ P(L∞(0,1)) and each ε > 0 one has

μ({x ∈ (0,1) | f (x) ∈ [ωc( f )− ε,ωc( f )+ ε]})> 0. (4.55)

where μ is Lebesque measure on (0,1). Taking the projection

e = 1{x∈(0,1)| f (x)∈[ωc( f )−ε/2,ωc( f )+ε/2]},

it follows that for each positive f ∈ L∞(0,1), ω ∈ P(L∞(0,1)) and ε > 0 there exists
a projection e ∈P(L∞(0,1)) with ω(e) = 1 and ‖e f − eωc( f )‖< ε . Hard analysis
then generalizes this property from L∞(0,1) to B(L2(0,1)), as follows:

Lemma 4.23. If ωc ∈ P(L∞(0,1)) has a unique extension ω to B(L2(0,1)) (which is
necessarily pure if it is unique), then for each a ∈ B(L2(0,1)) and ε > 0 there exists
a projection e ∈P(L∞(0,1)) with ωc(e) = 1 and

‖ea− eω(a)‖< ε. (4.56)
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To derive a contradiction between (4.54) and (4.56), we use a bijection b : N→N
that cyclically permutes the ordered subsets (2k + 1, . . . ,2k+1), k = 0,1, . . ., that is,
(1,2), (3,4), (5,6,7,8), (9, . . . ,16), etc. This bijection induces a unitary operator

u : L2(0,1)→ L2(0,1); (4.57)
uhn = hb(n), (4.58)

which is easily shown to have the following properties:

ωn(u) = 0, n ∈ N; (4.59)
‖eue‖ = 1, e ∈P(L∞(0,1)),e �= 0. (4.60)

To show that L∞(0,1) fails to have the Kadison–Singer property, suppose it does, so
that any ωc ∈ P(L∞(0,1)) has a unique extension ω ∈ P(B(L2(0,1))). As already
noted, we may then assume that ωc = ω(U)

c , as in (4.53), whilst ω = ω(U), as in
(4.54). Taking a = u then gives ω(u) = 0, see (4.59), so that ‖eu‖< ε by (4.56). But
this contradicts (4.60), finishing the sketch of the proof of the first claim in Theorem
4.21. The remark about L∞(0,1)⊕ �∞(κ) follows from the one about L∞(0,1).

We now pass to the (even) more difficult case of �∞ ⊂ B(�2). Although this will
not be used in the proof, it gives some insight to know which states on �∞ we are
actually talking about, i.e., the singular pure states, and compare this with (4.53).

Theorem 4.24. There is a bijective correspondence

ωd( f ) =
∫
N

dμ f (4.61)

between states ωd on �∞ and finitely additive probability measures μ on N, where:

1. ωd is normal iff μ is countably additive (and hence is a probability measure).
2. ωd is pure iff μ corresponds to some ultrafilter U on N, in which case:

ωd is normal iff U is principal (and hence singular iff U is free).

This follows from case no. 5 in §B.9, notably eqs. (B.153) - (B.154). In other words,
the pure states ωd on �∞ are given by ultrafilters U on N through

ω(U)
d ( f ) = β f (U) = lim

U
f (n); (4.62)

the analogy with (4.53) is even clearer if we write f (n) = 〈δn,m f δn〉 ≡ ωn( f ). If
U =Un is a principal ultrafilter, n ∈ N, we thus recover the normal pure states

ω(Un)
d ( f ) = f (n). (4.63)

As in (4.54), we find at least one natural extension ω(U) of ω(U)
d to B(�2), namely

ω(U)(a) = lim
U

ωn(a). (4.64)
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We now show that that �∞ has the Kadison–Singer property, making ω(U) the
only extension of ω(U)

d . The proof relies on an extremely difficult lemma from linear
algebra (formerly known as a paving conjecture). We first define a linear map D :
Mn(C)→ Dn(C) by D(a)ii = aii, i = 1, . . . ,n, and D(a)i j = 0 whenever i �= j.

Lemma 4.25. For any ε > 0 there exist l ∈N such that for all n ∈N and a ∈Mn(C)
with D(a) = 0, there are l projections (e1, . . . ,el) in Dn(C) such that

l

∑
k=1

ek = 1n; (4.65)

‖eiaei‖ ≤ ε‖a‖, i = 1, . . . , l. (4.66)

Since this estimate is uniform in n, the lemma extends to �2, where D : B(�2)→ �∞

is defined analogously, i.e., D(a) is diagonal in the canonical basis (δn) of �2 with

D(a)δn = ωn(a)δn, n ∈ N. (4.67)

Lemma 4.26. For any ε > 0 there exist l ∈N such that for all a∈ B(�2) with D(a) =
0, there are l projections (e1, . . . ,el) in �∞ such that

l

∑
k=1

ek = 1H ; (4.68)

‖eiaei‖ ≤ ε‖a‖, i = 1, . . . , l. (4.69)

Now suppose that ωd ∈ P(�∞), that ω ∈ S(B(�2)) extends ωd , and that a∈ B(�2) has
D(a) = 0. Let ei be one of the projections in Lemma 4.26. Using Cauchy–Schwarz
for the sesquilinear form (a,b) = ω(a∗b), we obtain (using e2

i = e∗i = ei)

|ω(eiae j)|2 ≤ ω(ei)ω(e ja∗aei); (4.70)

|ω(eiae j)|2 ≤ ω(a∗eia)ω(e j). (4.71)

Since ω(ei) = ωd(ei) and ωd is a pure state (and hence is multiplicative), we have
ω(ei) ∈ {0,1}, since ei is a projection. Moreover, in view of (4.68) and the nor-
malization ω(1H) = 1, there must be exactly one value of i = 1, . . . , l, say i = i0,
such that ω(ei0) = 1, and ω(ei) = 0 for all i �= i0. Eqs. (4.70) - (4.71) there-
fore imply that ω(eiae j) �= 0 iff i = j = i0. Using (4.68) once more, we see that
ω(a) = ∑i, j ω(eiae j) = ω(ei0aei0), so that |ω(a)| ≤ ‖ω‖‖ei0aei0‖ ≤ 1 · ε‖a‖ by
(4.66). Letting ε → 0, we proved:

Lemma 4.27. If ω ∈ S(B(�2)) extends ωd ∈ P(�∞), and D(a) = 0, then ω(a) = 0.

Since D2 = D, we have D(a−D(a)) = 0, so that for any a ∈ B(�2), we have

ω(a) = ω(D(a)) = ωd(D(a)), (4.72)

provided that ω extends ωd , as before. This shows that ω is determined by ωd and
hence is unique, completing the proof (sketch) of Theorem 4.21.
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4.4 Gleason’s Theorem in arbitrary dimension

To a large extent the thrust and difficulty of the proof of Gleason’s Theorem 2.28
already lies in its finite-dimensional version, but some care is needed in the gen-
eral case, and also Corollary 2.29 needs to be refined. A major point here is that
Definition 2.23 has no unambiguous generalization to arbitrary Hilbert spaces.

Definition 4.28. Let H be an arbitrary Hilbert space with unit sphere H1.

1. A probability distribution on P(H) is a map p : H1 → [0,1] that satisfies

∑
i∈I

p(υi) = 1, for any basis (υi) of H, (4.73)

where, as in §B.12, the sum (over a possibly uncountable index set) is meant as
in Definition B.6. In particular, if H is separable and the basis is labeled and
ordered by I = N, then it is an ordinary convergent sum of the kind ∑∞

i=1 · · · .
2. A map P : P(H)→ [0,1] that satisfies P(1H) = 1 is called a:

a. finitely additive probability measure if

P

(
∑
j∈J

e j

)
= ∑

j∈J
P(e j) (4.74)

for any finite collection (e j) j∈J of mutually orthogonal projections on H (i.e.,
e jH ⊥ ekH, or equivalently, e jek = 0, whenever j �= k); this is equivalent to
the condition P(e+ f ) = P(e)+P( f ) whenever e f = 0, cf. Definition 2.23.2.

b. probability measure if (4.74) holds for any countable collection (e j) j∈J of
mutually orthogonal projections on H, where the first sum is defined in the
strong operator topology; note that the strong sum ∑ j e j coincides with the
supremum

∨
j e j of the given family, defined with respect to the usual ordering

of projections (that is, e≤ f iff eH ⊆ f H).
c. completely additive probability measure if (4.74) holds for arbitrary col-

lections (e j) j∈J of mutually orthogonal projections on H (the first sum again
meant in the strong operator topology, with the same comment as above).

Thus a probability measure is by definition σ -additive in the usual sense of mea-
sure theory; the other two cases are unusual from that perspective. However, if H is
separable, then J can be at most countable, so that complete additivity is the same
as σ -additivity and hence any probability measure is completely additive. Surpris-
ingly, assuming the Continuum Hypothesis (CH) of set theory, it can be shown that
this is even the case for arbitrary Hilbert spaces. The fundamental distinction, then,
is between finitely additive probability measures and probability measures (which
by definition are countably additive). As we shall see, this reflects the distinction
between arbitrary and normal states on B(H), respectively, cf. §4.2. In what fol-
lows, in dealing with non-separable Hilbert spaces we assume CH, in which case
probability distributions on H are equivalent to probability measures on P(H).
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The proof is the same as in finite dimension (taking into account that infinite sums
over projections are defined strongly). Even without CH, Gleason’s Theorem still
holds for non-separable Hilbert spaces if we assume P to be completely additive, and
probability distributions are equivalent to completely additive probability measures
on P(H). For separable Hilbert spaces, CH is irrelevant and unnecessary altogether.

We then have the following generalization (and bifurcation) of Theorem 2.28.

Theorem 4.29. Let H be a Hilbert space of dimension > 2.

1. Each probability measure P on P(H) is induced by a unique normal state on
B(H) via (2.122), i.e.,

P(e) = Tr(ρe), (4.75)

where ρ is a density operator on H uniquely determined by P.
Equivalently, each probability distribution p on P(H) is given by (2.123), or

p(υ) = 〈υ ,ρυ〉. (4.76)

Conversely, each density operator ρ on H defines a probability measure P on
P(H) via (4.75), as well as as a probability distribution p on P(H) via (4.76).

2. Each finitely additive probability measure P on P(H) is induced by a unique
state ω on B(H) via

P(e) = ω(e), (4.77)

and similarly each probability distribution p on P(H) is given by

p(υ) = ω(eυ). (4.78)

Conversely, each state ω on H defines a probability measure P on P(H) via
(4.77), as well as as probability distribution p on P(H) via (4.78).

Proof. The proof of part 1 is practically the same as in finite dimension, except for
the fact that in the proof of Lemma 2.33 the reference to Proposition A.23 should be
replaced by Proposition B.79, upon which one obtains a bounded positive operator ρ
for which (2.123) holds. The normalization condition (2.110) then yields Tr(ρ) = 1
if the trace is taken over any basis of H, and since ρ is positive this implies ρ ∈
B1(H), see §B.20 (complete additivity of P is just necessary to relate it to p).

Unfortunately, the proof of part 2 exceeds the scope of this book (see Notes). �

In infinite dimension, Corollary 2.29 becomes more complicated, too; for one
thing, Definition 2.26 of a quasi-state bifurcates into two possibilities. The one given
still makes perfect sense and is natural from the point of view of Bohrification; to
avoid confusion we call a map ω : B(H)→ C satisfying the conditions in Defi-
nition 2.26 a strong quasi-state. In the context of Gleason’s Theorem, a slightly
different notion is appropriate: a weak quasi-state on B(H) satisfies Definition 2.26,
except that linearity is only required on commutative C*-algebras in B(H) of the
form C∗(a), where a = a∗ ∈ B(H) (these are singly generated). Since commutative
unital C*-subalgebras of B(H) are not necessarily singly generated, and a specific
counterexample exists, weak quasi-states are not necessarily strong quasi-states.
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Proposition 4.30. The map ω �→ ω|P(H) gives a bijective correspondence between
weak quasi-states ω on B(H) and finitely additive probability measures on P(H).

Proof. For some finite family (e1, . . . ,en) of mutually orthogonal projections on H,
add e0 = 1H −∑ j e j if necessary and let a = ∑n

j=0λ je j, with all λ j ∈ R different.
Then σ(a) = {λ0, . . . ,λn}, so that C∗(a)∼=C(σ(a)∼= Cn+1 (cf. Theorem B.94) co-
incides with the linear span of the projections e j. If ω is a weak quasi-state, then it
is linear on C∗(a) and hence also on the e j, so that ω|P(H) is finitely additive.

Conversely, let μ be a finitely additive probability measure on P(H). If a = a∗ ∈
B(H) is given, using the notation (B.328) we symbolically define ω on a by

ω(a) =
∫
σ(a)

dμ(eλ )λ . (4.79)

More precisely, for any ε > 0 we use Corollary B.104 to define ωε(a)=∑n
i=1λiμ(eAi)

and let ω(a) = limε→0ωε(a); it follows from Lemma B.103 (or the theory underly-
ing the Riemann–Stieltjes integral (4.79)) that this limit exists. Now let b,c∈C∗(a),
so that b = f (a) and c = g(a) for certain f ,g ∈C(σ(a)), and b+c = ( f +g)(a), cf.
Theorem B.94. By (B.325) we therefore have ωε(b+ c) = ∑n

i=1( f + g)(λi)μ(eAi),
which, since ( f + g)(λi) = f (λi)+ g(λi), again by (B.325) equals ωε(b)+ωε(c).
Since this holds for every ε > 0, letting ε → 0 we obtain ω(b+ c) = ω(b)+ω(c),
making ω linear on C∗(a). It is clear that the quasi-state ω thus obtained, on re-
striction to P(H) reproduces μ , making the map ω �→ ω|P(H) surjective. Finally,
injectivity of this map follows from Corollary B.104. �.

Corollary 4.31. If dim(H)> 2, then each weak quasi-state on B(H) (and a fortiori
each strong quasi-state) is linear and hence is actually a state.

This is immediate from Theorem 4.29.2. and Proposition 4.30.
Another corollary of Gleason’s Theorem is the Kochen–Specker Theorem, which

we will explain in detail in Chapter 6, where it will also be proved in a different way.

Theorem 4.32. If dim(H)> 2, there are no weak quasi-states ω : B(H)→C whose
restriction to each C*-subalgebra C∗(a)⊂ B(H) is pure (where a = a∗ ∈ B(H)).

Equivalently, there are no nonzero maps ω ′ : B(H)sa → R that are:

• Dispersion-free, i.e., ω ′(a2) = ω ′(a)2 for each a ∈ B(H)sa;
• Quasi-linear, i.e., linear on commuting operators.

Cf. Definitions 6.1 and 6.3. To see that these conditions are equivalent to those stated
in Theorem 4.32 (despite the impression that linearity on all commuting self-adjoint
operators seems stronger than linearity on each C∗(a)), extend ω ′ to ω : B(H)→
C by complex linearity, as in Definition 2.26.1, and note that dispersion-freeness
implies positivity and hence continuity on each subalgebra C∗(a) (cf. Theorem C.52
and Lemma C.4). We then see that the two conditions just stated imply that ω is
multiplicative on C∗(a), and hence pure, see Proposition C.14, which conversely
implies that pure states on C∗(a) are dispersion-free. We now prove Theorem 4.32.
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Proof. If e is a projection, then e2 = e, so that ω(e2) =ω(e). Since ω is dispersion-
free (as just explained), we also have ω(e2) = ω(e)2, whence ω(e)2 = ω(e) and
hence ω(e) ∈ {0,1}. Furthermore, since ω is a state by Corollary 4.31, we may ap-
ply the GNS-construction, see Theorem C.88 (whose notation we use). In particular,
for any projection e, using the fact that πω(e) = πω(e)∗πω(e), by (C.196) we have

ω(e) = 〈Ωω ,πω(e)Ωω〉= ‖πω(e)Ωω‖2. (4.80)

If ω(e) = 0, then πω(e)Ωω = 0 from the second equality. If ω(e) = 1, then
πω(e)Ωω = Ωω from the first inequality and Cauchy–Schwarz (in which we have
equality, so that πω(e)Ωω = zΩω for some z ∈ T, upon which (4.80) forces z = 1).

By the spectral theorem (e.g. in the form Corollary B.104) or the theory of von
Neumann algebras, the linear span of P(H) is norm-dense in B(H). Since Ωω is
cyclic for πω(B(H)) by the GNS-construction, it must be that Hω = C ·Ωω , and
hence πω(a) = ω(a) · 1Hω for any a ∈ B(H). Since πω(ab) = πω(a)πω(b) by the
GNS-construction, this gives ω(ab) = ω(a)ω(b) for all a,b ∈ B(H). However, such
multiplicative statesω on B(H) cannot exist if dim(H) > 1. This is clear if ω is
normal, cf. Proposition 2.10, so that the following argument (which also covers the
normal case) is especially meant for the case where ω is singular.

1. If dim(H) = n < ∞, there are n one-dimensional projections (e1, . . . ,en) such
that ∑ j e j = 1H . (indeed, we may assume that B(H) = Mn(C) and take diagonal
matrices e1 = diag(1,0, . . . ,0), etc.). Now for any pair (ei,e j) there is some v ∈
B(H) (which by definition is a partial isometry) such that ei = vv∗, e j = v∗v (in
the above case ei and e j are thus related if vi j = 1 and vi′ j′ = 0 otherwise). Hence

ω(ei) = ω(vv∗) = ω(v)ω(v∗) = ω(v∗v) = ω(e j), (4.81)

since ω is multiplicative. But ω is also additive, which implies

n

∑
j=1

ω(ei) = ω

(
n

∑
j=1

e j

)
= ω(1H) = 1. (4.82)

Since also ω(ei) ∈ {0,1}, eqs. (4.81) - (4.82) are clearly contradictory.
2. If dim(H) = ∞, separable or not, a similar contradiction arises from the halving

lemma, which states that there is a projection e and an operator v such that e =
vv∗, 1H − e = v∗v. For example, in the separable case assume H = �2 and take e
the projection onto the closed linear span �2

e of the basis vectors (δx) with x ∈ N
even, so that 1H − e projects onto the closed linear span �2

o of the basis vectors
(δx) with x ∈ N odd. Then �2 = �2

e ⊕ �2
o; take v = 0 on �2

e and v : �2
o → �2

e any
unitary operator. In general, a similar method works, for if I is a set indexing
some basis of H one may find a subset E ⊂ I that has the same cardinality as its
complement I\E, upon which �2(E)∼= �2(I\E), cf. Theorem B.63.
Multiplicativity of ω then leads to similar contradiction between the properties
ω(e) =ω(1H−e), as in (4.81), and ω(e)+ω(1H−e) =ω(1H) = 1, as in (4.82):
if ω(e) = 0 one finds 0 = 1, whereas ω(e) = 1 implies 2 = 1. �
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Notes

§4.1. The Born rule from Bohrification (II)
The Born measure (and its construction along the lines of this section) is well

known in functional analysis, cf. Pedersen (1989), §4.5. For the Hamburger Mo-
ment Problem see, for example, Reed, M. & Simon, B. (1975), Methods of Modern
Mathematical Physics. Vol II. Fourier Analysis, Self-adjointness (New York: Aca-
demic Press), Theorem X.4, p. 145 and Example 4, p. 205. In fact, the proof uses
spectral theory! Corollary 4.6 was suggested by the treatment of the Born rule in
Hall (2013). Definition 4.9 of the joint spectrum goes back (at least) to Arens (1961)
and Hörmander (1966), §3.1.13.
§4.2. Density operators and normal states

These are really results about von Neumann algebras and come from the pertinent
literature; our proofs derive from Li (1992), §1.8 and Takesaki (2002), Ch. III.
§4.3. The Kadison–Singer Conjecture

As already mentioned in the notes to §2.6, the Kadison–Singer Conjecture was
first discussed in Kadison & Singer (1959) and was finally proved by Marcus, Spiel-
man, & Srivastava (2014ab), following important intermediate contributions by e.g.
Anderson (1979) and Weaver (2004). For an introduction including a complete proof
see Stevens (2016), and for applications of the conjecture and its proof to other ar-
eas of mathematics see Casazza et al (2005) as well as Casazza & Tremain (2016).
Proposition 4.20 is due to Glimm (1960).
§4.4. Gleason’s Theorem in arbitrary dimension

The extension of Gleason’s Theorem to non-separable Hilbert space assuming
complete additivity of P is due to Maeda (1980). Maeda (1990) generalizes this
result to von Neumann algebras without summands of type I2. The proof that as-
suming CH countable additivity implies complete additivity (and hence Gleason’s
Theorem) was given by Eilers & Horst (1975). Proposition 4.30 is due to Aarens
(1970), whose Theorem 1 is wrong: see Aarens (1991). The proof of Theorem 4.32
is due to Döring (2004), using results of Hamhalter (1993).



Chapter 5

Symmetry in quantum mechanics

Roughly speaking, a symmetry of some mathematical object is an invertible trans-
formation that leaves all relevant structure as it is. Thus a symmetry of a set is just a
bijection (as sets have no further structure, whence invertibility is the only demand
on a symmetry), a symmetry of a topological space is a homeomorphism, a sym-
metry of a Banach space is a linear isometric isomorphism, and, crucially important
for this chapter, a symmetry of a Hilbert space H is a unitary operator, i.e., a linear
map u : H → H satisfying one and hence all of the following equivalent conditions:

• uu∗ = u∗u = 1H ;
• u is invertible with u−1 = u∗;
• u is a surjective isometry (or, if dim(H)< ∞, just an isometry);
• u is invertible and preserves the inner product, i.e., 〈uϕ,uψ〉= 〈ϕ,ψ〉 (ϕ,ψ ∈H).

The discussion of symmetries in quantum physics is based on the above idea, but the
mathematically obvious choices need not be the physically relevant ones. Even in el-
ementary quantum mechanics, where A = B(H), i.e., the C*-algebra of all bounded
operators on some Hilbert space H, the concept of a symmetry is already diverse.
The main structures whose symmetries we shall study in this chapter are:

1. The normal pure state space P1(H), i.e., the set of one-dimensional projections
on H, with transition probability τ : P1(H)×P1(H)→ [0,1] defined by (2.44).

2. The normal state space D(H), i.e. the convex set of density operators ρ on H.
3. The self-adjoint operators B(H)sa on H, seen as a Jordan algebra (see below).
4. The effects E (H) = [0,1]B(H), seen as a convex partially ordered set (poset).
5. The projections P(H) on H, seen as an orthocomplemented lattice.
6. The unital commutative C*-subalgebras C (B(H)) of B(H), seen as a poset.

Each of these structures comes with its own notion of a symmetry, but the main
point of this chapter will be to show these notions are equivalent, corresponding
in all cases to either unitary or—surprisingly—anti-unitary operators, both merely
defined up to a phase. The latter subtlety will open the world of projective unitary
group representation to quantum mechanics (without which the existence of spin- 1

2
particles such as electrons, and therewith also of ourselves, would be impossible).
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5.1 Six basic mathematical structures of quantum mechanics

We first recall the objects just described in a bit more detail. We have:

P1(H) = {e ∈ B(H) | e2 = e∗ = e,Tr(e) = dim(eH) = 1}; (5.1)
D(H) = {ρ ∈ B(H) | ρ ≥ 0,Tr(ρ) = 1}; (5.2)

B(H)sa = {a ∈ B(H) | a∗ = a}; (5.3)
E (H) = {a ∈ B(H) | 0≤ a≤ 1H}; (5.4)

P(H) = {e ∈ B(H) | e2 = e∗ = e}; (5.5)
C (B(H)) = {C ⊂ B(H) |C commutative C*-algebra,1H ∈C}. (5.6)

The point is that each of these sets has some additional structure that defines what it
means to be a symmetry of it, as we now spell out in detail.

Definition 5.1. Let H be a Hilbert space (not necessarily finite-dimensional).

1. AWigner symmetry (of H) is a bijection

W : P1(H)→P1(H) (5.7)

that satisfies
Tr(W(e)W( f )) = Tr(e f ), e, f ∈P1(H). (5.8)

2. A Kadison symmetry is an affine bijection

K : D(H)→D(H), (5.9)

i.e. a bijection K that preserves convex sums: for t ∈ (0,1) and ρ1,ρ2 ∈D(H),

K(tρ1 +(1− t)ρ2) = tKρ1 +(1− t)Kρ2. (5.10)

3. a. A Jordan symmetry is an invertible Jordan map

J : B(H)sa → B(H)sa, (5.11)

i.e., an R-linear bijection that satisfies the equivalent conditions

J(a◦b) = J(a)◦J(b); (5.12)
J(a2) = J(a)2. (5.13)

Here
a◦b = 1

2 (ab+ba) (5.14)

is the Jordan product on B(H)sa, which turns the (real) vector space B(H)sa
into a Jordan algebra, cf. §C.25.

b. A weak Jordan symmetry is an invertible weak Jordan map, i.e., a bijection
(5.11) of which the restriction J|Csa is a Jordan map for each C ∈ C (B(H)).
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4. A Ludwig symmetry is an affine order isomorphism

L : E (H)→ E (H). (5.15)

5. A von Neumann symmetry is an order isomorphism

N : P(H)→P(H) (5.16)

preserving orthocomplementation, i.e. N(1− e) = 1−N(e) for each e ∈P(H).
6. A Bohr symmetry is an order isomorphism

B : C (B(H))→ C (B(H)). (5.17)

In nos. 3 and 5–6, an order isomorphism O of the given poset is a bijection that
preserves the partial order ≤ (i.e., if x ≤ y, then O(x) ≤ O(y)) and whose inverse
O−1 does so, too; cf. §D.1. The names in question have been chosen for historical
reasons and (except perhaps for the first and third) are not standard.

Let us note that any Jordan map has a unique extension to a C-linear map

JC : B(H)→ B(H); (5.18)
JC(a∗) = JC(a)∗, (5.19)

which satisfies (5.12) for all a,b, as well as

JC(a+ ib) = J(a)+ iJ(b), (5.20)

with notation as in Proposition 2.6. Conversely, such a Jordan map (5.18) defines
a real Jordan map (5.11) by J = J|B(H)sa . Similarly, a weak Jordan symmetry is
equivalent to a map (5.18) that satisfies (5.19), preserves squares as in (5.13), and is
linear on each subspace C of B(H), with C ∈ C (B(H)). In other words (in the spirit
of Bohrification), JC is a homomorphism of C*-algebras on each commutative unital
C*-subalgebra C ⊂ B(H). Therefore, either way J and JC are essentially the same
thing, and if no confusion may arise we call it J. Note that a weak Jordan map J a
priori satisfies (5.12) only for commuting self-adjoint a and b. It follows that weak
(and hence ordinary) Jordan symmetries are unital: since

J(b) = J(1H ◦b) = J(1H)◦J(b) (5.21)

for any b, we may pick b = J−1(1H) to find, reading (5.21) from right to left,

J(1H) = J(1H)◦1H = 1H . (5.22)

The special role of unitary operators u now emerges: each such operator defines
the relevant symmetry in the obvious way, namely, in order of appearance:
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W(e) = ueu∗; (5.23)
K(ρ) = uρu∗; (5.24)
L(a) = uau∗; (5.25)
J(a) = uau∗; (5.26)
N(e) = ueu∗; (5.27)
B(C) = uCu∗, (5.28)

where a∗ = a in (5.26). If not, this formula remains valid also for the map JC. Fur-
thermore, in (5.28) the notation uCu∗ is shorthand for the set {uau∗ | a ∈C}, which
is easily seen to be a member of C (B(H)). Here, as well as in the other three cases,
it is easy to verify that the right-hand side belongs to the required set, that is,

ueu∗ ∈P1(H), uρu∗ ∈D(H), uρu∗ ∈ E (H), (5.29)
uau∗ ∈ B(H)sa, uρu∗ ∈P(H), uCu∗ ∈ C (B(H)), (5.30)

respectively, provided, of course, that

e ∈P1(H), ρ ∈D(H), a ∈ E (H) a ∈ B(H)sa, e ∈P(H), C ∈ C (B(H)).

Indeed, if, in (5.23), e = eψ = |ψ〉〈ψ| for some unit vector ψ ∈ H, then

ueψ u∗ = euψ . (5.31)

If ρ ≥ 0 in that 〈ψ,ρψ〉 ≥ 0 for each ψ ∈ H, then clearly also uρu∗ ≥ 0, and if
Tr(ρ) = 1, then also Tr(uρu∗) = 1. If a∗ = a, then

(uau∗)∗ = u∗∗a∗u∗ = uau∗. (5.32)

However, one may also choose u in these formulae to be anti-unitary, as follows:

Definition 5.2. 1. A real-linear operator u : H→ H is anti-linear if

u(zψ) = zψ (z ∈ C). (5.33)

2. An anti-linear operator u : H→ H is anti-unitary if it is invertible, and

〈uϕ,uψ〉= 〈ϕ,ψ〉 (ϕ,ψ ∈ H). (5.34)

The adjoint u∗ of a (bounded) anti-linear operator u is defined by the property

〈u∗ϕ,ψ〉= 〈ϕ,uψ〉 (ϕ,ψ ∈ H), (5.35)

in which case u∗ is anti-linear, too. Hence we may equally well say that an anti-linear
operator is anti-unitary if uu∗ = u∗u = 1H . The simplest example is the map
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J : Cn → Cn;
Jz = z, (5.36)

i.e., if z = (z1, . . . ,zn) ∈ Cn, then (Jz)i = zi. Similarly, one may define

J : �2 → �2;
Jψ = ψ, (5.37)

and likewise on L2, where complex conjugation is defined pointwise, that is,

(Jψ)(x) = ψ(x). (5.38)

For any Hilbert space one may pick a basis (υi) and define J relative to this basis by

J

(
∑

i
ciυi

)
= ∑

i
ciυi. (5.39)

For future use, we state two obvious facts.

Proposition 5.3. 1. The product of two anti-unitary operators is unitary.
2. Any anti-unitary operator u : H → H takes the form u = Jv, where v is unitary

and J is an anti-unitary operator on H of the kind constructed above.

It is an easy verification that (5.23) - (5.28) still define symmetries if u is anti-
unitary. Note that in terms of the complexification JC, eq. (5.26) should read

JC(a) = ua∗u∗. (5.40)

The goal of the following sections is to show that these are the only possibilities:

Theorem 5.4. Let H be a Hilbert space, with dim(H)> 1.

1. Each Wigner symmetry takes the form (5.23);
2. Each Kadison symmetry takes the form (5.24);
3. Each Ludwig symmetry takes the form (5.25);
4. a. Each Jordan symmetry takes the form (5.26);

b. If dim(H)> 2, also each weak Jordan symmetry takes this form;
5. If dim(H)> 2, each von Neumann symmetry takes the form (5.27);
6. Again if dim(H)> 2, each Bohr symmetry takes the form (5.28),

where in all cases the operator u is either unitary or anti-unitary, and is uniquely
determined by the symmetry in question up to a phase (that is, u and u′ implement
the same symmetry by conjugation iff u′ = zu, where z ∈ T).

As we shall see, the reason why the case H =C2 is exceptional with regard to weak
Jordan symmetries, von Neumann symmetries, and Bohr symmetries is that in those
cases the proof relies on Gleason’s Theorem, which fails for H = C2.

To see this more explicitly, and also to prove the positive cases (i.e., nos. 1–4a) in
a simple situation without invoking higher principles, before proving Theorem 5.4
in general it is instructive to first illustrate it in the two-dimensional case H = C2.
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5.2 The case H = C2

We start with some background. Any complex 2×2 matrix a can be written as

a = a(x0,x1,x2,x3) = 1
2

3

∑
μ=0

xμσμ (xμ ∈ C); (5.41)

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (5.42)

i.e., the Pauli matrices. Furthermore, if we equip the vector space M2(C) of complex
2× 2 matrices with the canonical inner product (2.34), then the rescaled matrices
σ ′μ = σμ/

√
2 form a basis (≡ orthonormal basis) of the ensuing Hilbert space.

Writing x = (x1,x2,x3), some interesting special cases are:

• x0 ∈ R, x = iv with v ∈ R3 and x2
0 + v2

1 + v2
2 + v2

3 = 1, which holds iff a ∈ SU(2);
• xμ ∈ R for each μ = 0,1,2,3, which is the case iff a∗ = a.
• x0 = 1, x ∈ R3, and ‖x‖= 1, which holds iff a is a one-dimensional projection.

The first case follows because SU(2) consist of all matrices of the form(
α β
−β α

)
, α,β ∈ C, |α|2 + |β |2 = 1. (5.43)

The second case is obvious, and the third follows from Proposition 2.9.
Assume the third case, so that a = e with e2 = e∗ = e and Tr(e) = 1. If a linear

map u : C2 → C2 is unitary, then simple computations show that e′ = ueu∗ is a one-
dimensional projection, too, given by e′ = 1

2 ∑3
μ=0 x′μσμ with x′0 = 1, x′ ∈ R3, and

‖x′‖= 1. Writing x′ = Rx for some map R : S2 → S2, we have

u(x ·σ)u∗ = (Rx) ·σ , (5.44)

where x ·σ = ∑3
j=1 x jσ j. This also shows that R extends to a linear isometry R :

R3 → R3. Using the formula Tr(σiσ j) = 2δi j, the matrix-form of R follows as

Ri j = 1
2 Tr(uσiu∗σ j). (5.45)

Define U(2) as the (connected) group of all unitary 2×2 matrices (whose connected
subgroup SU(2) of elements with unit determinant has just been mentioned). Also,
recall that O(3) is the group of all real orthogonal 3×3 matrices M, a condition that
may be expressed in (at least) four equivalent ways (like unitarity):

• MMT = MMM = 13;
• M invertible and MT = M−1;
• M is an isometry (and hence it is injective and therefore invertible);
• M preserves the inner product: 〈Mx,My〉= 〈x,y〉 for all x,y ∈ R3.
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This implies det(M) = ±1 (as can be seen by diagonalizing M; being a real linear
isometry, its eigenvalues can only be ±1, and det(M) is their product). Thus O(3)
breaks up into two parts O±(3) = {R ∈O(3) | det(R) =±1}, of which O+ ≡ SO(3)
consists of rotations. Using an explicit parametrization of SO(3), e.g., through Euler
angles, or, using surjectivity of the exponential map (from the Lie algebra of SO(3),
which consist of anti-symmetric real matrices), it follows that O±(3) are precisely
the two connected components of O(3), the identity of course lying in O+(3).

Proposition 5.5. The map u �→ R defined by (5.44) is a homomorphism from U(2)
onto SO(3). In terms of SU(2)⊂U(2), this map restricts to a two-fold covering

π̃ : SU(2)→ SO(3), (5.46)

with discrete kernel
ker(π̃) = {12,−12}. (5.47)

Proof. As a finite-dimensional linear isometry, R is automatically invertible (this
also follows from unitarity and hence invertibility of u), hence R ∈ O(3). It is ob-
vious from (5.44) that u �→ R is a continuous homomorphism (of groups). Since
U(2) is connected and u �→ R is continuous, R must lie in the connected component
of O(3) containing the identity, whence R ∈ SO(3). To show surjectivity of π̃ , take
some unit vector u∈R3 and define u = cos( 1

2θ)+ isin( 1
2θ)u ·σ . The corresponding

rotation Rθ (u) is the one around u by an angle θ , and such rotations generate SO(3).
Finally, it follows from (5.44) that u ∈ ker(π̃) iff u commutes with each σi and

hence, by (5.41), with all matrices. Therefore, u = z ·12 for some z ∈C, upon which
the the condition det(u) = 1 (in that u ∈ SU(2)) enforces z =±1. �

Note that the covering (5.46) is topologically nontrivial (i.e., SU(2) �= SO(3)×Z2),
since SU(2)∼= S3 is simply connected, whereas SO(3) is doubly connected: a closed
path t �→ R2πt(u), t ∈ [0,1] in SO(3) (starting and ending at 13) lifts to a path

t �→ cos(πt)+ isin(πt)u ·σ

in SU(2) that starts at the unit matrix 12 and ends at −12.
To incorporate O−(3), let Ua(2) be the set of all anti-unitary 2× 2 matrices.

These do not form a group, as the product of two anti-unitaries is unitary, but the
union U(2)∪Ua(2) is a disconnected Lie group with identity component U(2).

Proposition 5.6. The map u �→ R defined by (5.44) is a surjective homomorphism

π̃ ′ : U(2)∪Ua(2)→ O(3), (5.48)

with kernel U(1), seen as the diagonal matrices z · 12, z ∈ T. Moreover, π̃ ′ maps
U(2) onto SO(3) and maps Ua(2) onto O−(3).

Proof. The map u �→ R in (5.44) sends the anti-unitary operator u = J on C2 to
R= diag(1,−1,1)∈O−(3). Since Ua(2)= J ·U(2) and similarly O−(3)=R ·SO(3),
the last claim follows. The computation of the kernel may now be restricted to U(2),
and then follows as in the last step op the proof of the previous proposition. �
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We now return to Theorem 5.4 and go through its special cases one by one.
Part 1 of Theorem 5.4 is Wigner’s Theorem, which in the case at hands reads:

Theorem 5.7. Each bijection W : P1(C2)→P1(C2) that satisfies

Tr(W(e)W( f )) = Tr(e f ) (5.49)

for each e, f ∈P1(C2) takes the form W(e) = ueu∗, where u is either unitary or
anti-unitary, and is uniquely determined by W up to a phase.

To prove, this we transfer the whole situation to the two-sphere, where it is easy:

Proposition 5.8. The pure state space P1(C2) corresponds bijectively to the sphere

S2 = {(x,y,z) ∈ R3 | x2 + y2 + z2 = 1},

in that each one-dimensional projection e ∈P1(C2) may be expressed uniquely as

e(x,y,z) = 1
2

(
1+ z x− iy
x+ iy 1− z

)
, (5.50)

where (x,y,z) ∈ R3 and x2 + y2 + z2 = 1. Under the ensuing bijection

P1(C2)∼= S2, (5.51)

Wigner symmetries W of C2 turn into orthogonal maps R ∈ O(3), restricted to S2.

Proof. The first claim restates Proposition 2.9. If ψ and ψ ′ are unit vectors in C2

with corresponding one-dimensional projections eψ(x,y,z) and eψ ′(x′,y′,z′) then, as
one easily verifies, the corresponding transition probability takes the form

Tr(eψeψ ′) = 1
2 (1+ 〈x,x′〉) = cos2( 1

2θ(x,y)), (5.52)

where θ(x,y) is the arc (i.e., geodesic) distance between x and y. Consequently,
if W : P1(C2)→P1(C2) satisfies (5.8), then the corresponding map R : S2 → S2

(defined through the above identification P1(C2)∼= S2) satisfies

〈R(x),R(x′)〉= 〈x,x′〉 (x,x′ ∈ S2). (5.53)

Lemma 5.9. If some bijection R : S2 → S2 satisfies (5.53), then R extends (uniquely)
to an orthogonal linear map (for simplicity also called) R : R3 → R3.

Proof. With (u1,u2,u3) the standard basis of R3, define a 3×3 matrix by

Rkl = 〈uk,R(ul)〉. (5.54)

It follows from (5.53) that R−1(u j)k = R jk, which implies 〈R−1(u j),x〉= ∑k R jkxk,
or, once again using (5.53), R(x) j = ∑k R jkxk. Hence the map x �→∑ j,k R jkxku j, i.e.,
the usual linear map defined by the matrix (5.54), extends the given bijection R.
Orthogonality of this linear map is, of course, equivalent to (5.53). �
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Wigner’s Theorem then follows by combining Propositions 5.6 and 5.8: given
the linear map R just constructed, read (5.44) from right to left, where u exists by
surjectivity of the map (5.48), and the precise lack of uniqueness of u as claimed in
Theorem 5.4 is just a restatement of the fact that (5.48) has U(1) as its kernel. �

Kadison’s Theorem is part 2 of Theorem 5.4. Explicitly, for H = C2 we have:

Theorem 5.10. Each affine bijection K : D(C2)→D(C2) is given as K(ρ) = uρu∗,
where u is unitary or anti-unitary, and is uniquely determined by K up to a phase.

Proof. We once again invoke Proposition 2.9, implying that any density matrix ρ
on C2 takes the form

ρ = 1
2

(
12 +

3

∑
μ=1

xμσμ

)
, (5.55)

with ‖x‖ ≤ 1. Moreover, the ensuing bijection D(C2)∼= B3, ρ �→ x, is clearly affine,
in that a convex sums tρ+(1− t)ρ ′ of density matrices correspond to convex sums
tx+(1− t)x′ of the corresponding vectors in R3.

Lemma 5.11. Any affine bijection K of the unit ball B3 in R3 is given by an orthog-
onal linear map R ∈ O(3).

Proof. First, K must map the boundary ∂eB3 = S2 to itself (necessarily bijectively):
if x ∈ S2 and K(x) = tx′+(1− t)x′′, then x = tK−1(x′)+(1− t)K−1(x′′), whence

K−1(x′) = K−1(x′′), (5.56)

since x is pure, whence x′ = x′′, so that also K(x) is pure.
Second, the basis of all further steps is the property

K(0) = 0. (5.57)

This is because 0 is intrinsic to the convex structure of B3: it is the unique point
with the property that for any x ∈ S2 there exists a unique x′ such that 1

2 x+ 1
2 x′ = 0,

namely x′ = −x. Thus 0 must be preserved under affine bijections. For a formal
proof (by contradiction), suppose K(0) �= 0, and define y=K(0)/‖K(0)‖ ∈ S2. Then
K(0) has an extremal decomposition K(0) = ty+(1− t)y′, with y′ = −y and t =
1
2 (1+‖K(0)‖). Applying the affine map K−1 then gives

‖K−1(y′)‖= ‖K−1(y)‖ · 1+‖K(0)‖
1−‖K(0)‖ .

Now y ∈ S2 and hence K−1(y) ∈ S2 by part one of this proof (applied to K−1), so
that ‖K−1(y)‖ = 1. But this implies ‖K−1(y′)‖ > 1, which is impossible because
y′ ∈ S2 and hence ‖K−1(y′)‖= 1.

Third, for x ∈ B3 and t ∈ [0,1] the preceding point implies that

K(tx) = K(tx+(1− t)0) = tK(x)+(1− t)K(0) = tK(x). (5.58)
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The same then holds for x ∈ B3 and all t ≥ 0 as long as tx ∈ B3: for take t > 1, so
that t−1 ∈ (0,1), and use the previous step with x � tx and t � t−1 to compute

K(tx) = tt−1K(tx) = tK(t−1tx) = tK(x).

Also, (5.58) and affinity imply that for any x,y ∈ B3 for which x+y ∈ B3, we have

K(x+y) = 2K( 1
2 x+ 1

2 y) = 2 · ( 1
2K(x)+

1
2K(y)) = K(x)+K(y). (5.59)

With our earlier result (5.57), this also gives

K(−x) =−K(x). (5.60)

For some nonzero x ∈ R3, take s≥ ‖x‖ and t ≥ ‖x‖. Then by (5.58) we have

sK(x/s) = sK
( t

s
x

t

)
= tK(x/t).

We may therefore define a map R : R3 → R3 by

R(0) = 0; (5.61)
R(x) = s ·K(x/s) (x �= 0), (5.62)

for any choice of s≥ ‖x‖. For x ∈ B3 we may take s = 1, so that R extends K.
To prove that R is linear, for x ∈ R3 and t ≥ 0 pick some s≥ t‖x‖ and compute

R(tx) = sK
( t

s
x
)
= sK

(
‖x‖ t

s
x

‖x‖
)
= s · ‖x‖ t

s
K

(
x

‖x‖
)
= tR(x). (5.63)

For t < 0, we first show from (5.60) and (5.62) that

R(−x) =−R(x), (5.64)

upon which (5.63) gives

R(tx) = R(|t| · (−x)) = |t|R(−x) =−|t|R(x) =−tR(x). (5.65)

Furthermore, for given x,y ∈ B3, pick s′ > 0 such that s′ ≥ ‖x‖ and s′ ≥ ‖y‖, so that
s = 2s′ ≥ ‖x+y‖ by the triangle inequality, and use (5.59) to compute

R(x+y) = sK
(

x+y

s

)
= sK

(x

s
+

y

s

)
= sK(x/s)+ sK(y/s)

= R(x)+R(y). (5.66)

Finally, R is an isometry by (5.62) and step one of the proof. Being also linear and
invertible, R must therefore be an orthogonal transformation. �
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Given step one, an alternative proof derives this lemma from Proposition 5.18 below,
which shows that the transition probabilities (5.52) on S2 are determined by the
convex structure of B3, so that affine bijections must preserve them. In other words,
the boundary map S2 → S2 defined by K preserves transition probabilities and hence
satisfies the conditions of Lemma 5.9. This reasoning effectively reduces Kadison’s
Theorem to Wigner’s Theorem, a move we will later examine in general.

In any case, Theorem 5.10 now follows from Lemma 5.11 is exactly the same
way as Theorem 5.7 followed from the corresponding Lemma 5.9. �

We have given this proof in some detail, because step 3 will recur on other occasions
where a given affine bijection is to be extended to some linear map.
Ludwig’s Theorem is part 3 of Theorem 5.4. For H = C2, we have:

Theorem 5.12. Each affine order isomorphism L : E (C2)→ E (C2) reads L(a) =
uau∗, where u is unitary or anti-unitary, and is uniquely fixed by L up to a phase.

Proof. Using the parametrization (5.41), we have a(x0,x1,x2,x3) ∈ E (C2) iff each
xμ is real and 0≤ x0±‖x‖≤ 2. In particular, we have 0≤ x0≤ 2. This easily follows
from (2.38), noting that a ∈ E (C2) just means that a∗ = a and that both eigenvalues
of a lie in [0,1]. Thus E (C2) is isomorphic as a convex set to a convex subset C of
R4 that is fibered over the x0-interval [0,2], where the fiber Cx0 of C over x0 is the
three-ball B3

x0
with radius ‖x‖ = x0 as long as 0 ≤ x0 ≤ 1, whereas for 1 ≤ x0 ≤ 2

the fiber is B3
2−x0

, so at x0 = 1 the fiber is C1 = B3 ≡ B3
1 (in one dimension less,

this convex body is easily visualizable as a double cone in R3, where the fibers are
disks). The partial order on C induced from the one on E (C2) is given by

(x0,x)≤ (x′0,x
′) iff x′0− x0 ≥ ‖x′ −x‖, (5.67)

which follows from (5.41) and (2.38), noting that for matrices one has a ≤ a′ iff
a′ − a has positive eigenvalues. A similar argument to the one proving (5.57) then
shows that any affine bijection L of C must map the base space [0,2] to itself (as
an affine bijection), and hence either x0 �→ x0 or x0 �→ 2− x0. The latter fails to
preserve order, so L must fix x0. Similarly, L maps each three-ball Cx0 to itself by
an affine bijection, which, by the same proof as for Kadison’s Theorem above, must
be induced by some element Rx0 of O(3). Finally, the order-preserving condition
x′0−x0≥‖x′ −x‖⇒ x′0−x0≥‖Rx′0 x′ −Rx0x‖ obtained from (5.67) and the property
L(x0) = x0 just found can only be met if Rx0 is independent of x0. �

Part 3 of Theorem 5.4 does not carry an official name; it may be attributed to Kadi-
son, too, but the hard part of the proof was given earlier by Jacobson and Rickart.
Rather than a contrived (though historically justified) name like “Jacobson–Rickart–
Kadison Theorem”, we will simply speak of Jordan’s Theorem (for H = C2):

Theorem 5.13. Each linear bijection J : M2(C)sa → M2(C)sa that satisfies (5.13)
and hence (5.12) takes the form J(a) = uau∗, where u is either unitary or anti-
unitary, and is uniquely determined by J up to a phase.
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Proof. First, any Jordan map (and hence a fortiori any Jordan automorphism)
trivially maps projections into projections, as it preserves the defining conditions
e2 = e∗ = e. Second, any Jordan automorphism J maps one-dimensional projections
into one-dimensional projections: if e ∈P1(H), then J(e) �= 0 and J(e) �= 12, both
because J is injective in combination with J(0) = 0 and J(12) = 12, respectively.
Hence J(e) ∈P1(H), since this is the only remaining possibility (a more sophisti-
cated argument shows that this is even true for any Hilbert space H). From (5.41)
and subsequent text, as in (5.44), by linearity of J we therefore have

J

(
3

∑
j=1

x jσ j

)
=

3

∑
j=1

(Rx) jσ j, (5.68)

from some map R : S2 → S2, which is bijective because J is. Linearity of J then
allows us to extend R to a linear map R3 → R3, with matrix

R jk =
1
2

3

∑
j=1

Tr(σkJ(σ j)), (5.69)

cf. (5.45). By (5.69), this linear map restricts to the given bijection R : S2 → S2,
which also shows that it is isometric. Thus we have a linear isometry on R3, which
therefore lies in O(3). The proof may then be completed as in Theorem 5.7. �

The case H =C2 was already exceptional in the context of Gleason’s Theorem, and
it remains so as far as weak Jordan symmetries and Bohr symmetries are concerned.

Proposition 5.14. The poset C (M2(C)) is isomorphic to {⊥}∪RP2, where the real
projective plane RP2 is the quotient S2/ ∼ under the equivalence relation x ∼ −x,
and the only nontrivial ordering is ⊥≤ p for any p ∈ RP2.

Proof. It is elementary that M2(C) has a single one-dimensional unital ∗-subalgebra,
namely C ·1, the multiples of the unit; this gives the singleton ⊥ in C (M2(C)).

Furthermore, any two-dimensional unital ∗-subalgebra C of M2(C) is generated
by a one-dimensional projection e, in that C is the linear span of e and 12. Hence C
is also the linear span of (the projection) 12−e and 12. In our parametrization of all
one-dimensional projections e on C2 by S2 (cf. Proposition 2.9), if e corresponds to
x, then 1− e corresponds to −x. This yields the remainder RP2 of C (M2(C)).

Finally, commutative unital ∗-subalgebras D of M2(C) of dimension > 2 do not
exist. For any such algebra D would contain some two-dimensional C just defined,
but a simple computation (for example, in a basis were C consists of all diagonal
matrices) shows that the only matrices that commute with all elements of C already
lie in C (i.e., are diagonal). Hence no commutative extension of C exists. �

Bohr symmetries B for C2 therefore correspond to bijections of RP2. Similarly,
weak Jordan symmetries J for C2 corresponds to bijections of S2 (the difference
with Bohr symmetries lies in the fact that J may also map C = span(e,12) to itself
nontrivially, i.e., by sending e to 12− e, which for B would yield the identity map).
In both cases, few of these bijections are (anti-) unitarily implemented.
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5.3 Equivalence between the six symmetry theorems

If dim(H)> 1, the first three claims of Theorem 5.4 are equivalent; if dim(H)> 2,
all claims are. We will show this in some detail, if only because the proofs of the
various equivalences relate the six symmetry concepts stated in Definition 5.1 in
an instructive way. We will do this in the sequence Wigner ↔ Kadison ↔ Jordan,
and subsequently Jordan↔ Ludwig, Jordan↔ von Neumann, and Jordan↔ Bohr.
Consequently, in principle only one part of Theorem 5.4 requires a proof. Although
redundant, we will, in fact, prove both Wigner’s Theorem and Jordan’s (indeed, no
independent proof of the other parts of Theorem 5.4 seems to be known!). The most
transparent way to state the various equivalences is to note that in each case the set
of symmetries of some given kind (i.e., Wigner, . . . ) forms a group. In all cases, the
nontrivial part of the proof is the establishment of a “natural” bijection, from which
the group homomorphism property is trivial (and hence will not be proved).

Proposition 5.15. There is an isomorphism of groups between:

• The group of affine bijections K : D(H)→D(H);
• The group of bijections W : P1(H)→P1(H) that satisfy (5.8), viz.

W = K|P1(H); (5.70)

K

(
∑

i
λieυi

)
= ∑

i
λiW(υυi), (5.71)

where ρ =∑iλieυi is some (not necessarily unique) expansion of ρ ∈D(H) in terms
of a basis of eigenvector υi with eigenvalues λi, where λi ≥ 0 and ∑iλi = 1. In
particular, (5.70) and (5.71) are well defined.

Proof. It is conceptually important to distinguish between B(H)sa as a Banach space
in the usual operator norm ‖ · ‖, and B1(H)sa, the Banach space of trace-class oper-
ators in its intrinsic norm ‖ · ‖1. Of course, if dim(H) < ∞, then B(H)sa = B1(H)sa
as vector spaces, but even in that case the two norms do not coincide (although
they are equivalent). The proof below has the additional advantage of immediately
generalizing to the infinite-dimensional case. We start with (5.70).

1. Since P1(H) = ∂eD(H), by the same argument as in the proof of Lemma 5.11,
any affine bijection of the convex set D(H) must preserve its boundary, so that
K maps P1(H) into itself, necessarily bijectively. The goal of the next two steps
is to prove that (5.70) satisfies (5.8), i.e., preserves transition probabilities.

2. An affine bijection K : D(H)→D(H) extends to an isometric isomorphism K1 :
B1(H)sa → B1(H)sa with respect to the trace-norm ‖ · ‖1, as follows:

a. Put K1(0) = 0 and for b≥ 0, b ∈ B1(H), i.e. b ∈ B1(H)+, and b �= 0, define

K1(b) = ‖b‖1K(b/‖b‖1). (5.72)
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By construction, K1 is isometric and preserves positivity. For b ∈ B1(H)+ we
have Tr(b) = ‖b‖1, hence b/‖b‖1 ∈D(H), on which K is defined.
Linearity of K1 with positive coefficients (as a consequence of the affine prop-
erty of K) is verified as in the proof of Lemma 5.11; this time, use

a+b = (‖a‖1 +‖b‖1) ·
(

t
a
‖a‖1

+(1− t)
b
‖b‖1

)
, (5.73)

with t = ‖a‖1/(‖a‖1+‖b‖1). Note that if a,b∈B1(H)+, then a+b∈B1(H)+.
b. For b ∈ B1(H)sa, decompose b = b+ − b−, where b± ≥ 0; see Proposition

A.24 (this remains valid in general Hilbert spaces). We then define

K1(b) = K1(b+)−K1(b−). (5.74)

To show that this makes K1 linear on all of B1(H)sa, suppose b = b′+− b′−
with b′± ≥ 0. Then b′++b− = b++b′−, and since each term is positive,

K1(b′++b−) = K1(b′+)+K1(b−) = K(b++b′−) = K1(b+)+K1(b′−),

by the previous step. Hence K1(b′+)−K1(b′−) = K1(b+)−K1(b−), so that
(5.74) is actually independent of the choice of the decomposition of b as long
as the operators are positive. Hence for a,b ∈ B1(H)sa we may compute

K1(a+b) = K1(a++b+− (a−+b−)) = K1(a++b+)−K1(a−+b−)
= K1(a+)+K1(b+)−K1(a−)−K1(b−) = K1(a)+K1((b),

since a++b+ and a−+b− are both positive.

The key point in verifying isometry of K1 is the property |b| = b+ + b−, which
follows from (A.76) or Theorem B.94. Using this property, we have

‖K1(b)‖1 = Tr(|K1b|) = Tr(|K1(b+)−K1(b−)|) = Tr(K1(b+)+K1(b−))
= Tr(b++b−) = Tr(|b+−b−|) = Tr(|b|) = ‖b‖1.

3. For any two unit vectors ψ,ϕ in H we have the formula

‖eψ − eϕ‖1 = 2
√

1−Tr(eψeϕ), (5.75)

which can easily be proved by a calculation with 2×2 matrices (since everything
takes place is the two-dimensional subspace spanned by ψ and ϕ , expect when
ϕ = zψ , z ∈ T, in which case (5.75) reads 0 = 0 and hence is true also). Since K1
is linear as well as isometric with respect to the trace-norm, we have

‖K1(eψ)−K1(eϕ)‖1 = ‖K1(eψ − eϕ)‖1 = ‖eψ − eϕ‖1,

and hence, by (5.75), Tr(K1(eψ)K1(eϕ))=Tr(eψeϕ). Eq. (5.70) then gives (5.8).
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We move on to (5.71). The main concern is that this expression be well defined,
since in case some eigenvalue λ > 0 of ρ is degenerate (necessarily with finite mul-
tiplicity, even in infinite dimension, since ρ is compact), the basis of the eigenspace
Hλ that takes part in the sum ∑iλieυi is far from unique. This is settled as follows:

Lemma 5.16. Let W : P1(H)→P1(H) be a bijection that satisfies (5.8), let L⊂H
be a (finite-dimensional) subspace, and let (υ j) and (υ ′i ) be bases of L. Then

∑
j
W(eυ j) = ∑

i
W(eυ ′i ). (5.76)

Proof. As usual, for projections e and f on H we write e ≤ f iff eH ⊆ f H. From
(B.212) and (B.214) we have ∑ j |〈υ j,ψ〉|2 ≤ 1 for any unit vector ψ ∈ H, with
equality iff ψ ∈ L. In other words, eψ ≤ eL iff ∑ j Tr(eυ j eψ) = 1. Furthermore, by
(5.8) the images W(eυ j) remain orthogonal; hence ∑ j W(eυ j) is a projection, and
e ≤ ∑ j W(eυ j) iff ∑ j Tr(W(eυ j)e) = 1. By (5.8), this condition is satisfied for e =
W(eυi), so that W(eυ ′i ) ≤ ∑ j W(eυ j) for each j. Since also the projections W(e′υi

)

are orthogonal, this gives ∑iW(e′υi
)≤∑ j W(eυ j). Interchanging the roles of the two

bases gives the converse, yielding (5.76). �
Finally, to prove bijectivity of the correspondence K↔W, we need the property

K

(
∑

i
λieυi

)
= ∑

i
λiK(eυi), (5.77)

since this implies that K is determined by its action on P1(H) ⊂ D(H). In finite
dimension this follows from convexity of K, and we are done. In infinite dimension,
we in addition need continuity of K, as well as convergence of the sum ∑iλieυi

not only in the operator norm (as follows from the spectral theorem for self-adjoint
compact operators), but also in the trace norm: for finite n,m,

‖
m

∑
i=n

λieυi‖1 ≤
m

∑
i=n
|λi|‖eυi‖1 =

m

∑
i=n

λi,

since ‖eυi‖1 = 1. Because ∑iλi = 1, the above expression vanishes as n,m → ∞,
whence ρn = ∑n

i=1λieυi is a Cauchy sequence in B1(H), which by completeness of
the latter converges (to an element of D(H), as one easily verifies).

The proof of continuity is completed by noting that K is continuous with respect
to the trace norm, for it is isometric and hence bounded (see step 2 above). �
It is enlightening to give a rather more conceptual proof that K|P1(H) satisfies (5.8),
which is based on a result to be used more often in the future. In what follows, for
any convex set C, the notation Ab(K) stands for the real vector space of bounded
affine functions f : C→ R, that is, bounded functions satisfying

f (tx+(1− t)y) = t f (x)+(1− t) f (y), x,y ∈C, t ∈ (0,1). (5.78)

It is easily checked that Ab(K) with the supremum-norm is a real Banach space.
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Proposition 5.17. For any Hilbert space H we have an isometric isomorphism

Ab(D(H)) ∼= B(H)sa, (5.79)
f ↔ a; (5.80)

f (ρ) = Tr(ρa), (5.81)

which preserves the unit (i.e., 1D(H)↔ 1H) as well as the order (i.e, f ≥ 0 iff a≥ 0).

Note that under the identification D(H)∼= Sn(B(H)) (where in finite dimension the
normal state space Sn(B(H)) simply coincides with the state space S(B(H))), where
ρ ↔ ω as in (2.33), i.e., ω(a) = Tr(ρa), the above isomorphism simply reads

Ab(Sn(B(H))) ∼= B(H)sa, (5.82)
â ↔ a; (5.83)

â(ω) = ω(a). (5.84)

Proof. It is clear that for each a ∈ B(H)sa the function f : ρ �→ Tr(ρa) (or, equiv-
alently, â : ω �→ ω(a)) is affine as well as real-valued, and is bounded by (A.100)
(supplemented, if dim(H) = ∞, by Lemma B.142), noting that ‖ρ‖1 = 1 for ρ ∈
D(H), and in fact (B.483) yields the equality ‖ f‖∞ = ‖a‖ (or ‖â‖∞ = ‖a‖).

Conversely, f ∈ Ab(D(H)) defines a function Q : H → R by

Q(0) = 0; (5.85)
Q(ψ) = ‖ψ‖2 f (eψ/‖ψ‖) (ψ �= 0). (5.86)

This function is clearly bounded on the unit ball of H, as in

|Q(ψ)| ≤ ‖ f‖∞‖ψ‖2. (5.87)

To check that Q in fact defines a quadratic form on H, we verify the properties (A.8)
- (A.9). The first is trivial. The second follows from the easily verified identity

te v+w
‖v+w‖

+(1− t)e v−w
‖v−w‖

= se v
‖v‖ +(1− s)e w

‖w‖ , (5.88)

where v,w �= 0, v �= w, and the coefficients s, t are given by

t =
‖v+w‖2

2(‖v‖2 +‖w‖2)
; (5.89)

s =
‖v‖2

‖v‖2 +‖w‖2 . (5.90)

The affine property (5.78) then immediately yields (A.9). According to Proposition
B.79, we obtain a unique operator a ∈ B(H)sa such that Q(ψ) = 〈ψ,aψ〉, i.e.,

〈ψ,aψ〉= f (eψ), ψ ∈ H,‖ψ‖= 1. (5.91)
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Since also 〈ψ,aψ〉 = Tr(eψa), we have established (5.81) for each ρ = eψ , where
ψ ∈ H,‖ψ‖= 1. To extend this result to general density operators ρ = ∑iλieυi , we
use (A.100) as well as convergence of the above sum in the trace norm ‖ ·‖1, cf. the
proof of Lemma 5.16; the details are analogous to the proof of Theorem B.146. �

Proposition 5.18. For any unit vectors ψ,ϕ ∈ H we have

Tr(eψeϕ) = inf{ f (eψ) | f ∈ Ab(D(H)),0≤ f ≤ 1, f (eϕ) = 1}. (5.92)

The virtue of this formula is that the expression on the left-hand side, which defines
the transition probabilities on ∂eD(H) = P1(H), is intrinsically given by the con-
vex structure of D(H). Consequently, any affine bijection of this convex set (which
already preserves the boundary) must preserve these probabilities.

Proof. By the previous proposition, eq. (5.92) is equivalent to

Tr(eψeϕ) = inf{〈ψ,aψ〉 | a ∈ B(H)sa,0≤ a≤ 1,〈ϕ,aϕ〉= 1}. (5.93)

Since Tr(eψeϕ) = 〈ψ,eϕψ〉, we are ready if we can show that the infimum is
reached at a = eϕ . Therefore, we prove that for any a as specified we must have
〈ψ,aψ〉 ≥ Tr(eψeϕ) = |〈ϕ,ψ〉|2. To do so, we are going to find a contradiction if

〈ψ,aψ〉< Tr(eψeϕ), (5.94)

for some such a. Indeed, 〈ϕ,aϕ〉= 1 with ‖a‖ ≤ 1 (which follows from 0≤ a≤ 1)
and ‖ϕ‖= 1 imply, by Cauchy–Schwarz, that aϕ = ϕ . Since a∗ = a (by positivity of
a), we also have a : (C ·ϕ)⊥ → (C ·ϕ)⊥, so we may write a = eϕ +a′, with a′ϕ = 0
and a′ mapping (C ·ϕ)⊥ to itself. Then a ≥ 0 implies a′ ≥ 0. If (5.94) holds, then
〈ψ,a′ψ〉< 0, which contradicts positivity of a′ (and hence of a). �

We now turn to the equivalence between Jordan’s Theorem and Kadison’s Theorem.

Proposition 5.19. There is an isomorphism of groups between:

• The group of affine bijections K : D(H)→D(H);
• The group of Jordan automorphisms J : B(H)sa → B(H)sa,

such that for any a ∈ B(H)sa one has

Tr(K(ρ)a) = Tr(ρJ(a)) (ρ ∈D(H)). (5.95)

This immediately follows from the following lemma (of independent interest):

Lemma 5.20. 1. There is a bijective correspondence between:

• affine bijections K : D(H)→D(H);
• unital positive (i.e. order-preserving) linear bijections α : B(H)sa → B(H)sa,

such that for any a ∈ B(H)sa one has (5.95).
2. A map α : B(H)→ B(H) is a unital positive linear bijection iff it is a Jordan

automorphism.
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Proof. 1. An affine bijection K : D(H)→D(H) induces an isomorphism

K∗ : Ab(D(H))→ Ab(D(H)); (5.96)
f �→ f ◦K, (5.97)

which is evidently unital, positive, and isometric. Consequently, by Proposition
5.17, K∗ corresponds to some isomorphism α : B(H)sa → B(H)sa, which neces-
sarily shares the properties of being unital, positive, and isometric; this follows
abstractly from the proposition, but may also be verified directly from (5.95).
Conversely, such a map α yields a map K directly by (5.95); to see this, we
identify D(H) with the normal state space of B(H) through ρ ↔ ω , as usual, cf.
(2.33), and note that Kω is the state defined by (Kω)(a) = ω(α(a)), or briefly
Kω = ω ◦α . This is often written as K= α∗, and for future reference we write

α∗ω(a) = ω(α(a)). (5.98)

2. The nontrivial direction of the proof (i.e. positive etc. ⇒ Jordan) is based on a
number of facts from operator theory:

a. Unital positive linear maps maps on B(H)sa preserve P(H), cf. (2.164).
b. Any two projections e and f are orthogonal (e f = 0) iff e+ f ≤ 1H (easy).
c. Any a∈ B(H)sa is a norm-limit of finite sums of the kind ∑iλiei, where λi ∈R

and the ei are mutually orthogonal projections (this follows from the spectral
theorem for bounded self-adjoint operators in the form of Theorem B.104)

d. Any unital positive linear map α : B(H)sa → B(H)sa is continuous. Since

−‖a‖ ·1H ≤ a≤−‖a‖ ·1H (a ∈ B(H)sa), (5.99)

by (C.83), applying the positive map α and using α(1H) = 1H yields

−‖a‖ ·1H ≤ α(a)≤−‖a‖ ·1H .

This is possible only if ‖α(a)‖ ≤ ‖a‖, and hence α is continuous with norm
bounded by ‖α‖ ≤ 1. In fact, since a is unital we have ‖α‖= 1.

Therefore, any unital positive linear map α preserves orthogonality of projec-
tions, so if a = ∑iλiei (finite sum), then

α(a2) = α

(
∑

i
λ 2

i ei

)
= ∑

i
λ 2

i α(ei) = ∑
i, j

λiλ jα(ei)α(e j) = α(a)2, (5.100)

since eie j = δi je j and by the above comment also α(ei)α(e j) = δi jα(e j). By
continuity of α , this property extends to arbitrary a ∈ B(H)sa. Finally, since

a◦b = 1
2 ((a+b)2−a2−b2), (5.101)

preserving squares as in (5.100) implies preserving the Jordan product ◦. �
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We now turn to the equivalence between Ludwig symmetries and Jordan ones.

Proposition 5.21. There is an isomorphism of groups between:

• The group of affine order isomorphism L : E (H)→ E (H);
• The group of Jordan automorphisms J : B(H)sa → B(H)sa.

Proof. Since L is an order isomorphism, it satisfies L(0) = 0 (as well as L(1H) =
1H ), since 0 is the bottom element of E (H) as a poset (and 1H is its the top element).
As in the proof of Lemma 5.11, one shows that this property plus convexity implies
L(ta) = tL(a) and L(a+b) = L(a)+L(b) whenever defined. Defining J by

J(0) = 0; (5.102)
J(a) = s ·L(a/s) (a > 0,s≥ ‖a‖); (5.103)
J(a) = −J(−a) (a < 0), (5.104)

where a > 0 means a ≥ 0 and a �= 0, and a < 0 means −a ≥ 0 and a �= 0, once
again the reasoning near the end of the proof of Lemma 5.11 shows that J is linear;
it is a untital order-preserving bijection by construction. Hence J is a Jordan auto-
morphism by Lemma 5.20.2 Of course, instead of (5.104) one could equivalently
have defined J on general a ∈ B(H)sa by J(a) = J(a+)− J(a−), using the (by now
hopefully familiar) decomposition a = a+−a− with a± ≥ 0 and a+a− = 0.

Conversely, once again using Lemma 5.20.2, a Jordan automorphisms (5.11) pre-
serves order as well as the unit, so that the inequality 0 ≤ a ≤ 1H characterizing
a ∈ E (H) is preserved, i.e., 0 ≤ J(a) ≤ 1H . Thus J preserves E (H), where it pre-
serves order. Convexity is obvious, since L= J|E (H) comes from a linear map. �

The equivalence between Jordan’s Theorem and von Neumann’s Theorem (provided
dim(H)≥ 3) hinges on the following corollary of Gleason’s Theorem (cf. §D.1).

Corollary 5.22. Let dim(H) > 2. Then an isomorphism N of P(H) as an ortho-
complemented lattice has a unique extension to a linear map α : B(H)sa → B(H)sa,
which is (automatically) invertible, unital, and positive.

Proof. According to Lemma D.2, N preserves all suprema in P(H). Since we have
∑i ei =

∨
ei for any family of mutually orthogonal projections and since N by defi-

nition preserves the orthocomplementation e⊥ = 1− e and hence preserves orthog-
onality of projections, we may compute

N

(
∑

i
ei

)
= N

(∨
i

ei

)
=
∨

i

N(ei) = ∑
i
N(ei). (5.105)

Consequently, for any normal state ω on B(H), the map e �→ω ◦N(e) is a probability
measure on P(H), which by Gleason’s Theorem has a unique linear extension to
B(H) and hence a fortiori to B(H)sa. We use this in order to define α , as follows.

First, let a ∈ B(H)sa and suppose a = ∑ j λ j f j for some finite family ( f j) of pro-
jections (not necessarily orthogonal), and some λ j ∈ R. Then ∑ j λ jN( f j) is inde-
pendent of the particular decomposition of a that has been chosen, so we may put
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α(a) = ∑
j
λ jN( f j). (5.106)

To see this, put a = ∑ j′ λ ′j′ f
′
j′ and hence α ′(a) = ∑ j′ λ ′j′N( f ′j′), and suppose α ′(a) �=

α(a). By (B.477) there exists a normal state ω such that ω(α ′(a)) �= ω(α(a));
indeed, each element of B1(H) is a linear combination of at most four density op-
erators, so that each normal linear functional on B(H) is a linear combination of at
most four normal states. But since ω ◦N is linear, this implies ω ◦N(a) �= ω ◦N(a),
which is a contradiction. Hence α ′(a) = α(a) and accordingly, (5.106) is well de-
fined. Because it is independent of the decomposition of a into projections, α is
linear: if a = ∑ j λ j f j and a′ = ∑ j′ λ ′j′ f

′
j′ , then a+a′ = ∑ j λ j f j +∑ j′ λ ′j′ f

′
j′ , so that

N(a+a′) = N

(
∑

j
λ j f j +∑

j′
λ ′j′ f

′
j′

)
= ∑

j
λ jN( f j)+∑

j′
λ ′j′N( f ′j′) = N(a)+N(a′).

Similarly, for any t ∈ R we have

N(ta) = N

(
∑

j
tλ j f j

)
= ∑

j
tλ jN( f j) = t ∑

j
λ jN( f j) = tN(a).

We may now extend α to all of B(H)sa by continuity. Indeed, according to the
spectral theorem in the form (B.326), the set of all operators of the form a = ∑ j λ j f j
with all f j mutually orthogonal (so that a is given by its spectral resolution) is norm-
dense in B(H)sa. Applying (5.106), and noting that ‖a‖= sup j |λ j|, we may estimate

‖α(a)‖= ‖∑
j
λ jN( f j)‖ ≤ sup

j
{|λ j|}‖∑

j
N( f j)‖ ≤ ‖a‖,

since the N( f j) are mutually orthogonal and hence sum to some projection, which
has norm 1 (unless a = 0). For general a ∈ B(H)sa, we may therefore define N by
N(a) = limnN(an), where each an is of the above (spectral) form and ‖an−a‖→ 0.

To prove that α is positive, we show that α(a)≥ 0 whenever a≥ 0. As in the pre-
ceding step, initially suppose that a = ∑ j λ j f j has a finite spectral resolution. Then
a ≥ 0 iff λ j ≥ 0 for each j, and hence α(a) ≥ 0 by (5.106), since by orthogonality
of the N( f j) this equation states the spectral resolution of α(a). Now if an ≥ 0 and
an → a (in norm), then 〈ψ,anψ〉 → 〈ψ,aψ〉, which must remain positive, so that
a≥ 0. Hence positivity of α on all of B(H)sa follows by continuity.

Finally, α inherits invertibility from N, and it is unital by (5.105), taking ei =
|υi〉〈υi| for some basis (υi) of H (or using the fact that it preserves #= 1H ). �

Subsequently, we use Lemma 5.20 to further extend α by complex linearity to a
Jordan isomorphism of B(H); see Definition 5.1.

Finally, the equivalence between weak Jordan symmetries and Bohr symmetries
follows from Hamhalter’s Theorem 9.4, whereas Theorem 9.7 strengthens this to an
equivalence between Jordan symmetries and Bohr symmetries. The proof of these
theorems does not seem to simplify in the special case at hand, i.e. A = B(H).
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5.4 Proof of Jordan’s Theorem

In view of the equivalence between the six parts of Theorem 5.4, we only need to
prove one of them. In the literature, one only finds proofs of Jordan’s Theorem and
of Wigner’s Theorem, and we present each of these (surprisingly but instructively,
these proofs look completely different). We start with Jordan’s Theorem:

Theorem 5.23. Any Jordan automorphism JC of B(H) is given by either

JC(a) = αu(a)≡ uau∗, (5.107)

where u is unitary (and is determined by JC up to a phase), or by

JC(a) = α ′u(a)≡ ua∗u∗, (5.108)

where u is anti-unitary (and is determined by JC up to a phase, too).

The difficult part of the proof is Theorem C.175, which implies:

Proposition 5.24. A Jordan automorphism α of B(H) is either an automorphism or
an anti-automorphism.

Recall that an automorphism of B(H) is a linear bijection α : B(H)→B(H) that sat-
isfies α(a∗) = α(a)∗ and α(ab) = α(a)α(b); an anti-automorphism, on the other
hand, satisfies the first property whilst the latter is replaced by α(ab) = α(b)α(a).
Clearly, both automorphisms and anti-automorphisms are Jordan automorphisms.
Granting this result, we may deal with the two cases separately.

Proposition 5.25. Any automorphism α : B(H)→ B(H) takes the form α = αu, see
(5.107), where u : H → H is unitary, uniquely determined by α up to a phase.

The proof uses the following lemmas. The first follows from Theorem C.62.4.

Lemma 5.26. If α : B(H)→ B(H) is an automorphism and a ∈ B(H), then

‖α(a)‖= ‖a‖. (5.109)

Lemma 5.27. If α : B(H) → B(H) is an automorphism and e ∈ B(H) is a one-
dimensional projection, then so is α(e).

Proof. It should be obvious that automorphisms α preserve projections e (whose
defining properties are e2 = e∗ = e). Furthermore, α preserves order, i.e., if a ≥ 0
(in that, as always, 〈ψ,aψ〉 ≥ 0 for each ψ ∈ H, or, equivalently, a = b∗b), then
α(a)≥ 0 (this is clear from the second way of expressing positivity). Consequently,
if a≤ b (in that b−a≥ 0), then α(a)≤ α(b). We notice that if we define e≤ f iff
eH ⊆ f H, then e≤ f iff e≤ f as self-adjoint operators (in that 〈ψ,eψ〉 ≤ 〈ψ, fψ〉
for each ψ ∈ H); see Proposition C.170. With respect to the ordering ≤ the one-
dimensional projections e are atomic, in the sense that 0≤ e (but e �= 0) and if 0≤
f ≤ e, then either f = 0 or f = e. Now automorphisms of the projection lattice B(H)
restrict to isomorphisms of P(H), which preserve atoms (as these are intrinsically
defined by the partial order). �
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We are now ready for the (constructive!) proof of Proposition 5.25.

Proof. For some fixed unit vector χ ∈ H, take the corresponding one-dimensional
projection eχ and define a new unit vector ϕ (up to a phase) by

eϕ = α−1(eχ). (5.110)

Now any ψ ∈ H may be written as ψ = aϕ , for some a ∈ B(H). Attempt to define
an operator u by uψ = α(a)χ , i.e.,

uaϕ = α(a)χ. (5.111)

This looks dangerously ill-defined, since many different operators a may give rise
to the same ψ . Fortunately, we may compute

‖aϕ‖H = ‖aeϕϕ‖H = ‖aeϕ‖B(H) = ‖α(aeϕ)‖B(H)

= ‖α(a)α(eϕ)‖B(H) = ‖α(a)eχ‖B(H) = ‖α(a)χ‖H

= ‖uaϕ‖H ,

so that if aϕ = bϕ , then α(a)χ = α(b)χ and hence u is well defined. By this
computation u is also isometric and since it is clearly surjective, it is unitary. The
property α(a) = uau∗ is equivalent to ua = α(a)u, which in turn is equivalent to
uabϕ = α(a)ubϕ for any b ∈ B(H), which by definition of u is the same as

α(ab)χ = α(a)α(b)χ. (5.112)

But this holds by virtue of α being an automorphism. Finally, all arbitrariness in u
lies in the lack of uniqueness of ϕ given its definition (5.110). �

Proposition 5.28. Any antiautomorphism α : B(H)→ B(H) takes the form α = αu,
cf. (5.108), where u : H→H is anti-unitary, uniquely determined by α up to a phase.

Proof. Pick an arbitrary anti-unitary operator J : H → H and define

β : B(H)→ B(H);
β (a) = Ja∗J∗. (5.113)

Then α ◦β is an automorphism, to which Proposition 5.25 applies, so that

α ◦β (a) = ũaũ∗, (5.114)

for some unitary ũ. Hence

α(a) = α(β ◦β−1(a)) = α ◦β (J∗a∗J) = ũJ∗a∗Jũ∗,

so that α(a) = ua∗u∗ with u = ũJ∗.
The precise lack of uniqueness of u is inherited from the unitary case. �
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5.5 Proof of Wigner’s Theorem

We recall Wigner’s Theorem, i.e. Theorem 5.4.1:

Theorem 5.29. Each bijection W : P1(H)→P1(H) that satisfies

Tr(W(e)W( f )) = Tr(e f ), (e, f ∈P1(H)), (5.115)

is given by W(e) = ueu∗ ≡ αu(e), where the operator u is either unitary or anti-
unitary, and is uniquely determined by W up to a phase.

The problem is to lift a given map W : P1(H)→P1(H) that satisfies (5.115) to
either a unitary or an anti-unitary map u : H → H such that

W(eψ) = euψ = ueψu∗. (5.116)

Suppose W(eψ)= eψ ′ . Since ezψ = eψ for any z∈T, and likewise for eψ ′ , this means
that uψ = zψ ′ for some z ∈ T; the problem is to choose the z’s coherently all over
the unit sphere of H. There are many proofs in the literature, of which the following
one—partly based on an earlier proof by Bargmann (1964)—has the advantage of
making at least the construction of u explicit (at the cost of opaque proofs of some
crucial lemma’s). We assume dim(H)> 2, since H = C2 has already been covered.

Fix unit vectors ψ ∈H and ψ ′ ∈W(eψ)H; clearly, ψ ′ is unique up to multiplica-
tion by z ∈ T, whose choice turns out to completely determine u (i.e., the ambiguity
in ψ ′ is the only one in the entire construction). For a modest start, we put

uψ = ψ ′. (5.117)

Lemma 5.30. If V ⊂ H is a k-dimensional subspace (where k < ∞), then there is a
unique k-dimensional linear subspace V ′ ⊂ H with the following property:

For all unit vectors ψ ∈ H, we have ψ ∈V iff W(eψ)H ⊂V ′.

Proof. Pick a basis (υ1, . . . ,υk) of V and find unit vectors υ ′i ∈ H such that υ ′i ∈
W(eυi)H, i = 1, . . . ,k. Then, using (5.115) we compute

|〈υ ′i ,υ ′j〉|2 = Tr(eυ ′i eυ ′j) = Tr(W(eυi)W(eυ j)) = Tr(eυi eυ j) = |〈υi,υ j〉|2 = δi j,

so that the vectors (υ ′1, . . . ,υ
′
k) form an orthonormal set and hence form a basis

of their linear span V ′. Now, as mentioned below (B.214), we have ψ ∈ V iff
∑k

i=1 |〈υi,ψ〉|2 = 1 and similarly ψ ′ ∈V ′ iff ∑k
i=1 |〈υ ′i ,ψ ′〉|2 = 1. Since W preserves

transition probabilities, a computation similar to one just given yields

k

∑
i=1
|〈υi,ψ〉|2 =

k

∑
i=1
|〈υ ′i ,ψ ′〉|2, (5.118)

so that both sides do or do not equal unity, and hence ψ ∈V iff ψ ′ ∈V ′. �
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Wigner’s Theorem for H = C2 (i.e. Theorem 5.7) implies:

Lemma 5.31. If V and V ′ are related as in Lemma 5.30, and

dim(V ) = dim(V ′) = 2, (5.119)

then there is a unitary or anti-unitary operator uV : V →V ′ such that

W(e) = uV eu∗V , (5.120)

for any one-dimensional projection e ∈P1(V ), where P1(V )⊂P1(H) consists of
all e ∈P1(H) with eH ⊂V . Moreover, uV is unique up to a phase.

Proof. A choice of basis for both V and V ′ gives unitary isomorphisms u : V
∼=→ C2

and u′ : V ′
∼=→ C2, which jointly induce a map

W′ ≡ u′Wu−1 : P1(C2)→P1(C2). (5.121)

This maps satisfies the hypotheses of Wigner’s Theorem in d = 2, and so it is (anti-)
unitarily induced as W′ =αv, where v :C2→C2 is (anti-) unitary. Then the operator
uV = (u′)−1vu does the job; its lack of uniqueness stems entirely from v. �

Lemma 5.32. Given a Wigner symmetry W, the ensuing operator uV is either uni-
tary or anti-unitary for all two-dimensional subspaces V ⊂ H (simultaneously).

Proof. We first design a “unitarity test” for W. Define a function

T : P1(H)×P1(H)×P1(H)→ C; (5.122)
T (e, f ,g) = Tr(e f g), (5.123)

T (eψ1 ,eψ2 ,eψ3) = 〈ψ1,ψ2〉〈ψ2,ψ3〉〈ψ3,ψ1〉. (5.124)

Let V ⊂ H be two-dimensional and pick an orthonormal basis (υ1,υ2). Define

χ1 = υ1, χ2 = (υ1−υ2)/
√

2, χ3 = (υ1− iυ2)/
√

2. (5.125)

A simple computation then shows that

T (eχ1 ,eχ2 ,eχ3) =
1
4 (1+ i). (5.126)

It follows from (5.124) that for u unitary and v anti-unitary, we have

T (euψ1 ,euψ2 ,euψ3) = T (eψ1 ,eψ2 ,eψ3); (5.127)

T (evψ1 ,evψ2 ,evψ3) = T (eψ1 ,eψ2 ,eψ3). (5.128)

Eq. (5.126) implies that if W : V →V ′ is (anti-) unitarily implemented, we have

T (W(eχ1),W(eχ2),W(eχ3)) = T (euχ1 ,euχ2 ,euχ3) =
1
4 (1± i), (5.129)
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with a plus sign if u is unitary and a minus sign if u is anti-unitary. Now take a
second pair (Ṽ ,Ṽ ′) as above, and pick a basis (υ̃1, υ̃2) of Ṽ , with associated vectors
(χ̃1, χ̃2, χ̃3), as in (5.125). Suppose u : V →V ′ implementing W is unitary, whereas
ũ : Ṽ → Ṽ ′ implementing W is anti-unitary. It then follows from (5.129) that

T (W(eχ1),W(eχ2),W(eχ3)) = T (euχ1 ,euχ2 ,euχ3) =
1
4 (1+ i); (5.130)

T (W(eχ̃1),W(eχ̃2),W(eχ̃3)) = T (eũχ̃1 ,eũχ̃2 ,eũχ̃3) =
1
4 (1− i). (5.131)

In view of (C.637), the following expression defies a metric d on P1(H):

d(eψ ,eϕ) = ‖ωψ −ωϕ‖= ‖eψ − eϕ‖1 = 2
√

1−|〈ϕ,ψ〉|2, (5.132)

with respect to which both W and T are continuous (the latter with respect to the
product metric on P1(H)3, of course). Let t �→ (υ1(t),υ2(t)) be a continuous path of
orthonormal vectors (i.e., in H×H), with associated vectors (χ1(t),χ2(t),χ3(t)), as
in (5.125). Then the function f (t) = T (W(χ1(t)),W(χ2(t)),W(χ3(t))) is continu-
ous, and by (5.129) it can only take the values 1

4 (1± i). Hence f (t) must be constant.
However, taking a path such that (υ1(0),υ2(0)) = (υ1,υ2) and (υ1(1),υ2(1)) =
(υ̃1, υ̃2), gives f (0) = 1

4 (1+ i) and f (1) = 1
4 (1− i), which is a contradiction. �

Lemma 5.33. Wigner’s Theorem holds for three-dimensional Hilbert spaces.

Proof. Let (υ1,υ2,υ3) be some basis of of H (like the usual basis of H = C3). We
first show that if W is the identity if restricted to both span(υ1,υ2) and span(υ1,υ3),
then W is the identity on H altogether. To this end, take ψ = ∑i ciυi, initially with
c1 ∈ R\{0}. Take a unit vector ψ ′ ∈W(eψ), with ψ = ∑i c′iυi. By the first assump-
tion on W we have |〈υ ,ψ ′〉|= |〈υ ,ψ〉| for any unit vector υ ∈ span(υ1,υ2). Taking

υ = υ1, υ = υ2, υ = (υ1 +υ2)/
√

2, υ = (υ1 + iυ2)/
√

2, (5.133)

gives the equations

|c′1|= |c1|, |c′2|= |c2|, |c′1 + c′2|= |c1 + c2|, |c′1− ic′2|= |c1− ic2|, (5.134)

respectively. By a choice of phase we may and will assume c′1 = c1, in which case
the only solution is c2 = c′2 (geometrically, the solution c′2 lies in the intersection
of three different circles in the complex plane, which is either empty or consists
of a single point). Similarly, the second assumption on W gives c3 = c′3, whence
ψ ′ = ψ . The case c1 = 0 may be settled by a straightforward limit argument, since
inner products (and hence their absolute values) are continuous on H×H.

Given a Wigner symmetry W : P1(H)→P1(H), we now construct u as follows.

1. Fix a basis (υ1,υ2,υ3) with “image” (υ ′1,υ
′
2,υ

′
3) under W, i.e, W(eυi) = eυ ′i .

2. The unitarity test in the proof of Lemma 5.32 settles if the operators should be
chosen to be unitary or anti-unitary; for simplicity we assume the unitary case.

3. Define a unitary u1 : H → H by u1υ ′i = υi for i = 1,2,3, and subsequently de-
fine W1 = αu1 ◦W, which (being the composition of two Wigner symmetries)
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is a Wigner symmetry. Clearly, W1(eυi) = eυi (i = 1,2,3), so that W1 maps
P1(H(12)) to itself, where H(12) ≡ span(υ1,υ2). Hence Lemma 5.31 gives a uni-
tary map ũ1 : H(12)→ H(12) such that the restriction of W1 to H(12) is αũ1 .

4. Define a unitary u2 : H→H by u2 = ũ−1
1 on H(12) and u2υ3 = υ3, followed by the

Wigner symmetry W2 = αu2 ◦W1. By construction, W2(eυi) = eυi for i = 1,2,3)
(W2 is even the identity on P1(H(12))), so that W2 maps P1(H(13)) to itself,
where H(13) ≡ span(υ1,υ3). Hence the restriction of W2 to H(13) is implemented
by a unitary ũ2 : H(13)→H(13), whose phase may be fixed by requiring ũ2υ1 =υ1.

5. Similarly to u2, we define u3 : H → H by u3 = ũ−1
2 on H(13) and u3υ2 = υ2, so

that u3 is the identity on H(12). Of course, we now define a Wigner symmetry

W3 = αu3 ◦W2 = αu3 ◦αu2 ◦αu1 ◦W, (5.135)

which by construction is the identity on both P1(H(12)) and P1(H(13)), and so
by the first part of the proof it must be the identity on all of P1(H). Hence

W = αu−1
1
◦αu−1

2
◦αu−1

3
= αu (u = u−1

1 u−1
2 u−1

3 ). �

Lemma 5.34. As in Lemma 5.30, if dim(V ) = dim(V ′) = 3, then there is a unitary
or anti-unitary operator uV : V →V ′ such that W(e) = uV eu∗V for any e ∈P1(V ),

Proof. Given Lemma 5.33, the proof is practically the same as for Lemma 5.31. �

We now finish the proof of Wigner’s Theorem. We assume that the outcome
of Lemma 5.32 is that each uV is unitary; the anti-unitary case requires obvious
modifications of the argument below. The first step is, of course, to define u(λψ) =
λuψ , λ ∈ C (so this would have been λuψ in the anti-unitary case). Let ϕ ∈ H be
linearly independent of ψ and consider the two-dimensional space V spanned by ψ
and ϕ . Define u(ϕ) = uVϕ . With (5.117), this defines u on all of H. To prove that
u is linear, take ϕ1 and ϕ2 linearly independent of each other and of ψ , so that the
linear span V3 of ψ , ϕ1, and ϕ2 is three-dimensional. Let Vi be the two-dimensional
linear span of ψ and ϕi, i = 1,2. Then uϕi = uViϕi, where the phase of uVi is fixed
by (5.117). Let w : V3 →V ′3 be the unitary that implements W according to Lemma
5.33.2, with phase determined by (5.117). Since uV1 and uV2 and w are unique up
to a phase and this phase has been fixed for each in the same way, we must have
uV1 = w|V1 and uV2 = w|V2 . Finally, we have V12 spanned by ψ and ϕ1 +ϕ2, and by
the same token, uV12 = w|V12 . Now w is unitary and hence linear, so

u(ϕ1 +ϕ2) = uV12(ϕ1 +ϕ2) = w(ϕ1 +ϕ2) = w(ϕ1)+w(ϕ2)

= uV1(ϕ1)+uV2(ϕ2) = u(ϕ1)+u(ϕ2),

since this is how u was defined. Since each uV is unitary, so is u, and similarly it is
easy to verify that u implements W, because each uV does so. �
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5.6 Some abstract representation theory

Since all symmetries we have considered (named after Wigner, Kadison, Jordan,
Ludwig, von Neumann, and Bohr) are implemented by either unitary or anti-unitary
operators, which are determined (by the given symmetry) only up to a phase z ∈ T,
the quantum-mechanical symmetry group G H of a Hilbert space H is given by

G H = (U(H)∪Ua(H))/T, (5.136)

where U(H) is the group of unitary operators on H, and Ua(H) is the set of anti-
unitary operators on H; the latter is not a group (since the product of two anti-
unitaries is unitary) but their union is. Furthermore, T is identified with the normal
subgroup T≡T ·1H = {z ·1H | z∈T} of U(H)∪Ua(H) (and also of U(H)) consist-
ing of multiples of the unit operators by a phase; thus the quotient G H is a group.

The fact that G H rather than U(H) is the symmetry group of quantum mechanics
has profound consequences (one of which is our very existence), which we will
study from §5.10 onwards. However, this material relies on the theory of “ordinary”
(i.e., non-projective) unitary representations, which we therefore review first.

Namely, let G be a group. In mathematics, the natural kind of action of G on a
Hilbert space H is a unitary representation, i.e., a homomorphism

u : G→U(H), (5.137)

so that u(x)−1 = u(x−1) = u(x)∗ and u(x)u(y) = u(xy), which imply u(e) = 1H .
As to the possible continuity properties of unitary representations in case that

G is a topological group (i.e., a group G that is also a topological space, such that
group multiplication G×G �→ G and inverse G → G are continuous), one should
equip U(H) with the strong operator topology (as opposed to the norm topology).

Proposition 5.35. If u : x �→ u(x) is a unitary representation of some locally compact
group G on a Hilbert space H, then the following conditions are equivalent:

1. The map G×H → H, (x,ψ) �→ u(x)ψ , is continuous;
2. The map G→U(H), x �→ u(x), is continuous in the strong topology on U(H).

Proof. Strong continuity means that if xλ → x in G, then for each ψ ∈ H we have
‖(u(xλ )−u(x))ψ‖→ 0. This is clearly implied by the first kind of continuity, giving
1⇒ 2, so let us prove the nontrivial converse. Suppose xλ → x and ψμ → ψ; since
G is locally compact, x has a compact neighborhood K and we may assume that
each xλ ∈ K. If u is strongly continuous, then for any ϕ ∈ H the set {u(y)ϕ,y ∈ K}
is compact in H and hence bounded. The Banach–Steinhaus Theorem B.78 gives
boundedness of the corresponding operator norms, that is, {‖u(y)‖,y∈K}<CK for
some CK > 0. We now estimate

‖u(xλ )ψμ −u(x)ψ‖ ≤ ‖u(xλ )ψμ −u(xλ )ψ‖+‖(u(xλ )−u(x))ψ‖.

The first term vanishes as ψμ →ψ since it is bounded by CK‖ψμ−ψ‖, whereas the
second vanishes as xλ → x by the (assumed) strong continuity of u. �
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Since the first kind of continuity is the usual one for group actions, this justifies the
choice of strong continuity as the natural one for unitary representations (to which
a pragmatic point may be added: norm continuity is quite rare for unitary represen-
tations on infinite-dimensional Hilbert spaces). Things further simplify under mild
restrictions on G and H, which are satisfied in all examples of physical interest.

Proposition 5.36. If H is separable and G is second countable locally compact
(sclc), then each of the two continuity conditions in Proposition 5.35 is in turn equiv-
alent to weak measurability of u, in that for each ϕ,ψ ∈ H the function

x �→ 〈ϕ,u(x)ψ〉

from G to C is (Borel) measurable.

Proof. This spectacular result is due to von Neumann, who more generally proved
that a measurable homomorphism between sclc groups is continuous. This implies
the claim: first, if H is separable, then the group U(H) is sclc in its weak operator
topology, so that if the map G → U(H), x �→ u(x) is weakly measurable, then it
is continuous in the weak topology on U(H). Second, for any Hilbert space, weak
(operator) continuity of a unitary representation implies strong continuity (so that,
given the trivial converse, weak and strong continuity of unitary group representa-
tions are equivalent). We only prove this last claim: for x,y ∈ G, we compute

‖(u(y)−u(x))ψ‖ = ‖u(x)ψ‖2 +‖u(y)ψ‖2−〈u(x)ψ,u(y)ψ〉−〈u(y)ψ,u(x)ψ〉
= 2‖ψ‖2−〈ψ,u(x−1y)ψ〉−〈ψ ,u(y−1x)ψ〉,

Weak continuity obviously implies that the function x �→ 〈ψ,u(x)ψ〉 is continuous
at the identity e ∈ G, so if y = xλ → x, then ‖(u(xλ )−u(x))ψ‖→ 0. �
In view of this, it is hardly a restriction for a unitary representation of a locally com-
pact group on a Hilbert space to be continuous in the sense of Proposition 5.35, so
we always assume this in what follows. Furthermore, any group we consider is lo-
cally compact, so this will be a standing assumption, too. An important consequence
of this assumption is the existence of a translation-invariant measure on G.

Theorem 5.37. Each locally compact group G has a canonical nonzero (outer reg-
ular Borel) measure μ , called Haar measure, which is left-invariant in that∫

G
dμ(x)Ly f (x) =

∫
G

dμ(x) f (x), (5.138)

for each f ∈Cc(G) and y ∈ G, where the left translation Ly of f by y is defined by

Ly f (x) = f (y−1x). (5.139)

This measure is unique up to scalar multiplication. Moreover, if G is compact, then:

1. μ is finite and hence can be normalized to a probability measure, i.e.,

μ(G) = 1. (5.140)
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2. μ is also right-invariant in that∫
G

dμ(x)Ry f (x) =
∫

G
dμ(x) f (x), (5.141)

where the right translation Ry of f by y ∈ G is defined by

Ry f (x) = f (xy). (5.142)

3. μ is invariant under inversion, in that∫
G

dμ(x) f (x−1) =
∫

G
dμ(x) f (x). (5.143)

Existence is due to Haar and uniqueness was first proved by von Neumann. One
often writes dx≡ dμ(x) for Haar measure. Here are some examples:

• For G = Rn, Haar measure equals Lebesgue measure μL (up to a constant); eqs.
(5.139) and (5.141) state the familiar translation invariance of μL.

• For G = T, we have ∫
T

dμ(z) f (z) =
1

2π

∫ 2π

0
dθ f (eiθ ). (5.144)

• For G = GLn(R) with X = (xi j), we have

dμ(X) =
m

∏
i, j=1

dxi j|det(X)|−n, (5.145)

which for G = SLn(R) of course simplifies to dμ(X) = ∏i, j dxi j.

Definition 5.38. A unitary representation u of a group G on a Hilbert space H is
irreducible if the only closed subspaces K of H that are stable under u(G) (in the
sense that if ψ ∈ K, then u(x)ψ ∈ K for all x ∈ G) are either K = H or K = {0}.
We will often need two important results about irreducibility. The first is Schur’s
Lemma, in which the commutant S′ of some subset S⊂ B(H) is defined by

S′ = {a ∈ B(H) | ab = ba∀b′ ∈ S}. (5.146)

Lemma 5.39. A unitary representation u of a group G is irreducible iff

u(G)′ = C ·1, (5.147)

i.e., if au(x) = u(x)a for each x ∈ G implies a = λ ·1H for some λ ∈ C.

This follows from Theorem C.90, of which the above lemma is a special case: take
A = u(G)′′ ≡ (u(G)′)′. The second is part of the Peter–Weyl Theorem.

Theorem 5.40. Irreducible representations of compact groups are finite-dimensional.
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Proof. We first reduce the situation to the unitary case: if 〈·, ·,〉′ is the given inner
product on H, we define a new inner product 〈·, ·,〉 by averaging with respect to
Haar measure dx≡ dμ(x), i.e.,

〈ψ,ϕ〉=
∫

G
dx〈u(x)ψ,u(x)ϕ〉. (5.148)

Using (5.141), it is easy to verify that this new inner product makes u unitary.
So let u : G→ u(H) be an irreducible unitary representation. For each unit vector

ϕ ∈ H and x ∈ G, we define the following projection and its G-average:

eu(x)ϕ = |u(x)ϕ〉〈u(x)ϕ|, (5.149)

Wϕ =
∫

G
dxeu(x)ϕ . (5.150)

The Weyl operator (5.150) is initially defined as a quadratic form by

〈ψ1,Wϕψ2〉=
∫

G
dx〈ψ1,eu(x)ϕψ2〉. (5.151)

The integral exists because the integrand is continuous and bounded, defining a
bounded quadratic form by the estimate |〈ψ1,Wϕψ2〉| ≤ ‖ψ1‖‖ψ2‖, where we as-
sumed (5.140) and used ‖eu(x)ϕ‖ = 1, as (5.149) is a nonzero projection. Thus the
operator Wϕ may be reconstructed from its matrix elements (5.151), cf. Proposition
B.79. It is easy to verify that [Wϕ ,u(y)] = 0 for each y ∈ G, so that Schur’s Lemma
yields Wϕ = λϕ ·1H for some λϕ ∈ C. Hence 〈ψ,Wϕψ〉= λϕ‖ψ‖2, in other words,∫

G
dx |〈ψ,u(x)ϕ〉|2 = λϕ‖ψ‖2. (5.152)

If we now interchange ϕ and ψ and use (5.143) we find λϕ‖ψ‖2 = λψ‖ϕ‖2, so that,
taking ψ to be a unit vector, too, since ψ and ϕ are arbitrary we obtain λϕ = λψ ≡ λ ,
where in fact λ > 0, as follows by taking ψ = ϕ in (5.152). Finally, take n or-
thornormal vectors (υ1, . . . ,υn) in H, so that also (u(x)υ1, . . . ,u(x)υn) are orthonor-
mal (since u(x) is unitary), upon which Bessel’s inequality (B.212) gives

n

∑
i=1
|〈ψ,u(x)υi〉|2 ≤ ‖ψ‖2. (5.153)

Integrating both sides over G, taking ‖ψ‖= 1, and using (5.140) gives

n

∑
i=1

∫
G

dx |〈ψ,u(x)υi〉|2 ≤ 1. (5.154)

On the other hand, summing (5.152) over i simply yields nλ , whence nλ ≤ 1, for
any n≤ dim(H). Since λ > 0 this forces dim(H)< ∞. �



5.7 Representations of Lie groups and Lie algebras 155

5.7 Representations of Lie groups and Lie algebras

We now assume that G is a Lie group; as in §3.3, for our purposes we may restrict
ourselves to linear Lie groups, i.e. closed subgroups of GLn(K) for K= R or C.

Let u : G→U(H) be a unitary representation of a Lie group G on some Hilbert
space H (assumed strongly continuous). If H is finite-dimensional, the following
operation is unproblematic: for A∈ g (i.e. the Lie algebra of G) we define an operator

u′(A) : H → H; (5.155)

u′(A) =
d
dt

u
(
etA)

|t=0 . (5.156)

This gives a linear map u′ : g→ B(H), which satisfies

[u′(A),u′(B)] = u′([A,B]); (5.157)
u′(A)∗ = −u′(A). (5.158)

Note that physicists use Planck’s constant h̄ > 0 and like to write

π(A) = ih̄u′(A), (5.159)

so that one has the following commutation relations and self-adjointness condition:

[π(A),π(B)] = ih̄π([A,B]); (5.160)
π(A)∗ = π(A). (5.161)

If one knows that u′ : g→ B(H) comes from u : G→U(H), one conversely has

u(eA) = eu′(A) = e−
i
h̄π(A). (5.162)

More generally, we call a map ρ : g → B(H) (where H ∼= Cn remains finite-
dimensional, so that ρ : g→Mn(C)), a skew-adjoint representation of g on H if

[ρ(A),ρ(B)] = ρ([A,B]); (5.163)
ρ(A)∗ = −ρ(A). (5.164)

The property of irreducibility of such a representation ρ : g→ B(H) is defined in
the same way as for groups, namely that the only linear subspaces of H ∼= Cn that
are stable under ρ(g) are {0} and H. Equivalently, by Schur’s Lemma, ρ(g) is irre-
ducible iff the only operators that commute with all π(A) are multiples of the unit
operator. If ρ = u′ for some unitary representation u(G), it is easy to see that u
is irreducible iff u′ is irreducible. In view of this, it is a reasonable strategy to try
and construct irreducible unitary representations u(G) by starting, as it were, from
u′(g). More precisely, if ρ is some (irreducible) skew-adjoint representation of g,
we may ask if there is a (necessarily irreducible) unitary representation u(G) such
that ρ = u′. Writing exp(ρ) for u, one would therefore hope that
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u
(
eA)≡ eρ

(
eA)= eρ(A), (5.165)

as in (5.162). Note that if G is connected, then ρ duly defines u(x) for each x ∈ G
through (5.165), since by Lie theory every element x of a connected Lie group is a
finite product x = exp(A1) · · ·exp(An) of exponentials of elements (A1, . . . ,An) of g.

In general, this hope is in vain, since although each operator exp(A) is unitary, the
representation property u(x)u(y) = u(xy) may fail for global reasons. For example,
if G = SO(3), then g ∼= R3, with basis (J1,J2,J3), as in (3.66). Define an a priori
linear map ρ : g→M2(C) by linear extension of

ρ(Jk) =− 1
2 iσk, (5.166)

where (σ1,σ2,σ3) are the Pauli matrices (5.42), so that physicists would write

π(Jk) =
1
2 h̄σk, (5.167)

cf. (5.159). This is easily checked to give a skew-adjoint representation of g, but it
does not exponentiate to a unitary representation of SO(3): as already mentioned
after Proposition 5.46, if u is a unit vector in R3, then a rotation Rθ (u) around the
u-axis by an angle θ ∈ [0,2π] is represented by

u(Rθ (u)) = cos(θ/2) ·12 + isin(θ/2)u ·σ . (5.168)

Consequently, u(Rπ(u)) = iu ·σ , so that u(Rπ(u))
2 = −12, although within SO(3)

one has Rπ(u)
2 = e, the unit of SO(3), so that u(Rπ(u))

2 �= u(Rπ(u)
2).

However, ρ does exponentiate to a representation of SU(2), which happens to
be the universal covering group of SO(3). This is typical of the general situation,
which we state without proofs. We first need a refinement of Lie’s Third Theorem:

Theorem 5.41. Let G be a connected Lie group G with Lie algebra g. There exists
a simply connected Lie group G̃, unique up to isomorphism, such that:

• The Lie algebra of G̃ is g.
• G∼= G̃/D, where D is a discrete normal subgroup of the center of G̃.
• D∼= π1(G), i.e., the fundamental group of G, which is therefore abelian.

For example, for G = SO(3) we have G̃ = SU(2) and D = Z2, cf. Proposition 5.46.

Theorem 5.42. Let G1 and G2 be Lie groups, with Lie algebras g1 and g2, respec-
tively, and suppose that G1 is simply connected. Then every Lie algebra homomor-
phism ϕ : g1 → g2 comes from a unique Lie group homomorphism Φ : G1 → G2
through ϕ =Φ ′, where (realizing G1 and G2 as matrices)

Φ ′(X) =
d
dt

Φ
(
etX)

|t=0 . (5.169)

Let H be a finite-dimensional Hilbert space, so that B(H) ∼= Mn(C), where n =
dim(H), and take U(H)∼=Un(C) to be the group of all unitary matrices on Cn. The
Lie algebra un(C) of Un(C) consists of all skew-adjoint n× n complex matrices.
Since irreducibility is preserved under the correspondence u(G)↔ u′(g), we infer:
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Corollary 5.43. Let G be a simply connected Lie group with Lie algebra g. Any
finite-dimensional skew-adjoint representation π : g→ un(C) of g comes from a
unique unitary representation u(G) through (5.156), in which case we have

eu′(A) = u
(
eA) (A ∈ g). (5.170)

Thus there is a bijective correspondence between finite-dimensional unitary repre-
sentations of G and finite-dimensional skew-adjoint representations of g. In partic-
ular, if G is compact, this specializes to a bijective correspondence between unitary
irreducible representations of G and skew-adjoint irreducible representations of g.

If G ∼= G̃/D is connected but not simply connected, then a finite-dimensional
skew-adjoint representation ρ : g→ B(H) exponentiates to a unitary representation
u : G→U(H) iff the representation exp(ρ) : G̃→U(H) is trivial on D.

For example, G = SO(3), the last condition is satisfied for the irreducible repre-
sentations with integer spins j ∈ N (as well as for j = 0), see §5.8.

A similar construction is possible when H is infinite-dimensional, except for the
fact that the derivative in (5.156) may not exist. For example, G=R has its canonical
regular representation on H = L2(R), defined by u(a)ψ(x)=ψ(x−a), in which case
(5.159) gives some multiple of the momentum operator −ih̄d/dx. This operator is
unbounded and hence is not defined on all of H, see also §5.11 and §5.12. As in
Stone’s Theorem 5.73, this problem is solved by finding a suitable domain in H on
which the underlying limit, taken strongly, does exist. This is the Gårding domain

DG =
{

u
∫
( f )ψ, f ∈C∞

c (G),ψ ∈ H
}
, (5.171)

where for each f ∈C∞
c (G) (or even f ∈ L1(G)) the operator u

∫
( f ) is defined by

u
∫
( f ) =

∫
G

dx f (x)u(x). (5.172)

Like the derivative u′, this integral is most easily defined weakly, i.e., the (bounded)
operator u

∫
( f ) is initially defined as a bounded quadratic form

Q(ϕ,ψ) =
∫

G
dx f (x)〈ϕ,u(x)ψ〉, (5.173)

from which the operator u
∫
( f ) may be reconstructed as in Proposition B.79. Note

that the function x �→ 〈ϕ,u(x)ψ〉 is in Cb(G), so that the integral (5.173) exists.
It can be shown that DG is dense in H, as well as invariant under u′(g), in the

sense that if ψ ∈DG, then u′(A)ψ ∈DG for any A∈ g. Furthermore, for each ϕ ∈DG
the function x �→ u(x)ϕ from G to H is smooth (if G is unimodular this property
even characterizes DG). The commutation relations (5.157) then hold on DG, but
the equalities (5.164) do not: one has to choose between (5.157) and (5.164), since
the latter holds for the closure of each π(A) (i.e., each iρ(A) is essentially self-
adjoint on DG), whose domain however depends on A: there is no common domain
on which each iρ(A) is self-adjoint and the commutation relations (5.157) hold.
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5.8 Irreducible representations of SU(2)

One of the most important groups in quantum physics is SU(2), both as an internal
symmetry group—e.g. of the Heisenberg model of ferromagnetism, of the weak nu-
clear interaction, and possibly also of (loop) quantum gravity—and as a spatial sym-
metry group in disguise (all projective unitary representations of SO(3) come from
unitary representations of SU(2), preserving irreducibility, cf. Corollary 5.61). In
this section we review the well-known classification and construction of its unitary
irreducible representations. Since SU(2) is compact, by Theorem 5.40 all its unitary
irreducible representations are finite-dimensional. Since G = SU(2) is also simply
connected, by Corollary 5.43 its irreducible finite-dimensional (unitary) represen-
tations u bijectively correspond to the irreducible finite-dimensional skew-adjoint
representations ρ = u′ of its Lie algebra g. Hence our job is to find the latter.

We already encountered the basis (3.66) of the Lie algebra so(3)∼=R3 of SO(3);
the corresponding basis of the Lie algebra su(2) of SU(2) is (S1,S2,S3), where

Sk =− 1
2 iσk, (5.174)

and the σk are the Pauli matrices given in (5.42); linear extension of the map Jk �→ Sk
defines an isomorphism between so(3) and su(2). These matrices satisfy

[Si,S j] = εi jkSk, (5.175)

where εi jk is the totally anti-symmetric symbol with ε123 = 1 etc., so that (5.175)
comes down to [S1,S2] = S3, [S3,S1] = S2, and [S2,S3] = S1. By linearity, finding ρ
is the same as finding n×n matrices

Lk = iρ(Sk) (5.176)

that satisfy
[Li,L j] = iεi jkLk, (5.177)

i.e., [L1,L2] = iL3, etc., and
L∗k = Lk. (5.178)

It turns out to be convenient to introduce the ladder operators

L± = L1± iL2, (5.179)

with ensuing commutation relations

[L3,L±] = ±L±; (5.180)
[L+,L−] = 2L3. (5.181)

Furthermore, we define the Casimir operator

C = L2
1 +L2

2 +L2
3, (5.182)
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which, crucially, commutes with each Lk, i.e.,

[C,Lk] = 0 (k = 1,2,3). (5.183)

By Schur’s lemma, in any irreducible representation we therefore must have

C = c ·1H , (5.184)

where c ∈ R (in fact, c≥ 0). We will also use the additional algebraic relations

L+L− = C−L3(L3−1H); (5.185)
L−L+ = C−L3(L3 +1H). (5.186)

The simple idea is now to diagonalize L3, which is possible as L∗3 = L3. Hence

H =
⊕

λ∈σ(L3)

Hλ , (5.187)

where σ(L3) is the spectrum of L3 (which in this finite-dimensional case consists
of its eigenvalues), and Hλ is the eigenspace of L3 for eigenvalue λ (i.e., if υ ∈ Hλ ,
then L3υ = λυ). The structure of (5.187) in irreducible representations is as follows.

Lemma 5.44. Let ρ : su(2) → B(H) be a finite-dimensional skew-adjoint irre-
ducible representation, so that (5.177) holds. Then the spectrum σ(L3) of the self-
adjoint operator L3 = iρ(S3) is given by

σ(L3) = {− j,− j+1, · · · , j−1, j}. (5.188)

If (5.187) is the spectral decomposition of H relative to L3, then:

1. The subspace Hλ is one-dimensional for each λ ∈ σ(L3);
2. For λ < j the operator L+ maps Hλ to Hλ+1, whereas L+ = 0 on Hj;
3. For λ >− j the operator L− maps Hλ to Hλ−1, whereas L− = 0 on H− j .

Proof. For any λ ∈ σ(L3) and nonzero υλ ∈ Hλ , we have:

• either λ +1 ∈ σ(L3) and L+υλ ∈ Hλ+1 (as a nonzero vector);
• or L+υλ = 0.

Indeed, (5.180) gives L3(L+υλ ) = (λ + 1)L+υλ , which immediately yields the
claim. Similarly, either λ − 1 ∈ σ(L3) and L−υλ ∈ Hλ−1, or L−υλ = 0. Now let
λ0 = minσ(L3) be the smallest eigenvalue of L3, and pick some 0 �= υλ0 ∈ Hλ0 .
Since H is finite-dimensional by assumption, there must be some k ∈ N0 = N∪{0}
such that Lk+1

+ υλ0 = 0, whereas all vectors Ll
+υλ0 for l = 0, . . . ,k are nonzero (and

lie in Hλ0+l). With c defined as in (5.184), it then follows from (5.185) - (5.186) that

c−λ0(λ0−1) = 0; (5.189)
c− (λ0 + k)(λ0 + k+1) = 0. (5.190)
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These relations imply λ0 =−k/2, so that by the above bullet points we also have

{−k/2,−k/2+1, . . . ,k/2−1,k/2} ⊆ σ(L3). (5.191)

To prove equality, as in (5.188), consider the vector space

H ′ = C ·υλ0 ⊕C ·L+υλ0 ⊕·· ·⊕Lk−1
+ υλ0 ⊕Lk

+υλ0 ⊆ H; (5.192)

this is just the subspace of H with basis (υλ0 ,L+υλ0 , . . . ,L
k−1
+ υλ0 ,L

k
+υλ0). By the

previous arguments following from (5.180), we see that the operators L+ and L−
never leave H ′, and the same is trivially true for L3. Therefore, if ρ is irreducible,
then we must have H ′ = H (and conversely). All claims of the lemma are now
trivially verified on H ′. �

It should be clear from this proof that the actions of L+, L−, and L3 (and hence of all
elements of su(2)) on H ′ = H) are fixed, so that ρ is determined by its dimension

dim(H) = 2 j+1, (5.193)

from which it follows that j can only take the values 0,1/2,1,3/2, . . ..
It remains to fix an inner product on H ′ in which ρ is skew-adjoint, i.e., in which

L∗3 = L3 and L∗+ = L− (which implies that L∗1 = L1 and L∗2 = L2, which jointly imply
ρ(X∗) = −ρ(X) for any X ∈ g). This may be done in principle by starting with
any inner product, integrating ρ to a unitary representation of SU(2), and using the
construction explained at the beginning of the proof of Theorem 5.40. In practice, it
is easier to just calculate: take H = Cn with n = 2 j+1, standard inner product, and
standard orthonormal basis (ul), labeled as l = 0,1, . . . ,2 j). Then put

L3ul = (l− j)ul ; (5.194)

L+ul =
√
(l +1)(n− l−1)ul+1; (5.195)

L−ul =
√

l(n− l)ul−1. (5.196)

Note that (5.195) is even formally correct for l = 2 j, since in that case n−2 j−1= 0,
and similarly, (5.196) formally holds even for l = 0. The commutation relations
(5.180) - (5.181) as well as the above conditions for skew-adjointness may be ex-
plicitly verified, from which it follows that for any prescribed dimension (5.193) we
have found a skew-adjoint realization of ρ . Clearly, ul = υl− j.

In view of Theorem 5.40 and Corollary 5.43 we have therefore proved:

Theorem 5.45. Up to unitary equivalence, any (unitary) irreducible representation
of SU(2) is completely determined by its dimension n = dim(H), and any dimension
n ∈ N0 = N∪{0} occurs. Furthermore, if j is the number in (5.188), we have

n = 2 j+1. (5.197)

Physicists typically label these irreducible representations by j (called the spin of
the given representation) rather than by n, or even by c = j( j+1), cf. (5.184).
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Corollary 5.43 shows that one may pass from ρ(su(2)) to a unitary representation
u(SU(2)), of which one may give a direct realization. For j ∈N0/2, define Hj as the
complex vector space of all homogeneous polynomials p in two variables z=(z1,z2)

of degree 2 j. A basis of Hj is given by (z2 j
1 ,z2 j−1

1 z2, . . . ,z1z2 j−1
2 ,z2 j

2 ), which has
2 j+1 elements. So dim(Hj) = 2 j+1. Then consider the map

D j : SU(2)→ B(Hj); (5.198)
D j(u) f (z) = f (zu). (5.199)

Clearly,
D j(e) f (z) = f (z ·12) = f (z)), (5.200)

so D j(e) = 1, and

D j(u)D j(v) f (z) = D j(v) f (zu) = f (zuv) = D j(uv) f (z),

so D j(u)D j(v) = D j(uv). Hence D j is a representation of SU(2).
We now compute L3 =− 1

2 iS3 on this space. From (5.156) with u � D j, we have

L3 =− 1
2 iD′j

(
i 0
0 −i

)
=− 1

2 i
d
dt

D j

(
eit 0
0 e−it

)
t=0

, (5.201)

so that

L3 f (z) =− 1
2 i

d
dt

f (eit z1,e−it z2)t=0 = 1
2

(
z1
∂ f (z)
∂ z1

− z2
∂ f (z)
∂ z2

)
. (5.202)

Similarly, we obtain

L+ f (z) = z1
∂ f (z)
∂ z2

; (5.203)

L− f (z) = z2
∂ f (z)
∂ z1

. (5.204)

Hence f2 j(z) = z2 j
1 gives L3 f2 j = j f2 j, and f0(z) = z2 j

2 gives L3 f0 = − j f0. In
general, fl(z) = zl

1z2 j−l
2 spans the eigenspace Hλ of L3 with eigenvalue λ =− j+ l.

Since l = 0,1, . . . ,2 j, this confirms (5.188), as well as the fact that the corresponding
eigenspaces are all one-dimensional. The rest is easily checked, too, except for the
unitarity of the representation, for which we refer to the proof of Theorem 5.40.

Finally, we return to SO(3). Either explicit exponentiation (5.165), as done for
j = 1/2 in (5.168), or the above construction of D j, allows one to verify the crucial
condition stated in Corollary 5.43, namely that D j(δ ) = 1Hj for δ ∈D = Z2, which
comes down to D j(−12) = 1Hj . This is easily seen to be the case iff j ∈ N0.

Corollary 5.46. Up to unitary equivalence, each unitary irreducible representation
of SO(3) is completely fixed by its dimension n = 2 j+1, where j ∈N0 (so that n = 1
for spin-0, n = 3 for spin-1, n = 5 for spin-2, . . . ), and each such dimension occurs.
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5.9 Irreducible representations of compact Lie groups

Because of its importance for the classical-quantum correspondence (cf. §7.1) we
first reformulate the main result of the previous section (i.e. the classification the
irreducible representations of SU(2)) and on that basis generalize this result to arbi-
trary compact Lie groups. This gives a classification of great simplicity and beauty.

We already encountered the coadjoint representation (3.100) of a Lie group G on
g∗, given by (x · θ)(A) = θ(x−1Ax), where x ∈ G, θ ∈ g∗, A ∈ g. The orbits under
this action are called coadjoint orbits. If G = SO(3), we have g∼=R3 under the map

x ·J≡
3

∑
k=1

xxJi �→ (x1,x2,x3)≡ x, (5.205)

where the matrices Jk are given in (3.66). Hence also g∗ ∼= R3 under the map

θ �→
(
(θ1,θ2,θ3) : x �→

3

∑
k=1

θkxk

)
. (5.206)

Writing R ∈ SO(3) for a generic element x ∈G, analogously to (5.44), we can com-
pute the adoint action R : A �→ RAR−1, seen as an action on R3, through

R(x ·J)R−1 = (Rx) ·J. (5.207)

Using the fact that the angular momentum matrices transform as vectors, i.e.,

RJiR−1 = ∑
j

R jiJ j, (5.208)

we find that the adjoint action of SO(3) on g, seen as R3, is its defining action. In
general, if g ∼= Rn and also g∗ ∼= Rn under the usual pairing of Rn and Rn through
the Euclidean inner product, the coadjoint action of G on g∗, seen as an action on
Rn, is given by the inverse transpose of the adjoint action on g∼= Rn. For SO(3) we
have (R−1)T = R, so the coadjoint action of SO(3) on R3 is just its defining action,
too, and hence the coadjoint orbits are the 2-spheres Sr with radius r ≥ 0.

Turning to SU(2), we now make the identification of g∗ with R3 slightly differ-
ently, namely by replacing the 3×3 real matrices Ji in (5.205) by the 2×2 matrices
Si in (5.174), but the computation is similar: using (5.44) - (5.45), we find that the
coadjoint action of u∈ SU(2) on R3 is given by the defining action of π̃(u)∈ SO(3),
cf. (5.46). It follows that the coadjoint orbits for SU(2) are the same as for SO(3).

Returning to general Lie groups G for the moment, assumed connected for sim-
plicity, we take some coadjoint orbit O ⊂ g∗, fix a point θ ∈O (so that O = G ·θ ≡
Gθ ), and look at the stabilizer Gθ and its Lie algebra gθ . Since the derivative Ad′ of
the adjoint action Ad of G on g—defined as in (5.156)—is given by

Ad′(A) : B �→ [A,B], (5.209)
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it follows that the “infinitesimal stabilizer” gθ is given by

gθ = {A ∈ g | θ([A,B]) = 0∀B ∈ g}. (5.210)

Consequently, the restriction of θ : g→R to gθ ⊂ g is a Lie algebra homomorphism
(where R is obviously endowed with the zero Lie bracket). Consider a character
χ : Gθ → T, which is the same thing as a one-dimensional unitary representation
of Gθ . If we regard T as a closed subgroup of GL1(C), its Lie algebra t is given
by iR ⊂ M1(C) = C. It is conventional (at least among physicists) to take −i as
the basis element of t, so that t ∼= R under −it ↔ t, so that the exponential map
exp : t→ T (which is the usual one), seen as a map from R to T, is given by t �→
exp(−it). Defining the derivative χ ′ : gθ → C as in (5.156), it follows that actually
χ ′ : gθ → iR, so that iχ ′ maps gθ to R and is a Lie algebra homomorphism.

Definition 5.47. Let G be a connected Lie group. A coadjoint orbit O ⊂ g∗ is called
integral if for some (and hence all) θ ∈ O one has θ|gθ = iχ ′ for some character
χ : Gθ → T, i.e., if there is a character χ such that for each A ∈ gθ one has

θ(A) = i
d
dt

χ
(
etA)

|t=0 . (5.211)

In the simplest case where G = T, the coadjoint action on t∗ is evidently trivial, so
that Gθ = G = T for any θ ∈ t∗ ∼= R. Furthermore, any character on T takes the
form χn(z) = zn, where n ∈ Z, cf. (C.351). As explained above, if t ∼= R and hence
also t∗ ∼= R, the identification of λ ∈ t∗ with λ ∈ R is made by λ (−i)↔ λ , where
−i∈ t. If χ = χn, the right-hand side of (5.211) evaluated at A =−i equals n, so that
(5.211) holds iff θ = n for some n ∈ Z. Thus the integral coadjoint orbits in t∗ are
the integers Z⊂ R. Similarly, if G = Td , the characters are elements of Zd , as in

χ(n1,...,nd)(z1, . . . ,zd) = zn1
1 · · ·znd

d , (5.212)

and the integral coadjoint orbits in g∗ ∼= Rd are the points of the lattice Zd ⊂ Rd .
For G = SU(2) we take a coadjoint orbit S2

r ⊂ R3 and fix θr = (0,0,r). If r = 0,
then Gθ = G and (5.211) holds for the trivial character χ ≡ 1, so the orbit {(0,0,0)}
is integral. Let r > 0. Then Gθr ≡ Gr consist of the pre-image of SO(2) in SU(2)
under the projection π̃ in (5.46), where SO(2) ⊂ SO(3) is the group of rotations
around the z-axis. This is the abelian group

T = {diag(z,z) | z ∈ T}. (5.213)

This group is isomorphic to T under diag(z,z) �→ z and hence its characters are
given by χn(diag(z,z)) = zn, where n ∈ Z. The identification g∗ ∼= R3 is made by
identifying θ ∈ g∗ with (θ1,θ2,θ3), where θ1 = θ(Si). Putting A = S3 in (5.211),
see (5.174), therefore gives r = n/2 for some n ∈N. We conclude that the coadjoint
orbits for SU(2) are given by the two-spheres S2

r ⊂ R3 with r ∈ N0/2.
Similarly, for G = SO(3) the stabilizer of (0,0,r) is SO(2)∼=T itself, and putting

A = J3 in (5.211) one finds that the coadjoint orbits are the spheres S2
r with r ∈ N0.
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For any (Lie) group G, let the unitary dual Ĝ be the set whose elements are
equivalence classes of unitary irreducible representations of G, where we say:

Definition 5.48. Two unitary representations ui : G→U(Hi), i = 1,2, are equiva-

lent if there is unitary v : H1 → H2 such that u2(x) = vu1(x)v∗ for each x ∈ G.

The examples G =Td as well as for G = SU(2) now suggest the following theorem:

Theorem 5.49. If G is a compact connected Lie group, then the unitary dual Ĝ is
parametrized by the set of integral coadjoint orbits in g∗.

Furthermore, there is an explicit (geometric) procedure to a construct an irreducible
representation uO corresponding to such an orbit, namely by the method of geo-
metric quantization. We will not explain this method, which would require some
reasonably advanced differential geometry, but instead we outline the connection
between coadjoint orbits and the well-known method of the highest weight.

Let G be a compact connected Lie group and pick a maximal torus T ⊂ G. Let

WT = N(T )/T (5.214)

be the corresponding Weyl group, where N(T ) is the normalizer of T in G (i.e.,
x ∈ N(T ) iff xzx−1 ∈ T for each z ∈ T ). Note that all maximal tori in compact
connected Lie groups are conjugate, so that the specific choice of T is irrelevant.

For example, for SU(2) we take (5.213), in which case N(T ) is generated by T
and σ1 ∈ SU(2), so that W ∼= S2, i.e., the permutation group on two variables. In
general the Weyl group inherits the adjoint action of N(T ) on T , so that WT acts on
T and hence also acts on t and t∗; for SU(2) the action of the nontrivial element of
WT , i.e., image [σ1] of σ1 ∈ N(T ) in N(T )/T ), on T is given by

[σ1](diag(z,z)) = diag(z,z), (5.215)

so that its action on T∼= T is z �→ z, which gives rise to actions A �→ −A of WT on t
and hence λ �→ −λ of WT on t∗. This is a special case of the following bijection:

g∗/G∼= t∗/WT , (5.216)

where the G-action on g∗ is the coadjoint one; globally, one has G/Ad(G)∼= T/WT .
Indeed, for SU(2) the left-hand side of (5.216) is the set of spheres S2

r in R3,
r ≥ 0, whereas the right-hand side is R/S2 (where S2 acts on R by θ �→ −θ ).

In general, a given coadjoint orbit O ⊂ g∗ defines a Weyl group orbit OW in t∗
as follows: O contains a point θ for which T ⊆ Gθ , and we take OW to be the orbit
through θ|t. Conversely, any G-invariant inner product on g induces a decomposition

g= t⊕ t⊥, (5.217)

which yields an extension of λ ∈ t∗ to θλ ∈ g∗ that vanishes on t⊥. Let Λ ⊂ t∗ be
the set of integral elements in t∗ (as explained after Definition 5.47). Elements of Λ
are called weights. Theorem 5.51 below gives a parametrization
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Ĝ∼=Λ/WT , (5.218)

which, restricting (5.216) to the integral part Λ ⊂ t∗, implies Theorem 5.49.
Instead of with the quotient Λ/WT , one may prefer to work with Λ itself, as

follows: we say that λ ∈ t∗ is regular if w ·λ for w ∈WT iff w = e; this is the case
iff λ = θ|t with Gθ = T . For SU(2) all weights λ ∈ Z are regular except λ = 0.
The set t∗r of regular elements of t∗ falls apart into connected components C, called
Weyl chambers, which are mapped into each other by WT . For SU(2) one has t∗ =
(−∞,0)∪ (0,∞), so that the Weyl chambers are (−∞,0) and (0,∞).

One picks an arbitrary Weyl chamber Cd (for SU(2) this is (0,∞)) and forms

Λd =Λ ∩C−d , (5.219)

where C−d is the closure of Cd in t∗. Elements of Λd are called dominant weights.
For each element of Λ/WT there is a unique dominant weight representing it in Λ ,
so that instead of (5.218) we may also write what Theorem 5.51 actually gives, viz.

Ĝ∼=Λd . (5.220)

To explain this in some detail, we need further preparation. Any (unitary) represen-
tation u : G→U(H) on some finite-dimensional Hilbert space H restricts to T , and
since T is abelian, we may simultaneously diagonalize all operators u(z), z∈ T . The
operators iu′(A), where A ∈ t, commute as well, so that we may decompose

H =
⊕
μ∈ΛH

Hμ , (5.221)

where ΛH ⊂Λ contains the weights that occur in u|T , so that for each ψ ∈ Hμ ,

u(z)ψ = χμ(z)ψ (z ∈ T ); (5.222)
iu′(Z)ψ = μ(Z)ψ (Z ∈ t), (5.223)

where the character χμ : T → T corresponding to the weight μ ∈ Λ is defined as
in (5.212) with μ = (n1, . . . ,nd) and z = (z1, . . . ,zd) ∈ T ∼= Td , where d = dim(T ).
For example, we have seen that the irreducible representations D j(SU(2)) on Hj ∼=
C2 j+1 contains weights in Λ j = {− j,− j+1, . . . , j−1, j}, where j ∈ N0/2.

In particular, take H = gC with some G-invariant inner product, cf. (5.148), and
take u = Ad, given by Ad(x)B = xBx−1, so that Ad′(A)(B) = [A,B], extended from
g to gC: we write gC = g+ ig and hence put Ad′(A)(B+ iC) = [A,B]+ i[A,C], where
A,B,C ∈ g. We assume that the inner product 〈·, ·,〉 on gC is obtained from a real
inner product on g by complexification. This inner product on g may be restricted
to t ⊂ g and hence induces an inner product on t∗, also denoted by 〈·, ·,〉. For ex-
ample, if G is semi-simple (like SU(2)), one may take the inner product on g and
hence on gC to be the Cartan–Killing form 〈A,B〉=− 1

2 Tr(Ad′(A)Ad′(B)), which is
nondegenerate because G is semi-simple, and positive definite since G is compact.
For SU(2) or SO(3) this gives the usual inner product on R3 and C3.
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Definition 5.50. The roots of g are the nonzero weights of the adjoint representation
u = Ad on H = gC. That is, writing Δ ⊂ Λ for the set of roots, we have α ∈ Δ iff
α : t→R is not identically zero and there is some Eα ∈ gC such that for each Z ∈ t,

i[Z,Eα ] = α(Z)Eα , (5.224)

cf. (5.223). Furthermore, subject to the choice of a preferred Weyl chamber Cd in t∗r ,
we say α ∈ Δ is positive, denoted by α ∈ Δ+, if 〈α,λ 〉> 0 for each λ ∈Cd.

Since 〈α,λ 〉 is real and nonzero for each α ∈Δ and λ ∈Cd , one has either α ∈Δ+ or
−α ∈Δ+, i.e., α ∈Δ−=−Δ+. Since t is maximal abelian in g, it can also be shown
that each root is nondegenerate. Writing gα = C ·Eα , this gives a decomposition

gC = tC
⊕
α∈Δ+

gα
⊕
α∈Δ−

gα . (5.225)

For G = SU(2), the single generator of t is S3, and taking E± = i(S1± iS2), we see
from (5.180) that i[S3,E±] =±E±. Hence the roots are α±, given by α±(S3) =±1,
and with (0,∞) as the Weyl chamber of choice, the root α+ is the positive one.

We now define a partial ordering ≤ on Λ by putting μ ≤ λ iff λ − μ = ∑i niαi
for some ni ∈N0 and αi ∈ Δ+. This brings us to the theorem of the highest weight:
Theorem 5.51. Let G be a connected compact Lie group. There is a parametrization
Ĝ ∼= Λd, such that any unitary irreducible representation uλ : G→ Hλ in the class
λ ∈ Ĝ defined by a given dominant weight λ ∈Λd has the following properties:

1. Hλ contains a unit vector υλ , unique up to a phase, such that

iu′λ (Z)υλ = λ (Z)υλ (Z ∈ t); (5.226)
iu′λ (Eα)υλ = 0 (α ∈ Δ+). (5.227)

2. Any other weight μ occurring in H, cf. (5.221), satisfies μ ≤ λ and μ �= λ .

The crucial point is that eqs. (5.226) - (5.227) imply

θλ (A) = i〈υλ ,u′λ (A)υλ 〉 (A ∈ g), (5.228)

where θλ ∈ g∗ was defined after (5.217) by λ ∈Λd ⊂ t∗. Since each operator uλ (x)
is unitary, each vector uλ (x)υλ is a unit vector, so we may form the G-orbit

O ′
λ = {|uλ (x)υλ 〉〈uλ (x)υλ |,x ∈ G} (5.229)

through |υλ 〉〈υλ | in the space P1(Hλ ) of all one-dimensional projections on Hλ .
Denoting the coadjoint orbit G ·θλ ⊂ g∗ by Oλ , where λ = (θλ )|t, the map

x ·θλ �→ |uλ (x)υλ 〉〈uλ (x)υλ |, (5.230)

is a G-equivariant diffeomorphism (in fact, a symplectomorphism) from Oλ to O ′
λ .

This amplifies Theorem 5.49 by making the the bijective correspondence between
the set Λd of dominant weights and the set of integral coadjoint orbits explicit.
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5.10 Symmetry groups and projective representations

Despite the power and beauty of unitary group representations in mathematics, in
the context of e.g. Wigner’s Theorem we have seen that in physics one should look at
homomorphisms x �→W(x), where W(x) is a symmetry of P1(H). In view of The-
orems 5.4, this is equivalent to considering a single homomorphism h : G �→ G H , cf.
(5.136). To simplify the discussion, we now drop Ua(H) from consideration and just
deal with the connected component G H

0 = U(H)/T of the identity. This restriction
may be justified by noting that in what follows we will only deal with symme-
tries given by connected Lie groups, which have the property that each element is a
product of squares x = y2. In that case, h(x) = h(y)2 is always a square and hence
it cannot lie in the component Ua(H)/T (the anti-unitary case does play a role as
soon as discrete symmetries are studied, such as time inversion, parity, or charge
conjugation). Thus in what follows we will study continuous homomorphisms

h : G→U(H)/T, (5.231)

where U(H)/T has the quotient topology inherited from the strong operator topol-
ogy on U(H), as explained above. Since it is inconvenient to deal with such a quo-
tient, we try to lift h to some map (5.137) where, in terms of the canonical projection

π : U(H)→U(H)/T, (5.232)

which is evidently a group homomorphism, we have

π ◦u = h. (5.233)

This can be done by choosing a cross-section s of π , that is, a measurable map

s : U(H)/T→U(H), (5.234)

or (this doesn’t matter much) a map s : h(G)/T→U(H), such that

π ◦ s = id. (5.235)

Given h, such a cross-section s yields a map u : G→U(H) through

u = s◦h; (5.236)

in particular, π(u(x)) = h(x). Such a lift often loses the homomorphism property,
though in a controlled way, as follows. Since different choices of s must differ by a
phase, and h is a homomorphism of groups, there must be a function

c : G×G→ T (5.237)

such that
u(x)u(y) = c(x,y)u(xy) (x,y ∈ G). (5.238)
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Indeed, since π and h are homomorphisms, we may compute

π(u(x)u(y)u(xy)−1) = π(s(h(x))π(s(h(y))π(s(h(xy)))−1

= h(xy)h(xy)−1 = h(eG) = eU(H)/T.

Hence u(x)u(y)u(xy)−1 ∈ π−1(eU(H)/T) = T · 1H , which yields (5.238), or, more
directly,

c(x,y) ·1H = u(x)u(y)u(xy)∗. (5.239)

Associativity of multiplication in G and the homomorphism property of h yield

c(x,y)c(xy,z) = c(x,yz)c(y,z), (5.240)

and if we impose the natural requirement ue = 1H , we also have

c(e,x) = c(x,e) = 1. (5.241)

Definition 5.52. A function c : G×G→ T satisfying (5.240) and (5.241) is called a
multiplier or C@2-cocycle on G (in the topological case one requires c to be Borel
measurable, and for Lie groups it should in addition be smooth near the identity).
The set of such multipliers, seen as an abelian group under (pointwise) operations
in T, is denoted by Z2(G,T). If c takes the form

c(x,y) =
b(xy)

b(x)b(y)
, (5.242)

where b : G→ T satisfies b(e) = 1 (and is measurable and smooth near e as appro-
priate), then c is called a 2-coboundary or an exact multiplier. The set of trivial
multipliers forms a (normal) subgroup B2(G,T) of Z2(G,T), and the quotient

H2(G,T) =
Z2(G,T)
B2(G,T)

(5.243)

is called the second cohomology group of G with coefficients in T.

The reason 2-coboundaries and the ensuing group H2(G,T) are interesting for our
problem is as follows. Given a map x �→ u(x) from G to U(H) with (5.238), suppose
we change u(x) to u(x)′ = b(x)u(x). The associated multiplier then changes to

c′(x,y) =
b(x)b(y)

b(xy)
c(x,y), (5.244)

in that u(x)′u(y)′ = c′(x,y)u′xy. In particular, a multiplier of the form (5.242) may be
removed by such a transformation, and is accordingly called exact.
Proposition 5.53. If H2(G,T) is trivial, then any multiplier can be removed by mod-
ifying the lift u of h, and the ensuing map u′ : G → U(H) is a homomorphism
and hence a unitary representation of G on H. In that case, any homomorphism
G→U(H)/T comes from a unitary representation u : G→U(H) through (5.233).
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This is true by construction. By the same token, if H2(G,T) is non-trivial, then G
will have projective representations that cannot be turned into ordinary ones by a
change of phase (for it can be shown that any multiplier c ∈ Z2(G,T) is realized by
some projective representation). Thus it is important to compute H2(G,T) for any
given (physically relevant) group G, and see what can be done if it is non-trivial.

To this end we present the main results of practical use. In order to state one of
the main results (Whitehead’s Lemma), we need to set up a cohomology theory for
g (which we only need with trivial coefficients). Let Ck(g,R) be the abelian group
of all k-linear totally antisymmetric maps ϕ : gk → R, with coboundary maps

δ (k) : Ck(g,R)→ Ck+1(g,R); (5.245)

(X0,X1, . . . ,Xk) �→
k+1

∑
i< j=1

(−1)i+ jϕ([Xi,Xj],X0, . . . , X̂i, . . . , X̂ j, . . . ,Xk),(5.246)

where the hat means that the corresponding entry is omitted. For example, we have

δ (1)ϕ(X0,X1) = −ϕ([X0,X1]);

δ (2)ϕ(X0,X1,X2) = −ϕ([X0,X1],X2)+ϕ([X0,X2],X1)−ϕ([X1,X2],X0).

These maps satisfy “δ 2 = 0”, or, more precisely,

δ (k+1) ◦δ (k) = 0, (5.247)

and hence we may define the following abelian groups:

Bk(g,R) = ran(δ (k−1)); (5.248)

Zk(g,R) = ker(δ (k)); (5.249)

Hk(g,R) =
Zk(g,R)
Bk(g,R)

. (5.250)

Note that Bk(g,R)⊆ Hk(g,R) because of (5.247). In particular, for k = 2 the group
Z2(g,R) of all 2-cocycles on g consists of all bilinear maps ϕ : g×g→R that satisfy

ϕ(X ,Y ) =−ϕ(Y,X); (5.251)
ϕ(X , [Y,Z])+ϕ(Z, [X ,Y ])+ϕ(Y, [Z,X ]) = 0, (5.252)

and its subgroup B2(g,R) of all 2-coboundaries comprises all ϕ taking the form

ϕ(X ,Y ) = θ([X ,Y ]), θ ∈ g∗. (5.253)

For example, for g= R any antisymmetric bilinear map ϕ : R2 → 0 is zero, so that

H2(R,R) = 0. (5.254)
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This has nothing to with the fact that the Lie bracket on g vanishes. Indeed, g= R2

does admit a unique nontrivial 2-cocycle, given by (half) the symplectic form, i.e.,

ϕ0((p,q),(p′,q′)) = 1
2 (pq′ −qp′). (5.255)

Since B2(R2,R) = 0, this cannot be removed, hence (5.255) generates H2(R2,R):

H2(R2,R)∼= R. (5.256)

As far as cohomology is concerned, each Lie group and each Lie algebra has its
own story, although in some cases a group of stories may be collected into a single
narrative. As a case in point, a Lie algebra g is called simple when it has no proper
ideals, and semi-simple when it has no commutative ideals. A Lie algebra is semi-
simple iff it is a direct sum of simple Lie algebras. If a Lie group G is (semi-) simple,
then so is its Lie algebra g. A basic result, often called Whitehead’s Lemma, is:

Lemma 5.54. If g is semi-simple, then H2(g,R) = 0.

Proof. The key point is that Ck(g,R) is a g-module under the action

(X0 ·ϕ)(X1, . . . ,Xk) =−
k

∑
i=1

ϕ(X1, . . . , [X0,Xi], . . . ,Xk). (5.257)

For k = 2, a simple computation shows that

(X0 ·ϕ)(X1,X2) = −ϕ([X0,X1],X2)−ϕ(X1, [X0,X2])

= δ (2)ϕ(X0,X1,X2)−δ (1)ϕ(X0,−)(X1,X2), (5.258)

where at fixed X0, the map ϕ(X0,−) is seen as an element of C1(g,R). This show
that g maps both B2(g,R) and Z2(g,R) onto itself. Indeed, if ϕ = δ (1)χ , then the
first term in (5.258) vanishes because δ (2) ◦ δ (1) = 0, cf. (5.247), so that the right-
hand side of (5.258) takes the form δ (1)(· · ·) and hence lies in B2(g,R). Similarly,
if δ (2)ϕ = 0, then δ (2)(X0 ·ϕ) = 0. We now use the fact that if g is semi-simple,
then any finite-dimensional module is completely reducible. Consequently, as a g-
module, Z2(g,R) must decompose as Z2(g,R) = B2(g,R)⊕V , where V is some
g-module. Hence if ϕ ∈ V , then X0 ·ϕ ∈ V . Since ϕ ∈ Z2(g,R), the first term in
(5.258) vanishes, whilst the second term lies in B2(g,R). Since V ∩B2(g,R) = {0},
we therefore have X0 · ϕ = 0, and hence δ (1)ϕ(X0,−)(X1,X2) = 0, which gives
ϕ(X0, [X1,X2]) = 0, for all X0,X1,X2 ∈ g. At this point we use another implication of
the semi-simplicity of g, namely [g,g] = g. It follows that ϕ = 0, whence V = {0},
from which Z2(g,R) = B2(g,R), or, in other words, H2(g,R) = 0. �

Theorem 5.55. Let G be a connected and simply connected Lie group. Then

H2(G,T)∼= H2(g,R). (5.259)

Proof. This is really a conjunction of two isomorphisms:
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H2(G,T) ∼= H2(G,R); (5.260)
H2(G,R) ∼= H2(g,R), (5.261)

where R is the usual additive group, and Z2(G,R), B2(G,R), and hence H2(G,R)
are defined analogously to Z2(G,T) etc. The first isomorphism is simply induced by

Z2(G,R) �→ Z2(G,T); (5.262)

Γ (x,y) �→ eiΓ (x,y) ≡ c(x,y), (5.263)

which preserves exactness and induces an isomorphism in cohomology (but note
that (5.262) - (5.263) may not itself define an isomorphism).

The isomorphism (5.261) is induced at the cochain level, too. Given a cocycle
ϕ ∈ Z2(G,R), we construct a new Lie algebra gϕ (called a central extension of g)
by taking gϕ = g⊕R as a vector space, equipped though with the unusual bracket

[(X ,v),(Y,w)] = ([X ,Y ],ϕ(X ,Y )); (5.264)

the condition ϕ ∈ Z2(G,R) guarantees that this is a Lie bracket. Furthermore, gϕ
is isomorphic (as a Lie algebra) to a direct sum iff ϕ ∈ B2(g,R); indeed, if (5.253)
holds, then (X ,v) �→ (X ,v+θ(X)) yields the desired isomorphism gϕ → g⊕R.

By Lie’s Third Theorem, there is a connected and simply connected Lie group
Gϕ (again called a central extension of G), with Lie algebra gϕ , As a manifold,
Gϕ = G×R, but the group laws are given, in terms of a function Γ : G×G→R, by

(x,v) · (y,w) = (xy,v+w+Γ (x,y)); (5.265)
(x,v)−1 = (x−1,−v−Γ (x,x−1)). (5.266)

The group axioms then imply (indeed, they are equivalent to) the condition Γ ∈
Z2(G,R). Furthermore, two such extensions Gϕ and G′ϕ are isomorphic iff the cor-
responding cocyclesΓ andΓ ′ are related by (5.244), and in particular,Γ ∈B2(G,R)
iff Gϕ is isomorphic (as a Lie group) to a direct product G×R, which in turn is the
case iff ϕ ∈ B2(g,R). Conversely, given Γ ∈ Z2(G,R), we define the central exten-
sion Gϕ by (5.265) - (5.266), to find that the associated Lie algebra gϕ takes the
above form, defining ϕ ∈ B2(g,R) through (5.264). Explicitly,

ϕ(X ,Y ) =
d
ds

d
dt

[
Γ
(
etX ,esY )]

|s=t=0− (X ↔ Y ). (5.267)

Lie’s Third Theorem thus implies that the map ϕ ↔ Γ (which is not necessarily a
bijection) descends to an isomorphism H2(g,R)→ H2(G,R) in cohomology. �

Given (5.254), Theorem 5.55 immediately gives

H2(R,T) = 0. (5.268)

In particular, if R is the relevant symmetry group, which is the case e.g. with time
translation, by Proposition 5.53 we may restrict ourselves to unitary representations.
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Once again, this has nothing to do with abelianness or topological triviality of R.
Indeed, for G = g= R2, the Heisenberg cocycle (5.255) comes from the multiplier

c0((p,q),(p′,q′)) = ei(pq′−qp′)/2, (5.269)

where R2 is seen as the group of translations in the phase space R2 of a particle
moving on R. Accordingly, this multiplier is realized by the following projective
representation of R2 on L2(R):

u(p,q)ψ(x) = e−ipq/2eixpψ(x−q). (5.270)

If R2 is the configuration space of some particle, and the group R2 produces trans-
lations in the latter (i.e., of position), then the appropriate unitary representation
would rather be on L2(R2) and would have trivial multiplier, viz.

u(q1,q2)ψ(x1,x2) = ψ(x1−q1,x2−q2). (5.271)

Similarly, G = R2, now seen as generating translations of momentum in the phase
space R4 of the latter example would appropriately be represented on L2(R2) as

u(q1,q2)ψ(x1,x2) = ei(x1q1+x2q2)ψ(x1,x2). (5.272)

Corollary 5.56. Let G be a connected and simply connected semi-simple Lie group.
Then H2(G,T) is trivial.

Here we say that a Lie group is simple when it has no proper connected normal sub-
groups, and semi-simple if it has no proper connected normal abelian subgroups.
For example, the “classical Lie groups” of Weyl are semi-simple, including SO(3)
and SU(2), which are even simple (note that the latter does have a discrete nor-
mal subgroup, namely its center {±12} ∼= Z2). Also, products of simple Lie groups
are semi-simple. However, Corollary 5.56 does not apply to SO(3), which is semi-
simple but not simply connected. Here the relevant general result is:

Theorem 5.57. Let G be a connected Lie group with H2(g,R) = 0. Then

H2(G,T)∼= π̂1(G). (5.273)

We need some background (cf. §C.15). For any abelian (topological) group A, the
set

Â = Hom(A,T) (5.274)

consists of all (continuous) homomorphisms (also called characters) χ : A → T;
these are just the irreducible (and hence necessarily one-dimensional) unitary rep-
resentations of A. This set is a group under the obvious pointwise operations

χ1χ2(a) = χ1(a)χ2(a); (5.275)

χ−1(a) = χ(a)−1. (5.276)
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As such, the group Â is called the (Pontryagin) dual of A; the Pontryagin Duality
Theorem states that ˆ̂A∼= A. Using Theorem 5.57 and Theorem 5.41, this gives

H2(SO(3),T) = Z2. (5.277)

We now use Theorem 5.41 as a lemma to prove Theorem 5.57:

Proof. We first state the map π̂1(G)→ H2(G,T) that will turn out to be an isomor-
phism. Assuming Theorem 5.41, pick a (Borel measurable) cross-section

s̃ : G→ G̃ (5.278)

of the canonical projection
π̃ : G̃→ G = G̃/D. (5.279)

As always, this means that π̃ ◦ s̃ = idG, and s̃ is supposed to be smooth near the
identity, and chosen such that s̃(eG) = eG̃, where eG and eG̃ are the unit elements of

G and G̃, respectively. Given a character χ ∈ π̂1(G), define cχ : G×G→ T by

cχ(x,y) = χ(s̃(x)s̃(y)s̃(xy)−1). (5.280)

This makes sense: π̃ is a homomorphism, so that (cf. the computation below (5.238))

π̃(s̃(x)s̃(y)s̃(xy)−1) = π̃(s̃(x))π̃(s̃(y))π̃(s̃(xy))−1 = xy(xy)−1 = eG,

and hence s̃(x)s̃(y)s̃(xy)−1) ∈ ker(π̃) = D (where we identify D with π1(G), cf.
Theorem 5.41). Furthermore, tedious computations show that (5.240) and (5.241)
hold, so that cχ ∈ Z2(G,T). Different choices of s̃ lead to equivalent 2-cocycles c,
and hence by taking the cohomology class [cχ ] of cχ we obtain an injective map

π̂1(G)→ H2(G,T); (5.281)
χ �→ [cχ ]. (5.282)

To prove surjectivity of this map, let c ∈ Z2(G,T) and define c̃ : G̃× G̃→ T by

c̃(x̃, ỹ) = c(π̃(x), π̃(y)). (5.283)

Conversely, we may recover c from c̃ and some cross-section s̃ : G→ G̃ of π̃ by

c(x,y) = c̃(s̃(x), s̃(y)). (5.284)

It follows that c̃ ∈ Z2(G̃,T). Theorem 5.55 implies that H2(G̃,T) is trivial, so that

c̃(x̃, ỹ) = b̃(x̃ỹ)/b̃(x̃)b̃(ỹ), (5.285)

for some function b̃ : G̃→ T satisfying b̃(ẽ) = 1. From (5.241), i.e., c(e,x) = 1, we
infer that if x̃ = δ ∈ D, so that π̃(δ ) = e, then c̃(δ , ỹ) = 1, and hence
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b̃(δ ỹ) = b̃(δ )b̃(ỹ). (5.286)

Taking x̃ and ỹ both in D, we see that b̃|D is a character, which we call χ . Hence

c(x,y) =
b̃(s̃(x)s̃(y))

b̃(s̃(x))b̃(s̃(y))
=

b̃(s̃(xy))
b̃(s̃(x))b̃(s̃(y))

· b̃(s̃(x)s̃(y))
b̃(s̃(xy))

=
b̃(s̃(xy))

b̃(s̃(x))b̃(s̃(y))
· cχ(x,y), (5.287)

since, using (5.286) with δ � s̃(x)s̃(y)s̃(xy)−1 and ỹ � s̃(xy), we have

b̃(s̃(x)s̃(y))
b̃(s̃(xy))

=
b̃(s̃(x)s̃(y)s̃(xy)−1s̃(xy))

b̃(s̃(xy))
= b̃(s̃(x)s̃(y)s̃(xy)−1)

= χ(s̃(x)s̃(y)s̃(xy)−1) = cχ(x,y).

Thus [c] = [cχ ], and hence the map (5.281) - (5.282) is surjective. �

Definition 5.58. In the situation and notation of Theorem 5.41, a unitary represen-
tation ũ : G̃→U(H) is called admissible if ũ(D)⊂ T ·1H.

In that case, there is obviously a character χ ∈ D̂ such that for each δ ∈ D we have

ũ(δ ) = χ(δ ) ·1H . (5.288)

Unitary irreducible representations are admissible, since Schur’s Lemma implies
that, since D lies in the center of G̃, its image ũ(D) consists of multiples of the unit.

If ũ is admissible, we obtain a homomorphism (5.231) by means of

h = π ◦ ũ◦ s̃, (5.289)

where s̃ is any cross-section of π̃ , cf. (5.278) - (5.279). Note that different choices
s̃, s̃′ are related by s̃′(x) = s̃(x)δ (x), where δ : G→ D is some function, so that

h′(x) = π(ũ(s̃′(x))) = π(ũ(s̃(x))ũ(δ (x))) = π(ũ(s̃(x)))π(δ (x) ·1H) = h(x).

Theorem 5.59. 1. If G is a connected Lie group with H2(g,R) = 0, any homomor-
phism h : G→U(H)/T as in (5.231) comes from some admissible unitary rep-
resentation ũ of G̃ by (5.289). If H is separable, then h is continuous iff ũ is.

2. Moreover, if ũ(G̃) is super-admissible in that ũ(δ ) = 1H for each δ ∈ D, then
u = ũ◦ s̃ is a unitary representation of G, in which case h = π ◦u therefore comes
from a unitary representation of G itself.

Proof. Given such a homomorphism h, pick a cross-section s : U(H)/T→U(H), as
in (5.234), with associated 2-cocycle c on G given by (5.239). By Theorem 5.57 and
its proof, we may assume (possibly after redefining s) that there exists a character
χ ∈ D̂ and a cross-section (5.278) such that c = cχ , cf. (5.280). We then define
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ũ : G̃ → B(H); (5.290)
x̃ �→ χ(x̃ · (s̃◦ π̃(x̃))−1)u(π̃(x̃)). (5.291)

Simple computations then show that x̃ · (s̃◦ π̃(x̃))−1 ∈ D (i.e., the center of G̃), that
(5.288) holds, that each operator ũ(x̃) is unitary, that the group homomorphism prop-
erties ũ(x̃)ũ(ỹ) = ũ(x̃ỹ) and ũ(ẽ) = 1H hold, and that (5.289) is valid. As to the last
equation, since π removes the term with χ in (5.291), and u = s◦h, we have

π ◦ ũ◦ s̃(x) = π ◦ s◦h◦ π̃ ◦ s̃(x) = h(x),

since π ◦ s = id (on U(H)/T) and π̃ ◦ s̃ = id (on G).
If ũ(δ ) = 1H for each δ ∈ D, then cχ = 1 from (5.280), so that u(x)u(y) = uxy

by (5.238). If s preserves units, or, equivalently, if he = 1H , as we always assume,
we see that u is a unitary representation of G. In this case, (5.291) simply reads
ũ = s◦h◦ π̃ . This immediately yields ũ = u◦ π̃ , which in turn gives u = ũ◦ s̃.

Finally, even if h is continuous, it is a priori unclear if ũ is, since the cross-
sections s and s̃ appearing in the above construction typically fail to be continuous.
Fortunately, since they are assumed measurable, there is no question about measur-
ability of ũ, and if H is separable, continuity follows from Proposition 5.36. �

Corollary 5.60. If G is a connected Lie group with covering group G̃, the formulae

ũ = u◦ π̃; (5.292)
u = ũ◦ s̃, (5.293)

where s̃ : G→ G̃ is any cross-section of the covering map π̃ : G̃→G, give a bijective
correspondence between (continuous) super-admissible unitary representations ũ of
G̃ and (continuous) unitary representations u of G, preserving irreducibility.

Corollary 5.61. Any homomorphism h : SO(3)→U(H)/T as in (5.231) comes from
an admissible unitary representation ũ of SU(2) by (5.289). Moreover, h comes from
a unitary representation u = ũ◦ s̃ of SO(3) itself iff ũ is trivial on the center Z2.

In particular, if h is irreducible, it must come from the unitary irreducible rep-
resentations ũ = D j, where j = 0, 1

2 ,1, . . . is the (half-) integer spin label. Then
D j(SU(2)) is super-admissible iff j is integral, in which case it defines a unitary
irreducible representation of SO(3).

Indeed, the assumption H2(g,R) = 0 in Theorem 5.59 is satisfied for SO(3) be-
cause of Whitehead’s Lemma 5.54. The case where H2(g,R) �= 0 occurs e.g. for
the Galilei group (cf. §7.6). It can be shown that H2(g,R) has finitely many gen-
erators, for which one finds pre-images (ϕ1, . . . ,ϕM) in Z2(g,R), with correspond-
ing elements (Γ1, . . . ,ΓM) of Z2(G̃,R), cf. the proof of Theorem 5.55. Of these, a
subset (Γ1, . . . ,ΓN), N ≤ M, satisfies the relation Γi(δ , x̃) = Γi(x̃,δ ) for any δ ∈ D
(cf. Theorem 5.41) and x̃ ∈ G̃. This yields a map Γ : G̃× G̃ → RN given by
Γ (x̃, ỹ) = (Γ1(x̃, ỹ), . . . ,ΓN(x̃, ỹ)), which in turn equips the set

Ǧ = G̃×RN , (5.294)
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with a group multiplication (x̃,v) · (ỹ,w) = (x̃ỹ,v+w+Γ (x̃, ỹ)). We then have the
following generalization of Theorem 5.59, in which a unitary representation u of Ǧ
is called admissible if u(δ ,v) ∈ T ·1H for any δ ∈ D and v ∈ RN .

Theorem 5.62. Let G be a connected Lie group, and H a separable Hilbert space.
Then any continuous homomorphism h : G→U(H)/T comes from some admissible
continuous unitary representation ũ of Ǧ.

As we only apply this to the Galilei group (where N = 1), basically only for illus-
trative purposes, we omit the proof. The correct (and natural) notion of equivalence
of projective representations is as follows: we say that two such homomorphisms
hi : G→U(Hi)/T, i = 1,2 are equivalent if there is a unitary w : H1 →H2 such that

Adw(h1(x)) = h2(x), x ∈ G, (5.295)

where Adw : U(H1)/T→U(H2)/T is the map [u] �→ [vuv∗], which is well defined
(here [u] is the equivalence class of u ∈U(H) in U(H)/T under u∼ zu, z ∈ T).

This induces the following notion for Ǧ: two admissible unitary representations
ũ1, ũ2 of G̃ on Hilbert spaces H1,H2 are equivalent if there is a unitary w : H1 →H2
and a map b : Ǧ→T such that wu1(x̌)w∗= b(x̌)u2(x̌), for any x̌∈ Ǧ. It can be shown
that such a map b always comes from a character χ : G̃→ T through b(x̃,v) = χ(x̃).

To close this long and difficult section, in relief it should be mentioned that the
above theory vastly simplifies if H is finite-dimensional. By Theorem 5.40, this is
true, for example, if G is compact and u is irreducible. Suppose u : G →U(H) is
merely a projective unitary representation of G, so that instead of (5.157) one has

[u′(X),u′(Y )] = u′([X ,Y ])+ iϕ(X ,Y ) ·1H , (5.296)

where ϕ is given by (5.267). Taking the trace yields

ϕ(X ,Y ) =
i
n

Tr(u′([X ,Y ])), (5.297)

where n = dim(H)< ∞. We may define a linear function θ : g→ R by

θ(X) =
i
n

Tr(u′(X)), (5.298)

so that ϕ(X ,Y ) = θ([X ,Y ]), cf. (5.253), and hence we may remove ϕ by redefining

ũ′(X) = u′(X)+ iθ(X) ·1H , (5.299)

which satisfies (5.157) - (5.158). Hence by Corollary 5.43 the map ũ′ exponentiates
to a unitary representation ũ of the universal covering group G̃ of G; it should be
checked from the values of ũ on D if ũ also defines a unitary representation of G.
This argument shows that finite-dimensional projective unitary representations of
Lie groups always come from unitary representations of the covering group.
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5.11 Position, momentum, and free Hamiltonian

The three basic operators of non-relativistic quantum mechanics are position, de-
noted q, momentum, p, and the free Hamiltonian h0. Assuming for simplicity that
the particle moves in one dimension, these are informally given on H = L2(R) by

qψ(x) = xψ(x); (5.300)

pψ(x) = −ih̄
d
dx

ψ(x); (5.301)

h0ψ(x) = − h̄2

2m
d2

dx2 ψ(x), (5.302)

where m is the mass of the particle under consideration. We put h̄ = 1 and m = 1/2.
The issue is that these operators are unbounded; see §B.13. In general, quantum-

mechanical observables are supposed to be represented by self-adjoint operators,
and examples like (5.300) - (5.302) show that these may not be bounded. The
Hellinger–Toeplitz Theorem B.68 then shows that it makes no sense to try and ex-
tend the above expressions to all of L2(R), so we have to live with the fact that some
crucial operators a : D(a)→ H are merely defined on a dense subspace D(a)⊂ H.

Each such operator has an adjoint a∗ : D(a∗)→ H, whose domain D(a∗) ⊂ H
consists of all ψ ∈ H for which the functional ϕ �→ 〈ψ,aϕ〉 is bounded on D(a),
and hence (since D(a) is dense in H) can be extended to all of H by continuity
through the unique “Riesz–Fréchet vector” χ for which 〈ψ,aϕ〉 = 〈χ,ϕ〉. Writing
χ = a∗ψ , for each ψ ∈ D(a∗) and ϕ ∈ D(a) we therefore have

〈a∗ψ,ϕ〉= 〈ψ,aϕ〉. (5.303)

Assuming that D(a) is dense in H, we say that a is self-adjoint, written a∗ = a, if

〈aϕ,ψ〉= 〈ϕ,aψ〉, (5.304)

for each ψ,ϕ ∈ D(a) and D(a∗) = D(a). A self-adjoint operator a is automatically
closed, in that its graph G(a) = {(ψ,aψ) | ψ ∈ D(a)} is a closed subspace of the
Hilbert space H⊕H (indeed, the adjoint of any densely defined operator is closed,
see Proposition B.72). In practice, self-adjoint operators often arise as closures of
essentially self-adjoint operators a, which by definition satisfy a∗∗ = a∗. Equiva-
lently, such an operator is closable, in that the closure of its graph is the graph of
some (uniquely defined) operator, called the closure a− of a, and furthermore this
closure is self-adjoint, so that a− = a∗. If a is closable, the domain D(a−) of its
closure consists of all ψ ∈ H for which there exists a sequence (ψn) in D(a) such
that ψn → ψ and aψn converges, on which we define a− by a−ψ = limn aψn.

The simplest case is the position operator.

Theorem 5.63. The operator q is self-adjoint on the domain

D(q) = {ψ ∈ L2(R) |
∫
R

dxx2|ψ(x)|2 < ∞}. (5.305)
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See Proposition B.73 for the proof. To give a convenient domain of essential self-
adjointness (also for the other two operators), we need a little distribution theory.

Definition 5.64. The Schwartz space S (R) (whose elements are functions of

rapid decrease) consist of all smooth function f : R→C for which each expression

‖ f‖n,m = sup{|xn f (m)(x)|,x ∈ R}, (5.306)

where f (m) is the m’th derivative of f , is finite. The topology of S (R) is given by
saying that a sequence (or net) fλ converges to f iff ‖ fλ− f‖n,m→ 0 for all n,m∈N.

Each ‖ · ‖n,m happens to be a norm, but positive definiteness is nowhere used in the
theory below (which therefore works for families of seminorms, which satisfy the
axioms of a norm expect perhaps for positive definiteness). Since there are countably
many such (semi)norms defining the topology, we may equivalently say that S (R)
is a metric space defined by

d( f ,g) =
∞

∑
n,m=0

2−n ‖ f −g‖n,m

1+‖ f −g‖n,m
. (5.307)

Indeed, S (R) is complete in this metric. A typical element is f (x) = exp(−x2).

Definition 5.65. A tempered distribution is a continuous linear map ϕ : S (R)→
C. The space of all such maps, equipped with the topology of pointwise convergence
(i.e., ϕλ → ϕ iff ϕλ ( f )→ ϕ( f ) for each f ∈S (R)) is denoted by S ′(R).

It can be shown that (because of the metrizability of S (R)) continuity is the same
as sequential continuity, i.e., some linear map ϕ : S (R)→ C belongs to S ′(R) iff
limN ϕ( fN) = ϕ( f ) for each convergent sequence fN → f in S (R). Like S (R),
the tempered distributions S ′(R) form a (locally convex) topological vector space,
that is, a vector space with a topology in which addition and scalar multiplication
are continuous. The topology of S ′(R) is given by a family of seminorms, namely
‖ϕ‖ f = |ϕ( f )|, f ∈S (R), and hence a simple way to prove that ϕ ∈S ′(R) is to
find some (n,m) for which |ϕ( f ))| ≤C‖ f‖n,m for each f ∈S (R), since in that case
fN → f , which means that ‖ fN − f‖n,m → 0 for all n,m ∈ N, certainly implies that
ϕ( fN)→ ϕ( f ), so that ϕ is continuous. For example, the evaluation maps δx defined
by δx( f ) = f (x) are continuous (take n = m = 0). Similarly, each finite measure on
R defines a tempered distribution. Taking the (0,m) seminorm shows that the maps
f �→ f (m)(x) for fixed m ∈ N and x ∈ R are tempered distributions.

A less obvious example (defining a so-called Gelfand triple) is as follows:

Proposition 5.66. We have continuous dense inclusions

S (R)⊂ L2(R)⊂S ′(R), (5.308)

where the second inclusion identifies ϕ ∈ L2(R) with the map

f �→ 〈ϕ, f 〉=
∫
R

dxϕ(x) f (x). (5.309)
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Proof. As vector spaces, the first inclusion is obvious. For f ∈S (R) we estimate

‖ f‖2
2 =

∫
R

dx | f (x)| · | f (x)| ≤ ‖ f‖1‖ f‖∞; (5.310)

‖ f‖1 =
∫
R

dx
(1+ x2)| f (x)|

1+ x2 ≤
∫
R

dy
1

1+ y2 ‖(1+mx2) f‖∞

≤ π(‖ f‖0,0 +‖ f‖2,0), (5.311)

so that, noting that ‖ · ‖0,0 = ‖ · ‖∞, we have

‖ f‖2
2 ≤ π(‖ f‖∞ +‖ f‖2,0)‖ f‖∞. (5.312)

Hence fλ → f in S (R), which incorporates the conditions ‖ fλ − f‖0,0 → 0
and ‖ fλ − f‖2,0 → 0, implies ‖ fλ − f‖2 → 0. This shows that the first inclusion
in (5.308) is continuous. Density may be proved in two steps. First, take some
fixed positive function h ∈ C∞

c (−1,1) with the property
∫

dxh(x) = 1, and define
hn(x) = nh(nx), so that informally hn ∈C∞

c (R) converges to a δ -function as n→ ∞.
For each ψ ∈ L2(R), we consider the convolution hn ∗ψ , where for suitable f ,g,

f ∗g(x)≡
∫
R

dy f (x− y)g(y). (5.313)

Then hn ∗ψ ∈C∞(R)∩L2(R) and, from elementary analysis, ‖hn ∗ψ−ψ‖→ 0.
Second, for ψ ∈ Cc(R), the functions hn ∗ψ lie in C∞

c (R) and hence in S (R).
Since Cc(R) is dense in L2(R) by Theorem B.30, for ψ ∈ L2(R) and ε > 0 we
can find ϕ ∈Cc(R) such that ‖ψ −ϕ‖ < ε/2, and (as just shown) find n such that
‖ϕ−ϕn‖< ε/2, whence ‖ψ−ϕn‖< ε . This proves that S (R) is dense in L2(R).

The second inclusion is continuous by Cauchy–Schwarz, which gives

|ϕ( f )| ≤ ‖ϕ‖2‖ f‖2,

to be combined with (5.312). It should be noted that also the second inclusion in
(5.308) is indeed an injection, i.e., that ϕ( f ) = 0 for each f ∈S (R) implies ϕ = 0
in L2(R); this is true because S (R) is dense in L2(R), plus the standard fact that, in
any Hilbert space H, if 〈ϕ, f 〉= 0 for all f in some dense subspace of H, then ϕ = 0.
Finally, the fact that L2(R) is dense in the seemingly huge space S ′(R) follows
from the even more remarkable fact that S (R) is dense in S ′(R). On top of the
functions hn just defined, also employ a function χ ∈C∞

c (R) such that χ(x) = 1 on
(−1,1), and define χn(x) = χ(x/n), so that informally limn→∞ χ(x) = 1 (as opposed
to the hn, which converge to a δ -function as n→ ∞). If for any g ∈S (R) and any
ϕ ∈ S ′(R) we define gϕ as the distribution that maps f ∈ S (R) to ϕ( f g), and
similarly define g ∗ϕ as the distribution that maps f to ϕ(g ∗ f ), we may define a
sequence of distributions ϕn = hn ∗ (χnϕ). From the point of view of (5.308), these
correspond to functions ϕn ∈S (R) in the sense that ϕn( f ) =

∫
dxϕn(x) f (x), where

f ∈S (R). Using similar analysis as above, it then follows that for any f ∈S (R)
we have ϕn( f )→ ϕ( f ), so that ϕn → ϕ in S ′(R). �
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For our purposes, the point of all this is that we can define generalized derivatives
of (tempered) distributions, and hence, because of (5.308), of functions in L2(R).

Definition 5.67. For ϕ ∈S (R)′ and m ∈ N, the m’th generalized derivative ϕ(m)

is defined by
ϕ(m)( f ) = (−1)mϕ( f (m)). (5.314)

The idea is that under (5.308) this is an identity if ϕ ∈S (R) (partial integration).
Like the constructions at the end of the proof of Proposition 5.66, this is a special
case of a more general construction: whenever we have a continuous linear map
T : S (R)→S (R), we obtain a dual continuous linear map T ′ : S (R)′ →S (R)′
defined by T ′ϕ = ϕ ◦T , i.e.,

(T ′ϕ)( f ) = ϕ(T ( f )). (5.315)

Sometimes a slight change in the definition (as in (5.314), or as in the Fourier trans-
form below) is appropriate so that the restriction of T ′ to S (R) coincides with T .

Theorem 5.68. The momentum operator p =−id/dx is self-adjoint on the domain

D(p) = {ψ ∈ L2(R) | ψ ′ ∈ L2(R)}, (5.316)

where the derivative ψ ′ is taken in the distributional sense (i.e., letting ψ ∈S ′(R)).

Proof. We first show that p is symmetric, or p⊆ p∗. This comes down to

〈ψ ′,ϕ〉=−〈ψ,ϕ ′〉, (5.317)

for each ψ,ϕ ∈ D(p), where both derivates are “generalized”. The most elegant
proof (though perhaps not the shortest) uses the Sobolev space H1(R), which equals
D(p) as a vector space, now equipped, however, with the new inner product

〈ψ,ϕ〉(1) = 〈ψ,ϕ〉+ 〈ψ ′,ϕ ′〉, (5.318)

with both inner products on the right-hand side in L2(R); the associated norm is

‖ψ‖2
(1) = ‖ψ‖2 +‖ψ ′‖2. (5.319)

Similar to the Gelfand triple (5.308), we have dense continuous inclusions

S (R)⊂ H1(R)⊂S ′(R), (5.320)

with analogous proof. All we need for Theorem 5.68 is the first inclusion of the
triple (5.320): for ψ ∈ H1(R) we now have hn ∗ψ ∈ C∞(R)∩H1(R) as well as
hn ∗ψ → ψ in H1(R), both of which follow from the L2-case plus the identity

(hn ∗ψ)′ = hn ∗ψ ′. (5.321)

Using the same cutoff function χ as in the L2 case, we have χnψ → ψ and χ ′nψ →
0 in L2(R), so that (χnψ)′ → ψ ′ in L2(R) and hence χnψ → ψ also in H1(R).
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Furthermore, the functions ψn = hn ∗ (χnψ) lie in C∞
c (R) and hence in S (R); using

the above facts we obtain ψn → ψ in H1(R). In sum, for each ψ ∈ H1(R) we can
find a sequence (ψn) in S (R) such that ψn → ψ and ψ ′n → ψ ′ in L2(R). Hence

〈ψ,ϕ ′〉= lim
n
〈ψn,ϕ ′〉=− lim

n
〈ψ ′n,ϕ〉=−〈ψ ′,ϕ ′〉. (5.322)

For the converse, let ψ ∈D(p∗), so that by definition for each ϕ ∈D(p) we have

〈p∗ψ,ϕ〉= 〈ψ, pϕ〉=−i〈ψ,ϕ ′〉. (5.323)

Since S (R) ⊂ D(p), this is true in particular for each ϕ ∈ S (R), in which case
the right-hand side equals −iψ ′(ϕ), where the derivative is distributional. But this
equals 〈p∗ψ,ϕ〉 and so the distribution −iψ ′ is given by taking the inner product
with p∗ψ ∈ L2(R). Hence −iψ ′ = p∗ψ ∈ L2(R), and in particular ψ ′ ∈ L2(R), so
that ψ ∈D(p). This proves that D(p∗)⊆D(p), and since from the first step we have
the oppositie inclusion, we find D(p∗) = D(p) and p∗ = p. �

For the free Hamiltonian h0 =−Δ with Δ = d2/dx2, we similarly have:

Theorem 5.69. The free Hamiltonian h0 =−Δ is self-adjoint on the domain

D(Δ) = {ψ ∈ L2(R) | ψ ′′ ∈ L2(R)}, (5.324)

where the double derivative ψ ′′ is taken in the distributional sense.

Although this may be proved in an analogous way, such proofs are increasingly
burdensome if the number of derivatives gets higher. It is easier to use the Fourier
transform (which also provided an alternative way of proving Theorem 5.68).

Theorem 5.70. The formulae

f̂ (k) =
∫ ∞

−∞

dx√
2π

e−ikx f (x); (5.325)

f̌ (x) =
∫ ∞

−∞

dk√
2π

eikx f (k), (5.326)

are rigorously defined on S (R), L2(R), and S ′(R), and provide continuous iso-
morphisms of each of these spaces. Furthermore, (5.326) is inverse to (5.325), i.e.

ˆ̌f = ˇ̂f = f , (5.327)

so that we may (and often do) write f̂ = F ( f ) and f̌ = F−1( f ), or f = F−1( f̂ ).
In all three cases we have the identities (in a distributional sense if appropriate)

F (xn f (m))(k) = (id/dk)n(ik)mF ( f )(k). (5.328)

Finally, as a map F : L2(R)→ L2(R) the Fourier transform is unitary, so that

〈ψ̂, ϕ̂〉= 〈ψ,ϕ〉. (5.329)
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See §C.15 for further discussion. For example, we have

D(p) = {ψ ∈ L2(R) | k · ψ̂(k) ∈ L2(R)}; (5.330)
D(Δ) = {ψ ∈ L2(R) | k2 · ψ̂(k) ∈ L2(R)}. (5.331)

Thus we may now reformulate Theorems 5.68 and 5.69 as follows:

Theorem 5.71. The momentum operator p is self-adjoint on the domain (5.330).
The free Hamiltonian h0 =−Δ is self-adjoint on the domain (5.331).

Proof. Denoting multiplication by xn by the symbol kn, we have

p = F−1kF ; (5.332)
Δ = −F−1k2F . (5.333)

Hence the theorem follows from Proposition B.73 and unitarity of the Fourier trans-
form F (plus the little observation that if a = a∗ on D(a) ⊂ H and u : H → K is
unitary, then b = uau∗ is self-adjoint on D(b) = uD(a)⊂ K). �

Much is known about regularity properties of functions in such domains, e.g.,

D(p) ⊂ C0(R); (5.334)

D(Δ) ⊂ C(1)
0 (R). (5.335)

These are the most elementary cases of the famous Sobolev Embedding Theorem.
If ψ ∈D(p), then k �→ (1+k2)1/2ψ̂(k) is in L2(R), so applying Hölder’s inequal-

ity (B.15) with p = q = 2 to f (k) = (1+k2)1/2ψ̂(k) and g(k) = (1+k2)−1/2, which
is in L2(R), too, gives ψ̂ ∈ L1(R). The Riemann–Lebesgue Lemma (see §C.15) then
yields ψ ∈C0(R). To prove (5.335), one uses (1+ k2) rather than its square root.

Finally, we give a common domain of essential self-adjointness for q, p, and h0.

Proposition 5.72. The operators q, p, and h0 are essentially self-adjoint on S (R).

Proof. We see from (5.332) that the cases of p and q are similar, so we only explain
the case of q. Denoting the operator of multiplication by x on the domain S (R) by
q0, as in the proof of Proposition B.73 it is easy to see that D(q∗0) = D(q). Fourier-
transforming, the fact that S (R) is dense in H1(R) (cf. the proof of Theorem 5.68)
shows that D(q−0 ) = D(q),so that D(q∗0) = D(q−0 ). The actions of q∗0 and q−0 obvi-
ously being given by multiplication by x in both cases, we have q∗0 = q−0 .

The proof for h0 is similar; in the second step we now use the fact that S (R) is
dense in H2(R), defined as D(Δ), as in (5.324), but now seen as a Hilbert space in
the inner product 〈ψ,ϕ〉(2) = 〈ψ,ϕ〉+ 〈ψ ′′,ϕ ′′〉, with corresponding norm given by
‖ψ‖2

(2) = ‖ψ‖2 +‖ψ ′′‖2. This is proved just as in the case of a single derivative. �

We also say that S (R) is a core for the operators in question. For example, the
canonical commutation relations [q, p] = ih̄ ·1H rigorously hold on this domain.
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5.12 Stone’s Theorem

We now come to a central result on symmetries in quantum mechanics “explaining”
the Hamiltonian. Recall that a continuous unitary representation of R (as an additive
group) on a Hilbert space H is a map t �→ ut , where t ∈ R and each ut ∈ B(H) is
unitary, such that the associated map R×H → H, (t,ψ) �→ utψ , is continuous, and

usut = us+t , s, t ∈ R; (5.336)
u0 = 1H ; (5.337)

lim
t→0

utψ = ψ (t ∈ R, ψ ∈ H). (5.338)

These conditions imply

lim
t→s

utψ = usψ (s, t ∈ R,ψ ∈ H). (5.339)

Note that according to Proposition 5.36 continuity may be replaced by weak mea-
surability. Probably the simplest nontrivial example is given by H = L2(R) and

utψ(x) = ψ(x− t). (5.340)

To prove (5.338), we use a routine ε/3 argument. We first prove (5.338) for
ψ ∈ Cc(R), where it is elementary in the sup-norm, i.e., limt→0 ‖utψ −ψ‖∞ = 0
by continuity and hence (given compact support) uniform continuity of ψ . But then
the (ugly) estimate ‖ψ‖2

2 ≤ |K|‖ψ‖∞, where K ⊂ R is any compact set containing
the support of ψ , also yields limt→0 ‖utψ−ψ‖2 = 0. Hence for ε > 0 we may find
δ > 0 such that ‖utψ −ψ‖2 < ε/3 whenever |t| < δ . For general ψ ′ ∈ H, we find
ψ ∈Cc(R) such that ‖ψ−ψ ′‖< ε/3, and, using unitarity of ut , estimate

‖utψ ′ −ψ ′‖ ≤ ‖utψ ′ −utψ‖+‖utψ−ψ‖+‖ψ−ψ ′‖
≤ ε/3+ ε/3+ ε/3 = ε.

In the context of quantum mechanics, physicists formally write

ut = e−ita, (5.341)

where a is usually thought of as the Hamiltonian of the system, although in the
previous example it is rather the momentum operator. In any case, we avoid the
notation h instead of a here, partly in order to rightly suggest far greater generality
of the construction and partly to avoid confusion with the notation in §B.21; if h is
the Hamiltonian, one would have a = h/h̄ in (5.341). Mathematically speaking, if a
is self-adjoint, eq. (5.341) is rigorously defined by Theorem B.158, where

et(x) = exp(−itx). (5.342)
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Conversely, given a continuous unitary representation t �→ ut of R on H, one may
attempt to define an operator a by specifying its domain and action by

D(a) =
{
ψ ∈ H | lim

s→0

us−1
s

ψ exists
}

; (5.343)

aψ = i lim
s→0

us−1
s

ψ (ψ ∈ D(a)). (5.344)

Stone’s Theorem makes this rigorous, and even turns the passage from the generator
a to the unitary group t �→ ut (and back) into a bijective correspondence.

Theorem 5.73. 1. If a : D(a)→H is self-adjoint, the map t �→ ut defined by (5.341),
which is rigorously defined by Proposition B.159 with (5.342), defines a contin-
uous unitary representation of R on H.

2. Conversely, given such a representation, the operator a defined by (5.343) -
(5.344) is self-adjoint; in particular, D(a) is dense in H.

3. These constructions are mutually inverse.

Proof. We use the setting of §B.21, so that b is the bounded transform of a.

1. Eqs. (5.336) - (5.337) are immediate from Theorem B.158, which also yields
unitarity of each operator ut . To prove (5.338) we first take ϕ ∈C∗c (b)H, which
means that ϕ is a finite linear combinations of vectors of the type ϕ = h(a)ψ ,
where h ∈Cc(σ(a)) and ψ ∈ H. Using (5.342) and (B.573), we have

‖utϕ−ϕ‖ ≤ ‖eth−h‖∞‖ψ‖ ≤ ‖h‖∞‖et −1K‖(K)
∞ ‖ψ‖, (5.345)

where K is the (compact) support of h in σ(b). Since the exponential function
is uniformly convergent on any compact set, this gives limt→0 ‖utϕ −ϕ‖ = 0.
Taking finite linear combinations of such vectors ϕ gives the same result for any
ϕ ∈C∗c (b)H (with an extra step this could have been done on C∗0(b)H, too).
Thus for ε > 0 we can find δ > 0 so that ‖utϕ−ϕ‖< ε/3 whenever |t|< δ . For
general ψ ′ ∈ H, we find ϕ ∈C∗0(b)H such that ‖ϕ−ψ ′‖< ε/3, and estimate

‖utψ ′ −ψ ′‖ ≤ ‖utψ ′ −utϕ‖+‖utϕ−ϕ‖+‖ϕ−ψ ′‖
≤ ε/3+ ε/3+ ε/3 = ε,

since ‖utψ ′ −utϕ‖= ‖ψ ′ −ϕ‖ by unitarity of ut . This is equivalent to (5.338).
2. For any ψ ∈ H and n ∈ N, define ψn ∈ H by

ψn = n
∫ ∞

0
dse−nsusψ, (5.346)

either as a Riemann-type integral (whose approximants converge in norm) or as
a functional ϕ �→ n

∫ ∞
0 dse−ns〈usψ,ϕ〉, which is obviously continuous and hence

is represented by a unique vector ψn ∈ H. Then simple computations show that

lim
s→0

us−1
s

ψn = n(ψn−ψ),
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so that ψn ∈ D(a). The proof that ψn → ψ starts with the elementary estimate

‖ψn−ψ‖ ≤ n
∫ ∞

0
dse−ns‖usψ−ψ‖,

in which we split up the
∫ ∞

0 as
∫ δ

0 · · ·+
∫ ∞
δ · · · , where δ > 0. Using strong con-

tinuity of the map t �→ ut , i.e., (5.338), for any n the first integral vanishes as
δ → 0. In the second integral we estimate ‖usψ−ψ‖ ≤ 2‖ψ‖ and take the limit
n→ ∞. Thus ψn → ψ , so that D(a) is dense in H.
To prove self-adjointness of a, we need a tiny variation on Theorem B.93:

Lemma 5.74. Let a be symmetric. Then a is self-adjoint (i.e. a∗ = a) iff

ran(a+ i) = ran(a− i) = H. (5.347)

Proof. We only need the implication from (5.347) to a∗= a (but the converse im-
mediately follows from Theorem B.93). So assume (5.347). For given ψ ∈D(a∗)
there must then be a ϕ ∈ H such that (a∗ − i)ψ = (a− i)ϕ . Since a is symmet-
ric, we have D(a) ⊂ D(a∗), so ψ −ϕ ∈ D(a∗), and (a∗ − i)(ψ −ϕ) = 0. But
ker(a∗ − i) = ran(a+ i)⊥, so ker(a∗ − i) = 0. Hence ψ = ϕ , and in particular
ψ ∈ D(a) and hence D(a∗) ⊂ D(a). Since we already know the opposite inclu-
sion, we have D(a∗) = D(a). Given symmetry, this implies a∗ = a. �

Continuing the proof of Theorem 5.73.2, symmetry of a easily follows from its
definition, combined with the property u∗t = u−1

t = u−t . Indeed, for ψ,ϕ ∈D(a),
the weak limit s→ 0 below exists by definition of D(a), cf. (5.343), whence:

〈ϕ,aψ〉= i lim
s→0
〈ϕ, us−1

s
ψ〉=−i lim

s→0
〈u−s−1
−s

ϕ,ψ〉= 〈aϕ,ψ〉.

To prove that ran(a− i) = H, we compute (a− i)ψ1 =−iψ , with ψ1 defined by
(5.346) with n = 1. The property ran(−i) = H is proved in a similar way: now
define ψ̃1 =

∫ 0
−∞ dsesusψ and obtain (a+ i)ψ̃1 = iψ . Thus Lemma 5.74 applies.

3. Bijectivity has two directions: a �→ ut �→ a and ut �→ a �→ ut .

• Given a and hence (5.341) defining ut , we change notation from a to a′ in
(5.343) - (5.344) and need to show that a′ = a. Denoting the restriction of
a to the domain C∗c (b) by a0, we first show that a0 ⊆ a′. The technique to
prove this is similar to the argument around (5.345). We initially assume that
ϕ ∈ D(a0) = C∗c (b)H takes the form ϕ = h(a)ψ for some h ∈Cc(σ(a)) and
ψ ∈ H. Just a trifle more complicated than (5.345), using (5.342), (B.573),
and unitarity of ut , we estimate:∥∥∥∥ut+sϕ−utϕ

s
+ ia0utϕ

∥∥∥∥ ≤ ∥∥∥∥esh−h
s

+ i · idσ(T )h
∥∥∥∥

∞
‖ψ‖

≤
∥∥∥∥es−1K

s
+ i · idK

∥∥∥∥(K)

∞
‖h‖∞‖ψ‖,
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so that by definition of the (strong) derivative we obtain

dut

dt
ϕ = lim

s→0

ut+sϕ−utϕ
s

=−iautϕ, (5.348)

initially for any ϕ of the said form h(a)ψ , and hence, taking finite sums, for
any ϕ ∈ D(a0). The existence of this limit shows that, on the assumption
ψ ∈ D(a0), we have ψ ∈ D(a′), and we also see that a′ = a on D(a0), or, in
other words, that a0⊆ a′. Since a′ is self-adjoint (by part 2 of the theorem) and
hence closed, we have a−0 ⊆ a′. Since a0 is essentially self-adjoint by Theorem
B.159, this gives a⊆ a′. Taking adjoints reverses the inclusion, and since both
operators are self-adjoint this gives a = a′.

• Given ut and hence (5.343) - (5.344) defining a, we change notation from ut
to u′t in (5.341) and need to show that u′t = ut . Indeed, let

ψt = utψ, (5.349)

and similarly ψ ′t = u′tψ . If ψ ∈ D(a), then by definition of a we have

i
dψt

dt
= i lim

s→0

ut+s−ut

s
ψ = i lim

s→0

us−1H

s
utψ = aψt , (5.350)

which also shows that ψt ∈D(a). Similarly, idψ ′t/dt = aψ ′t , so that ψt and ψ ′t
satisfy the same differential equation with the same initial condition

ψ(0) = (ψ(0))′ = ψ.

Now consider ψ̂t =ψt−ψ ′t , which once again satisfies the same equation (i.e.,
idψ̂t/dt = aψ̂t), but this time with initial condition ψ̂0 = ψ(0) − (ψ(0))′ =
ψ −ψ = 0. The key point is that any solution ψ̂t of this equation has the
property ‖ψ̂t‖= ‖ψ̂0‖ for any t ∈ R, since by symmetry of a,

d
dt
‖ψ̂t‖2 =

d
dt
〈ψ̂t , ψ̂t〉=−i(〈ψ̂t ,aψ̂t〉−〈aψ̂t , ψ̂t〉) = 0.

For our specific ψ̂t we have ‖ψ̂0‖= 0 and hence ψt = ψ ′t , that is, u′t = ut . �
Corollary 5.75. With t �→ ut and a defined and related as in Theorem 5.73, if ψ ∈
D(a), for each t ∈ R the vector ψt defined by (5.349) lies in D(a) and satisfies

aψt = i
dψt

dt
, (5.351)

whence t �→ ψt is the unique solution of (5.351) with initial value ψ(0) = ψ .

This follows from the proof of part 3 of Theorem 5.73. With a = h/h̄ (as above),
this is just the famous time-dependent Schrödinger equation

hψt = ih̄
dψt

dt
. (5.352)
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Notes

§5.1. Six basic mathematical structures of quantum mechanics

Wigner’s Theorem was first stated by von Neumann and Wigner (1928), but the
first proof appeared in Wigner (1931). See Bonolis (2004) and Scholz (2006) for
some history. Instead of working with P1(H) with the bilinear trace form express-
ing the transition probabilities, one may also formulate and prove Wigner’s Theorem
in terms of the projective Hilbert space PH equipped with the Fubini–Study metric,
in which case the relevant symmetries may be defined geometrically as isometries.
See Freed (2012) for this proof, as well as Brody & Hughston (2001) for the un-
derlying geometry. Kadison’s Theorem may be traced back from Kadison (1965).
See also Moretti (2013). Ludwig symmetries go back to Ludwig (1983); see also
Kraus (1983). Our approach to von Neumann symmetries was inspired by Hamhal-
ter (2004), and has a large pedigree in quantum logic. Bohr symmetries were intro-
duced in Landsman & Lindenhovius (2016), where Theorem 5.4.6 was also proved.

§5.2. The case H = C2

This material is partly based on Simon (1976). The covering map (5.46) has a
nice geometric description: if Σ = C∪ {∞} is the Riemann sphere, we have the
well-known stereographic projection

S2 ∼=→ Σ ; (5.353)

(x,y,z) �→ x+ iy
1− z

. (5.354)

If u ∈ SU(2) is given by (5.43), then the associated Möbius transformation

z �→ αz+β
−β z+α

is a bijection of Σ , whose associated transformation of S2 is the rotation R = π̃(u).
§5.3. Equivalence between the six symmetry theorems

Most proofs may be also found in Cassinelli et al (2004) or Moretti (2013).
§5.4. Proof of Jordan’s Theorem

Our proof of Jordan’s Theorem is taken from Bratteli & Robinson (1987); see
also Thomsen (1982) for a simplification of the purely algebraic step (which we
delegated to Theorem C.175), originally proved by Jacobson & Rickart (1950).
§5.5. Proof of Wigner’s Theorem

There are many proofs of Wigner’s Theorem, none of them really satisfactory
(in this respect the situation is similar to Gleason’s Theorem). Our proof follows
Simon (1976), who in turn relies on Bargmann (1964) and Hunziker (1972). The
proof in Cassinelli et al (2004) seems cleaner, but their proof of the additivity of
their operator Tω is not easy to follow. For a geometric approach see Freed (2012).
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If dim(H) ≥ 3, the conclusion of Wigner’s Theorem follows if W merely pre-
serves orthogonality (Uhlhorn, 1963). See also Cassinelli et al (2004). This, in turn,
has been generalized in various directions, e.g. to indefinite inner product spaces
(Molnár, 2002) as well as to certain Banach spaces, where one says that x is orthog-
onal to y if for all λ ∈ C one has ‖x+λy‖ ≥ ‖x‖ (Blanco & Turnšek, 2006).
§5.6. Some abstract representation theory

Among numerous books on representation theory, our personal favourite is Barut
& Raçka (1977), and also Gaal (1973) and Kirillov (1976) are classics at least for
the abstract theory. An interesting recent paper on the unitary group on infinite-
dimensional Hilbert space is Schottenloher (2013).
§5.7. Representations of Lie groups and Lie algebras

This section was inspired by Hall (2013) and Knapp (1988). For Lie’s Third The-
orem, see, for example, Duistermaat & Kolk (2000), §1.14. To obtain Theorem 5.41,
consider the canonical projection π̃ : G̃→G and define D = π̃−1({e}). This is a dis-
crete normal subgroup of G̃, and it is an easy fact that a discrete normal subgroup of
any connected topological group must lie in its center. Note that a discrete subgroup
of the center of G̃ is automatically normal.

The exponentiation problem for skew-adjoint representations of g is consider-
ably more complicated than in finite dimension. Let H be an infinite-dimensional
Hilbert space with dense subspace D and let ρ : g→ L(D,H) be a linear map, where
L(D,H) is the space of linear maps from L to H. We say that ρ is a skew-adjoint
representation of g if (i): D is invariant under u′(g), (ii): the commutation relations
(5.157) hold on D, and (i): each iρ(A) is essentially self-adjoint on D. For example,
we have seen that if u : G→U(H) is a unitary representation, then the construction
ρ(A) = u′(A), defined on the Gårding domain D = DG, fits the bill. Conversely, ad-
ditional conditions are needed for ρ to exponentiate to a unitary representation. The
best-known of those is Nelson’s criterion: if, given a skew-adjoint representation
ρ : g→ L(D,H), the Nelson operator or Laplacian Δ = ∑dim(g)

k=1 ρ(Tk)
2 is essen-

tially self-adjoint on D, then ρ exponentiates to a unitary representation of G̃ (with
additional remarks similar to those in Corollary 5.43).
§5.8. Irreducible representations of SU(2)
§5.9. Irreducible representations of compact Lie groups

See e.g. Knapp (1988), Simon (1996), and Deitmar (2005), and innumerable
other books. This material ultimately goes back to (É.) Cartan and Weyl.
§5.10. Symmetry groups and projective representations

See Varadarajan (1985), Tuynman & Wiegerinck (1987), Landsman (1998a),
Cassinelli et al (2004), and Hall (2013). For different proofs of Theorem 5.59
(Bargmann, 1954) see Simms (1971) and Cassinelli et al (2004). Leaving out the
anti-unitary symmetries is a pity; see e.g. Freed & Moore and Roberts (2016).
§5.11. Position, momentum, and free Hamiltonian

§5.12. Stone’s Theorem

See Reed & Simon (1972), Schmüdgen (2012), Moretti (2013), Hall (2013), and
many other books. Our proof of part 1 of Theorem 5.73 is original.



Part II

Between C0(X) and B(H)



Chapter 6

Classical models of quantum mechanics

This chapter gives an introduction to a chain of results attempting to exclude deeper
layers underneath quantum mechanics that restore some form of classical physics:

‘[Such results] more or less illustrate the ways along which some opponents might hope to
escape Bohr’s reasonings and von Neumann’s proof and the places where they are danger-
ously near breaking their necks.’ (Groenewold, 1946, p. 454)

In so far as they are mathematically precise, such no-go results have their roots
in von Neumann’s 1932 book, which gave rise to two traditions that were often
in polemical opposition to each other. Mathematically minded authors typically
admired von Neumann’s exclusion of hidden variables, yet tried to strengthen his
theorem by weakening its assumptions; this sparked, for example, Gleason’s Theo-
rem (1957) as well as the Kochen–Specker Theorem (1967). Certain physicists (led
by Bell), on the other hand, tried to circumvent (and later even ridicule) von Neu-
mann’s work. A high point of this tradition was Bell’s Theorem from 1964, which
was informed not only by von Neumann, but even more so by the famous Einstein–
Podolsky–Rosen (EPR) paper from 1935, as well as by Bohm’s deterministic pilot
wave reformulation of quantum mechanics (1952). However, at the end of the day
these traditions turned out to be not really divergent after all: Bell not only indepen-
dently (and earlier) obtained a version of the Kochen–Specker Theorem, but, more
importantly, his results from 1964 turn out to be very closely related to the culmina-
tion of the first tradition in the form of the so-called Free Will Theorem (FWT), which
was published by Conway and Kochen during 2006–2008. Indeed, although its va-
lidity is uncontroversial, this theorem has been criticized on the following grounds:

1. Lack of novelty compared with the famous paper by Bell (1964), whose assump-
tions and conclusions are at least quite similar to those of the FWT (although the
underlying proofs are mathematically quite distinct from those in the FWT).

2. Lack of novelty even within its own terms: versions of the FWT had actually been
around for decades under less illustrious titles and authorships, e.g. Heywood &
Redhead (1983), Stairs (1983), Brown & Svetlichny (1990), and Clifton (1993).

3. Circularity, in that indeterminism is presupposed (namely in the assumption that
‘experimenters have a certain freedom’) instead of derived.
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One aim of this chapter is to clarify these matters, with the following conclusions:

1. The difference between earlier literature in the same direction and the FWT is
largely one of emphasis, namely on free will (!), exemplifying a recent trend
(also found elsewhere) in emphasizing free choice of the settings of experiments.
Unfortunately, like Bell, Conway and Kochen even mathematically use an infor-
mal way of talking about free settings, not to speak of the complete absence of
any serious philosophical analysis of free will among all three authors (for which
perhaps Bell, but certainly not Conway and Kochen may be excused).

2. Granting the informal characterization of free settings, both Bell’s (1964) The-
orem and the FWT establish a contradiction between quantum mechanics, deter-
minism, and locality (in the sense of Bell, which in the presence of determinism
reduces to a no-signaling condition called parameter independence).

3. The technical difference between Bell’s Theorem and the FWT lies in four facts:

a. Bell’s arguments rely on probability theory (whereas the FWT does not).
b. The (optical) corner of quantum mechanics used in Bell’s Theorem may be

replaced by the corresponding experimental results, whereas the FWT uses
uncontroversial yet untested predictions about massive spin-1 particles.

c. The FWT must assume perfect (EPR) correlations, which are difficult to realize
and hence are avoided by later versions of Bell’s Theorem (i.e. through the
CHSH inequalities rather than the original Bell inequalities).

d. Like EPR, Bell and his followers focused on locality right from the begin-
ning, and hence in Bell (1964) the inference is from locality to determinism.
Conway and Kochen, on the other hand, resolve the contradiction their FWT
established by inferring randomness of outcomes from freedom of settings.

We start with a very simple treatment of both von Neumann’s argument against
linear hidden variables and Kochen & Specker’s refinement of it, in which von Neu-
mann’s controversial linearity assumption is decisively weakened so as to only apply
to commuting operators; the Kochen–Specker Theorem excludes what are called
non-contextual quasi-linear hidden variables. We then present what we see as a
more transparent version of the FWT, whose key ingredient of replacing the non-
contextuality assumption in the Kochen–Specker Theorem by a locality condition
is preserved, but where this time the setting is completely deterministic. Freedom
of choice then arises as a very natural independence assumption, and any threat of
circularity is avoided: the conclusion is simply a contradiction between determin-
ism, freedom of choice (i.e. of apparatus settings), locality, and quantum mechanics.
Moreover, as we argue in §6.3, the philosophically precise concept of free will used
in the assumptions of the FWT is what Lewis coined ‘local miracle compatibilism’.

Following an interlude on the GHZ Theorem, which seamlessly fits into the given
framework, we then turn to Bell’s Theorems, which we compare with the FWT.

Finally, we give our own rigorous version of an argument first proposed by Col-
beck and Renner to the effect that, under suitable freeness of choice and no-signaling
conditions (similar to those in Bell’s Theorem and the FWT), as long as they are
compatible with quantum mechanics, hidden variables are at best irrelevant. In fact,
this can only be proved under much stronger assumptions, obscuring the claim.
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6.1 From von Neumann to Kochen–Specker

Von Neumann’s Theorem 6.2 below was the first technical result excluding some
class of hidden variables underneath quantum mechanics, namely (in current par-
lance) linear non-contextual hidden variables. This terminology requires some ex-
planation. First, theorems of this kind apparently accept the mathematical structure
of the observables prescribed by the usual formalism of quantum theory, i.e., ob-
servables are identified with elements of the self-adjoint part

Hn(C)≡Mn(C)sa = {a ∈Mn(C) | a∗ = a} (6.1)

of the algebra Mn(C) of n×n matrices (this simple case suffices to make all points
of conceptual interest). Short of introducing “hidden” observables, hidden variable
theories propose the existence of hidden states, which either replace or supplement
the usual quantum states (which in the case at hand would be density operators).
Mimicking classical (statistical) physics, such states are interpreted as probabil-
ity measures on some phase space X , whose points x ∈ X assign sharp values to
quantum-mechanical observables. Naively, this is done through associated functions

Vx : Hn(C)→ R, (6.2)

but in fact this choice already commits us to the first of two possibilities, which we
pragmatically present as theories predicting measurement outcomes:

• In non-contextual deterministic theories of measurement, the outcome solely
depends on the observable a that is being measured and on the (possibly ‘hidden’)
state of the system. Theorem 6.2 below, then, rules out such theories in which
values are sharp (i.e., dispersion-free), and Vx in (6.2) is linear. The Kochen–
Specker Theorem subsequently proves the same impossibility under a weaker
(and physically more reasonable) assumption called quasi-linearity.

• Contextual deterministic theories of measurement, on the other hand, allow the
outcome of some measurement of a to depend on the measurement context (as
well as on the state), which in this case is understood as the choice of possible
other (compatible) observables b measured together with a (i.e., ab = ba). This
seems a reasonable assumption, well within the spirit of quantum mechanics,
though perhaps not so in the extreme form later held by Heisenberg, according
to which measurement outcomes (or even “reality”) are “created” by the mea-
surement. Under a weakened non-contextuality assumption, Bell’s Theorem (cf.
§6.5) and the Free Will Theorem (§6.2) rule out such theories, too.

Definition 6.1. A non-contextual hidden variable is a map V : Hn(C)→ R that
for each a ∈ Hn(C), and in terms of the n×n unit matrix 1n, satisfies

V (a2) = V (a)2; (6.3)
V (1n) = 1. (6.4)

That is, V is dispersion-free as well as normalized, respectively.
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Theorem 6.2. For n ≥ 2, non-zero linear dispersion-free maps V : Hn(C)→ R do
not exist. In particular, linear non-contextual hidden variables do not exist.

Proof. Such maps extend to complex-linear dispersion-free maps V : Mn(C)→ C
by complex linearity, so that theorem is equivalent to Proposition 2.10. �

As von Neumann perfectly well understood himself, his seemingly natural linear-
ity assumption (given the mathematical structure of quantum mechanics unearthed
by none other than he!) is unwarranted physically (and even mathematically, since
eigenvalues and eigenstates, which should be the hallmark of dispersion-free states,
are by no means linear in the underlying operator). This suggests the following:

Definition 6.3. A map V : Hn(C)→ R is called quasi-linear if for all s, t ∈ R and
all a,b ∈ Hn(C) that commute (i.e., ab = ba) one has

V (sa+ tb) = sV (a)+ tV (b). (6.5)

As in the linear case, such a map uniquely extends to a map V : Mn(C)→ C that is
precisely a quasi-state in the sense of Definition 2.26. The following lemma will be
useful, also showing that the above objections to linearity have been met.

Lemma 6.4. Let V : Hn(C)→ R be a quasi-linear non-contextual hidden variable.

1. For each a ∈ Hn(C), the number λ =V (a) is an eigenvalue of a.
2. If (a1, . . . ,ak) pairwise commute, and b = f (a1, . . . ,ak) for some polynomial f ,

then V (b) = f (V (a1), . . . ,V (ak)).

More generally, it follows from Theorem C.24 that if H is a Hilbert space and V :
B(H)sa → R is a quasi-linear non-contextual hidden variable (or, equivalently, its
complexification VC : B(H)→C is a dispersion-free quasi-state), then V (a) ∈ σ(a)
(provided a∗ = a). This implies the above lemma, but we also provide a direct proof.

Proof. For any b ∈ Hn(C) with ab = ba, eq. (6.3) and quasi-linearity imply that

V (ab) =V (a)V (b); (6.6)

just evaluate V ((a± b)2) = (V (a)±V (b))2. Taking b = a2 etc. and also invoking
(6.4) then yields V (p(a)) = p(V (a)) for any polynomial in a. If λi are the eigenval-
ues of a, its characteristic polynomial p(a) = ∏n

i=1(a−λi) satisfies p(a) = 0, so that
V (p(a)) = 0 and hence p(V (a)) = 0, or ∏n

i=1(λ −λi) = 0. This implies that λ = λi
for some i. The second claim is proved in a similar way. �

Theorem 6.5. For n≥ 3, quasi-linear non-contextual hidden variables do not exist.

This is the Kochen–Specker Theorem. It follows from Gleason’s Theorem 2.28 and
von Neumann’s Theorem 6.2, since according to Corollary 2.29 to the former, quasi-
states on Mn(C) are actually states (in other words, quasi-linear non-contextual hid-
den variables are linear). However, Kochen and Specker also gave a direct proof of
their theorem, subsequently somewhat simplified along the following lines.
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Proof. We prove the claim for n = 3, which (by restricting V to any self-adjoint
subalgebra of Mn(C) isomorphic to H3(C)) implies the result for all n > 3 also. To
prove Theorem 6.5 for n = 3, we interpret H3(C) as the algebra of observables of a
spin-1 particle and introduce the well-known angular momentum matrices

J1 =

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ , J2 =

⎛⎝ 0 0 i
0 0 0
−i 0 0

⎞⎠ , J3 =

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠ . (6.7)

In what follows, we will heavily use the squares

J2
1 =

⎛⎝ 0 0 0
0 1 0
0 0 1

⎞⎠ , J2
2 =

⎛⎝ 1 0 0
0 0 0
0 0 1

⎞⎠ , J2
3 =

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠ , (6.8)

each of which has eigenvalues 0 and 1. The J2
i commute by inspection, and satisfy

J2
1 + J2

2 + J2
3 = 2 ·13. (6.9)

The (matrix-valued) angular momentum vector is given by

J = J1e1 + J2e2 + J3e3, (6.10)

where (e1,e2,e3) is the standard basis of R3 (seen as a vector space with the usual
inner product 〈·, ·〉), i.e., e1 = (1,0,0), etc., and the angular momentum Ju along an
arbitrary unit vector u = ∑i uiei in R3 is given by

Ju = 〈J,u〉=
3

∑
i=1

Jiui. (6.11)

This brings us to the crucial point: a map V : H3(C)→R induces a map Ṽ : S2 →R
on the set S2 of all unit vectors u in R3, via

Ṽ (u) =V (J2
u). (6.12)

As usual, a basis of R3, denoted by a= (u1,u2,u3), is always assumed orthonormal.

Lemma 6.6. Let V : H3(C)→ R be a non-contextual quasi-linear hidden variable,
with associated map Ṽ : S2 →{0,1} given by (6.12). Then:

1. Ṽ (−u) = Ṽ (u) for each u∈ S2 (so that Ṽ is defined on the real projective plane);
2. If a = (u1,u2,u3) is a basis, then the triple Ṽ (a) ≡ (Ṽ (u1),Ṽ (u2),Ṽ (u3)) must

contain a single 0 and two 1’s, i.e., Ṽ (a) must be one of the triples

λ (1) = (0,1,1);

λ (2) = (1,0,1);

λ (3) = (1,1,0). (6.13)
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In Gleason-like language, Ṽ is a 2-valued frame function of weight w(Ṽ ) = 2.

Proof. If a = (u1,u2,u3) is a basis, then Jui = uJiu∗ for i = 1,2,3, where u is the
3×3 matrix with entries ui j = 〈ui,e j〉. Since u is unitary, the matrices Jui and their
squares have the same eigenvalues and satisfy the same relations as the Ji and their
squares. Thus the eigenvalues of J2

ui
are 0 and 1, for fixed a the squares J2

ui
mutually

commute, and they satisfy the sum rule (6.9), i.e., J2
u1
+J2

u2
+J2

u3
= 2 ·13, so Ṽ (u1)+

Ṽ (u2)+Ṽ (u3) = 2. The claim then follows from Definition 6.3 and Lemma 6.4. �
Now define a coloring of R3 as any map Ṽ : S2→{0,1} satisfying the two properties
in Lemma (6.6). The proof of Theorem 6.5 then reduces to the following lemma.

Lemma 6.7. There exists no coloring of R3.

Proof. Take the following unit vectors (some identical), grouped into 11 bases (for
simplicity we use unnormalized vectors, e.g., (1,0,1) stands for (1/

√
2,0,1/

√
2)):

basis u1 u2 u3

a1 (0,0,1) (1,0,0) (0,1,0)
a2 (1,0,1) (−1,0,1) (0,1,0)
a3 (0,1,1) (0,−1,1) (1,0,0)
a4 (1,−1,2) (−1,1,2) (1,1,0)
a5 (1,0,2) (−2,0,1) (0,1,0)
a6 (2,1,1) (0,−1,1) (−2,1,1)
a7 (2,0,1) (0,1,0) (−1,0,2)
a8 (1,1,2) (1,−1,0) (−1,−1,2)
a9 (0,1,2) (1,0,0) (0,−2,1)
a10 (1,2,1) (−1,0,1) (1,−2,1)
a11 (1,0,0) (0,2,1) (0,−1,2).

We will show that one cannot even color this particular finite set of vectors (let alone
all unit vectors in R3). We denote a vector ui in a basis aμ by

u
(μ)
i , i = 1,2,3 ,μ = 1, . . . ,11,

and write e.g. Ṽ (aμ) = (0,1,1) for the three conditions

Ṽ (u
(μ)
1 ) = 0, Ṽ (u

(μ)
2 ) = 1), Ṽ (u

(μ)
3 ) = 1.

The main point is that if some coloring Ṽ maps a specific vector u to 0, then all
vectors orthogonal to u must go to 1. In particular, two orthogonal vectors can never
both be sent to 0. To find a contradiction (to the assumption that Ṽ exists), we try
to assign values Ṽ (u

(μ)
i ) one after the other, starting in row 1. Here some specific

choices will be made, but by symmetry other choices lead to similar contradictions.
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1. Suppose that Ṽ (a1) = (0,1,1) (i.e., Ṽ (u
(1)
1 ) = 0 and Ṽ (u

(1)
2 ) = Ṽ (u

(1)
3 ) = 1). In

a2 this forces Ṽ (u
(2)
3 ) = 1, so that either u

(2)
1 or u

(2)
2 must be mapped to 0 (and

the other to 1). Let Ṽ (u
(2)
1 ) = 0, so that Ṽ (u

(2)
2 ) = 1, i.e., Ṽ (u2) = (0,1,1). In a3

one has u
(3)
3 = u

(1)
2 , so Ṽ (u

(3)
3 ) = 1. We choose Ṽ (u

(3)
1 ) = 0 and hence Ṽ (u

(3)
2 ) =

1, so Ṽ (u2) = (0,1,1). In a4, the vector u
(4)
3 is orthogonal to u

(1)
1 , which has

been mapped to zero already, so that Ṽ (u
(4)
3 ) = 1. The remaining free choice is

arbitrarily made as Ṽ (u
(4)
1 ) = 0, so that Ṽ (u

(4)
2 ) = 1 and hence Ṽ (a4) = (0,1,1).

2. But now everything is fixed for a5 t/m a11, as follows. From a5, the vector u
(5)
3

already occurred in u1, and moreover, u
(5)
2 is orthogonal to u

(4)
1 from a4. Be-

cause Ṽ (u
(4)
1 ) = 0, one must have Ṽ (u

(4)
2 ) = 1. And so on and so forth, yielding

Ṽ (aμ) = (0,1,1) voor μ = 5, . . . ,10 (as was the case also for μ = 1,2,3,4).
3. In a11 one has u

(11)
1 = u

(1)
2 , so u

(11)
1 is mapped to 1. Furthermore, u

(11)
2 is or-

thogonal to u
(4)
1 , which was mapped to 0; hence u

(11)
2 goes to 1. Finally, u

(11)
3 is

orthogonal to u
(10)
1 , which was mapped to 0, so that u(11) must go to 1. Thus

Ṽ (a11) = (1,1,1). (6.14)

But (1,1,1) is not an admissible value of Ṽ ! So Ṽ and hence V cannot exist. �

Corollary 6.8. There is no function Ṽ with the two properties stated in Lemma 6.6.

The Kochen–Specker Theorem is often stated in the following way.

Definition 6.9. For any finite-dimensional Hilbert space H, a coloring of the set
P1(H) of one-dimensional projections on H is a function

W : P1(H)→{0,1}

such that for any resolution of the identity (ei) with ei ∈P1(H), i.e.,

eie j = δi jei; (6.15)

∑
i

ei = 1H , (6.16)

one has
∑

i
W (ei) = 1, (6.17)

so that there is exactly one member ei of the family such that W (ei) = 1.

Note that if e ∈P1(H) then e = eψ = |ψ〉〈ψ| for some unit vector ψ ∈ H, so
that each basis (υi) of H defines such a family by ei = |υi〉〈υi|, and vice versa,
up to phase factors. The setting of Gleason’s Theorem is similar, with the crucial
difference that the function on P1(H) in question then takes values in [0,1] instead
of {0,1} and hence can be shown to exist, even amply so (as there are many states).
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Theorem 6.10. If dim(H)> 2, there exists no coloring of P1(H).

Proof. For H = C3, the existence of W would yield the existence of Ṽ through

Ṽ (u) = 1−W (eu), (6.18)

where u ∈ R3 is regarded as a vector in C3. Property 1 in Lemma 6.6 is obviously
satisfied. To prove property 2, we note that for any unit vector u∈R3 ⊂C3, we have

J2
uu = 0, (6.19)

since an explicit computation based on (6.11) shows that, with u = (u1,u2,u3),

J2
u =

⎛⎝ u2
2 +u2

3 −u1u2 −u1u3
−u1u2 u2

1 +u2
3 −u2u3

−u1u3 −u2u3 u2
1 +u2

2

⎞⎠ . (6.20)

It follows from rotation invariance that the eigenvalues of J2
u are the same as those

of each J2
i , cf. (6.8), i.e., λ = 0 with multiplicity one and λ = 1 with multiplicity

two. Hence (6.19) gives the projection e0 onto the eigenspace of J2
u for λ = 0 as

e0 = |u〉〈u| ≡ eu. (6.21)

Property 2 in Lemma 6.6 then follows from the assumption that W is a coloring.
Since Ṽ cannot exist by Lemma 6.7, neither can W . This proves the claim for C3.

We finish by induction. Suppose Cn contains some set {uk}k∈K of unit vectors
that cannot be colored, assuming that u0 = (1,0, . . . ,0) lies in this set. We embed
each uk into Cn+1 by adding a zero at the end, calling the image u′k. Adding v =
(0, . . . ,0,1), the only possible coloring of the set {u′k,v}k∈K in Cn+1 is given by
W (u′k) = 0 for each k ∈ K and W (v) = 1. Indeed, if W (u′k0

) = 1 for some k0, then,
since v is orthogonal to each u′k, we must have W (v) = 0, which means that the
original set {uk}k∈K should be colorable in Cn, but this is impossible by assumption.

We now embed each uk into Cn+1 by adding a zero at the beginning, denoting its
image by u′′k , and add u′0 = (1,0, . . . ,0,0). By the same token, the only coloring of
the set {u′′k ,u′0}k∈K is given by W (u′′k ) = 0 for each k ∈ K and W (u′0) = 1. But this
leaves the set {u′k,u′′k ,v}k∈K in Cn+1 uncolorable, since colorability of {u′k,v}k∈K
gave W (u′0) = 0, whereas colorability of {u′′k ,u′0}k∈K gave W (u′0) = 1. �

The set thus obtained is larger than necessary. For example, already for H = C4 the
following bases cannot be colored (again writing down unnormalized vectors):
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basis u1 u2 u3 u4

a1 (0,0,0,1) (0,0,1,0) (1,1,0,0) (1,−1,0,0)
a2 (0,0,0,1) (0,1,0,0) (1,0,1,0) (1,0,−1,0)
a3 (1,−1,1,−1) (1,−1,−1,1) (1,1,0,0) (0,0,1,1)
a4 (1,−1,1,−1) (1,1,1,1) (1,0,−1,0) (0,1,0,−1)
a5 (0,0,1,0) (0,1,0,0) (1,0,0,1) (1,0,0,−1)
a6 (1,−1,−1,1) (1,1,1,1) (1,0,0,−1) (0,1,−1,0)
a7 (1,1,−1,1) (1,1,1,−1) (1,−1,0,0) (0,0,1,1)
a8 (1,1,−1,1) (−1,1,1,1) (1,0,1,0) (0,1,0,−1)
a9 (1,1,1,−1) (−1,1,1,1) (1,0,0,1) (0,1,−1,0)

The proof is the following observation: if we present the coloring condition as

W (0,0,0,1)+W (0,0,1,0)+W (1,1,0,0)+W (1,−1,0,0) = 1; (a1)
· · · (a•)

W (1,1,1,−1)+W (−1,1,1,1)+W (1,0,0,1)+W (0,1,−1,0) = 1, (a9)

then since there are nine such equations the sum of the right-hand sides is odd,
whereas the sum of the left-hand sides is even, since each vector appears twice.

To bridge the gap between the Kochen–Specker Theorem and the Free Will The-
orem, as well as the one between mathematics and physics, we now rephrase the
former as a “mini FWT”. We build an experiment consisting of a box containing a
spin-1 particle and a device capable of measuring all of the three observables

(J2
u1
,J2

u2
,J2

u3
)

for an arbitrary basis a of R3; since the operators in question commute, this si-
multaneous measurement is allowed by quantum theory. The choice of a is called
the setting of the experiment, traditionally denoted by A (in honor of Alice, who is
supposed to perform the experiment), with possible values A = a. In “phenomeno-
logical” notation, the observable measured in an experiment like this is called F ,
which in the case at hand has three components F = (F1,F2,F3): given the setting a,
the observable Fi corresponds to J2

ui
. The notation F = λ for λ = (λ1,λ2,λ3), i.e.,

Fi = λi, then expresses the fact that the outcome of a measurement of F is λ .
According to both quantum mechanics and our quasi-linear non-contextual hid-

den variable theory, either λi = 0 or λi = 1, and λ must lie in the value space

Λ = {(0,1,1),(1,0,1),(1,1,0)}; (6.22)

cf. Lemma 6.6 for the hidden variable theory, while in quantum mechanics (6.22)
follows from the fact that λ must lie in the joint spectrum of the three operators J2

ui
.
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This, in turn means that there must be a joint eigenvector ψ such that J2
ui
= λiψ

for each i = 1,2,3. There are three such joint eigenvectors, namely u1, u2, and
u3 (initially defined as vectors in R3 but now seen as vectors in C3), with joint
eigenvalues (0,1,1), (1,0,1), and (1,1,0), respectively.

Otherwise, quantum mechanics and our quasi-linear non-contextual hidden vari-
able theory provide a different picture of the experiment. According to the former
theory, a given spin-1 particle may be prepared in a (pure) quantum state ψ , which
is a unit vector in C3. Quantum theory then merely predicts probabilities

Pψ(F = λ |A = a)≡ pJ2
u1 ,J

2
u2 ,J

2
u3
(λ1,λ2,λ3), (6.23)

for the possible outcomes λ , which according to the Born rule (2.21) are given by

Pψ(F = λ (i)|A = a) = |〈ui,ψ〉|2. (6.24)

So if ψ = ui, then the outcome will be λ = λ (i) with probability one, but in a super-
position ψ = ∑i ciui (with ∑i |ci|2 = 1), quantum theory predicts a random sequence
of outcomes λ (i), each with probability |ci|2.

Let us note that quantum mechanics is non-contextual in the following (proba-
bilistic) sense. Alice could decide to perform just one measurement instead of three,
say F1, with setting a1 = u1, or perhaps she may not know if the other two are
performed. Fortunately, this does not matter, since for any unit vector ψ ∈ C3,

Pψ(F1 = λ1|A1 = u1) = ∑
λ2,λ3

Pψ(F = λ |A = a), (6.25)

so that according to quantum mechanics, it does not matter for the Born probabilities
of the first measurement if the other two are performed or not.

The question now arises if some quasi-linear non-contextual hidden variable the-
ory theory could improve on this, in that the probabilities quantum theory assigns
to various outcomes are replaced by predictions. In the sprit of determinism (whilst
avoiding the appearance of circularity), such a theory should also predict the settings
of the experiment. Accordingly, the assumptions leading to our “mini FWT” are:

Definition 6.11. In the context of the experiment on spin-1 particles just discussed:

• Determinism firstly means that there is a state space X with associated functions

A : X → XA; (6.26)
F : X →Λ , (6.27)

where XA is the set of all bases in R3 (i.e. a ∈ XA), and Λ is some set of possible
outcomes; these functions completely describe the experiment in the sense that
each state x ∈ X determines both its settings a = A(x) and its outcome λ = F(x).
Here A = (A1,A2,A3), where the functions Ai : X → S2 (seen as the space of unit
vectors in R3) combine to define a basis, and F = (F1,F2,F3), where Fi : X →R.
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Secondly, there exists some set XZ and an additional function

Z : X → XZ , (6.28)

such that
F = F(A,Z). (6.29)

More precisely, for each x ∈ X one has

F(x) = F̂(A(x),Z(x)) (6.30)

for a certain function F̂ : XA×XZ → Λ . Also this function is, of course, a triple
F̂ = (F̂1, F̂2, F̂3), where F̂i : XA×XZ → 2. In terms of (6.28), then:

• Nature then requires that Λ is given by (6.22) (so that Fi : X → 2).
• Freedom states that A and Z are independent in the sense that the function

A×Z : X → XA×XZ

x �→ (A(x),Z(x)) (6.31)

is surjective; in other words, for each (a,z)∈ XA×XZ there is an x∈ X for which
A(x) = a and Z(x) = z (making a and z free variables).

• Non-contextuality (cf. Lemma 6.6) finally stipulates that F̂ take the form

F̂((u1,u2,u3),z) = (F̃(u1,z), F̃(u2,z), F̃(u3,z)), (6.32)

for a single function F̃ : S2×XZ → 2 that also satisfies

F̃(−u,z) = F̃(u,z). (6.33)

“Nature” may be taken to be either an experimental result or an uncontroversial
prediction of (some corner of) quantum mechanics. The function Z (including its
domain XZ) describes anything relevant to the experiment (such as the behaviour of
the particle) except the variables determining the settings (which do form part of
X). The goal of the freedom assumption is to remove any potential dependencies
between the variables (a,z), and hence between the physical system Alice perform
her measurements on, and the devices she performs her measurements with.

Corollary 6.12. Determinism, Nature, Freedom, and Non-contextuality are contra-
dictory.

Proof. For each z ∈ XZ , define a function Ṽz : S2 → 2 by Ṽz(u) = F̃(u,z). The as-
sumptions combine to give Ṽz the same properties as Ṽ in Lemma 6.6 (where z
“goes along for a free ride”). According to Corollary 6.8 (which applies because by
Freedom one can freely vary a for any given z), the function Ṽz cannot exist. �

This “mini FWT” is a good exercise for the Free Will Theorem in the next section.
For example, let us note, as a warning, that if Determinism is seen as the culprit (and
hence falls), then the other assumptions in the (min) FWT are no longer defined. This
blocks a direct inference from Freedom to Indeterminism à la Conway & Kochen.
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6.2 The Free Will Theorem

The Free Will Theorem is similar in spirit to Corollary 6.12, with the difference that
the experiment now has two wings and the non-contextuality assumption is replaced
by a certain locality condition. This condition relates to the setting introduced by
Einstein, Podolsky, and Rosen in 1935 and further studied by Bohm, Bell, and oth-
ers, in which (in current jargon) two physicists, called Alice and Bob, are far apart
whilst performing simultaneous experiments on some correlated two-particle state
(technically speaking, their measurements need to be spacelike separated). In the
situation considered by EPR each particle had a spatial degree of freedom and hence
required the infinite-dimensional Hilbert space L2(R3) for its description, but, as
recognized by Bohm, the thrust of the argument comes out more clearly if each
particle merely has an internal degree of freedom (and is “frozen” otherwise).

Bell (1964) considered a pair of spin 1
2 particles (cf. §6.5), each of which has

Hilbert space C2 (although the famous experiments of Aspect testing the violation of
Bell’s inequalities used photons, which have the “same” Hilbert space), but because
of its reliance on the Kochen–Specker Theorem (which fails for C2) the Free Will
Theorem requires one dimension more, i.e., H = C3. As before, we see this as the
state space of a massive spin-1 particle. The price of this extra dimension is that
the pertinent experiment whose outcome provides the Nature input for the Free Will
Theorem has not actually been performed, but, as in the Bell case, the predictions
of quantum mechanics are uncontroversial and will serve as input instead.

These predictions are as follows. Alice and Bob measure on the correlated state

ψ0 = (e1⊗ e1 + e2⊗ e2 + e3⊗ e3)/
√

3, (6.34)

where we recall that (e1,e2,e3) is the standard basis of R3, now seen as a basis of
C3. This state is rotation-invariant, which means that nonzero angular momentum in
one particle must be compensated for in the other, creating the desired correlations.

As before, we denote Alice’s setting by A = a, which remains the choice of some
basis of R3, but this time also Bob picks some basis b, so that we write B = b for his
choice. Similar to Alice’s outcome F = λ we denote Bob’s by G = γ , and quantum
mechanics provides all (Born) probabilities

Pψ0(F = λ ,G = γ|A = a,B = b)≡ pJ2
u1 ,J

2
u2 ,J

2
u3 ,J

2
v1 ,J

2
v2 ,J

2
v3
(λ1,λ2,λ3,γ1,γ2,γ3),

which are well defined because Alice’s squared angular momentum operators J2
u1

commute with Bob’s J2
v1

as a consequence of Einstein locality (stating that spacelike
separated observables commute). Note that similarly to a = (u1,u2,u3) for Alice’s
basis, we write b = (v1,v2,v3) for Bob’s. If Alice merely measures Fi whilst Bob
measures G j, then, as in the previous section, it does not matter which other (com-
muting) operators are measured and/or whether Alice and Bob know about this, cf.
(6.25). Thus we may write either (A = a,B = b) or Ai = ui,Bi = vi for the settings,
and simple calculations show that the Born probabilities are given by:
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Pψ0(Fi = 1,G j = 1|A = a,B = b) = 1
3 (1+ 〈ui,v j〉2); (6.35)

Pψ0(Fi = 0,G j = 0|A = a,B = b) = 1
3 〈ui,v j〉2; (6.36)

Pψ0(Fi = 1,G j = 0|A = a,B = b) = 1
3 (1−〈ui,v j〉2); (6.37)

Pψ0(Fi = 0,G j = 1|A = a,B = b) = 1
3 (1−〈ui,v j〉2), (6.38)

where 〈ui,v j〉2 = |〈ui,v j〉|2, etc., since the vectors are real, In terms of the notation

Pψ0(Fi = G j| ·) = Pψ0(Fi = 0,G j = 0| ·)+Pψ0(Fi = 1,G j = 1| ·); (6.39)
Pψ0(Fi �= G j| ·) = Pψ0(Fi = 0,G j = 1| ·)+Pψ0(Fi = 1,G j = 0| ·), (6.40)

this yields

Pψ0(Fi = G j|A = a,B = b) = 1
3 (1+2〈ui,v j〉2); (6.41)

Pψ0(Fi �= G j|A = a,B = b) = 2
3 (1−〈ui,v j〉2). (6.42)

The crucial point for the Free Will Theorem is that this implies perfect correlation:

Pψ0(Fi = G j|Ai = B j) = 1, (6.43)

in agreement with the intuition about angular momentum expressed earlier.
We now move to a (possibly counterfactual) deterministic description of this ex-

periment along the lines of the previous section. It is straightforward to adapt all
of Definition 6.11 except Non-contextuality (which after all is the assumption we
would like to get rid of!). With the obvious changes, we obtain:

• Determinism again first claims there is a state space X with associated functions

A : X → XA; (6.44)
B : X → XB; (6.45)
F : X →Λ ; (6.46)
G : X →Λ , (6.47)

where XA = XB is the set of all bases in R3, and Λ is some set of possible
outcomes, which completely describe the experiment in the sense that each
state x ∈ X determines both its settings (a = A(x),b = B(x)) and its outcome
(λ =F(x),γ =G(x)). Here A= (A1,A2,A3) and B= (B1,B2,B3) where the func-
tions Ai : X → S2 (where S2 is seen as the space of unit vectors in R3) combine
to define a basis (similarly for B j : X → S2), and F = (F1,F2,F3). Secondly, there
exists some set XZ and an additional function Z : X → XZ such that

F = F(A,B,Z); (6.48)
G = G(A,B,Z), (6.49)

in that for each x ∈ X one has the functional relationships
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F(x) = F̂(A(x),B(x),Z(x)); (6.50)
G(x) = Ĝ(A(x),B(x),Z(x)), (6.51)

for certain functions F̂ : XA×XB×XZ → Λ and Ĝ : XA×XB×XZ → Λ , each
of which is a triple F̂ = (F̂1, F̂2, F̂3) with F̂i : XA×XB×XZ → R, etc. The value
z = Z(x) is just the traditional “hidden variable” (which is often denoted by λ ).

• Freedom then states that A, B, and Z are independent in that for each (a,b,z) ∈
XA×XB×XZ there is an x ∈ X for which A(x) = a, B(x) = b, and Z(x) = z.

• Nature requires that:

– Λ is given by (6.22), i.e. Fi and G j, and hence F̂i and Ĝ j take values in {0,1};
– The experiment measures squares of angular momenta, so that

F̂(a′,b′,z) = F̂(a,b,z); (6.52)
Ĝ(a′,b′,z) = Ĝ(a,b,z), (6.53)

whenever (a′,b′) differ from (a,b) by changing the sign of any basis vector;
– Perfect correlation obtains, cf. (6.43), i.e., writing a = (u1,u2,u3) for Alice’s

basis and b = (v1,v2,v3) for Bob’s, one has

ui = v j ⇒ F̂i(a,b,z) = Ĝ j(a,b,z). (6.54)

We now come to the locality condition that is to replace Non-contextuality. This
condition was first clearly stated by Bell (1964, p. 196), who attributes it to Einstein:

‘The vital assumption is that the result G for particle 2 does not depend on the setting a of
the magnet for particle 1, nor F on b.’

Noting various other notions of locality (such as Einstein locality in local quantum
physics, which requires spacelike separated operators to commute, or Bell locality,
discussed below), the above idea might be called Context locality, but we will simply
refer to it as Locality. In our deterministic setting, a precise formulation is this:

• Locality means that F(A,B,Z) is independent of B and G(A,B,Z) is independent
of A. In other words, we have F = F(A,Z) and G = G(B,Z), so that (with slight
abuse of notation) F̂ : XA×XZ →Λ and Ĝ : XB×XZ →Λ , or, then again, F(x) =
F̂(A(x),Z(x)) and G(x) = Ĝ(B(x),Z(x)), for each x ∈ X .

This finally brings us to (our reformulation of) the Free Will Theorem:

Theorem 6.13. Determinism, Freedom, Nature, and Locality are contradictory.

Proof. The Freedom assumption allows us to treat (a,b,z) as free variables, a
fact that will tacitly be used all the time. First, taking i = j in (6.54) shows that
F̂i(u1,u2,u3,z) only depends on (ui,z), whilst Ĝ j(v1,v2,v3,z) only depends on
(v j,z). Hence we write F̂i(a,z) = F̃i(ui,z), etc. Next, taking i �= j in (6.54) shows
that F̃1(u,z) = F̃2(u,z) = F̃3(u,z). Consequently, the function F̂ : XA×XZ → XF is
given by (6.32). We are now back to the proof of Corollary 6.12, concluding that
such a function does not exist by Corollary 6.8. �
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6.3 Philosophical intermezzo: Free will in the Free Will Theorem

‘The determinism-free will controversy has all of the earmarks of a dead problem. The
positions are well staked out and the opponents manning them stare at each other in mutual
incomprehension.’ (Earman, 1986, p. 235)

The question arises which specific notion of free will is among the assumptions of
the FWT (in the reformulation just given). To put this question in perspective, let
us briefly recall the main point of the debate about free will. This concept has two
poles. One is the “will” itself, requiring a sense of agency, deliberation, and control.
This pole seems to require some form of determinism. A powerful expressions is:

‘Fürst! Was Sie sind, sind Sie durch Zufall und Geburt. Was ich bin, bin ich durch mich.’1

(Beethoven, to his benefactor (!) Prince Lichnowsky)

The other pole of free will is the adjective “free”, i.e., the ability to do otherwise,
which at first sight requires indeterminism. The problem of free will is that these
poles seem contradictory. Many authors conflate free will with moral responsibility:

‘free will can be defined as the unique ability of persons to exercise control over their
conduct in the manner necessary for moral responsibility.’ (McKenna & Coates, 2015)

This aspect is irrelevant to our discussion, concerned as it is with the question what
it would mean for Alice and Bob to choose their settings “freely” if determinism is
assumed (it would have been different if one setting launched a nuclear missile).

Even in our narrow context, the traditional philosophical stances are relevant:

• Compatibilism denies the contradiction, claiming that free will and determinism
coexist. This position may be defended in many ways, among which one finds:

– Reconceptualizing “the ability to do otherwise” in a deterministic world. This
will be our focus in what follows, especially in a version inspired by Lewis.

– Belittling the relevance of “the ability to do otherwise”, as e.g. by Dennett:

‘So if anyone at all is interested in the question of whether one could have done
otherwise in exactly the same circumstances (and internal state) this will have to be
a particularly pure metaphysical curiosity—that is to say, a curiosity so pure as to be
utterly lacking in any ulterior motive, since the answer could not conceivably make
any noticeable difference to the way the world went.’ (Dennett, 1984, p. 559).

• Incompatibilism accepts the contradiction, once again branching off into:

– Libertarianism, arguing that free will requires an indeterministic world.
– Hard determinism, claiming determinism (which is assumed) blocks free will:

‘Ein Mensch kann zwar tun was er will, aber nicht wollen was er will.’2

(Schopenhauer)
– Hard incompatibilism, asserting that ‘every way you look at it you lose’:

free will makes no sense in either a deterministic or an indeterministic world.

1 ‘Lord! What you are, you are through chance and birth. What I am, I am because of myself.’
2 ‘One can admittedly do what one wants, but one cannot want what one wants.’
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Although hard incompatibilism has our sympathy, our opening question con-
cerning the notion of free will in the FWT drives us into the compatibilist direction,
since determinism is among the assumptions shown to be contradictory by Theo-
rem 6.13. Within compatibilism, we will be close to the well-known ‘local miracle’
variant thereof proposed by the philosopher David Lewis. Like other compatibilists
before him (starting at least with G.E. Moore), Lewis attempts to make sense of the
intuition that even in a deterministic world one in principle has the ability to act
differently from the way one actually does, despite the fact that the latter was pre-
determined. A simple example is Alice’s choosing setting a by moving her hand in
a certain way, although she was able to choose a′. On the other hand, she could not
have moved her hand with a speed greater than that of light, so her ability remains
constrained by the laws of nature. Lewis asks us to distinguish between:

• ‘I am able to do something such that, if I did it, a law would be broken.’
• ‘I am able to break a law.’

The latter is impossible, but the former is not on Lewis’s own theory of counterfac-
tuals, according to which the phrase ‘if I did it’ leads us to consider the possible
world in which doing ‘something’ is actually true, whilst in the possible worlds
under consideration as many other features as possible are kept the same as in the
actual world (the precise underlying measure of similarity is not important here).
Thus the phrase ‘a law would be broken’ refers to the laws of the actual world (in
which the alternative action is not realized). It seems to be of great importance to
Lewis that in the first case it is not the agent who would break a law; instead, it is the
breaking of some law of our actual world at an earlier time that enables the subject
to do in an alternative possible world what she could not do in our actual world, .

By making this distinction, Lewis claims that he invalidates the seemingly lethal
Consequence Argument against compatibilist free will, of which a simple version
reads (assuming determinism, on which compatibilist free will is predicated):

1. Alice’s actions are a necessary consequence of the laws of nature plus the state
of the universe (or the relevant part thereof) at any earlier time;

2. Alice is unable to render both (laws and earlier states) false;
3. Alice is unable to render the consequences of laws and earlier states false;
4. Ergo: Alice is unable to do otherwise than what she actually does.

Lewis claims that statement 3 is ambiguous, in that it fails to distinguish between the
two senses in his two bullet points above. The Consequence Argument requires the
latter (which is false), whereas this argument itself is unsound on the former (which
is true). This disambiguation of assumption 3 in the Consequence Argument, then,
is supposed to save (compatibilist) free will. However, a considerable philosophical
literature suggests that the tension between Lewis’s denying the second bullet point
whilst accepting the first is pretty uncomfortable, reflecting the corresponding ten-
sion between the conjunction of determinism and freedom in general; indeed, this is
what the FWT makes precise! Let us first point out that, at least in his terminology
Lewis fails to make a clear distinction between laws of nature and initial states;
from the point of view of modern physics, this distinction is absolutely fundamental
(although it may dispappear in post-modern physics based in e.g. quantum gravity).



6.3 Philosophical intermezzo: Free will in the Free Will Theorem 207

Lewis’s examples of law-breaking events in our actual world typically refer to
violations of some law of nature (like exceeding the speed of light), whereas the (al-
leged) law-breaking in his counterfactuals, such as choosing a′ (where in fact Alice
did not do so) amounts to a change in some earlier state. Thus it might have been
more appropriate if the paper in which Lewis laid out his version of compatibalism
had been entitled Are we free to change the states? instead of Are we free to break
the laws?. On this revision, his distinction of the two cases takes the following form:

• I am able to do something such that, if I did it, the state of the actual world at
some earlier time would have been different.

• I am able to change the actual state of the world.

The latter remains impossible, while it is the former that enables free will. Applied
to Alice, the former should mean (still in the compatibilist spirit of Lewis):

• A slight alteration in the state of the actual world (which would have made it a
different but very similar world according to Lewis) would have led Alice to do
something (such as choosing a′) that she did not do in the actual world (because
according to determinism its actual state at any earlier time—as opposed to the
counterfactual alternative state in the discussion—led her to choose a).

We now make this revised version of Lewis’s local miracle compatibilism math-
ematically precise, in a way that has the additional advantage of involving not only
“the ability do do otherwise”, but also the other component free will, i.e. agency.
Here the intuition is that free will involves a separation between the agent, Alice,
(who is to exercise it) and the rest of the world, under whose influence she acts.
Namely, as in the FWT, let X be the state space of the Universe, and let

a = A(x) (6.55)

again be Alice’s setting, where A : X → XA, as before. We now assume that a is
determined by her “inner state” I as well as the “outer state” O of the rest of the
world, under whose influence she acts. These, in turn, are determined by the state
x ∈ X of the world. That is, A = A(O, I), which expresses the existence of functions

O : X → XO; (6.56)
I : X → XI ; (6.57)
Â : XO×XI → XA, (6.58)

where XO and XI are certain sets, such that for each x ∈ X one has

A(x) = Â(O(x), I(x)). (6.59)

In other words, for some given state x of the world we have

o = O(x); (6.60)
i = I(x); (6.61)
a = Â(o, i). (6.62)
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Note that, in the spirit of Conway and Kochen, in the above analysis Alice (whose
free choice they after all believe to be ultimately a consequence of the free choice
of elementary particles) now plays the role of the spin-1 particles in the bipartite
experiment. Thus the analogy is between the triples:

(a,z,λ ) ∈ XA×Z×Λ ; (6.63)
(o, i,a) ∈ XO×XI×XA. (6.64)

• The first triple is defined in the experimental context of the FWT, where a is the
setting of Alice’s wing of the experiment (which from the perspective of the spin-
1 particle plays the role of the outer state of the world), z is the inner state of the
particle, and λ is the outcome of Alice’s measurement.

• The second pertains to the analysis of Alice’s “free” choice of the setting of her
experiment, where o is the outer state of the world, i is her inner state, and a is
her actual setting, given x ∈ X and hence (o, i) = (O(x), I(x)).

Beyond Determinism, which is expressed by the above framework, our funda-
mental assumption underpinning compatibilist free will is Freedom, defined exactly
as in the FWT: O and I are independent in that the following function is surjective:

O× I : X → XO×XI

x �→ (O(x), I(x)), (6.65)

i.e., for each pair (o, i) ∈ XI×XO there is x ∈ X for which (6.60) and (6.61) hold.
Rephrasing our earlier analysis in this elementary mathematical language, Lewis

wants to make sense of the idea that although Alice’s choice (6.62) at some fixed
time t was determined by the state x of the Universe at that time through (6.60) -
(6.61), or, equivalently, through (6.59), and hence—and this is the whole point of the
Consequence Argument Lewis challenges—by any earlier state xp of the Universe
at time tp, nonetheless Alice was “able to act otherwise” at time t, e.g. in choosing

a′ = Â(o′, i′), (6.66)

but did not do so, since choosing a′ would illegally have changed the state x to x′
(both at time t), and, equivalently (given determinism), would have changed xp to
x′p. On our reading of Lewis’s theory of counterfactuals, Alice’s ability to choose a′
simply means that there exists a state x′ of the world close to x in the sense that

O(x′) = O(x) = o, (6.67)

making the environment in which Alice acts the same as in the actual world, but

i′ = I(x′) �= I(x) = i, (6.68)

where i′ should be close to i in some appropriate sense (such as a slight change in
the state of Alice’s brain), such that (6.66) holds, with o′ = o as required by (6.67).
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The point, then, is that according to our Freedom assumption, there indeed is such
a nearby state x′, for any given i′ and (o, i). Thus the freedom Alice has is precisely
what we have formalized as Freedom: even given the state o of the causal influences
on her behaviour (and possibly even the entire state of the rest of the world), there is
a different admissible state x′ of the world such that, had this state been actual, she
would have chosen a′ (although she in fact, necessarily, picked a).

It should be clear now that at least in the context of the Free Will Theorem, our
precise technical formulation of all assumptions implies that the freedom Alice and
Bob have in choosing their settings is an instance of the local miracle compatibilist
form of free will proposed by Lewis (1981), at least if one accepts our reformulation
thereof. The theorem then establishes a contradiction between:

• the physics assumptions, i.e., Nature, and Locality;
• the compatibilist free will assumption, i.e., Determinism and Freedom.

Accepting the former, the latter must fall. Making this choice, one should realize that
the physics assumptions on the one hand just form a small corner of modern physics
(from which point of view they are weak), but on the other hand have singled out
the corner in which the two fundamental theories of quantum mechanics and special
relativity meet and are brought to a head (from which perspective they are strong).

The challenge their theorem puts to compatibalism was recognized by Conway
& Kochen (2009), who write:

‘The tension between human free will and physical determinism has a long history. Long
ago, Lucretius made his otherwise deterministic particles swerve unpredictably to allow
for free will. It was largely the great success of deterministic classical physics that led to
the adoption of determinism by so many philosophers and scientists, particularly those in
fields remote from current physics. (This remark also applies to “compatibilism”, a now
unnecessary attempt to allow for human free will in a deterministic world.)’

This quotation does not use a precise version of compatibilism, but, as Conway
explains elsewhere, what they mean is that compatibilism in whatever form was
a desperate pre-twentieth-century attempt to save the notion of free will for e.g.
Christianity in the face of the physics of the time, which assumed that the universe
was a mechanical clockwork. Such attempts, then, would no longer be necessary
if the world is, in fact, indeterministic (as Conway and Kochen claim to have at
last proved). Our reformulation of their theorem (which removes the threat of cir-
cularity) gives a more subtle picture: the FWT uses modern physics to challenge
one particular version of compatibilist free will. As such, it only provides indirect
support for libertarian free will, namely by weakening one of its competitors.

To close this philosophical intermezzo, let us note that determinism is seen as
a property of theories. Since it is the job of a deterministic theory to predict the
outcome of any experiment, whether or not it is performed, this obviates the need for
assumptions like counterfactuality in the sense that ‘unperformed experiments have
results’ (which was famously denied by Asher Peres). Such controversial notions of
counterfactuality have effectively been replaced by the considerably more refined
modal counterfactuality of Lewis (at least in our slight reformulation thereof).
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6.4 Technical intermezzo: The GHZ-Theorem

The essence of the proof of the Free Will Theorem lies in the argument that per-
fect correlation together with context-locality implies non-contextuality. Remark-
ably, context-locality is at the same time a special case of non-contextuality, as the
following example illustrates. We take H = C2⊗C2, equipped with the Bell basis

υ0 = (|01〉− |10〉)/
√

2; (6.69)

υ1 = (|01〉+ |10〉)/
√

2; (6.70)

υ2 = (|00〉− |11〉)/
√

2; (6.71)

υ3 = (|00〉+ |11〉)/
√

2, (6.72)

where we use the physicists’ notation

|1〉 = (1,0); (6.73)
|0〉 = (0,1); (6.74)
|i j〉 = |i〉⊗ | j〉. (6.75)

Of course, C2 ⊗C2 ∼= C4 contains the spin-1 Hilbert space C3 of the Kochen–
Specker Theorem as the subspace orthogonal to the vector υ0. Thus we identify C3

with the subspace C̃3 of C4 spanned by the basis vectors υ1,υ2,υ3. The operators

J̃u = 1
2 (σu⊗12 +12⊗σu), (6.76)

where u ∈ R3 is a unit vector as before, and

σu =
3

∑
i=1

σ iui (6.77)

in terms of the Pauli matrices σ i, map υ1 to zero and leave its orthogonal comple-
ment C̃3 stable. Elementary group theory or direct calculation then shows that the
operator Ju on C3 in (6.11) is (unitarily) equivalent to the operator J̃u on C̃3. Since

J̃2
u = 1

2 (σu⊗σu +12⊗12), (6.78)

the Kochen–Specker argument can be rephrased in terms of the operators σu⊗σu.
In particular, for each frame a = (u1,u2,u3), the three operators

(σu1 ⊗σu1 ,σu2 ⊗σu2 ,σu3 ⊗σu3) (6.79)

commute, they each square to one, and their joint eigenvalues are one of the triples:

(−1,−1,−1),(−1,1,1),(1,−1,1),(1,1,−1).
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The eigenvector corresponding to the first one is υ0, and hence the others must lie
in C̃3. Hence by Lemma 6.4 any quasi-linear non-contextual hidden variable must
also assign these values, which by Lemma 6.7 is impossible for arbitrary bases.

The key mathematical property of the three operators (6.79) is that they commute,
and together with the unit 12⊗ 12 form a maximal set of commuting self-adjoint
matrices on C4. But other such sets could have been chosen by Alice (under whose
sole control the situation so far has been assumed to be), such as a triple of the kind

(σu⊗12,12⊗σv,σu⊗σv),

where u and v are arbitrary unit vectors in R3. Since the third operator is the product
of the first two, the joint eigenvalues of this triple, and hence also the assignments
by a quasi-linear non-contextual hidden variable, must be one of the four triples

(1,1,1),(−1,1,−1),(1,−1,−1),(−1,−1,1).

The non-contextuality assumption would then dictate that the outcome of Alice’s
measurement of σu⊗12 be independent of her choice of the setting v in a possible
simultaneous measurement of 12⊗σv, and vice versa. Therefore, in a (non-local)
bipartite setting where Alice is only able to measure operators of the type a⊗ 12,
whilst Bob can measure 12 ⊗ b, on the above choice of (commuting) operators,
non-contextuality in the situation where Alice controls everything is mathematically
equivalent to (context) locality in the bipartite Alice & Bob setting.

Further constraints then arise if the system is prepared in a correlated state like
ψ0, which is an eigenstate of σu⊗σv with eigenvalue−1 whenever u = v. So in that
case the values of (σu⊗12,12⊗σv) can only be (1,−1) or (−1,1), yielding perfect
anti-correlation. This is not enough, however, to derive a Free Will Theorem; to do
so with the small single-site Hilbert space C2, one needs a third (non-local) party.

Indeed, the well-known tripartite GHZ-argument may be rephrased as a Free Will
Theorem, as follows. The underlying Hilbert space is

H = C2⊗C2⊗C2 ∼= C8, (6.80)

and hence as a warm-up we first (re)prove Theorem 6.5 for n = 8. Suppose we have
a map V : H8(C)→ R as in Definition 6.1. Write

λ (a)
1 =V (σa⊗12⊗12),λ

(b)
2 =V (12⊗σb⊗12),λ

(c)
3 =V (12⊗12⊗σc),

where a,b,c can be 1,2,3. From Lemma 6.4 we then have

V (σ1⊗σ2⊗σ2) = λ (1)
1 λ (2)

2 λ (2)
3 ; (6.81)

V (σ2⊗σ1⊗σ2) = λ (2)
1 λ (1)

2 λ (2)
3 ; (6.82)

V (σ2⊗σ2⊗σ1) = λ (2)
1 λ (2)

2 λ (1)
3 ; (6.83)

V (σ1⊗σ1⊗σ1) = λ (1)
1 λ (1)

2 λ (1)
3 . (6.84)
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Furthermore, the four operators on the left-hand side commute and turn out to satisfy

σ1⊗σ2⊗σ2 ·σ2⊗σ1⊗σ2 ·σ2⊗σ2⊗σ1 =−σ1⊗σ1⊗σ1, (6.85)

so that again by Lemma 6.4,

λ (1)
1 λ (2)

2 λ (2)
3 ·λ (2)

1 λ (1)
2 λ (2)

3 ·λ (2)
1 λ (2)

2 λ (1)
3 =−λ (1)

1 λ (1)
2 λ (1)

3 , (6.86)

i.e. (λ (1)
1 λ (2)

2 λ (2)
3 )2 =−1. Since λ (i)

j =±1, this is impossible, so that V cannot exist.
Now, using the notation in the preceding discussion, consider the unit vector

ψGHZ = (|111〉− |000〉)/
√

2, (6.87)

which is a joint eigenstate of each of the four operators on the left-hand side of
(6.81) - (6.84), with eigenvalue +1 for the first three, and hence eigenvalue −1
for the fourth, i.e., σ1⊗σ1⊗σ1. So if setting A = a for Alice (where a ∈ {1,2})
means that she measures F = σa⊗ 12⊗ 12 with outcome λ (a)

1 = ±1, and similarly
B = b for Bob and C = c for Cindy mean that they measure G = 12⊗σb⊗ 12 and
H = 12⊗12⊗σc with outcomes λ (b)

2 =±1 and λ (c)
3 =±1, respectively, then in the

state ψGHZ each of the settings gives the correlation

settings (a,b,c) = (1,2,2),(2,1,2),(2,2,1) ⇒ λ (a)
1 λ (b)

2 λ (c)
3 = 1; (6.88)

setting (a,b,c) = (1,1,1) ⇒ λ (a)
1 λ (b)

2 λ (c)
3 = −1. (6.89)

Theorem 6.14. The conjunction of the following assumptions is contradictory:

• Determinism: there is a state space X with associated functions

A,B,C : X →{1,2},F,G,H : X →Λ ,

which completely describes the experiment, in that x∈X determines both settings
(a,b,c) and outcomes (λ1,λ2,λ3) ∈Λ 3 through a = A(x), λ1 = F(x), etc.

• Nature: the experiment (performed in the state ψGHZ) has possible outcomes in
Λ = {−1,1}, subject to the correlations (6.88) - (6.89);

• Freedom: there is a further function Z : X → XZ, in terms of which

F = F(A,B,C,Z), G = G(A,B,C,Z), H = H(A,B,C,Z),

and F, G, H, Z are independent, i.e. for each (a,b,c,z) there is x ∈ X such that

A(x) = a, B(x) = b, C(x) = c, Z(x) = z.

• Locality: F = F(A,Z), G = G(B,Z), and H = H(C,Z).

Proof. Using notation as in the proof of Theorem 6.13, for fixed z ∈ Z we obtain
F̂(a,z) = λ (a)

1 etc. Nature then leads to the contradiction derived after (6.86). �
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6.5 Bell’s theorems

Two different results are known as “Bell’s Theorem”: the first, from his paper in
1964, is Theorem 6.15 below, and the second, dating from 1976, is Theorem 6.18.
The first is similar to the Free Will Theorem in both its assumptions and its conclu-
sion, and to make this similarity more obvious we first state it for C3 instead of C2.
The difference lies in the probabilistic flavour of Bell’s Theorem, whose empirical
input is not given by the only non-probabilistic consequence to be drawn from the
quantum-mechanical formulae (6.35) - (6.38), viz. the certainty (6.43) of perfect
correlation on identical settings, but rather by the probabilistic formula (6.40), i.e.,

Pψ0(Fi �= G j|Ai = ui,B j = v j) = 2
3 sin2 θui,v j (i, j = 1,2,3), (6.90)

where θu,v is the angle between two unit vectors u and v. Furthermore, the state
space X must be upgraded to a probability space (X ,Σ ,μ), carrying functions A
and B (for the settings, which unlike Bell himself—who treated them as labels—
we include among the random variables), F and G (for the outcomes) and finally Z
(for the hidden variable traditionally called λ ) as random variables, i.e., measurable
functions. This also implies that the target spaces XA to XZ (which is traditionally
called Λ ) must be equipped with some σ -algebra of measurable subsets. But this is
not a big deal, since XA = XB carries a natural Borel structure and XF = XG is finite.
The probability measure μ is assumed independent of (A,B,F,G), and vice versa.

The measure μ , which gives the “hidden state” of the system that allegedly un-
derlies its quantum-mechanical description, is chosen in such a way that empirical
probabilities (typically obtained from long runs of repeated measurements) are re-
covered as joint conditional probabilities defined by μ and the random variables,
i.e., assuming the settings (a,b) are possible in that P(A = a,B = b)> 0, we put

P(F = λ ,G = γ|A = a,B = b) =
P(F = λ ,G = γ,A = a,B = b)

P(A = a,B = b)
, (6.91)

where the joint probabilities on the right-hand side are given by

P(A = a,B = b) = μ(A = a,B = b}; (6.92)
P(F = λ ,G = γ,A = a,B = b) = μ(F = λ ,G = γ,A = a,B = b}, (6.93)

where μ(A = a,B = b) is shorthand for μ(x ∈ X | A(x) = a,B(x) = b}, etc. This
implies that μ depends on (but may not be determined by) the quantum state ψ0.

On this understanding, the assumptions of Determinism and Locality are the
same as for the Free Will Theorem (except that equations like F(x) = F̂(A(x),Z(x))
are merely supposed to hold almost everywhere with respect to μ). Freedom is
now taken to mean that (A,B,Z) are probabilistically independent relative to μ . By
definition, this also means that the pairs (A,B), (A,Z), and (B,Z) are independent,
so that for any A⊂ XA, B⊂ XB, and (measurable) Z⊂ XZ , defining

P(A ∈ A,B ∈ B,Z ∈ Z) = μ(x ∈ X | A(x) ∈ A,B(x) ∈ B,Z(x) ∈ Z), (6.94)
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and analogous expressions for P(A ∈ A) and P(A ∈ A,B ∈ B), etc., we have

P(A ∈ A,B ∈ B) = P(A ∈ A)P(B ∈ B); (6.95)
P(A ∈ A,Z ∈ Z) = P(A ∈ A)P(Z ∈ Z); (6.96)
P(B ∈ B,Z ∈ Z) = P(B ∈ B)P(Z ∈ Z); (6.97)

P(A ∈ A,B ∈ B,Z ∈ Z) = P(A ∈ A)P(B ∈ B)P(Z ∈ Z). (6.98)

If we finally define Nature as the claim that F̂ and Ĝ are 2-valued and that

P(Fi �= G j|Ai = ui,B j = v j) = 2
3 sin2 θui,v j (i, j = 1,2,3), (6.99)

where the left-hand side is the conditional probability defined by μ and the random
variables in question (whereas the left-hand side of (6.90) is the empirical probabil-
ity for the experiment in question, or, equivalently, the quantum-mechanical predic-
tion thereof), then we obtain the following spin-1 version of Bell’s first theorem:

Theorem 6.15. Determinism, Freedom, Nature, and Locality are contradictory.

This formulation is literally the same as Theorem 6.13, but the terms have acquired a
different technical meaning now, especially Freedom and Nature. Moreover, purists
would add Probability Theory as an assumption in Bell’s Theorem, as its formalism
is decidedly non-tautological and its interpretation is far from obvious, even in a
classical setting. In any case, the proof is practically the same as in the more familiar
optical version of the EPR-experiment, to which we now turn.

In the classical (sic) form of the experiment, Alice and Bob perform measure-
ments on incoming photons by letting them pass through a polaroid glass whose
axis of polarization makes angle a (Alice) or b (Bob) with (say) the horizontal axis
in the plane orthogonal to the direction of propagation of the photons. Considered
in the light of the previous experiment on spin-1 particles, such a choice of settings
may also be seen as a choice of basis for R3, with the proviso that, assuming (by
convention) the photons move along the y-axis, one basis element u2 = (0,1,0) is
fixed so that the remaining two vectors (u1,u3) must lie in the x-z plane (in which,
on a naive picture, the photons may “vibrate”). This constraint gives rise to bases

u1 = (cosa,0,sina),u2 = (0,1,0),u3 = (−sina,0,cosa), (6.100)

the first of which (say) gives the actual direction of the axis of polarization. In any
case, Alice writes down F = 1 if her photon passes her glass at angle a, and F = 0
if it does not; similarly Bob writes G = 1 (pass) or G = 0 (fail) at setting b.

In a quantum-mechanical description of the experiment, the Hilbert space of the
photon pair is C2⊗C2, and the correlated photon state is taken to be

ψ0 = (e1⊗ e1 + e2⊗ e2)/
√

2, (6.101)

where e1 = (1,0) and e2 = (0,1) form the standard basis of C2. The probabilities
(6.35) - (6.38) as predicted by quantum mechanics are now replaced by
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Pψ0(F = 1,G = 1|A = a,B = b) = 1
2 cos2(a−b); (6.102)

Pψ0(F = 0,G = 0|A = a,B = b) = 1
2 cos2(a−b); (6.103)

Pψ0(F = 1,G = 0|A = a,B = b) = 1
2 sin2(a−b), (6.104)

Pψ0((F = 0,G = 1|A = a,B = b) = 1
2 sin2(a−b), (6.105)

which are also the experimentally measured ones. Instead of (6.90) we then obtain

Pψ0(F �= G|A = a,B = b) = sin2(a−b); (6.106)

Pψ0(F = G|A = a,B = b) = cos2(a−b). (6.107)

In particular, if their settings are the same (i.e., a = b), then Alice and Bob will
always find the same outcome (perfect correlation), whereas in case they are or-
thogonal (i.e., a = b± π/2), they obtain perfect anti-correlation, in that Alice’s
photon passes whenever Bob’s is blocked, and vice versa. However, this will not be
used. Although it should be obvious from the previous case what the assumptions
in Theorem 6.15 mean for this particular experiment, we make them explicit:

• Determinism means that there is a probability space (X ,Σ ,μ) with associated
(measurable) functions

A : X → [0,π],B : X → [0,π],F : X →{0,1},G : X →{0,1}, (6.108)

which completely describe the experiment in the sense that x ∈ X determines
both its settings a = A(x),b = B(x) and its outcomes λ = F(x),γ = G(x).

• Freedom stipulates that there is a (measurable) function Z : X → XZ such that:

– F = F(A,B,Z) and G = G(A,B,Z);
– (A,B,Z) are probabilistically independent relative to μ .

• Locality means that F(A,B,Z) = F(A,Z) and G(A,B,Z) = G(B,Z).
• Nature states that the empirical as well as theoretical probabilities (6.106) for the

experiment are reproduced as conditional joint probabilities given by μ through

P(F �= G|A = a,B = b) = sin2(a−b). (6.109)

Theorem 6.15 then holds verbatim for this situation, with the following proof.

Proof. Determinism and Freedom imply

P(F = λ ,G = γ|A = a,B = b) = PABZ(F̂ = λ , Ĝ = γ|Â = a, B̂ = b), (6.110)

where we use the notation (6.50) - (6.51), the function Â : XA×XB×XZ → XA is
projection on the first coordinate, likewise the function B̂ : XA×XB×XZ → XB is
projection on the second, and PABZ is the joint probability on XA×XB×XZ induced
by the triple (A,B,Z) and the probability measure μ; by independence, PABZ is a
product measure on XA×XB×XZ . According to Locality, F̂(a,b,z) does not depend
on b, whilst Ĝ(a,b,z) does not depend on a.
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For fixed settings (a,b), we may therefore define the following functions on XZ :

F̂a(z) = F̂(a,z); (6.111)
Ĝb(z) = Ĝ(b,z). (6.112)

A brief computation then yields

PABZ(F̂ = λ , Ĝ = γ|Â = a, B̂ = b) = PZ(F̂a = λ , Ĝb = γ), (6.113)

where PZ is the joint probability on XZ defined by Z and μ . Therefore, from (6.110),

P(F = λ ,G = γ|A = a,B = b) = PZ(F̂a = λ , Ĝb = γ). (6.114)

Nature then gives the crucial result

PZ(F̂a �= Ĝb) = sin2(a−b). (6.115)

Lemma 6.16. Any four {0,1}-valued random variables (F1,F2,G1,G2) satisfy

P(F1 �= G1)≤ P(F1 �= G2)+P(F2 �= G1)+P(F2 �= G2). (6.116)

This lemma (said to go back to Boole) is very easy to prove directly, but for com-
pleteness’s sake we mention that it also follows from Proposition 6.17 below.

Taking F1 = F̂a1 , F2 = F̂a2 , G1 = Ĝb1 , G2 = Ĝb2 , and P=PZ , for suitable values of
(a1,a2,b1,b2) this inequality is violated by (6.115). Take, for example, a2 = b2 = 3x,
a1 = 0, and b1 = x. The inequality (6.116) then assumes the form f (x)≥ 0 for

f (x) = sin2(3x)+ sin2(2x)− sin2(x).

But in fact, f (x)< 0 for continuously many values of x ∈ [0,2π], see plot. �

0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4 4,8 5,2 5,6 6

-0,8

-0,4

0,4

0,8

1,2

1,6

2

Graph of x �→ sin2(3x)+ sin2(2x)− sin2(x), showing (in the region where it is
negative) that quantum mechanics violates the Bell inequality (6.116).
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Lemma 6.16 is a special case of a more general result.

Proposition 6.17. Let Fi : X → [−1,1] and G j : X → [−1,1], where (X ,Σ ,μ) is
some probability space, be two parametrized random variables, i, j = 1,2. Then the
two-point function 〈FiG j〉=

∫
X dμ FiG j satisfies the CHSH-inequality

|〈F1G1〉+ 〈F1G2〉+ 〈F2G1〉−〈F2G2〉| ≤ 2. (6.117)

If Fi and G j just take the values ±1, then (6.116) is a special case of (6.117).

Proof. In terms of the function Φ = F1 · (G1 +G2)+F2 · (G1−G2), we may write

〈F1G1〉+ 〈F1G2〉+ 〈F2G1〉−〈F2G2〉=
∫

X
dμΦ . (6.118)

Since |Fi(x)| ≤ 1 and |G j(x)| ≤ 1 by assumption, we have |Φ(x)| ≤ 2 and hence∣∣∣∣∫X
dμ(x)Φ(x)

∣∣∣∣ ≤ ∫X
dμ(x) |Φ(x)| ≤ 2, (6.119)

since μ is a probability measure. To prove the the last claim, we just note that

P(Fi = G j)−P(Fi �= G j) = 〈FiG j〉;
P(Fi = G j)+P(Fi �= G j) = 1. �

In Bell’s second (1976) theorem on stochastic hidden variables, the assump-
tion of Determinism is dropped, and all we have is a theory stating conditional
probabilities P(F = λ ,G = γ|A = a,B = b,x) for the outcomes of the above bi-
partite experiment given some hidden variable x, as well as the single-wing versions
P(F = λ |A = a) and P(G = γ|B = b,x). Here F,G,A,B are just notational devices
to record such outcomes, which are no longer (necessarily) represented as random
variables. On this new understanding of the notation, the Nature assumption is for-
mulated just as before, cf. (6.109). We do assume the existence of a probability
space (X ,Σ ,μ) and of conditional probabilities

P(F = λ ,G = γ|A = a,B = b,x), P(F = λ |A = a,x), P(G = γ|B = b,x),

defined μ-a.e. in x, in which the state of the world is specified as being x ∈ X . In
terms of this space, the Freedom assumption means that

P(F = λ ,G= γ|A= a,B= b)=
∫

X
dμ(x)P(F = λ ,G= γ|A= a,B= b,x), (6.120)

for any settings (a,b), of which μ is independent (as the notation already indicated).
The crucial assumption replacing Determinism is Bell locality, which reads

P(F = λ ,G = γ|A = a,B = b,x) = P(F = λ |A = a,x) ·P(G = γ|B = b,x). (6.121)

Bell’s second theorem for stochastic hidden variable theories reads as follows.
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Theorem 6.18. Nature, Freedom, and Bell locality are contradictory.

Proof. The idea of the proof is to introduce an artificial probability space in order
to recover the framework of Theorem 6.15. To this end, we take

X̃ = [0,1]× [0,1]×X ; (6.122)
dμ̃(s, t,x) = ds ·dt ·dμ(x). (6.123)

where we denoted the elements of X̃ by (s, t,x). On X̃ , define random variables

F̃a(s, t,x) = 1[0,P(F=1|A=a,x)](s); (6.124)

G̃b(s, t,x) = 1[0,P(G=1|B=b,x)](t), (6.125)

where 1Δ is the indicator function for Δ ⊆ [0,1]. Writing, as usual,

P̃(F̃a = λ , G̃b = γ) =
∫

X̃
dμ̃(s, t,x){(s, t,x) ∈ X̃ | F̃a(s, t,x) = λ , G̃b(s, t,x) = γ},

we obtain (first for λ = γ = 1, from which the other cases follow):

P̃(F̃a = λ , G̃b = γ) =
∫

X
dμ(x)P(F = λ |A = a,x) ·P(G = γ|B = b,x). (6.126)

With Freedom and Bell locality, this yields

P(F = λ ,G = γ|A = a,B = b) = P̃(F̃a = λ , G̃b = γ), (6.127)

as in (6.114), so that the proof may be completed as for Theorem 6.15. �

Let us note that since in Bell’s second theorem the settings (a,b) are treated as free
parameters to begin with, the difference between X and Z evaporates, so that in the
above formulae one might as well have replaced (X ,μ) by the space (XZ ,μZ) that
describes all relevant degrees of freedom except the settings (i.e., the experimental-
ist, in either human or machine form). Either way, Bell’s locality condition may be
disentangled into the following conditions (introduced by Jarrett and Shimony):

1. Parameter Independence (PI):

P(λ |a,b,x) = P(λ |a,x); (6.128)
P(γ|a,b,x) = P(γ|b,x); (6.129)

2. Outcome Independence (OI):

P(λ |a,b,γ,x) = P(λ |a,b,x); (6.130)
P(γ|a,b,λ ,x) = P(γ|a,b,x), (6.131)

where we have abbreviated P(F = λ |A = a,B = b,x) by P(λ |a,b,x), etc., and have
used the following notation (which states identities in case one has (6.91) - (6.93)):
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P(λ |a,b,x) ≡ ∑
γ

P(λ ,γ|a,b,x); (6.132)

P(γ|a,b,x) ≡ ∑
λ

P(λ ,γ|a,b,x); (6.133)

P(λ |a,b,γ,x) ≡ P(λ ,γ|a,b,x)
P(γ|a,b,x) ; (6.134)

P(γ|a,b,λ ,x) ≡ P(λ ,γ|a,b,x)
P(λ |a,b,x) , (6.135)

It is easy to see that Bell locality is equivalent to the conjunction of PI and OI.
Note that the former (PI), akin to Locality, is a hidden or ‘subsurface’ version of

the no signaling property of the ‘surface’ probabilities, which states that

P(λ |a,b)≡∑
γ

P(λ ,γ|a,b)

is independent of b (and vice versa). But a violation of PI only leads to signaling if x
can be operationally controlled, similar to the way in which experimental physicists
prepare quantum states ψ . Hence it is reassuring that quantum mechanics satisfies
PI if we see the quantum state ψ as a hidden variable: assuming

P(λ ,γ|a,b,x) = Pψ0(F = λ ,G = γ|A = a,B = b), (6.136)

as computed in (6.102) - (6.105), PI is valid but OI is not. First, for λ = 0 or λ = 1,

P(λ |a,b,x) = ∑
γ=0,1

Pψ0(F = λ ,G = γ|a,b) = 1
2 cos2(a−b)+ 1

2 sin2(a−b) = 1
2 ,

(6.137)
which is independent of b, and likewise P(γ|a,b,x) = 1

2 , independently of a. This
yields PI, which a similar computation shows to be true for any quantum state. On
the other hand, given this result, OI would require

Pψ0(F = λ ,G = γ|A = a,B = b) = Pψ0(F = λ |A = a) ·Pψ0(G = γ|B = b),

which is false, since by (6.102) - (6.105), Alice’s and Bob’s outcomes are correlated.
Hence Bell locality is violated by quantum mechanics, but this does not imply

that “quantum mechanics is nonlocal” (as some say). Bell’s is a very specific locality
condition invented as a constraint on hidden variable theories. In another important
sense, viz. Einstein locality, quantum mechanics is local, in that observables with
spacelike separated localization regions commute (this is the case in quantum field
theory, but also in any bipartite experiment of the type considered here, where Al-
ice’s operators commute with Bob’s just by definition of the tensor product).

On the other hand, deterministic theories, which in the present context are defined
as those for which all conditional probabilities like P(λ ,γ|a,b,x) are either zero or
one (in which case one may introduce random variables reproducing these probabil-
ities), violate PI but satisfy OI, at least if they reproduce the Born probabilities (such
as Bohmian mechanics). Hence such theories violate Bell locality.
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Finally, Bell-type inequalities like (6.117) also give information about quantum
mechanics itself, particularly about the degree of entanglement of states. Let H1 and
H2 be Hilbert spaces, with tensor product H1⊗H2. A unit vector ψ ∈ H1⊗H2 is
called uncorrelated if it is of the form ψ = ϕ1⊗ϕ2, where ϕk ∈Hk are unit vectors,
k = 1,2, and correlated otherwise. Clearly, the vectors (6.34) and (6.101) used in
the experiments so far are correlated. The simplest result is then as follows.

Theorem 6.19. Let a1 and a2 be self-adjoint operators on H1, and let b1 and b2 be
self-adjoint operators on H2, each with spectrum contained in [−1,1] (equivalently
‖Xa‖ ≤ 1, etc.). Let ψ be a unit vector in H1⊗H2, and define two-point functions

〈FiG j〉= 〈ψ,ai⊗b jψ〉. (6.138)

If ψ is uncorrelated, then the Bell inequality (6.117) holds.

Proof. This follows from the factorization property

〈FiG j〉= 〈ϕ1⊗ϕ2,ai⊗b jϕ1⊗ϕ2〉= 〈ϕ1,aiϕ1〉 · 〈ϕ2,b jϕ2〉= 〈Fi〉 · 〈G j〉, (6.139)

where 〈Fi〉= 〈ϕ1,aiϕ1〉 and 〈G j〉= 〈ϕ2,b jϕ2〉. For either sign, this property yields

〈F2(G1−G2)〉= 〈F2〉〈G1〉(1±〈F1〉〈G2〉)−〈F2〉〈G2〉(1±〈F1〉〈G1〉). (6.140)

The spectral assumption implies that |〈Fi〉| ≤ 1 and |〈G j〉| ≤ 1, which will be used
directly below, as well as its consequence |1±〈F1〉〈G2〉|= 1±〈Fi〉〈G j〉. Hence

|〈F2(G1−G2)〉| ≤ |1±〈F1〉〈G2〉|+ |1±〈F1〉〈G1〉|
= 1±〈F1〉〈G2〉+1±〈F1〉〈G1〉
= 2±〈F1(G1 +G2)〉. (6.141)

Similarly,
|〈F1(G1 +G2)〉| ≤ 2±〈F2(G1−G2)〉, (6.142)

so that, writing Φ = 〈F1G1〉+ 〈F1G2〉+ 〈F2G1〉−〈F2G2〉, for either sign± we have

|Φ | ≤ |〈F1(G1 +G2)〉|+ |〈F2(G1−G2)〉| ≤ 4±Φ (6.143)

If Φ ≥ 0 we choose the minus sign, whereas for Φ < 0 we take the plus sign. Either
way, we obtain |Φ | ≤ 2, which is the inequality (6.117). �

This result is actually much more general (as hinted at by the way that the proof
only uses the uncorrelated vector state ψ = ϕ1⊗ϕ2). The simplest generalization
is to replace pure states by mixed states, where we say that a density operator ρ
on H1⊗H2 is uncorrelated if it is of the form ρ = ∑i piρ1⊗ρ2, where the pi are
probabilities and ρk is a density matrix on Hk, k = 1,2. Then all uncorrelated density
matrices satisfy the inequality (6.117). Even more generally, uncorrelated states on
C*-algebras or von Neumann algebras A⊗B satisfy (6.117), see Notes.
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6.6 The Colbeck–Renner Theorem

One may try to strengthen Bell’s second theorem by weakening its assumptions. A
remarkable result in this direction states that, roughly speaking, any probabilistic
hidden variable theory that satisfies Freedom and Parameter Independence and is
compatible with quantum mechanics adds nothing to quantum mechanics. In other
words, it appears that quantum mechanics “cannot be extended”, or “is complete”.

In fact, the result turns out to be more modest than this summary suggests, since
the reasoning required to prove the claim hinges on certain assumptions which are
satisfied by quantum mechanics itself, but might seem unnatural for a hidden vari-
able theory. In any case, we have to state our notation and assumptions very clearly.

Definition 6.20. A hidden variable theory T underlying quantum mechanics con-
sists of a measurable space (X ,Σ) whose points x label conditional probabilities

P(a1 = λ1, . . . ,an = λn|x)≡ P(a = λ |x)

for the possible outcomes λ = (λ1, . . . ,λn) of a measurement of any family a =
(a1, . . . ,an) of n commuting self-adjoint operators on any Hilbert space H.

These formal conditional probabilities are a priori only supposed to satisfy

0≤ P(a = λ |x)≤ 1; (6.144)

∑
λ

P(a = λ |x) = 1. (6.145)

Apart from these probabilities, for each Hilbert space H and any pure state e ∈
P1(H), the theory T yields a classical state μe, i.e., a probability measure on X.

As the notation indicates, μe depends on e only and hence is independent of a and
λ . From the point of view of T , a quantum state is a probability measure on X! In
what follows we assume for simplicity that H is finite-dimensional, so that e = eψ
for some unit vector ψ ∈H. With slight abuse of notation we then write μψ for μeψ .

An important special case will be the bipartite setting H = H1⊗H2, where Alice
and Bob measure self-adjoint operators X and Y on H1 and H2, respectively, so that

n = 2, a1 = X⊗1H2 , a2 = 1H1 ⊗Y.

We then introduce settings c= (a,b), as in the previous sections, so that we typically
look at expressions like P(Xa = λ1,Yb = λ2|x). The other case of interest will simply
be n = 1 with a1 ≡ a, λ1 ≡ λ ; indeed, this will be the case in the statement of the
theorem (the bipartite case playing a role only in the proof, though a crucial one!).

The following notation will be quite important to the argument. An equality

Pψ(a = λ |x) = α(x), (6.146)

where α : X → [0,1] is measurable (often even constant), abbreviates:

P(a = λ |x) = α(x) for almost every x with respect to the measure μψ .
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That is, there is a subset X ′ ⊂ X such that μψ(X ′) = 0 and Pψ(a= λ |x) =α(x) holds
for any x ∈ X\X ′. If X is finite, this simply means that the equality holds for any x
for which μψ({x})> 0. Since this notation may render equalities like

Pψ(a = λ |x) = Pϕ(a′ = λ ′|x), (6.147)

ambiguous, we explicitly define (6.147) as the double implication

Pψ(a = λ |x) = α(x )⇔ Pϕ(a′ = λ ′|x) = α(x).

Furthermore, for ε → 0 we write

Pψ(a = λ |x) ε≈ Pϕ(a′ = λ ′|x)⇔ Pψ(a = λ |x) = Pϕ(a′ = λ ′|x)+O(
√
ε), (6.148)

as well as
ψ

ε≈ ϕ ⇔ (1− ε)≤ |〈ψ,ϕ〉| ≤ 1. (6.149)

We are now ready to state our assumptions for the Colbeck–Renner Theorem:

• Compatibility with Quantum Mechanics (CQ): for any unit vector ψ ∈ H,∫
X

dμψ(x)P(a = λ |x) = pψ(a = λ ), (6.150)

where the quantum-mechanical prediction pψ(a = λ ) is given by the Born rule

pψ(a = λ ) = 〈ψ,e(1)λ1
· · ·e(n)λn

ψ〉, (6.151)

cf. (2.21), where e(i)λi
is the spectral projection on the eigenspace Hλi ⊂ H of ai.

• Unitary Invariance (UI): for any unit vector ψ ∈ H and unitary u on H,

Puψ(a = λ |x) = Pψ(u−1au = λ |x). (6.152)

• Continuity of Probabilities (CP: If ψ
ε≈ ϕ , then Pψ(a = λ |x) ε≈ Pϕ(a = λ |x).

In the remaining axioms, H = H1⊗H2, and a and b are self-adjoint operators on H1
and H2, respectively (duly identified with operators a⊗1H2 and 1H1 ⊗b on H).

• Parameter Independence (PI):

∑
γ∈σ(b)

P(a = λ ,b = γ|x) = P(a = λ |x); (6.153)

∑
λ∈σ(a)

P(a = λ ,b = γ|x) = P(b = γ|x). (6.154)

• Product Extension (PE): for any pair of states ψ1 ∈ H1, ψ2 ∈ H2,

Pψ1(a = λ |x) = Pψ1⊗ψ2(a = λ |x). (6.155)
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• Schmidt Extension (SE): if υi ∈H1 (i = 1, . . . ,dim(H)) are eigenstates of a, then
for arbitrary orthogonal states ui ∈ H2 and coefficients ci > 0 with ∑i c2

i = 1,

P∑i ci·υi(a = x|x) = P∑i ci·υi⊗ui(a = x|x). (6.156)

Note that PI makes sense, because (6.151) and (6.150) imply that for pψ(a = λ )
to be nonzero we must have λi ∈ σ(ai) for each i. All assumptions are satisfied by
quantum mechanics itself (seen as a hidden variable theory with ψ as the “hidden”
variable x). In the context of hidden variable theories, though, one might doubt the
plausibility of UI, CP, and SE. But we need all these assumptions to prove:

Theorem 6.21. If T satisfies CQ, UI, CP, PI, PE, and SE, then for any (finite-
dimensional) Hilbert space H, unit vector ψ ∈ H, and operator a ∈ B(H)sa,

Pψ(a = λ |x) = pψ(a = λ ). (6.157)

In other words, the hidden variable x is even more hidden than expected, since know-
ing its value has no effect on the probabilities for the outcomes of experiments.

Proof. We first assume (without loss of generality) that a is nondegenerate as a self-
adjoint matrix, in that it has distinct eigenvalues (λ1, . . . ,λdim(H)); this assumption
will be removed at the end of the proof. The proof consists of three steps.

1. The theorem holds for H = C2 and any pair (a,ψ) for which

pψ(a = λ1) = pψ(a = λ2) = 1/2, (6.158)

This only requires assumptions CQ, PI, and SE.
2. The theorem holds for H = Cl , l < ∞ arbitrary, and any pair (a,ψ) for which

pψ(a = λ1) = · · ·= pψ(a = λl) = 1/l. (6.159)

This is just a slight extension of step 1 and uses the same three assumptions.
3. The theorem holds in general. This requires all assumptions (as well as step 2).

Proof of step 1. Let H =C2, with basis (υ1,υ2) of eigenvectors of a, so that ψ ∈C2

may be written as
ψ = (υ1 +υ2)/

√
2. (6.160)

Without loss of generality, we may assume that λ1 = 1 and λ2 =−1. We now relabel
a as a0 and extend it to a family of operators (ak)k=0,1,...,2N−1 by fixing an integer
N > 1, putting θk = kπ/2N, and defining

ck = eθk+π − eθk , (6.161)

where, for any angle θ ∈ [0,2π], the operator eθ = |θ〉〈θ | is the orthogonal projec-
tion onto the one-dimensional subspace spanned by the unit vector

|θ〉= sin(θ/2) ·υ1 + cos(θ/2) ·υ2. (6.162)
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In the bipartite setting, we have operators ak = ck⊗12 and bk = 12⊗ck on C2⊗C2,
as well as a maximally correlated (Bell) state ψAB ∈ C2⊗C2, given by

ψAB =
1√
2
(υ1⊗υ1 +υ2⊗υ2). (6.163)

Using assumptions PI and SE, we then have, for i = 1,2 λ1 = 1, and λ2 =−1,

Pψ(a = λi|x) = PψAB(a0 = λi|x). (6.164)

The quantum-mechanical prediction is

pψAB(a0 = 1) = pψAB(a0 =−1) = 1
2 . (6.165)

Our goal is to show that also for each x ∈ X , knowing x is irrelevant in that

PψAB(a0 = 1|x) = PψAB(a0 =−1|x) = 1
2 . (6.166)

To this effect we introduce the combination of probabilities

I(N)(x) = P(a0 = b2N−1|x)+ ∑
k∈KN ,l∈LN ,|k−l|=1

P(ak �= bl |x), (6.167)

where KN = {0,2, . . . ,2N−2} and LN = {1,3, . . . ,2N−1}. Our first inequality is

|P(ak = λi|x)−P(bl = λi|x)| = |P(ak = λi,bl = λi|x)+P(ak = λi,bl �= λi|x)
− P(ak = λi,bl = λi|x)+P(ak �= λi,bl = λi|x)|
= |P(ak = λi,bl �= λi|x)−P(ak �= λi,bl = λi|x)|
≤ P(ak = λi,bl �= λi|x)+P(ak �= λi,bl = λi|x)
= P(ak �= bl |x), (6.168)

where i = 1,2, and we used PI. This implies a second inequality: since a2N =−a0,

|P(a0 = 1|x)−P(a0 =−1|x)| = |P(a0 = 1|x)−P(a2N = 1|x)|
≤ ∑

k,l,|k−l|=1
|P(ak = 1|x)−P(bl = 1|x)|

≤ ∑
k,l,|k−l|=1

P(ak �= bl |x)≤ I(N)(x).

Integrating this with respect to the measure μψAB and using CQ gives∫
X

dμψAB(x) |P(a0 = 1|x)−P(a0 =−1|x)| ≤
∫

X
dμψAB(x) I(N)(x) = I(N)

ψAB . (6.169)

We wish to invoke the corresponding quantum-mechanical expression, defined by
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I(N)
ψAB = pψAB(a0 = b2N−1)+ ∑

k∈KN ,l∈LN ,|k−l|=1
pψAB(ak �= bl). (6.170)

A straightforward calculation shows that this expression is equal to

I(N)
ψAB = 2N sin2(π/4N). (6.171)

Since limN→∞ I(N)
ψAB = 0, letting N → ∞ in (6.169) therefore yields (6.166). From

(6.164) we then obtain (6.158).

Proof of step 2. Let H = Cl and let (υi)
l
i=1 be an orthonormal basis of eigenvectors

of a, with corresponding eigenvalues λi, and phase factors for the eigenvectors υi
such that ci > 0 (and of course, ∑i c2

i = 1) in the expansion

ψ = ∑
i

ciυi. (6.172)

The case of interest will be c1 = · · · = cl = 1/l, but first we merely assume that
c1 = c2 (the same reasoning applies to any other pair), with λ1 = 1 and λ2 = −1
(which involves no loss of generality either and just simplifies the notation). The
other positive coefficients ci are arbitrary. Generalizing (6.166), we will show that

Pψ(a = 1|x) = Pψ(a =−1|x). (6.173)

This shows that if two Born probabilities defined by some quantum state eψ are
equal, then the underlying hidden variable probabilities must be equal μψ -a.e., too.
Eq. (6.159) immediately follows from this result by taking all ci to be equal.

As in step 1, we pass to the bipartite setting, introducing two copies of H = Cl

denoted by HA = HB = Cl , and define the correlated state

ψAB = ∑
i

ci ·υi⊗υi (6.174)

in HA⊗HB. Eq. (6.164) again follows from assumptions PI and SE. Throughout
the argument of step 1, we now replace each probability P(ak = λi,bl = γ j|x) by an
adapted probability P(1)(ak = λi,bl = γ j|x), defined as the conditional probability

P(1)(ak = λi,bl = γ2|x) = P(ak = λi,bl = γ2||λi|= |γ2|= 1,x)

=
P(ak = λi,bl = γ2, |λi|= |γ2|= 1|x)

P(|λi|= |γ2|= 1|x) , (6.175)

for all x for which P(|λi|= |γ2|= 1|x)> 0, whereas

P(1)(ak = λi,bl = γ2|x) = 0 (6.176)

whenever P(|λi| = |γ2| = 1|x) = 0. The same argument then yields (6.169), with P
replaced by P(1) but with the same right-hand side. As in step 1,
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P(1)
ψAB(a0 = 1|x) = P(1)

ψAB(a0 =−1|x), (6.177)

which implies that
PψAB(a0 = 1|x) = PψAB(a0 =−1|x), (6.178)

either because both sides vanish (if P(|λi|= |γ2|= 1|x) = 0), or because (in the op-
posite case) the denominator P(|λi|= |γ2|= 1|x) cancels from both sides of (6.177).

Combined with (6.164), eq. (6.178) proves (6.173) and hence establishes step 2.

Proof of step 3. This is the most difficult step in the proof, relying on a technique
wittily called embezzlement (which we only need for maximally entangled states).
We will deal with three Hilbert spaces, namely H = Cl , H ′ = Cm, and H ′′ = Cn

(where n = mN for some large N, see below), each with some fixed orthonormal
basis (υi)

l
i=1, (υ ′j)m

j=1, and (υ ′′k )
n
k=1, respectively. Given a further number mi ≤ m,

we now list the nm basis vectors υ ′′k ⊗υ ′j of H ′′ ⊗H ′ in two different orders:

1. υ ′′1 ⊗υ ′1, . . . ,υ
′′
n ⊗υ ′1,υ

′′
1 ⊗υ ′2, . . . ,υ

′′
n ⊗υ ′2, . . . ,υ

′′
1 ⊗υ ′m, . . . ,υ

′′
n ⊗υ ′m;

2. υ ′′1 ⊗υ ′1, . . . ,υ
′′
1 ⊗υ ′mi

,υ ′′2 ⊗υ ′1, . . . ,υ
′′
2 ⊗υ ′mi

, . . . ,υ ′′n ⊗υ ′1, . . . ,υ
′′
n ⊗υ ′mi

, . . . ,

where the remaining vectors (i.e., those of the form υ ′′k ⊗υ ′j for 1≤ k≤ n and j >mi)
are listed in some arbitrary order.

Define
u(mi) : H ′′ ⊗H ′ → H ′′ ⊗H ′ (6.179)

as the unitary operator that maps the first list on the second. We will need the explicit
expression

u(mi)(υ ′′k ⊗υ ′1) = υ ′′si
k
⊗υ ′jik

, (6.180)

where for given k = 1, . . . ,n the numbers si
k = 1, . . . ,ni (where ni is the smallest

integer such that nimi ≥ n) and ji
k = 1, . . . ,ni are uniquely determined by

k = (si
k−1)mi + ji

k. (6.181)

We will actually work with two copies of H ′′ ⊗H ′, called H ′′
A ⊗H ′

A and H ′′
B ⊗H ′

B,
with ensuing copies of u(mi)

A and u(mi)
B of u(mi), and hence, leaving the isomorphism

H ′′
A ⊗H ′

A⊗H ′′
B ⊗H ′

B
∼= H ′′

A ⊗H ′′
B ⊗H ′

A⊗H ′
B (6.182)

implicit, we obtain a unitary operator

u(mi)
A ⊗u(mi)

B : H ′′
A ⊗H ′′

B ⊗H ′
A⊗H ′

B → H ′′
A ⊗H ′′

B ⊗H ′
A⊗H ′

B. (6.183)

The point of all this is that the unit vector

κn ∈ H ′′
A ⊗H ′′

A ; (6.184)

κn =
1√

C(n)

n

∑
k=1

υ ′′k ⊗υ ′′k , (6.185)
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where C(n) = ∑n
k=1 1/k, acts as a “catalyst” in producing the maximally entangled

state

ϕ ∈ H ′
A⊗H ′

B; (6.186)

ϕ =
1√
mi

mi

∑
j=1

υ ′j⊗υ ′j, (6.187)

from the uncorrelated state υ ′1⊗υ ′1 ∈ H ′
A⊗H ′

B, in that for any mi ≤ m,

u(mi)
A ⊗u(mi)

B (κn⊗υ ′1⊗υ ′1)
ε/2≈ κn⊗ϕ. (6.188)

Here ε = 1/N if n = m2N . This follows straightforwardly from (6.183) - (6.187).

After this preparation we are ready for the proof of step 3, continuing to use the
notation established at the beginning of step 2, especially (6.172). As in step 1, we
introduce two copies HA = HB = Cl of H, as well as two states

ψAB = ∑
i

ci ·υi⊗υi ∈ HA⊗HB; (6.189)

ψ ′′′AB = κn⊗υ ′1⊗υ ′1⊗ψAB ∈ H ′′′
A ⊗H ′′′

B , (6.190)

where κn is given by (6.185), we put

H ′′′ = H ′′ ⊗H ′ ⊗H, (6.191)

and in our notation we have ignored the obvious permutations of factors in the tensor
product. For any ε > 0, pick c′i ∈ R+ such that (c′i)2 ∈Q+ and

|c′i− ci|< ε/dim(H), (6.192)

which implies that, in the sense of (6.149), we have

∑
i

c′iυi
ε/2≈ ∑

i
ciυi. (6.193)

Suppose
c′i =

√
pi/qi, (6.194)

with pi,qi ∈ N and gcd(pi,qi) = 1, and define

mi = pi ∏
i′ �=i

qi′ . (6.195)

Consequently, writing
q = 1/

√
∑
i′

mi′ , (6.196)

the following quotient is independent of i:
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c′i√
mi

= q. (6.197)

Given the integers mi thus obtained, we define a unitary operator

u : H ′′′ → H ′′′; (6.198)

u =
l

∑
i=1

u(mi)⊗|υi〉〈υi|, (6.199)

where u(mi) is defined in (6.180). From this definition, with additional labels to de-
note the copies uA : H ′′′

A → H ′′′
A and uB : H ′′′

B → H ′′′
B , and (6.188), and writing

ξ i j = υi⊗υ ′j ∈ H⊗H ′, (6.200)

with corresponding copies

ξ i ji
AA′ ∈ HA⊗H ′

A; (6.201)

ξ i ji
BB′ ∈ HB⊗H ′

B, (6.202)

we then obtain the important relations

1H ′′′A
⊗1H ′′′B

(ψ ′′′AB) = κn⊗
l

∑
i=1

ci ·ξ i1
AA′ ⊗ξ i1

BB′ ; (6.203)

uA⊗1H ′′′B
(ψ ′′′AB) =

1√
C(n)

l

∑
i=1

n

∑
k=1

ci√
k
·υ ′′sk

⊗υ ′′k ⊗ξ i jik
AA′ ⊗ξ i1

BB′ ; (6.204)

1H ′′′A
⊗uB(ψ ′′′AB) =

1√
C(n)

l

∑
i=1

n

∑
k=1

ci√
k
·υ ′′k ⊗υ ′′sk

⊗ξ i1
AA′ ⊗ξ i jik

BB′ ; (6.205)

uA⊗uB(ψ ′′′AB)
ε≈ q ·κn⊗

l

∑
i=1

mi

∑
ji=1

ξ i ji
AA′ ⊗ξ i ji

BB′ . (6.206)

Here the right-hand sides of (6.203) - (6.206) have been arranged so as to obtain
vectors in the six-fold tensor product

H ′′
A ⊗H ′′

B ⊗HA⊗H ′
A⊗HB⊗H ′

B.

We will repeatedly invoke the following lemma, whose proof just unfolds the
notation (on the appropriate identification of a with a⊗1H2 and of b with 1H1 ⊗b).

Lemma 6.22. Assume PI and UI. For any pair of unitary operators u1 on H1 and
u2 on H2, and any unit vector ψ ∈ H1⊗H2, one has

P(u1⊗1H2 )ψ
(b = γ|x) = Pψ(b = γ|x); (6.207)

P(1H1⊗u2)ψ(a = λ |x) = Pψ(λ = x|x). (6.208)
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Since we assume that a is nondegenerate, there is a bijective correspondence
between its eigenvalues a = λi and its eigenvectors υi. Instead of P(a = λi) dressed
with whatever parameters x or ψ , we may then write P(υi), where a is understood,
and analogously for the more complicated operators on tensor products of Hilbert
space appearing below. Repeatedly using Lemma 6.22, we proceed as follows.

• From Step 2, using the notation explained below (6.172),

P
q·∑l

i=1 ∑
mi
ji=1 ξ

i ji
BB′

(ξ i j
BB′ |x) = q2. (6.209)

• From (6.156) in PE and (6.209),

P
q·∑i, ji ξ

i ji
AA′ ⊗ξ

i ji
BB′

(ξ i j
BB′ |x) = q2. (6.210)

• From (6.155) in SE and (6.210),

P
q·κn⊗∑i, ji ξ

i ji
AA′ ⊗ξ

i ji
BB′

(ξ i j
BB′ |x) = q2. (6.211)

• From (6.211), CP (whose notation we use), and (6.206),

P(uA⊗uB)ψ ′′′AB
(ξ i j

BB′ |x)
ε≈ q2. (6.212)

• Recall the number m (satisfying m≥mi for all i). From (6.212) and Lemma 6.22,

P(1H′′′A
⊗uB)ψ ′′′AB

(ξ i ji
BB′ |x)

ε≈ q2 ( ji = 1, . . . ,mi);

P(1H′′′A
⊗uB)ψ ′′′AB

(ξ i ji
BB′ |x)

ε≈ 0 ( ji = mi +1, . . . ,m). (6.213)

We now start a different line of argument, to be combined with (6.213) in due course.

• From PE, SE, and (6.172), with υ i
A ∈ HA denoting υi ∈ H, we have

Pψ(a = λi|x)≡ Pψ(υi|x) = Pκn⊗∑i ci·ξ i1
AA′ ⊗ξ i1

BB′
(υ i

A|x). (6.214)

• Using Lemma 6.22, (6.203), and (6.204),

Pκn⊗∑i ci·ξ i1
AA′ ⊗ξ i1

BB′
(υ i

A|x) = P(1H′′′A
⊗uB)ψ ′′′AB

(υ i
A|x), (6.215)

and hence
Pψ(a = λi|x) = P(1H′′′A

⊗uB)ψ ′′′AB
(υ i

A|x). (6.216)

• From quantum mechanics, notably (6.151), and (6.205), for any i′ �= i we have

p(1H′′′A
⊗uB)ψ ′′′AB

(υ i′
A ⊗ξ i ji

BB′) = 0. (6.217)

• From CQ and (6.217), for any i′ �= i,
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P(1H′′′A
⊗uB)ψ ′′′AB

(υ i′
A ,ξ

i ji
BB′ |x) = 0. (6.218)

• From PI,

P(υ i′
A |x) = ∑

i, ji

P(υ i′
A ,ξ

i ji
BB′ |x); (6.219)

P(ξ i ji
BB′ |x) = ∑

i′
P(υ i′

A ,ξ
i ji
BB′ |x). (6.220)

• From (6.218), (6.219), and (6.220),

P(1H′′′A
⊗uB)ψ ′′′AB

(υ i
A|x) = ∑

ji

P(1H′′′A
⊗uB)ψ ′′′AB

(ξ i ji
BB′ |x). (6.221)

Finally, from (6.214), (6.221), (6.213), and (6.197) we obtain

Pψ(a = λi|x) ε≈
mi

∑
ji

q2 = mi ·q2 = c2
i . (6.222)

Since ci > 0 we have c2
i = |ci|2; using (6.192) and letting ε → 0 then proves step 3:

Pψ(a = λi|x) = |ci|2 = pψ(a = λi). (6.223)

Finally, we remove our standing assumption that the spectrum of a be nondegen-
erate. In the degenerate case one has

pψ(a = λi) = ∑
ji

pψ(υ ji), (6.224)

where the sum is over any orthonormal basis (υ ji) ji of the eigenspace of λi. Simi-
larly, since each vector υ ji gives a = λi, probability theory gives for all x,

P(a = λi|x) = ∑
ji

P(υ ji |x). (6.225)

The nondegenerate case of the theorem (which distinguishes the states υ ji ) yields

Pψ(υ ji |x) = pψ(υ ji), (6.226)

from which (6.157) follows once again:

Pψ(a = λi|x) = ∑
ji

Pψ(υ ji |x) = ∑
ji

pψ(υ ji) = pψ(a = λi).

Our proof of the Colbeck–Renner Theorem is now complete. �

Under less stringent assumptions this theorem might have been regarded as the
conclusion of von Neumann’s program to disprove the possibility of completing
quantum mechanics by adding hidden variables, but as yet this seems unwarranted.
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Notes

§6.1. From von Neumann to Kochen–Specker

‘For decades nobody spoke up against von Neumann’s arguments, and his conclusions were
quoted by some as the gospel’. (Belinfante, 1973, pp. 24)

Theorem 6.2 is due to non Neumann (1932, §IV.2); it was the first result to impose
useful constraints on hidden variable theories, anticipating all later literature on the
subject. Unfortunately (as part of their general anti-Copenhagen rhetoric), Bell and
his followers left the realm of decent academic discourse by calling von Neumann’s
arguments against hidden variables ‘silly’ and ‘foolish’, through which they merely
displayed the depth of their own misunderstanding of von Neumann’s reasoning; see
Caruana (1995), Bub (2011a), and especially Dieks (2016b). In fact, von Neumann
(1932, p. 172) carefully qualifies his Theorem 6.2 by stating that it follows ‘im Rah-
men unserer Bedingungen’ (i.e. ‘given our assumptions’), of which he earlier (on
p. 164) admits that linearity is physically reasonable only for commuting operators,
but nonetheless justifies this assumption through an ensemble argument (now out-
dated, but by no means ‘silly’). Though couched in agreeable academic parlance,
the earlier critique by Hermann (1935) was misguided, too (Dieks, 2016b).

The Kochen–Specker Theorem is due to Kochen & Specker (1967); the authors
were originally logicians. A similar but less precise statement had appeared earlier
in Bell (1966), who was not cited by Kochen and Specker; some authors refer to
the Bell–Kochen–Specker Theorem. The Nature assumption has been experimen-
tally verified, cf. Huang et al (2003). The proof of the fundamental Lemma 6.7 we
present is essentially due to Kochen and Specker, as simplified by Peres (1995). Our
independent proof for C4 is taken from Cabello et al (1996). Surveys of various
proofs are given by Brown (1992) and Gould (2009); see also Waegell & Aravind
(2012) and references therein, as well as Bub (1997) for another proof. From the
Netherlands, we cannot fail to mention the short proof by Gill & Keane (1996). For
geometric aspects (and even a link with M.C. Escher) see Zimba & Penrose (1993).

One finds two opposite directions of research around the Kochen–Specker The-
orem. A computational one, which seems hardly relevant to conceptual issues in
physics (the goal rather being The Guinness Book of Records), consists of attempts
to find a minimal set of vectors that cannot be coloured. See, for example, Pavicic
et al (2005) for arbitrary dimension and Arends (2009) and Uijlen & Westerbaan
(2015) for R3, the latter paper showing that at least 22 vectors are needed.

The other, which is of significant conceptual importance and hence is worth some
more extensive discussion, consists of attempts to find a maximal set of vectors that
can be coloured. That is, one looks for large (preferably dense and measurable)
subsets S2

c of S2 for which there exists a function Ṽ : S2
c →{0,1} that satisfies:

• Ṽ (−u) = Ṽ (u) for each u ∈ S2
c ;

• Ṽ (u1) + Ṽ (u2) + Ṽ (u3) = 2, for each (orthonormal) basis (u1,u2,u3) of R3

whose elements lie in S2
c .
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The first result in this direction was obtained by Meyer (1999) and Havlicek et al
(2001), who showed that one may take S2

c = S2∩Q3; this choice was motivated by
invoking finite precision arguments to circumvent the Kochen–Specker Theorem,
see below. To write down a suitable function Ṽ : S2 ∩Q3 → {0,1}, we first define
an auxiliary function S : S2∩Q3 → Z by

S
(

n1

m1
,

n2

m2
,

n3

m3

)
=

n3

m3
· lcm(m1,m2,m3)

gcd(n1,n2,n3)
, (6.227)

where lcm is the least common multiple and gcd is the greatest common divisor of
the argument. This function is obviously well defined. Then the following works:

Ṽ (x,y,z) = 0 if S(x,y,z) is odd; (6.228)
Ṽ (x,y,z) = 1 if S(x,y,z) is even. (6.229)

More generally, for an arbitrary n-dimensional) Hilbert space H, with n < ∞,
Clifton & Kent (2000) proved the existence of a countable dense colorable subset
P1(H)c of P1(H) (cf. Definition 6.9), with the additional property that different
resolutions of the identity drawn from P1(H)c never share a projection (so that the
key strategy proof of Lemma 6.7, which is based on the existence of overlapping
bases, falls apart). Given some enumeration (e(1)i ),(e(2)i ), . . . of the countable set of
all resolutions of the identity drawn from P1(H)c, so that each (e(k)1 , . . . ,e(k)n ) is a
basis of H, k ∈ N, each possible coloring W = Wf bijectively corresponds to some
function f : N→{1, . . . ,n} through

Wf (e) = 1 if e = e(k)f (k); (6.230)

Wf (e) = 0 otherwise. (6.231)

Note that because of the total incompatibility of the projections, each e ∈P1(H)c

belongs to a unique resolution (e(k)i ), so that Wf is well defined. The statistical pre-
dictions of quantum mechanics may then be recovered as follows. For each density
operator ρ ∈ D(H) we may define a probability measure μρ on the set nN of all
functions f : N→{1, . . . ,n} by imposing the conditions

μρ
(
{ f ∈ nN |Wf (e

(k)
i ) = λ (k)

i ∀ i = 1, . . . ,n,k ∈ K}
)
= ∏

k∈K
Tr

(
ρ

n

∏
i=1

[e(k)i = λ (k)
i ]

)
,

(6.232)
where λ (k)

i ∈ {0,1}, K ⊂ N is finite, and [e(k)i = λ (k)
i ] is the projection onto the cor-

responding eigenspace H
λ (k)

i
of the projection e(k)i (more generally, for a ∈ B(H)sa

we write [a = λ ] for the spectral projection eλ defined by a and λ ∈ σ(a)). The
subset of nN in the argument of μρ is hereby declared measurable; existence and
uniqueness of the measure μρ on a suitable σ -algebra follow from the Kolmogorov
extension theorem of measure theory, which applies because the marginals (6.232)
satisfy the appropriate consistency conditions, cf. Hermens (2009) for details.
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This formula guarantees that the left-hand side vanishes if λ (k)
i = 0 for each i,

and also if λ (k)
i = 1 for more than one value of i. If K = {k0} is a singleton and

λ = (λ1, . . . ,λn), then the right-hand side (and hence the left-hand side) is the Born
probability for the outcome e(k0)

i = λi for each i, i.e.,

μρ
(
{ f ∈ nN |Wf (e

(k0)
i ) = λi∀ i = 1, . . . ,n}

)
= Tr

(
ρ

n

∏
i=1

[e(k0)
i = λi]

)
. (6.233)

Consequently, it is true by construction that for any admissible measurement in
quantum mechanics (in that all observables commute), i.e., for each k0 ∈ N, av-
eraging over the ‘hidden variable’ f ∈ nN reproduces the statistical predictions of
quantum mechanics. This success is achieved at a high cost, however:

• Two random variables e(k)i and e(k
′)

i′ are statistically independent (with respect to

μρ ) whenever k �= k′, even though ‖e(k)i − e(k
′)

i′ ‖ may be arbitrarily small.
• For each f ∈ nN the associated coloring Wf is maximally discontinuous, in that

for each u ∈P1(H)c and each ε > 0 there is u′ ∈P1(H)c such that although
‖eu−eu′ ‖< ε one has Wf (eu) �=Wf (eu′), so that in fact |Wf (eu)−Wf (eu′)|= 1.

These facts were noted by Clifton & Kent themselves, and Appleby (2005) proved
that they are a necessary feature of all constructions that involve sufficiently large
subsets of P1(H) that can be colored.

Without challenging their mathematical significance, these discontinuities un-
dermine any potential physical relevance such models might have, and this in turn
challenges the reason such models were introduced in the first place (Meyer, 1999),
namely the (alleged) finite precision loophole of the Kochen–Specker Theorem.

The thrust of this loophole is that it would be an illusion for an experimentalist
like Alice to claim that she measures some observable a with infinite accuracy;
in fact, given ε > 0 she might equally well measure some a′ with ‖a− a′‖ < ε .
Consequently, finding a dense colorable subset P1(H)c ⊂ P1(H) should suffice
for a hidden variable interpretation of quantum mechanics, since if Alice believes
she measures some projection e, the model assigns a value W (e′) to the projection
e′ ∈ P1(H)c she actually measures (where e′ is selected by some algorithm that
is part of the theory itself, cf. Clifton & Kent (2000)), and presents that value to
Alice as the outcome of her measurement. However, owing to the discontinuities
just mentioned, this value is as arbitrary as the identification of e′.

As emphasized by Barrett & Kent (2004), this arbitrariness, although perhaps
undesirable, does not by itself affect the ability of the Clifton–Kent model to repro-
duce the statistical predictions of quantum mechanics. On the other hand, it would be
pretty awkward to have a theory whose individual value attributions are completely
arbitrary, especially since the finite precision argument is predicated on the idea that
observables close to the one Alice believes herself to measure (i.e., e) should have
approximately the same value as the one she actually does measure (namely, e′).
If this is not the case, her measurements are pointless and the hidden variable Wf
would be empirically inaccessible and hence truly “hidden” (Appleby, 2005).
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See also Hermens (2009, 2016). This last point applies to Corollary 6.12, which
would no longer be true if the set XA of all bases of R3 in Definition 6.11 would be
replaced by some subset Xc

A ⊂ XA drawn from a colorable subset S2
c of S2. Each z ∈

XZ would then correspond to some coloring u �→ F̃(u,z) of S2
c , which, by the above

discussion, would be maximally discontinuous and hence empirically inaccessible.
Nonetheless, such a theory does exist in principle.

The aim of maximizing colorable sets was pursued in a different direction by Bub
& Clifton (1996); see also Bub (1997). Given a “preferred” observable a ∈ B(H)sa
and a pure state e ∈P1(H), these authors look for a maximal sublattice P(e,a) of
P(H) that contains all spectral projections of a (but, despite the notation P(e,a),
does not necessarily contain e!), admits sufficiently many lattice homomorphism
h : P(e,a) → {0,1} (i.e., binary valuations) such that the Born measure μe on
σ(a), i.e., μe(Δ) = Tr(eeΔ ), Δ ⊆ σ(a), can be reproduced by averaging over these
homomorphisms, and finally is invariant under all unitary isomorphisms of P(H)
that commute with both e and a. Equivalently, one wants a maximal C*-subalgebra
A(a,e) of B(H) that contains a, admits sufficiently many dispersion-free states so as
to reproduce the Born probabilities defined by a in the given state e, and is invariant
in the said way (a fourth condition used by Bub and Clifton is superfluous; see Bub,
1997, p. 128). Asuming for simplicity that n = dim(H)< ∞, the answer is

A(a,e) =C∗(eλ eeλ ,λ ∈ σ(a))′ (6.234)

where, as always, eλ is the projection into the eigenspace Hλ for λ ∈ σ(a), and the
prime denotes the commutant (one might as well take the commutant of the set of all
eλ eeλ ). Equivalently, putting e = eψ = |ψ〉〈ψ|, eq. (6.234) is the C*-algebra gener-
ated by all projections fλ onto the nonzero components eλψ of ψ in each Hλ and all
one-dimensional projections that are orthogonal to all fλ (given that dim(H) < ∞,
this is the same as the linear span of these projections). Thus A(a,e) always contains
C∗(a), since it contains each eλ , λ ∈ σ(a)), but note that A(a,e) need not be com-
mutative. In comparison, if the requirement had been the reproduction of all Born
probabilities for arbitrary pure states e rather than for some given e, the answer
would have been any maximal abelian C*-algebra in B(H) that contains C∗(a); if a
has non-degenerate spectrum, this is just C∗(a) itself. The simplest possibility is

A(1H ,e) =C∗(e)′ = {e}′, (6.235)

which is the linear span of all projections f ∈ P(H) for which either e ≤ f or
e ≤ 1H − f (i.e., if e = eψ , then either ψ ∈ f H or ψ ∈ ( f H)⊥). In other words, we
have a ∈ A(1H ,e) iff ψ is an eigenvector of a (i.e. the eigenvector-eigenvalue link).

Each dispersion-free state on A(a,e), or, equivalently, each homomorphism hλ :
P(e,a)→ {0,1}, corresponds to one of the projections fλ through hλ ( fλ ) = 1
and hλ ( f ) = 0 for all other one-dimensional projections f in P(e,a). The Born
probabilities from e are then recovered by assigning (Born) measure Tr(e fλ ) to hλ .

Though interesting, this result mainly supports so-called modal interpretations of
quantum mechanics, which we reject, since they tell us nothing physical about the
measurement process and address the measurement problem only philosophically.
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§6.2. The Free Will Theorem

The Free Will Theorem was published in two versions by Conway & Kochen
(2006, 2009). Analogous results had previously been published by Heywood &
Redhead (1983), Stairs (1983), Brown & Svetlichny (1990), and Clifton (1993),
of which only the first paper was cited by Conway and Kochen. Moreover, the
close relationship to Bell’s (1964) Theorem might well be insisted on as a topic that
should have been discussed in the original papers. Other critical literature (making
the points listed in the preamble to this chapter) includes Bassi & Ghirardi (2007), ‘t
Hooft (2007), Goldstein et al (2010), Wüthrich (2011), Hemmick & Shakur (2012),
Cator & Landsman (2014), Hermens (2014, 2015), and Walleczek (2016).

The original (Strong) Free Will Theorem (FWT) states that three assumptions,
called SPIN, TWIN, and MIN, imply that the response of a spin-one particle to the
bipartite experiment with spin-one particles described above ‘is not a function of
properties of that part of the universe that is earlier than this response (. . . ).’ Here
SPIN and TWIN are the first and second half of our Nature axiom, whilst MIN ex-
presses a form of context-locality as well as the loose assumption that Alice and
Bob may ‘freely choose’ their settings a and b, respectively. Accordingly, in our
notation, Conway and Kochen only use the parameter space Z, rather than the full
space X we need in order to consistently axiomatize determinism. Their formulation
contains an implicit assumption of determinism, whose precise nature only becomes
clear from their proof, and which is akin to our formulation, except for the crucial
difference that the function they allude to only acts on the particle variables and not
on the settings of the experiment (of which, as already noted, Conway and Kochen
just say that the experimenters can ‘freely choose’ them).

Conway and Kochen paraphrase their theorem as follows:

‘if indeed we humans have free will, then elementary particles already have their own small
share of this valuable commodity. More precisely, if the experimenter can freely choose
the directions in which to orient his apparatus in a certain measurement, then the particles
response (to be pedantic—the universe’s response near the particle) is not determined by the
entire previous history of the universe. (. . . ) our theorem asserts that if experimenters have
a certain freedom, then particles have exactly the same kind of freedom. Indeed, it is natural
to suppose that this latter freedom is the ultimate explanation of our own. (. . . ) Granted our
three axioms [i.e., the physical ones and freedom of choice], the Free Will Theorem shows
that nature itself is nondeterministic.’

However, such far-reaching conclusions seem unwarranted by the actual technical
content of the theorem. Indeed, though it is also assumed in Bell’s first theorem (see
§6.5 below), the conjunction of Determinism and Freedom is a priori is uncomfort-
able, especially since the main novelty of the FWT lies in the emphasis Conway and
Kochen (unlike Bell) put on free will. The authors acknowledge at least this point
already on the first page of their first paper (Conway & Kochen, 2006), in which
they anticipate criticism of the kind:

“‘I saw you put the fish in!” said a simpleton to an angler who had used a minnow to catch
a bass.’

Indeed, also after more serious philosophical analysis, it has been concluded that:
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‘Their [Conway & Kochen’s] case against determinism thus has all the virtues of theft over
honest toil. It is truly indeterminism in, indeterminism out.’ (Wüthrich, 2011)

Our formulation of the FWT, in which the original allusion to undefined free will in
allowing arbitrary settings of the experiment has been replaced by complete deter-
minism including the settings, avoids this criticism.

To derive (6.35) - (6.38), we use (6.21) to write down the formulae

Pψ0(Fi = 1,G j = 1|A = a,B = b) = 〈ψ0,(13−|ui〉〈ui|)⊗ (13−|v j〉〈v j|)ψ0〉;
Pψ0(Fi = 0,G j = 0|A = a,B = b) = 〈ψ0, |ui〉〈ui|⊗ |v j〉〈v j|ψ0〉;
Pψ0(Fi = 1,G j = 0|A = a,B = b) = 〈ψ0,(13−|ui〉〈ui|)⊗|v j〉〈v j|ψ0〉;
Pψ0(Fi = 0,G j = 1|A = a,B = b) = 〈ψ0, |ui〉〈ui|⊗ (13−|v j〉〈v j|)ψ0〉.

For example, for any pair of unit vectors u,v we have

〈ψ0, |u〉〈u|⊗ |v〉〈v|ψ0〉=
1
3 〈e1⊗ e1 + e2⊗ e2 + e3⊗ e3,u|⊗ |v〉〈v|(e1⊗ e1 + e2⊗ e2 + e3⊗ e3)〉=
1
3 〈e1⊗ e1 + e2⊗ e2 + e3⊗ e3,〈u,v〉u⊗v〉

= 1
3 〈u,v〉2,

which gives (6.36). The other cases are similar.
The implications of the finite precision loophole of the Kochen–Specker Theo-

rem for the Free Will Theorem were analyzed by Hermens (2014), who concluded
that this loophole does not apply. We give a more precise argument to this effect.

We have dense colorable subsets Xc
A ⊂ XA and Xc

B ⊂ XB = XA, where Xc
A may

or may not coincide with Xc
B. If not, the perfect correlation condition (6.54) in the

Nature assumption cannot even be stated, but even if Xc
A = Xc

B, since finite precision
of experiment has been declared to be an issue it would be quite out of character to
impose (6.54). Instead, one needs a probabilistic version of this condition, of which
it will turn out that it cannot be satisfied. As in the notes to the previous section, for
each density matrix ρ one needs a probability measure μρ on Z that reproduces the
statistical quantum-mechanical predictions for the associated quantum state. Com-
pared to the notes to the previous section, the role of W is now played by z, in that
for given F and G one might write

W (a,b) = (F̂(a,z), Ĝ(b,z). (6.236)

This measure may be constructed analogously to (6.232), i.e., for any sequence
(a(k)) of bases drawn from Xc

A, any sequence (b(k)) of bases drawn from Xc
B, and any

sequences (λ (k)) and (γ(k)) in Λ , cf. (6.22), where k ∈ K ⊂N is arbitrary, we define

μρ({z ∈ Z | F̂(a(k),z) = λ (k), Ĝ(b(k),z) = γ(k),k ∈ K} =

∏
k∈K

Tr

(
ρ

3

∏
i, j=1

[J2
ui
= λ (k)

i ] · [J2
v j
= γ(k)j ]

)
, (6.237)
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where, as in the main text,

a = (u1,u2,u3); (6.238)
b = (v1,v2,v3). (6.239)

Note that J2
ui

acts on Alice’s Hilbert space C3 whilst J2
v j

acts on Bob’s. In particular,
for fixed k0 ∈ K and λ ,γ ∈ Λ , we have the special case of (6.237) for compatible
measurements, viz.

μρ({z ∈ Z | F̂(a(k0),z) = λ , Ĝ(b(k0),z) = γ}= Tr

(
ρ

3

∏
i, j=1

[J2
ui
= λi] · [J2

v j
= λ j]

)
,

where in the main text we would have written Pρ(F = λ ,G= μ|A= a,B= b) for the
right-hand side. Hence for the correlated state ρ = |ψ0〉〈ψ0| we obtain from (6.42):

μψ0({z ∈ Z | F̂i(a,z) �= Ĝ j(b,z)}) = 2
3 (1−〈ui,v j〉2), (6.240)

which of course vanishes if ui = v j. If the expression 1−〈ui,v j〉2 appearing here is
small, then the projections eui and ev j are close (in norm), since

‖eui − ev j‖2 ≤ 2(1−〈ui,v j〉2). (6.241)

Eq. (6.240) therefore allows us to make rigorous sense of Hermens’ (2014) heuristic
idea that the assumption (6.54) in the FWT should be modified as follows:

‘if ‖eui − ev j‖ is small, then in most of the cases F̂i(a,z) = Ĝ j(b,z).’

Namely, we replace (6.54) by the following approximate correlation condition:

• For every ε > 0 there is δ > 0 such that if 1−〈ui,v j〉2 < δ , then

μψ0({z ∈ Z | F̂i(a,z) �= Ĝ j(b,z)})< ε. (6.242)

Indeed, if the theory existed, on could simply take δ = ε . However, a theory satis-
fying (6.242) does not exist, as can be proved by contradiction: if F̂i(a,z) = Ĝ j(b,z)
for all pairs (ui,v j) such that 1− 〈ui,v j〉2 < ε , then the proof of Theorem 6.13
shows not only that (6.32) still holds on the modified Nature assumption (so that
F̃(·,z) again defines a coloring of S2), but that in addition we have

1−〈u,u′〉2 < δ ⇒ F̃(u,z) = F̃(u′,z). (6.243)

In particular, the apparently weaker correlation condition ending with (6.242) is
actually stronger than its exact counterpart (6.54).

Thus Theorem 6.13 still holds on this revised Nature assumption, so that unlike
the Kochen–Specker Theorem, the Free Will Theorem is immune to the finite pre-
cision loophole. The price for this immunity is that, quite against the spirit of the
FWT, some probabilistic reasoning had to be invoked, so that the difference between
the FWT and Bell’s first theorem has blurred even further.
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§6.3. Philosophical intermezzo: Free will in the Free Will Theorem

The literature on free will is immense. Introductory accounts include Walter
(2001), which focuses on the connection with neuroscience, Doyle (2011), and
Beebee (2013), the second of which remains largely philosophical, the third even
completely. A very sophisticated recent defense of compatibilism is Ismael (2016).
Lewis’s ‘local miracle compatibilism’ was proposed in Lewis (1981). What’s more:

‘[Lewis’s paper is] the finest essay that has ever been written in defense of compatibilism—
possibly the finest essay that has ever been written about any aspect of the free will problem.’
(van Inwagen, 2008).

Saunders (1968) already made a point similar to Lewis’s; see also Moore (1912, Ch.
6). For Lewis’s theory of counterfactuals see Lewis (1973, 1979, 2000), as well as
Menzies (2014). See also Fischer (1994), Beebee (2003, 2013), and Vihvelin (2013).

Although Lewis’s position is called local miracle compatbilism, a miracle takes
place neither in the actual world where Alice’s hand is at rest nor in the possible
world where she raises it, i.e., a law is broken neither in the former nor in the latter:

‘This is what Lewis means by a ‘miracle’: an event M is a miracle if and only if M occurs
at possible world w, and M is contrary to some actual law (or combination of laws) L. The
point here is that while M is a miracle in Lewis’s sense, it is not contrary to any of w’s laws
of nature. At w, L simply isn’t a law in the first place. So, as things actually happened—
in the actual world—L is a law, and m does not occur, so there is no miracle in the usual
sense of ‘miracle’. m is only a ‘miracle’ in Lewis’s special sense of ‘miracle’: something
(m) happens in w that is contrary to the laws of nature in the actual world.’
(Beebee, 2013, p. 62)

Unfortunately, confusion may arise if the quotation in the main text ‘if I did it, a law
would be broken’ from Lewis (1981) is subjected to the following explanation:

‘On Lewis’s account of counterfactuals, the truth conditions for counterfactuals—what
makes them true—are as follows. Suppose we have the counterfactual ‘if A had been the
case, B would have been the case’ (so if A is ‘I miss the bus’ and B is ‘I’m late’, this coun-
terfactual just says, ‘if I’d missed the bus, I would have been late’). This counterfactual will
be true if and only if, at the closest possible world to the actual world at which A is true, B
is also true. So, our sample counterfactual, ‘if I’d missed the bus, I would have been late’,
is true if and only if: at the closest possible world to the actual world at which I miss the
bus, I’m late.’ (Beebee, 2013, p. 60).

Removing any possible remaining doubt, on p. 62 she mentions that the closest
possible world where I miss the bus is the world w. According to this explanation,
then, Lewis’s sentence ‘if I did it, a law would be broken’, would mean that at the
closest possible world to the actual world in which I did it, a law is broken, i.e., in w.
But according to Beebee’s definition quoted in the main text of what Lewis means
by a miracle, apparently this is not the right reading (and indeed it would, in our
view, be nonsensical). Moreover, Lewis (1981) emphasizes that in the first bullet
point in the main text above—which he defends—it is not the agent who would
break a law, whereas in the second bullet point —rejected by Lewis—it is; in the
first it is the breaking of some law at an earlier time that enables the agent to do
what she, in our actual world, did not do. Thus Lewis’s phrasing seems awkward.
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Our development of Lewis’s argument is indebted to Vihvelin (2013, pp. 164–
165), who (re)states Lewis’s first bullet point as the following conjunction:

1. Slightly Different Past: If I had raised my hand, the past would still have been
exactly the same until shortly before the time of my decision.

2. Slightly Different Laws: If I had raised my hand, the laws would have been ever
so slightly different in a way that permitted a divergence from the lawful course
of actual history shortly before the time of my decision.

A second way in which Alice could (counterfactually) have raised here hand is
through an instant (counterfactual) modification of the state of the world, as in Ben-
nett (1984). This has been explicated by Vihvelin (2013, p. 165), too:

1. Same Laws: If I had raised my hand, the laws would still have been the same.
2. Completely Different Past: If I had raised my hand, past history would have

been different all the way back to the Big Bang.

Here we prefer to write Different Past, since even though in this scenario the state
indeed (by determinism) would have been different all the way back to the Big Bang,
the entire trajectory of the world may or may not be close to the actual one. In this
scenario, the two cases Lewis distinguishes take the form in the main text.

Since the main novelty of their papers lies in the emphasis on free will, the reader
might wonder what Conway & Kochen themselves have to say about the subject. As
we can read in the delightful biography of Conway by Roberts (2015), or watch in
his video lectures on the Free Will Theorem (Conway, 2009), free will is indeed of
great importance to at least the first author of the theorem. Unfortunately, his interest
in free will seems unaccompanied by any philosophical sophistication, e.g.:

‘Compatibilism in my view is silly. Sorry, I shouldn’t just say straight off that it is silly.
Compatibilism is an old viewpoint from previous centuries when philosophers were talking
about free will. The were accustomed to physical theory being deterministic. And then
there’s the question: How can we have free will in this deterministic universe? Well, they
sat and thought for ages and ages and ages and read books on philosophy and God knows
what and they came up with compatibilism, which was a tremendous wrenching effect to
reconcile 2 things which seemed incompatible. And they said they were compatible after
all. But nobody would ever have come up with compatibilism if they thought, as turns out
to be the case, that science wasn’t deterministic. The whole business of compatibilism was
to reconcile what science told you at the time, centuries ago down to 1 century ago: Science
appeared to be totally deterministic, and how can we reconcile that with free will, which
is not deterministic? So compatibilism, I see it as out of date, really. It’s doing something
that doesn’t need to be done. However, compatibilism hasn’t gone out of date, certainly,
as far as the philosophers are concerned. Lots of them are still very keen on it. How can
I say it? If you do anything that seems impossible, you’re quite proud when you appear
to have succeeded. And so really the philosophers don’t want to give up this notion of
compatibilism because it seems to damned clever. But my view is it’s really nonsense. And
it’s not necessary. So whether it actually is nonsense or not doesn’t matter.’

(Conway, quoted in Roberts, 2015, pp. 361–362).

Finally, our version of van Inwagen’s (1975) Consequence Argument is due to
Beebee (2003), and the novel parts of this section are based on Landsman (2016c).
For interesting philosophical criticism of this approach, see De Mola (2016).
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§6.4. Technical intermezzo: The GHZ-Theorem

The GHZ Theorem appeared in Greenberger et al (1990) See also Clifton, Red-
head, & Butterfield (1991) and Bub (1997). Innumerable variations on and gen-
eralizations of such arguments may be given, leading to equally many Free Will
Theorems. All of these have their roots in algebraic properties of matrices, which
hidden variable theories (in vain) try to reproduce.

§6.5. Bell’s theorems

The original contributions to the theme of this section are Bell (1964, 1976), of
which the first is one of the most famous papers of 20th century theoretical physics.
Since there are more than 10,000 papers citing Bell (1964) alone, it is impossible
to discuss all literature relevant to Bell’s work. What we call his first theorem orig-
inates with Bell (1964), which incidentally was written after Bell (1966), but our
treatment of the settings (taken from Cator & Landsman, 2014) is different. Though
originally motivated as an attempt to make the Free Will Theorem look less of a pe-
titio principii, it also addresses a problem Bell faced even according to some of his
staunchest supporters (Norsen, 2009; Seevinck & Uffink, 2011), namely the tension
between the idea that the hidden variables (in the pertinent causal past) should on
the one hand include all ontological information relevant to the experiment, but on
the other hand should leave Alice and Bob free to choose any settings they like.

His second theorem comes from Bell (1976), followed by Bell (1990a).
Apart from his own papers, which are reprinted in Bell, Gottfried & Veltman (2001),
treatments of Bell’s Theorems we regard as sound include Fine (1982), Jarrett
(1984), Pitowsky (1989), van Fraassen (1991), Butterfield (1992a,b), Bub (1997),
Werner, & Wolf (2001), Liang, Spekkens, & Wiseman (2011), Shimony (2013),
Wiseman (2014), and Brown & Timpson (2015). Recent and mathematically inno-
vative approaches include Abramsky & Brandenburger (2011), Acı́n et al (2015),
and Fritz (2016). For history, see Gilder (2008) and Kaiser (2010).

Unfortunately, we have not been able to come to grips with (and hence do not
cite) literature claiming that Bell’s theorems are false, or have nothing to do with
hidden variables, or prove that quantum mechanics (if not nature itself!) is nonlocal
per se, or that he never changed his mind and only has one theorem saying it all.

The verification of (6.102) - (6.105) is analogous to the above computations de-
riving (6.35) - (6.38). In terms of the unit vector

va =

(
cosa
sina

)
, (6.244)

the observable F Alice measures on setting A = a is the projection ea = |va〉〈va|,
and similarly for Bob. Hence the corresponding Born probabilities are given by

Pψ0(F = 1,G = 1|A = a,B = b) = 〈ψ0,ea⊗ ebψ0〉;
Pψ0(F = 0,G = 0|A = a,B = b) = 〈ψ0,(12− ea)⊗ (12− eb)ψ0〉;
Pψ0(F = 1,G = 0|A = a,B = b) = 〈ψ0,ea⊗ (12− eb)ψ0〉;

Pψ0((F = 0,G = 1|A = a,B = b) = 〈ψ0,(12− ea)⊗ ebψ0〉.
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For example, we have

〈ψ0,ea⊗ ebψ0〉 = 1
2 〈e1⊗ e1 + e2⊗ e2, |va〉〈va|⊗ |vb〉〈vb|(e1⊗ e1 + e2⊗ e2)〉

= 1
2 〈e1⊗ e1 + e2⊗ e2,(cosacosb+ sinasinb)va⊗ vb〉

= 1
2 (cosacosb+ sinasinb)2

= 1
2 cos2(a−b).

The CHSH-inequality (6.117) is due to Clauser, Horne, Shimony, & Holt (1969).
The definitive (i.e., loophole-free) experimental verification of its violation in nature
is Henson et al. (2015). A direct proof starts of (6.117) from the simpler inequality

P(F �= H)≤ P(F �= G)+P(G �= H), (6.245)

for three {0,1}-valued random variables F,G,H, which implies (6.117). To prove
(6.245), one just writes

P(F �= H) = P(F = 1,G = 1,H = 0)+P(F = 1,G = 0,H = 0)
+ P(F = 0,G = 1,H = 1)+P(F = 0,G = 0,H = 1),

etc., and notes that each term on the left-hand side of (6.245) also occurs on the right-
hand side. Since each term lies in [0,1] and hence is positive, this implies (6.245).
Our proof of Proposition 6.17 follows Werner & Wolf (2001), as does our proof of
Theorem 6.18 (though not our formulation thereof, which once again derives from
Cator & Landsman (2014). This proof shows that, as first noted by Fine (1982) and
analyzed more deeply in Butterfield (1992b), there is no real distinction between
the possibility of reproducing given (empirical) probabilities P(F = λ ,G = γ|A =
a,B = b) that satisfy Bell locality by a local deterministic hidden variable theory or
by a local stochastic hidden variable theory. Most current research in this direction,
sparked by Popescu & Rohlich (1994), is therefore concerned with theories defined
by formal joint conditional probabilities that satisfy a no signaling condition like OI
instead of Bell locality, cf. Bub (2011b) and Brunner et al (2014) for reviews.

Formal conditional probabilities of the kind that Bell’s second theorem uses have
been axiomatized by e.g. Popper (1938) and Rényi (1955); the following axioms are
theorems if conditional probabilities are defined à la Kolmogorov by (1.1). Let Σ be
some σ -algebra and let F ⊂ Σ\{ /0} be an ideal in Σ in the sense that if B ∈ Σ and
C ∈F , then B∩C ∈F . A conditional probability on (Σ ,F ) is a map

P : Σ ×F → [0,1]; (6.246)
(A,C) �→ P(A|C), (6.247)

such that:

1. For each C ∈F the map A �→ P(A|C) is a probability measure on Σ ;
2. P(A∩B|C) = P(A|B∩C) ·P(B|C), for each A,B ∈ Σ and C ∈F .
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Van Fraassen (1991) noted that if (6.121) holds, then the variable x is a common
cause in the sense of Reichenbach for Alice’s and Bob’s outcomes (see Hofer-Szabó
(2015) for a recent paper in this direction). To explain this observation, suppose two
random processes F and G (like Alice’s and Bob’s measurements) are correlated,
i.e., P(F = λ ,G = γ) �= P(F = λ )P(G = γ). What might cause the correlation?

1. Chance. If Alice and Bob independently throw dice but always get the same
result, there is a computable nonzero probability for this to happen without any
reason. But this probability decreases as the number of occurrences grows.

2. Causation. One outcome influences or even determines the other. Maybe Bob,
whose experiment is genuinely random, is able to manipulate Alice’s experiment
once he has seen his outcome. But according to relativity theory or other basic
notions of causality in space-time, this should be impossible if Alice and Bob
perform their measurements simultaneously and far from each other.

3. Ur-determinism. The initial conditions at the Big Bang plus deterministic Laws
of Nature imply the correlation. However, physics becomes pointless if we en-
dorse this option. The notion of explanation as the purpose of science is defeated
and there is little difference between this argument and Divine Predestination.

4. Identity. The motions of my mirror image are strongly correlated with me, but
that is because this image is really the same as me (at least in so far as motion is
concerned, as opposed to e.g. thoughts). This example might also be explained
using causation. Another example consists of Alice and Bob filming the same
random process (which may also be explained using the following concept).

5. Common Cause A random process X is said to be a common cause for two
correlated random processes if it precedes both and satisfies

P(F = λ ,G = γ|X = x) = P(F = λ |X = x)P(G = γ|X = x). (6.248)

Another way to write this is P(F = λ |G = γ,X = x) = P(F = λ |X = x), which
shows that a common cause X screens off the dependence of F on G. Often the
common cause is hidden and has to be inferred from the observed correlation
(having excluded other explanations, like the ones above). A nice example of
this is the inference of a manuscript called Q in New Testament studies. It is
clear that the Gospels of Matthew and Luke both draw on Mark, but they also
contain strikingly similar or even identical non-Markan passages. For various
reasons it is unlikely that either one copied these from the other, so that the main
hypothesis is that they both rely on Q, which is now lost. See e.g. Mack (1993).

From this perspective, the amazing fact is that the correlations in the Alice and
Bob experiment with either spin-1 particle or photons cannot be explained by a
common cause, since its existence (in the form of x) would imply the Bell inequality.
However, of the four other explanations described above, no. 1 is ridiculous given
the statistics of the relevant experiments, no. 2 is at odds with relativity, and no.
4 seems inapplicable. This leaves no. 3, which seems only supported by ’t Hooft
(2016), who denies the independence assumptions (i.e. between the settings and the
state of the pair of particles undergoing measurement) lying at the basis of both the
Free Will Theorem and Bell’s theorems. Every way you look at it you lose!
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Generalizations of Theorem 6.19 to operator algebras were given e.g. by Baez
(1987), Raggio (1988), Werner (1989), and Bacciagaluppi (1993), as follows. Let A
and B be unital C*-algebras, with projective tensor product A⊗̂B (i.e., the comple-
tion of the algebraic tensor product A⊗B in the maximal C*-cross-norm), cf. §C.13;
the choice of the projective tensor product guarantees that each state on A⊗B ex-
tends to a state on A⊗̂B by continuity; conversely, since A⊗B is dense in A⊗̂B, each
state on the latter is uniquely determined by its values on the former. In particular,
product states ρ⊗σ and mixtures ω =∑i piρi⊗σi thereof are well defined on A⊗̂B.
If A ⊂ B(H1) and B ⊂ B(H2) are von Neumann algebras, and all states considered
are normal, it is easier to work with the spatial tensor product A⊗B, defined as the
double commutant (or weak completion) of A⊗B in B(H1⊗H2). Any normal state
on A⊗B extends to a normal state on A⊗B by continuity. Below we use ⊗̂, but the
results also work for ⊗. In what follows, A and B are unital C*-algebras.

Definition 6.23. Let ω be a state on A⊗̂B.

1. A product state is a state of the form ω = ρ⊗σ , i.e., ω is defined by linear (and
continuous) extension of ω(a⊗b) = ρ(a)σ(b).

2. A state ω is uncorrelated when it is in the w∗-closure of the convex hull of the
product states on A⊗̂B. In particular, states ω = ∑i piρi⊗σi, where pi > 0 and
∑i pi = 1, are uncorrelated (w∗-convergent infinite sums are allowed here).

3. A state is correlated when it is not uncorrelated.

An uncorrelated state ω is pure precisely when it is a product of pure states. This
has the important consequence that both its restrictions ω|A and ω|B to A and B,
respectively, are pure as well (the restriction ω|A of a state ω on A⊗̂B to, say, A is
given by ω|A(a) = ω(a⊗1B), where 1B is the unit element of B, etc.). A correlated
pure state has the property that its restriction to A or B is mixed.

Proposition 6.24. The following conditions are equivalent:

• Each state on A⊗̂B is uncorrelated;
• Each pure state on A⊗̂B is a product state;
• At least one of the C*-algebras A and B is commutative.

For the proof see Takesaki (2002), Theorem 4.14.

Corollary 6.25. Correlated states exist iff A and B are both noncommutative.

As one might expect, this result is closely related to the Bell inequalities:

Proposition 6.26. For any ω ∈ S(A⊗̂B), the following conditions are equivalent:

• ω is uncorrelated.
• For all self-adjoint operators a1,a2 ∈ A and b1,b2 ∈ B of norm ≤ 1 we have

|ω(a1(b1 +b2)+a2(b1−b2))| ≤ 2. (6.249)

See Baez (1987), Raggio (1988), Bacciagaluppi (1993), and Landsman (2006a).

Corollary 6.27. If A or B is commutative, then (6.249) holds for all states ω .
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An elegant geometric approach to the Bell inequalities was developed by Pitowsky
(1989, 1994), which we now summarize (also cf. Werner & Wolf, 2001).

Suppose we have a bipartite experiment with m different settings A = a1, . . .am
and B = b1, . . . ,bm on each wing, and binary outcomes, i.e., in {0,1}. We now de-
note the probability P(F = 1|A= ai) that F(ai) (i.e. the particular property measured
by experiment F at setting ai) is true by pi (i= 1, . . . ,m), and likewise we write p j+m
for P(G|B = b j), i.e., the probability that G(b j) is true, once again for j = 1, . . . ,m.
Furthermore, we abbreviate the probability that F(ai) and G(b j) are both true by

pi, j+m ≡ P(F = 1,G = 1|A = ai,B = b j) (i, j = 1, . . . ,m). (6.250)

The 2m+m2 “surface probabilities” p=(p1, . . . , p2m, p1,m+1, . . . , pm,2m) form a vec-
tor in R2m+m2

, which we wish to constrain by the following assumption: there
is a fact of the matter underlying each experiment according to which the pair
(F(ai),G(b j)) already had a truth value for each possible setting (ai,b j), indepen-
dently of any measurement being carried out or not (“local realism”). Thus the
probabilities p (which now arguably have an ignorance interpretation) must lie in
the convex polytope in R|2m+m2| defined as the convex hull Cm of the following set
of (extreme) points: for each 2m-tuple λ = (λ1, . . . ,λ2m), where λi ∈ {0,1}, define

xλ = (λ1, . . . ,λ2m,λ1 ·λm+1, . . . ,λm ·λ2m) ∈ R2m+m2
, (6.251)

i.e., the entry at place k is λk (k = 1, . . . ,2m) and the entry at place (i, j) is λi ·λm+ j,
where i, j = 1, . . . ,m. The interpretation of this is that xλ represents the particular
fact of the matter where F(ai) has truth value λi and G(b j) has truth value λm+ j,
so that their conjunction (F(ai),G(b j)) has truth value λi · λm+ j. In this state the
probability of the said configuration is one and all other states have probability zero;
arbitrary probability assignments then lie in Cm. The point, then, is to characterize
the convex polytope Cm ⊂ R2m+m2

through a finite set of inequalities, which turn
out to be generalized Bell inequalities. Seeing this result requires some background.

Let V be a real topological vector space with (continuous) dual V ∗; if V =Rn we
may also put V ∗ = Rn and write ϕ(v) as an inner product 〈ϕ,v〉 in what follows.

1. Any (not necessarily convex) subset S⊂V has a polar So ⊂V ∗ defined by

So = {ϕ ∈V ∗ | ϕ(v)≤ 1∀v ∈ S}, (6.252)

which is a closed convex subset of V ∗. If S = K is a compact convex set, we have

Ko = {ϕ ∈V ∗ | ϕ(v)≤ 1∀v ∈ ∂eK}. (6.253)

2. The bipolar theorem (cf. e.g. Simon (2011, Theorem 5.5) states that

Soo = co(S∪{0}). (6.254)

In particular, if K a closed convex set containing the origin, then
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Koo = K, (6.255)

and hence, if Ko is a compact convex set, we may reconstruct K from Ko as

K = {v ∈V | ϕ(v)≤ 1∀ϕ ∈ ∂eKo}. (6.256)

3. In particular, if K is a convex polytope in a finite-dimensional vector space con-
taining the origin, then so is Ko. In that case, ∂eKo is a finite set and so points in K
are characterized by a finite set of linear inequalities (6.256), which describe the
faces of the polytope. In this case, the associated (dual) description of K is called
the Minkowski–Weyl Theorem, see e.g. Paffenholz (2010) for applications.

For example, among the five Platonic solids (i.e. in R3) the cube and the octahedron
are dual to each other, as are the dodecahedron and the icosahedron, whereas the
terahedron is self-dual. A propos, the latter arises as the convex polytope C1 for
m = 1 in the above story: clearly 2m+m2 = 3, and for the vertices of C1 one takes
the four points xλ ensuing from the four possibilities λ = (0,0),(1,0),(0,1),(1,1),
i.e., xλ = (0,0,0),(1,0,0),(0,1,0),(1,1,1). Then the inequalities in (6.256) are

p1,2 ≥ 0, p1 ≥ p1,2, p2 ≥ p1,2, p1 + p2− p1,2 ≤ 1. (6.257)

For m = 2 the ensuing convex polytope C2 ⊆ R8 is the convex hull of 16 extreme
points, whose inequalities may be found in Pitowsky (1989, p. 27); these imply the
CHSH inequality, whose violation in quantum mechanics therefore shows that the
probabilities in question have no local realistic model.

More generally, suppose we have n yes-no experiments (E1, . . . ,En) and some
subset Sn of the set {(i,k) | 1 ≤ i < k ≤ n} (above we had n = 2m, Ei = F(ai) for
i= 1, . . . ,m, Em+ j =G(b j) for j = 1, . . . ,m, and Sn = {(i,m+ j) | 1≤ i, j≤m}). This
gives surface probabilities (p1, . . . , pn, pi,k), where (i,k) ∈ Sn), which form a vector
p in Rn+|Sn|. As in (6.251), each truth assignment λ = (λ1, . . . ,λn), λ ∈ {0,1}, then
defines a point xλ ∈ Rn+|Sn| with coordinates (λ1, . . . ,λn,λi ·λk), where once again
(i,k) ∈ Sn. This set of 2n points in turn spans a convex polytope CSn characterized
by inequalities following from the dual characterization (6.256). Classical thinking
would constrain the p so as to lie in CSn , and indeed we have p ∈CSn iff there is a
probability space (X ,G,μ) such that pi = μ(Ai) and pi,k = μ(Ai ∩Ak) for certain
events Ai ∈ Σ , cf. Theorem 2.3 in Pitowsky (1989), which is based on Fine (1982).

Some authors claim on this basis that Bell-type inequalities have nothing to do
with physics, but surely the point is that some physical assumptions (notably local
realism) have to be made in order to justify the “classical thinking” behind CSn .
§6.6. The Colbeck–Renner Theorem

This section is based on Colbeck & Renner (2011, 2012a, 2012b), where the
main idea originates (alas with unclear assumptions and at best heuristic “proofs”),
Braunstein & Caves (1990), who provided steps 1 and 2 of the proof, and Landsman
(2015), whom we follow closely. See also Leegwater (2016) for a technically dif-
ferent approach (by a far more complicated argument, Leegwater seems to manage
to do without our CP assumption, i.e., continuity of probabilities).
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Limits: Small h̄

Limits are essential to the asymptotic Bohrification program. It was recognized at
an early stage in the development of quantum mechanics that the limit h̄ → 0 of
Planck’s constant going to zero should play a role in the derivation of classical
physics from quantum theory, and later on also the thermodynamic limit (which
often means “limN→∞”, where N is the number of particles in the system) became a
subject of interest in quantum statistical mechanics. The conceptual status of these
limits will be discussed in Chapter 10; in the present one we mainly explain the
underlying mathematics. However, one question needs to be addressed immediately,
since it is a source of much confusion. Varying N seems a realistic thing to do in the
lab or on paper, whereas h̄ is a constant, so how can it be varied? The answer is that
h̄ is a dimensionful constant, from which one forms dimensionless combinations
of h̄ and other parameters; this combination then re-enters the theory as if it were a
dimensionless version of h̄ that can indeed be varied. The oldest example is Planck’s
radiation formula Eν/Nν = hν/(ehν/kT − 1), with temperature T as the pertinent
variable. Indeed, the observation of Einstein and Planck that in the limit h̄ν/kT → 0
this formula converges to the classical equipartition law Eν/Nν = kT may well be
the first use of the h̄→ 0 limit of quantum theory; note that Einstein put h̄ν/kT → 0
by letting ν → 0 at fixed T and h̄, whereas Planck took T → ∞ at fixed ν and h̄!

Another example is the Hamiltonian h =− h̄2

2mΔ +V (x) in the Schrödinger equa-
tion of non-relativistic quantum mechanics, where m is the mass of the pertinent
particle. Here one may pass to dimensionless parameters by introducing an energy
scale ε typical of H, like ε = supx |V (x)|, as well as a typical length scale �, such
as � = ε/supx |∇V (x)| (if these quantities are finite). In terms of the dimensionless
variable x̃ = x/�, the rescaled Hamiltonian h̃ = h/ε is then dimensionless and equal
to h̃=− ˜̄h2Δ̃+Ṽ (x̃), where ˜̄h= h̄/�

√
2mε , the operator Δ̃ is the Laplacian for x̃, and

Ṽ (x̃) =V (�x̃)/ε . Here ˜̄h is dimensionless, and one might study the regime where it
is small. Similarly, it is often realistic to rescale the potential V by a positive number

λ , in which case hλ = − h̄2

2mΔ + λV (x) can be rescaled to hλ/λ = − ˜̄h2

2mΔ +V (x),
with ˜̄h = h̄/

√
λ , so that the “large V limit” λ → ∞ comes down to ˜̄h→ 0.
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In (older) textbooks on quantum mechanics the limit h̄→ 0 is typically studied
using the so-called WKB-approximation. This may be justified on historical grounds,
but in fact this approximation is rarely applicable, and is extremely delicate even
when it applies. Fortunately, a much more satisfactory and almost universally appli-
cable framework has become available since the 1990s, namely (strict) deformation
quantization, where the word “strict” (which we will henceforth omit) refers to the
fact that in this approach h̄ is a real number that can “really” (!) be varied and hence
can be made small (as opposed to formal deformation quantization, where h̄ is a for-
mal parameter having no actual value). Also, “strict” sometimes refers to the use of
C*-algebras and the high mathematical standards this brings. In the formalism that
follows, (deformation) quantization and the classical limit of quantum mechanics
are seen as two sides of the same coin, as the axioms of quantization are predicated
on recovering the correct classical limit, while conversely the classical limit only
makes sense in the context of some correct notion of quantization.

The starting point of deformation quantization is a phase space X , mathemat-
ically described as a Poisson manifold, i.e., a manifold equipped with a Poisson
bracket {·, ·} on its algebra of smooth functions C∞(X), see §3.2. We recall that
a Poisson bracket is a Lie bracket on C∞(X) with the additional property that for
each h ∈C∞(X), the map δh( f ) = {h, f} is a derivation of C∞(X) with respect to its
structure as a commutative algebra under pointwise multiplication, i.e.,

δh( f g) = fδh(g)+δh( f )g. (7.1)

Furthermore, like pointwise multiplication, the Poisson bracket preserves real-
valuedness, i.e., if f ∈C∞(X ,R) and g ∈C∞(X ,R), then also { f ,g} ∈C∞(X ,R).

As early as 1925, Dirac noted the formal analogy between Poisson brackets
of functions on phase space and commutators of operators on Hilbert space (i.e.,
[a,b] = ab−ba). Indeed, if A is any C*-algebra, the commutator is a Lie bracket on
A, and if we use [a,b]′ = i[ab− ba], then also self-adjointness is preserved (in that
a∗ = a and b∗ = b implies that also [a,b]′ is self-adjoint, which fails to be the case
for the commutator itself unless it vanishes). Thus [−,−]′ is a Lie bracket on Asa.
Moreover, if for fixed a ∈ A we define δa(b) = [a,b]′, then we have the product rule

δa(bc) = δa(b)c+bδa(c), (7.2)

which makes δa : A→ A a derivation. A problem arises if one wishes to restrict δa
to Asa, since this subspace is not stable under multiplication. This may be remedied
by passing to the Jordan product (5.14), i.e., a◦b = 1

2 (ab+ba), which is defined on
Asa. If a∗ = a, then δa : Asa → Asa satisfies the rule (7.2) also with respect to ◦.

All this remains true if [−,−]′ is rescaled by a nonzero real number. Which num-
ber this should be was suggested by Schrödinger’s construction of momentum and
position operators on the Hilbert space H = L2(R) through the substitutions

p � p̂ =
h̄
i

d
dx

; (7.3)

q � q̂ = x, (7.4)
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where “x” is the multiplication operator mid (with id(x) = x), i.e., q̂ψ(q) = xψ(x);
for the moment we will not be bothered by the fact that these operators are un-
bounded; let us say they are both defined on the domain C∞

c (R)⊂ L2(R).
This yields the canonical commutation relations (which formally hold on C∞

c (R)):

i
h̄
[p̂, q̂] = 1H , (7.5)

Noting the Poisson brackets (in which p,q are the coordinate functions on X = R2)

{p,q}= 1X , (7.6)

it it clear that analogy should be between {−,−} and (i/h̄)[−,−]. Thus Dirac wrote:

‘The strong analogy between the quantum P.B. defined by [(i/h̄) times the commutator] and
the classical P.B. (. . . ) leads us to make the assumption that the quantum P.B.’s, or at any
rate the simpler ones of them, have the same values as the corresponding classical P.B.’s.’

Combined with Heisenberg’s decisive idea that quantum mechanics should be an
Umdeutung (i.e., reinterpretation) of classical mechanics, one is led to the idea that
“quantization” should be given by a linear map

f �→ Qh̄( f ), (7.7)

where f is some (smooth) function on phase space X and Qh̄( f ) is some operator
on some “corresponding” Hilbert space, whose identification or construction is a
separate problem (but for X = R2 it should apparently be L2(R)), such that

i
h̄
[Qh̄( f ),Qh̄(g)] = Qh̄({ f ,g}), (7.8)

at least for functions f ,g ∈C∞(X) with ‘the simpler’ Poisson brackets. If only to do
justice to Schrödinger’s example (7.3) - (7.4) with (7.5), one should also require

Qh̄(1X ) = 1H . (7.9)

The act of quantization should also preserve the adjoint, i.e., writing f ∗(x) = f (x),

Qh̄( f ∗) = Qh̄( f )∗. (7.10)

Putting h̄ on the right-hand side of eqs. (7.5) and (7.8), Dirac (and similarly the
Dreimännerarbeit Born–Heisenberg–Jordan) concluded from these equations that:

‘classical mechanics may be regarded as the limiting case of quantum mechanics when h̄
tends to zero.’

In the remainder of this chapter we try to do justice to this fabulous insight of Dirac’s
(and also of Born, Heisenberg, and Jordan, or even Planck, Einstein, and Bohr, none
of whom seem to have quite appreciated the stupendous complexity of the claim).
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7.1 Deformation quantization

Recall Definition C.121 of a continuous bundle of C*-algebras over some space I,
which below is taken to be a subset of the unit interval [0,1] that contains 0 as an
accumulation point (so one may have e.g. I = [0,1] itself, or I = (1/N)∪{0}).
Definition 7.1. A deformation quantization of a Poisson manifold X consists of a
continuous bundle of C*-algebras (A,{ϕh̄ : A→ Ah̄}h̄∈I) over I, along with maps

Qh̄ : Ã0 → Ah̄ (h̄ ∈ I), (7.11)

where Ã0 is a dense subspace of A0 =C0(X), such that:

1. Q0 is the inclusion map Ã0 ↪→ A0;
2. Each map Qh̄ is linear and satisfies (7.10);
3. For each f ∈ Ã0 the following map is a continuous section of the bundle:

0 �→ f ; (7.12)
h̄ �→ Qh̄( f ) (h̄ > 0); (7.13)

4. For all f ,g ∈ Ã0 one has the Dirac–Groenewold–Rieffel condition

lim
h̄→0

∥∥∥∥ i
h̄
[Qh̄( f ),Qh̄(g)]−Qh̄({ f ,g})

∥∥∥∥
h̄
= 0. (7.14)

It follows from the definition of a continuous bundle that continuity properties like

lim
h̄→0

‖Qh̄( f )‖= ‖ f‖∞; (7.15)

lim
h̄→0

‖Qh̄( f )Qh̄(g)−Qh̄( f g)‖= 0, (7.16)

are automatically satisfied. Let us note that condition (7.9) is absent from this defi-
nition, because 1X /∈C0(X) whenever X is not compact, in which case typically also
the C*-algebras Ah̄ have no unit (see below). However, the given conditions turn out
to be sufficiently powerful to produce the “right” examples. We give one of the main
such examples without proof (the underlying analysis is quite forbidding). We put

A0 = C0(T ∗Rn); (7.17)
Ah̄ = B0(L2(Rn)) (h̄ > 0), (7.18)

where T ∗Rn ∼= R2n carries the canonical Poisson structure (3.34), and Ah̄ is the C*-
algebra of compact operators on the familiar Hilbert space L2(Rn) of wave-functions
on Rn. For the sake of completeness we also mention that

A =C∗r ((R
n×Rn)T ) (7.19)

is the (reduced) C*-algebra of the tangent groupoid (Rn×Rn)T to the pair groupoid
Rn×Rn on Rn, see §§C.16,C.19, where one may also find the maps ϕh̄.
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Let us summarize the situation. Continuity of the limit h̄→ 0 is hard to envisage
if one merely has the classical phase space X = T ∗Rn and the quantum Hilbert
space L2(Rn) in mind. However, the move to either: the underlying Lie groupoids
TRn and Rn×Rn, which jointly comprise the smooth tangent groupoid Rn×Rn)T ,
or: the corresponding canonically defined C*-algebras C0(T ∗Rn) and B0(L2(Rn)),
which are glued together as a continuous bundle (7.17) - (7.19), does give rise to a
satisfactory structure that makes the limit h̄→ 0 “continuous”.

In this example, various possibilities for the quantization maps Qh̄ arise. As ex-
plained in §C.19, the groupoid structure underlying (7.17) - (7.18) suggests Weyl’s
prescription (C.549), which for convenience we reproduce:

QW
h̄ ( f )ψ(x) =

∫
T ∗Rn

dn pdny
(2π h̄)n eip(x−y)/h̄ψ(y) f ( 1

2 (x+ y), p), (7.20)

where f lies in the image of C∞
c (TR

n) under the fiberwise Fourier transform (C.547).
This image, then, is the space Ã0 in Definition 7.1. We may rewrite (7.20) as

QW
h̄ ( f ) =

∫
T ∗Rn

dn pdnq
(2π h̄)n f (q, p)ΩW

h̄ (q, p), (7.21)

where the operators in the integrand are given by

ΩW
h̄ (q, p)ψ(x) = 2ne2ip(x−q)/h̄ψ(2q− x). (7.22)

The purpose of (7.21) is that for each ψ ∈ L2(Rn) we then obviously have

〈ψ,QW
h̄ ( f )ψ〉=

∫
T ∗Rn

dn pdnq
(2π h̄)n f (q, p)Wψ

h̄ (p,q), (7.23)

where Wψ
h̄ : T ∗Rn → R is the Wigner function, given by

Wψ
h̄ (p,q) = h̄−n〈ψ,ΩW

h̄ (q, p)ψ〉 (7.24)

=
∫
Rn

dnveipvψ(q+ 1
2 h̄v)ψ(q− 1

2 h̄v). (7.25)

If ‖ψ‖= 1, then Wψ
h̄ gives a “phase space portrait” of the corresponding pure state

eψ on B0(L2(R)). However, this portrait cannot be interpreted as a probability den-
sity on T ∗Rn, since the Wigner function is not necessarily positive. This reflects a
problem with Weyl’s quantization map QW

h̄ itself (at fixed h̄ > 0). We say that Qh̄ as
introduced in (7.11) is positive if, for each f ∈ Ã0 ⊂ A0 (seen as a C*-algebra),

f ≥ 0 ⇒ Qh̄( f )≥ 0, (7.26)

where positivity of Qh̄( f ) is defined in the C*-algebra Ah̄ (which in the case at hand
is B0(L2(Rn))). This is not the case for QW

h̄ . Moreover, QW
h̄ fails to be continuous,

and for this reason it cannot be extended to A0 (at least not in the obvious way, viz.
by continuity). Fortunately, both problems can be resolved by a change in Qh̄.
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A strict deformation quantization of R2 that is positive exists under the name
of Berezin quantization, denoted by QB

h̄ . However, the fundamental idea of the un-
derlying coherent states goes back to Schrödinger. For each (p,q) ∈ R2 and h̄ > 0,
define a unit vector φ (p,q)

h̄ ∈ L2(R), called a coherent state, by

φ (p,q)
h̄ (x) = (π h̄)−n/4e−ipq/2h̄eipx/h̄e−(x−q)2/2h̄. (7.27)

Writing z = p+ iq, the transition probability between two coherent states is

|〈φ (z)
h̄ ,φ (z′)

h̄ 〉|2 = e−|z−z′|2/2h̄. (7.28)

In terms of these coherent states, we define QB
h̄ : C0(T ∗Rn)→ B0(L2(Rn)) by

QB
h̄ ( f ) =

∫
T ∗Rn

dn pdnq
2π h̄

f (p,q)|φ (p,q)
h̄ 〉〈φ (p,q)

h̄ |, (7.29)

where the integral is meant in the sense that for each ψ,ϕ ∈ L2(Rn) we have

〈ϕ,Qh̄( f )ψ〉=
∫
R2n

dn pdnq
2π h̄

f (p,q)〈ϕ,φ (p,q)
h̄ 〉〈φ (p,q)

h̄ ,ψ〉. (7.30)

In particular, for each unit vector ψ ∈ L2(Rn) we may write

〈ψ,Qh̄( f )ψ〉=
∫

T ∗Rn
dμψ f , (7.31)

where μψ is the probability measure on T ∗Rn with density

Bψ
h̄ (p,q) = |〈φ (p,q)

h̄ ,ψ〉|2, (7.32)

called the Husimi function of ψ ∈ L2(Rn); in other words, μψ is given by

dμψ(p,q) =
dn pdnq

2π h̄
Bψ

h̄ (p,q). (7.33)

Weyl and Berezin quantization are related in many ways, for example, by

QB
h̄ ( f ) = QW

h̄ (e
h̄
4Δ2n f ), (7.34)

where Δ2n = ∑n
j=1(∂ 2/∂ p2

j + ∂ 2/∂ (q j)2), from which it follows that Weyl and
Berezin quantization are asymptotically equal in the sense that for any f ∈ Ã0,

lim
h̄→0

‖QB
h̄ ( f )−QW

h̄ ( f )‖= 0. (7.35)

Indeed, this provides one way (among various others) of proving that QB
h̄ satisfies

Definition 7.1, where we note that even though QB
h̄ is defined on all of C0(T ∗Rn),

eq. (7.14) only holds on a suitable dense subspace thereof, such as C∞
0 (T

∗Rn).
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7.2 Quantization and internal symmetry

In the presence of symmetries, Dirac’s condition (7.8) can often be met by suitable
functions f and g related to the symmetries in question, though such functions may
be unbounded. This blasts the C*-algebraic framework, but it does so in a controlled
way. We start with internal symmetries, like spin, which will be coupled to motion
in the next step. Let G be a Lie group with Lie algebra g, to which we associate:

• The “classical” Lie–Poisson manifold g∗, see (3.98), whose Poisson bracket we
now preface with a minus sign, so that instead of (3.98) and (3.99) we now have

{ f ,g}−(θ) = −Cc
abθc

∂ f (θ)
∂θa

∂g(θ)
∂θb

; (7.36)

{Â, B̂}− = −[̂A,B]. (7.37)

We write g∗− for this Poisson manifold.
• The “quantum-mechanical” reduced group(oid) C*-algebra C∗r (G), cf. §C.18,

defined as the norm-closure of π(C∞
c (G)) within B(L2(G)), where

π( f̌ )ψ = f̌ ∗ψ; (7.38)

f̌ ∗ψ(x) =
∫

G
dy f̌ (xy)ψ(y−1), (7.39)

where f̌ ∈ C∞
c (G) and ψ ∈ L2(G), cf. (C.481), and dy is Haar measure on G

(which also provides the measure defining the Hilbert space L2(G)).

We then obtain a continuous bundle of C*-algebras, with fibers and total C*-algebra

A0 =C∗r (g); (7.40)
Ah̄ =C∗r (G) (h̄ > 0); (7.41)

A =C∗r (G
T ), (7.42)

where g is seen as an abelian Lie group under addition, cf. Theorem C.123. We have

C∗r (g)∼=C0(g
∗
−), (7.43)

which isomorphism (i.e. of C*-algebras) is given by the Fourier transform

f (θ) =
∫
g

dnAe−iθ(A) f̌ (A); (7.44)

f̌ (A) =
∫
g∗

dnθ
(2π)n eiθ(A) f (θ), (7.45)

where initially f̌ ∈C∞
c (G), and the map f̌ �→ f is subsequently extended to C∗r (G)

by continuity. Here the normalization of Lebesgue measure dnA on g is arbitrary, but
the normalization of dnθ is thereby fixed. In what follows, we take a (left-invariant)
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Haar measure dx on G and fix the normalization of dnA by the condition

J(0) = 1 (7.46)

in the definition of the Jacobian under the exponential map exp : g→ G, i.e.,

J(A) =
d(exp(A))

dnA
. (7.47)

With Ã0 =C∞
c (g), the quantization map Qh̄ : C∞

c (g)→C∗r (G) is then given by

Qh̄( f̌ )(eA) = h̄−n f̌ (A/h̄), (7.48)

where n = dim(G) and we assume that h̄ > 0 is small enough that h̄ times the sup-
port of f̌ ∈ C∞

c (g) is contained in an open neighbourhood U of 0 ∈ g where the
exponential map is a diffeomorphism onto some open neighbourhood U ′ of e ∈ G;
otherwise a cutoff function should be included. Equivalently, defining Ã0 ⊂C0(g

∗−)
as the image of C∞

c (g) under the Fourier transform f̌ �→ f (which consists of the
so-called Paley–Wiener functions on g∗), the map Qh̄ : Ã0 →C∗r (G) is given by

Qh̄( f )(eA) =
∫
g∗

dnθ
(2π h̄)n eiθ(A)/h̄ f (θ). (7.49)

Although these maps satisfy (7.14), if G is non-abelian there are no natural functions
on g∗ whose quantizations satisfy the exact Dirac condition (7.8). This is a limitation
of the C*-algebraic framework, since candidate functions like

Â : g∗ → R; (7.50)
Â(θ) = θ(A), (7.51)

whose Poisson brackets (3.99) are promising, are unbounded. However, this is eas-
ily remedied by regarding C∗r (G) as an algebra of bounded operators on the Hilbert
space L2(G)—which indeed is the way it was originally defined—rather than ab-
stractly. This “spatial” context allows the passage to the Lie algebra, as reviewed in
§5.6, see especially (5.156) - (5.161). First note that (7.38) - (7.39) is a special case
of (5.172), where H = L2(G) and u = uL, i.e., the left-regular representation

uL(y)ψ(x) = ψ(y−1x). (7.52)

In this representation, the construction (5.156) then realizes g as right-invariant dif-
ferential operators on the Gårding domainDG ⊂ C∞(G). By definition of C∗r (G),
seen as an operator on L2(G) the function Qh̄( f ) is given in coordinates by

Qh̄( f ) =
∫
g

dnX J(X)
∫
g∗

dnθ
(2π h̄)n eiθ(X)/h̄ f (θ)uL

(
exp

(
∑

j
XjTj

))
. (7.53)
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Here (X1, . . . ,Xn) in (7.53) are coordinates on g defined by a basis choice (T1, . . . ,Tn),
i.e., A = ∑i XiTi. The function T̂j on g∗ is then simply given by the coordinate func-
tion T̂j(θ) = θ j. Now take A∈ g and assume that f = Â. This function is unbounded,
but the following formal calculation is rigorously correct on the Gårding domain and
may be justified by some distribution theory. For simplicity we assume that G is uni-
modular, in which case J(X) = 1+O(X2) as X → 0, so that all first derivatives of J
vanish at X = 0. Taking f = T̂j in (7.53) then gives

Qh̄(T̂j) =
∫
g

dnX J(X)
∫
g∗

dnθ
(2π h̄)n eiθ(X)/h̄ θ juL

(
exp

(
∑

j
XjTj

))

= −i
∫
g

dnX J(h̄X)uL

(
exp

(
h̄∑

j
XjTj

))
∂
∂Xj

δ (X)

= ih̄u′L(Xj), (7.54)

from which we obtain
Qh̄(Â) = ih̄u′L(A) = πL(A). (7.55)

This explains the need for minus the Lie–Poisson bracket, since instead of (3.99) we
now have (7.37), so that (5.160) gives the exact result (7.8) for f = Â and g = B̂:

i
h̄
[Qh̄(Â),Qh̄(B̂)] = Qh̄({Â, B̂}−). (7.56)

The minus sign in the Lie–Poisson bracket could have been avoided by writing
f̌ (−A/h̄) in (7.48), whose minus sign would have propagated into (5.159) and hence
in the commutation relations (5.160), but the latter are so engrained in the physics
literature that we see the minus sign on the bracket in (7.56) as the lesser evil.

Any continuous unitary representation uλ of G (where λ is some label) induces a
representation u

∫
λ of C∞

c (G) by (5.173), which may be extended to a representation
of C∗(G) by continuity (the same is true for C∗r (G) provided uλ is weakly contained
in L2(G), cf. §C.18). This gives operators u

∫
(Qh̄( f )) which, by the same formal

computation as for the case u = uL above, for A ∈ g rigorously give rise to operators

πλ (A) = ih̄u′λ (A), (7.57)

satisfying the like of (5.160) for fixed values of h̄ (but without control over the limit
h̄→ 0). Many commutation relations in quantum mechanics take this form, where
both irreducible and reducible representations u give rise to interesting examples.
The reducible case typically comes from group actions and is best studied using the
formalism of action groupoids reviewed in the next section, where we will see that
further operators start playing a role. The irreducible case, on the other hand, gives
rise to intriguing new examples of continuous bundles of C*-algebras, where h̄ (now
related the label λ ) takes values in a discrete set and may be sent to zero, cf. §8.1.
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7.3 Quantization and external symmetry

We now generalize the setting of the preceding section from groups taken by them-
selves to group actions. Let a Lie group G act smoothly on some manifold Q; for
example, we may have Q=R3 with either G= SO(3) acting by rotations, or G=R3

action by translations. We now take X = g∗ ×Q. Recalling the notation (3.71) and
writing δa ≡ δTa , we define the action Poisson bracket

{ f ,g}=−Cc
abθc

∂ f
∂θa

∂g
∂θb

+ξa f
∂g
∂θa

− ∂ f
∂θa

ξag. (7.58)

Interesting special cases arise if we take A ∈ g and define Â ∈C∞(g∗) as before, i.e.,
Â(θ) = θ(A), now regarded as a function on g∗ ×Q (ignoring the second argument
q). Similarly, if f̃ ∈ C∞(Q) we write f̂ for the corresponding function on g∗ ×Q
(ignoring the first argument θ ). This gives the coordinate-independent expressions

{Â, B̂} = −[̂A,B]; (7.59)
{Â, f̂} = −δA f ; (7.60)
{ f̂ , ĝ} = 0. (7.61)

Clearly, if Q is a point (with trivial G-action) we recover (minus) the Lie–Poisson
structure on g∗. If, on the other hand, Q = R3 and G = R3 acts on Q by translation,
i.e., a · x = x+ a, we recover the canonical Poisson bracket (3.34), where the mo-
menta pa (a = 1, . . . ,n) are identified with the coordinates θa on the dual of the Lie
algebra of R3, which is just R3 itself (with the usual basis (e1,e2,e3)). Therefore,
the Poisson bracket (3.34) on R2n may be generalized in two ways:

1. By passing to arbitrary cotangent bundles T ∗M, whose canonical Poisson bracket
is still given in local coordinates by (3.34), which emphasizes the role of mo-
menta as fiber coordinates on T ∗M.

2. By passing to the setting discussed here, which emphasizes the role of momenta
as generators of global translations of the base space R3 (a property that breaks
the p-q symmetry and cannot be generalized to arbitrary cotangent bundles).

A richer structure emerges if we keep Q = R3 but now take G = E(3), i.e.,

E(3) = SO(3)�R3, (7.62)

known as the Euclidean group. To explain its group structure, let some group L act
on a vectors space V , seen as an abelian group under addition. Then the operations

(λ ,v) · (λ ′,v′) = (λλ ′,v+λ · v′); (7.63)
(λ ,v)−1 = (λ−1,−λ−1 · v), (7.64)

turn G = L�V into a group, called the semi-direct product of L and V .
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Then E(3) acts on R3 in the obvious way, giving rise to the Poisson manifold
g∗×Q =R3×R3×R3 (since so(3)∼=R3). We now also have generators (J1,J2,J3)
of the Lie algebra of SO(3), with corresponding functions Ĵi, as well as standard
coordinate functions (q1,q2,q3) on Q = R3, giving rise to the Poisson brackets

{Ĵi, Ĵ j} = −εi jkĴk; {Ĵi, p j}=−εi jk pk; {pi, p j}= 0; (7.65)
{Ĵi,q j} = −εi jkqk; {pi,q j}= δi j; {qi,q j}= 0. (7.66)

The appropriate target C*-algebra C∗r (G,Q) for quantization is a generalization
of C∗r (G), constructed in a similar way, as explained in §C.18. For the moment it is
enough to know that C∗r (G,Q) is the completion of the function space C∞

c (G×Q),
seen as a ∗-algebra in the operations (C.526) - (C.527), in a suitable norm, namely

‖ f‖r = ‖ρ̃( f )‖, (7.67)

where the representation ρ̃ : C∞
c (G×Q)→ B(L2(G×Q)) is given by (C.530). In

case that Q has a G-invariant measure ν (still with support Q), the operator

w : L2(G×Q)→ L2(G×Q); (7.68)
wψ(x,q) = ψ(x,x−1q), (7.69)

is unitary, and in terms of the notation

ũ(y) = wu(y)w∗, π̃( f̃ ) = wπ( f̃ )w∗, ρ̃( f ) = wρ( f )w∗, (7.70)

the formulae (C.528) - (C.530) take the slightly more appealing form

ũ(y)ψ(x,q) = ψ(y−1x,y−1q); (7.71)
π̃( f̃ )ψ(x,q) = f̃ (q)ψ(x,q); (7.72)

ρ̃( f )ψ(x,q) =
∫

G
dy f (y,q)ψ(y−1x,y−1q). (7.73)

The simplification thus gained especially concerns the position functions (7.72).
Analogously to (7.49), the quanitzation maps are given by

Qh̄ : C0(g
∗ ×Q)→C∗r (G,Q); (7.74)

Qh̄( f )(eA,q) =
∫
g∗

dnθ
(2π h̄)n eiθ(A)/h̄ f (θ ,e−

1
2 A ·q), (7.75)

where, as in the pure group case, strictly speaking f must lie in the dense subspace
of C0(g

∗×Q) consisting of Paley–Wiener functions (in A) that are the Fourier trans-
form (in the first argument) of functions that lie in C∞

c (g×Q).
Computations similar to (7.54) then establish, for A∈ g and f̃ ∈C∞(Q) as before,

Qh̄(Â) = ih̄ũ′(A); (7.76)
Qh̄( f̂ ) = π̃( f̃ ). (7.77)
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Form these formulae and (7.59) - (7.60), it is easy to verify that Dirac’s exact con-
dition (7.8) holds in the following special cases:

i
h̄
[Qh̄(Â),Qh̄(B̂)] = Qh̄({Â, B̂}); (7.78)

i
h̄
[Qh̄(Â),Qh̄( f̂ )] = Qh̄({Â, f̂}); (7.79)

i
h̄
[Qh̄( f̂ ),Qh̄(ĝ)] = Qh̄({ f̂ , ĝ}) = 0. (7.80)

These might be regarded as infinitesimal versions of the covariance condition
(C.514), specialized to the case at hand. We formalize this special case as follows.

Definition 7.2. Let G be a locally compact group and let Q be a space equipped
with some continuous G-action. A system of imprimitivity (u(G),π(C0(Q))) for
the given group action G � Q is a combination of a strongly continuous unitary
representation u of G and a nondegenerate representation π of C0(Q), both defined
on the same Hilbert space, that for each x ∈ G and f̃ ∈C0(Q) satisfies

u(x)π( f̃ )u(x)∗ = π(L̃x f ). (7.81)

Here L̃x f (q) = f̃ (x−1q), as usual. We recall from §C.18 that such systems of
imprimitivity bijectively correspond to degenerate representations ρ ≡ π � u

∫
of

C∗(G,Q) through (C.515), which in the special case (C.524) - (C.525) comes down
to

ρ( f ) =
∫

G
dxπ( f (x, ·))u(x). (7.82)

The formulae (7.71) - (7.73) define such a system of imprimitivity on the Hilbert
space H = L2(G×Q). However, this cannot be the end result of quantization, since
this space is typically reducible under the pair (u(G),π(C0(Q))), or, equivalently,
under ρ(C∗(G,Q)). For example, this is the case for G = R3 or G = E(3) acting on
Q = R3 in the natural way discussed above, for which we obtain H = L2(R3×R3)
or even H = L2(E(3)×R3). In the former case we do obtain the correct posi-
tion operators qi, but for the momentum operators we find the curious expression
−ih̄(∂/∂xi + ∂/∂qi)—to their credit, these do satisfy the canonical commutation
relations (7.5), since these follow from (7.78) - (7.80), which in turn follow from
the covariance condition (7.81) defining a system of imprimitivity.

Instead, we would prefer the Hilbert space H = L2(R3) expected from elementary
quantum mechanics (without spin), equipped with the system of imprimitivity

u(y)ψ(q) = ψ(y−1q); (7.83)
π( f̃ )ψ(q) = f̃ (q)ψ(q). (7.84)

The answer lies in the search for irreducible systems of imprimitivity (u(G),π(C0(Q))),
or, equivalently, irreducible representations of ρ(C∗(G,Q)); see §7.5.
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7.4 Intermezzo: The Big Picture

First, however, we summarize and generalize the results in this chapter so far
into what we call The Big Picture. This arose in the 1990s from efforts to relate
Mackey’s quantization theory based on systems of imprimitivity (which Mackey
himself saw as the natural implementation of what he called Weyl’s Program, i.e.
the construction of the basic operators of quantum mechanics from group-theoretical
considerations) to deformation quantization (and hence to the tradition started by
Dirac, as continued by Groenewold, Moyal, Berezin, Flato, Rieffel, and others).

The Big Picture is technically based on the theory of Lie groupoids (already
alluded to in the preceding sections) and Lie algebroids. For a precise definition of
the former we refer to Definition C.115; briefly, a groupoid G is an object like a
group, where however multiplication is defined only partially (although the inverse
is defined for each element). To see which elements can be multiplied, one has maps
s, t : G1 → G0 from the total space G1 of the groupoid to its base space G0, such
that the product xy ∈ G1 of x,y ∈ G1 is defined whenever s(x) = t(y), and satisfies
s(xy) = s(y), t(xy) = t(x), and s(x−1) = t(x). Four relevant examples are:

• Spaces, where G1 = G0 = Q for some set Q, with s(x) = t(x) = x for all x ∈ G1,
and hence xy is defined iff y = x, with result xx = x; furthermore, x−1 = x.

• Groups, where G1 = G and G0 = {e}, with s(x) = t(x) = e for all x, so that all
elements can be multiplied and the notion of a groupoid reduces to a group.

• Pair groupoids over a set Q have base space G0 =Q, total space G1 =Q×Q, and
projections s(q,q′) = q′ and t(q,q′) = q, so that (q,q′)(r,r′) is defined iff q′ = r,
resulting in (q,q′)(q′,r′) = (q,r′). The inverse is given by (q,q′)−1 = (q′,q).

• Action groupoids (also called semi-direct product groupoids) are important in
what follows. These originate in some group action we denote by G � Q, where
G is a group and Q is a set. The ensuing groupoid is called Γ = G�Q, where

Γ1 = G×Q, Γ0 = Q, s(x,q) = x−1q, t(x,q) = q, (7.85)

so that products (x,q)(y,q′) are defined iff q′ = x−1q, with result

(x,q)(y,x−1q) = (xy,q). (7.86)

Finally, the inverse is (necessarily) given by

(x,q)−1 = (x−1,x−1q). (7.87)

A Lie groupoid is a groupoid G where G1 and G0 are manifolds and all operations
are smooth. In all examples just given this requires Q to be a manifold, and in the
last one G should be a Lie group, and the given action G×Q→ Q must be smooth.

Generalizing the construction of a Lie algebra g from a given Lie group G, a Lie
groupoid comes with an associated linearized (or “infinitesimal”) structure, called
a Lie algebroid. As in the group case, this differential-geometric notion can also be
defined independently of its origin in the theory of Lie groupoids, as follows:
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Definition 7.3. A Lie algebroid E over a manifold Q is a vector bundle E π→Q with
a vector bundle map E α→ T Q (called the anchor), as well as with a Lie bracket [ , ]
on the space C∞(Q,E) of smooth cross-sections of E, satisfying the Leibniz rule

[σ1, f ·σ2] = f · [σ1,σ2]+ (α ◦σ1 f ) ·σ2 (7.88)

for all σ1,σ2 ∈C∞(Q,E) and f ∈C∞(Q) (here α ◦σ1 is a vector field on Q).

It follows that the map σ �→ α ◦σ : C∞(Q,E)→C∞(Q,T Q) induced by the anchor
is a homomorphism of Lie algebras, where the latter is equipped with the usual
commutator of vector fields (this homomorphism property used to be part of the
definition of a Lie algebroid, but in fact it follows from the stated definition).

Lie algebroids generalize (finite-dimensional) Lie algebras as well as tangent
bundles, and the (infinite-dimensional) Lie algebra C∞(Q,E) could be said to be of
geometric origin in the sense that it derives from an underlying finite-dimensional
geometrical object. Similar to the above list of examples of Lie groupoids, one has
the following basic classes of Lie algebroids.

• Manifolds, where E = Q, seen as the zero-dimensional vector bundle over Q,
evidently with identically vanishing Lie bracket and anchor.

• Lie algebras, where E = g and Q is a point (which may be identified with the
identity element of any Lie group with Lie algebra g) and anchor α = 0.

• Tangent bundles over a manifold Q, where E = T Q and α = id : T Q→ T Q, with
the Lie bracket given by the usual commutator of vector fields (or derivations).

• Action algebroids (or semi-direct product algebroids) are defined by a g-action
on a manifold Q, i.e. a Lie algebra homomorphism g→ C∞(Q,T Q), A �→ δA,
where we identify vector fields on Q with derivations on C∞(Q)—these are often,
but not necessarily, obtained from a G-action on Q via see (3.71). We write E =
g�Q, which is E = g×Q as a trivial bundle (with π the projection on the second
space), and α(A,q) =−δA(q) ∈ TqQ, where A ∈ g. The Lie bracket is given by

[σ1,σ2](q) = [σ1(q),σ2(q)]g+δσ2σ1(q)−δσ1σ2(q). (7.89)

These examples may also be recovered as special cases of the following construction
that canonically associates a Lie algebroid Lie(G) to a Lie groupoid G: as a vector
bundle, Lie(G) is the restriction of ker(t∗) to G0 (where t∗ : T G1 → T G0 is the
derivative map of the source projection t : G1 → G0), and the anchor is α = s∗ (one
may alternatively define Lie(G) as the normal bundle to the object inclusion map
i : G0 ↪→ G1, cf. Definition C.115, but this makes the definition of the anchor a bit
more complicated). As in the Lie group case, one may identify sections of Lie(G)
with left-invariant vector fields on G, and under this identification the Lie bracket
on C∞(G0,Lie(G)) is by definition given by the commutator of vector fields.

Conversely, one may ask whether a given Lie algebroid E is integrable, in that
E ∼= Lie(G) for some Lie groupoid G (where the isomorphism sign ∼= means that
a pertinent vector bundle isomorphism E ∼= ker(t∗)|G0 should preserve all relevant
structure). Unlike the special case of Lie groups (where Lie’s Third Theorem 5.41
settles this in the positive), this is not necessarily the case, but that is of no concern.
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We now state a crucial connection between Lie algebroids and Poisson geometry.

Proposition 7.4. The dual vector bundle E∗ of a Lie algebroid E is a Poisson man-
ifold, whose Poisson bracket on C∞(E∗) is defined by the following special cases:

{ f ,g}= 0 ( f ,g ∈C∞(Q)); (7.90)
{σ̃ , f}=−α ◦σ f (σ ∈C∞(Q,E), f ∈C∞(Q)); (7.91)

{σ̃1, σ̃2}=− ˜[σ1,σ2], (7.92)

where σ̃ ∈C∞(E∗) is defined by a given section σ of E through the obvious pairing.
Conversely, if the dual F∗ to a given vector bundle F → Q is a Poisson manifold

such that the Poisson bracket of two linear functions is linear, then F ∼= E for some
Lie algebroid E over Q, with the above Poisson structure on E∗.

Following our earlier lists, the main examples are:

• A manifold Q, seen as the dual to the zero-dimensional vector bundle Q → Q,
carries the zero Poisson structure.

• The dual g∗ of a Lie algebra g acquires (minus) the Lie–Poisson structure (3.98).
• A cotangent bundle T ∗Q acquires (minus) the Poisson structure defined by its

standard symlectic structure, cf. (3.34).
• The dual g∗�Q of an action algebroid acquires the Poisson bracket (7.58).

The following theorem displays a rich and physically relevant class of examples
of Definition 7.1 of deformation quantization. The key point is that a Lie groupoid
G defines both classical and quantum data, namely the (reduced) Lie groupoid C*-
algebra C∗(r)(G) (cf. §C.17) and the Poisson manifold Lie(G)∗ (cf. Proposition 7.4),
and these are continuously (even smoothly) related through the tangent groupoid
GT (cf. Proposition C.117) and its associated Lie groupoid C*-algebra C∗(r)(G

T ).

Theorem 7.5. For any Lie groupoid G, the bundle of C*-algebras given by

A0 =C0(Lie(G)∗) (h̄ = 0); (7.93)
Ah̄ =C∗(G) (0 < h̄≤ 1); (7.94)

A =C∗(GT ), (7.95)

defines a deformation quantization of the Poisson manifold Lie(G)∗ over I = [0,1].
The same statement holds for the corresponding reduced groupoid C*-algebras.

The key lemma for this theorem is Theorem C.123, which provides the continuity of
the given bundle of C*-algebras. A lengthy computation shows that also the Dirac–
Groenewold–Rieffel condition (7.14) is met. In this light, the quantization of the
phase space T ∗Rn in §7.1 then corresponds to the pair groupoid G =Rn×Rn on Rn,
the one in §7.2 follows from the special case where the Lie groupoid G is “simply”
a Lie group, and the case of §7.3, which puts Mackey’s quantization theory in a
deformation framework, is obviously given by the action groupoid G�Q. Finally,
the space groupoid G0 = G1 = Q gives a trivial continuous bundle of C*-algebras,
where Ah̄ =C0(Q) for all h̄ ∈ [0,1], and Q carries the zero Poisson bracket.
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7.5 Induced representations and the imprimitivity theorem

Returning to §7.3, we recall the bijective correspondence between systems of im-
primitivity (u(G),π(C0(Q))) and non-degenerate representations of the C*-algebra
C∗(G,Q) of the action groupoid defined by the given action G � Q. This correspon-
dence preserves irreducibility, and our task is to find irreducible representations.

It was recognized at least 50 years ago that this task can be carried out if the
group action satisfies a certain regularity condition, and is hopeless otherwise. This
is sometimes called the Mackey–Glimm dichotomy. The condition in question may
be stated in a number of equivalent ways (whose equivalence is not at all obvious).

First, we recall some terminology from topology. Let X be a space. One calls
Y ⊂Y ′ ⊆ X relatively open in Y ′ if there is an open set U ⊂ X such that Y =Y ′ ∩U .
A subset Y ⊂ X is locally closed if each y ∈ Y has an open neighbourhood U in X
such that U ∩Y is closed, and finally “X is T0” if for any two distinct points there
is an open set that contains exactly one of them. Furthermore, each q ∈ Q defines a
G-orbit through q denoted by G ·q, as well as a stabilizer (or “little group”)

Gq = {x ∈ G | x ·q = q}. (7.96)

For any subgroup H ⊂ G, we denote the equivalence class of x in G/H by [x].

Definition 7.6. A smooth action of a Lie group G on a manifold Q is called regular

if one and hence each of the following equivalent conditions is satisfied:

1. Each G-orbit in Q is relatively open in its closure;
2. Each G-orbit in Q is locally closed;
3. The quotient space Q/G of G-orbits in Q is T0;
4. Each map [x] �→ xq is a homeomorphism from G/Gq to the orbit G ·q (q ∈ Q).

Probably the simplest example of a non-regular action is the action Z� T given by

n : z �→ e2πinθ z, (7.97)

where θ ∈R\Q (here Z may be seen as a zero-dimensional Lie group with infinitely
many components—in fact, Definition 7.6 more generally applies to second count-
able locally compact groups and spaces that are “almost Hausdorff”). Indeed, each
orbit is dense in T (but not open), and the orbit space T/Z has no proper open sets.

Theorem 7.7. Let a group action G � Q be regular. Then the irreducible represen-
tations of the associated action groupoid C*-algebra C∗(G,Q)—and hence also the
irreducible systems of imprimitivity (u(G),π(C0(Q)))—are classified up to unitary
equivalence by pairs (O,uχ), where O is a G-orbit in Q and uχ is an irreducible
representation of the stabilizer Gq of an arbitrary point q ∈ O , with an explicit
construction of the corresponding representation ρ(O,uχ )(C

∗(G,Q)). Two such rep-
resentations ρ(O,uχ ) and ρ(O ′,u′χ ) are equivalent iff O = O ′ and, given that q′ = xq

and hence Gq′ = xGqx−1 for some x ∈ G, u′χ is unitarily equivalent to uχ ◦Ad(x).
Finally, any irreducible representation ρ is unitarily equivalent to some ρ(O,uχ ).
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In the simplest case, Q is equal to a point, so that C∗(G,Q) = C∗(G), and we find
that irreducible representations of C∗(G) (which are necessarily non-degenerate)
bijectively correspond to unitary irreducible representations of G. In the next easiest
case, G acts nontrivially but still transitively on Q, in which case the action is clearly
regular and Q∼= G/H through the G-equivariant map in no. 4 of the above definition
(read in the opposite direction), i.e., we pick some q0 ∈ Q, define H = Gq0 , and
finally map Q to G/H by q �→ [x], where q = xq0 (this map is well defined); in that
case, we might as well have assumed that Q = G/H to begin with. The following
important corollary of Theorem 7.7 is called the Imprimitivity Theorem.

Corollary 7.8. Up to unitary equivalence, irreducible representations of C∗(G,G/H)
(or, equivalently, of pairs (π(C0(G/H)),u(G)) satisfying the covariance condition
(7.81)) bijectively correspond to unitary irreducible representations of H.

In preparation for the general case stated in Theorem 7.7, and also as a goal in
itself, we first give an explicit construction of the irreducible representation ρχ

of C∗(G,G/H) corresponding to a given unitary irreducible representation uχ(H),
where we label the unitary irreducible representations of H (up to unitary equiva-
lence) by χ ∈ Ĥ (where Ĥ is the set of unitary equivalence classes of unitary ir-
reducible representations of H, cf. §C.15 for the abelian case), and let the corre-
sponding representation ρχ(C∗(G,G/H))—or the pair πχ(C0(G/H)) and uχ(G)—
inherit this label (in raised form, in order to prevent confusion between uχ(H) and
uχ(G)|H ).

The construction of ρχ(C∗(G,G/H))—or, equivalently, of a system of imprim-
itivity (πχ(C0(G/H)),uχ(G))—from uχ(H) proceeds by the technique of induced
representations (which physicists may be familiar with from the representation the-
ory of the Poincaré group, see Theorem 7.9 below). We start from a specific realiza-
tion of uχ(H) on a Hilbert space Hχ (which is finite-dimensional if H is compact or
abelian). From this, we construct a new Hilbert space Hχ , whose realization depends
on the choice of a quasi-invariant measure ν on G/H, i.e., a (non-zero) measure
whose null-sets are G-invariant in the sense that if ν(A) = 0 for some (Borel) mea-
surable A ⊂ G/H, then also ν(x ·A) = 0 for each x ∈ G. This will surely be the
case if ν is invariant, i.e., if ν(x ·A) = ν(A) for each measurable A, but invariant
measures on G/H may not exist, whereas quasi-invariant measures always do.

We now consider (measurable) functions ψ : G→ Hχ that satisfy

ψ(xh) = uχ(h−1)ψ(x), (7.98)

for every x ∈ G and h ∈ H; equivalently, we may say that

uχ(h)◦Rhψ = ψ, (7.99)

for each h ∈ H, where Rhψ(x) = ψ(xh). Now if ψ and ϕ both satisfy (7.98), then,
by unitarity of uχ , their inner product 〈ϕ(x),ψ(x)〉Hχ in Hχ is H-invariant, in that

〈ϕ(xh),ψ(xh)〉Hχ = 〈ϕ(x),ψ(x)〉Hχ . (7.100)
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Hence the function x �→ 〈ϕ(x),ψ(x)〉Hχ , a priori defined from G to C, induces
a function [x] �→ 〈ϕ(x),ψ(x)〉Hχ from G/H to C. We write the latter function as
〈ϕ,ψ〉Hχ [x]; in particular, taking ϕ = ψ , we write ‖ψ‖2

Hχ [x] = 〈ψ(x),ψ(x)〉Hχ . We
may then define a new Hilbert space Hχ that consists of all measurable functions
ψ : G→ Hχ that for each h ∈ H satisfy (7.98), and are square-integrable on G/H:∫

G/H
dν([x])‖ψ‖2

Hχ [x]< ∞. (7.101)

This space turns out to be complete in the natural inner product

〈ϕ,ψ〉=
∫

G/H
dν([x])〈ϕ,ψ〉Hχ [x] (7.102)

It also carries a system of imprimitivity: in case that ν is G-invariant we simply have

uχ(y)ψ(x) = ψ(y−1x) (x,y ∈ G); (7.103)
πχ( f̃ )ψ(x) = f̃ ([x])ψ(x) ( f̃ ∈C0(G/H)), (7.104)

where we note that uχ(y)ψ satisfies (7.98) if ψ does. Unitarity of uχ as well as the
covariance condition (7.81) are easily checked. In general, we replace (7.103) by

uχ(y)ψ(x) =

√
dν([y−1x])

dν([x])
ψ(y−1x), (7.105)

where dν([y−1·])/dν([·]) is the Radon–Nikodym derivative of the translated mea-
sure L∗yν with respect to ν , cf. (B.137), which is well defined because by the assump-
tion of quasi-invariance, L∗yν is absolutely continuous with respect to ν (indeed, on
this assumption they are even equivalent). Here L∗yν(A) = ν(L−1

y (A)), A⊂ G/H.
Physicists do not like the Hilbert space Hχ , preferring a different realization

H̃χ = L2(G/H)⊗Hχ , (7.106)

in which the wave-function ψ is not constrained and one has a clean separation
between the (typically) spatial degree of freedom Q = G/H and the internal degree
of freedom Hχ . One half of the system of imprimitivity will then be given nicely by

π̃χ( f̃ )ψ̃ = f̃ ψ̃ ( f̃ ∈C0(G/H)), (7.107)

but this cleanliness comes at the cost of a more complicated formula for ũχ(y), as
follows. Pick a (measurable) cross-section s : G/H → G, i.e., a right inverse to the
projection p : G→ G/H, p(x) = [x], in other words, we have

p◦ s = idG/H . (7.108)
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It may not be possible to make s continuous, and, crucially, s is not a left inverse to
p; instead, there exists a unique function hs : G→H such that s◦ p(x) = xhs(x), i.e.,

hs(x) = x−1s([x]). (7.109)

Such a cross-section s gives rise to a unitary isomorphism

ws : Hχ → H̃χ ; (7.110)
wsψ(q) = ψ(s(q)); (7.111)

w−1
s ψ̃(x) = uχ(hs(x))ψ̃([x]), (7.112)

which enables us to move the system of imprimitivity (uχ ,πχ) to H̃χ by defining

ũχ(y) = wsuχ(y)w∗s (y ∈ G); (7.113)
π̃χ( f̃ ) = wsπχ( f̃ )w∗s ( f̃ ∈C0(G/H)). (7.114)

This duly leads to (7.107), but instead of (7.105), we obtain the more cumbersome

ũχ(y)ψ̃(q) =

√
dν(y−1q)

dν(q)
uχ(s(q)−1ys(y−1q))ψ̃(y−1q), (7.115)

where of course the square root may be omitted if ν is G-invariant, as in (7.103).
The argument h= s(q)−1ys(y−1q) of uχ appearing here is called the Wigner cocycle
(after the physicist who first introduced it in his classification of the irreducible
representations of the Poincaré group). One may verify that h ∈ H by applying p,
which by construction is G-equivariant (i.e., p(xy) = xp(y)), which gives

p(h) = p(s(q)−1ys(y−1q)) = s(q)−1yp(s(y−1q)) = s(q)−1yy−1q = s(q)−1q,

where in the third step we used (7.108). For any x∈G we have x−1[x] = [x−1x] = [e],
so taking x = s(q) in this computation we find p(h) = [e], which is true iff h ∈ H.

Given an irreducible system of imprimitivity (ũχ , π̃χ), we obtain generalized
momentum operators by passing to the associated representation of the Lie algebra
g of G through (5.156) and (7.57), i.e.,

π̃χ(A) = ih̄(ũχ)′(A), (7.116)

where A ∈ g, so that, cf. (7.78) - (7.80), we obtain from (5.160) and (7.81):

[π̃χ(A), π̃χ(B)] = ih̄π̃χ([A,B]); (7.117)
[π̃χ(A), π̃χ( f̃ )] = ih̄π̃χ(δA f̃ ); (7.118)
[π̃χ( f̃ ), π̃χ(g̃)] = 0, (7.119)

where A,B ∈ g and f̃ , g̃ ∈ C0(Q) (in fact, these formulae—defined on the right
domain—work also for many unbounded functions on Q, see below), and δA is
defined in (3.71). Let us take a look at a few illustrative special cases:
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• If H =G, then Q is a point, so that C∗(G,Q)=G∗(G), and systems of imprimitiv-
ity are just irreducible representations of G. We have Hχ ∼= Hχ through the map
w : Hχ →Hχ defined by ψ �→ ψ(e)≡ ψ ′ ∈Hχ , with inverse ψ(x) = uχ(x−1)ψ ′.
This gives wuχ(y)w−1 = uχ(y). Similarly, in (7.115) we take s = e, which gives
ũχ(y) = uχ(y) on H̃χ = Hχ .

• If H = {e} we have Q = G and C∗(G,G)∼= B0(L2(G)), which quantizes the un-
derlying classical phase space g∗ ×G∼= T ∗G. We now have H = L2(G) carrying
the left-regular representation of G.

• Let G=E(3) act canonically on Q=R3. Taking q0 = 0 gives H = SO(3), so irre-
ducible systems of imprimitivity are classified by j = 0,1, . . ., with corresponding
irreducible representations D j(SO(3)) on Hj = C2 j+1, cf. §5.8. Hence

H̃ j = L2(R3)⊗Hj, (7.120)

and using the cross-section s(q) = (13,q) from R3 to E(3) we obtain, from
(7.115) with (7.63) - (7.64) and (7.107), the expressions

ũ j(R,a))ψ̃(q) = D j(R)ψ̃(R−1(q−a)); (7.121)
π̃ j( f̃ ))ψ̃(q) = f̃ (q)ψ̃(q). (7.122)

For j = 0 this gives the usual quantum theory of a spinless particle:

1. The Hilbert space is H̃0 = L2(R3).
2. For the generators of R3 ⊂ E(3) we duly obtain the momentum operators

Pi =−ih̄
∂
∂qi , (7.123)

where Pi = π̃0(ei) is defined in terms of the standard basis (e1,e2,e3) of R3,
now seen as the Lie algebra of R3.

3. Using the basis (3.66) of the Lie algebra of SO(3) ⊂ E(3), we obtain the
orbital angular momentum operators (which pick up extra terms for j > 0):

π̃0(J1) = ih̄
(

q3 ∂
∂q2 −q2 ∂

∂q3

)
; (7.124)

π̃0(J2) = ih̄
(

q1 ∂
∂q3 −q3 ∂

∂q1

)
; (7.125)

π̃0(J3) = ih̄
(

q2 ∂
∂q1 −q1 ∂

∂q2

)
. (7.126)

4. The coordinate functions f̃ (q) = qi yield the position operators Qi = π̃0(qi):

Qiψ̃(q) = qiψ̃(q). (7.127)

5. Thus we obtain all the familiar commutation relations like [Qi,Pj] = ih̄δi j,
[π̃0(J1), π̃0(J2)] = ih̄π̃0(J3), etc., cf. (7.65) - (7.66).
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• Let G = R act on Q = T, which we parametrize by z = exp(2πiq), q ∈ [0,1), by

a : exp(2πiq) �→ exp(2πi(q+a)), (7.128)

so that H = Z, with Ĥ = T under uz(n) = zn, z ∈ T, n ∈ Z, cf. (C.349). We
parametrize Ĥ by z = exp(iθ), θ ∈ [0,2π), so that (with slight abuse of notation)
uθ (n) = einθ . In the second description (i.e. the one of the physicists) we have

H̃θ = L2(T) = L2(0,1), (7.129)

where topology of Q is lost for the moment. Using the cross-section

s
(
e2πiq)= q, (7.130)

where q ∈ [0,1), we obtain

ũθ (a)ψ̃(q) = ein(a,q)θ ψ̃(q−a+n(a,q)), (7.131)

where n(a,q) ∈ Z is the unique integer such that q− a+ n(a,q) ∈ [0,1). The
corresponding momentum operator is formally given by the usual expression
P = −ih̄∂/∂q, cf. (7.123), which appears to be independent of θ (since for any
q ∈ (0,1) and a small enough we have n(a,q) = 0), but in fact the θ -dependence
is in its domain, which can be shown to consist of the subspace of the Sobolev
space H1(0,1)—i.e. the closure of C∞([0,1]) in the inner product (5.318) adapted
to L2(0,1), which implies H1(0,1)⊂C([0,1])—whose elements satisfy

ψ(1) = e−iθψ(0). (7.132)

To see this, we recall that

Pψ̃ = ih̄ lim
ε→0

(
ũθ (ε)ψ̃− ψ̃

ε

)
, (7.133)

where the limit is taken in the L2-norm, so that we need existence of

lim
ε→0

ε−2
∫ 1

0
dq |ein(a,q)θ ψ̃(q− ε+n(ε,q))− ψ̃(q)|2.

For 0 < q < ε we have n(ε,q) = 1, whereas for ε < q < 1 we have n(ε,q) = 0,
so it is convenient to split the integral as a sum of

∫ ε
0 and

∫ 1
ε . The second term

enforces the existence of derivatives in the L2-sense (which in turn makes ψ̃
continuous on [0,1]) and is unproblematic, but the first requires the existence of

lim
ε→0

ε−2
∫ ε

0
dq |eiθ ψ̃(q− ε+1)− ψ̃(q)|2.

This strange expression, then, enforces the boundary condition (7.132). In this
case there is no single position operator, but the algebra C(T) plays its role.
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7.6 Representations of semi-direct products

The case Q=G/H also provides the key for the general case, as long as the G-action
on Q is regular, cf. Theorem 7.7. In that case, the construction of the irreducible sys-
tem of imprimitivity (u(G),π(C0(Q))) corresponding to a pair (O,uχ(H)), where
O is a G-orbit in Q, requires no new ideas: we have O ∼= G/H, and hence u = uχ

and π = πχ as described in §7.5 (where the function f̃ in formulae like (7.104) or
(7.114), which in these expression was defined on G/H, should be seen as the re-
striction of f̃ ∈ C0(Q) to O ⊂ Q). An important application of this construction is
the representation theory of regular semi-direct products L�V (cf. §7.3), where
regularity means that the dual L-action on V ∗ is regular; this action is given by

λ ·θ(v) = θ(λ−1 · v) (λ ∈ L,θ ∈V ∗,v ∈V ). (7.134)

Theorem 7.9. Up to unitary equivalence, the irreducible unitary representations of
a regular semi-direct product G = L�V are classified by pairs (O,σ), where O is
an L-orbit in V ∗ and σ is an element of the unitary dual of the stabilizer L0⊂ L of an
arbitrary point θ0 ∈O . The corresponding representation ũ(O,σ)(G) may be realized
from an irreducible representation uσ of L0 on a Hilbert space Hσ combined with a
cross-section s : L/L0→ L of the canonical projection p : L→ L/L0, namely through

H̃(O,σ) = L2(L/L0)⊗Hσ ; (7.135)

ũ(O,σ)(λ ,v)ψ̃(θ) = eiθ(v)uσ (s(θ)−1λ s(λ−1θ))ψ̃(λ−1θ). (7.136)

Proof. Let u be a unitary representation of G. This implies

u(λ )u(v)u(λ−1) = u(λ · v), (7.137)

in which λ ≡ (λ ,0) and v≡ (e,v). Since V ⊂G is abelian, we have C∗(V )∼=C0(V ∗)
by the Fourier transform (cf. Theorem C.109 in §C.15), which here is given by
(7.44) - (7.45), with A � v. Hence the representation u

∫
(C∗(V )) defined by u(V )

via (5.172), seen as a representation of C0(V ∗) via the Fourier transform, is given
by

u
∫
( f ) = (2π)−n

∫
V×V ∗

dnvdnθ eiθ(v) f (θ)u(v). (7.138)

Using invariance of the measure dnvdnθ under the joint transformation (v,θ) �
(λ · v,λ ·θ), from (7.137) we obtain, for f ∈C0(V ∗) in the image of f̌ ∈C∞

c (V ),

u(λ )u
∫
( f )u(λ )∗ = (2π)−n

∫
V×V ∗

dnvdnθ eiθ(v) f (θ)u(λ · v)

= (2π)−n
∫

V×V ∗
dnvdnθ ei(λ ·θ)(λ ·v) f (λ−1 ·λ ·θ)u(λ · v)

= (2π)−n
∫

V×V ∗
dnvdnθ eiθ(v) f (λ−1 ·θ)u(v)

= u
∫
(Lλ f ). (7.139)
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Consequently, a unitary representation u(L�V ) defines a system of imprimitivity
(u(L),u

∫
(C0(V ∗))), and vice versa, since any pair of representations (u(L),u(V ))

that satisfies (7.137) gives rise to a representation u(G) by u(λ ,v) = u(v)u(λ ).
Now apply Theorem 7.7 with G � L and Q �V ∗. All we need in order to obtain

(7.135) - (7.136) from (7.106) and (7.107) - (7.115) is to find the representation
u(V ) that induces the representation u

∫
(C0(V ∗)) given by (7.107), namely

u(v)ψ̃(θ) = e−iθ(v)ψ̃(θ), (7.140)

as is easily checked from (7.138). �

In view of this, we have a remarkable group–groupoid C*-algebra isomorphism

C∗(L�V )∼=C∗(L�V ∗), (7.141)

where the left-hand side is just the C*-algebra of the group L�V , whereas the right-
hand side is the C*-algebra of the action groupoid L�V ∗ relative to (7.134). Also,
a computation shows that the same formulae (7.135) - (7.136) are obtained if, given
θ0 ∈V ∗ and hence given L0 as its stabilizer, we define a subgroup H ⊂ G by

H = L0 �V, (7.142)

and induce from the representation u(θ0,σ) of H defined by

u(θ0,σ)(λ ,v) = eiθ0(v)uσ (λ ). (7.143)

We briefly discuss four basic examples from physics, each of which is easily seen
to be regular. We write a instead of v in (λ ,v) ∈ G so as to emphasize the “spatial”
character of V , whereas V ∗ is labeled by a dual “momentum” variable p.

• G = E(2) = SO(2)�R2, defined like E(3), i.e., with respect to the usual action
of SO(2) on R2 (this group will play a role in the representation theory of the
Poincaré-group). We find the same action of SO(2) on (R2)∗ = R2, so that the
orbits are O0 = {0} with G0 = SO(2) and Or = {(x,y) ∈ R2 | x2 + y2 = r2} for
r > 0, with Gr = {e}. Thus the Hilbert spaces and representations are given by

H̃(0,n) = C; (7.144)
ũ(0,n)(λ ,a) = e2πinλ ; (7.145)

H̃r = L2(0,1); (7.146)

ũr(λ ,a)ψ̃(p) = eir(a1 cos p′+a2 sin p′)ψ(p−λ |mod1), (7.147)

where n ∈ Z, λ ∈ [0,1), p ∈ (0,1), and p′ = 2π p. In the first case R2 ⊂ E(2) is
represented trivially, whereas in the second the r-dependence of the representa-
tion lies entirely in R2 (since H̃r and ũr(λ ,0) are evidently independent of r).
The projective representations of G are of considerable interest, too, cf. §5.10.

Lemma 7.10. If G = SO(p,q)�Rp+q (p > 0,q≥ 0), then H2(g,R) = 0.
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Here SO(p,q) is the subgroup of SLp+q(Rp+q) whose elements leave the form

x2 = x2
1 + · · ·+ x2

p− (x2
p+1 + · · ·+ x2

p+q)

invariant; the best-known example is the (proper) Lorentz group SO(3,1), see
below. This lemma may be proved by a straightforward but lengthy computation.
By Theorem 5.59, the projective unitary representations of G then correspond to
the ordinary unitary representations of the universal covering

G̃ = R�R2, (7.148)

where R acts on R2 through the covering projection π̃ : R→ SO(2) = R/Z, cf.
Theorem 5.41 (with D � Z). This changes the expressions (7.144) - (7.147) into

H̃(0,s) = C; (7.149)
ũ(0,s)(λ ,a) = eisλ ; (7.150)

H̃(r,θ) = L2(0,1); (7.151)

ũ(r,θ)(λ ,a)ψ̃(p) = eir(a1 cos p′+a2 sin p′)ein(λ ,p)θ ψ̃(p−λ +n(λ , p)),(7.152)

where λ ∈ R, s ∈ R, θ ∈ [0,2π), p ∈ (0,1), and n(λ , p) is defined as in (7.131).
• G = E(3) = SO(3)�R3, as before with the defining action of SO(3). The SO(3)-

orbits in (R3)∗ =R3 are spheres S2
r
∼= SO(3)/SO(2) with radius r > 0, as well as

the origin (r = 0) with stabilizer SO(3), so that for the Hilbert spaces we obtain

H̃(0, j) = C2 j+1; (7.153)
H̃(r,n) = L2(S2); (7.154)

where j = 0,1, . . . labels the unitary irreducible representations of SO(3) on Hj =
C2 j+1, whereas n ∈ Z labels the irreducible representations of SO(2) on C (we
write S2 ≡ S2

1). In the second case, the representation u(r,n) of SO(3) ⊂ E(3)
depends explicitly on n through the Wigner cocycle; for n = 0 we simply obtain

ũ(r,0)(R,a)ψ̃(p) = eirp·aψ̃(R−1 p). (7.155)

For n �= 0 we just give a formula for ũ(r,n)(R,a) in case that R is a rotation around
the z-axis and a = 0; this is enough to make the point. To this end we parametrize
SO(3) by the well-known Euler angles, i.e., in terms of the matrices Ji, cf. (3.66),

R(φ ,θ ,α) = eφJ3eθJ2 eαJ3 , (7.156)

and write q ∈ S2 as q = (φ ,θ) = R(φ ,θ ,0)e3 with e3 = (0,0,1) (the spherical
coordinates of q are (φ − 1

2π,θ)). This also provides S2 with an SO(3)-invariant
measure dν(φ ,θ) = dφdθ sinθ . A convenient choice of s : S2 → SO(3) is

s(φ ,θ) = R(φ ,θ ,−φ), (7.157)
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in which case we simply obtain, writing Rz(α) = R(α,0,0),

ũ(r,n)(Rz(α),0)ψ̃(φ ,θ) = einαψ̃(φ −α,θ). (7.158)

The universal covering group of E(3) is

Ẽ(3) = SU(2)�R3, (7.159)

where SU(2) = S̃O(3) acts on R3 through its covering projection π̃ onto SO(3),
as in the previous case. By Theorem 5.59 and Lemma 7.10, the projective unitary
irreducible representations of E(3) are given by the unitary irreducible represen-
tations of SU(2)�R3. This obviously leads to additional half-integral values for
j in (7.153), since this number now labels the unitary irreducible representations
of SU(2). As to n in (7.154), the subgroup H ⊂ SU(2) that stabilizes (0,0,r)∈ S2

r
consists of all matrices uz = diag(z,z), where z ∈ T, so H ∼= T and hence Ĥ = Z
under uz �→ zm, m ∈ Z. We now recall from the proof of Proposition 5.5 that

u = cos(θ/2) ·12 + isin(θ/2)u ·σ ∈ SU(2), (7.160)

where u is a unit vector in R3, projects to π̃(u) = Rθ (u)∈ SO(3), i.e., the rotation
around u by an angle θ . Parametrizing z = cos(α/2)+ isin(α/2), α ∈ [0,4π),
therefore gives π̃(uz) = exp(αJ3). Besides (7.157), we now also need a cross-
section s : S2

r → SU(2), for which the above analysis suggests we take

s(φ ,θ) = u(3)(φ)u(2)(θ)u(3)(−φ); (7.161)

u(2)(θ) ≡ cos( 1
2θ) ·12 + isin( 1

2θ) ·σ2; (7.162)

u(3)(φ) ≡ cos(φ/2) ·12 + isin(φ/2) ·σ3; (7.163)

note that uz = u(3)(α). A calculation similar to the one leading to (7.158) gives

ũ(r,m)(uz,0)ψ̃(φ ,θ) = eimα/2ψ̃(φ −α,θ). (7.164)

Comparing (7.158) and (7.164), we see that if m is even, then n=m/2 (of course,
by convention we may replace m/2 in (7.164) by n on the understanding that n
may now be half-integral). If m is odd, choosing α = 2π we famously obtain

ũ(r,m)(−12,0)ψ̃ =−ψ̃. (7.165)

More generally, if we take a closed path t �→ R2πt(u), t ∈ [0,1] in SO(3),
which starts and ends at 13, and lift it (with respect to the covering projection
π̃ : SU(2) → SO(3)) to a path t �→ u(t) ≡ cos(πt) + isin(πt)u · σ in SU(2),
which now starts at 12 and ends at −12, then the corresponding representation
ũ(r,m)(u(t),0) takes the wave-function ψ̃ to itself if m is even, whereas it takes
ψ̃ to −ψ̃ whenever m is odd (this is an embryonic version of the connection
between spin and statistics, fully realized only in quantum field theory).
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• G= L�R3+1, the Poincaré group, where the Lorentz group L=O(3,1) consists
of all real 4×4 matrices that leave the indefinite quadratic form

x2 = x2
0− x2

1− x2
2− x2

3 (7.166)

invariant; in this context the standard coordinates on R4 are labeled as (x0,x1,x2,x3).
The Lorentz group has four connected components, which may be identified by
the (independent) conditions det(λ ) = ±1 and ±λ00 ≥ 1. For simplicity we re-
strict ourselves to the connected component L↑+ of the identity, in which det(λ ) =
1 and λ00 ≥ 1. This group is called the proper orthochronous Lorentz group,
which in turn defines the proper orthochronous Poincaré group P↑+ = L↑+�R4.
Writing p2 = p2

0− p2
1− p2

2− p2
3, the L↑+-orbits in (R4)∗ = R4 are seen to be:

1. O0 = {(0,0,0,0)}, with stabilizer (L↑+)0 = L↑+;
2. O±

m = {p ∈ R4 | p2 = m2,±p0 ≥ 0}, m > 0, with (L↑+)0 = SO(3);
3. O±

0 = {p ∈ R4 | p2 = 0,±p0 ≥ 0}, with (L↑+)0 = E(2);
4. Oim = {p ∈ R4 | p2 =−m2,±p0 ≥ 0}, m > 0, with (L↑+)0 = SO(2,1).

Here the stabilizers L0 are found by taking the reference points (±m,0,0,0) in
case 2, (±1,0,0,−1) in case 3, and (0,0,0,m) in case 4. The physically relevant
cases are probably O+

m2 and O+
0 . We pass straight to the universal covering group

P̃↑+ = SL(2,C)�R4, (7.167)

where the covering projection π̃ : SL(2,C)→ L↑+ is given analogously to the case
(5.46). We again start from the four matrices (σ0,σ1,σ2,σ3) in (5.42), and note:

– These form a basis for the (real) vector space of all self-adjoint 2×2 matrices;
– For any x ∈ R4 we have det(∑3

μ=0 xμσμ) = x2 as defined in (7.166);
– For any λ̃ ∈ SL(2,C) and a ∈M2(C) we have det(λ̃aλ̃ ∗) = det(a);
– For any λ̃ ∈ SL(2,C) and self-adjoint a ∈M2(C), λ̃aλ̃ ∗ is again self-adjoint.

Taking a = ∑μ xμσμ , it follows that for λ̃ ∈ SL(2,C) and x ∈ R4 there must be
λ ∈ O(3,1) such that λ̃ ∑μ xμσμλ̃ ∗ = ∑μ(λ · x)μσμ . By continuity and the fact
that SL(2,C) is connected it follows that in fact λ ∈ L↑+, so we put π̃(λ ) = λ . As
for (5.46), the kernel is ker(π̃) = Z2 = {±12}. This enlarges the stabilizers:

1. For O+
m2 we now obtain (L̃↑+)0 = SU(2), leading to a family of unitary irre-

ducible representations um, j labeled by mass m > 0 and spin j = 0, 1
2 ,1, . . ..

2. For O+
0 the stabilizer (L̃↑+)0 of (1,0,0,1) is a double cover E(2)′ of E(2),

whose unitary irreducible representations are labeled by either (0,n) with n ∈
Z/2 (called helicity) or by r > 0. The latter case does not occur in nature.

On the one hand, this classification is a triumph of mathematical physics, but on
the other hand, it fails to single out which cases actually occur in nature: as far
as we know, these are spin j = 0 and j = 1

2 and helicity n =±1 and n =±2.
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• G = E(3)�R4, the Galilei group, defined via the following E(3)-action on R4:

(R,v) : (a0,a) �→ (a0,Ra+a0v). (7.168)

Note that v is physically interpreted as a velocity, whereas earlier a ∈R3 ⊂ E(3)
was a position variable. This is clear from the defining G-action on R4, given by

(R,v,a0,a) : (t,x) �→ (t +a0,Rx+a+ tv), (7.169)

which in fact determines the action (7.168). Either way, we obtain the group law

(R,v,a0,a) · (R′,v′,a′0,a′) = (RR′,v+Rv′,a0 +a′0,a+Ra′+a′0v). (7.170)

We therefore see that the role of the Lorentz group SO(3,1) is now played by the
Euclidean group E(3). Since from (7.170) the inverse is found to be

(R,v,a0,a)
−1 = (R−1,−R−1v,−a0,−R−1(a−a0v)), (7.171)

the dual E(3)-action on (R4)∗ ∼= R4 is given (in non-relativistic notation) by

(R,v) : (E,p) �→ (E−〈v,Rp〉,Rp). (7.172)

Hence the dual E(3)-orbits in R4 are labeled by E ∈ R and r > 0, as follows:

OE = {(E,0)}; (7.173)
O(r) = {(E,p),E ∈ R,‖p‖= r}. (7.174)

The representations of G corresponding to the first type are basically the repre-
sentations of E(3), whereas in the second case the stability group of say (0,0,0,r)
is isomorphic to E(2). None of the ensuing induced representations of G re-
produces some recognizable version of non-relativistic quantum mechanics, for
which we need to pass to projective representations of G. These may be found
from Theorem 5.62, which here applies in full glory, since H2(g,R) �= 0. A
(lengthy) computation shows that H2(g,R) has a single generator

ϕ((M,v,a0,a),(M′,v′,a′0,a
′)) = 〈v,a′〉− 〈v′,a〉, (7.175)

where M ∈ so(3), and (v,a0,a) ∈ R3×R4 ⊂ g= so(3)⊕R3⊕R4 are identified
with the corresponding Lie group elements. Following the procedure culminating
in Theorem 5.62, the central extension Ǧ is found to be (cf. (7.159) and (5.46))

Ǧ = Ẽ(3)�R5, (7.176)

where, writing π̃(u)≡ R(u), the covering group Ẽ(3) acts on R5 through

(u,v) : (a0,a,c) �→ (a0,R(u)a+a0v,c+ 1
2 a0‖v‖2 + 〈v,R(u)a〉). (7.177)
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Consequently, writing x̃ = (R,v,a0,a), for the group law in Ǧ we obtain

(x̃,c) · (x̃′,c′) = (x̃ · x̃′,c+ c′+ 〈v,R(u)a′〉+ 1
2 a′0‖v‖2). (7.178)

Eq. (7.177) implies the following dual Ẽ(3)-action on (R5)∗ = R5:

(u,v) : (E,p,m) �→ (E−〈v,R(u)p〉+ 1
2 m‖v‖2,R(u)p−mv,m). (7.179)

This time, the Ẽ(3)-orbits in R5 are:

1. OE = {(E,0,0)} (E ∈ R), with stabilizer Ẽ(3);
2. O(r,0) = {(E,p,0) | E ∈ R,‖p‖= r} (r > 0), with stabilizer E(2)′;
3. OU,m = {(E,p,m) | E−Ep =U} (m ∈R\{0}, U ∈R), with stabilizer SU(2).

Here E(2)′ ⊂ Ẽ(3) is a double cover of E(2), like the subgroup of SL(2,C)
stabilizing the point (1,0,0,1) ∈ R4 in the theory of the Poincaré-group. This
time we take any point (E,0,0,r,0) ∈ R5, which is stabilized by pairs (u,v) ∈
Ẽ(3) for which R(u) is a rotation around the z-axis and v = (v1,v2,0); the image
of these pairs in E(3) is E(2) = SO(2)�R2, where SO(2) ⊂ SO(3) consists of
rotations around the z-axis and R2 is the x-y plane. In the third case we write
Ep = ‖p‖2/2m and take (U,0,m), whose stabilizer in E(3) is evidently SO(3).

Thus we have massless as well as massive particles both in relativistic and in non-
relativistic quantum physics. The simplest case of all is formed by massive non-
relativistic particles, which correspond to the orbits OU,m above, supplemented with
a spin j labelling the underlying irreducible representation D j of SU(2). Such orbits
are diffeomorphic to R3 under the identification (U +Ep,p,m)↔ p, and a conve-
nient choice of the cross-section s : OU,m → Ẽ(3) is s(p) = (12,−p/m), since in
that case the Wigner cocycle simply becomes s(p)−1(u,v)s((u,v)−1p) = u. Since
different values of U turn out to give equivalent representations of Ǧ (in the sense
explained at the end of §5.10), we take U = 0, and eqs. (7.135) - (7.136) become

H̃m, j = L2(R3)⊗Hj; (7.180)

ũm, j(u,v,a0,a)ψ̃(p) = ei(a0Ep+〈a,p〉)D j(u)ψ̃(R(u)−1(p+mv)). (7.181)

Here L2(R3) simply carries Lebesgue measure d3p, which is Ẽ(3)-invariant.
The massive relativistic case is slightly more involved: we again have O+

m
∼= R3

under (ωp,p)↔ p, where ωp =
√
‖p‖2 +m2, but the Lorentz-invariant measure on

O+
m is d3p/ωp. For each p∈R3 there is a unique boost bp ∈ L↑+ that maps (m,0,0,0)

to (ωp,p), with pre-image b̃p in SL(2,C), so we take s(p) = b̃p. The Hilbert space
is (mutatis mutandis) still given by (7.180), but instead of (7.181) we now obtain

ũm, j(λ̃ ),a)ψ̃(p) = ei(a0ωp−〈a,p〉)D j(b̃−1
p λ̃ b̃λ−1p)ψ̃(λ−1p), (7.182)

where a = (a0,a), λ̃ ∈ SL(2,C), and λ ∈ L↑+ the image of λ̃ under the covering
projection. We leave the corresponding formulae for the massless case to the reader.
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7.7 Quantization and permutation symmetry

Another interesting application of the quantization theory developed in this chapter
is to indistinghuishable particles. Since all elementary particles come in families
of indistinghuishable sorts (such as electrons, photons, . . . ), this topic is obviously
of fundamental importance to physics. It is also puzzling, since (as we shall see)
mathematically one expects more possibilities than those realized in Nature (namely
bosons and fermions). This topic is also interesting philosophically, because it ap-
pears to be a testing ground for Leibniz’s Principle of the Identity of Indiscernibles
(PII), which states that two different objects cannot have exactly the same properties
(in other words, two objects that have exactly the same properties must be identical).

After a period of confusion but growing insight, involving some of the greatest
physicists such as Planck, Einstein, Ehrenfest, Fermi, and especially Heisenberg,
the modern point of view on quantum statistics was introduced by Dirac.

Using modern notation, and abstracting from his specific example (which in-
volved electronic wave-functions), Dirac’s argument is as follows. Let H be the
Hilbert space of a single quantum system, called a particle in what follows. The
two-fold tensor product H2 ≡ H⊗H then describes two distinguishable copies of
this particle. The permutation group S2 on two objects, with nontrivial element
(12), acts on the state space H2 by linear extension of u(12)ψ1⊗ψ2 = ψ2⊗ψ1.
Praising Heisenberg’s emphasis on defining everything in terms of observable
quantities only, Dirac then declares the two particles to be indistinguishable if
u(12)au(12)∗ = a for any two-particle observable a; by unitarity, this is to say that
a commutes with u(12). Dirac notes that such operators map symmetrized vectors
(i.e. those ψ ∈ H⊗H for which u(12)ψ = ψ) into symmetrized vectors, and like-
wise map anti-symmetrized vectors (i.e. those ψ ∈H⊗H for which u(12)ψ =−ψ)
into anti-symmetrized vectors, and these are the only possibilities; we would now
say that under the action of the S2-invariant (bounded) operators one has

H2 ∼= H2
+⊕H2

−; (7.183)

H2
+ = {ψ ∈ H2 | u(12)ψ = ψ}; (7.184)

H2
− = {ψ ∈ H2 | u(12)ψ =−ψ}. (7.185)

Arguing that in order to avoid double counting (in that ψ and u(12)ψ should not
both occur as independent states) one has to pick one of these two possibilities, Dirac
concludes that state vectors of a system of two indistinguishable particles must be
either symmetric or anti-symmetric. He then generalizes this to N identical particles:
if (i j) is the element of the permutation group SN on N objects that permutes i and
j (i, j = 1, . . . ,N), then according to Dirac, ψ ∈ HN ≡ H⊗N should satisfy either
u(i j)ψ =ψ , in which case ψ ∈H2

+, or u(i j)ψ =−ψ , in which case ψ ∈H2−, where
u is the natural unitary representation of SN on HN , given, on p ∈ SN , by linear
(and if necessary continuous) extension of

u(p)ψ1⊗·· ·⊗ψN = ψp(1)⊗·· ·⊗ψp(N). (7.186)
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Equivalently, ψ ∈H2
+ if it is invariant under all permutations, and ψ ∈H2− if it is in-

variant under even permutations and picks up a minus sign under odd permutations.
A slightly more sophisticated version of this argument often finds runs as follows:

‘Since, in the case of indistinguishable particles, ψ ∈ HN and u(p)ψ must represent the
same state for any p ∈ SN , and since two unit vectors represent the same state iff they
differ by a phase vector, by unitarity it must be that u(p)ψ = c(p)ψ , for some c(p) ∈ C
satisfying |c(p)|= 1. The group property u(pp′) = u(p)u(p′) then implies that c(p) = 1 for
even permutations and c(p) = ±1 for odd permutations. The choice +1 in the latter leads
to bosons, whereas −1 leads to fermions, so these are the only possibilities.’

Alas, where Dirac’s argument is incomplete, this one is even inconsistent: the claim
that two unit vectors represent the same state iff they differ by a phase vector, pre-
sumes that the particles are distinguishable! Indeed, the only physical argument to
the effect that two unit vectors ψ and ψ ′ are equivalent iff ψ ′ = zψ with |z| = 1, is
that it guarantees that expectation values coincide, i.e., that

〈ψ,aψ〉= 〈ψ ′,aψ ′〉, (7.187)

for all (bounded) operators a, i.e., not merely for the permutation-invariant operators
(in which case (7.187) does not follow). But, following Heisenberg and Dirac, the
whole point of having indistinguishable particles is that an operator a represents a
physical observable iff it is invariant under all permutations (acting by conjugation)!

Although the above arguments therefore seem feeble at best, their conclusion that
only bosons and fermions can exist seems validated by Nature, despite the mathe-
matical fact that the orthogonal complement of H2

+⊕H2− in HN (describing particles
with parastatistics) is non-zero as soon as N > 2. This should be a source of con-
cern, and indeed, much research on indistinguishable particles (in d > 2) has had
the goal of explaining away parastatistics. Distinguished by the different actions of
SN they depart from, these explanations have traditionally been based on:

• Quantum observables. SN acts on the C*-algebra B(HN) of bounded operators
on HN by conjugation of the unitary representation u(SN) on HN , cf. (7.186).
One implements permutation invariance by postulating that the physical observ-
ables of the N-particle system under consideration be the SN-invariant operators:
with u given by (7.186), the algebra of observables is therefore taken to be

MN = B(HN)SN ≡ {a ∈ B(HN) | [a,u(p)] = 0(p ∈SN)}. (7.188)

• Quantum states. By restriction, SN then also acts on the (normal) state space

Sn(HN)∼= D(HN)⊂ B(HN), (7.189)

from which it is postulated that the physical state space is D(HN)SN .
• Classical states. SN acts on MN , the N-fold cartesian product of the classical

one-particle phase space M, by permutation. If M = T ∗Q for some configuration
space Q, we might as well start from the natural action of SN on QN (pulled back
to MN), and this is indeed what we shall do, often further simplifying to Q =Rd .
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Unsurprisingly, the first two approaches equivalent. Define a linear map

EN : B(HN)→ B(HN)SN ; (7.190)

a �→ 1
n! ∑

p∈SN

u(p)au(p)∗; (7.191)

this is a (normal) conditional expectation from the von Neumann algebra B(HN)
to the von Neumann algebra B(HN)SN , i.e., EN(a∗) = EN(a)∗ for all a ∈ B(HN),
E2

N = EN , and ‖EN‖= 1. Moreover, EN preserves positivity as well as the trace, so
that it also maps the state space D(HN) onto the invariant states D(HN)⊂ B(HN).
Simple computations also establish the properties

Tr(ρa) = Tr(EN(ρ)a) (ρ ∈D(HN), a ∈ B(HN)SN ); (7.192)

Tr(ρa) = Tr(ρEN(a)) (ρ ∈D(HN)SN , a ∈ B(HN)). (7.193)

Finally, the reduction of HN under u(SN) described below may equally well be de-
scribed in terms of the state space, since a subspace eHN ⊂HN (where e∈P(HN) is
a projection) is stable under u iff e ∈P(HN)SN , in which case it may be described
in terms of the associated density operator ρ = e/Tr(e) ∈ D(HN)SN . With some
more effort, in can be even be shown that ρ ∈ ∂e(D(HN)SN ) iff eH is irreducible.

We may therefore focus on the first and the third approaches, starting with the
first, based on (7.188). Note that the C*-algebra of invariant compact operators, i.e.,

AN = B0(HN)SN ≡ {a ∈ B0(HN) | [a,u(p)] = 0(p ∈SN)}, (7.194)

induces the same decomposition of HN as MN does (since M = A′′N), so if H is
infinite-dimensional one may use AN rather than MN as the algebra of quantum ob-
servables; this is convenient for comparison with the classical state space approach.

As long as dim(H) > 1 and N > 1, the algebras MN and AN act reducibly on
HN . The reduction of HN under MN (and hence of AN and of u(H)N) is traditionally
carried out by Schur duality. This rests on the following concepts.

Definition 7.11. • A partition λ of N is a way of writing

N = n1 + · · ·+nk, n1 ≥ ·· · ≥ nk > 0, k = 1, . . . ,N. (7.195)

• The corresponding frame (or Young diagram) Fλ is a picture of N boxes with
ni boxes in the i’th row, i = 1, . . . ,k.

• For each frame Fλ , one has N! possible Young tableaux T , each of which is a
particular way of writing all of the numbers 1 to N into the boxes of Fλ .

• A Young tableau is standard if the entries in each row increase from left to
right and the entries in each column increase from top to bottom. The set of
all (standard) Young tableaux on Fλ is called Tλ (T S

λ ).
• To each T ∈ Tλ we associate the subgroup Row(T ) ⊂ SN of all permutations

p ∈ SN that preserve each row (i.e., each row of T is permuted within itself);
likewise Col(T )⊂SN consists of all p ∈SN that preserve each column.
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The set Par(N) of all partitions λ of N parametrizes the conjugacy classes of SN
and hence also the (unitary) dual of SN ; in other words, up to (unitary) equivalence
each (unitary) irreducible representation uλ of SN bijectively corresponds to some
partition λ of N; the dimension of any vector space Vλ carrying uλ is Nλ = |T S

λ |,
that is, the number of different standard Young tableaux on the frame Fλ .

Returning to (7.186), to each λ ∈ Par(N) and each Young tableau T ∈ Tλ we
associate an operator eT on HN by the formula

eT =
Nλ
N! ∑

p∈Col(T )
sgn(p)u(p) ∑

p′∈Row(T )
u(p′), (7.196)

which happens to be a projection. Its image eT HN ⊂ HN is denoted by HN
T , and the

restriction of MN to HN
T is called MN(T ). One may now write the decomposition of

HN under the action of MN (up to unitary equivalence) as

HN ∼=
⊕

λ∈Par(N)

HN
Tλ ⊗Vλ , (7.197)

MN ∼=
⊕

λ∈Par(N)

MN(Tλ )⊗1Vλ , (7.198)

u(SN) ∼=
⊕

λ∈Par(N)

1HN
Tλ
⊗uλ , (7.199)

where the labeling is by the partitions λ of N, the multiplicity spaces Vλ are ir-
reducible SN-modules, and Tλ is an arbitrary choice of a Young tableau defined
on Fλ . For simplicity we here assume that dim(H) ≥ N; if dim(H) < N, then only
partitions (7.195) with k ≤ dim(H) occur. For example, the partitions (7.195) of
N = 2 are 2 = 2 and 2 = 1+ 1, each of which admits only one standard Young
tableau, which we denote by S and A, respectively. With N2 = N1+1 = 1 and hence
V1 ∼=V1+1 ∼=C as vector spaces, this recovers (7.183); the corresponding projections
e+ and e−, respectively, are given by e+ = 1

2 (1+u(12)) and e− = 1
2 (1−u(12)). The

bosonic states ψ+, i.e., the solutions of ψ+ ∈ H2
+, or e+ψ+ = ψ+, are just the sym-

metric vectors, whereas the fermionic states ψ− ∈ H2− are the antisymmetric ones.
These sectors exist for all N > 1 and they always occur with multiplicity one.

However, and this is the bite of the topic, for N ≥ 3 additional irreducible rep-
resentations of MN appear, always with multiplicity greater than one; states in such
sectors are said to describe paraparticles and/or are said to have parastatistics. For
example, for N = 3 one new partition 3 = 2+1 occurs, with N2+1 = 2, and hence

H3 ∼= H3
+⊕H3

−⊕H3
P⊕H3

P′ , (7.200)

where H3
P and H3

P′ are the images of the projections eP = 1
3 (1− u(13))(1+ u(12))

and eP′ =
1
3 (1− u(12))(1+ u(13)), respectively. The corresponding two classes of

parastates (i.e. states carrying parastatistics) ψP and ψP′ then by definition satisfy
ePψP = ψP and eP′ψP′ = ψP′ , respectively. In other words, the Hilbert spaces carry-
ing each of the four sectors are the following closed linear spans:
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H3
+ = span−{ψ123 +ψ213 +ψ321 +ψ312 +ψ132 +ψ231}; (7.201)

H3
− = span−{ψ123−ψ213−ψ321 +ψ312−ψ132 +ψ231}; (7.202)

H3
P = span−{ψ123 +ψ213−ψ321−ψ312}; (7.203)

H3
P′ = span−{ψ123 +ψ321−ψ213−ψ231}, (7.204)

where ψi jk ≡ψi⊗ψ j⊗ψk and the ψi vary over H (and span− is closed linear span).
For any N > 2, let us note that instead of the decomposition (7.197) - (7.198),

which is defined up to unitary equivalence, one may alternatively decompose HN as

HN =
⊕

T∈T S
λ ,λ∈Par(N)

HN
T ; (7.205)

MN =
⊕

T∈T S
λ ,λ∈Par(N)

MN(T ), (7.206)

which has the advantage over (7.197) - (7.198) that the HN
T are subspaces of HN .

The disadvantage is that MN(T ) is unitarily equivalent to MN(T ′) iff T and T ′ both
lie in T S

λ (i.e., for the same λ ), so that unlike (7.197) - (7.198), the decomposi-
tion (7.205) - (7.206) is non-unique (for example, Young tableaux different from
standard ones might have been chosen in the parametrization). The analogue of the
third line (7.199) in the earlier decomposition would therefore be a mess. Indeed,
although SN maps each of the subspaces H+ and H− into itself (the former is even
pointwise invariant under SN , whereas elements of the latter at most pick up a minus
sign), this is no longer the case for parastatistics. For example, for N = 3 some per-
mutations map H3

P into H3
P′ , and vice versa. This is clear from (7.205) - (7.206): for

λ = P, one has dim(VP) = 2, and choosing a basis (υ1,υ2) of VP one may identify
H⊗3

P and H⊗3
P′ in (7.205) with (say) H⊗3

P ⊗υ1 and H⊗3
P ⊗υ2 in (7.197), respectively.

And analogously for N > 3, where dim(Vλ )> 1 for all λ �= S,A.
A (or perhaps the) competing approach to permutation invariance in quantum

mechanics starts from classical (rather than quantal) data. Let Q be the classical
single-particle configuration space, e.g., Q = Rd ; to avoid irrelevant complications,
we assume that Q is a connected and simply connected manifold. The associated
configuration space of N identical but distinguishable particles is QN . Depending
on the assumption of (in)penetrability of the particles, we may define one of

Q̆N = QN/SN ; (7.207)
QN = (QN\ΔN)/SN , (7.208)

as the configuration space of N indistinguishable particles, where ΔN is the extended
diagonal in QN , i.e., the set of points (q1, . . . ,qN) ∈ QN where qi = q j for at least
one pair (i, j), i �= j (so that for Q = R and N = 2 this is the usual diagonal in R2).
At first sight, these two choices should lead to exactly the same quantum theory,
based on the Hilbert space L2(Q̆N) = L2(QN), since ΔN is a subset of measure zero
for any measure used to define L2 that is locally equivalent to Lebesgue measure.
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However, the effect of ΔN is noticeable as soon as one represents physical observ-
ables as operators on L2 through any serious quantization procedure, which should
be sensitive to both the topological and the smooth structure of the underlying con-
figuration space. In the case at hand, QN is multiply connected as a topological
space, but as a manifold it is smooth and has no singularities. In contrast, Q̆N is
simply connected as a topological space, but in the smooth setting it is a so-called
orbifold. This leads to interesting complications, but following tradition (i.e., in the
configuration space approach to indistinguishable particle) we continue with QN .

To quantize QN we use the language of Lie groupoids and their C*-algebras, cf.
§§C.16–C.17. Let Q be any (possibly) multiply connected manifold, with universal
covering space Q̃. In particular, the first homotopy group π1(Q) acts (say from the
right) on Q̃ in such a way that Q = Q̃/π1(Q). We denote the canonical projection by
π : Q̃→ Q. One may have the example Q = T, Q̃ = R, π1(Q) = Z in mind here.

As a variation on the pair groupoid G=Q×Q, we now consider the Lie groupoid

G̃Q = Q̃×π1(Q) Q̃, (7.209)

whose elements are equivalence classes [q̃1, q̃2] in Q̃× Q̃ under the equivalence rela-
tion ∼ defined by (q̃1, q̃2)∼ (q̃′1, q̃

′
2) iff q̃1 = q̃′1x and q̃2 = q̃′2x for some x ∈ π1(Q);

the source and target projections are s([q̃1, q̃2]) = π(q̃2) and t([q̃1, q̃2]) = π(q̃1), re-
spectively, the inverse is [q̃1, q̃2]

−1 = [q̃2, q̃1], and multiplication is the obvious one
borrowed from the pair groupoid Q̃× Q̃ over Q̃ (which is well defined on G̃Q). The
tangent groupoid G̃T

Q of G̃Q (cf. Proposition C.117) has the following fiber at h̄ = 0:

(G̃Q)
T
0 = T Q, (7.210)

to be contrasted with the corresponding fiber GT
0 = T Q̃ of the pair groupoid on the

covering space Q̃. In particular, for our configuration space Q = QN we have

G̃QN = Q̃N ×π1(QN) Q̃N ; (7.211)

(G̃QN )
T
0 = T QN , (7.212)

which gives the fibers of the corresponding continuous bundle of C*-algebras as

A0 = C0(T ∗QN) (h̄ = 0); (7.213)
Ah̄ = C∗(G̃Q) (0 < h̄≤ 1), (7.214)

cf. §C.19. This gives a generalization of the fibers (7.17) - (7.18) for Q = Rn, and
also now we have an example of Definition 7.1: the fibers (7.213) - (7.214) com-
bine to form a continuous bundle of C*-algebras with total C*-algebra A =C∗(G̃T

Q),
yielding a deformation quantization of the Poisson manifold T ∗QN (i.e., the usual
phase space defined by the configuration space QN). We now define the inequiva-
lent quantizations of QN as the inequivalent irreducible representations of the cor-
responding C*-algebra of quantum observables C∗(G̃QN ), as follows.
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Theorem 7.12. 1. Let Q be multiply connected. The inequivalent irreducible repre-
sentations πλ of the C*-algebra C∗(G̃Q) bijectively correspond to the inequiva-
lent irreducible unitary representations uλ of the first homotopy group π1(Q).

2. Each representation πλ has a natural realization on the Hilbert space

Hλ = L2(Q)⊗Hλ , (7.215)

where Hλ is a specific carrier space for the representation uλ . More fancifully,
one may use the Hilbert space L2(Q,Eλ ) of L2-sections of the vector bundle

Eλ = Q̃×π1(Q) Hλ (7.216)

associated to the principal bundle π : Q̃→ Q by the representation uλ .

Provided one accepts (7.208), this theorem in principle gives a complete solution
to the problem of quantizing multiply connected configuration spaces, and hence,
taking Q = QN , of the problem of quantizing systems of indistinguishable particles.

Proof. We just prove Theorem 7.12 in the case we need, where π1(Q) is finite. Then

C∗(Q̃×π1(Q) Q̃)∼= B0(L2(Q̃))π1(Q); (7.217)

B0(L2(Q̃))π1(Q) ∼= B0(L2(Q))⊗C∗(π1(Q)), (7.218)

where (in our usual notation) B0(L2(Q̃))π1(Q) is the C*-algebra of π1(Q)-invariant
compact operators on L2(Q̃), and C∗(π1(Q)) is the group C*-algebra of π1(Q)
(which is finite-dimensional and hence nuclear, given the assumption that π1(Q)
is finite, so that the choice of the C*-algebraic tensor product does not matter).

To prove (7.217), we first exploit finiteness of π1(Q) in order to identify functions
ã ∈C∞

c (G̃Q) with constrained C∞
c functions a on Q̃× Q̃ that satisfy

a(q̃h, q̃′h) = a(q̃, q̃′) (h ∈ π1(Q)). (7.219)

This identification is explicitly given by

a(q̃, q̃′) = ã([q̃, q̃′]), (7.220)

where [q̃, q̃′] denotes the equivalence class of (q̃, q̃′) ∈ Q̃× Q̃ under the diagonal
action of π1(Q). This makes the space C∞

c (G̃Q) a dense subset of C∗(G̃Q). We write
a ∈ C∞

c (Q̃× Q̃)π1(Q); for (7.208) this just means that a is a permutation-invariant
kernel. Second, we equip Q̃ with some measure dq̃ that is locally equivalent to the
Lebesgue measure, and in addition is π1(Q)-invariant under the regular action R of
π1(Q) on functions on Q̃, given, as usual, by Rhψ̃(q̃) = ψ̃(q̃h). In that case, one also
has a measure dq on Q that is locally equivalent to the Lebesgue measure, so that
the measures dq̃ and dq on Q̃ and Q, respectively, are related by∫

Q̃
dq̃ f (q̃) =

1
|π1(Q)| ∑

h∈π1(Q)

∫
Q

dq f (s(q)h). (7.221)
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Here f ∈Cc(Q̃), |π1(Q)| is the number of elements of π1(Q), and s : Q→ Q̃ is any
(measurable) cross-section of τ : Q̃→Q. We may then define a Hilbert space L2(Q̃)
with respect to dq̃, on which elements a of C∞

c (Q̃× Q̃)π1(Q) act faithfully by

aψ̃(q̃) =
∫

Q̃
dq̃′ a(q̃, q̃′)ψ̃(q̃′). (7.222)

The product of two such operators is given by the multiplication of the kernels on
Q̃, and involution is defined as expected, too, namely by hermitian conjugation:

a∗(q̃, q̃′) = a(q̃′, q̃). (7.223)

The norm-closure of C∞
c (Q̃×Q̃)π1(Q), represented as operators on L2(Q̃) by (7.222),

is then given by B0(L2(Q̃))π1(Q). This proves (7.217).
Eq. (7.218) is a special case of the following: let X be a manifold carrying a

free action of a compact group G. If L2(X) is defined by some G-invariant “locally
Lebesgue” measure on X , as in the construction above, then one has an isomorphism

B0(L2(X))G ∼= B0(L2(X/G)⊗C∗(G). (7.224)

This is proved in a similar way, realizing B0(H) as the norm-completion of the
Hilbert–Schmidt operators B2(H) (for general H), and, in the L2-case at hand, iden-
tifying B2(L2(X)) with the algebra of operators with kernels in L2(X×X).

Part 2 of the theorem now follows from the fact that for any Hilbert space H the
C*-algebra B0(H) of compact operators on H has exactly one irreducible represen-
tation (up to unitary equivalence), i.e. the defining one (this can be proved in many
ways, e.g. from Rieffel’s theory of Morita equivalence of C*-algebras), combined
with the bijective correspondence between continuous unitary representations u of
any locally compact group G and non-degenerate representations of its associated
group C*-algebra C∗(G); see §C.18, Definition C.119 etc. �

As mentioned in Theorem 7.12, there are two ways of realizing the Hilbert space
Hλ , where λ labels some irreducible representation of π1(Q). This is very similar
to the discussion in §7.5, so we will be relatively brief here. The first realization
corresponds to having constrained wave-functions defined on the covering space Q̃;
for example, the usual description of bosonic or fermonic wave-functions is of this
sort. The second realization uses unconstrained wave-functions on the actual con-
figuration space Q (bad hombres confusingly call such functions “multi-valued”).

1. The space C∞(Q,Eλ ) of smooth cross-sections of Eλ may be given by the
smooth maps ψ̃ : Q̃→ Hλ satisfying the equivariance condition (“constraint”)

ψ̃(q̃h) = uλ (h
−1)ψ̃(q̃), (7.225)

for all h ∈ π1(Q), q̃ ∈ Q̃. The Hilbert space

Hλ = L2(Q̃,Hλ )
π1(Q), (7.226)
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then, is defined as the usual L2-completion of the space of all ψ̃ ∈ Γ (Q,Eλ ) for
which 〈ψ̃, ψ̃〉 < ∞. The irreducible representation πλ (C∗(GQ)) is then given on
elements ã of the dense subspace C∞

c (GQ) of C∗(GQ) by the expression

πλ (ã)ψ(q̃) =
∫

Q̃
dq̃′ ã([q̃, q̃′])ψ(q̃′); (7.227)

any π1(Q)-invariant operator on L2(Q̃) acts on Hλ in this way (ignoring Hλ ).
If π1(Q) is finite, then two simplifications occur. Firstly, Hλ is finite-dimensional,
and secondly each Hilbert space Hλ may be regarded as a subspace of L2(Q̃); the
above action of C∗(GQ) on Hλ is then simply given by restriction of its action on
L2(Q̃). In that case one may equivalently realize this irreducible representation
in terms of the right-hand side of (7.217), in which case the action of πλ (a) on
Hλ as defined in (7.226) is given by

πλ (a)ψ(q̃) =
∫

Q̃
dq̃′ a(q̃, q̃′)ψ(q̃′). (7.228)

This is true as it stands if a ∈C∞
c (Q̃× Q̃)π1(Q), cf. (7.219), and may be extended

to general π1(Q)-invariant compact operators a ∈ B0(L2(Q̃))π1(Q) by norm con-
tinuity, and, furthermore, even to B(L2(Q̃))π1(Q) by strong or weak continuity.

2. Elements of the Hilbert space L2(Q̃,Hλ )
π1(Q) are typically (equivalence classes

of) discontinuous cross-sections of Eλ . Possibly discontinuous cross-sections
may simply be given directly as functions ψ : Q→ Hλ , with inner product

〈ψ,ϕ〉=
∫

Q
dq〈ψ(q),ϕ(q)〉Hλ . (7.229)

This specific realization of L2(Q,Eλ ) will be denoted by L2(Q)⊗Hλ . If Hλ =C,

L2(Q)⊗Hλ ∼= L2(Q). (7.230)

These equivalent descriptions of πλ may be related once a (typically discontinuous)
cross-section σ : Q→ Q̃ of the projection τ : Q̃→ Q has been chosen (i.e., τ ◦σ =
idQ), in which case ψ(q) = ψ̃(σ(q)). We formalize this in terms of a unitary

u : L2(Q̃,Hλ )
π1(Q) → L2(Q)⊗Hλ (7.231)

uψ̃(q) = ψ̃(σ(q)); (7.232)
u−1ψ(q̃) = uλ (h)ψ(q), (7.233)

where q = τ(q̃), and h is the unique element of π1(Q) for which q̃h = σ(q). The
action πλ

σ (a) = uπλ (a)u−1 on L2(Q)⊗Hλ now follows from (7.228) - (7.233): If a
is a π1(Q)-invariant kernel on L2(Q̃), then using (7.221) we obtain

πλ
σ (a)ψ(q) = ∑

h∈π1(Q)

∫
Q

dq′ a(σ(q),σ(q′)h)uλ (h)ψ(q′). (7.234)
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We now apply this formalism to N indistinguishable particles moving on the
(single-particle) configuration space R3. Eq. (7.208) then gives the N-particle space

QN = ((R3)N −ΔN)/SN . (7.235)

The universal covering space of this multiply connected space is

Q̃N = R̊3N ≡ (R3)N −ΔN , (7.236)

which (unlike its counterpart in d = 2) is connected and simply connected, so that

π1(QN) =SN . (7.237)

It follows from (7.217) and (7.237) that the algebra of observables is given by

C∗(G̃QN ) = B0(L2(R3)⊗N)SN . (7.238)

Comparing (7.238) with (7.194), we obtain a complete equivalence between the
“quantum observables” approach and the deformation quantization approach based
on Theorem 7.12, in that the configuration space approach through the representa-
tion theory of the groupoid C*-algebra C∗(G̃QN ) leads to the same classification as
the “quantum observables” approach based in (7.188) above, cf. (7.197) - (7.199).

We discuss a few interesting special cases.

N = 1. Here Q̃1 = Q1 = R3 and π1(Q1) = {e}, so the algebra of observables is

C∗(G̃Q1) = B0(L2(R3)), (7.239)

which has a unique irreducible representation on L2(R3).
N = 2. This time, the pertinent homotopy group is

π1(Q2) =S2 = Z2 = {e,(12)}, (7.240)

which has two irreducible representations: firstly, uB(p) = 1 for both p ∈ S2,
and secondly, uF(e) = 1, uF(12) = −1, each realized on Hλ = C. Hence with
q = (x,y,z) ∈ R3, eq. (7.225) yields

H2
B = {ψ ∈ L2(R3)2 | ψ(q2,q1) = ψ(q1,q2)}; (7.241)

H2
F = {ψ ∈ L2(R3)2 | ψ(q2,q1) =−ψ(q1,q2)}. (7.242)

Here L2(R3)2 ≡ L2(R3)⊗L2(R3)∼= L2(R6). The C*-algebra

C∗(G̃Q2) = B0(L2(R3)⊗L2(R3))S2 ∼= B0(L2(R3×R3))S2 (7.243)

consists of all S2-invariant compact operators on L2(R3×R3), acting on H2
B or

H2
F in the same way as they do on L2(R6); cf. (7.228), noting that the constraints

in (7.241) and (7.242) are preserved due to the S2-invariance of A ∈ C∗(G̃Q2).
This recovers Dirac’s description of statistics given earlier in this section.
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N = 3. Here we have a non-abelian homotopy group

π1(Q3) =S3, (7.244)

which, besides the irreducible boson and fermion representations on C, has an
irreducible parafermionic representation uP on HP = C2. This representation is
most easily obtained explicitly by reducing the natural action of S3 on C3. Define
an orthonormal basis of the latter by

e0 =
1√
3

⎛⎝ 1
1
1

⎞⎠ ; e1 =
1√
2

⎛⎝ 0
1
−1

⎞⎠ ; e2 =
1√
6

⎛⎝−2
1
1

⎞⎠ . (7.245)

It follows that C · e0 carries the trivial representation of S3, whereas the linear
span of e1 and e2 carries a two-dimensional irreducible representation uP, given
on the generators (12), (13), and (23) of S3 by

uP(12) = 1
2

(
1 −√3

−√3 −1

)
; uP(13) = 1

2

(
1
√

3√
3 −1

)
; uP(23) =

(−1 0
0 1

)
.

(7.246)
We already gave realizations of the Hilbert space H3

P of three parafermions
in (7.203) and (7.204),where it emerged as a subspace of L2(R3)⊗ L2(R3)⊗
L2(R3) ∼= L2(R3×R3×R3). An equivalent realization HP ≡ H̃3

P may be given
on the basis of (7.225), according to which HP is the subspace of L2(R3)3⊗C2∼=
L2(R9)⊗C2 that consists of doublet wave-functions ψi (i = 1,2) that satisfy

ψi(qp(1),qp(2),qp(3)) =
2

∑
j=1

ui j(p)ψ j(q1,q2,q3), (7.247)

for any permutation p ∈ S3, where u ≡ uP, cf. (7.246). I.e., the parafermionic
wave-functions in this realization of H3

P are constrained by the conditions

ψ1(q2,q1,q3) = 1
2ψ1(q1,q2,q3)− 1

2

√
3ψ2(q1,q2,q3); (7.248)

ψ2(q2,q1,q3) = − 1
2

√
3ψ1(q1,q2,q3)− 1

2ψ2(q1,q2,q3); (7.249)

ψ1(q3,q2,q1) = 1
2ψ1(q1,q2,q3)+ 1

2

√
3ψ2(q1,q2,q3); (7.250)

ψ2(q3,q2,q1) = 1
2

√
3ψ1(q1,q2,q3)− 1

2ψ2(q1,q2,q3); (7.251)
ψ1(q1,q3,q2) = −ψ1(q1,q2,q3); (7.252)
ψ2(q1,q3,q2) = ψ2(q1,q2,q3). (7.253)

The algebra of observables C∗(G̃Q3) of three indistinguishable particles without
internal degrees of freedom, i.e., then acts on HP ⊂ L2(R3)3⊗C2 as in (7.234),
identifying a ∈ C∗(G̃Q3) with a⊗ 12 (so that a ignores the internal degree of
freedom C2). This representation πP is irreducible by Theorem 7.12.
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N > 3. The above construction may be generalized to any N > 3. There will now
be many parafermionic representations uλ of SN (given by Young tableaus), each
of which induces an irreducible representation of the C*-algebra (7.238).

The question now arises whether parastatistics is to be found in Nature—or, in-
deed, if this question is even well defined! As a warm-up to the case N = 3, where
the question first plays a role, let us give an alternative realization of πF(C∗(G̃Q2)),
cf. Theorem 7.12. Take two isospin doublet bosons (which by definition transform
under the defining spin- 1

2 representation D1/2 of SU(2) on C2). With

H(2) = (L2(R3)⊗C2)⊗2, (7.254)

and using indices a1,a2 = 1,2, the Hilbert space of these bosons is

H(2)
B = {ψ ∈ H(2) | (ψa2a1(q2,q1) = ψa1a2(q1,q2)}, (7.255)

with corresponding projection e(2)B : H(2)→ H(2)
B given by

e(2)B ψa1a2(q1,q2) = 1
2 (ψa2a1(q2,q1)+ψa1a2(q1,q2)). (7.256)

Subsequently, define a partial isometry w : H(2)→ L2(R3)⊗2 by

wψ(q1,q2)≡ ψ0(q1,q2) =
1√
2
(ψ12(q1,q2)−ψ21(q1,q2)). (7.257)

Physically, this singles out an isospin singlet Hilbert subspace H(0) = e0H(2) within
H(2), where e0 = w∗w (which is a projection). This singlet subspace may be con-
strained to the bosonic sector by passing to

H(0)
B = e0e(2)B H(2); (7.258)

note that e0 and e(2)B commute. Now extend the defining representation of C∗(G̃Q2)

on L2(R3)⊗2 to H(2) by ignoring the indices a1,a2 (i.e., isospin is deemed unob-
servable). This extended representation commutes with e0 and with e(2)B , and hence
is well defined on H(0)

B ⊂ H(2). Let us denote this representation of G̃Q2 by π(0)
B . It

is then immediate from the property ψ0(q2,q1) =−ψ0(q1,q2) that:

Proposition 7.13. The representations π(0)
B (C∗(G̃Q2)) on H(0)

B and πF(C∗(G̃Q2)) on
HF are unitarily equivalent.

In other words, two fermions without internal degrees of freedom are equivalent
to the singlet state of two bosons with an isospin degrees of freedom, at least if
the observables are isospin-blind. Similarly, two bosons without internal degrees of
freedom are equivalent to the singlet state of two fermions with isospin, and two
fermions without internal degrees of freedom are equivalent to the isospin triplet
state of two fermions (this corresponds to the Schur decomposition of (C2)⊗2 under
the commuting actions of S2 and SU(2)).
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For N = 3 we may carry out a similar trick as for N = 2, and replace parafermions
without (further) degrees of freedom by either bosons or fermions. We discuss the
former and leave the explicit description of the various alternative descriptions to
the reader. We proceed as for N = 2, mutatis mutandis. We have a Hilbert space

H(3) = (L2(R3)⊗C2)⊗3, (7.259)

of three distinguishable isospin doublets, containing the Hilbert space H(3)
B of three

bosonic isospin doublets as a subspace, that is,

H(3)
B = {ψ ∈H(3) |ψap(1)ap(2)ap(3) (qp(1),qp(2),qp(3)) =ψa1a2a3(q1,q2,q3)(p∈S3)}.

(7.260)
The corresponding projection, denoted by e(3)B : H(3) → H(3)

B , will not be written
down explicitly. Define an SU(2) doublet (ψ1,ψ2) within the space H(3) through a
partial isometry

w : H(3)→ L2(R3)⊗3⊗C2; (7.261)

wψ1(q1,q2,q3) =
1√
2
(ψ121(q1,q2,q3)−ψ112(q1,q2,q3)); (7.262)

wψ2(q1,q2,q3) =
1√
6
(−2ψ211(q1,q2,q3)+ψ121(q1,q2,q3)+ψ112(q1,q2,q3)).

(7.263)

Defining a projection e2 = w∗w on H(3), the Hilbert space H(3) contains a closed
subspace H(2)

B = e2e(3)B H(3), which is stable under the natural representation of
C∗(G̃Q3) (since e2 and e(3)B commute). We call this representation π(2)

B . An easy
calculation then establishes:

Proposition 7.14. The representations π(2)
B (C∗(G̃Q3)) on H(2)

B and πP(C∗(G̃Q3)) on
HP (as defined by Theorem 7.12) are unitarily equivalent.

In other words, three parafermions without internal degrees of freedom are quiva-
lent to an isospin doublet formed by three identical bosonic isospin doublets (corre-
sponding to the Schur decomposition of (C2)⊗3 under the commuting actions of S3
and SU(2); in this decomposition, the spin 3/2 representation of SU(2) couples to
the bosonic representation of S3, whilst the spin- 1

2 representation of SU(2) couples
to the parafermionic representation of S3), at least if the observables of the latter
are isospin-blind. Many other realizations of parafermions in terms of fermions or
bosons with an internal degree of freedom can be constructed in a similar way.

For N > 3 we similarly find that the representation of the C*-algebra (7.238)
induced by some parafermionic representations uχ of SN is unitarily equivalent
to a representation on some SU(n) multiplet of bosons with an internal degree of
freedom; the appropriate multiplet is the one coupled to uχ in the Schur reduction
of (Cn)⊗N with respect to the natural and commuting actions of SN and SU(n).
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The moral of this story is that one cannot tell from glancing at some Hilbert space
whether the world consists of fermions or bosons or parafermions; what matters is
the Hilbert space as a carrier of some (irreducible) representation of the algebra
of observables. From that perspective we already see for N = 2 that being bosonic
or fermionic is not an invariant property of such representations, since one may
freely choose between fermions/bosons without internal degrees of freedom and
bosons/fermions with internal degrees of freedom. In a more systematic discussion
using superselection theory one may impose some physical selection criterion in or-
der to restrict attention to “physically interesting” sectors. Such criteria (which, for
example, would have the goal of excluding parastatistics) should be formulated with
reference to some algebra of observables. Such issues cannot be settled at the level
of quantum mechanics and instead require quantum field theory, where parastatis-
tics can always be removed in terms of either bose- or fermi-statistics, in somewhat
similar vein to our discussion. For (nonlocal) charges in gauge theories there are no
rigorous results, but historically a similar goal played a role in the road to quantum
chromodynamics (QCD), which is one of the ingredients of the Standard Model.

A different argument against parastatistics arises from the state space approach
based on the compact convex set D(HN)SN studied at the beginning of this sec-
tion. The extreme boundary ∂e

(
D(HN)SN

)
consists of one part that is contained

in ∂eD(HN) = P1(HN), and one that is not. The first part consists of those one-
dimensional invariant projections e ∈P1(HN)SN whose image eHN belongs to ei-
ther the bosonic subspace HN

+ (in which case u(p)e = e for each p ∈ SN) or the
fermionic subspace HN− of HN (in which case u(p)e = sgn(p)e for each p ∈ SN);
in other words, pure bosonic on fermionic states on B(HN)SN are also pure on
B(HN). The second part, then, consists of parastatistical pure states on B(HN)SN ,
which are therefore mixed on B(HN). Furthermore, pure bosonic or fermionic
states on B(HN)SN both extend and restrict to pure bosonic or fermionic states on
B(HN+1)SN+1 and B(HN−1)SN−1 , respectively, whereas parastatistical pure states
turn out to have neither property and hence are “isolated” at the given value of N.

Finally, in d = 2 the equivalence between the operator and configuration space
approaches breaks down, because SN �= π1(QN) = BN , i.e., the braid group on N
strings. Even defining the operator quantum theory on HN = L2(Q̃N), with algebra
of observables MN = B(L2(Q̃N))

BN , fails to rescue the equivalence, because the de-
composition of HN under MN by no means contains all irreducible representations
of BN . In this case deformation quantization gives many more sectors than the im-
proved operator approach (which already gave more sectors than the approach using
‘multi-valued’ scalar wave-functions).
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Notes

The quotations in the preamble are from Dirac (1947), p. 87. Similarly, the Dreimänner-
arbeit (Born, Heisenberg, & Jordan, 1926) bluntly states (in Ch. 1, §1) that:

‘one can see from eq. (5) [i.e., pq−qp =−ih̄ ·1H , cf. our eq. (7.5)] that in the limit h̄ = 0 ,
the new theory would converge to the classical theory, as is physically required.’

§7.1. Deformation quantization

In the wake of Dirac’s famous insight on the analogy between the Poisson bracket
and the commutator in quantum mechanics, the idea of deformation quantization (in
the form of what we now call star products) may be traced back to Groenewold
(1946) and Moyal (1949). The mathematical (physics) literature on the subject
started with Berezin (1975) and Bayen et al (1978), who introduced what we now
call formal deformation quantization, in which h̄ is not a real number but a formal
parameter occurring in formal power series. The C*-algebraic setting for deforma-
tion quantization we use was introduced by Rieffel (1989, 1994); see also Landsman
(1998a), Chapter 2, for a detailed treatment.
§7.2. Quantization and internal symmetry

This section is based on Rieffel (1990) and Landsman (1998a), Chapter 3.
§7.3. Quantization and external symmetry

§7.4. Intermezzo: The Big Picture

§7.5. Induced representations and the imprimitivity theorem

§7.6. Representations of semi-direct products

The action Poisson bracket (7.58) was introduced by Krishnaprasad & Marsden
(1987); see also Marsden & Ratiu (1994).

Systems of imprimitivity and their applications to representation theory, semi-
direct products, and quantum mechanics are due to Mackey (1958, 1968), who
was inspired by Weyl (1927, 1928), von Neumann (1932), and Wigner (1939). As
Mackey (1978, 1992) describes, he saw his work as the development of what he
calls Weyl’s Program. Weyl (1927) posed two questions in quantum mechanics:

1. ‘How to construct the matrix of Hermitian form1 that represents some quantity
given in the context of a known physical system?’2

2. ‘Given this Hermitian form, what is their physical meaning, and which physical
statements can we make about it?’3

Weyl considered the second question to have been resolved by von Neumann’s
recent work, and so he concentrated on the first, which he tried to answer using
group theory. The main achievement of Weyl (1927), elaborated in his subsequent

1 Like Hilbert himself, Weyl at the time still thought of operators in terms of matrices or Hermitian
forms, rather than abstractly, like von Neumann. Also cf. our Introduction.
2 ‘Wie komme ich zu der Matrix, der Hermiteschen Form, welche eine gegebene Größe in einem
seiner Konstitution nach bekannten physikalischen System repräsentiert?’ (Weyl, 1927, p. 1)
3 ‘Wenn einmal die Hermitesche Form gewonnen ist, was ist ihre physikalische Bedeutung, was
für physikalische Aussagen kann ich ihr entnehmen?’ (ibid.)
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book Weyl (1928), was a reformulation of the canonical commutation relations
i[p,q] = h̄ · 1H in terms of projective unitary representations of the additive group
R2 (or, equivalently, of unitary representations of the associated Heisenberg group).
He also introduced the formula (7.21) in an equivalent form where the (classical)
Fourier expansion of f , i.e.,

f (p,q) =
∫
R2

dadbeiap+ibq f̂ (a,b), (7.264)

is “quantized” by the operator in which exp(iap+ ibq) in the above formula is re-
placed by the (projective) unitary representative u(a,b) of (a,b) ∈ R2 just men-
tioned, i.e., the real numbers p and q are replaced by the corresponding operators p̂
and q̂, as in (7.3) - (7.4). In particular, Weyl treated p and q symmetrically.

In his development of Weyl’s Program, Mackey broke the symmetry between p
and q, in that he saw the momentum operator p̂ as the (“infinitesimal”) generator
of a unitary representation of the additive group R, whereas the position operator
q̂ was replaced by a projection-valued measure on the real line; this is equivalent
to a nondegenerate representation of the commutative C*-algebra C0(Q), as in our
discussion in §7.3. This way of tearing p and q apart was the key to the general case
of quantizing group actions on configuration space discussed in §7.3.

In their independent elaboration of Weyl’s ideas, Groenewold (1946) and Moyal
(1949) emphasized the deformation aspect of quantization (including the classical
limit) rather than its group-theoretical underpinning; the former aspect is completely
absent in Mackey’s work. “The Big Picture” (Landsman, 1998a, Ch. 3; Landsman &
Ramazan, 2001; Landsman, 2007) is an attempt to have the best of both worlds, in
that the role of Lie groupoids delivers the symmetry aspect of quantization, whereas
our (i.e. Rieffel’s) very definition of quantization puts the deformation aspect in the
front seat. The underlying theory of Lie groupoids and Lie algebroids may be found
in Moerdijk & Mrčun (2003) or Mackenzie (2005); see also Landsman (1998a).

A comprehensive study of the Mackey–Glimm dichotomy may be found in
Williams (2007), which contains a wealth of information on crossed product C*-
algebras and induced representations in general.

The representation theory of the Poincaré-group was first studied (using some-
what heuristic methods) by Wigner (1939) using induced representations. The entire
subject was subsequently taken up and finished by Mackey. For treatments in the
spirit of (mathematical) physics see e.g. Simms (1968), Niederer & O’Raifeartaigh
(1974), and Barut & Raçka (1977). Lemma 7.10 is proved by Bargmann (1954).

Among the known elementary particles, the case j = 0 (and m > 0) corresponds
to the Higgs boson, whereas j = 1

2 gives all known fermionic particles (i.e., elec-
trons, quarks, neutrino’s, and their antiparticles). If one counts the gauge bososn W±
and Z0 as massive, they provide the case j = 1, but in the fundamental Lagrangian
they are massless and correspond to helicity n = ±1, like the photon. Helicity ±2
gives the graviton. We discard particles predicted by supersymmetry, which evi-
dently does not exist in nature (this evidence seems lost on string theorists).
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§7.7. Quantization and permutation symmetry

This section is based on Landsman (2016a). The literature on indistinguishable
particles is enormous, initiated by Heisenberg (1926) and Dirac (1926). What we
call the “quantum observables” approach goes back to Messiah & Greenberg (1964);
see also Drühl, Haag, & Roberts (1970). Key papers in the configuration space
approach are Souriau (1967), Laidlaw & DeWitt-Morette (1971) and Leinaas &
Myrheim (1977). More generally, for the quantization of multiply connected space
see Dowker (1972), Schulman (1981), Isham (1984), Horvathy, Morandi, & Su-
darshan (1989), Morchio & Strocchi (2007), and Morandi (1992). The state space
approach to indistinguishable particles was proposed by Bach (1997), who proves
(7.192) - (7.193), as well as the claim following these equations to the effect that
ρ ∈ ∂eD(HN)SN iff eH is irreducible. The state space arguments against parastatis-
tics given near the end of this section are also due to Bach (1997).

The representation theory used in this section may be found in many books, such
as Weyl (1928), Fulton (1997), or Goodman & Wallach (2000).

The groupoid (7.209) is a special case of the so-called gauge groupoid defined
by a principal H-bundle P π→ Q, where G1 = P×H P (which stands for (P×P)/H
with respect to the diagonal H-action on P×P), G0 = Q, and the operations are

s([p,q]) = π(q), t([p,q]) = π(p), [x,y]−1 = [y,x], [p,q][q,r] = [p,r];

here [p,q][q′,r] is defined whenever π(q) = π(q′), but to write down the product
one picks some element q ∈ π−1(q′).

Recent philosophical literature on indistinguishable particles includes French &
Krause (2006), Earman (2010), Caulton & Butterfield (2012), Saunders (2013), and
Baker, Halvorson, & Swanson (2015). This philosophical literature stills needs to
be integrated with the mathematical approach launched in this section, and it was
indeed the goal of Earman, Halvorson, & Landsman (2013ish) to do so. Alas!



Chapter 8

Limits: large N

Beside the limit h̄→ 0, we consider the limit N→∞, where N could be the principal
quantum number labeling orbits in atomic physics (as in Bohr’s Correspondence
Principle), or the number of particles or lattice sites, or the number of identical
experiments in a long run measuring the relative frequencies of possible outcomes.

The case of large quantum numbers will be dealt with first: as our toy model
of an classical orbit we take a coadjoint orbit in the dual g∗ of the Lie algebra g
of a compact connected Lie group G, see §5.9; for G = SU(2) or SO(3) these are
simply two-spheres S2

r . The corresponding quantum theories are indexed by their
spin j = 1

2 n, where n ∈N, which we send to infinity in order to recover the classical
orbit. This can be done more generally by rescaling the highest weight λ of some
fixed irreducible representation of G to nλ and again letting n→ ∞.

The second case, where the limit N → ∞ is typically the thermodynamic limit
(namely if the density N/V is kept fixed, where V is the volume of the system sent to
infinity, too), has been rigorously studied using operator algebras since the 1960s. In
such work the system constructed at the limit N = ∞ is typically quantum statistical
mechanics in infinite volume, whose existence (followed by the establishment of
e.g. phase transitions) was a major achievement of mathematical physics.

However, our goal in taking the limit N → ∞ is quite different, in that—in the
spirit of Bohrification—our limiting system will be classical; from the traditional
point of view we look at the macroscopic rather than the quasi-local observables.
Nonetheless, for each finite value of N ∈ N our (quantum) system will be the same
as in the usual theory! Like the first case, in which increasingly large matrix alge-
bras converge to an algebra of continuous functions on some compact space, this
apparent miracle is described by the theory of continuous bundles of C*-algebras,
as outlined in §C.19. As in the case h̄→ 0 studied in the previous chapter, this theory
provides a convenient mathematical machinery for studying the limit N → ∞ also.

We then apply the the limit N → ∞ to N repeated experiments, and, applying the
doctrine of classical concepts, rederive the Born rule (avoiding the conceptual and
mathematical pitfalls of various previous attempts to do so).

Bridging the gap to the next two chapters, we close with an introduction to quan-
tum spin systems (as a later playing ground for spontaneous symmetry breaking).
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8.1 Large quantum numbers

As in §5.9, let G be a compact connected Lie group with Lie algebra g and dual
g∗, and let T ⊂ G be a maximal torus with Lie algebra t and dual t∗. Let Oλ be a
regular integral coadjoint orbit in g∗, labeled by a dominant weight λ ∈ Λd . This
means that there is a point θ ∈Oλ whose stabilizer Gθ is T , and λ = θ|t; conversely,
λ ∈ t∗ determines θ ∈ g∗, which vanishes on each generator Eα of gC (α ∈ Δ ).

Following Theorems 5.49 and 5.51, we associate a unitary irreducible represen-
tation uλ : G→U(Hλ ) to Oλ (or rather to λ ), whose underlying Hilbert space Hλ
contains a unique highest weight vector υλ . We then have (5.228). We abbreviate

dλ = dim(Hλ ). (8.1)

For SU(2) we have λ ∈ N0/2 = {0, 1
2 ,1, . . .}, usually called j, and the (regular)

coadjoint orbits in g∗ ∼=R3 are the spheres S2
j with radius j (with j �= 0). The corre-

sponding highest weight representation u j is carried by Hj with d j = 2 j+1, whose
highest weight vector υ j is an eigenvector of L3 = iu′(S3) with eigenvalue j.

We are going to define a continuous bundle of C*-algebras over the base space

I = (1/N)∪{0} ≡ 1/Ṅ, (8.2)

where N= {1,2, . . .} and Ṅ =N∪{∞}; as required, I contains 0 as an accumulation
point. One may think of elements of I as “quantized” values of Planck’s constant
h̄ = 1/N, upon which the limit N → ∞ is formally the same as the limit h̄→ 0.

If λ ∈Λd , then nλ ∈Λd for all n ∈ N. We may therefore define the C*-algebras

A0 = C(Oλ ); (8.3)
A1/n = B(Hnλ ). (8.4)

For each f ∈ C(Oλ ) we define fλ = π∗ f under the canonical projection π : G →
G/Gθ ∼= Oλ (i.e., fλ (x) = f (π(x))), which enables us to define the operators

Q1/n( f ) = dnλ

∫
G

dx fλ (x)|unλ (x)υnλ 〉〈unλ (x)υnλ | ∈ A1/n. (8.5)

In fact, the entire integrand in (8.5) is a function on Oλ , because for z ∈ T we have

unλ (xz)υnλ = unλ (x)unλ (z)υnλ = χnλ (z)unλ (x)υnλ ,

and χnλ (z) ∈ T cancels the factor χnλ (z) from the last term in (8.5). Note that

Q1/n(1Oλ ) = 1Hnλ , (8.6)

as follows by taking ψ2 = ψ3 = υnλ in Schur’s well-known orthogonality relations

dnλ

∫
G

dx〈ψ1,unλ (x)ψ2〉〈unλ (x)ψ3,ψ4〉= 〈ψ1,ψ4〉〈ψ3,ψ2〉 (ψi ∈ Hnλ ). (8.7)
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Other properties of the maps Q1/n : C(Oλ )→ B(Hnλ ) (between C*-algebras) are:

• Self-adjointness, i.e., Q1/n( f )∗ = Q1/n( f ∗).
• Positivity, i.e., Q1/n( f )≥ 0 whenever f ≥ 0.
• Equivariance, i.e., writing Ly f (x) = f (y−1x) as usual, for any y ∈ G we have

Q1/n(Ly f ) = unλ (y)Q1/n( f )unλ (y)
∗. (8.8)

Positivity does not follows from self-adjointness, as Q1/n is not a homomorphism.

Theorem 8.1. There exists a continuous bundle of C*-algebras A over I as defined
in (8.2), with fibers (8.3) - (8.4), whose continuous sections are given by all se-
quences (a1/n)n∈Ṅ ∈∏n∈Ṅ A1/n for which a0 ∈C(Oλ ) and a1/n ∈ B(Hnλ ), and the
sequence (a1/n)n∈N is asymptotically equivalent to (Q1/n(a0))n∈N, in the sense that

lim
n→∞

‖a1/n−Q1/n(a0)‖= 0. (8.9)

In particular, if f ∈C(Oλ ), then the cross-section of ∏n∈Ṅ A1/n defined by

a0 = f ; (8.10)
a1/n = Q1/n( f ), (8.11)

is continuous. In fact, we have a deformation quantization of Oλ in the sense of Defi-
nition 7.1, where the Poisson structure of Oλ is inherited from (minus) the canonical
one on the Poisson manifold g∗, but we shall merely prove the claim of the theorem.

Proof. This will follow from Proposition C.124, in whose notation Ã (which will
actually coincide with A) consists of all ã = (ãh̄)h̄∈I where f runs through C(Oλ ) in

ã0 = f ; (8.12)
ã1/n = Q1/n( f ). (8.13)

To verify the conditions for Proposition C.124 we start with the property that the set
{ãh̄ | ã ∈ Ã} be dense in Ah̄; we will show that it even coincides with Ah̄. At h̄ = 0
this is true by construction. At h̄ = 1/n, the required property

Q1/n(C(Oλ )) = B(Hnλ ) (8.14)

can be proved in two steps. For simplicity we set n = 1; the proof is the same for
any n ∈ N. The first step is to define a function La on G for each a ∈ B(Hλ ) by

La(x) = Tr(a|uλ (x)υλ 〉〈uλ (x)υλ |) = 〈υλ ,uλ (x)∗auλ (x)υλ 〉. (8.15)

This function is continuous and is right-invariant under T , so that La is really an
element of C(Oλ ). Thus we have a map L : B(Hλ )→C(Oλ ), a �→ La. Furthermore,

〈a,Q1( f )〉HS = 〈La, f 〉2, (8.16)
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where the Hilbert–Schmidt inner product on left-hand side is 〈a,b〉HS = Tr(a∗b),
cf. (B.495)—which is well defined since Hλ is finite-dimensional—and the right-
hand side is the inner product on L2(Oλ ) with respect to the measure induced by the
subspace of L2(G,dλ ·dx) consisting of T -invariant functions. Now Q1/n(C(Oλ )) is
a (necessarily closed) linear subspace of B(Hλ ), which coincides with B(Hλ ) iff its
orthogonal complement in the Hilbert–Schmidt inner product is zero.

Hence (8.14) is equivalent to the implication: a ∈ (Q1/n(C(Oλ )))
⊥ ⇒ a = 0. By

(8.16), the antecedent holds iff 〈La, f 〉2 = 0 for each f ∈ C(Oλ ), which, because
C(Oλ ) is dense in L2(Oλ ), holds iff La = 0. Hence the the above implication is
equivalent to: La = 0⇒ a = 0, i.e., kerL = {0}. We must therefore prove the latter.

If La(x) = 0 for all x ∈ G, then, taking x = exp(t1A1) · · ·exp(tnAn), where each
Ai ∈ g, and applying (5.156) for each ti to the right-hand side of (8.15), we obtain

〈υλ , [u′λ (An), · · · [u′λ (A2), [u′λ (A1),a]] · · · ]υλ 〉= 0. (8.17)

This equality extends to gC, so we may take Ai =Eαi for some positive root αi ∈Δ+.
Since u′λ (Eα)υλ = 0 for α ∈ Δ+, of each commutator [u′λ (Eαi),a] only the term
u′λ (Eαi)a contributes. Moving the u′λ (Eαi) to act as u′λ (Eαi)

∗ = u′λ (E−αi) on the
vector on the left in the inner product in (8.17) gives all other eigenvectors of t, so
that (8.17) implies 〈ψ,aυλ 〉 = 0 for each ψ ∈ Hλ , and hence aυλ = 0. Now it is
clear from (8.15) that Luλ (y)∗auλ (y)(x) = La(yx), so if La(x) = 0 for all x ∈ G, then
also Luλ (y)∗auλ (y)(x) = 0 for all x ∈ G. Hence we may replace a by uλ (y)∗auλ (y) in
the above argument, finding uλ (y)∗auλ (y)υλ = 0 and hence auλ (y)υλ = 0 for each
y∈G. Since uλ is irreducible, this implies aψ = 0 for any ψ ∈Hλ , and hence a = 0.

This completes the proof of (8.14). Proposition C.124 furthermore requires

lim
n→∞

‖Q1/n( f )‖= ‖ f‖∞, (8.18)

This follows from the following key property (to be proved at the end):

lim
n→∞

〈unλ (y)υnλ ,Q1/n( f )unλ (y)υnλ 〉= fλ (y), (8.19)

for any y ∈ G and f ∈C(Oλ ). Indeed, for any y ∈ G we obviously have

‖Q1/n( f )‖ ≥ 〈unλ (y)υnλ ,Q1/n( f )unλ (y)υnλ 〉. (8.20)

Since G and hence Oλ is compact, by Weierstrass’s Theorem there is an y ∈G such
that | fλ (y)|= ‖ f‖∞. Using this y in (8.20) and (8.19), the two of these imply

lim inf
n→∞

‖Q1/n( f )‖ ≥ ‖ f‖∞. (8.21)

Conversely, for any unit vector ψ ∈ Hnλ , eqs. (8.5) and (8.7) imply

〈ψ,Q1/n( f )ψ〉= |〈ψ,Q1/n( f )ψ〉| ≤ ‖ f‖∞. (8.22)

If f is real-valued, then Q1/n( f )∗ = Q1/n( f ∗) = Q1/n( f ). In that case, (8.22) implies
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‖Q1/n( f )‖ ≤ ‖ f‖∞. (8.23)

By the C*-identity ‖a∗a‖= ‖a‖2, this is true for any f ∈C(Oλ ). Therefore,

lim sup
n→∞

‖Q1/n( f )‖ ≤ ‖ f‖∞. (8.24)

Eqs. (8.21) and (8.24) yield (8.18). It remains to prove (8.19), i.e.,

lim
n→∞

dnλ

∫
G

dx fλ (x)|〈unλ (y)υnλ ,unλ (x)υnλ 〉|2 = fλ (y). (8.25)

The key to the proof is the fact that if λ and μ are dominant weights, with associated
highest weight representations uλ and uμ , respectively, for any x ∈ G one has

〈υλ ,uλ (x)υλ 〉 · 〈υμ ,uμ(x)υμ〉= 〈υλ+μ ,uλ+μ(x)υλ+μ〉. (8.26)

Namely, because the exponential map is surjective for compact connected Lie
groups, eq. (8.26) is equivalent to the property

〈υλ ,u′λ (A)υλ 〉+ 〈υμ ,u′μ(A)υμ〉= 〈υλ+μ ,u
′
λ+μ(A)υλ+μ〉, (8.27)

for any A ∈ g. For A ∈ t this amounts to λ + μ = λ + μ , cf. (5.228), whereas for
A = Eα for some root α ∈ Δ we have 0 = 0, so that (8.27) is true for all A ∈ g. This
also proves (8.26), of which we need the special (and iterated) case

〈υnλ ,unλ (x)υnλ 〉= 〈υλ ,uλ (x)υλ 〉n. (8.28)

This motivates us to introduce a sequence (μn) of probability measures on G by

dμn(x) = dnλ ·dx |〈υλ ,uλ (x)υλ 〉|2n, (8.29)

so that, after a change x �→ yx of the integration variable, eq. (8.25) reads

lim
n→∞

dnλ

∫
G

dμn(x) fλ (yx) = fλ (y), (8.30)

for any f ∈ C(Oλ ). Now F(x) = |〈υλ ,uλ (x)υλ 〉| takes values in (0,1] and hence
the measure (8.29) is dμn(x)∼ exp(−nS(x)) for S(x) =− ln(F(x)), with S≥ 0 and
S(x) = 0 iff x ∈ Gθλ = T (using regularity of the orbit). In that case, i.e., if z ∈ T ,
then fλ (yz) = f (π(yz)) = f (π(y)) = fλ (y). The method of steepest descent shows
that any part of G (of positive Haar measure) where S(x)> 0 makes no contribution
as n→ ∞, so that we may replace fλ (yx) in (8.30) by fλ (y), obtaining

lim
n→∞

∫
G

dμn(x) fλ (yx) = fλ (y) lim
n→∞

∫
G

dμn(x) = fλ (y) lim
n→∞

1 = fλ (y). (8.31)

We have now verified conditions 1 and 2 in Proposition C.124, and no. 3 is trivially
satisfied since in condition 1 we have equality with Ah̄, as shown above. �
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8.2 Large systems

We now move from large quantum numbers within a single system to large quantum
systems that consist of N identical sites, where we eventually study what happens
as N → ∞ (as is customary in quantum statistical mechanics we change notation
from n ∈N to N ∈N). This limit gives rise to two different continuous bundles A(q)

and A(c) of C*-algebras over I as given by (8.2), which have exactly the same fibers
at 1/N but, amazingly, differ dramatically at N = ∞, i.e., 1/N = 0. This difference
reflects two choices one may make for the N-particle observables that have a limit
as N →∞, namely local ones, giving rise to a highly non-commutative limit algebra
A(q)

0 (which is the one usually studied in quantum statistical mechanics of infinite
systems), and macroscopic ones, which generate a commutative algebra A(c) of ob-
servables of an infinite quantum system (describing classical thermodynamics as a
limit of quantum statistical mechanics). It is the latter that we need for Bohrification.

Let B be a fixed unital C*-algebra, describing a single quantum system. The
case of a two-level system, where B = M2(C), is already fascinating, and many
other interesting examples are described by finite-dimensional C*-algebras. Though
irrelevant in finite dimension, we note that the constructions below are generally
valid if (for technical reasons to be found in Proposition C.97) we use the projective
tensor product ⊗̂max between C*-algebras; see §C.13. For any N ∈ N we put

A(c)
1/N = A(q)

1/N = BN , (8.32)

i.e., the N-fold (projective) tensor product ⊗̂N
maxB of B with itself. Furthermore,

A(c)
0 = C(S(B)); (8.33)

A(q)
0 = B∞, (8.34)

where S(B) is the state space of B, seen as a compact convex set in the weak∗-
topology, as usual, and B∞ is the infinite (projective) tensor product of B with itself
as described in §C.14; see especially (C.318) with Ci = B for each i. For example,
the state space of B = M2(C) is affinely homeomorphic to the unit ball in R3, whose
boundary is the familiar Bloch sphere of qubits; see Proposition 2.9.

We now explain how (8.32) and (8.33) - (8.34) give rise to continuous bundles
A(c) and A(q) of C*-algebras, starting with the former. First, for each N ∈ N, let SN
be the permutation group (i.e. symmetric group) on N objects, acting on BN in the
obvious way, i.e., by linear and continuous extension of

α(N)
p (b1⊗·· ·⊗bN) = bp(1)⊗·· ·⊗bp(N), (8.35)

where bi ∈ B. This yields a symmetrization operator SN : BN → BN defined by

SN =
1

N! ∑
p∈SN

α(N)
p . (8.36)
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If B is infinite-dimensional, these maps can be extended by continuity to the com-
pletion B∞ = ⊗̂∞

maxB of the algebraic tensor product ⊗∞B; indeed, passing to any
faithful representation of B it is easy to see that SN is even continuous with respect
to the minimal cross-norm (cf. §C.13). For N ≥M we then define

SM,N : BM → BN (8.37)

by linear (and if necessary continuous) extension of

SM,N(a1/M) = SN(a1/M⊗1B⊗·· ·⊗1B) (a1/M ∈ BM), (8.38)

with N −M copies of the unit 1B ∈ B so as to obtain an element of BN . Clearly,
SN,N = SN . In particular, S1,N : B→ BN gives the average of b over N copies of B:

S1,N(b) =
1
N

N

∑
k=1

1B⊗·· ·⊗b(k)⊗1B · · ·⊗1B, . (8.39)

For example, take B = Mn(C) for simplicity, and pick some a = a∗ ∈ B and λ ∈
σ(a), with associated spectral projection eλ . Putting b = eλ in (8.39) gives

f (λ )N = S1,N(eλ ). (8.40)

This is a frequency operator: applied to states of the kind υ1⊗ ·· ·⊗υN ∈ (Cn)N ,
where each υi is an eigenstate of a, so that aυi = λiυi for some λi ∈ σ(a), the
corresponding operator counts the relative frequency of λ in the list (λ1, . . . ,λN).
The commutative case B =C(X) provides a classical analogue. Eq. (C.271) gives

BN =C(X)N ∼=C(XN), (8.41)

so that, identifying elements of BN with functions on XN , for f ∈C(X) we have

S1,N( f )(x1, . . . ,xN) =
1
N

N

∑
k=1

( f (x1)+ · · · f (xN)). (8.42)

We return to the construction of a continuous bundle of C*-algebras with fibers
(8.32) and (8.33). As in §8.1, we construct this bundle by specifying a preliminary
family of continuous cross-sections and then using Proposition C.124 to finish.

Definition 8.2. We say that a sequence (a1/N)N∈N, with a1/N ∈ BN, is symmetric

when there exist M ∈ N and a1/M ∈ BM such that for each N ≥M one has

a1/N = SM,N(a1/M). (8.43)

This implies a1/M = SM(a1/M). Symmetric sequences can start in any finite way
they like, but their infinite tails consist of averaged observables. Hence symmetric
sequences asymptotically commute: if (a1/N) and (b1/N) are symmetric, then
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lim
N→∞

‖a1/Nb1/N −b1/Na1/N‖BN = 0, (8.44)

simply because the commutators of single-site operators are nonvanishing only at
finitely many positions, upon which the factor 1/N in (8.39) guarantees (8.44).

For example, if B = M2(C), and (σi) are the Pauli matrices, we have

[S1,N( 1
2 h̄σ1),S1,N( 1

2 h̄σ2)] = i
h̄
N

S1,N( 1
2 h̄σ3), (8.45)

et cetera, showing that the averaged spin- 1
2 operators effectively rescale h̄ by h̄/N.

In view of this, it is reasonable to expect that we may be able to assemble the
algebra BN into a continuous bundle whose limit algebra at N = ∞ is commutative.

For each symmetric sequence (a1/N) we define a function a0 : S(B)→ C by

a0(ω) = lim
N→∞

ωN(a1/N), (8.46)

where ω ∈ S(B), and ωN ∈ S(BN) is defined by linear (and continuous) extension of

ωN(b1⊗·· ·⊗bN) = ω(b1) · · ·ω(bN); (8.47)

continuity of ωN on the algebraic tensor product ⊗NB (and hence extendibility to
A1/N) is guaranteed by Proposition C.98, although this is not really needed here
because a0 only requires the values of ωN on⊗NB itself. In any case, the limit exists
by definition of a symmetric sequence, from which we also see that a0 ∈C(S(B)),
because it is a finite sum of finite products of the type ω(b1) · · ·ω(bM), each of
which is continuous in ω by definition of the w∗-topology on S(B).

For example, the frequency operators (8.40) define a symmetric sequence ( f λN )N∈N,
whose the limit function f λ0 : S(B)→ C in the sense of (C.560) or (8.46) is

f λ0 (ω) = ω(eλ ). (8.48)

Thus (8.46) gives the Born probability for the outcome a = λ in the state ω; see
§8.4. Classically, identifying elements of S(C(X)) with probability measures μ on
X , the limit of the sequence a1/N = S1,N( f ) for fixed f ∈C(X), cf. (8.42), is

a0(μ) =
∫

X
dμ f . (8.49)

This convergence is an example of the strong law of large numbers, see §8.3.
We return to the general case.

Definition 8.3. A sequence (a1/N)N∈N as above is quasi-symmetric if for each N ∈
N one has a1/N = SN(a1/N) and for any ε > 0 there is a symmetric sequence (ã1/N)
and some M ∈ N such that ‖a1/N − ã1/N‖< ε for all N > M.

For example, if limN→∞ ‖a1/N − ã1/N‖ = 0 for some fixed symmetric sequence
(ã1/N), then (a1/N)N∈N is obviously quasi-symmetric.
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Theorem 8.4. For any unital C*-algebra B, the C*-algebras (8.32) and (8.33), i.e.,

A(c)
0 = C(S(B)); (8.50)

A(c)
1/N = BN , (8.51)

where BN is N-fold projective tensor power ⊗̂N
maxB, are the fibers of a continuous

bundle A(c) of C*-algebras over I = (1/N)∪{0} ≡ 1/Ṅ whose continuous cross-
sections are the quasi-symmetric sequences (a1/N) with limit a0 given by (8.46).

As in Theorem 8.1, also here we have a deformation quantization of S(B) in the
sense of Definition 7.1, where the Poisson bracket on S(B) may be defined by spec-
ifying its value on linear function b̂ ∈C(S(B)), where b ∈ B and b̂(ω) = ω(b), by

{â, b̂}= î[a,b]. (8.52)

Unfortunately, this involves the theory of infinite-dimensional Poisson manifolds,
which we prefer to omit. Thus we shall only prove Theorem 8.4 as stated.

The proof relies on Størmer’s quantum De Finetti Theorem 8.6 below.

Definition 8.5. Let B be a unital C*-algebra. A state ρ on BN is called:

• permutation-invariant if ρ ◦α(N)
p = ρ for any p ∈SN.

• K-exchangeable (K ∈ N) if it is permutation-invariant and in addition ρ is the
restriction to BN of some permutation-invariant state on BN+K.

• Infinitely exchangeable if it is K-exchangeable for all K ∈ N.

The set of all permutation-invariant states / K-exchangeable states / infinitely ex-
changeable states on BN is denoted by SSN (BN) / SSN

K (BN) / SSN∞ (BN).

Theorem 8.6. Let B be a unital C*-algebra. For any N ∈ N the correspondence
ωN ↔ ω , where ω ∈ S(B) and ωN ∈ S(BN), cf. (8.47), gives a bijection

∂eSSN
∞ (BN)∼= S(B). (8.53)

This theorem was originally stated (in the language of infinite tensor products) as
Theorem 8.9 in §8.3, where it (and hence Theorem 8.6) will also be proved.

We also need a formula for the norm of any self-adjoint element a of any C*-
algebra A in terms of the state space A and the pure state space P(A), viz.

‖a‖= sup{|ω(a)| : ω ∈ S(A)}= sup{|ω(a)|,ω ∈ P(A)}. (8.54)

This follows from Proposition C.15, the spectral radius formula (B.254), and com-
pactness of σ(a), implying that the supremum in (B.254) is reached on σ(a).

Proof. The proof of Theorem 8.4 is quite similar to the proof of Theorem 8.1, in
that we once again rely on Proposition C.124, where the symmetric sequences are
going to play the role of Ã. To apply Proposition C.124, we should prove that:
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1. The set Ã0 (consisting of all ã0 ∈A0 =C(S(B)) as defined by (8.46), where (ã1/N)
runs through all symmetric sequences) is a ∗-algebra which is dense in A0.

2. For any symmetric sequence (ã1/N) with limit ã0 as given by (8.46), one has

lim
N→∞

‖ã1/N‖= ‖ã0‖∞. (8.55)

To prove the first claim, we first note that ã0 is the linear span of all finite products
ω(b1) ·ω(bN), where N ∈ N and b1, . . . ,bN ∈ B. Since ω(b) = ω(b∗) this is obvi-
ously a ∗-algebra. The monomials b̂(ω) = ω(b) already separate points of S(B) ⊂
B∗, since if ω ′ �= ω then clearly is there some b ∈ B for which (ω −ω ′)(b) �= 0.
Hence claim no. 1 follows from the Stone–Weierstrass Theorem B.51.

For the second, let (ã1/N) be a symmetric sequence. Since there are M ∈ N and
ã1/M ∈ BM with ã1/M = SM(ã1/M) and ã1/(M+K) = SM,M+K(ã1/M) for all K ∈ N,

‖ã1/M‖ = sup{|ρ(ã1/M)| : ρ ∈ S(BM)}= sup{|ρ(ã1/M)| : ρ ∈ SSM (BM)};
‖ã1/(M+K)‖ = sup{|ρ(SM,M+K(ãM))| : ρ ∈ SSM+K (BM+K)}

= sup{|ρ(ã1/M)| : ρ ∈ SSM
K (BM)},

where we used (8.54) and (8.43). Theorem 8.6 and (8.46) then yield (8.55):

lim
N→∞

‖ã1/N‖ = lim
K→∞

‖ã1/(M+K)‖
= sup{|ρ(ã1/M)| : ρ ∈ SSM

∞ (BM)}
= sup{|ρ(ã1/M)| : ρ ∈ ∂eSSM

∞ (BM)}= sup{|ωM(ã1/M)| : ω ∈ S(B)}
= sup{| lim

N→∞
ωN(ã1/N)| : ω ∈ S(B)}= sup{|ã0(ω)| : ω ∈ S(B)}

= ‖ã0‖∞

The proof that the sequences (a1/N) for which condition (C.552) in Proposition
C.124 holds are precisely the approximately symmetric sequences is the same as the
proof of the equivalence of the two conditions in Lemma C.125, taking h̄0 = 0.

Finally, it is easy to show that the limit (8.46) exists also for quasi-symmetric
observables a: take ε > 0 and find ã and M as in Definition 8.3. For this ã, let M0 be
such that (8.43) holds (with M � M0). For all N,N′ greater than both M and M0,

|ωN(a1/N)−ωN′(a1/N′)| ≤ |ωN(a1/N − ã1/N)−ωN′(a1/N′ − ã1/N′)|
+ |ωN(ã1/N)−ωN′(ã1/N′)|
≤ ‖a1/N − ã1/N‖+‖a1/N′ − ã1/N′)‖+0
< 2ε, (8.56)

since ‖ωN‖= 1. Hence (ωN(a1/N)) is a Cauchy sequence (in C). �

Our second continuous bundle of C*-algebras of interest is described by the fol-
lowing changes in Definitions 8.2 and 8.3.
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Definition 8.7. Let B be a unital C*-algebra and let a1/N ∈ BN for each N ∈ N.

• A sequence (a1/N)N∈N is called local when there exist M ∈ N and a1/M ∈ BM

such that for each N ≥M one has

a1/N = a1/M⊗1B⊗·· ·⊗1B, (8.57)

with N−M copies of the unit 1B ∈ B (so that indeed a1/N ∈ BN).
• A sequence (a1/N)N∈N is quasi-local if for any ε > 0 there is a local sequence

(ã1/N) and some M ∈ N such that ‖a1/N − ã1/N‖< ε for all N > M.

For the right analogue of Theorem 8.4 we recall the description of the infinite tensor
product B∞; cf. §C.14, especially the explanation preceding (C.315). Accordingly, a
dense subspace of B∞ is given by equivalence classes of local sequences (a1/N)N∈N
under the equivalence relation a∼ a′ iff limN→∞ ‖a1/N−a′1/N‖= 0; the C*-algebraic
operations in B∞ are inherited from the BN , and if we denote the equivalence class
of (a1/N)N by [a1/N ]N , the norm in B∞ is given by

‖[a1/N ]N‖= lim
N→∞

‖a1/N‖. (8.58)

By construction, this number is independent of the representative (a1/N)N in the
class [a1/N ]N . By definition, B∞ is the completion of the space of these equivalence
classes in the norm (8.58). As explained after (C.315), for each M ∈ N we have an
injective (and hence isometric) homomorphism ϕM : BM → B∞ that maps a1/M ∈ BM

to the equivalence class [a1/N ]N of the sequence (a1/N)N defined by

a1/N = 0, (N < M); (8.59)
a1/N = a1/M, (N = M); (8.60)

a1/(M+K) = a1/M⊗1B⊗·· ·⊗1B, (K > 0), (8.61)

with K copies of 1B. It is easy to verify that one might as well have started from
quasi-local sequences and their equivalence classes, for which the limit (8.58) exists
by an argument similar to (8.56). In that case the ensuing C*-algebra is already
complete, which leads to a direct description of the elements of B∞ as equivalence
classes of quasi-local sequences. This fact also follows from the following analogue
of Theorem 8.4, which may be proved in the same way, i.e., from Proposition C.124,
where this time the elements of Ã are local sequences rather than symmetric ones
(in fact, the proof is much easier, since this time we obtain (C.552) for free):

Theorem 8.8. For any unital C*-algebra B, the C*-algebras (8.32) and (8.34), i.e.,

A(q)
0 = B∞; (8.62)

A(q)
1/N = BN , (8.63)

are the fibers of a continuous bundle A(q) of C*-algebras over I = 1/Ṅ whose con-
tinuous cross-sections are the quasi-local sequences (a1/N) with limit a0 = [a1/N ]N.
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8.3 Quantum de Finetti Theorem

As an initial step in exploring the connection between the bundles A(c) and A(q)

we prove Theorem 8.6, which we first restate in an equivalent form. Let S∞ be the
group of bijections of N that differ from the identity only on a finite set. Each such
finite permutation p∈S∞ defines a map αp : B∞ → B∞, as follows. Let S⊂N be the
finite subset of N on which p acts nontrivially (if S = /0 we have p = idN, in which
case also αp = idB∞ , see below). Take a local sequence (a1/N)N , so that (8.57) holds,
in which we may assume M ≥ maxS; we also redefine a1/N = 0 for each N < M.
For each N ≥M ≥ maxS, the map p may be regarded as an element pN of SN by
restriction to {1, . . . ,N} ⊂ N and hence p acts on BN by permuting the entries in
elementary tensor products of operators, cf. (8.35). For each p ∈S∞, define a map

αp : B∞ → B∞; (8.64)

αp([a1/N ]N) = [α(N)
p (a1/N)]N . (8.65)

This uses a specific representative of the equivalence class [a1/N ]N ∈ B∞, but

nonetheless the map αp is well defined. Furthermore, since each α(N)
p : BN → BN is

an automorphism (i.e., an invertible homomorphism), it is an isometry, so that also
αp is an isometry on its domain and hence extends to an automorphism of B∞. The
ensuing map p �→ αp from S∞ to the group Aut(B∞) of all automorphisms of B∞ is
a homomorphism of groups, and we say that S∞ is an automorphism group of B∞.

Writing SS∞(B∞) for the set of all S∞-invariant states on B∞, i.e., ρ ∈ SS∞(B∞)
iff ρ ◦αp = ρ for each p ∈S∞, we may now rephrase Theorem 8.6 as follows:

Theorem 8.9. Let B be a unital C*-algebra. There is a bijection

∂eSS∞(B∞)∼= S(B), (8.66)

given by ω∞ ↔ ω , where ω ∈ S(B), and ω∞ ∈ S(B∞) is defined by, cf. (8.47),

ω∞([a1/N ]N) = lim
N→∞

ωN(a1/N). (8.67)

This is essentially the same as Theorem 8.6: for any M ∈N, a state on BM is infinitely
exchangeable iff it is the restriction of an element of SS∞(B∞) to BM ⊂ B∞, where
the inclusion is given by the map ϕM defined below (8.58).

Proof. Let S(B)⊂ SS∞(B∞) under the map ω �→ ω∞. We first show the inclusion

∂eSS∞(B∞)⊆ S(B) (8.68)

contrapositively, i.e., if ρ ∈ SS∞(B∞) does not lie in S(B), then ρ has a nontrivial
convex decomposition in SS∞(B∞). We identify BN with ϕN(BN) ⊂ B∞ and denote
the restriction of ρ to BN by ρN . If ρ = ω∞ for some ω ∈ S(B), then

ρM+K(a′1/M⊗a′1/K) = ρM(a′1/M)ρK(a′1/K), (8.69)
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for each a′1/M ∈ BM and a′1/K ∈ BK . If (8.69) holds whenever 0≤ a′1/M ≤ 1BM , then
by Lemma C.53 and (C.8) it always holds. Adding suitable multiples of the unit and
rescaling, it follows that if (8.69) holds whenever

1
3 ·1BM ≤ a′1/M ≤ 2

3 ·1BM ; (8.70)

then it always holds. Therefore, if (8.69) fails, then it fails for some a′1/M satisfying
(8.70) and some and a′1/K , in which case 1

3 ≤ ρM(a′1/M)≤ 2
3 . However, such a failure

implies the existence of a nontrivial convex decomposition

ρ = tρ ′+(1− t)ρ ′′, (8.71)

with t = ρM(a′1/M), and the functionals ρ ′ and ρ ′′ on B∞ are defined by

ρ ′([a1/N ]N) = lim
N→∞

ρM+N(a′1/M⊗a1/N)/ρM(a′1/M); (8.72)

ρ ′′([a1/N ]N) = lim
N→∞

ρM+N((1BN −a′1/M)⊗a1/N)/ρM(1BM −a′1/M). (8.73)

These limits exist on symmetric sequences (where they stabilize), and hence they
exists in general. Furthermore, since ρM(1BM − a′1/M) = 1− t, the property (8.71)

is obvious. Both ρ ′ and ρ ′′ belong to SS∞(B∞), since each functional ρM+N is an
element of SSM+N (BMN ). Finally, (8.71) is nontrivial, since if ρ ′= ρ ′′, then ρ ′K = ρ ′′K ,
and hence (8.69) would hold (whose violation we assumed). This proves (8.68).

Though it is always true, for simplicity we prove the converse inclusion

S(B)⊆ ∂eSS∞(B∞) (8.74)

just for the case where B is generated by projections, as in the case B = Mn(C),
B = B(H), or B a von Neumann algebra, or more generally an AW*-algebra (see
§C.24). In that case also each BN is generated by its projections.

For each ρ ∈ SS∞(B∞), each N ∈ N, and each projection e ∈ BN , we have

ρN(e)2 ≤ ρ2N(e⊗ e), (8.75)

see below. Assuming (8.75), suppose ω ∈ S(B) and ω∞ = tρ ′+(1− t)ρ ′′ for some
t ∈ (0,1) and ρ ′,ρ ′′ ∈ SS∞(B∞). Since ω∞

N = ωN , we then have

ωN(e)2 = (tρ ′N(e)+(1− t)ρ ′′N(e))
2 =

〈( √
t√

1− t

)
,

(
ρ ′N(e)

√
t

ρ ′′N(e)
√

1− t

)〉2

≤
〈( √

t√
1− t

)
,

( √
t√

1− t

)〉
·
〈(

ρ ′N(e)
√

t
ρ ′′N(e)

√
1− t

)
,

(
ρ ′N(e)

√
t

ρ ′′N(e)
√

1− t

)〉
= tρ ′N(e)

2 +(1− t)ρ ′′N(e)
2

≤ tρ ′2N(e⊗ e)+(1− t)ρ ′′2N(e⊗ e)

= ω2N(e⊗ e) = ωN(e)2,
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where the inner product in the first line is the usual one in R2, and, noting it is
positive, we have used the Cauchy–Schwarz inequality for this inner product, as
well as (8.75). Hence both inequalities must be equalities, and for the first one this
implies ρ ′N(e) = ρ ′′N(e). Since this is true for all N and all projections in BN , this
implies ρ ′ = ρ ′′ = ω∞, so that ω∞ ∈ ∂eSS∞(B∞), and (8.74) has been established,
up to the proof of (8.75). To this effect, note for each M ∈ N and t ∈ R we have

ρMN((1BN ⊗·· ·⊗1BN ⊗ e+ · · ·+ e⊗1BN ⊗·· ·⊗1BN + t ·1BMN )2) (8.76)
= M(M−1)ρ2N(e⊗ e)+MρN(e)+2tMρN(e)+ t2, (8.77)

with M− 1 copies of 1BN and e moving from right to left in the first line, leaving
M terms before the final one t · 1BMN in (8.76). In working out the square in (8.76)
and moving to the second line we used e2 = e as wel as permutation invariance of
the state ρMN . The point is that (8.76) is positive, so that (8.77) must be positive,
too, for all M ∈N and t ∈R. Now a function f (t) = t2 +2bt +c = (t +b)2−b2 +c
obviously satisfies f (t)≥ 0 for each t iff b2 ≤ c, so that (8.76) is positive for all t iff

M2ρN(e)2 ≤M(M−1)ρ2N(e⊗ e)+MρN(e).

Letting M → ∞ gives (8.75). �

Taking B = C(X) for some compact Hausdorff space X , in view of (8.41) the
situation may be transferred to the Cartesian product XN , equipped with the product
topology (which is generated by products A1× ·· · ×AN ⊂ XN with each Ai ⊂ X
open) and the ensuing Borel σ -algebra (generated by the above products with each
Ai Borel). If μ1, . . . ,μN are (probability) measures on X (in which case we write
μi ∈ Pr(X)), then there is a unique (probability) measure μ1×·· ·×μN whose value
on a product as above is equal to μ1(A1) · · ·μN(AN). In particular, any probability
measure μ ∈ Pr(X) on X defines a probability measure μN on XN .

The symmetric group SN acts on XN in the obvious way, and hence its acts on
the power set P(XN). We call the latter action σ (N), so that for p ∈SN we have

σ (N)
p (A1×·· ·×AN) = Ap(1)×·· ·×Ap(N). (8.78)

The Cartesian product X∞ ≡ XN is well defined both topologically and measure-
theoretically (the topology is generated by all products ∏i Ai with finitely many Ai
open and different from X , and likewise for the Borel structure), and the infinite
symmetric group S∞ = ∪NSN acts on it in the obvious way, in that p ∈SN ⊂S∞
permutes the first N coordinates. Specializing Definition 8.5 to B=C(X), we obtain:

Definition 8.10. A probability measure νN on XN is called:

• permutation-invariant if νN ◦σ (N)
p = νN for any p ∈SN.

• K-exchangeable (K ∈ N) if it is permutation-invariant and in addition νN is the
restriction to BN of some permutation-invariant probability measure on XN+K.

• exchangeable if it is K-exchangeable for all K ∈ N.
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A probability measure ν∞ on X∞ is called permutation-invariant if ν∞ ◦σ (N)
p = ν∞

for any p ∈SN and N ∈N, where σ (N)
p acts on ∏i Ai by (8.78) on the first N factors

A1, . . . ,AN whilst acting trivally on all remaining Ai’s.

The connection between the two parts of this definition is that νN is exchangeable
iff it is the restriction to XN of some permutation-invariant measure ν∞ on X∞.

From Theorems 8.6 and 8.3 we obtain the Hewitt–Savage Theorem:

Corollary 8.11. Let X be a compact Hausdorff space. For any N ∈N, any infinitely
exchangeable probability measure νN on XN takes the form

νN =
∫

Pr(X)
dP(μ)μN (8.79)

for some probability measure P on Pr(X) that is uniquely determined by νN, and
similarly for N = ∞, where ν∞ is a permutation-invariant probability measure.

The two claims in the theorem are equivalent by the remark after Definition 8.10.
The probability measure P ∈ Pr(Pr(X)) has the following interpretation. For N ∈

N and (x1, . . . ,xN) ∈ XN , define the so-called empirical measure E(x1,...,xN)
N on X as

E(x1,...,xN)
N =

1
N

N

∑
i=1

δxi , (8.80)

where δx is the Dirac measure on X . Seen as a map on C(X), this is the same as

∫
X

dE(x1,...,xN)
N f =

1
N

N

∑
i=1

f (xi). (8.81)

Given a probability measure νN on XN , these formulae give a random probability
measure on X depending on a drawing from XN , i.e., a map

EN : XN → Pr(X); (8.82)

(x1, . . . ,xN) �→ E(x1,...,xN)
N . (8.83)

Proposition 8.12. The probability measure P in Corollary 8.11 is given by

lim
N→∞

∫
Pr(X)

dPN F =
∫

Pr(X)
dPF, (8.84)

for each F ∈ C(Pr(X)) (that is, P = limN→∞ PN weakly), where PN ∈ Pr(Pr(X)) is
the probability measure on Pr(X) defined by νN ∈ Pr(XN) and (8.82) - (8.83), i.e.,

PN(A) = νN(E−1
N (A)) (A⊂ Pr(X)). (8.85)

Proof. By the Stone–Weierstrass Theorem it suffices to prove (8.84) for linear com-
binations of monomials like F(μ) = μ( f1) · · ·μ( fK), where f1, . . . , fK ∈ C(X) are
arbitrary and μ( f ) =

∫
X dμ f . This is a simple computation: using (8.85), we have
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Pr(X)

dPN F =
∫

XN
dνN(x1, . . . ,xN)F(E(x1,...,xN)

N )

=
∫

XN
dνN(x1, . . . ,xN)

K

∏
j=1

(
1
N

N

∑
i=1

f j(xi)

)

=
∫

Pr(X)
dP(μ)

∫
XN

dμN(x1, . . . ,xN)
K

∏
j=1

(
1
N

N

∑
i=1

f j(xi)

)
,

where in the third step we used (8.79). The result follows, since clearly

lim
N→∞

∫
Pr(X)

dP(μ)
∫

XN
dμN(x1, . . . ,xN)

K

∏
j=1

(
1
N

N

∑
i=1

f j(xi)

)
=

∫
Pr(X)

dP(μ)
∫

X
dμ(x1) f1(x1) · · ·

∫
X

dμ(xK) fk(xK) =
∫

Pr(X)
dPF. �

We can also say more about the limit of the sum (8.81), So far, we have been
dealing with the Borel σ -algebras BN ⊂P(XN) and B∞ ⊂P(X∞) generated by
the topology (i.e., by the open sets). On top of this, consider SN ⊂ BN , defined
as the σ -algebra generated by the permutation-invariant Borel subsets of XN , or,
equivalently, as the smallest σ -algebra for which the permutation-invariant Borel
measurable functions on XN are measurable. Likewise, S∞ ⊂B∞; regarding A ⊂
XN as a subset A×∏K>N X of X∞, we have S∞ = ∩N∈NSN . For any permutation-
invariant probability measure νN on XN , the Hilbert space L2(X ,SN ,νN) is a closed
subspace of L2(XN ,BN ,νN), and the associated conditional expectation

E(SN ,νN) : L2(XN ,BN ,νN)→ L2(X ,SN ,νN) (8.86)

is defined as the corresponding orthogonal projection. Since C(XN)⊂ L2(XN), this
map restricts to C(XN). Similarly for N = ∞. For each N ∈ N, and also for N = ∞,
we may regard f ∈C(X) as a function fK on XN through

fK(x1, . . . ,xN) = f (xK) K = 1, . . . ,N. (8.87)

Proposition 8.13. Let ν∞ be a permutation-invariant probability measure on X∞,
with restriction νN to XN. Recall (8.42). For any f ∈C(X) we have pointwise:

S1,N( f ) = E(SN ,νN)( f1), νN-almost surely; (8.88)
lim

N→∞
S1,N( f ) = E(S∞,ν∞)( f1), ν∞-almost surely, (8.89)

where the left-hand sides of (8.88) and (8.89) are functions on XN and X∞, respec-
tively. Furthermore, if ν∞ = μ∞ for some μ ∈ Pr(X), then pointwise on X∞,

lim
N→∞

S1,N( f ) =
∫

X
dμ f , μ∞-almost surely ( f ∈C(X)). (8.90)
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Equivalently, if Lμ ⊂ X∞ is the set of infinite sequences (x1,x2, . . .) in X∞ for which
the limit in (8.90) exists for each f ∈C(X) and equals

∫
X dμ f , then

μ∞(Lμ) = 1. (8.91)

Proof. Eq. (8.88) is almost trivial, since S1,N( f ) is permutation invariant and hence
already lies in L2(X ,SN ,νN), so that the equality just expresses the projection prop-
erty E2

(SN ,νN)
= E(SN ,νN). Eq. (8.89) follows from the ergodic theorem, applied to

the probability space (X∞,B∞,ν∞), the unilateral shift

T : (x1,x2, . . .) �→ (x2,x3, . . .),

and the random variable f1 defined by f ∈C(X) via (8.87). Since ν∞ is permutation
invariant, it is also T -invariant (in the sense that ν∞(T−1(A)) = ν∞(A) for any A ⊂
B∞). This follows either directly, where one has to realize firstly that

T−1(A1×A2×·· ·An×·· ·) = X×A1×A2×·· ·× · · ·An×·· · ,

and secondly that B∞ is generated by products ∏i Ai with finitely many Ai different
from X , or, more easily, from Corollary 8.11. The (pointwise) ergodic theorem gives

lim
N→∞

S1,N( f ) = E(BT ,ν∞)( f1), ν∞-almost surely ( f ∈C(X)), (8.92)

where BT is the σ -algebra within B∞ by the T -invariant sets, and f1 ∈C(X∞) is still
defined by (8.87). Since S∞⊂BS and the left-hand side of (8.89) is S∞-measurable
(provided it exists, as we have just shown), eq. (8.89) follows from (8.92).

If ν∞ = μ∞, then the unilateral shift on X∞ is ergodic by Kolmogorov’s 0–1 law,
and hence the ergodic theorem gives (8.90). Alternatively, if ν∞ = μ∞, then the
random variables ( fN), defined by (8.87) with N = ∞, are i.i.d. (i.e., independent
and identically distributed) and (8.90) follows from the strong law of large numbers
(which, coherently, in turn may be derived from the ergodic theorem!). �

Note that (8.92) has been proved for f ∈C(X), but it holds for many other func-
tions, including f = 1A, where A ∈B. This gives Borel’s law of large numbers

lim
N→∞

S1,N(1A) = μ(A), μ∞-almost surely. (8.93)

For example, take X = {0,1} (e.g., a coin toss with outcomes 1 = heads and 0 =
tails). With f (x) = x in (8.90) or A = {1} in (8.93), writing p = μ({1}), we obtain

lim
N→∞

1
N

N

∑
i=1

xi = p, μ∞-almost surely on 2N. (8.94)

Equivalently, if Lp ⊂ 2N is the set of infinite binary sequences x1x2 · · · for which the
limit in (8.94) exists and equals p, then μ∞(Lp) = 1, cf. (8.91).
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8.4 Frequency interpretation of probability and Born rule

Results like (8.90), (8.93), and (8.94) give a relationship between the single-case
probabilities μ(A) or p and the limits of long series of trials on samples drawn ac-
cording to μ or p. Despite the seemingly comforting appearance of N < ∞ on the
left-hand side, this relationship depends in an essential way on the infinite idealiza-
tion X∞, which is strictly necessary in order to be able to say that the limit (8.94)
holds almost surely relative to the measure μ∞. This violates Earman’s Principle (cf.
the Introduction), which is the reason why we prefer the limit (8.49) over (8.93).

Although these results are mathematically equivalent, both formalizing the idea
that if (x1, . . . ,xN) are sampled from X according to some probability measure μ ,
then (1/N)∑N

i=1 f (xi) converges to
∫

X dμ f as N → ∞, in (8.49) we never need to
work with the “actual infinity” N = ∞ and (8.49) holds everywhere on Pr(X) rather
than almost everywhere on X∞. One reason for this is that in (8.93) etc. the choice of
the sampling measure μ has to be made at the beginning, whereas in (8.49) it only
comes in at the very end. But it has to made either way, and similarly for any other
serious effort to relate probability to frequencies in long runs of measurements.

The extreme delicacy of such efforts is clear from the fact that limiting results
like (8.90), (8.93), and (8.94) are insensitive to any finite part of the sum, whereas
any practical use of probability only involves finite trials. As Lord Keynes once said:

‘In the long run we are all dead.’

The founder of the mathematical theory of probability expressed himself likewise:

‘The frequency concept based on the notion of limiting frequency as the number of trials
increased to infinity, does not contribute anything to substantiate the applicability of the
results of probability theory to real practical problems where we have always to deal with a
finite number of trials.’ (Kolmogorov).

Moreover, a definition of probability based on e.g. (8.93) is well known to be cir-
cular: although superficially the “almost sure” terminology in the statement of the
result might instill confidence in the reader, in fact it is an exceptionally strong con-
straint on the sequences (xn)∈ X∞ in question that the limit should exist and has the
right value μ(A), i.e., that (x) ∈ Lμ , cf. (8.91), and we see that this constraint can
only be formulated if the single-case probability μ was already defined in the first
place. This shows that the link between probability and frequencies of outcomes of
long runs of trials only exists and makes sense if single-case probabilities are prior.

On the other hand, if single-case probabilities are “objective”, as those provided
by the Born measure in quantum mechanics ought to be at least in remotely realistic
interpretations of the theory (as opposed to “personal” or “subjective” probabili-
ties construed as “degrees of belief” or “rationality constraints” or whatever other
decision-theoretic concept in human psychology), then it is hard to say what they
really mean, since it is precisely about single cases that they do not seem to say
anything. This brings us to what we propose to call the Paradox of Probability:
Although single-case probabilities must be logically prior to probabilities construed
as frequencies, the numerical values of the former have no bearing on single trials
and can only be validated through their predictions about (finite) frequencies.
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This paradox imposes the following consistency requirement (which philosophers
may want to compare with Lewis’s “Principal Principle” that regulates credences):
The assumption that a single-case probability measure be μ must imply that the
probabilities for the various outcomes of long runs of repetitions of identical exper-
iments (provided these are possible) are distributed according to μ .

This describes the relationship between theoretical and experimental physics quite
well, but still leaves us in the dark as to the meaning of single-case probabilities!

We are now ready to revisit the Born rule, which we already discussed from
a purely mathematical point of view in §§§2.1, 2.5, and 4.1. To repeat the main
point, if a = a∗ ∈ B(H) is a bounded self-adjoint operator on a Hilbert space, with
spectrum σ(a), then any state ω on B(H) defines a unique probability measure μω
on σ(a)⊂ R, called the Born measure, such that

ω( f (a)) =
∫
σ(a)

dμω f , f ∈C(σ(a)), (8.95)

where f (a) ∈C∗(a) ⊂ B(H) is defined through the continuous functional calculus
(Theorem 4.3). For example, for f = idσ(a), i.e., the function x �→ x, eq. (8.95) yields

ω(a) =
∫
σ(a)

dμω(λ )λ . (8.96)

The point of this construction of the Born measure is that it is obtained by simply
restricting the state ω , initially defined on B(H), to its commutative C*-subalgebra
C∗(a). If, in the spirit of (exact) Bohrification, such commutative algebras are iden-
tified with corners of classical physics within quantum theory, one may argue that
Heisenberg gave the right picture of the origin of probability in quantum mechanics:

‘One may call these uncertainties objective, in that they are simply a consequence of the
fact that we describe the experiment in terms of classical physics; they do not depend in
detail on the observer. One may call them subjective, in that they reflect our incomplete
knowledge of the world.’ (Heisenberg, 1958, pp. 53–54)

See, however, §11.1. In any case, there are extensions of this construction to un-
bounded self-adjoint operators as well as to families of commuting self-adjoint op-
erators, to which the following discussion applies, too, mutatis mutandis.

The Born rule relates the Born measure for a to measurements of a and as such
is responsible for most predictions of quantum physics, especially in quantum field
theory, where the connection between theory and experiment mainly involves the
measurement of cross-sections computed from the Born measure via Feynman rules.
The Born rule and the Heisenberg uncertainty relations are often seen as a turning
point where indeterminism entered fundamental physics. Nonetheless, it is hard to
say what this Born rule actually states! We made a first attempt in §4.1:
If an observable a is measured in a state ω , then the probability Pω(a ∈ A) that the
outcome lies in some measurable subset A⊆ σ(a)⊂ R is given by

Pω(a ∈ A) = μω(A). (8.97)
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Two questions immediately arise:

1. What is meant by a “measurement” of a (and by its “outcome”)?
2. What does the “probability” Pω(a ∈ A) mean?

Perhaps these are even the main questions in the foundations of quantum mechanics.
The first will be taken up in Chapter 11; for now, we simply assume that measure-
ments of quantum-mechanical observables a are defined and have outcomes in σ(a).
The second has just been answered (or some might say evaded): through the Born
measure, the formalism of quantum mechanics provides numerical values of μω(A),
whose mathematical meaning seems unquestionable, and whose operational mean-
ing is given by the predictions they give for outcomes of long runs of repetitions of
identical experiments. Therefore, all that remains to be done is derive these predic-
tions by analogy with the results in §8.3 for the commutative C*-algebra C(X).

One such attempt is—in its strengths and its weaknesses—quite analogous to the
Borel’s law of large numbers (8.93). Although we will soon move to B = B(H), the
following result is valid for any unital C*-algebra B, with infinite tensor product B∞

as defined in §C.14 and recalled at the end of §8.2, including the map ϕM : BM →B∞.

Proposition 8.14. If ω ∈ S(B), there is a unique state ω∞ on B∞ such that

ω∞(ϕM(b1⊗·· ·⊗bM)) =
M

∏
n=1

ω(bn), M ∈ N, b1, . . . ,bM ∈ B. (8.98)

Moreover, ω∞ is pure iff ω is pure.

This is a special case of Proposition C.105, with Ci = B and ωi = ω for all i ∈ N.
We now take B = B(H) for some separable Hilbert space H, some observable

a = a∗ ∈ B(H) with spectrum σ(a) ⊂ R, and some unit vector υ ∈ H, with asso-
ciated (normal) pure state ωυ in B(H) defined by ωυ(b) = 〈υ ,bυ〉, and Born mea-
sure μωυ ≡ μυ on σ(a). Now take the corresponding pure state ω∞

υ on B(H)∞ and
construct the associated GNS-representation πω∞

υ (B(H)∞). The Hilbert space Hω∞
υ

carrying this representation is an example of an infinite tensor product of Hilbert
spaces in the sense of von Neumann, which may also be defined directly, as follows.

Take sequences (ψn)≡ (ψ1,ψ2, . . .) with ψn ∈ H satisfying the condition

∑
n
|‖ψn‖−1|< ∞; (8.99)

the rationale behind this condition is that for any sequence (zn) of complex numbers,
the product ∏n zn converges and has a nonzero limit iff ∑n |zn−1|< ∞, so (8.99) is
equivalent to the requirement that ∏n ‖ψn‖ converges to some nonzero value. Fol-
lowing von Neumann, we now introduce the convention that if, for some sequence
(zn) of complex numbers, ∏n |zn| converges but ∏n zn does not, we define the latter
to be zero. On this convention, linear and continuous extension of the expression

〈(ψn),(ψ ′n)〉= ∏
n
〈ψn,ψ ′n〉H , (8.100)
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defines an inner product on the finite linear span H∞
0 of all sequences (ψn) satisfy-

ing (8.99); the complete tensor product H∞ is defined as the closure of H∞
0 in the

ensuing norm. However, this is not the Hilbert space of interest, since it is far too
large (e.g., it is not separable even if H is). To define interesting separable subspaces
of H∞, we call sequences (ψn) and (ψ ′n) that both satisfy (8.99) equivalent if

∑
n
|〈ψn,ψ ′n〉−1|< ∞; (8.101)

this turns out to be a bona fide equivalence relation. In particular, if (ψn) and (ψ ′n)
are inequivalent, then 〈(ψn),(ψ ′n)〉 = 0. For any unit vector υ ∈ H, we now define
the incomplete tensor product H∞

υ as the closure of the linear span of all sequences
(ψn) that satisfy (8.99) and are equivalent to υ∞ (i.e., the sequence (ψ ′n) with ψ ′n = υ
for each n), with inner product borrowed from H∞ (note that von Neumann’s termi-
nology “incomplete” is somewhat confusing, since H∞

υ is complete as a normed
vector space and in particular it is a Hilbert space). By construction, υ∞ ∈ H∞

υ , and
it is easy to show that H∞

υ is the closed linear span of all sequences (ψn) that differ
from υ ∈ H in at most finitely many places. We often write ⊗nψn or ψ1⊗ψ2⊗·· ·
for (ψn). Furthermore, for any M ∈ N, any b ∈ B(H) defines a bounded operator
b(M)
υ on H∞

υ by continuous linear extension of

b(M)
υ (ψ1⊗ψ2⊗·· ·⊗ψM⊗·· ·) = ψ1⊗ψ2⊗·· ·⊗bψM⊗·· · . (8.102)

This extends to a representation π∞
υ of B∞ on H∞

υ , as follows. Define b(M) ∈ B∞ by

b(M) = ϕM(1H ⊗·· ·⊗1H ⊗b), (8.103)

in which 1H ⊗ ·· ·⊗ 1H ⊗ b ∈ BM , and ϕM : BM → B∞ was defined after (8.58). In
other words, for b ∈ B(H), the operator b(M) is the element of B∞ given by the
equivalence class [a1/N ]N of the sequence (a1/N)N with 1B in every place except
a1/M = b. We then define π∞

υ (B
∞) by linear and continuous extension of

π∞
υ (b

(M1)
1 · · ·b(MN)

N ) = b(M1)
1υ · · ·b(MN)

Nυ . (8.104)

Proposition 8.15. For any unit vector υ ∈ H, the GNS-representation πω∞
υ (B

∞) on
Hω∞

υ is unitarily equivalent with π∞
υ (B

∞) on H∞
υ , under which equivalence the cyclic

vector Ωω∞
υ ∈ Hω∞

υ corresponds with υ∞ ∈ H∞
υ .

Proof. This is a simple consequence of Proposition C.91 and the equality

ω∞
υ (a) = 〈υ∞,π∞

υ (a)υ
∞〉H∞

υ , (8.105)

initially for a = b(M), subsequently for a = b(M1)
1 · · ·b(MN)

N , and finally, by linearity
and continuity, for any a ∈ B∞. �

In view of this, we will henceforth identify the two Hilbert spaces etc., so that:
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Hω∞
υ = H∞

υ ; (8.106)

πω∞
υ (b

(M)) = b(M)
υ ; (8.107)

Ωω∞
υ = υ∞. (8.108)

Recall that P(H) is the set of all projections on H, seen as a lattice ordered by
e ≤ f iff e f = e, which is equivalent to eH ⊆ f H, and coincides with the order
in B(H)sa, cf. Proposition C.170. Also, B is the Boolean lattice of Borel subsets
of σ(a), ordered by inclusion. For each Borel set A ⊂ σ(A) we have an associated
spectral projection eA ∈P(H), and the map A �→ eA defined by the Borel functional
calculus, i.e., Theorem B.102, is a lattice homomorphism from B to P(H). This
follows because from the perspective of the Borel functional calculus the map A �→
eA is really the map 1A �→ eA, which is the restriction of a homomorphism between
C*-algebras and hence preserves positivity. Let B∞ be the Boolean lattice of Borel
sets B∞ in σ(a)∞. As above, take some unit vector υ ∈ H, with corresponding
vector state ωυ on B(H) and associated state ω∞

υ on B(H)∞ as defined in Proposition
8.14, which in turn defines the GNS-representation πω∞

υ of B(H)∞ on the Hilbert
space Hω∞

υ . The lattice homomorphism A �→ eA then extends to a homomorphism

e∞ : B∞ → P(Hω∞
υ ); (8.109)

A1×·· ·×AM×
∞

∏
M+1

σ(a) �→ πω∞
υ (e

(1)
A1
· · ·e(M)

AM
); (8.110)

this defines e∞ on the basis Borel sets in σ(a)∞ and extends to all of B∞. Realizing
Hω∞

υ as the infinite tensor product H∞
υ , cf. (8.106) - (8.108), we rewrite this as

e∞

(
A1×·· ·×AM×

∞

∏
M+1

σ(a)

)
= e(1)A1υ · · ·e

(M)
AMυ . (8.111)

Theorem 8.16. Let a = a∗ ∈ B(H), let μυ be the Born measure on σ(a) defined by
some unit vector υ ∈ H, and define e∞ by (8.111). Let σ(a)∞

υ be the set of all points
in σ(a)∞ for which (8.92), or, equivalently, (8.93) holds (with μ � μυ ). Then

e∞(σ(a)∞
υ ) = 1Hω∞

υ
. (8.112)

Furthermore, if A⊆ σ(a) is Borel measurable, then, using the notation (8.39),

lim
N→∞

S1,N(eA) = μυ(A) ·1Hω∞
υ
, (8.113)

in the strong operator topology (i.e., applied to each fixed vector in Hω∞
υ ).

This is the quantum-mechanical law of strong numbers, plus its Borel version. In
comparison, the strong law of large numbers or Borel’s law of large numbers gives

μ∞
υ (σ(a)

∞
υ ) = 1. (8.114)
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Proof. For any probability measure μ on any σ -finite compact space X , the corre-
sponding probability measure μ∞ on X∞ is characterized by the property

μ∞

(
A1×·· ·×AM×A×

∞

∏
M+2

σ(a)

)
= μ(A)μ∞

(
A1×·· ·×AM×

∞

∏
M+1

σ(a)

)
,

for any M ∈ N and Borel sets Ai ⊆ X . The measure ν on σ(a)∞ defined by

ν

(
A1×·· ·×AM×

∞

∏
M+1

σ(a)

)
= ω∞

υ

(
e(1)A1
· · ·e(M)

AM

)
(8.115)

satisfies the above property for μ = μυ and hence coincides with μυ . In view of this,
eqs. (C.196) and (8.114) give

〈Ωω∞
υ ,e

∞(σ(a)∞
υ )Ωω∞

υ 〉= 1. (8.116)

For any projection e′ and any unit vector ψ ′ ∈ H ′ in any Hilbert space H ′, the prop-
erties 〈ψ ′,e′ψ ′〉= 1, ‖e′ψ ′‖= 1, and e′ψ ′ = ψ ′ are equivalent. Therefore,

e∞(σ(a)∞
υ )Ωω∞

υ =Ωω∞
υ . (8.117)

Consider a vector ⊗nψn ∈ H∞
υ , where only ψ1, . . . ,ψK possibly differ from υ (K <

∞). Noting that by (8.106) - (8.107) the right-hand side of (8.115) may be written as

ω∞
υ

(
e(1)A1
· · ·e(M)

AM

)
= 〈Ωω∞

υ ,πω∞
υ

(
e(1)A1
· · ·e(M)

AM

)
Ωω∞

υ 〉
= 〈υ∞,(e(1)A1υ ⊗·· ·⊗ e(M)

AMυ)υ
∞〉, (8.118)

we modify (8.115) so as to define a new measure ν ′ on σ(a)∞ by

ν ′
(

A1×·· ·×AM×
∞

∏
M+1

σ(a)

)
= 〈⊗nψn,(e

(1)
A1υ ⊗·· ·⊗ e(M)

AMυ)⊗n ψn〉.

Generalizing the above case of μ∞, the measure ν ′′ = μψ1 × ·· ·× μψK ×∏∞
K+1 μυ

on σ∞ is characterized by the following two properties:

ν ′′
(

A1×·· ·×AK×
∞

∏
K+1

σ(a)

)
= μψ1(A1) · · ·μψK (AK); (8.119)

ν ′′
(

A1×·· ·×AM×A×
∞

∏
M+2

σ(a)

)
= μυ(A)ν ′′

(
A1×·· ·×AM×

∞

∏
M+1

σ(a)

)
,

(M > K), (8.120)

and hence ν ′ = ν ′′. Therefore, even though ν ′ �= μ∞
υ , we have ν ′(σ(a)∞

υ ) = 1, since
membership of σ(a)∞

υ is entirely defined by the tail of the event. Hence we obtain



316 8 Limits: large N

e∞(σ(a)∞
υ )⊗n ψn =⊗nψn, (8.121)

by the same reasoning as for υ∞ ≡ Ωω∞
υ . Since the linear span of such vectors is

dense in H∞
υ ≡ Hω∞

υ and the projection e∞(σ(a)∞
υ ) is bounded, we obtain (8.112).

To derive (8.113), we use the definition of the Born measure μυ to find

‖(S1,N(eA)−μυ(A))υ∞‖= 1
N
(μυ(A)−2μυ(A)2), (8.122)

which vanishes as N→∞, so that (8.113) holds on υ∞. A similar computation proves
(8.113) on vectors ⊗nψn as above, since the initial K terms where possibly ψn �= υ
drop out in the limit N → ∞. Thus we have (8.113) on a dense subspace of Hω∞

υ .
Since the strong limit operator μυ(A) ·1Hω∞

υ
is bounded, this proves (8.113). �

An alternative argument shows the mere existence of the limit on the left-hand side
of (8.113) on the same dense set, upon which the limit operator is seen to commute
with all local and hence (by norm-continuity) with all quasi-local operators. Since
ωυ is pure, so is ω∞

υ , and hence πω∞
υ is irreducible. Thus the limit is a multiple of

the unit, and the coefficient μυ(A) then follows from the computation

lim
N→∞

〈υ∞,S1,N(eA)υ∞〉= μυ(A). (8.123)

To reduce the level of abstraction and since it is an important case, we now spe-
cialize Theorem 8.16 to a two-level system, i.e., B=M2(C). In other words, we take
H =C2, and pick a simple observable a = diag(1,0) with non-degenerate spectrum
σ(a) = 2 = {0,1}, so that measurements outcomes are just strings of zero’s and
one’s. Furthermore, we take a unit vector υ = c0|0〉+ c1|1〉, where |0〉 = (1,0)
and |1〉 = (0,1) form the standard basis of C2, and |c0|2 + |c1|2 = 1. We write
p = |c1|2. The Born measure μυ on σ(a) = {0,1} is then given by μυ({1}) = p
and μυ({0}) = 1− p; cf. (2.10) - (2.11). Taking A = {1}, we have eA = |1〉〈1|. The
Hilbert space (C2)∞

υ is the closure of the finite linear span of vectors of the kind
ψ1⊗ψ2 · · · with ψn ∈ C2 and only finitely many ψn possibly different from υ . For
M ∈N, the operator|1〉〈1|(M)) sends such a vector to ψ1⊗ψ2 · · ·⊗(|1〉〈1|ψM)⊗·· · ,
with all ψn unaffected except for n = M. Eqs. (8.112) - (8.113) then simply read

e∞(2∞
p ) = 1(C2)∞

υ
; (8.124)

lim
N→∞

1
N

N

∑
M=1

(|1〉〈1|(M)) = p ·1(C2)∞
υ
, (8.125)

where 2∞
p denotes the set of all infinite binary strings x1x2 · · · for which xi ∈ 2 and

lim
N→∞

1
N

N

∑
i=1

x1 = p, (8.126)

and once again the limit in (8.125) is meant strongly, i.e., the expression on the
left-hand side must be applied to a fixed vector in (C2)∞

υ .
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Theorem 8.16 forms the (mathematical) culmination of attempts that started in
1960s to derive the Born rule from other postulates of quantum mechanics, no-
tably the so-called eigenvalue-eigenvector link, according to which a quantum-
mechanical observable has a definite value if and only if the current quantum state is
an eigenvector of the associated operator. This link is applied to the state υ∞ (or to
any other state with approximately the same tail) and the operators e∞(σ(a)∞

υ ) and
limN→∞ S1,N(eA). The idea, then, is that according to (8.112), the property expressed
by the projection e∞(σ(a)∞

υ ) is certain in the state υ∞ (for qubits this means that any
possible infinite string of binary measurement outcomes has average value p). This
is reinforced by (8.113), which states that the frequency operator for the outcome A
has a sharp limit equal to μ(A) (for qubits, with A = {1} this limit is p).

However, although the mathematics is suggestive, apart from the fact that the
eigenvalue-eigenvector link itself falls prey to Earman’s Principle (in that sharp
eigenvalues and eigenvectors are an idealization in a world full of continuous spec-
tra), this particular application of the link makes sense only at N = ∞. In this re-
spect, eq. (8.124) has the same drawback as the strong law of large numbers (on
which its derivation indeed relies), including the fact that attempts to define proba-
bilities through (8.113) or its special case (8.125) are inherently circular. Moreover,
υ∞ fails to be an eigenvector of any finite-N approximant to (8.125), and by the
same token, the limit operator defined by (8.125) can only be measured via its in-
dividual contributions |1〉〈1|(M), none of which has υ∞ as an eigenvector; in fact, it
can be shown that any joint eigenvector of all projections |1〉〈1|(M) is orthogonal to
the entire space (C2)∞

υ with the complete infinite tensor product (C2)∞.
Problems with Earman’s Principle are avoided if we use Theorem 8.4 (applied

to B = B(H)) rather than Theorem 8.16: the sequence of operators S1,N(eA) forms
a continuous section of the continuous bundle of C*-algebras with fibers (8.50) -
(8.51), whose limit at N = ∞, in the sense of (8.46) or (C.560), is given by

S1,∞(eA) : ω �→ ω(A); (8.127)

recall that S1,∞(eA) ∈C(S(B(H))). In particular, for pure states ω = ωυ we obtain
the Born probability μυ(A). As we have also seen in the commutative case, this limit
avoids infinite idealizations and other problems with the law of large numbers.

From the point of view of (asymptotic) Bohrification, C(S(B(H))) provides a
classical description of a long run of identical experiments, which becomes increas-
ingly accurate as N → ∞; this is the whole point of the limits (8.46) and (C.560). In
particular, the unsound eigenvalue-eigenvector link has been replaced by the role of
points ω ∈ S(B(H)) as truthmakers, which is uncontroversial in classical physics.
If the quantum state in each identical experiment on the given (single) system is ω ,
then the above derivation shows that in the limit N → ∞, this state acquires a clas-
sical meaning (which according to Bohr would even be the only meaning it has),
namely as the point in the “classical phase space” S(B(H)) that gives the relative
frequencies of outcomes of the given long runs of identical experiments. Short of
deriving the Born rule, this at least provides the reasoning that links the Born mea-
sure (which is canonically given by the theory) to experiment.
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8.5 Quantum spin systems: Quasi-local C*-algebras

Beside the Born rule, our second application of the previous formalism is to quan-
tum spin systems, especially to spontaneous symmetry breaking (SSB), see Chapter
10. Postponing a conceptual discussion of infinite systems in their role of idealiza-
tions of finite systems to the preamble of that chapter, for the moment we just de-
scribe infinite quantum spin systems mathematically. As in §C.14, we take a Hilbert
space H, here assumed finite-dimensional, i.e., H ∼= Cn, and use the standard lattice
Zd ⊂ Rd in dimension d. For any finite subset Λ ⊂ Zd , i.e., Λ ∈P f (Zd), we put

HΛ = ⊗x∈ΛHx; (8.128)
AΛ = B(HΛ )∼=⊗x∈ΛB(Hx), (8.129)

where Hx = H for each x ∈Λ , cf. (C.297) and (C.303). The symbolic notations

A =⊗x∈Zd B(H) = limΛAΛ =
⋃

Λ∈P f (Zd)

AΛ
‖·‖
, (8.130)

all come down to the same thing—see §C.14, notably (C.323) and (C.317)—and
define a quasi-local C*-algebra. Elements of each AΛ ⊂ A are called local observ-
ables, those in the closure of their union are referred to as quasi-local observables.

Eq. (8.129) defines a map Λ �→ AΛ , which has three important properties:

AΛ (1) ⊆ AΛ (2) if Λ (1) ⊆Λ (2) (Isotony); (8.131)

[AΛ (1) ,AΛ (2) ] = 0 if Λ (1)∩Λ (2) = /0 (Einstein locality); (8.132)
A′Λ = AΛ ′ (Haag duality), (8.133)

where A′Λ in (8.133) is the commutant of AΛ within A, and, in cute notation, we put
Λ ′ = Zd\Λ (which is infinite), so that the right-hand side of (8.133) denotes

AΛ ′ =⊗x∈Λ ′B(H) =
⋃

Λ (1)∈P f (Zd\Λ)

AΛ (1)

‖·‖
, (8.134)

which is a C*-subalgebra of A. Since Λ (2) ⊂ Zd\Λ (1) whenever Λ (1) ∩Λ (2) = /0,
Haag duality implies Einstein locality (and sharpens it), but it is still worth men-
tioning these properties separately: although in quantum spin systems (8.133)—and
hence (8.132)—holds, Einstein locality is a more fundamental property (e.g. it is
also valid in algebraic quantum field theory, where Haag duality may well fail).

We now discuss some C*-algebraic concepts that will be needed for the analysis
of SSB. Through the associated GNS-representation πω : A→ B(Hω), any state ω on
A defines two interesting subalgebras of B(Hω), which a priori may be different:

• The center Ac
ω = πω(A)′′ ∩πω(A)′;

• The algebra at infinity A∞
ω =

⋂
Λ∈P f (Zd)πω(AΛ ′)

′′.
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Recall that the center of a von Neumann algebra M ⊂ B(H) is M∩M′, and that M is
called a factor if M∩M = C ·1 (cf. §C.21), so Ac

ω is the center of the von Neumann
algebra πω(A)′′. It is easy to show from Einstein locality that A∞

ω ⊆ Ac
ω . If each local

algebra AΛ is simple, Haag duality yields the opposite inclusion, so in that case,

A∞
ω = Ac

ω . (8.135)

Given (8.129), this applies as long as dim(H)< ∞, in which case also A is simple.
The algebra at infinity provides a new perspective on the macroscopic observ-

ables in §8.2. Averages like |Λ |−1 ∑x∈Λ b(x), where b ∈ B(H), do not have a limit
in A as Λ ↑ Zd , but (depending on ω) their representatives |Λ |−1 ∑x∈Λ πω(b(x))
may have a weak limit in B(Hω). If they do, Einstein locality implies that the limit
operator lies in algebra at infinity A∞

ω (and hence, assuming (8.135), in Ac
ω ). If the

algebra of infinity is trivial (i.e. C ·1Hω ), macroscopic observables are therefore “c-
numbers”, i.e., multiples of the unit operator. In particular, they do not fluctuate,
which is among the defining properties of pure thermodynamic phases. Formally,
this idea is captured by the following generalization of the notion of a pure state:

Definition 8.17. A representation π(A) is primary if π(A)′′ ∩π(A)′ is trivial.
A state ω ∈ S(A) is primary if the GNS-representation πω is primary.

For compact groups G (or rather their group C*-algebras C∗(G)), all representations
are completely reducible, and a representation is primary iff it is a (possibly infinite)
multiple of some irreducible representation. However, this is not the right picture for
general groups or C*-algebras, which requires some discussion. In preparation, we
call some representation π ′(A) on a Hilbert space H ′ ⊂ H a subrepresentation of
a representation π(A) on H, written π ′ ⊂ π , if π ′ = π|H ′ . Subrepresentations π ′
of π correspond to projections e ∈ π(A)′, such that π ′(a) = eπ(a). It follows that
π1(A) and π2(A) have equivalent subrepresentations iff there exists a nonzero partial
isometry w : H1 → H2 such that wπ1(a) = π2(a)w for all a ∈ A.

Definition 8.18. Two representations π1 and π2 of a C*-algebra A are called:

1. equivalent if there is a unitary u : H1 → H2 such that uπ1(a)u∗ = π2(a) (a ∈ A);
2. quasi-equivalent if every subrepresentation of π1 has a subrepresentation that

is equivalent to some subrepresentation of π2, and vice versa;
3. disjoint if they do not have any equivalent subrepresentations.

We say that two states ω1 and ω2 on A equivalent, disjoint, or quasi-equivalent if
the corresponding GNS-representations πω1 and πω2 have the said property.

In other words, π1 and π2 are quasi-equivalent iff π1 has no subrepresentations dis-
joint from π2, and vice versa. This, in turn, is equivalent to the property that the set
of πi-normal states on A, i.e. states of the form a �→ Tr(ρπi(a)) with ρ ∈D(Hi), is
the same for i = 1 as it is for i = 2. Contrapositively, π1 and π2 are disjoint iff no
state exists that is both π1-normal and π2-normal. For example, taking A = C(X),
in which case states are probability measures μ on X , equivalence and disjointness
of states recovers the usual notions of equivalence and disjointness of measures,
respectively (i.e., having the same null sets and having disjoint supports).
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Proposition 8.19. For any state ω , if ω = tω1 +(1− t)ω2 for some t ∈ (0,1), then
ω1 and ω2 are disjoint iff there is a projection e ∈ Ac

ω = πω(A)′ ∩πω(A)′′ such that

πω(A)|eHω
∼= πω1(A); (8.136)

πω(A)|e⊥Hω
∼= πω2(A). (8.137)

Since subrepresentations of πω(A) always correspond to projections e∈ πω(A)′; the
key assumption being made here is that e also lies in the weak closure πω(A)′′.

Proof. One direction is easy: if (8.136) - (8.137) hold, then (arguing by contradic-
tion) equivalent subrepresentations π1(A) of πω1(A) and π2(A) of πω2(A) are given
by projections e1 ≤ e and e2 ≤ e⊥ = 1Hω − e , respectively, through

πi(a) = πω(a)|eiHω , (i = 1,2,a ∈ A), (8.138)

and the partial isometry w on Hω whose restriction to e1Hω implements a (unitary)
equivalence between π1(A) and π2(A) by definition satisfies w∗w = e1, ww∗ = e2.
Moreover, e1 ≤ e implies we = w and e2 ≤ e⊥ implies e⊥w = w, which together give
e⊥we = w. Furthermore, again by definition, w ∈ πω(A)′. If now e ∈ πω(A)′′, then
we= ew. Combining these equalities gives w= 0, which is the desired contradiction.

Lemma 8.20. For any functional ω ′ ∈ A∗ such that 0 ≤ ω ′ ≤ ω , where ω ∈ S(A),
there is an operator c ∈ πω(A)′ on Hω such that 0≤ c≤ 1H and

ω ′(a) = 〈Ωω ,cπω(a)Ωω〉 (a ∈ A). (8.139)

In particular, there is a vector ξ ∈ Hω such that

ω ′(a) = 〈ξ ,πω(a)ξ 〉Hω . (8.140)

Proof. Cauchy–Schwarz for the positive semidefinite form 〈a,b〉′ = ω ′(a∗b) gives

|ω ′(a∗b)|2 ≤ ω ′(a∗a)ω ′(b∗b)≤ ω(a∗a)ω(b∗b) = ‖πωi(a)Ωωi‖2‖πωi(b)Ωωi‖2.

Hence we obtain a well-defined positive quadratic form B on Hω , initially defined
on the dense domain πω(A)Ωω ×πω(A)Ωω by the formula

B(πω(a)Ωω ,πω(b)Ωω) = ω ′(a∗b), (8.141)

and extended to Hω ×Hω by continuity; the above inequality immediately gives
|B(ϕ,ψ)| ≤ ‖ϕ‖‖ψ‖, and hence Proposition B.79 yields an operator 0 ≤ c ≤ 1H
such that B(ϕ,ψ) = 〈ϕ,cψ〉. With (8.141), this gives (8.139). We now compute

ω ′(a∗b∗d) = B(πω(ba)Ωω ,πω(d)Ωω) = 〈πω(a)Ωω ,πω(b∗)cπω(d)Ωω〉
= B(πω(a)Ωω ,πω(b∗d)Ωω = 〈πω(a)Ωω ,cπω(b∗)πω(d)Ωω〉,

so that [c,πω(b∗)] = 0 for each b ∈ A, i.e., c ∈ πω(A)′. Writing c = c2
1 with c∗1 = c1,

and then ξ = c1Ωω , completes the proof. �
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We continue the proof of Proposition 8.19 in the converse direction. Assume

ω = tω1 +(1− t)ω2 = ω ′1 +ω ′2, (8.142)

with ω ′1 = tω1 and ω ′2 = (1− t)ω2, so that 0≤ ω ′1 ≤ ω and 0≤ ω ′2 ≤ ω . It follows
from the first claim in Lemma 8.20 that there is c ∈ B(Hω) as stated such that

ω ′1(a) = 〈Ωω ,cπω(a)Ωω〉; (8.143)
ω ′2(a) = 〈Ωω ,(1Hω − c)πω(a)Ωω〉, (8.144)

where (8.144) follows from (8.143), (C.196), and ω = ω ′1 +ω ′2. Define ω ′ ∈ A∗ by

ω ′(a) = 〈Ωω ,c(1Hω − c)πω(a)Ωω〉. (8.145)

We have 0 ≤ ω ′ ≤ ω ′1 (since c(1Hω − c) ≤ c) as well as 0 ≤ ω ′ ≤ ω ′2 (since also
c(1Hω − c) ≤ 1Hω − c). Now assume that ω1 and ω2 are disjoint. Applying (8.140)
with ω �ωi shows that ω ′ is π1-normal as well as π2-normal, so that it follows from
the remarks following Definition 8.18 that ω ′ = 0. Since Ωω is cyclic for πω(A) by
the GNS-construction, this implies c(1Hω − c) = 0, and hence c2 = c. Since c ≥ 0,
which implies c∗ = c, it follows that c is a projection, henceforth called e. Therefore,

ω1(a) = 〈Ωω ,eπω(a)Ωω〉/‖eΩω‖2; (8.146)
ω2(a) = 〈Ωω ,e⊥πω(a)Ωω〉/‖e⊥Ωω‖2, (8.147)

where t = ‖eΩω‖2. We see from these formulae and Proposition C.91 that πω1 and
πω2 are equivalent to the restrictions of πω to eHω and e⊥Hω , respectively; under
this equivalence, the cyclic vectors Ωω1 and Ωω2 correspond with eΩω/‖eΩω‖ and
e⊥Ωω/‖e⊥Ωω‖, respectively. Since e ∈ πω(A)′ by Lemma 8.20, it only remains to
be shown that e ∈ πω(A)′′. To this effect, for any b ∈ πω(A)′ and ψ ∈ Hω , define

ω ′′ ∈ A∗;

ω ′′(a) = 〈e⊥beψ,πω(a)e⊥beψ〉. (8.148)

Then ω ′′ is positive, as well as πω2 -normal, the latter because of the presence of the
projection e⊥ and (8.147). But for a ∈ A+ we have the inequalities

0≤ ω ′′(a)≤ ‖e⊥b‖2〈eψ,πω(a)eψ〉, (8.149)

so that 0≤ ω ′′ ≤ ω ′′1 for the state (assuming eψ is a unit vector)

ω ′′1 (a) = 〈ψ,eπω(a)eψ〉. (8.150)

Since eψ ∈ eHω , the latter state is πω1 -normal, so that ω ′′1 is itself πω1 -normal by
Lemma 8.20 (which argument by now should sound familiar). Again invoking dis-
jointness of ω1 and ω2, it follows that ω ′′ = 0, which, since ψ was arbitrary, in turn
yields e⊥be = 0 for any b ∈ πω(A)′. This forces e ∈ πω(A)′′. �
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The first of the following corollaries to Proposition 8.19 is Hepp’s Lemma:
Lemma 8.21. Let π : A → B(H) be a representation of A, and let ψ1,ψ2 be unit
vectors in H. Then the vector states ωi(a) = 〈ψi,π(a)ψi〉 (i = 1,2) are disjoint iff

〈ψ1,π(a)ψ2〉= 0 (a ∈ A). (8.151)

Proof. Take, for example, ω = 1
2 (ω1 +ω2) in Proposition 8.19. �

Corollary 8.22. 1. Two primary states are either disjoint or quasi-equivalent.
2. A state is primary iff it has no convex decomposition into disjoint states.

Recall that a state is pure if it has no nontrivial convex decomposition whatsoever.
The analogy between pure states and primary states may be completed as follows:

• ω pure↔ πω(A)′ = C ·1 (cf. Theorem C.90);
• ω primary↔ πω(A)′ ∩πω(A)′′ = C ·1 (cf. Definition 8.17).

A physical property of primary states is that the corresponding correlation functions
have a clustering property of a kind that may even be experimentally accessible:

Theorem 8.23. A state ω on a quasi-local C*-algebra A (8.130) has trivial algebra
at infinity, i.e., A∞

ω = C ·1, iff it is clustering, in the following sense: for each a ∈ A
and ε > 0 there is a finite Λ ⊂ Zd such that for all b ∈ AΛ ′ with ‖b‖= 1 one has

|ω(ab)−ω(a)ω(b)| ≤ ε. (8.152)

In particular, if ω is primary, then it is clustering and hence (8.152) holds.

Proof. The complete proof is quite technical, but the main idea is as follows. Choose
finite regions Λn moving to infinity (i.e., eventually avoiding any given Λ ), and pick
elements cn ∈ AΛn), ‖cn‖ = 1. The sequence (πω(cn)) in B(Hω) has a weakly con-
vergent subsequence with limit c ∈ B(Hω). This follows from the Banach–Alaoglu
Theorem B.48, applied to B(Hω) seen as the dual space of B1(Hω)): on the unit
ball, the corresponding weak∗-topology on B(Hω) coincides with the weak operator
topology, so that the unit ball in B(Hω) is weakly compact and the theorem applies.

• By von Neumann’s Bicommutant Theorem C.127 we have c ∈ πω(A)′′.
• By Einstein locality (8.132) and the delocalization of the Λn, also c ∈ πω(A)′.

Hence c∈Ac
ω , and by a more refined argument (which is unnecessary if if A∞

ω =Ac
ω ),

even c ∈ A∞
ω . So if A∞

ω = C ·1 we have c = (Ωω ,cΩω) ·1. On the other hand,

〈Ωω ,cΩω〉= lim
n
〈Ωω ,πω(cn)Ωω〉= lim

n
ω(cn),

so that we may compute:

lim
n
ω(acn) = lim

n
〈Ωω ,πω(a)πω(cn)Ωω〉= 〈Ωω ,πω(a)cΩω〉= ω(a) lim

n
ω(cn).

Thus for any ε > 0 there is an N such that |ω(acn)−ω(a)ω(cn)| ≤ ε for all n > N.
To derive (8.152) from this, an easy reductio ad absurdum argument suffices.

The converse direction follows from Kaplansky’s Density Theorem C.131. �



8.6 Quantum spin systems: Bundles of C*-algebras 323

8.6 Quantum spin systems: Bundles of C*-algebras

In this section we reformulate the theory of quantum spin systems in the continuous
C*-bundle language of §8.2. First, for each N ∈ N we define ΛN ∈P f (Zd) by

ΛN = {x ∈ Zd | ‖x‖ ≤ N}. (8.153)

We then have the following analogue of the continuous bundle of C*-algebras A(q)

of C*-algebras of Theorem 8.8. The base space remains I = 1/Ṅ ⊂ [0,1], where
Ṅ= {1,2, . . . ,∞} (seen as possible values of 1/h̄), and the fibers are given by

A0 = A = limNAΛN =
⋃

N∈N
AΛN

‖·‖
; (8.154)

A1/N = AΛN = B(HΛN ) (N ∈ N), (8.155)

cf. (8.128) - (8.130), still assuming dim(H) < ∞. As before, the topology of this
bundle is defined through its continuous cross-sections (a1/N)N∈Ṅ, which are the
analogues of the quasi-local sequences of Definition 8.7. Given (8.154) - (8.155),
each fiber algebra A1/N is a subalgebra of A0, and some sequence (a1/N)N∈Ṅ simply
defines a continuous cross-section of the bundle iff within A (i.e. in norm) we have

lim
N→∞

a1/N = a0. (8.156)

In other words, a sequence (a1/N)N∈N with a1/N ∈ A1/N ⊂ A is quasi-local in the
sense of Definition 8.7 iff it converges in A (i.e., iff it is Cauchy in the norm of A).

The continuous bundle of Theorem 8.4 makes equally good sense for quantum
spin systems. First, with B = B(H)∼= Mn(C), the fibers are obviously given by

A(c)
0 =C(S(B(H))); (8.157)

A(c)
1/N = B(HΛN ). (8.158)

Second, the continuous sections are once again specified via symmetrization maps

SM,N : B(HΛM )→ B(HΛN ), (8.159)

defined similarly to (8.39), namely via canonical symmetrizers

SN : B(HΛN )→ B(HΛN ) (8.160)

that are defined à la (8.35) - (8.36), where this time the tensor product and ensuing
permutation in (8.35) are over all sites x ∈ ΛN . Regarding a1/M ∈ B(HΛM ) as an
element a′1/M of B(HΛN ) via the embedding AΛM ↪→ AΛN , we finally define SM,N by

SM,N(a1/M) = SN(a′1/M). (8.161)
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Symmetric and quasi-symmetric sequences may then be defined exactly as in
Definitions 8.2 and 8.3; each quasi-symmetric sequence (a1/N)N∈N duly has a limit

a0 ∈ A(c)
0 given by (8.46), where ωN is defined as in (8.47), once again with a tensor

product over all sites x ∈ ΛN . By definition, the continuous sections of the bundle
(8.157) - (8.158) are then given by the quasi-symmetric sequences.

Although the fibers A in (8.154) and C(S(B(H))) in (8.157) are as wide apart as
they could possibly be, they stunningly arise as limit algebras at h̄ = 0 (i.e., N = ∞
or Λ = Zd) for the same fiber algebras (8.155) and (8.158) at h̄ > 0 (i.e., N < ∞ or
Λ ∈P f (Zd)). As in §8.2, the difference lies in the choice of the topology on the
bundle, defined via the continuous sections, which in the first case are the quasi-local
sequences, and in the second are the quasi-symmetric (i.e., macroscopic) ones.

An interesting connection between these bundles can be obtained via the follow-
ing concept, which in a way justifies the introduction of the bundles themselves.

Definition 8.24. A continuous field of states on a continuous bundle of C*-algebras
with fibers (A1/N)N∈Ṅ is a family (ω1/N)N∈Ṅ where

ω1/N ∈ S(A1/N); (8.162)
lim

N→∞
ω1/N(a1/N) = ω0(a0), (8.163)

for each continuous cross-sections (a1/N). In that case, we write

ω0 = lim
N→∞

ω1/N , (8.164)

despite the fact that all states in question may be defined on different C*-algebras.

For example, any state ω on A0 = A as in (8.154) defines a continuous field:

Proposition 8.25. For any state ω ∈ S(A), the set (ω1/N)N∈Ṅ of states defined by

ω0 = ω; (8.165)
ω1/N = ω|A1/N

, (8.166)

is a continuous field of states on the bundle with fibers (8.154) - (8.155).

Proof. We use the notation of Definition 8.7. For local sequences (8.57) we have

ω1/N(a1/N) = ω(a1/N) = ω(a1/M),

for all N ≥M. Since a0 = a1/M , this equals ω0(a0). For quasi-local sequences, a0 is
the limit of the sequence (a1/N) in the norm of A, so that ω(a1/N)→ ω(a0). �

Definition 8.26. A state ω ∈ S(A) is macroscopic if limN→∞ω(a1/N) exists for any
(quasi-) symmetric sequence (a1/N).

It does not matter whether we put “symmetric” or “quasi-symmetric” here, since
existence of the limit for symmetric sequences implies its existence on quasi-
symmetric sequences. Indeed, using the fact that ‖ω‖= 1, we may estimate
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|ω(a1/N)−ω(a1/M)| ≤ |ω(ã1/N)−ω(ã1/N)|
+ |‖a1/N − ã1/N‖+‖a1/M− ã1/M‖, (8.167)

for any sequence (ã1/M). Using Definition 8.3, and hence taking (ã1/M) symmetric,
we see that if (ω(ã1/N)) is a Cauchy sequence, then so is (ω(a1/N)).

Proposition 8.27. A macroscopic state ω determines a state ω(c)
0 on C(S(B)) by

ω(c)
0 (a0) = lim

N→∞
ω(a1/N), (8.168)

where (a1/N) is any quasi-symmetric sequence with limit a0 ∈C(S(B)), cf. (8.46).

Proof. First, note that ω(c)
0 is independent of the choice of the approximating se-

quence (a1/N), since by the same argument as in the proof of Proposition C.126, if
a1/N → a0 as well as a′1/N → a0, we have

lim
N→∞

‖a1/N −a′1/N‖= ‖a0−a0‖= 0, (8.169)

and because ‖ω‖= 1 for any state ω , we also have

|ω(a1/N −a′1/N)| ≤ ‖a1/N −a′1/N‖. (8.170)

Eqs. (8.169) - (8.170) obviously imply

lim
N→∞

ω(a1/N) = lim
N→∞

ω(a′1/N). (8.171)

We next show that if a1/N → a0 and b1/N → b0 in the sense of (C.560), then

a1/Nb1/N → a0b0.

If (a1/N) is a symmetric sequence à la (8.43), and likewise (b1/N), where we may
assume without loss of generality that M is the same for both, then

a0(ρ) = ρM(a1/M), (8.172)

where ρ ∈ S(B), and likewise for b0. Using (8.38), we obtain

lim
N→∞

ρN(a1/Nb1/N) = ρM(a1/M)ρM(b1/M) = a0(ρ)b0(ρ) = (a0b0)(ρ). (8.173)

In particular, if a1/N → a0, then a∗1/Na1/N → a∗0a0. Since ω is a state, it follows

that ω(c)
0 (a∗0a0) ≥ 0, and since also ω(c)

0 (1S(B)) = 1 (because the sequence with
a1/N = 1HΛN

converges to 1S(B(H))), the claim follows for symmetric sequences.
For quasi-symmetric sequences (a1/N) the result follows by approximating (a1/N)
with symmetric sequences (cf. Definition 8.3). �
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Each state ω(c)
0 ∈ S(A(c)

0 ) is represented by a probability measure μ on the state
space S(B(H)) of B(H). We compute this measure if ω ∈ S(A) is permutation-
invariant in that each restriction ω1/N = ω|B(HΛN ) is invariant under the natural
action of the permutation group S|ΛN | on B(HΛN )

∼= ⊗x∈ΛN B(H), where N ∈ N
and |ΛN | is the number of points in ΛN (as in the case of B∞ in §8.2). It fol-
lows from the Quantum De Finetti Theorem 8.9 (and the fact that that the set
SS∞(A) of permutation-invariant states on A is a so-called Bauer simplex) that each
permutation-invariant state ω ∈ SS∞(A) takes the form

ω =
∫

S(B(H))
dμ(ρ)ρ∞, (8.174)

where μ is some probability measure on S(B(H)), and ρ ∈ S(B(H)); the associated
state ρ∞ on A is defined by its values on each AΛN ⊂ A via the isomorphism

AΛN
∼=⊗x∈ΛN B(H). (8.175)

Furthermore, the integral in (8.174) is defined weakly, i.e., for any a∈ A the number
ω(a) is obtained by integrating the function ρ �→ ρ∞(a) on S(B(H)) with respect to
μ . In particular, ω ∈ ∂eSS∞(A) iff μ is a Dirac measure on S(B(H)).

Proposition 8.28. Each permutation-invariant state ω ∈ SS∞(A) is macroscopic
(cf. Definition 8.26), and the probability measure μ on S(B(H)) defined by ω(c)

0
via (8.168) coincides with the one appearing in (8.174).

Proof. Let (a1/N) be a symmetric sequence (the quasi-symmetric case follows from
this), so that a1/N = SM,N(a1/M) for some M whenever N > M, cf. (8.43). The limit

a0 ∈C(S(B(H))) is given by (8.172), so that state ω(c)
0 on C(S(B(H))) defined by

ω(c)
0 ( f ) =

∫
S(B(H))

dμ(ρ) f (ρ) (8.176)

satisfies the required condition

lim
N→∞

ω1/N(a1/N) = ω1/M(a1/M) =
∫

S(B(H))
dμ(ρ)ρM(a1/M) = ω(c)

0 (a0). �

To proceed we make the following technical assumption on ω ∈ S(A) (which is
satisfied in typical physical models): if πω(a1/N)→ 0 weakly in B(Hω), for some
sequence (a1/N) where a1/N ∈ A1/N , then πω(a1/N)Ωω → 0 in B(Hω) (in norm).

Theorem 8.29. Assume that the state ω in part 1 below (and likewise the states ω1
and ω2 in part 2) satisfies the above technical condition. Then:

1. If ω is a primary macroscopic state on A, then the corresponding state ω(c)
0 is

pure, i.e., the probability measure μ on S(B(H)) is a Dirac measure.
2. If ω1 and ω2 are quasi-equivalent primary macroscopic state on A, then μ1 = μ2

(and hence if μ1 �= μ2, then ω1 and ω2 are disjoint).
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The techniques in the proof below can be used to show that our additional assump-
tion is equivalent to: if (8.178) below holds weakly in B(Hω), then it also holds
strongly. Thus we could have redefined a macroscopic state ω as one for which the
strong limit limN→∞πω(a1/N) exists in B(Hω) (and some authors indeed do so).

Proof. We first show that if ω is a primary macroscopic state on A, and (a1/N) is
symmetric (from which the quasi-symmetric case duly follows) such that

lim
N→∞

ω(a1/N) = α, (8.177)

then, in the weak operator topology on the GNS-representation space B(Hω),

lim
N→∞

πω(a1/N) = α ·1Hω . (8.178)

To this end, we first note that ‖a1/N‖ is uniformly bounded in N: if (a1/N) is sym-
metric, as in (8.43), then obviously ‖a1/N‖= ‖a1/M‖ for all N > M, so that if (a1/N)
is merely quasi-symmetric we have ‖a1/N‖ ≤ ‖a1/M‖+ ε for all N > M, where ε
and M are the quantities appearing in Definition 8.3. Hence it is enough to establish
the weak limit (8.178) between states in a dense set, viz. πω(b)Ωω , where b ∈ A,
or even in ∪NA1/N . Furthermore, using the polarization identity (A.5) and (C.8) -
(C.9), it is enough to prove that for each K ∈ N and b ∈ A1/K , we have

lim
N→∞

ω(b∗a1/Nb) = αω(b∗b), (8.179)

since by the GNS-construction we obviously have

〈πω(b)Ωω ,πω(a1/N)πω(b)Ωω〉= ω(b∗a1/Nb). (8.180)

Theorem 8.23 implies (or even states) that if ω is primary, for each b ∈ A and ε > 0
there is M ∈ N such that for all a ∈ A′ΛM

with ‖a‖= 1, we have

|ω(b∗ba)−ω(b∗b)ω(a)| ≤ ε. (8.181)

Assuming b ∈ A1/K , we first note that limN→∞[a1/N ,b] = 0 in norm (even though
limN→∞ a1/N does not exist in norm), and secondly that, for any given M ∈ N, if
ã1/N is the same as a1/N except that in any term b1⊗·· ·⊗ b|ΛN | that contributes to
a1/N we replace bi � 1H whenever bi ∈ A1/M , then

lim
N→∞

‖ã1/N −a1/N‖= 0. (8.182)

Given (8.177), these facts with (8.181) immediately give (8.179) and hence (8.178).
According to (8.177) and (8.178), the state ω(c)

0 ∈ S(C(S(B(H)))) is given by

ω(c)
0 (a0) = lim

N→∞
〈Ωω ,πω(a1/N)Ωω〉, (8.183)
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where a1/N is some symmetric sequence converging to→ a0 in the sense of (C.560);
as in the proof of Proposition 8.27, the left-hand side is independent of the particular
choice of this sequence. The proof of Proposition 8.27 also showed that if a1/N → a0
and b1/N → b0, then a1/Nb1/N → a0b0, so that

ω(c)
0 (a0b0) = lim

N→∞
〈Ωω ,πω(a1/Nb1/N)Ωω〉

= lim
N→∞

〈Ωω ,πω(a1/N)−α ·1Hω )πω(b1/N)Ωω〉+αβ ,

where α is defined by (8.177), and likewise β . At this point that we need our ad-
ditional assumption, which, together with uniform boundedness of ‖πω(a1/N)‖ and
hence of ‖πω(a1/N)Ωω‖ in N yields that the first term in the second line is zero.

Therefore, ω(c)
0 is multiplicative and hence pure (cf. Proposition C.14).

To prove the second claim, first suppose ω1 and ω2 are quasi-equivalent. In that
case, up to unitary equivalence, either πω1 is a subrepresentation of πω2 , or vice
versa; assume the former. We then have a projection e ∈ πω2(A)

′ such that

πω1(a) = eπω2(a), (8.184)

for each a ∈ A, and since e = 1Hω1
by construction, eq. (8.178) gives

lim
N→∞

πω1(a1/N) = α1 · e; (8.185)

lim
N→∞

πω2(a1/N) = α2 ·1Hω2
. (8.186)

Multiplying both sides of (8.186) with e gives α1 = α2. �

Corollary 8.30. A permutation-invariant state ω ∈ SS∞(A) is primary iff the cor-
responding measure μ in (8.174) is a Dirac measure, and it is pure iff the latter is
supported by a pure state on B(H).

Proof. In the first claim, the inference from “primary“ to “Dirac” obviously follows
from Theorem 8.29. The converse direction is a consequence of the commutation
theorem (C.329) for von Neumann algebras, combined with the fact that each rep-
resentation of B(H) for finite-dimensional H is primary (which in turn follows from
the fact, not proved in this book, that B(H) has just one irreducible representation,
up to equivalence). The second claim follows from Proposition C.105. &'

Finally, one macroscopic state generates many others. A folium in the state space
S(A) of a C*-algebra A is a convex, norm-closed subspace F of S(A) with the
property that if ω ∈F and b ∈ A such that ω(b∗b) > 0, then the “reduced” state
ωb : a �→ ω(b∗ab)/ω(b∗b) must be in F . For example, if π is a representation of
A on a Hilbert space H, then the set of all density matrices on H (i.e. the π-normal
states on A) comprises a folium Fπ . In particular, each state ω on A defines a folium
Fω ≡Fπω through its GNS-representation πω . It then follows from cyclicity of the
GNS-representation that each state in the folium Fω of a macroscopic state ω ∈ S(A)
is automatically macroscopic and even has the same limit state ω(c) as ω .
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Notes

§8.1. Large quantum numbers

Theorem 8.1 has been adapted from Landsman (1998b); the proof relies on Si-
mon (1980), who, generalizing the case of SU(2) treated by Lieb (1973), in turn uses
the coherent states for Lie groups introduced by Perelomov (1972, 1986). Duffield
(1999) gives the details of the method of steepest descent used in proving (8.30).
Although this material was inspired by Bohr’s Correspondence Principle, at the end
of the day the relationship may seem remote.
§8.2. Large systems

The theory in this section, which elaborates on Landsman (2007), is a reformula-
tion in terms of continuous bundles of C*-algebras of the formal parts of a series of
papers on quantum mean-field systems by Raggio & Werner (1989, 1991), Duffield
& Werner (1992a,b,c), and Duffield, Roos, & Werner (1992). These models have
their origin in the treatment of the BCS theory of superconductivity due to Bogoli-
ubov (1958) and Haag (1962); for further references see the notes to §10.8.
§8.3. Quantum de Finetti Theorem

Theorem 8.9 is due to Størmer (1969), whose proof was based on the fact that
the S∞-action on B∞ is asymptotically abelian, in that for any a,a′ ∈ B∞ one has

inf{‖[αp(a),a′]‖, p ∈S∞}= 0.

This implies that SS∞(B∞) is a Choquet simplex, which quickly leads to (8.66). Our
proof is taken from Hudson & Moody (1975). See also Caves, Fuchs, & Schack
(2002a). Finite-size corrections to Theorem 8.9 are studied e.g. in König & Mitchi-
son (2009). Corollary 8.11 is due to Hewitt & Savage (1955), who credit Jules Haag
(rather than De Finetti) for the binary case (i.e., X = {0,1}). See Kallenberg (2005)
for an exhaustive account of such results (in classical probability theory).

Proposition 8.12 is taken from Diaconis & Freedman (1980), who also give
finite-size corrections to Corollary 8.11, as follows. Let a permutation-invariant
probability measure νN on XN be K-exchangeable, so that there is a permutation-
invariant probability measure νN+K on XN+K whose restriction to XN is νN . Let
PN+K be the probability measure on Pr(X) defined by νN+K as in (8.85), i.e.,
PN+K(A) = νN+K(E−1

N+K(A)), and finally define

ν ′N+K =
∫

Pr(X)
dPN+K(μ)μN+K ,

as in (8.79). Then, in terms of the usual norm on the Banach dual C(XN)∗,

‖νN −ν ′N‖ ≤
K(K−1)

N
.

Proposition 8.13 is stated without proof in Kingman (1978). See Mackey (1974) or
Gray (2009) for ergodic theory in connection with probability theory.
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Of course, there are numerous results in probability theory that do not share the
problems of the law of large numbers. For example, in the situation (8.94), for any
ε > 0 one has the Chernoff–Hoeffding bound

μN

(
| 1
N

N

∑
i=1

xi− p| ≥ ε|
)
≤ e−2Nε2

,

which is superior to the weak law of large numbers, i.e., for every ε > 0,

lim
N→∞

μN

(
| 1
N

N

∑
i=1

xi− p| ≥ ε|
)

= 0,

which from the point of view of Earman’s Principle is already a marked conceptual
improvement over the strong law (but which is mathematically weaker).
§8.4. Frequency interpretation of probability and Born rule

The Kolmogorov quote is from Fine (1973, p. 94), which even 40 years later is
still to be recommended as one of the best (technical) book on the foundations of
probability theory. See also Hájek & Hitchcock (2016) for a comprehensive recent
survey of the philosophy of probability. The Keynes quote is from Hacking (2001,
p. 149), which is a very elementary introduction to the foundations of probability
At a more advanced level see also Gillies (2000), whilst Howson (1995) is a useful
brief survey.

The original version of the Principal Principle (Lewis, 1980) equated probabil-
ity (or chance) as subjective degree of belief (i.e. credence) with objective chance
(though in the single case as opposed to relative frequency. Our own version in the
main text is meant to clarify the relationship between singe-case probabilities and
long run frequencies, both seen as objective.

Attempts to derive the Born rule started with Finkelstein (1965) and were contin-
ued e.g. by Hartle (1968), Farhi, Goldstone, & Gutmann (1989), Van Wesep (2006),
Aguirre & Tegmark (2011), Moulay (2014), and others, partly based on indubitable
mathematical arguments in the spirit of the strong law of large numbers supplied
by e.g. Ochs (1977, 1980), Bugajski & Motyka (1981), Pulmannová & Stehlková
(1986). Such attempts (typically presented as claims) provoked valid critiques of the
kind mentioned in the main text from e.g. Cassinelli & Sánchez-Gómez (1996) and
Caves & Schack (2005). For a balanced account see also Cassinelli & Lahti (1989).
Infinite tensor products of Hilbert spaces were introduced by von Neumann (1938).

Our approach, which is sympathetic to both sides of the dispute, is a vast ex-
pansion of Landsman (2008). The existence of e∞ as in (8.109) - (8.110) is based
on the same extension argument that proves the Kolmogorov existence theorem for
infinite product probabilities, see e.g. Dudley (1989), proof of Theorem 8.2.2, and
Van Wesep (2006), who carries out the proof for X = {0,1}.

There is also a large (and inconclusive) literature on alleged derivations of the
Born rule in the context of the Many-Worlds (i.e. Everettian) Interpretation of quan-
tum mechanics, which may be traced back from Wallace (2012), who supports such
derivations, and Dawid & Thébault (2015), who criticize them.
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§8.5.Quantum spin systems: Quasi-local C*-algebras

Basic references are Ruelle (1969), Israel (1979), Bratteli & Robinson (1987,
1997), and Simon (1993); for macroscopic states see Hepp (1972) and Sewell
(2002). Naaijkens (2013) is a useful brief introduction to quantum spin systems.

The proof that Haag duality holds for quantum spin systems is far from trivial: see
Simon (1993), Prop. IV.1.6. In the proof of (8.135), simplicity of A given simplicity
of each AΛ is easily inferred from the fact that if I ⊂ A is an ideal, then IΛ = I∩AΛ is
an ideal in AΛ = B(HΛ ), which must be either zero or AΛ , both of which contradict
non-triviality of I. Theorem 8.23 is a famous result due to Lanford & Ruelle (1969),
partly anticipated by Powers (1967). For a complete proof see also Simon (1993),
Theorem IV.1.4.
§8.5.Quantum spin systems: Bundles of C*-algebras

This section was inspired by Landsman (2007), §6, and Gerisch (1993).
Folia of states (in the sense meant here) were introduced by Haag, Kadison, &

Kastler (1970), but note that the name “folium” is poorly chosen, since S(A) is by
no means foliated by its folia (for example, a folium may contain subfolia).



Chapter 9

Symmetry in algebraic quantum theory

In §3.9 we defined symmetries of classical physics as symmetries of either Poisson
manifolds or Poisson algebras; these notions are equivalent. At the bare level of the
underlying phase space X , merely seen as a locally compact space (rather than a
Poisson manifold), the key result establishing this equivalence is this:

Theorem 9.1. Let X and Y be locally compact Hausdorff spaces. Each isomorphism
α : C0(Y )→C0(X) is induced by a homeomorphism ϕ : X →Y via α = ϕ∗ (and so
each automorphism of C0(X) is induced by a homeomorphism of X).

More generally, if A and B are commutative C*-algebras, then each isomorphism
α : A→ B is induced by a homeomorphism ϕ : Σ(B)→ Σ(A) of the corresponding
Gelfand spectra via α = G−1

B ◦ϕ∗ ◦GA, where GA : A→ C0(Σ(A)) is the Gelfand
ismomorphism, cf. (C.79), and similarly for B (and so each automorphism of A is
induced by a homeomorphism of its Gelfand spectrum Σ(A)).

This immediately follows from Theorems C.8 and C.45, and Corollary C.48.
In Chapter 5 we saw that even in elementary quantum mechanics, where A =

B(H) for some Hilbert space H, the concept of a symmetry is more diverse, as least
apparently, since a non-commutative C*-algebra like B(H) gives rise to numerous
“quantum structures”. The ones we looked at were listed after Proposition 5.3, viz.

1. The normal pure state space P1(H), dressed with a transition probability (2.44).
2. The normal (total) state space D(H), seen as a convex set; see Theorem 2.8.
3. The self-adjoint operators B(H)sa on H, seen as a Jordan algebra.
4. The effects E (H) = [0,1]B(H) on H, seen as a convex poset.
5. The projections P(H) on H, seen as an orthocomplemented lattice.
6. The unital commutative C*-subalgebras C (B(H)) of B(H), seen as a poset.

Each structure comes with its own notion of a symmetry, see Definition 5.1. This
raises two questions, which for B(H) were completely answered in Chapter 5:

• The possible equivalence of the various notions of quantum symmetry;
• Unitary implementability of symmetries.

Indeed, it was found that if dim(H) > 2, then all these notions of symmetry are
equivalent, as well as unitarily implementable à la Wigner; see Theorem 5.4.
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9.1 Symmetries of C*-algebras and Hamhalter’s Theorem

In this chapter we generalize this analysis from A = B(H) to arbitrary C*-algebras
A, which for simplicity we assume to have a unit 1A. See §C.25 for terminology.

Definition 9.2. Let A be a unital C*-algebra.

1. The pure state space P(A) = ∂eS(A) is the extreme boundary of the state space
S(A), seen as a uniform space equipped with a transition probability

τ(ω,ω ′) = inf{ω(a) | a ∈ A,0≤ a≤ 1A,ω ′(a) = 1}. (9.1)

A Wigner symmetry of A is a uniformly continuous bijection W : P(A)→ P(A)
with uniformly continuous inverse that preserves transition probabilities, i.e.,

τ(W(ω)W(ω ′)) = τ(ω,ω ′), ω,ω ′ ∈ P(A). (9.2)

If A = B(H), Proposition C.177 guarantees that the above expression reproduces
the standard quantum-mechanical transition probabilities (2.44), but compared
to this special case, one novel aspect of P(A) is that all pure states are now taken
into account (as opposed to merely the normal ones, which notion is undefined
for general C*-algebras anyway). Another is that in order to obtain the desired
equivalence with other structures, the set P(A) should carry a uniform structure,
namely the w∗-uniformity inherited from A∗.

2. The state space S(A) is the set of all states on A, seen as a compact convex set in
the w∗-topology inherited from the embedding S(A)⊂ A∗. A Kadison symmetry

of A is an affine homeomorphism K : S(A)→ S(A).
Compared to A = B(H), firstly all states are now taken into account (instead of
all normal states), and secondly we have added a continuity condition on K.

3. Any C*-algebra A defines an associated Jordan algebra (more precisely, a JB-
algebra), namely Asa equipped with the commutative product a◦b = 1

2 (ab+ba).
A Jordan symmetry J of A is a Jordan isomorphism of (Asa,◦) (or, equivalently,
an invertible unital linear isometry of (Asa,‖ · ‖), which in turn is the same as
a unital linear order isomorphism of (Asa,≤), cf. Lemma C.173). A weak Jor-

dan symmetry of A is an invertible map J : Asa → Asa whose restriction to each
subspace Csa of Asa, where C ∈C (A), is linear and preserves the Jordan product.

4. The effects in A comprise the order unit interval E (A) = [0,1A], i.e., the set of
all a ∈ Asa such that 0 ≤ a ≤ 1A, seen as a convex poset in the obvious way. A
Ludwig symmetry of A is an affine order isomorphism L : E (A)→ E (A).

5. The projections P(A) in A form an orthomodular poset (cf. Definition D.1) with
e≤ f iff e f = e and e⊥ = 1A−e; if A is a von Neumann algebra (cf. Proposition
C.136), or more generally an AW*-algebra or a Rickart C*-algebra (see §C.24),
P(A) is even an orthomodular lattice. A von Neumann symmetry of A is an
isomorphism N : P(A)→P(A) of orthomodular posets.

6. The poset C (A) (lying at the heart of exact Bohrification) consists of all commu-
tative C*-subalgebras of A that contain the unit 1A, partially ordered by inclu-
sion. A Bohr symmetry of A, then, is an order isomorphism B : C (A)→ C (A).
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The structures 1, 2, 3 (with Jordan symmetries), and 4 are equivalent; see Theo-
rem C.179 for 1↔ 2 and Theorem C.172 for 2↔ 3; the equivalence 3↔ 4 is proved
in exactly the same way as in Proposition 5.21, with Lemma 5.20 for the special case
A = B(H) replaced by Lemma C.173 (which has the same proof). From 1–4 we pick
the Jordan algebra structure of A, since it gives the most straightforward results.

Henceforth, A and B are unital C*-algebras, and we define a weak Jordan iso-
morphism of A and B as an invertible map J : Asa → Bsa whose restriction to each
subspace Csa of Asa, where C ∈ C (A), is linear and preserves the Jordan product
◦ (so that a Jordan symmetry of A alone is a weak Jordan automorphism of of A).
Such a map complexifies to a map JC : A→ B in the usual way, i.e. writing a ∈ A
as a = b+ ic, with b∗ = b and c∗ = c, cf. (C.9), and put JC(a) = J(b)+ iJ(c)). If no
confusion arises, we just write J for JC. We first turn to Bohr symmetries.

Proposition 9.3. Given a weak Jordan isomorphism J : Asa → Bsa, the ensuing map
B : C (A)→ C (B) defined by B(C) = JC(C)≡ J(C) is an order isomorphism.

Note that as an argument of B the symbol C is a point in the poset C (A), whereas
as an argument of JC it is a subset of A, so that JC(C) stands for {JC(c) | c ∈C}.
Proof. The restriction J|C : C→ B is a homomorphism of C*-algebras on each com-
mutative C*-algebra C ⊂ A (although J : A→ B may not be). Since J|C is injective
on Csa (where it coincides with J), it is also injective on C. Hence J|C is isometric
by Theorem C.62.3, so that its range is closed and therefore J(C) is a commutative
C*-algebra in B, which is unital if C is. Trivially, if C ⊆ D in A (so that C ≤ D in
C (A)), then J(C)⊆ J(D) in B (so that J(C)≤ J(D) in C (B)). �

The converse, however, is a deep result, which we call Hamhalter’s Theorem:

Theorem 9.4. Let A and B be unital C*-algebras and let B : C (A)→ C (B) be an
order isomorphism. Then there is a weak Jordan isomorphism J : Asa→Bsa such that
B = JC. Moreover, if A is isomorphic to neither C2 nor M2(C), then J is uniquely
determined by B, so in that case there is a bijective correspondence J↔ B between
weak Jordan symmetries J of A and Bohr symmetries B of A.

Before proving this, let us explain why C2 and M2(C) are exceptional. In the first
case, C (C2)∼= {0,1} (with 0≡C ·12 and 1≡C2), which admits just one order iso-
morphism (viz. the identity map), which is induced by both the map (a,b) �→ (b,a)
and by the identity map on C2 (each of which is a weak Jordan automorphism).

In the second case, the poset C (M2(C)) has a bottom element 0 ≡ C · 12, as
before, but no top element; each element C �= C ·12 of C (M2(C) is a unitary conju-
gate of the diagonal subalgebra D2(C), with 0≤C but no other orderings. Further-
more, C∩C′ =C ·12 whenever C �=C′. Hence any order isomorphism of C (M2(C))
maps C · 12 to itself and permutes the C’s. Thus each map J : M2(C)sa →M2(C)sa
whose complexification JC : M2(C)→ M2(C) shuffles the C’s isomorphically (as
C*-algebras) gives a weak Jordan automorphism. For example, take (a,b) �→ (b,a)
on D2(C) and the identity on each C �= D2(C)); this induces the identity map on
C (M2(C). It follows that there are vastly more weak Jordan automorphisms of
M2(C) than there are order isomorphisms of C (M2(C)).
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Proof. The key to the proof lies in the commutative case, which can be reduced to
topology. If A =C(X), any C ∈ C (A) induces an equivalence relation ∼C on X by

x∼C y iff f (x) = f (y)∀ f ∈C. (9.3)

This, in turn, defines a partition X =
⊔

λ Kλ of X (henceforth called π), whose blocks
Kλ ⊂ X are the equivalence classes of ∼C. To study a possible inverse of this proce-
dure, for any closed subset K ⊂ X we define the ideal

IK =C(X ;K) = { f ∈C(X) | f (x) = 0∀x ∈ K}, (9.4)

in C(X), and its unitization İK = IK⊕C ·1X , which evidently consists of all continu-
ous functions on X that are constant on K. If X is finite (and discrete), each partition
π of X defines some unital C*-algebra C ⊆C(X) through

C =
⋂

Kλ∈π
İKλ , (9.5)

which consists of all f ∈ C(X) that are constant on each block Kλ of the given
partition π . In that case, the correspondence C ↔ π , where π is defined by the
equivalence relation ∼C in (9.3), gives a bijection between C (C(X)) and the set
P(X) of all partitions of X . For example, the subalgebra C = İK corresponds to the
partition consisting of K and all singletons not lying in K. Given the already defined
partial order on C (C(X)) (i.e., C ≤ D iff C ⊆ D), we may promote this bijection to
an order isomorphism of posets if we define the partial order ≤′ on P(X) to be the
opposite of the natural one ≤ in which π ≤ π ′ (where π and π ′ consist of blocks
{Kλ} and {K′λ ′ }, respectively) iff each Kλ is contained in some K′λ ′ (i.e., π is finer
than π ′). The partial ordering≤′ makes P(X) a complete lattice, whose top element
consists of all singletons on X and whose bottom element just consists of X itself:
the former corresponds to C(X), which is the top element of C (C(X)), whilst the
latter corresponds to C ·1X , which is the bottom element of C (C(X)).

For general compact Hausdorff spaces X , since C(X) is sensitive to the topology
of X the equivalence relation (9.3) does not induce arbitrary partitions of X . It turns
out that each C ∈C (C(X)) induces an upper semicontinuous partition (abbreviated
by u.s.c. decomposition) of X , i.e.,

• Each block Kλ of the partition π is closed;
• For each block Kλ of π , if Kλ ⊆ U for some open U ∈ O(X), then there is

V ∈ O(X) such that Kλ ⊆ V ⊆ U and V is a union of blocks of π (in other
words, if K is such a block, then V ∩K = /0 implies K = /0).

This can be seen as follows. Firstly, if we equip π with the quotient topology with
respect to the the natural map q : X → π , x �→ Kλ if x ∈ Kλ , then π is compact, for
X is compact. Moreover, π is Hausdorff. To see this, let Kλ and Kμ be two distinct
points in π . Recall that x,y ∈ Kλ if and only if f (x) = f (y) for each f ∈ C. Since
Kλ �= Kμ , there is some x ∈ Kλ , some y ∈ Kμ and some f ∈C such that f (x) �= f (y),
whence there are open disjoint U,V ⊆ C such that f (x) ∈U and f (y) ∈V .
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Define f̂ : π → C by f̂ (Kλ ) = f (x) for some x ∈ Kλ . By definition of Kλ , this is
independent of the choice of x ∈ Kλ , hence f̂ is well defined. Again by definition,
we have f = f̂ ◦ q, hence q−1( f̂−1)[U ] = f−1[U ], which is open in X since f is
continuous. Since π is equipped with the quotient topology, it follows that f̂−1[U ]
is open in π , and similarly f̂−1[V ] is open. Moreover, we have f̂ (Kλ ) = f (x) and
f (x) ∈U , hence Kλ ∈ f̂−1[U ], and similarly, Kμ ∈ f̂−1[V ]. We conclude that π is
also Hausdorff. Since q is a continuous map between compact Hausdorff spaces, it
follows that q is closed. It is a standard result in topology that q is closed iff π is a
u.s.c. decomposition, so we have now proved the latter.

Consequently, by the same maps (9.3) and (9.5), the poset C (C(X)) is anti-
isomorphic to the poset F(X) of all u.s.c. decompositions of X in the natural or-
dering ≤ (which proves that F(X) is a complete lattice, since C (C(X)) is). This is
still a complicated poset; assuming X to be larger than a singleton, the next step is to
identify the simpler poset F2(X) of all closed subsets of X containing at least two
elements within F(X), where (as above) we identify a closed K ⊆ X with the (u.s.c.)
partition πK of X whose blocks are K and all singletons not lying in K (note that the
poset F (X) of all closed subsets of X is less useful, since any singleton in F (X)
gives rise to the bottom element of F(X)). To do so, we first recall that β is said to
cover α in some poset if α < β , and α ≤ γ < β implies α = γ . If the poset has a
bottom element, then its covers are precisely its atoms. Furthermore, note that since
the bottom element 0 of F(X) consists of singletons, the atoms in F(X) are the par-
titions of the form π{x1,x2} (where x1 �= x2). It follows that some partition π ∈ F(X)
lies in F2(X)⊂ F(X) iff exactly one of the following conditions holds:

• π is an atom in F(X), i.e., π = π{x1,x2} for some x1,x2 ∈ X , x1 �= x2;
• π covers three (distinct) atoms in F(X), in which case π = π{x1,x2,x3} where all xi

are different, which covers the atoms π{x1,x2}, π{x1,x3}, and π{x2,x3};• If α �= β are atoms in F(X) such that α ≤ π and β ≤ π , there is an atom γ ≤ π
such that there are three (distinct) atoms covered by α ∨ γ and three (distinct)
atoms covered by β ∨ γ . In that case, π = πK where K has more than three el-
ements: if α = π{x1,x2} and β = π{x3,x4}, then due to the assumption α �= β ,
the set {x1,x2,x3,x4} (which lies in K) has at least three distinct elements, say
{x1,x2,x3}. Hence we may take γ = π{x2,x3}, in which case α ∨ γ = π{x1,x2,x3},
which covers the atoms α , γ , and π{x1,x3}. Likewise, we have β ∨ γ = π{x2,x3,x4},
which covers three atoms β , γ , and π{x2,x4}.

In order to see that π satisfying the third condition must be of the form πK , assume
the converse. So π contains two blocks Kλ and Kμ consisting of two or more el-
ements. Say {x1,x2} ⊆ Kλ and {x3,x4} ⊆ Kμ . Then α = π{x1,x2} and β{x3,x4} are
atoms such that α,β < π , and there is an atom γ = π{x5,x6} ≤ π such that there are
three atoms covered by α ∨ γ , and there are three atoms covered by β ∨ γ . It follows
from the second condition that α ∨γ = πL with L a three-point set. This implies that
{x1,x2}∩{x5,x6} is not empty, from which it follows that α∨γ = π{x1,x2,x5,x6}. Sim-
ilarly, we find β ∨ γ = π{x3,x4,x5,x6}. Since {x1,x2,x5,x6} and {x3,x4,x5,x6} overlap,
we obtain α ∨β ∨ γ = π{x1,x2,x3,x4,x5,x6}. Moreover, α,β ,γ ≤ π , so α ∨β ∨ γ ≤ π .
However, since x1,x2 ∈Kλ , we must have {x1,x2,x3,x4,x5,x6}⊆Kλ by definition of
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the order on F(X). But since x3,x4 ∈ Kμ , we must also have {x1,x2,x3,x4,x5,x6} ⊆
Kμ , which is not possible, since Kλ and Kμ are distinct blocks, hence disjoint. We
conclude that π can have only one block K of two or more elements, hence π = πK .

Thus F2(X)⊂ F(X) has been characterized order-theoretically. Moreover,

π = ∨x∈XπK(x), (9.6)

where K(x) is the unique block of X that contains x. Hence F2(X) determines F(X).
Let X and Y be compact Hausdorff spaces of cardinality at least two (so that

the empty set and singletons are excluded). By the previous analysis, an order
isomorphism B : C (C(X)) → C (C(Y )) is equivalent to an order isomorphism
F(X)→ F(Y ), which in turn restricts to an order isomorphism F2(X)→F2(Y ).

Lemma 9.5. If X and Y are compact Hausdorff spaces of cardinality at least two,
then any order isomorphism F : F2(X)→F2(Y ) is induced by a homeomorphism
ϕ : X → Y via F(F) = ϕ(F), i.e., F(F) = ∪x∈F{ϕ(x)}. Moreover, if X and Y have
cardinality at least three, then ϕ is uniquely determined by F.

To see the idea, we first prove this for finite X , where F2(X) simply consists of all
subsets of X having at least two elements, etc. It is easy to see that X and Y must
have the same cardinality |X | = |Y | = n. If n = 2, then F2(X) = X etc., so there is
only one map F, which is induced by each of the two possible maps ϕ : X → Y , so
that ϕ exists but fails to be unique. If n > 2, then F must map each subset of X with
n−1 elements to some subset of Y with n−1 elements, so that taking complements
we obtain a unique bijection ϕ : X → Y . To show that ϕ induces F, note that the
meet ∧ in F2(X) is simply intersection ∩, and also that for any F ∈F2(X),

F = ∪x∈F{x}= ∩x/∈F{x}c = (∪x/∈F{x})c, (9.7)

where Ac = X\A. Since F is an order isomorphism, it preserves ∧= ∩, so that

F(F) = ∩x/∈FF({x}c) = ∩x/∈F X\{ϕ(x)}= (∪x/∈F{ϕ(x)})c = ∪x∈F{ϕ(x)}. (9.8)

Now assume that X is infinite. Let x ∈ X . If x is not isolated, we define ϕ(x)
as follows. Let O(x) denote the set of all open neighborhoods of x. Since x is not
isolated, each O ∈ O(x) contains at least another element, so O ∈ F2(X). More-
over, finite intersections of elements of {O : O ∈ O(x)} are still in F2(X). In-
deed, if O1, . . . ,On ∈ O(x), then O1 ∩ . . .∩On is an open set containing x, and
since O1∩ . . .∩On ⊆ O1 ∩ . . .∩On, it follows that O1 ∩ . . .∩On ∈ F2(X). Since
F is an order isomorphism, we find that finite intersections of {F(O) : O ∈ O(x)}
are contained in F2(Y ). This implies that {F(O) : O ∈ O(x)} satisfies the finite
intersection property. As Y is compact, it follows that Ix =

⋂
O∈O(x)F(O) is non-

empty. We can say more: it turns out that Ix contains exactly one element. Indeed,
assume that there are two different points y1,y2 ∈ Ix. Then {y1,y2} ∈ F2(Y ), so
F−1({y1,y2}) ∈F2(X). Since {y1,y2} ∈ F(O) for each O ∈O(x), we also find that
F−1({y1,y2})⊆ O for each O ∈ O(x). This implies that
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F−1({y1,y2})⊆
⋂

O∈O(x)

O = {x}, (9.9)

where the last equality holds by normality of X . But this is a contradiction with F :
F2(X)→F2(Y ) being a bijection. So Ix contains exactly one point. We define ϕ(x)
such that {ϕ(x)}= Ix. Notice that ϕ(x) cannot be isolated in Y , since if we assume
otherwise, then Y \ {ϕ(x)} must be a co-atom in F2(Y ), whence F−1(Y \ {ϕ(x)})
is a co-atom in F2(X), which must be of the form X \{z} for some isolated z ∈ X .
Since x is not isolated, we cannot have x = z, so X \ {z} is an open neighborhood
of x, which is even clopen since z is isolated. By definition of ϕ(x), we must have
ϕ(x) ∈ F(X \ {z}), but F(X \ {z}) = Y \ {ϕ(x)}. We found a contradiction, hence
ϕ(x) cannot be isolated. Now assume that x is an isolated point. Then X \{x} is a co-
atom in F2(X), so F(X \{x}) is a co-atom in F2(Y ), too. Clearly this implies that
F(X \{x}) = Y \{y} for some unique y ∈ Y , which must be isolated, since Y \{y}
is closed. We define ϕ(x) = y.

In an analogous way, F−1 induces a map ψ : Y → X . We shall show that ϕ and
ψ are each other’s inverses. Let x ∈ X be isolated. We have seen that ϕ(x) must be
isolated as well, and that ϕ(x) is defined by the equation F(X \ {x}) = Y \ {ϕ(x)}.
Since F is an order isomorphism, we have X \ {x} = F−1(Y \ {ϕ(x)}). Since ϕ(x)
is isolated, we find by definition of ψ that ψ(ϕ(x)) = x. In a similar way we find
that ϕ(ψ(y)) = y for each isolated y ∈ Y . Now assume that x is not isolated and let
F ∈F2(X) such that x ∈ F . Then

{ϕ(x)} =
⋂

O∈O(x)

F(O)⊆
⋂
{F(O) : O open,F ⊆ O}

= F
(⋂

{O : O open,F ⊆ O}
)
= F(F), (9.10)

where the last equality follows by completely regularity of X . The penultimate
equality follows from the following facts. Firstly, the set

⋂{O : O open,F ⊆ O}
is closed since it is the intersection of closed sets. Moreover, the intersection con-
tains more than one point, since F contains two or more points and F ⊆ O for each
O. Hence

⋂{O : O open,F ⊆ O} ∈F2(X), and since F is an order isomorphism,
it preserves infima, which justifies the penultimate equality. Hence ϕ(x) ∈ F(F) for
each F ∈ F2(X) containing x. Since x is not isolated, ϕ(x) is not isolated either.
Hence in a similar way, we find that ψ(ϕ(x)) ∈ F−1(G) for each G ∈F2(Y ) con-
taining ϕ(x). Let z = ψ(ϕ(x)). Combining both statements, we find that z ∈ F for
each F ∈F2(X) such that x ∈ F . In other words, z ∈⋂{F ∈F2(X) : x ∈ F}. Since
x is not isolated, we each O ∈ O(x) contains at least two points. Hence⋂

{F ∈F2(X) : x ∈ F} ⊆
⋂
{O : O ∈ O(x)}= {x}, (9.11)

where we used complete regularity of X in the last equality. We conclude that z = x,
so ψ(ϕ(x)) = x. In a similar way, we find that ϕ(ψ(y)) = y for each non-isolated
y ∈ Y . We conclude that ϕ is a bijection with inverse ϕ−1 = ψ .
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Continuing the proof of Lemma 9.5, we have to show that if F ∈F2(X), then
ϕ[F ] = F(F). Let x ∈ F . In the proof that ϕ is a bijection we already noticed that
ϕ(x) ∈ F(F) if x is not isolated. If x is isolated in X , then we first assume that F
has at least three points. Since {x} is open, G = F \{x} is closed. Since F contains
at least three points, G ∈F2(X). So G is covered by F in F2(X), so F(F) covers
F(G). It follows that there must be an element yG ∈ Y \F(G) such that

F(F) = F(G∪{x}) = F(G)∪{yG}. (9.12)

Both G∪{x} and X \{x} are elements of F2(X), so

F(G) = F(G∪{x}∩X \{x}) = F(G∪{x})∩F(X \{x})
= (F(G)∪{yG})∩ (Y \{ϕ(x)}), (9.13)

where F(X \{x}) =Y \{ϕ(x)} by definition of values of ϕ at isolated points. Since
x /∈G and F preserves inclusions, this latter equation also implies F(G)⊆Y \{ϕ(x)}.
Hence we find

F(G) = (F(G)∪{yG})∩ (Y \{ϕ(x)}) = F(G)∪ ({yG}∩Y \{ϕ(x)}). (9.14)

Thus we obtain {yG} ∩Y \ {ϕ(x)} ⊆ F(G), but since yG /∈ F(G), we must have
ϕ(x) = yG. As a consequence, we obtain F(F) = F(G)∪{ϕ(x)}, so ϕ(x) ∈ F(F).

Summarizing, if F has at least three points, then ϕ(x)∈F(F) for x∈F , regardless
whether x is isolated or not. So ϕ[F ]⊆ F(F) for each F ∈F2(X) such that F has at
least three points. Let F ∈F2(X) have exactly two points. Then there are F1,F2 ∈
F2(X) with exactly three points such that F = F1 ∩F2. Then since ϕ is a bijection
and F as an order isomorphism both preserve intersections in F2(X), we find

ϕ[F ] = ϕ[F1∩F2] = ϕ[F1]∩ϕ[F2]⊆ F(F1)∩F(F2) = F(F1∩F2) = F(F). (9.15)

So ϕ[F ]⊆ F(F) for each F ∈F2(X). In a similar way, we find ϕ−1[G]⊆ F−1[G] for
each G ∈F2(Y ). So if we substitute G = F(F), we obtain ϕ−1[F(F)]⊆ F . Since ϕ
is a bijection, it follows that F(F) = ϕ[F ] for each F ∈F2(X). As a consequence, ϕ
induces a one-one correspondence between closed subsets of X and closed subsets
of Y . Hence ϕ is a homeomorphism. This proves Lemma 9.5. �

The special case of Theorem 9.4 where A and B are commutative now follows if
we combine all steps so far:

1. The Gelfand isomorphism allows us to assume A=C(X) and B=C(Y ), as above.
2. The order isomorphism B : C (A)→ C (B) determines an order isomorphism F :

F(X)→ F(Y ) of the underlying lattices of u.s.c. decompositions, and vice versa.
3. Because of (9.6), the order isomorphism F in turn determines and is determined

by an order isomorphism F : F2(X)→F2(Y ).
4. Lemma 9.5 yields a homeomorphism ϕ : X → Y inducing F : F2(X)→F2(Y ).
5. The inverse pullback (ϕ−1)∗ : C(X)→C(Y ) is an isomorphism of C*-algebras,

which (running backwards) reproduces the initial map B : C (C(X))→C (C(Y )).
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Therefore, in the commutative case we apparently obtain rather more than a weak
Jordan isomorphism J : Asa → Bsa; we even found an isomorphism J : A→ B of C*-
algebras. However, if A and B are commutative, the condition of linearity on each
commutative C*-subalgebra C of A includes C = A, so that (after complexification)
weak Jordan isomorphisms are the same as isomorphisms of C*-algebras.

We now turn to the general case, in which A and B are both noncommutative (the
case where one, say A, is commutative but the other is not, cannot occur, since C (A)
would be a complete lattice but C (B) would not). Let D and E be maximal abelian
C*-subalgebras of A, so that the corresponding elements of C (A) are maximal in the
order-theoretic sense. Given an order isomorphism B : C (A)→C (B), we restrict the
map B to the down-set↓D = C (D) in C (A) so as to obtain an order homomorphism
B|D : C (D)→ C (B). The image of C (D) under B must have a maximal element
(since B is an order isomorphism), and so there is a maximal commutative C*-
subalgebra D̃ of B such that B|D : C (D)→C (D̃) is an order isomorphism. Applying
the previous result, we obtain an isomorphism JD : D → D̃ of commutative C*-
algebras that induces B|D. The same applies to E, so we also have an isomorphism
JE : E → Ẽ of commutative C*-algebras that induces B|E . Let C = D∩E, which lies
in C (A). We now show that JD and JE coincide on C. There are three cases.

1. dim(C) = 1. In that case C = C ·1A is the bottom element of C (A), so it must be
sent to the bottom element C̃ = C ·1B of C (B), whence the claim.

2. dim(C) = 2. This the hard case dealt with below.
3. dim(C)> 2. This case is settled by the uniqueness claim in Lemma 9.5.

So assume dim(C) = 2. In that case, C = C∗(e) for some proper projection e ∈
P(A), which is equivalent to C being an atom in C (A). Recall that all our C*-
algebras are unital, and that by assumption C*-subalgebras C share the unit of
the ambient C*-algebra A, hence C∗(e) contains the unit of A. Hence C̃ ≡ B(C) =
B|D(C) = B|E(C) is an atom in C (B), which implies that C̃ = C∗(ẽ) for some pro-
jection ẽ ∈ P(B). If JD(e) = JE(e) we are ready, so we must exclude the case
JD(e) = ẽ, JE(e) = 1B− ẽ. This exclusion again requires a case distinction:

dim(eAe) = dim(e⊥Ae⊥) = 1; (9.16)
dim(eAe) = 1, dim(e⊥Ae⊥)> 1; (9.17)
dim(eAe) > 1, dim(e⊥Ae⊥)> 1, (9.18)

where e⊥ = 1A− e. Each of these cases is nontrivial, and we need another lemma.

Lemma 9.6. Let C ∈ C (A) be maximal (i.e., C ⊂ A is maximal abelian).

1. For each projection e ∈P(C) we have dim(eCe) = 1 iff dim(eAe) = 1.
2. We have dim(C) = 2 iff either A∼= C2 or A∼= M2(C).

Proof. For the first claim dim(eAe) = 1 clearly implies dim(eCe) = 1. For the con-
verse implication, assume ad absurdum that dim(eAe)> 1, so that there is an a ∈ A
for which eae �= λ · e for any λ ∈ C. If also dim(eCe) = 1, then any c ∈C takes the
form c = μ · e+ e⊥ce⊥ for some μ ∈ C. Indeed, since c,e,e⊥ commute within C,
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c = ce+ ce⊥ = ce2 + c(e⊥)2 = ece+ e⊥ce⊥ = μe+ e⊥ce⊥, (9.19)

where the last equality follows since ece ∈ eCe, which is spanned by e. This implies
that eae ∈ C′ (where C′ is the commutant of C within A), and since C is maximal
abelian, we have C = C′, whence eae ∈ C. Now eae = e(eae)e, hence eae ∈ eCe,
whence eae = λ ·e for some λ ∈C. Contradiction. According to Theorem C.169.1,
the assumption dim(C) = 2 implies that A is finite-dimensional, upon which Theo-
rem C.163 and (C.641) yield the second claim. �

Having proved Lemma 9.6, we move on the analyze the cases (9.16) - (9.18).

• Eq. (9.16) implies that C is maximal, as follows. Any element a ∈ A is a sum
of eae, e⊥ae⊥, eae⊥, and e⊥ae; nonzero elements of C′ = {e}′ can only be of
the first two types. If (9.16) holds, then dim(C′) = 2, but since C is abelian we
have C ⊆C′ and since dim(C) = 2 we obtain C′ =C. Lemma 9.6.2 then implies
that either A ∼= C2 or A ∼= M2(C). These C*-algebras have been analyzed after
the statement of Theorem 9.4, and since those two A’s conversely imply (9.16),
we may exclude them in dealing with (9.17) - (9.18). By Lemma 9.6.2 (applied
to D and E instead of C), in what follows we may assume that dim(D) > 2 and
dim(E)> 2 (as D and E are maximal).

• Eq. (9.17) implies dim(eD) = 1. Assuming JD(e) = ẽ, this implies dim(ẽD̃) = 1
(since JD is an isomorphism). Applying Lemma 9.6.1 to B gives dim(ẽBẽ) = 1
(since D̃ is maximal). If also dim((1B − ẽ)B(1B − ẽ)) = 1, then dim(D̃) = 2,
whence dim(D) = 2, which we excluded. Hence

dim((1B− ẽ)B(1B− ẽ))> 1. (9.20)

Applied to JE this gives JE(e) = ẽ, and hence JD and JE coincide on C =C∗(e).
• Eq. (9.18) implies that dim(eDe)> 1 as well as dim(e⊥Ee⊥)> 1 (apply Lemma

9.6.1 to D and E). Since dim(eDe) > 1, there is some a ∈ D such that e and
a′ = eae ∈ D are linearly independent, and similarly there is some b ∈ E such
that b′ = e⊥be⊥ is linearly independent of e⊥. Then a′,b′,e commute (in fact,
a′b′ = b′a′ = 0), so that we may form the abelian C*-algebras C1 =C∗(e,a′)⊆D
and C2 =C∗(e,b′)⊆ E, which (also containing the unit 1A) both have dimension
at least three. We also form C3 = C∗(e,a′,b′), which contains C1 and C2 and
hence is at least three-dimensional, too. Because D and E are maximal abelian,
C3 must lie in both D and E. Applying the abelian case of the theorem already
proved to D and E, as before, but replacing C used so far by C3, we find that JD
and JE coincide on C3 (as its dimension is > 2). In particular, JD(e) = JE(e).

To finish the proof, we first note that Theorem 9.4 holds for A = B = C by in-
spection, whereas the cases A∼= B∼= C2 or ∼= M2(C) have already been discussed.

In all other cases we define J : Asa → Bsa by putting J(a) = JD(a) for any max-
imal abelian unital C*-subalgebra D containing C = C∗(a) and hence a; as we just
saw, this is independent of the choice of D. Since each JD is an isomorphism of
commutative C*-algebras, J is a weak Jordan isomorphism. Finally, uniqueness of
J (under the stated restriction on A) follows from Lemma 9.5. �
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Theorem 9.4 begs the question if we can strengthen weak Jordan isomorphisms
to Jordan isomorphism (i.e. invertible linear maps that preserve the Jordan product,
cf. Appendix C.25). This hinges on the extendibility of weak Jordan isomorphisms
to linear maps (which of course continue to preserve the Jordan product and hence
are automatically Jordan isomorphisms). A general result in this direction is:

Theorem 9.7. Let A and B be unital AW*-algebras, where A contains no summand
of type I2. Then there is a bijective correspondence between order isomorphisms
B : C (A)→ C (B) and Jordan isomorphisms J : Asa → Bsa.

This follows from Gleason’s Theorem for AW*-algebras, which we will neither
state nor prove. If A = B = B(H), then the ordinary Gleason Theorem suffices to
yield the crucial lemma for Wigner’s Theorem for Bohr symmetries (i.e. Theorem
5.4.6):

Lemma 9.8. Let H be a Hilbert space of dimension greater than two. Then any Bohr
symmetry of C (B(H)) is induced by a Jordan symmetry of B(H)sa.

Proof. This follows from Theorem 9.4 and Corollary 5.22, which for the case at
hand turns weak Jordan isomorphisms into Jordan isomorphisms. �

We finally turn to symmetries of projection lattices. Theorem C.174 shows that
for von Neumann algebras (and more generally for AW*-algebras) A (without sum-
mand of type I2) and B, any isomorphism N : P(A)→P(B) of the correspond-
ing orthocomplemented projection lattices (which automatically preserves arbitrary
suprema) is the restriction of a unique Jordan isomorphism J : Asa → Bsa.

This completes the argument to the effect that for many C*-algebras of observ-
ables A (including B(H) for dim(H)> 1 as far as nos. 1–4 are concerned, and having
dim(H)> 2 if we also include nos. 5–6) our six seemingly different notions of sym-
metry of a quantum system described by a C*-algebra are equivalent. In particular,
they are equivalent to Jordan isomorphisms, which are also the easiest ones to use,
as they involve a readily identifiable part Asa of A, and (by complexification, as ex-
plained above) may even be defined on A itself (namely as those complex-linear
isomorphisms that preserve the involution ∗ as well as the Jordan product ◦).

Putting B = A and assuming (without loss of generality) that A⊆ B(H), Theorem
C.175 then yields a separation of Jordan automorphisms into three disjoint classes:

Corollary 9.9. If J is a Jordan symmetry of a unital C*-algebra A ⊆ B(H), then
there are three mutually orthogonal projections e1, e2, e3 in A′ ∩A′′ such that:

1. e1 + e2 + e3 = 1H;
2. The map a �→ J(a)e1 from A to B(e1H) is a homomorphism (of C*-algebras);
3. The map a �→ J(a)e2 from A to B(e2H) is an anti-homomorphism (ibid.);
4. The map a �→ J(a)e3 from A to B(e3H) is both a homomorphism and an anti-

homomorphism of C*-algebras (so that the “corner” J(A)e3 is commutative).

If in addition a �→ J(a)e1 is not an anti-homomorphism and a �→ J(a)e2 is not a
homomorphism, then e1, e2, and e3 are uniquely determined by these conditions.

As we shall now see, if the symmetries form a (Lie) group, then this result often
justifies restricting our attention simply to homomorphisms of C*-algebras.
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9.2 Unitary implementability of symmetries

There are good reasons for the dichotomy (or even trichotomy) between homo-
morphisms and anti-homomorphisms of C*-algebras left by Corollary 9.9, since
in physics certain discrete symmetries of quantum theory indeed give rise to anti-
homomorphisms: the best-known examples are time inversion T and charge con-
jugation C combined with space inversion (i.e. parity) P, giving CP (there are also
other examples in condensed matter physics, like quantum spin flip). However, for
the kind of problems mainly addressed in this book it is sufficient to restrict our
attention to homomorphisms. One reason is that even if we use discrete symmetries
(where the simplest non-trivial group Z2 often suffices to make our point), the mod-
els we treat simply realize these symmetries as homomorphisms. Another reason
is that if symmetries join to form a connected topological group G (typically a Lie
group) and the maps x �→ Jx sending x ∈G to some Jordan symmetry Jx of the given
C*-algebra A of observables form a (strongly) continuous homomorphism (see be-
low), then the identity e ∈ G must be mapped to the identity idA, which of course is
a homomorphism of A. Continuity then implies that all Jx must be homomorphisms.

In what follows we therefore assume that G is a (topological) group and that we
are given a (continuous) homomorphism x �→ αxfrom G into the group Aut(A) of all
automorphisms of A; note that, given our restriction to homomorphisms, we switch
notation from J to the customary symbol α . Continuity here always means strong
continuity, in that for each a ∈ A the map x �→ αx(a) from G to A is continuous (so
that the map G×A→ A given by (x,a) �→ αx(a) is continuous, as usually required
for group actions in a topological setting, cf. Proposition 5.35).

It follows from Theorem 5.4 (technically, from part 4 of that theorem, but
“morally” from all of it, including the equivalences between all kinds of symmetries)
that if A = B(H), then a homomorphism α : G→Aut(B(H)) is always implemented
by a family u(x) of unitary operators on H, in that

αx(a) = u(x)au(x)∗ (x ∈ G). (9.21)

The group representation property αxαy = αxy does not enforce u(x)u(y) = uxy:
indeed, as we saw in detail in §5.10 one may have a projective unitary representation
g �→ u(x) of G on H. However, by Theorem 5.62 one may usually pass to a central
extension Ǧ of G for which this problem does not arise (e.g., ˇSO(3) = SU(2)). In
Corollary 9.12 below (unbroken symmetry), even such a passage is not necessary.

For general C*-algebras A—especially those modeling either classical systems
(in which case A is commutative) or infinite quantum systems (where A is typically
an infinite tensor product), one rarely has α(a) = uau∗ for some u ∈ A even for
single automorphisms α , let alone for a whole group of them. Instead, we settle for
a weaker notion of unitary implementability, where the unitary u need not be in A.

Definition 9.10. Let π : A→ B(H) be a representation of A. An automorphism α ∈
Aut(A) is implemented in H if there exists a unitary operator u : H → H such that

π(α(a)) = uπ(a)u∗ (a ∈ A). (9.22)
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The fundamental criterion for implementability uses the pullback α∗ : S(A)→ S(A)
of α : A→ A to the state space S(A), defined by α∗ω = ω ◦α−1; cf. §C.25.

Theorem 9.11. An automorphism α : A→ A can be implemented in the GNS-repr-
resentation πω defined by a state ω on A iff πα∗ω and πω are unitarily equivalent.

Proof. Whether or not πα∗ω and πω are unitarily equivalent, we may define

w : Hω → Hα∗ω ; (9.23)
wπω(a)Ωω = πα∗ω(α(a))Ωα∗ω . (9.24)

This operator is well defined and unitary, and satisfies wΩω = Ωα∗ω as well as
wπω(a)w∗ = πα∗ω(α(a)); these properties even characterize w. If πα∗ω ∼= πω , there
exists a unitary v : Hω →Hα∗ω satisfying vπω(a)v∗ = πα∗ω(a), a∈ A. Then u = v∗w
satisfies (9.22) for π = πω . The converse is similar. �

An important special case arise if ω is invariant under α .

Corollary 9.12. If α∗ω = ω (that is, ω(α(a)) = ω(a) for all a ∈ A), then α is
implemented by a unitary operator uω : Hω → Hω satisfying uωΩω = Ωω . In par-
ticular, given a continuous homomorphism α : G→ Aut(A) such that α∗x ω = ω for
each x ∈G, one has a family of unitaries uω(x) : Hω →Hω that for all x ∈G satisfy

uω(x)Ωω = Ωω ; (9.25)
πω(αx(a)) = uω(x)πω(a)uω(x)∗, (9.26)

and form a continuous unitary representation of G on Hω .

Proof. One easily checks that the following operators do the job:

uω(x)πω(a)Ωω = πω(αx(a))Ωω . �

Given some α ∈ Aut(A), a weak form of spontaneous symmetry breaking
(SSB) is that some state ω—it is always a state that breaks a symmetry—satisfies
α∗ω �= ω; a stronger one states that the two equivalent conditions in Theorem 9.11
are violated, i.e., that α cannot be implemented in the GNS-representation πω(A)
(cf. Definition 9.10). In order to be physically relevant, the weaker notion has to be
supplemented with additional structure, which also guarantees that generically the
weak form implies the strong one. Part of this structure involves the identification of
suitable classes of states within which we define SSB; these classes are predicated
on a time-evolution on A. We also need a symmetry group instead of a single auto-
morphism α (which implicitly uses the group Zp = Z/p ·Z, where p is the smallest
integer such that α p = idA; if no such p exists the group is just Z). Thus we need:

• A C*-algebra A with time-evolution, i.e., a homomorphism α : R→ Aut(A);
• A preferred class of states defines via α , viz. ground states or equilibrium states;
• A symmetry group G acting on A via a homomorphismγ : G→Aut(A) satisfying

αtγg = γgαt (t ∈ R,g ∈ G). (9.27)
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9.3 Motion in space and in time

The C*-algebras A we are going to use are the quasi-local ones introduced in §8.5
for quantum spin systems; especially recall (8.130). Also, the C*-algebra A = B∞ in
§8.2 is a case in point, but this would require some changes in what follows. The last
expression in (8.130) is convenient for introducing spatial translation symmetry

τ : Zd → Aut(A) (9.28)

of Zd , as follows: for x ∈ Zd , define τx : AΛ → Ax+Λ initially by

τx(b(y)) = b(x+ y), (9.29)

where, for given b ∈ B(H) and y ∈Λ , the operator b(y) ∈ AΛ is the element ⊗z∈Λaz
with ay = b and az = 1H whenever z �= y. Since arbitrary elements of AΛ are (norm-
limits of) finite linear combinations of products of such operators b(y), the automor-
phic (and hence isometric) property of τx defines its action on all of AΛ (if necessary
by continuous extension). Note that for a ∈ AΛ the operator τx(a) thus defined is in-
dependent of the (typically non-unique) realization of a in terms of the b(y), because
τx is an isometry. The group homomorphism property of the map (9.28) thus con-
structed is guaranteed by (9.29), whilst continuity is no issue since Zd is discrete.

Since AΛ = ⊗y∈ΛAy with Ay = B(H), an equivalent way to define τx is to use
identifications idyz : Ay→ Az (since Ay = Az = B(H)), which, taking tensor products,
yield isomorphisms idΛ ,Λ ′ : AΛ → AΛ ′ whenever some bijection Λ ∼= Λ ′ is given.
In terms of those, we simply have (τx)|AΛ = idΛ ,x+Λ . Either way, the maps (τx)|AΛ
extend to τx : A→ A by continuity. The following property then holds:

Proposition 9.13. An automorphic action τ of Zd on a quasi-local C*-algebra A is
asymptotically abelian in the sense that limx→∞[a,τx(b)] = 0 for all a,b ∈ A.

Here x → ∞ means that any sequence (xn) with |xn| → ∞ with respect to the Eu-
clidean norm on Zd has a subsequence (x′n) for which the stated result holds.

Proof. For a and b local, i.e., a ∈ AΛ (1) and b ∈ AΛ (2) this follows from Einstein
locality. The general case follows by approximating a and b by local elements. �

Thus quasi-local C*-algebras A satisfy the assumptions in the following theorem,
which will be important in linking the various notions of SSB discussed earlier.

Theorem 9.14. Let A be a C*-algebra A equipped with an asymptotically abelian
action τ of Zd, and let ω be a translation-invariant primary state on A (i.e., τ∗x ω =ω
for all x ∈ Zd). Then Ωω is the only translation-invariant vector in Hω . Moreover,

lim
x→∞

ω(aτx(b)) = ω(a)ω(b) (a,b ∈ A); (9.30)

lim
x→∞

πω(τx(b)) = ω(b) ·1Hω (b ∈ A); (9.31)

lim
Λ↑Zd

|Λ |−1 ∑
x∈Λ

πω(τx(b)) = ω(b) ·1Hω (b ∈ A). (9.32)
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Here (9.31) and (9.32) hold in the weak operator topology on B(Hω), and the limit
Λ ↑ Zd in is taken along the hypercubes ΛN in (8.153) as N → ∞.

Proof. If ω is primary, Theorem 8.23 (or its proof) yields

lim
x→∞

|ω(aτx(b))−ω(a)ω(τx(b))|= 0. (9.33)

Translation-invariance of ω then yields (9.30), which also is a lemma for (9.31) -
(9.32). Towards (9.31) we compute ω(aτx(b)) in terms of the projection

e0 = lim
Λ↑Zd

|Λ |−1 ∑
x∈Λ

u(x) (9.34)

onto the translation-invariant subspace of Hω , where u is the unitary representation
of Zd on Hω from Corollary 9.12 (with G = Zd), and the limit is taken in the strong
operator topology. Eq. (9.34) is a special case of von Neumann’s L2 ergodic theo-
rem (which generalizes the Peter–Weyl–Schur relation e0 =

∫
G dxu(x) for compact

groups G to amenable groups like Zd or Rd). Since e0Ωω =Ωω , we have

ω(aτx(b)) = 〈Ωω ,πω(a)πω(τx(b))Ωω〉 (9.35)
= 〈Ωω ,πω(a)([πω(τx(b)),e0]+ e0πω(b))Ωω〉. (9.36)

We now let x → ∞. The commutator then vanishes, because the weak limit of
πω(τx(b)) lies in the center of πω(A)′′, which is trivial since ω is primary. The
remaining term matches with (9.30) iff e0 is one-dimensional, so that Ωω is the only
translation-invariant vector in Hω , and e0 = |Ωω〉〈Ωω |. A similar trick then yields

πω(τx(b))πω(a)Ωω = ([πω(τx(b)),πω(a)]+πω(a)([πω(τx(b)),e0]+ω(b)))Ωω .

Both commutators vanish (weakly) as x→ ∞, proving (9.31). Similarly, write

πω(τx(b))πω(a)Ωω = ([πω(τx(b)),πω(a)]+πω(a)u(x)πω(b))Ωω , (9.37)

and use (9.34) and the previous formula for e0 to prove (9.32). �

In the C*-algebraic formalism, dynamics is described by a continuous homomor-
phism α : R→Aut(A), t �→ αt . For A = B(H ′), where H ′ is some Hilbert space (not
to be confused with our earlier H in the quasi-local setting), Theorem 5.4 yields

αt(a) = utau∗t (9.38)

for some family of unitaries ut ≡ u(t), t ∈ R. Eq. (5.268) and Proposition 5.53 then
imply that the family ut may be redefined so as to make the map t �→ ut a continuous
unitary representation of R on H ′. Stone’s Theorem 5.73 finally gives the familiar
expression for time evolution in the so-called Heisenberg picture in terms of the
Hamiltonian h, which is a (possibly unbounded) self-adjoint operator on H ′, i.e.,

αt(a) = eithae−ith. (9.39)
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For arbitrary (unital) C*-algebras A one has no counterpart of Theorem 5.4, and
one cannot rely on Theorem 9.11 either because there are no preferred states to begin
with; such states typically require a time-evolution for their definition (see below).
For quantum spin systems (still with H =Cn and hence B(H)∼=Mn(C)), one tries to
construct the map t �→ αt from local approximations: with AΛ given by (8.129) with
(8.128), we pick local Hamiltonians hΛ ∈ B(HΛ ) and define maps t �→ Aut(AΛ ) by

αΛ
t (a) = eithΛ ae−ithΛ , (9.40)

where a ∈ AΛ . Letting Λ ↗ Zd , we would then like to assemble the family αΛ into
a single automorphism group α : R→Aut(A), which describes the dynamics of the
corresponding infinite quantum system. Towards this aim, we start from a potential
(also called an interaction) Φ(X)∈ B(HX ), which is defined for any finite sublattice
X of Zd , in terms of which the local Hamiltonians hΛ take the form

hΛ = ∑
X⊆Λ

Φ(X), (9.41)

where the sum is over all sublattices X of Λ . For nearest-neighbour interactions,
Φ(X) is nonzero iff X = {x,y} is a pair of neighbours, and in the presence of an
external magnetic field one also has terms proportional to Φ({x}). For example,
the quantum Ising model is defined by H = C2 and Φ({x,y}) =−Jσ3(x)σ3(y) for
nearest neighbours and Φ({x}) = −Bσ1(x) for all x, where J > 0 and B ∈ R. The
local Hamiltonians are therefore given by

hΛ =−J ∑
〈xy〉∈Λ

σ3(x)σ3(y)−B ∑
x∈Λ

σ1(x), (9.42)

where the sum over 〈xy〉 ∈ Λ denotes summing over nearest neighbours in Λ . The
expression (9.42) implicitly has so-called free boundary conditions, in that only
neighbours inside Λ take part in hΛ . Alternatively, one could use periodic boundary
conditions, which in d = 1 define the quantum Ising chain

hN =−J

(
N−1

∑
x=1

(σ3(x)σ3(x+1)+σ3(N)σ3(1)

)
−B

N

∑
x=1

σ1(x). (9.43)

In (9.42) - (9.43) the operators σi(x) in AΛ is defined as explained after (9.29). We
are going to study the quantum Ising chain in detail in connection with SSB; for
the moment, we just mention another popular spin model, namely the Heisenberg
model for magnetism. This also has H = C2, but the local Hamiltonians are

hΛ = J ∑
〈xy∈Λ〉

3

∑
i=1

σi(y)σi(y), (9.44)

with free boundary conditions, where J < 0 ( J > 0) yields (anti) ferromagnetism.
Although we do not have (9.38) for any ut ∈ A, we may construct αt as follows.
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Theorem 9.15. Let Φ be a short-range potential in that there is r ∈ N such that
Φ(X) �= 0 only if |x− y| ≤ r for all x,y ∈ X, and define local Hamiltonians hΛ by
(9.41). For fixed finite Λ ⊂ Zd and a ∈ AΛ , the following (norm) limit exists and
defines an automorphism αt of ∪Λ⊂Zd AΛ and hence by continuity also of A:

αt(a) = lim
N→∞

eithΛN ae−ithΛN , (9.45)

Proof. Note that for large enough N, the hypercube ΛN contains any Λ ∈P f (Zd).
Take a ∈ AΛ , take ΛN2 ⊃ΛN1 ⊃Λ , and use (9.40) and (9.41) to compute

‖α(ΛN2 )
t (a)−α

(ΛN1 )
t (a)‖= ‖

∫ t

0
ds

d
ds

(α
(ΛN2 )
s ◦α(ΛN1)

t−s (a))‖

=

∥∥∥∥∫ t

0
ds
(
[hΛN2

,α
(ΛN1)
s ◦α(ΛN1)

t−s (a)]−α
(ΛN2 )
s ([hΛN1

,α
(ΛN1 )
t−s (a)])

)∥∥∥∥
=

∥∥∥∥∫ t

0
dsα

(ΛN2 )
s ([hΛN2

−hΛN1
,α

(ΛN1 )
t−s (a)])

∥∥∥∥
≤
∫ t

0
ds‖α(ΛN2 )

s ([hΛN2
−hΛN1

,α
(ΛN1 )
t−s (a)])‖

≤
∫ t

0
ds‖[hΛN2

−hΛN1
,α

(ΛN1 )
t−s (a)]‖

=
∫ t

0
ds

∥∥∥∥∥∥ ∑
x∈ΛN2\ΛN1

∑
X�x

[Φ(X),α
(ΛN1 )
t−s (a)]

∥∥∥∥∥∥
≤ ∑

x∈ΛN2\ΛN1

∑
X�x

∫ t

0
ds‖[Φ(X),α

(ΛN1 )
t−s (a)]‖. (9.46)

We now show that the left-hand side of the first line is a Cauchy sequence. Since

α
(ΛN1 )
t−s (a) = e

i(t−s)∑Y⊆ΛN1
Φ(Y )

ae
−i(t−s)∑Y⊆ΛN1

Φ(Y ) ∈ B(HΛN1
), (9.47)

which is finite-dimensional (as ΛN1 is finite), we have a norm-convergent expansion

α
(ΛN1 )
t (a) = a+ it ∑

Y1⊆ΛN1

[Φ(Y1),a]+
(it)2

2! ∑
Y1,Y2⊆ΛN1

[Φ(Y2), [Φ(Y1),a]]+ · · · (9.48)

Let Λ(r) consist of all y ∈ Zd for which there is some x ∈ Λ for which |x− y| ≤ r.
Then the zeroth term a in (9.48) is in AΛ , the first is in AΛ(r), . . . , the n’th is in
AΛ(nr). Therefore, we can find n= n(N1,N2,3) such that the only terms in (9.48) that
contribute to the commutator in (9.46) are the n’th and beyond. Taking ΛN1 and ΛN2

large enough, this tail can be made arbitrarily small, so that (α(ΛN)
t (a))N is a Cauchy

sequence in A. This gives convergence of (9.45) for a ∈ AΛ , where Λ is arbitrary
(but finite), yielding an automorphism αt in ∪ΛAΛ . Being an automorphism, αt is
isometric, so that it extends to A by continuity. �
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9.4 Ground states of quantum systems

A ground state of a finite system AΛ = B(HΛ ) is an eigenstate of the local Hamil-
tonian hΛ with the lowest eigenvalue; because dim(HΛ )< ∞, the spectrum of hΛ is
discrete and hence local ground states exist. For infinite systems, no Hamiltonian is
yet defined, so we need to define ground states in terms of the dynamics αt .

Definition 9.16. Let A be a C*-algebra with time evolution, i.e., a continuous ho-
momorphism α : R→Aut(A) (which gives the dynamics of the underlying physical
system). A ground state of (A,α) is a state ω on A such that:

1. ω is time-independent, i.e. α∗t ω = ω (or ω(αt(a)) = ω(a) for all a ∈ A) ∀t ∈R;
2. The generator hω of the ensuing continuous unitary representation

t �→ ut = eithω (9.49)

of R on Hω has positive spectrum, i.e., σ(hω)⊆ R+, or, equivalently,

〈ψ,hωψ〉 ≥ 0 (ψ ∈ D(hω)). (9.50)

Note that the existence of the operator hω is guaranteed by Corollary 9.12 and the
arguments after (9.38). Since Corollary 9.12 yields

hωΩω = 0; (9.51)
πω(αt(a)) = eithω πω(a)e−ithω , (9.52)

it follows that hω is a Hamiltonian in the usual sense, implementing the Heisenberg-
picture time evolution (albeit in the representation πω(A) rather than in A itself).
Moreover, in view of (9.51) and the assumed positivity of σ(hω), the unit vector
Ωω of the GNS-representation πω induced by a ground state ω is a ground state
for the Hamiltonian hω in the usual sense. If ω is pure (see below for a discussion
of this desirable possibility), then obviously exp(ithω) ∈ πω(A)′′, since the latter
equals B(Hω). A deep result states that this is always the case (Borchers Theorem):

Theorem 9.17. If ω is a ground state on A, then exp(ithω) ∈ πω(A)′′ for all t ∈ R.

As we shall see, this contrasts with equilibrium states. The Heisenberg equation of
motion for operators a(t) has a counterpart in the C*-algebraic formalism, which
requires a concept already encountered in §3.1, but repeated here for convenience:

Definition 9.18. A derivation on a C*-algebra A is a linear map δ : A→ A with

δ (ab) = δ (a)b+aδ (b), (a,b ∈ A) (Leibniz rule). (9.53)

An unbounded derivation is a linear map δ : Dom(δ )→ A, where the domain
Dom(δ )⊂ A of δ is a dense linear subspace of A, that satisfies the Leibniz rule.

An (unbounded) derivation δ is symmetric when δ (a∗) = δ (a)∗ for all a (in
Dom(δ ), which must be self-adjoint in that a ∈ Dom(δ ) iff a∗ ∈ Dom(δ )).
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Bounded derivations are rare in classical physics; nonzero derivations of A=C0(Rd)
do not even exist, but it has plenty of unbounded derivations, viz. δ ( f ) = ξ f for
some vector field ξ on Rd . In quantum mechanics, A= B(H ′) does have derivations,
all given by δ (a) = i[h,a] for some bounded (self-adjoint) operator h on H ′.

Proposition 9.19. Any continuous homomorphism α : R → Aut(A) on any C*-
algebra A defines an unbounded symmetric derivation δ on A by the norm limit

δ (a) =
d
dt

αt(a)|t=0 ≡ lim
t→0

αt(a)−a
t

, (9.54)

where Dom(δ ) consists of all a∈A for which this limit exists. Moreover, this domain
is stable under αt in that if a ∈ Dom(δ ), then αt(a) ∈ Dom(δ ) (t ∈ R).

The proof is an elementary verification (cf. Theorem 5.73). On Hω we then have

πω(δ (a)) = i[hω ,πω(a)], (9.55)

which, then, is “Heisenberg’s equation of motion revisited.” One may also reformu-
late Definition 9.16 in terms of the derivation δ associated to α by (9.54):

Proposition 9.20. A state ω ∈ S(A) is a ground state for given dynamics α iff

−iω(a∗δ (a))≥ 0 (a ∈ Dom(δ )). (9.56)

Proof. If ω is a ground state according to Definition 9.16, we may use (9.55),
(C.196), (9.51), and finally (9.50) to compute

−iω(a∗δ (a)) = −i〈Ωω ,πω(a∗δ (a))Ωω〉= 〈Ωω ,πω(a)∗[hω ,πω(a)]Ωω〉
= 〈πω(a)Ωω ,hωπω(a)Ωω〉 ≥ 0. (9.57)

Conversely, we first show that if ω satisfies (9.56), then it is αt -invariant. We initially
assume a = a∗, so that δ (a)∗ = δ (a∗) = δ (a), as δ is symmetric by construction.
Since ω is a state, one has ω(b∗) = ω(b) for any b ∈ A, so taking b = δ (a)a, using
(9.56) just in that ω(a∗δ (a)) ∈ iR, we obtain ω(δ (a)a) =−ω(aδ (a)). Hence

ω(δ (a2)) = 0, (9.58)

by (9.53), so also ω(δ (αs(a)2)) = 0, s ∈ R. With (9.54), we find

0 =
∫ u

0
dsω(δ (αs(a)2)) =

∫ u

0
dsω

(
d
dt

αt(αs(a)2)|t=0

)
=
∫ u

0
ds

d
dt

ω(αt+s(a)2))|t=0 =
∫ u

0
ds

d
ds

ω(αs(a)2)) = ω(αu(a2))−ω(a2).

Hence ω(αu(a2)) = ω(a2) for each u > 0 (and analogously for each u < 0), when-
ever a∗ = a, i.e., ω(αu(b) = ω(b) for each b ≥ 0. But any b ∈ A may be written as
a sum of at most four positive elements, so ω ◦αu = ω for all u ∈ R. We therefore
have a Hamiltonian hω , whose positivity follows from (9.57), ran backwards. �
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9.5 Ground states and equilibrium states of classical spin systems

Thermal equilibrium states are arguably physically more relevant than ground states,
as the latter rely on the idealization of temperature zero. Since in statistical mechan-
ics infinite systems are used to approximate very large ones, it will be of particular
interest to define equilibrium states in infinite volume. If only to highlight contrasts
with quantum theory, we take a long run and start with the classical case.

Classical spin systems on a lattice are defined by a single-site configuration space
n ∼= {0,1, . . . ,n}, where m ∈ n may either be interpreted as some spin-like degree
of freedom (as in the Ising model, where n = 2) or as the number of (structureless)
particles occupying a given site (in which case one has a lattice gas). As in (C.310),
for any finite sublattice Λ ⊂ Zd , the local algebra of observables is given by

A(c)
Λ =C(nΛ ), (9.59)

where nΛ = C(Λ ,n) consists of all functions s : Λ → n. For finite Λ this is a finite
set (of cardinality n|Λ |), so that all functions in question are continuous and hence
C(nΛ ) just stands for the commutative C*-algebra of all functions from nΛ to C. If
Λ1 ⊆ Λ (2), we have maps ι(c)

Λ1Λ (2) : A(c)
Λ1

↪→ A(c)
Λ (2) , written f1 �→ f2, which are given

by
f2(s) = f1(s|Λ1), (9.60)

where s :Λ (2)→ n. As these maps are injective, the ensuing inductive limit is simply

A(c) = ∪Λ⊂Zd A(c)
Λ
∼=C

(
nZ

d
)
, (9.61)

where nZ
d
= ∏x∈Zd n is endowed with the product topology and hence (by Ty-

chonoff’s theorem) is compact (for n = 2,d = 1 this is a model of the Cantor set).
As in the quantum case, local Hamiltonians are defined via an interaction Φ ,

which now is an assignment X �→ Φ(X), where X ⊂ Zd is finite and Φ(X) ∈ A(c)
X .

If X ⊂ Y , we regard Φ(X) an an element in A(c)
Y through the inclusion A(c)

X ⊂ A(c)
Y ,

indicating this explicitly by writing Φ(X)Y ∈ A(c)
Y . We then define hΛ ∈ A(c)

Λ by

hΛ = ∑
X⊂Λ

Φ(X)Λ , (9.62)

where the the sum is over all subsets X of Λ . For example, the Ising Hamiltonian

hΛ (s) =−J ∑
〈i j〉Λ

sis j−B ∑
i∈Λ

si, (9.63)

where the sum is over nearest neighbours in Λ , and we assume 2 = {−1,1} (rather
than the usual c-bit {0,1}), comes from the following potential:

• Φ(X) = 0 if either |X |> 2 or, if |X |= 2, its elements are not nearest neighbours;
• Φ({i}) : s �→ −Bsi, and Φ({i, j}) : s �→ −Jsis j if i and j are nearest neighbours.
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As in (9.41), the prescription (9.62) has free boundary conditions, in that it only
involves spins insideΛ . Another possibility is to fix a “boundary” spin configuration
b ∈ nZ

d
, and define hb

Λ ∈ A(c)
Λ by

hb
Λ = ∑

X⊂Zd ,|X |<∞,X∩Λ �= /0

Φ(X)b
Λ . (9.64)

This involves some new notation Φ(X)b
Λ , which means the following. In principle,

Φ(X) ∈ A(c)
X is a function on nX . We now turn Φ(X) into a function Φ(X)b

Λ on nΛ

(so that hb
Λ is a function on nΛ as required): for given s :Λ → n and given b : Zd → n

we define s′ : X → n by putting s′ = s on X ∩Λ and s′ = b on the remainder of X
(which is X ∩Λ c, with Λ c = Zd\Λ ). Then

Φ(X)b
Λ (s) =Φ(X)(s′). (9.65)

Physically, this simply means that those spins outside Λ that interact with spins in-
side Λ are set at a fixed value determined by the boundary condition b. For example,
consider the Ising model in d = 1. If we take Λ = {2,3}, then from (9.62) we obtain
hΛ = −Js2s3−B(s2 + s3); spins outside Λ do not contribute. From (9.64), on the
other hand, we obtain hb

Λ = hΛ − J(b1s2 + s3b4). Although the boundary condition
b is arbitrary, one may think of simple choices like bi = 1 or −1 for each i.

We may actually rewrite (9.64) as a difference between Hamiltonians with free
boundary conditions. To do so, for given finite Λ we pick some finite Λ ′ ⊃Λ large
enough that it contains all spins outsideΛ that interact with spins insideΛ (provided
this is possible). With the conventional notation hΛ (s|b)≡ hb

Λ (s), this yields

hΛ (s|b) = hΛ ′(s,b)−hΛ ′\Λ (b) = ∑
X ′⊂Λ ′

Φ(X ′)Λ ′(s,b)− ∑
Y⊂Λ ′\Λ

Φ(Y )Λ ′\Λ (b).

Analogous to (9.65), the notation Φ(X ′)Λ ′(s,b) here means Φ(X ′)Λ ′(s′), for the
function s′ :Λ ′ → n that on Λ ⊂Λ ′ coincides with s :Λ → n, whilst on (Λ ′\Λ)⊂Λ ′
it coincides with the restriction of b to Λ ′\Λ . Thus we may also write

hΛ (s|b) = lim
Λ ′↑Zd

(hΛ ′(s,b)−hΛ ′\Λ (b)), (9.66)

although neither hZd (s,b) nor hZd\Λ (b) makes sense by itself. Periodic boundary
conditions for local Hamiltonians may be defined for arbitrary interactions Φ and
special lattices. For example, the Ising chain in d = 1 has local Hamiltonians

hpbc
{1,2,...,n}(s) = J

(
s1sn +

n−1

∑
i=1

sisi+1

)
−B

n

∑
i=1

si. (9.67)

Naively, a ground state of a finite classical spin system, i.e., a system of the
above kind defined on a fixed finite lattice Λ ⊂ Zd , is a spin configuration s0 ∈ nΛ

that minimizes the local Hamiltonian hΛ (9.62), or its counterpart (9.64), that is,
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hΛ (s0)≤ hΛ (s), (9.68)

for all s ∈ nΛ . For example, if Λ is a hypercube ΛN , then the Ising model (9.63)
has a unique ground state for B > 0, namely s0(x) = 1 for all x ∈ Λ , whereas it
has two ground states s±0 for B = 0, given by s±0 (x) = ±1 for all x. Ground states
of finite classical systems always exist (since the space on which hΛ is finite), but
they are not necessarily unique; we just gave a counterexample! The same is true
for quantum theory, since for B = 0 also the quantum Ising model (9.42) has two
degenerate symmetry-breaking ground states. Nonetheless, this case is special, since
for nonzero small values of B the ground state of the quantum Ising model is unique
for finite Λ , whereas on the infinite lattice Zd it is degenerate (cf. §10.7).

The definition of ground states of infinite classical spin systems is just slightly
more involved: for local Hamiltonians hΛ with free boundary conditions defined by
an interaction Φ à la (9.62), a ground state is a point s0 ∈ nZ

d
for which

hΛ (s0|Λ )≤ hΛ (s|Λ ), (9.69)

for any finite Λ ⊂Zd and any spin configuration s∈ nZ
d
. Alternatively, one may ask

hs0
Λ (s0)≤ hs0

Λ (s), (9.70)

for all finite Λ ⊂Zd and all spin configurations s∈ nZ
d

that coincide with s0 outside
Λ , where hs0

Λ stands for (9.64) with b = s0. In other words, s0 provides a boundary
condition b, which is fixed for all s that compete with s0 in minimizing the local
Hamiltonian hb=s0

Λ . Both definitions give the usual two ground states for the Ising
model with B = 0 (in which all spins are either “up” or “down”), but the second
one also opens the possibility of domain walls, where infinite chains of “spin up”
alternate with infinite chains of “spin down”, and similarly in higher d.

If different ground states in the above (“pure”) sense exist, we may reinterpret
such states s0 as Dirac measures δs0 on the space nΛ of all spin configurations on Λ ,
and may also allow convex combinations of ground states as ground states. This, as
well as the analogy with Definition 9.16 (in which no purity condition is imposed)
inspires a more liberal definition of a ground state, which is predicated on Boltz-
mann’s idea that a state of a classical system of the kind we consider is a probability
measure μ0

Λ on nΛ , and likewise for nZ
d
. In the C*-algebraic formalism we use, this

follows from (9.61) and the identification of states on C(X) with completely regular
probability measures on X (assumed to be a compact Hausdorff space, cf. §B.5). A
state μ on C(nZ

d
), i.e., a probability measure on nZ

d
, induces a state on each local

algebra C(nΛ ), i.e., a probability measure μΛ on nΛ simply by restriction, since

C(nΛ )⊂C(nZ
d
) (9.71)

through the injection (9.60), according to which fΛ ∈C(nΛ ) has image f ∈C(nZ
d
)

defined by f (s) = fΛ (s|Λ ). The measure μΛ , then, is given in terms of μ by
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μΛ ( fΛ ) = μ( f ); (9.72)

the corresponding probability distribution pΛ (i.e., pΛ (s) = μΛ ({s})) is given by

pΛ (s) = μ
(
{s′ ∈ nZ

d | s′|Λ = s}
)
, s ∈ nΛ . (9.73)

The family of probability measures (μΛ ) defined by μ is consistent in that if Λ (1) ⊂
Λ (2) and f1 ∈C(nΛ

(1)
) and f2 ∈C(nΛ

(2)
) are related as in (9.60), then

μΛ (1) ( f1) = μΛ (2) ( f2). (9.74)

Conversely, a consistent family of probability measures (μΛ ) defines a unique prob-
ability measure μ on nZ

d
which induces the given family through (9.72).

Definition 9.21. For given finite Λ ⊂ Zd, a probability measure μ0
Λ on nΛ is a

ground state of a local Hamiltonian hΛ (with free boundary conditions) if, in terms
of the probabilities p0

Λ (s) = μ0
Λ ({s}), for any probability measure μΛ on nΛ ,

∑
s∈nΛ

p0
Λ (s)hΛ ≤ ∑

s∈nΛ
pΛ (s)hΛ . (9.75)

A probability measure μ0 on nZ
d

is a ground state for some interaction Φ if (9.75)
holds for any probability measure μ on nZ

d
and any finite subset Λ ⊂Zd, where this

time p0
Λ (and analogously pΛ ) is defined by (9.73).

In particular, convex sums of pure ground states are ground states in this more gen-
eral sense, so that, if all pure ground states break some symmetry (as is the case
for the Z2-symmetry s �→ −s of the Ising model at B = 0), symmetric convex sums
will restore the symmetry. The set of all ground states of a given interaction Φ is a
convex set, whose extreme points are the pure ground states (at least, under suitable
hypotheses on Φ). This leads to a discussion of SSB similar to the quantum case.

In the following discussion of equilibrium states, we use the notation

Pr(X)∼= S(C(X)) (9.76)

for the compact convex set of all completely regular probability measures on X ,
which as above will either be the finite set nΛ (with discrete topology)—on which of
course any probability measure is completely regular—or the compact space nZ

d
. In

the first case we may as well use probability distributions pΛ (instead of probability
measures) on nΛ . In the second, we could also use Baire measures.

Given an interaction Φ and the ensuing family (9.62) of local Hamiltonians hΛ ,
we define the local energy for each finite Λ ⊂ Zd as a function EΛ : Pr(nΛ )→R by

EΛ (pΛ ) = ∑
s∈nΛ

pΛ (s)hΛ (s). (9.77)
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Of course, this is just the expectation value of the Hamiltonian in the state pΛ . The
local entropy SΛ : Pr(nΛ )→R is a more subtle concept; rather than the expectation
value of some (local) observable, it specifies a property of the probability distribu-
tion itself. With Boltzmann’s constant kB, we have

SΛ (pΛ ) =−kB ∑
s∈nΛ

pΛ (s) ln(pΛ (s)). (9.78)

Note that SΛ (pΛ )≥ 0, with equality iff pΛ is a pure state (i.e., pΛ is supported at a
single spin configuration). The local free energy F β

Λ : Pr(nΛ )→ R is defined as

F β
Λ = EΛ −T SΛ , (9.79)

where β = 1/kBT . A local equilibrium state, then, is a probability distribution pβΛ
that minimizes the free energy (for fixed temperature T ).

Theorem 9.22. For each T > 0, there is a unique local equilibrium state, given by
the Boltzmann distribution (and associated partition function)

pβΛ (s) = (Zβ
Λ )
−1e−βhΛ (s); (9.80)

Zβ
Λ = ∑

s′∈nΛ
e−βhΛ (s′). (9.81)

The associated free energy in equilibrium is then given by

Fβ
Λ = F β

Λ (pβΛ ) =−β−1 lnZβ
Λ . (9.82)

Proof. The claim follows from the fact that any pΛ ∈ Pr(nΛ ) satisfies the inequality

F β
Λ (pΛ )≥−β−1 lnZβ

Λ , (9.83)

with equality iff p = pβΛ , i.e., using (9.79), (9.77), and (9.78), we need to show that

∑
s∈EΛ

p(s)(hΛ (s)+β−1 ln p(s))+β−1 lnZβ
Λ ≥ 0. (9.84)

Using (9.80), for each s ∈ EΛ we obtain

−βhΛ (s) = lnZβ
Λ + ln pβΛ (s). (9.85)

Substituting this in (9.84), using ∑s p(s) = 1, omitting the ensuing prefactor β−1,
and noting that pβΛ (s)> 0 for all s, the inequality (9.84) to be proved becomes

∑
s∈EΛ

p(s) ln

(
p(s)

pβΛ (s)

)
≥ 0. (9.86)
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Hence we need to prove the inequality

∑
s∈EΛ

pβΛ (s) ·
(

p(s)

pβΛ (s)

)
ln

(
p(s)

pβΛ (s)

)
≥ 0, (9.87)

with equality iff p(s) = pβΛ (s) for all s. Let us note that the function f (x) = x lnx is
strictly convex for all x≥ 0, that is, for any finite set of numbers p′(s) ∈ (0,1) with
∑s p′(s) = 1 and any set of positive real numbers (xs)s ≥ 0, we have

∑
s

p′(s) f (xs)≥ f
(

∑
s

p′(s)xs

)
, (9.88)

with equality iff all numbers xs are the same. Applying this with p′(s) = pβΛ (s) and
xs = p(s)/pβΛ (s), so that p′(s)xs = p(s) and hence ∑s p′(s)xs = ∑s p(s) = 1, which
makes the right-hand side of (9.88) vanish since ln(1) = 0, finally leads to (9.87).
Equality arises iff p(s)/pβΛ (s) equals the same numer c for all s; summing over all s
forces c = 1, so that one has equality iff p(s) = pβΛ (s) for all s, as desired. �

Neither the local Hamiltonians (9.62) nor the local partition functions (9.81) have
a limit as Λ ↑Zd . A precise definition equilibrium states of infinite classical systems
was given in 1968 by Dobrushin and by Lanford and Ruelle (DLR).

Definition 9.23. For fixed inverse temperature β ∈ (0,∞) and fixed interaction Φ ,
a Gibbs measure μβ is a (Baire = regular Borel) probability measure on nZ

d
such

that for each finiteΛ ⊂Zd and each pair (s,b) of a spin configuration s :Λ→ n plus
boundary condition b : Λ c → n, the conditional probability μβ (s|b) for the events

s = {s′ ∈ nZ
d | s′|Λ = s} ⊂ nZ

d
; (9.89)

b = {s′′ ∈ nZ
d | s′′|Λ c = b} ⊂ nZ

d
, (9.90)

is given in terms of the local Hamiltonian hΛ (s|b) as defined by (9.66) by

μβ (s|b) = (Zβ
Λ (b))

−1e−βhΛ (s|b), (9.91)

Zβ
Λ (b) = ∑

s∈nΛ
e−βhΛ (s|b). (9.92)

Recall that μβ (s|b) = μβ (s∩ b)/μβ (b), where s∩ b = {sb} consists of the single
spin configuration sb : Zd → n that coincides with s on Λ and coincides with b on
Λ c. Thus we may write μβ (s|b) = pβ (sb)/μβ (b), where pβ (s) = μβ ({s}) as usual.

It was initially unclear how to generalize this highly fruitful definition of equilib-
rium states in classical statistical mechanics to the quantum case, where conditional
probabilities are not well defined (this was eventually resolved, however, through
Definition 10.9 below). Thus a different (equally fruitful) approach to equilibrium
states of (infinite) quantum systems was developed, to which we now turn.
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9.6 Equilibrium (KMS) states of quantum systems

For finite quantum spin systems we have expressions for the energy Ê β
Λ , the en-

tropy ŜΛ , and the free energy F̂Λ that are analogous to their classical counterparts
(9.77), (9.78), and (9.79). In particular, these quantities are functions on the state
space S(AΛ ). Since AΛ = B(HΛ ), where we assume that H and hence HΛ is finite-
dimensional, each state ωΛ ∈ S(AΛ ) is given by a density operator ρΛ , so that

ÊΛ (ωΛ ) = ωΛ (hΛ ) = Tr(ρΛhΛ ); (9.93)
ŜΛ (ωΛ ) = −kBTr(ρΛ lnρΛ ); (9.94)

F̂ β
Λ = ÊΛ −T ŜΛ . (9.95)

Defining a local equilibrium state as a density matrix ρβ
Λ that minimizes the free

energy (for fixed T ), we have the following quantum analogue of Theorem 9.22:

Theorem 9.24. For each T > 0, there is a unique local equilibrium state ωβ
Λ , viz.

ωβ
Λ (a) = Tr

(
ρβ
Λa
)

; (9.96)

ρβ
Λ = (Ẑβ

Λ )
−1e−βhΛ ; (9.97)

Ẑβ
Λ = Tr

(
e−βhΛ

)
. (9.98)

Accordingly, the free energy Fβ
Λ in equilibrium is given by

Fβ
Λ = F̂ β

Λ (ρ
β
Λ ) =−β−1 ln Ẑβ

Λ . (9.99)

Proof. One proof is analogous to the classical case, in that for all ρΛ ∈D(B(HΛ )),

F̂ β
Λ (ρΛ )≥−β−1 ln Ẑβ

Λ , (9.100)

with equality iff ρΛ = ρβ
Λ . This, in turn, follows from the inequality

Tr(a(lnb− lna))≤ Tr(b−a), (9.101)

with equality iff b = a, which is valid for matrices a,b for which a≥ 0 (in the usual
sense that λ ≥ 0 for each λ ∈ σ(a)) and b > 0 in that λ > 0 for each λ ∈ σ(b). The
case a = ρΛ and b = ρβ

Λ immediately gives the claim. �

What remains to be done, however, is to define equilibrium states for infinite sys-
tems. This is achieved through the so-called KMS-condition, which is based on the
observation that for any a,b ∈ AΛ , in terms of (9.40) the state (9.96) satisfies

ωβ
Λ (α

(Λ)
t (a)b) = ωβ

Λ (bα
(Λ)
t+iβ (a)) (t ∈ R). (9.102)
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Moreover, in finite systems this condition (even at t = 0) fully characterizes ωβ
Λ :

Proposition 9.25. Let h be a self-adjoint operator on a finite-dimensional Hilbert
space H ′, with associated density operator ρ and (complex) time-evolution given by

ρ =
e−h

Tr (e−h)
; (9.103)

αz(a) = eizhae−izh, z ∈ C,a ∈ B(H ′), (9.104)

respectively (the exponentials being defined by a norm-convergent power series).
Then the associated two-point functions defined by ω(a) = Tr(ρa) satisfy

ω(ab) = ω(bαi(a)) (a,b ∈ B(H)). (9.105)

Conversely, any state for which (9.105) holds for given h and αz is given by (9.103).

Proof. Eq. (9.105) follows from (9.103) - (9.104) and cyclicity of the trace, i.e.,
(A.78). Similarly, given non-degeneracy of the Hilbert-Schmidt inner product (B.495)
on B(H), eq. (9.105) is equivalent to the condition

ρa = e−haehρ, (9.106)

for each a ∈ B(H ′). Multiplying with exp(h) shows that exp(h)ρ commutes with
every a ∈ B(H ′). Since B(H ′)′ = C ·1H ′ , we obatin exp(h)ρ = λ ·1H . Since exp(h)
is invertible with inverse exp(−h), we obtain ρ = λ · exp(−h), upon which the nor-
malization condition Tr(ρ) = 1 yields (9.103). �

For arbitrary C*-algebras A with time-evolution t �→ αt , expressions like αt+iβ (a)
may not be defined, so one has to proceed more carefully, but the idea is the same.

Definition 9.26. Let A be a C*-algebra with an automorphism group R. A KMS

state at “inverse temperature” β ∈R is a state ω on A with the following property:

1. For any a,b ∈ A, the function Fa,b : t �→ ω(bαt(a)) from R to C has an analytic
continuation to the strip

Sβ = {z ∈ C | 0≤ Im(z)≤ β}, (9.107)

where it is holomorphic in the interior and continuous on the boundary

∂Sβ = R∪ (R+ iβ ). (9.108)

2. The boundary values of Fa,b are related, for all t ∈ R, by

Fa,b(t) = ω(bαt(a)); (9.109)
Fa,b(t + iβ ) = ω(αt(a)b). (9.110)

If this is the case, ω satisfies the KMS-condition at (inverse temperature) β .
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It is easy to show that A has a dense subset Aα such that for any a ∈ Aα the function
t �→ αt(a) from R to A extends to an entire A-valued analytic function, written z �→
αz(a) (i.e., for each ϕ ∈A∗ the function z �→ϕ(αz(a)) from C to C is entire analytic).
Namely, for any a ∈ A and ε > 0, define

aε =
∫ ∞

−∞

dt√
2πε

e−t2/2εαt(a), (9.111)

which satisfies aε ∈ Aα and limε↓0 aε = a. If A = B(H ′) with dim(H ′)< ∞, we even
have B(H ′)α = B(H ′), since (9.104) is entire analytic in z for any a ∈ B(H ′). For
any A, the KMS-condition on ω is then equivalent to the simpler requirement

ω(ab) = ω(bαiβ (a)) (a ∈ Aα ,b ∈ A). (9.112)

Corollary 9.27. If A = B(H ′) with dim(H ′) < ∞, then KMS states (at fixed β ) are
necessarily given by the equilibrium states of Theorem 9.24 and hence are unique.

Although initially the characterization of equilibrium states of infinite systems by
the KMS condition was tentative, in the 1970s and ’80s it became clear that it was
spot on, being equivalent to local and global thermodynamic stability (against per-
turbations of the dynamics), the (local) maximum entropy principle, etc. Also:

Proposition 9.28. A KMS state at β ∈ R\{0} is time-independent.

Proof. We just sketch the proof if A is unital. Taking b = 1A, for fixed a ∈ Aα the
function Fa,1A ≡ F defined by F(z) = ω(αz(a)) is entire analytic on C. Writing
z = t + is (with s, t ∈ R), we have αz = αt ◦ αis and hence (since each αt is an
automorphism and hence an isometry), |F(t + is)| ≤ ‖αis(a)‖. Also, (9.112) yields
F(t + i(s+β )) = F(t + is). Hence F(t + is) is bounded in t and periodic in s; by the
latter property its supremum on C may be computed by its supremum on the strip
Sβ , and by the former property this supremum is finite. Therefore, F is bounded,
and so by Liouville’s Theorem it must be constant, especially if z = t ∈ R. Hence
α∗t ω(a) = ω(a) for each a ∈ Aα , and since this is a dense set, α∗t ω = ω . �

By the argument for ground states following Definition 9.16, the automorphism
group t �→ αt is unitarily implemented in the GNS-representation πω induced by
a KMS state ω , such that (9.51) - (9.52) hold. However, the operator hω in this con-
struction should not be confused with the Hamiltonian of the system. For example
suppose A = B(H ′) for some (not necessarily finite-dimensional) Hilbert space H ′,
so that (9.39) holds for some (not necessarily bounded) Hamiltonian h with discrete
spectrum, such that exp(−βh) ∈ B1(H ′). If we now define the density operator

ρ =
e−βh

Tr
(
e−βh

) , (9.113)

then the corresponding state ω satisfies the KMS-condition at β . Generalizing the
computations around (2.66) in §2.4, we then find (up to unitary equivalence):
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Hω = B2(H ′); (9.114)
πω(a)b = ab; (9.115)

Ωω = ρ1/2; (9.116)

eithω = πω
(

eith
)
π ′ω
(

e−ith
)
, (9.117)

where for any a ∈ B(H ′), the operator π ′ω(a) on B2(H ′) is defined by

π ′ω(a)b = ba. (9.118)

Note that (9.115) is well defined, since ρ ≥ 0 and ρ ∈ B1(H ′), whence ρ1/2 ∈
B2(H ′), and hence also ab ∈ B2(H ′) and ba ∈ B2(H ′), since B2(H ′) is a two-sided
ideal in B(H ′). If h happens to be bounded, we may therefore write

hω = πω(h)−π ′ω(h). (9.119)

Note that the π ′ω term in (9.117) is not needed for (9.52), since [πω(a),π ′ω(b)] = 0
for any a,b ∈ B(H ′), but it is necessary to secure (9.51). Another feature of this
example is that the vector Ωω is not only cyclic for πω(B(H ′)), which it has to be
by virtue of the GNS-construction, but also separating, i.e., πω(a)Ωω = 0 implies
πω(a) = 0. In other words, one has ω(a∗a) = 0 iff a = 0 (which is by no means the
case for ground states). If dim(H ′)< ∞, this is obvious, because πω(a)Ωω = aρ1/2

and ρ1/2 is invertible. In general, for arbitrary C*-algebras A we have:

Proposition 9.29. Let ω be a KMS state on A at β ∈ R. Then Ωω is both cyclic and
separating for πω(A) and hence also for πω(A)′′ (as well as for πω(A)′).

Proof. Since ω(a∗a) = ‖πω(a)Ωω‖2, we have ω(a∗a) = 0 iff πω(a)Ωω = 0, so that

ω(a∗αt(a)) = 〈πω(a)Ωω ,πω(αt(a))Ωω〉= 0 (t ∈ R)

if ω(a∗a) = 0, and hence Fa∗,a(t) = 0, cf. (9.109). The “edge of the wegde” theorem
then gives Fa∗,a(z) = 0 for all z ∈Sβ , upon which the KMS-condition gives

ω(aa∗) = Fa∗,a(iβ ) = 0.

This means that ω(a∗a) = 0 iff ω(aa∗) = 0, or πω(a)Ωω = 0 iff πω(a)∗Ωω = 0, and
hence πω(b∗)πω(a)Ωω = 0 iff πω(a∗)πω(b)Ωω = 0. Since Ωω is cyclic for πω(A),
the assumption πω(a)Ωω = 0 therefore implies that the bounded operator πω(a∗)
vanishes on a dense domain in Hω and hence vanishes. Since πω(a) = (πω(a∗))∗, it
follows that πω(a) = 0. The extension to πω(A)′′ (and πω(A)′) is obvious. �
Corollary 9.30. If ω is a KMS state on a quasi-local algebra A, i.e., given by (8.130)
with dim(H) < ∞, then ω(a∗a) = 0 iff a = 0 and hence the GNS-representation
πω : A→ B(Hω) is injective.

Proof. By the previous proof, the closed left-ideal (C.204) is actually a two-sided
ideal, which must be zero, since A is simple (as is easily shown from the simplicity
of B(H) for finite-dimensional H, cf. §8.5). �
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Proposition 9.29 shows that the von Neumann algebra πω(A)′′ is in standard
form (see Definition C.158), so that the KMS condition bring us into the realm of
the Tomita–Takesaki theory. In particular, Theorem C.159 provides us with another
time-evolution, namely the one given by the modular group. In the situation of The-
orem C.159, we take a ∈Mα and b ∈M, and compute

〈Ω ,bα−i(a)Ω〉 = 〈Ω ,bΔaΔ−1Ω〉= 〈Ω ,bΔaΩ〉
= 〈Δ 1/2b∗Ω ,Δ 1/2aΩ〉= 〈JΔ 1/2aΩ ,JΔ 1/2b∗Ω〉
= 〈SaΩ ,Sb∗Ω〉= 〈a∗Ω ,bΩ〉 (9.120)
= 〈Ω ,abΩ〉, (9.121)

where we used the property Δ 1/2Ω = Ω as well as anti-unitarity of J, which im-
plies 〈Jψ,Jϕ〉 = 〈ϕ,ψ〉; these facts follow from the definitions of Δ and J via S.
Therefore, the state ω on M defined by ω(a) = 〈Ω ,aΩ〉 (a ∈M) satisfies the KMS-
condition for the modular group at β = −1. If, on the other hand, we start with a
β -KMS state ω on a C*-algebra A with respect to some given time-evolution αt , and
take H =Hω , M = πω(A)′′, and Ω =Ωω , the normal extension of ω to πω(A)′′ given
by 〈Ωω , ·Ωω〉 still satisfies the KMS condition with respect to the time-evolution on
πω(A)′′ given by conjugation with exp(ithω), as in (9.52). Comparing the latter with
the time-evolution on M defined by conjugation with Δ it (cf. Theorem C.159) gives

eithω = Δ−it/β , (9.122)

since both one-parameter groups of unitary operators satisfy the KMS-condition at
β , and some time-evolution αt that satisfies the KMS-condition relative to a given
state ω and inverse temperature β is unique. To see this (barring technicalities about
unbounded operators that are easily dealt with), take β =−1 for simplicity, assume
αt is conjugation by Δ it = exp(ith) (i.e., Δ = exp(h)), and rewrite (9.112) as

ω(ab) = 〈b∗Ω ,ΔaΩ〉. (9.123)

This determines 〈ϕ,Δψ〉 between a dense set of vectors ϕ,ψ , and hence fixes Δ .
The operators J and Δ from the Tomita–Takesaki theory can explicitly be com-

puted in the example (9.113); the antilinear operator J : B2(H ′)→ B2(H ′) reads

Jb = b∗, (9.124)

so that the isomorphism a �→ JaJ between πω(A)′′ = B(H ′) (where B(H ′) acts on
B2(H ′) by left multiplication) and its commutant πω(A)′ = B(H ′) (which copy of
B(H ′) now acts on B2(H ′) by right multiplication) is given by JaJb = ba. Further-
more, the (generally unbounded) linear operator Δ : B2(H ′)→ B2(H ′) is given by

Δb = ρbρ−1, (9.125)

which strictly speaking is defined as the closure of the expression (9.125) on the
domain of all b ∈ B2(H ′) for which bρ−1/2 ∈ B(H ′).
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Theorem 9.31. For given unital C*-algebra A, dynamics α : R→ Aut(R), and in-
verse temperature β ∈ R, let Sβ (A) be the compact convex set of KMS states. Then

∂eSβ (A) = Sβ (A)∩Sp(A), (9.126)

where Sp(A) is the set of primary states on A (cf. Definition 8.17). Consequently,
extreme KMS states at fixed inverse temperature β are either equal or disjoint.

This suggests that extreme KMS states define pure thermodynamics phases.

Proof. We enlarge Sβ (A) to the set K̂β (A)⊂ A∗ of all continuous linear functionals
on A that satisfy the β -KMS condition (so that Sβ (A) consists of all positive elements
in K̂β (A) of unit norm). The key to the proof is a bijection between the set S(ω) of
functionals ρ ∈ K̂β (A) for which 0≤ ρ ≤ ω , where ω ∈ Sβ (A) is fixed, and the set
T (ω) of operators c ∈ πω(A)′ ∩πω(A)′′ such that 0≤ c≤ 1Hω , given by

ρ(a) = 〈Ωω ,cπω(a)Ωω〉. (9.127)

This implies the claim, since ω ∈ ∂eSβ iff any ρ ∈ S(ω) takes the form ρ = tω for
some t ∈ [0,1] (cf. Lemma C.17), which in turn is the case iff c = t ·1Hω .

First, for any state ω ∈ S(A) there is a bijection between the set of linear func-
tionals ρ ∈ A∗ for which 0 ≤ ρ ≤ ω and the set of operators c ∈ πω(A)′ such that
0≤ c≤ 1Hω , given by (9.127). Indeed, in one direction, given a = b∗b≥ 0, we have

(ω−ρ)(a) = 〈πω(b)Ωω ,(1Hω − c)πω(b)Ωω〉 ≥ 0, (9.128)

for if 0 ≤ c ≤ 1Hω , then 0 ≤ (1Hω − c) ≤ 1Hω . Hence ρ ≤ ω , whilst from (9.127)
we similarly find ρ ≥ 0. Conversely, ρ induces a quadratic form R on Hω , defined
initially on the dense domain πω(A)Hω by the formula

R(πω(a)Ωω ,πω(b)Ωω) = ρ(a∗b), (9.129)

which is easily seen to be well defined, positive, and bounded, and so Proposition
B.79 supplies the operator c, which a simple computation shows to be in πω(A)′.

For the bijection S(ω)∼= T (ω), where ω is a β -KMS state as above, we therefore
need the additional property c ∈ πω(A)′′. Putting β =−1 for convenience and using
the notation of Theorem C.159, we first show that Δ−it cΔ it = c for any t ∈R: indeed,
since ρ satisfies the KMS condition, it is time-translation invariant, so that

〈πω(a∗)Ωω ,Δ−it cΔ itπω(b)Ωω〉 = 〈Ωω ,cΔ itπω(a)Δ−itΔ−itπω(b)Δ−itΩω〉
= 〈Ωω ,cπω(αt(ab))Ωω〉
= ρ(αt(ab)) = ρ(ab)

= 〈πω(a∗)Ωω ,cπω(b)Ωω〉,

so that Δ−it cΔ it = c between a dense set of states, and hence this is valid as an
operator equation. This also implies that c commutes with any power of Δ . Define
c′ = JcJ, which by Theorem C.159 is an element of πω(A)′′, and compute



364 9 Symmetry in algebraic quantum theory

〈Ωω ,πω(a)c′Ωω〉 = 〈Ωω ,πω(a)JcΔ 1/2Ωω〉= 〈Ωω ,πω(a)JΔ 1/2cΩω〉
= 〈Ωω ,πω(a)ScΩω〉= 〈Ωω ,πω(a)c∗Ωω〉
= 〈Ωω ,πω(a)cΩω〉
= ρ(a), (9.130)

where we used the properties JΩω = Ωω , Δ 1/2Ωω = Ωω , cΔ 1/2 = Δ 1/2c as just
mentioned, S= JΔ 1/2, and c∗= c (since c≥ 0). Finally, it follows from the KMS con-
dition (applied to the normal extension of the state ω to πω(A)′′ given by 〈Ωω , ·Ωω〉
as well as to the normal extension of ρ to πω(A)′′ given by 〈Ωω , ·c′Ωω〉 just com-
puted) that c′ ∈ πω(A)′, since for arbitrary a,b,d ∈ Aα we have

ω(ac′bd) = ω(αi(bd)ac′) = ρ(αi(bd)a) = ρ(αi(b)αi(d)a)

= ρ(αi(d)ab) = ω(αi(d)abc′) = ω(abc′d).

In other words, for any a,b,d ∈ A we have

〈πω(a∗)Ωω ,c′πω(b)πω(d)Ωω〉= 〈πω(a∗)Ωω ,πω(b)πω(d)c′Ωω〉, (9.131)

so that c′πω(b) = πω(b)c′ between vectors in a dense domain, so that this is an
operator equality. Hence c′ ∈ πω(A)′, and in view of this we may rewrite (9.130)
as ρ(a) = 〈Ωω ,c′πω(a)Ωω〉. Since the operator c′ ∈ πω(A)′ in (9.127) is uniquely
determined by ρ , this shows that c′= c. Since we already had c′ ∈ πω(A)′′, it follows
that c ∈ πω(A)′ ∩πω(A)′′. �

It can also be shown that Sβ (A) is a (Choquet) simplex, which is a property rather
more typical of the state space of a commutative unital C*-algebra; this makes it
especially remarkable for the set of β -KMS states on a highly non-commutative C*-
algebra like the infinite tensor product of B = Mn(C). In the physically relevant case
where Sβ (A) is metrizable, this implies that for any given KMS state ω ∈ Sβ (A) there
is a unique probability measure μ on ∂eSβ (A), such that for each a ∈ A,

ω(a) =
∫
∂Sβ (A)

dμ(ω ′)ω ′(a). (9.132)

Conversely, any probability measure μ on ∂eSβ (A) defines a β -KMS state by reading
this equality from right to left. Towards the next chapter, suppose for example that
there is a G-action on A, i.e., a continuous homomorphism γ : G→ Aut(A) (where
G is a locally compact group). Then G also acts on S(A) via the dual maps γ∗g (ω) =
ω ◦ γg−1 , and if G is a symmetry of the dynamics in that αt ◦ γg = γg ◦αt for each
t ∈R and g∈G, then this dual action maps both Sβ (A) and ∂eSβ (A) into themselves.
If G is compact with normalized Haar measure μ , then for any fixed extremal KMS
state ω0 ∈ ∂eSβ (A), by (left) invariance of μ one obtains a G-invariant state by

ω =
∫

G
dμ(g)γ∗gω0. (9.133)
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Notes

§9.1. Symmetries of C*-algebras and Hamhalter’s Theorem

Theorem 9.4 is due to Hamhalter (2011). Our proof, taken almost verbatim from
Landsman & Lindenhovius (2016) roughly follow his, but adds various details and
also takes some different turns. The main differences with the original proof by
Hamhalter are the following. Firstly, we give an order-theoretic characterization
of u.s.c. decompositions of the form πK (and hence of the commutative algebras
in C (C(X)) that are the unitization of some ideal) by the three axioms stated in
Lemma 3.1.1 in Firby (1973), whereas Hamhalter uses Proposition 7 in Mendivil
(1999), which gives a different characterization of unitizations of ideals. Further-
more, Hamhalter only treats Lemma 9.5 in full generality, whereas in our opinion it
is very instructive to take the case of finite sets first, where many of the key ideas
already appear in a setting where they are not overshadowed by topological com-
plications. Finally, our proof of Lemma 9.6.2 differs from Hamhalter’s proof. The
topology of partitions may be found in Willard (1970), especially Theorem 9.9.

Theorem 9.7 is due to Hamhalter (2015). Corollary 9.9 has a long history, starting
with Jacobson & Rickart (1950) and ending with Thomsen (1982).
§9.2. Unitary implementability of symmetries

See Bratteli & Robinson (1987), §4.3.
§9.3. Motion in space and in time

For a far more detailed study of asymptotic abelianness see Bratteli & Robinson
(1987), §4.3.2 and Bratteli & Robinson (1997), §5.4.1. Results like Theorem 9.14
may also be found in Sewell (2002). Theorem 9.14 is also valid for ergodic states
with respect to the given Zd-action, where we say that a state on a C*-algebra A
with G-action is ergodic if it is an element of ∂e(S(A)G), i.e., extreme in the convex
set of G-invariant states on A. Also Theorem 9.15 holds (with a more complicated
proof, of course) under weaker conditions on Φ , typically exponential decay in X .

Theorem 9.15 is the simplest result in this direction; for similar results under
weaker assumptions on the interaction Φ , see Bratteli & Robinson (1997), §6.2.1.
§9.4. Ground states of quantum systems

The idea of a ground state of a quantum system may be attributed to Bohr (1913),
who postulated that an atom has a state of lowest energy (which he called a “per-
manent state”). See e.g. Pais (1986), p. 199. In this section, which merely present
some key points treated in far more detail in Bratteli & Robinson (1997), §5.3.3. and
§6.2.7, we have just scratched the surface of the topic, which is basic to physics.
§9.5. Ground states and equilibrium states of classical spin systems

Basic references for the mathematical physics of classical spin systems on a lat-
tice are Israel (1979), Simon (1993), van Enter, Fernandez, & Sokal (1993), and
Georgii (2011). One may now define pure thermodynamics phases as extreme el-
ements of the compact convex set of all Gibbs measures (or of the set of all
translation-invariant Gibbs measures, as in Simon, 1993, §III.5), but there is no iden-
tification between pure thermodynamics phases with primary equilibrium states (as
in the quantum case), because a state on a commutative C*-algebra like C(nZ

d
) is
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primary iff it is pure. Fortunately, the specific measure-theoretic setting of classi-
cal statistical mechanics provides its own resources. For any Λ ⊂ Zd , let ΣΛ be the
smallest σ -algebra (within the Borel σ -algebra for nZ

d
) for which each f ∈C(nΛ )

is measurable, and let
Σ∞ =

⋂
Λ
ΣΛ , (9.134)

where each Λ is finite, be the σ -algebra at infinity, with associated commuta-
tive C*-algebra B∞(nZ

d
) of all bounded measurable functions on nZ

d
that are Σ∞-

measurable. This is the home of the macroscopic observables, defined as averages
analogously to the quantum case. The role of primary states (or rather of states
whose algebra of observables is trivial at infinity, as in Theorem 8.23) is now played
by states that are trivial at infinity, that is, probability measures μ on nZ

d
for which

either μ(X) = 0 or μ(X) = 1 for X ∈ Σ∞ (cf. the Kolmogorov 0-1 law of probabil-
ity theory). Indeed there is a classical version of Theorem 8.23, making exactly the
same claim mutatis mutandis, see Theorem III.1.6 in Simon (1993). The main result
(cf. Theorem 7.7 in Georgii, 2011), is that a state is extreme in the compact convex
set of all Gibbs measures (at fixed temperature and potential, of course) iff it is a
Gibbs measure that is trivial at infinity. It follows that two distinct extreme Gibbs
measures are mutually singular on Σ∞ (which is the pertinent classical version of
disjointness of primary states).
§9.6. Equilibrium (KMS) states of quantum systems

The KMS condition was introduced by Haag, Hugenholtz, and Winnink (1967),
in the following equivalent form:∫ ∞

−∞
dt f (t− iβ )ω(aαt(b)) =

∫ ∞

−∞
dt f (t)ω(αt(b)a), (9.135)

for each a,b ∈ A and each Schwartz function f ∈ D(R). The name KMS derives
from the earlier observation (9.102) of Kubo (1957) and independently Martin &
Schwinger (1957). See also Haag (1992), Simon (1993), Borchers (2000), Sewell
(2002), Thirring (2002), Emch (2007), and perhaps also, at a heuristic level, Lands-
man & van Weert (1987), especially for applications of the KMS condition to quan-
tum field theory at finite temperature and the quark-gluon plasma (this, incidentally,
was the MSc thesis as well as the first major published paper by the author).

The KMS condition also plays a major role in operator algebras and noncommu-
tative geometry; see Connes (1994) and Connes & Marcolli (2008).

For a proof of (9.101) see Bratteli & Robinson (1997, Lemma 6.2.21); this book
is the bible about the KMS condition and its application to quantum spin systems.

The proof of Proposition 9.25 is taken from Simon (1993), Lemma IV.4.1 and
Proposition IV.4.2. The terminology of pure thermodynamical phases for primary
KMS states (introduced after Theorem 9.31) is not completely standard; also ergodic
states are sometimes called ‘pure phases’.



Chapter 10

Spontaneous Symmetry Breaking

As we shall see, the undeniable natural phenomenon of spontaneous symmetry
breaking (SSB) seems to indicate a serious mismatch between theory and reality.
This mismatch is well expressed by what is sometimes called Earman’s Principle:

‘While idealizations are useful and, perhaps, even essential to progress in physics, a sound
principle of interpretation would seem to be that no effect can be counted as a genuine
physical effect if it disappears when the idealizations are removed.’ (Earman, 2004, p. 191)

To describe the various examples apparently violating Earman’s Principle (and
hence the link between theory and reality) in a general way (so general even that it
will encapsulate the measurement problem), it is convenient to install a definition:

Definition 10.1. Asymptotic emergence is the conjunction of three conditions:

1. A higher-level theory H (which is often called a phenomenological theory or
a reduced theory) is a limiting case of some theory!lower-level L (often called
fundamental theory or a reducing theory).

2. Theory H is well defined and understood by itself (typically predating L).
3. Theory H has features that cannot be explained by L, e.g. because L does not

have any property inducing those feature(s) in the pertinent limit to H.

In connection with SSB (as item 3.) we will look at the following pairs (H,L):

• – H is classical mechanics (notably of a particle on the real line R);
– L is quantum mechanics (on the pertinent Hilbert space L2(R));
– The limiting relationship between the two theories is as described in §7.1 (no-

tably by the continuous bundle of C*-algebras (7.17) - (7.19) for n = 1).
• – H is classical thermodynamics of a spin system;

– L is statistical mechanics of a quantum spin system on a finite lattice;
– Their limiting relationship is as described in §8.6 (cf. Theorem 8.4).

• – H is statistical mechanics of an infinite quantum spin system;
– L is statistical mechanics of a quantum spin system on a finite lattice;
– The limiting relationship between H and L is given in §8.6 (cf. Theorem 8.8).

© The Author(s) 2017
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Of course, there are many other interesting example of (apparent) asymptotic emer-
gence not treated in this book, such as geometric optics (as H) versus wave optics
(as L), where the new feature of H would be the absence of interference of light
rays—foreshadowing the measurement problem of quantum mechanics!— or hy-
drodynamics (as H) versus molecular dynamics (as L), where the new feature is
irreversibility. Perhaps space-time asymptotically emerges from quantum gravity.

The “unexplained” features of H mentioned in the third part of Definition 10.1 are
often called emergent, although this term has to be used with great care. Its meaning
here reflects the original use of the term by the so-called “British Emergentists”
(whose pioneer was J.S. Mill), as expressed in 1925 by C.D. Broad:

‘The characteristic behaviour of the whole could not, even in theory, be deduced from the
most complete knowledge of the behaviour of its components, taken separately or in other
combinations, and of their proportions and arrangements in this whole. This is what I un-
derstand by the ‘Theory of Emergence’. I cannot give a conclusive example of it, since it is
a matter of controversy whether it actually applies to anything.’ (Broad, 1925, p. 59)

In quotations like these, the notion “emergence” is meant to be the very opposite of
the idea of “reduction” (or “mechanicism”, as Broad called it); in fact, for many au-
thors this opposition seems to be the principal attraction of emergence. In principle,
two rather different notions of reduction then lead (contrapositively) to two different
kinds of emergence, which are sometimes mixed up but should be distinguished:

1. The reduction of a whole (i.e., a composite system) to its parts;
2. The reduction of a theory H to a theory L.

In older literature concerned with the reduction of biology to chemistry (challenged
by Mill) and of chemistry to physics (still contested by Broad), the first notion also
referred to wholes consisting of a small number of particles. That notion of emer-
gence seems a lost cause, since, as noted by Hempel,

‘the properties of hydrogen include that of forming, if suitably combined with oxygen, a
compound which is liquid, transparent, etc.’ (Hempel, 1965, p. 260)

A similar comment applies to e.g. the tertiary structure of proteins, but also to cases
of emergence such as ant hills, slime mold, and even large cities (Johnson, 2001),
all of which are actually fascinating success stories for reductionism.

More recently, the apparent possibility that very large assemblies of parts might
give rise to emergent properties of the corresponding wholes has become increas-
ingly popular, both in physics and in the philosophy of mind (where consciousness
has been proposed as an emergent property of the brain). In physics, the modern dis-
cussion on emergence in physics was initiated by P.W. Anderson, who in a famous
essay from 1972 called ‘More is different’ emphasized the possibility of emergence
in very large systems (surprisingly, Anderson actually avoids the term ‘emergence’,
instead speaking of ‘new laws’ and ‘a whole new conceptual structure’). In partic-
ular, Anderson claimed SSB to be an example (if not the example) of emergence,
duly adding that one really had to take the N →∞ limit. Thus at least in physics, the
interesting case for emergence in the first (i.e. whole-part) sense arises if the ‘whole’
is strictly infinite, as in the thermodynamic limit of quantum statistical mechanics.
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This example confirms that 1. and 2. often go together, but they do not always do:
the classical limit of quantum mechanics is a case of pure theory reduction.

A clear description of emergence has also been given by Jaegwon Kim:

1. Emergence of higher-level properties: All properties of higher-level entities arise out of
the properties and relations that characterize their constituent parts. Some properties of
these higher, complex systems are “emergent”, and the rest merely “resultant”. Instead
of the expression “arise out of”, such expressions as “supervene on” and “are conse-
quential upon” could have been used. In any case, the idea is that when appropriate
lower-level conditions are realized in a higher-level system (that is, the parts that con-
stitute the system come to be configured in a certain relational structure), the system
will necessarily exhibit certain higher-level properties, and, moreover, that no higher-
level property will appear unless an appropriate set of lower-level conditions is realized.
Thus, “arise” and “supervene” are neutral with respect to the emergent/resultant distinc-
tion: both emergent and resultant properties of a whole supervene on, or arise out of,
its microstructural, or micro-based, properties. The distinction between properties that
are emergent and those that are merely resultant is a central component of emergen-
tism. As we have already seen, it is standard to characterize this distinction in terms of
predictability and explainability.

2. The unpredictability of emergent properties: Emergent properties are not predictable
from exhaustive information concerning their “basal conditions”. In contrast, resultant
properties are predictable from lower-level information.

3. The unexplainability/irreducibility of emergent properties: Emergent properties, unlike
those that are merely resultant, are neither explainable nor reducible in terms of their
basal conditions.’ (Kim, 1999, p. 21, italics added)

Similarly, Silberstein (2002) states (paraphrased) that a higher-level theory H:

‘bears predictive/explanatory emergence with respect to some lower-level theory L if L
cannot replace H, if H cannot be derived from L [i.e., L cannot reductively explain H], or
if L cannot be shown to be isomorphic to H.’

A key point here is Kim’s no. 1: not even “emergentists” deny that the whole con-
sists of its parts, or, in asymptotic emergence, that the higher-level theory H in fact
originates from the lower-level theory L. The essence of emergence, then, would be
that H nonetheless has “acquired” properties not reducible to L. One possibility for
this to happen could be that the (allegedly) emergent property of H refers to some
concept that does not even make sense in L, such as the experience of pain, which
is hard to make sense of at a neural level, but another possibility, which is indeed
the one relevant to physics and especially to SSB, is that some particular concept
possessed by H (such as SSB) is admittedly defined within L, but banned.

In describing the relationship between H and L we have to be clear about the
difference between approximations and idealizations. Following Norton (2012):

• An approximation is an inexact description of a target system.
• An idealization is a fictitious system, distinct from the target system, some of

whose properties provide an inexact description of aspects of the target system.

Thus idealizations also provide approximations, but as systems they stand on their
own and are defined independently of the target system. In our cases, the target
system is a real physical system such as a ferromagnet or a quantum particle, which
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is supposed to be described exactly by theory L, i.e., the lower-level theory. In fact,
L is a family of theories parametrized by 1/N (N ∈ N) or h̄ ∈ (0,1], and our real
material relates to some very small value of this parameter (which may also be seen
as a certain regime of L, seen as a single, unparametrized theory).

The pertinent theory H is an idealization in the above sense, through which one
approximates very large systems by infinite ones and highly semi-classical ones
(where h̄ is very small) by classical ones (where h̄ = 0). It is in this setting that
asymptotic emergence would violate Earman’s Principle and hence would blast the
relationship between theory and reality: the abstract point (made concrete for SSB
earlier on) is that if some real property of a real system is described by H but is not
approximated in any sense by L in any regime (as is the threat with SSB), although H
is supposed to be a limit of L, then the latter theory L fails to describe the real system
it is supposed to describe, whereas this systems is described by the theory H, which
portrays fictitious systems. This marks a difference with other cases of emergence,
where H (including some “whole”) is not an idealization but a real system itself (as
might be the case with consciousness and other examples from neuroscience and
the philosophy of mind). Thus our discussion does not apply to such cases.

The tension between SSB and Earman’s Principle has not quite gone unnoticed in
the philosophy of physics literature. For example, Liu and Emch (2005) first write
that it is a mistake to regard idealizations as acts of ‘neglecting the negligible’ (p.
155, which already appears to deny Earman’s Principle), and continue by:

“The broken symmetry in question is not reducible to the configurations of the microscopic
parts of any finite systems; but it should supervene on them in the sense that for any two
systems that have the exactly (sic) duplicates of parts and configurations, both will have the
same spontaneous symmetry breaking in them because both will behave identically in the
limit. In other words, the result of the macroscopic limit is determined by the non-relational
properties of parts of the finite system in question.” (Liu & Emch, 2005, p. 156)

It is not easy to make sense of this, but the authors genuinely seem to believe in
asymptotic emergence and hence they (again) appear to deny Earman’s Principle.
Another suggestion, made by Ruetsche, is to modify Earman’s Principle to:

‘No effect predicted by a non-final theory can be counted as a genuine physical effect if it
disappears from that theory’s successors.’ (Ruetsche, 2011, p. 336)

For example, the theory L explaining SSB should not be quantum statistical mechan-
ics but quantum field theory (which has an infinite number of ultraviolet degrees of
freedom even in finite volume, and hence in principle allows SSB). This does make
sense within physics, but, as Ruetsche herself notices, her principle ‘has the prag-
matic shortcoming that we can’t apply it until we know what (all) successors to our
present theories are.’ With due respect, we will describe a rather different way out,
based on unexpectedly implementing Butterfield’s Principle, which is a corollary
to Earman’s Principle that removes the reduction-emergence opposition:

‘there is a weaker, yet still vivid, novel and robust behaviour that occurs before we get to
the limit, i.e. for finite N. And it is this weaker behaviour which is physically real.’
(Butterfield, 2011, p. 1065)

To do so, we now turn our attention to specific (classes of) models of SSB.
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10.1 Spontaneous symmetry breaking: The double well

The simplest example of SSB is undoubtedly the equation x2 = 1 (where x ∈ C),
which is invariant under a Z2 symmetry given by x �→ −x. Its solutions x = ±1,
then, do not share this symmetry; instead Z2 acts nontrivially on the solution space.

Another example that is simple at least compared to quantum spin systems is
provided by elementary quantum mechanics. Thus we are now in the context of the
first of the three pairs (H,L) listed in the preamble to this chapter, where, in detail:

- H is classical mechanics of a particle moving on the real line, with associated
phase space R2 = {(p,q)} and ensuing C*-algebra of observables A0 =C0(R2);

- L is the corresponding quantum theory, with a C*-algebra of observables Ah̄
(h̄ > 0) taken to be the compact operators B0(L2(R)) on the Hilbert space L2(R);

- The relationship between H and L is given by the continuous bundle of C*-
algebras (7.17) - (7.19), for n = 1, notably in the classical limit h̄→ 0.

At the level of states, the passage to the classical limit h̄ → 0 of any h̄-dependent
wave-function ψh̄ ∈ L2(R), if it exists, is described via the associated probability
measure μψh̄ on R2, which is defined by (7.31); in other words,

μψh̄(Δ) =
∫
Δ

dn pdnq
2π h̄

|〈φ (p,q)
h̄ ,ψh̄〉|2 (Δ ⊂ R2n), (10.1)

where the (Schrödinger) coherent states φ (p,q)
h̄ ∈ L2(R) are given by (7.27), i.e.,

φ (p,q)
h̄ (x) = (π h̄)−n/4e−ipq/2h̄eipx/h̄e−(x−q)2/2h̄. (10.2)

In terms of the associated vector states ωψh̄ on the C*-algebra B0(L2(R)), one has

ωψh̄(Q
B
h̄ ( f )) = 〈ψh̄,QB

h̄ ( f )ψh̄〉=
∫
R2n

dμψ(p,q) f (p,q), (10.3)

where f ∈C0(R2). We then say that the wave-functions ψh̄ have a classical limit if

lim
h̄→0

∫
R2n

dμψ f =
∫
R2n

dμ0 f , (10.4)

for any f ∈C0(R2), where μ0 is some probability measure on R2. Seen as a state ω0
on the classical C*-algebra of observables C0(R2), the probability measure μ0 is re-
garded as the classical limit of the family ωψh̄ of states on the C*-algebra B0(L2(R))
of quantum-mechanical observables. This family is continuous in the sense that the
function h̄ �→ ωψh̄(σ(h̄)) from [0,1] to C is continuous for every continuous cross-
section σ of the given bundle of C*-algebras. An example of such a continuous
cross-section is σ(0) = f and σ(h̄) = QB

h̄ ( f ), for any f ∈ C0(R2)), cf. (C.550) -
(C.551), and indeed this example reproduces (10.4), which after all is just

lim
h̄→0

ωψh̄(Q
B
h̄ ( f )) = ω0( f ) ( f ∈C0(R2)). (10.5)
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First, let us illustrate this formalism for the ground state of the one-dimensional
harmonic oscillator. Taking m = 1/2 and V (x) = 1

2ω
2x2 in the usual Hamiltonian

hh̄ =−h̄2 d2

dx2 +V (x), (10.6)

it is well known that the ground state is unique and that its wave-function, i.e.,

ψh̄(x) =
( ω

2π h̄

)1/4
e−ωx2/4h̄, (10.7)

is a Gaussian, peaked above x = 0. As h̄→ 0, this ground state has a classical limit,
namely the Dirac measure μ0 concentrated at the origin (p = 0,q = 0), i.e.,

lim
h̄→0

∫
R2n

dμψh̄ f = f (0,0) ( f ∈C0(R2)). (10.8)

This is just the unique ground state of the corresponding classical Hamiltonian

h0(p,q) = p2 +V (q), (10.9)

seen as a point in the phase space R2 minimizing h0, reinterpreted as a probability
measure on phase space as explained in the context of Theorem 3.3. Note that we
kept the mass fixed at m = 1/2, but instead we could have kept h̄ fixed and take the
limit m→ ∞ instead of h̄→ 0; cf. the preamble to Chapter 7.

The same features hold for the anharmonic oscillator (with small λ > 0), i.e.,

V (x) = 1
2ω

2x2 + 1
4λx4. (10.10)

However, a new situation arises for the symmetric double-well potential

V (x) =− 1
2ω

2x2 + 1
4λx4 + 1

4ω
4/λ = 1

4λ (x
2−a2)2, (10.11)

where a = ω/
√
λ > 0 (assuming ω > 0 as well as λ > 0). This time, the ground

state of the classical Hamiltonian is doubly degenerate, being given by the points
(p = 0,q =±a) ∈ R2, with ensuing Dirac measures μ±0 given by∫

R2n
dμ±0 f = f (0,±a). (10.12)

But it is a deep and counterintuitive fact of quantum theory that the corresponding
quantum Hamiltonian (10.6) with (10.11) has a unique ground state. Indeed:

Theorem 10.2. Let V ∈ L2
loc(R

m) be positive and suppose that lim|x|→∞ V (x) = ∞.
Then −Δ +V has a nondegenerate (and strictly positive) ground state.

Roughly speaking, the proof is based on an infinite-dimensional version of the
Perron–Frobenius Theorem in linear algebra (applied to exp(−thh̄) rather than to
the Hamiltonian hh̄ itself, so that the largest eigenvalue of the former corresponds to
the smallest eigenvalue of the latter, i.e., the energy of the ground state).
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And yet there are two quantum-mechanical shadows of the classical degeneracy:

• The wave-function ψ(0)
h̄ of the ground state (which by a suitable choice of phase

may be taken to be real) is positive definite and has two peaks, above x=±a, with
exponential decay |ψ(0)

h̄ (x)| ∼ exp(−1/h̄) in the classically forbidden region.
• Energy eigenfunctions (and the associated eigenvalues) come in pairs.

In what follows, we will be especially interested in the first excited state ψ(1)
h̄ , which

like ψ(0)
h̄ is real, but has one peak above x = a and another peak below x =−a. See

Figure 10.1. The eigenvalue splitting (or “gap”) vanishes exponentially in−1/h̄ like

Δh̄ ≡ E(1)
h̄ −E(0)

h̄ ∼ (h̄ω/
√

1
2 eπ) · e−dV /h̄ (h̄→ 0), (10.13)

where the typical WKB-factor is given by

dV =
∫ a

−a
dx
√

V (x). (10.14)

Also, the probability density of each of the wave-functions ψ(0)
h̄ or ψ(1)

h̄ contains ap-
proximate δ -function peaks above both classical minima ±a. See Figure 10.2, dis-
played just for ψ(0)

h̄ , the other being analogous. We can make the correspondence be-

tween the nondegenerate pair (ψ(0)
h̄ , ψ(1)

h̄ ) of low-lying quantum-mechanical wave-
functions and the pair (μ+

0 ,μ−0 ) of degenerate classical ground states more trans-
parent by invoking the above notion of a classical limit of states. Indeed, in terms of
the corresponding algebraic states ω

ψ(0)
h̄

and ω
ψ(1)

h̄
, one has

lim
h̄→0

ψ(0)
h̄ = lim

h̄→0
ψ(1)

h̄ = μ(0)
0 , (10.15)

μ(0)
0 ≡ 1

2 (μ
+
0 +μ−0 ), (10.16)

where μ±0 are the pure classical ground states (10.12) of the double-well Hamil-
tonian. To see this, one may consider numerically computed Husimi functions, as
shown in Figure 10.3 (just for ψ(0)

h̄ , as before). From this, it is clear that the pure

(algebraic) quantum ground state ψ(0)
h̄ converges to the mixed classical state (10.16).

In contrast, the localized (but now time-dependent) wave-functions

ψ±h̄ =
ψ(0)

h̄ ±ψ(1)
h̄√

2
, (10.17)

which of course define pure states as well, converge to pure classical states, i.e.,

lim
h̄→0

ψ±h̄ = μ±0 . (10.18)

In conclusion, one has SSB in H, but at first sight the underlying theory L seems to
forbid it. Yet we will now show that (10.17) - (10.18), will save Earman’s Principle.
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Fig. 10.1 Double-well potential with ground state ψ(0)
h̄=0.5 and first excited state ψ(1)

h̄=0.5.

Fig. 10.2 Probability densities for ψ(0)
h̄=0.5 (left) and ψ(0)

h̄=0.01 (right).

Fig. 10.3 Husimi functions for ψ(0)
h̄=0.5 (left) and ψ(0)

h̄=0.01 (right).
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10.2 Spontaneous symmetry breaking: The flea

Regarding the doubly-peaked ground state ψ(0)
h̄ of the symmetric double well as

the quantum-mechanical counterpart of a hung parliament, the analogue of a small
party that decides which coalition is formed is a tiny asymmetric perturbation
δV of the potential. Indeed, the following spectacular phenomenon in the theory
of Schrödinger operators was discovered in 1981 by Jona-Lasinio, Martinelli and
Scoppola. In view of the extensive (and very complicated) ensuing mathematical
literature, we just take it as our goal to explain the main idea in a heuristic way.

Replace V in (10.6) by V +δV , where δV (i.e., the “flea”) is assumed to:

1. Be real-valued with fixed sign, and C∞
c (hence bounded) with connected support

not including the minima x = a or x =−a;
2. Satisfy |δV |>> e−dV /h̄ for sufficiently small h̄ (e.g., by being independent of h̄);
3. Be localized not too far from at least one the minima, in the following sense.

First, for y,z ∈ R and A⊂ R, we extend the notation (10.14) to

dV (y,z) =
∣∣∣∣∫ z

y
dx
√

V (x)
∣∣∣∣ ; (10.19)

dV (y,A) = inf{dV (y,z),z ∈ A}. (10.20)

Second, we introduce the symbols

d′V = 2 ·min{dV (−a,supp δV ),dV (a,supp δV )}; (10.21)
d′′V = 2 ·max{dV (−a,supp δV ),dV (a,supp δV )}. (10.22)

The localization assumption on δV is that one of the following conditions holds:

d′V < dV < d′′V ; (10.23)
d′V < d′′V < dV . (10.24)

In the first case, the perturbation is typically localized either on the left or on the
right edge of the double well, whereas in the second it resides on the middle bump
(symmetric perturbations are excluded by 3, as these would satisfy d′V = d′′V ).

Under these assumptions, the ground state wave-function ψ(δ )
h̄ of the perturbed

Hamiltonian (which had two peaks for δV = 0!) localizes as h̄→ 0, in a direction
which given that localization happens may be understood from energetic consider-
ations. For example, if δV is positive and is localized to the right, then the relative
energy in the left-hand part of the double well is lowered, so that localization will
be to the left. See Figures 10.4 - 10.6. Eqs. (10.17) - (10.18) then yield Butterfield’s
Principle (with N � 1/h̄), so that also Earman’s Principle is saved: the essence of
the argument is that (at least in the presence of a flea-perturbation) SSB is already
foreshadowed in quantum mechanics for small yet positive h̄, if only approximately.
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Fig. 10.4 Flea perturbation of ground state ψ(δ )
h̄=0.5 with corresponding Husimi function. For such

relative large values of h̄, little (but some) localization takes place.

Fig. 10.5 Same at h̄ = 0.01. For such small values of h̄, localization is almost total.

Fig. 10.6 First excited state for h̄ = 0.01. Note the opposite localization area.
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In more detail, for the perturbed ground state we have (subject to assumptions 1–3):

ψ(δ )
h̄ (a)

ψ(δ )
h̄ (−a)

∼ e∓dV /h̄ (±δV > 0, supp(V )⊂ R+); (10.25)

ψ(δ )
h̄ (a)

ψ(δ )
h̄ (−a)

∼ e±dV /h̄ (±δV > 0, supp(V )⊂ R−), (10.26)

with the opposite localization for the perturbed first excited state (so as to remain
orthogonal to the ground state). A more precise version of the energetics used above
is as follows. The ground state tries to minimize its energy according to the rules:

• The cost of localization (if δV = 0) is O(e−dV /h̄).
• The cost of turning on δV is O(e−d′V /h̄) when the wave-function is delocalized.
• The cost of turning on δV is O(e−d′′V /h̄) when the wave-function is localized in

the well around x0 =±a for which dV (x0,supp δV ) = d′′V .

In any case, these results only depend on the support of δV , but not on its size: this
means that the tiniest of perturbations may cause collapse in the classical limit.

Although the collapse of the perturbed ground state for small h̄ is a mathematical
theorem, it remains enigmatic. Indeed, despite the fact that in quantum theory the
localizing effect of the flea is enhanced for small h̄, the corresponding classical
system has no analogue of it. Trivially, a classical particle residing at one of the two
minima of the double well at zero (or small) velocity, i.e., in one of its degenerate
ground states, will not even notice the flea; the ground states are unchanged. But
even under a stochastic perturbation, which leads to a nonzero probability for the
particle to be driven from one ground state to the other in finite time (as some form
of classical “tunneling”, where in this case the necessary fluctuations come from
Brownian motion), the flea plays a negligible role. For example, in the case at hand
the standard Eyring–Kramers formula for the mean transition time reads

〈τ〉 ∼= 2π√
V ′′(a)V ′′(0)

eV (0)/ε , (10.27)

where ε is the parameter in the Langevin equation dxt =−∇V (xt)dt +
√

2εdWt , in
which Wt is standard Brownian motion. Clearly, this expression only contains the
height of the potential at its maximum and its curvature at its critical points; most
perturbations satisfying assumptions 1–3 above do not affect these quantities.

The instability of the ground state of the double-well potential under “flea” per-
turbations as h̄→ 0 is easy to understand (at least heuristically) if one truncates the
infinite-dimensional Hilbert space L2(R) to a two-level system. This simplification
is accomplished by keeping only the lowest energy states ψ(0)

h̄ and ψ(1)
h̄ , in which

case the full Hamiltonian (10.6) with (10.11) is reduced to the 2×2 matrix

H0 = 1
2

(
0 −Δ
−Δ 0

)
, (10.28)
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with Δ > 0 given by (10.13). Dropping h̄, the eigenstates of H0 are given by

ϕ(0)
0 =

1√
2

(
1
1

)
, ϕ(1)

0 =
1√
2

(
1
−1

)
, (10.29)

with energies E0 =− 1
2Δ and E1 = 1

2Δ , respectively; in particular, E1−E0 = Δ . If

ϕ±0 =
ϕ(0)

0 ±ϕ(1)
0√

2
, (10.30)

as in (10.17), then

ϕ+
0 =

(
0
1

)
, ϕ−0 =

(
1
0

)
. (10.31)

Hence in this approximation ϕ+
0 and ϕ−0 play the role of wave-functions (10.17)

localized above the classical minima x=+a and x=−a, respectively, with classical
limits μ±0 . The “flea” is introduced as follows. If its support is in R+, we put

δ+V =

(
0 0
0 δ

)
, (10.32)

where δ ∈ R is a constant. A perturbation with support in R− is approximated by

δ−V =

(
δ 0
0 0

)
. (10.33)

Without loss of generality, take the latter (a change of sign of δ leads to the former).
The eigenvalues of H(δ ) = H0 +δ−V are E0 = E− and E1 = E+, with energies

E± = 1
2 (δ ±

√
δ 2 +Δ 2), (10.34)

and normalized eigenvectors

ϕ(0)
δ =

1√
2

(
δ 2 +Δ 2 +δ

√
δ 2 +Δ 2

)−1/2
(

Δ
δ +

√
δ 2 +Δ 2

)
; (10.35)

ϕ(1)
δ =

1√
2

(
δ 2 +Δ 2−δ

√
δ 2 +Δ 2

)−1/2
(

Δ
δ −√δ 2 +Δ 2

)
. (10.36)

Note that limδ→0ϕ
(i)
δ = ϕ(i)

0 for i = 0,1. Now, if h̄ → 0, then |δ | >> Δ , in which

case ϕ(0)
δ →ϕ±0 for±δ > 0 (and starting from (10.32) instead of (10.33) would have

given the opposite case, i.e., ϕ(0)
δ → ϕ∓0 for±δ > 0). Thus the ground state localizes

as h̄→ 0, which resembles the situation (10.25) - (10.26) for the full double-well.
In conclusion, in the (practically unavoidable) presence of asymmetric “flea” per-

turbations, explicit (rather than spontaneous) symmetry breaking already takes place
for positive h̄, so that Butterfield’s Principle holds, and hence also Earman’s.
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10.3 Spontaneous symmetry breaking in quantum spin systems

Before discussing SSB in quantum spin systems, we return to ground states and
KMS states as discussed in the generality of §§9.4–9.6. Starting with the former, it
is natural to ask whether ground states are pure, as would be expected on physical
grounds; indeed, this question goes to the heart of SSB. Proposition 9.20 implies
that ground states (for given dynamics) form a compact convex subset S(A)∞ of the
total state space S(A); the notation S∞(A) (rather than e.g. S0(A)) will be motivated
shortly by the analogy with equilibrium states. It would be desirable that

∂eS∞(A) = S∞(A)∩∂eS(A), (10.37)

in which case extreme ground states are necessarily pure. This will indeed be the
case in the simple models we study in this book, but it is provably the case in gen-
eral only under additional assumptions, such as weak asymptotic abeliannnes of the
dynamics, i.e., limt→∞ω([αt(a),b]) = 0 for all a,b ∈ A. A weaker sufficient condi-
tion for (10.37) is that πω(A)′ be commutative (which is the case if ω is pure).

We are now in a position to define SSB, at least in the context of ground states.

Definition 10.3. Suppose we have a (topological) group G and a (continuous) ho-
momorphism γ : G→ Aut(A), which is a symmetry of the dynamics in that

αt ◦ γg = γg ◦αt (g ∈ G, t ∈ R). (10.38)

The G-symmetry is said to be spontaneously broken (at temperature T = 0) if

(∂eS∞(A))G = /0, (10.39)

and weakly broken if (∂eS∞(A))G �= ∂eS∞(A), i.e., there is at least one ω ∈ ∂eS∞(A)
that fails to be G-invariant (although invariant extreme ground states may exist).

Here S G = {ω ∈S | ω ◦ γg = ω ∀g ∈G}, defined for any subset S ⊂ S(A), is the
set of G-invariant states in S . Assuming (10.37), eq. (10.39) means that there are
no pure G-invariant ground states. This by no means implies that there are no G-
invariant ground states at all, quite to the contrary: for compact, or, more generally,
amenable groups G, one can always construct G-invariant ground states by averag-
ing over G, exploiting the fact that if G is a symmetry of the dynamics, then each
affine homeomorphism γ∗g of S(A) (defined by γ∗g (ω) =ω ◦γg) maps S∞(A) to itself.
Definition 10.3 therefore implies that if SSB occurs, then one has a dichotomy:

• Pure ground states are not invariant, whilst invariant ground states are not pure.

Definition 10.4. We call a G-symmetry spontaneously broken at inverse tempera-
ture β ∈ (0,∞) if there are no G-invariant extreme β -KMS states, i.e.,

(∂eSβ (A))
G = /0, (10.40)

and weakly broken if there is at least one non-G-invariant extreme KMS state.
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By Theorem 9.31 we may replace extreme β -KMS states by primary β -KMS states,
so that, similarly to ground states, SSB at nonzero temperature means that:

• Primary KMS states are invariant, whilst invariant KMS states are not primary.

For the next result, please recall Definition 9.10 and Theorem 9.11.

Proposition 10.5. Let A be a quasi-local C*-algebra of the kind (8.130) and sup-
pose the given G-action γ commutes not only with time translations αt but also
with space translation τx. If γ∗gω �= ω for some ω ∈ ∂eSβ (A) and g ∈ G, then the
automorphism γg cannot be unitarily implemented in the GNS-representation πω .

This is true also at β = ∞, i.e., for ground states.

Proof. This is an obvious corollary of Proposition 9.13 and Theorems 9.14 and
9.31: if γg were implementable by a unitary ug, then ugΩω �= Ωω (not even up to
a phase), since γ∗gω �= ω . But in that case, since τx ◦ γg = γg ◦ τx for each x ∈ Zd ,
we would have uxug = ugux and hence ux(ugΩω) = ugΩω . Thus ugΩω would be
another translation-invariant ground state, contradicting Theorem 9.14. �

This result is worth mentioning, since some authors define SSB through the con-
clusion of this proposition, that is, they call a symmetry γg (spontaneously) broken
by some state ω iff γg cannot be unitarily implemented in πω . This definition seems
physically dubious, however, because quantum spin systems may have ground states
ω that are not G-invariant but in which nonetheless all of G is unitarily imple-
mentable (in such states translation invariance has to be broken, of course). For
example, the Ising model in d = 1 with ferromagnetic nearest-neighbour interaction
and vanishing external magnetic field (where G = Z2) has an infinite number of
such ground states, in which a “domain wall” separates infinitely many “spins up”
to the left from infinitely many “spins down” to the right. Although this model has a
unique KMS state at any nonzero temperature, such ground states (and perhaps anal-
ogous states at β �=∞ in different models, so far understood only heuristically) seem
far from pathological and play a major role in modern condensed matter physics.
Hence we trust this alternative definition only if the states it singles out also satisfy
Definition 10.3 or 10.4, for which Proposition 10.5 gives a sufficient condition: for
translation-invariant states and symmetries on quasi-local algebras, our definition of
SSB through (10.40) is compatible with the one based on unitary implementability.

This is fortunate, since the physicist’s notion of an order parameter, through
which at least weak SSB may be detected, is tailored to translation-invariant states:

Definition 10.6. Let A be a quasi-local C*-algebra A as in (8.130), with symmetry
group G. A (strong) order parameter in A is an n-tuple φ = (φ1, . . . ,φn) ∈ An for
which ω(φ) = 0 if (and only if) ω is G-invariant, for any Zd-invariant state ω on A.

An order parameter defines an accompanying vector field x �→ φ(x) by φi(x) =
τx(φ). Since ω is translation-invariant, ω(φ) = 0 is equivalent to ω(φ(x)) = 0 for
all x. In the Ising model, with G = Z2, σ3(0) is an order parameter, which can
be extended to a strong one φ = (σ2(0),σ3(0)). In the Heisenberg model, where
G = SO(3), the triple (σ1(0),σ2(0),σ3(0)) provides a strong order parameter.
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Theorem 10.7. Suppose that φ is a (strong) order parameter, as in Definition 10.6.
Then a G-invariant and translation-invariant KMS state ω ∈ Sβ (A)G (including β =
∞, i.e., a ground state) displays weak SSB—in the sense that at least one of the
components in its extremal decomposition fails to be G-invariant—if (and only if)
the associated two-point function exhibits long-range order, in that

lim
x→∞

ω

(
n

∑
i=1

φi(0)∗φi(x)

)
> 0. (10.41)

Proof. The “if” part of the theorem is equivalent to the vanishing of the limit in
question in the absence of SSB. Let (9.132) be the extremal decomposition of ω . If
(almost) each extreme state ϕ is invariant, then ω ′(φi(x))= 0 for all i by definition of
an order parameter, and similarly ω ′(φi(x)∗) =ω ′(φi(x)) = 0. Interchanging limx→∞
with the integral over ∂Sβ (A) (which is allowed because μ is a probability measure),
and using (9.30) then shows that the left-hand side of (10.41) vanishes.

To avoid difficult measure-theoretic aspects of the extremal decomposition the-
ory, and also for pedagogical purposes, we prove the “only if” part only in the case

ω =
∫

G
dgω ′g, (10.42)

weakly, where ω ′ ∈ ∂Sβ (A) and ω ′g = γ∗gω ′. Since the expression

ω ′g(
n

∑
i=1

φi(0)∗φi(x))

is independent of g∈G (by definition of an order parameter), we may replace ω ′g by
ω ′ in the expression for ω; the term

∫
G dg then factors out and is equal to unity. Thus

we may replace ω in (10.41) by ω ′. Since ω ′ is a primary state, we may now use
(9.30) once again, so that the left-hand side of (10.41) becomes ∑n

i=1 |ω ′(φi)|2. By
assumption, ω ′ is not G-invariant, so that (by definition of a strong order parameter)
at least one of the terms |ω ′(φi)| is nonzero. �

If G is compact, for any C*-algebra A, invariant KMS states (including ground
states) can always be constructed via (9.133), provided, of course, KMS states (or
ground states) exist in the first place. Fortunately, existence can be shown in the
following way. Let A be a quasi-local C*-algebra à la (8.130), in which:

1. dim(H)< ∞ (and hence also dim(HΛ )< ∞ for any finite Λ ⊂ Zd);
2. Dynamics is defined locally on each algebra AΛ = B(HΛ ) via (9.40) and (9.41),

i.e., with free boundary conditions, having a global limit α as in Theorem 9.15.

In that case, by Corollary 9.27 each C*-algebra AΛ has a unique β -KMS state ωβ
Λ ,

given by the local Gibbs state (9.96). However, if Λ (1) ⊂ Λ (2), then the restriction
of the β -KMS state ωβ

Λ (2) to AΛ (1) ⊂ AΛ (2) is not given as naively expected, namely

by the β -KMS state ωβ
Λ (1) , because the former involves boundary terms.
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Fortunately, this complication may be overcome, since at least for models with
short-range forces (cf. Theorem 9.15) one may put

ωβ
G(a) = lim

N→∞
ωβ
ΛN

(a), (10.43)

where ΛN is defined in (8.153). This limit exists for a ∈ ∪ΛAΛ , from which ωβ

extends by continuity to all of A, on which it is a β -KMS state (cf. Theorem 10.10).
Alternatively, by the Hahn–Banach Theorem (in the form of Corollary B.41)

combined with Lemma C.4 (which guarantees that any Hahn–Banach extension of
a state remains a state), each local Gibbs state ωβ

Λ on AΛ ⊂ A extends, in a non-
unique way, to a state ω̂β

Λ on A. This gives a net of states (ω̂β
Λ ) on A indexed by

the finite subsets Λ of Zd ; one may also work with sequences (ω̂β
ΛN

). Since A has
a unit, its state space S(A) is a compact convex set, so the above net (or sequence)
has at least one limit point, or, equivalently, has at least one convergent subnet (or
subsequence), which—despite its potential lack of uniqueness in two respects, i.e.
the choice of the extensions ω̂β

Λ and the choice of a limit point—one might write as

ω̂β = lim
Λ↗Zd

ω̂β
Λ . (10.44)

Without proof, we quote the relevant technical result (assuming 1–2 above):

Proposition 10.8. Each limit state ω̂β is a β -KMS state (i.e. for the dynamics α).

Anticipating the existence of SSB in models, one should now feel a little uneasy:

• It follows from Corollary 9.27 that (at fixed β ) there is a unique KMS state on
each local algebra AΛ for the given local dynamics α(Λ)

t , namely the local Gibbs
state ωβ

Λ on AΛ . If—as is the case in all our examples—the globally broken G-

symmetry is induced by local automorphisms γ(Λ)
g : AΛ → AΛ that commute with

the local dynamics α(Λ)
t , then each local Gibbs state is G-invariant: this follows

explicitly from G-invariance of the local Hamiltonian hΛ and the formulae (9.96)
- (9.98), or, more abstractly, from the fact if ωβ

Λ were not invariant under all γ(Λ)
g ,

it would not be unique (as its translate ωβ
Λ ◦ γ(Λ)

g would be another KMS state).
• And yet (in case of SSB) there exist non-invariant (and hence non-unique) KMS

states on A, which are even limits in the sense of (10.44) of the above invariant
(and hence unique) local KMS states on AΛ !

• Real samples are finite and hence are described by the local algebras AΛ , with
their unique invariant equilibrium states ωβ

Λ . Yet finite samples do display SSB,
e.g., ferromagnetism (broken Z2-symmetry), superconductivity (broken U(1)).

• Therefore, the theory that should describe SSB in real materials, namely the finite
theory AΛ , apparently fails to do so (as it seems to forbid SSB), whereas the
idealized theory A, which describes strictly infinite systems and in those systems
allows SSB, in fact turns out to describe key properties of finite samples.
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10.4 Spontaneous symmetry breaking for short-range forces

We continue our discussion of SSB in quantum spin systems, especially of the con-
struction of global KMS states in the previous section, see (10.44) and preceding
text. Recall that each finite system AΛ has a unique β -KMS state ωβ

Λ , namely the lo-
cal Gibbs state (9.96), but that these states are incompatible for different Λ ’s, in that,
if Λ (1) ⊂ Λ (2), then the restriction of ωβ

Λ (2) to AΛ (1) ⊂ AΛ (2) is not given by ωβ
Λ (1)

because of boundary terms. To correct for this, one introduces the surface energy

bΛ (1),Λ (2) = ∑
X⊆Λ (2):X∩Λ (1) �= /0,X∩Λ c

1 �= /0

Φ(X), (10.45)

with ensuing interaction energy

bΛ = lim
Λ (2)↗Zd

bΛ ,Λ (2) = ∑
X∩Λ �= /0,X∩Λ c �= /0

Φ(X), (10.46)

provided this limit exists (which it does for short-range forces). Now perturb ωβ
Λ (2)

by replacing hΛ (2) in (9.96) - (9.98) (with Λ �Λ (2)) by hΛ (2) −bΛ (1),Λ (2) . Denoting

this modification of ωβ
Λ (2) by ωβ

Λ (1),Λ (2) , we obtain (10.47), which implies (10.48):

ωβ
Λ (1),Λ (2) = ωβ

Λ (1) ⊗ωβ
Λ\Λ (1) ; (10.47)

(ωβ
Λ (1),Λ (2) )|AΛ(1)

= ωβ
Λ (1) . (10.48)

If (10.46) exists, we may likewise perturb any t-invariant state ω on A to ω̃Λ , i.e.,

ω̃Λ (a) =
〈e−β (hω−πω (bΛ ))/2Ωω ,πω(a)e−β (hω−πω (bΛ ))/2Ωω〉

‖e−β (hω−πω (bΛ ))/2Ωω〉‖2
, (10.49)

where Λ ⊂ Zd is finite, hω is defined as in (9.51) - (9.52), and Ωω is in the domain
of the unbounded operator exp(−β (hω −πω(bΛ ))/2); the reason is that πω(bΛ ) is
bounded, whereas exp(−βhω/2)Ωω =Ωω (since hωΩω = 0). For example,

(ω̃β
Λ (2) )Λ (1) = ωβ

Λ (1),Λ (2) , (10.50)

where ω =ωβ
Λ (2) is a Gibbs state on A = AΛ (2) , as in Theorem 9.24 (with Λ �Λ (2)).

Indeed, using (9.114) - (9.117) and the relation hω = hΛ (2) − JhΛ (2)J, where the
operator J is defined in (9.124), we compute the numerator in (10.49) as

Tr(
((

e−β (hΛ(2)−Jh
Λ(2) J−bΛ )/2e−βh

Λ(2)/2
)∗

ae−β (hΛ(2)−Jh
Λ(2) J−bΛ )/2e−βh

Λ(2)/2
)

= Tr
(

e−β (hΛ(2)−bΛ )a
)
, (10.51)
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since JhΛ (2)J commutes with hΛ (2) −bΛ . This subsequently gives

e−β (hΛ(2)−Jh
Λ(2) J−bΛ )/2

= e−β (hΛ(2)−bΛ )/2eβJh
Λ(2) J ;

eβJh
Λ(2) Je−βh

Λ(2)/2
= e−βh

Λ(2)/2eβh
Λ(2)/2

= 1H . (10.52)

Likewise, the denominator in (10.49) equals Tr(exp(−β (hΛ (2) −bΛ ))).
Eqs. (10.50) and (10.48) suggest that if ω = ωβ is a β -KMS state, then although

ωβ itself does not localizes to a Gibbs state ωβ
Λ on AΛ , its perturbed version ω̃β

Λ
does. Under assumptions 1–2 stated in §10.3, i.e., in the situation of Theorem 9.15
with dim(H) < ∞, this motivates the following quantum analogue of the DLR ap-
proach to classical equilibrium states, i.e., of Definition 9.23:

Definition 10.9. For fixed inverse temperature β ∈ R\{0} and fixed interaction Φ ,
a Gibbs state ωβ on a quasi-local algebra A with dynamics given by some potential
Φ is an αt -independent state such that for each finite region Λ ⊂ Zd one has

ω̃β
Λ = ωβ

Λ ⊗ω ′Λ c , (10.53)

where ωβ
Λ is the local Gibbs state (9.96) on AΛ and ω ′Λ c is some state on AΛ c .

Theorem 10.10. Under assumptions 1–2 in §10.3, and if in addition the subspace
D = ∪ΛAΛ ⊂ A is a core for the derivation (9.54) (i.e., the closure of δ defined on
D is δ as defined in Proposition 9.19), then Gibbs states coincide with KMS states.

The proof is rather technical and so we omit it. It follows that if ωβ ∈ Sβ (A), then

(ω̃β
Λ )|AΛ = ωβ

Λ . (10.54)

Even so, we still need to define in precisely which sense the net ((ω̃β
Λ )|AΛ )Λ con-

verges to ωΛ (or when perhaps even the net (ωβ
Λ ) converges to ωΛ ); for simplicity

we take Λ = ΛN as in (8.153), and just consider sequences indexed by N (rather
than nets). To this end, let (ω1/N)N be a sequence of states with ω1/N ∈ S(AΛN ). As
in Definition 8.24, given some ω0 ∈ S(A) (if it exists), we say that

lim
N→∞

ω1/N = ω0 (10.55)

iff for any sequence (a1/N)N in A with a1/N ∈ AΛN ⊂ A that converges to a ∈ A one
has

lim
N→∞

ω1/N(a1/N) = ω0(a). (10.56)

For example, if we take ω0 ∈ S(A) and define ω1/N = ω0|AΛN
, then (10.55) holds by

continuity of ω0 (as ‖ω0‖= 1), which implies that limN→∞ω0(a1/N) = ω0(a).
It follows from the comments preceding Definition 8.24 that the above notion

(10.55) - (10.56) of convergence is the same as the one given by (8.164), so that it is
similar to the convergence of states we defined for the other two classes of examples
of listed earlier, viz. classical mechanics (cf. §10.1) and thermodynamics.
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We denote the restriction of some global KMS state ωβ (defined on A) to AΛN ⊂ A
by ωβ

1/N , whereas as usual we write ωβ
ΛN

for the unique local Gibbs state on AΛN .
Keeping Definition 8.24 and Proposition 8.25 in mind, the situation is as follows:

1. Any KMS state ωβ equals the limit ωβ
0 of its restrictions ωβ

1/N (i.e. to AΛN ).

2. Each state ωβ
1/N differs from the local Gibbs state ωβ

ΛN
(even if ωβ is unique).

3. The local Gibbs states ωβ
ΛN

typically converge to a KMS state ωβ
G , cf. (10.43).

4. In models with symmetry, this global Gibbs state ωβ
G is invariant (like the ωβ

ΛN
).

The first claim follows from the argument given after (10.55). The second is the
contrapositive to (10.54) and has been explained in §10.3: although the states ωβ

1/N

and ωβ
ΛN

are both of local Gibbs type, their Hamiltonians differ from hΛN by the
boundary term bΛ . The third claim cannot be proved in general, but in models with
short-range forces it holds in both forms (10.43) and (10.55) - (10.56). In such mod-
els the G-symmetry is local, i.e., G acts on each AΛ through unitaries

u(Λ)
g = ⊗x∈Λug(x); (10.57)

γ(Λ)
g (aΛ ) = u(Λ)

g a(u(Λ)
g )∗ (aΛ ∈ AΛ ,g ∈ G), (10.58)

where ug(x)∈B(Hx), leaving each local Hamiltonian hΛ and hence each local Gibbs
state ωβ

ΛN
invariant. If a ∈ A is local, i.e., a ∈ ∪ΛAΛ , then

γg(a) = lim
N→∞

γ(ΛN)
g (aN), (10.59)

followed by continuous extension to a ∈ A, so that, assuming (10.55),

ω0(γg(a)) = lim
N→∞

ω1/N(γg(aN)) = lim
N→∞

ω1/N(γ
(ΛN)
g (aN)) = lim

N→∞
ω1/N(aN) = ω0(a),

since ω1/N ◦ γ(ΛN)
g = ω1/N by assumption. Thus the global Gibbs state ωβ

G inherits

the G-invariance of its local approximants ωβ
ΛN

. In case of SSB, the restrictions ωβ
1/N

of some non-invariant extreme KMS state ωβ determine ωβ , so that in principle SSB

is detectable through the local states ωβ
1/N . It would be question-begging to construct

the latter from the global states ωβ , though, so Butterfield’s Principle (and hence in
its wake Earman’s Principle) holds only if we can show how and why the states of
sufficiently large yet finite systems AΛN tend to ωβ

1/N rather than to ωβ
ΛN

.
Unfortunately, showing any of this in specific models at finite (inverse) temper-

ature 0 < β < ∞ is pretty complicated. For example, in the quantum Ising model
(9.42) in d = 1, KMS states are unique for any B, so that for SSB one must go to
d ≥ 2. In that case, it can be shown from Theorem 10.7 that for B = 0, below some
critical temperature (i.e. for β > βc) the Z2 symmetry defined in (10.68) below is
broken, but this takes considerable effort and is beyond the scope of this book.
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10.5 Ground state(s) of the quantum Ising chain

It is much simpler to put β = ∞ and hence turn to the ground state(s) of the quantum
Ising model (9.42) in d = 1, which is manageable. The interesting case is B> 0, with
J = 1 and free boundary conditions, so that for Λ =ΛN (with N even), we have

hN = − ∑
x∈ΛN

(σ3(x)σ3(x+1)+Bσ1(x)) ; (10.60)

ΛN = {− 1
2 N, . . . , 1

2 N−1}; (10.61)
HΛN = HN =⊗x∈ΛN Hx; (10.62)

Hx = C2 (x ∈ΛN), (10.63)

where the operator σi(x) acts as the Pauli matrix σi on Hx and as the unit matrix
12 elsewhere. This model describes a chain of N immobile spin- 1

2 particles with
ferromagnetic coupling in a transverse magnetic field (it is a special case of the so-
called XY -model, to which similar conclusions apply). The local Hamiltonians hN
define time evolution on the local algebras

AΛN ≡ AN = B(HN) (10.64)

by (9.40), i.e.,
α(N)

t (aN) = eithN aNe−ithN (a ∈ AN), (10.65)

which by Theorem 9.15 defines a time evolution on the quasi-local C*-algebra

A =
⋃

N∈N
AN

‖·‖
=
⊗
x∈Z

B(Hx), (10.66)

namely by regarding the unitaries exp(ithN) ∈ AN ⊂ A as elements of A and putting

αt(a) = lim
N→∞

eithN ae−ithN (a ∈ A), (10.67)

which exists (although the sequence (exp(ithN))N in A does not converge in A).
For any B ∈ R, the quantum Ising chain has a Z2-symmetry given by a 180-

degree rotation around the x-axis, locally implemented by the unitary operator
u(x) = σ1(x), which at each x ∈ ΛN yields (σ1,σ2,σ3) �→ (σ1,−σ2,−σ3), since
σiσ jσ∗i = −σ j for i �= j. Thus u(x) sends each σ3(x) to −σ3(x) but maps each
σ1(x) to itself. As in (10.57), this symmetry is implemented by the unitary operator

u(N) =⊗x∈ΛNσ1(x) (10.68)

on HN , which satisfies [hN ,u(N)] = 0, or, equivalently,

u(N)hN(u(N))∗ = hN . (10.69)
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The ensuing Z2-symmetry is given by the automorphism γ(N) of AN defined by

γ(N)(a) = u(N)a(u(N))∗ (a ∈ AN), (10.70)

which induces a global automorphism γ ∈ Aut(A) as in (10.59), i.e.,

γ(a) = lim
N→∞

u(N)a(u(N))∗ (a ∈ A), (10.71)

which limit once again exists despite the fact that the sequence u(N) has no limit in
A. Thus Z2-invariance of the model follows from the local property

α(N)
t ◦ γ(N) = γ(N) ◦α(N)

t , (10.72)

which in the limit N → ∞ gives

αt ◦ γ = γ ◦αt (t ∈ R). (10.73)

Since γ2 = idA, we have an action of the group Z2 = {−1,1} on A, where the
nontrivial element (i.e., g = −1) is sent to γ . By (10.72) this group acts on the set
S∞(AN) of ground states of AN relative to the dynamics α(N), and by (10.73) the
same is true for the set S∞(A) of ground states of the corresponding infinite system
for α (and analogously for β -KMS states). These sets may be described as follows.

Theorem 10.11. 1. For any N < ∞ and B = 0 the ground state of the quantum Ising
model (10.60) is doubly degenerate and breaks the Z2 symmetry of the model.

2. For N <∞ and any B> 0 the ground state ω(0)
1/N is unique and hence Z2-invariant.

3. At N = ∞ with magnetic field 0 ≤ B < 1, the model has a doubly degenerate
translation-invariant ground state ω±0 , which again breaks the Z2 symmetry.

4. At N = ∞ and B≥ 1 the ground state is unique (and hence Z2-invariant).
5. Recall Definition 8.24. For 0≤ B < 1 the states (ω(0)

1/N)N∈N (as in no. 2) with

ω(0)
0 = 1

2 (ω
+
0 +ω−0 ) (10.74)

form a continuous field of states on the continuous bundle A(q); in particular,

lim
N→∞

ω(0)
1/N = ω(0)

0 . (10.75)

The two ground states in no. 1 and no. 3 are tensor products of | ↑〉 and | ↓〉, respec-
tively (where σ3| ↑〉= | ↑〉 and σ3| ↓〉=−| ↓〉), so that σ3(0) is an order parameter
in the sense of Definition 10.6. In no. 4, on the other hand, each spin aligns with the
magnetic field in the x-direction, so that the ground state is an infinite tensor product
of states | →〉, where σ1| →〉= | →〉, and this time σ1(0) is an order parameter.

Case no. 2 becomes more transparent if we realize the Hilbert space HN as
�2(SN), where SN is the set of all spin configurations s on N sites, that is,

s : {− 1
2 N,− 1

2 N +1, . . . , 1
2 N−1}→ {−1,1}.
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In terms of the eigenvectors |1〉 ≡ | ↑〉 and |−1〉 ≡ | ↓〉 of σ3, and the orthonormal
basis (δs)s∈SN of �2(SN) (where δs(t) = δst ), a suitable unitary equivalence

vN : �2(SN)→ HN (10.76)

is given by linear extension of

vNδs = |s(− 1
2 N) · · ·s( 1

2 N−1)〉, s, t ∈ SN . (10.77)

For example, the state |1 · · ·1〉 corresponds to δs↑ , where s↑(x) = 1 for all x, and
analogously s↓(x) = −1 for the state | − 1 · · · − 1〉. Using �2(SN), we may talk of
localization of states in spin configuration space (similar to localization of wave-
functions in L2(Rn)), in the sense that some ψ ∈ �2(SN) may be peaked on just a
few spins configurations. Provided 0 < B < 1 this is indeed the case for the unique
ground state in case no. 2, which is similar to the ground state of the double-well
potential discussed in §§10.1–10.2, replacing R by SN (and h̄ > 0 by 1/N).

Theorem 10.11 and related results used below, such as eq. (10.82), follow from
the exact solution of the model for both N < ∞ and N = ∞, to be discussed in
§§10.6–10.7. This solution is rather involved, but a rough picture of the various
ground states may already be obtained from a classical approximation in the spirit
of §8.1. This approximation assumes that the spin-1/2 operators 1

2σi are replaced
by their counterparts for spin n · 1

2 , upon which one takes the limit n → ∞. In this
limit, the spin operators are turned into the corresponding coordinate functions on
the coadjoint orbit O1/2 ⊂ R3 for SU(2), which is the two-sphere S2

1/2 with radius
r = 1/2. In principle, this should be done for each of the N spins separately, yielding
a classical Hamiltonian hc that is a function on the N-fold cartesian product of S2

1/2
with itself. However, if we a priori assume translation invariance of the classical
ground state, only one such copy remains. Using spherical coordinates

(x = 1
2 sinθ cosφ ,y = 1

2 sinθ sinφ ,z = 1
2 cosθ), (10.78)

the ensuing trial Hamiltonian becomes just a function on O1/2, given by

h(θ ,φ)≈−( 1
2 cos2 θ +Bsinθ cosφ). (10.79)

Minimizing gives cosφ = 1 and hence y = 0 for any B, upon which

h(θ)≈−( 1
2 cos2 θ +Bsinθ) (10.80)

yields the phase portrait of Theorem 10.11 for N = ∞, as follows. For 0 ≤ B < 1,
the global minimum is reached at the two different solutions θ± of cosθ± = B, with
ensuing spin vectors

x±(B) = ( 1
2 B,0,± 1

2

√
1−B2), (10.81)

starting at x±(0) = (0,0,± 1
2 ) and merging at B = 1 to x+(1) = x−(1) = ( 1

2 ,0,0).
This remains the unique ground state for B≥ 1, where all spins align with the field.
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In the regime 0 < B < 1 with large but finite N, one finds a far-reaching analogy
between the double-well potential and and the quantum Ising chain, namely:

• The ground state of (10.60) is doubly peaked in spin configuration space, similar
to its counterpart for the double-well potential in real configuration space.

• One has convergence to localized ground states (10.15) - (10.16) for the quantum
Ising chain and (10.74) - (10.75) for the double well.

• For the energy difference ΔN = E(1)
N −E(0)

N between the first excited state and the
ground state one has (10.17) - (10.18) for the double well, and

ΔN ≈ (1−B2)BN (N → ∞), (10.82)

for the quantum Ising chain. Thus both models show exponential decay, i.e. of
(10.82) in N as N → ∞, and of (10.13) in 1/h̄ as h̄→ 0.

It should be mentioned that exponential decay of the energy gap seems a low-
dimensional luxury, which is not really needed for SSB. All that counts is that
limN→∞ΔN = 0, which guarantees that the first excited state is asymptotically degen-
erate with the ground state, so that appropriate linear combinations like ω±0 can be
formed that converge to the degenerate symmetry-breaking pure (and hence physi-
cal) ground states (or extreme and hence physical KMS states) of the limit system,
which are localized and stable (as is clear from the double well). The fact that in
the two models at hand only one excited state participates in this mechanism is due
to the simple Z2 symmetry that is being broken; SSB of continuous symmetries re-
quires a large number of low-lying states that are asymptotically degenerate with the
ground state and hence also with each other—one speaks of a thin energy spectrum).

The existence of low-lying excited states may be proved abstractly (i.e., in a
model-independent way), as follows. For N < ∞, let ψ(0)

N be the ground state (as-
sumed unique) of some model defined on ΛN ⊂ Zd , and let φ be an order parameter
(cf. Theorem 10.7) with accompanying vector field ΦN = ∑x∈ΛN φ(x); in the quan-
tum Ising chain, we take φ = σ1. Then the key assumptions are expressed by

〈ψ(0)
N ,ΦNψ

(0)
N 〉 = 0; (10.83)

〈ΦNψ
(0)
N ,ΦNψ

(0)
N 〉 ≥ C1 ·N2 (N → ∞,C1 > 0); (10.84)

‖[[ΦN ,hN ],ΦN ]‖ ≤ C2 ·N (N → ∞,C2 > 0). (10.85)

The first states that the ground state is symmetric, the second enforces long-range
order, as in (10.41), and the third follows from having short-range forces. A simple
computation then shows that the unit vector ψ̃(1)

N =ΦNψ
(0)
N /‖ΦNψ

(0)
N ‖ satisfies

〈ψ̃(1)
N ,hNψ̃

(1)
N 〉−〈ψ(0)

N ,hNψ
(0)
N 〉 ≤C2/(C1N) (N → ∞). (10.86)

Since ψ̃(1)
N is orthogonal to ψ(0)

N by (10.83), the variational principle for eigenvalues
(note that hN has discrete spectrum, as dim(HΛN )< ∞) then gives ΔN ≤C2/(C1N),
so that ΔN vanishes as N → ∞, though perhaps not as quickly as (10.82) indicates.
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10.6 Exact solution of the quantum Ising chain: N < ∞

The solution of the quantum Ising chain is based on a transformation to fermionic
variables. Let H be a Hilbert space and let F−(H) be its fermionic Fock space, i.e.,

F−(H) =⊕∞
k=0Hk

−, (10.87)

where H0 = C, and for k > 0 the Hilbert space Hk− = e(k)− Hk is the totally antisym-
metrized k-fold tensor product of H with itself, see also §7.7. Here the projection
e(k)− : Hk → Hk is defined by linear extension of

e(k)− f1⊗·· ·⊗ fk =
1
k! ∑

p∈Sk

sgn(p) fp(1)⊗·· ·⊗ fp(k), (10.88)

where Sk is the permutation group on k objects, and sgn(p) is +1/− 1 if p is
an even/odd permutation. With the (total) Fock space F(H) = ⊕∞

k=0Hk we have
F−(H) = e−F(H), where e = ∑k e(k)− (strongly) is a projection. For f ∈H we define
the (unbounded) annihilation operator a( f ) on F(H) by (finite) linear extension of

a( f ) f1⊗·· ·⊗ fk =
√

k〈 f , f1〉H ⊗·· ·⊗ fk, (10.89)

for k > 0, with a( f )z = 0 on H0 = C. This gives the adjoint a( f )∗ ≡ a∗( f ) as

a∗( f ) f1⊗·· ·⊗ fk =
√

k+1 f ⊗ f1⊗·· ·⊗ fk. (10.90)

For each f ∈ H, we then define the following operators on F−(H):

c( f ) = e−a( f )e−; (10.91)
c∗( f ) = e−a∗( f )e−. (10.92)

Note that the map f �→ c( f ) is antilinear in f , whereas f �→ a∗( f ) is linear in f . It
follows that c∗( f ) = c( f )∗, that each operator c( f ) and c( f ) on F−(H) is bounded
with ‖c( f )‖= ‖c∗( f )‖= ‖ f‖, and the canonical anticommutation relations hold:

[c( f ),c∗(g)]+ = 〈 f ,g〉H ·1F−(H); (10.93)
[c( f ),c(g)]+ = [c∗( f ),c∗(g)]+ = 0. (10.94)

Thus we may define CAR(H) as the C*-algebra within B(F−(H)) generated by all
c( f ), where f ∈ H. This is called the C*-algebra of canonical anticommutation
relations over H, which have constructed in its defining representation on F−(H).
Choosing an orthonormal basis (ei) of H and writing c(ei) = ci etc. clearly yields

[ci,c∗j ]+ = δi j ·1F−(H); (10.95)
[ci,c j]+ = [c∗i ,c

∗
j ]+ = 0. (10.96)
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If dim(H) = N < ∞, then CAR(H) = B(F−(H)). First, a dimension count yields

F−(CN) =⊕N
k=0Hk

− ∼= C2N ∼=⊗NC2. (10.97)

By Theorem C.90, the C*-algebra CAR(H) acts irreducibly on F−(H), so that

CAR(CN)∼= M2N (C). (10.98)

This is already nontrivial for N = 1. In that case, F−(C) = C⊕C= C2, and

c = σ− =

(
0 0
1 0

)
; (10.99)

c∗ = σ+ =

(
0 1
0 0

)
, (10.100)

where σ± = 1
2 (σ1± iσ2). This realization explicitly shows that

CAR(C) = M2(C). (10.101)

To generalize this to N > 1, we introduce a lattice (or chain) N = {1, . . . ,N}, and
for each x ∈ N we define operators cx,c∗x by the Jordan–Wigner transformation

cx = eπi∑x−1
y=1 σ+(y)σ−(y)σ−(x) =

(
x−1

∏
y=1

(−σ3)(y)

)
·σ−(x); (10.102)

c∗x = e−πi∑x−1
y=1 σ+(y)σ−(y)σ+(x) =

(
x−1

∏
y=1

(−σ3)(y)

)
·σ+(x), (10.103)

where x > 1, and c1 = σ−1 and c∗1 = σ+
1 (here σ±(x) = 1

2 (σ1(x)± iσ2(x)) etc.).
These operators satisfy (10.95) - (10.96); the second expression on each line follows
because the operators σ+(y)σ−(y) commute for different sites y, and

eπiσ+σ− =−σ3. (10.104)

Furthermore, since

c∗xcx = σ+(x)σ−(x) =
(

1 0
0 0

)
(x); (10.105)

cxc∗x = σ−(x)σ+(x)) =
(

0 0
0 1

)
(x), (10.106)

the inverse of the Jordan–Wigner transformation is given by

σ−(x) = e−πi∑x−1
y=1 c∗ycy cx; (10.107)

σ+(x) = c∗xeπi∑x−1
y=1 c∗ycy . (10.108)
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We return to the quantum Ising model (10.60) with free boundary conditions,
where we relabel the sites as {1, . . . ,N}, as above, and change to the Hamiltonian

hQI
N =− 1

2

(
N−1

∑
x=1

σ1(x)σ1(x+1)+λ
N

∑
x=1

σ3(x)

)
, (10.109)

where, in order to avoid notational confusion with the operator B in (10.111) below,
we henceforth replace B � λ . In terms of the unitary operator u =

√
1/2(12 + iσ2)

on C2 and hence u(N) =⊗N
x=1u(x) on ⊗NC2, we have u(N)hN(u(N))∗ = h′N .

Using (10.102) - (10.103), up to an additive constant λN ·1N we omit, we find

hQI
N =−

N

∑
x=1

(λc∗xcx + 1
2 (c

∗
x− cx)(c∗x+1 + cx+1)), (10.110)

so we now show how to diagonalize quadratic fermionic Hamiltonians of the type

hN =−
N

∑
x,y=1

(
Axyc∗xcy + 1

2 Bxy(c∗xc∗y− cxcy)
)
, (10.111)

where A and B are real N×N matrices, with A∗ = A and B∗ =−B. Indeed, taking

A = 1
2 (S+S∗)+λ ·1N ; (10.112)

B = 1
2 (S−S∗), (10.113)

recovers (10.110), where S : CN → CN is the shift operator, defined by

S f (x) = f (x+1); (10.114)
S∗ f (x) = f (x−1). (10.115)

By convention, f (N + 1) = f (0) = 0 (i.e., S f (N) = S∗ f (0) = 0 for any f ∈ CN);
in terms of the standard basis (υx) of CN we have Sυ1 = 0 and Sυx = υx−1 for
x = {2, . . . ,N}, and likewise S∗υN = 0 and Sυx = υx+1 for x = {1, . . . ,N−1}.

The smart thing to do now turns out to be diagonalizing the 2N×2N-matrix

M =

(
A B
−B −A

)
, (10.116)

which by a unitary transformation may be brought into the simpler form

M′ =
(√

1/2 −√1/2√
1/2

√
1/2

)(
A B
−B −A

)( √
1/2

√
1/2

−√1/2
√

1/2

)
=

(
0 C

C∗ 0

)
, (10.117)

where C = A+B. For example, for the model (10.111) we simply have

C = S+λ ·1N . (10.118)
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The equations for the eigenvalues εk and eigenvectors of M′, i.e.,

M′
(
ϕk
ψk

)
= εk

(
ϕk
ψk

)
(10.119)

where ϕk,ψk ∈ CN , are equivalent to both the coupled system of equations

Cψk = εkϕk; (10.120)
C∗ϕk = εkψk; (10.121)

C = A+B, (10.122)

where the eigenvalues εk are real (since M∗ = M), and to the uncoupled version

CC∗ϕk = ε2
k ϕk; (10.123)

C∗Cψk = ε2
k ψk; (10.124)

CC∗ = A2−B2− [A,B]; (10.125)
C∗C = A2−B2 +[A,B]. (10.126)

Without loss of generality we may (and will) assume that the ϕk,ψk are unit vectors
in CN , so that the corresponding unit vector in C2N is (ϕk,ψk)/

√
2). Furthermore,

since C (or M) is a matrix with real entries and the εk are real, by a suitable choice
of phase we may (and will) also arrange that ϕk,ψk have real components. Finally,
it follows from (10.120) - (10.120) that (−ϕk,ψk) is an eigenvector of C with eigen-
value −εk, so that the unitary transformation U ′ that diagonalizes M′, i.e.,

(U ′)−1M′U ′ =
(−E 0

0 E

)
, (10.127)

where E = diag(ε1, . . . ,εN), takes the form

U ′ =
1√
2

(
ϕ −ϕ
ψ ψ

)
, (10.128)

where ϕ is the N×N matrix (ϕ1, . . . ,ϕN), seeing each vector ϕi as a column, etc.
Combined with (10.117), we obtain

U−1MU =

(−E 0
0 E

)
; (10.129)

U = 1
2

(
1 1
−1 1

)
·
(
ϕ −ϕ
ψ ψ

)
= 1

2

(
ψ+ϕ ψ−ϕ
ψ−ϕ ψ+ϕ

)
≡
(

u v
v u

)
, (10.130)

where we introduced N×N matrices

u = 1
2 (ψ+ϕ); (10.131)

v = 1
2 (ψ−ϕ). (10.132)
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Using orthonormality and completeness of both the (ϕk) and the (ψk), one obtains

u∗u+ v∗v = 1H ; (10.133)
u∗v+ v∗u = 0; (10.134)
uu∗+ vv∗ = 1H ; (10.135)
uv∗+ vu∗ = 0. (10.136)

Of course, u and v are far from unique, as they depend on both the ordering and
the phases of the vectors ϕk and ψk. In partial remedy of the former ambiguity we
assume that 0≤ ε0 ≤ ε1 ≤ ·· · ≤ εN (which can be arranged by a suitable ordering as
well as choice of sign of the eigenvectors ϕk). Towards the latter, we already agreed
that both the ϕk and ψk are real, so that also our matrices u and v have real entries.

We now explain the purpose of diagonalizing M in (10.116) using u and v.

Proposition 10.12. Let u and v be operators on a Hilbert space H, where u is linear
and v is anti-linear. Let c( f ) and c∗( f ) be the operators (10.91) - (10.92), satisfying
the CAR (10.93) - (10.94). Define the Bogoliubov transformation

η( f ) = c(u f )+ c∗(v f ); (10.137)
η∗( f ) = c∗(u f )+ c(v f ), (10.138)

which extends to a linear map α : CAR(H)→CAR(H), where η( f ) = α(c( f )) etc.
Then α is a homomorphism of C*-algebras, or, equivalently, one has the CAR

[η( f ),η∗(g)]+ = 〈 f ,g〉H ·1H ; (10.139)
[η( f ),η(g)]+ = [η∗( f ),η∗(g)]+ = 0, (10.140)

iff u and v satisfy (10.133) - (10.134), with u � u,v � v. Moreover, α is invertible
(and hence defines an automorphism of CAR(H)) iff in addition (10.135) - (10.136)
are valid (again with with u � u,v � v), in which case the inverse is

c( f ) = η(u∗ f )+η∗(v∗ f ); (10.141)
c∗( f ) = η∗(u∗ f )+η(v∗ f ). (10.142)

Note that anti-linearity of v is needed to make f �→ η( f ) anti-linear, like f �→ c( f ).
With respect to a base (ei) of H, the transformations (10.137) - (10.142) reads

ηi = ∑
j
(u jic j + v jic∗j); (10.143)

η∗j = ∑
j
(u jic∗j + v jic j); (10.144)

ci = ∑
j
(ui jη j + vi jη∗j ); (10.145)

c∗i = ∑
j
(ui jη∗j + vi jη j). (10.146)
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Proof. The proof is a straightforward computation. �

In comparison with the preceding diagonalization process, where H = CN , we
notice that in this process u and v were both linear, whereas in Proposition 10.12 u
is linear whereas v is antilinear. This difference is easily overcome by taking u= u
and v = Jv, where J : CN → CN is the anti-linear map J f (x) = f (x), so that J is a
conjugation in being an anti-linear map that satisfies J∗ = J−1 = J.

Returning to our generic Hamiltonian (10.111), a straightforward computation
using (10.145) - (10.146), (10.116), (10.129), and (10.133) - (10.136) yields

hN =
N

∑
k=1

εkη∗k ηk, (10.147)

up to a (computable) constant, where we recall that εk ≥ 0 (k = 1, . . . ,N). Note that
hN is still defined on the fermionic Fock space F−(CN), as hN is a (complicated)
quadratic expression in the operators ci and c∗i on F−(CN). The point is that (as a
consequence of Proposition 10.12) the ηk and η∗k also satisfy the CAR, i.e.,

[ηi,η∗j ]+ = δi j ·1F−(H); (10.148)
[ηi,η j]+ = [η∗i ,η

∗
j ]+ = 0. (10.149)

Theorem 10.13. Let A = CAR(CN) be the CAR-algebra over H =CN with dynam-
ics αt(a) = eithN ae−ithN given by (10.111) and hence by(10.147). Then α has a
unique (and hence pure and symmetric) ground state ω0, specified by the property

πω0(η( f ))Ωω0 = 0 ( f ∈ CN). (10.150)

Proof. Recall that α defines a derivation δ : CAR(CN)→ CAR(CN) defined by
(9.54), which in the case at hand is simply by δ (a) = i[hN ,a] (since A is finite-
dimensional, δ is bounded and hence defined everywhere). Using the identity

[ab,c] = a[b,c]+− [c,a]+b, (10.151)

as well as the relations (10.148) - (10.149), we obtain δ (ηk) =−iεkηk, and hence

−iω0(η∗k δ (ηk)) =−ω0(η∗k ηk). (10.152)

The condition −iω0(a∗δ (a)) ≥ 0, i.e., eq. (9.56) from Proposition (9.20), there-
fore implies that ω0(η∗k ηk)≤ 0, and hence ω0(η∗k ηk) = 0 by positivity of ω0. Since
F0(H) is finite-dimensional and A∼= B(F0(H)), cf. (10.98), we may assume ground
state(s) to be pure and normal, i.e., there is some unit vector ψ0 ∈ F−(H) with
ω(a) = 〈ψ0,aψ0〉 for each a ∈ A. Hence 〈ψ0,η∗k ηkψ0〉= 0, which enforces

ηkψ0 = 0 (k = 1, . . . ,N). (10.153)

This property makes ψ0 unique up to a phase. Indeed, together with (10.148) -
(10.149), eq. (10.153) implies the values of all one- and two-point functions, i.e.,
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ω0(η( f )) = ω0(η∗( f )) = 0; (10.154)
ω0(η∗( f )η(g)) = ω0(η∗( f )η∗(g)) = ω0(η( f )η(g)) = 0; (10.155)
ω0(η( f )η∗(g)) = 〈 f ,g〉H . (10.156)

Furthermore, the value of ω0 on any product of an odd number of η( f ) and η∗(g)
vanishes; for an even number the value ω0(∏n

i=1η( fi)∏n
j=1η∗(g j)) it is given by

n

∑
p=1

(−1)n−pω0(η( f1)η∗(gp)ω0

(
n

∏
i=2

η( fi)
n

∏
j=1, j �=p

η∗(g j)

)
.

Hence (10.153) gives ω0 on all of CAR(CN). Since CAR(H) =B(F−(H)), this fixes
ψ0 up to a phase. Eq. (10.150) is just a fancy way of rewriting (10.153). �

By construction, the ground state energy of (10.147) is zero. In connection with
our approach to SSB via Butterfield’s Principle it is of interest to compute the energy
ε1 of the first excited state. This may be done from (10.120) - (10.121) with (10.122)
and the specific expression (10.118) for the quantum Ising chain. Thus we solve

λψk(x)+ψk(x+1) = εkϕk(x) (x = 1, . . . ,N,ψk(N +1) = 0); (10.157)
λϕk(x)+ϕk(x−1) = εkψk(x) (x = 1, . . . ,N,ϕk(0) = 0). (10.158)

A solution of this system (with real wave-functions and positive energy) is given by

ϕk(x) = C(−1)k sin(qk(x−N−1)); (10.159)
ψk(x) = −C sin(qkx); (10.160)

εk =
√

1+λ 2 +2λ cos(qk), (10.161)

where C > 0 is a normalization constant, and qk should be solved from

(N +1)qk = (k−1)π+ arctan
(

sinqk

λ + cosqk

)
. (10.162)

For example, for λ = 0 (i.e. no transverse magnetic field) we obtain qk = kπ/N,
where k = 1, . . . ,N. For λ > 1 there is a unique real solution qk for each k, too, and
even as N → ∞ there is an energy gap εk > 0 for each k. For 0 < λ < 1, however,
there is a complex solution q1 = π+ iρ , where ρ ∈ R is a solution to

tanh((N +1)ρ) =
sinhρ

coshρ−λ
. (10.163)

As N → ∞, we find ρ =− ln(λ )− (1−λ 2)λ 2(N−1). Eq. (10.161) then gives

ε(q1)≈ (1−λ 2)λN (N → ∞), (10.164)

which, recalling that E(1)
N = ε1 and E(0)

N = 0 and hence ΔN = ε1, confirms (10.82).
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10.7 Exact solution of the quantum Ising chain: N = ∞

The (two-sided) infinite quantum Ising chain is described by the C*-algebra

F = CAR(�2(Z)); (10.165)

one may also consider a one-sided chain, but it lacks translation symmetry. By the
construction at the beginning of the previous section, F is isomorphic to the infinite
tensor product A = M2(C)∞. We consider F to be generated by the operators c±x
(x ∈Z), where c−x ≡ cx and c+x ≡ c∗x . In this notation, the CAR (10.95) - (10.96) read

[c±x ,c
∓
y ]+ = δxy; (10.166)

[c±x ,c
±
y ]+ = 0. (10.167)

Although the local Hamiltonians (10.111) do not have a limit as N → ∞, as ex-
plained in §10.5 they do generate a time-evolution on F in the sense of a continuous
homomorphism α : R→ Aut(F) via (10.65) and (10.67); see also Theorem 9.15.

Let us first extend the approach in the previous section to N = ∞, in which case
CN is replaced by H = �2(Z), assuming the theory has already been brought into
fermionic form with local Hamiltonians (10.111) (as we will see, it is this step,
i.e., the Jordan–Wigner transformation, that marks the difference between N < ∞
and N = ∞). Thus we define operators A : �2(Z)→ �2(Z) and B : �2(Z)→ �2(Z)
as the obvious extensions of the N ×N matrices A and B to operators on �2(Z),
and similarly S : �2(Z)→ �2(Z) is the “full” shift operator, defined by (S f )(x) =
f (x+1). Instead of the somewhat clumsy explicit solution procedure sketched in the
previous section for N < ∞, we may now simply rely on the Fourier transformation

F : �2(Z)→ L2([−π,π]); (10.168)
(F f )(k)≡ f̂ (k) = ∑

x∈Z
e−ikx f j; (10.169)

(F−1 f̂ )(x)≡ f (x) =
∫ π

−π
dk
2π

eikx f̂ (k), (10.170)

which diagonalizes A and B to operators Â, B̂ : L2([−π,π])→ L2([−π,π]). For the
quantum Ising Hamiltonian (10.110) these are given by the multiplication operators

Âψ̂(k) = −(cosk+λ )ψ̂(k); (10.171)
B̂ψ̂(k) = −isink ψ̂(k). (10.172)

For fixed k, the eigenvalues and eigenvectors of the 2×2 matrix

Mk =

(−(cosk+λ ) −isink
isink cosk+λ

)
, (10.173)
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are ±εk, given by (10.161) with qk � k. It is then routine to find a unitary 2×2 ma-

trix Uk =

(
uk vk
vk uk

)
that diagonalizes Mk in the sense that U−1

k MkUk =

(−εk 0
0 εk

)
.

Fourier transforming these multiplication operators back to �2(Z) then yields an op-
erator U on �2(Z)⊕ �2(Z) that satisfies (10.129). This yields a unique ground state
ω0 characterized by a property like (10.150) or (10.153), where

η( f̂ ) =
∫ π

−π
dk
2π

f̂ (k)(ukĉk + vkĉ∗−k); (10.174)

ĉk = ∑
j∈Z

e−i jkc j; (10.175)

ĉ∗k = ∑
j∈Z

ei jkc∗j . (10.176)

In summary, one-dimensional fermionic models with quadratic Hamiltonians like
(10.111) have a unique ground state even at N = ∞. Thus one wonders where SSB in
the quantum Ising chain could possibly come from. We will answer this question.

Almost every argument to follow relies on Z2-symmetry. In general, a Z2-action
on a C*-algebra A corresponds to an automorphism θ : A→ A such that θ 2 = idA,
i.e. θ represents the nontrivial element of Z2. For example, define θ : F → F by

θ(c±x ) =−c±x ( j ∈ Z), (10.177)

which is an example of a Bogoliubov transformation (cf. Proposition 10.12) and
hence extends to an automorphism of F (which implies that θ(1F) = 1F ). Clearly,
θ 2 = idF , and in addition each local Hamiltonian (10.111) is invariant under θ ; by
implication, so is the dynamics α , i.e., αt ◦θ = θ ◦αt for all t ∈ R.

A C*-algebra A carrying a Z2-action decomposes as

A = A+⊕A−; (10.178)
A± = {a ∈ A | θ(a) =±a}, (10.179)

where the even part A+ is a subalgebra of A, whereas the odd part A− is not: one
has ab ∈ A+ for a,b both in either A+ or A−, and ab ∈ A− if one is in A+ and the
other in A−. For example, if A = B(H) for some Hilbert space H and w : H → H is
a untitary operator satisfying w2 = 1 (and hence w∗ = w), then

θ(a) = waw∗ (= waw) (10.180)

defines a Z2-action on A. In that case, A+ and A− consist of all a ∈ A that commute
and anticommute with w, respectively, that is,

A± = {a ∈ A | aw∓wa = 0}. (10.181)

In case of (10.165) with (10.177), the subspace F+ (F−) is just the linear span of all
products of an even (odd) number of c±j ’s.
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Let us move to Theorem C.90 and reconsider the proof of the claim that if
πω(A)′ �= C · 1, then ω is mixed. If the commutant πω(A)′ is nontrivial, then it
contains a nontrivial projection e+ ∈ πω(A)′. It then follows that e+Ωω �= 0: for
if e+Ωω = 0, then ae+Ωω = e+aΩω = 0 for all a ∈ A, so that e+ = 0, since πω is
cyclic. Similarly, e−Ωω �= 0 with e− = 1H − e+, so we may define the unit vectors

Ω± = e±Ωω/‖e±Ωω‖, (10.182)

and the associated states ω±(a) = 〈Ω±,πω(a)Ω±〉on A. This yields a convex de-
composition ω = λω++(1−λ )ω−, with λ = ‖Ω−‖2. Since λ �= 0,1 and ω+ �=ω−,
it follows that ω is mixed. The associated reduction is effected by writing

H = H+⊕H−; (10.183)
H± = e±H, (10.184)

in that A (more precisely, πω(A)) maps each subspace H± into itself. Now pass from
the projections e± to the operator w = e+− e−, which by construction satisfies

w∗ = w−1 = w. (10.185)

In particular, w is unitary. Conversely, if some unitary w satisfies w2 = 1H , then

e± = 1
2 (1H ±w) (10.186)

are projections satisfying e++ e− = 1H , giving rise to the decomposition (10.184).
Group-theoretically, this means that one has a unitary Z2-action on H ≡ Hω , in
which the nontrivial element of Z2 = {−1,1} is represented by w. The decompo-
sition (10.184) then simply means that Z2 acts trivially on H+ (in that both group
elements are represented by the unit operator) and acts nontrivially on H− (in that
the nontrivial element is represented by minus the unit operator). In conclusion, one
has a Z2 perspective on the reduction of Hω , and instead of a projection e ∈ πω(A)′
one may equivalently look for an operator w ∈ πω(A)′ that satisfies (10.185).

Proposition 10.14. Suppose A carries a Z2-action θ and consider a state ω : A→C
that is Z2-invariant in the sense that ω(θ(a)) = ω(a) for all a ∈ A. We write this
as θ ∗ω = ω , with θ ∗ω = ω ◦ θ . Then there is a unitary operator w : Hω → Hω
satisfying w2 = 1H, wΩ =Ω , and and wπω(a)w∗ = πω(θ(a)) for each a ∈ A.

Cf. Corollary 9.12. In this situation, we obtain a decomposition of H ≡ Hω accord-
ing to (10.183), where the projections e± are given by (10.186), so that, equivalently,

H± = {ψ ∈ H | wψ =±ψ}= A±Ω−. (10.187)

In terms of the decomposition (10.178), it is easily seen that each subspace H±
is stable under A+, whereas A− maps H± into H∓. We denote the restriction of
πω(A+) to H± by π±, so that a Z2-invariant state θ on A not just gives rise to the
GNS-representation πω of A on Hω , but also induces two representations π± of the
even part A+ on H±. This leads to a refinement of Theorem C.90:
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Theorem 10.15. Suppose A carries a Z2-action θ , and let ω : A → C be a Z2-
invariant state. With the above notation, suppose the representation π+(A+) on H+

is irreducible. Then also the representation π−(A+) on H− is irreducible, and there
are the following two possibilities for the representation πω(A) on H = H+⊕H−:

1. πω(A) is irreducible (and ω is pure) iff π+(A+) and π−(A+) are inequivalent.
2. πω(A) is reducible (and ω is mixed) iff π+(A+) and π−(A+) are equivalent.

Proof. The proof of this theorem is much more difficult than one would expect
(given its simple statement), so we restrict ourselves to the easy steps, as well as to
two examples illustrating each of the two possibilities. To start with the latter:

1. A = M2(C), with θ(a) = σ3aσ3; note that σ2
3 = 1 and σ∗3 = σ3. Then

A+ =

{(
z+ 0
0 z−

)
,z± ∈ C

}
≡ D2(C); (10.188)

A− =

{(
0 z1
z2 0

)
,z1,z2 ∈ C

}
, (10.189)

where Dn(C) denotes the C*-algebra of diagonal n×n matrices. Take Ω = (1,0),
with associated state

ω(a) = 〈Ω ,aΩ〉, (10.190)

where a ∈ M2(C). It follows from §2.4 that the associated GNS-representation
πω(A) is just (equivalent to) the defining representation of M2(C) on Hω = C2,
in which the cyclic vector Ωω of the GNS-construction is Ω itself. Since σ3Ω =
Ω , the state defined by (10.190) is Z2-invariant, and the unitary operator w in
Proposition 10.14 is simply w = σ3. Hence the decomposition (10.183) of H =
C2 is simply C2 = C⊕C, i.e.,

H+ = {(z,0),z ∈ C}; (10.191)
H− = {(0,z),z ∈ C}. (10.192)

Of course, we then have H± = A±Ω . Identifying H± ∼= C, this gives the one-
dimensional representations π±(D2(C)) as

π±
(

z+ 0
0 z−

)
= z±, (10.193)

which are trivially inequivalent. Hence by Theorem 10.15 the defining represen-
tation of M2(C) on C2 is irreducible, as it should be.

2. A = D2(C), with
θ(diag(z+,z−)) = diag(z−,z+), (10.194)

where we have denoted the matrix in (10.188) by diag(z+,z−). This time,

A± = {diag(z,±z),z ∈ C}. (10.195)

We once again define a Z2-invariant state ω by (10.190), but this time we take
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Ω =
1√
2

(
1
1

)
. (10.196)

Hence
H± = {(z,±z),z ∈ C}.. (10.197)

We may now identify each A± with C under the map diag(z,±z) �→ z from
A± to C. Similarly, we identify each each subspace H± with C under the map
H± → C defined by (z,±z) �→ z. Under these identifications, we have two one-
dimensional representations π± of the C*-algebra C on the Hilbert space C, given
by π±(z)= z. Clearly, these are equivalent: they are even identical. Hence by The-
orem 10.15 the defining representation of D2(C) on C2 is reducible, as it should
be: the explicit decomposition of C2 in D2(C)-invariant subspaces is just the one
(10.191) - (10.192) of the previous example.

The first-numbered claim of Theorem 10.15 is relatively easy to prove from The-
orem C.90. Suppose π±(A+) are inequivalent and take b∈ πω(A)′: we want to show
that b = λ ·1 for some λ ∈ C. Relative to H = H+⊕H−, we write

b =

(
b++ b+−
b−+ b−−

)
, (10.198)

where the four operators in this matrix act as follows:

b++ : H+→ H+,b+− : H− → H+, b−+ : H+→ H−, b−− : H− → H−. (10.199)

Since A+ ⊂ A, we also have b ∈ πω(A+)
′. The condition [b,a] = 0 for each a ∈ A+

is equivalent to the four conditions

[b++,π+(a)] = 0; (10.200)
[b−−,π−(a)] = 0; (10.201)
π+(a)b+− = b+−π−(a); (10.202)
π−(a)b−+ = b−+π+(a). (10.203)

We now use the fact (which we state without proof) that, as in group theory, the
irreducibility and inequivalence of π±(A+) implies that there can be no nonzero
operator c : H+ → H− such that cπ+(a) = π−(a)c for all a ∈ A+, and vice versa.
Hence b+− = 0 as well as b−+ = 0. In addition, the irreducibility of π±(A+) implies
that b++ = λ+ · 1H+ and b−− = λ− · 1H1 . Finally, the property [b,a] = 0 for each
a ∈ A− implies λ+ = λ−. Hence b = λ ·1, and πω(A) is irreducible.

To prove the second-numbered claim of Theorem 10.15, let π+(A+) ∼= π−(A+),
so by definition (of equivalence) there is a unitary operator v : H− → H+ such that

vπ−(a) = π+(a)v,∀a ∈ A+. (10.204)

Extend v to an operator w : H → H by
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w =

(
0 v
v∗ 0

)
. (10.205)

It is easy to verify from (10.204) that [w,π(a)] = 0 for each a ∈ A+. To check
that the same is true for each a ∈ A−, one needs the difficult analytical fact that
w is a (weak) limit of operators of the kind π(an), where an ∈ A−, which also im-
plies that w∗π(a) ∈ π(A+)

′′. Since π(A+)
′′′ = π(A+)

′ and w ∈ π(A+)
′, we obtain

[w∗π(a),w] = 0 for each a ∈ A−. But for unitary operators w this is the same as
[w,π(a)] = 0. So w ∈ π(A)′, and hence π(A) is reducible by Theorem C.90. �

In determining the ground state(s) of the quantum Ising chain, we will apply The-
orem 10.15 to the C*-algebra (10.87). This application relies on the representation
theory of F . For the moment we leave the Hilbert space H general, equipped though
with a conjugation J : H → H. It turns out to be convenient to use the self-dual
formulation of the CAR, which treats c and c∗ on an equal footing. Define

K = H⊕H, (10.206)

whose elements are written as h = ( f ,g) or h = f +̇g, with inner product

〈h1,h2〉K = 〈 f1, f2〉H + 〈g1,g2〉H . (10.207)

We then introduce a new operator in CAR(H), namely the field

Φ(h) = c∗( f )+ c(Jg), (10.208)

which is linear in h = f +̇g, because the antilinearity of c( f ) in f is canceled by the
antilinearity of J. This yields the anti-commutation relations

[Φ∗(h1),Φ(h2)]+ = 〈h1,h2〉K , (10.209)

but be aware that generally [Φ∗(h1),Φ∗(h2)]+ and [Φ(h1),Φ(h2)]+ do not vanish.
Indeed, in terms of the antilinear operator Γ : K → K, defined by

Γ =

(
0 J
J 0

)
(10.210)

we have the following expression for the adjoint Φ(h)∗ ≡Φ∗(h):

Φ∗(h) =Φ(Γ h). (10.211)

If we identify f ∈ H with f +̇0 ∈ K, we may reconstruct c and c∗ from Φ through

c∗( f ) = Φ( f ); (10.212)
c( f ) = Φ(Γ f ). (10.213)

Bogoliubov transformations now take an extremely elegant form. For any unitary
operator S on K that satisfies [S,Γ ] = 0, we define the transform ΦS of Φ by
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ΦS(h) =Φ(Sh), (10.214)

with associated creation- and annihilation operators (where H � f ≡ f +̇0, as above)

c∗S( f ) = ΦS( f ); (10.215)
cS( f ) = Φ∗

S ( f ). (10.216)

To see the equivalence with the original formulation of the Bogoliubov transforma-
tion, note that for unitary S, the condition [S,Γ ] = 0 is equivalent to the structure

S =

(
u vJ
Jv JuJ

)
, (10.217)

where u : H → H is linear, v : H → H is antilinear, and u and v satisfy (10.133) -
(10.134). Moreover, from (10.137) - (10.138) we obtain

cS( f ) = η( f ); (10.218)
c∗S( f ) = η∗( f ). (10.219)

An interesting class of pure states on CAR(H) arises as follows.

Theorem 10.16. There is a bijective correspondence between:

• Projections e : K → K that (apart form the properties e2 = e∗ = e) satisfy

Γ eΓ = 1K− e; (10.220)

• States ωe on F that satisfy

ωe(Φ(h)∗Φ(h)) = 〈h,eh〉 ∀h ∈ K. (10.221)

Such a state ωe is automatically pure (so that the corresponding GNS-representation
πe is irreducible), and is explicitly given by

ωe(Φ(h1) · · ·Φ(h2n+1)) = 0; (10.222)

ωe(Φ(h1) · · ·Φ(h2n)) =
′

∑
p∈S2n

sgn(p)
n

∏
j=1
〈ehsgn(2 j),Γ hsgn(2 j−1)〉,(10.223)

the sum Σ ′ is over all permutations p of 1, . . . ,2n such that

p(2 j−1) < p(2 j); (10.224)
p(1) < p(3)< · · ·< p(2n−1). (10.225)

We omit the proof. Note that (10.221) is a special case of (10.223), because of
(10.211). States like ωe, which are determined by their two-point functions, are
called quasi-free; the ground state ω0 on CAR(CN) constructed in the previous
section is an example (one also has mixed quasi-free states, e.g. certain KMS states).
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As a warm-up, we reconstruct the ground state of the free fermionic Hamiltonian
on F using the above formalism. That is, we assume that hN in (10.111) reads

hN =
N/2−1

∑
x=−N/2

εxc∗xcx, (10.226)

initially defining dynamics on FN = CAR(CN). In that case, the projection e0 onto
the second copy of H = CN in K, i.e.

e0 =

(
0 0
0 1

)
, (10.227)

reproduces the ground state ω0(a) = 〈0|a|0〉, where |0〉 is the vector 1∈C in F−(H),
such that c( f )|0〉 = 0 for all f ∈ H. This also works for N = ∞, i.e., we construct
dynamics on CAR(�2(Z)) from the local Hamiltonians (10.226) as indicated at the
beginning of this section, and use the same formula for e0, this time with H = �2(Z).

In the more general case (10.111), we replace e0 in (10.227) by

e(S)0 = Se0S−1, (10.228)

where S is given by (10.217), in which for N < ∞ the operators u and v were con-
structed in (10.131) - (10.132). This time, the associated state ω

e(S)0
≡ ωS is the state

called ω0 in Theorem 10.13. As explained at the beginning of this section, this pro-
cedure even works for N = ∞ and hence H = �2(Z).

Having understood fermionic models with quadratic Hamiltonians, what remains
to be done now is to reformulate the original quantum Ising chain, defined in terms
of the local spin matrices σi(x), in terms of the fermionic variables cx and c∗x . For fi-
nite N this was done through the Jordan–Wigner transformation (10.102) - (10.103).
This time we need a similar isomorphism between A and F , where

A = ⊗ j∈ZM2(C); (10.229)

F = CAR(�2(Z)), (10.230)

and hence we would need to start the sums in the right-hand side of (10.102) -
(10.103) at j = −∞. At first sight this appears to be impossible, though, because
operators like exp(πi∑x−1

y=−∞σ+(y)σ−(y)) do not lie in A (whose elements have in-
finite tails of 2×2 unit matrices). Fortunately, this problem can be solved by adding
a formal operator T to A, which plays the role of the “tail”

“T = eπi∑0
y=−∞ σ+(y)σ−(y))”. (10.231)

This formal expression (to be used only heuristically) suggests the relations:
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T 2 = 1; (10.232)
T ∗ = T ; (10.233)

TaT = θ−(a), (10.234)

where θ− : A→ A is a Z2-action defined by (algebraic) extension of

θ−(σ±(y)) = −σ±(y) (y≤ 0); (10.235)
θ−(σ±(y)) = σ±(y) (y > 0); (10.236)
θ−(σ3(y)) = σ3(y) (y ∈ Z); (10.237)
θ−(σ0(y) = σ0(y) (y ∈ Z), (10.238)

where σ0 = 12. Formally, define an algebra extension

Â = A⊕A ·T, (10.239)

with elements of the type a+bT , a,b ∈ A, and algebraic relations given by (10.232)
- (10.233). That is, we have

(a+bT )∗ = a∗+θ−(b∗)T ; (10.240)
(a+bT ) · (a′+b′T ) = aa′+bθ−(b′)+(ab′+bθ−(a′))T. (10.241)

Within Â, the correct version of (10.102) - (10.103) may now be written down as

c±x = Te∓πi∑0
y=x σ+(y)σ−(y)σ±x (x < 1); (10.242)

c±x = Tσ±1 ; (10.243)

c±x = Te∓πi∑x−1
y=1 σ+(y)σ−(y)σ±x (x > 1), (10.244)

with formal inverse transformation given by

σ±(x) = Te±πi∑0
y=x c+y c−y c±x (x < 1); (10.245)

σ±(x) = T c±1 ; (10.246)

σ±(x) = Te±πi∑x−1
y=1 σ+(y)σ−(y)σ±(x) (x > 1), (10.247)

where this time we regard T as an element of the extended fermionic algebra

F̂ = F⊕F ·T, (10.248)

satisfying the same rules (10.232) - (10.234), but now in terms of a “fermionic” Z2-
action θy : F → F given by extending the following action on elementary operators:

θ−(c±y ) = −c±y (y≤ 0); (10.249)

θ−(c±y ) = c±y (y > 0). (10.250)
(10.251)
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Because of T , the Jordan–Wigner transformation does not give an isomorphism
A∼= F , but it does give an isomorphism Â∼= F̂ . More importantly, if, having already
defined the Z2-action θ on F by (10.177), we define a similar Z2-action on A by

θ(σ±(y)) = −σ±(y) (y ∈ Z); (10.252)
θ(σ3(y)) = σ3(y) (y ∈ Z); (10.253)
θ(σ0(y)) = σ0(y) (y ∈ Z), (10.254)

and decompose A=A+⊕A− and F =F+⊕F−, according to this action, cf. (10.178),
we have isomorphisms

A+
∼= F+; (10.255)

A− ∼= F−T ; (10.256)
A ∼= F+⊕F−T. (10.257)

For given dynamics (10.111), suppose ωA
0 is a Z2-invariant ground state on A. Then

ωA
0 also defines a Z2-invariant ground state ωF

0 on F by (10.255) and ωF
0 ( f ) = 0 for

all f ∈ F−. Conversely, a Z2-invariant ground state ωF
0 on F defines a state ωA

0 on A
by (10.255) and ωA

0 (a) = 0 for all a ∈ A−. But F has a unique ground state, so:

• Either ω0 is pure on A, in which case it is the unique ground state on A;
• Or ω0 is mixed on A, in which case ω0 = 1

2 (ω
+
0 +ω−0 ), where ω±0 are pure but

transform under the above Z2-action θ as ω±0 ◦θ = ω∓0 .

Theorem 10.15 gives a representation-theoretical criterion deciding between these
possibilities, but to apply it we need some information on the restriction of Z2-
invariant quasi-free pure states on F to its even part F+. The abstract setting involves
a Z2-action W on K that commutes with Γ (so that W is unitary, W 2 = 1, and
[Γ ,W ] = 0), which induces a Z2-action θ on F by linear and algebraic extension
of θ(Φ(h)) = Φ(Wh). A quasi-free state ωe, defined according to Theorem 10.16
by a projection e : K → K that satisfies (10.220), is then Z2-invariant iff [W,e] = 0.

In our case, this simplifies to θ(Φ(h)) = −Φ(h), so that W = −1, and every
projection commutes with W . In any case, with considerable effort one can prove:

Lemma 10.17. Given some Z2-action W on K, as well as a projection e : K → K
satisfying (10.220), such that [W,Γ ] = [W,e] = 0:

1. The quasi-free state ωe of Theorem 10.16 is Z2-invariant (i.e., ωe ◦θ = ωe);
2. The corresponding GNS-representation space He ≡Hωe for F = F+⊕F− decom-

poses as He = H+
e ⊕H−

e , with H±
e = F±Ωe. Each subspace H±

e is stable under
πe(F+), and the restriction π±e of π(F+) to H±

e is irreducible.

Theorem 10.15 then leads to a lemma, which also summarizes the discussion so far.

Lemma 10.18. 1. For given Z2-invariant dynamics, let ωF
0 be the (unique, Z2-

invariant) ground state on F = F+ ⊕ F−. Under F+ ⊂ F the associated GNS-
representation space H0 decomposes as H0 = H+

0 ⊕H−
0 , with H±

0 = F±Ω0, and
we denote the restriction of π0(F+) to H±

0 by π±0 . Then π±0 (F+) are irreducible.
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2. Regard ωF
0 also as a state ωT

0 on F+⊕F−T by putting ωT
0 (a) = 0 for all a∈F−T ,

and similarly as a state ωA
0 on A by invoking (10.255) and putting ωA

0 (a) = 0 for
all a ∈ A−. Let HT

0 = HT
+ ⊕HT− be the GNS-representation space of F+⊕F−T

defined by ωT
0 , where HT

+ = F+Ω and HT− = F−TΩ . Here HT
+ and HT− are stable

under F+; we denote the restriction of F+ to HT± by πT±, so that πT
+
∼= π+

0 .

a. Then ωA
0 is a ground state on A. Any Z2-invariant ground state on A arises in

this way (via F), so that there is a unique Z2-invariant ground state on A.
b. The state ωA

0 is pure on A iff the irreducible representations πT
+(F+) (or

π+
0 (F+)) and πT−(F+) are inequivalent.

It turns out to be difficult to directly check the (in)equivalence of πT±(F+). For-
tunately, we can circumvent this problem by passing to yet another (irreducible)
representation of F+. We first enlarge F to a new algebra

F̂ = F⊕FT = F+⊕F−⊕F+T ⊕F−T, (10.258)

and extend the state ωF
0 on F to a state ω̂0 on F̂ by putting ω̂0(FT ) = 0, so that ω̂0

is nonzero only on F+ ⊂ F̂ . Let π̂0 be the associated GNS-representation of F̂ on the
Hilbert space Ĥ0 = F̂Ω̂ . Under π̂(F+) this space decomposes as

Ĥ0 = F+Ω̂0⊕F−Ω̂0⊕F+T Ω̂0⊕F−T Ω̂0, (10.259)

with corresponding restrictions π̂±(F+) and π̂T±(F+); more precisely, π̂± is the re-

striction of π̂(F+) to F±Ω̂0, whilst π̂T± is is the restriction of π̂(F+) to F±T Ω̂0.
Clearly, π̂±(F+) is the same as π±0 (F+), and π̂T−(F+) is just our earlier πT−(F+), but
π̂T
+(F+) is new. To understand the latter, we rewrite (10.259) as

Ĥ0 = H0⊕ ĤT
0 ; (10.260)

H0 = F+Ω̂0⊕F−Ω̂0 ∼= F+Ω0⊕F−Ω0; (10.261)

ĤT
0 = F+T Ω̂0⊕F−T Ω̂0, (10.262)

the point being that π̂(F) evidently restricts to both H0 and ĤT
0 . We know the action

of π̂(F) on H0 quite well: it is the representation induced by the ground state ω0. As
to ĤT

0 , we define a state ω̂T
0 on F by

ω̂T
0 (a) = 〈π̂(T )Ω̂0, π̂(a)π̂(T )Ω̂0〉Ĥ0

= 〈Ω̂0, π̂(θ−(a))Ω̂0〉Ĥ0
, (10.263)

where the second equality follows from (10.234). Comparing H0 and Ĥ0, for all
b ∈ F (and hence especially for b = θ−(a)) we simply have

〈Ω̂0, π̂(b)Ω̂0〉Ĥ0
= ω̂0(b) = ωF

0 (b), (10.264)

so that ω̂T
0 = ωF

0 ◦θ− ≡ θ ∗−ωF
0 . Decomposing the GNS-representation space Hθ∗−ωF

0

of πθ∗−ωF
0
(F) as Hθ∗−ωF

0
= H+

θ∗−ωF
0
⊕H−

θ∗−ωF
0

, it follows that π̂T
+(F+) is the restriction
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of πθ∗−ωF
0
(F+) to H+

θ∗−ωF
0

. Therefore, the representation π̂(F) restricted to ĤT
0 is the

GNS-representation πθ∗−ωF
0
(F), so that in turn π̂T

+(F+) is πθ∗−ωF
0
(F+), restricted to

H+
θ∗−ω0

. Hence, further to (10.260) - (10.262), we obtain the decomposition

π̂(F)∼= πωF
0
(F)⊕πθ∗−ωF

0
(F). (10.265)

The point is that for the quantum Ising chain Hamiltonian (10.110), we have:

Lemma 10.19. 1. For each λ �=±1, we have πωF
0
(F)∼= πθ∗−ωF

0
(F).

2. If this holds, then the representations π+
0 (F+) ≡ π+

ωF
0
(F+) and πT−(F+) are in-

equivalent iff the representations π+
ωF

0
(F+) and π+

θ∗−ωF
0
(F+) are equivalent.

3. For each λ �= ±1, the ground state ωA
0 is pure on A iff the representations

πωF
0
(F+) and πθ∗−ωF

0
(F+) are equivalent.

The first claim follows from Theorem 10.20 below. The third follows from Lemma
10.18 and the previous claims. The second claim is proved by repeatedly applying
Theorem 10.15 to π̂(F̂). Given this lemma, the real issue now lies in comparing πωF

0
and πθ∗−ωF

0
, both as representations of F (as they are defined) and as representations

of F+ ⊂ F . This can be settled in great generality by first looking at Theorem 10.16,
and thence, recalling the positive-energy projection (10.228), realizing that

πωF
0
= π

e(S)0
; (10.266)

πθ∗−ωF
0
= π

W−e(S)0 W−
. (10.267)

Here W− : K → K is the Z2-action on K defining the Z2-action θ− on F as ex-
plained above Lemma 10.17; specifically, W− is the direct sum of two copies of
w− : �2(Z)→ �2(Z), defined by w−( f j) = f j ( j > 0) and w−( f j) =− f j ( j ≤ 0).

Subsequently, without proof we invoke a basic result on the CAR-algebra:

Theorem 10.20. Let e and e′ be projections on K that satisfy (10.220). Then:

1. πe(F)∼= πe′(F) iff e− e′ ∈ B2(K);
2. π+

e (F+)∼= π+
e′ (F+) iff e− e′ ∈ B2(K) and dim(eK∩ (1− e′)K) is even.

If the first condition is satisfied, the dimension in the second part is finite, so that
one may indeed say it is even or odd. From Lemmas 10.18 and 10.19 and Theorem
10.20, we finally obtain the phase structure of the infinite quantum Ising chain:

Theorem 10.21. The unique Z2-invariant ground state ω0 of the Hamiltonian (10.110)
is pure (and hence forms the unique ground state) iff both of the following hold:

e(S)0 −W−e(S)0 W− ∈ B2(K); (10.268)

dim(e(S)0 K∩ (1−W−e(S)0 W−)K) is even. (10.269)

This is true for all λ with |λ | ≥ 1. If |λ |< 1, then ω0 = 1
2 (ω

+
0 +ω−0 ), where ω±0 are

pure and transform under the Z2-action θ as ω±0 ◦θ = ω∓0 .
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10.8 Spontaneous symmetry breaking in mean-field theories

We are now going to study SSB in so-called mean-field theories: these are quantum
spin systems with Hamiltonians like the Curie–Weiss-model for ferromagnetism:

hCW
Λ =− J

2|Λ | ∑
x,y∈Λ

σ3(x)σ3(y)−B ∑
x∈Λ

σ1(x), (10.270)

where J > 0 scales the spin-spin coupling, and B is an external magnetic field.
Similar to the quantum Ising model, (10.270) has a Z2-symmetry (σ1,σ2,σ3) 7→
(σ1,−σ2,−σ3), which at each site x is implemented by u(x) = σ1(x). This model
differs from its short-range counterpart (9.42), i.e, the quantum Ising model, or the
Heisenberg model (9.44), in that every spin now interacts with every other spin. It
falls into the class of homogeneous mean-field theories, which are defined by a
single-site Hilbert space Hx = H = Cn and local Hamiltonians of the type

hΛ = |Λ |h̃(T (Λ)
0 ,T (Λ)

1 , . . . ,T (Λ)

n2−1). (10.271)

Here T0 = 1n, and the matrices (Ti)
n2−1
i=1 in Mn(C) form a basis of the real vector

space of traceless self-adjoint n×n matrices; the latter may be identified with i times
the Lie algebra su(n) of SU(n), so that (T0,T1, . . . , ) is a basis of i times the
Lie algebra u(n) of the unitary group U(n) on Cn. In those terms, we define

T (Λ)
i =

1
|Λ | ∑x∈Λ

Ti(x), (10.272)

Finally, h̃ is a polynomial (which is sensitive to operator ordering). For example, to
cast (10.270) (with J = 1) in the form (10.271), take n = 2, Ti = 1

2 σi (= 1,2,3), and

h̃CW(T1,T2,T3) =−2(T 2
3 +BT1). (10.273)

The assumptions of Theorem 9.15 do not hold now, and indeed the local dy-
namics (9.40) fails to converge to global dynamics on the quasi-local C*-algebra A
defined by (8.130). Fortunately, it does converge to a global dynamics on the C*-
algebra C(S(B)), where B = Mn(C) is the single-site algebra. In order to describe
the limiting dynamics of (homogeneous) mean-field models as Λ ↗ Zd , we equip
the state space S(B) with the Poisson structure (8.52), which we now elucidate.

For unital C*-algebras B, we may regard S(B) as a w∗-compact subspace of either
the complex vector space B∗ or the real vector space B∗sa; in the latter case we regard
states as linear maps ω : B∗sa → R that satisfy ω(1B) = 1 and ω(a2) ≥ 0 for each
a ∈ Bsa. If B = Mn(C), which is all we need, we may furthermore identify B∗sa with
iu(n)∗, and since the value of each state ω ∈ S(Mn(C)) is fixed on T0 = 1B ∈ iu(n),
it follows that S(Mn(C)) is a compact convex subset of isu(n)∗. In that case, the
Poisson bracket (8.52) on S(Mn(C)) is none other than the restriction of (minus) the
canonical Lie-Poisson bracket on su(n)∗ ∼= isu(n)∗ to S(Mn(C)), cf. (3.98) - (3.99).

Tn2−1
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For example, for n = 2 we have S(M2(C))∼= B3 ⊂ R3 by Proposition 2.9, i.e.,

ω(x,y,z)(a) = Tr(ρ(x,y,x)a) ((x,y,z) ∈ B3, a ∈M2(C)); (10.274)

ρ(x,y,z) = 1
2

(
1+ z x− iy
x+ iy 1− z

)
. (10.275)

We also have su(2)∗ ∼= R3 upon the choice of the basis (Ti = 1
2σi), i = 1,2,3, of

isu(2), which means that θ(x,y,z) ∈ isu(2)∗ maps (T1,T2,T3) to (x,y,z) (where this
time (x,y,z) ∈ R3), cf. §5.8). If we now regard the matrices Ti as functions T̂i on B3

by T̂i(ω) = ω(Ti), we find that the corresponding functions on B3 are given by

T̂1(x,y,z) = 1
2 x, T̂2(x,y,z) = 1

2 y, T̂3(x,y,z) = 1
2 z. (10.276)

The corresponding Poisson brackets (8.52) are {T1,T2} = −2T3 etc., i.e., {x,y} =
−2z etc.; this is−2 times the bracket defined in (3.43) or (3.97) - (3.98). This factor
2 could have been avoided by moving to the three-ball with radius r = 1/2 instead
of r = 1, whose boundary is the coadjoint orbit O1/2 naturally associated to spin- 1

2 .
We now return to our continuous bundle of C*-algebras A(c) of Theorem 8.4, of

course in the slightly adapted form appropriate to quantum spin systems, see §8.6. In
particular, we recall that A(c)

0 = C(S(B)) and A(c)
1/N = B(HΛN ), cf. (8.157) - (8.158),

and hence we see the limit N → ∞ as a specific way of taking the limit Λ ↗ Zd

along the hypercubes ΛN . Symmetric and quasi-symmetric sequences (a1/N)N∈N
are defined as explained after (8.161). The following observation is fundamental.

Theorem 10.22. Let B = Mn(C). If (a1/N)N∈N and (b1/N)N∈N are symmetric se-
quences with limits a0 and b0 as defined by (8.46), respectively (so that (a1/N)N∈Ṅ
and (b1/N)N∈Ṅ are continuous sections of the continuous bundle A(c)), then the se-
quence ({a0,b0}, i[a1,b1], . . . , i|ΛN |[a1/N ,b1/N ], · · ·

)
(10.277)

defines a continuous section of A(c). In particular, for each ω ∈ S(B) we have

i lim
N→∞

ω |ΛN |(|ΛN |[a1/N ,b1/N ]) = {a0,b0}(ω). (10.278)

Proof. The proof is a straightforward combinatorial exercise, and we just mention
the simplest case where d = 1 and a1/N = S1,N(a1) and b1/N = S1,N(b1), where
a1 ∈ B and b1 ∈ B, cf. (8.39). Then a0 = â1, b0 = b̂1, and similarly to (8.45) we find

[S1,N(a1),S1,N(b1)] =
1
N

S1,N([a1,b1]), (10.279)

Using (8.52), we find that (10.277) is equal to (i[̂a1,b1], . . . ,S1,N([a1,b1]), . . .). Since
ωN(S1,N([a1,b1])) = ω([a1,b1]), the left-hand side of (10.278) is therefore equal to
iω([a1,b1]), which by (8.52) equals the right-hand side. �
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In other words, although the sequence of commutators [a1/N ,b1/N ] converges to zero

(which is why A(c)
0 has to be commutative!), the rescaled commutators iN[a1/N ,b1/N ]

converge to the macroscopic observable {a0,b0} ∈ C(S(B)). This reconfirms the
analogy between the limit N → ∞ and the limit h̄→ 0 of Chapter 7, see especially
Definitions 7.1 and 8.2. With B = Mn(C), Theorem 10.22 implies the central result
about the macroscopic (and hence classical!) dynamics of mean-field theories:

Corollary 10.23. Let (h1/N)N∈Ṅ be a continuous section of A(c) defined by a sym-
metric sequence, and let (a1/N)N∈Ṅ be an arbitrary continuous section of A(c) (i.e.
a quasi-symmetric sequence). Then, writing h1/N = hΛN for clarity, the sequence(

a0(t),e
ihΛ1 ta1e−ihΛ1 t , · · ·eihΛN ta1/Ne−ihΛN t , · · ·

)
, (10.280)

where a0(t) is the solution of the equations of motion on S(Mn(C)) with classical
Hamiltonian h0 and Poisson bracket (8.52), defines a continuous section of A(c).

In other words, the Heisenberg dynamics on AΛN = B(HΛN ) defined by the quan-
tum Hamiltonians hΛN converges to the classical dynamics on the Poisson manifold
S(Mn(C)) that is generated by their classical limit, viz. the Hamiltonian h0.

For example, since the operators T (Λ)
i form symmetric sequences, so do Hamil-

tonians of the type (10.271). The limit h0 ∈ C(S(Mn(C))) of the family (hΛ ) in
(10.271) is simply obtained by replacing the operators T (Λ)

i in the function h̃ by the
functions T̂i on S(Mn(C)). Equivalently, one may replace the T (Λ)

i by the canon-
ical coordinates (θi) of isu(n)∗ dual to the basis (T1, . . . ,Tn2−1) of isu(n)∗, i.e.,
θi(Tj) = δi j, and restricting the ensuing function on isu(n)∗ to S(Mn(C))⊂ isu(n)∗.

Using (10.276), for the Curie–Weiss model (10.270) with J = 1 this gives

hCW
0 (x,y,z) =− 1

2 z2−Bx. (10.281)

The ground states of this Hamiltonian are simply its minima, viz.

x± = (B,0,±
√

1−B2) (0≤ B < 1); (10.282)
x = (1,0,0)) (B≥ 1), (10.283)

all of which lie on the boundary S2 of B3. Note that the points x± coalesce as B→ 1,
where they form a saddle point. Modulo our use of radius r = 1 instead of r = 1/2,
this result coincides with (10.81) for classical limit of the quantum Ising model.

We now turn to symmetry and its possible breakdown. Suppose there is some
subgroup of U(n), typically the image of a unitary representation g 7→ ug of a com-
pact group G on Cn, under which h̃(T0,T1, . . . ,Tn2−1) in (10.271) satisfies

h̃(T0,ugT1u∗g, . . . ,ugTn2−1u∗g) = h̃(T0,T1, . . . ,Tn2−1) (g ∈ G). (10.284)

For example, in the Curie–Weiss model one has G = Z2, whose nontrivial element
is represented by σ1. For (10.271) itself this implies u(N)hN(u(N))∗= hN , cf. (10.69).
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Hence also in homogeneous mean-field models we obtain the structure (10.57),
(10.58), and (10.59) familiar from the case of short-range forces. For the limit theory
this implies that the classical Hamiltonian h0 on S(Mn(C)) is invariant under the
coadjoint action of G ⊂U(n) on isu(n)∗, restricted to S(Mn(C)) ⊂ isu(n)∗: in the
Curie–Weiss model this “classical shadow” of the Z2 symmetry of the quantum
theory is simply the map (x,y,z) �→ (x,−y,−z) on B3.

In the regime 0 < B < 1, the degenerate ground states of this model break this
symmetry. In contrast, it can be shown from the Perron–Frobenius Theorem (which
applies since both σ3 and σ1 are real matrices) that for B > 0 each quantum-
mechanical Hamiltonian (10.270) has a unique ground state ψ(0)

N . Being unique,
this vector must share the invariance of hN under the permutation group SN , so that

ψ(0)
N =

N

∑
n+=0

c(n+/N)|n+,n−〉, (10.285)

where |n+,n−〉 is the totally symmetrized unit vector in ⊗NC2 with n+ spins up
and n− = N − n+ spins down, and c : {0,1/N,2/N, . . . ,(N − 1)/N,1} → [0,1] is

Frobenius Theorem). The asymptotic behaviour of c as N → ∞ has been studied,

Thus we encounter a familiar headache: the “higher-level” theory C(S(Mn(C)))
at N = ∞ breaks the Z2 symmetry, whereas the “lower-level” quantum theories
B(HΛN ) (N < ∞) do not, although the former should be a limiting case of the latter.
Indeed, the situation for the Curie–Weiss model in the regime 0 < B < 1 is exactly
analogous to the double-well potential as well as to the quantum Ising model in the
same regime: if the two degenerate ground states x± ∈B3 of hCW

0 are reinterpreted as
Dirac measures δ± on B3, which in turn are seen as (pure) states ω± on the classical
algebra of observables C(S(M2(C))), then (10.74) holds, mutatis mutandis.

The resolution of this problem through the restoration of Butterfield’s Principle
should also be the same as for the previous two cases: there is a first excited state
ψ(1)

N such that as N → ∞, the energy difference with the ground state approaches
zero and one has approximate symmetry breaking as in (10.75)). Alas, for the Curie–
Weiss model so far only numerical evidence is available supporting this scenario.

Equilibrium states of homogeneous mean-field models at any inverse tempera-
ture 0 < β < ∞ exist, despite the fact that in such models time-evolution αt on the
infinite system A (and hence the KMS condition characterizing equilibrium states)
is ill-defined (unless one passes to certain representations of A, which would be
question-begging). Instead, one invokes the quasi-local C*-algebra A, cf. (8.130),
and in lieu of KMS states looks for limit points ω̂β ∈ S(A) of the local Gibbs states
ωβ
ΛN

defined by (9.96) as N → ∞; see (10.44) and surrounding discussion. Proposi-
tion 10.8 does not apply now, but Theorem 8.9 does: since each local Hamiltonian
hΛN is permutation-invariant (because each T (ΛN)

i is), so is each local Gibbs state
ωβ
ΛN

, and accordingly, each w∗-limit point of this sequence must share this property.

some function such that ∑n+ c(n+/N)2 = 1 (we may assume c ≥ 0 by the Perron–

and as expected, c to converges pointwise to c(0) = c(1) =
√

1/2 and c(x) = 0, and
zero elsewhere (at B = 0 one of course has either c(0) = 1 or c(1) = 1 for all N).
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As in (8.174), from the quantum De Finetti Theorem 8.9 we therefore have:

ω̂
β =

∫
S(Mn(C))

dµβ (θ)
(

ω
β

θ

)∞

, (10.286)

for some probability measure µβ on the single-spin state space S(Mn(C)). By Propo-
sition 8.28, this measure may also be regarded as a limit of the local Gibbs states, but
now regarded as a state on the limit algebra A(c)

0 =C(S(Mn(C))) rather than as a state

on A(q)
0 = A. By the same token, each state ω

β

θ
in the decomposition (10.286) is a

pure state on A(c)
0 (though seen as a state on Mn(C) it will be mixed!). The states ω

β

θ

are computed as follows. Given a classical Hamiltonian h0 computed from (10.271)
as explained after Corollary 10.23, for each point θ = (θ0, . . . ,θn2−1) ∈ iu(n)∗ we
define a new self-adjoint operator ĥθ ∈Mn(C) by

ĥθ = h0(θ) ·1n +
n2−1

∑
i=0

∂h0

∂θi
(θ) ·Ti. (10.287)

For example, in the Curie–Weiss model, from (10.273) we have

hCW
0 (θ) = −2(θ 2

3 +Bθ1); (10.288)
ĥCW

θ = hCW
0 (θ)−2θ3σ3−Bσ1. (10.289)

Eq. (10.287) has the following origin. Let ω be any state on A for which the strong
limit T (ω)

i of each operator πω(T
(ΛN)

i ) on Hω exists as N→∞ (for example, as in the
proof of Theorem 8.16 one may show that this is the case when ω is a permutation-
invariant state of A). It easily follows that T (ω)

i lies in the algebra at infinity for πω ,
and hence in the center of πω(A)′′, cf. §8.5. If, in addition, ω is primary, then

T (ω)
i = θi ·1Hω

; (10.290)

θi = lim
N→∞

ω(T (ΛN)
i ). (10.291)

Under these assumptions, we compute the commutator

[πω(hΛN ),πω(a)]=∑
i

∂h0

∂θi

(
T (Λ)

0 , . . . ,T (Λ)

n2−1

)
· ∑
x∈ΛN

[πω(Ti(x)),πω(a)]+O
(

1
|ΛN |

)
,

where a ∈ ∪Λ AΛ , and O(1/|ΛN |) denotes a finite sum of (multiple) commutators
between some power of T (Λ)

i and operators that are (norm-) bounded in N. For
example, for the Curie–Weiss model the O(1/|ΛN |) term is a multiple of

∑
x∈ΛN

[[πω(σ3(x)),πω(a)],σ
(ΛN)
3 ]. (10.292)
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Since a is local, all commutators ∑x∈ΛN [πω(Ti(x)),πω(a)] are in πω(A), so that fur-

ther commutators à la (10.292) vanish as N → ∞. Also, in this limit the terms T (Λ)
i

in the argument of ∑i ∂h0/∂θi assume their c-number values θi, so that

lim
N→∞

[πω(hΛN ),πω(a)] = [hω ,πω(a)], (10.293)

where formally (i.e. on a suitable domain) we have an ω-dependent Hamiltonian

hω = ∑
x∈Zd

π(ĥθ (x)), (10.294)

where the θi depend on ω via (10.291). Also, for each a ∈ A one has strong limits

lim
N→∞

πω
(

eihΛN tae−ihΛN t
)
= eihω tπ(a)e−ihω t . (10.295)

Hence in the limit N = ∞ (provided it makes sense, which it does under the stated
assumptions), the original mean-field Hamiltonian (10.271) with its homogeneous
long-range forces converges to a sum of single-body Hamiltonians, in which the
original forces between the spins have been incorporated into the parameters θi.

Returning to (10.286), for any β = T−1, we now determine ωβ
θ from the Ansatz

ωβ
θ (a) =

Tr(e−β ĥθ a)

Tr(e−β ĥθ )
, (10.296)

where θ is found by by solving the self-consistency equation

ωβ
θ = θ . (10.297)

As explained after Corollary 10.23, here ωβ
θ : Mn(C)sa → R is defined by its val-

ues on isu(n) and hence should be seen as a map isu(n)→ R, like θ ∈ su(n)∗,
so that (10.297) consists of n2− 1 equations ωβ

θ (Ti) = θi (i = 1, . . . ,n2− 1). Al-
ternatively, one may extend θ from isu(n) to iu(n) by prescribing θ(1n) = 1, and
subsequently extend it further to Mn(C) by complex linearity. Clearly, the constant
h0(θ) in (10.287) drops out of (5.152) and may be ignored in solving (10.297).

For example, if we take (10.289) with B = 0, then (10.297) forces θ1 = θ2 = 0,
whereas the magnetization 2θ3 ≡ m = ωβ

θ (σ3) satisfies the famous gap equation

tanh(βm) = m. (10.298)

For any β this has a solution m= 0, i.e., θ = 0 in B3, which corresponds to the tracial
state ω(a) = 1

2 Tr(a) normally associated with infinite temperature (i.e., β = 0). This
state is evidently Z2-invariant. For T ≥ Tc = 1/4 (i.e. β ≤ 4) this is the only solution.
For T < Tc (or β > 4), two additional solutions ±mβ (with mβ > 0) appear, which
break the Z2 symmetry. For B > 0 computations become tedious, but for β → ∞,
where ωβ

θ converges to the ground state of ĥθ , one recovers our earlier conclusions.
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Proposition 10.24. The self-consistency equation (10.297) has at least one solution.

Proof. This follows from Brouwer’s Fixed Point Theorem (stating that any contin-
uous map f from a compact compact set K ⊂ Rk to itself has a fixed point), applied
to K = S(Mn(C)) and f (θ) = ωβ

θ , where θ ∈ S(Mn(C)), as just explained. �

The key result on equilibrium states of homogeneous mean-field theories, then, is:

Theorem 10.25. Let hΛ in (10.271) define a homogeneous mean-field theory with
compact symmetry group G. The sequence (ωβ

ΛN
) of local Gibbs states defined by

(9.96) and (10.271) has a unique G-invariant limit point ω̂β , whose decomposition
into primary states is given by (10.286). The G-invariant probability measure μβ is

concentrated on some G-orbit in S(Mn(C)), and the states ωβ
θ on Mn(C) are given

by (10.296), with Hamiltonians ĥθ defined by (10.287), where θ satisfies (10.297).

Proof. We just sketch the proof, which is based on the Quantum De Finetti Theorem
8.9. Each operator T (ΛN)

i is permutation-invariant, which property is transferred first
to each local Hamiltonian hΛN , thence to each local Gibbs state ωβ

ΛN
defined by hΛN ,

and finally to each limit point of this sequence. As already noted, Theorem 8.9 then
gives the decomposition (10.286), which by Theorem 8.29 (whose assumption holds
in mean-field models) also gives the primary decomposition of ω̂β (i.e., each state
(ωβ

θ )
∞ is primary on the quasi-local algebra A). By our earlier argument centered

on (10.294) - (10.295), time-evolution is implemented in the GNS-representation
induced by such a state. An important step in the proof—which we omit because
it requires various reformulations of the KMS condition we have not discussed—is
that (ωβ

θ )
∞ satisfies the KMS condition with respect to the dynamics (10.295). This,

in turn, implies (10.296), which, by definition of θ through (10.290) - (10.291),
gives the self-consistency condition (10.297). The proof is completed by a tricky
argument (which again uses alternatives to the KMS condition) to the effect that
if some ωβ

θ breaks the G-symmetry, the probability measure μβ on the G-orbit in

S(Mn(C)) through ωβ
θ induced by the normalized Haar measure on G, defines the

only possible limit point of the local Gibbs states, and hence must be unique. �

Thus SSB can be detected by solving (10.297) and checking if the ensuing state(s)
ωβ
θ on Mn(C) is (are) G-invariant. As we have seen, in the Curie–Weiss model this

is the case for β ≤ 4, whereas for β > 4 the measure μβ in (10.286) is given by

μβ = 1
2 (δ(0,0,mβ /2) +δ(0,0,−mβ /2)), (10.299)

where δθ ( f ) = f (θ). In such cases, since each local Gibbs state is invariant, one
faces the (by now) familiar threat to Earman’s Principle. In response, we expect
Butterfield’s Principle to be restored through the introduction of asymmetric flea-
type perturbations to hΛ that are localized in spin configuration space, although at
nonzero temperature all excited states (rather than just the first) will start to play a
role, and the precise details of the “flea” scenario remain to be settled.
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10.9 The Goldstone Theorem

So far, we have only discussed the simplest of all symmetry groups, namely G =Z2,
which is both finite and abelian. Although it will not change our picture of SSB,
for the sake of completeness (and interest to foundations) we also present a brief
introduction to continuous symmetries, culminating in the Goldstone Theorem and
the Higgs mechanism (which at first sight contradict each other and hence require a
very careful treatment). The former results when the broken symmetry group G is a
Lie group, whereas the latter arises when it is an infinite-dimensional gauge group.

Let us start with the simple case G = SO(2), acting on R2 by rotation. This
induces the obvious action on the classical phase space T ∗R2, i.e.,

R(p,q) = (Rp,Rq), (10.300)

cf. (3.94), as well as on the quantum Hilbert space H = L2(R2), that is,

uRψ(x) = ψ(R−1x). (10.301)

Let us see what changes with respect to the action of Z2 on R considered in §10.1.
We now regard the double-well potential V in (10.11) as an SO(2)-invariant function
on R2 through the reinterpretation of x2 as x2

1+x2
2. This is the Mexican hat potential.

Thus the classical Hamiltonian h(p,q)= p2/2m+V (q), similarly with p2 = p2
1+ p2

2,
is SO(2)-invariant, and the set of classical ground states

E0 = {(p,q) ∈ T ∗R2 | p = 0,q2 = a2} (10.302)

is the SO(2)-orbit through e.g. the point (p1 = p2 = 0,q1 = a,q2 = 0). Unlike the
one-dimensional case, the set of ground states is now connected and forms a cir-
cle in phase space, on which the symmetry group SO(2) acts. The intuition behind
the Goldstone Theorem is that a particle can freely move in this circle at no cost
of energy. If we look at mass as inertia, such motion is “massless”, as there is no
obstruction. However, this intuition is only realized in quantum field theory. In quan-
tum mechanics, the ground state of the Hamiltonian (10.6) (now acting on L2(R2))
remains unique, as in the one-dimensional case. In polar coordinates (r,φ) we have

hh̄ =− h̄2

2m

(
∂ 2

∂ r2 +
1
r
∂
∂ r

+
1
r2

∂ 2

∂φ 2

)
+V (r), (10.303)

with V (r) = 1
4λ (r

2−a2)2. With

L2(R2)∼= L2(R+)⊗ �2(Z) (10.304)

under Fourier transformation in the angle variable, this becomes

hh̄ψ(r,n) =
(
− h̄2

2m

(
∂ 2

∂ r2 +
1
r
∂
∂ r
− n2

r2

)
+V (r)

)
ψ(r,n). (10.305)
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Since h̄2n2/2mr2 is positive, the ground state ψ(0)
h̄ has ψ(0)

h̄ (r,n) = 0 for all n �= 0,
and hence it is SO(2)-invariant, since the SO(2)-action on L2(R2) becomes

uθψ(r,n) = exp(inθ)ψ(r,n), (10.306)

after a Fourier-transform. Indeed, from a group-theoretical point of view, the unitary
isomorphism (10.304) is nothing but the decomposition

L2(R2)∼=
⊕
n∈Z

Hn, (10.307)

where Hn = L2(R+) for all n, but with φn ∈ Hn transforming under SO(2) as

uθφn(r) = exp(inθ)φn(r) (θ ∈ [0,2π]). (10.308)

The SO(2)-invariant subspace of L2(R2), then, is precisely the space H0 in which
ψ(0)

h̄ lies. This is analogous to the situation occurring in one dimension higher (i.e.
R3) with e.g. the hydrogen atom: in that case, the symmetry group is SO(3), and
L2(R3) decomposes accordingly as

L2(R3) ∼=
⊕
j∈N

Hj; (10.309)

Hj = L2(R+)⊗C2 j+1. (10.310)

The ground state for a spherically symmetric potential, then, lies in H0 and is SO(3)-
invariant. For our purposes the relevant comparison is with the one-dimensional
case: the decomposition of L2(R) under the natural Z2-action u−1ψ(x) = ψ(−x) is

L2(R) = H0⊕H1 (10.311)
Hi = {ψ ∈ L2(R) | ψ(x) = (−1)iψ(−x)}, i = 0,1. (10.312)

This time, H+ is the Z2-invariant subspace containing the ground state ψ(0)
h̄ . Being

Z2-invariant, ψ(0)
h̄ is has peaks above both classical minima±a; in fact, ψ(0)

h̄ is real-
valued and strictly positive. The ground state of the corresponding two-dimensional
system, seen as an element of L2(R2), is just this wave-function ψ(0)

h̄ extended from
R to R2 by rotational invariance. Hence the ground state remains real-valued and
strictly positive, with peaks about the circle of classical minima in R2.

Let us recall the situation for d = 1 (cf. §10.1). The first excited state ψ(1)
h̄ lies

in H1; it is real-valued, like ψ(0)
h̄ , but since it has to satisfy ψ(1)

h̄ (−x) = −ψh̄(x),

it cannot be positive. Indeed, with a suitable choice of phase, ψ(1)
h̄ has one positive

peak above a and the same peak but now negative below−a. Then the wave-function

ψ±h̄ = (ψ(0)
h̄ ±ψ(1)

h̄ )
√

2, (10.313)
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is peaked above±a alone (i.e., the negative peak of±ψ(1)
h̄ below∓a exactly cancels

the corresponding peak of ψ(0)
h̄ ). The classical limit of ψ(0)

h̄ comes out as the mixed
state 1

2 (ω
+
0 +ω−0 ), where ω±0 = (p = 0,±a), but each state ψ±h̄ has the pure state

ω±0 as its classical limit. The latter are ground states, and hence in particular they

are time-independent, because the energy difference E(1)−E(0) between ψ(1)
h̄ and

ψ(0)
h̄ vanishes (even exponentially fast) as h̄→ 0.

A similar but more complicated situation arises in d = 2. The role of the pair(
ψ(0)

h̄ ∈ H0,ψ
(1)
h̄ ∈ H1

)
is now played by an infinite tower of unit vectors(

ψ(n)
h̄ ∈ Hn,n ∈ Z

)
,

where ψ(n)
h̄ is the lowest energy eigenstate (for hh̄ in (10.305)) in Hn ⊂ L2(R2). The

analogue of the states ψ±h̄ for d = 1 involves a limit which heuristically is like

lim
N→∞

ψ(N,θ)
h̄ =

1√
2N +1

N

∑
n=−N

uθψ
(n)
h̄ , (10.314)

but this limit does not exist in L2(R2). As in §10.1, we instead rely on the technique
explained around (10.4), which makes the unit vectors ψ(N,θ)

h̄ converge to some
probability measure μθ

h̄ on R2 as N →∞. In the subsequent limit h̄→ 0, one obtains
a probability measure μθ

0 concentrated on a suitable point in the orbit of classical
ground states (10.302). Similarly, in the same sense the ground state ψ(0)

h̄ converges
to a probability measure supported by all of E0.

To the extent that there is a Goldstone Theorem in classical mechanics, it would
state that motion in the orbit E0 is free. That is, at fixed (r = a, pr = 0), where pr is
the radial component of momentum, one has an effective Hamiltonian

ha(pφ ,φ) =
p2
φ

2ma2 , (10.315)

whose time-independent states (pφ = 0,φ0) for arbitrary φ0 ∈ [0,2π) yield the
ground states of the system, and whose “excited states”

(pφ (t),φ(t)) =
(

pφ (0),φ(0))+
pφ (0)t
ma2

)
(10.316)

give motion along the orbit E0 with effective mass ma2, whose energy converges
to zero as pφ → 0. However, since massless particles (whose existence is the main
conclusion of the usual Goldstone Theorem) are not defined in classical mechanics,
we now turn to relativistic field theory (with which we assume some familiarity).



10.9 The Goldstone Theorem 419

We now illustrate SSB in classical field theory through a simple example, where
the symmetry group is G = SO(N), but whenever write things down in such a way
that the generalization to arbitrary scalar field theories is obvious. Suppose we have
N real scalar fields ϕ ≡ (ϕ1, . . . ,ϕN), on which SO(N) acts in the defining represen-
tation on RN . Following the physics literature, from now on we sum over repeated
indices like i and μ (Einstein summation convention). Let the Lagrangian

L = 1
2∂μϕi∂ μϕi−V (ϕ), (10.317)

contain an SO(N)-invariant potential V , typically of the form (with ϕ2 ≡ ∑N
i=1ϕ2

i )

V (ϕ) =−m2

2
ϕ2 +

λ
4
ϕ4, (10.318)

where λ > 0, but m2 may have either sign. If m2 < 0, the minimum of V lies at
ϕ = 0, but if m2 > 0 the minima form the SO(N)-orbit through

ϕc = (v,0, · · · ,0); (10.319)

v ≡ m/
√
λ = ‖ϕc‖. (10.320)

The idea is that the physical fields are excitations of the “vacuum state” ϕc, so that,
instead of ϕ , as the appropriate “small oscillation” field one should use

χ(x) = ϕ(x)−ϕc. (10.321)

Consequently, the potential is expanded in a Taylor series for small χ as

V (ϕ) = V (ϕc)+ 1
2V ′′i jχiχ j +O(χ3); (10.322)

V ′′i j ≡
∂ 2V

∂ϕi∂ϕ j
(ϕc). (10.323)

Note that the linear term vanishes because V ′(ϕc) = 0. We now use the SO(N)-
invariance of V , i.e., V (gϕ) = V (ϕ) for all g ∈ SO(N). For Ta ∈ g (i.e. the Lie
algebra of G, realized by anti-symmetric traceless N×N matrices) this yields

d
dt

V (etTaϕ)t=0 = 0 ⇔ ∂V (ϕ)
∂ϕi

(Ta)i jϕ j = 0. (10.324)

Differentiation with respect to ϕk and putting ϕ = ϕc then gives

V ′′ik(Ta)i jϕc
j = 0. (10.325)

In general, let H ⊂ G be the stabilizer of ϕc, i.e., g ∈ H iff gϕc = ϕc. In our exam-
ple (10.318) - (10.319), we evidently have H = SO(N− 1). Then Taϕc = 0 for all
generators Ta of the Lie algebra h of H, so that there are

M ≡ dim(G)−dim(H) = dim(G/H) = dim(G ·ϕc) (10.326)
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linearly independent null eigenvectors of V ′′ (seen as an N×N matrix). This number
equals the dimension of the submanifold of RN where V assumes its minimum. In
our example we have M = N−1, since dim(SO(N)) = 1

2 N(N−1). We now perform
an affine field redefinition, based on an affine coordinate transformation in RN that
diagonalizes the matrix V ′′. The original (real) fields were ϕ = (ϕ1, . . . ,ϕN), and the
new (real) fields are (χ1,θ2, · · · ,θN), with

χ1 = ϕ1− v, (10.327)

as in (10.321), and the Goldstone fields are defined, also in general, by

θa =
1
v
〈Taϕc,ϕ〉= 1

v
(Ta)i jϕc

jϕi. (10.328)

Here 〈·, ·〉 denotes the inner product in RN , and we have chosen a basis of g in which
the elements (T1, . . . ,Tdim(H)) form a basis of h, completed by M further elements
(Tdim(H)+1, . . .Tdim(G)+1), so as to have basis of g. The index a in (10.328), then,
runs from dim(H)+1 to dim(G), so that there are M Goldstone fields, cf. (10.326).
In our running example, this number was shown to be M = N− 1, and in view of
(10.319), the field θa = (Ta)i1ϕi is a linear combination of the ϕ2 till ϕN .

The simplest example is N = 2, with potential (10.318) and m2 > 0. With the
single generator T = −iσ2, we obtain θ = ϕ2. Since V ′′ = diag(2m2,0), we see
that the mass term − 1

2 m2ϕ2
1 in (10.318) (with ϕ2 = ϕ2

1 + ϕ2
2 ) changes from the

“wrong” sign−m2 to the ‘right’ sign +2m2 in (10.322), whilst− 1
2 m2ϕ2

2 in (10.318)
disappears, so that the field θ comes out to be massless. Indeed, this is the point
of the introduction of the Goldstone fields: in view of (10.325) and (10.328), the
Goldstone fields do not occur in the quadratic term in (10.322) and hence they are
massless, in satisfying a field equation of the form ∂μ∂ μθa = · · · , where · · · does not
contain any term linear in any field. This proves the classical Goldstone Theorem:

Theorem 10.26. Suppose that a compact Lie group G ⊂ SO(N) acts on N real
scalar fields ϕ = (ϕ1, . . . ,ϕN), leaving the potential V in the Lagrangian (10.317)
invariant. If G is spontaneously broken to an unbroken subgroup H ⊂ G (in the
sense that the stability group of some point ϕc in the G-orbit minimizing V is H),
then there are at least dim(G/H) massless fields, i.e., there is a field transformation

(ϕ1, . . . ,ϕN) �→ (χ1, . . . ,χN−M,θ1, . . . ,θM) (M = dim(G)−dim(H)), (10.329)

that is invertible in a neighborhood of ϕ = ϕc, such that the potential V (ϕ), re-
expressed in the fields χ and θ , has no quadratic terms in θ .

The local invertibility of the field redefinition around ϕc �= 0 is crucial; in our ex-
ample, where χ ≡ χ1 = ϕ1− v and θa = T a

i1ϕi, this may be checked explicitly.
An alternative proof of Theorem 10.26 uses nonlinear Goldstone fields, viz.

ϕ(x) = e
1
v θa(x)Ta(ϕc +χ(x)), (10.330)
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where the sum over a (implicit in the Einstein summation convention) ranges from 1
to M, v = ‖ϕc‖, and the fields χ = (χ1, . . . ,χN−M) are chosen orthogonal (in RN) to
each Taϕc, a = 1, . . . ,M, and hence to the θa. Provided that the generators of SO(N)
(and hence of G⊂ SO(N)) have been chosen such that

〈Taϕc,Tbϕc〉= v2δ ab, (10.331)

the fields θ a defined by (10.330) coincide with the fields in (10.328) up to quadratic
terms in χ and θ ; to see this, expand the exponential and also use the fact that both
〈Taϕc,ϕc〉 and 〈Taϕc,χ〉 vanish. This transformation is only well defined if v �= 0,
i..e., if SSB from G to H occurs, and its existence implies the Goldstone Theorem
10.26, for by (10.330) and G-invariance, V (ϕ) is independent of θ .

The Goldstone Theorem can be derived in quantum field theory, but in the spirit
of this chapter we will discuss it rigorously for quantum spin systems. Far from
considering the most general case, we merely treat the simplest setting. We assume
that A is a quasi-local C*-algebra given by (8.130), with H = Cn. Furthermore:

1. The group of space translations Zd acts on A by automorphisms τx, and so does
the group R of time translations by automorphisms αt commuting with the τx (cf.
§9.3); we often write α(x,t) for αt ◦ τx as well as a(x, t) for αt ◦ τx(a).

2. A compact Lie group G acts on H = Cn through a unitary representation u and
hence acts on on A by automorphisms γg as in (10.58) - (10.59), such that

γg ◦α(x,t) = α(x,t) ◦ γg ((x, t) ∈ Zd×R,g ∈ G). (10.332)

3. There exists a pure translation-invariant ground state ω .
4. One has SSB in that ω ◦ γg �= ω for all g ∈ Ga ⊂ G, where

Ga = {exp(sTa),s ∈ R,Ta ∈ g}. (10.333)

5. There is an n-tuple ϕ = (ϕ1, . . . ,ϕn) of local operators ϕα ∈ Mn(C) that trans-
forms under G by ϕ �→ ugϕu∗g = γg(ϕ), and defines an order parameter φa by

φa = δaϕ ≡ d
ds

(
γexp(sTa)(ϕ)

)
|s=0 , (10.334)

at least for SSB of Ga (as above) in that, cf. Definition 10.6,

ω(δaϕ) �= 0. (10.335)

6. Writing j0
a = iu′(Ta) ∈Mn(C), it follows that δaϕ =−i[ j0

a,ϕ], and hence that

δaϕ(x) =−i lim
Λ↗Zd

∑
y∈Λ

[ j0
a(y),ϕ(x)] (x ∈ Zd), (10.336)

since by (8.132) (i.e., Einstein locality) only the term y= x will contribute. Physi-
cists then wish to define a charge by Qa = ∑y∈Zd j0

a(y) and write (10.336) as
δaϕ(x) =−i[Qa,ϕ(x)], but Qa does not exist precisely in the case of SSB!
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Eq. (10.336) motivates the crucial assumption for the Goldstone Theorem, viz.

ω(δaϕ(x, t)) =−i lim
Λ↗Zd

∑
y∈Λ

ω([ j0
a(y),ϕ(x, t)]) (x ∈ Zd , t ∈ R), (10.337)

which incorporates the condition that the sum over y converge absolutely.
Although (10.337) at first sight softens (10.336) in turning an operator equation
into a numerical one, in fact (10.337) decisively sharpens (10.336) by involving
the time-dependence of ϕ , whose propagation speed should be sufficiently small
for enabling the limit in (10.336) to catch up with the limit in (10.337). As such,
eq. (10.337) is satisfied with short-range forces, but the Meissner effect in su-
perconductivity and the closely related Higgs mechanism in gauge theories (both
of which circumvents the Goldstone Theorem) are possible precisely because in
those cases (10.337) fails (at least in physical gauges, see also §10.10).

7. Finally, we make two assumptions just for convenience, namely

ϕα(x)∗ = ϕα(x); (10.338)
ω(ϕα(x)) = 0. (10.339)

If these are not the case, one could simply take real and imaginary components
of ϕα and/or redefine ϕα as ϕ̃α = ϕα −ω(ϕα) ·1A, so that ω(ϕ̃α(x)) = 0.

The Goldstone Theorem provides information about the joint-energy momentum
spectrum of the theory at hand. To define this notion, we exploit the fact that from
assumption no. (3) and Corollary 9.12 we obtain a unitary representation uω of
the (locally compact) abelian space-time translation group A = Zd×R on the GNS-
representation space Hω induced by ω . The SNAG-Theorem C.114 applied to A, with
dual Â = Td×R (cf. Proposition C.108), then yields a projection-valued measure

eω : B(R×Td)→P(Hω), (10.340)

as a map from the Borel sets in R×Td to the projection lattice in B(Hω), such that

1Hω =
∫
Td

∫ ∞

0
de(E,k); (10.341)

uω(y, t) =
∫
Td

∫ ∞

0
de(E,k)ei(Et−y·k) (y ∈ Zd , t ∈ R). (10.342)

Here k=(k1, . . . , ld), y ·k=∑d
i=1 yiki, and we have reduced the integration range over

E (which a priori would be R) to R+. Indeed, by Stone’s Theorem we have uω(t) =
exp(ithω), where σ(hω) ⊂ [0,∞) because ω is a ground state by assumption, and
the support of e is evidently contained in Zd×σ(hω) (cf. Definition A.16).

Definition 10.27. The joint energy-momentum spectrum σ(hω , pω) of a space-
time invariant state ω (i.e., ω ◦α(x,t) = ω , (x, t) ∈ Zd ×R) is the support of the
projection-valued measure eω associated to the GNS-representation πω , i.e., the
smallest closed set σ(hω , pω)⊂ Td×R such that e((Td×R)\σ(hω , pω)) = 0.
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The notation σ(hω , pω) is purely symbolic here, since (as opposed to the continuum
case) the group Zd of spatial translations is discrete and hence has no generators pω .

Since uω(x, t)Ωω =Ωω , the origin (0,0) certainly lies in σ(hω , pω), with

eω(0,0) = |Ωω〉〈Ωω |, (10.343)

which by Theorem 9.14 is the unique Td ×R-invariant state in Hω . Denoting this
contribution to eω by e(0)ω , in many physical theories one has eω = e(0)ω + e(1)ω + · · · ,
where e(1)ω is supported on the graph of some continuous function k �→ εk ≥ 0, i.e.,

{(k,εk),k ∈ Td} ⊂ σ(hω , pω)⊂ Td×R. (10.344)

The joint energy-momentum spectrum may be studied in part by considering

f (ε, p) = ∑
y∈Zd

∫ ∞

−∞
dt e−iεt+ip·(x−y)ω([ j0

a(y),ϕ(x, t)])

= 2i ∑
y∈Zd

∫ ∞

−∞
dt e−iεt+ip·(x−y)Im〈Ωω ,πω( j0

a(0))e
ithω uω(y)πω(ϕα(0))Ωω〉

=
∫
Td

∫ ∞

0

(〈Ωω ,πω( j0
a(0))deω(E,k)πω(ϕα(0))Ωω〉δ (ε−E)δ (p− k)

− 〈Ωωπω(ϕα(0))deω(E,k)πω( j0
a(0))Ωω〉δ (ε+E)δ (p+ k)

)
, (10.345)

i.e., the Fourier transform of the two-point function defined by j0
a and ϕ , which is

a distribution on the dual group Td ×R; for the third equality we used a distribu-
tional version of the Fourier inversion formula (C.382). For example, if we replace
eω(E,k) by e(1)ω (E,k), then, since e(1)ω is absolutely continuous with respect to Haar
measure ddk on Td , we see that f (ε, p) is proportional to δ (ε− εp).
Theorem 10.28. Under assumptions 1–7 (notably (10.337) and SSB of some contin-
uous symmetry), the Hamiltonian hω has continuous spectrum starting at zero and
hence has no gap. If there is an excitation spectrum e(1)ω as explained above, with∫

〈Ωω ,πω( j0
a(0))de(1)ω (E,k)πω(ϕα(0))Ωω〉 �= 0, (10.346)

then the continuous function k �→ εk defining the spectrum satisfies ε0 = 0.

Proof. Since the sum in (10.337) converges absolutely, the Fourier transform f̌ (t, p)
of y �→ ω([ j0

a(y),ϕ(x, t)]) in y alone is continuous in p, and by (10.337) we have

iω(δaϕ(x, t)) = f̌ (t,0). (10.347)

By (10.332), the left-hand side is independent of x and t, hence the Fourier transform
f (ε,0) of the right-hand side in t is proportional to δ (ε). Since (10.343) does not
contribute to f by (10.339), the calculation (10.345) shows that f (ε,0) = 0 if σ(hω)
has a gap. But f (ε,0) �= 0 by (10.335), and so σ(hω) has no gap. Similarly, for the
final claim note that f (ε,0)∼ δ (ε− ε0) as well as f (ε,0)∼ δ (ε). �



424 10 Spontaneous Symmetry Breaking

10.10 The Higgs mechanism

We proceed to a discussion of SSB in gauge theories, especially with an eye on the
Higgs Mechanism, which plays a central role in the Standard Model of high-energy
physics (whose empirical confirmation was more or less finished with the discovery
of the Higgs boson at CERN, announced on July 4, 2012).

We look at the Abelian Higgs Model, given by the Lagrangian

L =− 1
4 F2

A + 1
2 〈DA

μϕ,D
A
μϕ〉−V (ϕ), (10.348)

where ϕ = (ϕ1,ϕ2) is a scalar doublet, the usual electromagnetic field strength is

Fμν = ∂μAν −∂νAμ , (10.349)

in terms of which F2
A = FμνFμν , and the covariant derivative is

DA
μ ≡ ∂μ − eAμ ·T = ∂μ ·12 + ieAμ ·σ2. (10.350)

Here e is some coupling constant, identified with the unit of electrical charge. We
still assume that V only depends on ‖ϕ‖2 = 〈ϕ,ϕ〉 and hence is SO(2)-invariant.

The novel situation compared to (10.317) and the like is that, whereas (10.317) is
invariant under global SO(2) transformations, the Lagrangian (10.348) is invariant
under local SO(2) gauge transformations that depend on x, namely

ϕ(x) �→ eα(x)·Tϕ(x) =
(

cosα(x) −sinα(x)
sinα(x) cosα(x)

)
·
(
ϕ1(x)
ϕ2(x)

)
; (10.351)

Aμ(x) �→ Aμ(x)+
1
e
∂μα(x). (10.352)

We say that the local gauge group G = C∞(Rd ,U(1)) acts on the space of fields
(A,ϕ) by (10.351) - (10.352). Now suppose V has a minimum at some constant
value ϕc �= 0. In that case, any field configuration

ϕ(x) = exp(α(x) ·T )ϕc; (10.353)
Aμ(x) = (1/e)∂μα(x)) (α ∈ G ), (10.354)

minimizes the action. Hence the possible “vacua” of the model comprise the
(infinite-dimensional) orbit V of the gauge group through (A = 0,ϕ = ϕc). Note
that DA

μϕ = 0 for (A,ϕ) ∈ V , i.e., ϕ is covariantly constant along the vacuum orbit
(whereas for global symmetries it is constant full stop). Relative to the (arbitrary)
choice (0,ϕc)∈ V , we then introduce real fields χ and θ , called the Higgs field and
the would-be Goldstone boson, respectively, by (10.330), which now simply reads(

ϕ1(x)
ϕ2(x)

)
= e

1
v θ(x)·T ·

(
v+χ(x)

0

)
. (10.355)
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After this redefinition of the scalar fields, the Lagrangian (10.348) becomes

L =− 1
4 F2

B + 1
2∂μχ∂

μχ+ 1
2 e2(v+χ)2BμBμ −V (v+χ,0), (10.356)

where Bμ = Aμ − (1/ev)∂μθ , and F2
B = FμνFμν for Fμν = ∂μBν − ∂νBμ . This de-

scribes a vector boson B with mass term 1
2 m2

BBμBμ , with m2
B = 1

2 e2v2 > 0 (as op-
posed to the massless vector field A), and a scalar field χ with mass term 1

2 m2
χχ2,

with m2
χ = (∂ 2V/∂φ 2

1 )|(v,0) > 0 (since V supposedly has a minimum at ϕc = (v,0)).
This is the Higgs mechanism: the gauge field becomes massive, whilst the mass-

less (“would-be”) Goldstone boson disappears from the theory: it is (allegedly)
“eaten” by the gauge field. Thus the scalar degree of freedom θ that seems lost
is recovered as the longitudinal component of the massive vector field (which for a
gauge field would have been an unphysical gauge degree of freedom, see below).

In the description just given, the Higgs mechanism in classical field theory is
seen as a consequence of SSB. Remarkably, there is an alternative account of the
Higgs mechanism, according to which it has nothing to do with SSB! Namely, we
now perform a field redefinition analogous to (10.355) etc. straight away, viz.(

ϕ1(x)
ϕ2(x)

)
= eθ(x)·T ·

(
ρ(x)

0

)
; (10.357)

Aμ = Bμ +(1/e)∂μθ . (10.358)

This transformation is defined and invertible in a neighbourhood of any point
(ρ0,θ0,B0, where ρ0 > 0, θ0 ∈ (−π,π), and B0 is arbitrary. Each of these new fields
is gauge-invariant: for the gauge transformation (10.351) becomes

θ(x) �→ θ(x)+α(x); (10.359)
ρ(x) �→ ρ(x), (10.360)

and in view of (10.352), B does not transform at all. The Lagrangian becomes

L =− 1
4 F2

B + 1
2∂μρ∂

μρ+ 1
2 e2ρ2BμBμ −V (ρ), (10.361)

with V (ρ) ≡ V (ρ,0). This is a Lagrangian without any internal symmetries at all
(not even Z2, since ρ > 0), but of course one can still look for classical vacua that
minimize the energy and hence the potential V (ρ). If ρ = 0 is the absolue mini-
mum, then the above field redefinition is a fortiori invalidated, but if V ′(v) = 0 for
some v > 0, we proceed as before, introducing a Higgs field χ(x) = ρ(x)− v, and
recovering the Lagrangian (10.356). This once again leads to the Higgs mechanism.

This can be generalized to the nonabelian case; since it suffices to explain the
idea, we just discuss the SU(2) case. In (10.348), the scalar field ϕ = (ϕ1,ϕ2) is now
complex, forming an SU(2) doublet, the brackets 〈·, ·〉 now denote the inner product
in C2, the nonabelian gauge field is A = Aaσa (where the Pauli matrices σa, a =
1,2,3, form a self-adjoint basis of the Lie algebra of SU(2)), with associated field
strength Fμν = ∂μAν −∂νAμ +g[Aμ ,Aν ] and covariant derivative DA

μ = ∂μ + igAμ .
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With F2
A = Fa

μνFμν
a , the Lagrangian (10.348) is invariant under the transformations

ϕ(x) �→ eiαa(x)σa(x)ϕ(x); (10.362)

Aμ(x) �→ eiαa(x)σa(x)(Aμ(x)− (i/g)∂μ)e−iαa(x)σa(x). (10.363)

The definition of the gauge-invariant fields B and ρ à la (10.357) - (10.358) is now(
ϕ1(x)
ϕ2(x)

)
= eiθa(x)·σa ·

(
ρ(x)

0

)
; (10.364)

Aμ(x) = eiθa(x)σa(x)(Bμ(x)− (i/g)∂μ)e−iθa(x)σa(x), (10.365)

which leads, mutatis mutandis, to the very same Lagrangian (10.361).
As a compromise between these two derivations of the Higgs mechanism, it is

also possible to fix the gauge by picking the representative (ϕ,A) in each G -orbit for
which ϕ2(x) = 0 and ϕ1(x)> 0; note that this so-called unitary gauge is ill-defined
if ϕ1(x) = 0. Calling this unique representative (ρ,B), we are again led to (10.361).

Gauge field theories are constrained systems, in which the apparent degrees of
freedom in the Lagrangian are not the physical ones. For free electromagnetism,
the Lagrangian is L (A) = − 1

4 FμνFμν , with Fμν = ∂μAν − ∂νAμ . In terms of the
gauge-invariant fields Ei = Fi0 = ∂iA0−∂0Ai and B = ∇×A, Maxwell’s equations

∇ ·E = 0; (10.366)
∂E/∂ t = ∇×B; (10.367)

∂B

∂ t
=−∇×E; (10.368)

∇ ·B = 0, (10.369)

then arise as follows: eqs. (10.366) and (10.367) correspond to the Euler–Lagrange
equation for A0 and Ai, respectively, whereas (10.368) and (10.369) immediately
follow from the definitions of B and E in terms of A. The Maxwell equations are in
Hamiltonian form, with canonical momenta Πμ = ∂L /∂ Ȧμ ; this yields Πi =−Ei,
as well as the primary constraint Π0 = 0. Nonetheless, the canonical Hamiltonian

h =
∫

d3x
(
Πμ(x)Ȧμ(x)−L (x)

)
=
∫

d3x( 1
2 E2(x)+ 1

2 B2(x)−A0(x)∇ ·E(x))

is well defined. In the Hamiltonian formalism, Gauss’ Law resurfaces as the sec-
ondary constraint stating that the primary constraint be preserved in time, viz.

Π̇0(x) =− δh
δA0(x)

= ∇ ·E(x)≡ 0. (10.370)

Since

d
dt

∇ ·E(x) =−∂i(δh/δAi(x)) =−∂i(ΔAi−∂i∇ ·A) = 0, (10.371)
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there are no “tertiary” constraints. Thus we have canonical phase space variables
(E,A) and (Π0,A0), subject to (10.366) and to Π0(x) = 0 for each x ∈ R3, i.e.,

Π0(λ0)≡
∫

d3xΠ0(x)λ0(x) = 0; (10.372)

Π(λ )≡
∫

d3x∇ ·E(x)λ (x) = 0, (10.373)

for all (reasonable) functions λ0 and λ on R3. The constraints (10.372) - (10.373)
are first class in the sense of Dirac, which means that their Poisson brackets are
equal to existing constraints (or zero). In the Hamiltonian formalism, the role of the
space-time dependent gauge transformations of the Lagrangian theory is played by
the canonical transformations generated by the first class constraints, i.e.,

δλ0A0(x) = {Π0(λ0),A0(x)}= λ0(x); (10.374)

δλ0Ai(x) = δλ0Ei(x) = 0; (10.375)

δλA(x) = ∇λ (x); (10.376)
δλE(x) = 0; (10.377)
δλA0(x) = 0. (10.378)

The holy grail of the Hamiltonian formalism is to find variables that are both
gauge invariant and unconstrained. In our case, Aμ = (A0,A) are unconstrained but
gauge variant, whilst Πμ =(Π0,−E) are gauge invariant but constrained! Now write
some vector field V as V = VL +VT , where VL = Δ−1∇(∇ ·V) is the longitudinal
component, so that V T

i = (δi j−Δ−1∂i∂ j)Vj is the transverse part. Then the physical
variables of free electromagnetism are AT and ET . The physical Hamiltonian

h = 1
2

∫
d3x(ET ·ET −AT ·ΔAT ), (10.379)

then, is well defined on the physical (or reduced) phase space, which is the subset
of all (Aμ ,Πμ) where the constraints (10.373) hold, modulo gauge equivalence.

After this preparation, we now revisit the abelian Higgs model as a constrained
Hamiltonian system. It is convenient to combine the two real scalar fields ϕ1 and ϕ2
into a single complex scalar field ϕ = (ϕ1 + iϕ2)/

√
2, and treat ϕ and its complex

conjugate ϕ as independent variables. The Lagrangian (10.348) then becomes

L =− 1
4 F2

A +DA
μϕ ·DA

μϕ−V (ϕ,ϕ), (10.380)

with DA
μϕ = (∂μ − ieAμ)ϕ , etc. The conjugate momenta Πμ to Aμ are the same as

for free electromagnetism, i.e., Π0 = 0 and Πi =−Ei, and for ϕ we obtain

π = ∂L /∂ ϕ̇ = DA
0ϕ; (10.381)

π = ∂L /∂ ϕ̇ = DA
0ϕ. (10.382)
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The associated Hamiltonian h is equal to∫
d3x

(
1
2 E2 + 1

2 B2−A0(∇ ·E− j0)+ππ+DA
i ϕ ·DA

i ϕ+V (ϕ,ϕ)
)
, (10.383)

where j0 = ie(πϕ − πϕ) is the zero’th component of the Noether current. Hence
the primary constraint remains Π0 = 0, but the secondary constraint picks up an
additional term and becomes ∇ ·E = j0 (which remains Gauss’ law!). The physical
(i.e., gauge invariant and unconstrained) variables can be computed as

ϕA = eieΔ−1∇·Aϕ, ϕA = e−ieΔ−1∇·Aϕ; (10.384)

πA = e−ieΔ−1∇·Aϕ, πA = eieΔ−1∇·Aπ, (10.385)

plus the same transverse fields AT and ET , as in free electromagnetism. In terms of
the transverse covariant derivative DT

i = ∂i− ieAT
i , the physical Hamiltonian h is∫

d3x
(

1
2 (E

T ·ET −AT ·ΔAT − jA
0Δ

−1 jA
0 )+πAπA +DT

i ϕA ·DT
i ϕA +V (ϕA,ϕA)

)
.

(10.386)
The third term in (10.386) is the Coulomb energy, in which the charge density

jA
0 = ie(πAϕA−πAϕA) (10.387)

is the same as j0 (since the latter is gauge invariant). Remarkably, the physical field
variables carry a residual global U(1)-symmetry, viz.

ϕA �→ exp(iα)ϕA; (10.388)
πA �→ exp(−iα)πA; (10.389)
ϕA �→ exp(−iα)ϕA; (10.390)
πA �→ exp(iα)πA, (10.391)

and no change for AT and ET , under which the Hamiltonian (10.386) is invariant.
If V has a minimum at ϕ = ϕ = v, we recover the Higgs mechanism: redefining

ϕA = exp(iθ/v)(v+χ), (10.392)

and complex conjugate, and the reintroduction of the longitudinal components

AL
i =−(1/ev)∂iθ ; EL

i =−evΔ−1∂iπθ , (10.393)

of the gauge field and its conjugate momentum, the Hamiltonian (10.386) becomes

1
2

∫
d3x

(
E2 +B2 +π2

χ +∂iχ∂iχ+
(∇ ·E)2

e2v2 + e2v2A2 +V (v+χ)
)
, (10.394)

where A = AT +AL and E = ET +EL. This describes a massive vector field, and
the would-be Goldstone boson θ has disappeared, as befits the Higgs mechanism!
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It is fair to say that the Higgs mechanism in quantum field theory—and more
generally, the notion of SSB in gauge theories—is poorly understood. Indeed, the
entire quantization of gauge theories is not well understood, except at the perturba-
tive level or on a lattice. The problems already come out in the abelian case with
d = 3. The main culprit is Gauss’ Law ∇ ·E = j0. One would naively expect this
constraint to remain valid in quantum field theory as an operator equation, and this is
indeed the case in so-called physical gauges like the Coulomb gauge (i.e. ∂iAi = 0).
If we now look at condition (10.337) in §10.9, which for G =U(1) and for example
δϕ1 = ϕ2 and δϕ2 =−ϕ1 for a charged field ϕ = (ϕ1+ iϕ2)/

√
2, or δϕ = iϕ , reads

lim
Λ↗R3

∫
Λ

d3yω([ j0(y,0),ϕα(x, t)]) =−iω(δϕα(x, t)), (10.395)

then it is clear that (10.395) can only hold if charged fields are nonlocal. For by
Gauss’ Law the commutator [ j0(y,0),ϕα(x, t)] equals [∇ ·E(0,y),ϕα(x, t)], and by
Gauss’(!) Theorem in vector calculus, all contributions to the left-hand side of
(10.395) come from terms [Ei(0,y),ϕα(x, t)], with y ∈ ∂Λ (i.e., the boundary of
Λ ). These must remain nonzero if Λ ↗ R3, at least if (10.395) holds. On the other
hand, such nonlocality must be enforced by massless fields, which idea leads to one
of the very few rigorous result about the Higgs mechanism (in the continuum):

Theorem 10.29. In the Coulomb gauge the following conditions are equivalent:

• The electromagnetic field A is massless;
• Eq. (10.395) holds for any field ϕα ;
• The charge operator Q = limΛ↑R3

∫
Λ d3y j0(y,0) exists (on some suitable domain

in Hω containing Ωω ) and satisfies QΩω = 0.

Hence (contrapositively), SSB of U(1) by the state ω is only possible if A is massive.
In that case, the Fourier transform of the two-point function 〈0|ϕα(x,x0) ja

0(y,y0)|0〉
(cf. the proof of the Goldstone Theorem 10.28 in §10.9) has a pole at the mass of A.

This theorem indeed yields the Higgs mechanism for say the abelian Higgs model
in a specific physical gauge: note that the idea that the would-be Goldstone boson is
eaten by the gauge field is already suggested by Gauss’ Law, through which (minus)
the canonical momentum E to A acquires j0 as its longitudinal component; that is,
the very same field that creates the Goldstone boson from the ground state.

In covariant gauges, all fields remain local, but (10.395) is rescued by the gauge-
fixing term added to the Lagrangian. For example, adding Lg f =−(1/2ξ )(∂μAμ)2

to (10.348) leads to an equation of motion ∂μFμ
ν = jν−∂ν∂μAμ , so that (discarding

all surface terms by locality), one obtains

−iω(δϕα(x, t)) =
∫
R3

d3yω([∂ 2
0 A0(y,0),ϕα(x, t)]). (10.396)

In the proof of the Goldstone Theorem, the massless Goldstone bosons do emerge,
but they turn out to lie in some “unphysical subspace” of Hω (which, for local
gauges, is not a Hilbert space but has zero- and negative norm states).



430 10 Spontaneous Symmetry Breaking

Notes

In a philosophical context, the notion of emergence is usually traced to J.S. Mill
(1843), who drew attention to ‘a distinction so radical, and of so much importance,
as to require a chapter to itself’, namely the one between what Mill calls the prin-
ciple of the ‘Composition of Causes’, according to which the joint effect of several
causes is identical with the sum of their separate effects, and the negation of this
principle. For example, in the context of his overall materialism, Mill believed that
although all ‘organised bodies’ are composed of material parts,

‘the phenomena of life, which result from the juxtaposition of those parts in a certain man-
ner, bear no analogy to any of the effects which would be produced by the action of the
component substances considered as mere physical agents. To whatever degree we might
imagine our knowledge of the properties of the several ingredients of a living body to be
extended and perfected, it is certain that no mere summing up of the separate actions of
those elements will ever amount to the action of the living body itself.’
Mill (1952 [1843], p. 243)

Mill launched what is now called British Emergentism (Stephan, 1992; McLaugh-
lin, 2008; O’Connor & Wong, 2012), a school of thought which seems to have ended
with C.D. Broad, who has our sympathy over Mill because of the doubt he expresses
in our quotation in the preamble. Among the British Emergentists, the most modern
views seem to have been those of S. Alexander, who, as paraphrased in O’Connor
& Wong (2012), was committed to a view of emergence as

‘the appearance of novel qualities and associated, high-level causal patterns which cannot be
directly expressed in terms of the more fundamental entities and principles. But these pat-
terns do not supplement, much less supersede, the fundamental interactions. Rather, they
are macroscopic patterns running through those very microscopic interactions. Emergent
qualities are something truly new (. . . ), but the world’s fundamental dynamics remain un-
changed.’

Alexander’s idea that emergent qualities ‘admit no explanation’ and had ‘to be ac-
cepted with the “natural piety” of the investigator foreshadowed the later notion
of explanatory emergence. Indeed, philosophers distinguish between ontological
and epistemological reduction or emergence, but ontological emergence seems a
relic from the days of vitalism and other immature understandings of physics and
(bio)chemistry (including the formation of chemical compounds, which Broad and
some of his contemporaries still saw as an example of emergence in the strongest
possible sense, i.e., falling outside the scope of the laws of physics). Recent liter-
ature, including the present chapter, is concerned with epistemological emergence,
of which explanatory emergence is a branch. For example, Hempel wrote:

‘The concept of emergence has been used to characterize certain phenomena as ‘novel’, and
this not merely in the psychological sense of being unexpected, but in the theoretical sense
of being unexplainable, or unpredictable, on the basis of information concerning the spatial
parts or other constituents of the systems in which the phenomena occur, and which in this
context are often referred to as “wholes”.’ (Hempel, 1965, p. 62)

See also Batterman (2002), Bedau & Humpreys (2008), Norton (2012), Silberstein
(2002), Wayne & Arciszewski (2009), and many other surveys of emergence.
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§10.1. Spontaneous symmetry breaking: The double well

The facts we use about the double-well Hamiltonian may be found in Garg (2000)
or Landau & Lifshitz (1977) at a heuristic level (but with correct conclusions), or,
rigorously, in Reed & Simon (1978), Simon (1985), Helffer (1988), and Hislop &
Sigal (1996). Theorem 10.2 is Theorem XIII.47 in Reed & Simon (1978).
§10.2. Spontaneous symmetry breaking: The flea

The flea perturbation and its effect on the ground state were first described in
Jona-Lasinio, Martinelli, & Scoppola (1981a,b), who used methods from stochas-
tic mechanics. See also Claverie & Jona-Lasinio (1986). Using more conventional
methods, their results were reconfirmed and analyzed further by e.g. Combes, Duc-
los, & Seiler (1983), Graffi, Grecchi, & Jona-Lasinio (1984), Helffer & Sjöstrand
(1985), Simon (1985), Helffer (1988), and Cesi (1989). The “Flea on the Elephant”
terminology used by Simon (1985) motivated the title of Landsman & Reuvers
(2013), who, as will be explained in the next chapter, identified the proper host
animal as a cat. All pictures in this section are taken from the latter paper (and
were prepared by the second author). For the Eyring–Kramers formula see Berglund
(2011) for mathematicians or Hänggi, Talkner, & Borkovec (1990) for physicists.
§10.3. Spontaneous symmetry breaking in quantum spin systems

The translation-non-invariant ground states mentioned after Proposition 10.5 are
discussed e.g. in Example 6.2.56 in Bratteli & Robinson (1997). See also Liu &
Emch (2005), which was in important source for this section, and Ruetsche (2011)
for a discussion of the definition of SSB through non-implementability. For order
parameters see e.g. Sewell (2002), §3.3. A proof of Proposition 10.8 may be found
in Bratteli & Robinson (1997), Proposition 6.2.15.
§10.4. Spontaneous symmetry breaking for short-range forces

The idea of SSB goes back to Heisenberg(1928). The C*-algebraic approach in
quantum spin systems with short-range forces is reviewed in Bratteli & Robin-
son (1997); see also Nachtergaele (2007). Theorem 10.10 is due to Araki (1974);
see also Simon (1993), Theorem IV.5.6, and Bratteli & Robinson (1997), Theorem
6.2.18. In Definition 10.9, Araki required Ωω to be separating for πω(A)′′ instead of
ω to be αt -invariant, but in the presence of (10.53) and hence (10.53) these condi-
tions are equivalent. The fact that (for short-range forces) global Gibbs states defined
by (10.43) satisfy the KMS condition follows from Theorem 10.10, but this was the
starting point of Haag, Hugenholtz, & Winnink (1967); see Winnink (1972).

Uniqueness of KMS states for one-dimensional quantum spin systems with short-
range forces at any positive temperature (which also holds for the classical case, e.g.
the one-dimensional Ising model) has been proved by Araki (1975). See also Mattis
(1965) and Altland & Simons (2010) for some of the underlying physical intuition.
§10.5. Ground state(s) of the quantum Ising chain

Theorem 10.11.1 was first established in Pfeuty (1970) by explicit calculation,
based on Lieb, Schultz, & Mattis (1961). For more information on the quantum Ising
model (also in higher dimension) see e.g. Karevski (2006), Sachdev (2011), Suzuki
et al (2013), and Dutta et al (2015). Uniqueness of the ground state of the quantum
Ising model with B �= 0 holds in any dimension d, as first shown by Campanino,
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Klein & Perez (1991) on the basis of Perron–Frobenius type arguments similar to
those for Schrödinger operators. The singular case B = 0 leads to a violation of the
strict positivity conditions necessary to apply the Perron–Frobenius Theorem, and
this case indeed features a degenerate ground state even when N < ∞.

The overall picture of SSB described in this section arose from the work of Horsch
& von der Linden (1988), Kaplan, Horsch, & von der Linden (1989), Kaplan, von
der Linden, & Horsch (1990), and especially Koma & Tasaki (1993, 1994). See also
van Wezel (2007, 2008), van Wezel & van den Brink (2007), and Fraser (2016).

The analogy between the quantum Ising chain and the double-well potential may
not be surprising physically, since the latter was originally derived from the former:
in potassium dihydrogen phosphate, i.e. KH2PO4, each proton of the hydrogen bond
would reside in one of the two minima of an effective double-well potential origi-
nating in the oxygen atoms, if it were not for tunneling, parametrized by the field B,
which at small values yields a symmetric ground state (De Gennes, 1963).
§10.6. Exact solution of the quantum Ising chain: N < ∞

The general set-up to this solution is due to Lieb, Schultz, & Mattis (1961), and
was adapted to the quantum Ising by Pfeuty (1970), with further details by Karevski
(2006). The complex solution q0 was already noted by Lieb et al. The energy split-
ting in higher dimensions does not seem to be known, but Koma & Tasaki (1994,
eq. (1.5)) expect similar behaviour as in d = 1.
§10.7. Exact solution of the quantum Ising chain: N = ∞

The solution described in this section is due to Araki & Matsui (1985), where
further details may be found; this is a highlight of modern mathematical physics!
Theorem 10.20 is due to Araki (1987), although such results have a long history
going back to Shale & Stinespring (1964, 1965). For a very clear exposition see
Ruijsenaars (1987). See also Evans & Kawahigashi (1998), Chapter 6.

The reason the one-sided chain Λ =N is problematic is that although the bosonic
algebra⊗ j∈NM2(C) and its fermionic counterpart CAR(�2(N)) are well defined, and
are isomorphic through the Jordan–Wigner transformation (10.102) - (10.103), the
limiting dynamics has no simple form on either A or F , because the Fourier trans-
form of �2(N) is the Hardy space H2(−π,π) of L2-functions with positive Fourier
coefficents, instead of the usual L2(−π,π). Unlike on L2, The energies sgnk of the
fermionic quasiparticles do not define a multiplication operator on H2.
§10.8. Spontaneous symmetry breaking in mean-field theories

The Poisson structure on S(B) was introduced by Bona (1988) and more gen-
erally by Duffield & Werner (1992a); see also Bona (2000). Theorem 10.22 and
Corollary 10.23 are due to Duffield & Werner (1992a). The symplectic leaves of the
given Poisson structure on S(B) (for which notion see e.g. Marsden & Ratiu (1994)
or Landsman (1998a)) were determined by Duffield & Werner (1992a): Two states
ρ and σ lie in the same symplectic leaf of S (B) iff ρ(a) = σ(uau∗) for some uni-
tary u ∈ B. If ρ and σ are pure, this is the case iff the GNS-representations πρ(B)
and πσ (B) are unitarily equivalent, cf. Thm. 10.2.6 in Kadison & Ringrose (1986).
In general the implication holds only in one direction: if ρ and σ lie in the same
leaf, then they have unitarily equivalent GNS-representations.



Notes 433

Our survey of equilibrium states of homogeneous mean-field models is based on
Fannes, Spohn, & Verbeure (1980) and Bona (1989). For rigorous results on the
Curie–Weiss model see Chayes et al (2008) and Ioffe & Levit (2013). Numerical
evidence for the restoration of Butterfield’s Principle may be found in Botet, Julien
& Pfeuty (1982) and Botet & Julien (1982), which are up to N ∼ 150, and Vidal et
al (2004), which reaches N = 1000. Note that experimental samples have N < 10.

In the context of the BCS model of superconductivity in the strong coupling
limit), the Hamiltonian, ĥθ in (10.287) or hω in (10.294) is called the Bogoliubov–
Haag Hamiltonian, after Bogoliubov (1958) and Haag (1962). Further contribu-
tions to mean-field theories include Thirring & Wehrl (1967), Thirring (1968), Hepp
(1972), Hepp & Lieb (1973), van Hemmen (1978), Rieckers (1984), Morchio &
Strocchi (1987), Duffner & Rieckers (1988), Bona (1988, 1989, 2000), Unnerstall
(1990a, 1990b), and Sewell (2002). For a nice proof of Theorem 10.25, which orig-
inates in Fannes, Spohn, &Verbeure (1980) and Bona (1989), see Gerisch (1993).

Even in the absence of a global KMS condition for ω̂β , one is justified in in-
terpreting the primary states (ωβ

θ )
∞ as pure thermodynamic phases of the given

infinite quantum system, whose thermodynamics is described by the “phase space”
S(Mn(C)). Though somewhat against the spirit of Bohrification (according to which
the commutative C*-algebra C(Mn(C)) is the right one to look at), the argument
can be strengthened by enlarging A to A⊗C(Mn(C)) (where the choice of the ten-
sor product does not matter, since C(Mn(C)) is commutative and hence nuclear, see
§C.13). This larger C*-algebra was introduced by Bona (1990), who proved:

Theorem 10.30. 1. There is a unique time-evolution α on A⊗C(Mn(C)) such that
for any primary permutation-invariant state ω on A and a ∈ A one (strongly) has

lim
N→∞

πω
(

eithΛN ae−ithΛN

)
= πω(αt(a)). (10.397)

2. The states ω̂β and ωβ
θ in (10.286), which are defined on A, extend to the tensor

product A⊗C(Mn(C)) as ω̂β ⊗μβ and ωβ
θ ⊗δθ , respectively, and as such satisfy

the KMS condition at inverse temperature β with respect to the dynamics α .

§10.9. The Goldstone Theorem

There is a large amount of literature on the Goldstone Theorem, both heuris-
tic and rigorous. The former started with Goldstone, Salam, & Weinberg (1962),
whereas the latter originates in Kastler, Robinson, & Swieca (1966); see also Buch-
holz et al (1992). For a survey, see Strocchi (2008, 2012), whose approach (based on
Morchio & Strocchi, 1987) we follow. See also Berzi (1979, 1981), Landau, Perez,
& Wreszinski (1981), Fannes, Pule, & Verbeure (1982), and Wreszinski (1987).
§10.10. The Higgs mechanism

The original reference is Higgs (1964ab). Our discussion is based on Lusanna
& Valtancoli (1996ab) and Struyve (2011), both of whom derive the physical vari-
ables in the abelian Higgs model. See also Rubakov (2002), Strocchi (2008), where
Theorem 10.29 may be found, and Stöltzner (2014) for some history and sociology.



Chapter 11

The measurement problem

The measurement problem of quantum mechanics was probably born in 1926:

‘Thus Schrödinger’s quantum mechanics gives a very definite answer to the question of the
outcome of a collision; however, this does not involve any causal relationship. One obtains
no answer to the question “what is the state after the collision,” but only to the question
“how probable is a specific outcome of the collision” (in which the quantum-mechanical
law of [conservation of] energy must of course be satisfied). This raises the entire problem
of determinism. From the standpoint of our quantum mechanics, there is no quantity that
could causally establish the outcome of a collision in each individual case; however, so far
we are not aware of any experimental clue to the effect that there are internal properties of
atoms that enforce some particular outcome. Should we hope to discover such properties
that determine individual outcomes later (perhaps phases of the internal atomic motions)?
Or should we believe that the agreement between theory and experiment concerning our in-
ability to give conditions for a causal course of events is some pre-established harmony that
is based on the non-existence of such conditions? I myself tend to relinquish determinism in
the atomic world. But this is [also] a philosophical question, for which physical arguments
alone are not decisive.’ (Born, 1926a, p. 866; translation by the author)

In other words, quantum mechanics stipulates that the state after some collision (or
measurement) is ψ = ∑n cnψn, whereas experiment demonstrates that in fact the fi-
nal state is just one of the ψn, with (Born) probability |cn|2. Quantum mechanics,
then, seems unable to account for single outcomes of experiments and has to satisfy
physicists with merely probabilistic predictions. This, in a nutshell, is the measure-
ment problem—although very substantial analysis is needed to flesh it out.

Giving up determinism was soon incorporated in the Copenhagen Interpretation
of Bohr and Heisenberg (cf. the Introduction) and more broadly became part of
what might be called “orthodoxy”, which represents the apparent (but not actual)
consensus among Bohr, Heisenberg, Pauli, Born, Jordan, Dirac, von Neumann, and
many others, which they supposedly reached around 1930 after the formal com-
pletion of quantum mechanics. This “orthodoxy”, which later gave rise to the un-
fortunate “shut up and calculate” attitude most physicists seem to have (especially
towards the measurement problem), should be distinguished from the Copenhagen
Interpretation. For example, von Neumann never endorsed the doctrine of classical
concepts, which in the above attitude has been replaced by the different and far more
superficial idea that it is the entire goal of physics to explain experiments.
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11.1 The rise of orthodoxy

Even within the strict Copenhagen Interpretation, there were sharp differences be-
tween Bohr and Heisenberg, beyond the one concerning classical concepts reviewed
in the Introduction. However, it seems that they agreed about the following point
made by Bohr in his Como lecture concerning measurement:

‘According to the quantum theory, just the impossibility of neglecting the interaction with
the agency of measurement means that every observation introduces a new uncontrollable
element.’ (Bohr, 1928, p. 584)

This placed measurement squarely outside quantum mechanics for the second time:
the first time was in the insistence that the measurement device (“if it is to serve
its purpose”) had to be described classically (cf. the Introduction), and now we also
learn that the interaction between the quantum object undergoing measurement and
the apparatus in question is “uncontrollable”, despite the fact that Bohr and Heisen-
berg regarded quantum mechanics as a complete theory: their argument was ap-
parently that precisely the classical nature of the apparatus makes the interaction
uncontrollable. This in turn justified the classical description of the device, in that
registration of a measurement result ought to be “objective”, so that reading it out
by performing a measurement on the apparatus, so to speak, should not introduce
any further disturbance and hence uncontrollability (or so the argument goes).

Consistent with Bohr’s point, a more detailed conceptual analysis of the measure-
ment process was given by Heisenberg (1958, pp. 46–47, 54–55), who consistently
refers to the quantum state or wave-function as the “probability function”:

‘Therefore, the theoretical interpretation of an experiment requires three distinct steps:

1. the translation of the initial experimental situation into a probability function;
2. the following up of this function in the course of time;
3. the statement of a new measurement to be made of the system, the result of which can

then be calculated from the probability function.

(. . . ) After [the] interaction [with the measuring device] has taken place, the probability
function contains the objective element of tendency and the subjective element of incom-
plete knowledge, even if it has been a “pure case” before [i.e., it has become a mixture].
It is for this reason that the result of the observation cannot generally be predicted with
certainty; what can be predicted is the probability of a certain result of the observation,
and this statement about the probability can be checked by repeating the experiment many
times. (. . . ) The observation itself [i.e., the act of registration of the result by the mind of the
observer] changes the probability function discontinuously; it selects of all possible events
the actual one that has taken place. Since through the observation our knowledge of the sys-
tem has changed discontinuously, its mathematical representation also has undergone the
discontinuous change and we speak of a “quantum jump.”

Here we find the typical Copenhagen view of measurement as a two-step process:

1. Measurement turns an initial pure state (of the measured object) into a mixture;
2. One term in this mixture is singled out (by Nature and thence by the observer).

Note that Heisenberg’s last comment puts him squarely into the camp of what is
now called “QBism” (i.e., Quantum Bayesianism, see §11.2 below)!
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Von Neumann (1932, §VI.1) gave a more formal (and highly influential) presen-
tation of the (alleged) two stages of the measurement process:

‘In the discussion so far we have treated the relation of quantum mechanics to the various
causal and statistical methods of describing nature. In the course of this we found a pe-
culiar dual nature of the quantum mechanical procedure which could not be satisfactorily
explained. Namely, we found that on the one hand a state φ is transformed into the state φ ′
under the action of an energy operator H in the time interval 0≤ τ ≤ t:

∂
∂τ

φτ =−2πi
h

Hφτ : 0≤ τ ≤ t

so if we write φ0 = φ , φt = φ ′ then φ ′ = e−
2πi
h tHφ , which is purely causal. A mixture U is

correspondingly transformed into

U′ = e−
2πi
h tHUe+

2πi
h tH

Therefore, as a consequence of the causal change of φ into φ ′ the [pure] states U = P[φ ]
[=|φ〉〈φ |] go over into the [pure] states U′ = P[φ ′] (process 2 in V.1.). On the other hand,
the state φ—which may measure a quantity with discrete spectrum, distinct eigenvalues and
eigenfunctions φ1, φ2, . . . —undergoes in a measurement a non-causal change in which each
of the states φ1, φ2, . . . can result, and in fact does result with the respective probabilities
|〈φ ,φ1〉|2, |〈φ ,φ2〉|2, . . . . That is, the mixture

U′ =
∞

∑
n=1
|〈φ ,φn〉|2P[φ ′]

obtains (. . . ) (process 1 in V.1.). Since the [pure] states [i.e. P[φ ]] go over into mixtures,
the process is not causal. The difference between these two processes U �→ U′ is a very
fundamental one: aside from their different behaviors in regard to the principle of causality,
they are also different in that the former is (thermodynamically) reversible, while the latter
is not.’ (pp. 417–418 in von Neumann (1955); translation: R.T. Beyer)

All this concerns merely the first stage of the measurement, in which a pure state
is transformed into a mixed one. The second stage, in which a single outcome is
obtained, is already alluded to above (though clouded by von Neumann’s ensemble
language), but is described (in prose) later on through what is now called a von Neu-
mann chain: one redefines system plus apparatus as the system, and couples it to a
new apparatus, etc. This chain supposedly ends with the “ego” of the “individual”
whose “intellectual inner life” is finally responsible for a single outcome.

It is very remarkable that von Neumann nowhere seems to use the central Copen-
hagen dogma that the apparatus be described classically (cf. the Introduction), espe-
cially since the mathematics of operator algebras he was inventing at almost exactly
the same time is tailor-made for incorporating this dogma (which fact indeed forms
the motivation for the present book). One clue for his lack of enthusiasm may come
from the very end of his book (i.e., §VI.3), where he challenges ‘an explanation
often proposed to account for the statistical character of the process 1’, namely the
idea that (the non-unitary) process 1 might have its origin in an initial mixed state of
the apparatus. Indeed, even if the apparatus as a quantum-mechanical system is in a
pure state (as any system should be ontologically), its description as a classical sys-
tem generally renders its state mixed—and the same conclusion may be drawn on
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epistemic grounds, arguing that the state of macroscopic or otherwise complicated
systems cannot be known exactly. Many writings by the Copenhagen school, then,
suggest that the alleged unanalyzable nature of the measurement and the random-
ness of its outcome should be attributed to the classical description of the apparatus
and its ensuing mixed state, including our earlier quotation (cf. §8.4) from Heisen-
berg (1958) on the origin of probabilities in quantum mechanics:

‘these uncertainties (. . . ) are simply a consequence of the fact that we describe the experi-
ment in terms of classical physics’ (Heisenberg, 1958, p. 53)

To counter this argument, von Neumann argues that physics requires the (Born)
probabilities for the various outcomes to depend only on the initial state φ of the
quantum system undergoing measurement (as opposed to the state of the apparatus,
be it classical or quantum), whereas any “process 2” (i.e. unitary) time evolution
would merely push the coefficients wn in the (alleged) mixed apparatus state into the
role of probabilities for the possible outcomes. However, ‘the wn are characteristic
of the observer alone (and therefore independent of φ )’, and hence

‘the non-causal nature of the process 1. is not produced by any incomplete knowledge of
the state of the observer.’ (von Neumann, 1955, p. 439).

Von Neumann’s argument became the mother of all “insolubility theorems” for the
measurement problem, some of which will be reviewed in §11.3 below.

Pauli (1933, §9) also includes some comments on measurement and the interpre-
tation of quantum mechanics in general. These display a bizarre hybrid between the
ideas of Bohr and von Neumann, somehow mediated by Heisenberg. Thus Pauli en-
dorses (even starts with) some notion of Complementarity, but he relates this to the
mathematical formalism rather than to the doctrine of classical concepts (which he
nowhere invokes). Similarly, his treatment of measurement on the one hand follows
the disturbance ideology of Bohr and Heisenberg (but without grounding this in the
classical description of the apparatus), whilst technically he quotes and follows von
Neumann, claiming that measurement leads to mixtures which subsequently reduce
to one term through ‘ein besonderer, naturgesetzlich nicht im Voraus determinierter
Akt’ (i.e., special process that does not follow deterministic laws of nature). A rather
more systematic review of early measurement theory was written by London &
Bauer (1939), whose opening is highly promising and almost poetic:

‘The majority of introductions to quantum mechanics follow a rather dogmatic path from
the moment that they reach the statistical interpretation of the theory. In general they are
content to show, by more or less intuitive considerations, how the actual measuring devices
always introduce an element of indeterminism, as this interpretation demands. However,
care is rarely taken to verify explicitly that the formalism of the theory, applied to that
special process which constitutes the measurement, truly implies a transition of the system
under study to a state of affairs less fully determined than before. A certain uneasiness
arises. One does not see exactly with what right and up to what point one may, in spite of
this loss of determinism, attribute to the system an appropriate state of its own. Physicists
are to some extent sleepwalkers, who try to avoid such issues and try to concentrate on
concrete problems. But it is exactly these questions of principle which nevertheless interest
nonphysicists and all who wish to understand what modern physics says about the analysis
of the act of observation itself.’ (London & Bauer, 1939, pp. 218-219)
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Yet the authors mainly repeat von Neumann’s analysis (confirming its lofty status):

‘The interaction with the apparatus does not put the object into a new pure state. Alone,
it does not confer to the object a new wave function. On the contrary, it actually gives
nothing but a statistical mixture: It leads to one mixture for the object and one mixture for
the apparatus. For either system regarded individually there results uncertainty, incomplete
knowledge. Yet nothing prevents our reducing this uncertainty by further observation.

And this is our opportunity. So far we have only coupled one apparatus with one object.
But a coupling even with a measuring device is not yet a measurement. A measurement is
achieved only when the position of the pointer has been observed. It is precisely the increase
of knowledge, acquired by the observation, that gives the observer the right to choose among
the different components of the mixture predicted by the theory, to reject those which are not
observed, and to attribute thenceforth to the object a new wave function, that of the pure case
which he has found. We note the essential role played by the consciousness of the observer
in this transition from the mixture to the pure state. Without his effective intervention, one
would never obtain a new ψ function.’ (ibid., p. 251)

Accordingly, at the end of the golden era of quantum mechanics, the view of mea-
surement as a two-stage process in which a pure state is first transformed into a mix-
ture in a more or less scientific way, upon which unanalyzable and possibly mental
phenomena bring about a single outcome, was firmly established, although—the
point deserves to be repeated—in their formal treatments neither von Neumann nor
London & Bauer incorporated the key claim Bohr and Heisenberg made about mea-
surement, namely that the corresponding apparatus must be described classically.

Opponents of the Copenhagen Interpretation (the most prominent among whom
were Einstein and Schrödinger) were well aware of this tension between formalism
and ideology, which in the form of Schrödinger’s Cat even reached immortality (!):

‘One may also construct highly burlesque cases. A cat is confined in a box of steel together
with the following hellish machine (which one should secure against a direct attack by the
cat): A Geiger counter contains a tiny amount of radioactive material, so little that during
one hour possibly one of its atoms decays, but equally likely also none does; if it does, then
the counter is triggered and activates, via a relais, a little hammer which breaks a small
container of hydrocyanic acid. Having left this system to itself for one hour, one will say
that the cat is still alive if meanwhile no atom has decayed. The first decay of an atom
would have poisoned her. The ψ-function of the entire system would express this in such
a way that in it the living and the dead cat would be mixed or spread out on equal terms.
What is typical about these cases is that an uncertainty which is originally limited to the
atomic domain has been transformed into a coarse-grained uncertainty, which may then
be decided by direct observation. This prevents us from regarding a “faded model” as an
image of reality in such a naive way. As such [this model] contains nothing that is unclear
or contradictory. There is a difference between a moved or poorly focused photograph and
a record of clouds and fog banks.’ (Schrödinger, 1935, p. 812; translation by the author)

The last sentence is particularly powerful, contrasting Schrödinger’s (as well as Ein-
stein’s) view that physics should describe some sharply defined reality (of which
quantum mechanics at best produces blurred pictures) with the Copenhagen view,
according to which reality itself lacks focus (with quantum mechanics providing the
best possible picture of it). This contrast confirms our idea that Schrödinger’s Cat
metaphor specifically draws attention to the problems that arise from the Copen-
hagen “duality postulate” that macroscopic systems (such as measurement devices
and cats) admit both a classical and a quantum-mechanical description.
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11.2 The rise of modernity: Swiss approach and Decoherence

Despite Schrödinger’s Cat, the measurement problem was not an active field of re-
search until Wigner (1963) rekindled interest in the topic. Even so, his paper mainly
reiterated von Neumann’s views—which already had been repeated by London and
Bauer—including his omission of the doctrine of classical concepts. In particular, it
continued to promulgate the suggestion that measurement is a two-step process for
which the clarification of the first step (i.e. of turning a pure state into a mixture)
would already be a major part of the solution of the measurement problem.

Wigner’s paper inspired for example the “‘Swiss” approach to the measurement
problem, which was remarkable in being the first serious mathematical attempt to
take into account the Bohr–Heisenberg dogma that the apparatus be described classi-
cally, whilst also paying tribute to von Neumann in insisting on mathematical rigour.
Indeed, the Swiss approach relies on the formalism of operator algebras, which also
marks a conceptual break with all earlier—and indeed most later—approaches in
taking the observables rather than the states as a starting point. The aim of the Swiss
approach is to show that relative to a suitable class of observables, the pure state

ρ = |ψ〉〈ψ|, ψ = ∑cnψn,

coincides with the corresponding mixture without the off-diagonal terms, i.e.,

ρ ′ = ∑
n
|cn|2|ψn〉〈ψn|.

Thus the ambition of this approach is limited, in that no attempt is made to explain
(at least the appearance of) single outcomes, except by appealing to the ignorance
interpretation of probability (in vain, see below). The alleged equivalence between
pure states and mixtures can typically be achieved if the apparatus is infinite and
the measurement time is infinite, too. The infinite character of the apparatus (here
seen as an idealization of a macroscopic device, as is standard in quantum statistical
mechanics), is no guarantee for its classicality, but it is certainly a step in the right
direction (cf. Chapter 8). Thus two closely related problems must be overcome:

1. In its reliance on superselection sectors (technically, on disjoint states on a suit-
able algebra of observables of the apparatus, see Definition 8.18), the program
only works in the limit of infinite apparatus and infinite measurement time. In-
deed, any approximation ruins the equivalence between pure states and mixtures;
and hence even this limited solution to the problem violates Earman’s Principle.

2. In so far as the subsequent problem of obtaining single outcomes to measurement
is recognized in the Swiss approach at all, it seems to be addressed by an appeal to
the ignorance interpretation of probability. Despite the fact that the mathematical
situation in this respect is better than in ordinary quantum mechanics (where
the ignorance interpretation of the formal probability distribution given by the
coefficients in a diagonal density operator is nonsensical, if only because the
state space is not a simplex), there is still no valid argument for this move.
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To explain the last point, we quote Leggett (though somewhat out of context):

‘Now, following Schrödinger, let us consider a thought experiment in which the quantum-
mechanical description of the final state, as obtained by appropriate solution of the time de-
pendent Schrdinger equation, contains simultaneously nonzero probability amplitudes for
two or more states of the universe that are, by some reasonable criterion, macroscopically
distinct (in Schrödingers example, this would be “cat alive” and “cat dead”). Of course, just
about everyone, including me, would accept that because of, inter alia, the effects of deco-
herence, it is likely to be impossible, at least for the foreseeable future, to experimentally
demonstrate the interference of such states. (On the other hand, as the late John Bell was
fond of pointing out, the foreseeable future is not a very well-defined concept. In fact, as
late as 1999, not a few people were confidently arguing that because of the inevitable ef-
fects of decoherence, the projected experiments to demonstrate interference at the level of
flux qubits would never work. In this case, the foreseeable future lasted approximately one
year. As Bell used to emphasize, the answers to fundamental interpretive questions should
not depend on the accident of what is or is not currently technologically feasible.) But the
crucial point is that the formalism of quantum mechanics itself has changed not one whit
between the microscopic and macroscopic levels. Are we then entitled to embrace, at the
macrolevel, an interpretation that was forbidden at the microlevel, simply because the ev-
idence against it is no longer available? I would argue very strongly that we are not, and
would therefore draw the conclusion: also at the macrolevel, when the quantum-mechanical
description assigns simultaneously nonzero [probabilities] to two or more macroscopically
distinct possibilities, then it is not the case that each system of the relevant ensemble realizes
either one possibility or the other.’ (Leggett, in Schlosshauer, 2011, p. 155)

This argument of Leggett’s (which is a special case of Earman’s Principle) was orig-
inally targeted at decoherence, but it also applies verbatim to the Swiss approach
(which is closely related to decoherence, as both heavily rely on limits and super-
selection rules—which are absolute in the former and dynamically induced in the
latter). In an even earlier hunch of Earman’s Principle, Bell— this time aiming di-
rectly at the Swiss approach—in fact made a related point about its reliance on the
t → ∞ limit (in that even at extremely large but finite time the state remains pure).

Jumping to the modern era, a striking point of continuity with the 1920s and
1930s is the idea that the measurement procedure (and hence the measurement prob-
lem) consists of two stages; only the terminology and the scope have changed:

‘There are two distinct measurement problems in quantum mechanics: what Pitowsky has
called a “big” measurement problem and a “small” measurement problem. The “big” mea-
surement problem is the problem of explaining how measurements can have definite out-
comes, given the unitary dynamics of the theory: it is the problem of explaining how in-
dividual measurement outcomes come about dynamically. The “small” measurement prob-
lem is the problem of accounting for our familiar experience of a classical, or Boolean,
macroworld, given the non-Boolean character of the underlying quantum event space: it is
the problem of explaining the dynamical emergence of an effectively classical probability.’
(Bub, in Schlosshauer, 2011, pp. 145–146)

Clearly, the “small” measurement problem is modern parlance for the problem
how to turn a superposition into a mixture, upon which the “big” problem—if it is
noticed at all—still concerns the old issue of selecting one term from this mixture.

Furthermore, the measurement problem seems to have acquired increased scope
and importance, as exemplified by the following quotations:
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‘One of the most ancient philosophical questions (Heidegger thought is was the question) is
this: why is there something rather than nothing? In terms of events rather than substances,
the question would be: how come anything happens at all? That question is the measurement
problem.’ (Fine, in Schlosshauer, 2011, p. 146)

‘The measurement problem has been called “the reality problem” by Philip Pearle. This is
a better name for it. We perceive objects in the world as being in definite states. A door
is either open or shut, a given ball either is in a given box or it is not. The wave function,
however, can have superpositions of these things, suggesting that the door can be simultane-
ously open and shut at the same time, and that the ball can be both in the box and not in the
box at the same time. The reality problem is that there is a discrepancy between the version
of reality we perceive, and the version presented to us by the most obvious interpretation of
the wave function.’ (Hardy, in Schlosshauer, 2011, p. 153)

‘Fundamentally, the measurement problem is the problem of connecting probability with
truth in the quantum world, that is to say, it is the problem of how to relate quantum probabil-
ities to the objective occurrence and non-occurrence of events. The problem arises because
there appears to be a difficulty in reconciling the objectivity of a particular measurement
outcome with the entangled state at the end of a measurement.’ (Bub, ibid., p. 145)

More technically, the measurement problem has come to be seen as a special case
of the problem of explaining at least the appearance of the classical world from
quantum theory. If the measurement problem is seen from the Copenhagen perspec-
tive this is eminently reasonable, as both problems involve the dual description of
either the apparatus or the world around us as both classical and quantum (and its
possible failure). In this context, an alleged solution to the “small” problem, such as
Decoherence, is often also seen as this explanation (as if there were no issue about
the derivation of the laws of classical physics, including the dynamical ones).

A propos, another characteristic feature of the modern era is undoubtedly the
dominance of Decoherence (if only over the Swiss approach), for example:

‘I think the whole discussion about whether measurements in quantum mechanics are in-
deed problematic somewhat misses the point. Measurement interactions are only one of
many examples of quantum interactions that lead to superpositions of macroscopically dis-
tinct states. Nature has been producing macroscopic superpositions for millions of years,
well before any quantum physicist cared to artificially engineer such a situation. The key
concept here is decoherence. Environmental interactions tend to produce superpositions of
classically distinct states. This raises the issue of how one could describe a classical regime
in quantum mechanics, quite irrespective of the existence of measuring apparatuses. (. . . )

If decoherence and its applications had been developed early in the history of quantum
theory, then the idea that measurements play a special role in the theory might not have
risen to such prominence, and the foundations of quantum mechanics would have focused
instead on the problem of how to derive a classical regime within the theory.’
(Bacciagaluppi, in Schlosshauer, 2011, p. 143)

Mathematically, decoherence boils down to the idea of adding one more link to
the von Neumann chain (see §11.1) beyond S+A (i.e. the system and the apparatus).
Conceptually, however, there is a fundamental conceptual as well as technical dif-
ference between Decoherence and older approaches that took such a step: whereas
previously (e.g., in the hands of von Neumann, London & Bauer, and Wigner) the
chain converged towards the observer, in Decoherence it diverges away from the
observer. Namely, the third and final link is now taken to be the environment.
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This notion is often taken in a fairly literal sense in agreement with the intuitive
meaning of the word, but it may also (we would even say: preferably) refer to inter-
nal degrees of freedom of the apparatus, as in the Spehner–Haake model in §11.4.
Either way, the “environment” is usually treated as an infinite system (necessitating
a limit like N → ∞), which (in simple models where the pointer has discrete spec-
trum) has the consequence that the post-measurement state ∑n cnψn⊗ φn⊗ χn (in
which the χn are mutually orthogonal) is only reached not only in the limit N → ∞
of infinitely many degrees of freedom but also in the limit t → ∞ of infinite time. In
that case, the restriction of the above state to S+A (i.e. the trace of the corresponding
density operator over the degrees of freedom of the environment) is mixed, which
means that the quantum-mechanical interference between the states ψn⊗φn for dif-
ferent values of n has become “delocalized” to the environment, and accordingly is
deemed irrelevant if the latter is not observed (i.e. omitted from the description).

Unfortunately, in so far as it claims to provide a solution to the measurement
problem, Decoherence is an unmitigated disaster:

1. Decoherence actually aggravates the measurement problem: where previously
this problem was believed to be man-made and relevant only to rather unusual
laboratory situations, it has now become clear that “measurement” of a quantum
system by the environment (instead of by an experimental physicist) happens
everywhere and all the time: hence it remains even more miraculous than before
that there is a single outcome after each such measurement.

2. Even the need for one of the two limits N → ∞ or t → ∞ makes Decoherence
vulnerable to Earman’s Principle; see Bell’s and Leggett’s critiques above.

3. Like the Swiss approach, Decoherence suffers from the difficulty that even if it
were able to reach its goal of reducing pure states to mixtures (about which ability
one may have doubts), there is no sound follow-up step to solve the next problem
of selecting one term from the mixture produced in the previous step. The igno-
rance interpretation seems blocked by Leggett’s argument quoted above (i.e. his
continuity argument to the effect that Decoherence just removes the evidence for
a given Schrödinger’s cat state to be a superposition, elsewhere charging those
claiming that Decoherence solves the measurement problem of committing the
logical fallacy that removal of the evidence for a crime would undo the crime).

Thus Decoherence is parasitic on some interpretation of quantum mechanics that
solves the measurement problem, which in turn is typically strengthened by it. In
this context, the most popular of these has been the Everett (i.e., Many-Worlds)
Interpretation, which, after decades of obscurity or even derision, suddenly started to
be greeted with a flourish of trumpets in the wake of the popularity of Decoherence.
However, even if such extravagant interpretations are coherent, these should in our
opinion be a very last resort, acceptable only if truly everything else has failed.

On the positive side, Decoherence has led to the important idea of einselection
(for environment-induced superselection), where a pure state ψ of some system
(possibly plus apparatus) is “einselected” if it remains pure after coupling to the
environment and subsequent restriction. The hope (or rather program), then, is to
show that classical states are classical precisely because they are robust in this way.
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Finally, it may be appropriate to close this historical introduction to the measure-
ment problem by mentioning another modern approach, namely outright denial:

‘I remember giving a talk at a meeting at the London School of Economics seven or so years
ago. In the audience was an Oxford philosophy professor, and I suppose he didn’t much like
my brash cowboy dismissal of a good bit of his life’s work. When the question session came
around, he took me to task with the most proper and polite scorn I had ever heard (I guess
that’s what they do). “Excuse me. You seem to have made an important point in your talk,
and I want to make sure that I have not misunderstood anything. Are you saying that you
have solved the measurement problem? This problem that has plagued quantum mechanics
for seventy-five years? The message of your talk is that, using quantum information theory,
you have finally solved it?” (Funny the way the words could be put together as a question,
but have no intended usage but as a statement.) I don’t know that I did anything but turn the
screw on him a bit further, but I remember my answer. “No, not me; I havent done anything.
What I am saying is that a “measurement problem” never existed in the first place. (. . . )

The “measurement problem” is purely an artefact of a wrong-headed view of what quan-
tum states and/or quantum probabilities ought to be. (. . . ) quantum states are not real things
from a Quantum Bayesian view (. . . ) but a personal judgment, a quantified degree of belief.
A quantum state is a set of numbers an agent uses to guide the gambles he might take on
the consequences of his potential interactions with a quantum system. It has no more sub-
stantiality than that. Aren’t epistemic states real things? Well . . . yes, in a way. They are as
real as the people who hold them. But no one would consider a person to be a property of
the quantum system he happens to be contemplating. And one shouldn’t think of a quantum
state in that way either—one shouldnt think of it as a property of the quantum system to
which it is assigned. Take the source of the paradox away, we say, and the paradox itself
will go away.’ (Fuchs, in Schlosshauer, 2011, pp. 146–147)

These words have been quoted at some length, because the view that “physics is
information” and its alleged corollary that all foundational problems are solved by
Bayesian reasoning (perhaps with a quantum flavour) is becoming increasingly pop-
ular. Physicist are now seen as punters (or, in academic parlance, “agents”) who
in smoky offices bet on the outcomes of experiments, and hence use (quantum)
Dutch Book arguments to justify some sort of strictly epistemic (quantum) proba-
bility calculus. However, the ideology of “QBism” thus expressed appears to have
adopted precisely the weakest ingredients of the Copenhagen Interpretation—viz.
the idea that the wave-function is just a catalogue of the probabilities for possible
outcomes of measurements whose details are supposedly beyond our grasp, cf. the
Introduction—at the expense of its one strong component, namely the doctrine of
classical concepts. Although there may have been pragmatic reasons for this atti-
tude in the 1920s, (mathematical) physics has moved forward since then, enabling
much more detailed analysis and hence justifying considerably greater ambition in
understanding the measurement process than Bohr and Heisenberg cum suis had.

In any case, the fact that one competent author regards the measurement problem
as the key to reality whilst another flatly denies even its very existence should give
pause for thought. As in the Bohr–Einstein debate, different perspectives on reality
and on the task of physics seem to play a role here, culminating in contrasting views
of quantum-mechanical states: the more “reality” one attributes to states, the more
serious the measurement problem is. Or, contrapositively, the more operationalist
one’s attitude, the further the problem disappears behind the horizon.
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11.3 Insolubility theorems

Since in §11.4 we will “propose the impossible”, namely miraculously solving the
measurement problem within unitary quantum mechanics, it is helpful to review the
arguments why this is generally felt to be impossible. Such arguments take the form
of so-called insolubility theorems. As already mentioned, such theorems ultimately
go back to von Neumann: especially those that prove the impossibility of explaining
his process 1 (i.e. the transition from a pure state to a mixture) from process 2
(unitary time evolution according to the Schrödinger equation). Another kind of
insolubility theorem shows that single outcomes are impossible from process 2.

It might be argued that both kinds of theorem add little to the basic mathematical
intuition behind the measurement problem, which is as follows (it goes without
saying that we disagree with this traditional description of measurement, see below).
Let s ∈ B(HS) be the observable being measured (where HS is some Hilbert space
associated to a quantum object S undergoing measurement) and let a ∈ B(HA) be
a “pointer observable” correlated to S (where HA is a second Hilbert space). In
particular, the measurement apparatus A is described quantum mechanically. For the
moment we assume both Hilbert spaces to be finite-dimensional and both operators
to be non-degenerate, even having the same spectrum {λ1, . . . ,λn}; this of course
implies that dim(HS) = dim(HA) = n. Thus HS has a basis (υ(s)

i ) of eigenvectors of
s and likewise HA has a basis (υ(a)

i ) of eigenvectors of a, with sυ(s)
i = λiυ

(s)
i and

aυ(a)
i = λiυ

(a)
i (i = 1, . . . ,n). The (erroneous) argument, then, is as follows:

1. Measurement should establish a correlation between values of s of S and values
of a of A, which with the above labeling implies that for each i the initial sys-
tem state υ(s)

i should push the pointer from some initial state ψ(A)
0 into a final

(post-measurement) state υ(a)
i . Hence the dynamics, described by some unitary

operator u ∈ B(HS⊗HA), should be such that

u(υ(s)
i ⊗ψ0) = υ(s)

i ⊗υ(a)
i ≡ ϕi. (11.1)

2. If the initial system state is ψ(S)
0 = ∑i ciυ

(s)
i (with ∑i |ci|2 = 1), then, by linearity

of u, the final state is ϕ = ∑i ciϕi. But if A is sufficiently macroscopic this con-
flicts with observation, which always shows one of the terms in the sum. In other
words, in theory, a—more precisely, 1HS⊗a—has no value in this state, whereas
in practice it does, since in the real world measurements do have outcomes.

3. Hence the final state should be the mixed density operator ∑i |ci|2|ϕi〉〈ϕi| (rather
than the pure one |ϕ〉〈ϕ|), whose ignorance interpretation (allegedly) yields one
of the states ϕi with probability |ci|2. But it is impossible to transform the initial
pure state |ϕ0〉〈ϕ0| into the above mixture by any unitary operator, let alone by
the u defined by (11.1), which by construction yields

u|ψ(S)
0 〉〈ψ(S)

0 |u∗ = |ϕ〉〈ϕ| �= ∑
i
|ci|2|ϕi〉〈ϕi|. (11.2)
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As we already discussed, for some authors the measurement problem is the clash be-
tween nos. 1 and 3 (this is the “small” problem), whereas for others it is the conflict
between nos. 1 and 2 (i.e. the “big” one). Either way, the goal of insolubility theo-
rems is to show that the problem is not a consequence of idealizations in primitive
arguments like the one just given, but remains even under very general assumptions.
In particular, both the purity of the initial system as well as apparatus states (and
hence of their tensor product), and the exact system-apparatus correlation assumed
(including the premise of point spectra and finite-dimensional Hilbert spaces), can
be considerably relaxed. To illustrate the kind of discussion, we present one example
of an insolubility proof along the former lines and one along the latter. These proofs
even remain valid if the notion of an observable itself is relaxed, too, namely from
a self-adjoint operator to a POVM (see (2.178)), but we will not discuss this utmost
generality (if only because it would not circumvent our critique below). It should be
noted that insolubility theorems tacitly assume that the mathematical objects in the
quantum-mechanical formalism describe all there is physically.

In the first direction, we have Theorem 11.2 below, which we may summarize as
the problem of statistics: there is a contradiction between the following postulates:

1. System and apparatus are both described quantum-mechanically.
2. The wave-function of the system is complete.
3. The wave-function always evolves linearly (e.g., by the Schrödinger equation).
4. Measurements with identical initial wave-functions may have different out-

comes, and the probability of each possible outcome is given by the Born rule.

Here the second and third postulates may be consequences of the first, but even so
it is useful to list them separately, since denying or circumventing nos. 1, 2, and 3 is
typically done in completely different ways (see the end of this section).

Formally, let s = s∗ ∈ B(HS) be an arbitrary self-adjoint operator on an arbitrary
(separable) Hilbert space HS, with associated spectral projections e(s)Δ ∈ P(HS),
Δ ⊂ σ(s), and likewise a ∈ B(HA). It is convenient (and entails no genuine loss of
generality) to still assume that σ(s) = σ(a). Recall that the Born measure μ(s)

ρS on
the spectrum σ(s) induced by some density operator ρS ∈D(HS) is given by

μ(s)
ρS (Δ) = Tr

(
ρSe(s)Δ

)
= ωS

(
e(s)Δ

)
= μ(s)

ωS (Δ), (11.3)

cf. (4.9), where ωS is the state associated to ρS by (2.33), and no notational confusion
between μ(s)

ρS and μ(s)
ωS should arise (they are the same thing). Likewise for a.

Definition 11.1. 1. Let H be a Hilbert space and let b ∈ B(H)sa. Two (normal)
states ω,ω ′ on B(H) are called b-distinguishable if μ(b)

ω �= μ(b)
ω ′ ; in other words,

there is some Δ ⊂ σ(b) such that μ(b)
ω (Δ) �= μ(b)

ω ′ (Δ). Similarly for ρ,ρ ′ ∈D(H).
2. In the situation described before (11.3), a pair (ρA,u), where ρA is a density

operator on B(HA) and u is a unitary operator on HS⊗HA, is a measurement

scheme for s if s-distinguishability of two density operators ρS, ρ ′S on HS implies
1HS ⊗a -distinguishability of the two states u(ρS⊗ρA)u∗ and u(ρ ′S⊗ρA)u∗.
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3. A measurement scheme (ρA,u) for s preserves probabilities if for any density
operator ρS ∈D(HS) the probability measure on σ(a) = σ(1HS ⊗a) induced by

u(ρS⊗ρA)u∗ equals the Born measure μ(s)
ρS on σ(s) = σ(a) induced by ρS.

4. A density operator ρ ∈D(HS⊗HA) objectifies the pointer observable a relative
to some countable partition σ(a) =

⊔
iΔi of its spectrum if ρ = ∑i pieυi , where

each unit vector υi ∈ HS⊗HA is an eigenvector of 1HS ⊗ e(a)Δi
(pi ≥ 0, ∑i pi = 1).

For example, in case of a discrete spectrumf or simplicity, if λ1 �= λ2 in σ(b), then
any two unit eigenvectors υ(b)

i (i = 1,2) give rise to b-distinguishable vector states
ρi = |υ(b)

i 〉〈υ(b)
i |. If ψ = c1υ

(b)
1 + c2υ

(b)
2 with |c1|2 + |c2|2 = 1 and c1 �= 0,1, then

also the trio (ρ1,ρ2,eψ) is pairwise b-distinguishable. If, the other hand, λ ∈ σ(b)
is degenerate, then eψ and eψ ′ fail to b-distinguishable whenever ψ,ψ ′ ∈ Hλ .

Clause 2 of Definition 11.1—which incorporates a vast number of at least theo-
retical scenario’s—is a considerable weakening of the scheme (11.1), while clause
3 sharpens the second, implying that measurement transfers all Born probabilities
for the object to the apparatus, probabilistically making the latter a mirror image
of the former. Clause 4 firstly takes care of continuous spectra; if σ(a) is discrete,
one may simply partition it by its points (a partition of σ(a) is sometimes called
a reading scale). The “objectification” terminology is questionable (if not outright
misleading), as it is motivated by the ignorance interpretation of mixtures (see be-
low), but we follow the literature in using it. In what follows, we exclude the trivial
cases where σ(s) consist of a single point, and/or σ(a) is partitioned by itself.

Theorem 11.2. For any nontrivial object observable s and partitioning of σ(a),
there exists no measurement scheme (ρA,u) for s whose final state u(ρS⊗ρA)u∗ ob-
jectifies a for any initial system state ρS (let alone one that preserves probabilities).

Proof. Since we will not use this theorem (except for pointing out that it attacks a
straw man), we just prove it in the special case where σ(a) is discrete and parti-
tioned by its points, and also the spectral decomposition ρA = ∑n pnen of the initial
apparatus state is unique, cf. (B.490). For any unit vector in υ(s) ∈ HS we then have

u(eυ(s) ⊗ρA)u∗ = ∑
n

pnu(eυ(s) ⊗ en)u∗. (11.4)

Take λ1 �= λ2 in σ(s), with associated eigenvectors υ(s)
1 and υ(s)

2 . If en = |αn〉〈αn|,
for unit vectors αn ∈ HA, then objectification of a requires that each of the vectors

u(υ(s)
1 ⊗αn), u(υ(s)

2 ⊗αn), u((c1υ
(s)
1 + c2)υ

(s)
2 ⊗αn),

with |c1|2 + |c2|2 = 1 and c1 �= 0,1, must be an eigenvector of 1HS ⊗a. This is only
possible if the first two vectors (and hence the third) lie in the same eigenspace for
1HS⊗a, but in that case condition no. 2 in Definition 11.1 is violated, since the three
given initial system states are pairwise s-distinguishable whereas the corresponding
outcomes states just listed evidently fail to be 1HS ⊗a-distinguishable. �
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Insolubility theorems of the second kind describe the problem of outcomes, ac-
cording to which clauses 1., 2., and 3. of the problem of statistics also contradict:

4’. Measurements have determinate outcomes.

Technical statements to this effect are even more straightforward than those for-
malizing the problem of statistics. We keep HS and s ∈ B(HS) as they were, but this
time, HA may refer to the rest of the Universe outside the quantum object described
by HS (which includes the pointer, of course). Here is the key assumption.

Definition 11.3. Let s ∈ B(HS)sa be an object observable with partition σ(s) =⊔
i∈I Δi of its spectrum (if σ(s) = {λ1, . . .} is discrete, one may take Δi = {λi}),

and let HA be a second Hilbert space. A sound measurement scheme consists of:

• A collection (Si)i∈I of outcome spaces, i.e. subsets of the (normal) state space,

Si ⊂ Sn(HS⊗HA)∼= D(HS⊗HA), (11.5)

for which there is 0≤ η < 1/2 such that for i �= j, one has

2
√

1−η ≤ ‖ωi−ω j‖ ≤ 2 (ωi ∈ Si,ω j ∈ S j). (11.6)

• A pair (ρA,u), where ρA is a density operator on B(HA) and u is a unitary on
HS⊗HA, such that for each i ∈ I and each unit vector υ(s)

i ∈ HΔi (i.e., eΔiυ
(s)
i =

υ(s)
i ), the state u(e

υ(s)
i
⊗ρA)u∗ (i.e. the outcome of the measurement) lies in Si.

In (11.6) the first bound (which for small η is ≈ (2−η) ≤ ·· · ) is the key one, as
the last one ≤ 2 is always satisfied and has been included for clarity. In particular,

‖ωi−ω j‖>
√

2. (11.7)

Note that (11.6) implies that the Si must be disjoint, since assuming ω ∈ Si gives
‖ω −ω j‖ ≥ 2

√
1−η for all ω j ∈ S j, whereas ω ∈ S j allows one to take ω j = ω

in this inequality, leading to the contradiction 0 ≥ 2
√

1−η . Note that in terms of
density operators we have

‖ωi−ω j‖= ‖ρi−ρ j‖1, (11.8)

where ωi(a) = Tr(ρia), cf. (B.481) and Theorem B.146. If ωi and ω j are pure,
induced by unit vectors ψi and ψ j in HS⊗HA, then by (C.637), eq. (11.6) comes
down to

0≤ |〈ψi,ψ j〉|2 ≤ η . (11.9)

For example, in the von Neumann measurement scheme (11.1), the subspace Si just
consist of the vector state defined by υ(s)

i ⊗υ(a)
i , hence (11.6) holds with η = 0.

Theorem 11.4. For any nontrivial object observable s and partitioning of σ(s), any
sound measurement scheme ((Si),η ,ρA,u) admits initial states υ ∈ HS such that
u(eυ⊗ρA)u∗ (i.e. the post-measurement state) does not lie in any outcome space Si.
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Proof. Let υ = (υi+υ j)/
√

2, where i �= j and for the moment υi and υ j are merely
orthonormal vectors in HS. For each i = 1,2 we then compute:

‖u(eυ ⊗ρA)u∗ −u(eυi ⊗ρA)u∗‖(HS⊗HA)
1 = ‖eυ ⊗ρA− eυi ⊗ρA‖(HS⊗HA)

1

= ‖eυ − eυi‖(HS)
1

= ‖ωυ −ωυi‖
= 2
√

1−|〈υ ,υi〉|2

=
√

2, (11.10)

where ‖ ·‖(H)
1 denotes the trace norm relative to H. Now take υi = υ(s)

i as in Defini-
tion 11.3. Since ωi ≡ u(e

υ(s)
i
⊗ρA)u∗ ∈ Si by definition of a sound measurement, it

follows from (11.7) and (11.10) that ω ≡ u(eυ ⊗ρA)u∗ cannot lie in any subspace
Sk, since that would require ‖ω −ωl‖ >

√
2 for all l �= k, whereas (11.10) shows

that this inequality fails for at least two values of l, viz. l = i and l = j �= i. �

In order to circumvent Theorems 11.2 and 11.4, one should deny at least one of
their explicit premises. Moreover, we note that postulate no. 3 (i.e. linearity of time-
evolution) is always implicitly used in the form of the following counterfactual:

If ψn were the initial state, then for each n it would evolve (linearly) according
to the Schrödinger equation with given Hamiltonian h. If the initial state were
∑n cnψn, also then it would evolve according to the same Hamiltonian h.

This counterfactual should be added as a tacit assumption to all insolubility proofs
(and also to informal statements of the measurement problem). As such, it may
reasonably be denied (see §11.4), and such a denial puts assumption no. 4 in the
problem of statistics in perspective, namely by denying the possibility that identical
initial states can always be prepared in such a way that they evolve through exactly
the same Hamiltonian. This leaves room for the following denials of some premise:

¬ 1. The apparatus is not described quantum-mechanically;
¬ 2. The wave-function of the system is not complete;
¬ 3. The wave-function does not always evolve by the Schrödinger equation;
¬ 4. Identical initial wave-functions always yield identical outcomes;
¬ 4’. Measurements do not have determinate outcomes.

Current programs for solving the measurement problem neatly fall into this scheme:

¬ 1. Copenhagen Interpretation and Swiss Approach;
¬ 2. Hidden-variable theories, most prominently Bohmian mechanics;
¬ 3. Dynamical collapse theories (such as GRW);
¬ 4. Instability approaches, e.g., the Flea on Schrödinger’s Cat (which keeps 3);
¬ 4’. Many-Worlds Interpretation, i.e., Everettian quantum mechanics.

Leaving most of these to the literature, we now turn to the instability approach (¬4).
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11.4 The Flea on Schrödinger’s Cat

The conclusion of this lengthy historical and technical introduction is that there are
(at least) two different formulations of the measurement problem, whose insolubility
is expressed by Theorems 11.2 and 11.4, respectively (leaving apart lavish opportu-
nities for disagreement about the precise formulation of the underlying assumptions,
and not even speaking about the outright dismissal of the whole issue as a Schein-
problem). Thus the problem in question is evidently of a different kind from say the
famous open conjectures in mathematics (like the Riemann hypothesis), where it is
clear what the theorem is that needs to be proved. Nonetheless, despite its undeni-
able philosophical aspects, we see the measurement problem as a genuine physics
problem concerned with the discrepancy between (quantum) theory and experiment,
to be addressed by mathematical, physical, and philosophical analysis.

Well aware that different people typically draw different lessons from history,
we will now, in the interest of motivating our approach to follow, draw our own
(necessarily subjective) conclusions from the history of the measurement problem.

1. Though grounded in genius and tradition (Heisenberg, von Neumann, Wigner),
the two-step way of looking at the measurement process (i.e. in terms of firstly
a reduction of the wave-function by some non-unitary “process 1” and secondly
a registration of a single outcome), with ensuing separation of the measurement
problem into a “small” and a “big” problem, is fruitless and should be abandoned.
It has no basis whatsoever in experimental physics (where the alleged mixed
post-measurement states are conspicuously absent), it reflects obsolete ensemble
thinking, and it is unsound also theoretically, as shown both by the first kind of
insolubility results (à la von Neumann and Theorem 11.2), as well as by the fail-
ure of programs addressing just the “small” problem (like the Swiss approach
and Decoherence). These approaches are unable to deal with the “big” problem
(except perhaps through desperate remedies like Many Worlds) and hence, even
if they work, they deliver Pyrrhic victories at best. The problem of obtaining sin-
gle outcomes should be solved directly, before it is too late. Since such a solution
would leave nothing to interfere, the “small” problem automatically disappears.
This does not mean that it is sufficient to obtain definite outcomes alone; among
all remaining challenges, deriving the Born rule stands out in particular.

2. Too much formal analysis has been done on the measurement problem (including
the insolubility theorems just reviewed) without taking the special nature of mea-
surement devices into account; alas, this negligence has its roots in the work of
von Neumann. These devices are typically treated as ordinary quantum systems,
as a consequence of which the notion of an “outcome” has to be defined within
quantum mechanics and hence has to be identified e.g. with an eigenstate of some
operator describing the apparatus (as in Theorem 11.2) or with some subspace of
the quantum-mechanical state space (as in Theorem 11.4). Such identifications
are purely formal and have little basis in experimental physics: as long as one
defines outcomes of measurements within quantum mechanics, there is no mea-
surement problem (but at worst some unease concerning value indefiniteness)!
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Fig. 11.1 The waves crashed between the towering cliff of Scylla and the jagged rocks of Charyb-
dis. Colour litograph by Gino D’Antonio. Reprinted with permission from Look and Learn Ltd.

On the other hand, both the Copenhagen Interpretation and the Swiss approach
seem to have gone too far in the opposite direction: the former because it simply
assumed (without providing any justification) that measurements have outcomes
as soon as the apparatus is described classically, the latter in treating apparatuses
as strictly infinite, and hence falling victim to Earman’s Principle. The right ap-
proach, then, must be to define measurement as in the Copenhagen Interpreta-
tion, i.e. using a classical description of the apparatus whilst realizing it is on-
tologically a quantum system, and thusly navigate between Scylla (who treats
measurement devices as arbitrary quantum systems) and Charybdis (who is too
enthusiastic in taking infinite limits and hence in using a classical description).

3. Some kind of reality has to be attributed to the state of the system (though this
reality cannot be “absolute”, as in classical physics). In the algebraic approach
to quantum theory adopted throughout the present book, the starting point is pro-
vided by the observables, relative to which states are defined. Since the doctrine
of classical concepts drives us to switch between quantum-mechanical and clas-
sical descriptions, the reality of the quantum state is therefore perspectival. How-
ever, their perspectival nature does not make states less real; they say everything
there is to say (at least by quantum theory) about some given level of description
(which may be said to be chosen by the observer, and hence is intersubjective).

Thus the measurement problem arises in the way Schrödinger (rather than von Neu-
mann) described it, although a precise framework has to be added to his poetry.

A framework that is precise both conceptually and mathematically is offered by
asymptotic emergence, which we already encountered in our discussion of SSB in
the previous chapter (see especially its preamble). To repeat the main points, we
speak of asymptotic emergence if the following three conditions are all satisfied:
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1. A “higher-level theory” H (which in the context of the measurement problem is
either classical mechanics or classical thermodynamics, depending on the mea-
surement setup) is a limiting case of some “lower-level theory” L (viz. quantum
mechanics, including quantum statistical mechanics of a finite system).

2. Theory H is well defined and understood by itself (typically predating L).
3. Theory H has “emergent” features that cannot be explained by L, e.g. because L

does not have any property inducing those feature(s) in the limit pertinent to H.

The root of the measurement problem (and hence the relevance of asymptotic emer-
gence), then, lies in Bohr’s requirement that the outcomes of measurements on sys-
tems defined within L be recorded in (at the least the language of) H, so that, cru-
cially, measurement according to L is a notion external to L (if only partly), in par-
ticular involving the relationship between L and H. None of the insolubility proofs
of the measurement problem take this into account (although due to Butterfield’s
Principle these proofs remain relevant in a secondary way). The typical feature of
H that would be emergent in the above sense if the measurement problem were un-
resolved is that every physical system subject to the theory H is ontologically in
a pure state; in Schrödinger’s words quoted in §11.1: in H, sharply focused pho-
tographs of states are always possible (and hence any uncertainty or chance is due
to ignorance, as in classical physics). Now, whatever the ontological nature of states
in L, the states they induce in H should be real in the above sense, i.e., pure. But
this is precisely what does not seem to be the case in typical measurement situations
(e.g., Schrödinger’s Cat), where the post-measurement state on L induces a mixed
state on H. Just as in the case of SSB, this violates Butterfield’s Principle, which in
the case at hand states that since H is an idealization of L, any physical effect in H
must be foreshadowed in L: as L approaches H, sharp measurement outcomes (de-
fined as pure states in H) must arise from at least approximate single measurement
outcomes (i.e. “singly-peaked wave-functions”) in the relevant asymptotic regime
of L (since only these wave-functions gives rise to pure classical states on H).

As noted before in the setting of SSB: violating Butterfield’s Principle means
violating Earman’s Principle, which in turn leads to a violation of the link between
theory and reality. It is worth spelling this out for the measurement problem:

• Reality is described by quantum mechanics (even in the Copenhagen Interpreta-
tion, classical mechanics is an idealization of quantum mechanics);

• Real phenomena—in this case, sharp measurement outcomes— are correctly de-
scribed by classical mechanics although this is an idealization;

• Quantum mechanics (allegedly) cannot possibly induce these phenomena in its
limit towards classical mechanics although it is the theory that should apply;

• Hence quantum mechanics contradicts reality. Classical mechanics does not con-
tradict the reality of sharp measurement outcomes, but it is not the appropriate
theory to explain them; this explanation should come from quantum mechanics.

It may now seem that invoking Butterfield’s Principle has reduced the measure-
ment problem to the usual one(s) described in the preceding sections. But look at
the small print: in the Copenhagen Interpretation, single measurement outcomes
only appear in some limiting “classical” regime of quantum mechanics.
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“Deep inside” quantum mechanics, there is no need at all for the typical superpo-
sition ∑n cnψn to collapse into one of the states ψn (unless one conflates the physical
measurement problem with the philosophical problem of value indefiniteness). The
external and asymptotic nature of measurement outcomes causes the measurement
problem, but, as we shall see, at the same time it provides the key for its solution,
since the collapse mechanism we propose is only effective asymptotically (so that it
operates where it should and does not act where it should not). More precisely, by
taking into account perturbations of the Hamiltonian that are tiny and ineffective in
the quantum regime, but become hugely destabilizing in the classical regime (even
before the actual limit), the wave-function of the apparatus will collapse.

Summarizing the preceding discussion, “our” measurement problem states that:

• Certain pure post-measurement states of an (ontologically quantum-mechanical!)
apparatus coupled to a microscopic quantum object induce mixed states on the
apparatus (and on the composite) once the apparatus is described classically.

This is a precise version of Schrödinger’s Cat problem (rather than von Neumann’s
purely quantum-mechanical measurement problem), making it clear that at heart the
problem does not lie with the (dis)appearance of interference terms (which is a red
herring) but with the inability of quantum mechanics to predict single outcomes.

We now show by means of a simple example what it means to describe an on-
tologically quantum-mechanical apparatus classically, and outline the scenario we
envisage for the solution of the measurement problem on the basis of this example.
The Spehner–Haake model of the apparatus described below is too simple to be
realistic, but nonetheless it may serve its purpose (as Bohr would say). The model
involves a double-well potential like (10.11), modified however by a little basin in
the middle, as shown below (including ground states for one large and one small
value of h̄). Also here, SSB will play a crucial role, so please recall §10.1.

Fig. 11.2 Double-well potential with basin; ground state ψ(0)
h̄=0.5 and ψ(0)

h̄=0.01.
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Consider N′ ≡ N + 1 non-interacting particles, each with mass m, moving on
the real line under the influence of a one-particle potential V (note that although
the zero’th particle with be handled lightly differently from the others, it is not the
pointer!). In terms of the canonical coordinates (p′,q′) = (p0, . . . , pN ,q0, . . . ,qN) ∈
R2N′ on the phase space X = T ∗RN′ the classical Hamiltonian is

h(p′,q′) =
N

∑
n′=0

(
p2

n′
2m

+V (qn′)

)
. (11.11)

Now perform a canonical transformation to center of mass and relative coordinates

P =
N

∑
n′=0

pn′ Q =
1
N′

N

∑
n′=0

qn′ ; (11.12)

πn =
√

N′pn− 1√
N′

N

∑
n′=0

pn′ ρn =
1√
N′

(qn−q0) (n = 1, . . . ,N); (11.13)

the center of mass (P,Q) will be the pointer. The inverse transformation is given by

p0 =
P
N′
− 1√

N′
N

∑
n=1

πn; (11.14)

pn =
P
N′

+
1√
N′

πn; (11.15)

q0 = Q− 1√
N′

N

∑
n=1

ρn; (11.16)

qn = Q+
√

N′ρn− 1√
N′

N

∑
k=1

ρk. (11.17)

Granted that {pn′ ,qk′ }= δn′k′ , {pn′ , pk′ }= 0, and {qn′ ,qk′ }= 0, we then duly have
{P,Q}= 1 and {πn,ρk}= δnk, with all other elementary Poisson brackets vanishing.

In terms of the new coordinates, the classical Hamiltonian (11.11) reads

h(P,Q,π,ρ) = hA(P,Q)+hAE(Q,ρ)+hE(π), (11.18)

where π = (π1, . . . ,πN), ρ = (ρ1, . . . ,ρN), and the three partial Hamiltonians are

hA(P,Q) =
P2

2M
+N′V (Q); (11.19)

hE(π) =
1

2M

⎛⎝ N

∑
n=1

π2
n +

(
N

∑
n=1

πn

)2
⎞⎠ ; (11.20)

hAE(Q,ρ) =
∞

∑
k=1

1
k!

fk(ρ)V (k)(Q), (11.21)
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where M = Nm is the total mass of the system, for simplicity we assumed V to be
analytic (it will even be taken to be polynomial), and we abbreviated

fk(ρ) =

(
− 1√

N′
N

∑
l=1

ρl

)k

+
N

∑
n=1

(√
N′ρn− 1√

N′
N

∑
l=1

ρl

)k

. (11.22)

Note that f1(ρ) = 0, so that to lowest order (i.e. k = 2) we have

hAE(Q,ρ) =

(
1
2 N

N

∑
n=1

ρ2
n −

N

∑
k �=l

ρkρl

)
V ′′(Q)+ · · · (11.23)

We pass to the corresponding quantum-mechanical Hamiltonians in the usual way,
and couple a two-level quantum system to the apparatus through the Hamiltonian

hSA = μ ·σ3⊗P, (11.24)

where the object observable s = σ3, acting on HS =C2, is to be measured. The idea
is that hA is the Hamiltonian of a pointer that registers outcomes by localization on
the real line, hE is the (free) Hamiltonian of the “environment”, realized as the in-
ternal degrees of the freedom of the total apparatus that are not used in recording
the outcome of the measurement, and hAE describes the pointer-environment inter-
action. The classical description of the apparatus then involves two approximations:

• Ignoring all degrees of freedom except those of A, which classically are (P,Q);
• Taking the classical limit of hA, here realized as N → ∞ (in lieu of h̄→ 0).

The measurement of s is now expected to unfold according to the following scenario:

1. The apparatus is initially in a metastable state (this is a very common assump-
tion), whose wave-function is e.g. a Gaussian centered at the origin.

2. If the object state is “spin up”, i.e., ψS = (1,0), then it kicks the pointer to the
right, where it comes to a standstill at the bottom of the double well. If spin is
down, likewise to the left. If ψS =(1,1)/

√
2, the pointer moves to a superposition

of these, which is close to the ground state of V displayed in Figure 11.2.
3. In the last case, the Flea mechanism of §10.2 comes into play: tiny asymmetric

perturbations irrelevant for small N localize the ground state as N → ∞.
4. Mere localization of the ground state of the perturbed (apparatus) Hamiltonian in

the classical regime is not enough: there should be a dynamical transition from
the ground state of the original (unperturbed) Hamiltonian (which has become
metastable upon perturbation) to the ground state of the perturbed one. This dy-
namical mechanism in question should also recover the Born rule.

Thus the classical description of the apparatus is at the same time the root of the
measurement problem and the key to its solution: it creates the problem because at
first sight a Schrödinger Cat state has the wrong classical limit (namely a mixture),
but it also solves it, because precisely in the classical limit Cat states are destabilized
even by the tiniest (asymmetric) perturbations and collapse to the “right” states.
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The “flea” perturbation might itself be a genuine random process, perhaps ulti-
mately of quantum origin. In that case, the measurement merely amplifies the ran-
domness that was already inherent in the flea by transferring it to the apparatus.

Alternatively, the flea might be fundamentally deterministic (though it may
nonetheless be modeled stochastically for pragmatic reasons). In principle, this
would open the door to a restoration of determinism: for the flea now transfers its
determinism (rather than its randomness) to the apparatus. The mistaken impression
that quantum theory implies the irreducible randomness of nature then arises be-
cause although measurement outcomes are determined, they are unpredictable “for
all practical purposes”, even in a way that (because of the exponential sensitivity to
the flea in 1/h̄ or N) dwarfs the unpredictability of classical chaotic systems.

Either way, the flea perturbation would naturally be different at each different run
of an experiment under otherwise identical initial conditions, which motivates our
critique of the counterfactual discussed after the proof of Theorem 11.4.

The location of the flea plays a similar role to the position variable in Bohmian
mechanics, i.e., it is essentially a hidden variable. Recall the notions of Outcome
Independence (OI) and Parameter Independence (PI), reviewed in §6.5. Briefly, the
conjunction of OI and PI is equivalent to Bell’s locality condition, and if the latter
is satisfied, then the Bell inequalities hold. Since these are violated by quantum
mechanics, any hidden variable theory compatible with quantum mechanics must
violate OI or PI. Deterministic hidden variable theories necessarily satisfy OI, in
which case Bell’s Theorem or the Free Will Theorem shows that they must violate
PI in order to be compatible with quantum mechanics. A violation of PI leads to
possible superluminal signaling only if the hidden variable z can be controlled. If
the wave-function ψ is regarded as the hidden variable, then quantum theory itself
satisfies PI but violates OI (since ψ can be prepared, the other way round would be
disastrous). Qua deterministic hidden variable theory, Bohmian mechanics satisfies
OI, and hence it violates PI; for the GRW collpase theory it is the other way round.

The fate of the flea therefore depends on the nature of the perturbation: if it is
deterministic, the theory behaves like Bohmian mechanics in this respect and hence
violates PI, whereas stochastic perturbations typically violate OI (and possibly also
PI). Either way, no conflict with the said theorems arises. Moreover, in the Colbeck–
Renner Theorem, assumption CP fails for the flea scenario—assuming, in view of
its limitation to finite-dimensional Hilbert spaces, the theorem is applicable at all!

Besides such issues, others remain to be resolved, of which we just mention two:

1. Collapse of the wave-function has become a tunneling process, whose static ef-
fects are exponentially enhanced as N → ∞ (or h̄ → 0, as in §10.2). However,
tunneling times increase in the same way, so that the environment is needed not
only to provide the perturbation, but also to speed up the dynamics of collapse.

2. The flea not only destabilizes the Schrödinger Cat state (as desired), but also
destabilizes the intended outcome states (like those in Si, cf. Theorem 11.4). Also
here the environment should play a decisive role in (re)stabilizing the latter but
not the former, possibly through the mechanism of einselection, cf. §11.2.
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Notes

§11.1. The rise of orthodoxy

The literature on the measurement problem is vast. Apart from the annotated
reprint volume Wheeler & Zurek (1983), relatively recent surveys of and books
include Bell (1990b), Maudlin (1995), Busch, Lahti, & Mittelstaedt (1996), Bassi
& Ghirardi (2003), Mittelstaedt (2004), Wallace (2012), Allahverdyan, Balian, &
Nieuwenhuizen (2013), and Busch, Lahti, Pellonpää, & Ylinen, (2016). In modal
interpretations of quantum mechanics, the measurement problem is (dubiously) con-
flated with the far milder problem of value indefiniteness, see e.g. Bub (1997).
§11.2. The rise of modernity: Swiss approach and Decoherence

The Swiss approach to the measurement problem was initiated by Jauch (1964),
to be continued by e.g. Hepp (1972), Emch & Whitten-Wolfe (1976), and recently
also by Hepp’s former student Fröhlich; see e.g. Fröhlich & Schubnel (2013) and
Blanchard, Fröhlich & Schubnel (2016). In addition, see Landsman (1991, 1995)—
now seen as naive—, Breuer, Amann & Landsman (1993), and Sewell (2005).

Key early papers on decoherence were Zeh (1970), Zurek (1981), and Joos & Zeh
(1985), and standard reviews are Zurek (2003), Joos et al (2003), and Schlosshauer
(2007). Penetrating critiques include Janssen (2008) and Tanona (2013). See also
Camilleri (2009a) and Freire (2009) for some history.

A defence of QBism may be found in Caves, Fuchs, & Schack (2002b).
§11.3. Insolubility theorems

Insolubility theorems of the first kind kind go back to von Neumann (1932) and,
in his wake, Wigner (1963) and Fine (1970). Theorem 11.2 is (in even more general
form) due to Busch & Shimony (1996); with slightly different assumptions, the spe-
cial case proved in the main text is due to Brown (1986). The monographs by Busch,
Lahti, & Mittelstaedt (1996) and Mittelstaedt (2004) contain detailed discussions of
theorems of this kind. See also Bacciagaluppi (2014).

The formulation of the problem of statistics and the problem of outcomes is taken
from Maudlin (1995). Theorem 11.4 is due to Bassi & Ghirardi (2003), although
here it is presented in a form inspired by Grübl (2003).

For Bohmian mechanics see e.g. Goldstein (2013) and Bricmont (2016). A recent
review of the GRW program and related dynamical collapse theories is Bassi et al
(2013). Nowadays, the locus classicus for Many Worlds is Wallace (2012).

The time-evolution counterfactual discussed in the main text was inspired by the
problem of free will, see the quotation of Dennett at the beginning of §6.3.

S11.4. The Flea on Schrödinger’s Cat

The approach to the measurement problem discussed here has its roots in Lands-
man & Reuvers (2013) and Landsman (2013), whose model at the time only in-
volved the apparatus. This was criticized in van Heugten & Wolters (2016), many
of whose points may be addressed by turning to the Spehner–Haake model, in-
troduced by Spehner & Haake (2008). The ABN-model of Allahverdyan, Balian, &
Nieuwenhuizen (2013) gives a similar picture; for a comparison see Spehner (2009).



Chapter 12

Topos theory and quantum logic

The topos-theoretic approach to quantum mechanics (also known as quantum
toposophy) has the same origin as the quantum logic programme initiated by
Birkhoff and von Neumann, namely the feeling that classical logic is inappropri-
ate for quantum theory and needs to be replaced by something else. For example,
Schrödinger’s Cat serves as an “intuition pump” for this feeling (at least in the naive
view—dispensed with in Chapter 11—that it is neither alive nor dead). However,
we feel that the quantum logic proposed by Birkhoff and von Neumann is:

• too radical in giving up distributivity (rendering it problematic to interpret the
logical operations ∧ and ∨ as conjunction and disjunction, respectively);

• not radical enough in keeping the law of excluded middle, which is precisely
what intuition pumps like Schrödinger’s cat and the like challenge.

Thus it would be preferable to have a quantum logic with exactly the opposite fea-
tures, i.e., one that is distributive but drops the law of excluded middle: this suggest
the use of intuitionistic logic. It is interesting to note that Birkhoff and von Neumann
(who had earlier corresponded with Brouwer about possible intuitionistic aspects of
game theory, notably chess) actually considered intuitionistic logic, but rejected it:

‘The models for propositional calculi which have been considered in the preceding sections
are also interesting from the standpoint of pure logic. Their nature is determined by quasi-
physical and technical reasoning, different from the introspective and philosophical consid-
erations which have had to guide logicians hitherto. Hence it is interesting to compare the
modifications which they introduce into Boolean algebra, with those which logicians on “in-
tuitionist” and related grounds have tried introducing. The main difference seems to be that
whereas logicians have usually assumed that properties L71–L73 [i.e. (a′)′ = a, a∩a′ =⊥,
a∪ a′ = #, and a ⊂ b implies a′ ⊃ b′] of negation were the ones least able to withstand a
critical analysis, the study of mechanics points to the distributive identitiesas the weakest
link in the algebra of logic. (. . . ) Our conclusion agrees perhaps more with those critiques
of logic, which find most objectionable the assumption that a′ ∪ b = # implies a ⊂ b (or,
dually, the assumption that a∩ b′ = ⊥ implies b ⊃ a—the assumption that to deduce an
absurdity from the conjunction of a and not b, justifies one in inferring that a implies b).’
(Birkhoff & von Neumann, 1936, p. 837).

As already made clear, then, our view is exactly the opposite. It is perhaps more
striking that our position on (quantum) logic also differs from Bohr’s:

© The Author(s) 2017
K. Landsman, Foundations of Quantum Theory,

459

Fundamental Theories of Physics 188, DOI 10.1007/978-3-319-51777-3_12



460 12 Topos theory and quantum logic

‘All departures from common language and ordinary logic are entirely avoided by reserving
the word “phenomenon” solely for reference to unambiguously communicable information,
in the account of which the word “measurement” is used in its plain meaning of standardized
comparison.’ (Bohr, 1996, p. 393)

Rather than postulate the logical structure of quantum mechanics, our goal is to
derive it from our Bohrification ideology, more specifically, from the poset C (A)
of all unital commutative C*-subalgebras of a unital C*-algebra A, ordered by in-
clusion. One may think of this poset as a mathematical home for Bohr’s notion of
Complementarity, in that each C ∈ C (A) represents some classical or experimental
context, which has been decoupled from the others, except for the inclusion rela-
tions, which relate compatible experiments (in general there seem to be no preferred
pairs of complementary subalgebras C,C′ ∈ C (A) that jointly generate A, although
Bohr typically seems to have had such pairs in mind, e.g. position and momentum).

Quantum toposophy also accommodates the feeling that quantum mechanics is
so radical that not just the actors of classical mechanics, but its whole stage must be
replaced. This need is well expressed by the following quotation from Grothendieck,
who created topos theory (but never witnessed its application to quantum theory):

‘Passer de la mécanique de Newton à celle d’Einstein doit être un peu, pour le mathématicien,
comme de passer du bon vieux dialecte provençal à l’argot parisien dernier cri. Par contre,
passer à la mécanique quantique, j’imagine, c’est passer du français au chinois.’
(Grothendieck, 1986, p. 61).1

Indeed, topos theory replaces even set theory, seen as the stage of classical math-
ematics and physics, by some other stage: each topos provides a “universe of dis-
course” in which to do mathematics. One major difference with set theory, then, is
that logic in most toposes (including the ones we will use) is . . . intuitionistic!

This chapter presupposes familiarity with §C.11 on the logical side of the Gelfand
isomorphism for commutative C*-algebras, Appendix D on lattice theory and logic,
and Appendix E on topos theory. Since this material is off the beaten track, as in
Chapter 6 it may be helpful to provide a very brief guided tour through this chapter.

In §12.1 we first define the “quantum mechanical” topos T(A) that will act as
the mathematical stage for the remainder of the chapter; it depends some given
(unital) C*-algebra A only via the poset C (A). We then define C*-algebras inter-
nal to any topos T (in which the natural numbers and hence the rationals can be
defined), which notion we then apply to T = T(A), so as to define an internal C*-
algebra A, which turns out to be commutative. Following an interlude on construc-
tive Gelfand spectra in §12.2, in §12.3 we then compute the internal Gelfand spec-
trum of A for A = Mn(C), and derive our intuitionistic logic of quantum mechanics
from this, given by eqs. (12.95) - (12.96) and (12.103) - (12.107). We also discuss its
(Kripke) semantics. In §12.4 we generalize these computations to arbitrary (unital)
C*-algebras A, culminating in Corollary 12.22. Finally, in §12.5 we relate this mate-
rial to both the Kochen–Specker Theorem (which provided the original motivation
for quantum toposophy), as well as to an attempt at ontology called “Daseinisation.”

1 ‘For a mathematician, switching from Newton’s mechanics to Einstein’s must to some extent
be like switching from a good old provincial dialect to Paris slang. In contrast, I imagine that
switching to quantum mechanics amounts to switching to Chinese.’ Translation by the author.
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12.1 C*-algebras in a topos

Let A be a unital C*-algebra (in Sets), with associated poset C (A) of all unital com-
mutative C*-subalgebras C⊂ A ordered by inclusion. Regarding C (A) as a (posetal)
category, in which there is a unique arrow C → D iff C ⊆ D and there are no other
arrows, we obtain the topos T(A) of functors F : C (A)→ Sets (F underlined!), i.e.,

T(A) = [C (A),Sets]. (12.1)

Since for any poset X we have an isomorphism of categories [X ,Sets] ) Sh(X),
where X is endowed with the Alexandrov topology, see (E.84), we may alternatively
write

T(A)) Sh(C (A)). (12.2)

This alternative description will turn out to be very useful in computing the Gelfand
spectrum of the internal commutative C*-algebra A to be defined shortly. Since we
occasionally switch between T(A) and the topos Sets, we underline objects (i.e.,
functors F : C (A)→ Sets) of the former. In order to do some kind of Analysis in
T(A), we need real numbers. In many toposes this is a tricky concept, but:

Proposition 12.1. In T(A), the Dedekind reals are given by the constant functor

R0 : C �→ R, (12.3)

where C ∈ C (A), with associated frame given by the functor

O(R)0 : C �→ O((↑C)×R). (12.4)

Similarly, we have complex numbers C and their frame O(C) in T(A).

Proof. In a general sheaf topos Sh(X), the Dedekind real numbers object is the
sheaf (E.150), with frame (E.149). The point now is that each continuous function
f ∈C(C (A),R) on X = C (A) with the Alexandrov topology is locally constant.

To see this, suppose C ≤ D in U , and take V ⊆ R open with f (C) ∈ V . Then
C ∈ f−1(V ) and f−1(V ) is open by continuity of f . But the smallest open set con-
taining C is ↑C, which contains D, so that f (D) ∈ V . Taking V = ( f (C)− ε,∞)
gives the inequality f (D) > f (C)− ε for all ε > 0, whence f (D) � f (C), whereas
V = (−∞, f (C)+ ε) yields f (D)≤ f (C). Hence f (C) = f (D).

Thus we obtain (12.3) - (12.4) as special cases of (E.150) - (E.149). �

Other objects of interest in T(A) that we will steadily use are:

• The terminal object 1, i.e., the constant functor C �→ ∗, where ∗ is a singleton.
• The truth object Ω , which according to (E.86) - (E.87) is given by

Ω 0(C) = Upper(C); (12.5)
Ω 1(C ⊆ D) = (−)∩ (↑D), (12.6)
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where Upper(C) is the set of all upper sets above C (i.e., S ∈ Upper(C) iff S ⊂
C (A) such that: (i) C⊆D for each D∈ S, and (ii) D∈ S and D⊆ E imply E ∈ S).

• The subobject classifier t : 1→Ω , which is a natural transformation whose com-
ponents tC are given, according to (E.88), as

tC(∗) = ↑C, (12.7)

i.e., the set of all D⊇C in C (A); this is the maximal element of Upper(C).

Furthermore, exponentials in T(A) have the following straightforward description:

FG
0 (C) = Nat(G↑C,F↑C) (C ∈ C (A)), (12.8)

where F↑C is the restriction of the functor F : C (A)→ Sets to ↑ C ⊆ C (A), and
Nat(−,−) denotes the set of natural transformations between the functors in ques-
tion. In particular, since C ·1 is the bottom element of the poset C (A), one has

FG(C ·1) = Nat(G,F). (12.9)

One way to derive (12.8) is to start from general sheaf toposes Sh(X), where

FG
0 (U) = Nat(G|U ,F|U ), (12.10)

both restricted to O(U) (i.e. defined on each open V ⊆U instead of all V ∈ O(X)),
and use (E.84). Combining these observations, one has

ΩF(C)∼= Sub(F↑C), (12.11)

i.e., the set of subfunctors of F↑C. In particular, like in (12.9), we find

ΩF(C ·1)∼= Hom(F ,Ω)∼= Sub(F), (12.12)

the set of subfunctors of F itself. Recall that, as explained after Lemma E.16, a
subfunctor Z ∈ Sub(F) is a functor Z : ↑C (A)→ Sets for which Z0(C)⊆ F0(C) for
all C ∈ C (A) and Z1 is the restriction of F1. If C ⊆ D, then the set-theoretic map
ΩF(C)→ΩF(D) defined by ΩF , identified with a map Sub(F↑C)→ Sub(F↑D), is
simply given by restricting a given subfunctor of F↑C to ↑D.

Using either the internal language of a topos (see §E.5) or direct object-arrow
constructions, one can copy standard definitions in set theory so as to define math-
ematical objects “internal” to any given topos, as long as these definitions make
sense in first-order intuitionistic logic (which roughly speaking means that they are
“constructive”, in not using the axiom of choice or the law of the excluded middle).

As a case in point, let us now define internal C*-algebras in T(A) (this may
be done even more generally in any topos T in which at least the natural numbers
N, and hence the rationals Q, are defined). Vector spaces (over R or C) and (com-
mutative) *-algebras may be defined in T(A) through straightforward object-arrow
translations of the usual constructions in Sets, i.e., one has an object A and arrows:
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· : C×A→ A (scalar multiplication); (12.13)
+ : A×A→ A (addition); (12.14)
× : A×A→ A (multiplication); (12.15)

∗ : A→ A (involution), (12.16)

subject to the usual axioms. Syntactically, a unit (internal) in A is a constant

1A : 1→ A,

with 1 the terminal object in T(A), such that(
A

∼=−→ 1×A
(1A,idA)−→ A×A ×→ A

)
=

(
A

idA−→ A
)
. (12.17)

The notions of norm and completeness are less easily defined internally, and
hence one starts reinterpreting the notion of a seminorm in Sets as a subset

N ⊂ A×Q+, (12.18)

for which
(a,q) ∈ N iff ‖a‖< q. (12.19)

In our topos T(A), we interpret N ⊂ A×Q+ as a subfunctor N→ A×Q+ (or, equiv-
alently by λ -conversion (E.153), as an arrow 1→ΩA×Q+

), subject to the axioms:

∀p p > 0→ (0, p) ∈ N; (12.20)
∃q q > 0∧ (a,q) ∈ N; (12.21)
∀a∀p (a, p) ∈ N → (a∗, p) ∈ N; (12.22)
∀a∀q ((a,q) ∈ N ↔∃p p < q∧ (a, p) ∈ N); (12.23)
∀a∀p ((a, p) ∈ N∧ (b,q) ∈ N → (a+b, p+q) ∈ N); (12.24)
∀a∀p ((a, p) ∈ N∧ (b,q) ∈ N → (a ·b, p ·q) ∈ N); (12.25)
∀a∀p∀z((a, p) ∈ N∧ (|z|< q)→ (z ·a, p ·q) ∈ N). (12.26)

Here a,b are variables of type A, p and q are variables of type Q, z is a variable
of type C, 0 is the zero constant in A, etc. For a unital *-algebra (whose internal
definition we leave to the reader), with unit denoted by 1A as usual, we also require

� ∀a∀p p > 1→ (1A, p) ∈ N. (12.27)

If the seminorm relation furthermore satisfies

(a∗ ·a,q2) ∈ N ↔ (a,q) ∈ N (12.28)

for all a ∈ A and q ∈Q+, then A is said to be a pre-semi-C*-algebra.
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To proceed to a C*-algebra, one requires a = 0 whenever (a,q) ∈ N for all q in
Q+, making the seminorm into a norm, and subsequently this normed space should
be complete. The latter condition is quite complicated, since in a topos one has no
Cauchy sequences in the usual sense, because A may not have global elements (in
the sense of arrows 1 → A). Indeed, our algebra A defined below only has trivial
global elements, namely multiples of the the unit operator.

Hence one needs a generalization of Cauchy sequences in the general spirit of
topos theory, where global elements are replaced by general elements.

Definition 12.2. With N the natural numbers object in T(A) (which is simply the
constant functor C �→ N), a Cauchy approximation in A is an arrow s : N→ ΩA

(or, equivalently, by λ -conversion (E.153), an arrow χ : N×A→ Ω , which in turn
is the same as a subobject S of N×A) such that:

∀n∃a a ∈ sn; (12.29)
∀k∃m∀n∀n′(n > m,n′ > m,a ∈ sn,a′ ∈ sn′)→ (a−a′,1/k) ∈ N. (12.30)

Here (for brevity) the first three comma’s (but not the last!) stand for ∧, and a ∈ sn
denotes (n,a) ∈ S, where S is the above subobject of N×A classified by χ (we use
the notation explained in item 9 at the end of §E.5, where the variable x : X is now
the pair (n,a) of type N×A). Moreover, a Cauchy approximation converges to b if:

∀k∃m∀n (n > m,a ∈ sn)→ (a−b,1/k) ∈ N, (12.31)

and we call A complete if each Cauchy approximation in A converges.
Finally, a C*-algebra in T(A) (and similarly in any topos with natural numbers)

is a complete pre-semi-C*-algebra in which the semi-norm is a norm.

Homomorphisms and isomorphisms between such (internal) C*-algebras may be
defined in the usual way, bijections in set theory being replaced by isomorphisms
of objects. We only consider internal C*-algebras with unit, so that we may define
internal categories CA1 (and CCA1) of (commutative) unital C*-algebras in T(A) in
the obvious way (where the homomorphisms are required to preserve the unit).

We now come to the basic construction that underlies “quantum toposophy”.

Theorem 12.3. Let A be a unital C*-algebra. Define a functor A ∈ T(A) by

A : C (A)→ Sets; (12.32)
A0(C) =C; (12.33)

A1(C ⊆ D) = (C ↪→ D). (12.34)

Then A is an internal unital commutative C*-algebra under pointwise operations.

Here A is meant to be an “ordinary” unital C*-algebra, i.e., defined in Sets. Note that
the symbol C in (12.33) changes character from left to right: on the left-hand side it
is a point in C (A), whereas on the right-hand side it is a subset of A. Nonetheless,
one might describe A as the tautological functor in [C (A),Sets].
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The pointwise operations in A are the obvious natural transformations that are
ultimately defined by the corresponding operations in each commutative C*-algebra
C. For exampe, addition + : A×A→ A is a natural transformation with components
+C : C×C → C defined in C, etc. Commutativity of A then trivially follows from
commutativity of each commutative C*-subalgebra C.

As already mentioned, the unit 1A is syntactically a constant 1A : 1→ A, whose
components (1A)C : ∗ → C are just the units 1C in each C (recall that elements of
our poset C (A) were defined as unital commutative C*-subalgebras of A!).

Finally, we regard the (semi) norm N as a subobject of A×R+ (or A×Q+),
hence as a natural transformation, with components NC ⊂C×R+ defined by

(c,q) ∈ NC iff ‖c‖< q, (12.35)

where ‖ · ‖ is the norm in C (which of course is inherited from A).

Proof. The proof is a straightforward verification, expect perhaps for completeness.
First, the above subobject S of N×A, realized as a subfunctor as usual, looks as
follows: for each C ∈ C (A) we have a subset SC ⊂ N×C, regarded as a sequence
(Cn) of subsets of C through the identification (n,c) ∈ SC iff c ∈Cn, such that Cn ⊂
Dn whenever C ⊂ D. Unfolding axiom (12.29) using the Kripke–Joyal semantics
rules listed at the end of §E.5, we find that this axiom holds iff:

∀C∈C (A)∀n∈N∃c∈C ∀D⊇C c ∈ Dn, (12.36)

which is satisfied iff each of the above subsets Cn ⊆ C is non-empty. By a similar
analysis, axiom (12.30) is satisfied iff for each ε > 0 there is m ∈N such that for all
n,n,> m and all c ∈Cn, c′ ∈Cn′ one has ‖c− c′‖< ε in C. This simply means that
any choice (cn) where cn ∈Cn is a Cauchy sequence in C. Accordingly, A is complete
provided each such sequence converges, i.e., iff each C ∈ C (A) is complete. Since
these C’s are C*-subalgebras of C, this is simply true by construction. �

In a similar way, one easily proves the following generalization of Theorem 12.3:

Theorem 12.4. Let C be a small category. Any internal C*-algebra in the associated
presheaf topos [Cop,Sets] is given by a contravariant functor A : C→ CA, where
CA is the category that has C*-algebras as objects and homomorphims as arrows.
Moreover, A is unital/commutative iff each C*-algebra A(C) is unital/commutative.

It should be mentioned that internal C*-algebras on sheaf toposes T= Sh(X) are not
covered by this theorem (except in the somewhat degenerate case we use, namely
X = C (A) with the Alexandrov topology). As a case in point, we just mention the
beautiful fact that internal C*-algebras in Sh(X) correspond to continuous bundles
of C*-algebras over X (in Sets).
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12.2 The Gelfand spectrum in constructive mathematics

In this chapter we rely on a particular construction of the frame O(Σ(A)) (cf. §C.11)
that can be generalized to topos theory (in which the Gelfand spectrum Σ(A) of an
internal commutative C*-algebra A is a locale). We start with some lattice lore.

Definition 12.5. Let L be a distributive lattice with top # and bottom ⊥.

1. A lower set in L is a subset S ⊆ L such that if x ∈ S and y ≤ x, then y ∈ S. We
denote the poset of all lower subsets of L, ordered by inclusion, by D(L).

2. An ideal in a lattice L is a lower set I in L such that x,y ∈ I implies x∨y ∈ I. The
poset all ideals in a lattice L, ordered by inclusion, is denoted by Idl(L).

3. We say that x+ y (in words: “x is well inside y” or “x is rather below y” ) iff
there exists z such that x∧ z =⊥ and y∨ z =#. Note that x+ y implies x≤ y, as

x = x∧ (y∨ z) = (x∧ y)∨ (x∧ z) = x∧ y≤ y. (12.37)

4. An ideal I ∈ Idl(L) is regular if the condition I ⊇ {y ∈ L | y+ x} implies x ∈ I.
The poset of regular ideals in L, ordered by inclusion, is called RIdl(L), i.e.,

RIdl(L) = {I ∈ Idl(L) | (∀y∈L y+ x⇒ y ∈ I)⇒ x ∈ I}. (12.38)

The posets D(L), Idl(L) and RIdl(L) are easily seen to be frames. Any ideal I ∈
Idl(L) can be regularized, i.e., turned into a regular ideal A (I), by means of the
restriction to Idl(L)⊂ D(L) of the “closure” map A : D(L)→ D(L) defined by

A (I) = {x ∈ L | ∀y∈L y+ x⇒ y ∈ I}. (12.39)

In terms of A , the canonical map x �→ ↓x from L to Idl(L) “regularizes” to a map

f : L → RIdl(L); (12.40)
x �→ A (↓x). (12.41)

For I ∈ RIdl(L) we obviously have A (I) = I, and hence we may write

RIdl(L) = {I ∈ Idl(L) |A (I) = I}. (12.42)

Definition 12.6. 1. A frame O(X) with top element # is called compact if every
subset S⊂ O(X) with

∨
S =# has a finite subset F ⊂ S with

∨
F =#.

2. A frame O(X) is called regular if each V ∈ O(X) satisfies

V =
∨
{U ∈ O(X) |U +V}. (12.43)

When O(X) is the topology of some space X , the frame O(X) is compact (regular)
iff X is compact (regular) as a space. Furthermore, X is compact and Hausdorff iff
it is compact and regular, and hence the Gelfand spectrum Σ(A) of a commutative
unital C*-algebra A will be a compact and regular frame; see Theorem 12.8 below.



12.2 The Gelfand spectrum in constructive mathematics 467

Recall that the self-adjoint part Asa of any C*-algebra A is partially ordered by
putting a ≤ b iff b− a ∈ A+, cf. §C.7. This partial order is, of course, inherited by
the positive cone A+ ⊂ Asa. If A is commutative, this partial ordering makes Asa a
lattice; for example, if A = C(X) the lattice operations are a∨ b = max{a,b} and
a∧ b = min{a,b} (taken pointwise). In general, one may then compute ∨ and ∧
from the Gelfand isomorphism A∼=C(X), but they are intrinsically defined via ≤.

Let A be a commutative unital C*-algebra. For a,b ∈ A+, define a � b iff there
exists n∈N such that a≤ nb. Define a≈ b iff a� b and b� a. This is an equivalence
relation. Moreover,≈ is a congruence, that is, an equivalence relation∼ on a lattice
L that is compatible with ∧ and ∨ in the sense that x ∼ y and x′ ∼ y′ imply x∧ x′ ∼
y∧y′ and x∨x′ ∼ y∨y′. Given some congruence∼ on L, one may define ∧ and ∨ on
L/∼ by [x]∧ [y] = [x∧y] and [x]∨ [y] = [x∨y], respectively, so that the set-theoretic
quotient L/∼ inherits the lattice structure of L and hence is a lattice in its own right.

This quotient construction by a congruence preserves distributivity, so that

LA = A+/≈ . (12.44)

is a distributive lattice. We will use the elements Da ≡ [a+] of LA (indexed by a ∈
Asa), where [a+] is the equivalence class in LA of the positive part a+ in the canonical
decomposition a = a+− a−, with a± ≥ 0 and a+a− = 0; lattice-theoretically, one
has a+ = a∨0 and a−= a∧0. This gives a lattice homomorphism Asa→ LA, a �→Da,
whose restriction to A+ is just the canonical projection A+→ LA. These Da satisfy:

D1 =#; (12.45)
Da∧D−a =⊥; (12.46)

Da =⊥ (a≤ 0); (12.47)
Da+b � Da∨Db; (12.48)

Da∧Db � Dab; (12.49)
Dab � Da∨D−b, (12.50)

where the inequalities may also be written as equalities, since x ≤ y iff x = x∧ y.
These relations are easy to check for A = C(X), and hence they are true for any A.
The elements Da obviously exhaust A+, and eqs. (12.45) - (12.50) imply:

a≤ b ⇒ Da � Db; (12.51)
Da = Da+ ; (12.52)
Dna = Da (n ∈ N); (12.53)
Dab = (Da∧Db)∨ (Da∧D−b; (12.54)

Da∧Db = Da∧b. (12.55)

For the Gelfand spectrum we need the frame RIdl(LA), and hence the relation+.

Lemma 12.7. For all Da,Db ∈ LA, we have (with both q ∈Q+ and q ∈ R+):

Db + Da iff ∃q>0Db � Da−q. (12.56)
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Proof. From right to left, just choose Dc =Dq−a. Conversely, if A =C(X), it is easy
to see that if there exists Dc ∈ LA such that Dc∨Da =# and Dc∧Db =⊥, then there
exists q > 0 such that Dc−q∨Da−q =#. Hence Dc∨Da−q =#, so that

Db = Db∧ (Dc∨Da−q) = Db∧Da−q � Da−q. �

Note that by construction the map f in (12.40) is given by

f (Da) = {Dc ∈ LA | ∀Db∈LA Db + Dc ⇒ Db � Da}, (12.57)

and, by Lemma 12.7, satisfies

f (Da)�
∨
{ f (Da−q) | q > 0}. (12.58)

For later use, also note that (12.57) implies

f (Da) =# ⇔ Da =#. (12.59)

Theorem 12.8. The topology O(Σ(A)) of the Gelfand spectrum Σ(A) of a commu-
tative unital C*-algebra A is isomorphic to the frame of all regular ideals of LA:

O(Σ(A))∼= RIdl(LA); (12.60)
{ω ∈ Σ(A) | ω(a)> 0}↔ Da, (12.61)

or, equivalently, for the opens (r,s)∈O(R) with ensuing opens â−1(r,s) in O(Σ(A)),

â−1(r,s)≡ {ω ∈ Σ(A) | ω(a) ∈ (r,s)}↔ f (Ds−a∧Da−r) (r < s). (12.62)

Moreover, on this isomorphism, O(Σ(A)) is a compact regular frame.

The proof of this theorem is unfortunately beyond our reach; instead, we now give
an alternative descriptions of the frame RIdl(LA), which will be useful for computa-
tional purposes in topos theory. This again requires some more background in lattice
theory. Let (L,�) be a meet semilattice (i.e., a poset in which any pair of elements
has an infimum; in most of our applications (L,�) is actually a distributive lattice).

Definition 12.9. A covering relation on L is a relation 	⊆ L×P(L)—equivalently,
a function L→P(P(L))—written x 	U when (x,U) ∈	, such that:

1. If x ∈U then x 	U.
2. If x 	U and U 	V (i.e., y 	V for all y ∈U) then x 	V .
3. If x 	U then x∧ y 	U.
4. If x ∈U and x ∈V , then x 	U ∧V (where U ∧V = {x∧ y | x ∈U,y ∈V}).
For example, if (L,�) = (O(X),⊆) one may take x 	 U iff x � ∨

U , i.e., iff U
covers x. Also here we have a closure operation A : D(L)→ D(L), given by

A U = {x ∈ L | x 	U}. (12.63)
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This operation has the following properties:

↓U ⊆A U ; (12.64)
U ⊆A V ⇒A U ⊆A V ; (12.65)
A U ∩A V ⊆A (↓U ∩↓V ). (12.66)

The frame F (L,	) generated by such a structure is then defined by

F (L,	) = {U ∈ D(L) |A U =U}= {U ∈P(L) | x 	U ⇒ x ∈U}; (12.67)

the second equality follows because firstly the property A U = U guarantees that
U ∈ D(L), and secondly one has A U =U iff x 	U implies x ∈U . Defining

U ∼V iff U 	V and V 	U, (12.68)

an equivalent description of the frame F (L,	) that is occasionally useful is

F (L,	)∼= P(L)/∼ . (12.69)

Indeed, the map U �→ [U ] from F (L,	) (as defined in (12.67)) to P(L)/ ∼ is a
frame map with inverse [U ] �→ A U . The idea behind the isomorphism (12.69) is
that the map A picks a unique representative in the equivalence class [U ], namely
A U . As in (12.40) - (12.71), also here we have a canonical map

f : L → F (L,	); (12.70)
x �→ A (↓x), (12.71)

which satisfies f (x)� ∨
f (U) if x 	U . In fact, f is universal with this property, in

that any homomorphism g : L → G of meet semilattices into a frame G such that
g(x)�∨

g(U) whenever x 	U has a factorisation g = ϕ ◦ f for some unique frame
map ϕ : F (L,C)→ G . This may suggest the following result:

Proposition 12.10. Suppose one has a frame F and a meet semilattice L with a
map f : L → F of meet semilattices that generates F in the sense that for each
U ∈F one has U =

∨{ f (x) | x ∈ L, f (x)≤U}. Define a cover relation 	 on L by

x 	U iff f (x)�
∨

f (U). (12.72)

Then one has a frame isomorphism F ∼= F (L,	).

We now turn to maps between frames, from the point of view of coverings.

Definition 12.11. Let (L,	) and (M,
) be meet semilattices with covering relation
as above, and let f ∗ : L→P(M) be such that:

1. f ∗(L) = M;
2. f ∗(x)∧ f ∗(y)
 f ∗(x∧ y);
3. x 	U ⇒ f ∗(x)
 f ∗(U) (where f ∗(U) =

⋃
u∈U f (U)).
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If L and M have top elements #L and #M, respectively, then the first condition
may be replaced by f ∗(#L) = #M. Define two such maps f ∗1 , f ∗2 to be equivalent
if f ∗1 (x) ∼ f ∗2 (x) (i.e., f ∗1 (x)
 f ∗2 (x) and f ∗2 (x)
 f ∗1 (x)) for all x ∈ L. A continuous
map f : (M,
)→ (L,	) is an equivalence class of such maps f ∗ : L→P(M).

Our main interest in continuous maps lies in the following result:

Proposition 12.12. Each continuous map f : (M,
)→ (L,	) is equivalent to a
frame map F ( f ) : F (L,	)→F (M,
), given by

F ( f ) : U �→A f ∗(U). (12.73)

We may now equip LA with the covering relation defined by (12.72), given
(12.60) and the ensuing map (12.57). Consequently, by Proposition 12.10 one has

O(Σ)∼= F (LA,	), (12.74)

which yields the following expression for the constructive Gelfand spectrum:

O(Σ)∼= {U ∈ D(LA) | x 	U ⇒ x ∈U}. (12.75)

This lattice becomes computable through a lemma that is crucial for what follows:

Lemma 12.13. In any topos, the covering relation 	 on LA defined by (12.72) with
(12.60) and (12.57), is given by Da 	U iff for all q > 0 there exists a (Kuratowski)
finite U0 ⊆U such that Da−q � ∨

U0. If U is directed, this means that there exists
Db ∈U such that Da−q � Db.

Proof. The easy part is the “⇐” direction: from (12.58) and the assumption we have
f (Da)�

∨
f (U) and hence Da 	U by definition of the covering relation.

In the opposite direction, assume Da 	U and take some q > 0. From (the proof
of) Lemma 12.7, Da ∨Dq−a = #, hence

∨
f (U)∨ f (Dq−a) = #. Since O(Σ) is

compact, there is a finite U0 ⊂ U for which
∨

f (U0)∨ f (Dq−a) = #, so that by
(12.59) we have Db∨Dq−a =#, with Db =

∨
U0. By (12.46) we have

Da−q∧Dq−a =⊥, (12.76)

and hence

Da−q = Da−q∧#= Da−q∧ (Db∨Dq−a) = Da−q∧Db � Db =
∨

U0. �

If A is finite-dimensional, LA is a finite lattice. In that case, since Da−q = Da for
small enough q, one simply has x 	U iff x≤∨U , and the condition x 	U ⇒ x∈U
in (12.75) holds iff U is a (principal) down set, i.e. U =↓x for some x ∈ LA (not the
same x as the placeholder x in (12.75)). Hence for finite-dimensional A we obtain

O(Σ(A))∼= Idl(LA) = {↓x | x ∈ LA}. (12.77)
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12.3 Internal Gelfand spectrum and intuitionistic quantum logic

We are now going to combine the (a priori independent) material in the previous two
sections. The point of the above description of the topology O(Σ(A)) of the Gelfand
spectrum Σ(A) of a unital commutative C*-algebra A is that it may be “internalized”
to any topos (with natural number object, i.e., in which C*-algebras may be defined
internally in the first place). The key to the ensuing generalization of Gelfand duality
is that in topos theory (and more generally in constructive mathematics) the space
Σ(A) in set theory needs to be replaced by the corresponding frame O(Σ(A)), or
preferably by its associated locale, which confusingly is denoted by Σ(A), even
though it is the same thing as O(Σ(A)) and neither may be spatial (in being the
topology of some space); see §C.11 and §E.4 for this bizarre notation. Similarly, we
write f : X → Y for a map between locales, which is essentially the same as the
frame map f−1 : O(Y )→O(X), but seen as a map in the opposite direction (where
once again nothing is assumed about possible spatiality of the frames in question).

Using this notation, the constructive Gelfand isomorphism (which is valid in
any topos T in which commutative C*-algebras make sense) states:

Theorem 12.14. For each (internal) commutative unital C*-algebra A in T there
exists a compact regular locale Σ(A) such that one has a Gelfand isomorphism

A∼=C(Σ(A),C). (12.78)

Furthermore, the locale Σ(A) is uniquely determined by A up to isomorphism and
its corresponding frame is given by Theorem 12.8 (or, more explicitly, by (12.75) in
conjunction with Lemma 12.13, all of which makes sense internally).

Here ∼= denotes (internal) isomorphism of (commutative) C*-algebras, and the no-
tation C(Σ(A),C) stands for the object of all frame maps from O(C) to O(Σ(A))
(which object turns out to be a commutative C*-algebra in any case). As usual, we
denote the Gelfand transform A→C(Σ(A),C) by a �→ â, where, as explained above,
the locale map â : Σ(A)→ C is really the reverse reading of the frame map

â−1 : O(C)→ O(Σ(A)). (12.79)

Note that in Sets, the latter is given by its literal meaning, given â : ω �→ ω(a).
We will shortly apply this formalism to our internal C*-algebra A in the topos

T(A), but since these computations are a bit involved, as a warm-up we first apply
our machinery to a very simple case, namely A = Cn in Sets. Recall (12.44) etc.

For A = Cn we have A+ = (Rn)+, in which (r1, . . . ,rn)≈ (s1, . . . ,sn) just in case
ri = 0 iff si = 0 for all i= 1, . . .n. Hence each equivalence class under≈ has a unique
representative of the form [k1, . . . ,kn] with ki = 0 or ki = 1; the pre-images of such
an element of LA in A+ under the natural projection A+ → A+/ ≈ are the diagonal
matrices whose i’th entry is zero if ki = 0 and any nonzero positive number if ki = 1.
The partial order in LA is pointwise, i.e. [k1, . . . ,kn] ≤ [l1, . . . , ln] iff ki ≤ li for all i.
Hence LCn is isomorphic as a distributive lattice to the lattice P(Dn(C))≡P(Cn)
of projections in Dn(C), i.e. the lattice of diagonal projections in Mn(C).
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Under this isomorphism, [k1, . . . ,kn] corresponds to the matrix diag(k1, . . . ,kn). If
we equip P(Cn) with the usual partial ordering of projections on the Hilbert space
Cn, viz. e≤ f whenever eCn⊆ f Cn (which coincides with their ordering as element
of positive cone of the C*-algebra Mn(C)), then this is even a lattice isomorphism.
Hence by (12.77), the frame O(Σ(Cn)) consists of all sets of the form ↓e, e ∈
P(Cn), partially ordered by inclusion. This means that

O(Σ(Cn))∼= P(Cn), (12.80)

under the further identification of ↓ p ⊂P(Cn) with p ∈P(Cn). This starts out
just as an isomorphism of posets, and turns out to be one of frames (which in the
case at hand happen to be Boolean). To draw the connection with the usual spectrum
Ĉn = {1,2, . . . ,n} of Cn, we note that the right-hand side of (12.80) is isomorphic to
the discrete topology O(Ĉn) of Ĉn (i.e. its power set) under the frame isomorphism

P(Cn)
∼=→ O(Ĉn);

diag(k1, . . . ,kn) �→ {i ∈ {1,2, . . . ,n} | ki = 1}. (12.81)

We now describe the Gelfand transform (12.78) - (12.79) for self-adjoint a, so
that one has a (locale) map Asa → C(Σ(A),R). Let a = (a1, . . . ,an) ∈ Cn

sa = Rn.
With Σ(Cn) realized as Ĉn, this just reads â(i) = ai, for â : Ĉn → C. The induced
frame map â−1 : O(C)→ O(Ĉn) is given by U �→ {i ∈ {1,2, . . . ,n} | ai ∈U}, and
by (12.81), this is equivalent to

â−1 : O(R)→ P(Cn);
U �→ 1U (a), (12.82)

where U ∈ O(R), and the right-hand side denotes the spectral projection 1U (a)
defined by the self-adjoint operator a on the Hilbert space Cn.

After this warm-up, we now compute the Gelfand spectrum O(Σ(A)) in our topos
T(A), for the special case A=Mn(C) (which is still an exercise for the general case).
For simplicity we write L for the lattice LA in T(A); similarly, Σ stands for Σ(A).

First, for arbitrary A, the lattice functor L can be computed “locally”, in the sense
that L0(C) = LC, see Proposition 12.17 in §12.4 below, so that by (12.44) one has

L0(C) =C+/≈ . (12.83)

Let P(C) be the (Boolean) lattice of projections in C, and consider the functor

P0(C) = P(C); (12.84)
P1(C ⊆ D) = (P(C) ↪→P(D)). (12.85)

As in the case A = Cn just discussed, it follows that we may identify L0(C) with
P(C) and hence we may and will identify the functor L with the functor P .
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Second, whereas in Sets eq. (12.77) makes O(Σ) a subset of L, in the topos
T(A) the frame O(Σ) is a subobject O(Σ)�ΩL. It then follows from (12.11) that
O(Σ)(C) is a subset of Sub(P↑C), the set of subfunctors of the functor P : C (A)→
Sets restricted to ↑C ⊂ C (A). To see which subset, define

Subd(P↑C) = {S̃ ∈ Sub(P↑C) | ∀D⊇C ∃xD ∈P(D) : S̃(D) =↓xD}. (12.86)

Thus Subd(P↑C) consists of subfunctors S of P↑C that are locally down-sets. It
then follows from (12.77) and the local interpretation of the relation 	 in T(A) (see
Lemma 12.18 in §12.4 below) that the subobject O(Σ)�ΩL in T(A) is the functor

O(Σ)0(C) = Subd(P↑C); (12.87)

O(Σ)1(C ⊆ D) = (O(Σ)(C) ↪→ O(Σ)(D)), (12.88)

where O(Σ)1 is inherited from ΩL (of which O(Σ) is a subobject), and hence is just
given by restricting an element of O(Σ)(C) to ↑D. Writing

Subd(P) = {S̃ ∈ Sub(P) | ∀D ∈ C (A) ∃xD ∈P(D) : S̃(D) =↓xD}, (12.89)

it is convenient to embed Subd(P↑C) ⊆ Subd(P) by requiring elements of the
left-hand side to vanish whenever D does not contain C. We also note that if S̃
is to be a subfunctor of P↑C, one must have S̃(D) ⊆ S̃(E) whenever D ⊆ E, and
that ↓ xD ⊆↓ xE iff xD ≤ xE in P(E). Thus one may simply describe elements of
O(Σ)(C) via maps S : C (A)→P(A) such that:

S(D) ∈P(D); (12.90)
S(D) = 0 if D /∈↑C ( i.e. C � D); (12.91)
S(D)≤ S(E) if C ⊆ D⊆ E. (12.92)

The corresponding element S̃ of O(Σ)(C) is then given by

S̃(D) = ↓S(D), (12.93)

seen as a subset of P(D). Hence it is convenient to introduce the notation

O(Σ)↑C = {S :↑C→P(A) | S(D) ∈P(D), S(D)≤ S(E) if D⊆ E}, (12.94)

of which we single out the case C = C ·1A, which will be of great importance:

O(Σ) = {S : C (A)→P(A) | S(C) ∈P(C), S(C)≤ S(D) if C ⊆ D}. (12.95)

Both are posets and even frames in the pointwise partial order with respect to the
usual ordering of projections (which algebraically means e≤ f iff e f = e), i.e.,

S≤ T ⇔ S(C)≤ T (C) for all C ∈ C (A). (12.96)



474 12 Topos theory and quantum logic

In terms of (12.94) - (12.95), we then have isomorphisms

O(Σ)0(C ·1)∼= O(Σ); (12.97)
O(Σ)(C)0 ∼= O(Σ)↑C. (12.98)

More importantly, the frame O(Σ) in Sets is the key to the external description
of the internal frame O(Σ) in T(A); see the end of §E.4. Since C (A) carries the
Alexandrov topology, by (E.84) this description is given by the frame map

π−1
Σ : O(C (A))→ O(Σ), (12.99)

given on the basic opens ↑D ∈ O(C (A)) by

π−1
Σ (↑D) = χ↑D : E �→ 1 (E ⊇ D);

E �→ 0 (E � D). (12.100)

As explained before, even in Sets, in principle O(Σ) is just a notation for a frame,
without suggesting that there exists an underlying space Σ whose topology it is.
In this case, however, there is such a space (as we shall show in the next section),
and also (12.99) is in fact the inverse image map to a genuine map πΣ : Σ → C (A)
between spaces (as opposed to the formal notation used for a locale map).

We now state the Heyting algebra structure of O(Σ). First, top and bottom are

#(C) = 1 for all C; (12.101)
⊥(C) = 0 for all C. (12.102)

The logical operations on O(Σ) may be computed from the partial order as

(S∧T )(C) = S(C)∧T (C); (12.103)
(S∨T )(C) = S(C)∨T (C); (12.104)

(S �� T )(C) =

P(C)∧
D⊇C

S(D)⊥ ∨T (D); (12.105)

(¬S)(C) =

P(C)∧
D⊇C

S(D)⊥; (12.106)

(¬¬S)(C) =

P(C)∧
D⊇C

P(D)∨
E⊇D

S(E), (12.107)

where the right-hand side of (12.105) (and similarly (12.106) - (12.107)) is short for

P(C)∧
D⊇C

S(D)⊥ ∨T (D)≡
∨
{e ∈P(C) | e≤ S(D)⊥ ∨T (D)∀D⊇C}. (12.108)
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Recall that a Heyting algebra is Boolean iff ¬¬S = S for each S. One sees from
(12.107) that (at least if n > 1) the property ¬¬S = S only holds iff S is either # or
⊥, so that the Heyting algebra O(Σ)≡CO(Σ(A)) is properly intuitionistic.

Since from both a physical and a logical point of view the Heyting algebra
O(Σ(A)) has vast advantages over the projection lattice P(A) of Birkhoff and von
Neumann, we propose it as a candidate for a new quantum logic. Let us explain why.

Physically, in von Neumann’s approach each projection e ∈ P(A) defines an
elementary proposition, whereas in Bohr’s (where the classical context C is crucial)
an elementary proposition is a pair (C,e), where e ∈P(C) is a proposition à la von
Neumann (who lost sight of the context C). If for each such pair (C,e) we define

S(C,e) : C (A)→P(A); (12.109)

D �→ e (C ⊆ D); (12.110)
D �→ ⊥ otherwise, (12.111)

we see that each pair (C,e) injectively defines an element of O(Σ). Furthermore,
each element S of O(Σ) is a disjunction over such elementary propositions, since

S =
∨

C∈C (A)

S(C,S(e)). (12.112)

In contrast to traditional quantum logic, both logical connectives ∧ and ∨ on O(Σ)
are physically meaningful, as they only involve local conjunctions S(C)∧T (C) and
disjunctions S(C)∨T (C), for which S(C) ∈P(C) and T (C) ∈P(C) commute.

Logically, the absence of an implication arrow in quantum logic has always been
worrying; this has now been put straight in O(Σ), where �� belongs to the defining
structure and behaves well logically. Truth attribution in quantum logic is equally
suspicious: for any state ω on A one declares a proposition e∈P(A) true iff ω(e) =
1, and false iff ω(e) = 0, with no verdict otherwise (except probabilistically).

We, however, define a natural Kripke semantics (cf. §D.3) on P = C (A) by

Vω : O(Σ)→ Upper(C (A)) = O(C (A)); (12.113)
Vω(S) = {C ∈ C (A) | ω(S(C)) = 1}, (12.114)

where C (A) carries the Alexandrov topology as usual. Note that Vω(S) indeed de-
fines an upper set in C (A), for if C ⊆ D then S(C) ≤ S(D), so that ω(S(C)) ≤
ω(S(D)) by positivity of states, and hence ω(S(D)) = 1 whenever ω(S(C)) = 1
(given that ω(S(D))≤ 1, which is true since 0≤ ω(e)≤ 1 for any projection e).

As explained in §D.3, a proposition S ∈ O(Σ) is true in a state ω if Vω(S) =
C (A), i.e. the top element of the frame O(C (A)); we also declare it false if Vω(S) =
/0, i.e. the bottom element of O(C (A)). Then ¬S is true iff S is false, and S∨T is true
iff either S or T is true (since Vω(S) = C (A) iff S(C ·1) = 1, which forces S(C) = 1
for all C). Consequently, (12.114) simply lists the contexts C in which S(C) is true.
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12.4 Internal Gelfand spectrum for arbitrary C*-algebras

In this section we compute the internal Gelfand spectrum Σ(A)≡ Σ in T(A) for an
arbitrary unital C*-algebra A. Recall Definition D.6 (in §D.1) of a free lattice LS
on a set S, and its refinement in quotienting by a congruence on LS explained after
that definition. According to Definition E.21, lattices can be defined in any topos.
The following “locality lemma” shows that the construction of a free lattice on some
object makes sense in functor toposes, and so does its refinement just mentioned, at
least as long as the congruence in question is defined through equalities.

Lemma 12.15. Let T= [C,Sets] be any functor topos (where C is some category).

1. There exists a free distributive lattice L S ∈ T on any object S ∈ T, which can be
computed locally: the object part of L S is given by

(L S)0(C) = LS0(C), (12.115)

where LS0(C) defined in Sets, and the arrow part is defined as follows. If f : C→
D, then (L S)1( f ) is the unique arrow making the following diagram commute:

S0(C) S0(D)

LS0(C) LS0(D)

S1( f )

L L
(L S)1( f )

(12.116)

2. The same is true if L S is subject to relations defined by equalities among ele-
ments of L S (as long as these equalities generate a congruence).

Proof. The proof is an elaborate verification, which may be summarized as follows.

1. Existence and uniqueness of the arrow (L S)1( f ) in (12.116) follows from the
universal property of the free distributive lattice LS0(C) in Sets; just consider
the function L ◦ S1( f ) : S0(C)→LS0(D). The claim follows from the fact that
L S (defined locally) has the required universal property (as can be established
locally, from the corresponding property of each (L S)0(C)) and hence is unique.

2. This is proved in a similar way, since also a free distributive lattice LS/ ∼ on
generators S with relations given by equalities has a universal property, cf. the
final part of §D.1. This works locally in a functor topos by rule no. 7 of Kripke–
Joyal semantics, cf. §E.5 (which states that equalities are enforced locally). �

We will apply this lemma to T=T(A), as in (12.1), with C=C (A). This hinges on a
lemma of independent interest, which we first state for Sets, i.e., for “ordinary” com-
mutative unital C*-algebras A, to be subsequently internalized to our topos T(A).

Lemma 12.16. The lattice LA in (12.44) is (constructively) isomorphic to the lattice
L′A freely generated by the symbols Da, a ∈ Asa and the relations (12.45) - (12.50).
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Proof. The point is that the map a �→ Da from Asa to L′A is surjective; this follows
from the relations (12.45) - (12.50) through their consequences (12.51) - (12.55).
The pertinent isomorphism L′A ∼= LA is then given by mapping Da ↔ [a+] on gener-
ators (note that in the original discussion of LA following (12.44) this map was the
definition of Da; this time, these play an independent role as generators of the lattice
L′A, and in the present proof they are related to the elements [a+] ∈ LA). �

Now let A be a (not necessarily commutative) unital C*-algebra (in Sets), with
ensuing internal commutative C*-algebra A in the functor topos T(A), cf. Theorem
12.3. Our goal is to apply the constructive definition of the Gelfand spectrum Σ(A),
or rather of its topology O(Σ(A)) (seen as a frame, so that Σ(A) is seen as a locale)
in §12.2 to A. The first step concerns the lattice LA, which in T(A) is denoted by LA.
Here and in what follows, we try to avoid notational confusion by writing Da for the
formal variable indexed by a (which is a variable of type A in T(A)), whilst writing
Dc for the actual element [c+] of LC if we apply (12.44) etc. to C ∈ C (A).

Proposition 12.17. For each C ∈ C (A) one has

LA(C) = LC, (12.117)

where LC is defined in Sets through (12.44) (with A�C), where it may be computed
through Lemma 12.16. Furthermore, if C ⊆ D, then the map LA(C)→ LA(D) given
by the functoriality of LA, i.e., LC → LD, maps each generator Dc in LC (where
c ∈Csa) to the same generator in LD. This is well defined, because c ∈ Dsa, and this
inclusion preserves the relations (12.45) - (12.50). We write this as LC ↪→ LD.

Proof. Internalizing Lemma Lemma 12.16 to our functor topos T(A), it follows that
the internal lattice LA in T(A) is isomorphic to a distributive lattice freely generated
by generators and relations given by equalities. Hence Lemma 12.15 applies to it. �

The next step is to move from LA to the corresponding frame of regular ideals,
cf. Theorem 12.8. Abbreviating O(Σ(A))≡ O(Σ), we first rewrite (12.60) as

O(Σ)∼= {U ∈ Idl(LA) | ∀q>0Da−q ∈U ⇒ Da ∈U}. (12.118)

To apply this to our functor topos T(A), we apply Kripke–Joyal semantics for the
internal language of the topos T(A) (which is reviewed §E.5) to the formula Da 	U .
This is a formula ϕ with two free variables, namely Da of type LA, and U of type

P(LA)≡ΩLA . (12.119)

Hence in the forcing statement C � ϕ(α) in T(A), we have to insert

α ∈ (LA×ΩLA)(C)∼= LC×Sub(LA|↑C),

where LA|↑C is the restriction of the functor

LA : C (A)→ Sets (12.120)
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to ↑C ⊂ C (A). Here we have used (12.117), as well as the isomorphism (12.11).
Consequently, we have

α = (Dc,U), (12.121)

where Dc ∈ LC for some c ∈ Csa, and U :↑C → Sets is a subfunctor of LA|↑C. In
particular, U(D)⊆ LD is defined whenever D⊇C, and the subfunctor condition on
U simply boils down to U(D)⊆U(E) whenever C ⊆ D⊆ E.

Lemma 12.18. In the topos T(A), the cover 	 of Lemma 12.13 may be computed
locally, in the sense that for any C ∈ C (A), Dc ∈ LC and U ∈ Sub(LA|↑C), one has

C � Da 	U(Dc,U) iff Dc 	C U(C),

in that for all q > 0 there exists a finite U0 ⊆U(C) such that Dc−q �
∨

U0.

Proof. We assume that
∨

U0 ∈ U , so that we may replace U0 by Db =
∨

U0; the
general case is analogous. We then have to inductively analyze the formula Da 	U ,
which, under the stated assumption, in view of Lemma 12.13 may be taken to mean

∀q>0∃Db∈LA (Db ∈U ∧Da−q � Db). (12.122)

We now infer from the rules for Kripke–Joyal semantics in a functor topos that

C � (Da ∈U)(Dc,U) (12.123)

iff for all D ⊇ C one has Dc ∈U(D); since U(C) ⊆U(D), this happens to be the
case iff Dc ∈U(C). Furthermore,

C � (Db � Da)(Dc′ ,Dc) (12.124)

iff Dc′ � Dc in LC. Also,

C � (∃Db∈LA Db ∈U ∧Da−q � Db)(Dc,U) (12.125)

iff there is Dc′ ∈U(C) such that Dc−q � Dc′ . Finally,

C � (∀q>0∃Db∈LA Db ∈U ∧Da−q � Db)(Dc,U) (12.126)

iff for all D ⊇ C and all q > 0 there is Dd ∈ U(D) such that Dc−q � Dd , where
Dc ∈ LC is seen as an element of LD through the injection LC ↪→ LD of Proposition
12.17, and U ∈ Sub(LA|↑C) is seen as an element of Sub(LA|↑D) by restriction. This,
however, is true at all D⊇C iff it is true at C, because U(C)⊆U(D) and hence one
can take Dd = Dc′ for the Dc′ ∈ LC that makes the condition true at C. �

Lemma 12.19. The spectrum O(Σ) of A in T(A) may be computed as follows:

1. At C ∈C (A), the set O(Σ)(C) consists of those subfunctors U ∈ Sub(LA|↑C) such
that for all D⊇C and all Dd ∈ LD one has:

Dd 	D U(D)⇒ Dd ∈U(D).
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2. At C ·1, the set O(Σ)(C ·1) consists of those subfunctors U ∈ Sub(LA) such that
for all C ∈ C (A) and all Dc ∈ LC one has:

Dc 	C U(C)⇒ Dc ∈U(C).

3. The condition that U = {U(C) ⊆ LC}C∈C (A) be a subfunctor of LA comes down
to the requirement that:

C ⊆ D⇒U(C)⊆U(D).

4. The map O(Σ)(C) → O(Σ)(D) given by the functoriality of O(Σ) whenever
C ⊆ D is given by truncating an element U :↑C→ Sets of O(Σ)(C) to ↑D.

5. The external description of O(Σ) is the frame map

π∗Σ : O(C (A))→ O(Σ)(C ·1), (12.127)

given on the basic opens ↑D ∈ O(C (A)) by

π∗Σ (↑D) = χ↑D : E �→ # (E ⊇ D);
E �→ ⊥ (E � D), (12.128)

where the top and bottom #,⊥ at E are given by {LE} and /0, respectively.

Proof. By (12.75), O(Σ) is the subobject of ΩLA defined by the formula ϕ given by

∀Da∈LA Da 	U ⇒ Da ∈U, (12.129)

whose interpretation in T(A) is an arrow from ΩLA to Ω . In view of (12.11), we
may identify an element U ∈ O(Σ)(C) with a subfunctor of LA|↑C, and by (12.129)
and Kripke–Joyal semantics in functor topoi, we have U ∈ O(Σ)(C) iff C � ϕ(U),
with ϕ given by (12.129). Unfolding this using Kripke–Joyal semantics and using
Lemma 12.18 (including part 1 of its proof), we find that U ∈ O(Σ)(C) iff

∀D⊇C ∀Dd∈LD ∀E⊇D Dd 	E U(E)⇒ Dd ∈U(E), (12.130)

where Dd is regarded as an element of LE . This condition, however, is equivalent to
the apparently weaker condition

∀D⊇C ∀Dd∈LD Dd 	D U(D)⇒ Dd ∈U(D); (12.131)

indeed, condition (12.130) clearly implies (12.131), but the latter applied at D = E
actually implies the first, since Dd ∈ LD also lies in LE .

Clauses 2 to 4 should now be obvious. Clause 5 follows by the explicit prescrip-
tion for the external description of frames (which has been recalled in the previous
section, after its initial description the end of §E.4). Note that each O(Σ)(C) is a
frame in Sets, inheriting the frame structure of the ambient frame Sub(LA|↑C). �
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We now present the computation of O(Σ) ≡ O(Σ(A)) for general unital C*-
algebras A. To explain the final formula, topologize the disjoint union

ΣA =
⊔

C∈C (A)

Σ(C), (12.132)

where Σ(C) is the Gelfand spectrum of C ∈ C (A), as follows, abbreviating

UC ≡U ∩Σ(C). (12.133)

One has U ∈O(ΣA) iff the following two conditions are satisfied for all C ∈ C (A):

1. UC ∈ O(Σ(C)).
2. For all D⊇C, if λ ∈UC and λ ′ ∈ Σ(D) such that λ ′|C = λ , then λ ′ ∈UD.

In fact, O(ΣA) is simply the weakest topology making the canonical projection

π : ΣA → C (A); (12.134)

π(σ) =C (σ ∈ Σ(C)⊂ ΣA), (12.135)

continuous with respect to the Alexandrov topology on C (A). For U ∈ O(C (A)),

ΣA
U =

⊔
C∈U

Σ(C) (12.136)

is a subset of ΣA, with relative topology inherited from ΣA. In particular, for the
basic opens U = ↑C of the Alexandrov topology on C (A) we have

ΣA
↑C =

⊔
D⊇C

Σ(D). (12.137)

Theorem 12.20. Let A be a unital C*-algebra A. The internal Gelfand spectrum
O(Σ(A)) of our internal commutative C*-algebra A in the topos T(A) is the functor

O(Σ(A))0 : C �→ O(ΣA
↑C), (12.138)

i.e., the frame (in Sets) of the open sets of ΣA
↑C in the topology defined after (12.132);

if C ⊆ D, the arrow-part of the functor in question is given by

O(Σ(A))1 : O(ΣA
↑C)→ O(ΣA

↑D); (12.139)

U �→U ∩↑D. (12.140)

Similarly, in the description of T(A) as the category of sheaves Sh(C (A)), cf. (E.84),
the Gelfand spectrum is given by the sheaf (where U ⊆V in (12.142)):

O(Σ(A))0 : U �→ O(ΣA
U ) (U ∈ O(C (A))); (12.141)

O(Σ(A))1 : U �→U ∩ΣA
U (U ∈ O(ΣA

V )). (12.142)
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Proof. The proof is based on Lemma 12.19, which implies that the internal frame
RIdl(LA) in T(A) is given by the functor

RIdl(LA) : C �→ {F ∈ Sub(LA|↑C) | F(D) ∈ RIdl(LD) for all D⊇C}. (12.143)

Here, since D is a commutative unital C*-algebra in Sets, according to (12.60) the
set RIdl(LD) may be identified with the topology O(Σ(D)), where Σ(D) is the
Gelfand spectrum of D in the usual sense. We will make this identification in the
following step, which is the last step of the proof of Theorem 12.20.

Lemma 12.21. The transformation θ : RIdl(LA)→ O(Σ(A)) with components

θC : {F ∈ Sub(LA|↑C) | F(D) ∈ O(Σ(D)) for all D⊇C}→ O(ΣA
↑C);

F �→
⊔

D⊇C

F(D), (12.144)

is a natural isomorphism of functors—i.e., an isomorphism of objects in T(A).

Since RIdl(LA) and O(Σ) are internal frames in T(A), it suffices to prove that each
θC is an isomorphism of frames in Sets. Unfortunately, even this proof is a very
lengthy (though straightforward) affair, for which we refer to the literature. �
Corollary 12.22. The external description (in Sets) of the internal locale Σ(A) (in
T(A)) is given by the canonical projection (12.134).

Note that both ΣA and C (A) are topological spaces, so that (12.134) is a bona fide
continuous map between spaces. This is worth stressing, since in general, an exter-
nal description of an internal locale in a sheaf topos, though defined in Sets, is a map
between locales (or, equivalently, between frames) that are not necessarily topolog-
ical spaces. But in the case (12.134) at hand they are, so at least this time there is
no confusion between O(X) as both formal notation for a frame (not necessarily
coming from a topology) and notation for the topology of a space X ; see §C.11.

Note that (12.95) is a special case of Theorem 12.20 or Corollary 12.22, for

A = Mn(C). (12.145)

To see this, we identify U =
⊔

C∈C (A)UC as an element of O(ΣA) with

S : C (A)→P(A)

on the right-hand side of (12.95), where S(C) ∈ P(C) is the image of UC ∈
O(Σ(C)) under the isomorphism O(Σ(C))→P(C) between the (discrete) topol-
ogy of the (finite) Gelfand spectrum of C and the (Boolean) projection lattice of C
derived earlier, see (12.80). Similarly, for U ∈ O(C (A)), the frame O(ΣA

U ) may be
identified with maps

S : U →P(A)

satisfying the conditions in (12.95). Of course, the special case (12.145) leading to
(12.95) is very appealing, and was well worth treating in its own right!



482 12 Topos theory and quantum logic

Theorem 12.20 and Corollary 12.22 also give an explicit description of the gen-
eral internal Gelfand isomorphism (12.78), whose real part in T(A) reads

Asa
∼=C(Σ ,R)≡ Frm(O(R),O(Σ)), (12.146)

where the right-hand side, which denotes the object of frame homomrphisms from
O(R) to O(Σ) within T(A), is the definition of the middle term (which is just a
notation). To understand the situation in T(A), one has to distinguish between:

1. The object Frm(O(R),O(Σ)) in T(A), defined as the subobject of the exponen-
tial O(Σ)O(R) consisting of (internal) frame maps from O(R) to O(Σ).

2. The set HomFrm(O(R),O(Σ)) of internal frame maps from the frame O(R) of
(Dedekind) real numbers in T(A) to the frame O(Σ) (i.e., the set of those arrows
from O(R) to O(Σ) that happen to be frame maps as seen from within T(A)).

The connection between 1. and 2. is given by λ -conversion, i.e., the bijective cor-
respondence between C → BA and A×C → B, cf. (E.153). Taking C = 1 (i.e. the
terminal object in T(A)), we see that an element of the set Hom(A,B) corresponds
to an arrow 1→ BA. Eq. (12.8) yields

Frm(O(R),O(Σ))(C) = NatFrm(O(R)↑C,O(Σ)↑C), (12.147)

the set of all natural transformations between the functors O(R) and O(Σ), both
restricted to ↑C ⊂ C (A), that are frame maps. This set can be computed from the
external description of frames and frame maps in §E.4. Recall (12.4) etc. The frame
O(R)↑C has external description

π−1
R : O(↑C)→ O(↑C×R), (12.148)

where πR :↑C×R →↑C is projection on the first component. The special case
C = C ·1 yields the external description of O(R) itself, namely

π−1
R : O(C (A))→ O(C (A)×R), (12.149)

where this time (with abuse of notation) the projection is πR : C (A)×R→ C (A).
By Corollary 12.22, the Gelfand frame O(Σ)↑C has external description

π−1
Σ : O(↑C)→ O(Σ)↑C, (12.150)

given by (12.128), with the understanding that D ⊇ C (the special case C = C · 1
then recovers the external description (12.99) of O(Σ) itself). It follows that there
is a bijective correspondence between two classes of frame maps:

ϕ−1
C

: O(R)↑C → O(Σ)↑C (in T(A)); (12.151)

ϕ−1
C : O(↑C×R)→ O(Σ)↑C (in Sets), (12.152)

where ϕC must satisfy the condition that for any D⊇C,
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ϕ−1
C (↑D×R) = χ↑D. (12.153)

Indeed, such a map ϕ−1
C defines an element ϕ−1

C
of Nat(O(R)↑C,O(Σ)↑C) in the

obvious way: for D ∈↑C, the components

ϕ−1
C

(D) : O(R)(D)→ O(Σ)(D) (12.154)

of the natural transformation ϕ−1
C

, i.e.

ϕ−1
C

(D) : O(↑D×R)→ O(Σ)↑D, (12.155)

are simply given by the restriction of ϕ−1
C to O(↑D×R)⊂O(↑C×R); cf. (E.147).

This is consistent, because (12.153) implies that for any U ∈O(R) and C ⊆D⊆ E,

ϕ−1
C (↑E×U)(F)≤ ϕ−1

C (↑D×R)(F), (12.156)

which by (12.153) vanishes whenever F � D. Consequently,

ϕ−1
C (↑E×U)(F) = 0ifF � D, (12.157)

so that ϕ−1
C

(D) actually takes values in O(Σ)↑D (rather than in O(Σ)↑C, as might
be expected). Denoting the set of frame maps (12.152) that satisfy (12.153) by
Frm′(O(↑C×R),O(Σ)↑C), we obtain a functor

Frm′(O(↑(−)×R),O(Σ)↑−) : C (A)→ Sets, (12.158)

with the stipulation that for C ⊆ D the induced map

Frm′(O(↑C×R),O(Σ)↑C)→ Frm′(O(↑D×R),O(Σ)↑D)

is given by restricting an element of the left-hand side to O(↑D×R)⊂O(↑C×R);
this is consistent by the same argument (12.157).

The Gelfand isomorphism (12.78) is therefore a natural transformation

A
∼=−→ Frm′(O(↑−×R),O(Σ)↑−), (12.159)

which means that one has a compatible (i.e. natural) family of isomorphisms

C
∼=−→ Frm′(O(↑C×R),O(Σ)↑C);

a �→ â−1 : O(↑C×R)→ O(Σ)↑C. (12.160)

On basic opens ↑D×U ∈ O(↑C×R), with D⊇C, we obtain

â−1(↑D×U) : E �→ 1U (a) if E ⊇ D;
E �→ 0 if E � D. (12.161)
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Here 1U (a) is the spectral projection of a in U , cf. (12.82); as it lies in P(C) and
C ⊆ D ⊆ E, the projection 1U (a) certainly lies in P(E), as required. Furthermore,
we need to extend â−1 to general opens in ↑C×R by the frame map property, and
note that (12.153) for ϕ−1

C = â−1 is satisfied.
This analysis also holds in the topos Sh(C (A)) of sheaves in C (A) (as always,

equipped with the Alexandrov topology, cf. (E.84). It then follows from (12.159)
and (12.141) that as a sheaf,

C(Σ ,C) : U �→C(ΣA
U ,C), (12.162)

where ΣA
U is given by (12.136); if U ⊆V , the map C(ΣA

V ,C)→C(ΣA
U ,C) is given by

the pullback of the inclusion ΣA
U ↪→ ΣA

V (that is, by restriction). It then follows from
(12.162) that the isomorphism (12.146) is given by its components

A(U)∼=C(ΣA
U ,C). (12.163)

In particular, the component of the natural isomorphism in (12.146) at U = ↑C is

C ∼=C(ΣA
↑C,C). (12.164)

A glance at the topology of ΣA shows that the so-called Hausdorffication, which
for a general compact space may be defined either directly, or C*-algebraically by
XH = Σ(C(X)), and coincides with the left adjoint of the forgetful functor from
the category of compact Hausdorff spaces (and continuous maps) to the category of
compact spaces (and continuous maps), is given by (ΣA

↑C)
H ∼= Σ(C), so that

C(ΣA
↑C,C)∼=C(Σ(C),C), (12.165)

where the isomorphism is given by restricting f ∈C(ΣA
↑C,C) to Σ(C)⊂ ΣA

↑C.

Corollary 12.23. The internal Gelfand isomorphism

A
∼=−→C(Σ ,C), (12.166)

which is a natural isomorphism between functors C (A)→ Sets, is given at each
C ∈ C (A) by the usual Gelfand isomorphism for the commutative C*-algebra C:

A0(C) =C
∼=−→C(Σ(C),C)∼=C(Σ ,C)0(C). (12.167)

At the end of the day, the Gelfand isomorphism (12.146) therefore turns out to
simply assemble all isomorphisms (12.167) for the commutative C*-subalgebras
C of A into a single sheaf-theoretic construction. Incidentally, taking C = C · 1 in
(12.164) shows that (ΣA)H is a point, which is also obvious from the fact that any
open set containing the point Σ(C ·1) of ΣA must be all of ΣA.
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12.5 “Daseinisation” and Kochen–Specker Theorem

The internal Gelfand transform (12.166) constructed in the previous section acts on
each commutative subalgebra A∈C (A). What about A itself? There is a more subtle
transform, inspired by the remarkable “Daseinisation” construction of Döring and
Isham (whose name has unfortunately been inspired by the controversial German
philosopher Heidegger), which turns self-adjoint elements a of A into continuous
functions δ (a) on the topos-theoretical phase space ΣA, whose range is the so-called
interval domain IR (which is a fuzzy version of R). Hence we will define a map

δ : Asa →C(ΣA,IR), (12.168)

which, alas, is defined only if A is a von Neumann algebra; we shall therefore as-
sume this throughout this section. Similarly, the notation C (A) will now stand for
the poset of abelian von Neumann subalgebras of A (as opposed to abelian C*-
subalgebras of A, as in the remainder of this book).

“Daseinisation” requires two slightly unusual concepts, the first of which is the
said interval domain IR. To motivate its definition, consider Brouwer’s approxima-
tion of real numbers by nested intervals with endpoints in Q. For example, the real
number π can be described by specifying the sequence

[3,4], [3.1,3.2], [3.14,3.15], [3.141,3.142], . . .

This description of the reals is formalized by IR, defined as the poset whose ele-
ments are compact intervals [a,b] in R (including singletons [a,a] = {a}), ordered
by reverse inclusion (for a smaller interval means that we have more information
about the real number that the ever smaller intervals converge to). This poset is a
so-called dcpo (for directed complete partial order); directed suprema are simply
intersections. As such, it carries the Scott topology, whose open sets are upper sub-
sets U of IR with the additional property that for every directed set D with

∨
D ∈U

the intersection D∩U is nonempty. This means that each open interval (p,q) in R
(with p =−∞ and q =+∞ allowed) corresponds to a Scott open

U(p,q) = {[a,b] | p < a≤ b < q}. (12.169)

Indeed, these opens form a basis of the Scott topology OScott(IR) ≡ O(IR) of IR.
This topology is, of course, a frame, so far defined in Sets. However, this frame is
easily internalized to any (pre)sheaf topos, similar to the Dedekind reals (12.3) -
(E.149); in particular, in T(A) we have

O(IR)0 : C �→ O((↑C)× IR), (12.170)

with external description as a locale (see §E.4) given by the canonical projection

π1 : C (A)× IR→ C (A). (12.171)
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The second ingredient of “Daseinisation” is the spectral order on Asa. The par-
tial order ≤ defined in §C.7 (in which a ≤ b iff ω(a) ≤ ω(b) for all states ω on A)
has good linearity properties in that it makes A+ a convex cone in the real vector
space Asa (cf. Definition C.50), but it is terrible from a lattice point of view (unless
A is abelian): for example, for A = B(H), suprema a∨ b and infima a∧ b exist iff
either a≤ b or b ≤ a (and indeed Asa is a lattice with respect to ≤ iff A is abelian).
However, there is a different order on Asa that turns it into a conditionally (or bound-
edly)complete lattice, i.e., a poset X with the property that if some subset S⊆ X has
an upper bound (i.e., there is x ∈ X such that s ≤ x for each s ∈ S), then it has a
lowest upper bound (i.e.,

∨
S exists), and similarly for (greatest) lower bounds.

Definition 12.24. For a,b ∈ Asa we say that a≤s b (i.e., a is less or equal than b in
the spectral order) iff an ≤ bn for each n ∈ N.

It can be shown that a≤s b iff e(b)
(λ ) ≤ e(a)

(λ ) for each λ ∈R (note the change of order),

where e(a)
(λ ) is the spectral projection 1(−∞,λ ]∩σ(a)(a), etc. This, in turn, implies, that

a≤s b iff μω(a≤ λ )≥ μω(b≤ λ ), (12.172)

for each (normal) state ω on A and each λ ∈ R, where

μω(a≤ λ ) = ω(1(−∞,λ ]∩σ(a)(a)) (12.173)

is the Born probability for the outcome a ≤ λ in state ω (and similarly for b). Fur-
thermore, if a and b commute, or if a and b are both projections, the a≤s b iff a≤ b,
i.e., ≤s coincides with the usual partial order ≤ iff A is abelian, and ≤s restricts to
≤ on the projection lattice P(A) of A. For each a ∈ Asa and C ∈ C (A), we define

δ i
C(a) =

∨
{b ∈Csa | b≤s a}; (12.174)

δ o
C(a) =

∧
{b ∈Csa | a≤s b}, (12.175)

called the inner and outer Daseinisation of a with respect to C, respectively; those
objecting to Heidegger might prefer to simply call these the inner and outer local-
izations of a with respect to C. For projections, these expressions simplify to

δ i
C(e) =

∨
{ f ∈P(C) | f ≤s e}; (12.176)

δ o
C(e) =

∧
{ f ∈P(C) | e≤s f}, (12.177)

and in fact one has a very nice categorical description, in that δ i
C : P(A)→P(C)

and δ o
C : P(A)→P(C) are the right and left adjoint, respectively, of the inclusion

functor P(C) ↪→P(A) in the category of complete orthomodular lattices.
We are now in a position to define the map (12.168): for a ∈ Asa we put

δ (a) : (C,ω) �→ [ω(δ i
C(a)),ω(δ o

C(a))], (12.178)

where (as the notation indicates) the point (C,ω) ∈ Σ(C)⊂ ΣA is just ω ∈ Σ(C).
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It is easily checked that the right-hand side of (12.178) makes sense, since positivity
of states and (12.174) - (12.175) obviously imply ω(δ i

C(a))≤ω(δ o
C(a)). Also, δ (a)

is continuous, so that δ is well defined. If we define a closely related map

δ̂ (a) : ΣA → C (A)× IR; (12.179)

δ̂ (a)(C,ω) = (C,δ (a)(C,ω)), (12.180)

then δ̂ (a) is the external description of an internal locale map

δ (a) : Σ(A)→ IR. (12.181)

In view of this, we may regard (12.168) as a hybrid (i.e. “category mistake”) map

δ : Asa →C(Σ(A),IR); (12.182)

see the text below (12.146), with R� IR, for the meaning of the right-hand side.
The relationship between δ and the Gelfand transform (12.166) is as follows.

For a ∈ Asa, let W ∗(a) be the unital commutative von Neumann algebra generated
by a = a∗ and 1A within A. Using (12.164), we then have a Gelfandish isomorphism

W ∗(a)sa
∼=−→C(ΣA

↑W ∗(a),R); (12.183)

c �→ ĉ. (12.184)

In particular, since a ∈W ∗(a), we obtain a continuous function

â : ΣA
↑W ∗(a)→ R. (12.185)

Furthermore, we have an inclusion

ι : R ↪→ IR; (12.186)
x �→ [x,x], (12.187)

which is continuous, and hence induces a map C(ΣA,R)→ C(ΣA,IR), as well as
maps C(ΣA

↑W ∗(a),R)→C(ΣA
↑W ∗(a),IR). Then the following diagram commutes:

ΣA
↑W ∗(a) IR

R

δ (a)

â
ι (12.188)

In words, the restriction of the “Daseinisation” δ (a) : ΣA → IR of a to the open
subset ΣA

↑W ∗(a) ⊂ ΣA takes values in R⊂ IR, and as such coincides with the Gelfand
transform â of a, seen as a map (12.185). Hence, as might be expected in quantum
mechanics, any fuzziness of δ (a) is only noticeable outside its own context W ∗(a).
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The “Daseinisation” construction enables one to interpret propositions a ∈ (p,q)
as open subsets of the “phase space” ΣA, as in classical physics, where a : X → R
would be a continuous function on a phase space X , and one would say that

[[a ∈ (p,q)]]CM = a−1(p,q) ∈ O(X). (12.189)

In quantum mechanics, one would interpret a ∈ (p,q) as the spectral projection

[[a ∈ (p,q)]]QM = e(a)
(p,q) ≡ 1(p,q)∩σ(a)(a), (12.190)

or, equivalently, with the corresponding closed subset of the ambient Hilbert space.
In our quantum toposophy setting, however, we may adapt (12.189) as

[[a ∈ (p,q)]]QT = δ (a)−1(U(p,q)) ∈ O(ΣA). (12.191)

Similarly, one may interpret a ∈ (p,q) as an internal open subset of the internal
Gelfand spectrum Σ(A), as follows. For any locale Y in a topos T, an internal open
in O(Y ) is defined as an arrow 1→O(Y ), where as usual 1 is the terminal object in
T. In the case at hand we have Y = Σ(A), and use the composition

1
(p,q)−→ O(IR)

δ (a)−1

−→ O(Σ(A)), (12.192)

where the natural transformation (p,q) has components

(p,q)
C
(∗) = ↑C×U(p,q), (12.193)

cf. (12.170), and δ (a)−1 : O(IR)→O(Σ(A)) is the frame version of the locale map
(12.181), whose component at C, i.e.,

δ (a)−1
C : O((↑C)× IR)→ O(ΣA

↑C), (12.194)

is given on basic opens in (↑C)× IR, with D⊇C and p < q, by

δ (a)−1
C (↑D×U(p,q)) = δ (a)−1(U(p,q))∩ΣA

↑D. (12.195)

We therefore obtain the quantum-toposophical interpretation of a ∈ (p,q) as:

[[a ∈ (p,q)]]QT : 1→ O(Σ(A)); (12.196)

[[a ∈ (p,q)]]QT = δ (a)−1 ◦ (p,q). (12.197)

We are now going to combine this expression with a construction relating states
ω ∈ S(A) to arrows from O(Σ(A)) to the truth object Ω in T(A). This construction
generalizes the fundamental bijective correspondence between states on commuta-
tive (unital) C*-algebras A and probability measures on its Gelfand spectrum Σ(A)
(cf. Theorem B.24) to the non-commutative case.



12.5 “Daseinisation” and Kochen–Specker Theorem 489

To this end, we first need to replace probability measures on spaces by probability
measures on locales. This, in turn, requires the lower real numbers Rl , which may
be identified with proper subsets xl ⊂Q with the following two properties:

1. If p ∈ xl , then there exists q ∈ xl with p < q.
2. If p < q ∈ xl , then p ∈ xl (i.e., xl is a lower subset of Q).

In Sets, the lower reals may be identified with R (in Hilbert’s definition) by identi-
fying xl with its supremum x = supxl , but in arbitrary toposes (that admit internal
natural and hence rational numbers) they drift apart. Similarly, one defines the upper
real numbers Ru as proper upper subsets xu ⊂Q such that p ∈ xu implies that there
exists q ∈ xu with p > q; once again, in Sets, Ru may be identified with Hilbert’s R
by taking x = infxu. The Dedekind real numbers Rd , then, are pairs (xl ,xu) where
xl ∈Rl and xu ∈Ru are such that xl ∩xu = /0 and for each p,q∈Q with p < q, either
p ∈ xl or q ∈ xu. In Sets these may be identified with supxl = infxu = x, so that
Rd ∼=R, but in many toposes Rl , Ru, and Rd are all different. For example, we have
already seen that in sheaf toposes Sh(X), the Dedekind reals are given by the sheaf
(E.150), but the lower reals turn out to be defined by

(Rl)0 : U �→ L(U,R), (12.198)

where U ∈ O(X) and L(U,R) is the set of all lower semicontinuous functions from
U to R that are locally bounded from above (and similarly for Ru, mutatis mutandis).
In particular, in T(A) we have the functor

(Rl)0 : C �→ L(↑C,R), (12.199)

which is quite different from (12.3) (and similarly for Ru).

Definition 12.25. A probability measure on a locale X is a monotone map

μ : O(X)→ [0,1]l , (12.200)

where [0,1]l is the collection of lower reals between 0 and 1 (defined by replacing
Q in the definition of Rl by the set of all rationals 0≤ q≤ 1), that satisfies

μ(#) = 1; (12.201)
μ(U)+μ(V ) = μ(U ∧V )+μ(U ∨V ); (12.202)

μ
(∨

λUλ

)
=
∨

λ μ(Uλ ), (12.203)

for any directed family (Uλ ) in O(X).

Compared with (probability) measures on σ -algebras, we see that (probability) mea-
sures on locales are merely defined on open sets (as opposed to measurable sets,
which include opens), but this weakening is compensated for by the much stronger
(i.e. uncountable) additivity axiom (12.203). Indeed, in Sets, if X is a compact Haus-
dorff space, one even has a bijective correspondence between regular probability
measures μ ′ on X as a space and probability measures μ on X as a locale.
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This definition makes sense in constructive mathematics, and hence it may be in-
ternalized to T(A). Doing so, probability measures on the internal Gelfand spectrum
Σ(A) turn out to correspond to the following notion (cf. Definition 2.26).

Definition 12.26. A quasi-state on a unital C*-algebra A is a map ω : A→C that is
positive and normalized (ω(1A) = 1), satisfies ω(b+ ic) = ω(b)+ iω(c) for b∗ = b
and c∗ = c, and is linear on each commutative unital C*-algebra in A.

Theorem 12.27. There is a bijective correspondence between quasi-states ω on A
and probability measures μω on the internal Gelfand spectrum Σ(A).

The proof uses the fact that given the (Alexandrov) topology on C (A), a function
↑C→ [0,1] is lower semicontinuous iff it is order-preserving (i.e., monotone); since
[0,1] is bounded, the condition of local boundedness is trivially satisfied and hence
L(↑C, [0,1]) consists of all order-preserving functions from ↑C ⊂ C (A) to [0,1].

Proof. Any probability measure on Σ(A) is a natural transformation

μ : Σ(A)→ [0,1]
l
, (12.204)

whose component at C ∈ C (A), according to (12.138) and (12.199), is a map

μ
C

: O(ΣA
↑C)→ L(↑C, [0,1]), (12.205)

satisfying properties dictated by Definition 12.25. In particular, if C is maximal
abelian in A, then by the comment preceding the proof, μ

C
is simply a function

O(Σ(C))→ [0,1] that satisfies (12.201) - (12.203) and hence is a (regular) proba-
bility measure μC on Σ(C). Thus by Riesz–Markov one obtains a state ωC on each
maximal abelian C. From the topology on ΣA and (12.137) we see that if D is not
maximal, μ

D
is determined by μ

C
for any C ⊃ D, so that we also obtain a proba-

bility measure μD on Σ(D), or, equivalently, a state ωD, by restriction of ωC to D.
One might fear that μD and ωD could depend on the chosen embedding D⊂C, but
naturality of μ implies that if D ⊂ C as well as D ⊂ C′, where both C and C′ are
maximal, then the ensuing measures μD are the same. This implies the same prop-
erty for the corresponding states ωD, which in turn shows that the collection of all
μD and μC thus obtained organizes itself into a single quasi-state ω on A.

The converse follows by running this argument backwards. �
Combining (12.196) with Theorem 12.27, we obtain a state-proposition pair-

ing that is no longer probabilistic, as in ordinary quantum mechanics, but defines a
proposition in the internal language of T(A) and as such may or may not be true at
each stage C ∈ C (A). The final ingredient for this is an arrow

1 : Σ(A)→ [0,1]
l
, (12.206)

defined by its components 1C : O(ΣA
↑C)→ L(↑C, [0,1]) that map each open subset of

ΣA
↑C to the constant function on ↑C taking the value 1 ∈ [0,1]. The internal language

of T(A) (cf. §E.5) turns this into a formula μω = 1 with the following interpretation:
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[[μω = 1]] : Σ(A)→Ω . (12.207)

We combine this with (12.196) so as to obtain an internal state-proposition pairing

[[μω(a ∈ (p,q)) = 1]]QT : 1→Ω , (12.208)

where we have abbreviated

[[μω(a ∈ (p,q)) = 1]]QT = [[μω = 1]]◦ [[a ∈ (p,q)]]QT. (12.209)

The truth of the proposition (12.208) at stage C may be determined from Kripke–
Joyal semantics; a straightforward computation for A = B(H) shows that

C � μω(a ∈ (p,q)) = 1 (12.210)

iff there exists a projection e ∈P(C) with e≤ e(a)
(p,q) and ω(e) = 1. Assuming ω is

a vector state ω(a) = 〈ψ,aψ〉 for some unit vector ψ ∈ H, this means that (12.210)
holds iff ψ ∈ eH ⊆ e(a)

(p,q)H for some e ∈P(C), i.e., if the proposition a ∈ (p,q) has
(Born) probability one in state ψ and there is a yes-no measurement in context C
verifying this probability. In comparison, in classical mechanics a pure state x ∈ X
makes a ∈ (p,q) true iff a(x) ∈ (p,q), where a ∈C(X ,R) as before.

We close this chapter with a topos-theoretical (or, one might say, topological)
reinterpretation of the Kochen–Specker Theorem, which to some extent explains
why the previous construction had to use the fuzzy interval domain IR rather than
the sharp reals R. To this end, we first generalize the notion of a quasi-linear non-
contextual hidden variable (cf. Definitions 6.1 and 6.3) to any (unital) C*-algebra:

Definition 12.28. 1. A valuation on a unital C*-algebra A is a unital map

V : Asa → R (12.211)

that is dispersion-free (i.e. multiplicative) and linear on commuting operators.
2. A point in a frame O(X) in some topos T is defined as a frame homomorphism

p : O(X)→Ω , (12.212)

where Ω is the truth object in T.

If A is commutative, the Gelfand spectrum Σ(A) consists of the valuations on A. The
second part generalizes the notion of a point of a frame in set theory (cf. §C.11).

Theorem 12.29. For any unital C*-algebra A, there are canonical bijective corre-
spondences between:

• Valuations on A.
• Points of Σ(A) in Sh(C (A)).
• Continuous cross-sections σ : C (A)→ ΣA of the bundle π : ΣA → C (A).
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Proof. We first give the external description of points of a locale Y in a sheaf topos
Sh(X) (cf. §E.4). The subobject classifier in Sh(X) is the sheaf Ω : U �→ O(U),
in terms of which a point of Y is a frame map O(Y )→ Ω . Externally, the point-
free space defined by the frame Ω is given by the identity map idX : X → X , so
that a point of Y externally correspond to a continuous cross-section σ : X → Y of
the bundle π : Y → X (i.e., π ◦σ = idX ). In principle, π and σ are by definition
frame maps in the opposite direction, but in the case at hand, namely X = C (A) and
Y = ΣA, the map σ : C (A)→ ΣA may be interpreted as a continuous cross-section
of the projection (12.134) in the usual sense. Being a cross-section simply means
that σ(C) ∈ Σ(C). As to continuity, by definition of the Alexandrov topology, σ is
continuous iff the following condition is satisfied:

For all U ∈ O(ΣA) and all C ⊆ D, if σ(C) ∈U , then σ(D) ∈U .

Hence, given the definition of O(ΣA), the following condition is sufficient for conti-
nuity: if C ⊆ D, then σ(D)|C = σ(C). However, this condition is also necessary. To
explain this, let ρDC : Σ(D)→ Σ(C) again be the restriction map. This map is con-
tinuous and open. Suppose ρDC(σ(D)) �= σ(C). Since Σ(D) is Hausdorff, there is
an open neighbourhood UD of ρ−1

DC(σ(C)) not containing σ(D). Let UC = ρDC(UD)
and take any U ∈ O(ΣA) such that U ∩O(Σ(C)) = UC and U ∩O(Σ(D)) = UD.
This is possible, since UC and UD satisfy both conditions in the definition of O(ΣA).
By construction, σ(C) ∈U but σ(D) /∈U , so that σ is not continuous. Hence σ is
a continuous cross-section of π iff

σ(D)|C = σ(C) for all C ⊆ D. (12.213)

Now define a map V : Asa → C by V (a) = σ(C∗(a))(a), where C∗(a) is the com-
mutative unital C*-algebra generated by a. If b∗ = b and [a,b] = 0, then V (a+b) =
V (a)+V (b) by (12.213), applied to C∗(a)⊂C∗(a,b) as well as to C∗(b)⊂C∗(a,b).
Furthermore, since σ(C) ∈ Σ(C), the map V is dispersion-free.

Conversely, a valuation V defines a cross-section σ by complex linear extension
of σ(C)(a) = V (a), where a ∈ Csa. By the criterion (12.213) this cross-section is
continuous, since the value V (a) is independent of the choice of C containing a. �

Corollary 12.30. The bundle π : ΣA → C (A) (cf. Corollary 12.22) admits no con-
tinuous cross-sections as soon as A has no valuations (e.g. if A = Mn(C), n > 2).

The contrast between the pointlessness of the internal spectrum Σ and the spa-
tiality of the external spectrum ΣA is striking, but easily explained: a point of ΣA (in
the usual sense, but also in the frame-theoretic sense if ΣA is sober) necessarily lies
in some Σ(C) ⊂ ΣA, and hence is defined (and dispersion-free) only in the context
C. For example, for A = Mn(C), a point V ∈ Σ(C) corresponds to a map

V ∗ : O(ΣA)→{0,1}, S �→V (S(C)), (12.214)

where O(ΣA) is given by (12.95). Thus V ∗ is only sensitive to the value of S at C.
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Notes

Previous advocates of intuitionistic logic for quantum mechanics include Popper
(1968) and Coecke (2002). The earliest use of topos theory in quantum mechanics
was probably by Adelman & Corbett (1995), but the founding papers of the topos
approach to quantum mechanics as further developed in this chapter are Isham &
Butterfield (1998), Butterfield & Isham (1999, 2002), and Hamilton, Isham & But-
terfield (2000). This series of papers was predated by Isham (1997) and was fol-
lowed by Döring & Isham (2008abcd, 2010); see also Flori (2013) for an intro-
duction. Wolters (2013ab) gives a detailed comparison between the “contravariant”
Butterfield–Döring–Isham approach and the “covariant” approach in this chapter.

The original motivation behind our approach to “quantum toposophy” was the
Principle of General Tovariance (Heunen, Landsman, & Spitters, 2008), which
was a pun on Einstein’s Principle of General Covariance underlying General Rel-
ativity (Norton, 1993, 1995). Einstein based his theory of gravity and space-time
on the mathematical postulate that all equations of physics be invariant under arbi-
trary coordinate transformation, and similarly we proposed that all physical the-
ories should be invariant under so-called geometric morphisms between toposes
and hence should be formulated in terms of what (confusingly) is called geomet-
ric logic (cf. Mac Lane & Moerdijk, 1992; Johnstone, 2002). Since in fact some
of our constructions turned out be non-geometric in this sense, we subsequently
dropped this principle and stopped even referring to the above paper. However, as
Raynaud (2014) and, more generally, Henry (2015) show, our theory can actually be
made geometric (in the topos-theoretical sense) provided one puts the entire theory
of (internal) C*-algebras on a localic (i.e., pointfree) basis, as in Henry (2014ab).
Other recent developments of the program (which are not discussed here) may be
found in e.g. van den Berg & Heunen (2012, 2014), Spitters, Vickers, & Wolters
(2014), Heunen (2014ab), and Heunen & Lindenhovius (2015).
§12.1. C*-algebras in a topos

C*-algebras in a topos, including a constructive version of Gelfand duality for
commutative unital C*-algebras that is valid in arbitrary Grothendieck toposes, were
first studied by Banaschewski & Mulvey (2000ab, 2006). The topos T(A) and the in-
ternal commutative C*-algebra A were introduced by Heunen, Landsman, & Spitters
(2009). All these papers rely crucially on the theory of internal locales in toposes,
which owes much to Johnstone (1982) and Joyal & Tierney (1984). See also John-
stone (1983) and Vickers (2007). It is possible to realize T(A) as the topos of sheaves
on the locale Idl(C (A)), which is the ideal completion of the “mere” poset C (A),
but we will not use this description (Raynaud, 2014).
§12.2. The Gelfand spectrum in constructive mathematics

This section is based on Coquand (2005) and Coquand & Spitters (2005, 2009),
where also the missing details may be found. All necessary background on lattice
theory is provided by Johnstone (1982), except the ingredients for the proof that the
constructive Gelfand spectrum is compact and regular, which is due to Cederquist
& Coquand (2000). Proposition 12.10 may be found in Aczel (2006).
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§12.3. Internal Gelfand spectrum and intuitionistic quantum logic

This section is based on Caspers, Heunen, Landsman, & Spitters (2009), except
for the final part on Kripke semantics, which is taken from Heunen, Landsman,
& Spitters (2012). An interesting philosophical analysis of the intuitionistic logic
emerging from this program may be found in Hermens (2016), to whom the inter-
pretation elements of the frame O(ΣA) as disjunctions is due.
§12.4. Internal Gelfand spectrum for arbitrary C*-algebras

This section is based on Caspers (2008), Caspers, Heunen, Landsman, & Spit-
ters (2009), and Heunen, Landsman, & Spitters (2009). Complete proofs of Lemma
12.15 and Lemma 12.16 may be found in Caspers (2008), §5.2. For different proofs
of these lemmas see Heunen, Landsman, & Spitters (2009) and Coquand (2005),
respectively. A proof of Lemma 12.21 may be found in Wolters (2013b), Theorem
2.17, also available as http://arxiv.org/pdf/1010.2031v2.pdf.
§12.5. “Daseinisation” and Kochen–Specker Theorem

The spectral order was introduced by Olson (1971) and was rediscovered by De
Groote (2011). For a devastating critique of Heidegger’s philosophy see Philipse
(1999). The first construction of a “Daseinisation” map was given by Döring &
Isham (2008b). The version presented here is an improvement, due to Wolters
(2013ab), of a previous adaptation of the Döring–Isham appraoch to the topos T(A)
in Heunen, Landsman, & Spitters (2009). Similarly, Theorem 12.29, first published
in Heunen, Landsman, Spitters, & Wolters (2012), is an improvement due to Wolters
(2013a) of an earlier result in this direction in Heunen, Landsman, & Spitters (2009).

The work of Isham & Butterfield (1998), which, as already mentioned, started the
entire quantum toposophy program, was actually motivated by an topos-theoretica
reformulation of the Kochen–Specker Theorem. Isham and Butterfield started from
the following observation. Let C (B(H)) be the poset of commutative von Neumann
subalgebras of B(H), partially ordered by set-theoretic inclusion, seen as a category
in the usual way. Consider the presheaf topos [C (H)op,Set] of contravariant func-
tors F : C (H)→ Set, where Set is the category of sets. The spectral presheaf is
the contravariant functor Σ defined on objects by Σ 0(C) = Σ(C), and by the natural
map on arrows, that is, Σ 1(C ⊂ D) maps ω ∈ Σ(D) (which is a map D→ C) to its
restriction to C, i.e., to ω|C ∈ Σ(C). A point of some object F in [C (B(H))op,Set]
is defined as a natural transformation 1→ F , where 1 is the terminal object, i.e., the
presheaf that maps everything into the singleton set ∗.

The Kochen–Specker Theorem à la Butterfield & Isham, then, states that if
dim(H)> 2 as usual, the spectral presheaf has no points.
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Finite-dimensional Hilbert spaces

Although we assume the reader to be familiar with linear algebra, some of the points
below may not be emphasized at that level and hence need to be recalled.

Unless explicitly stated otherwise, all vector spaces (and hence also all algebras)
are defined over the complex numbers C. Moreover, from §A.2 until the end of this
appendix, V will be finite-dimensional; the infinite-dimensional case will be treated
in the next appendix on functional analysis and general Hilbert spaces.

A.1 Basic definitions

Definition A.1. Let V be a vector space (not necessarily finite-dimensional).

1. A sesquilinear form on V is a map V ×V → C, written (v,w) �→ 〈v,w〉 (or,
occasionally, to distinguish it from an inner product, as (v,w) �→ B(v,w)) that is
real-bilinear and satisfies 〈iv,w〉=−i〈v,w〉 and 〈v, iw〉= i〈v,w〉 for all v,w,x∈V .

2. A hermitian form on V is a sesquilinear form that satisfies 〈w,v〉= 〈v,w〉.
3. A pre-inner product on V is a positive hermitian form, i.e., 〈v,v〉 ≥ 0.
4. An inner product on V is, in addition, positive definite: 〈v,v〉= 0 iff v = 0.
5. A norm on V is a function ‖·‖ : V →R+ satisfying, for all v,w,h∈V and λ ∈C:

a. ‖v+w‖ ≤ ‖v‖+‖w‖ (triangle inequality);
b. ‖λv‖= |λ |‖v‖ (homogeneity);
c. ‖v‖= 0 iff v = 0 (positive definiteness).

Many analytical arguments in functional analysis are based on the fundamental
Cauchy–Schwarz inequality, which is satisfied by any (pre-) inner product:

|〈v,w〉|2 ≤ 〈v,v〉〈w,w〉. (A.1)

Proposition A.2. An inner product on V defines a norm on V by means of

‖v‖=
√
〈v,v〉. (A.2)
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The Cauchy–Schwarz inequality (A.1) then reads

|〈v,w〉| ≤ ‖v‖‖w‖, (A.3)

with equality iff v and w are linearly dependent.

The question arises when a norm comes from an inner product via (A.2).

Theorem A.3. A norm ‖ · ‖ comes from an inner product through (A.2) iff

‖v+w‖2 +‖v−w‖2 = 2(‖v‖2 +‖w‖2). (A.4)

In that case, one has the polarization identity

〈v,w〉= 1
4 (‖v+w‖2−‖v−w‖2 + i‖v− iw‖2− i‖v+ iw‖2). (A.5)

Proof. Easy computations show that (A.2) holds, that 〈w,v〉= 〈v,w〉, and, with a bit
more effort, that 〈v,w1 +w2〉= 〈v,w1〉+ 〈v,w2〉. Now suppose we know that

〈w,sv〉= s〈w,v〉 (A.6)

for certain s ∈ R. Then this property clearly also holds for s−1 instead of s. Fur-
thermore, having (A.6) for s as well as t ∈ R implies the same property also for
s+ t and st. Starting with s = t = 1, this generates (A.6) for each s ∈ Q. Now if
sn → s for sn ∈ Q and s ∈ R, then by continuity and homogeneity of the norm,
〈w,snv〉→ 〈w,sv〉. Consequently, (A.6) holds for each s ∈R. Finally, from (A.5) we
also find 〈w, iv〉= i〈w,v〉, and hence (A.6) holds for each s ∈ C. �

There is an analogous result for continuous hermitian forms, with practically the
same proof (where continuity is once again needed to pass from Q to R). Let V be
a vector space with inner product, and let B : V ×V → C be a hermitian form. The
associated quadratic form Q : V → R, defined by

Q(v) = B(v,v), (A.7)

then satisfies

Q(zv) = |z|2Q(v) (z ∈ C); (A.8)
Q(v+w)+Q(v−w) = 2(Q(v)+Q(w)). (A.9)

Proposition A.4. Let V be a vector space with inner product. A map Q : V → R
that is continuous in the associated norm (A.2) is derived from a hermitian form
B : H×H → C through (A.7) iff Q satisfies (A.8) - (A.9), in which case

B(v,w) = 1
4 (Q(v+w)−Q(v−w)+ iQ(v− iw)− iQ(v+ iw)). (A.10)
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A.2 Functionals and the adjoint

In the remainder of this appendix, V is a finite-dimensional complex vector space
with inner product. Since this is automatically a (finite-dimensional) Hilbert space
(as defined in the next appendix), we rename it as H. The archetypal example is
H = Cn, with elements z = (z1, . . . ,zn), zi ∈ Cn, and standard inner product

〈z,w〉=
n

∑
i=1

ziwi. (A.11)

In that case, we hardly make a difference between a linear map a : H → H and the
corresponding matrix (ai j), where (az)i = ∑ j ai jz j, or, equivalently,

ai j = 〈υi,aυ j〉, (A.12)

where (υ1 = (1,0, . . . ,0), . . .υn = (0, . . . ,0,1)) is the standard basis of Cn. More
generally, we will only consider orthonormal bases of Hilbert spaces H, i.e., bases
(υi) for which 〈υi,υ j〉 = δi j. In fact, in the present (finite-dimensional) case, any
orthonormal set of n = dim(H) vectors is automatically a basis. Throughout this
book, the word “basis” will be synonymous with orthonormal basis.

Let H∗ be the vector space of linear maps f : H → C, also called (linear) func-
tionals (on H). Since the inner product is positive definite, it is also non-degenerate:

Proposition A.5. The map ψ �→ fψ , where

fψ(ϕ) = 〈ψ,ϕ〉, (A.13)

is an anti-linear isomorphism H → H∗ (i.e., one has λψ �→ λ fψ for any λ ∈ C).

Proof. Injectivity is obvious. For surjectivity, note that coker( f ) (i.e., the orthogonal
complement of the kernel ker( f ) of f ) is one-dimensional (assuming f is nonzero),
and take a unit vector ψ̃ ∈ coker( f ). Then ψ = f (ψ̃)ψ̃ does the job: by linearity of
f , we have f (ϕ)ψ̃− f (ψ̃)ϕ ∈ ker( f ) for any ϕ ∈ H (and even any ψ̃ ∈ H), so that
〈ψ̃, f (ϕ)ψ̃− f (ψ̃)ϕ〉= 0. Since 〈ψ̃, ψ̃〉= ‖ψ̃‖2 = 1, this yields f = fψ . �

A linear map a : H → H is also called an operator; we denote the algebra of
all operators on H by B(H). For example, we have B(Cn) ∼= Mn(C). Two arbitrary
vectors ψ,ϕ ∈ H define an operator |ψ〉〈ϕ| through Dirac’s “bra-ket” notation

|ψ〉〈ϕ|χ = 〈ϕ,χ〉ψ. (A.14)

The adjoint a∗ of an operator a is defined by the property

〈a∗ψ,ϕ〉= 〈ψ,aϕ〉, (ψ,ϕ ∈ H). (A.15)

Indeed, for given χ (and a), define a functional fa,χ : H → C by fa,χ(ϕ) = 〈χ,aϕ〉.
Then, as we just saw, fa,χ = fψ for some unique ψ ∈H; define a∗ by a∗χ =ψ . This
map is linear by construction.
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Clearly, one has
a∗∗ = a. (A.16)

For H = Cn, the matrix corresponding to the adjoint a∗ is given by the well-known
formula a∗i j = a ji. A more abstract example of an adjoint is given by

|ψ〉〈ϕ|∗ = |ϕ〉〈ψ|. (A.17)

The (operator) norm of a : H → H is defined by

‖a‖= sup{‖aψ‖,ψ ∈ H1}. (A.18)

where the unit sphere H1 ⊂ H is defined by

H1 = {ψ ∈ H,‖ψ‖= 1}. (A.19)

Proposition A.6. One has ‖a‖< ∞ for any linear map a : H → H.

Proof. Recall that dim(H) = n < ∞! Map H to Cn by the choice of some basis
(υi). Thus ψ ∈ H is mapped to ψ̃ = (ψ1, . . . ,ψn) ∈ Cn, with ψi = 〈υi,ψ〉, and we
have ‖ψ̃‖2 = ‖ψ‖, where ‖z‖2

2 = ∑i |zi|2 is the usual norm on Cn, which is given
by (A.2) with (A.11). This also transfers the operator a : H → H to a linear map
ã : Cn → Cn defined by the matrix (A.12). Then ‖a‖ = ‖ã‖ = sup{‖ãz‖2,z ∈ Cn

1},
where Cn

1 = {z ∈Cn,‖z‖2 = 1}. Now ã is continuous because it is linear, and hence
it maps Cn

1 (which is compact by Heine–Borel) to some compact set ã(Cn
1) in Cn.

It is easy to see that the norm ‖ · ‖2 : Cn → R+ is continuous, and according to
Weierstrass the norm therefore assumes a finite maximum (as well as a minimum)
on any compact set K. Taking K = ã(Cn

1) proves the claim. �

Proposition A.7. Let a,b : H → H be linear maps, and let ψ ∈ H. Then:

‖aψ‖ ≤ ‖a‖‖ψ‖; (A.20)
‖ab‖ ≤ ‖a‖‖b‖; (A.21)
‖a∗‖ = ‖a‖; (A.22)
‖a∗a‖ = ‖a‖2. (A.23)

Proof. The first two inequalities are immediate from (A.18). Next, if ‖ψ‖ = 1, by
(A.3), (A.15), and (A.20) we have

‖a∗ψ‖2 = 〈a∗ψ,a∗ψ〉= 〈ψ,aa∗ψ〉 ≤ ‖ψ‖‖aa∗ψ‖ ≤ ‖a‖‖a∗ψ‖, (A.24)

so ‖a∗ψ‖ ≤ ‖a‖, and hence from (A.18), ‖a∗‖ ≤ ‖a‖. But (A.16) gives the opposite
inequality, whence (A.22). Finally, (A.21) and (A.22) yield ‖a∗a‖ ≤ ‖a∗‖‖a‖ =
‖a‖2. From (A.3) and (A.20), on the other hand, we obtain

‖aψ‖2 = 〈aψ,aψ〉= 〈ψa∗aψ〉 ≤ ‖a∗a‖, (A.25)

so ‖a‖2 ≤ ‖a∗a‖ by (A.18), and hence (A.23) is proved. �
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A.3 Projections

The most important examples (and also, as will see shortly, building blocks) of self-
adjoint operators are projections e : H → H, defined by the property

e2 = e∗ = e. (A.26)

Proposition A.8. There is a bijective correspondence e↔ L between:

• projections e on H;
• linear subspaces L of H,

given by

L = eH; (A.27)
e = ∑

i
|υi〉〈υi|, (A.28)

where eH = {eψ,ψ ∈ H} is the image of e, and (υi) is an arbitrary basis of L.

The proof is routine, including the fact that (A.28) is independent of the basis.
Whenever convenient, we write (A.28) as eL. For example, the “sub”space L = H
corresponds to eH = 1H , whereas L = {0} corresponds to e{0} = 0.

Define the orthogonal complement!of subset of Hilbert space L⊥ of any subset
L⊂ H by

L⊥ = {ψ ∈ H | 〈ψ,ϕ〉= 0∀ϕ ∈ L}. (A.29)

In particular, if L is a linear subspace of H, one easily checks that

eL⊥ = 1− eL. (A.30)

Corollary A.9. For each linear subspace L⊂ H one has

H = L⊕L⊥, (A.31)

in the sense that L∩L⊥ = {0}, and each vector ψ ∈ H has a unique decomposition

ψ = ψ‖+ψ⊥, (A.32)

where ψ‖ ∈ L and ψ⊥ ∈ L⊥.

Proof. Existence of the decomposition is given by

ψ‖ = eLψ; (A.33)
ψ⊥ = (1− eL)ψ. (A.34)

Uniqueness follows by assuming ψ = χ‖+χ⊥ with χ‖ ∈ L and χ⊥ ∈ L⊥: one then
has ψ‖ −χ‖ = ψ⊥−χ⊥, but since the left-hand side is in L and the right-hand side
is in L⊥, both sides lie in L∩L⊥ = 0. �
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A.4 Spectral theory

An eigenvector of an operator a is a nonzero element ψ ∈ H such that

aψ = λψ (A.35)

for some λ ∈ C, called an eigenvalue of a. We also define the eigenspace Hλ by

Hλ = {ψ ∈ H | aψ = λψ}, (A.36)

with associated projection eλ (in that Hλ = eλH, cf. Proposition A.8). In case that
dim(Hλ ) = 1 the eigenvalue λ is called non-degenerate (or simple). Otherwise it
is said to be degenerate, with multiplicity mλ = dim(Hλ ). In linear algebra, the set
of all eigenvalues of a is called the spectrum of a, denoted by σ(a) (for infinite-
dimensional H, this turns out to be the wrong definition of the spectrum, see §B.14).

We now give two formulations of the spectral theorem for self-adjoint operators.

Theorem A.10. Let a be a self-adjoint operator on H. Then σ(a)⊂R, eigenspaces
for different eigenvectors λ �= μ are orthogonal (i.e., eλ eμ = δλμeλ ), and

a = ∑
λ∈σ(a)

λ · eλ ; (A.37)

1H = ∑
λ∈σ(a)

eλ . (A.38)

Equivalently, we may reformulate the above spectral resolution of a in terms of the
existence of a basis (υi) of H consisting of eigenvectors of a. In that case, we have

a =
dim(H)

∑
i=1

λi|υi〉〈υi|; (A.39)

1H =
dim(H)

∑
i=1

|υi〉〈υi|, (A.40)

where λi is the eigenvalue corresponding to the eigenvector υi (i.e., aυi = λiυi).

Note that the eigenvalues λ occurring in (A.37) are all different, whereas the λi in
(A.40) need not be: the number of times an eigenvalue λi ∈ σ(a) occurs is given
by its multiplicity. This also implies that the spectral resolution (A.37) - (A.38) is
canonical (i.e. free of any choices), whereas (A.39) - (A.40) depends on arbitrary
choices of bases in all subspaces Hλ with dimension greater than one. Nonetheless,
it is easier to prove (A.39) - (A.40), which obviously imply (A.37) - (A.38): just
collect all λi that are equal to λ and realize that, as in (A.28), one has

eλ = ∑
i|λi=λ

|υi〉〈υi|. (A.41)
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More generally, for some (at the moment) arbitrary (but later: measurable) subset
Δ ⊂ R it turns out to be convenient to introduce the spectral projection eΔ on H
and the associated spectral subspace HΔ ⊆ H: if Δ ∩σ(a) = /0 we put eΔ = 0 and
HΔ = {0}, and otherwise,

eΔ = ∑
λ∈Δ∩σ(a)

eλ ; (A.42)

HΔ = eΔH. (A.43)

We now prepare for the proof of Theorem A.10. First, note from (A.15) that

2i · Im(〈ψ,aψ〉) = 〈ψ,aψ〉−〈ψ,aψ〉= 〈ψ,aψ〉−〈ψ,a∗ψ〉. (A.44)

If a∗ = a, from (A.35) and (A.44) one obtains Im(λ ) = 0 and hence σ(a)⊂ R.

Lemma A.11. A self-adjoint operator a has an eigenvalue λ for which |λ |= ‖a‖.
Proof. As in the previous proof, the norm ‖ ·‖ assumes a maximum on the compact
set aH1, where H1 = {ψ ∈ H,‖ψ‖ = 1}. Suppose this happens at aψ1, where by
construction ‖ψ1‖ = 1. By definition of the norm, this maximum must be ‖a‖, so
that ‖a‖= ‖aψ1‖. Hence, using a∗ = a, (A.3), and (A.23), we may estimate

‖a‖2 = ‖aψ1‖2 = 〈aψ1,aψ1〉= 〈ψ1,a2ψ1〉 ≤ ‖a2ψ1‖ ≤ ‖a2‖= ‖a‖2. (A.45)

Hence we need equality at the ≤ sign in (A.45), which according to the remark
below (A.3) can only be the case if a2ψ1 = ‖a‖2ψ1. Define χ1 = aψ1 −‖a‖ψ1.
There are two possibilities: if χ1 = 0, then aψ1 = ‖a‖ψ1, and χ1 �= 0, then

aχ1 = a2ψ1−‖a‖aψ1 = ‖a‖2ψ1−‖a‖aψ1 =−‖a‖χ1. (A.46)

Hence either aψ1 = ‖a‖ψ1 or aχ1 =−‖a‖χ1, which proves the claim. �

We are now in a position to prove Theorem A.10.

Proof. By Lemma A.11, we already found one eigenvector υ1 of a, viz. either υ1 =
ψ1 or υ1 = χ1. Furthermore, it is easy to show that if a self-adjoint operator a leaves
a linear subspace L⊂ H stable (in that aϕ ∈ L whenever ϕ ∈ L), then it also leaves
L⊥ stable, and remains self-adjoint as an operator a : L⊥ → L⊥. First use this with
L1 = C ·υ1. Lemma A.11, now applied to a : L⊥ → L⊥, gives a second eigenvector
υ2. Now take L2 to be the linear span of υ1 and υ2, and restrict a to L⊥2 , etc. Since
H is finite-dimensional, this procedure ends after dim(H) steps.

This leaves us with a basis (υi) of H that by construction entirely consists of
eigenvectors. The mutual orthogonality of these eigenvectors (and hence of the spec-
tral projections eλ ) follows from a simple calculation. �

Corollary A.12. The norm of a self-adjoint operator a is given by

‖a‖= sup{|λ |,λ ∈ σ(a)}. (A.47)
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Proof. This rapidly follows from Theorem A.10 by expanding ψ in (A.18) with
respect to the basis of H given in (A.39) - (A.40). �

Corollary A.13. A self-adjoint operator a is a projection iff:

• σ(a) = {0}, in which case a = 0;
• σ(a) = {1}, in which case a = 1;
• σ(a) = {0,1}, in which case a is called a proper projection.

In particular, if e is a nonzero projection, then

‖e‖= 1. (A.48)

Proof. Only the third case is nontrivial. If a = e is a proper projection, then by
Corollary A.9 its eigenvectors can only lie in L = eH (with eigenvalue λ = 1) or
in L⊥ = (1− e)H (with eigenvalue λ = 0). The converse implication follows from
Theorem A.10, notably from (A.37). Eq. (A.48) then follows from (A.47). �

A less elementary but more powerful approach to the spectral theorem is as fol-
lows. For the notion of a C*-algebra see Definition C.1 in Appendix C.

Definition A.14. Let a ∈ B(H). Then C∗(a) is the C*-algebra generated by a and
1H (i.e., the algebra of all polynomials in a).

Theorem A.15. If a is self-adjoint, then C∗(a) is commutative, and:

1. There is an isomorphism of (commutative) C*-algebras

C(σ(a))∼=C∗(a), (A.49)

written f �→ f (a), which is unique if it is subject to the following conditions:

• the unit function 1σ(a) : λ �→ 1 corresponds to the unit operator 1H;
• the identity function idσ(a) : λ �→ λ is mapped to the given operator a.

2. In terms of the spectral projections eλ of the operator a we have

C∗(a) =C∗(eλ ,λ ∈ σ(a)) = span(eλ ,λ ∈ σ(a)), (A.50)

where the middle term is the C*-algebra generated by the projections eλ .
3. Under the isomorphism (A.49),

eλ = δλ (a), (A.51)

where the delta-function δλ ′ on σ(a) is defined by δλ ′ : λ �→ δλλ ′ .

Proof. For any complex (finite) polynomial p(x) = ∑n cnxn on R, define an operator

p(a) = ∑
n

cnan. (A.52)

Simple computations then show that, for arbitrary polynomials p, and t ∈ C,
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(t p+q)(a) = t p(a)+q(a); (A.53)
(pq)(a) = p(a)q(a); (A.54)

p(a)∗ = p(a). (A.55)

Hence the space P∗(a) of all such polynomials in a forms a ∗-algebra of B(H). As
a linear subspace of the finite-dimensional vector space B(H), P∗(a) must itself be
finite-dimensional, hence it is C*-algebra. Moreover, P∗(a) clearly contains 1H (take
p(x) = 1) as well as a (take p(x) = x), and since P∗(a)⊆C∗(a) by definition of the
latter, we must have P∗(a) =C∗(a). Since pq = qp and hence p(a)q(a) = q(a)p(a)
by the above computations, it follows that P∗(a) and hence C∗(a) is commutative.
This proves the first claim.

To establish the isomorphism (A.49), we are going to define a map

C(σ(a)) � f �→ f (a) ∈C∗(a). (A.56)

We initially do this for polynomials f = p, so that f (a) = p(a) is defined by (A.52).
Since C∗(a) = P∗(a) consists of polynomials in a, the map (A.56) is evidently sur-
jective. It is also injective, for suppose p(a) = q(a). Applying this to an eigenvector
υλ ∈ Hλ yields p(λ ) = q(λ ), for each λ ∈ σ(a), and hence p = q as functions
on σ(a). Hence f �→ f (a) is, at least, a bijection of sets. Moreover, the properties
(A.53) - (A.55) turn it into an isomorphism of C*-algebras, evidently with the prop-
erties stated after (A.49). Finally, for any given function f : σ(a)→ C there exists
some polynomial p that coincides with f on the finite set σ(a)⊂R, so that we may
define f (a) in (A.56) by p(a), as in (A.52); by the above proof of injectivity, the
ensuing operator f (a) is independent of the choice of p.

We prove the last two claims, using the orthogonality property eλ eμ = δλμeλ of
spectral projections and the defining properties e2

λ = eλ = eλ of general projections,
see (A.26). From eq. (A.37) in Theorem A.10 we obtain (for polynomials f ):

f (a) = ∑
λ∈σ(a)

f (λ ) · eλ . (A.57)

If we now define C∗(a)′ as the linear span of the spectral projections eλ and 1H
(which is a unital commutative C*-algebra by the properties of the eλ just men-
tioned), then (A.57) shows that C∗(a) ⊆ C∗(a)′. Conversely, (A.57) gives (A.51),
which shows that C∗(a)′ ⊆C∗(a), and hence C∗(a) =C∗(a). �

A second approach to the final claims of Theorem A.15 is more ambitious, as it
includes a derivation of Theorem A.10 (instead of assuming it, as we just did). We
now use (A.51) to define the spectral projections eλ ; from (A.54) - (A.55) we have

e2
λ = δλ (a)2 = δ 2

λ (a) = δλ (a) = eλ ;

e∗λ = δλ (a)∗ = δλ (a) = δλ (a) = eλ ,

showing that eλ is indeed a projection. Also note the following identities in C(σ(a)):
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idσ(a) = ∑
λ∈σ(a)

λ ·δλ ; (A.58)

1σ(a) = ∑
λ∈σ(a)

δλ . (A.59)

Transferring these from C(σ(a)) to C∗(a) via the isomorphism (A.49) then yields
(A.37) - (A.38). To analyse the projections eλ defined by (A.51), we first compute

eλ eμ = δλ (a)δμ(a) = (δλδμ)(a) = δλμδλ (a) = δλμeλ , (A.60)

which shows that the eλ are mutually orthogonal. Second, we compute

aeλψ = aδλ (a)ψ = idσ(a)(a)δλ (a)ψ = (idσ(a) ·δλ )(a)ψ = λ ·δλ (a)ψ = λeλψ,

which shows that eλH ⊆Hλ . Third, (A.60) and (A.59) give⊕λ∈σ(a)eλH =H, which
together with the second step gives eλH = Hλ . Hence the eλ are indeed the spectral
projections of a. Since we have already proved (A.37) - (A.38), we conclude that
Theorem A.10 follows from the first part of Theorem A.15. By the argument in the
main proof above, this first part then also yields the second part.

The generalization of Theorem A.15 to a family a = (a1, . . . ,an) of commuting
self-adjoint operators is as follows.

Definition A.16. Let a = (a1, . . . ,an) be commuting self-adjoint operators.

1. A joint eigenvector of a is a nonzero vector ψ ∈ H such that aψ = λψ , where
λ = (λ1, . . . ,λn) with λi ∈ C, i.e., for each i = 1, . . . ,n, one has aiψ = λiψ . We
call λ a joint eigenvalue of a.

2. The joint spectrum σ(a1, . . . ,an)≡ σ(a) consists of all joint eigenvalues of a.
3. C∗(a) is the smallest unital C*-subalgebra of B(H) that contains each ai.

Clearly, we have
σ(a)⊆ σ(a1)×·· ·×σ(an)⊂ Rn. (A.61)

Furthermore, since dim(H) < ∞, once again C∗(a) is just the algebra of complex
polynomials in all operators ai.

Theorem A.17. Let a = (a1, . . . ,an) be commuting self-adjoint operators on H.
Then the C*-algebra C∗(a) generated by these operators is commutative, and:

1. There is a unique isomorphism of C*-algebras

C(σ(a))∼=C∗(a), (A.62)

written f �→ ( f (a), subject to the following conditions:

• the unit function 1σ(a) : λ �→ 1 corresponds to the unit operator 1H;
• the coordinate function πi : λ �→ λi is mapped to ai, for each i = 1, . . . ,n.

2. In terms of the spectral projections e(ai)
λi

of the operators ai, we have

C∗(a) =C∗(e(ai)
λi

, i = 1, . . . ,n,λi ∈ σ(ai)). (A.63)
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3. If for each λ ∈ σ(a) we define the operator

eλ = e(a1)
λ1
· · ·e(an)

λn
, (A.64)

then eλ is a projection, in terms of which the joint spectrum may be rewritten as

σ(a) = {λ ∈ σ(a1)×·· ·×σ(an) | eλ �= 0}. (A.65)

4. Finally, we have

C∗(a) =C∗(eλ ,λ ∈ σ(a)) = span(eλ ,λ ∈ σ(a)). (A.66)

We will not prove this in any detail, as the reasoning is quite analogous to the proof
of Theorem A.15; for example, in (A.56) one just has to replace a by a. The only
nontrivial point is that since all ai commute, so do all their spectral projections e(i)λi

;
this follows from (A.51), which makes these operators elements of the commuta-
tive C*-algebra C∗(a) (which by definition contains each C∗(ai) and, in fact, is just
the smallest C*-algebra in B(H) with this property). Using (A.38) for each ai and
multiplying the n versions of the unit 1H thus obtained with each other, yields

H =
⊕

λ∈σ(a)
Hλ . (A.67)

Since p(a)υλ = p(λ )υλ for each joint eigenvector υλ ∈Hλ , eq. (A.67) gives injec-
tivity of the map (A.56) (mutatis mutandis) by the same argument as for n = 1.

This leads to a multi-spectral theorem for the commuting family a, which is most
conveniently stated in the following form. First, for any polynomial

p(x1, . . . ,xn) = ∑
k1,...,kn

xk1
1 · · ·xkn

n , (A.68)

in n real variables, we generalize (A.52) to

p(a) = ∑
k1,...,kn

ak1
1 · · ·akn

n . (A.69)

Theorem A.18. Let a = (a1, . . . ,an) be commuting self-adjoint operators on H.
Then for any polynomial p in n real variables, with associated operator (A.69),

p(a) = ∑
λ∈σ(a)

p(λ ) · eλ , (A.70)

where the spectral projections eλ are given by (A.64).

The special case p(x1, . . . ,xn) then recovers (A.67). As for n = 1, eq. (A.70) may be
generalized to arbitrary continuous functions f (x1, . . . ,xn), either by replacing f by
a polynomial that coincides with f on the joint spectrum σ(a), or by approximating
f by polynomials on some compact set K containing σ(a).
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Proposition A.19. Let a = (a1, . . . ,an) be a family of commuting self-adjoint oper-
ators on H. Then there is a self-adjoint operator a ∈ B(H) such that C∗(a) =C∗(a).

Proof. Take a = ∑λ∈σ(a) cλ eλ , with all cλ different from each other. Then

C∗(a) =C∗(eλ ,λ ∈ σ(a)), (A.71)

by (A.50), and hence the claim follows from (A.66). �

Corollary A.20. Every (unital) commutative C*-algebra C in B(H) is generated by
a single self-adjoint operator a (and the unit 1H), i.e., C =C∗(a).

Proof. Just take a basis (ck) of C as a vector space and decompose ck = ak + ia′k
with ak and a′k self-adjoint (namely, ak =

1
2 (ck + c∗k) and a′k =− 1

2 i(ck− c∗k)). If C is
to be commutative, each ck must be normal, i.e., c∗kck = ckc∗k , which is equivalent
to commutativity of ak and a′k, and all ck must commute, i.e., all ak and a′k must
commute for different k. Hence C = C∗(ak,a′k), which is of the form C∗(a) for an
appropriate family a, and so by Proposition A.19 it takes the form C∗(a). �

We say that a unital commutative C*-algebra C ⊂ B(H) is maximal if it is not
contained in some bigger unital commutative C*-algebra in B(H). Also, we call a
self-adjoint operator a maximal iff σ(a) has cardinality dim(H), or, in other words,
if each eigenvalue of a is nondegenerate. In finite dimension it is easy to classify
maximal unital commutative C*-algebras in B(H) up to unitary equivalence.

Here we say (as usual) that a linear map u : H→H ′ is unitary when it is invertible
and satisfies 〈uϕ,uψ〉′ = 〈ϕ,ψ〉 for each ϕ,ψ ∈ H (note that the inverse u−1 is
automatically linear). Two ∗-algebras C⊂ B(H) and C′ ⊂ B(H ′) are called unitarily
equivalent, then, if there is a unitary map u : H → H ′ such that C′ = uCu−1.

Theorem A.21. A unital commutative C*-algebra C⊂ B(H) is maximal iff it is uni-
tarily equivalent to the algebra Dn(C) of all diagonal matrices on H ′ = Cn.

Proof. First, Dn(C) is indeed maximal abelian in Mn(C); any extension of Dn(C)
would have to contain some additional matrix b ∈ Mn(C) that commutes with all
a ∈ Dn(C), but by elementary linear algebra this very property implies b ∈ Dn(C).

By Corollary A.20, we have C = C∗(a), where a∗ = a. Then C is maximal iff a
is maximal. For if not, some eigenvalue λ ′ ∈ σ(a) would have multiplicity mλ ′ > 1,
and hence the corresponding spectral projection eλ ′ could be decomposed as eλ ′ =
e(1)λ ′ + e(2)λ ′ , where both terms are orthogonal and hence commute. We could then

extend C∗(a), as in (A.50), to C∗(eλ ,e
(1)
λ ′ ,e

(2)
λ ′ ,λ ∈ σ(a),λ �= λ ′), which remains

commutative, and we have a contradiction with the alleged maximality of C∗(a).
Thus a is maximal, in which case we list the spectrum as σ(a) = {λ1, . . . ,λn},

with corresponding eigenvectors {υλ1 , . . . ,υλn}. This gives rise to a unitary map
u : H →Cn defined by uυλi = υi, where (υ1, . . . ,υn) is the standard basis of Cn, and
clearly uau−1 = diag(λ1, . . . ,λn). If (as is the case) all entries λi ∈ R are different,
any (z1, . . . ,zn) ∈ Cn may be written as zi = p(λi), i = 1, . . . ,n, where p is some
complex polynomial p(x) = ∑i cixn, x ∈ R, ci ∈ C. Hence uC∗(a)u−1 = Dn(C). �
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A.5 Positive operators and the trace

Operators a : H → H satisfying one (and hence all) of the conditions in the next
proposition are called positive, written a≥ 0 or 0≤ a. More generally, we write a≤
b iff b−a≥ 0. Positive operators play a very important role in quantum mechanics.

Proposition A.22. The following conditions on an operator a are equivalent:

1. 〈ψ,aψ〉 ≥ 0 for arbitrary ψ ∈ H.
2. a∗ = a and σ(a)⊂ R+.
3. a = c2 for some self-adjoint operator c.
4. a = b∗b for some operator b.

Proof. 1 → 2: Putting 〈ψ,aψ〉 ≥ 0 in (A.44) gives 〈ψ,aψ〉 = 〈ψ,a∗ψ〉 for all ψ .
But for any operator b and vectors χ,ϕ ∈ H, as in (A.10) we have the identity

4〈χ,bϕ〉 = 〈χ+ϕ,b(χ+ϕ)〉−〈χ−ϕ,b(χ−ϕ)〉
+ i〈χ− iϕ,b(χ− iϕ)〉− i〈χ+ iϕ,b(χ+ iϕ)〉. (A.72)

So b = 0 iff 〈ψ,bψ〉 = 0 for all ψ ∈ H, and hence condition 1 implies a∗ = a. We
therefore know that σ(a)⊂ R, and since an eigenvalue λ < 0 would contradict the
first condition 1, the second condition follows.

2→ 3: define c =
√

a, where (since λi ≥ 0) the square root is (well) defined by

√
a =

dim(H)

∑
i=1

√
λi|υi〉〈υi|. (A.73)

3→ 4 is trivial (take b = c), as is 4→ 1, since 〈ψ,aψ〉= ‖bψ‖2. �

Combining this with Proposition A.5, we obtain the following result.

Proposition A.23. The relationship 〈ϕ,ψ〉′ = 〈ϕ,aψ〉 gives a bijective correspon-
dence between (hermitian/positive) sesquilinear forms 〈·, ·〉′ on H and (hermi-
tian/positive) operators a on H.

Proof. One direction is trivial. For the other, fix χ ∈ H and define a functional
f (ψ) = 〈χ,ψ〉′. By Proposition A.5, f = fϕ for some unique ϕ ∈ H. Define an
operator b : H → H by bχ = ψ and put a = b∗. �

Proposition A.24. Any self-adjoint operator a ∈ B(H) has a decomposition

a = a+−a−, (A.74)

where a± ≥ 0. These are unique if they also satisfy a+a− = a−a+ = 0.

Proof. Using Theorem A.10, we may take

a± =± ∑
λ∈σ(a)∩R±

λ · eλ . (A.75)
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Equivalently, we may use Theorem A.15 to rewrite (A.75) as

a± = (|idσ(a)| ·1R±)(a)≡ f±(a), (A.76)

where |idσ(a)| is the function λ �→ |λ |, R+ = [0,∞) and R− = (−∞,0). To prove
uniqueness, we note that since σ(a)⊂ R is finite, there is a polynomial p such that
f+ = p, and hence a+ = p(a). If a = a′+−a′− with a′± ≥ 0 and a′+a′− = a′−a′+ = 0,
then for any polynomial p we have p(a) = p(a′+)+ p(−a′−). For the one just taken,
this gives p(a) = a′+ by positivity of the a′±, and hence a′+ = a+, etc. �

We now introduce a construction of great significance to quantum mechanics.

Lemma A.25. If (υi) and (υ ′i ) are bases of H, then for any operator a : H → H,

∑
i
〈υi,aυi〉= ∑

i
〈υ ′i ,aυ ′i 〉.

Proof. A simple computational proof uses the identity (A.40) for any basis (υi) (i.e.,
the υi need not be eigenvectors of a, as in (A.39)). Then, as in physics books,

∑
i
〈υ ′i ,aυ ′i 〉= ∑

i, j,k
〈υk,υ ′i 〉〈υ ′i ,υ j〉〈υ j,aυk〉= ∑

j,k
〈υk,υ j〉〈υ j,aυk〉= ∑

i
〈υi,aυi〉.�

This lemma allows us to define the trace of a by

Tr(a) = ∑
i
〈υi,aυi〉, (A.77)

where (υi) is any basis of H. By almost the same proof as Lemma A.25 we obtain

Tr(ab) = ∑
i, j
〈υi,aυ j〉〈υ j,bυi〉= ∑

i, j
〈υi,bυ j〉〈υ j,aυi〉= Tr(ba). (A.78)

If u is unitary (in that uu∗ = u∗u = 1,) then from either Lemma A.25 or eq. (A.78),

Tr(uau∗) = Tr(a). (A.79)

Finally, if a∗ = a, then (A.37) and taking the trace over the basis in (A.39) yields

Tr(a) = ∑
λ∈σ(a)

mλ ·λ . (A.80)

Definition A.26. A density operator is a positive operator ρ on H such that

Tr(ρ) = 1. (A.81)

The analysis of density operators hinges on the introduction of a second operator
norm, beside the canonical one (A.18). In finite dimension these norms are equiva-
lent, but in general they are not, and it makes sense to introduce both already here.

For any a ∈ B(H), the operator a∗a is positive and hence self-adjoint, so that
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a∗a = ∑
μ∈σ(a∗a)

μeμ =
n

∑
i=1

μi|υi〉〈υi| (A.82)

for certain eigenvalues μi ≥ 0 (including possible multiplicities) or μ ∈ σ(a∗a) (ex-
cluding multiplicities), all necessarily non-negative by positivity of a∗a, and some
normalized eigenvectors υi or spectral projections eμ ; cf. (A.37) - (A.39). Then put

‖a‖1 = ∑
μ∈σ(a∗a)

√
μmμ =

n

∑
i=1

√
μi. (A.83)

It is not immediately clear that ‖ · ‖1 is a norm on B(H), but we will shortly prove
that it is; we provisionally refer to B(H), equipped with the norm (A.83), as B1(H).

Another way to defined this trace-norm is to first introduce the absolute value

|a|=√a∗a (A.84)

of any operator a ∈ B(H), where the square root is simply defined as

√
a∗a = ∑

μ∈σ(a∗a)

√
μeμ =

n

∑
i=1

√
μi|υi〉〈υi|, (A.85)

which coincides with f (a∗a) for f (x) =
√

x as defined in Theorem A.15, see (A.57).
If a is positive, then |a|= a. Some other useful properties of the absolute value are

ker |a| = ker a = (ran |a|)⊥; (A.86)
‖|a|ψ‖ = ‖aψ‖, ψ ∈ H. (A.87)

For the first equality in (A.86),

aψ = 0⇒ a∗aψ = 0⇔√
a∗aψ = 0⇔ |a|ψ = 0,

but also a∗aψ = 0⇒ 〈ψ,a∗aψ〉= 0⇔‖aψ‖2 = 0⇔ aψ = 0. For the second,

ker a = (rana∗)⊥, (A.88)

which in turn is immediate from the definition of the adjoint. Eq. (A.87) is similar.
Though once again lacking transparency as a norm, by construction we now have

‖a‖1 = Tr(|a|), (A.89)

so if (λi) are the (positive) eigenvalues of |a|, including multiplicities, then

‖a‖1 =
n

∑
i=1

λ1. (A.90)

To obtain suitable estimates for the trace norm we need some further techniques.
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Definition A.27. Let H be a finite-dimensional Hilbert space.

1. A partial isometry is an operator u ∈ B(H) for which u∗u = e is a projection.
2. A unitary is an invertible partial isometry.

For immediate and later reference, we collect some properties of such operators.

Lemma A.28. Let H be a Hilbert space with a partial isometry u ∈ B(H).

• Also u∗ is a partial isometry, or, equivalently, uu∗ = f is a projection.
• The kernel of u is (pH)⊥, and its range is f H.
• The given partial isometry u is unitary from eH to f H.
• Conversely, an operator v on H for which there is a (closed) subspace L⊂ H on

which v is isometric, whilst it is identically zero on L⊥, is a partial isometry.
• If u �= 0, then ‖u‖= 1.
• An partial isometry u is unitary iff u∗u = uu∗ = 1H (i.e., e = f = 1H).

The proof is an easy verification. In the infinite-dimensional case, a distinction arises
between isometries (i.e, injective partial isometries, so that u∗u = 1H ) and unitaries,
but if dim(H)< ∞, injectivity implies subjectivity and hence bijectivity.

We now come to von Neumann’s highly convenient polar decomposition of an
operator, which mimics the polar decomposition z = r exp(iϕ) of z ∈ C.

Proposition A.29. For a ∈ B(H), assumed nonzero, the operator u given by

u|a|ψ = aψ, (|a|ψ ∈ ran |a|); (A.91)
uψ = 0, (ψ ∈ (ran |a|)⊥ = ker |a|) : (A.92)

1. Is well defined;
2. Is a partial isometry (and hence has norm ‖u‖= 1);
3. Is unitary from ran |a| to rana (if dim(H) = ∞, take closures (ran |a|)−, (rana)−);
4. Satisfies

‖|a|ψ‖ = ‖aψ‖; (A.93)
u∗u|a| = |a|= |a|u∗u. (A.94)

Given that u is a partial isometry, it is characterized by the two properties:

ker u = ker a; (A.95)
a = u|a|. (A.96)

Furthermore, if a �= 0, then a is invertible iff u is unitary.

Proof. This follows from (A.86) - (A.87), except the claim that (A.95) - (A.96)
uniquely define u, which we will not use and whose proof we therefore omit. �

Recall from the easy Theorem 2.7 that there is a bijective correspondence be-
tween linear maps ω : B(H)→ C and operators ρ ∈ B1(H), given by (2.33), i.e.,

ω(a) = Tr(ρa). (A.97)
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Proposition A.30. If H is finite-dimensional, the map ω �→ ρ from B(H)∗ to B1(H),
defined by (A.97) gives an isometric isomorphism of Banach spaces

B(H)∗ ∼= B1(H); (A.98)

in particular, one has
‖ω‖= ‖ρ‖1. (A.99)

Proof. Bijectivity being known already, the basic estimate towards (A.99) is

|Tr(ρa)| ≤ ‖ρ||1‖a‖. (A.100)

This follows from the polar decomposition ρ = u|ρ| and the spectral decomposition

|ρ|=
m≤n

∑
i=1

pi|υi〉〈υi|, (A.101)

where pi > 0 (but not necessarily ∑i pi = 1). Assuming ρ �= 0, using (A.101), (A.78),
Cauchy–Schwarz, (A.20), (A.21), ‖u‖= ‖υi‖= 1, and (A.90), we indeed have

|Tr(ρa)| = |Tr(u|ρ|a)|= |Tr(|ρ|au)|= |∑
i

pi〈υi,auυi〉| (A.102)

≤ ∑
i

pi|〈υi,auυi〉| ≤∑
i

pi‖a‖‖u‖‖υi‖= ‖ρ||1‖a‖. (A.103)

To prove saturation of this bound, take a = u∗, which is isometric on the space
ran|ρ|= span(υ1, . . . ,υm) and hence satisfies ‖a‖= 1 as well as 〈υi,auυi〉=1. Con-
sequently, from (A.102) we find |Tr(ρa)|= ∑i pi. By (A.90) for ρ instead of a, i.e.,
‖ρ‖1 = Tr(|ρ|) = ∑i pi, we obtain |Tr(ρa)|= ‖ρ‖1, which yields (A.99). �

Corollary A.31. The trace-norm ‖ · ‖1 is (indeed) a norm on B1(H).

As explained in more detail in §B.9, for any vector space V with norm, with double
dual V ∗∗, we have a canonical map V →V ∗∗ given by v �→ v̂, where

v̂(θ) = θ(v), (A.104)

where v∈V , v̂∈V ∗∗, and θ ∈V ∗. By the general theory, this map is always isometric
(and hence injective), and if V is finite-dimensional, it is also surjective and hence
an isomorphism. Therefore, taking V = B(H), we infer from (A.98) that

B1(H)∗ ∼= B(H), (A.105)

where a ∈ B(H) corresponds to â ∈ B1(H)∗ by means of

â(ρ) = Tr(ρa). (A.106)

This new role of B(H) as the dual of B1(H) also equips it with a new topology
(besides the norm topology it already has), viz. the accompanying w∗-topology.
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This topology is defined by saying that an → a iff ân(ρ)→ â(ρ) for each ρ ∈
B1(H). For historical reasons this is called the σ -weak topology on B(H), so we say
that an → a σ -weakly in B(H) iff Tr(ρan)→ Tr(ρa) for each ρ ∈ B1(H).

To close, it is interesting to ut the trace-norm into a classical perspective. As ex-
plained in Chapter 1, at least on finite-dimensional Hilbert spaces, density operators
are the quantum counterparts of probability measures (or distributions). If X is a
finite set, the associated function space C(X) carries the supremum-norm

‖ f‖∞ = sup{| f (x)|, x ∈ X}, (A.107)

cf. (1.24). We equip the space C(X)∗ of all linear maps ω : C(X)→C with the norm

‖ω‖= sup{|ω( f )|, f ∈C(X),‖ f‖∞ = 1}. (A.108)

Let L1(X) be the vector space of all functions ρ : X → C, equipped with the norm

‖ρ‖1 = ∑
x∈X
|ρ(x)|. (A.109)

As in the quantum case just discussed, even for finite X it is not immediate that this
expression indeed defines a norm; this follows from the next proposition.

Each ρ ∈ L1(X) defines a linear map ω : C(X)→ C by

ω( f ) = ∑
x∈X

ρ(x) f (x). (A.110)

Conversely, each ω ∈C(X)∗ defines an element ρ ∈ L1(X) by

ρ(x) = ω(δx), (A.111)

with δx ∈C(X) defined by δx(y) = δxy as usual.

Proposition A.32. If X is finite, the map ω �→ ρ from C(X)∗ to L1(X), defined by
(A.111), has inverse (A.110) and gives an isometric isomorphism

C(X)∗ ∼= L1(X) (A.112)

of Banach spaces; in particular, one has

‖ω‖= ‖ρ‖1. (A.113)

Proof. The vector space isomorphism in question can be checked effortlessly. To
verify (A.113), note that trivially |ω( f )| ≤ ‖ρ‖1‖ f‖∞, whence ‖ω‖ ≤ ‖ρ‖1. To
show saturation of this bound, given ρ ∈ L1(X) take f (x) = |ρ(x)|/ρ(x) if ρ(x) �= 0
and f (x) = 0 elsewhere; if ρ �= 0 this gives ‖ f‖∞ = 1 and |ω( f )|= ‖ρ‖1. �
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Notes

The material in this appendix has been collected from numerous functional analysis
books (some of which are mentioned in the Notes to the next appendix), adapted to
the finite-dimensional case. Though not used in preparing this text, Halmos (1958,
1970) are classics. Theorem A.3 is due to Jordan & von Neumann (1935); Amir
(1986) contains many other characterizations of inner product spaces.



Appendix B

Basic functional analysis

This appendix contains all technical information on general Hilbert spaces (as op-
posed to the finite-dimensional ones of the previous appendix) and, more generally,
infinite-dimensional Banach spaces, that is either directly needed in the main text,
or forms necessary preparation for the next appendix on operator algebras (which in
turn play a central role in this book). Since most interesting examples of both Hilbert
spaces and more general Banach spaces require some measure theory, which at the
same time provides the mathematical foundation of probability theory, we include
a brief introductory overview to this area as well (restricted, though, to the case we
need, viz. measures and integrals on locally compact spaces).

Functional analysis has its roots in both mathematics and physics. In particular,
the general area of spectral theory, which emerged during the period 1900-1930
in the hands of Hilbert and his school, largely owes its existence to mathematical
physics, as well as to Hilbert’s genius in finding the right combination of examples
and abstract theory (including his innovative definition of the spectrum). Hilbert’s
school culminated in the books Methoden der mathematischen Physik by Courant
and Hilbert (1924), Gruppentheorie und Quantenmechanik by Weyl (1928), and
Mathematische Grundlagen der Quantenmechanik by von Neumann (1932), all of
whom were at Göttingen at the time (as were such giants in the history of quan-
tum mechanics like Born, Heisenberg, and Jordan). Whereas Courant & Hilbert
at least thought they described classical physics (although it soon turned out that
their discussion of eigenvalue problems paved the way for the Schrödinger equation
discovered two years later), von Neumann explicitly developed the Hilbert space
formalism in order to describe quantum physics (for example, the modern abstract
definition of a Hilbert space was his), as did Weyl (in connection with group theory).

What seems to have come from pure mathematics, though, is the idea, central to
functional analysis, of looking at functions as points in some (infinite-dimensional)
vector space. This emerged from the French school of Hadamard and his student
Fréchet, requiring considerable interaction between the (then) new fields of linear
algebra and topology. Eventually, this also led to the fundamental work of Banach.

We hope that the combination of logical setup, examples, theorems, and proofs in
this appendix helps convince the reader of the sober elegance of functional analysis.
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B.1 Completeness

A notable difference between finite-dimensional vector spaces with norm and
infinite-dimensional ones is that the former are always complete in a sense to be
defined now, whereas the latter may or may not be. This distinction has major con-
sequences, especially where idealizations (and hence limits) are concerned.

As before, all vector spaces are defined over C (unless stated otherwise).

Definition B.1. Let V be a vector space (or, more generally, a set).
A metric on V is a function d : V ×V → R+ satisfying, for all f ,g,h ∈V :

1. d( f ,g)≤ d( f ,h)+d(h,g) (triangle inequality);
2. d( f ,g) = d(g, f ) for all f ,g ∈V (symmetry);
3. d( f ,g) = 0 iff f = g (positive definiteness).

Our main example is a vector space V with norm ‖ · ‖, which, as an easy exercise
shows, gives rise to a metric on V via

d( f ,g) = ‖ f −g‖. (B.1)

In particular, an inner product on V induces a metric on V through (A.2) and (B.1).
The reader should have some experience with metric spaces from an undergrad-

uate Analysis course, but for convenience we repeat the definition of completeness.

Definition B.2. 1. Let (vn) = {vn}n∈N be a sequence in a metric space (V,d).
We say that vn → v for some v ∈V when limn→∞ d(vn,v) = 0, or, more precisely:
for any ε > 0 there is N ∈ N such that d(vn,v) < ε for all n > N. In a normed
space, this means that vn → v iff limn→∞ ‖vn− v‖= 0.

2. A sequence (vn) in (V,d) is called a Cauchy sequence when d(vn,vm)→ 0 when
n,m→ ∞, or, more precisely: for any ε > 0 there is N ∈ N such that d(vn,vm)<
ε for all n,m > N. In a normed space, this means that (vn) is Cauchy when
‖vn− vm‖→ 0 for n,m→ ∞, in other words, when limn,m→∞ ‖vn− vm‖= 0.

3. A metric space (V,d) is called complete when every Cauchy sequence in V con-
verges (i.e., to an element of V ).

A convergent sequence is Cauchy: from the triangle inequality and symmetry one
has d(vn,vm) ≤ d(vn,v) + d(vm,v), so for given ε > 0 there is N ∈ N such that
d(vn,v)< ε/2, et cetera. However, the converse statement does not hold in general:
for example, take the vector space �c(N) of all functions f : N→ C that are zero
expect at finitely many places (with the obvious pointwise operations), or, equiva-
lently, the vector space C∞ of all sequences (xn) with finitely many nonzero entries.
This vector space is incomplete in any conceivable norm, like the sup-norm

‖ f‖∞ = sup{| f (x)|,x ∈ N}. (B.2)

Indeed, the sequence ( fn), where fn(x) = 1/x for x = 1, . . . ,n and f (x) = 0 for x > n,
which corresponds to the sequence (1,1/2,1/3, . . . ,1/n,0,0, . . .) in C∞ is Cauchy,
but its obvious limit f (x) = 1/x for each x ∈ N, or xn = 1/n, does not lie in �c(N).



B.1 Completeness 517

Definition B.3. • A Banach space is a vector space with norm that is complete in
the associated metric (B.1).

• A Hilbert space is vector space with inner product that is complete in the associ-
ated metric (B.1), in which the norm is defined by (A.2). Equivalently, a Hilbert
space is a Banach space whose norm comes from an inner product via (A.2).

As we have seen, �c(N) fails to be a Banach space in the sup-norm, but (its comple-
tion) �∞(N), which consists of all bounded functions f : N→ C, is (see §B.2).

Definition B.4. Two norms ‖·‖ and ‖·‖′ on the same vector space V are equivalent

if there are constants M > 0 and m > 0 such that for any v ∈V ,

m‖v‖′ ≤ ‖v‖ ≤M‖v‖′. (B.3)

In that case, the two metric topologies on X defined by these norms coincide, so that
in particular completeness and convergence in ‖ · ‖ and ‖ · ‖′ are the same.

Proposition B.5. Let V be a finite-dimensional vector space. All norms on V are
equivalent, and hence V is complete in any norm.

Proof. We derive this from a basic fact of Analysis, namely that Cn is complete in
the (Euclidean) norm ‖ · ‖2 derived from the standard inner product (A.11), that is,

‖z‖2
2 =

n

∑
i=1
|zi|2. (B.4)

So the first step is to transfer the problem from V to Cn, where n = dim(V ), by
choosing a basis (υi) of V , and mapping υi to the standard basis vector ui of Cn.
Linear extension then maps v = ∑i ziυi ∈V to z = (z1, . . . ,zn) ∈ Cn, which gives an
isomorphism V → Cn. This maps endows Cn with a new norm ‖z‖ = ‖v‖ (i.e. the
given norm on V ), which we now prove to be equivalent to ‖·‖2 ≡ ‖·‖′. The second
inequality in (B.3) easily follows from Cauchy–Schwarz, viz.

‖z‖= ‖∑
i

ziui‖ ≤∑
i
|zi|‖ui‖ ≤

√
∑

i
‖ui‖2

√
∑

j
|zi|2 ≡M‖z‖2.

This inequality, together with the elementary but extremely useful estimate

|‖v‖−‖w‖| ≤ ‖v−w‖, (B.5)

which is valid for any norm in any dimension, implies that the function ‖·‖ :Cn→R
is continuous with respect to the Euclidean metric on Cn. Now the unit ball Cn

1 =
{x ∈ Cn | ‖x‖2 = 1} in Cn is compact, so according to Weierstrass, the norm ‖ · ‖
assumes a minimum on Cn

1. Hence there exists μ ∈ Cn
1 such that ‖μ‖ ≤ ‖z‖ for all

z ∈ Cn
1. For arbitrary nonzero z ∈ Cn, the rescaled vector z′ = z/‖z‖2 lies in Cn

1, so
‖μ‖ ≤ ‖z′‖, which is nothing but the first inequality in (B.3) with m = ‖μ‖. �
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B.2 �p spaces

The simplest examples of infinite-dimensional Banach spaces are the �p-spaces,
where 1 ≤ p ≤ ∞ (for p < 1 the Minkowski inequality (B.14) below goes in the
wrong direction, so that, by failure of the triangle inequality, eq. (B.8) below fails to
define a norm). Such spaces are defined on some set X , hence we write �p(X).

If X = {x1, . . . ,xn} is finite, with cardinality n = |X |, then �p(X) consist of all
function f : X → C with pointwise operations, so that �p(X)∼= Cn as vector spaces
through the map f �→ ( f (x1), . . . , f (xn)), where Cn is equipped with a specific (and,
for p �= 2, unusual) norm. However, by Proposition (B.5) we may as well take p = 2
and nothing has been gained compared with the linear algebra of Appendix A.

Therefore, life starts with infinite sets X , and we begin with the simplest of those,
viz. X =N (but to avoid unnecessary duplication with regard to later generalization,
although for the moment we assume X =N, we still write X for the underlying set).
We define �p ≡ �p(X) as the set of functions f : X → C that satisfy

∑
x∈X
| f (x)|p < ∞ (1≤ p < ∞); (B.6)

sup
x∈X
| f (x)| < ∞ (p = ∞). (B.7)

As will be shown in far greater generality (cf. Theorem B.9), the point is that for any
1≤ p≤ ∞, the set �p(X) thus defined is not merely a vector space (under pointwise
operations); it is even a Banach space in the norm

‖ f‖p =

(
∑
x∈X
| f (x)|p

)1/p

(1≤ p < ∞); (B.8)

‖ f‖∞ = sup{| f (x)|,x ∈ X}= inf{C > 0 | | f (x)| ≤C∀x ∈ X}. (B.9)

The case p = 2 is unique in that �2(X) is also a Hilbert space in the inner product

〈 f ,g〉= ∑
x∈X

f (x)g(x). (B.10)

As we now outline, these expressions may be generalized to any set, to which
end we should define the meaning of (possibly uncountable) sums ∑x∈X . Although
the generality below will only be used in §B.12, it is convenient (at little extra cost)
to cover more general codomains for f than just the complex numbers C.

Definition B.6. Let X be a set, V a normed vector space, f : X →V some function,
and v ∈ V . The sentence ∑x∈X f (x) = v means that for each ε > 0 there is a finite
subset F ⊂ X such that for each finite subset G⊂ X with F ⊆ G, we have

‖∑
x∈G

f (x)− v‖< ε.
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In terms of nets, this means that the net s = (sF)F∈P f (X) in V indexed by finite
subsets F ⊂ X (ordered by inclusion), where sF(x) = ∑x∈F f (x), converges to v.

For X = N and V = C we may take F to be {1, . . . ,N} and G to be {1, . . . ,n},
where n≥N, in which case we recover the usual notion of convergence of sums (i.e.
∀ε > 0∃N ∈ N∀n ≥ N : |∑n

x=1 f (x)− v| < ε). However, since also more general F
and G are allowed, Definition B.6 is in fact equivalent to absolute convergence:

Lemma B.7. Let X be a set and let f : X → C be some function.

1. There exists z ∈ C such that ∑x∈X f (x) = z iff ∑x∈X | f (x)|< ∞.
2. If f (x)≥ 0 for each x ∈ X, then, in the sense of Definition B.6,

∑
x∈X

f (x) = sup

{
∑
x∈F

f (x),F ⊂ X finite

}
, (B.11)

which is true even if the supremum on the right-hand side is infinite (in which
case the left-hand side simply does not converge).

Therefore, for f : X →C, one may use (B.11) to check if ∑x∈X | f (x)|< ∞, in which
case it makes sense to try and find the value v of ∑x∈X f (x) as in Definition B.6.

Proof. 1. We write f = f1+ i f2, with fi : X →R, and for given G⊂ X , write Gi± =
{x∈G | ± fi(x)≥ 0} (the ambiguity at those x where f (x) = 0 is irrelevant). Then

|∑
x∈G

f (x)| ≤ ∑
x∈G
| f (x)| ≤ ∑

x∈G
| f1(x)|+ ∑

x∈G
| f2(x)|

= ∑
x∈G1+

f1(x)− ∑
x∈G1−

f1(x)+ ∑
x∈G2+

f2(x)− ∑
x∈G2−

f2(x)

≤ 4sup

{
| ∑

x∈Gα

f (x)|,α ∈ {1+,1−,2+,2−}
}
. (B.12)

Using Proposition B.8 below, the first inequality in (B.12) shows that absolute
convergence implies convergence in the sense of Cauchy, whereas the last in-
equality (i.e., ∑x∈G | f (x)| ≤ 4sup · · · ) shows the converse.

2. We pick ε > 0 and abbreviate the right-hand side of (B.11) as σ . By definition
of the supremum (which we assume finite) there is a finite F ⊂ X for which
σ ≥ ∑x∈F f (x) ≥ σ − ε . Since the terms are positive, for any finite G ⊇ F we
have ∑x∈G f (x)≥∑x∈F f (x) and hence also σ ≥∑x∈G f (x)≥ σ−ε , from which
|∑x∈G f (x)−σ |< ε . Hence ∑x∈X f (x) = σ by Definition B.6.
The same argument works if σ = ∞, in which case for any 0 < M < ∞ there is a
finite F ⊂ X for which ∑x∈F f (x)> M, and hence certainly ∑x∈G f (x)> M. �

Leaving its proof to the reader, we state the Cauchy condition for convergence:

Proposition B.8. We have ∑x∈X f (x) = v for some (necessarily unique) v∈V , in the
sense of Definition B.6, iff for each ε > 0 there is a finite subset F ⊂ X such that for
each finite subset G′ ⊂ X\F we have ‖∑x∈G′ f (x)‖< ε .
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For uncountable set X , Definition B.6 is not as bad as it may sound, since when-
ever ∑x∈X | f (x)| < ∞, only a countable number of terms can be nonzero (proof by
contradiction: if not, there must be an n ∈ N for which infinitely many x satisfy
| f (x)|> 1/n (nested proof by contradiction: if not, then for all n, only finitely many
x satisfy | f (x)| > 1/n, and hence, a countable union of finite sets remaining count-
able, only a countable number of x can have f (x) �= 0), so the sum of | f (x)| over
those x alone already diverges). In particular, for X = N the sum in (B.6) has its
usual meaning. However, even for X = N, the sums just defined only have their
usual meaning if the series in question is absolutely convergent (the standard coun-
terexample of a real series ∑n xn that is convergent but not absolutely convergent is
given by xn = (−1)n/n; in the above light, taking G = F ∪E, where E is a large but
finite set of even numbers, then makes |∑i∈G xn− x| as big as you do not like).

Using the triangle inequality for the norm and the Cauchy criterion for conver-
gence, it is easy to show that if V is a Banach space and ∑x∈X ‖ f (x)‖ < ∞, then
the sum ∑x∈X f (x) exists in V (i.e., it equals some v ∈ V in the sense of Defini-
tion B.6). The implication is one-sided, though: the latter sum may exist even if the
former does not. For example, take V = �2(N), pick some f̃ ∈ �2(N), and define
f : N→ �2(N) by f (x) = f̃ (x)δx, where δx(y) = δxy (and hence ‖δx‖2 = 1). Then

∑
x∈N
‖ f (x)‖2 = ∑

x∈N
| f̃ (x)|= ‖ f̃‖1.

Now ∑x∈N f (x) = f̃ exists per assumption that f̃ ∈ �2(N) and hence ‖ f̃‖2 < ∞,
which is implied by, but is not equivalent to ‖ f̃‖1 < ∞. See also §B.12 below.

In any case, the meaning of the possibly uncountable sums in (B.6) and (B.8)
should be clear now, as only finite sums (B.11) are involved; for (B.10), by Hölder’s
inequality (B.15) below for p = q = 2, the sum in question is absolutely convergent,
and hence it falls within the scope of Definition B.6 and Lemma B.7.

Theorem B.9. For any 1 ≤ p ≤ ∞, the set �p(X) is a vector space under pointwise
operations. Moreover, �p(X) is a Banach space in the norm (B.8) - (B.9).

Proof. 1. �p is a vector space. The case p = ∞ is obvious. For 1 ≤ p < ∞, use the
convexity of the function t �→ t p for t ∈ [0,∞). For convex functions one has
f ( 1

2 (t1 + t2)) ≤ 1
2 ( f (t1) + f (t2)), so that ( 1

2 (t1 + t2))p ≤ 1
2 (t

p
1 + t p

2 ). Combined
with monotonicity of the function t �→ t p on [0,∞), i.e. s≤ t ⇒ sp ≤ t p, this gives

| f (x)+g(x)|p ≤ (| f (x)|+ |g(x)|)p ≤ 2p−1(| f (x)|p + |g(x)|p), (B.13)

so that summing over x gives ‖ f +g‖p
p ≤ 2p−1(‖ f‖p

p +‖g‖p
p)< ∞.

Hence if f ∈ �p and g ∈ �p, then f +g ∈ �p.
2. ‖ · ‖p is a norm on �p. The case p = ∞ is, once again, obvious. For 1 ≤ p < ∞,

the only nontrivial part is the triangle inequality

‖ f +g‖p ≤ ‖ f‖p +‖g‖p, (B.14)

called the Minkowski inequality. This follows from Hölder’s inequality:
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‖ f g‖1 ≤ ‖ f‖p ‖g‖q, (B.15)

which is valid for f ∈ �p and g ∈ �q, where 1≤ p≤ ∞ and 1≤ q≤ ∞ satisfy

1
p
+

1
q
= 1. (B.16)

Thus one has q = p/(p− 1) for 1 < p < ∞, or q = ∞ for p = 1, or q = 1 for
p = ∞. One calls p and q conjugate exponents (so that p = 2 is self-conjugate).

3. �p is complete in the norm ‖·‖p. We must prove that some Cauchy sequence ( fk)
in �p converges. This takes three steps, which we first prove for 1≤ p < ∞.

a. Find a candidate f for the limit. Since ( fk) is Cauchy, for each ε > 0 there
exists K ∈ N such that ‖ fk− fl‖p < ε for all k, l > K, or

‖ fk− fl‖p
p = ∑

x∈X
| fk(x)− fl(x)|p < ε p. (B.17)

Hence | fk(x)− fl(x)|p < ε p for all x, so ( fk(x))k is a Cauchy sequence in C.
Since C is complete, ( fk(x))k converges, hence we may define f : X → C by

f (x) = lim
k→∞

fk(x). (B.18)

b. Show that f ∈ �p. Note that

‖g‖p
p = sup

F⊂X
∑
x∈F
|g(x)|p, (B.19)

where the supremum is over all finite subsets F ⊂ X . For fixed F we have

∑
x∈F
| fk(x)− fl(x)|p < ε p.

Since the sum is finite, we may take limk→∞, giving ∑x∈F | f (x)− fl(x)|p < ε p.
By (B.19), the sup over all finite F yields: ∀ε > 0∃K ∈ N such that ∀l > K,
we have ‖ f − fl‖p

p < ε p. For fixed ε and l, this says that f − fl ∈ �p, so f ∈ �p,
because f = ( f − fl)+ fl with fl ∈ �p, and we know that �p is a vector space.

c. Show that fk → f in �p. This is contained in the previous step, since we had

∀ε > 0∃K ∈ N∀l>K : ‖ f − fl‖p < ε. (B.20)

But this is the same as liml→∞ ‖ f − fl‖p = 0, or fl → f in �p.

The proof for p = ∞ is virtually the same, with (B.19) replaced by

‖g‖∞ = sup
F⊂X

sup
x∈F
{|g(x)|}. (B.21)

Within the finite supremum supx∈F | fk(x)− fl(x)| < ε , we may take the limit
k→ ∞ once again, followed by a supremum over F ⊂ X . �
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B.3 Banach spaces of continuous functions

Further Banach spaces that can be defined without measure theory come from topol-
ogy, notably from the class of locally compact spaces X (like N, or Rn, etc.).

For any f : X →C, define the support of f as the closure of the set where f �= 0.

Definition B.10. Let X be a locally compact space. Then:

• C(X) is the set of all continuous functions f : X → C;
• Cc(X) is the set of all continuous functions f : X → C with compact support;
• C0(X) is the set of all continuous functions f : X → C that vanish at infinity,

i.e., for any ε > 0 the set {x ∈ X | | f (x)| ≥ ε} is compact, or, equivalently, for
any ε > 0 there is a compact set K ⊂ X such that | f (x)|< ε for all x /∈ K;

• Cb(X) is the set of all continuous functions f : X → C that are bounded, i.e.,
there is a constant C > 0 (which depends on f ) such that | f (x)| ≤C for all x∈ X.

In general, one has the obvious inclusions

Cc(X)⊆C0(X)⊆Cb(X)⊆C(X), (B.22)

with strict inclusions iff X is non-compact, and equalities iff X is compact.

For example, if X = R, then f (x) = exp(−x2) lies in C0, whereas f (x) = 1 is in Cb.
If X is discrete, the space �c(X) and �∞(X) of the previous section are the same as
Cc(X) and Cb(X), respectively, and we may also write �0(X)≡C0(X).

Theorem B.11. The sets Cc(X), C0(X), Cb(X), and C(X) are vector spaces under
pointwise operations, and C0(X) and Cb(X) are Banach spaces in the sup-norm

‖ f‖∞ = sup
x∈X
{| f (x)|}. (B.23)

In particular, if X is compact, then C(X) is a Banach space in the norm (1.24)

Proof. Only completeness in the sup-norm (B.23) is nontrivial. We use the fact
from elementary analysis that sup-norm (i.e., uniform) limits f of sequences ( fn) of
continuous functions exist (they are given by the pointwise limit f (x) = limn f (x))
and are continuous. Therefore, concerning C0(X) we just need to show that the limit
f of some sequence ( fn) in C0(X) vanishes at infinity. Indeed, for given ε > 0,
since fn → f uniformly, we can find N such that | f (x)− fn(x)| < ε/2 for all x
and all n > N. Since fn ∈C0(X), we can also find some compact K ⊂ X such that
| fn(x)|< ε/2 for all x /∈ K and all n. Hence for x /∈ K and n > N,

| f (x)| ≤ | f (x)− fn(x)|+ | fn(x)|< ε/2+ ε/2 = ε. (B.24)

To show that the limit f of a sequence ( fn) in Cb is again bounded, note that for
ε > 0 we have | f (x)− fn(x)|< ε for n > N and | fn(x)|<Cn, both for all x, whence

| f (x)| ≤ | f (x)− fn(x)|+ | fn(x)|< ε+Cn < ∞, (B.25)

so f is bounded and hence lies in Cb(X). �
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B.4 Basic measure theory

Measure theory studies measure spaces (X ,Σ ,μ), where X is a set, and:

• Σ ⊆P(X) is a so-called σ -algebra of subsets of X , which means that:

1. X ∈ Σ ;
2. If A ∈ Σ , then Ac ∈ Σ (where Ac ≡ X\A is the complement of A);
3. If An ∈ Σ for n ∈N, then ∪nAn ∈ Σ (i.e., Σ is closed under countable unions).

It follows that /0 ∈ Σ , and that Σ is closed under countable intersections, too.
• μ : Σ → [0,∞], called a (positive) measure, is countably additive, i.e.,

μ(∪nAn) = ∑
n
μ(An), (B.26)

whenever An ∈ Σ , n ∈ N, Ai∩A j = /0 for all i �= j. The obvious convention here
is that t +∞ = ∞ for any t ∈ R+, as well as ∞+∞ = ∞. Countable additivity is
indispensable in almost every limit argument in measure theory.

A probability space is a measure space (X ,Σ ,μ) for which μ(X) = 1. More gener-
ally, a measure space is called finite if μ(X)<∞, which evidently implies μ(A)<∞
for any A ∈ Σ , and σ -finite if X is a countable union X = ∪nAn with μ(An)< ∞ for
each n. For example, X = R is σ -finite, whilst X = [0,1] with Lebesgue measure is
finite. The non-σ -finite case is pathological and hardly occurs in practice.

This definition of a σ -algebra marks a difference with a topology on X , which is
a collection O(X) of open subsets (containing X and the empty set /0) that is closed
under arbitrary unions and finite intersections (but not under complementation!).

Nonetheless, topology and measure theory are closely related:

1. Any topological space X gives rise to a σ -algebra B(X), viz. the smallest σ -
algebra in P(X) that contains O(X) (this exists and equals the intersection of all
σ -algebra that contain O(X), where one notes that the intersection of any family
of σ -algebras is again a σ -algebra). Elements of B(X) are called Borel sets.

2. The definition of a continuous function f : X →Y between topological spaces X
and Y as a function for which f−1(V ) ∈ O(X) for each V ∈ O(Y ), is copied by
saying that f : X → Y is measurable with respect to given σ -algebras ΣX (on X)
and ΣY (on Y ) if f−1(B) ∈ ΣX for any B ∈ ΣY .

3. If X and Y are topological spaces and ΣX = B(X), ΣY = B(Y ), then it it easy
to show that f is (Borel) measurable iff f−1(B) ∈ ΣX merely for any B ∈ O(Y ),
from which it follows that each continuous function is measurable. For f : X →R
to be measurable it is even sufficient that f−1((t,∞)) ∈ ΣX for each t ∈ R.

4. The above condition of σ -finiteness is often used just in case the Ai are compact.

An important goal of measure theory is to provide a rigorous theory of inte-
gration; here the key idea (due to Lebesgue) is that in defining the integral of some
measurable function f : X →R, one should partition the range R rather than the do-
main X , as had been done in the Calculus since Newton (where typically X ⊆ Rn).
This, in turn, suggests that f should first be approximated by simple functions.
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These are measurable functions s : X → R+ with finite range, or, equivalently,

s = ∑
i
λi1Ai , (B.27)

where λi ≥ 0, Ai ∈ Σ , and n < ∞. Such a representation is unique if we require
that the sets Ai are mutually disjoint and the coefficients λi are distinct; namely, if
{x1, . . . ,xn} are the distinct values of s, one takes Ai = s−1(xi) and λi = xi. Given
some measure μ , we further restrict the class of simple functions to those for which
μ(Ai)< ∞. One then first defines the integral of a simple function s, as in (B.27), by∫

X
dμ s = ∑

i
λiμ(Ai); (B.28)

a nontrivial argument shows that the right-hand side is independent of the particular
representation (B.27) of s used on the left. Granting this, linearity of the integral
on simple functions is immediate. Subsequently, for positive measurable functions
f ≥ 0, writing s≤ f iff s(x)≤ f (x) for each x ∈ X , one defines the integral by∫

X
dμ f = sup

{∫
X

dμ s | 0≤ s≤ f ,s simple
}
. (B.29)

For measurable functions f : X → C, one first decomposes f as

f =
3

∑
k=0

ik fk, fk ≥ 0, (B.30)

where, writing f = Re( f ) + i Im( f ) ≡ f ′ + i f ′′, f0 ≡ f ′+, f2 ≡ f ′−, f1 ≡ f ′′+, and
f3 ≡ f ′′−, so that f • = f •+− f •− for • = ′,′′ one may take f •± = 1

2 (| f •|− f •).
On this basis, one then defines the integral by linear extension of (B.29), that is,

∫
X

dμ f =
3

∑
k=0

ik
∫

X
dμ fk. (B.31)

We call f integrable with respect to μ , writing f ∈L 1(X ,Σ ,μ), if∫
X

dμ | f |< ∞; (B.32)

this implies that each positive part fk, and hence also f itself, is integrable, i.e.,∫
X

dμ f < ∞. (B.33)

However, (B.33) does not imply (B.32). From (B.32) one has the useful estimates∣∣∣∣∫X
dμ f

∣∣∣∣≤ ∫X
dμ | f | ≤ ‖ f‖ess

∞ μ(X), (B.34)
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where the essential supremum of f (with respect to μ) is defined by

‖ f‖ess
∞ = inf{t ∈ [0,∞] | | f | ≤ t μ-almost everywhere}, (B.35)

where | f | ≤ t μ-a.e. means that μ({x ∈ X | | f (x)> t}) = 0}. In (B.34), the expres-
sions ‖ f‖ess

∞ and/or μ(X) may well be infinite (in which case the second estimate
still holds, of course!). However, if X is a locally compact space (see the next sec-
tion), μ is finite, and f ∈C0(X) or even f ∈Cb(X), then all of (B.34) is finite.

Linearity of the integral is far from trivial: the proof relies on linearity for simple
functions, as well as on a fundamental approximation lemma:

Lemma B.12. If f ≥ 0 is measurable, there is a monotone increasing sequence of
simple functions sn, i.e., such that 0≤ s1 ≤ s2 ≤ ·· · ≤ sn ≤ sn+1 ≤ ·· · ≤ f pointwise,
for which sn → f pointwise (i.e., limn→∞ sn(s) = f (x) for each x ∈ X).

Furthermore, one needs one of the two great convergence theorems of measure the-
ory named after Lebesgue, both of which (for future use) we now state. In these
theorems (as well as in many others), we say that a measurable functions f : X →C
has some property μ-almost everywhere (μ-a.e.) if the set where f does not have the
said property has measure zero. For example f = 0 μ-a.e. means that f (x) = 0 for
each x /∈ N, for some measurable set N with μ(N) = 0 (as they say, “morally”, the
behaviour of measurable functions on subsets of measure zero should not matter).

Theorem B.13. Let ( fn) be a sequence of (complex-valued) measurable functions.

1. Dominated Convergence: if ( fn) converges pointwise μ-a.e. to some function f
and | fn(x)| ≤ g(x) μ-a.e. for some g ∈L 1(X ,Σ ,μ), then f ∈L 1(X ,Σ ,μ), and

lim
n→∞

∫
X

dμ fn =
∫

X
dμ f . (B.36)

2. Monotone Convergence: if fn ≥ 0 and ( fn) is monotone increasing μ-a.e., and

sup
n

{∫
X

dμ fn

}
< ∞, (B.37)

then limn→∞ fn(x)≡ f (x) exists μ-a.e., f ∈L 1(X ,Σ ,μ), and (B.36) holds.

Note that the first conclusion of the monotone convergence theorem is an assump-
tion in the dominated one! Either way, the fact that the pointwise limit function f is
integrable, being implicit in the notation f ∈L 1(X ,Σ ,μ), is part of the result.

Corollary B.14. Integration is linear, i.e., if f1, f2 are integrable and λ1,λ2 ∈ C,∫
X

dμ (λ1 f +λ2 f2) = λ1

∫
X

dμ f1 +λ2

∫
X

dμ f2. (B.38)

Proof. If f1 ≥ 0, f2 ≥ 0, let s(1)n → f1 and s(2)n → f2, as in Lemma B.12. Then the
conditions of the monotone convergence theorem hold, because integration is itself a
monotone operation (i.e., if f ≤ g, then

∫
X dμ f ≤ ∫X dμ g). Combined with linearity

on simple functions (as already established above), this yields the claim. �



526 B Basic functional analysis

B.5 Measure theory on locally compact Hausdorff spaces

For us it suffices to deal with locally compact Hausdorff spaces X . Our main goal
is Corollary B.21. We say that a map ϕ : C(X)→C is positive if ϕ( f )≥ 0 whenever
f ≥ 0 (pointwise). We also write O(X) for the set of open subsets of X , whilst K (X)
denotes the set of all compact subsets of X . We first assume that X is compact. Any
finite measure μ : B(X)→ [0,∞) gives rise to a positive linear map ϕ : C(X)→ C,

ϕ( f ) =
∫

X
dμ f , f ∈C(X). (B.39)

Conversely, any such map canonically defines a finite measure μ at least on opens
U ∈ O(X) and on compacta K ∈K (X) (which are key examples of Borel sets) by

μ(U) = sup{ϕ( f ) | f ∈Cc(U),0≤ f ≤ 1X}; (B.40)
μ(K) = inf{ϕ( f ) | f ∈Cc(X),0≤ f ≤ 1X , f|K = 1K}. (B.41)

Subsequently, this preliminary measure is (hopefully!) to be extended to at least all
of B(X), i.e., to all Borel sets, in such a way that μ recovers ϕ via (B.39).

This works, and one even obtains a bijective correspondence between finite mea-
sure spaces (X ,Σ ,μ) and positive linear maps ϕ : C(X)→ C if the former are sub-
jected to two additional conditions, predicated on having B(X)⊂ Σ , namely:

• completeness, in that μ(B) = 0 and A⊂ B for A ∈P(X), B ∈ Σ imply A ∈ Σ ;
• regularity, i.e., for a given measure μ : Σ → [0,∞], for any A ∈ Σ , one has

μ∗(A) = μ∗(A) = μ(A), (B.42)

where the outer measure μ∗ and inner measure μ∗ are defined by

μ∗(A) = inf{μ(U) |U ⊇ A,U ∈ O(X)}; (B.43)
μ∗(A) = sup{μ(K) | K ⊆ A,K ∈K (X)}, (B.44)

respectively. These expressions apparently make sense for all subsets A⊂ X , but
lovers of the Banach–Tarski Paradox may be reassured that μ∗ and μ∗ typically
fail to be countable additive if they are seen as maps from P(X) to [0,∞].
For future reference we also define (X ,Σ ,μ) to be inner regular if (merely)
μ∗(A) = μ(A) for A ∈ Σ , and outer regular if (merely) μ∗(A) = μ(A), A ∈ Σ .
So a regular measure is both inner and outer regular. We are now in a position
to state the Riesz Representation Theorem (often attributed also to Radon).

Theorem B.15. Let X be a compact Hausdorff space. There is a bijective corre-
spondence between complete regular finite measure spaces (X ,Σ ,μ) and positive
linear maps ϕ : C(X)→ C, explicitly given as follows:

• The measure space (X ,Σ ,μ) defines ϕ through (B.39), assuming (B.29) - (B.31);
• The map ϕ defines the pair (Σ ,μ) in three steps:
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1. μ is given on opens U and on compacta K by (B.40) and (B.41), respectively;
2. Σ is defined as the collection of all sets A ∈P(X) for which μ∗(A) = μ∗(A);
3. μ is given on all of Σ by μ(A) = μ∗(A), using (B.43), or, equivalently (given

the previous point), by μ(A) = μ∗(A), based on (B.44).

We omit the lengthy proof, expect by announcing that Theorem B.15 may be seen as
a special case of the more advanced Choquet theory reviewed in §B.11. For now, just
note that expressions like (B.40) and (B.41) are really desperate attempts to define
“μ(A) = ϕ(1A)”, which is OK for finite X , but in general is ill defined because even
for Borel sets A, the characteristic function 1A is rarely continuous on X .

We note that μ has to be finite, since obviously μ(X) = ϕ(1X ). One can say a
little more about this. A linear map ϕ :C(X)→C is bounded if, for some 0<C <∞,

|ϕ( f )| ≤C‖ f‖∞ ( f ∈C(X). (B.45)

In that case, the following expression, called the norm of ϕ , is ≤C, hence finite:

‖ϕ‖= sup{|ϕ( f )|, f ∈C(X),‖ f‖∞ = 1}. (B.46)

Proposition B.16. Let X be a compact Hausdorff space. If a linear map ϕ : C(X)→
C is positive, then it is bounded, with norm

‖ϕ‖= ϕ(1X ). (B.47)

Proof. Positivity makes 〈 f ,g〉 = ϕ( f ∗g) a pre-inner product on C(X), so by (A.1)
with v= 1X and w= f , we find |ϕ( f )|2 ≤ ϕ(| f |2)ϕ(1X ) for any f . If ‖ f‖∞ = 1, then
pointwise 0≤ | f |2 ≤ 1X , so by positivity, ϕ(| f |2)≤ ϕ(1X ). Hence |ϕ( f )| ≤ ϕ(1X ),
so that ‖ϕ‖ ≤ ϕ(1X ). Finally, taking f = 1X in (B.46) gives equality. �
A state on C(X) is a positive linear functional ω : C(X)→ C with ω(1X ) = 1.

Corollary B.17. If X is a compact Hausdorff space, there is a bijective correspon-
dence between states on C(X) and complete regular probability measures on X.

We now move to the next case in difficulty, where X is assumed to be σ -compact,
in being a countable union of compact sets, i.e., X = ∪nKn, where Kn ∈K (X). Us-
ing a little topology, this is actually equivalent to X being a perhaps more appealing
union X = ∪nUn, where each Un is open with compact closure U−

n , and U−
n ⊆Un+1.

This, in turn, implies that X = ∪nK′n with K′n ⊆ K′n+1 all compact. If (X ,μ,σ) is a
measure space where X is σ -compact topologically, B(X)⊆ Σ , and

μ(K)< ∞, (K ∈K (X)), (B.48)

then X is also σ -finite measure-theoretically. Since these are the only σ -finite mea-
sure spaces we will consider, with a slight change in terminology we call a locally
compact measure space (X ,Σ ,μ) σ -finite if it is also σ -compact and (B.48) holds.

The new point compared to the compact case is that functionals like the above
ϕ should now be defined on the space Cc(X) of continuous functions on X with
compact support. Otherwise, Theorem B.15 may be repeated almost verbatim:
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Theorem B.18. Let X be a σ -compact Hausdorff space. There is a bijective corre-
spondence between complete regular σ -finite measure spaces (X ,Σ ,μ) and positive
linear maps ϕ : Cc(X)→ C, explicitly given as in Theorem B.15.

For the sake of completeness we also state Theorem B.18 in the case where X is not
even assumed to be σ -compact. In that case, inner regularity may be lost:

Theorem B.19. Let X be a locally compact Hausdorff space. There is a bijective
correspondence between complete outer regular measure spaces (X ,Σ ,μ) satisfying
(B.48), and positive linear maps ϕ : Cc(X)→C, explicitly given as in Theorem B.15,
except for the fact that Σ now consists of all A∈P(X) for which μ(A∩K)< ∞ and
μ∗(A∩K) = μ(A∩K) for any K ∈K (X). In that case, μ is defined by

μ(A) = μ∗(A), A ∈ Σ . (B.49)

However, this generality will not really be needed for our purposes, which will
only require finite measures, in which case outer regularity implies regularity.

In order to generalize Corollary B.17 to the σ -compact case, or even to the lo-
cally compact case, we must involve the Banach spaces Cc(X) and C0(X) of the
previous section. Also for linear maps ϕ : Cc(X)→ C or ϕ : C0(X)→ C we use the
notation (B.46), where now the supremum is taken over f ∈Cc(X) and f ∈C0(X),
respectively. For example, in the latter case, provided (B.45) holds, we have

‖ϕ‖= sup{|ϕ( f )|, f ∈C0(X),‖ f‖∞ = 1}. (B.50)

Lemma B.20. Let X be a locally compact Hausdorff space.

1. Cc(X) is a dense subspace of C0(X) with respect to the norm (B.23).
2. For a positive linear map ϕ : Cc(X)→ C, the following are equivalent:

a. ϕ is bounded, as in (B.45);
b. ϕ can be extended to a positive linear map ϕ : C0(X)→ C.

In particular, a positive linear map ϕ : C0(X)→ C is automatically bounded.

Proof. 1. The first claim means either of the following two equivalent properties:

• For any f ∈C0(X) there is a sequence ( fn) in Cc(X) converging to f ;
• For any f ∈C0(X) and ε > 0 there is g ∈Cc(X) with ‖ f −g‖< ε .

We prove both. For some given f ∈C0 and ε > 0, find the usual compact K such
that | f (x)|< ε outside K. Urysohn’s Lemma gives h ∈Cc(X) with 0≤ h(x)≤ 1
for all x ∈ X and h(x) = 1 for all x ∈ K. Take g = f h ∈Cc(X), so that ‖ f −g‖∞ <
ε . For ε = 1/n, rename the g thus constructed as fn. Then ‖ f − fn‖∞ → 0.

2. To go from 2.a to 2.b, using the previous item, let fn → f uniformly (i.e., in the
sup-norm), and define the extension ϕ : C0(X)→ C by ϕ( f ) = limnϕ( fn). This
limit exists, since |ϕ( fm)−ϕ( fn)| ≤C‖ fm− fn‖∞, so that, ( fn) being convergent
and hence Cauchy in C0(X), the sequence (ϕ( fn)) is Cauchy in C. The value
ϕ( f ) is easily verified to be independent of the approximating sequence ( fn).
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Finally, the approximation in 2.a preserves positivity, i.e., if f ≥ 0 then fn ≥ 0,
so also ϕ( f )≥ 0, as it has been defined as the limit of a positive sequence.

By definition, the converse implication 2.b→ 2.a is equivalent to the claim that

sup{|ϕ( f )|, f ∈C0(X),‖ f‖∞ ≤ 1}< ∞, (B.51)

which in turn is equivalent to the apparently weaker claim to the effect that

sup{|ϕ( fn)|,n ∈ N}< ∞, (B.52)

for any sequence ( fn) with ‖ fn‖ ≤ 1. Indeed, if the first supremum were infinite,
then for each n∈N there is fn such that |ϕ( fn)|> n, and (B.52) could not possibly
hold. Furthermore, (B.52) need only hold for non-negative functions fn ≥ 0 (still
with ‖ fn‖ ≤ 1, of course) cf. (B.31), since |ϕ( fk)| = ϕ( fk) < C for each k =
0, . . . ,3 implies |ϕ( f )|< 4C. And this, finally, reduces to the claim that

∞

∑
n=1

g(n)ϕ( fn)< ∞, ∀g ∈ �1(N),g(n)≥ 0. (B.53)

Namely, if the sequence (ϕ( fn)) where unbounded, it would be trivial to find
such a summable function g for which the sum in (B.53) diverges (for example,
take a subsequence for which ϕ( fnm)> m and take g such that gnm = 1/m2).
To prove (B.53), then, given that fn ≥ 0 and hence ϕ( fn)≥ 0, with ‖ fn‖ ≤ 1, first
note that ∑n g(n) fn converges in C0(X) (since it is obviously absolutely conver-
gent, and any absolutely convergent series in a Banach space converges). Calling
the sum h, for any N < ∞ we have ∑N

n=1 g(n) fn ≤ h and hence, by positivity of
ϕ , also ∑N

n=1 g(n)ϕ( fn)≤ ϕ(h)< ∞. Letting N → ∞ gives (B.53). �
We now define a state on C0(X) as a positive (and hence bounded) linear functional
ω :C0(X)→C with ‖ω‖= 1; this is consistent with the terminology for the compact
case because of (B.47), as well as with the terminology for C*-algebras.

Corollary B.21. Let X be a locally compact Hausdorff space. There is a bijective
correspondence between positive linear functionals on C0(X) and complete regular
finite measures on X, explicitly given as in the bullet points of Theorem B.15.

In particular, states on C0(X) correspond to regular probability measures on X.

Proof. All that remains to be shown is that, under (B.39), we have

‖ϕ‖= μ(X), (B.54)

so that, in particular, the case ‖ϕ‖ = 1 corresponds to μ(X) = 1. For compact X ,
eq. (B.54) is immediate from (B.47). For locally compact X , we immediately see
from (B.39) and (B.50) that ‖ϕ‖ ≤ μ(X). To saturate this inequality, we use inner
regularity of the measure μ corresponding to ϕ , cf. Theorem B.19 and subsequent
comment. From (B.42) and (B.44), for any ε > 0 we can find K ∈ K (X) with
μ(X)−μ(K)< ε . Now use Urysohn’s Lemma to find f ∈Cc(X) such that 0≤ f ≤ 1
and f|K = 1. Then ϕ( f )≥ μ(K), and, letting ε → 0, eq. (B.54) follows. �
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Finally, we extend the above corollaries to the entire (Banach) dual C0(X)∗, i.e.,
the space of all (i.e. not necessarily positive) bounded linear maps ϕ : C0(X)→ C,
equipped with the norm (B.50). As we shall see more generally in §B.9, this is a
vector space (under pointwise operations) and even a Banach space in its own right.

From the point of view of measure theory, the relevant concept is that of a com-
plex measure. This is a map μ : Σ →C satisfying the countable additivity condition
(B.26), as in the positive case. In the complex case this condition implies that μ is
finite. One then (trivially) has a decomposition μ = μ ′+ iμ ′′, where μ ′ and μ ′′ are
countably additive maps Σ → R (just take μ ′ = 1

2 (μ+μ∗) and μ ′′ =− 1
2 i(μ−μ∗),

where μ∗(A) = μ(A)), and (nontrivially) has the (Hahn)–Jordan decomposition:

Theorem B.22. Let Σ be a σ -algebra on a set X and let μ be a (finite) signed mea-

sure, i.e.,a countably additive map Σ → R. Then there is a unique decomposition

μ = μ+−μ−, (B.55)

where the measures μ± : Σ → R+ are given by:

μ+(A) = sup{μ(B) | B⊆ A,B ∈ Σ}; (B.56)
μ−(A) =− inf{μ(B) | B⊆ A,B ∈ Σ}, (B.57)

and μ+ and μ− are mutually singular in that there is a set N ∈ Σ such that

μ+(N) = μ−(X\N) = 0. (B.58)

We will not prove this, just noting that in terms of the total variation |μ| of μ , i.e.,

|μ|(A) = sup

{
∑

n∈N
|μ(An)|

}
, (B.59)

where the supremum is taken over all measurable partitions A = ∪nAn, one has

μ± = 1
2 (|μ|±μ). (B.60)

Fom the point of view of C*-algebras it is more natural to start from bounded
linear functionals on C0(X). First, we call a map ϕ : C0(X)→ C hermitian if

ϕ( f ∗) = ϕ( f ) ( f ∗(x)≡ f (x)). (B.61)

Theorem B.23. 1. Any functional ϕ ∈C0(X)∗ has a unique decomposition

ϕ = ϕ ′+ iϕ ′′, (B.62)

where the functionals ϕ ′ ∈C0(X)∗ and ϕ ′′ ∈C0(X)∗ are hermitian.
2. Any hermitian functional ϕ ∈C0(X)∗ has a decomposition

ϕ = ϕ+−ϕ−, (B.63)



B.5 Measure theory on locally compact Hausdorff spaces 531

where the functionals ϕ± ∈C0(X)∗ are positive, and are given on f ≥ 0 by

ϕ+( f ) = sup{ϕ(g),g ∈C0(X),0≤ g≤ f}; (B.64)
ϕ−( f ) = − inf{ϕ(h),h ∈C0(X),0≤ h≤ f}. (B.65)

3. These expressions satisfy

‖ϕ‖= ‖ϕ+‖+‖ϕ−‖, (B.66)

and any positive functionals ϕ± ∈ C0(X)∗ that satisfy (B.63) as well as (B.66)
are necessarily given by (B.64) - (B.65).

4. Any functional ϕ ∈C0(X)∗ is a linear combination of at most four states.

Proof. 1. Take ϕ ′ = 1
2 (ϕ+ϕ∗) and ϕ ′′ =− 1

2 i(ϕ−ϕ∗), where ϕ∗( f ) = ϕ( f ∗).
2. The range h : 0 ≤ h ≤ f is the same as the range h : 0 ≤ f − h ≤ f , so that

(B.64) - (B.65) gives (B.63). Positivity of ϕ+ follows because the value ϕ(0) = 0
is included in the supremum in (B.64), which therefore can only be ≥ 0, and
likewise−ϕ− is negative (and hence ϕ− is positive) because ϕ(0) = 0 is included
in the infimum in (B.65), which therefore can only be ≤ 0.

3. We first prove (B.66) for compact X , so that 1X ∈C0(X) =C(X). From (B.47),

‖ϕ‖ ≤ ‖ϕ+‖+‖ϕ−‖= ϕ+(1X )+ϕ−(1X ) (B.67)
= sup{ϕ(g),0≤ g≤ 1X}− inf{ϕ(h),0≤ h≤ 1}. (B.68)

For any ε > 0, there is g such that ϕ(g) is close to the supremum in (B.68) by
1
2ε , and likewise there is h such that ϕ(h) is close to the infimum in (B.68) by the
same amount, so that

|ϕ+(1X )+ϕ−(1X )−ϕ(g−h)|< ε. (B.69)

Since 0≤ g≤ 1X and 0≤ h≤ 1, we have ‖g−h‖ ≤ 1, and thereore

ϕ(g−h)≤ ‖ϕ‖‖g−h‖ ≤ ‖ϕ‖. (B.70)

Hence (B.67) gives

‖ϕ‖ ≤ ‖ϕ+‖+‖ϕ−‖ ≤ ‖ϕ‖+ ε, (B.71)

so letting ε → 0 yields (B.66).

For locally compact X , we reduce the proof to the compact case by forming the
one-point compactification Ẋ of X , cf. §C.6. As a set, this is Ẋ = X ∪{∞}, where
∞ is a singleton. As a space, the open sets in Ẋ are the open sets in X plus those
subsets of Ẋ whose complement is compact in X . The obvious injection i : X ↪→ Ẋ
is continuous, and any f ∈C0(X) extends uniquely to a function f ∈C(Ẋ) that
vanishes at the compactification point, i.e., f (∞) = 0. This yields an isometric
embedding C0(X) ↪→C(Ẋ). Furthermore, as vector spaces one has
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C(Ẋ) =C0(X)⊕C ·1Ẋ . (B.72)

Any linear map ϕ on C0(X) may then be extended to a linear map ϕ̇ on C(Ẋ) via

ϕ̇( f +λ1Ẋ ) = ϕ( f )+λ‖ϕ‖, f ∈C0(X),λ ∈ C. (B.73)

From the point of view of (B.39), this extension may alternatively be described
as follows: extend the measure μ on X that underlies ϕ to a measure μ̇ on Ẋ by
μ̇(A∪{∞}) = μ(A), A ∈ Σ . This shows that ϕ̇ remains positive when ϕ is, and
using (B.54) and the analogue of (B.47) for Ẋ instead of X , we also obtain

‖ϕ̇‖= ϕ̇(1Ẋ ) = μ̇(Ẋ) = μ(X) = ‖ϕ‖. (B.74)

One may then repeat the proof of the compact case, using ϕ̇ instead of ϕ .
We just prove uniqueness for the compact case (in general, add dots as in the
previous proof). Suppose ϕ = ϕ ′+−ϕ ′−. For f ≥ 0, using (B.64) and ϕ ′−(g)≥ 0,

ϕ+( f ) = sup{ϕ ′+(g)−ϕ ′−(g),0≤ g≤ f}
≤ sup{ϕ ′+(g),0≤ g≤ f} ≤ ϕ ′+( f ),

so ψ ≡ ϕ ′+−ϕ+ ≥ 0. With ϕ ′± = ϕ±+ψ , imposing ‖ϕ‖ = |ϕ ′+‖+ ‖ϕ ′−‖ and
repeatedly using (B.47), we find ‖ψ‖= 0, and hence ψ = 0.

4. This is trivial from parts 1–2, noting that any nonzero positive functional ϕ = tω
is a multiple of a state ω = ϕ/‖ϕ‖, with t = ‖ϕ‖, since obviously ‖ω‖= 1.

Combining this proposition with Corollaries B.17 and B.21, we finally obtain:

Theorem B.24. Let X be a locally compact Hausdorff space. The Banach dual
C0(X)∗ of all bounded linear maps ϕ : C0(X)→ C is isometrically isomorphic with
the space M(X) of all complete regular complex measures μ on X, with norm

‖μ‖= |μ|(X). (B.75)

In particular, if μ is real (i.e., hermitian as a functional on C(X)), then (cf. (B.55))

‖μ‖= μ+(X)+μ−(X). (B.76)

This implies Corollary B.21, including its crucial final claim to the effect that states
on C0(X) correspond to regular probability measures on X .

We briefly sketch an analogous result for finitely additive measures. Instead of a
σ -algebra of subsets of some set X , we now start from a so-called semiring:

Definition B.25. A semiring of subsets of X is a family R ⊆P(X) such that:

1. /0 ∈R;
2. if A,B ∈R, then A∩B ∈R;
3. if A,B ∈R and B⊂ A, then for the complement of B in A we have A\B = ∪n

i=1Bi,
where n < ∞, each Bi ∈R, and the Bi are pairwise disjoint.
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In fact, in all our examples a stronger version of axiom 3 holds: if A,B ∈ R and
B⊂ A, then A\B ∈R. Indeed, we will typically have X = N and either R = P(N)
or R = P f (N) (i.e. the collection of finite subsets of N).

Using the fundamental lemma for semirings, which states that if A1, . . . ,An ∈R,
there are finitely many pairwise disjoint B1, . . . ,Bm in R such that ∪nAn = ∪mBm, it
can be shown that the complex linear span Step(X ,R) of the characteristic functions
1A (A ∈ R) is a commutative algebra under obvious pointwise operations. Since
functions on Step(X ,R) are bounded, we may form the closure of Step(X ,R) in the
supremum-norm; adding pointwise complex conjugation this yields a commutative
C*-algebra called �∞(X ,R) (which has a unit iff X = ∪R). For example, we have

�∞(N,P(N)) = �∞(N)≡ �∞; (B.77)
�∞(N,P f (N)) = �0(N)≡ c0. (B.78)

Definition B.26. A finitely additive measure on (X ,R) is a map μ : R → [0,∞]
such that μ(A∪B) = μ(A)+μ(B) whenever A,B ∈R, A∪B ∈R, and A∩B = /0.

Similarly, we have finitely additive signed measures taking values in R, which admit
a Jordan–Hahn decomposition (B.55) with (B.56) - (B.57), just as in the σ -additive
case. We say that a finitely additive signed measure μ is finite if |μ(A)|< ∞ for each
A ∈R, and bounded if sup{|μ(A)|,A ∈R}< ∞. With |μ|= μ++μ−, the bounded
finitely additive signed measures form a real Banach space ba(X ,R) in the norm

‖μ‖= sup{|μ|(A),A ∈R}. (B.79)

Within this space, the probability measures stand out as those measures μ that take
values in [0,1] (so that μ = μ+) and satisfy ‖μ‖= 1.

Functions in Step(X ,R) may be integrated against measures in ba(X ,R) in the
obvious way, cf. (B.27) - (B.28). This is well defined, and one easily infers that

|
∫

X
dμ s| ≤ ‖μ‖‖s‖∞, (B.80)

for any s ∈ Step(X ,R). Hence we may extend the integral to any f ∈ �∞(X ,R) by∫
X

dμ f = lim
n→∞

∫
X

dμ sn, (B.81)

where (sn) is any sequence in Step(X ,R) converging to f in the sup-norm ‖ · ‖∞.
This is well defined by the usual arguments. At the end of the day, we obtain:

Theorem B.27. Let X be a set equipped with some semiring R ⊆P(X).

• There is a bijective correspondence between finitely additive probability mea-
sures μ on (X ,R) and states ϕ on �∞(X ,R), given by (B.39) and (B.81).

• This correspondence extends to an isometric isomorphism between ba(X ,R) and
the real Banach space of bounded hermitian functionals on �∞(X ,R).

• This isomorphism of real Banach spaces extends (i.e. complexifies) to an isomor-
phism between the complexification ba(X ,R)C and the (Banach) dual �∞(X ,R)∗.
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B.6 Lp spaces

We return to the usual, countably additive setting for measure theory. In the previous
section, the notion of a measure space (X ,Σ ,μ) has mainly been used to provide an
integration theory for continuous functions on X , though (B.29) suggested greater
generality. In what follows, we keep the restriction to locally compact spaces X
(although the theory is more general), but we expand the class of functions that
can be integrated over X “against the measure μ”. This, then, leads to an important
class of Banach spaces, called Lp(X) ≡ Lp(X ,Σ ,μ); some authors write Lp(X ,Σ),
others Lp(μ). One may have examples like X =Ω ⊂Rn in mind, with Ω measurable
(typically open or closed, like X =Rn or X = [0,1]), and μ being Lebesgue measure.
On the other hand, one may think of X as a discrete space with counting measure
(i.e., μ({x}) = 1 for each x ∈ X), in which case the space Lp(X) will reduces to the
space �p(X) we already know; the typical case will be X = N.

Definition B.28. Given a measure space (X ,Σ ,μ) and a real number 1≤ p≤ ∞:

• For 1 ≤ p < ∞, the set L p(X) ≡ L p(X ,Σ ,μ) consists of all of measurable
functions f : X → C that are essentially bounded (with respect to μ), i.e.,∫

X
dμ | f |p < ∞. (B.82)

• L ∞(X)≡L ∞(X ,Σ ,μ) is the set of measurable functions f : X → C for which

inf{t ∈ [0,∞] : | f | ≤ t (μ-almost everywhere)}< ∞. (B.83)

• Nμ is the set of all measurable functions f : X → C that vanish μ-a.e., that is,

μ({x ∈ X | f (x) �= 0}) = 0. (B.84)

• Noting that Nμ ⊂L p(X) for all 1≤ p≤ ∞, we put

Lp(X ,Σ ,μ)≡ Lp(X) = L p(X)/Nμ . (B.85)

To appreciate the perhaps somewhat mysterious condition (B.83), we write

inf{t ∈ [0,∞] : | f | ≤ t μ− a.e.}= inf{t ∈ [0,∞] : μ({x ∈ X , | f (x)|> t}) = 0}.

Compare this with the expressions (defined for any function f : X → C):

sup{| f (x)| | x ∈ X} = inf{t ∈ [0,∞] : | f (x)| ≤ t ∀x ∈ X}
= inf{t ∈ [0,∞] : {x ∈ X , | f (x)|> t}= /0}< ∞, (B.86)

which state the condition that f be bounded. Consequently, the stipulation that f be
essentially bounded is the same as the condition that it is bounded, expect that the
empty set in (B.86) has been replaced by a measure-zero set.
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Theorem B.29. For 1 ≤ p < ∞, the set Lp(X) is a vector space under pointwise
operations, as well as a Banach space, in the norm

‖ f‖p =

(∫
X

dnx | f (x)|p
)1/p

. (B.87)

Likewise, L∞(X) is a Banach space in the norm

‖ f‖ess
∞ = inf{t ∈ [0,∞] : μ({x ∈ X , | f (x)|> t}) = 0}. (B.88)

Strictly speaking, elements of Lp are therefore equivalence classes of functions
rather than functions, the pertinent equivalence relation ∼μ being

f ∼μ g iff μ({x ∈ X | f (x) �= g(x)}) = 0, (B.89)

but whenever no confusion can arise, we write f ∈ Lp instead of f ∈L p or [ f ]∈ Lp,
as we have already done, for example, in (B.87) and (B.88); that is, the left-hand
sides of these equations should officially be written as ‖[ f ]‖p for 1 ≤ p ≤ ∞. Note
in this respect that in (B.87) - (B.88) the function f on the right-hand side could
be any representative of its equivalence class [ f ]. However, one cannot replace the
right-hand side of (B.88) by ‖ f‖∞, because (B.86) does depend on the representative
f . Those who dislike (B.88) may, equivalently, write

‖ f‖ess
∞ = inf{‖g‖∞,g∼μ f}. (B.90)

One should be aware of the need to pass to the quotient (B.85) in the first place:
the natural expressions (B.87) and (B.88) fail to define norms on L p and L ∞,
respectively, because the positive definiteness axiom in Definition A.1.5c might fail.
Indeed, although any f that is nonzero just on some null set is nonzero as an element
of the vector space L p, one has ‖ f‖p = 0. This problem is solved by passing to Lp.

The proof of Theorem B.29 uses both parts of Theorem B.13, which is concerned
with a sequence ( fn) of functions in L 1(X), where (X ,Σ ,μ) is an arbitrary measure
space. Note that on our definition of Lp spaces, these pointwise limits themselves
might not lie in L 1, but it is part of the conclusion of the convergence theorems that
they do so up to some null set, and hence do define elements of L1. For this reason, at
this point one must distinguish between f ∈L 1 and [ f ] ∈ L1. Let us mention in this
context that Lp spaces are often constructed from measurable functions f : X → C,
whose positive real parts fk (cf. (B.31)) by definition take values in [0,∞]. This also
leads to slightly more general versions of the Lebesgue convergence theorems, in
which the fn are allowed to be infinite on null sets. However, if f ∈ Lp, then | f |< ∞
μ-a.e., so little is lost by starting from functions f : X → C or f : X → R.

Proof. We first prove Theorem B.29 for 1≤ p < ∞. Minkowski’s Inequality (B.14)
holds for Lp ≡ Lp(X) just as it does for �p, as does Hölder’s Inequality (B.15), so
it remains to prove completeness. To this effect, let ( fn) a Cauchy sequence in Lp.
Then ( fn) has a subsequence ( fnk)k such that
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‖ fnk+1 − fnk‖p < 2−k (B.91)

for each k ∈ N (indeed, for given ε = 2−k, take nk to be the famously existing N for
which ‖ fn− fm‖p < ε for all n,m > N, etc.), and if limk→∞ ‖ fnk − f‖p = 0 for some
f , then limn→∞ ‖ fn− f‖p = 0 (this is a standard feature of Cauchy subsequences).

We now rewrite fnk+1 using a little trick, and introduce an auxiliary function g by

fnk = fn1 +
k−1

∑
l=1

( fnl+1 − fnl ); (B.92)

gnk = | fn1 |+
k−1

∑
l=1
| fnl+1 − fnl |. (B.93)

Using (B.91), we estimate ‖gnk‖p ≤ ‖ fn1‖p +∑k−1
l=1 2−l , which converges as k→ ∞.

Hence supk ‖gp
nk‖1 < ∞, so by the Monotone Convergence Theorem, limk→∞ gp

nk ≡ h
exists pointwise μ-a.e., with h ∈ L1. Since gnk ≥ 0, we have h ≥ 0 at least μ-a.e.,
and with g = h1/p, by continuity of x �→ x1/p, we have gnk → g pointwise μ-a.e.,
with g ∈ Lp. Thus the series (B.92) converges (absolutely pointwise μ-a.e.) to some
f . Since | f | ≤ g, we also have f ∈ Lp. To prove that fnk → f in Lp (and not just
pointwise μ-a.e.), we estimate

| f (x)− fnk(x)|p ≤ (2max{| f (x)|, | fnk(x)|})p

≤ 2p(| f (x)|+ | fnk(x)|)p ≤ 2p+1g(x)p,

so, already knowing that gp ∈ L1, we may use (B.36) in the Dominated Convergence
Theorem (with fn replaced by f − fnk , and hence f replaced by the zero function)
to conclude that limk→∞

∫
X dμ| f (x)− fnk(x)|p = 0, i.e., ‖ f − fnk‖p → 0.

We continue for p = ∞. For any fixed measurable subset E ⊂ X we define

‖ f‖(E)∞ = sup{| f (x)| | x ∈ E}= inf{t ∈ [0,∞] | | f (x)| ≤ t ∀x ∈ E}. (B.94)

If X\E has measure zero, as we assume in what follows, then

‖ f‖ess
∞ ≤ ‖ f‖(E)∞ , (B.95)

since E might be expanded to a larger set of measure zero, which might decrease
the infimum in (B.88). It follows that convergence with respect to the norm ‖ · ‖(E)∞
implies convergence in ‖ · ‖ess

∞ . We use this insight to prove the completeness of L∞

by reducing this to a limiting problem with respect to the norm ‖·‖(E)∞ , for a suitable
choice of E ⊂ X . Namely, let ( fn) be a Cauchy sequence in L∞. This means

∀ε > 0∃n∀ j,k>n ‖ f j− fk‖ess
∞ < ε.

Parametrizing ε = 1/m for large m ∈ N, and using (B.88), this implies:

∀m∃n∀ j,k>n∃N( j,k,m) : μ(N( j,k,m)) = 0 and ∀x ∈ X\N( j,k,m) : | f j(x)− fk(x)|< 1/m.
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Now define N = ∪ j,k,m∈NN( j,k,m). Since measures are countably additive by defini-
tion and N is a countable union of the measure zero sets, N has measure zero. With
E = X\N, so that X\E = N has measure zero, as above, we then have

∀m∃n∀ j,k>n∀x ∈ E | f j(x)− fk(x)|< 1/m.

Thus ( fn) (strictly speaking, the corresponding sequence of restrictions of each fn to
E) is a Cauchy sequence of bounded functions on E in the supremum norm (B.94),
so that we are back in the �∞(X) case with X = E, with the three-step proof we
gave: the pointwise limits f (x) = limn→∞ fn(x) exist, the function f thus defined on
E is bounded, i.e., ‖ f‖(E)∞ < ∞, and fn → f not just pointwise but also in the norm
‖ ·‖(E)∞ . Extending f from E to X in an arbitrary way (the ensuing equivalence class
in L∞ does not depend on the behaviour of f on the null set X\E), we first conclude
from (B.95) that ‖ f‖ess

∞ < ∞, and secondly infer that fn → f also in ‖ · ‖ess
∞ . �

Without proof, we state some useful results about the place of continuous func-
tions in Lp-spaces. For simplicity, we assume that μ is regular and has support X (in
that X has no open subset U with μ(U) = 0). In that case, Cb(X) and its subspaces
C0(X) and Cc(X) may be seen as subspaces of L∞(X), on which the norm (B.88) or
(B.90) simply reduces to the ordinary sup-norm (1.24).

Theorem B.30. • If 1≤ p < ∞, then Cc(X) is dense in Lp(X) (in the Lp-norm).
• If p = ∞, one has an inclusion of Banach spaces (all carrying the L∞-norm)

C0(X)⊂Cb(X)⊂ L∞(X). (B.96)

Compare (B.22). Since the closure Cc(X) is C0(X), it follows that Cc(X) is dense in
L∞(X) only in the exceptional case where L∞(X) =C0(X) (e.g., for finite X). So in
this respect, the values 1≤ p < ∞ behave quite differently from p = ∞.

The first claim is based on two facts, of which the first is true for all 1≤ p≤ ∞,
whereas the second is valid only for 1≤ p < ∞ (i.e. it fails for p = ∞):

1. The set S(X) of simple functions s = ∑iλi1Ai , where μ(Ai) < ∞ for each i, is
dense in Lp(X);

2. For each measurable subset A ⊂ X with μ(A) < ∞, and each ε > 0 there is a
function g ∈Cc(X) such that ‖1A−g‖p < ε .

Similarly to Theorems B.27 and B.24, we know the state space of L∞(X ,ν):

Theorem B.31. Let (X ,Σ ,ν) be a measure space. There is a bijective correspon-
dence between states on L∞(X ,ν) and finitely additive probability measures μ on
(X ,Σ) that are absolutely continuous with respect to ν (i.e., ν(A) = 0 implies
μ(A) = 0), given by (B.39) and (B.81).

In this case, the role of the semiring R is of course played by Σ , so that Step(X ,Σ)
is simply the complex linear span of the simple functions on (X ,Σ), and (B.28) duly
applies. Since it may once again be shown that Step(X ,Σ) is dense in L∞(X ,ν), the
definition (B.81) of integration “by continuity” makes sense in this situation, too.
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B.7 Morphisms and isomorphisms of Banach spaces

We often want to say that two Banach spaces are isomorphic. For example, in the
next section the dual of a given Banach space is typically identified with some
known Banach space; such identifications even belong to the nicest results in func-
tional analysis. Of course, this issue is predicated on the correct definition of (not
necessarily invertible) maps between Banach spaces in the first place.

Definition B.32. A morphism a : V →W between Banach spaces V,W (or, more
generally, normed spaces) is a bounded linear map, i.e., a linear map for which
there is a constant C > 0 such that for each v ∈V ,

‖av‖W ≤C‖v‖V , (B.97)

or, equivalently,
sup{‖av‖W ,v ∈V,‖v‖V ≤ 1}< ∞. (B.98)

It is extremely important (yet easy to show) that bounded maps are automatically
continuous (and even uniformly continuous); conversely, a continuous linear map
between vector spaces with norm is bounded. We note two important special cases:

• If W =V , a morphism a : V →V is called a (bounded) operator on V .
• If W = C, a morphism ϕ : V → C is called a (bounded linear) functional on V .

Theorem B.33. Let V be a normed vector space and W a Banach space. The space
B(V,W ) of all morphisms (i.e., bounded linear maps) a : V →W is a Banach space
with respect to pointwise operations (e.g., (λa+b)v = λav+bv), and the norm

‖a‖= sup{‖av‖W ,v ∈V,‖v‖V ≤ 1}. (B.99)

Proof. Only completeness is nontrivial; the idea is that if (an) is a Cauchy sequence
in B(V,W ), we define a : V →W by av = limn anv. This limit exists, since we have
‖anv− amv‖W ≤ ‖an − am‖‖v‖V . Furthermore, it is easy to show (e.g., by con-
tradiction) that a Cauchy sequence must be bounded, say ‖an‖ ≤ K, and that, if
anv → w, then also ‖anv‖W → ‖w‖W . Hence ‖av‖W = limn ‖anv‖W ≤ K‖v‖V , so
a ∈ B(V,W ). Finally, an → a, since for ‖v‖V ≤ 1 and, given ε > 0, the usual N for
which ‖an−am‖< ε/2 for all n,m > N and ‖av−amv‖W < ε/2 for all m > N,

‖av−anv‖W ≤ ‖av−amv‖W +‖amv−anv‖W < 1
2ε+ 1

2ε = ε. (B.100)

Since this holds for any v ∈V with ‖v‖V ≤ 1, eq. (B.99) gives ‖a−an‖< ε . �

Clearly, if a ∈ B(V,W ), then one has the useful estimate, cf. (A.20),

‖av‖W ≤ ‖a‖‖v‖V , (B.101)

and if W =V and a,b ∈ B(V )≡ B(V,V ), we also have (cf. (A.21))

‖ab‖ ≤ ‖a‖‖b‖. (B.102)
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Indeed, B(V ) is a Banach algebra, which is just to say that it is a Banach space as
well as an algebra, in which (B.102) holds (a C*-algebra will be a special case).

Returning to our opening theme, the level of discourse now suddenly becomes
quite advanced. We start with Banach’s famous Open Mapping Theorem.

Theorem B.34. if V and W are Banach spaces and a ∈ B(V,W ) is surjective, then
a is open (in mapping open sets to open sets).

Proof. For fixed u ∈ V we write Vr(u) = {v ∈ V : ‖u− v‖ < r} for the open r-ball
around u, with Vr ≡ Vr(0) and hence Vr(u) = u+Vr. Furthermore, the closure of
U ⊂V is denoted by U−. Likewise for W . The theorem follows if aV1 ≡ a(V1)⊂W
contains an open ball Ws, for some s > 0 (in which case, by linearity, aVr contains
an open ball Wrs for any r > 0). By the theory of metric spaces, some subset U ⊂V
is open iff for any u ∈U there is r > 0 such that Vr(u) ⊂U . Then aU contains the
open set Wrs(au), and since au ∈ aU is arbitrary, aU is open by the same criterion.

To prove that aV1 contains an open ball, first note that since a : V →W is sur-
jective, W = ∪naVn, so that by the Baire Category Theorem (which applies because
Banach spaces are complete metric spaces by definition) some (aVn)

− contains an
open set, and hence an open ball. Since a is linear this must then be true for all n; let
us take n = 1, so that Wε(w0) ⊂ (aV1)

− for some w0 ∈ (aV1)
−. Since any point in

the closure of some U ⊂W can be approximated by points in U , there is w1 ∈ aV1
such that ‖w1−w0‖< 1

2ε . Hence for any w ∈Wε/2 we have

‖(w1−w)−w0‖ ≤ ‖w1−w0‖+‖w‖< 1
2ε+ 1

2ε = ε, (B.103)

so w1−w ∈Wε(w0) and hence w1−w ∈ (aV1)
−. Similarly, w1 +w ∈ (aV1)

−. Since
w= 1

2 (w1+w)− 1
2 (w1−w), we obtain w∈ (aV1)

−, for if x,y∈ (aV1)
−, then we have

1
2 (x± y) ∈ (aV1)

−. Since w ∈Wε/2 was arbitrary, it follows that Wε/2 ⊂ (aV1)
−.

To produce an open ball in aV1 rather than in its closure, let w′0 ∈Wε/4, so that
2w′0 ∈Wε/2. Hence there exists w′1 ∈ aV1 such that ‖2w′0−w′1‖< ε/4. And because
2(2w′0−w′1) ∈Wε/2, there exists w′2 ∈ aV1 such that ‖2(2w′0−w′1)−w′2‖< ε/4, et
cetera. Because 2(2(2w′0−w′1)−w′2) ∈Wε/2, there exists w′3 ∈ aV1, . . .

Repeating this N times, we obtain a sequence (w′n) in aV1 such that for any N ∈N,

‖2Nw′0−2N−1w′1−·· ·−21w′N−1−20w′N‖< ε/4, (B.104)

i.e., ‖w′0−∑N
n=1 2−nw′n‖< 2−N−2ε . Letting N → ∞ then gives w′0 = ∑∞

n=1 2−nw′n.
Since w′n ∈ aV1, there is a corresponding sequence (v′n) in V1 such that av′n = w′n,

with ‖v′n‖ < 1 for each n. Hence we may estimate ∑∞
n=1 ‖2−nv′n‖ < ∑∞

n=1 2−n = 1,
so the series ∑n 2−nv′n in V is absolutely convergent and hence convergent. Since V
is assumed complete, it has a limit v′ = ∑∞

n=1 2−nv′n. Since∥∥∥∥∥ N

∑
n=1

2−nv′n

∥∥∥∥∥≤ N

∑
n=1
‖2−nv′n‖<

∞

∑
n=1
‖2−nv′n‖< 1,

letting N →∞ gives ‖v′‖ ≤ 1, or v′ ∈V−1 . Since a is bounded and hence continuous,
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av′ = a

(
∞

∑
n=1

2−nv′n

)
=

∞

∑
n=1

2−nav′n =
∞

∑
n=1

2−nw′n = w′0. (B.105)

We now recall that w′0 ∈Wε/4 was arbitrary, so we have shown that Wε/4 ⊂ a(V−1 ).
By linearity of a, it follows that Ws ⊂ aV1 for any s < ε/4. �

Corollary B.35. Let V and W be Banach spaces. The (set-theoretic) inverse a−1 of
a bijective morphism a ∈ B(V,W ) is automatically linear and bounded.

In other words, a−1 lies in B(W,V ). Corollary B.35 suggests defining two Banach
spaces V and W to be isomorphic if there exists a bijective morphism a ∈ B(V,W )
(in which case they would be isomorphic as objects in the category of Banach spaces
with bounded linear maps). However, we often prefer to use a sharper notion.

Definition B.36. Let V and W be normed spaces.

1. An isometry from V to W is a linear map u : V →W satisfying

‖av‖W = ‖v‖V , v ∈V. (B.106)

2. An isometric isomorphism from V to W is a surjective isometry u : V →W.

Since an isometry is clearly bounded as well as injective, by Corollary B.35 a sur-
jective isometry has a bounded linear inverse, which is easily seen to be isometric,
too. In practice, it is the conditions in Definition B.36 that one typically checks.

Nonetheless, the non-isometric case is also quite important. As a case in point, we
prove a classical result of functional analysis, called the Closed Graph Theorem. In
preparation, note that two normed spaces V,W define a third one, called their direct
sum V ⊕W , which as a set is V ×W , turned into a vector space by the operations
(v1,w1)+(v2,w2) = (v1 + v2,w1 +w2) and λ (v,w) = (λv,λw), etc., with norm

‖(v,w)‖= ‖v‖V +‖w‖W . (B.107)

It is easily shown that if V and W are Banach spaces, then so is V ⊕W .
Furthermore, if a : V →W is any linear map, the graph of a is the vector space

G(a) = {(v,av),v ∈V} ⊂V ⊕W. (B.108)

If a is bounded, then G(a) is closed (i.e. in the norm inherited from the Banach
space V ⊕W ). The converse, then, is the Closed Graph Theorem:

Theorem B.37. Let V and W be Banach spaces and let a : V →W be a linear map.
If the graph G(a) is closed (in the norm inherited from V ⊕W), then a is bounded.

Proof. Let b : G(a)→ V be the linear map (v,av) �→ v, which is clearly a bijec-
tion, with inverse b−1 : V → G(a), b−1(v) = (v,av). Furthermore, ‖b(v,av)‖ =
‖v‖V ≤ ‖v‖V + ‖av‖W = ‖(v,av)‖, so b is bounded. Hence Corollary B.35 makes
b−1 bounded as well, i.e., ‖b−1(v)‖ ≤ C‖v‖V for some C > 0. Hence ‖(v,av)‖ =
‖v‖V +‖av‖W ≤C‖v‖V . So ‖av‖W ≤ (C−1)‖v‖V , and hence a is bounded. �
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B.8 The Hahn–Banach Theorem

In this section we present another traditional pillar of functional analysis.

Definition B.38. A sublinear functional on a real vector space V is a map p : V →
R that for each v,w ∈V and scalars t ≥ 0 satisfies

p(v+w) ≤ p(v)+ p(w); (B.109)
p(tv) = t p(v). (B.110)

We will deal with two examples of such functionals. One is simply a norm (even on a
complex vector space, which in particular is a real vector space). For the other, recall
that a subset K of a real vector space V is called convex if whenever v,w ∈ K and
t ∈ (0,1), one has tv+(1− t)w ∈ K. Even without a topology on V , we can define
an interior point of K (or indeed of any subset of V ) as a point v ∈ K such that for
each v′ ∈ V there is ε > 0 such that v+ tv′ ∈ K for any 0 < t < ε . We denote the
set of interior points of K by int(K). For example, if V is normed (with associated
topology), or is the dual of a normed space equipped with the w∗-topology (or,
even more generally, if V is a topological vector space, i.e., a vector space carrying
a Hausdorff topology in which addition and scalar multiplication are continuous),
then each point of an open set U is interior in the above sense, so that U = int(U).

Let K ⊂ V be convex and suppose it contains 0 as an interior point. Then the
indexfunctional!MinkowskiMinkowski functional (also called gauge) p : V → R+

of K is defined by
p(v) = inf{a > 0 | v/a ∈ K}. (B.111)

Note that p(v)< ∞, because 0∈K is interior, so that there is ε > 0 such that εv∈K,
and hence a = 1/ε lies in the set in (B.111). It is clear that if v ∈ K, then a = 1 lies
in the set in (B.111), so that p(v)≤ 1. As a simple example, for the (open or closed)
unit ball B in a normed space (both of which are convex), we have p(v) = ‖v‖.
Proposition B.39. Let K ⊂ V be convex and let 0 ∈ K be an interior point of K.
Then the Minkowski functional p of K satisfies (B.109) - (B.110). Furthermore, we
may recover the set int(K) of interior points of K through

int(K) = {v ∈V | p(v)< 1}. (B.112)

Conversely, if some function p : V → R+ satisfies (B.109) - (B.110), then the set

K = {v ∈V | p(v)≤ 1} (B.113)

is convex, with interior given by (B.112).

For example, if K is open (in a topological vector space), then (B.112) equals K.

Proof. Given (B.111), eq. (B.110) is obvious. To prove (B.109), find a> 0 and b> 0
such that v/a ∈ K and w/b ∈ K; cf. the comment after (B.111). Since K is convex,
with t = a/(a+b) and hence 1− t = b/(a+b) we have t · v/a+(1− t) ·w/b ∈ K.
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Hence p(t · v/a+(1− t) ·w/b) ≤ 1, which, using (B.110), reads p(v+w) ≤ a+b.
Taking the infimum over a and b constrained by v/a ∈ K, w/b ∈ K then turns the
right-hand side into p(v)+ p(w), so that we have proved (B.109).

The proof of the converse claims is almost trivial, except perhaps for the last
claim. To prove that p(v) < 1 implies v ∈ int(K), we note that for any v′ ∈ V and
ε > 0, from (B.109) - (B.110) we have p(v+εv′)≤ p(v)+ε p(v′). If p(v′) = 0, this
gives p(v+ εv′) ≤ p(v) < 1, so that v+ εv′ ∈ K. If not, assume p(v) = 1− δ for
some δ ∈ (0,1], and we find that p(v+ εv′)< 1 for any 0 < ε < δ/p(v′). �

Having motivated Definition B.38, we now state the Hahn–Banach Theorem:

Theorem B.40. Let V be a real vector space equipped with a sublinear functional
p, and let W ⊂ V be a linear subspace carrying a linear map ϕW : W → R that is
dominated by p in the sense that for each w ∈V we have ϕW (w)≤ p(w).

Then ϕW has a linear extension ϕ : V → R that for each v ∈V satisfies

ϕ(v)≤ p(v). (B.114)

Proof. Take v1 ∈V , v1 /∈W , and extend ϕW to W ⊕R · v1 by

ϕ(w+ tv1) = ϕW (w)+ tϕ(v1), (B.115)

with t ∈ R and ϕ(v1) to be determined. In order to satisfy (B.114), we need

ϕ(w+ tv1)≤ p(w+ tv1), (B.116)

for each w ∈W and t ∈ R. Using (B.110), this is true iff it is true for t± 1, which
yields two conditions (in two variables w,w′ ∈W ), which may jointly be written as

ϕ(w′)− p(w′ − v1)≤ ϕ(v1)≤ p(w+ v1)−ϕ(w). (B.117)

Since ϕ is linear, this can obviously be satisfied by some ϕ(v1) ∈ R iff

ϕ(w+w′)≤ p(w+ v1)+ p(w′ − v1), (B.118)

which is indeed the case: for by assumption we have ϕ(w+w′)≤ p(w+w′), whence

ϕ(w+w′)≤ p(w+ v1 +w′ − v1)≤ p(w+ v1)+ p(w′ − v1), (B.119)

where we used (B.109). Hence any choice of ϕ(v1) that satisfies (B.117) provides
an extension (B.115) of ϕ to W ⊕R · v1, which by construction satisfies (B.114).

Lovers of Zorn’s Lemma may now complete the proof as follows. Let F be the
set of all pairs (ϕ,X), where X ⊆ V is a linear subspace and ϕ : X → R is a linear
extension of ϕW that satisfies (B.114). We partially order F by

(ϕ1,X1)� (ϕ2,X2) iff X1 ⊆ X2 and ϕ1(v) = ϕ2(v)∀v ∈ X1. (B.120)

Then F is clearly nonempty, and every totally ordered subset {(Xλ ,ϕλ )} of F has
an upper bound (ϕ,X), where X = ∪λXλ and ϕ(v) = ϕλ (v) whenever v ∈ Xλ .
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Thus Zorn’s Lemma applies, “giving” a maximal element (ϕ,Z). If Z �=V , one may
extend Z by the first step of the proof (applied to W � Z), contradicting maximality
of (ϕ,Z). Hence Z =V , and ϕ is the desired functional. �

If V is finite-dimensional, then Zorn’s Lemma is unnecessary, and a constructive
proof may be given by repeating the first step of the proof a finite number of times.

Corollary B.41. Let V be a normed vector space, with dual V ∗, and let W ⊂V be a
linear subspace (inheriting the norm from V , with associated dual W*).

Then each ϕW ∈W ∗ has an extension ϕ ∈V ∗ to V with the same norm.

Proof. We take p(v) = ‖ϕW‖‖v‖, which clearly satisfies (B.109) - (B.110). If V is
real, Theorem B.40 gives ϕ : V → R satisfying |ϕ(v)| ≤ ‖ϕW‖‖v‖ for each v ∈ V ,
and hence ‖ϕ‖ ≤ ‖ϕW‖. But ‖ϕW‖ ≤ ‖ϕ‖ since W ⊂V , hence ‖ϕ‖= ‖ϕW‖,

If V is complex, we first regard it as a real vector space, take the real part ϕ ′W of
ϕW , and isometrically extend ϕ ′W to a linear functional ϕ ′ : X → R as above, so that
‖ϕ ′‖= ‖ϕ ′W‖. Then define ϕ : X → C by

ϕ(v) = ϕ ′(v)− iϕ ′(iv). (B.121)

One checks that ϕ((s+ it)v) = (s+ it)ϕ(v). Since ϕ ′(v) is the real part of ϕ(v),
with |ϕ(v)|2 = |ϕ ′(v)|2+ |ϕ ′(iv)|2, we have |ϕ ′(v)| ≤ |ϕ(v)| and hence ‖ϕ ′‖ ≤ ‖ϕ‖.
Conversely, for any v with ϕ(v) �= 0, take z = |ϕ(v)|/ϕ(v), so that |ϕ(v)| = ϕ(zv).
Hence ϕ(zv) is real and therefore it is equal to its real part, so that, since |z|= 1,

ϕ(zv) = ϕ ′(zv)≤ ‖ϕ ′‖‖zv‖= ‖ϕ ′‖‖v‖.

Therefore, ‖ϕ‖ ≤ ‖ϕ ′‖, and hence ‖ϕ‖ = ‖ϕ ′‖. The same computation applies to
ϕW , yielding ‖ϕW‖= ‖ϕ ′W‖, so that finally ‖ϕ‖= ‖ϕ ′‖= ‖ϕ ′W‖= ‖ϕW‖. �

In fact, this trick to pass from the real to the complex case was overlooked by Hanh
and Banach themselves, whose arguments were much more involved.

As to Zorn’s Lemma, if V is infinite-dimensional but still separable, using (count-
able) induction one may construct a sequence (vn) of linearly independent unit vec-
tors in V\W , such that V is the closed linear span of W and the vn. The above
procedure then gives ϕ in the real algebraic linear span of W and the vn, which is
bounded by construction and may be extended to all of V by continuity. However,
the construction of (vn) still requires a weaker form of the Axiom of Choice (which
is equivalent to Zorn’s Lemma), namely the so-called Axiom of Dependent Choice.

In the situation of Corollary B.41, the extension ϕ is unique iff the normed space
V is strictly convex, which by definition means that its unit sphere is strictly convex,
i.e., if ‖v‖= ‖w‖ for v �= w and t ∈ (0,1), then ‖tv+(1− t)w‖< 1. Equivalently, if
‖v‖= ‖w‖= 1

2‖v+w‖, then v = w. This is the case, for example, in Hilbert spaces
H, as easily follows from the comment after (A.3). Indeed, anticipating Theorem
B.66, if W ⊂ H is closed (as we may assume, since ϕW is continuous), we may
identify ϕW : W →C with some vector ϕW ∈W , and if we do, the unique extension
ϕ : H → C corresponds to the same vector ϕW , now regarded as an element of H.
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Corollary B.42. Let V be a normed vector space, with dual V ∗, and fix some
nonzero vector v0 ∈V . There exists a functional ϕ ∈V ∗ such that

ϕ(v0) = ‖v0‖; (B.122)
‖ϕ‖ = 1. (B.123)

Proof. Take W = C · v0 in Corollary B.41, so that ‖ϕW‖= 1 by construction. �
We now turn to an application of Theorem B.40 to convexity theory, which we

will need for the Krein–Milman Theorem (and hence eventually for the existence of
pure states on C*-algebras). Although we will apply the lemma below to the dual of
a normed vector space in its w∗-topology, the setting is more general; all we need is
a few easily established facts for topological vector spaces V , namely that if U ⊂V
is open, then so is every translate U + v of U , and so is εU , for any ε > 0, and
hence also (−εU)∩ (εU). Furthermore, a linear map ϕ : V → R is continuous iff it
is continuous at 0. These elementary facts will be used in the proof below.

Theorem B.43. Let V be a real topological vector space and let A and B be dis-
joint nonempty convex subsets of V , with A open. Then there is a continuous linear
functional ϕ : V →R and some t ∈R such that ϕ(a)< t ≤ ϕ(b) for all a∈ A,b∈ B.

Proof. From C = A−B = {a− b | a ∈ A,b ∈ B}, which is convex and open (as it
is a union of open sets A+ b over b ∈ B). Then move C so that it contains 0, by
taking any a0 ∈ A and b0 ∈ B and defining K = C+ v0, with v0 = b0− a0. Thus K
has its associated Minkowski functional pK , cf. (B.111). Noting that v0 /∈ K (since
A∩B = /0), we have pK(v0)≥ 1. With W = R · v0, define a functional ϕW : W → R
by ϕW (sv0) = s for s ∈R. This implies ϕW (v)≤ pK(v) for v ∈R ·v0: if v = sv0 with
s ≥ 0, this is obvious from (B.110) and ϕW (v0) = 1, and if s < 0, then ϕW (v) < 0
whereas pK(v) ≥ 0. We now use Theorem B.40 to extend ϕW to a functional ϕ :
V → R satisfying (B.114), which implies ϕ(v) ≤ pK(v) < 1 for any v ∈ K. Taking
v = a−b+v0 gives ϕ(a)< ϕ(b) for any a ∈ A,b ∈ B. Taking t = inf{ϕ(b) | b ∈ B},
the last claim of the lemma follows. Finally, since ϕ(v)< 1 for each v ∈ K, we have
ϕ−1(−ε,ε)⊂ (−εK)∩ (εK), which is open, so that ϕ is continuous. �

This is the precise result we will need, but variations abound. If A and B are
open, in which case ϕ(B) is open, we have ϕ(a)< t < ϕ(b). If V is locally convex,
in that its topology has a basis consisting of convex sets, then if A is closed and
B is compact, there are disjoint open convex sets A′ and B′ containing A and B,
respectively, so that also in this case we obtain the strict inequalities just mentioned.

Finally, even if V has no topology, we can still show that ϕ(a)≤ t ≤ ϕ(b) on the
mere assumption that A has an interior point (ϕ then lacks continuity, of course).

Result like this are often called separation theorems. Namely, a plane H in R3

always takes the form x0 + kerϕ = ϕ−1(c), where x0 ∈ R3 and ϕ : R3 → R is a
(nonzero) linear map. Equivalently, H = ϕ−1(c), where c = ϕ(x0). More generally,
a hyperplane in a vector space V is a (nonempty) subspace of the form H = ϕ−1(c),
where ϕ is a linear functional on V ; clearly, H has codimension one and if V is a
topological vector space and ϕ is continuous, then H is closed. So Theorem B.43
shows that A and B are separated by the closed hyperplane H = ϕ−1(t).
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B.9 Duality

We now turn to duality theory. For any normed (but not necessarily complete) vector
space V , Theorem B.33 shows that the space V ∗ of all morphisms ϕ : V → C is a
Banach space, called the dual of V . By (B.99), the norm of ϕ ∈V ∗ is given by

‖ϕ‖= sup{|ϕ(v)|,v ∈V,‖v‖V ≤ 1}. (B.124)

Any morphism a ∈ B(V,W ) induces a dual morphism a∗ ∈ B(W ∗,V ∗) by

(a∗ϕ)(v) = ϕ(av), ϕ ∈W ∗. (B.125)

By definition of the various norms involved here, we find

‖a∗‖= sup{|ϕ(av)|,ϕ ∈W ∗,v ∈V,‖ϕ‖= ‖v‖= 1}. (B.126)

Since |ϕ(av)≤ ‖ϕ‖‖av‖ ≤ ‖a‖, this immediately yields

‖a∗‖ ≤ ‖a‖. (B.127)

In fact, one even has
‖a∗‖= ‖a‖, (B.128)

but unexpectedly heavy machinery (namely the Hahn–Banach Theorem) is required
to prove this. By Corollary B.42 (applied to W ), for any v ∈V , there exists ϕ ∈W ∗
with ‖ϕ‖= 1 and ϕ(av)= ‖av‖, so from (B.126) we have ‖a∗‖≥ ‖av‖ for any v∈V
with ‖v‖= 1. Taking the supremum over such v and using (B.99) gives ‖a∗‖ ≥ ‖a‖.
With our earlier (B.127), this gives (B.128).

Another application of Corollary B.42 lies in the double dual V ∗∗ = (V ∗)∗.

Proposition B.44. For any normed space V , the map v �→ v̂ from V to V ∗∗, given by

v̂(ϕ) = ϕ(v), ϕ ∈V ∗, (B.129)

is isometric (and hence injective), mapping V onto a closed subspace V̂ ⊆V ∗∗.

This will follow from part 1 of the following consequence of Corollary B.42:

Corollary B.45. Let V be a normed vector space, with dual V ∗

1. For any v ∈V , one has

‖v‖= sup{|ϕ(v)|,ϕ ∈V ∗,‖ϕ‖= 1}. (B.130)

2. For any w �= v, there exists ϕ ∈V ∗ with ϕ(w) �= ϕ(v).
3. For any a ∈ B(V,W ), we have

‖a‖= sup{|τ(av)|,v ∈V,τ ∈W ∗,‖v‖= ‖τ‖= 1}. (B.131)

Proof. This is the proof of Corollary B.45.



546 B Basic functional analysis

1. If ‖ϕ‖ = 1, then |ϕ(v)| ≤ ‖v‖, so the supremum is ≤ ‖v‖. But according to
Corollary B.42 the supremum is ≥ ‖v‖.

2. Take v0 = v−w in Corollary B.42 and use the previous item.
3. Apply part 1 in W to ‖av‖ and use (B.99). �

Proof. And this is the proof of Proposition B.44. Note that ‖v̂‖ ≤ ‖v‖, since

‖v̂‖= sup{|ϕ(v)‖,ϕ ∈V ∗,‖ϕ‖= 1}, (B.132)

and |ϕ(v)‖ ≤ ‖ϕ‖‖v‖= ‖v‖. Corollary B.42 shows this bound is saturated. �

If V is finite-dimensional, Proposition B.44 gives a natural isomorphism V ∗∗ ∼= V ,
in contrast with the “unnatural” isomorphisms V ∗ ∼= V that require the choice of a
basis (this terminology is made precise in category theory, see Appendix E).

In addition to their (metric) topology coming from the norm, both V and V ∗ natu-
rally carry another topology (which will be of great importance in operator algebras
and hence in quantum theory), defined in an almost identical way:

• The weak topology on V is the weakest topology that makes all functions ϕ : V →
C continuous, ϕ ∈V ∗. Equivalently, one has convergence vn → v (of sequences,
or, more generally, of nets) iff ϕ(vn)→ ϕ(v) for each ϕ ∈V ∗.

• The weak∗ topology (or w∗-topology) on V ∗ is the weakest topology that makes
all functions v̂ : V ∗ → C continuous, v ∈ V . Equivalently, it is the topology of
pointwise convergence, in that ϕn → ϕ iff ϕ(vn)→ ϕ(v) for each v ∈V (etc.).

As their names suggest, these topologies are weaker than the norm topologies (ex-
cept when V is finite-dimensional): indeed, if ‖vn− v‖ → 0 and ϕ ∈ V ∗, then cer-
tainly |ϕ(vn)− ϕ(v)| ≤ ‖ϕ‖‖vn − v‖ → 0, and similarly for V ∗. Consequently, a
functional ϕ : V → C is norm-continuous if it is weakly continuous, but the con-
verse may be false. Nonetheless, the weak dual of V coincides with its norm dual,
and we combine this with a contrasting result for the weak∗ continuous functionals
V ∗, which en passant locates the image V̂ of V in V ∗∗ under (B.129):

Proposition B.46. • Any functional ϕ ∈V ∗ is weakly continuous.
• A functional θ ∈V ∗∗ is weak∗ continuous iff θ ∈ V̂ .

We just mention that, because of Corollary B.45.2, this proposition is a special case
of a very general result on topological vector spaces. Namely, let V and W two
vector spaces in separating duality, that is, there is a bilinear form

〈−,−〉 : V ×W → C

such that for each v,v′ ∈ V there is w ∈ W with 〈v,w〉 �= 〈v′,w〉, and for each
w,w′ ∈W there is v ∈ V with 〈v,w〉 �= 〈v,w′〉. Then V can be given the so-called
σ(V,W )-topology, which is the weakest topology making each map v �→ 〈v,w〉 con-
tinuous (w ∈ W ), and W likewise carries the σ(W,V ) topology (sometimes also
called the σ(V,W )-topology). In particular, the weak topology on V is just the
σ(V,V ∗)-topology, whereas the weak∗ topology on V ∗ is the σ(V ∗,V )-topology.
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Theorem B.47. Let V and W be vector spaces in separating duality. The space of
σ(V,W )-continuous linear functionals on V coincides with W, and likewise, the
space of σ(W,V )-continuous linear functionals on W coincides with V .

This follows from elementary topology, and hence omit the proof. From this point of
view, the apparent difference between the two parts of Proposition B.46 originates
in the fact that the weak∗ topology on V ∗ is defined by its separating duality with V
(or, equivalently, with V ), rather than its separating duality with V ∗∗.

Next, the Banach–Alaoglu Theorem shows an unexpected but important prop-
erty of the weak∗ topology (a least when V is infinite-dimensional). For example, in
quantum theory this theorem implies w∗-compactness of the state space, and this, in
turn (through the Krein–Milman Theorem), leads to an abundance of pure states.

Theorem B.48. If V is a normed vector space, any d-ball

V ∗d = {ϕ ∈V ∗,‖ϕ‖ ≤ d} (B.133)

is compact in the weak∗ topology. More generally, if U is any neighborhood of 0 in
V , the set V ∗U = {ϕ ∈V ∗, |ϕ(x)| ≤ d∀v ∈U} is w∗-compact.

Clearly, U =V1 yields (B.133). Omitting the proof, we just note that the first claim
is based on the fact that V ∗U is a closed subset of the space

∏
v∈V
{z ∈ C | |z| ≤ d‖v‖},

which is compact by Tychonoff’s Theorem in topology (such reliance on awful non-
constructive results is unfortunately typical of traditional functional analysis).

After this abstract theory, it is high time to turn to some examples; see Table B.1.

No. V V ∗ V ∗-V -pairing comment
1. C0(X) M(X) 〈μ, f 〉= ∫

X dμ f X locally compact Hausdorff space
2. Cb(X) M(βX) 〈μ, f 〉= ∫

X dμ f βX Čech–Stone compactification of X
3. �0(X) �1(X) 〈 f ,g〉= ∑x∈X f (x)g(x) X countable set, �0(N) often called c0

4. �1(X) �∞(X) 〈 f ,g〉= ∑x∈X f (x)g(x) X countable set
5. �∞(X) ba(X ,P(X))C 〈μ,g〉= ∫

X dμ g bounded finitely additive signed measures on X
6. �p(X) �q(X) 〈 f ,g〉= ∑x∈X f (x)g(x) 1

p +
1
q = 1, p,q �= 1,∞, X countable

7. �2(X) �2(X) 〈 f ,g〉= ∑x∈X f (x)g(x) �2 treated as a Hilbert space
8. H H 〈 f ,g〉= 〈 f ,g〉H H general Hilbert space
9. L2(X) L2(X) 〈 f ,g〉= ∫

X dμ f g L2 treated as a Hilbert space
10. L1(X) L∞(X) 〈 f ,g〉= ∫

X dμ f g (X ,Σ ,μ) σ -finite measure space
11. Lp(X) Lq(X) 〈 f ,g〉= ∫

X dμ f g 1
p +

1
q = 1, p,q �= 1,∞

12. B0(H) B1(H) 〈ρ,a〉= Tr(ρa) B0(H) compact operators, B1(H) trace class
13. B1(H) B(H) 〈a,ρ〉= Tr(ρa) B(H) bounded operators on H
14 M∗ M 〈a,ϕ〉= ϕ(a) M∗ predual of von Neumann algebra M

Table B.1 Some Banach spaces and their duals, up to isometric isomorphism
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1. The first entry is Theorem B.24.
2. This one is true by definition if we define the Čech–Stone compactification βX

of a locally compact (Hausdorff) space as the Gelfand spectrum of Cb(X) as a
commutative C*-algebra, or, equivalently, by

Cb(X)∼=C(βX); (B.134)

The compact Hausdorff space βX then has the feature that each f ∈Cb(X) has
a unique continuous extension to βX . More generally, let X be a topological
space. Provided it exists, “the” Čech–Stone compactification of X , denoted by
βX , is a compact Hausdorff space together with a continuous map βX : X → βX
such that for each compact Hausdorff space K and each continuous function
f : X → K there is a unique continuous function β f : βX → K such that the
following diagram commutes:

X βX

K

βX

f
∃!β f (B.135)

This universal property makes βX unique up to homeomorphism (if it exists).
If X is locally compact Hausdorff, then βX exists and βX is injective, making
βX (X) ∼= X a dense subspace of βX . The above diagram then implies (B.134)
through f �→ β f ; just take K = Ran( f )−, which is compact since f is bounded.
Specializing this case to arbitrary sets X seen as discrete topological spaces, we
can give an explicit description of βX as the set of all ultrafilters on X .

Definition B.49. Let X be any set (seen as a discrete topological space).

• A filter on X is a non-empty collection F of subsets of X such that A ∈ F and
B ∈ F implies A∩B ∈ F, A ∈ F and A⊂ B implies B ∈ F, and finally /0 /∈ F.

• An ultrafilter is a filter that is maximal in the set of all proper filters F (i.e.
F �=P(X)\ /0), ordered by inclusion. It is straightforward to show that a filter
F is maximal iff one and hence all of the following equivalent conditions hold:
a. for any A⊂ X we have either A ∈ F or Ac ∈ F;
b. if A∪B ∈ F, then A ∈ F or B ∈ F (i.e., F is prime);
c. if A∩B �= /0 for all B ∈ F, then A ∈ F.

• For any x ∈ X, the set Ux of all subsets of X that contain x forms an ultrafilter,
called principal; any ultrafilter not of this kind is called free (if |X |= ∞, the
existence of free ultrafilters on X follows from Zorn’s Lemma).

For discrete X , the set of all ultrafilters on X , endowed with the topology gener-
ated by all sets of the form UA = {U ∈ βX | A∈U}, where A⊂ X , is a realization
of the Čech–Stone compactification of X , and may therefore be denoted by βX .
Note that each UA is clopen in βX . The embedding βX maps x∈X to the principal
ultrafilter Ux, and the continuous extension β f of f : X → K is given by
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β f (U)≡ lim
U

f =
⋂

A∈U

f (A)−, (B.136)

Theorem 4.24 then explains the pairing in no. 2 of Table B.1 (see also no. 5).
3. • This is a special case of no. 1, since �0(X) =C0(X), given that X is discrete (as

a topological space). We then use the (Lebesgue–) Radon–Nikodym Theorem
of measure theory: if (X ,Σ ,μ) is a σ -finite measure space and ν is a complex
measure on Σ that is absolutely continuous with respect to μ (i.e., μ(A) = 0
implies ν(A) = 0, A ∈ Σ ), then there is a function dν/dμ ∈ L1(X) such that∫

X
dv f =

∫
X

dμ
dν
dμ

f , f ∈ L∞(X). (B.137)

In the case at hand, X is countable and μ is the counting measure, with respect
to which any measure is absolutely continuous. This yields M(X)∼= �1(X).

• Secondly, this duality is also a special case of Theorem B.27: as in (B.78),

�0(X) = �∞(X ,P f (X)), (B.138)

so that bounded hermitian functionals ϕ : �0(X)→ C (which in this case cor-
respond to bounded real-linear functionals �0(X ,R)→ R) are given by

ϕ(g) = lim
n→∞

∫
A

dμ sn,

where g∈ �0(X), (sn) is a sequence in Step(X ,P f (X)), which simply consists
of functions on X with finite support, and μ is a finitely additive bounded
signed measure on P f (X), which is given by its values on any singleton x∈X
and hence is just a real-valued function

f (x) = μ({x}); (B.139)

boundedness of μ gives f ∈ �1(X). Writing X = ∪nXn, where the Xn are finite
and Xn ⊂ Xn+1 (e.g., for X =N one may take Xn = {1, . . . ,n}, so that ∑x∈Xn =

∑n
x=1), we may use sn = f|Xn on Xn and sn(x) = 0 outside Xn, which gives

ϕ(g) = lim
n→∞ ∑

x∈Xn

f (x)g(x) = ∑
x∈X

f (x)g(x). (B.140)

One easily verifies that indeed ‖ f‖1 = ‖μ‖, since (B.56) - (B.57) yield

‖μ‖= sup{μ+(A)+μ−(A) | A ∈P f (X)}= sup

{
∑
x∈A
| f (x)|,A ∈P f (X)

}
,

whose right-hand side in turn is equal to ‖ f‖1.
• As a third approach, we give a direct proof of the desired duality

�0(X)∗ ∼= �1(X). (B.141)
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To start, for f ∈ �1(X) and g ∈ �0(X), we define an expression ϕ f (g) by

ϕ f (g) = 〈 f ,g〉 ≡ ∑
x∈X

f (x)g(x). (B.142)

By the obvious estimate

|ϕ f (g)| ≤ ‖ f‖1‖g‖∞, (B.143)

which is Hölder’s inequality for p = 1 and q = ∞, the sum (B.142) is abso-
lutely convergent, and hence defines a linear map ϕ f : �0(X)→C, which satis-
fies ‖ϕ f ‖ ≤ ‖ f‖1. Thus the map f �→ ϕ f is well defined from �1(X) to �0(X)∗.
To prove surjectivity of this map, for given ϕ ∈ �0(X)∗, define f : X → C by

f (x) = ϕ(δx). (B.144)

It follows from continuity of ϕ that ϕ = ϕ f , cf. (B.140), but it remains to be
shown that f ∈ �1(X). To do so, for each n ∈ N we define ϕn : �0(X)→ C by

ϕn(g) = ∑
x∈Xn

f (x)g(x). (B.145)

This operator is bounded, with

‖ϕn‖= ‖sn‖1, (B.146)

where sn was defined prior to (B.140). To see this, we have

‖ϕn‖ ≤ ‖sn‖1, (B.147)

from (B.143), whereas the opposite inequality follows from a trick: define

gn(x) = f (x)/| f (x)| (x ∈ Xn, f (x) �= 0); (B.148)
gn(x) = 0 (otherwise), (B.149)

so that, assuming ϕ �= 0, we have ‖gn‖∞ = 1 and ϕn(gn) = ‖sn‖1, and hence

‖ϕn‖ ≥ ‖sn‖1. (B.150)

Since ϕ(g) = ϕ f (g) is finite by assumption, as in (B.140) limn→∞ϕn(g) exists
for each g ∈ �0(X). Hence limn→∞ ‖ϕn(g)‖ exists, so supn{‖ϕn(g)‖} < ∞.
The Principle of Uniform Boundedness (cf. Theorem B.78 below) then gives
supn{‖ϕn‖}< ∞, and this supremum equals supn{‖sn‖}= ‖ f‖1.

Comparing the first two approaches, we see that bounded finitely additive mea-
sures on P f (X) bijectively correspond to bounded σ -additive measures on
P(X), both of which in turn are given by positive functions f ∈ �1(X).
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4. This is similar to the third proof of the previous case. For f ∈ �∞(X) and g ∈
�1(X), we define ϕ f (g) by (B.142), and instead of (B.143) we now obtain

|ϕ f (g)| ≤ ‖ f‖∞‖g‖1. (B.151)

Thus we have a map f �→ ϕ f from �∞(X) to �1(X)∗, satisfying ‖ϕ‖ ≤ ‖ f‖∞.
To prove surjectivity, for some ϕ ∈ �1(X)∗ we once again define f : X → C by
(B.144), so that ϕ = ϕ f by continuity. Then for any x ∈ X ,we obtain | f (x)| ≤
‖ϕ‖‖δx‖1 = ‖ϕ‖, so ‖ f‖∞ ≤ ‖ϕ‖ and hence ‖ϕ‖ = ‖ f‖∞. In particular, f ∈
�∞(X) and the bijection ϕ f ↔ f gives an isometric isomorphism à la (B.141):

�1(X)∗ ∼= �∞(X). (B.152)

5. Similar to no. 3, this is a special case of two more general dualities, namely

�∞(X)∗ ∼= M(βX); (B.153)
�∞(X ,R)∗ ∼= ba(X ,P(X)), (B.154)

cf. no. 2, and Theorem B.27, respectively. Thus bounded finitely additive mea-
sures μ on X (with underlying semiring R = P(X)) bijectively correspond to
bounded σ -additive measures μβ on βX (equipped with the Borel σ -algebra) by∫

X
dμ f =

∫
βX

dμβ β f , (B.155)

for any f ∈ �∞(X). This is not as surprising as it seems, because there is a bijec-
tive correspondence between ultrafilters U on X and finitely additive probability
measures μ on X that take values in {0,1}. This correspondence is given by:

U = {A⊂ X | μ(A) = 1}; (B.156)
μ(A) = 1 iff A ∈U. (B.157)

Principal ultrafilters Ux thereby correspond to Dirac measures δx on X , whereas
free ultrafilters U correspond to (finitely additive) measures μU on X that vanish
on any finite subset of X . For general ultrafilters U ∈ βX we have, for f ∈ �∞(X),∫

X
dμ f =

⋂
A∈U

f (A)−, (B.158)

where f (A) = { f (x) | x ∈ A} as usual, and f (A)− is the closure of this set in C.
Thus (B.158) is equal to the unique z ∈ C with the property that for each ε > 0
the set {x ∈ N : | f (x)− z|< ε} lies in U ; for U =Ux, this recovers z = f (x).

6. This is similar to nos. 3 and 4, but is slightly more involved. For f ∈ �q(X) and
g ∈ �p(X), with (B.16) and p,q �= 1,∞, we again define ϕ f (g) by (B.142), upon
which Hölder’s inequality yields ‖ϕ f ‖ ≤ ‖ f‖q. Conversely, for ϕ ∈ �p(X)∗, once
again define f by (B.144), so that ϕ = ϕ f . We now show that ‖ f‖q ≤ ‖ϕ‖.
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Pick Xn ⊂ X as defined below (B.139), and define fn : X → C by fn(x) = f (x) if
x ∈ Xn and fn(x) = 0 if x /∈ Xn. If ‖ f‖q < ∞, then ‖ f‖q = supn ‖ fn‖q. Now define

gn(x) = | fn(x)|q/ fn(x) ( fn(x) �= 0); (B.159)
gn(x) = 0 ( fn(x) = 0). (B.160)

Using (B.142), we obtain

‖ fn‖q‖ fn‖q−1
q = ‖ fn‖q

q = 〈 fn,gn〉=ϕ(gn)≤‖ϕ‖‖gn‖p = ‖ϕ‖‖ fn‖q−1
q , (B.161)

whence ‖ fn‖q ≤ ‖ϕ‖. Taking supn gives ‖ f‖q ≤ ‖ϕ‖, and hence

�p(X)∗ ∼= �q(X). (B.162)

7. p = q = 2 stands out as a special, self-dual case. As the next item explains,
this is because �2(X) is a Hilbert space with inner product (B.10). This differs
from the pairing (B.142) by the complex conjugation of the first term, making
it appropriate to redefine the pairing between �2(X)∗ and �2(X) in terms of the
inner product. This leads to an antilinear isometric isomorphism �2(X)∗ ∼= �2(X),
as opposed to the linear isometric isomorphisms for all other values of p,q.

8. Proposition A.5 generalizes to infinite-dimensional Hilbert spaces (in which case
it is often named after Riesz and Fréchet), with the following additions to the
proof. First, boundedness of f guarantees that ker( f ) is a closed subspace of H,
so that (if f �= 0) the orthogonal complement ker( f )⊥ is not empty by Proposition
B.57 below. Second, uniqueness of the representing vector ψ in (A.13) now needs
to be shown. This is easy: if 〈ψ,ϕ〉 = 〈ψ ′,ϕ〉 for all ϕ ∈ H, then, taking ϕ =
ψ−ψ ′, it follows that 〈ψ−ψ ′,ψ−ψ ′〉= ‖ψ−ψ ′‖2 = 0, hence ψ ′ = ψ .

No. 9 follows from no. 8, whilst 10 and 11 are similar to 4 and 6, except for some
tricky measure-theoretic details. We only sketch the main idea (where for simplicity
we assume μ is finite; using an approximation procedure the result is valid also
for the σ -finite case, but not beyond!). Namely, the function f representing the
functional ϕ ∈ Lp(X)∗ is constructed by first defining a complex measure ν on Σ
by ν(A) = ϕ(1A), A ∈ Σ . Using (B.85), we see that ν is absolutely continuous with
respect to μ , and we put

f = dν/dμ. (B.163)

Using definition (B.29) of integration, this yields

ϕ(g) = 〈 f ,g〉=
∫

X
dμ f g, (B.164)

and similar arguments as in the discrete case show that f ∈ Lq(X).
Nos. 12–13 follow from Theorem B.146 below, and no. 14, which is forward-

looking, too, is true by definition of the predual of a von Neumann algebra (whose
existence is highly nontrivial); see Theorem C.132 in Appendix §C.
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B.10 The Krein–Milman Theorem

Returning to the abstract theory, we now apply the Hahn–Banach Theorem and du-
ality theory to prove one of the most beautiful results in functional analysis.

The boundary ∂eK of a convex set K consists of all v ∈ K satisfying:

if v = tw+(1− t)x for certain w,x ∈ K and t ∈ (0,1), then v = w = x.

Hence Caratheodory’s Theorem 1.12, which, we recall, states that if K is a nonempty
compact convex subset of Rn, then ∂eK �= /0, and each point of K is a convex sum
of at most n+1 points in ∂eK, implies, in particular, that ∂eK is not empty. This is
readily visualized: the simplest example is K = [0,1], where ∂eK = {0,1}. One also
has triangles in the plane, whose boundaries consist of their vertices (rather than
their sides, which are among their faces, see below). Furthermore, the closed (unit)
three-ball B3 in R3 is convex, with boundary ∂eB3 = S2, cf. Proposition 2.9. In these
examples the interior of K, which is still convex, would have an empty boundary, so
that the assumption of compactness in Theorem 1.12 is absolutely essential.

Caratheodory’s Theorem follows from a straightforward induction argument in
the dimension of K, and the following Krein–Milman Theorem. The convex hull
co(X) of a subset X of a vector space is defined as the set of all convex sums tx+
(1− t)y, where t ∈ (0,1) and x,y ∈ X ; this is the smallest convex set containing X .

Theorem B.50. Let V be a real normed vector space with dual V ∗, and let K be a
convex subset of V ∗ that is compact in the w∗-topology. Then ∂eK �= /0, and each
point of K lies in the w∗-closure of the convex hull of ∂eK. In other words,

K = (co(∂eK))−. (B.165)

Zorn’s Lemma will be used twice in the proof: both directly and through Theorem
B.43, which relies on the Hahn–Banach Theorem B.40, whose proof uses Zorn.
Furthermore, a face of a convex set K is a nonempty convex subset F ⊆K such that:

If z = tx+(1− t)y for z ∈ F with t ∈ (0,1) and x,y ∈ K, then x,y ∈ F.

In particular, each extreme point x∈ ∂eK is a face in its own right; conversely, a face
consisting of a single point lies in ∂eK (as should be clear from the definitions).

Proof. 1. Let F (K) be the set of all closed faces in K, partially ordered by in-
verse inclusion, i.e., F1 � F2 iff F2 ⊆ F1. The intersection of any finite subset of
a totally ordered subset {Fλ} of F (K) is obviously nonempty, so that, by com-
pactness of K, we also have ∩λFλ �= /0. (Proof by contradiction: if ∩λFλ = /0, then
∪λFc

λ = (∩λFλ )c = /0c = K, so that {Fc
λ } is an open cover of K, which definition

of compactness has a finite subcover {Fc
λ ′ }. By the same argument, ∩λ ′Fλ ′ = /0.)

Hence ∩λFλ is an upper bound of {Fλ}, so that Zorn gives us a (not necessarily
unique) maximal element F0 in F (K) (which set-theoretically is minimal be-
cause of the reverse ordering, i.e., F0 contains no strictly smaller closed face).
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2. We now show that F0 must be a singleton (and hence an extreme point of K).
For any v ∈V , the function v̂ : V ∗ →R defined by v̂(ϕ) = ϕ(v) is w∗-continuous,
see Propositions B.44 and B.46. Since F0 ⊂ K is compact, v̂ assumes a minimum
on F0, say m. The set

Fm = {ϕ ∈ F0 | v̂(ϕ) = m} (B.166)

is not only closed (by continuity of v̂), and hence compact (since F is), but it is
again a face in K: first, if ϕ ∈ Fm takes the form

ϕ = tϕ1 +(1− t)ϕ2, (B.167)

with ϕ1,ϕ2 ∈ F0, then

v̂(ϕ) = m = tv̂(ϕ1)+(1− t)v̂(ϕ2), (B.168)

which, given that v̂(ϕi) ≥ m, is only possible if v̂(ϕ1) = v̂(ϕ2) = m, so that ϕi ∈
Fm. Hence Fm is a face in F0, but this implies that it is equally well a face in K.
Namely, if (B.167) holds for ϕ ∈ Fm and ϕi ∈ K, then regarding ϕ as an element
of F0 gives ϕi ∈ F0, because F0 is a face in K, upon which the previous step,
where we regard ϕ as an element of Fm, gives ϕi ∈ Fm.
Since F0 is maximal, we must have Fm = F0, so that each functional v̂ is constant
on F0. Now we know (even without the Hahn–Banach Theorem) that the func-
tionals v̂ separate points in V ∗, since the very statement that ϕ1 �= ϕ2 means that
there is some v ∈ V such that ϕ1(v) �= ϕ2(v) and hence v̂(ϕ1) �= v̂(ϕ2). So if F0
contains more than one point, there must be a functional v̂ that is not constant on
F0. Hence F0 is a singleton, and therefore an element of ∂eK. That is, ∂eK �= /0.

3. The same argument applies to any closed face F in K, showing that each F ∈
K (K) contains at least one point in ∂eF . But such a point is a face in F and
hence in K, and being a one-point face in K, it must lie in ∂eK. So we may
strengthen the previous point by concluding that F ∩∂eK �= /0 for any closed face
F ⊆ K.

4. To prove (B.165) by reductio ad absurdum, define

B = (co(∂eK))−, (B.169)

and assume B �= K. First note that co(∂eK) is convex by construction, and that
its closure B remains convex (because the vector space operations, and a fortiori
the convex sums, are continuous). Its complement in V ∗ is open, and hence any
point α ∈ K\B has an open convex neighbourhood A⊂V ∗\B (see below), which
is therefore disjoint from B. Hence Theorem B.43 applies (with V � V ∗ and
ϕ � v̂), giving us v ∈V and t ∈ R for which v̂(α)< t ≤ v̂(β ) for any β ∈ B.
Now define s = min{v̂(ϕ) | ϕ ∈ K}, which exists since K is w∗-compact and v̂ is
w∗ continuous. Since α ∈ K\B ⊂ K and v̂(α) < t, we have s < t. Subsequently,
define Fs = {ϕ ∈ K | v̂(ϕ) = s}. As in step 2 above, it follows that Fs is a closed
face in K. According to step 3, there is a point ω ∈ Fs ∩ ∂eK, so that v̂(ω) = s.
This contradicts s < t ≤ v̂(β ) for any β ∈ B, as ω ∈ ∂eK ⊂ B. �
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The existence of A in step 4 above arises from the fact that open sets of the form

O
(ε)
v1,...,vn = {ϕ ∈V ∗, |ϕ(vi)|< ε (i = 1, . . . ,n)}, (B.170)

where ε > 0 and all vi ∈V , form a basis of w∗-neighbourhoods of 0∈V ∗, and hence
its translates ω +O

(ε)
v1,...,vn form such a basis for any ω ∈ V ∗; the point is that such

sets are convex, because if |ϕi(v)|< ε for i = 1,2 and t ∈ (0,1), then

|(tϕ1 +(1− t)ϕ2)(v)| ≤ t|ϕ1(v)|+(1− t)|ϕ2(v)|< (t +1− t)ε = ε. (B.171)

Although the Krein–Milman Theorem is of considerable interest and beauty in
itself, our main use of it lies in a few corollaries. Among those is Choquet’s Theorem
in the next section, but we first turn to the Stone–Weierstrass Theorem:

Theorem B.51. Let X be a compact Hausdorff space. Let B be an involutive subal-
gebra of C(X) (regarded as a commutative C*-algebra) that separates points on X
(i.e., if x �= y there is f ∈ B such that f (x) �= f (y)) and contains the unit function 1X .
Then B is dense in C(X) in the sup-norm. In particular, if B is closed, then B=C(X).

In other words, B is a linear subspace of C(X) such that if f ,g ∈ B, then f g ∈ B,
and if f ∈ B, then f ∗ ∈ B, where f ∗(x) = f (x). Furthermore, C(X) and hence B are
equipped with the sup-norm. The assumptions could even be weakened: instead of
asking that 1X ∈ B and that B separate points, for the proof we just need that for
each x,y ∈ X and s, t ∈ R there is f ∈ B such that f (x) = s and f (y) = t.

We are going to derive Theorem B.51 from Theorem B.50 and the following:

Lemma B.52. Let B be a linear subspace of some Banach space V . Then B is dense
in V iff the only element ϕ ∈V ∗ that satisfies ϕ(v) = 0 for all v ∈ B is ϕ = 0.

Proof. The “⇒” direction (which will not be needed) is immediate from the fact that
ϕ ∈V ∗ is bounded and therefore, if v = limvλ for (vλ ) in B, then ϕ(v) = limϕ(vλ ),
so that ϕ(v) = 0 for all v ∈ B implies ϕ(v) = 0 for all v ∈V and hence ϕ = 0.

Conversely, if B− �=V , we will exhibit some nonzero ϕ ∈V ∗ with ϕ|B = 0. Take
some w /∈ B− and define W ⊂V by W =C ·w+B−, along with a map ϕW : W →C
given by ϕW (λw+ v) = λ for any λ ∈ C and v ∈ B−. This map is trivially linear,
as well as bounded: since w /∈ B− we have ‖w− v‖ ≥ d for some d > 0, for each
v ∈ B−; since then also −v ∈ B−, we have ‖λw+ v‖ ≥ |λ |d, and therefore

|ϕW (λw+ v)|= |λ | ≤ d−1‖λw+ v‖.

By Corollary B.41, our ϕW extends to some ϕ ∈V ∗, with ϕ|B = ϕW |B = 0. �

Proof. We now prove Theorem B.51. We define a subspace B0 ⊂M(X) by

B0 = {μ ∈M(X) | μ( f ∗) = μ( f ),‖μ‖ ≤ 1,μ( f ) = 0∀ f ∈ B}, (B.172)

where f ∗(x) = f (x) as usual. Our aim is to show that

B0 = {0}. (B.173)
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Since any ϕ ∈M(X) is a multiple of some μ in the unit ball ‖μ‖ ≤ 1, eq. (B.173)
gives the antecedent of the “⇐′′ part of Lemma B.52, which gives Theorem B.51.

Noting that the w∗-topology in M(X) is just the topology in which μλ → μ
iff μλ ( f )→ μ( f ) for each f ∈ C(X), we see that B0 is closed in the unit ball of
M(X), so that it is w∗-compact by the Banach–Alaoglu Theorem. Furthermore, B0

is convex, so the Krein–Milman Theorem gives ∂eB0 �= /0. Any μ ∈ ∂eB0 has either
‖μ‖ = 0, in which case (B.173) holds and we are ready, or, as we assume in what
follows,

‖μ‖= 1. (B.174)

Indeed, if 0 < ‖μ‖< 1, then

μ = tμ1 +(1− t)μ2, (B.175)

with t = ‖μ‖, μ1 = μ/‖μ‖, and μ2 = 0 would give a nontrivial decomposition of μ .
For g ∈C(X), define

Lg : M(X)→ M(X); (B.176)
Lgμ( f ) = μ(g f ), (B.177)

or “Lgdμ = g · dμ”. It follows from the assumptions on B in Theorem B.51 that if
0 < g < 1X and g ∈ B (as we will now assume), then Lg maps B0 into itself, and also
0 < 1X −g < 1X . Hence L1X−g maps B0 into itself. Given (B.174), we then have

‖L1X−gμ‖= 1−‖Lgμ‖. (B.178)

This follows from (B.76): the Hahn-Jordan decomposition (B.55) of μ also gives
(Lgμ)± = Lgμ± and (L1X−gμ)± = L1X−gμ± (since g > 0 and 1X −g > 0), so that

‖L1X−gμ‖= L1X−gμ+(X)+L1X−gμ−(X) (B.179)
= μ+(X)+μ−(X)−Lgμ+(X)−Lgμ+(X) = ‖μ‖−‖Lgμ‖. (B.180)

Because of (B.178), we obtain a convex decomposition (B.175) with t = ‖Lgμ‖,
μ1 = Lgμ/‖Lgμ‖, and μ2 = L1X−gμ/‖L1X−gμ‖, which are well defined because
of (B.174), which guarantees that the two denominators are nonzero. Since μ is
extreme by assumption (i.e., it lies in ∂eB0), it must be that

Lgμ
‖Lgμ‖ =

L1X−gμ
‖L1X −gμ‖ = μ. (B.181)

Hence g(x) = ‖Lgμ‖ almost everywhere with respect to μ; in particular, this must
hold for each x ∈ supp(μ). Suppose there are at least two different points x,y ∈
supp(μ). Since B separates points and contains 1X , we can easily find 0 < g < 1X
such that g(x) �= g(y), contradicting constancy of g on supp(μ). So supp(μ) = {x},
which, given (B.174), implies that μ =±δx, so that μ(1X ) =±1. Since 1X ∈ B, this
contradicts (B.172). Hence (B.174) leads to a contradiction, and we are left with the
other possibility ‖μ‖= 0. This gives μ = 0, that is, (B.173). �
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B.11 Choquet’s Theorem

Choquet’s Theorem B.53 beautifully follows up on the Krein–Milman Theorem.
To state it, we need the support supp(μ) of a measure μ on a space X , defined
as the smallest closed set F such that μ(X\F) = 0, or, equivalently, as the largest
closed set F such that each open neighbourhood U of each x ∈ F has strictly pos-
itive measure μ(U) > 0, provided such a set exists. This is the case, for example,
if X is locally compact Hausdorff and μ is (inner) regular. To see this, let {Uλ}
be set of all open Uλ ∈ O(X) such that μ(Uλ ) = 0, and let U = ∪λUλ . By inner
regularity, μ(U) = sup{μ(K) | K ⊂U,K ∈K (X)}. Since each such K is compact,
K⊂∪n

i=1Uλi , whence μ(K)≤∑i μ(Uλi)= 0. Hence μ(U)= 0, and supp(μ)=X\U .

Theorem B.53. In the notation of Theorem B.50, for each ϕ ∈ K there is a proba-
bility measure μ on K whose support is contained in ∂eK− such that for each v ∈V ,

ϕ(v) =
∫
∂eK−

dμ(ω)ω(v). (B.182)

Moreover, if K is metrizable, then the support of μ may be restricted to ∂eK.

Here ∂eK− ≡ (∂eK)− is the closure of ∂eK; in many examples (e.g., state spaces of
C*-algebras of infinite quantum systems), ∂eK is not closed or even Borel.

Reading (B.182) from right to left, the point ϕ ∈ K is called the barycenter of μ .
Preparing for the proof, we note that if X is a compact Hausdorff space, the dual
C(X)∗ of C(X) as a Banach space (in the sup-norm) is the space M(X) of all com-
plete regular complex measures μ on X ; cf. Theorem B.24. The set M+

1 (X) of all
complete regular probability measures on X is a closed subset of the unit ball of
M(X), since ‖μ‖ = μ(X) = 1 if μ ∈ M+

1 (X), cf. (B.54), and hence M+
1 (X) is w∗-

compact by the Banach–Alaoglu Theorem. We will use these facts with X = ∂eK−.
We also recall that a (not necessarily continuous) function f : K → R is affine if

f (tϕ1 +(1− t)ϕ2) = t f (ϕ1)+(1− t) f (ϕ2), (B.183)

for t ∈ (0,1) and ϕ1 �= ϕ2 ∈K, concave if one has≥ instead of = in (B.183), convex
with ≤ instead of =, and strictly convex if (B.183) holds with =�<.

For example, f (x) = x2 is strictly convex on [−1,1]. The assumption of metriz-
ability will only be used to prove the existence of a strictly convex continuous func-
tion on K, so this existence could have been assumed instead of metrizability. Fi-
nally, we denote the space of real-valued continuous affine functions on K by A(K).

Proof. By Theorem B.50, ϕ = limϕλ , where (ϕλ ) is some net in co(∂eK), so
that ϕλ = ∑i p(λ )i ω(λ )

i , where the sum is finite, p(λ )i ≥ 0, and ∑i p(λ )i = 1. Then
μλ = ∑i p(λ )i δ

ω(λ )
i

is a probability measure on ∂eK and hence also on its (compact)

closure ∂eK−. Since M+
1 (∂eK−) is w∗-compact, the previous net has a subnet that

w∗-converges to some μ ∈M+
1 (∂eK−). Noting that ϕ(v) = ϕ̂(v), where v̂ ∈ V ∗∗ is

w∗-continuous by Proposition B.46, this μ by construction satisfies (B.182).
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We now prove the last claim. If K is metrizable, then C(K) is separable, so that
its subspace A(K) is separable, too. Thus we can find some countable dense subset
( fn)n>0 of A(K), in terms of which we define a function f0 : K → R by

f0(ϕ) =
∞

∑
n=1

2−n(‖ fn‖∞ +1)−2| fn(ϕ)|2. (B.184)

First, continuity of f0 follows from uniform convergence of this series and continu-
ity of each fn; recall that A(K)⊂C(K,R). Second, the x2 example just given implies
that if f ∈ A(K), then f 2 is convex, and it is even strictly convex provided there is
at least one n > 0 for which fn(ϕ1) �= fn(ϕ2). To show that this is the case, we note
that since V ⊂ V ∗∗ separates points in V ∗ and each v̂ ∈ V ∗∗ defines an element of
A(K) by restriction, A(K) separates points in K. Therefore, by density of the family
( fn), the claim follows, and f0 is strictly convex. This will be crucial.

For each real-valued f ∈C(K,R), define the concave envelope f̂ by

f̂ (ϕ) = inf{g(ϕ) | g ∈ A(K),g≥ f}. (B.185)

The terminology comes from the fact that f ≤ f̂ for any f ∈C(K), with equality if
f is concave; this is because for any continuous concave function f we may write

f (ϕ) = inf{g(ϕ) | h ∈ A(K),g≥ f}. (B.186)

In terms of this, for any fixed element ϕ0 ∈ K we define p : C(K,R)→ R by

p( f ) = f̂ (ϕ0). (B.187)

Since f̂ +g ≤ f̂ + ĝ and t̂ f = t f̂ for t ≥ 0, as is easily verified, it follows that p is
sublinear (cf. Definition B.38). We define a linear subspace W ⊂C(K,R) by

W = A(K)+R · f0, (B.188)

endowed with the ‘hatted’ evaluation map êvϕ0 : W → R defined by

êvϕ0(g+ s f0) = g(ϕ0)+ s f̂0(ϕ0); (B.189)

since g = ĝ for any g ∈ A(K), for s≥ 0 we have êvϕ0(g+ s f0) = evϕ0(ĝ+ ŝ f 0).
It is easy to show that p dominates êvϕ0 , so that the Hahn–Banach Theorem

B.40 yields an extension êv′ϕ0
of êvϕ0 to C(K,R) that satisfies êv′ϕ0

( f ) ≤ f̂ (ϕ0).
This implies that êv′ϕ0

is positive; to see this, take f ≤ 0. Since the zero function
is in A(K) we have f̂ ≤ 0 also, so that êv′ϕ0

( f ) ≤ 0. Passing to − f , we find that
êv′ϕ0

( f )≥ 0 whenever f ≥ 0. Furthermore, since 1K ∈ A(K)⊂W , we have

êv′ϕ0
(1K) = êvϕ0(1K) = 1K(ϕ0) = 1.
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Therefore, êv′ϕ0
is a state on C(K). Corollary B.17 then turns êv′ϕ0

into a probability
measure μ on K. Taking f = v̂ for some v ∈V , we have f ∈ A(K)⊂W , so that∫

K
dμ(ω)ω(v)≡

∫
K

dμ v̂≡ μ(v̂) = êvϕ0(v̂) = v̂(ϕ0) = ϕ0(v). (B.190)

This is almost (B.182) with ϕ � ϕ0; what we still need to prove is the property

supp(μ)⊆ ∂eK. (B.191)

This will be proved in two steps. For any f ∈C(K), we define K( f )⊂ K by

K( f ) = {ϕ ∈ K | f (ϕ) = f̂ (ϕ)}. (B.192)

We will separately show that

supp(μ) ⊆ K( f0); (B.193)
K( f0) ⊆ ∂eK. (B.194)

Towards (B.193) we start showing that

μ( f0) = μ( f̂0), (B.195)

which is a conjunction of μ( f0)≤ μ( f̂0) and μ( f0)≥ μ( f̂0). The first is true for any
f ∈C(K), since μ is positive and f ≤ f̂ (pointwise). The second is specific to f0:

μ( f0) = êv′ϕ0
( f0) = êvϕ0( f0) = f̂0(ϕ0)

= inf{g(ϕ0) | g ∈ A(K),g≥ f0}
= inf{μ(g) | g ∈ A(K),g≥ f0}, (B.196)

since for g ∈ A(K) we have g(ϕ0) = μ(g) because A(K)⊂W . If in addition g≥ f0,
we have g≥ f̂0, which implies μ(g)≥ μ( f̂0). This inequality survives the infimum
in (B.196), so that we finally obtain μ( f0)≥ μ( f̂0), and hence (B.195).

We now prove (B.193) from (B.195). Since f0≤ f̂0, for each n> 0 we may define

Kn = {ϕ ∈ K | f̂0(ϕ)− f0(ϕ)≥ 1/n}. (B.197)

Then 0≤ μ(Kn)≤ n ·∫K dμ ( f̂0− f0), which vanishes by (B.195). Hence μ(Kn) = 0
for each n, and therefore μ(∪nKn) = 0. But ∪nKn = K( f0)

c, so (B.193) follows.
Eq. (B.194) is equivalent to the inclusion (∂eK)c ⊆ K( f0)

c, i.e., the implication:

if ϕ = tϕ1 +(1− t)ϕ2 for some t ∈ (0,1) and ϕ1 �= ϕ2, then f̂0(ϕ) �= f0(ϕ).

Indeed, strict convexity of f0 (used at last!) and the familiar property f0 ≤ f̂0 give

f̂0(ϕ) = inf{tg(ϕ1)+(1− t)g(ϕ2) | g ∈ A(K),g≥ f0}
≥ t inf{g(ϕ1) | g ∈ A(K),g≥ f0}+(1− t) inf{g(ϕ2) | g ∈ A(K),g≥ f0}
= t f̂0(ϕ1)+(1− t) f̂0(ϕ2)≥ t f0(ϕ1)+(1− t) f0(ϕ2)> f0(ϕ). �
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In turn, the existence of some measure μ in (B.182) representing an arbitrary
point ϕ ∈ K implies the Krein–Milman Theorem. We rewrite (B.182) as

v̂(ϕ) =
∫
∂eK−

dμ v̂, (B.198)

where ϕ ∈ K is arbitrary and v̂ ∈ C(K) is the (affine) continuous function on K ⊂
V ∗ induced by the functional v̂ ∈ V ∗∗ on V ∗ defined by v ∈ V under the canonical
injection V ↪→V ∗∗, v �→ v̂, see Proposition B.44. From (B.198) and (B.34) we obtain

|v̂(ϕ)| ≤ ‖v̂‖(∂eK−)
∞ ,

which, because ∂eK− ⊂ (co(∂eK))−, also gives the inequality

|v̂(ϕ)| ≤ ‖v̂‖((co(∂eK))−)
∞ .

This forces ϕ ∈ (co(∂eK))−, for if ϕ /∈ (co(∂eK))− we would obtain a contradiction
with Theorem B.43 (which is a version of the Hanh–Banach Theorem), or more
precisely, with the alternative version thereof stated after its proof, with A = {ϕ}
closed and B = (co(∂eK))− compact and convex (and, of course, ϕ �−ϕ). There-
fore, K ⊆ (co(∂eK))−, which implies (B.165).

If only to illustrate Choquet’s Theorem, we note that existence of the probability
measure μ in the Riesz Representation Theorem B.15 follows from it. To see this,
fix some compact Hausdorff space X , and take V =C(X ,R) (as a real Banach space
in the supremum-norm) and K = S(C(X ,R)) ⊂ V ∗, i.e., the set of positive linear
functionals ϕ : C(X ,R)→ R that satisfy ϕ(1X ) = 1. By the argument following
Definition 1.14, K coincides with the state space S(C(X)) of the commutative C*-
algebra C(X), which is a complex Banach space (cf. Appendix C), in that each ϕ ∈K
extends uniquely to a state ϕ : C(X)→ C by complex linearity, which extension
remains positive in the sense of Definition C.3. From Propositions C.14 and C.19,
the map X →V ∗ given by x �→ evx, where evx( f ) = f (x) is the evaluation map at x,
takes values in ∂eK and yields a homeomorphism

∂eK ∼= X . (B.199)

In particular, ∂eK is closed in V ∗ (and in K), so (B.182) comes down to (B.39).
The part of Theorem B.15 that does not follow from Theorem B.53 is the possible

uniqueness of the measure μ on ∂eK− that represents the point ϕ ∈ K. Uniqueness
of the measure in Choquet’s Theorem is settled by the following notion.

Definition B.54. A (Choquet) simplex is a compact convex set K ⊂ V ∗ whose as-
sociated convex cone K̃ = R+ ·K ≡ {tω | t ≥ 0,ω ∈ K} (cf. Definition C.50) is a
lattice in the partial ordering ≤ defined by ρ ≤ σ iff σ −ρ ∈ K̃

Here we assume that for any ρ ∈ K̃ there is a unique t ∈ R+ and ω ∈ K such that
tω = ρ; this is the case if K = K̃∩H for some closed hyperplane H in V ∗ that does
not contain the origin. For example, if K = S(A) is the state space of some unital
C*-algebra A, then H = {ϕ ∈ A∗ | ϕ(1A) = 1} and K̃ = {ϕ ∈ A∗ | ϕ ≥ 0}).
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In finite dimension, Choquet simplices are special convex polytopes called sim-
plices. Recall that the so-called regular polyhedra were classified (up to affine iso-
morphism) by Schläfli in 1852, who showed that the only possibilities are:

• The simplices Δn = {x ∈ Rn+1 | xi ≥ 0,∑i xi = 1}, n≥ 1;
• The cubes Qn = {x ∈ Rn | −1≤ xi ≤ 1}, n > 1;
• The cross-polytopes On = {x ∈ Rn | ∑i |xi| ≤ 1}, n > 1;
• The countably many regular polygons in R2 (which include Q2,O2,Δ2);
• The five Platonic solids in R3 (which include Q3,O3,Δ3);
• The six regular polychora in R4 (which include Q4,O4,Δ4).

An n-dimensional simplex is affinely homeomorphic to the convex hull of n+1 lin-
early independent points (or, equivalently, |∂eK|= n+1). In particular, the simplex
Δn is the set Pr(n+1) of all probability distributions on a set X = n+1 of cardi-
nality n+ 1, cf. Definition 1.9. Generalizing this idea, if X is a compact Hausdorff
space, then the state space S(C(X)) of the associated commutative C*-algebra C(X),
which as we know consists of all probability measures on X , is a Choquet simplex.

In the notation of Theorem B.53, the simplest result (again due to Choquet) is:

Theorem B.55. Suppose K is metrizable, and assume supp(μ) ⊆ ∂eK in (B.182).
Then μ is uniquely determined by its barycenter ϕ iff K is a Choquet simplex.

However, we note that without any assumption on K, conversely the barycenter ϕ
for which (B.182) holds for all v ∈V is uniquely determined by μ . This observation
gives rise to a map B from the compact convex set M(K)+1 of all probability mea-
sures on K to K itself, such that B(μ) is the unique point in K such that (B.198) with
ϕ = B(μ) holds for all v ∈V . This map B is, in fact, affine as well as continuous.

Theorem B.55 covers finite phase spaces in classical mechanics as well as,
negatively, finite-dimensional Hilbert spaces in quantum mechanics: in the for-
mer case, any state admits a unique decomposition into pure states (cf. Proposi-
tion 1.13), whereas in the latter this fails. For example, for H = C2, the state space
S(B(H))∼= B3 (see Proposition 2.9) is not a simplex. See also Proposition 2.14.

To explain the general (i.e., non-metrizable) case, we first define the Choquet or-
dering ≺ on the set of probability measures on K by μ ≺ ν iff μ( f )≤ ν( f ) for any
convex function f ∈ C(K,R). Noting that B(μ) = B(ν) whenever μ ≺ ν , the idea
is that since the values of convex functions almost by definition increase towards
the boundary ∂eK, probability measures on K with given barycenter that are maxi-
mal with respect to ≺ should be supported on ∂eK (such maximal measures always
exist by a Zorn’s Lemma argument). This intuition is indeed correct, provided K
is metrizable, in which case, conversely, the condition supp(μ) ⊆ ∂eK in Theorem
B.55 forces μ to be maximal. In general, an alternative way to prove the first part of
Theorem B.53 would be to take some maximal μ with given barycenter μ .

The key to the generalization of Theorem B.55 to the possibly non-metrizable
case, then, is to replace the assumption supp(μ)⊆ ∂eK by maximality of μ . This is
achieved by the major Choquet–Meyer Theorem, which we state without proof:

Theorem B.56. Assume the measure μ in (B.182) is maximal with respect to ≺.
Then μ is uniquely determined by its barycenter ϕ iff K is a Choquet simplex.
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B.12 A précis of infinite-dimensional Hilbert space

The main difference between infinite-dimensional Hilbert spaces and their finite-
dimensional counterparts lies in issues of convergence and completeness. Every
linear subspace of a finite-dimensional Hilbert space is automatically complete (cf.
Proposition B.5), and all sums one encounters are finite. In infinite dimension, �c(N)
is a linear but incomplete subspace of �2(N), and similarly for Cc(R) ⊂ L2(R); the
expansion of some vector in terms of a basis already involves an infinite sum.

Note that in metric spaces a subset is closed iff it is sequentially complete (in
that it contains all limits of Cauchy sequences); this can be seen from the fact that
the metric topology is generated by ε-balls and hence by (1/n)-balls, n ∈ N. Con-
sequently, in Banach spaces (and hence in Hilbert spaces) H, the property of some
subspace L ⊂ H being (metrically) complete (in the sense that every Cauchy se-
quence in L converges to an element of L) is the same as L being (topologically)
closed (in the sense that the set-theoretic complement Lc is open). Following tradi-
tion in functional analysis, we will henceforth speak of closed subspaces. We denote
the (metric or topological) closure of S⊂ H in H by S−.

An exhaustive way of guaranteeing that some linear subspace L⊂ H is closed is
to exhibit it as an orthogonal complement L = S⊥, where S ⊂ H is any subset: we
write ψ ⊥ S iff 〈χ,ψ〉= 0 for each χ ∈ S, and, as in (A.29), put

S⊥ = {ψ ∈ H | ψ ⊥ S}. (B.200)

We also use the double orthogonal complement S⊥⊥ ≡ (S⊥)⊥, et cetera.

Proposition B.57. Let H be a Hilbert space.

1. If S⊂ H is any subset, S⊥ is a closed linear subspace of H.
2. For each closed linear subspace L⊂ H, one has

H = L⊕L⊥, (B.201)

in the sense that
L∩L⊥ = {0}, (B.202)

and each vector ψ ∈ H has a unique decomposition

ψ = ψ‖+ψ⊥, (B.203)

where ψ‖ ∈ L and ψ⊥ ∈ L⊥.
3. For any closed linear subspace L one has L⊥⊥ = L.
4. For any linear subspaces L, one has

L⊥⊥ = L−, (B.204)

and hence L− = H iff 〈ψ,ϕ〉= 0 for each ϕ ∈ L implies ψ = 0.
5. For any subset S⊂ H, one has S⊥⊥⊥ = S⊥.
6. For any subset S⊂ H, the closure [S]−of the (finite) linear span [S] of S is S⊥⊥.
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Proof. 1. Linearity of S⊥ follows from linearity of the inner product. If ψn ∈ S⊥
and ψn → ψ , then for χ ∈ S and each n, we have

|〈χ,ψ〉|= |〈χ,ψ−ψn〉| ≤ ‖χ‖‖ψ−ψn‖. (B.205)

Taking n→ ∞ gives 〈χ,ψ〉= 0 and hence ψ ∈ S⊥, so that S⊥ is closed.
2. The proof of the infinite-dimensional case (cf. Corollary A.9 for finite dimension)

relies on Riesz Lemma B.58 below, which explains why L needs to be closed, and
also neatly identifies ψ‖ as the unique vector in L at minimal distance to ψ .
Granting this important lemma, let ψ ∈ H, we take

C = ψ+L≡ {ψ+ϕ,ϕ ∈ L}. (B.206)

Lemma B.58 yields a unique vector χ0 ∈C, from which we define ψ‖ = ψ− χ0
and ψ⊥ = χ0 (so that ‖ψ‖ −ψ‖ = ‖χ0‖ is minimal). Then ψ‖ ∈ L, and (B.203)
holds by construction. To show that χ0 ∈ L⊥, we rewrite the inequality ‖χ0‖ ≤
‖ψ +ϕ‖ (for all ϕ ∈ L) as ‖χ0‖ ≤ ‖χ0 +ϕ‖, since ψ = χ0 +ψ‖ and ψ‖ ∈ L.
Putting ϕ = −(〈ζ ,χ0〉/‖ζ‖2)ζ , with ζ ∈ L arbitrary (but nonzero), the last in-
equality reads 0 ≤ −|〈ζ ,χ0〉|2/‖ζ‖2, whence 〈ζ ,χ0〉 = 0 for all ζ ∈ L, so that
χ0 ∈ L⊥. Uniqueness of the decomposition (B.203) follows as in Corollary A.9.

3. Trivially, L⊆ L⊥⊥. To prove the converse inclusion, use the previous item.
4. If A ⊆ B, then B⊥ ⊆ A⊥ and hence A⊥⊥ ⊆ B⊥⊥. With A = L and B = L−, this

gives L⊥⊥ ⊆ (L−)⊥⊥ = L− (where, L− being closed, we used the previous item).
Conversely, L⊆ L⊥⊥ and hence L− ⊆ L⊥⊥, since L⊥⊥ is closed by the first item.

5. Take L = S⊥ and use the third item.
6. Proceeding as in the proof of no. 1, from the continuity of the inner product we

find S⊥ = ([S]−)⊥, and hence, using no. 3, finally S⊥⊥ = ([S]−)⊥⊥ = [S]−. �

Lemma B.58. The norm assumes a unique minimum on any closed convex set C ⊂
H (i.e., there is a unique χ0 ∈C such that ‖χ0‖< ‖χ‖ for each χ ∈C, χ �= χ0).

Proof. Let μ = inf{‖χ‖,χ ∈C}, which exists, as ‖χ‖ ≥ 0. Hence there is a mini-
mizing sequence (χn) in C with ‖χn‖ → μ , which we now prove to be Cauchy (in
H). Since C is convex, 1

2 (χn +χm) ∈C, and therefore, ‖χn +χm‖ ≥ 2μ . Thus

0≤ ‖χn−χm‖2 = 2(‖χn‖2 +‖χm‖2)−‖χn +χm‖2 ≤ 2(‖χn‖2 +‖χm‖2)−4μ2,

and since 2(‖χn‖2 + ‖χm‖2)→ 4μ2 as n,m → ∞, we must have ‖χn− χm‖ → 0.
Since C is closed, χn → χ0 for some χ0 ∈C. To prove uniqueness, let another mini-
mizing sequence (χ ′n) converge to χ ′0 ∈C. Then 1

2 (χ0 +χ ′0) ∈C, so we obtain

‖χ0 +χ ′0‖ ≥ 2μ = ‖χ0‖+‖χ ′0‖.

The inequality ‖χ0 + χ ′0‖ ≤ ‖χ0‖+ ‖χ ′0‖ gives ‖χ0 + χ ′0‖ = ‖χ0‖+ ‖χ ′0‖, i.e.
Re〈χ ′0,χ0〉= ‖χ ′0‖‖χ0‖. Cauchy–Schwarz gives |〈χ ′0,χ0〉| ≤ ‖χ ′0‖‖χ0‖ with equal-
ity iff χ ′0 and χ0 are proportional, so the previous equality can hold only if χ ′0 = tχ0
for some t ≥ 0. Since χ ′0 and χ0 both minimize the norm, we have t = 1. �
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We now turn to the important concept of a basis of a Hilbert space; as in the
previous appendix, a basis of a Hilbert space always denotes an orthonormal basis.
To define this notion, we first say that some subset {υi}i∈I of H is orthonormal if

〈υi,υ j〉= δi j; (B.207)

this condition guarantees that the υi are linearly independent (and easy to calculate
with!). Second, in finite dimension (where I must be finite) we may simply define
a basis of H as an orthonormal set that is also a basis in the usual (linear algebra)
sense. This idea remains valid for general Hilbert spaces, except that we should use
Definition B.6 to define infinite sums (and Lemma B.7 to analyze them). Theorem
B.61 to come gives an exhaustive account of the situation, but we first need a lemma
on general orthonormal sets (that do not necessarily form a basis).

Lemma B.59. If {υi}i∈I is an orthonormal set in H and ci ∈ C, then the sum

ψ = ∑
i∈I

ciυi (B.208)

converges in H (in the sense of Definition B.6) iff

∑
i∈I
|ci|2 < ∞. (B.209)

If this is the case, the coefficients ci ∈ C are given by

ci = 〈υi,ψ〉. (B.210)

Proof. The first claim follows from Proposition B.8 and the elementary computation

‖ ∑
i∈G′

ciυi‖2 = ∑
i∈G′

‖ciυi‖2 = ∑
i∈G′

|ci|2 < ε, (B.211)

where G′ is finite, so that the sums ∑i∈I ciυi and ∑i∈I |ci|2 either both exist (i.e.,
converge) or both do not exist. When I is countable this follows more simply by
noting that ∑i∈N ciυi converges iff (sn) is a Cauchy sequence, where sn = ∑n

i=1 ciυi,
and computing ‖sn− sm‖2 = ∑n

i=m+1 |ci|2, where n > m. To prove (B.210) on the
assumption that (B.208) exists, by the Cauchy–Schwarz inequality, for any ε > 0,

|〈υ j,ψ〉− c j| = |〈υ j,ψ−∑
i∈G

ciυi + ∑
i∈G

ciυi〉− c j|

= |〈υ j,ψ−∑
i∈G

ciυi〉 ≤ ‖υ j‖‖ψ−∑
i∈G

ciυi‖< ε,

where we used Definition B.6 as well as ‖υi‖= 1. Letting ε → 0 yields (B.210). �

Lemma B.60. Let {υi}i∈I be an orthonormal set in H. We have Bessel’s Inequality

∑
i∈I
|〈υi,ψ〉|2 ≤ ‖ψ‖2 (ψ ∈ H). (B.212)
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Proof. For any finite G⊂ I, a computation based on (A.2) yields

∑
i∈G
|〈υi,ψ〉|2 = ‖ψ‖2−‖ψ−∑

i∈G
〈υi,ψ〉υi‖2 ≤ ‖ψ‖2. (B.213)

It follows that also the supremum of the left-hand side over all finite subsets G ⊂ I
is bounded by ‖ψ‖2 and hence is finite. By Lemma B.7, this supremum equals
∑i∈I |〈υi,ψ〉|2, which gives (B.212). �

Theorem B.61. Let B= {υi}i∈I be an orthonormal subset of a Hilbert space H. The
following conditions are equivalent (and each defines B to be a basis of H):

1. Any ψ ∈ H can be written (in the sense of Definition B.6) as ψ = ∑i∈I ciυi.
2. For each ψ ∈ H, one has Parseval’s equality

∑
i∈I
|〈υi,ψ〉|2 = ‖ψ‖2. (B.214)

3. For any ψ,ϕ ∈ H one has

〈ϕ,ψ〉= ∑
i∈I
〈ϕ,υi〉〈υi,ψ). (B.215)

4. B is not properly contained in any other orthonormal set (i.e., B is maximal).
5. B⊥ = {0}.
6. B⊥⊥ = H.
7. The closure of the linear span of B is H.

Note that (B.215) is used in almost every computation in quantum physics, in which
one also typically has ‖ψ‖ = 1. In that case, (B.214) at least formally turns the
|ci|2 = |〈υi,ψ〉|2 into (Born) probabilities, as discussed throughout the main text.

Proof. Assuming (B.208) and hence (B.210), take ε > 0 and find F ⊂ X (finite) so
that ‖ψ−∑i∈G ciυi‖< ε . By (B.213), this gives

∑
i∈G
|〈υi,ψ〉|2−‖ψ‖2|< ε2. (B.216)

Hence (B.214) holds in the sense of Definition B.6 (with V = C). Conversely, as-
suming (B.214), eq. (B.213) gives (B.208). This proves the equivalence 1↔ 2.

Clearly, (B.214) is a special case of (B.215), which in turn follows from (B.208)
with (B.210) and continuity of the inner product, whence 3→ 2 and 1→ 3.

Furthermore, 1→ 5 follows by contradiction: given (B.210), any nonzero vector
ψ ∈ B⊥ could not possibly be written as (B.208). Conversely, 5 → 1 most easily
follows by contradiction, too. For any ψ ∈H, the sum ϕ = ∑i∈I〈υi,ψ〉υi exists in H
by Lemma B.59. Continuity of the inner product yields 〈υ j,ϕ〉= 〈υ j,ψ〉 and hence
〈υ j,ϕ −ψ〉 = 0 for each j ∈ I, whence ϕ −ψ ∈ B⊥. If ϕ cannot be written in the
form (B.208) we have ϕ �= ψ , so B⊥ �= {0}, which is the desired contradiction.

Finally, 4 ↔ 5 is tautological, 5 ↔ 6 is trivial, and 6 ↔ 7 is a special case of
Proposition B.57.6 (hence this proposition is needed only for no. 7). �
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For example, if H = �2(S), then one may take I = S, with υx = δx. Since S is an
arbitrary set, this example shows that any cardinality of I may, in principle, occur.
The existence of a basis has a remarkable consequence, for which we need:

Definition B.62. Two Hilbert spaces H1 and H2 are called isomorphic, written
H1 ∼= H2, if they are isometrically isomorphic, that is, if there is an invertible linear
map u ∈ B(H1,H2) such that

‖uψ‖H2 = ‖ψ‖H1 (ψ ∈ H1). (B.217)

By Theorem A.3, a specific surjective isometry u : H1 → H2 implementing an iso-
morphism is automatically unitary, in that it is surjective and satisfies

〈uψ,uϕ〉H2 = 〈ψ,ϕ〉H1 . (B.218)

Conversely, a unitary map is an isometric isomorphism, so that isometric isomor-
phism of Hilbert spaces (seen as Banach spaces) is the same as unitary isomorphism.
The following theorem (due to von Neumann, who was a specialist in both Hilbert
space theory and axiomatic set theory) shows that the classification of Hilbert spaces
up to isomorphism reduces to the classification of sets up to bijection.

Theorem B.63. 1. Any Hilbert space has a basis.
2. All bases of a given Hilbert space H have the same cardinality (which is then,

consistently, called the dimension of H).
3. Two Hilbert spaces are isomorphic iff they have the same dimension.

Specifically, clause 2 states that if (υi)i∈I and (υ ′j) j∈J are both bases of H, then I ∼= J
as sets (i.e., there is a bijection I → J). Similarly, clause 3 states that H1 ∼= H2 iff H1
has a basis (υi)i∈I and H2 has a basis (υ ′j) j∈J for which I ∼= J.

Proof. 1. The general proof is, alas, based on Zorn’s Lemma: the collection O of
all orthonormal sets in H is ordered by inclusion and each totally (i.e. linearly)
ordered subset has an upper bound, namely its union. Hence O has a maximal
element, which is a basis by Theorem B.61.4. Fortunately, in case that H is
(topologically) separable (in that it contains a countable dense subset), a ba-
sis may be constructed by the well-known Gram–Schmidt procedure, as fol-
lows: let (ψ1,ψ2, . . .) be a countable subset of H, for simplicity already taken to
be linearly independent (otherwise, remove linear combinations first), start with
υ1 = ψ(1)/‖ψ(1)‖, inductively define wn = ψn−∑n−1

i=1 〈υi,ψn〉υi, n ∈ N, which
already yields an orthogonal set, and finally normalize to υn = wn/‖wn‖.

2. We only prove the case where one basis, say {υi}i∈I , is finite in somde detail.
Take another basis {υ ′j} j∈J . From (B.214) and (B.215),

|I|= ∑
i∈I
‖υi‖2 = ∑

i∈I
∑
j∈J
|〈υ ′j,υi〉|2 = ∑

i∈I
∑
j∈J
〈υ ′j,υi〉〈υi,υ ′j〉= ∑

j∈J
‖υ ′j‖2 = |J|.

A similar computation excludes the possibility that I is countable and J is not.
The general case relies on some cardinal arithmetic, which we spare the reader.
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3. Let {υi}i∈I be a basis of H and let {υ ′j} j∈ j be a basis of H ′. Assume I ∼= J, so
that there is a bijection b : I → J. Define u : H → H ′ and v : H ′ → H by linear
extension of uυi = υ ′b(i) and vυ ′j = υb−1( j), that is,

uψ = ∑
i∈I
〈υi,ψ〉υ ′b(i) = ∑

j∈J
〈υb−1( j),ψ〉υ ′j; (B.219)

vψ ′ = ∑
j∈J
〈υ ′j,ψ ′〉′υb−1( j) = ∑

i∈I
〈υ ′b(i),ψ ′〉′υi, (B.220)

where in each line the first equality sign is the definition of the map, whilst the
second is a useful rewriting. These maps are well defined by Lemma B.59, e.g.,

∑
j∈J
|〈υb−1( j),ψ〉|2 = ∑

i∈I
|〈υi,ψ〉|2 = ‖ψ‖2 < ∞, (B.221)

so that the sums in (B.219) converges, and likewise for (B.220). Furthermore,

〈uψ,uϕ〉′ = ∑
i1,i2

〈ψ,υi1〉〈υi2 ,ϕ〉〈υ ′b(i1),υ ′b(i2)〉′ = ∑
i
〈ψ,υi〉〈υi,ϕ〉= 〈ψ,ϕ〉,

where we used (B.207) for the primed basis, and (B.215). Similar computations
establish 〈vψ ′,vϕ ′〉 = 〈ψ ′,ϕ ′〉′, so that (in view of their obvious surjectivity) u
and v are both unitary, as well as uv = 1H ′ and vu = 1H . Thus H ∼= H ′.
Conversely, if H (with basis {υi}i∈I) and H ′ are isomorphic, so that there is a
unitary u : H → H ′, then {uυi}i∈I is a basis of H ′, hence J even equals I. �

Corollary B.64. If {υi}i∈I is a basis of H, then H ∼= �2(I).

Proof. Define u : H → �2(I) by linear extension of uυi = δi, where i ∈ I. �

Corollary B.65. A Hilbert space is (topologically) separable iff it either has a
countable basis, or is finite-dimensional.

Proof. One direction of the proof is the Gram–Schmidt procedure (since the given
countable dense set contains a basis). Conversely, if {υi} is a countable (or finite)
basis of H, then the complex rational linear span of this set, i.e., the set of all finite
linear combinations ∑i ciυi with ci ∈Q+ iQ, is countable as well as dense in H. �

In particular, any finite-dimensional Hilbert space is isomorphic to Cn with standard
inner product, and any separable Hilbert space is isomorphic to �2(N); when speak-
ing of a separable Hilbert spaces we actually tend to think of the infinite-dimensional
case. Although at first sight separability appears to be a rather restrictive condition,
in fact the non-separable case only appears in some weird proofs in the theory of
operator algebras (as well as in the theory of almost continuous functions in the
sense of H. Bohr). Indeed, every Hilbert space naturally occurring in applications to
mathematical physics (or to partial differential equations) is separable.
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B.13 Operators on infinite-dimensional Hilbert space

The fact that all (infinite-dimensional) separable Hilbert spaces are isomorphic sug-
gests that the riches of the theory are not be found in the spaces themselves, but
in the operators that act on them (whose explicit form typically depends on some
concrete realization of H, like �2(N), or L2(Rd), etc.). The simplest operators are
functionals, i.e., linear maps f : H → C, and the main new feature compared to the
finite-dimensional case is that f is no longer necessarily bounded, see §B.9. The
nature of bounded linear functionals, i.e., elements of the dual H∗, is totally settled
by the Riesz–Fréchet Theorem (which we already know; cf. Proposition A.5 and
nos. 6 and 7 in Table B.1 in §B.9), showing that little is gained by looking at them.

Theorem B.66. Let H be a Hilbert space. The map ψ �→ fψ from H to H∗, where

fψ(ϕ) = 〈ψ,ϕ〉, (B.222)

is an isometric anti-linear isomorphism H → H∗.

Proof. For convenience we rewrite (B.124) for the case at hand as

‖ f‖= sup{| f (ψ)|,ψ ∈ H,‖ψ‖H ≤ 1}. (B.223)

Since | fψ(ϕ)| = |〈ψ,ϕ〉| ≤ ‖ψ‖‖ϕ‖ by Cauchy–Schwarz, it follows that fψ ∈ H∗
for any ψ ∈ H, with ‖ fψ‖ ≤ ‖ψ‖. We may sharpen this to equality, i.e.,

‖ fψ‖= ‖ψ‖, (B.224)

by choosing f = fψ and ϕ = ψ in (B.223). Hence ψ �→ fψ is isometric and there-
fore also injective. To prove surjectivity, we find a vector ψ for which some given
nonzero functional f equals fψ (of f = 0, then ψ = 0 does the job). Assume f �= 0
(otherwise, ψ = 0 does the job). Then ker( f )⊥ �= {0}: namely, ker( f ) is closed
by continuity of f and is linear by linearity of f , whence ker( f )⊥⊥ = ker( f ) by
Proposition B.57.3, so that (arguing by contradiction) ker( f )⊥ = {0} would imply
ker( f )⊥⊥ = H and hence ker( f ) = H, or f = 0.

The remainder of the proof is the same as for Proposition A.5. �

This allows one to make the weak topology on H (or, equivalently, the weak∗
topology on H∗) explicit (cf. §B.9): we have ψn → ψ weakly iff 〈ϕ,ψn−ψ〉 → 0
for each ϕ ∈ H (and similarly for nets). From the general theory, or directly from
Cauchy–Schwarz, it is immediate that (at least for infinite-dimensional H) the weak
topology on H is indeed weaker than the strong one (that is, strong convergence im-
plies weak convergence), but not the other way round. A simple example is provided
by any ordered countable basis (υn)n∈N of a separable Hilbert space, where υn → 0
weakly but not strongly for any n ∈ N (more generally, for any infinite-dimensional
Hilbert space and any basis {υi} we have υi → 0 weakly but not strongly in the
sense of convergence of nets). Nonetheless, as a corollary of Proposition B.46:

Corollary B.67. The functional fψ defined by (B.222) is weakly continuous.
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We now move from functionals als special operators from H to C to operators in
the usual sense, i.e., linear maps from H to itself. Once again, the main new feature
compared to the finite-dimensional case is that a linear map a : H → H is no longer
necessarily bounded, where (cf. Definition B.32) we recall that a is bounded if it
satisfies one (and hence both) of the following equivalent conditions:

‖aψ‖ ≤C‖ψ‖ (ψ ∈ H); (B.225)
sup{‖aψ‖,ψ ∈ H,‖ψ‖ ≤ 1}< ∞. (B.226)

In that case, the (finite) supremum is called the norm ‖a‖ of a, exactly as in (A.18).
Using Theorem B.66 and (B.130), we therefore have

‖a‖ = sup{‖aψ‖,ψ ∈ H,‖ψ‖= 1} (B.227)
= sup{|〈ϕ,aψ〉|,ψ,ϕ ∈ H,‖ψ‖= ‖ϕ‖= 1}, (B.228)

and we have the inequalities (A.20) and (A.21), as in the finite-dimensional case.
It is clear from (A.20) and (B.225) that bounded operators a are continuous,

in that if ψn → ψ , then aψn → aψ . On the other hand, unbounded operators are
discontinuous in this sense: for each n ∈ N there is ψn ∈ H with ‖ψn‖ = 1 and
‖aψn‖≥ n. The sequence (ψ̃n =ψn/n) then converges to zero, but since ‖aψ̃n‖≥ 1,
the sequence (aψ̃n) does not converge to a · 0 = 0. Thus on infinite-dimensional
Hilbert spaces a sharp distinction emerges between bounded and unbounded opera-
tors.

Among the former, we will distinguish between compact operators and the rest,
whilst among the latter, one has the closed operators (i.e., those with a closed
graph), which are still reasonably well-behaved, and the (non-closed) rest. Yet cut-
ting through the bounded-unbounded divide is the notion of self-adjointness. For
any linear (not necessarily bounded) map a : H →H, we say that a is self-adjoint if

〈aϕ,ψ〉= 〈ϕ,aψ〉, (ψ,ϕ ∈ H). (B.229)

The remarkable Hellinger–Toeplitz Theorem then states that such maps are bounded:

Theorem B.68. If a linear map a : H → H satisfies (B.229), then it is bounded.

Proof. The proof is based on the Closed Graph Theorem B.37. If the sequence
(ψn,aψn) in G(a) ⊂ H ⊕H converges, say to (ψ,ϕ) ∈ H ⊕H, then ψn → ψ and
aψn → ϕ . Using (B.229) and continuity of the inner product, for χ ∈ H we have

〈χ,ϕ〉= lim
n
〈χ,aψn〉= lim

n
〈aχ,ψn〉= 〈aχ,ψ〉= 〈χ,aψ〉.

For χ = ϕ − aψ , this yields ϕ = aψ , and hence (ψ,ϕ) ∈ G(a). This means that
G(a) is closed, upon which the Closed Graph Theorem states that a is bounded. �

More generally, if V and W are Banach spaces, with dual spaces V ∗ and W*, respec-
tively, and two linear (but not a priori bounded) maps a : V →W and b : W ∗ →V ∗
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satisfy ϕ(av) = (bϕ)(v) for each v∈W and ϕ ∈W ∗, then a and b are bounded, with
b = a∗, as defined in (B.125). The proof is similar.

This generalization of Theorem B.68 also places the familiar adjoint a∗ from
Hilbert space in broader perspective: making the identification fψ↔ψ of H∗ with H
described by the Riesz–Fréchet Theorem B.66, the Banach space definition (B.125)
of the adjoint a∗ : H∗ → H∗ of a bounded linear map a : H → H reproduces the
definition (A.15) of the Hilbert space adjoint a∗ : H → H. Thus we also infer that
(B.128) is valid for arbitrary Hilbert spaces. Note that in the Hilbert space case,
boundedness of a∗ may be proved more simply, as follows.

Proposition B.69. Let a ∈ B(H) and let a∗ : H → H be its adjoint, that is,

〈a∗ψ,ϕ〉= 〈ψ,aϕ〉 (ψ,ϕ ∈ H). (B.230)

Then a∗ is bounded, with ‖a∗‖= ‖a‖.
Proof. Eq. (B.230) gives |〈a∗ψ,ϕ〉| ≤ ‖a‖‖ψ‖‖ϕ‖. Taking ϕ = a∗ψ yields ‖a∗ψ‖≤
‖a‖|ψ|, and hence ‖a∗‖ ≤ ‖a‖. Replacing a by a∗ gives the last claim. �.

Since unbounded self-adjoint operators a : H → H do not exist, von Neumann
defined such operators on some (proper) linear subspace D(a)⊆H (always assumed
to be dense in H), called the domain of a. This affects the definition of the adjoint:

Definition B.70. 1. The adjoint a∗ of an operator a : D(a)→H has domain D(a∗)⊂
H consisting of all ψ ∈ H for which the functional f a

ψ : D(a)→ C, defined by

f a
ψ(ϕ) = 〈ψ,aϕ〉 (ϕ ∈ D(a)), (B.231)

is bounded, i.e., there is C > 0 such that | f a
ψ(ϕ)| ≤C‖ϕ‖ for all ϕ ∈ D(a).

2. For ψ ∈ D(a∗), the functional f a
ψ has a unique bounded extension f a

ψ : H → C,
so by Theorem B.66 there is a unique vector ψ ′ ∈ H such that f a

ψ(ϕ) = 〈ψ ′,ϕ〉.
3. The adjoint a∗ : D(a∗)⊂ H, then, is defined by a∗ψ = ψ ′, or, equivalently, by

〈a∗ψ,ϕ〉= 〈ψ,aϕ〉, ψ ∈ D(a∗),ϕ ∈ D(a). (B.232)

Note that, on our assumption that D(a) be dense in H, i.e., D(a)− = H, eq.
(B.232) indeed uniquely specifies a∗ψ because of Proposition B.57.4.

4. An operator a : D(a)→H is called self-adjoint when D(a∗) = D(a) and a∗ = a.

If D(a) = H, and a is bounded, then also D(a∗) = H, since | f a
ψ(ϕ)| ≤ ‖a‖‖ψ‖‖ϕ‖,

so that f a
ψ is bounded for any ψ ∈ H. Accordingly, for a ∈ B(H), Definition B.70

reduces to the usual definition (A.15). Furthermore, even if D(a) is merely dense
in H, if a : D(a)→ H is bounded in the sense of (B.225) - (B.226), but now with
ψ ∈ D(a) instead of ψ ∈ H, then a has a unique extension to a a bounded operator
a : H → H, whose adjoint a∗ may be either defined through Definition B.70 as the
adjoint of a : D(a)→ H, or, equivalently, as the adjoint of the extension a : H → H.

Here, as well as in Definition B.70.2, a general Banach space principle is at work:
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Proposition B.71. Let V and W be Banach spaces, and let V ′ be a dense subset
of V . Any bounded linear map a′ : V ′ →W (in the sense of Definition B.32) has a
unique bounded linear extension a : V →W, with ‖a‖= ‖a′‖.
Proof. For v ∈ V there is a sequence (vn) in V ′ with vn → v. Since a′ : V ′ →W is
bounded and (vn) is convergent in V ′ and hence Cauchy in V , also the sequence
(a′vn) in W is Cauchy. Since W is assumed complete, we may define av = limn a′vn.
This limit is easily seen to be independent of the approximating sequence to v, and
the ensuing map a : V →W is clearly linear. Furthermore, since by (B.5) we have
‖v‖= limn ‖vn‖, if we assume ‖v‖= 1 we can take vn to have unit norm also.

Once again from (B.5), we also have ‖av‖ = limn ‖a′vn‖ ≤ supn ‖a′vn‖, whence
‖a‖ ≤ ‖a′‖. But for v ∈ V ′, taking vn = v we have a′v = av, and hence the bound
‖a′v‖ ≤ ‖a‖‖v‖, from which ‖a′‖ ≤ ‖a‖, so that finally ‖a‖= ‖a′‖. �

To complete these basic definitions, we say that an (unbounded) operator a :
D(a)→ H is closed if its graph G(a) = {(ψ,aψ),ψ ∈ D(a)} is a closed subspace
of H⊕H, cf. (B.108). Note that in the Hilbert space case it is more appropriate to
replace the norm (B.107) on H⊕H by the equivalent norm

‖(v,w)‖=
√
‖v‖2 +‖w‖2, (B.233)

since this alternative norm comes from the canonical inner product on H⊕H, viz.

〈(v,w),(v′,w′)〉H⊕H = 〈v,v′〉H + 〈w,w′〉H . (B.234)

We now prove an important property of self-adjoint operators:

Proposition B.72. The adjoint a∗ of any operator a : D(a)→H is closed. In partic-
ular, self-adjoint operators are closed.

Proof. The proof can be elegantly given in terms of the graph G(a). Defining

u : H⊕H → H⊕H; (B.235)
u(ψ1,ψ2) = (−ψ2,ψ1), (B.236)

it is easy to verify that u is a unitary operator, and that

G(a∗) = u(G(a)⊥) = (uG(a))⊥. (B.237)

Hence G(a∗) is closed by Proposition B.57.1, and the claim follows. �

In the the context of spectral theory, we will see later what the real importance of
self-adjointness (and, more generally, closedness) is. It is time for some examples.

Proposition B.73. Let H = �2(X), with X countable for simplicity, and for f ∈
�∞(X) define the multiplication operator m f : H → H by

m fψ = fψ, (B.238)
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i.e., m fψ(x) = f (x)ψ(x). Then m f is bounded, with norm, cf. (A.107),

‖m f ‖= ‖ f‖∞. (B.239)

More generally, let H = L2(X) for some σ -finite Borel space (X ,Σ ,μ), and for
f ∈ L∞(X), define m f in the same way. Then m f is again bounded, with norm

‖m f ‖= ‖ f‖ess
∞ . (B.240)

Finally, let f : X →R be measurable (but not necessarily essentially bounded). Then

D(m f ) = {ψ ∈ L2(X) | fψ ∈ L2(X)}. (B.241)

is dense in L2(X), and if f ∗ = f , the operator m f : D(m f )→ L2(X) is self-adjoint.

Proof. On �2(X) we have ‖ fψ‖2 ≤ ‖ f‖∞‖ψ‖2, and hence ‖m f ‖ ≤ ‖ f‖∞. Assume
f �= 0. Then ‖ f‖∞ > 0, and for any 0 < t < ‖ f‖∞ there is xt ∈ X such that | f (xt)| ≥ t,
so that ψt = 1{xt} ∈ �2(X) satisfies ‖m fψt‖2 = | f (xt)| ≥ t, whence ‖m f ‖ ≥ t. This
holds for all 0 < t < ‖ f‖∞, hence ‖m f ‖ ≥ ‖ f‖∞, which yields (B.239).

To prove (B.240), again assume ‖ f‖ess
∞ > 0 and 0 < t < ‖ f‖ess

∞ . Then the set
Xt = {x ∈ X , | f (x)| ≥ t} is measurable, with μ(Xt)> 0. Since (X ,Σ ,μ) is σ -finite,
there is X ′t ⊂ Xt with 0 < μ(X ′t )< ∞. Take ψ = 1X ′t , so that ‖ fψ‖2 ≥ t‖ψ‖2, etc.

To prove the density of D(m f ), for n∈N define X̃n = {x∈ X | | f (x)| ≤ n}, so that
X = ∪nX̃n. For each ψ ∈ L2(X) we then have 1X̃n

ψ ∈ D(m f ). Writing ϕn = 1X̃n
ψ ,

we have 〈ψ,ϕn〉=
∫

X̃n
dμ |ψ|2, hence 〈ψ,ϕn〉= 0 iff ψ = 0 μ-a.e. on X̃n. This is true

for each n ∈ N iff ψ = 0, so the required density follows from Proposition B.57.4
In the last claim (where f ∗(x) = f (x)), the domain D(m∗f ) consists of all ψ ∈

L2(X) for which the map ϕ �→ ∫
X dμ ψ fϕ is bounded; by Theorem B.66 this is the

case iff fψ ∈ L2(X), so that D(m∗f ) = D(m f ). Moreover, (B.232) obviously holds
for a∗ = m f (if f takes complex values, then m∗f = m f ∗ , still on D(m∗f ) = D(m f )). �

For quantum mechanics, a key example is H = L2(R) with f (x)= x, i.e., the position
operator. It then follows from Proposition B.73 that x is self-adjoint on the domain

D(mx) = {ψ ∈ L2(R) |
∫
R

dxx2|ψ(x)|2 < ∞}. (B.242)

See also §5.11. It happens often that a given operator on some domain is not closed
as it stands, but can be made so by slightly enlarging its domain. Thus an operator
a : D(a)→ H is closable if the closure of the graph G(a) in H⊕H is the graph of
a closed operator a−, called the closure of a, i.e., G(a)− = G(a−). The following
easy lemma is very useful in proving closability (the proof is a definition chase).

Lemma B.74. Each of the following conditions is equivalent to closability of a:

1. If (ψn) is a sequence in D(a) such that ψn → 0, and if its image (aψn) converges,
too, then aψn → 0.

2. The domain D(a∗) of the adjoint a∗ (see Definition B.70) is dense in H.
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The domain D(a−) of the closure a− of a closable operator a consists of all ψ ∈ H
for which there exists a sequence (ψn) in D(a) such that ψn→ψ and aψn converges,
so that a−ψ = limn aψn. Finally, if a is closable, then a− = a∗∗ and (a−)∗ = a∗.

An equality a = b between unbounded operators always stands for D(a) = D(b)
and a = b. Furthermore, a⊂ b means D(a)⊆ D(b) and b = a on D(a).

Definition B.75. Let a : D(a)→ H (where D(a) is dense) be an operator.

• If a⊂ a∗ i.e., if 〈aϕ,ψ〉= 〈ϕ,aψ〉, ϕ,ψ ∈ D(a), then a is called symmetric.
• If a is closable and a− = a∗ (in which case the closure a− of a is self-adjoint),

then a is called essentially self-adjoint.

It follows from Lemma B.74 that a symmetric operator is closable (because D(a∗),
containing D(a), is dense). For a symmetric operator one has a ⊆ a− = a∗∗ ⊆ a∗,
with equality at the first position when a is closed, and equality at the second posi-
tion when a is essentially self-adjoint; when both equalities hold, a is self-adjoint.
Conversely, an essentially self-adjoint operator is symmetric. A symmetric operator
may or may not be essentially self-adjoint; we will not discuss this problem here.

As in the finite-dimensional case, the notion of the adjoint allows one to define a
projection as an operator e : H →H that satisfies e2 = e∗ = e. However, Proposition
A.8 should be slightly adapted in order to cover the infinite-dimensional case:

Proposition B.76. There is a bijective correspondence e↔ L between:

• projections e on H;
• closed linear subspaces L of H,

still given by (A.27) - (A.28), where now {υi}i∈I is a basis of L, and the latter sum
must be applied to fixed ψ ∈ H according to Definition B.6 with V = H, i.e.,

eψ = ∑
i∈I
〈υi,ψ〉υi, ψ ∈ H. (B.243)

Alternatively, without invoking the concept of a basis, one may use the decomposi-
tion (B.203) as proved via Lemma B.58, to define e directly by eψ = eψ‖.

Proof. The linear subspace L = eH is closed, since e is bounded by Theorem B.68.
Conversely, note that since L is closed, it is a Hilbert space, so that it has a basis

by Theorem B.63. The sum in (B.243) then converges by Lemma B.59, and since

〈ϕ,eψ〉 = ∑
i∈I
〈υi,ψ〉〈ϕ,υi〉= ∑

i∈I
〈υi,ϕ〉〈ψ,υi〉= 〈ψ,eϕ〉= 〈eϕ,ψ〉;

e2ψ = ∑
i∈I
〈υi,ψ〉eυi = ∑

i, j∈I
〈υi,ψ〉〈υ jυi〉υ j = ∑

i∈I
〈υi,ψ〉υi = eψ,

the operator e is a projection (in the second computation we used boundedness of e
to pull it through the sum). Next, (B.243) is independent of the choice of a basis of
L, since if {υi′ }i′∈I′ is another basis of L, for arbitrary ϕ ∈ L we may compute:
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〈ϕ,∑
i∈I
〈υi,ψ〉υi〉− ∑

i′∈I′
〈υi′ ,ψ〉υi′ 〉= ∑

i∈I
〈ϕ,υi〉〈υi,ψ〉−∑

i′∈I
〈ϕ,υi′ 〉〈υi′ ,ψ〉

= 〈ϕ,ψ〉−〈ϕ,ψ〉= 0, (B.244)

where we twice used (B.215), applied to the Hilbert space L. Hence

∑
i∈I
〈ϕ,υi〉〈υi,ψ〉= ∑

i′∈I
〈ϕ,υi′ 〉〈υi′ ,ψ〉. (B.245)

Finally, we prove bijectivity of the correspondence L↔ e:

• Given L, by Lemma B.59 (applied to the Hilbert space L), eψ ∈ L for any ψ ∈H,
whereas if ψ ∈ L, then eψ = ψ by Theorem B.61 and (B.210). Hence eH = L.

• Given e, we first note that for any χ ∈ eH = L, by definition we have χ = eψ
for some ψ ∈ H, whence eχ = e2ψ = eψ = χ . Now pick a basis {υi} of the
Hilbert space eH, so that in particular eυi = υi. For arbitrary ϕ,ψ ∈ H, writing
ϕ = eϕ+(1− e)ϕ = ϕ‖+ϕ⊥, so that ϕ‖ ∈ L and hence eϕ‖ = ϕ‖, we compute

〈ϕ‖,eψ〉−∑
i
〈ϕ‖,υi〉〈υi,ψ〉= 〈ϕ‖,ψ〉−〈ϕ‖,ψ〉= 0;

〈ϕ⊥,eψ〉−∑
i
〈ϕ⊥,υi〉〈υi,ψ〉= 〈ϕ,(1− e)eψ〉−∑

i
〈ϕ,(1− e)υi〉〈υi,ψ〉= 0,

where is the first line we used (B.215), applied to the Hilbert space H. �

It is easy to see why the sum (B.243) cannot, in general, converge in norm without
the ψ , i.e., in the original (finite-dimensional) form (A.28); it suffices to take e = 1
(for H = �2(N), for simplicity). Writing en = ∑n

i=1 |υi〉〈υi|, where, for example,
υi = δi, for any unit vector ψ and m > n, from (A.18) we have

‖em− en‖2 ≥ ‖(em− en)ψ‖2 =
m

∑
i=n+1

|〈υi,ψ〉|2. (B.246)

Taking ψ = υ j for any n+ 1 ≤ j ≤ m shows that that ‖em− en‖2 ≥ 1 for all m,n,
so that (en) cannot be a Cauchy sequence in B(H). This argument applies to any
infinite-dimensional subspace L. Therefore, if H is infinite-dimensional we should
work with at least two notions of convergence within the Banach space B(H) (cf.
Theorem B.33), which for simplicity we state for sequences (more generally, one
should define the corresponding topologies in terms of convergence of nets):

• an → a in the norm topology (or uniformly) in B(H) iff ‖(an−a)‖→ 0.
• an → a in the strong topology in B(H) iff ‖(an−a)ψ‖→ 0, for each ψ ∈ H.

The strong topology on B(H) is also called the strong operator topology, in order
to distinguish it from the strong topology on H itself (which, confusingly, is another
name for the norm topology) in terms of which it is defined. Similarly, the weak
topology on H (cf. §B.12) defines a weak operator topology on B(H), as follows:

• an → a weakly on B(H) iff 〈ϕ,(an−a)ψ〉 → 0, for each ϕ,ψ ∈ H.
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In decreasing strength we have ‘norm - strong - weak’, and we show that this trio is
distinguishable on H = �2(N) (and hence on any infinite-dimensional Hilbert space):

• Let anψ(x) = 0 for x = 1, . . . ,n whilst anψ(x) = ψ(x) for x > n. In other words,
if ψ = (ψ1,ψ2, . . .), then anψ = (0, . . . ,0,ψn+1,ψn+2, . . .) with n zeros. Hence

‖anψ‖2 =
∞

∑
x=n+1

|ψ(x)|2,

so that ‖anψ‖→ 0 as n→∞ in order for ψ to be in �2(N). Thus an → 0 strongly
(and hence also weakly). If (an) were to have a norm limit, it therefore would
have to be zero, too, but since ‖an‖ ≥ ‖anψ‖ for any unit vector ψ , taking e.g.
ψ = δn+1, we have ‖an‖ ≥ 1 for any n and hence (an) cannot converge in norm.

• A slight variation on this example is anψ(x) = 0 for x = 1, . . . ,n (once again), but
now anψ(x) = ψ(x− n) for x > n, or, equivalently, anψ = (0, . . . ,0,ψ1,ψ2, . . .)
with n zeros. This time, we have ‖anψ‖= ‖ψ‖, so to begin with, an→ 0 strongly
is excluded. However, 〈ϕ,anψ〉 = ∑∞

x=1ϕ(x+n)ψ(x), so limn→∞〈ϕ,anψ〉 = 0:
to see this, take N < ∞ fixed and use Cauchy–Schwarz to estimate

|〈ϕ,anψ〉| ≤
∣∣∣∣∣ N

∑
x=1

ϕ(x+n)ψ(x)+
∞

∑
x=N+1

ϕ(x+n)ψ(x)

∣∣∣∣∣
≤ ‖ψ‖

(
∞

∑
x=n+1

|ϕ(x)|2
)1/2

+‖ϕ‖
(

∞

∑
x=N+1

|ψ(x)|2
)1/2

. (B.247)

Letting N → ∞ and then n→ ∞ yields 〈ϕ,anψ〉 → 0, so that an → 0 weakly.
But (an) has no strong limit (for if it existed, it would have to be zero, too).

It is clear from Theorem B.33 that B(H) is sequentially complete in its norm
topology. This is true also in the weak and strong operator topologies:

Proposition B.77. Let (an) be a sequence in B(H).

1. If (anψ) converges in H for each ψ ∈H, then the operator a : H →H defined by
aψ = limn anψ is bounded (and hence an → a strongly, where a ∈ B(H)).

2. If (〈ϕ,anψ〉) converges in C for each ϕ,ψ ∈ H, then there is an operator a ∈
B(H) such that an → a weakly (and hence an → a weakly, where a ∈ B(H)).

It is instructive to prove this, using two results of independent interest.

Theorem B.78. Suppose V is a Banach space, W is a normed space (not necessarily
complete), X is an arbitrary set, and {ax}x∈X is some family of operators in B(V,W )
indexed by X. If the family is pointwise bounded in that

sup{‖axv‖,x ∈ X}< ∞ (v ∈V ), (B.248)

then the family is uniformly bounded in that

sup{‖ax‖,x ∈ X}< ∞. (B.249)
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This is the Principle of Uniform Boundedness or Banach–Steinhaus Theorem.

Proof. If W is not complete, use its completion in what follows. Define �∞(X ,W )
to be the set of all bounded functions f : X → W , i.e., those function such that
sup{‖ f (x)‖,x ∈ X} < ∞, with pointwise operations. This is easily checked to be
a Banach space itself in the natural norm ‖ f‖∞ = sup{‖ f (x)‖,x ∈ X} (using the
auxiliary functions f̃ : X → C defined by each f ∈ �∞(X ,W ) as f̃ (x) = ‖ f (x)‖, so
that ‖ f‖∞ = ‖ f̃‖∞, one may largely reduce the proof to the ordinary �∞(X) case).

For fixed v ∈ V , define fv : X → W by fv(x) = ax(v). By assumption, f ∈
�∞(X ,W ), so we may define an operator F : V → �∞(X ,W ) by F(v) = fv. We now
show that the graph G(F) is closed: if vn → v in V and Fvn → g in �∞(X ,W ), then
since uniform convergence implies pointwise convergence, for each x ∈ X we have

g(x) = lim
n
(Fvn)(x) = lim

n
fvn(x) = lim

n
axvn = ax lim

n
vn = axv = fv(x) = (Fv)(x).

Thus g = Fv, and hence G(F) closed. By Theorem B.37, F is bounded, so that:

‖F‖= sup{‖ fv‖∞,v ∈V,‖v‖= 1}= sup{‖axv‖,v ∈V,‖v‖= 1,x ∈ X}
= sup{‖ax‖,x ∈ X}< ∞. �

This gives part 1 of Proposition B.77: since limn anψ exists, supn{‖anψ‖} < ∞ for
each ψ , hence supn{‖an‖}<∞. Since anψ→ aψ implies ‖anψ‖→‖aψ‖, cf. (B.5),

‖aψ‖= lim
n
‖anψ‖ ≤ lim

n
‖an‖‖ψ‖ ≤ sup

n
{‖an‖}‖ψ‖, (B.250)

so taking the supremum over all unit vectors ψ gives ‖a‖< ∞.
As to the second part, suppose an → a weakly. Since (〈ϕ,anψ〉) converges

for ϕ,ψ ∈ H, we have supn{|〈ϕ,anψ〉|} < ∞. Using (B.222), this is the same as
supn{| fanψ(ϕ)|} < ∞ for each ϕ ∈ H, so using Banach–Steinhaus with V = H∗,
X = N, and ax = fanψ , we find supn{‖ fanψ‖H∗} < ∞. By Theorem B.66, this
gives supn{‖anψ‖} < ∞, and hence, via a second application of Theorem (B.78),
supn{‖an‖}< ∞, or ‖an‖<C < ∞ for all n, as in the case of strong limits.

This time we have to do a little more work to construct the limit operator a. This
requires a second lemma, which generalizes Proposition A.23 to general Hilbert
spaces. To this effect, we say that a sesquilinear form B : H×H is bounded if there
is a finite constant C such that |B(ϕ,ψ)| ≤C‖ϕ‖ψ‖ for all ϕ,ψ ∈ H.

Proposition B.79. The relation B(ϕ,ψ) = 〈ϕ,aψ〉 provides a bijective correspon-
dence between bounded (hermitian/positive) sesquilinear forms and bounded (self-
adjoin/positive) operators a ∈ B(H), cf. Proposition A.22.1.

Like Proposition A.23, this is a trivial consequence of Theorem B.66.
To finish the proof of Proposition B.77.2, define B(ϕ,ψ) = limn〈ϕ,anψ〉, so

|B(ϕ,ψ)| ≤ lim
n
‖an‖‖ϕ‖‖ψ‖ ≤ sup

n
‖an‖‖ϕ‖‖ψ‖ ≤C‖ϕ‖‖ψ‖. (B.251)

Hence B is bounded, and Proposition B.79 gives the weak limit a ∈ B(H). �
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B.14 Basic spectral theory

In linear algebra, which in our context means the theory of operators on finite-
dimensional Hilbert spaces H, the spectrum σ(a) of an operator (i.e., a linear map)
a : H → H was defined as the set of eigenvalues of a. This led to the Spectral Theo-
rems A.10 and A.15. However, as soon as dim(H) = ∞, simple examples show that
even bounded operators may have no eigenvectors (and hence no eigenvalues) at all.
For example, take H = L2(0,1) and f (x) = x, with associated (bounded) multiplica-
tion operator a = m f ≡mx, cf. (B.238); this is just a bounded version of the position
operator of quantum mechanics. Then the eigenvalue equation axψ = λψ implies∫ 1

0 dx |x− λ |2|ψ(x)|2 = 0, which holds iff |x− λ ||ψ(x)| = 0 a.e. Since |x− λ | is
nonzero a.e. for any λ ∈ C, this implies ψ(x) = 0 a.e. and hence ψ = 0 in L2(0,1).
More generally, taking H = L2(Rd) and f ∈Cb(Rd), a similar argument shows that
the multiplication operator m f has eigenvalue λ ∈C whenever the equality f (x) = λ
holds on a set of positive (Lebesgue) measure. Therefore, if f varies sufficiently,
then m f has no eigenvalues at all (e.g., in d = 1, f ∈C(1)([0,1]) with f ′(x) �= 0 a.e.).

Even amidst his magnificent oeuvre, covering most of mathematics, it was one
of Hilbert’s most prophetic insights that finite-dimensional spectral theory could not
merely be rescued, but also greatly enriched, by defining the spectrum as follows:

Definition B.80. Let H be a Hilbert space. The spectrum σ(a) of a∈ B(H) consists
of all λ ∈C for which the operator a−λ : H →H is not bijective. The complement

ρ(a) = C\σ(a) (B.252)

of the spectrum in C is called the resolvent of a, i.e., z ∈ ρ(a) iff a− z is invertible.

Here a−λ ≡ a−λ ·1H , where 1H is the unit operator on H, and by ‘bijective’ and
‘invertible’ we a priori mean: injective and surjective. This set-theoretic notion of
invertibility is considerably strengthened by Corollary B.35, according to which the
set-theoretic inverse of a−λ : H → H, if it exists for a ∈ B(H), is automatically in
B(H). Consequently, we may equivalently say that λ ∈σ(a) if a−λ is not invertible
in B(H). This means that if z ∈ ρ(a), then the equation (a− z)ψ = ϕ for ψ ∈ H:

• actually has a solution, since (a− z) is surjective;
• has a unique solution, for (a− z) is injective;
• has a unique solution that continuously depends ϕ , as (a− z)−1 is bounded.

Thus Definition B.80 becomes a special case of the following purely algebraic idea:

Definition B.81. Let A be a (complex) algebra with unit. The spectrum σ(a) of
a ∈ A consists of all λ ∈ C for which the operator a−λ is not invertible in A.

The notation (B.252) also extends to this case. This generalization is especially pow-
erful when A is a Banach algebra, and, particularly a C*-algebra, cf. Definition C.1.
The latter case actually incorporates Definition B.80:

Proposition B.82. For any Hilbert space H, the set B(H) of all bounded operators
on H is a C*-algebra with unit in the operator norm (A.18)
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The proof of Proposition A.7 goes through unchanged. In a different direction:

Proposition B.83. Let A =C(X), where X is a compact Hausdorff space. Then

σ( f ) = ran( f ). (B.253)

Proof. Since multiplication in C(X) is pointwise, if f −λ ·1X has an inverse, it must
be 1/( f −λ ·1X ). This function exists (and is continuous) iff λ /∈ ran( f ). �

Theorem B.84. Let A=B(H) or, more generally, a unital C*-algebra, or, even more
generally, a Banach algebra with unit 1A (cf. Definition C.1). Then the spectrum
σ(a) of any a ∈ A is a nonempty compact subset of C.

Furthermore, defining the spectral radius of a ∈ A by

r(a) = sup{|λ |,λ ∈ σ(a)}, (B.254)

for general unital Banach algebras we have

r(a)≤ ‖a‖, (B.255)

as well as Gelfand’s spectral radius formula

r(a) = lim
n→∞

‖an‖1/n. (B.256)

If a ∈ Asa is a self-adjoint element of a unital C*-algebra, such as A = B(H), then

r(a) = ‖a‖ (a∗ = a). (B.257)

Proof. The claim about the spectrum obviously follows from the following facts:

1. σ(a) is a bounded subset of C.
2. σ(a) is a closed subset of C.
3. σ(a) is a nonempty subset of C.

Eq. (B.255) is equivalent to the implication |λ | > ‖a‖ ⇒ λ ∈ ρ(a). For λ �= 0 we
have (a− λ ) = λ ((a/λ )− 1), so, rescaling a if necessary, we only need to show
that if ‖a‖ < 1, then 1 ∈ ρ(a). Indeed, in that case the geometric series ∑k ak for a
converges absolutely and hence (A being a Banach space) converges, with

n

∑
k=0

ak = (1−a)−1; (B.258)

the proof is virtually the same as for complex numbers. Thus 1 ∈ ρ(a).
Fact 2 is equivalent to the set A∗ of of invertible elements in A being open in A.

Indeed, for given a ∈ A∗, take a b ∈ A for which ‖b‖ < ‖a−1‖−1. This implies

‖a−1b‖ ≤ ‖a−1‖ ‖b‖ < 1. (B.259)
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Hence by (B.258) for ‖a‖ < 1, the operator a+ b = a(1+ a−1b) has an inverse,
namely (1+ a−1b)−1a−1. Taking ε ≤ ‖a−1‖−1, it follows that all c ∈ A for which
‖a− c‖ < ε lie in A∗ (which is therefore an open subset of the metric space A).

For the third claim, take a ∈ A and define f : C→ A by f (z) = z−a. Since

‖ f (z+δ )− f (z)‖= δ ,

we see that f is continuous (take δ = ε in the definition of continuity). By part 2
of the proof, f−1(A∗) is open in C. But f−1(A∗) is the set of all z ∈ C where z− a
has an inverse, so that f−1(A∗) = ρ(a). This set being open, its complement σ(a)
is closed. Now define

g : ρ(a)→ A; (B.260)
z �→ (z−a)−1. (B.261)

For fixed z0 ∈ ρ(a), choose z ∈ C such that |z− z0| < ‖(a− z0)
−1‖−1. From part 2

of the proof, with a replaced by a− z0 and c replaced by a− z, we see that z ∈ ρ(a),
as ‖a− z0− (a− z)‖= |z− z0|. Moreover, because

‖(z0− z)(z0−a)−1‖= |z0− z| ‖(z0−a)−1‖ < 1, (B.262)

the power series
1

z0−a

n

∑
k=0

(
z0− z
z0−a

)k

(B.263)

is absolutely convergent and hence convergent for n → ∞. By (B.258), the limit
n→ ∞ of this power series is

1
z0−a

∞

∑
k=0

(
z0− z
z0−a

)k

=
1

z0−a

(
1−

(
z0− z
z0−a

))−1

=
1

z−a
= g(z). (B.264)

Hence

g(z) =
∞

∑
k=0

(z0− z)k(z0−a)−k−1 (B.265)

is a norm-convergent power series. For z �= 0 we write ‖g(z)‖= |z|−1‖(1A−a/z)−1‖
and observe that limz→∞ 1A− a/z = 1A, since limz→∞ ‖a/z‖ = 0. Hence we obtain
limz→∞(1A−a/z)−1 = 1A, and

lim
z→∞

‖g(z)‖= 0. (B.266)

Let ϕ ∈ A∗; since ϕ is bounded, eq. (B.265) implies that the function gϕ : z →
ϕ(g(z)) is given by a convergent power series (i.e. is analytic), and (B.266) implies

lim
z→∞

gϕ(z) = 0. (B.267)
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Now suppose that σ(a) = /0, so that ρ(a) = C. The function g, and hence gϕ , is
then defined on C, where it is analytic and vanishes at infinity. In particular, gϕ is
bounded, so that by Liouville’s Theorem of elementary complex analysis it must be
constant. By (B.267) this constant is zero, so that g = 0 by Corollary B.45. This is
absurd, so that ρ(a) �= C, and hence σ(a) �= /0.

We now prove the spectral radius formula (B.256). For |z| > ‖a‖ the function g,
defined in (B.260) - (B.261) has a norm-convergent power series

g(z) =
1
z

∞

∑
k=0

(
a
z

)k

. (B.268)

On the other hand, we have seen that for any z∈ ρ(a) one may find a z0 ∈ ρ(a) such
that the power series (B.265) converges (i.e. in norm). If |z| > r(a) then z ∈ ρ(a),
so (B.265) converges for |z| > r(a), uniformly in z. Therefore (by the theory of
analytic functions taking values in Banach spaces), eq. (B.268) is norm-convergent
for |z| > r(a), too, which in turn implies that ‖an‖/|z|n < 1 for large enough n (proof
by contradiction). Since this is true for all z for which |z| > r(a), we must have

lim sup
n→∞

‖an‖1/n ≤ r(a). (B.269)

To derive a second inequality towards (B.256), we use the spectral mapping prop-
erty for polynomials, which states that for any (complex) polynomial p on C,

σ(p(a)) = p(σ(a))≡ {p(λ ) | λ ∈ σ(a)}. (B.270)

Given some polynomial p of degree n (in a variable z) and some fixed λ ∈ C, let

q(z) = p(z)−λ = c0

n

∏
k=1

(z− ck), (B.271)

for some c0, . . . ,ck ∈C. Hence by (A.53) - (A.55), we have q(a) = c0 ∏n
k=1(a−ck).

Now an operator b = b0 · · ·bn is invertible iff each factor bk is invertible (in which
case b−1 = b−1

n · · ·b−1
0 ), so λ ∈ σ(p(a)) iff some ck ∈ σ(a) (where k > 0, as c0 �= 0),

which is true iff q(ck) = 0, which holds iff λ = p(ck). This proves (B.270).
To conclude the proof of (B.256), we note that since σ(a) is closed, there is

λ ∈ σ(a) for which |λ |= r(a). Since λm ∈ σ(am) by (B.270), one has |λm| ≤ ‖am‖
by (B.255). Hence ‖am‖1/m ≥ |λ |= r(a). Combining this with (B.269) yields

lim sup
n→∞

‖an‖1/n ≤ r(a)≤ ‖am‖1/m (m ∈ N). (B.272)

Hence the limit must exist, and limn→∞ ‖an‖1/n = infm ‖am‖1/m = r(a), i.e., (B.256).
Finally, given axiom (C.2) for C*-algebras (which include B(H) by Proposition

A.7 and Theorem B.33), eq. (B.257) follows from (B.256): for self-adjoint a, eq.
(C.2) reads ‖a2‖ = ‖a‖2, so if we take the limit in (B.256) along the subsequence
of even numbers (as we are entitled to, given convergence), we obtain (B.257). �
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We may also generalize Definition B.80 in a different direction, where we allow
a : D(a)→ H to be unbounded. In that case, there is room for some ambiguity, as
a possible set-theoretic inverse of a− z, if it exists as a (necessarily linear) map
(a− z)−1 : H → D(a) is no longer guaranteed to be bounded. By the argument
preceding Definition B.81 this would, of course, be desirable, which motivates:

Definition B.85. Let H be a Hilbert space, and let a : D(a)→ H be a possibly un-
bounded operator (always by definition with dense domain).

1. The resolvent ρ(a) consists of all z ∈ C for which a− z : D(a) → H has a
bounded (linear) inverse (a− z)−1 : H → D(a), so that (a− z)−1 ∈ B(H).

2. The spectrum σ(a) = C\ρ(a) is the complement of the resolvent (i.e. in C).

This provides further motivation for requiring an unbounded operator to be closed:

Proposition B.86. Let a : D(a)→ H be a possibly unbounded operator.

• If a is closed, then z ∈ ρ(a) iff a− z has a set-theoretic inverse.
• If a is not closed, then ρ(a) = /0.

Proof. The graph G(a−1) in H⊕H is the image of G(a) under the linear homeo-
morphism (ψ1,ψ2) �→ (ψ2,ψ1), hence if a is closed, then a−1 is closed and hence
bounded (cf. Theorem B.37). Similarly, if G(a) is not closed, then G(a−1) cannot
be closed either, and hence a−1 cannot be bounded. Likewise with a � a− z. �

Thus spectral theory always deals with closed operators a, like self-adjoint ones.
We now show that Definition B.80 is compatible with our earlier §A.4.

Proposition B.87. Let V be a finite-dimensional vector space and let a : V → V be
a linear map. Then a is injective iff it is surjective.

Proof. This follows from the elementary fact that for any linear map a : V →W one
has ran(a) ∼= V/ker(a). Now if V = W is finite-dimensional one has V ∼= Cn (on
choice of a basis), and one may simply count dimensions to infer that

dim(ran(a)) = n−dim(ker(a)).

Surjectivity of a then yields injectivity and vice versa: we have dim(ran(a)) = n iff
dim(ker(a)) = 0 iff ker(a) = 0. �

Note that his proposition yields the very simplest case of the Atiyah–Singer in-
dex theorem, for which these mathematicians received the Abel Prize for 2004. We
define the index of a linear map a : V →W as

index(a) = dim(ker(a))−dim(coker(a)), (B.273)

where cokern(a) = W/ran(a), provided both quantities are finite. If V and W are
finite-dimensional, Proposition B.87 yields the baby index theorem

index(a) = dim(V )−dim(W ). (B.274)
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In particular, if V = W , then index(a) = 0 for any linear map a (in general, the
index theorem expresses the index of an operator in terms of topological data; in
this simple situation the only such data are the dimensions of V and W ).

Corollary B.88. If a is an operator on a finite-dimensional Hilbert space, then the
spectrum σ(a) of a is the set of its eigenvalues.

Proof. It immediately follows from Proposition B.87 that a− z is invertible iff z is
not an eigenvalue of a. �

Returning to Definition B.80, we see that if λ is an eigenvalue of a (in that, as
in finite dimension, there exists a nonzero vector ψ ∈ H for which aψ = λψ), then
λ ∈ σ(a) (for a−λ ) is not even injective, let alone invertible). Thus we may define:

• the point spectrum σp(a) of a as the set of its eigenvalues, so that σp(a)⊆ σ(a);
• the continuous spectrum, which (if it exists) is the remainder of σ(a), i.e.,

σc(a) = σ(a)\σp(a). (B.275)

If σ(a) = σp(a), we call σ(a) discrete. The example at the beginning of this section
shows the opposite case, viz. σp(ax) = /0 and σc(ax) = [0,1]. This follows from:

Proposition B.89. Let H = L2(X ,Σ ,μ) for some σ -finite Borel space (X ,Σ ,μ) such
that μ(A)> 0 for each open A⊂ X, and let f ∈C(X). Then

σ(m f ) = ran( f )−. (B.276)

Cf. Proposition B.73. More generally, let f : X → C be (Borel) measurable. Then

σ(m f ) = ess-ran( f ), (B.277)

wgere the essential range ess-ran( f ) of f consists of all z ∈ C such that

∀ε > 0 : μ({x ∈ X : | f (x)− z|< ε})> 0. (B.278)

Proof. The second claim implies the first, for ess-ran( f ) = ran( f )− if f ∈C(X).
To prove the second claim, we use the functions ϕn = 1X̃n

ψ from the proof of
Proposition B.73, where ψ ∈ H is arbitrary. If 0 /∈ σ(m f ), then m f is invertible, so
there is b ∈ B(H) such that f bϕn = ϕn. This implies that f (x) �= 0 a.e. on X̃n, with
bϕn = m1/ fϕn. Because n ∈ N is also arbitrary and X = ∪nX̃n, this gives f (x) �= 0
a.e. on X , and since the linear span of the ϕn is dense in H, we obtain b = m1/ f ,
provided b = m−1

f exists (which should not surprise us, for m f mg = m f g). From
(B.240), with f � 1/ f , we then obtain ‖1/ f‖ess

∞ = ‖m1/ f ‖< ∞ (from 0 ∈ ρ(m f )).
The point is that ‖1/ f‖ess

∞ < ∞ iff there is ε > 0 such that | f (x)| ≥ ε almost
everywhere, i.e., μ({x ∈ X : | f (x)|< ε}) = 0. The negation of this condition states
that ∀ε > 0 : μ({x∈ X : | f (x)|< ε})> 0, that is, 0∈ ess-ran( f ). Therefore, we have
shown that 0∈σ(m f ) iff 0∈ ess-ran( f ); if f ∈C(X), this is the same as 0∈ ran( f )−.

To finish, note that m f −λ ·1H =m f−λ , where f −λ is the function x �→ f (x)−λ .
This gives λ ∈ σ(m f ) iff 0 ∈ σ(m f−λ ), which is true iff λ ∈ ess-ran( f ). �
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Corollary B.90. If μ( f = λ ) = 0 for all λ ∈ C, then σp(m f ) = /0.

Thus the combination σp(a) = /0 and σc(a) �= /0, which is the opposite of the finite-
dimensional situation, is very well possible. To shed further light on the still some-
what mysterious idea of a continuous spectrum, we now present Weyl’s theory of
the spectrum. We say that a possibly unbounded operator a : D(a)→ H is normal
when D(a∗) = D(a) and ‖a∗ψ‖= ‖aψ‖ for each ψ ∈ D(a); if a is bounded, this is
equivalent to the familiar definition a∗a = aa∗. Self-adjoint operators are normal.

Theorem B.91. Let a : D(a)→ H be normal. Then λ ∈ σ(a) iff there exists a se-
quence (ψn) of unit vectors in D(a) such that

lim
n→∞

‖(a−λ )ψn‖= 0. (B.279)

Of course, this is useful only as a new characterization of λ ∈ σc(a); if λ ∈ σp(a)
one may simply take ψn = ψ for all n, where aψ = λψ . For a simple example, take

H = L2(R); (B.280)
a = m f ( f ∈C(R)), (B.281)
λ = f (x0) (x0 ∈ R), (B.282)

so that λ ∈ ran( f )⊂ σc(m f ) = σ(m f ), and

ψn(x) = (n/π)1/4e−n(x−x0)
2/2. (B.283)

Then ‖ψn‖= 1 and limn ‖(m f −λ )ψn‖= 0, although (ψn) has no limit in L2(R).

Proof. One direction is easy by reductio ad absurdum: if the given sequence (ψn)
exists yet λ ∈ ρ(a), then, since (a−λ )−1 would exist and would be bounded, for
any sequence (ϕn) in H, ϕn→ 0 implies (a−λ )−1ϕn→ 0, so taking ϕn =(a−λ )ψn,
we find that (a−λ )ψn → 0 implies ψn → 0. Therefore, the assumption ‖ψn‖ = 1
cannot be true, and hence λ /∈ ρ(σ(a), which is to say that λ ∈ σ(a).

The converse direction requires two instructive lemmas of independent interest.

Lemma B.92. Let a ∈ B(H) (or, more generally, let a : D(a)→ H be closed). Then

ran(a)− = ker(a∗)⊥; (B.284)
ran(a)⊥ = ker(a∗). (B.285)

In particular, we have ran(a)− = H iff ker(a∗) = {0}.
Furthermore, we say that a is norm-positive (a neologism!) if there exists α > 0

such that ‖aψ‖ ≥ α‖ψ‖ for each ψ ∈ H (or each ψ ∈ D(a)). Then:

1. If a is norm-positive, then ran(a) is closed.
2. The operator a is invertible iff a is norm-positive and ker(a∗) = {0}.
3. A normal operator is invertible iff it is norm-positive.
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The last point provides the remainder of the proof of Theorem B.91, for if λ ∈ σ(a),
then a−λ is not invertible, so for each ε = 1/n there is a unit vector ψn ∈ H (or
ψ ∈ D(a)) such that ‖(a−λ )ψn‖< 1/n, and hence we have our sequence (ψn). �

It remains to prove Lemma B.92. Eqs. (B.284) - (B.285) are easy exercises, using
(B.204). For clause 1, if (ϕn) is a Cauchy sequence in ran(a) converging to ϕ ∈ H,
then ϕn = aψn for some ψn ∈ D(a). Since ‖ψm−ψn‖ ≤ α−1‖ϕn− ϕm‖, the se-
quence (ψn) is Cauchy, too, and if ψn → ψ , then ϕn → aψ = ϕ , so ϕ ∈ ran(a); in
the unbounded case this is because a is closed. For clause 2, if a is invertible, then
for ψ ∈ D(a), we have ‖ψ‖ = ‖a−1aψ‖ ≤ ‖a−1‖‖aψ‖, since a−1 is bounded, and
therefore a is norm-positive with (for example) α = ‖a−1‖−1. Moreover, invertibil-
ity implies surjectivity, i.e., ran(a) = H, and hence ker(a∗) = {0} by (B.284).

Conversely, if a is norm-positive, then it is trivially injective, and if ker(a∗) =
{0}, then ran(a)− = H, again by (B.284). But since a is also norm-positive,
ran(a)− = ran(a) so ran(a) = H and a is surjective, too. Clause 3 now also follows,
since for normal operators a we have ker(a) = ker(a∗), so a being norm-positive
implying ker(a∗) = {0} in any case, now also implies ker(a) = {0}. �
The same lemma yields crucial information on spectra of self-adjoint operators.

Theorem B.93. If a : D(a)→H is self-adjoint, then σ(a)⊆R, and if two eigenval-
ues λ ,λ ′ ∈ σp(a) are different, then corresponding eigenvectors are orthogonal.

Furthermore, for each z ∈ C exactly one of the following possibilities applies:

• z ∈ ρ(a) iff ran(a− z) = H;
• z ∈ σc(a) iff ran(a− z)− = H but ran(a− z) �= H;
• z ∈ σp(a) iff ran(a− z)− �= H.

Proof. If a∗= a then 〈ψ,aψ〉 is real, so |〈ψ,(a−z)ψ〉| ≥ |Im(z)|‖ψ‖2 for any z∈C.
Combined with Cauchy–Schwarz, this gives the inequality

‖(a− z)ψ‖ ≥ |Im(z)|‖ψ‖. (B.286)

Therefore, for z∈C\R the normal operator a−z is norm-positive, and hence invert-
ible by Lemma B.92.3, so that σ(a)⊆ R. Next, if aψ = λψ and aψ ′ = λ ′ψ ′,

〈ψ,ψ ′〉= 1
λ −λ ′

(〈λψ,ψ ′〉− 〈ψ,λ ′ψ ′〉) = 1
λ −λ ′

〈ψ,(a∗ −a)ψ ′〉= 0. (B.287)

given that λ ,λ ′ ∈ R and assuming λ ′ �= λ and a∗ = a.
Furthermore, for z ∈ C\R, we have z ∈ ρ(a) and hence trivially ran(a− z) =

H; conversely, the latter property states surjectivity of a− z, whilst (B.286) yields
injectivity, so jointly, z ∈ ρ(a). For z ∈ R, assuming ran(a− z) = H, eq. (B.285)
yields ker(a∗ − z) = {0}, but since a∗ = a and z = z, this is just injectivity of a− z,
whence once more z∈ ρ(a). Similarly, if z∈R, then ran(a−z)− �=H iff ker(a−z) �=
{0}, which yields the third case z ∈ σp(a). The middle case is all that remains. �
This result reconfirms Corollary B.88 to the effect that continuous spectrum cannot
occur if dim(H) < ∞, since in that case (where linear subspaces are automatically
closed) the second scenario in Theorem B.93 is impossible.
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B.15 The spectral theorem

Although he did not live to see it, on Hilbert’s viosnary Definition B.80 of the spec-
trum, part 1 of Theorem A.15 still holds verbatim even if H is infinite-dimensional:

Theorem B.94. Let H be a Hilbert space, suppose a ∈ B(H) is self-adjoint, and let
C∗(a) be the C*-algebra generated within B(H) by a and 1H (that is, the intersection
of all C*-algebras containing a and 1H). Then C∗(a) is commutative, and there is a
(necessarily isometric) isomorphism of (commutative) C*-algebras

C(σ(a))
∼=→C∗(a), f �→ f (a), (B.288)

which is unique if it is subject to the following conditions:

• the unit function 1σ(a) : λ �→ 1 corresponds to the unit operator 1H;
• the identity function idσ(a) : λ �→ λ is mapped to the given operator a.

The map f �→ f (a) is called the continuous functional calculus. In particular,

(t f +g)(a) = t f (a)+g(a); (B.289)
( f g)(a) = f (a)g(a); (B.290)

f (a)∗ = f ∗(a). (B.291)

It is worth mentioning that by Theorem C.62 (cf. Appendix C) an isomorphism
of C*-algebras is automatically isometric, but in this case the equality

‖ f (a)‖= ‖ f‖∞, (B.292)

acts as a lemma in the proof that (B.288) is an isomorphism, so we need to prove it
explicitly; cf. (B.225) for the left-hand side, and (1.24) for the right-hand side.

Note that Theorem B.94 is even true for the larger class normal bounded opera-
tors a (which might even be defined by the property that C∗(a) is commutative), but
for applications to quantum mechanics it is sufficient to deal with the self-adjoint
case (which even mathematically is not a restriction, as it implies the normal case).

Proof. We repeat (A.52) and (A.53) - (A.55), obtaining a map f �→ f (a) defined for
polynomials f on R, restricted to σ(a)⊂R. The ∗-algebra P∗(a) of all polynomials
in a is dense in C∗(a) by definition of the latter, since one cannot have a smaller
C*-algebra in B(H) containing a and 1H than the norm-closure of P∗(a). In order to
take advantage of this, we need the following lemma.

Lemma B.95. For any a ∈ B(H) and any polynomial p on C, we have

σ(p(a)) = p(σ(a))≡ {p(λ ) | λ ∈ σ(a)}; (B.293)

‖a‖=
√

r(a∗a), (B.294)

see (B.254). In particular, if a∗ = a, then ‖a‖= r(a), cf. (B.257).
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This is part of Theorem B.84, but we now give a direct proof of the second part. We
first note that if a∗ = a, then either ‖a‖ or −‖a‖ (or both) are in σ(a). To show this,
take a sequence (ψn) of unit vectors in H such that limn ‖aψn‖= ‖a‖. Then

‖(a2−‖a‖2)ψn‖2 = 〈(a2−‖a‖2)ψn,(a2−‖a‖2)ψn〉
= ‖a2ψn‖2 +‖a‖4−2‖a‖2‖aψn‖2

≤ 2‖a‖4−2‖a‖2‖aψn‖2, (B.295)

so that limn ‖(a2−‖a‖2)ψn‖2 = 0, and hence ‖a‖2 ∈ σ(a2) by Theorem B.91. But
part 1 of the lemma gives σ(a2) = {λ 2 | λ ∈ σ(a)}, so that ±‖a‖ ∈ σ(a).

The second observation is that, for general a∈ B(H), if some z∈C has |z|> ‖a‖,
then z ∈ ρ(a). This follows from (part 1 of) the proof of Theorem B.84. Thus we
firstly have r(a)≥ ‖a‖ (a∗ = a), and secondly (for all a), r(a)≤ ‖a‖.

Using Lemma B.95, we now prove that (B.292) holds for real polynomials f = p:

‖p(a)‖= r(p(a)) = sup{|λ |,λ ∈ σ(p(a))}= sup{|λ |,λ ∈ p(σ(a))}
= sup{|p(λ )|,λ ∈ σ(a)}= ‖p‖∞. (B.296)

The case of complex polynomials p follows from this, since, using (B.289) - (B.291),

‖p(a)‖2 = ‖p(a)∗p(a)‖= ‖|p|2(a)‖= ‖|p|2‖∞ = ‖p‖2
∞. (B.297)

Thus we have proved the isometric ∗-algebra isomorphism P(σ(a))∼= P∗(a), where
P(σ(a)) and P∗(a) are the canonically normed vector spaces of all finite polyno-
mials in t ∈ σ(a) and in a ∈ B(H), respectively. Neither is complete (when H is
infinite-dimensional and a �= 0), but given isometricity, it is easy to pass to their
completions, which by Weierstrass and by definition are C(σ(a)) and C∗(a), re-
spectively. Thus for f ∈ C(σ(a)) we find a sequence (pn) in P(σ(a)) such that
pn → f (from which it follows that (pn) is Cauchy in C(σ(a))), and define

f (a) = lim
n

pn(a); (B.298)

this limit exists because ‖pn(a)− pm(a)‖= ‖pn− pm‖∞, so that (pn(a)) is Cauchy
in the Banach space C∗(a). Furthermore, if p′n → f , and f ′(a) = limn p′n(a), then

‖ f (a)− f ′(a)‖= lim
n
‖pn(a)− p′n(a)‖= lim

n
‖pn− p′n‖∞ = 0, (B.299)

so f ′(a) = f (a). From (B.296) - (B.298) and continuity of the norm—i.e. ‖ f (a)‖=
limn ‖pn(a)‖, which gives d (B.292)—the map f �→ f (a) is isometric and hence
injective on C(σ(a)), and the above construction trivially makes it surjective.

Finally, the properties (B.289) - (B.291) follow from (A.53) - (A.55) by con-
tinuity. These properties also imply the uniqueness of the map f �→ f (a) given the
conditions states in the theorem, because these conditions and (A.53) - (A.55) define
the map on P(σ(a)) and hence, by continuity, also on C(σ(a)). �
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For a nice reformulation of Theorem B.94 in terms the Gelfand spectrum, cf. §C.4.
For later use (cf. Proposition B.98 below) we add a related result.

Lemma B.96. If a ∈ B(H) is self-adjoint, then

‖a‖= sup{|〈ψ,aψ〉|,ψ ∈ H,‖ψ‖= 1}. (B.300)

In particular, if a,b ∈ B(H) are both positive and a≤ b, then ‖a‖ ≤ ‖b‖.
Proof. Define the numerical range ν(a) of an arbitrary a ∈ B(H) as

ν(a) = {〈ψ,aψ〉,ψ ∈ H,‖ψ‖= 1}. (B.301)

Clearly, if λ ∈ σp(a), then λ ∈ ν(a). If λ ∈ σc(a), then, in the notation of Theorem
B.91, by Cauchy–Schwarz and normalization of ψn we have

|〈ψn,(a−λ )ψn〉| ≤ ‖(a−λ )ψn‖. (B.302)

Hence in view of (B.279) we have

lim
n→∞

〈ψn,aψn〉= λ . (B.303)

So λ ∈ ν(σ)−, whence σ(a)⊆ ν(a)−, and hence r(a)≤ sup{|λ |,λ ∈ ν(a)}. From
Cauchy–Schwarz, in (B.301) we have |〈ψ,aψ〉| ≤ ‖a‖. If also a∗ = a, by (B.300),

‖a‖= r(a)≤ sup{|λ |,λ ∈ ν(a)} ≤ ‖a‖.

Hence we have equalities everywhere, and (B.300) follows. �

Generalizing parts 2 and 3 of Theorem A.15 to the infinite-dimensional case
requires some motivation. To this effect, note that the continuous functional calculus
a �→ f (a) is positive, i.e., if f ≥ 0 pointwise, then f (a)≥ 0 in that 〈ψ, f (a)ψ〉≥ 0 for
each ψ ∈H. Indeed, we have f ≥ 0 iff f = g∗g for some g ∈C(σ(a)), with g∗(x) =
g(x) as usual, and hence, by (B.290) - (B.291), f (a) = g(a)∗g(a) and therefore
〈ψ, f (a)ψ〉 = ‖g(a)‖2 ≥ 0. By Corollary B.17, if ψ ∈ H is a unit vector, there is a
probability measure μψ on σ(a) such that for each f ∈C(σ(a)),

〈ψ, f (a)ψ〉=
∫
σ(a)

dμψ f . (B.304)

The key to the envisaged generalization of Theorem A.15 is that the integral on the
right may actually be defined for a far larger class of functions than C(σ(a)); cf.
(B.29). This suggests that the expression f (a) on the left-hand side should similarly
be generalized to a larger class of functions f . However, the Lp spaces considered
in §B.6 are defined on the basis of some measure μ; since μψ in (B.304) varies with
ψ and f (a) should be independent of ψ , it is appropriate to use the space B(σ(a))
of bounded functions f : σ(a)→ C that are measurable with respect to the Borel
σ -algebra on σ(a) (which consist of the Borel sets on R intersected with σ(a)).
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Since both boundedness and measurability are preserved under uniform limits (mea-
surability even being preserved under pointwise limits), B(σ(a)) is complete in the
sup-norm, which makes it a commutative C*-algebra (under pointwise operations).
Among all functions in B(σ(a)), we will be particularly interested in the charac-
teristic functions 1A, where A⊂ σ(a) is measurable. The expressions

eA = 1A(a), (A⊂ σ(a)); (B.305)
eA = eA∩σ(a), (A⊂ R); (B.306)
eλ ≡ 1{λ}(a), (λ ∈ σp(a)), (B.307)

to be defined below, where A is a Borel set (and e /0 = 0 by convention), are the spec-
tral projections of a (which are of fundamental importance to quantum mechanics).

Lemma B.97. Any positive function f ∈ B(σ(a)) is a pointwise limit of some
monotone increasing bounded sequence ( fn) in C(σ(a)), written fn ↗ f . That is,

0≤ f1(x) ≤ ·· · ≤ fn(x)≤ fn+1(x)≤ ·· · ≤ c ·1σ(a); (B.308)
f (x) = lim

n→∞
fn(x), x ∈ σ(a). (B.309)

Proof. We start with f = 1K , where K ⊆ σ(a) is compact. Then K = ∩nUn for cer-
tain open sets Un (this is true for any second countable space), and taking “Urysohn”
functions fn for each Un (i.e., fn ∈Cc(Un), 0≤ fn(x)≤ 1 for x∈ σ(a), and fn(x) = 1
for x ∈ K), we obviously have fn → 1K . Next, if U ⊂ σ(a) is open, we have
U = ∪nKn for suitable compact Kn (since R and hence σ(a) is σ -compact), so
1Kn → 1U . This also gives 1C for closed sets C = σ(a)\U , since 1C = 1σ(a)− 1U .
Using the so-called Borel hierarchy, it can be shown that any Borel set A⊂ σ(a) can
be constructed from open and closed sets in at most a countable number of steps,
at each of which a countable union or intersection of sets from the previous steps
is used. This gives 1A for any Borel set, and hence also yields the simple functions
s = ∑k ck1Ak with ck ≥ 0. For arbitrary measurable f ≥ 0 (not necessarily bounded
and not even necessarily finite) it is a standard result in measure theory that there is
a sequence (sn) of simple functions such that sn ↗ f : to wit, define

An,k = {x ∈ σ(a) | 2−nk < f (x)≤ 2−n(k+1)}; (B.310)
An = {x ∈ σ(a) | n < f (x)< ∞}; (B.311)

sn = n ·1An +2−n
2nn−1

∑
k=1

k1An,k . (B.312)

Relabeling the (at most) countable number of sequences thus obtained as a single
sequence then gives a positive sequence (hn) in C(σ(a)) such that hn→ f pointwise.

A final trick turns (hn) into a monotone increasing bounded sequence ( fn): for
m > n, define fn,m = min{hn, . . . ,hm}, which is monotone decreasing in m and posi-
tive, and hence has a (pointwise) limit fn = limm→∞ fn,m. The ensuing sequence ( fn)
is monotone increasing and still converges to f . If f is bounded (as we assume by
definition of B(σ(a))), then ( fn) must also be bounded eventually. �
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If f ∈B(σ(a)) and fn ↗ f with fn ∈C(σ(a)), we would like to define f (a) as
limn fn(a), just as in the case where f ∈ C(σ(a)) and fn ∈ P(σ(a)). However, in
the former case convergence fn → f is merely pointwise, whereas in the latter case
it was uniform, translated into norm convergence fn(a)→ f (a). Pointwise conver-
gence of functions, then, becomes strong convergence of operators:

Proposition B.98. If (an) is a sequence of positive operators on H for which

0≤ a1 ≤ ·· · ≤ an ≤ an+1 ≤ ·· · ≤ c1H , (B.313)

where ai ≤ a j means that 〈ψ,aiψ〉 ≤ 〈ψ,a jψ〉 for each ψ ∈ H, then there exists a
unique positive operator a such that an ↗ a strongly, i.e., for each ψ ∈ H,

aψ = lim
n→∞

anψ. (B.314)

Furthermore, a= supn an with respect to the partial ordering≤ on the set of positive
bounded operators (that is, an ≤ a for each n, and if an ≤ b for each n, then a≤ b).

Proof. Recalling Proposition A.4, define a sequence of bounded quadratic forms
Qn : H→R by Qn(ψ) = 〈ψ,anψ〉. Then (Qn(ψ)) is a monotone increasing bounded
sequence for each ψ ∈ H, so that Q(ψ) = limn→∞ Qn(ψ) exists. Like each Qn, also
Q satisfies (A.8) - (A.9). Since |Qn(ψ)| ≤ c‖ψ‖2 and hence |Q(ψ)| ≤ c‖ψ‖2, it
remains bounded. Hence (A.10) defines a bounded hermitian form B, upon which
Proposition B.79 yields a bounded operator a, satisfying B(ϕ,ψ) = 〈ϕ,aψ〉. Since

〈ψ,aψ〉= lim
n→∞

〈ψ,anψ〉, (B.315)

we have a ≥ 0. To prove (B.314), note that (B.315) gives 〈ψ,(a− an)ψ〉 → 0, but
(B.313) implies a− an ≥ 0, so that a− an has a self-adjoint square root

√
a−an,

defined by Theorem B.94 (see also Proposition B.99 below). Hence

〈ψ,(a−an)ψ〉= 〈
√

a−anψ,
√

a−anψ〉= ‖
√

a−anψ‖2 → 0. (B.316)

Now if a sequence of operators (bn) is such that ‖bn‖ ≤C for all n, and ‖bnψ‖→ 0,
then also ‖b2

nψ‖ → 0, for ‖b2
nψ‖ ≤ ‖bn‖‖bnψ‖ ≤C‖bnψ‖ → 0. This applies here,

since am≤ an for m≤ n, and hence a−an≤ a−am, from which ‖a−an‖≤ ‖a−am‖
(see Lemma B.96). Fixing m, this gives ‖a− an‖ ≤ C with C = ‖a− am‖, for all
n≥ m. So (B.316) implies ‖(a−an)ψ‖→ 0, which is (B.314).

As to the final claim, eq. (B.315) is the same as 〈ψ,aψ〉= supn{〈ψ,anψ〉}. �

In this proof, we used the following generalization of Proposition A.22:

Proposition B.99. The following conditions on a ∈ B(H) are equivalent:

1. 〈ψ,aψ〉 ≥ 0 for arbitrary ψ ∈ H;
2. a∗ = a and σ(a)⊂ R+;
3. a = c2 for some bounded self-adjoint operator c ∈ B(H);
4. a = b∗b for some bounded operator b ∈ B(H).
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Proof. The proof is the same as in the finite-dimensional case, except that:

• In 1→ 2 we use (B.303) to exclude the possibility that some λ < 0 lies in σ(a);
• In 2 → 3 we need Theorem B.94) to define the square root c =

√
a from the

function
√· : σ(a)→R (which is well defined because σ(a)⊂R+). By (B.290)

with g = f =
√·, we then have

√
a
√

a = a. �

Given some positive f ∈ B(σ(a)), we now use Lemma B.97 to find a mono-
tone increasing bounded sequence ( fn) in C(σ(a)) such that fn ↗ f pointwise, and
subsequently use Proposition B.98 to define f (a) as the strong limit

f (a)ψ = lim
n→∞

fn(a)ψ (ψ ∈ H). (B.317)

Arbitrary functions f are then dealt with using (B.30) and performing the above con-
structing term-wise. This, then, yields f (a) for any a∗= a∈B(H) and f ∈B(σ(a)).

It is natural to ask which corner of B(H) the operators f (a) land in when f ∈
B(σ(a)), much as we have shown that f (a)∈C∗(a) for f ∈C(σ(a)). A safe choice
would be C∗(a)−, i.e., the strong closure of C∗(a), which by definition contains all
limits of all strongly convergent nets in C∗(a) (so that it certainly contains all limits
(B.317)), and which is automatically a strongly closed unital ∗-algebra. This may
seem too large, but if H is separable, it turns out to be the right choice, because
these more general limits add nothing to (B.317)). For a more explicit description
of C∗(a)− we need the commutant S′ of any S⊂ B(H), which is defined by

S′ = {a ∈ B(H) | ab = ba∀b ∈ S}; (B.318)

the bicommutant of S is S′′ = (S′)′. If S∗ = S, in that a∈ S iff a∗ ∈ S, then S′ is easily
seen to be a unital ∗-algebra within B(H). Furthermore, it is obvious that S⊂ S′′, so
that the passage S �→ S′′ is some sort of a closure operation within B(H), comparable
to the closure operation S �→ S⊥⊥ within H itself. Indeed, there is a striking analogue
of (B.204) at the operator level, due to von Neumann (see Theorem C.127):

Theorem B.100. If A is a unital ∗-algebra in B(H), then

A′′ = A−, (B.319)

where A− is the strong closure of A in B(H) (which is automatically a ∗-algebra).

Corollary B.101. Denoting the strong closure C∗(a)− of C∗(a) by W ∗(a), we have

W ∗(a) =C∗(a)′′. (B.320)

Though not obvious from (B.320), the alternative description through (B.319) shows
that W ∗(a) inherits the commutativity of C∗(a); in fact W ∗(a) is a commutative C*-
algebra, too. Moreover, by construction it is also a von Neumann algebra in that
W ∗(a)′′ = W ∗(a), cf. Appendix C. Such unital ∗-algebras in B(H) are not merely
norm closed, but are also closed in at least three other natural topologies on B(H),
including the strong one. The situation may be summarized in the spectral theorem:
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Theorem B.102. Let a∗ = a ∈ B(H). The isomorphism C(σ(a))→C∗(a) of Theo-
rem B.94 has a unique extension to a homomorphism

B(σ(a))→W ∗(a), a �→ f (a), (B.321)

for (B.289) - (B.291) continue to hold. In particular, the operator eA in (B.305) is a
projection. Also, eq. (B.304) remains valid, and for each f ∈B(σ(a)), one has

‖ f (a)‖ ≤ ‖ f‖∞. (B.322)

Proof. The map a �→ f (a) is given by (B.317) and preceding discussion. Eqs.
(B.289) and (B.291) easily follows by limiting arguments. Using the same trick
as in the proof of Proposition B.98 it can be shown that f (a)2 = f (a2), whence,
using the identity f g = 1

2 (( f + g)2 − f 2 − g2), eq. (B.290) follows. This implies
e2

A = 12
A(a) = 1A(a) = eA, whilst (B.291) gives e∗A = 1∗A(a) = 1A(a) = eA.

We prove (B.322) for f ≥ 0; this implies the general case by (B.30) and the
triangle equality. Writing H1 for the set of unit vectors in H, approximating fn ↗ f ,
repeatedly using (B.300), the property f (a) = supn fn(a) established at the end of
Proposition B.98, and finally using (B.292) for each fn ∈C(σ(a)), we may estimate:

‖ f (a)‖= sup
ψ∈H1

{|〈ψ, f (a)ψ〉|}

= sup
ψ∈H1

sup
n∈N
{|〈ψ, fn(a)ψ〉|}

= sup
n∈N

sup
ψ∈H1

{|〈ψ, fn(a)ψ〉|}

= sup
n∈N
‖ fn(a)‖= sup

n∈N
‖ fn‖∞

≤ ‖ f‖∞, (B.323)

where the last inequality is a trivial consequence of the specific limit fn ↗ f .
Finally, our motivating identity (B.304) follows from the same equality for each

fn ∈C(σ(a)), upon which Lebesgue’s Monotone Convergence Theorem yields the
right-hand side, whereas (B.315) gives the left-hand side. �

Of course, in finite dimension, Theorem B.102 coincides with Theorems A.15
and Theorem B.94. Theorem A.15 implies Theorem A.10 through (A.58) - (A.59),
and, as we will now explain, in infinite dimension Theorem B.102 similarly implies
a certain approximate version of Theorem A.10, namely Corollary B.104.

Lemma B.103. If K ⊂R is compact, any f ∈C(K) may be uniformly approximated
by simple functions. More precisely, for each ε > 0 there is a decomposition K =⊔n

i=1 Ai of K as a disjoint union of n < ∞ Borel sets Ai, such that for any xi ∈ Ai,∥∥∥∥∥ f −
n

∑
i=1

f (xi)1Ai

∥∥∥∥∥
∞

< ε. (B.324)
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Proof. Since K is compact, f is actually uniformly continuous on K. This means
that for ε > 0 there is δ > 0 such that | f (x)− f (y)|< ε whenever |x−y|< δ . Since
(B.324) just states that | f (x)− f (xi)|< ε for each i = 1, . . . ,n and each x ∈ Ai, any
partition for which 0 < |Ai|< δ will do (where |A|= sup{|x− y|,x,y ∈ A}). �

From (B.305), Lemma B.103, and Theorem B.102, we then immediately have:

Corollary B.104. Let a∗ = a ∈ B(H). For any f ∈C(σ(a)) and any ε > 0, there is
a partition σ(a) =

⊔n
i=1 Ai of σ(a) as a disjoint union of n < ∞ Borel sets Ai, such

that for arbitrary λi ∈ Ai, one has∥∥∥∥∥ f (a)−
n

∑
i=1

f (λi)eAi

∥∥∥∥∥< ε. (B.325)

In particular, for f (x) = x and f (x) = 1 we have∥∥∥∥∥a−
n

∑
i=1

λieAi

∥∥∥∥∥ < ε; (B.326)∥∥∥∥∥1H −
n

∑
i=1

eAi

∥∥∥∥∥ < ε. (B.327)

If a has discrete spectrum σ(a) = σp(a)), then (B.326) - (B.327) reduce to (A.37) -
(A.38), where eλ is defined by (B.307), and the sums converge in norm.

Hence in this version of the spectral theorem, one approximates a by linear combina-
tions of projections in a way that reflects the approximation of the identity function
x �→ x on σ(a) by simple functions. Eq. (B.326) is often symbolically written as

a =
∫
σ(a)

deλ λ , (B.328)

which may also be given some direct meaning as an operator-valued Stieltjes inte-
gral, but even so, this neat expression eventually boils down to (B.326) itself.

Corollary B.105. Let P(A) = {e ∈ A | e2 = e∗ = e}, where A is a von Neumann
algebra. Then A is the norm-closure of the linear span of P(A), and

A = P(A)′′. (B.329)

Proof. The first claim follows from Corollary B.104. This implies (B.329), which
may also be proved directly: since P(A)⊂ A, the inclusion P(A)′′ ⊆ A′′ = A is ob-
vious. Conversely, let a ∈ A and assume a∗ = a (if not, decompose a = a′+ ia′′ with
a′ and a′′ self-adjoint). Then W ∗(a) ⊂ A, so that A contains all spectral projections
of a, cf. Theorem B.102. Moreover, by Corollary B.104, a lies in the norm-closure
of the linear span of P(A), which by Theorem B.100 in turn is contained in A′′. �
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B.16 Abelian ∗-algebras in B(H)

Compared with Theorem B.94, it seems a weakness of Theorem B.102 that the map
f �→ f (a) fails to be an isomorphism from B(σ(a)) to W ∗(a). The reason is that
although the map is surjective (at least when H is separable), it fails to be injective:
for real-valued f one has f (a) = 0 iff 〈ψ, f (a)ψ〉 = 0 for all ψ ∈ H, which by
(B.304) is the case iff

∫
σ(a) dμψ f = 0 for all unit vectors ψ ∈ H, which in turn is

the case iff f = 0 a.e. with respect to μψ , in other words, iff f = 0 in L∞(σ(a),μψ).
Thus the right kind of algebra to be isomorphic to W ∗(a) is L∞(σ(a),μ) rather

than B(σ(a)), where μ is some (probability) measure on σ(a) such that μ(A) = 0
iff μψ(A) = 0 for all unit vectors ψ ∈ H. Indeed, in that case, since by construction

L∞(σ(a),μ)∼= B(σ(a))/{ f | f = 0μ-a.e.}= B(σ(a))/ker( f �→ f (a)), (B.330)

our map B(σ(a))→W ∗(a) descends to an isomorphism of von Neumann algebras:

L∞(σ(a),μ)
∼=→W ∗(a). (B.331)

This is quite nontrivial; let us first present a case study where everything is clear.

Proposition B.106. Let H = L2(0,1) = L2([0,1]) (with Lebesque measure), and let
a = mid ∈ B(H) (where id(x) = x) be the self-adjoint position operator

aψ(x) = xψ(x). (B.332)

Then the map f �→ f (a) in both Theorems B.94 and B.102 is given by

f (a) = m f , (B.333)

cf. Proposition B.73. The two ∗-algebras in B(H) defined by a are given by

C∗(a) = C([0,1]); (B.334)
W ∗(a) = L∞(0,1), (B.335)

both realized as multplication operators (i.e., identifying f with m f ). Furthermore,

L∞(0,1)′ = L∞(0,1). (B.336)

More generally, let K ⊂ R be compact, let μ be a regular probability measure on K
with support K, take H = L2(K,μ) and the define a as in (B.332). Then:

σ(a) = K; (B.337)
C∗(a) =C(K); (B.338)

W ∗(a) = L∞(K,μ); (B.339)
f (a) = m f ; (B.340)

L∞(K,μ)′ = L∞(K,μ). (B.341)
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Proof. We just prove the case K = [0,1] with dμ(x) = dx; the general case is similar.
Eq. (B.333) is obvious for polynomials f , and otherwise follows from easy lim-

iting arguments. Consequently, eq. (B.334) is an instance of Theorem B.94. Every-
thing else then follows if we can prove that

C([0,1])′ = L∞(0,1). (B.342)

Namely, assuming (B.342), since C([0,1]) ⊂ L∞(0,1) (and A ⊆ B implies B′ ⊆
A′), we automatically have L∞(0,1)′ ⊆ C([0,1])′, so (B.342) implies L∞(0,1)′ ⊆
L∞(0,1), and since the converse inclusion is trivial from commutativity of L∞(0,1),
eq. (B.342) implies (B.336). Furthermore, since W ∗(a) =C([0,1])′′, taking the com-
mutant of (B.342) and applying (B.336) yields (B.335).

So let us prove (B.342). The inclusion L∞(0,1) ⊆ C([0,1])′ is obvious, since
m f mg = m f g = mg f = mgm f , so we need to prove the converse. Take b ∈C([0,1])′
and define f = b1[0,1] ∈ L2(0,1). For ψ ∈C([0,1])⊂ L2(0,1), we have

bψ = bmψ1[0,1] = mψb1[0,1] = mψ f = mψm f 1[0,1] = m f mψ1[0,1] = m fψ, (B.343)

so b = m f on the dense domain C([0,1]) ⊂ L2(0,1), with f ∈ L2(0,1). Now b is
bounded by definition of the commutant C([0,1])′ and hence ‖m f ‖ < ∞. If f /∈
L∞(0,1), the proof of Proposition B.73 gives that Xt has positive measure for each
t > 0, whence ‖m f ‖ ≥ t for all t, which is a contradiction. Hence f ∈ L∞(0,1), in
which case m f extends to all of L2(0,1) by continuity. This extension must equal b,
so that b = m f , and hence C([0,1])′ ⊆ L∞(0,1). �

The following variation on this example turns out to be qualitatively different:

Proposition B.107. Realizing �∞(N) as multiplication operators on �2(N), one has

�∞(N)′ = �∞(N). (B.344)

Proof. For each N ∈ N, we define a finite-dimensional subspace �2(N)⊂ �2(N) by

�2(N) = {ψ ∈ �2(N) | ψ(x) = 0∀x > N},

with ensuing projection 1N : �2(N)→ �2(N), i.e., 1Nψ(x) = ψ(x) for x ≤ N and
1Nψ(x) = 0 for x > N. If b ∈ �∞(N)′, we have b : �2(N)→ �2(N), because 1N ∈
�∞(N) (and hence ψ ∈ �2(N), i.e., 1Nψ =ψ , implies bψ ∈ �2(N), i.e., 1Nbψ = bψ).
With fN : N→ C given by fN = b1N , define f : N→ C by f (x) = fN(x) for any
N > x; this is well defined, in that if x < N < M, then fN(x) = fM(x). For any N
and ψ ∈ �2(N), as in (B.343) we have bψ = m fψ , which therefore holds on a dense
subspace ∪N�

2(N) of �2(N). Again as in the previous proof, this gives

‖ f‖∞ = ‖m f ‖= ‖b‖< ∞, (B.345)

i.e., f ∈ �∞(N). Thus b = m f ≡ f ∈ �∞(N), whence �∞(N)′ ⊆ �∞(N). With the trivial
opposite inclusion, this gives (B.344). �
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Note that since a possible (discrete) position operator (B.332) would be unbounded
on �2(N), a possible counterpart to (B.335), although it exists, would blast the frame-
work of the this section (cf. §B.21). See, however, the proof of Theorem B.118.

More generally, we have:

Proposition B.108. Let (X ,Σ ,μ) be a σ -finite Borel space and realize L∞(X ,μ) as
multplication operators on L2(X ,μ). Then

L∞(X ,μ)′ = L∞(X ,μ). (B.346)

Proof. Writing X =∪N∈NXN with μ(XN)<∞, which holds by virtue of σ -finiteness,
the proof is practically the same as for X = N (except for the fact that L2(XN) ⊂
L2(X) need not be finite-dimensional, but it is closed, which suffices). �

If A ⊂ B(H) is a commutative ∗-algebra, we say that A is maximal (abelian) if
A⊆ B⊂ B(H) for some commutative ∗-algebra B implies B = A. Any ∗-algebra A⊂
B(H) is abelian iff A⊆ A′ (this is trivial), and is maximally abelian iff A′ = A. To see
the nontrivial “⇒” direction, for any subsets C⊂ B(H) and D⊂ B(H) the inclusion
C ⊆ D implies D′ ⊆C′ (as is immediate from the definition of the commutant), so
B′ ⊆A′. Since B is commutative, we also know that B⊆B′, whence B⊆A′. If A′=A
this gives B⊆ A, so B = A. The condition A′ = A, in turn, implies A′′ = A, i.e., any
maximal abelian ∗-algebra A in B(H) is automatically a von Neumann algebra.

Corollary B.109. In the setting of Proposition B.108, L∞(X ,μ) is a maximal abelian
∗-algebra in B(L2(X ,μ)), and hence a von Neumann algebra. In particular:

• L∞(0,1) is a maximal abelian ∗-algebra in B(L2(0,1));
• �∞(N) is a maximal abelian ∗-algebra in B(�2(N)).

The above examples suggest a neat reformulation of the spectral theorem. This
requires a few more concepts from the theory of operator algebras, cf. Appendix C.

Definition B.110. For any ∗-algebra A⊂ B(H) and ψ ∈ H, we write Aψ− ⊆ H for
the closure of the linear subspace of all vectors aψ , a ∈ A. We say that ψ (�= 0) is:

• cyclic for A if Aψ− = H;
• separating for A if aψ = 0 for a ∈ A implies a = 0.

If a∗ = a ∈ B(H), we similarly say that ψ is cyclic (separating) for a if ψ is cyclic
(separating) for A =C∗(a), or, equivalently, for A =W ∗(a).

The equivalence of the two ways of writing the last definition follows from the
relation W ∗(a)ψ− = C∗(a)ψ−, cf. Corollary B.101; more generally, ψ is cyclic
(separating) for A iff it is cyclic (separating) for its strong closure A−.

For example, if A = B(H), any vector is cyclic for A, and none is separating.
On the other hand, if A = C · 1H , then no vector is cyclic for A and all vectors are
separating. If H = L2(X ,μ) on some finite measure space, then ψ = 1X is cyclic
as well as separating for A = L∞(X ,μ). Noting (B.346), as well as the property
B(H)′ = C ·1H , these examples illustrates a general phenomenon:
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Lemma B.111. If 1H ∈ A, a vector ψ is cyclic for A iff it is separating for A′, and
vice versa. In particular, if A′ = A, then ψ is cyclic for A iff it is separating for A.

If A is abelian, then every vector that is cyclic for A is also separating for A.

Proof. If Aψ− = H and bψ = 0 for b ∈ A′, then baψ = 0 for each a ∈ A and hence
b vanishes on a dense subspace of H. Since b is bounded, b = 0. Conversely, let e be
the projection onto Aψ−; then e ∈ A′ and hence 1H − e ∈ A′. Since 1H ∈ A we have
ψ ∈ Aψ− and hence eψ = ψ , whence (1H − e)ψ = 0. If ψ is separating for A′, this
implies e = 1H and hence Aψ− = H. Finally, A is abelian iff A⊆ A′. �

Theorem B.112. Let a∗ = a ∈ B(H), and suppose some unit vector ψ ∈ H is
cyclic for a. Then a is unitarily equivalent to the position operator (B.332) on
L2(σ(a),μψ), where the probability measure μψ on σ(a) is given by (B.304). Fur-
thermore, through the unitary operator u : H → L2(σ(a),μψ) in question we have

u f (a)u−1 = f ; (B.347)
uC∗(a)u−1 = C(σ(a)); (B.348)

uW ∗(a)u−1 = L∞(σ(a),μψ), (B.349)

all of which being realized as multiplication operators on L2(σ(a),μψ).
Moreover, L∞(σ(a),μψ) is maximally abelian, and hence satisfies

L∞(σ(a),μψ) = L∞(σ(a),μψ)′. (B.350)

Proof. First, define u on a dense subspace of H by

u : C∗(a)ψ → L2(σ(a),μψ); (B.351)
u f (a)ψ = f , f ∈C(σ(a)). (B.352)

It follows from (B.289) - (B.291) and (B.304) that ‖ f (a)ψ‖H = ‖ f‖2, which makes
u well defined (since f (a)ψ = g(a)ψ implies f = g), as well as isometric. In par-
ticular, u is bounded, and hence it can be extended from C∗(a)ψ to H by continuity.
This extension is surjective, since C(σ(a)) is dense in L2(σ(a),μψ), and there-
fore u : H → L2(σ(a),μψ) is unitary. Then (B.347) - (B.348) hold by construc-
tion; the special case f = id yields (B.332). As in Proposition B.106, we obtain
C(σ(a))′ = L∞(σ(a),μψ), which implies (B.349) - (B.350). �

Note that this proposition implies that H is separable. When does a self-adjoint
(or normal) operator a have a cyclic vector? To practice, we first look at H = Cn.

Proposition B.113. Let H = Cn and let a = diag(λ1, . . . ,λn) be a diagonal matrix.
Then the following properties are equivalent:

1. All λi are distinct, i.e., |σ(a)|= n (in words, a is non-degenerate);
2. The operator a has a cyclic vector;
3. C∗(a)′ =C∗(a);
4. C∗(a) is a maximal abelian C*-subalgebra of B(H).
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Proof. We first show that all λi are distinct iff

C∗(a) = Dn(C), (B.353)

i.e., the set of all diagonal matrices. To see this, first note that for any f : σ(a)→ C
(and any such function is continuous, since σ(a) is a finite subset of C) we have

f (diag(λ1, . . . ,λn)) = diag( f (λ1), . . . , f (λn)); (B.354)

this is true by computation for polynomials in a, and these exhaust all functions on
σ(a). It follows that C∗(a) ⊆ Dn(C). We know from (A.49) that C∗(a) ∼= C(σ(a))
whether or not σ(a) is non-degenerate, and since dim(C(σ(a))) = |σ(a)| (i.e., the
number of elements of σ(a)), we obtain

dim(C∗(a)) = |σ(a)|. (B.355)

So if a is non-degenerate, noting that dim(Dn(C)) = n we must have (B.353).
If, on the other hand, a is degenerate, we have |σ(a)| = m < n, so that also
dim(C(σ(a))) = m < n and C∗(a) ⊂ Dn(C) is a strict inclusion. Furthermore, by
direct computation or as a special case of Proposition B.108, we have

Dn(C)′ = Dn(C). (B.356)

To prove 1→ 2, take the cyclic vector to be

ψ = (1, . . . ,1)/
√

n; (B.357)

indeed, any vector (z1, . . . ,zn) is equal to
√

n · diag(z1, . . . ,zn)ψ , and we have
diag(z1, . . . ,zn) ∈ Dn(C) =C∗(a) by (B.353). For 2→ 1, if H has a cyclic vector ψ
for a, then by definition C∗(a)ψ = Cn, so that dim(C∗(a)ψ) = n. But also

dim(C∗(a)ψ)≤ dim(C∗(a)), (B.358)

whether or not ψ is cyclic for a. If ψ is cyclic this gives

n≤ dim(C∗(a))≤ n (B.359)

by (B.355), so that dim(C∗(a)) = n, whence |σ(a)|= n by (B.355).
Given this, the implication 1 → 3 follows from (B.356), whilst 3 → 4 follows

from Theorem A.21. Finally, we prove 4→ 1: we already know that C∗(a)⊂Dn(C),
and by (B.356) and the above argument it follows that Dn(C) is maximal. So if C∗(a)
is maximal, then C∗(a) = Dn(C), and we already know from the first stage of the
proof that this is equivalent to a being non-degenerate. �

With slightly more effort, an analogous result holds for general Hilbert spaces.

Proposition B.114. A self-adjoint operator a on a separable Hilbert space H has a
cyclic vector iff W ∗(a) is maximal abelian (i.e., W ∗(a)′ =W ∗(a)).
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In other words, a has a cyclic vector iff C∗(a)′=C∗(a)′′, cf. (B.320). As we have just
seen, if dim(H)< ∞, this is the case iff a is non-degenerate. Consistent with (B.349)
(with u = 1) and (B.350), the position operator (B.332) acting on the Hilbert space
L2(σ(a),μψ) is maximal in this sense, with ψ = 1σ(a) as a cyclic unit vector.

Proof. If ψ is cyclic for a, then (B.349) and (B.350) (along with the self-evident
property uA′u−1 = (uAu−1)′) yield W ∗(a)′ =W ∗(a). Conversely, for any ∗-algebra
A⊂ B(H), one can find unit vectors (ψi) such that H =⊕iHi with Hi = Aψ−i : start
with any ψ1, then take any ψ2 ∈ (Aψ−1 )⊥ (in case this is nonzero, otherwise one
was already done), etc. To show that this procedure terminates, Zorn’s Lemma must
be invoked (take the collection of all sets (Hi) of mutually orthogonal A-stable sub-
spaces Hi ⊂ H that contain a cyclic vector for A). Then ψ = ∑n 2−nψn is clearly
separating for A. If A′ = A, then ψ is also cyclic for A; cf. Lemma B.111. �

Thus we call a self-adjoint operator a ∈ B(H) maximal if it has a cyclic vector.

Corollary B.115. A maximal self-adjoint operator a ∈ B(H) is unitarily equivalent
to the position operator (B.332) on L2(σ(a),μ), where μ is an appropriate proba-
bility measure on the spectrum σ(a)⊂R. Moreover, the map B(σ(a))→W ∗(a) in
(B.321) induces an isomorphism (B.331) of von Neumann algebras.

Proof. Take μ = μψ , cf. (B.304), where ψ is cyclic (or, equivalently, separating) for
a. The map f �→ f (a) from B(σ(a)) to W ∗(a) described in Theorem B.102 can be
propelled further by conjugation with the unitary u of Theorem B.112, that is,

f �→ f (a) �→ u f (a)u−1 = m f ; (B.360)

B(σ(a))→ B(H)→ B(L2(σ(a),μψ)), (B.361)

where the final equality in (B.360) follows from the computation

u f (a)u−1g = u f (a)g(a)ψ = u( f ·g)(a)ψ = f g = m f g, (B.362)

where for simplicity g ∈ C(σ(a)) ⊂ L2(σ(a),μψ), the inclusion being dense. The
claim then immediately follows from (B.349). �

If a is not maximal, we can still prove a weaker version of Theorem B.112, which
is sometimes seen as the ultimate version of the spectral theorem. To justify this
view, take H = Cn and let a ∈Mn(C) be self-adjoint (or, more generally, normal).
By Theorem A.10, H has a basis (υi) of eigenvectors of a, with aυi = λiυi. This
yields a unitary map H → �2(n), where n = {1,2, . . . ,n}, defined by uυi = δi (where
δi( j) = δi j, as usual). It is easy to check that uau−1 = mλ , where λ : n → C is
defined by λ (i) = λi, and mλψ = λψ , again as usual. In other words, a is unitarily
equivalent to a multiplication operator (whose precise nature is left unspecified).
Conversely, each multiplication operator m f on some L2(X ,μ) is normal, and is
self-adjoint if the function f ∈ L∞(X ,μ) is real-valued (μ-almost everywhere).

Theorem B.116. Any bounded self-adjoint (more generally, normal) operator on a
separable Hilbert space is unitarily equivalent to a multiplication operator.
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Proof. As in the proof of Theorem B.114, decompose H = ⊕i∈IHi, where each Hi
contains some take some separating vector ψi for a. Applying the proof of Theorem
B.112 to each Hi then yields unitary isomorphisms Hi∼= L2(σ(a),μi), with μi≡ μψi ,
from which, taking direct sums, we obtain a further unitary isomorphism

H ∼=
⊕
i∈I

L2(σ(a),μi). (B.363)

Now take the disjoint union X ≡'i∈Iσ(a), i.e., X = ∪i∈IXi, where Xi = σ(a)×{i},
endowed with the σ -finite measure μ = ∑i μi (so that if A⊂ X is given by A = ∪iAi
with Ai ⊂ Xi, we have μ(A) = ∑i μi(Ai)). This gives a second isomorphism⊕

i

L2(σ(a),μi)∼= L2(X ,μ), (B.364)

defined by mapping ϕ j ∈ L2(σ(a),μ j) to the same function on Xj, extended to X
by putting it zero on all other Xi, i �= j. This map is obviously unitary. By Theorem
B.112, the isomorphism (B.363) maps the operator a to a direct sum ⊕imidσ(a) of
multiplication operators, upon which the second isomorphism (B.364) maps this
direct sum to a (single) multiplication operator mq, where the function q : X → C is
defined by q(x, i) = x (in which (x, i) ∈ Xi ⊂ X , so that x ∈ σ(a)⊂ C). �

More generally, the operator f (a) on H, for some f ∈B(σ(a)), is first mapped to
⊕im fi , where fi is the image of f in L∞(σ(a),μi) in the obvious way, which in turn
is mapped to a multiplication operator m f̂ , where f̂ (x, i) = f (x), analogously to the

position operator q= îdσ(a) above. This leads to an isomorphism W ∗(a)∼= L∞(X ,μ),
which, by the same reasoning as in the proof of Corollary B.115, also induces an
isomorphism (B.331) of von Neumann algebras. See also Theorem C.140.

Finally, proposition B.114 may be generalized, to which end (and also as a result
of independent interest) we extend Corollary A.20 to the infinite-dimensional case:

Theorem B.117. Let H be separable and let A⊂ B(H) be an abelian von Neumann
algebra. Then A =W ∗(a) for some self-adjoint a∈ B(H), i.e., A is singly generated.

Proof. Let P(A) be the set of all projections in A, and let ψ ∈ H be separating for
A and hence cyclic for A′ (cf. Lemma B.111 and the proof of Proposition B.114).
The ensuing subset P(A)ψ = {eψ | e ∈ P(A)} may be uncountable, but since
any subspace of a separable metric space is separable, there is a countable subset
PN(A) = {en,n ∈N} of P(A) such that PN(A)ψ is dense in P(A)ψ , i.e., for any
e ∈P(A) there is a subsequence enk in PN(A) such that limk→∞ enkψ = eψ . But
since P(A) ⊂ A ⊆ A′ and A′ψ− = H, this is true not only on ψ but on a dense set
of vectors aψ , a ∈ A′, so that enk → e in the strong operator topology. Thus PN(A)
is strongly dense in PN(A), and by (B.329) and Theorem B.100 we have

PN(A)′′ = A. (B.365)

The self-adjoint operator that does the job is now given by von Neumann’s formula
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a = ∑
n

3−n(2en−1H). (B.366)

To see this, let C∗(en,n ∈ N)≡C∗(en)n be the C*-algebra generated by the projec-
tions en, so that by construction

PN(A)′′ =C∗(en)
′′
n . (B.367)

We will show that
C∗(a) =C∗(en)n, (B.368)

which combined with (B.320), (B.365) and (B.367) yields the desired conclusion:

A = PN(A)′′ =C∗(en)
′′
n =C∗(a)′′ =W ∗(a). (B.369)

The simplest argument for (B.368) uses the Gelfand isomorphism

C∗(en)n ∼=C(X) (B.370)

as commutative C*-algebras, cf. Theorem C.8, where the set of characters

X = {x : C∗(en)n → C | x(bc) = x(b)x(c),x(1H) = 1} (B.371)

of C∗(en)n is equipped with the weakest topology that makes all maps

b̂ : X → C; (B.372)
b̂(x) = x(b), b ∈C∗(en)n, (B.373)

continuous. This makes X a compact Hausdorff space, and the isomorphism (B.370)
is given by the Gelfand transform b �→ b̂. Defining sn ≡ 2en−1H , we have ‖sn‖= 1,
since snψ = ψ if ψ ∈ enH and snψ =−ψ if ψ ∈ (1H − en)H = (enH)⊥. The series
(B.366) therefore converges absolutely in B(H), and hence converges, to some limit
a ∈C∗(en)n. We claim that its Gelfand transform â ∈C(X) separates points of X , so
that by the Stone-Weierstrass Theorem B.51, the ∗-algebra it generates is dense in
C(X) (in its canonical sup-norm). Thus a likewise generates C∗(en)n, and the proof
of Theorem is ready up to the proof of the above claim, which we now give.

First, note that since by definition C∗(en)n is generated by the projections en, so
that by (B.371) (and the automatic continuity this implies, i.e., x ∈ C∗(en)

∗
n), each

x ∈ X is determined by its values on all en. Therefore, for each pair xi,x j ∈ X , i �= j,
there must be some n ∈ N for which xi(en) �= x j(en). Consequently, for each i �= j,
the set Ni j = {n ∈ N | xi(en) �= x j(en)} is not empty; let ni j = minNi j. Since for any
projection e the corresponding function ê can only take the values 0 or 1, each ŝn
must take the values ±1, so that, with â = ∑n 3−nŝn, we have

1
2 (â(xi)− â(x j)) =±3−ni j + ∑

n∈Ni j ,n>ni j

±3−n �= 0, (B.374)

since whatever the signs, the sum is always smaller than the first term. �
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B.17 Classification of maximal abelian ∗-algebras in B(H)

We now prove the following classification of maximal abelian ∗-algebras in B(H),
which forms the basis of the Kadison–Singer Conjecture discussed in §2.6 and §4.3.

Theorem B.118. If H is separable (and infinite-dimensional), and A ⊂ B(H) is a
maximal abelian ∗-algebra, then A is unitarily equivalent to one of the following:

1. L∞(0,1)⊂ B(L2(0,1)) (realized as multiplication operators);
2. �∞(N)⊂ B(�2(N)) (idem);
3. L∞(0,1)⊕ �∞(N)⊂ B(L2(0,1)⊕ �2(N)) (idem);
4. L∞(0,1)⊕Dn(C)⊂ B(L2(0,1)⊕Cn), for some n ∈ N (idem),

and these possibilities are (mutually) unitarily inequivalent .

The first claim means that there is a unitary operator u from H to, say, L2(0,1), such
that the map a �→ uau−1 from B(H) to B(L2(0,1)) restricts to uAu−1 = L∞(0,1), so
that A∼= L∞(0,1) as both C*-algebras and von Neumann algebras (and likewise for
the other possibilities). The last claim, then, means that there is no unitary map from,
say, L2(0,1) to �2(N) that similarly induces an isomorphism L∞(0,1)∼= �∞(N).

Proof. We begin with the easy part, which is the last clause. The key notion to
proving the claimed inequivalence is that of an atomic projection in a von Neumann
algebra M ⊂ B(H). If we partially order projections on H by (cf. Theorem 2.50 and
§C.21)

e≤ f iff eH ⊆ f H, (B.375)

we say that f is atomic if f �= 0, and 0 ≤ e ≤ f implies either e = 0 or e = f . This
property is preserved under unitary equivalence: if M ⊂ B(H) and N ⊂ B(H ′) and
N = uMu−1 for some unitary u : H → H ′ (again in the sense that a �→ uau−1 is an
isomorphism M

∼=→ N), then f is atomic in M iff u f u−1 is atomic in N. The reason is
that a �→ uau−1 induces an isomorphism of the pertinent posets of projections in M
and N, so that all order-theoretical notions are preserved under unitary equivalence.

In the case at hand, the projections are easy to classify:

1. The nonzero projections in L∞([0,1] are the characteristic functions on measur-
able subsets of [0,1] of positive Lebesgue measure. Since any such subset prop-
erly contains another such subset, there are no atomic projections in L∞([0,1].

2. The nonzero projections in �∞(N) are the characteristic functions on N, among
which there are plenty of atomic ones, namely the one-dimensional projections
δx, x ∈ N. Thus �∞(N) has countably many atomic projections. Moreover, each
other projection majorizes an atomic one.

3. Similarly, L∞(0,1)⊕ �∞(N) has has countably many atomic projections, as well
as uncountably many projections that do not majorize any atomic one.

4. Since the atomic projections Dn(C) are the one-dimensional ones (given by
diagonal matrices with n− 1 zero’s and exactly one entry equal to unity),
L∞(0,1)⊕Dn(C) has exactly n atomic projections, as well as uncountably many
projections that do not majorize any atomic one (namely the ones in L∞(0,1)).
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Any unitary equivalence between two of the entries in the list would have to preserve
this fine structure of projections, and hence cannot exist.

We now prove that the list in Theorem B.118 is exhaustive. According to The-
orem B.117, we only need to look at abelian von Neumann algebras A = W ∗(a),
where a is maximal. According to Theorem B.112 and its Corollary B.115 (whilst
noting that some unitary equivalence a∼= b induces a unitary equivalence W ∗(a)∼=
W ∗(b)), we may further restrict our attention to the case where a is the position op-
erator on L2(K,μ), where K = σ(a) ⊂ R is compact and μ is a regular probability
measure (here and in what follows, this is always meant with respect to the Borel
structure inherited from R⊃ K), with support equal to K, and hence

W ∗(a) = L∞(K,μ)⊂ B(L2(K,μ)). (B.376)

The final step is to further reduce the possibilities by exploiting equivalences.

Definition B.119. Two measure spaces (X ,Σ ,μ) and (X ′,Σ ′,μ ′) are:

• equivalent if there is a measurable bijection ϕ : X →X ′ with measurable inverse,
and the measures ϕ∗μ and μ ′ on X ′ are equivalent in the sense that ϕ∗μ(A′) = 0
iff μ ′(A′) = 0 for each A′ ∈ Σ ′. Here ϕ∗μ is the measure on (X ′,Σ ′) defined by

ϕ∗μ(A′) = μ(ϕ−1(A′)) (A′ ∈ Σ ′). (B.377)

• isomorphic if there is a measurable bijection ϕ : X → X ′ with measurable in-
verse, and ϕ∗μ(A′) = μ ′(A′) for each A′ ∈ Σ ′.

The ambiguity of the notation ϕ−1 in (B.377) is innocent: for general measurable
maps ϕ : X → X ′ the set ϕ−1(A′) can only denote the pre-image {x∈ X | ϕ(x)∈ A′},
whereas for invertible maps one might construe ϕ−1(A′) as {ϕ−1(x′) | x′ ∈ A′},
where ϕ−1 is the theoretic inverse ϕ−1 of ϕ . Of course, these sets duly coincide.

Lemma B.120. Let K and K′ be compact subsets of R, with Σ and Σ ′ the Borel
structures inherited from R⊃K and R⊃K′, respectively (often omitted in what fol-
lows). Let μ and μ ′ be probability measures on K and K′, respectively, and suppose
that the associated measure spaces (K,Σ ,μ) and (K′,Σ ′,μ ′) are isomorphic.

Then there exists a unitary operator

u : L2(K,μ)→ L2(K,μ ′)

such that
uL∞(K,μ)u−1 = L∞(K′,μ ′). (B.378)

Note that u does not intertwine the positions operators (B.332) on L2(K,μ) and
L2(K′,μ ′). These operators have already done their job in reducing the situation to
L2(K,μ), and from that point onwards (B.378) is exactly what we need.

Proof. All maps appearing below are assumed Borel. The change-of-variables for-
mula for a general (i.e., not necessarily invertible) map ϕ : K → K′ reads
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K′

d(ϕ∗μ)g =
∫

K
dμ g◦ϕ, (B.379)

where g : K′ →C. Under the assumption that ϕ is invertible, this can be rewritten as∫
K′

d(ϕ∗μ) f ◦ϕ−1 =
∫

K
dμ f , (B.380)

where f : K → C. If ϕ is also an isomorphism of measure spaces, this becomes∫
K′

dμ ′ f ◦ϕ−1 =
∫

K
dμ f . (B.381)

If ϕ∗μ and μ ′ are equivalent and hence mutually absolutely continuous, the
Radon–Nikodym derivative d(ϕ∗μ)/dμ ′ exists (as does its counterpart d(ϕ−1∗ μ ′)/dμ),
and using (B.137) and (B.380), one easily verifies that the operator

u : L2(K,μ)→ L2(K,μ ′); (B.382)

uψ =

√
d(ϕ∗μ)

dμ ′
ψ ◦ϕ−1, (B.383)

is isometric. Moreover, u is unitary, because it has an inverse, given by

u−1 : L2(K′,μ ′)→ L2(K,μ); (B.384)

u−1χ =

√
d(ϕ−1∗ μ ′)

dμ
χ ◦ϕ, (B.385)

We give these general expressions for later use; if ϕ∗μ = μ ′, they simplify to

uψ = ψ ◦ϕ−1; (B.386)
u−1χ = χ ◦ϕ. (B.387)

For f ∈ L∞(K,μ) we then have (cf. Proposition B.73)

um f u−1 = m f◦ϕ−1 . (B.388)

We already know that the map f �→m f injects L∞(K,μ) isometrically into B(L2(K,μ)),
and analogously for L∞(K′,μ ′). Furthermore, The map f �→ f ◦ϕ−1 gives an iso-
morphism L∞(K,μ)

∼=→ L∞(K′,μ ′): the property

‖ f ◦ϕ−1‖ess
∞ = ‖ f‖ess

∞ , (B.389)

which yields injectivity, may be checked either from (B.240) or from the assumed
isomorphism of measures (and hence equivalence of measures, which in fact suffices
for this purpose), whereras invertibility of ϕ gives surjectivity (since g ∈ L∞(K′,μ ′)
is the image of f = g◦ϕ ∈ L∞(K,μ ′). Eq. (B.378) follows. �
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The final step of the proof appeals to a deep and fundamental classification theorem
in measure theory, which goes back to Kuratowski in a form that applies to general
Polish (i.e., complete separable metric) spaces. This theorem implies:

Lemma B.121. Let (K,Σ ,μ) be a infinite probability space (in that infinitely many
different elements of Σ have positive measure), where K ⊂ R is compact and Σ is
the σ -algebra inherited from the Borel structure on R. Then (K,Σ ,μ) is isomorphic
to exactly one of the following possibilities (called standard measure spaces):

1. K = [0,1] with μ equal to Lebesgue measure μL;
2. K = N′ ≡ {2−n,n ∈ N} ∪ {1}, equipped with any probability measure μ ′ for

which μ ′({2−n})> 0 for each n ∈ N and μ ′({1}) = 0;
3. K = [0,1] with μ = tμL +(1− t)μ ′, for some 0 < t < 1;
4. K = [0,1] with μ = tμL +(1− t)μn, for some n ∈ N and 0 < t < 1,

where μn is an arbitrary strictly nonzero probability measure on the n-point set

n′ ≡ {1/n, . . . ,(n−1)/n,1}. (B.390)

Here we have stated the result in terms of probability measures μ on compact spaces
K ⊆ [0,1]; this is convenient in the context of our proof. To understand the last two
cases, for general measure spaces (X ,Σ ,μ) we say that A ∈ Σ is an atom if for any
B⊂ A we have either μ(B) = 0 or μ(A\B) = 0 (but not both; this implies μ(A)> 0,
whence an equivalent definition of an atom as a set A∈ Σ having positive measure as
well as the property that if some measurable subset B⊂A has measure μ(B)< μ(A),
then μ(B) = 0). In our case at hand (K,μ), each atom A contains a point x ∈ K such
that μ(A) = μ({x}) and μ(A\{x}) = 0, so that modulo null sets we may identify
each atom A with the measure-carrying point x it contains. Moreover, K can contain
at most a countable set A = {xn}n of such points xn. The formulae

μ = μa +μc; (B.391)
μa(A) = μ(A∩A ); (B.392)
μc(A) = μ(A\(A∩A )), (B.393)

then give the canonical decomposition of μ into an atomic part μa and a continuous
part μc. This, then, is the sense in which the last two cases of Lemma B.121 are
meant. Note that characteristic functions 1A on atoms A⊂K yield atomic projections
in L∞(K,μ), linking the two notions of atomicity that play a role in this proof.

The first entry of this lemma yields the first entry in the list in the theorem. To
obtain the others, we need a few more unitary equivalences. For the second, define

u : L2(N′,μ ′)→ �2(N); (B.394)

uψ(n) =
√

μ ′(n)ψ(2−n), (B.395)

and uψ(1) irrelevant. This operator is unitary and, just like in (B.378), it intertwines

uL∞(N′,μ ′)u−1 = �∞(N). (B.396)
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Note that (B.394) is a special case of (B.383)). The third and fourth cases require
the following construction: if A ⊂K is the set of atoms in (K,Σ ,μ), we decompose

K = (K\A )
⊔

A , (B.397)

as a disjoint union. For any measure μ this induces an orthogonal decomposition

L2(K,μ) = L2(K\A ,μ)⊕L2(A ,μ); (B.398)
L2(K\A ,μ) = eL2(K,μ); (B.399)

L2(A ,μ) = (1L2(K,μ)− e)L2(K,μ), (B.400)

where e = 1K\A and 1L2(K,μ)− e = 1A are projections. Using (B.391), this gives

L2(K\A ,μ) = L2(K,μc); (B.401)
L2(A ,μ) = L2(A ,μa), (B.402)

so that at the end of the day we obtain

L2(K,μ) = L2(K,μc)⊕L2(A ,μa). (B.403)

This in turn induces the decomposition

L∞(K,μ) = L∞(K,μc)⊕L∞(A ,μa); (B.404)
L∞(K,μc) = eL∞(K,μ) = eL∞(K,μ)e; (B.405)

L∞(A ,μa) = (1L2(K,μ)− e)L∞(K,μ)

= (1L2(K,μ)− e)L∞(K,μ)(1L2(K,μ)− e). (B.406)

Combined with (B.396), this shows that the third entry of the lemma yields the third
entry of the theorem. To obtain the fourth and last, we need the unitary map

u : L2(n′,μn)→ Cn; (B.407)

uψm =
√

μn(m/n)ψ(m/n) (m = 1, . . . ,n), (B.408)

which delivers the unitary equivalence

uL∞(n′,μn)u−1 = Dn(C). (B.409)

Short of a proof of Lemma B.121, we have (at last!) proved Theorem B.118. �
Thus one of the remarkable novelties of infinite-dimensional Hilbert space is that
even in the separable case, uniqueness of maximal abelian ∗-algebras is lost.

There is a different proof of Theorem B.118 that does not rely on Kuratowski’s
Lemma B.121, but instead is based on properties of the projection lattice P(A) in A.
In the following outline of this proof, A is a maximal abelian ∗-subalgebra of B(H),
where H is a separable Hilbert space. Hence A is a von Neumann algebra, which is
generated by its projections. This leaves three mutually exclusive possibilities:
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1. A has no minimal projections;
2. A is generated by its minimal projections;
3. A has minimal projections that do not generate A.

The following lemma, whose proof we merely sketch, replaces Lemma B.121.

Lemma B.122. If H is separable and A ⊂ B(H), then P(A) contains a maximal
totally ordered set T (A) that generates A (as a von Neumann algebra).

Proof. This is proved in two steps. First, P(A) contains a countable subsets Pc(A)
that generates A. Indeed, according to Lemma B.111 and Proposition B.114 (and
maximality of A), H contains a unit vector ψ that is both cyclic and separating for
A. Since H is separable, P(A)ψ ⊂H has a countable dense subset, which is Pc(A).

The second step is trickier, namely to construct a maximal totally ordered set
T (A) from Pc(A). This is done inductively. We number Pc(A) = {e1,e2, . . .}.
Starting from P1 = {0H ,e1,1H}, we now construct finite totally ordered sets Pn of
projections such that Pn ⊂Pn+1 and en lies in the linear span of Pn. Let

Pn = {e′0 = 0H ,e′1, . . . ,e
′
rn−1,e

′
rn = 1H}, (B.410)

where e′1 < · · ·< e′rn (where e < f means e≤ f and e �= f ), and define

Pn+1 = Pn∪{e′i +(e′i+1− e′i)en+1, i = 0, . . . ,rn−1}. (B.411)

Given the total ordering in Pn, it is easy to see that each e′i + (e′i+1− e′i)en+1 is
indeed a projection, and, by the same token, that Pn+1 meets its specification. Let

P∞ = ∪nPn, (B.412)

which remains totally ordered but typically is infinite, and take the poset P of
all totally ordered subsets of P(A) that contain P∞, ordered by inclusion. Zorn’s
Lemma then yields a maximal element of P , and this is our T (A): this maximal
element is itself totally ordered, and since its linear span contains each projection
en ∈Pc(A), the projections in T (A) generate A (since the en already do so). �

The above trichotomy then leaves the following possibilities:

1. Let ψ ∈ H be a unit vector that is cyclic and separating for A. Then

α : T (A) → [0,1]; (B.413)
e �→ 〈ψ,eψ〉, (B.414)

is an isomorphism of posets. It is easy to show that the linear span of the set of
all vectors α−1(t)ψ , t ∈ [0,1], is dense in H, and that the map

uα−1(t)ψ = 1(0,t) (B.415)

extends (by linearity and continuity) to a unitary isomorphism
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u : H → L2(0,1), (B.416)

which intertwines A with L∞(0,1) in the sense that

uAu−1 = L∞(0,1). (B.417)

2. This case relies on a general fact about von Neumann algebras M: if e ∈P(M)
is minimal, then pMp ∼= C. This implies that if M = A is abelian, then for each
a ∈ A one has ea = λa for some λ ∈ C. It follows that:

• Each minimal projection ei in P(A) is one-dimensional.
• Different minimal projections are orthogonal.
• 1H = ∑i ei (strongly), where the sum is over all minimal projections in A.

Since H is separable, we may assume i ∈ N, so that we obtain a countable basis
(υi) of H in which ei = |υi〉〈υi|, and hence have a unitary isomorphism

u : H → �2(N); (B.418)
υi �→ δi, (B.419)

i.e., u is defined by linear and continuous extension of (B.419). Clearly,

uAu−1 = �∞(N). (B.420)

3. The first part of the analysis in the previous item still applies, but this time, the
sum e = ∑i ei over all minimal projections in A is not equal to 1H . If there are
n ∈ N such projections, we obtain

eH ∼= Cn, (B.421)

and otherwise
eH ∼= �2(N). (B.422)

We combine these in the notation

eH ∼= �2(κ), (B.423)

where κ = n, in which case �2(κ) = Cn and �∞(κ) = Dn(C), or κ = N. Further-
more, we have

(1H − e)H ∼= L2(0,1), (B.424)

as in the first item. By construction, the corresponding unitary

u : H → �2(κ)⊕L2(0,1) (B.425)

then satisfies
uAu−1 = �∞(κ)⊕L∞(0,1). (B.426)

This finishes the alternative proof (sketch) of Theorem B.118.
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B.18 Compact operators

The spectral theorem (in whatever version) on infinite-dimensional Hilbert spaces
considerably simplifies for a class of well-behaved operators called compact.

Definition B.123. A linear map a : V →W between Banach spaces V,W is called
compact if for some (and hence all) d > 0 the image a(V≤d) of the closed d-ball

V≤d = {v ∈V : ‖v‖ ≤ d} (B.427)

is pre-compact in W (i.e., its closure a(V≤d)
− is compact), or, equivalently, if the

image (avn) of any bounded sequence (vn) in V has a convergent subsequence.

Before turning to Hilbert spaces, we mention two facts of general interest.

Proposition B.124. A compact operator is bounded.

Proof. If not, then for any n ∈ N there is some vn ∈ V≤1 for which ‖avn‖ ≥ n, so
that (avn) cannot possibly have a convergent subsequence. �

Proposition B.125. A compact operator a : V →W maps weakly convergent se-
quences in V to norm-convergent sequences in W.

Proof. Let (vn) be a sequence in V that weakly converges to v. It is easy to show
that if a : V →W is (norm) continuous, then it maps weakly convergent sequences
in V to weakly convergent sequences in W . Therefore, the sequence (avn) weakly
converges to av. If (avn) failed to converge to av in norm, then it would have a
subsequence (avnk) such that for some ε > 0 and all sufficiently large k one had

‖avnk −av‖ ≥ ε. (B.428)

However, (vn), being weakly convergent, is bounded by Lemma B.126 below, and
hence also its subsequence (vnk) must be bounded. Since a is compact, (avnk) has
some norm-convergent subsequence, which necessarily converges to av (since we
know this is the weak limit of the ambient sequence (avn) and hence also of any of
its subsequences, and if a norm-limit exists, the corresponding weak limit must be
the same). But for large enough k this convergence flatly contradicts (B.428). �

Lemma B.126. A weakly convergent sequence in a Banach space is bounded.

Proof. Since vn → v weakly, the sequence (ϕ(vn)) in C converges to ϕ(v) for each
ϕ ∈V ∗, so that supn{|ϕ(vn)|}<∞. Using the notation (B.129), this may be rewritten
as supn{|v̂n(ϕ)|} < ∞. Using Theorem B.78 (with V � V ∗∗, W = C, and X = N),
this implies supn{‖v̂n‖}< ∞, and hence supn{‖vn‖}< ∞ by Proposition B.44. �

Definition B.123 simplifies if V =W = H is a Hilbert space, since we have:

Proposition B.127. If the image a(H≤1) ⊂ H of a linear map a : H → H is pre-
compact, then this image is in fact compact (and hence a is compact).
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For the proof, call a Banach space V reflexive if V ∗∗ ∼=V (i.e. through the canonical
injection v �→ v̂, cf. Proposition B.44). Hilbert spaces H are reflexive, since H∗ ∼= H
by Theorem B.66. Proposition B.127 then follows from yet another lemma:

Lemma B.128. If V is a reflexive Banach space and a : V →W is compact, then
a(V≤1) is compact.

Proof. The proof relies on a corollary of the Banach–Alaoglu Theorem B.48, ac-
cording to which V≤1 is weakly compact if V is reflexive (indeed, by applying
Banach–Alaoglu to V ∗ instead of V , it follows that the unit ball in V ∗∗ is compact in
its weak∗-topology; if, in addition, V is reflexive, then the inverse of the canonical
injection V ↪→V ∗∗ maps the weak∗-topology on V ∗∗ to the weak topology on V ).

So let a :V →W be compact, and let wn be a sequence in a(V≤1), say wn = avn for
some sequence (vn) in V≤1. Then since V≤1 is weakly compact, vn has a weakly con-
vergent subsequence vnk in V≤1, say limk→∞ vnk = v weakly. By Proposition B.125,
limk→∞ avnk = av in norm. In other words, (avn) has a norm-convergent subse-
quence, namely (avnk), with limit in a(V≤1). Hence a(V≤1) is compact. �

In view of Proposition B.127, we may as well take the following starting point:

Definition B.129. If H is a Hilbert space, a linear map a : H→H is called compact

when the image a(H≤1) of the closed unit ball in H is compact.

We write B0(H) for the set of all compact operators on H.

Theorem B.130. The compact operators B0(H) form a C*-algebra in B(H) in the
operations inherited from B(H). Furthermore, B0(H) is a two-sided ideal in B(H).

Unfolding this theorem, the claim consists of the following parts:

1. B0(H)⊂ B(H), i.e., a compact operator is automatically bounded.
2. B0(H) is a vector space.
3. If a,b ∈ B0(H), then ab ∈ B0(H).
4. If (an) is a convergent sequence in B(H) with limit a, i.e., ‖an−a‖→ 0 for some

a ∈ B(H), and if each an ∈ B0(H), then a ∈ B0(H).
5. If a ∈ B0(H), then a∗ ∈ B0(H).
6. If a ∈ B0(H) and b ∈ B(H), then ab ∈ B0(H) and ba ∈ B0(H).

Proof. The first clause is Proposition B.124, and the second and sixth (which im-
plies the third) are almost trivial. For the fourth, we use the following criterion for
pre-compactness (in a metric space): K ⊂H is pre-compact iff for each ε > 0 it can
be covered by a finite number of open ε-balls Bε(χi) = {ψ ∈ H : ‖ψ − χi‖ < ε},
where i= 1, . . . ,m<∞ (i.e., all balls have the same radius ε). Given that ‖an−a‖→
0, for each ε > 0 there is n such that ‖an−a‖ < ε/2. Since an(H≤1) is compact, it
has a finite cover with ε/2-balls; in other words, for each ψ ∈H≤1 there is an i such
that ‖anψ−χi‖< ε/2. Hence, as ‖ψ‖ ≤ 1, we may estimate

‖aψ−χi‖ ≤ ‖(an−a)ψ‖+‖anψ−χi‖ ≤ ‖an−a‖‖ψ‖+ 1
2ε < 1

2ε+ 1
2ε = ε.
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So a(H≤1) has a finite cover with ε-balls and hence is pre-compact. This finishes
the proof from Definition B.123; from Definition B.129, invoke Proposition B.127.

To prove the fifth clause, we need a result of independent interest. We say that a
linear map a : H → H is (or has) finite rank if its image is finite-dimensional.

Proposition B.131. A bounded operator a ∈ B(H) is compact iff it is a norm-limit
of finite-rank operators.

Proof. Since it is easy to see that finite-rank operators are compact, the “⇐” direc-
tion follows from clause 4 of Theorem B.130. The difficult direction is the opposite
one, which we prove by contradiction (as a technical note, our proof assumes that
H is separable, but the claim also holds in the non-separable case, in which it can be
shown that ran(a) is separable whenever a is compact).

Pick a basis (υi) of H (or, in the non-separable case, of ran(a)), and define en
to be the projection onto the linear span of the first n basis vectors. Given some
a ∈ B0(H), define an = ena. We show that ‖an−a‖→ 0. If not, then

∃ε > 0∀N ∃n > N : ‖an−a‖ ≥ ε, (B.429)

which in turn implies that for any δ > 0 there are unit vectors ψn for which we have
‖(an−a)ψn‖ ≥ ε−δ . Take δ = ε/2, whence

∃ε > 0∀N ∃n > N : ‖(an−a)ψn‖ ≥ ε/2. (B.430)

Now a is compact, so that, noting that ψn ∈ H≤1, the sequence (aψn) has a conver-
gent subsequence, say with limit ϕ . We may then write

(an−a)ψn = (en−1H)(aψn−ϕ+ϕ), (B.431)

so that, for each ψn,

‖(an−a)ψn‖ ≤ ‖(en−1H)‖‖aψn−ϕ‖+‖(en−1H)ϕ‖. (B.432)

If we now restrict the ψn so as to lie in the convergent subsequence in question, then
the right-hand side vanishes as n→ ∞:

• Since ‖en‖= ‖1H‖= 1 we have ‖(en−1H)‖ ≤ 2;
• By construction we have limn ‖aψn−ϕ‖= 0;
• For any basis of H, and any ϕ ∈ H, we have limn ‖(en− 1H)ϕ‖ = 0 (although
‖en−1H‖ fails to converge to anything if H is infinite-dimensional!).

However, this contradicts (B.430). �.

We use the notation of this proof to establish the fifth clause of Theorem B.130.
By the sixth, the operator a∗n = a∗en is compact, since any finite-rank operator such
as en is compact and a∗ is bounded. Therefore, ‖a∗n−a∗‖= ‖an−a‖→ 0, so a∗n→ a∗
and hence a∗ ∈ B0(H) by clause 4. �
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B.19 Spectral theory for self-adjoint compact operators

If only to establish our notation, let us begin by recalling Theorem A.10:

Theorem B.132. Let dim(H) < ∞ and let a : H → H be a self-adjoint operator.
Then the eigenvalues λ of a are real (collected in the point spectrum σp(a) ⊂ R),
the eigenspaces Hλ corresponding to different eigenvalues λ are orthogonal, and
we have the spectral resolutions

a = ∑
λ∈σp(a)

λ · eλ ; (B.433)

1H = ∑
λ∈σp(a)

eλ , (B.434)

where eλ is the projection onto the eigenspace

Hλ = {ψ ∈ H | aψ = λψ}. (B.435)

This theorem is equivalent to the following alternative version:

Theorem B.133. Let dim(H)< ∞ and let a : H →H be a self-adjoint operator (i.e.,
a∗ = a). Then a is diagonalizable, in the sense that H has a basis (υi) consisting of
eigenvectors of a. Furthermore, the eigenvalues λi of a are real.

If a is diagonalizable, using the familiar notation eυi = |υi〉〈υi|, cf. (2.7), we write

aυi = λiυi; (B.436)
a = ∑

i∈I
λieυi . (B.437)

To move from Theorem B.132 to Theorem B.133, pick some basis (υ(λ )
k ) of each

eigenspace Hλ . By Proposition A.8 we then have

eλ =
dim(Hλ )

∑
k=1

|υ(λ )
k 〉〈υ(λ )

k |. (B.438)

The totality of all υ(λ )
k , where λ ∈ σp(a) and k = 1, . . . ,dim(Hλ ) is our basis:

relabeling this set as (υi), eq. (B.434) becomes 1H = ∑i |υi〉〈υi|, or ψ = ∑i ciψi
with ci = 〈υi,ψ〉 for each ψ ∈ H, which according to Theorem B.61.1 shows that
(υi) is a basis of H (and hence i = 1, . . . ,dim(H)). Furthermore, (B.433) yields
aυ(λ )

k = λυ(λ )
k , or (B.436), so that each υi is an eigenvector of a.

Conversely, for each λ ∈ σp(a), assemble all eigenvalues λi that are equal to λ
and relabel those as υ(λ )

k . This yields eλ through (B.438), and the above argument
may be rerun in the opposite direction: the basis property of the (υi) implies (B.434),
and the eigenvector property (B.436) yields (B.434) by verifying it on each basis
vector υi ≡ υ(λ )

k , recalling that by construction, λi = λ .
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We now adapt these results to infinite dimension. We still say that an operator
a : H → H is diagonalizable if H has a basis (υi) consisting of eigenvectors of a.

Proposition B.134. Let H ∼= �2(I) for some set I (i.e., H has a basis (υi)i∈I ). Then
some collection (λi)i∈I of complex numbers occurs as the set of eigenvalues of some
bounded operator a ∈ B(H) iff (λi)i∈I is bounded, i.e., sup{|λi|, i ∈ I}< ∞.

Defining a function λ̃ : I → C by λ̃ (i) = λi, we may express this as λ̃ ∈ �∞(I).

Proof. If a ∈ B(H) is diagonal in some basis (υi), with eigenvalues (λi), then

|λi|= ‖λiυi‖= ‖aυi‖ ≤ ‖a‖‖υi‖= ‖a‖, (B.439)

for each i ∈ I, whence the eigenvalues are bounded. Conversely, if they are, so that
‖λ̃‖∞ <∞, take a basis (υi)i∈I of H, write ψ =∑i ciυi with ∑i |ci|2 <∞, cf. Theorem
B.61 and define aψ = ∑iλiciυi. Since

∑
i
|λici|2 ≤ ‖λ̃‖2

∞ ∑
i
|ci|2 = ‖λ̃‖2

∞‖ψ‖2 < ∞, (B.440)

we have aψ ∈H by Lemma B.59. These estimates also prove that ‖aψ‖≤‖λ̃‖∞‖ψ‖,
so that a is bounded, with ‖a‖ ≤ ‖λ̃‖∞ (in fact, equality holds here). �
This characterization of bounded diagonalizable operators by a property of their
eigenvalues may be considerably sharpened for self-adjoint compact operators.

Theorem B.135. Let dim(H) = ∞, and let a ∈ B(H)sa. Then a is compact iff it is
diagonalizable with λ̃ ∈ �0(I), in which case the sum in (B.437) converges in norm.

We recall that some function f : I → C is in �0(I) if for each ε > 0 there is a finite
subset Iε ⊂ I such that | f (i)|< ε for all i /∈ Iε . If I = N (and in fact the proof below
will produce this labeling of the basis), then the condition λ̃ ∈ �0(N) just means that

lim
n→∞

λn = 0. (B.441)

Before proving this, we state the infinite-dimensional analogue of Theorem B.132:

Theorem B.136. Let dim(H) = ∞ and let a be some bounded self-adjoint operator.
Then a is compact iff it has the properties stated in Theorem B.132, amended by

the following clarifications and addenda (cf. Definition B.6, where X = σp(a)):

1. The sum in (B.433) converges in norm;
2. The sum in (B.434) converges strongly, i.e., for each ψ ∈ H we have

ψ = ∑
λ∈σp(a)

eλψ; (B.442)

3. If λ ∈ σ(a) and λ �= 0, then λ ∈ σp(a) and dim(Hλ )< ∞;
4. Always 0 ∈ σ(a), and σp(a)⊂ R has 0 as its only accumulation point.

The equivalence between Theorems B.135 and B.136 is a bit more subtle than in
finite dimension, but the key to the proof of both is the following lemma.
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Lemma B.137. A compact self-adjoint operator a has an eigenvalue λ =±‖a‖.
Note that by definition of the operator norm, one always has |λ | ≤ ‖a‖, whether or
not a is compact, but the point about compact self-adjoint operators is firstly that
they have an eigenvalue at all, and secondly that the above equality is saturated.

Proof. We use the fact that the norm ψ �→ ‖ψ‖ is continuous on H, see (B.5), so
that it attains a maximum on the compact set a(H≤1). Assume that this maximum is
attained at aψ1, with ‖ψ1‖ = 1. By definition of the operator norm, this maximum
must be ‖a‖, so that ‖a‖2 = ‖aψ1‖2. Cauchy–Schwarz and a∗ = a then yield

‖a‖2 = 〈aψ1,aψ1〉= 〈ψ1,a2ψ1〉 ≤ ‖ψ1‖‖a2ψ1‖ ≤ ‖a2‖= ‖a‖2, (B.443)

where we have used (C.2). In the Cauchy–Schwarz inequality (A.1) one has equality
iff either v= 0 or w= zv for some z∈C, so that we must have a2ψ1 = zψ1, with |z|=
‖a‖2. Moreover, z ∈ R, as eigenvalues must be real (which trivially follows from
a∗ = a, one does not even need Theorem B.93 here), so a2ψ1 = λ 2ψ1, with either
λ = ‖a‖ or λ =−‖a‖. If aψ1 = λψ1, we are ready. If not, then χ1 = aψ1−λψ1 �= 0,
in which case aχ1 = a2ψ1−λaψ1 = λ 2ψ1−λaψ1 =−λχ1. �

Corollary B.138. A compact self-adjoint operator is diagonalizable.

Proof. Using the notation of the above proof, we call the (normalized) eigenvec-
tor in question υ1 (so either υ1 = ψ1 or υ1 = χ1). Note that if 〈ϕ,υ1〉 = 0, then
〈aϕ,υ1〉 = 〈ϕ,a∗υ1〉 = 〈ϕ,aυ1〉 = ±λ 〈ϕ,υ1〉 = 0, so that a maps the orthogonal
complement υ⊥1 = {ϕ ∈ H | 〈υ1,ϕ〉= 0} of υ1 into itself. This implies that a com-
mutes with the projection e1 onto υ⊥1 , i.e., e1a = ae1 and hence also e1a = e1ae1, in
which the right-hand side is essentially the restriction of a to υ⊥1 = e1H.

By Theorem B.130.6, the operator e1a is compact, like a itself, and it is also
self-adjoint. If e1a = 0 we are ready, since υ1 plus any basis of e1H is a basis of
H that diagonalizes a. If not, we apply Lemma B.137 to the operator e1a, finding
an eigenvector υ2 with nonzero eigenvalue λ2. A simple computation shows that
e1υ2 = υ2, so that υ2 ∈ e1H, from which we infer, in turn, that aυ2 = λ2υ2.

So we have found two basis vectors (υ1,υ2) of H that are eigenvectors of a.
The above procedure may then be iterated: we define e2 as the projection onto the
orthogonal complement of υ1 and υ2, and consider e2a. If e2a = 0 we are ready; if
not, we find a third eigenvector of e2a and hence of a in e2H, et cetera.

• If H ∼= Cn is finite-dimensional, this procedure terminates after n steps, leaving
a basis {υ1, . . . ,υn} of H that by construction consists of eigenvectors of a.

• If H is separable, the iteration procedure may be continued countably many
times, leading to an ordered countable set B = (υ1,υ2, . . .) of orthogonal unit
vectors that are eigenvectors of a. By construction we have |λN | ≥ |λN+1| for all
N ∈ N, and hence there are two scenarios: either eNa = 0 for all N > N0 ∈ N
(with eNa �= 0 if N ≤ N0), in which case a = 0 on (υ1, . . . ,υN0)

⊥, or all |λN |> 0.
• In general, consider the set of all orthonormal sets in H that consist of eigenvec-

tors of a. This set is nonempty by the argument above, and is inductively ordered
by inclusion, so by Zorn’s Lemma it must have a maximal element B.
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By Theorem B.61.5, the set B is a basis of H iff B⊥ = {0}. To show that this is the
case, suppose B⊥ is a nonzero Hilbert space. Define f as the projection on H with
image B⊥ and consider the self-adjoint compact operator f a. If f a = 0, there is at
least one eigenvector of a in B⊥ = f H (namely, with eigenvalue zero), which is a
contradiction. If f a �= 0, then a has an eigenvector by Lemma (B.137), and again a
contradiction has been found: for in all three cases, by construction all eigenvectors
were already contained in B⊥⊥ = span(υ1, . . .)

−. �.

Even if H is non-separable, the image of a compact operator a must nonetheless
be separable. Therefore, the non-zero eigenvalues of a form a countable set, and
the eigenvalue zero (which, by the same token, must occur in the non-separable
case) has some uncountable multiplicity (in sharp contrast to which, each nonzero
eigenvalue has finite multiplicity). Also in the separable case, the only eigenvalue
that may have infinite multiplicity is zero (though in the separable case it does not
necessarily occur). Theorem B.135 is now a consequence of the following lemma:

Lemma B.139. A diagonalizable operator a is compact iff λ̃ ∈ �0(I).

Proof. In view of the proof and subsequent comment above, we may as well as-
sume that I = N. For any ψ ∈ H, the sum in (B.214) converges, so we must have
limn〈υn,ψ〉= 0, or, in other words, υn → 0 weakly. If a ∈ B0(H), then aυn → 0 in
norm by Proposition B.125, and hence λn → 0, i.e., λ̃ ∈ �0(N). Conversely, if this
holds, then for each ε > 0, the set Iε = {n ∈N : |λn| ≥ ε} is finite. This implies that
the operator an = ∑m∈I1/n

λmeυm has finite rank. Since |λm|< ε whenever m /∈ I1/n,

‖(an−a)ψ‖2 = ‖ ∑
m/∈I1/n

λmeυmψ‖2 ≤ ∑
m/∈I1/n

|λm|2|〈υm,ψ〉|2 ≤ ε2‖ψ‖2, (B.444)

where in the last step we also used (B.213). Hence an → a in norm, so that a is
compact by Proposition B.131. �

To finish the proof of Theorem B.135, we show that the sum in (B.437), which for
general bounded diagonalizable operators converges strongly, in fact converges in
norm. To put this in perspective, eq. (B.437) with a = 1H reads

1H = ∑
i∈I

eυi . (B.445)

If I is infinite, this sum cannot converge uniformly: e.g., if we take I = N, then

lim
N→∞

∥∥∥∥∥1H −
N

∑
n=1

eυi

∥∥∥∥∥= lim
N→∞

sup

{∥∥∥∥∥ψ− N

∑
n=1
〈υn,ψ〉υn

∥∥∥∥∥ ,ψ ∈ H≤1

}
(B.446)

cannot be zero, as shown by taking ψ orthogonal to all υ1, . . . ,υN . However, by
Theorem B.61.1 the sum does converge strongly (i.e., applied to each fixed ψ).
This seemingly special case even yields strong convergence of the sum in (B.437)
for general diagonalizable bounded operators a, for by continuity of a we have:
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aψ = a∑
i∈I
〈υi,ψ〉υi = ∑

i∈I
〈υi,ψ〉aυi = ∑

i∈I
λi〈υi,ψ〉υi = ∑

i∈I
λieυiψ. (B.447)

If a is compact, strong convergence of (B.437) may be strengthened to norm conver-
gence. The argument is analogous to the proof of Lemma B.139, but for complete-
ness and contrast we now present it for general I. Since λ̃ ∈ �0(I), for given ε > 0
there is a finite set Iε ⊂ I for which |λi|< ε for all i /∈ Iε . For fixed ψ ∈ H, we have∥∥∥∥∥(a−∑

i∈Iε

λieυi)ψ

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i/∈Iε

λieυiψ

∥∥∥∥∥
2

< ε2 ∑
i/∈Iε

|〈υi,ψ〉|2 ≤ ε2‖ψ‖2, (B.448)

so that ‖a−∑i∈Iε λieυi‖< ε . By Definition B.6, eq. (B.437) holds in norm. �
This analysis by no means contradicts Corollary B.104, including (B.327): ap-

plied to compact operators, exactly one of the subsets Ai0 ⊂σ(a) contains σ(a)∩U0,
where U0 is some neighborhood of 0 ∈ σ(a), so that the corresponding projection
eAi0

is infinite-dimensional and all the other eAi are finite-dimensional. Thus the sum
∑i eAi in (B.327) takes a rather different form from either the sum ∑i eυi in (B.445)
or the sum ∑λ eλ in (B.434); see also the end of this section.

We now prove Theorem B.136. First, as soon as dim(Hλ ) = ∞ for some λ �= 0,
then λ̃ /∈ �0(I). Therefore, dim(Hλ ) < ∞ by Theorem B.135. In fact, is is easy to
show directly that dim(ker(a− λ )) < ∞ for any a ∈ B0(H) and λ �= 0: since a is
bounded and hence ker(a−λ ) is closed, the latter is a Hilbert space in its own right,
so if it were infinite-dimensional, any basis (un) of it would have the property that
un → 0 weakly and hence aun → 0 in norm (cf. the proof of the above lemma). But
aun = λun, so that (aun) cannot converge in norm as soon as λ �= 0.

Second, take 0 �= λ ∈ σ(a). According to Theorem B.93, in order to prove that
λ ∈ σp(a), it suffices to show that ran(a−λ ) is closed. We may assume that λ �= λi
for all i ∈ I (for otherwise, trivially λ ∈ σp(a)), which implies ker(a−λ ) = {0}.

Let ψn = (a−λ )ϕn ∈ ran(a−λ ), with ϕn �= 0 for all n, and suppose ψn →ψ . We
prove that (ϕn) is bounded. If not, then ‖ϕn‖ → ∞, but since (ϕ ′n) is bounded, with
ϕ ′n = ϕn/‖ϕn‖, and (ψn) converges, we have (a−λ )ϕ ′n = ψn/‖ϕn‖ → 0. Now a is
compact, so (aϕ ′n) has a convergent subsequence, which together with the previous
result implies that (ϕ ′n) itself must have a convergent subsequence (as λ �= 0), say
to ϕ ′. Continuity of a gives (a−λ )ϕ ′ = 0, hence ϕ ′n ∈ ker(a−λ ) = {0}. But this
is impossible, as ‖ϕ ′n‖= 1 for all n. Thus knowing that (ϕn) is bounded, once again
using compactness of a, we infer that (aϕn) has a convergent subsequence. Now

ϕn = λ−1(aϕn− (a−λ )ϕn) = λ−1(aϕn−ψn), (B.449)

and since (ψn) converges by assumption, this implies that (ϕn) has a convergent
subsequence, say with limit ϕ . Continuity of a then implies that

ψ = (a−λ )ϕ ∈ ran(a−λ ), (B.450)

and hence ran(a−λ ) is closed. Therefore, λ ∈ σp(a).
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To show that 0 ∈ σ(a), assume that a were invertible (which is to say that
0 ∈ ρ(a)). Then its inverse a−1 would be bounded, so that a−1a = 1H ∈ B0(H)
by Theorem B.130. But this is impossible in infinite dimension: a similar argument
to the one below (B.445) shows that 1H cannot possibly be approximated by finite-
rank operators. The last claim of Theorem B.136 is the same as λ̃ ∈ �0(I). �

Here is a nice example of compact operators, also justifying the notation B0(H).

Corollary B.140. Let H = �2(N) and for f ∈ �∞(N), define the multiplication oper-
ator m f as usual, i.e., m fψ = fψ . Then m f is compact iff f ∈ �0(N).

Proof. This follows from Theorem B.135, where the label set is I = N, the basis
(υi)i∈I is (δn)n∈N, where δn(m) = δnm as usual, m ∈ N, and the eigenvalues are

λn = f (n), (B.451)

since obviously m f δn = fδn = f (n)δn. We already know from (B.276) that σ(m f ) =
ran( f )−, which for f ∈ �0(N) equals ran( f ) if 0 ∈ ran( f ), and

ran( f )− = ran( f )∪{0}, (B.452)

otherwise. In the first case, σ(m f ) = σp(m f ) = ran( f ), so σc(m f ) = /0, whereas
in the second case we have σp(m f ) = ran( f ) and σc(m f ) = {0}. This also shows
that in clause 4 of Theorem B.136, both possibilities 0 ∈ σp(a) and 0 ∈ σc(a) may
occur, depending on a. Finally, the condition λ̃ ∈ �0(I), which in the example a=m f
reduces to (B.441), is just a restatement of the condition f ∈ �0(N). �

In the continuous case, for H = L2(X), say for some connected open set X ⊂ Rn

with Lebesgue measure, the multiplication operator m f defined by a function f ∈
C0(X) is never compact, cf. (B.276); it is the very opposite of a compact operator!

To close, in our (traditional) proof of Theorem B.136 we did not use the pow-
erful spectral Theorem B.94. If dim(H) < ∞, Theorem B.132 indeed follows from
Theorem B.94: if, for λ ∈ R, we define 1{λ} ≡ δλ : R→ C by δλ (x) = δλx, then

idσp(a) = ∑
λ∈σp(a)

λ ·δλ ; (B.453)

1σp(a) = ∑
λ∈σp(a)

δλ . (B.454)

Now define eλ = δλ (a). Then (B.290) - (B.291) give e2
λ = e∗λ = eλ , so that eλ is

a projection. Furthermore, since idσp(a) · δλ = λ · δλ , eq. (B.290) gives aeλ = λeλ ,
so that eλH ⊆ Hλ . Applying the map f �→ f (a) to (B.453) - (B.454) then yields
(B.433) - (B.434), from which the equality eλH = Hλ follows a fortiori.

If dim(H) = ∞ and a ∈ B0(H)sa, this still works for each nonzero λ ∈ σp(a), and
since the sum (B.453) converges uniformly in C(σ(a)), we obtain (B.433) in the
same way, including its norm-convergence. Unfortunately, even if we replace σp(a)
by σ(a), as we should, eq. (B.454) now fails, even pointwise, so that (B.434) still
requires the kind of proof we gave (or a complicated argument based on (B.327)).
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B.20 The trace

For finite-dimensional H the trace was defined by (A.77). There are (at least) two
difficulties in generalizing this expression to the infinite-dimensional case in the
naive way. First, not every operator has a finite trace; for example, take a = 1H , so
that Tr(1H) = dim(H). Second, Lemma A.25 is no longer valid in general: it is easy
to find an operator a ∈ B(H) and bases (υi) and (υ ′i ) of H for which

∑
i
〈υi,aυi〉 �= ∑

i
〈υ ′i ,aυ ′i 〉,

typically because one of these expressions converges, whereas the other diverges.
For example, take a=∑i(−1)i|υi〉〈υi| as a strong limit, i.e., aψ =∑i(−1)i〈υi,ψ〉υi;
this lies in H by Theorem B.61, from which (B.214) shows that ‖aψ‖= ‖ψ‖. Take
υ ′1 = (υ1 +υ2)/

√
2, υ ′2 = (υ1−υ2)/

√
2, υ ′3 = (υ3 +υ4)/

√
2, υ ′4 = (υ3−υ4)/

√
2,

etc. Then ∑i〈υi,aυi〉= ∑i(−1)i diverges, whereas ∑i〈υ ′i ,aυ ′i 〉= ∑i 0 = 0.
However, if a ∈ B(H) is positive, i.e., a ≥ 0 in the usual sense that 〈ψ,aψ〉 ≥ 0

for each ψ ∈ H, then we will show that for any two bases (υi) and (υ ′i ) of H,

∑
i
〈υi,aυi〉= ∑

i
〈υ ′i ,aυ ′i 〉 (B.455)

where both sides may be infinite. Equivalently, (A.79) is valid, since any unitary
operator defines and is defined by a basis transformation. To prove (B.455), we
need a very useful construction of independent interest, cf. (A.73).

Lemma B.141. Any positive operator a ∈ B(H) has a (unique) square root, i.e., a
positive operator

√
a ∈C∗(a) that satisfies

√
a2

= a.

Proof. This follows from Theorem B.94, since if a≥ 0, then σ(a)⊂R+, and hence√· is defined on σ(a). Alternatively, one may use the following construction due
to the Dutch mathematician C. Visser (which is a special case of the approach just
mentioned). If necessary, first rescale a so that ‖a‖ ≤ 1, take the power series for

√
1− x = ∑

k≥0
tkxk, (B.456)

(in which t0 = 1), which converges absolutely for |x| ≤ 1, and put
√

a = ∑
k≥0

tk(1H −a)k. (B.457)

As in the numerical case, squaring the series and rearranging terms yields
√

a2
= a.

Since uniqueness will not be needed, we omit the proof. �

For a≥ 0, we now use (B.215) to compute
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∑
i
〈υi,aυi〉 = ∑

i
〈√aυi,

√
aυi〉= ∑

i, j
〈√aυi,υ ′j〉〈υ ′j,

√
aυi〉

= ∑
i, j
〈√aυ ′j,υi〉〈υi,

√
aυ ′j〉= ∑

j
〈υ ′j,aυ ′j〉, (B.458)

where each term in every sum is positive, so that rearrangements are valid. Let

B(H)+ = {a ∈ B(H) | a≥ 0}; (B.459)

In view of (B.458), we have a well-defined map

Tr : B(H)+→ [0,∞]; (B.460)

Tr(a) = ∑
i
〈υi,aυi〉, (B.461)

where (υi) is an arbitrary basis of H, of which the result is independent by (B.455).
To drop the restriction a ≥ 0 in the argument of the trace, for any a ∈ B(H) we

note that a∗a≥ 0, so that we may define the absolute value |a| of a by

|a|=√a∗a. (B.462)

Then |a| ≥ 0 for all a by construction, and if a≥ 0, then |a|= a. Finally, we define
the set of trace-class operators in B(H), later seen to be a Banach space, as

B1(H) = {a ∈ B(H) | Tr(|a|)< ∞}. (B.463)

The trace-norm of a ∈ B1(H), which for now is just a formula, is given by

‖a‖1 = Tr(|a|), (B.464)

Lemma B.142. 1. For any a ∈ B1(H) we have

‖a‖ ≤ ‖a‖1. (B.465)

2. Any trace-class operator is compact, i.e., B1(H)⊂ B0(H).
3. For b ∈ B(H) and a ∈ B1(H) one has (A.100), i.e., |Tr(ab)| ≤ ‖a‖1‖b‖.
4. The trace-class operators B1(H) form a vector space with norm (B.464).

Part 4 will shortly be improved to B1(H) actually being a Banach space.
Let us note that Lemma A.28 and Proposition A.29 on the polar decomposition

remain valid for infinite-dimensional Hilbert space, with essentially the same proof.

Proof. 1. By definition of the operator norm (B.227), for every ε > 0 there is a
unit vector ψ ∈ H such that for any b ∈ B(H) one has ‖b‖2 ≤ ‖bψ‖2 + ε (proof
by contradiction). Put b = (a∗a)1/4, and note that ‖(a∗a)1/4‖2 = ‖|a|‖= ‖a‖ by
(C.2) and (A.93). Completing ψ to a basis (υi), and noting that

∑
i
‖(a∗a)1/4υi‖2 =∑

i
〈(a∗a)1/4υi,(a∗a)1/4υi〉=∑

i
〈υi, |a|υi〉= ‖a‖1, (B.466)
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‖a‖= ‖(a∗a)1/4‖2 ≤ ‖(a∗a)1/4ψ‖2 + ε ≤∑
i
‖(a∗a)1/4υi‖2 + ε = ‖a‖1 + ε.

Since this holds for all ε ≥ 0, one has (B.465).
2. Let a ∈ B1(H). Since ∑i〈υi, |a|υi〉 < ∞, for each ε > 0 we can find n such that

∑i>n〈υi, |a|υi〉 < ε . Let en be the projection onto the linear span of {υi}i=1,...,n.
Using (C.2) in the form ‖a‖2 = ‖aa∗‖ (which is valid by (A.22)) and (B.465)),

‖e⊥n |a|1/2‖2 = ‖e⊥n |a|e⊥n ‖≤ ‖e⊥n |a|e⊥n ‖1 =∑
i
〈υi,e⊥n |a|e⊥n υi〉= ∑

i>n
〈υi, |a|υi〉< ε,

for |(e⊥n |a|e⊥n )| = e⊥n |a|e⊥n , for if c ≥ 0 then b∗cb ≥ 0 for any b,c ∈ B(H). Since
e⊥n = 1−en, it follows that en|a|1/2→|a|1/2 in the norm topology. Since each op-
erator en|a|1/2 obviously has finite rank, |a|1/2 and hence |a| is compact. Finally,
a has polar decomposition a = u|a| and B0(H) is a two-sided ideal in B(H).

3. We just showed that a is compact. By Theorem B.130, also a∗a is compact, and
since it is self-adjoint, Theorem B.136 applies. This gives an expansion (A.101);
although the sum may be infinite, this is no problem, as it is norm-convergent.
Thus the computation will be analogous to the finite-dimensional case, cf. Propo-
sition A.30, expect that we cannot use (A.78), which is valid but has not been
proved yet. Fortunately, this problem may be obviated using (A.94). It follows
from Lemma A.28 and Proposition A.29 that (υ ′i = uυi) also forms an orthonor-
mal set, like the υi themselves, since the closed linear space spanned by the
unit vectors υi is just (ran|a|)− and u is unitary from this space onto its image
(rana)−. Taking the trace over any basis that contains the vectors υ ′i , we compute

|Tr(ab)| = |Tr(u|a|u∗ub)|= |∑
i

pi〈υ ′i ,ubυ ′i 〉|

≤ ∑
i

pi|〈υ ′i ,ubυ ′i 〉| ≤∑
i

pi‖b‖‖u‖‖υi‖= ‖a‖1‖b‖, (B.467)

where we used ‖a‖1 = ∑i pi, which follows from (A.101) applied to |a|.
4. Let a,b ∈ B1(H), and let a+b = u|a+b| be the polar decomposition. Then

‖a+b‖1 = Tr(u∗(a+b)) = Tr(u∗a)+Tr(u∗b).

Applying (A.100) with ‖u∗‖ ≤ 1, one has ‖a+b‖1 ≤ ‖a‖1 +‖b‖1. Hence B1(H)
is a vector space and ‖ · ‖1 satisfies the triangle inequality. The other axioms for
a norm are obviously satisfied. �

Proposition B.143. Let H = �2(N) (or even �2(X), for any countable set X), and for
f ∈ �∞(N), define the corresponding multiplication operator m f by m fψ = fψ , cf.
Proposition B.73. We have seen that m f is bounded, with norm (B.239). Then:

m f ∈ B0(H) iff f ∈ �0(N); (B.468)

m f ∈ B1(H) iff f ∈ �1(N); (B.469)
‖m f ‖1 = ‖ f‖1. (B.470)
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Here �0(N) consists of all f : N→ C for which limx→∞ f (x) = 0.
In particular, If dim(H) = ∞ we have proper inclusions

B1(H)⊂ B0(H)⊂ B(H). (B.471)

Proof. 1. For any a∈ B(H) we have a∈ B0(H) iff |a| ∈ B0(H) by the polar decom-
position (since a = u|a| and |a|= u∗a and B0(H) is a two-sided ideal in B(H)).
In the present case, we have |m f | =

√
m∗f m f =

√m| f |2 = m| f |, whence m f ∈
B0(H) iff m| f | ∈ B0(H). Since σp(m| f |) = {| f (x)|,x ∈ N}, part 6 of Theorem
B.136 applied to a = m| f | states that f ∈ �0(N).

2. This rapidly follows by computing Tr(|m f |) = Tr(m| f |) in the basis υx = δx,
x ∈ N, where δx(y) = δxy, as usual. �

Proposition B.144. The map

Tr : B1(H)→ C; (B.472)
a �→ ∑

i
〈υi,aυi〉, (B.473)

where (υi) is some basis of H, is well defined, (obviously) linear, and independent
of the choice of basis. Furthermore, (A.78), i.e., Tr(ab) = Tr(ba), holds.

Proof. Taking a = 1H in (A.100), we have |Tr(a)| ≤ ‖a‖1 < ∞ for a ∈ B1(H). In-
dependence of the choice of basis follows by first decomposing a = a′+ ia′′, with
a′ = 1

2 (a+a∗) and a′′ =− 1
2 i(a−a∗) self-adjoint, as usual, and subsequently using

Theorem B.132 to write a′ = a′+−a′−, with

a′± =± ∑
λ∈σp(a′)∩R±

λ · eλ , (B.474)

and likewise for a′′. This makes a is a linear combination of four positive operators,
whence the claim follows from (B.458) and the obvious linearity of (B.473).

To establish (A.78), we first note that Tr(au) = Tr(ua) for any unitary u; this is
the same as (A.79), which has just been proved. The claim then follows from the
following (generally useful) lemma. �

Lemma B.145. Any a ∈ B(H) is a linear combination of at most four unitaries.

Proof. By the previous argument, we may assume that a∗ = a, and for convenience
we also assume that ‖a‖ ≤ 1. In that case, ‖aψ‖ ≤ ‖ψ‖ and hence 1− a2 ≥ 0, so
that

√
1−a2 is defined, cf. Lemma B.141. Defining the two operators

u± = a± i
√

1−a2, (B.475)

we find u∗±u±= u±u∗±= 1H , making each u± unitary, and a= 1
2 (u++u−). If a �= a∗,

the number of terms at most doubles. �

The deeper significance of the trace-class operators now emerges.
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Theorem B.146. For any Hilbert space H, we have dualities and double dualities

B0(H)∗ ∼= B1(H); (B.476)
B1(H)∗ ∼= B(H); (B.477)

B0(H)∗∗ ∼= B(H); (B.478)
B1(H)∗∗ ∼= B(H)∗, (B.479)

where the symbol ∼= stands for isometric isomorphism. Explicitly:

• Any norm-continuous linear map ω : B0(H)→ C takes the form

ω(b) = Tr(ab), (B.480)

for some a ∈ B1(H) uniquely determined by ω , and vice versa, giving a bijective
correspondence between ω ∈ B0(H)∗ and a ∈ B1(H) satisfying

‖ω‖= ‖a‖1. (B.481)

This equality remains valid if ω is regarded as an element of B(H)∗ via (B.479)
and the isometric embedding B1(H) ↪→ B1(H)∗∗ (cf. Proposition B.44).

• Any norm-continuous linear map χ : B1(H)→ C takes the form

χ(a) = Tr(ab), (B.482)

for some b ∈ B(H) uniquely determined by χ , and vice versa, giving a bijective
correspondence between χ ∈ B1(H)∗ and b ∈ B(H) satisfying

‖χ‖= ‖b‖. (B.483)

Proof. It is clear from (A.100) that B1(H) ⊆ B0(H)∗, with ‖ω‖ ≤ ‖a‖1. For the
opposite direction, we return to the projections en in the proof of part 2 of Lemma
B.142. Taking the trace over the basis (υi), we have

‖a‖1 = Tr(|a|) = lim
n

Tr(en|a|en) = lim
n

Tr(en|a|) = lim
n

Tr(enu∗a)

= lim
n
ω(enu∗); (B.484)

since ω(enu∗) ≥ 0, we have ω(enu∗) ≤ ‖ω‖‖enu∗‖ ≤ ‖ω‖, whence ‖a‖1 ≤ ‖ω‖
(note that the limiting procedure is necessary here, since ω(u∗) would not be defined
because typically u∗ is not compact). This proves (B.481).

To prove (B.476), it remains to be shown that every ω ∈ B0(H)∗ can be repre-
sented as (B.480). Noting that B0(H) is the norm-closure of the linear span of all
operators of the sort a = |ψ〉〈ϕ|, where ψ,ϕ ∈ H are unit vectors, the functional ω
is determined by its values on those operators. Given ω , we define a by its matrix
elements 〈ϕ,aψ〉= ω(|ψ〉〈ϕ|). Evaluating the trace on a basis containing ϕ yields
Tr(a|ψ〉〈ϕ|) = 〈ϕ,aψ〉 and hence gives (B.480) on operators a of the said form,
upon which the general case follows by continuity.
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We now prove (B.477). As in the previous case, the inclusion B(H) ⊂ B1(H)∗
is clear from (A.100), as is the inequality ‖χ‖ ≤ ‖a‖. This time, the proof of the
opposite inequality uses a = |ψ〉〈ϕ|, in which case one easily obtains

‖|ψ〉〈ϕ|‖1 = ‖ψ‖‖ϕ‖, (B.485)

which in the case of unit vectors equals unity. Assuming (B.482), this gives

|χ(b)|= |χ(|ψ〉〈ϕ|)|= |Tr(|ψ〉〈ϕ|b)|= |〈ϕ,bψ〉| ≤ ‖χ‖‖|ψ〉〈ϕ|‖1 = ‖χ‖.
(B.486)

Combined with (B.228), this gives ‖b‖ ≤ ‖χ‖, and hence (B.483).
Finally, as in the previous case, given χ , we find b though its matrix elements

〈ϕ,bψ〉 = χ(|ψ〉〈ϕ|), which gives (B.482) on the special trace-class operators de-
fined by a = |ψ〉〈ϕ|. Noting that the linear span of such operators in dense (in the
trace-norm) in B1(H), once again this gives the general case by continuity. �

Corollary B.147. 1. The vector space B1(H) is complete in the norm (B.464).
2. B1(H) is a two-sided ideal in B(H) (a ∈ B(H),b ∈ B1(H) ⇒ ab ∈ B1(H) � ba).

Proof. The first claim follows from (B.476) and the completeness of B0(H)∗ (cf.
Theorem B.33 and §B.9). The second follows from (A.100) and (A.78). �

This actually reveals a subtlety in (B.471): as a normed space, B0(H) simply inherits
the norm of B(H), in which it is complete. Clearly, B1(H) also inherits the norm of
B(H), but that is the wrong one: firstly, B1(H) is not complete in the operator norm
(indeed, its completion is B0(H)), and secondly, the operator norm is the wrong one
for the fundamental dualities stated in Theorem B.146.

The following trace-class operators occupy the center stage in quantum theory.

Definition B.148. A density operator is a positive operator ρ ∈ B1(H) such that

Tr(ρ) = 1. (B.487)

Equivalently, ρ is a density operator iff it has a norm-convergent expansion

ρ = ∑
λ∈σp(ρ)

λ · eλ , (B.488)

where σp(ρ) is some countable subset of R+ with 0 as its only possible accumula-
tion point, the multiplicity mλ = dim(Hλ ) of each eigenvalue λ > 0 is finite, and

∑
λ∈σp(λ )

λ ·mλ = 1. (B.489)

Similarly, (2.6) holds just as in finite dimension, i.e., (B.488) is equivalent to

ρ = ∑
i

pi|υi〉〈υi|, (B.490)
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where (υi) is a basis of H, and the coefficients (pi) satisfy pi > 0 and ∑i pi = 1.
Furthermore, the pi have 0 as their only possible accumulation point and are such
that each t > 0 occurs in the set {pi} at most finitely many times. Like (B.488), also
the equivalent expansion (B.490) is norm-convergent by Theorem B.136.

Definition B.149. Let H be a separable Hilbert space. An operator a ∈ B(H) is
called a Hilbert–Schmidt operator if for some (and hence any) basis (υi) of H,

∑
i
‖aυi‖2 < ∞, (B.491)

We write B2(H) for the set of all Hilbert–Schmidt operators on H.

The argument that the sum in (B.491) is independent of the basis is based on (B.215)
and is analogous to the computation (B.458), thjis time even without the compli-
cation of the square root, for we simply have ∑i ‖aυi‖2 = ∑i〈aυi,aυi〉, etc. For
a ∈ B2(H), with foresight we define the expression (where (υi) is any basis of H):

‖a‖2 =
√

Tr(a∗a) =

(
∑

i
‖aυi‖2

)1/2

. (B.492)

Theorem B.150. Let H be a separable Hilbert space.

1. For any a ∈ B(H) we have

‖a‖ ≤ ‖a‖2 ≤ ‖a‖1. (B.493)

2. Every Hilbert–Schmidt operator is compact, and refining (B.471) one has

B1(H)⊂ B2(H)⊂ B0(H). (B.494)

3. The Hilbert–Schmidt operators B2(H) form a Hilbert space with inner product

〈a,b〉2 = Tr(a∗b), (B.495)

and a Banach space in the ensuing norm (A.2), which equals (B.492). Clearly,

B2(H)∗ ∼= B2(H). (B.496)

4. The Banach space B2(H) is a two-sided ∗-ideal in B(H), and if a ∈ B2(H) and
b ∈ B(H) we have ‖ba‖2 ≤ ‖b‖‖a‖2 and ‖ab‖2 ≤ ‖b‖‖a‖2.

Proof. 1. Take any unit vector ψ ∈ H and complete it to a basis of H. This gives
‖aψ‖ ≤ ‖a‖2. Taking the supremum over all such ψ gives the first inequality.
The second one will be proved in the next item.

2. With en from the proof of Lemma B.142.2, for a ∈ B2(H) we define an = aen,
and note that because ∑i ‖aυi‖2 converges, ‖(a− an)‖2

2 = ∑∞
i=n+1 ‖aυi‖2 → 0.

By the previous item, ‖an → a‖ → 0. Since an ∈ B0(H), by Proposition B.131
also a is compact . For the second inequality in (B.493), Theorem B.136 yields:
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‖a‖2
2 = ∑

i
μi ≤

(
∑

i

√
μi

)2

= ‖a‖2
1, (B.497)

where the μi ≥ 0 are the eigenvalues of the positive compact operator a∗a; the
eigenvalues of the compact operator |a|=√a∗a are (

√μi).
3. We first show that B2(H) is a vector space. For any a,b ∈ B(H) we have

2(a∗a+b∗b) = (a+b)∗(a+b)+(a−b)∗(a−b), (B.498)

so that (a + b)∗(a + b) ≤ 2(a∗a + b∗b) and hence ‖a + b‖2
2 ≤ 2(‖a‖2 + ‖b‖2

2.
Therefore, if a,b ∈ B2(H), then a+ b ∈ B2(H). Since ‖λa‖2 = |λ |‖a‖2, it is
clear that if a ∈ B2(H), then λa ∈ B2(H). Hence B2(H) is a vector space.
Furthermore, because of the identity

a∗b = 1
4

3

∑
k=0

ik(b+ ika)∗(b+ ika), (B.499)

the inner product (B.495) may be rewritten as

〈a,b〉2 = ∑
i
〈ei,a∗bei〉= 1

4

3

∑
k=0

ik‖(b+ ika‖2
2, (B.500)

which shows that if a,b ∈ B2(H), then 〈a,b〉2 < ∞. This reconfirms the fact that
the trace in (B.495) may be computed in any basis, since this is true for each term
on the right-hand side of (B.500). Sesquilinearity of (B.495) is straightforward.
To prove positive definiteness, we use part 1: if ‖a‖2 = 0, then ‖a‖= 0 and hence
a = 0, since we already know that ‖ · ‖ is a norm.
Knowing that (B.495) is an inner product on B2(H), it immediately follows that
‖ · ‖2 is a norm on B2(H), since, as already noted, ‖a‖2 = 〈a,a〉2.
Finally, to prove completeness, we pick a basis (υi) in H and note that B2(H)
is the closure of the linear span of all operators of the form a = ∑i, j ci j|υi〉〈υi|.
This is because of the continuity of the inclusion B2(H)⊂ B0(H) (which is true
because of part 1 and the fact that B0(H) is itself the closure of this linear span).
An easy calculation then gives

‖a‖2 = ‖∑
i, j

ci j|υi〉〈υi|‖2
2 = ∑

i, j
|ci j|2. (B.501)

Hence B2(H) is isometrically isomorphic to the space of square-summable se-
quences (ci j) indexed by N×N, which by Theorem B.9 is complete in the �2-
norm ‖c‖2

2 = ∑i, j |ci j|2. Hence B2(H) is complete, too.
4. From (A.78) (proved in Proposition B.144) we have Tr(a∗a) = Tr(aa∗), so that

a ∈ B2(H) iff a∗ ∈ B2(H). If b ∈ B(H) and a ∈ B2(H), then ‖baυi‖ ≤ ‖b‖‖aυi‖
and hence ‖ba‖2 ≤ ‖b‖‖a‖2, so ba ∈ B2(H), and hence also a∗ ∈ B2(H) and
a∗b∗ ∈ B2(H). Similarly, ab ∈ B2(H), with ‖ab‖2 ≤ ‖b‖‖a‖2. �
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B.21 Spectral theory for unbounded self-adjoint operators

Although there is hardly any distinction between bounded and unbounded self-
adjoint operators in so far as the definition and elementary properties of the spectrum
are concerned (cf. Definitions B.80 and B.85, Theorem B.91, and Theorem B.93),
extending the various versions of the spectral theorem to the unbounded case is a
highly nontrivial matter. There are many ways of accomplishing this, among which
our presentation has the virtues that firstly (in contrast to von Neumann’s original ap-
proach based on the Cayley transform) we stay within the realm of self-adjointness,
and secondly we preserve the C*-algebraic spirit of Theorem B.94. Thirdly, our
treatment is sufficiently general to cover the two main applications in quantum me-
chanics (viz. the Born rule and Stone’s Theorem). For those applications, setting up
a functional calculus for bounded Borel functions suffices, but in order to state even
the defining property idσ(a) �→ a of the functional calculus also for unbounded a (cf.
Theorem B.94), unbounded continuous functions will also have to be incorporated
(but we refrain from a further generalization to unbounded Borel functions).

Our approach starts from the observation that (with slight abuse of notation)

y : R → (−1,1); (B.502)

y(x) = x(1+ x2)−1/2; (B.503)

y−1(x) = x(1− x2)−1/2, (B.504)

provides a homeomorphism R∼= (−1,1). This has an operatorial counterpart

a �→ a(1H +a2)−1/2 ≡ b; (B.505)

b �→ b(1H −b2)−1/2 ≡ a, (B.506)

where the notation for the square roots should be carefully disambiguated as

(1H +a2)−1/2 ≡ ((1H +a2)−1)1/2; (B.507)

(1H −b2)−1/2 ≡ ((1H −b2)1/2)−1. (B.508)

As we shall see, the operator (1H +a2)−1 is bounded (and so is 1H−b∗b), of course),
so that square roots are only taken of bounded operators, in which case they are
defined by Lemma B.141. As in the numerical case (B.503), the correspondence a↔
b in (B.505) - (B.506) will turn out to be bijective, mapping the class of (possibly
unbounded) self-adjoint operators into the class of self-adjoint pure contractions:

Definition B.151. A pure contraction is a bounded operator b : H → H for which

‖bψ‖< ‖ψ‖ (ψ ∈ H\{0}). (B.509)

If b is in addition self-adjoint, this is equivalent to ‖b‖ ≤ 1 and ker(b±1H) = {0},
i.e., ±1 /∈ σp(b); the argument is similar to the proof of Lemma B.137.

Eqs. (B.505) - (B.506) form a special case of a more general correspondence.
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Theorem B.152. The formal expressions

b = a(1H +a∗a)−1/2 ≡ a((1H +a∗a)−1)1/2; (B.510)

a = b(1H −b∗b)−1/2 ≡ b((1H −b∗b)1/2)−1, (B.511)

make rigorous sense and define a bijective correspondence between the class of
closed operators a (with dense domain) and the class of (necessarily bounded)
pure contractions b. This correspondence preserves the adjoint, in that

b∗ = a∗(1H +aa∗)−1/2; (B.512)

a∗ = b∗(1H −bb∗)−1/2, (B.513)

and hence specializes to a a bijective correspondence (B.505) - (B.506) between
self-adjoint operators a and self-adjoint pure contractions b.

The (bounded) operator b is called the bounded transform of a.

Proof. 1. From b to a. If b is a pure contraction, then 1H−b∗b≥ 0, since this means

〈ψ,b∗bψ〉 ≤ 〈ψ,ψ〉, (B.514)

or ‖bψ‖2 ≤ ‖ψ‖2. Furthermore, 1H − b∗b is injective, since (1H − b∗b)ψ = 0
implies ‖ψ‖2 = ‖bψ‖2, contradicting (B.509). This implies that (1H − b∗b)1/2

is injective, as (1H − b∗b)1/2ψ = 0 implies (1H − b∗b)ψ = 0 and hence ψ = 0.
Thus the inverse (B.508) exists, with domain

D((1H −b∗b)−1/2) = ran((1H −b∗b)1/2). (B.515)

This domain in dense in H, since for any c∈B(H) (which in our case is c=(1H−
b∗b)1/2) we have H = ker(c)⊕ ker(c)⊥; for c∗ = c we have ker(c) = ran(c)⊥
and hence ker(c)⊥ = ran(c)−, so that injectivity of c yields H = ran(c)−. Hence
(B.511) is well defined on

D(a) = ran((1H −b∗b)1/2). (B.516)

To prove that a is closed, we write a = bc−1, as above, and note that

G(a) = {(bψ,cψ),ψ ∈ H}= ran(v), (B.517)

where v : H → H⊕H is obviously defined by vψ = (bψ,cψ). Hence

‖vψ‖2 = ‖bψ‖2 +‖cψ‖2 = ‖bψ‖2 +‖(1H −b∗b)1/2ψ‖2 = ‖ψ‖2, (B.518)

so that v is an isometry. As such, ran(v) = G(a) is closed.
2. From a to b. By definition, D(1H +a∗a) = D(a∗a), with

D(a∗a) = {ψ ∈ D(a) | a∗ψ ∈ D(a)}. (B.519)
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We show that 1H +a∗a : D(a∗a)→ H is bijective. First, (B.237) implies

H⊕H = G(a)⊕G(a)⊥ = G(a)⊕uG(a∗), (B.520)

so for any (ψ1,ψ2) ∈ H⊕H there are unique ϕ ∈ D(a) and χ ∈ D(a∗) such that

ψ1 = ϕ−a∗χ; (B.521)
ψ2 = aϕ+χ. (B.522)

In particular, for (ψ1,ψ2) = (ψ,0) we obtain

ψ = (1H +a∗a)ϕ, (B.523)

This shows both surjectivity and injectivity, since ϕ is uniquely determined by
ψ . Consequently, the inverse

(1H +a∗a)−1 : H → D(a∗a) (B.524)

exists as a linear map, and since

‖(1H +a∗a)−1ψ‖= ‖ϕ‖ ≤ ‖(1H +a∗a)ϕ‖= ‖ψ‖, (B.525)

we see that (1H +a∗a)−1 is bounded, with ‖(1H +a∗a)−1‖ ≤ 1. A similar argu-
ment shows that (1H +a∗a)−1 is positive:

〈ψ,(1H +a∗a)−1ψ〉= 〈(1H +a∗a)ϕ,ϕ〉= ‖ϕ‖2 +‖aϕ‖2 ≥ 0, (B.526)

so that the square root (B.507) exists. As before, injectivity of (1H + a∗a)−1

implies injectivity of its square root, whence ran((1H +a∗a)−1/2) is dense in H.
Clearly, (1H +a∗a)−1/2 maps ran((1H +a∗a)−1/2) to

ran((1H +a∗a)−1) = D(a∗a)⊆ D(a), (B.527)

so that the operator b in (B.510) is defined on ran((1H +a∗a)−1/2). We now show
that b is bounded on the latter: for any ψ ∈ H we have

‖b(1H +a∗a)−1/2ψ‖2 = ‖a(1H +a∗a)−1ψ‖2

= 〈(1H +a∗a)−1ψ,a∗a(1H +a∗a)−1ψ〉
≤ 〈(1H +a∗a)−1ψ,(1H +a∗a)(1H +a∗a)−1ψ〉
= 〈(1H +a∗a)−1ψ,ψ〉= ‖(1H +a∗a)−1/2ψ‖2, (B.528)

so that b may be extended to all of H by continuity, with ‖b‖ ≤ 1. Still denoting
this extension by b, we have

b∗b = (1H +a∗a)−1/2a∗a(1H +a∗a)−1/2 = 1H − (1H +a∗a)−1, (B.529)
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from which it easily follows that b is a pure contraction: for any ψ �= 0, we have

‖bψ‖2 = 〈ψ,b∗bψ〉= ‖ψ‖2−‖(1H +a∗a)−1/2ψ‖2 < ‖ψ‖2, (B.530)

since ‖1H +a∗a)−1/2ψ‖2 > 0 by injectivity of (1H +a∗a)−1/2.
3. Bijectivity of the correspondence a ↔ b. If a is determined by b according to

(B.511), then
1H +a∗a = (1H −b∗b)−1, (B.531)

so that
(1H −b∗b)1/2 = (1H +a∗a)−1/2, (B.532)

whence

b = b(1H −b∗b)−1/2(1H −b∗b)1/2 = a(1H −b∗b)1/2 = a(1H +a∗a)−1/2.
(B.533)

Similarly, if b is defined by a according to (B.510), then (B.529), rewritten as

1H −b∗b = (1H +a∗a)−1, (B.534)

reproduces (B.511). To see that the domains match, in view of (B.516) we need

D(a) = ran((1H +a∗a)−1/2). (B.535)

The inclusion D(a) ⊇ ran((1H + a∗a)−1/2) already having been established in
step 2 above, we prove the opposite inclusion ⊆. Indeed, for any ψ ∈ D(a) we
have

ψ = (1H +a∗a)−1/2(b∗a+(1H +a∗a)−1/2)ψ, (B.536)

where b is given by (B.510). This follows by taking inner products with ϕ ∈ H:

〈ϕ,(1H +a∗a)−1/2b∗aψ〉+ 〈ϕ,(1H +a∗a)−1ψ〉
= 〈a∗a(1H +a∗a)−1ϕ,ψ〉+ 〈ϕ,(1H +a∗a)−1ψ〉= 〈ϕ,ψ〉. (B.537)

4. Self-adjointness. Since a is closed we have a∗∗ = a (cf. Lemma B.74), so using
a∗ instead of a in part 2 above, we have

(1H +aa∗)−1 : H → D(aa∗)⊂ D(a∗), (B.538)

bijectively. If, in addition, ψ ∈ D(a∗), we may compute

a∗ψ = a∗(1H +aa∗)(1H +aa∗)−1ψ = (1H +a∗a)a∗(1H +aa∗)−1ψ, (B.539)

from which it follows that

a∗(1H +aa∗)−1ψ = (1H +a∗a)−1a∗ψ. (B.540)

Similarly, for any polynomial p in one real variable we have
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a∗p((1H +aa∗)−1)ψ = p((1H +a∗a)−1)a∗ψ. (B.541)

By Weierstrass, we can find polynomials pn such that

lim
n→∞

pn((1+ x)−1) = (1+ x)−1/2, (B.542)

for any x ≥ 0, also cf. the proof of Lemma B.141. Hence by Theorem B.94 and
closeness of a∗ we obtain

a∗(1H +aa∗)−1/2ψ = (1H +a∗a)−1/2a∗ψ = (a(1H +a∗a)−1/2)∗ψ
= b∗ψ, (B.543)

for ψ ∈ D(a∗). Since the latter is dense, we have (B.512). Bijectivity of the cor-
respondence a ↔ b then also implies (B.513). In particular, a∗ = a iff b∗ = b,
which implies the last claim of the theorem. �

Though not needed in what follows, it would be a pity not to state:

Corollary B.153. If a : D(a)→ H is closed (with D(a)− = H), then:

1. 1H +a∗a is self-adjoint on D(a∗a);
2. (1H +a∗a)−1 = π1 ◦ eG(a) ◦ ι1, where:

• ι1 : H → H⊕H is defined by ι1ψ = (ψ,0);
• eG(a) : H⊕H → H⊕H is the projection onto the graph G(a);
• π1 : H⊕H → H is the projection π1(ψ1,ψ2) = ψ1 onto the first coordinate,

so that in total we duly have π1 ◦ eG(a) ◦ ι1 : H → H.
3. The closure of a|D(a∗a) is a (in other words, D(a∗a) is a core for a).

Proof. 1. Part 2 of the proof of Theorem B.152 yields positivity and hence self-
adjointness of (1H +a∗a)−1. The claim now follows from the (easily established)
fact that the inverse of an invertible self-adjoint operator is self-adjoint, too.

2. The reasoning following (B.521) - (B.522) yields π1eG(a)ι1(ψ) = ϕ , where ϕ =

(1H +a∗a)−1ψ by (B.523). Hence

(1H +a∗a)π1eG(a)ι1 = 1H ; (B.544)

π1eG(a)ι1(1H +a∗a) = 1H . (B.545)

3. This is a consequence of the fact that ran(1H +a∗a) = H, cf. part 2 of the above
proof, too. Indeed, we need to show that the graph of the restriction

G(a|D(a∗a)) = {(ψ,aψ),ψ ∈ D(a∗a)} (B.546)

is dense in the grapg G(a) = {(ψ,aψ),ψ ∈D(a)} within H⊕H. In other words,
if ψ ∈G(a) satisfies 〈Φ ,ψ〉H⊕H = 0 for each Φ ∈G(a|D(a∗a)), then ψ = 0. With
ψ = (ψ,aψ) and Φ = (ϕ,aϕ), where ψ ∈ D(a) and ϕ ∈ D(a∗a), we obtain
〈Φ ,ψ〉H⊕H = 〈(1H + a∗a)ϕ,ψ〉H , which indeed vanishes for each ϕ ∈ D(a∗a)
iff ψ = 0. �
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To get a feeling for the constructions to follow, we first look at the bounded case.

Proposition B.154. If a = a∗ is bounded and b is given by (B.505), then

C∗(a) =C∗(b). (B.547)

Furthermore, σ(a)⊂R and σ(b)⊂ (−1,1) (both included as compact subsets) are
homeomorphic via the maps (B.503) - (B.504), preserving eigenvalues, that is,

σ(a) = {μ(1−μ2)−1/2 | μ ∈ σ(b)}; (B.548)

σ(b) = {λ (1+λ 2)−1/2 | λ ∈ σ(a)}; (B.549)

σp(a) = {μ(1−μ2)−1/2 | μ ∈ σp(b)}; (B.550)

σp(b) = {λ (1+λ 2)−1/2 | λ ∈ σp(a)}. (B.551)

Proof. By Theorem B.84 and Theorem B.93, σ(a) ⊂ R and σ(b) ⊆ [−1,1] are
compact. We now show that in fact σ(b)⊂ (−1,1); in particular, ±1 /∈ σ(b). For if
±1 ∈ σ(b), then b∓ 1 is not invertible, so that, given that

√
1H +a2 is invertible,

by (B.505) the operator
√

1H +a2±a is not invertible. But since the function

f±(x) =
√

1+ x2± x (B.552)

is strictly positive on any compact subset of R, and√
1H +a2±a = f±(a), (B.553)

the operator in question is invertible, with inverse f±(a)−1 = (1/ f±)(a). Contra-
diction. Having thus localized σ(b), it follows that y−1 in (B.504) is continuous
on σ(b), so that, with a = y−1(b), we have a ∈ C∗(b) and hence C∗(a) ⊆ C∗(b).
Similarly, b = y(a) and hence C∗(b)⊆C∗(a), whence (B.547).

Eqs. (B.550) - (B.551) for follows from the explicit construction of the square
root in the proof of Lemma B.141: if cψ = λψ , then

√
cψ =

√
λψ . Likewise (more

trivially), if c is invertible (whence λ �= 0), then c−1ψ = λ−1ψ . The same result for
the full spectra follows either from the spectral mapping property (C.53), or from
the following direct argument. Given (B.547), Theorem B.94 yields an isomorphism
C(σ(a))∼=C(σ(b)) of commutative C*-algebras, since we have

C(σ(a))
f �→ f (a)−−−−→∼= C∗(a) =C∗(b)

g(b)← �g←−−−−∼=
C(σ(b)). (B.554)

Eqs. (B.548) - (B.549) then follow from the identities

f (a) = ( f ◦ y−1)(b), f ∈C(σ(a)); (B.555)
g(b) = (g◦ y)(a), g ∈C(σ(b)), (B.556)

which in turn follow from Theorem B.94. �
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Now suppose a is unbounded. In that case, its bounded transform b remains
bounded, but its spectrum contains at least one of the points ±1. We abbreviate

σ̃(b) = σ(b)∩ (−1,1). (B.557)

Proposition B.155. If a and b are as in Theorem B.152, their spectra are related by

σ(a) = {μ(1−μ2)−1/2 | μ ∈ σ̃(b)}; (B.558)

σ(b) = {λ (1+λ 2)−1/2 | λ ∈ σ(a)}−. (B.559)

σp(a) = {μ(1−μ2)−1/2 | μ ∈ σ̃p(b)}; (B.560)

σp(b) = {λ (1+λ 2)−1/2 | λ ∈ σp(a)}. (B.561)

If a is bounded this duly reduces to (and reproves) eqs. (B.548) - (B.551), since
σ(b)∩ (−1,1) = σ(b), and the right-hand side of (B.559) is already closed in R.

Lemma B.156. Let a = a∗ ∈ B(H). Then the spectrum σ(a) according to Definition
B.80 coincides with the set σ(a) in Definition B.81, where A =C∗(a).

Proof. We must show that if (a−λ )−1 exists in B(H), then its exists in C∗(a) (in
the double sense that (a−λ )−1 lies in C∗(a) and is the inverse of (a−λ ) in C∗(a));
the converse is trivial. Using Theorem B.94 as well as the obvious invariance of the
spectrum (as in Definition B.81) under isomorphism, we might as well show that if
(a−λ )−1 exists in B(H), then the function (idσ(a)−λ )−1 exists in C(σ(a)). This
is the case, since, by definition of σ(a), the antecedent holds iff λ /∈ σ(a). �

We apply this lemma with a � b in order to prove Proposition B.155.

Proof. We know from (B.516) that
√

1H −b2 : H→D(a) is a bijection. If λ ∈ ρ(a),
then both maps in the following diagram are bijections:

H
√

1H−b2

−→ D(a) a−λ−→ H, (B.562)

and this is the case iff (a− λ ) ◦
√

1H −b2 is invertible, which, using (B.505), is
true iff b−λ

√
1H −b2 is invertible. Hence λ ∈ σ(a) iff b−λ

√
1H −b2 ∈ C∗(b)

is not invertible in B(H), or, equivalently, in C∗(b). Define gλ (y) = y−λ
√

1H − y2

in C(σ(b)), so that gλ (b) = b− λ
√

1H −b2. Theorem B.94 (again with a � b)
then implies that λ ∈ σ(a) iff gλ is not invertible in C(σ(b)), which according
to (B.253) (with λ = 0) is true iff 0 ∈ ran(gλ ). Since gλ (±1) = ±1 �= 0, even if
±1 ∈ σ(b), these values play no role, so that 0 ∈ ran(gλ ) iff λ = μ(1− μ2)−

1
2 for

some μ ∈ σ(b)∩ (−1,1). This yields (B.558) for σ(a) and σ(b).
The claimed refinement to the point spectrum follows as in the proof of Proposi-

tion B.154. The same argument shows that any μ ∈ σ(b)∩ (−1,1) must come from
λ ∈ σ(a), and since σ(b) must be a closed subset of [−1,1], this gives (B.559). �
As an illustration, take a to be the position operator on H = L2(R), so that b = m f

with f (x) = x/
√

1+ x2. Eq. (B.276) then gives σ(a) = R and σ(b) = [−1,1].
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If a is bounded, there are only two (commutative) C*-algebras to be concerned
with in a spectral theorem à la Theorem B.94, viz. C(σ(a)) and C∗(a). In the un-
bounded case, where σ(a)⊆R is no longer compact, already no fewer than four al-
gebras of continuous functions are associated with the spectrum, namely (cf. §B.3):

• the set Cc(σ(a)) of all continuous functions f : σ(a)→C with compact support;
• the set C0(σ(a)) of all continuous functions f : σ(a)→C that vanish at infinity;
• the set Cb(σ(a)) of all bounded continuous functions f : σ(a)→ C;
• the set C(σ(a)) of all continuous functions f : σ(a)→ C.

Of these, the second and the third are commutative C*-algebras in the supremum-
norm; the first fails to be closed in this norm, whereas the last does not carry it (as
it would be infinite on any unbounded function). We have the obvious inclusions

Cc(σ(a))⊂C0(σ(a))⊂Cb(σ(a))⊂C(σ(a)). (B.563)

Each of these plays a role in spectral theory (as do measurable versions of them). On
the side of the bounded operator b, on top of C(σ(b)), we have analogous function
algebras, this time with inclusions

Cc(σ̃(b))⊂C0(σ̃(b))⊂C(σ(b))⊂Cb(σ̃(b))⊂C(σ̃(b)), (B.564)

since C(σ(b)) consists of all functions g in Cb(σ̃(b)) for which limy→±1 g(y) exists,
which limit is equal to zero iff g ∈ C0(σ̃(b)). Since y−1 : (−1,1)→ R in (B.504)
restricts to a homeomorphism σ̃(b)→ σ(a) because of (B.558), the map

C•(σ(a))
∼=→C•(σ̃(b)), f �→ f ◦ y−1, (B.565)

is an isomorphism for • = c,0,b, or blank (which is isometric for 0 and b). If f ∈
C0(σ(a)), as in (B.555) (but no longer assuming a to be bounded), we may define

f (a) = ( f ◦ y−1)(b), (B.566)

since f ◦ y−1 ∈C0(σ̃(b)), and in view of (B.564), the right-hand side is defined by
the continuous functional calculus for b, i.e., g �→ g(b), where g ∈ C(σ(b)); the
same is then true for f ∈Cc(σ(a)). Let the (typically non-unital) ∗-algebras

C∗c (b) = {g(b) | g ∈Cc(σ̃(b))}; (B.567)
C∗0(b) = {g(b) | g ∈C0(σ̃(b))}, (B.568)

be the pertinent images under this calculus. In view of (B.568), we then have

C∗c (b)⊂C∗0(b)⊂C∗(b)⊂M(C∗0(b))⊂M(C∗c (b)), (B.569)

where M(C∗0(b)) and M(C∗c (b)) are the multiplier algebras of C∗0(b) and C∗c (b),
respectively, cf. §C.10. Note that M(C∗0(b)) is a C*-algebra contained in B(H),
whereas M(C∗c (b)) consists (partly) of unbounded operators (see below).
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Lemma B.157. The (finite) linear span C∗c (b)H of all vectors of the form g(b)ψ ,
where g ∈Cc(σ̃(b)) and ψ ∈ H, is dense in H, i.e., C∗c (b)H− = H.

This would be trivial for C∗(b)H, since unlike C∗c (b)H it contains the unit 1H .

Proof. Approximate 1σ̃(b) pointwise by some monotone increasing bounded se-
quence ( fn) with compact support, cf. Lemma B.97; for example, define

fn : (−1,1)→ R; (B.570)
fn(x) = 0 (x ∈ (−1,−1+1/n],x ∈ [1−1/n,1)); (B.571)
fn(x) = 1 (x ∈ [−1+2/n,1−2/n]), (B.572)

and linear interpolation elsewhere. As in (B.317), we then have fn(b)→ 1H strongly.
By definition of C∗c (b), this yields the claim. �

Theorem B.158. Let a be a (possibly unbounded) self-adjoint operator on H.

1. For any f ∈Cb(σ(a)), the operator f (a)0, initially defined by linear extension of

f (a)0h(a)ψ = ( f h)(a)ψ = (( f h)◦ y−1)(b)ψ, (B.573)

i.e., defined on the domain C∗0(b)H
− (cf. (B.565) with •= 0), is bounded, with

‖ f (a)‖ ≤ ‖ f‖∞, (B.574)

and hence extends from C∗0(b)H to all of H by continuity; we write

f (a) = f (a)−0 . (B.575)

2. The functional calculus f �→ f (a) from Cb(σ(a)) to B(H) thus established satis-
fies the algebraic rules (B.289) - (B.291), and one has the reassuring cases

1σ(a)(a) = 1H . (B.576)
1

idσ(a)− z
(a) = (a− z)−1 (z ∈ ρ(a)). (B.577)

Conceptually, what is going on here is that the homomorphism

C0(σ(a))→ B(H); (B.578)
f �→ f (a), (B.579)

as defined in (B.566), is extended to the multiplier algebra

M(C0(σ(a))) =Cb(σ(a)). (B.580)

Theorem C.77 then applies, since by Lemma B.157 the initial homomorphism is
nondegenerate, immediately yielding boundedness of f (a). Below we will also give
an independent proof of (B.574).
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Proof. The operator f (a)0 is densely defined by Lemma B.157 (which a fortiori
implies that C∗0(b)H is dense in H). To prove that f (a)0 is bounded, take ε > 0
and hence find a compact subset K ⊂ R such that | f (x)h(x)| < ε whenever x /∈ K.
Writing f̃ = f ◦ y−1 etc., using (B.322) with f � 1̃Kc f h we obtain

‖(1̃Kc f h)(b)ψ‖ ≤ ‖(1̃Kc f h)(b)‖‖ψ‖ ≤ ‖1̃Kc f h‖∞‖ψ‖< ε‖ψ‖. (B.581)

From this, using also the homomorphism property in Theorem B.102, we then find

‖( f h)(a)ψ‖ = ‖( f̃ h)(b)ψ‖
= ‖(̃1K f h)(b)+( f̃ h− 1̃K f h)(b)ψ‖
≤ ‖(1̃K f h)(b)ψ‖+‖(1̃Kc f h)(b)ψ‖
= ‖(̃1K f )(b)h̃(b)ψ‖+‖(1̃Kc f h)(b)ψ‖
< ‖(̃1K f )‖∞‖h(a)ψ‖+ ε‖ψ‖,
≤ ‖ f‖∞ ‖h(a)ψ‖+ ε‖ψ‖, (B.582)

since
‖(̃1K f )‖∞ ≤ ‖ f̃‖∞ = ‖ f‖∞. (B.583)

Since the last expression in (B.582) is independent of K, we may let ε→ 0, obtaining
boundedness of f (a) as well as (B.574).

The second claim should be obvious from (B.566) and Theorem B.94.
Eq. (B.576) is trivial. To prove (B.577), write f (x) = (x− z)−1, where z ∈ ρ(a)

is fixed and x ∈ σ(a). We have

f (a)0h(a)ψ = ( f h)(a)ψ = (a− z)−1h(a)ψ, (B.584)

and hence
f (a)0ϕ = (a− z)−1ϕ, (B.585)

for any ϕ ∈ D( f (a)0) = C∗0(b)H. So if ϕn → ϕ for ϕ ∈ H and ϕn ∈ D( f (a)0),
boundedness and hence continuity of the operator (a− z)−1 implies

f (a)ϕ = lim
n→∞

f (a)0ϕn = lim
n→∞

(a− z)−1ϕn = (a− z)−1ϕ. �

To construct a (typically unbounded) operator f (a) for f ∈C(σ(a)) in this fash-
ion (think of a itself, corresponding to f = idσ(a)), we first define

D( f (a)0) =C∗c (b)H = span{h(a)ψ | h ∈Cc(σ(a)),ψ ∈ H}, (B.586)

and an operator f (a)0 : D( f (a)0)→ H may once again be defined by (B.573); once
again, the whole point is that although f may well be unbounded, h and hence f h
lie in Cc(σ(a)), so that ( f h)(a) is defined by (B.566), and hence eventually by the
continuous functional calculus for the bounded self-adjoint operator b.
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As in the remark following Theorem B.158, from the point of view of multi-
plier algebras, eq. (B.573) extends the (nondegenerate) homomorphism Cc(σ(a))→
B(H) to the algebra C(σ(a)) of unbounded multipliers on Cc(σ(a)).

This is not the end of the construction, since f (a)0 is typically not closed on the
domain (B.586). However, it is a very near miss, since f (a)0 is closable, cf. §B.13.
To prove that the operator f (a)0 in B.573 is closable, we use the second criterion in
Lemma B.74. For g,h ∈Cc(σ(a)) and ψ,ϕ ∈ H we may compute:

〈g(a)ϕ, f (a)0 f (a)ψ〉= 〈ϕ,g(a)∗ f (a)0h(a)ψ〉= 〈ϕ,(g∗ f h)(a)ψ〉; (B.587)
〈(g f ∗)(a)ϕ,h(a)ψ〉= 〈ϕ,(g f ∗)(a)∗g(a)ψ〉= 〈ϕ,(g∗ f h)(a)ψ〉. (B.588)

Hence D( f (a)∗0) must contain D( f (a)0), and on the latter we may put

f (a)∗0g(a)ϕ = (g f ∗)(a)ϕ, (B.589)

as in (B.573). In particular, D( f (a)∗0) is dense in H, so that f (a)0 is closable. Fur-
thermore, if f ∗ = f , then f (a)0 is symmetric, i.e., f (a)0 ⊂ f (a)∗0. Hence the closure

f (a) = f (a)−0 : D( f (a))→ H, (B.590)

is the operator we are looking for, where D( f (a)) consists of all ψ ∈ H for which
there exists a sequence (ψn) in D( f (a)0) such that ψn →ψ and f (a)0ψn converges,
upon which Lemma B.74 gives

f (a)ψ = lim
n

f (a)0ψn. (B.591)

What’s more, if f ∗ = f , then f (a)0 is essentially self-adjoint, i.e.,

f (a)−0 = f (a)∗0, (B.592)

which (by taking the adjoint) is equivalent to the property we will actually prove:

f (a)∗ = f (a). (B.593)

Theorem B.159. For real-valued f ∈C(σ(a)), the operator f (a) is self-adjoint.

The proof of self-adjointness relies on Nelson’s Lemma:

Lemma B.160. Let c ⊂ c∗ be densely defined and symmetric. Then c is essentially
self-adjoint if there exists a continuous unitary representationt �→ ut of R on H such
that ut : D(c)→ D(c) for each t ∈ R, and

dut

dt
ψ ≡ lim

s→0

ut+sψ−utψ
s

= icutψ, ψ ∈ D(c). (B.594)

This lemma is closely related to Stone’s Theorem; see Theorem 5.73 in §5.12.

Proof. The proof of Nelson’s lemma relies on the following variation of Lemma
5.74 in §5.12, proved by applying the latter (or rather its proof) to the closure of a:
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Lemma B.161. Let a be symmetric. Then a is essentially self-adjoint (a∗∗ = a∗) iff

ran(a+ i)− = ran(a− i)− = H. (B.595)

Applying Lemma B.161 in the same way as Lemma 5.74 is used in the proof of
self-adjointness of the generator a in Theorem 5.73, yields Lemma B.160.

For Theorem B.159, with c = f (a)0 for some f ∈C(σ(a),R), informally define

ut = exp(it f (a)), (B.596)

and formally define ut as the closure of the bounded operator

(ut)0 = et
0(a) (B.597)

defined by the bounded function et(x) = exp(it f (x)) on σ(T ), cf. (B.573). The ver-
ification that t �→ ut defines a continuous one-parameter group of unitary operators
on H is practically the same as in our proof of part 1 of Stone’s Theorem, and the
proof of (B.594) is almost the same as a similar step in the proof of part 3 of that the-
orem, so we will not repeat these here. Therefore, Lemma B.160 applies, showing
that f (a)0 is essentially self-adjoint. �

As an important special case of our continuous functional calculus, we have

idσ(a)(a) = a, (B.598)

just as in the bounded case. Writing a0 for the operator (idσ(a))0(a), eq. (B.573)
gives a0ϕ = aϕ for ϕ ∈ D(a0), cf. (B.586). Let ψ ∈ D(a−0 ), so that there is a se-
quence (ψn) in D(a0) such that ψn → ψ and (a0ψn) converges. Since a is closed,
it follows that a0ψn = aψn → aψ , so that ψ ∈ D(a). Hence a−0 ⊆ a. Since both
operators are self-adjoint, this implies a−0 = a, which proves (B.598). The proof of
(B.577) is similar but easier, since (a− z)−1 is bounded.

In similar vein, we may set up a functional calculus for bounded Borel functions
of a. If f ∈B(σ(a)), then f ◦ y−1 ∈B(σ(b)), so that ( f ◦ y−1)(b) is defined, cf.
Theorem B.102, and we may define f (a) by (B.566). As in the continuous case, this
map f �→ f (a) yields a homomorphism B(σ(a))→ B(H), satisfying (B.322).

What is still missing, however, is the von Neumann algebra W ∗(a) in which this
homomorphism takes values. To close this section, we solve this issue.

If c ∈ B(H) and a is possibly unbounded, we say that (by convention):

[a,c] = 0 iff ca⊆ ac, (B.599)

that is, if c ·D(a) ⊆ D(a) and caψ = acψ for each ψ ∈ D(a). We write {a}′ for
the set of all c ∈ B(H) that commute with a. If a∗ = a, looking at the graph of a
(and using the fact that a is closed), it is easy to see that {a}′ is a strongly closed
unital ∗-subalgebra in B(H). Therefore, by the bicommutant theorem, {a}′ is a von
Neumann algebra. Its commutant W ∗(a), defined in the usual sense (B.318), i.e.,
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W ∗(a) = {a}′′. (B.600)

Theorem B.162. Let a be a (possibly unbounded) self-adjoint operator on H. Then

W ∗(a) =W ∗(b), (B.601)

where b is the bounded transform (B.510) of a. Consequently, if f ∈B(σ(a)) and
the operator f (a) is defined by (B.566) and Theorem B.102, then f (a) ∈W ∗(b).

Proof. We will prove a more general result of independent interest.

Definition B.163. A closed unbounded operator a : D(a)→H is affiliated to a von
Neumann algebra A⊂ B(H), written aηA, iff [a,c] = 0 for each c ∈ A′.

For example, if a∗= a, then aηW ∗(a), and if aηB for some B=B′′, then W ∗(a)⊆B.

Proposition B.164. Let A ⊂ B(H) be a von Neumann algebra and assume a is a
self-adjoint operator on H with bounded transform b. Then aηA iff b ∈ A.

Proof. The first step consists in the observation that aηA iff [a,u] = 0 (or, equiva-
lently, uau∗ = a) merely for each unitary u ∈ A′. To see this, we strengthen Lemma
B.145 (in which we replace a by c): if c ∈ A′, then c is a linear combination of at
most four unitaries in A′. Indeed, the unitaries u± in the proof are constructed via the
continuous functional calculus of Theorem B.94, and hence they lie in C∗(c)⊂ A′.

The second step is to show that [a,u] = 0 iff [b,u] = 0 for any unitary u. This is a
simple computation: if uau∗ = a, then, looking at the domains in question,

u(1H +a2)−1u∗ = (1H +a2)−1; (B.602)

u((1H +a2)−1)1/2u∗ = ((1H +a2)−1)1/2, (B.603)

from which ubu∗= b with b defined by (B.510). Similarly, if bu= ub, then uau∗= a,
where a is defined by (B.511). Theorem B.152 therefore yields the claim. �

Theorem B.162 now follows: taking A =W ∗(a), so that aηA, yields b∈W ∗(a), and
hence W ∗(b)⊆W ∗(a). On the other hand, taking A =W ∗(b), in which case b ∈ A,
gives aηW ∗(b), and hence W ∗(a) ⊆W ∗(b). This yields (B.601), from which the
final claim follows by our definition (B.566) and Theorem B.102. �

Using this language, it can be shown that for possibly unbounded Borel functions f
on σ(a), the possibly unbounded operator f (a) is affiliated to W ∗(a). Furthermore,
there exists a Borel measure μ on σ(a) such that the map f �→ f (a) may also be
seen as a so-called essential homomorphism from B(σ(a))/N (σ(a)) into the ∗-
algebra of normal operators affiliated with W ∗(a), where N (σ(a)) is the set of
μ-null functions on σ(a); this means that the algebraic properties hold after closure.
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Notes

The history of functional analysis is described from various points of view by
Bernkopf (1966, 1967), Birkhoff & Kreyszig (1984), Brezis & Browder (1998),
Dieudonné (1981), Monna (1973), Pier (2001), Pietsch (2007), Siegmund-Schultze
(2003), and Steen (1973). Apart from von Neumann (1932), the other founding
books of functional analysis—coincidentally from the same year, which closed the
foundational era that began around 1900—were Banach (1932) and Stone (1932).

The concept of a Hilbert space eventually emerged from Hilbert’s work on
quadratic forms in infinitely many variables (see especially his fourth paper on the
subject, Hilbert, 1906), which in turn was inspired by his analysis of integral equa-
tions (Hilbert, 1912). From a modern point of view, Hilbert’s space was the unit ball
in �2(N); he did not adopt the perspective of linear spaces and operators.

An important step towards this perspective was what is now called the Riesz–
Fischer Theorem from 1907; Riesz (1907a) proved the isomorphism

L2([a,b])∼= �2(N), (B.604)

whereas Fischer (1907) proved the completeness of L2([a,b]) and obtained Riesz’s
isomorphism as a corollary. Riesz (1907b) also obtained the the Riesz–Fréchet The-
orem for the special case L2([a,b])), independently found also by Fréchet (1907).
In fact, Hilbert (1906) had already shown this (mutatis mutandis) for what we now
call �2(N); the general case had to wait for Riesz (1934) and Löwig (1934). The
latter was the first to study non-separable Hilbert spaces, including Corollary B.64.
Both Riesz and Fréchet in addition played major roles in establishing another fa-
mous duality theorem, namely the one on the representation of linear functionals on
continuous functions by measures (cf. Theorem B.15 etc.); see Gray (1984).

Subsequently, Schmidt (1908) developed the linear and geometric structure of
�2(N), arguably the first Hilbert space studied as such, and Riesz (1913) explicitly
studied linear operators on this space. Finally, it was von Neumann (1927ab, 1932)
who first introduced Hilbert space and operator theory from an abstract point of
view, i.e., axiomatically. For a historical analysis of this step, which was triggered
by the attempts of von Neumann (originally jointly with Hilbert and Nordheim) to
provide a mathematical foundation for quantum mechanics), see Rédei (2005) and
Duncan & Janssen (2013); also cf. Corry (2004) on the role of Hilbert himself.

Functional analysis textbooks perused by the author include Conway (2007),
Dudley (1989), Kadison & Ringrose (1983), Maurin (1972), Reed & Simon (1972),
Rudin (1973), Schmüdgen (2012), and Weidmann ( 2000). A good place to start for
contemporary beginners is Rynne & Youngson (2008), followed by the more ad-
vanced text by MacCluer (2009), which also introduces C*-algebras. A natural next
step would then be Pedersen (1989), and on to operator algebras!

Since most of the material in this appendix is standard except for the last three
sections, it seems pointless to give detailed notes and attributions (so that several
section even lack notes), except for a few comments on unusual cases, and some
supplementary material which would have distracted too much from the main text.
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§B.2. �p spaces

Hölder’s Inequality (which incorporates the claim f g ∈ �1) should be clear for
p = 1 or p = ∞. For 1 < p < ∞, we use the fact that for any s, t ∈ [0,∞), one has

s1/pt1/q ≤ s
p
+

t
q
. (B.605)

Using (B.605) with s = (| f (x)|/‖ f‖p)
p and t = (|g(x)|/‖g‖q)

q and summing over x
gives (B.15). To derive Minkowski’s Inequality for 1 < p < ∞ (the cases p = 1 and
p = ∞ are obvious), define

h(x) = | f (x)+g(x)|p−1. (B.606)

Arguing as in part 1 above, if f ∈ �p and g ∈ �p, then f +g ∈ �p and hence h ∈ �q,
since h(x)q = |h(x)|q = | f (x)+g(x)|p. Now compute

‖ f +g‖p
p = ∑

x
| f (x)+g(x)|p = ∑

x
h(x)| f (x)+g(x)|

≤∑
x
|h(x) f (x)|+∑

x
|h(x)g(x)|= ‖ f h‖1 +‖gh‖1

≤ ‖h‖q(‖ f‖p +‖g‖p) = ‖ f +g‖p−1
p (‖ f‖p +‖g‖p), (B.607)

where in the last inequality we have used (B.15). This immediately gives (B.14).
§B.4. Basic measure theory Standard textbooks on measure theory include Bo-
gachev (2006), Dudley (1989), Malliavin (1995), Rudin (1986), etc.
§B.5. Measure theory on locally compact Hausdorff spaces

Urysohn’s Lemma states that if X is a locally compact Hausdorff space and K ⊂
U ⊂ X with K compact and U open, then there is a function g ∈ Cc(U) such that
0 ≤ g(x) ≤ 1 for each x ∈ X and g(x) = 1 for x ∈ K. Similarly, since a locally
compact Hausdorff space is completely regular, for each closed set F ⊂ X and point
x /∈ F there is a continuous function such that f (x) = 0 and f|F = 0.

An example of a space that is locally compact Hausdorff but not σ -compact,
given by Rudin ((1986), is X = R2 with topology given by the strange metric
d((x,y),(x′,y′)) = 1+ |y− y′| if x �= x′ and d((x,y),(x,y′)) = |y− y′|.

For a (tedious) direct proof of Theorem B.19, see Rudin (1986), Thm. 2.14. Al-
ternatively, Theorem B.19 may be derived from Choquet theory, as mentioned in the
main text, or from the Daniell–Stone construction of measures from positive func-
tionals in a more general setting, see e.g. Bogachev, 2007, §7.8 or Dudley, 1989,
§4.5. For a proof of Theorem B.22 see Malliavin (1995), Thm. 5.3.8.

The theory of finitely additive measures is exhaustively discussed in Rao & Rao
(1983); for a summary see Luxemburg (1991). The notion of a semiring of subsets
of X goes back to von Neumann (1950). See also Loya (2008), including a detailed
proof that Step(X ,R) is a (commutative) algebra.
§B.6. Lp spaces

An nice result “taming” Lp(X ,Σ ,μ) is Lusin’s Theorem, assuming μ is regular:
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Theorem B.165. Let 1≤ p<∞. If the support of f ∈ Lp(X) has finite measure, then
for any ε > 0 there exists g ∈Cc(X) such that μ({x ∈ X | f (x) �= g(x)})< ε .

§B.7. Morphisms and isomorphisms of Banach spaces

The Baire Category Theorem states that a complete metric space cannot be a
countable union of nowhere dense sets (where a set in a topological space is called
nowhere dense if its closure has empty interior, i.e., does not contain a non-empty
open set). In other words, if (M,d) is complete and M =∪nMn with each Mn closed,
then there is at least one n ∈ N for which Mn contains an open ball.
§B.9. Duality

The idea of writing (B.136) as limU f has the following origin.

1. Let f : X → K be any function between any pair of sets, and let F be a filter on
X . Then f∗F , which consists of all B ⊂ K for which f−1(B) ∈ F , is a filter on
K, called the push-forward of F by f . Moreover, if U is an ultrafilter on X , then
f∗U is an ultrafilter on K. This gives a map

f∗ : Ultra(X)→ Ultra(K). (B.608)

If we equip Ultra(X) with the topology generated by all sets of the form

UA = {U ∈ βX | A ∈U}, (B.609)

where A⊂ X , as in the main text, and likewise Ultra(K), then f∗ is continuous If
X is discrete, then Ultra(X) = βX , but not otherwise.

2. We say that some filter F on a topological case X converges to x ∈ X if Nx ⊆ F ,
where Nx is the neighbourhood filter of x, consisting of all neighbourhoods of x.
This is denoted by limF = x.

3. Combining points 1 and 2, if lim f∗F = z, i.e., if Nz ⊆ f∗F , we write

lim
F

f = z (z ∈ K). (B.610)

4. As for sequences, it can be shown that filters on Hausdorff spaces have at most
one limit, and that ultrafilters on compact spaces have at least one limit. Conse-
quently, ultrafilters on compact Hausdorff spaces K have exactly one limit, i.e.,
converge to a unique point. This gives a continuous map

lim : Ultra(K)→ K. (B.611)

5. It follows that if X is any set (seen as a discrete topological space), K is a compact
Hausdorff space, f : X → K is some function, and U is an ultrafilter on X , then
f∗U has a unique limit z ∈ K, written limU f = z or lim f∗U = z, or β f (U) = z,
since the latter notation gives the extension β f in the diagram (B.135). Thus
β f = lim◦ f∗, as in the diagram that combines (B.608) and (B.611), viz.

βX = Ultra(X)
f∗→ Ultra(K)

lim→ K. (B.612)
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Our proof of Choquet’s Theorem was adapted from Simon (2011) and Ebbe-
sen (2012). For an extensive treatment of the surrounding Choquet Theory see e.g.
Alfsen (1970), Bratteli & Robinson (1987), or Phelps (2001). For the Schläfli clas-
sification see Coxeter (1948).

To prove separability of H = L2(Rd), note that a dense subset is given by the set
of all functions of the form 1Bd

n
p, where n∈N, Bd

r = {x∈Rd | ‖x‖2≤ r} is the d-ball
of radius r, and p is some polynomial on Rd with rational coefficients. Alternatively,
take the complex rational linear span of all functions of the form 1A, where A⊂ Rd

is a rectangle with rational coefficients (proving density in either case requires some
measure theory). The latter construction has the advantage over the former that it
can be generalized to Hilbert spaces H = L2(X) for which the underlying measure
space (X ,Σ ,μ) satisfies the condition that the space of sets A ∈ Σ with μ(A) < ∞
is separable in the metric d(F,G) = μ(FΔG), where FΔG = (E ∩Fc)∪ (Ec∩F) is
the symmetric difference. Indeed, L2(X) is separable iff this condition is satisfied.

This class includes the important case where the underlying topological space
X is Polish (i.e., homeomorphic to a complete separable metric space), Σ consists
of the associated Borel sets, and μ is a σ -finite regular measure. If, furthermore, μ
is finite, then Lemma B.121 (in its original form for Polish spaces) applies. As in
the proof of Theorem B.118, this induces Hilbert space isomorphisms like (in the
second case) L2(X)∼= L2(0,1), which do not require a choice of basis. See Royden
(1988), Thm. 15.5.16 and Prop. 15.5.12, and Halmos (1974), p. 177.
§B.14. Basic spectral theory

Our terminology “continuous spectrum” σc(a) for the complement of the point
spectrum σp(a) is not standard; many authors reserve the former term for the com-
plement of σp(a) as well as the so-called residual spectrum σr(a), which is defined
as the set of those λ ∈ σ(a) for which λ /∈ σp(a) and ran(a−λ )− �= H. However,
for self-adjoint operators a (which is all we need in this book, and in quantum me-
chanics), it follows from e.g. Theorem B.93 that σr(a) = /0, so that at least for a∗ = a
“our” continuous spectrum σc(a) matches with the usual terminology.

The proof of (B.258) in any Banach algebra A with unit 1A is as follows. We first
show that the sum is a Cauchy sequence. Indeed, for n > m one has∥∥∥∥∥ n

∑
k=0

ak−
m

∑
k=0

ak

∥∥∥∥∥=
∥∥∥∥∥ n

∑
k=m+1

ak

∥∥∥∥∥ ≤ n

∑
k=m+1

‖ak‖ ≤
n

∑
k=m+1

‖a‖k. (B.613)

For n,m→ ∞ this converges to 0 by the theory of the geometric series. Since A is
complete, the Cauchy sequence ∑n

k=0 ak converges for n→ ∞. Now compute

n

∑
k=0

ak(1A−a) =
n

∑
k=0

(ak−ak+1) = 1A−an+1. (B.614)

Hence

§B.11. Choquet’s Theorem

§B.12. A précis of infinite-dimensional Hilbert space



642 B Basic functional analysis∥∥∥∥∥1A−
n

∑
k=0

ak(1A−a)

∥∥∥∥∥= ‖an+1‖ ≤ ‖a‖n+1, (B.615)

which converges to zero when n→ ∞, as ‖a‖ < 1 by assumption. Thus

lim
n→∞

n

∑
k=0

ak(1A−a) = 1A. (B.616)

By a similar argument,

lim
n→∞

(1A−a)
n

∑
k=0

ak = 1A, (B.617)

so that, by continuity of multiplication in a Banach algebra, one finally has

lim
n→∞

n

∑
k=0

ak = (1A−a)−1. (B.618)

To see that the closure a− of a closable operator a is indeed closed (!), suppose
fn → f and a fn → g, with ( fn) in D(a−). Since fn ∈ D(a−) for fixed n, there exists
( fm,n) in D(a) such that limm fm,n = fn and limm a fm,n ≡ gn exists. Then clearly

lim
m,n

fm,n = f , (B.619)

and we claim that
lim
m,n

a fm,n = g. (B.620)

Namely, ‖a fm,n − g‖ ≤ ‖a fm,n − a fn‖+ ‖a fn − g‖. For ε > 0, take n so that the
second term is < ε/2. For that n, the vectors a( fm,n− fn) converge, as m→∞, since
a fm,n → gn and a fn is independent of m. Also, recall that fm,n− fn → 0 as m→ ∞.
By assumption, a is closable, hence by definition one must have a( fm,n− fn)→ 0
in m. Hence we may find m so that ‖a fm,n− a fn‖ < ε/2, so that ‖a fm,n− g‖ < ε ,
and (B.620) follows. Hence f ∈ D(a−). Finally, since a− f = limm,n a fm,n one has
a− f = g by (B.620), or a− f = limn a fn by definition of g. Thus a− is closed.
§B.15. The spectral theorem

By (B.319), von Neumann algebas like W ∗(a) are complete under strong conver-
gence of nets (rather than merely sequences), and if some net is monotone increasing
(or decreasing) and bounded, the strong limit equals the supremum (or infimum), as
in Proposition B.98. This yields operatorial versions of (B.40) - (B.44):

eU = sup{ f (a) | f ∈Cc(U),0≤ f ≤ 1σ(a)}; (B.621)
eK = inf{ f (a) | f ∈C(σ(a)),0≤ f ≤ 1σ(a), f|K = 1K}; (B.622)
eA = inf{eU |U ⊇ A,U ∈ O(σ(a))}; (B.623)

= sup{eK | K ⊆ A,K ∈K (σ(a))}, (B.624)

where U ∈ O(σ(a)) is open, K ∈K (σ(a)) is compact, and A⊂ σ(a) is Borel.
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§B.16. Abelian ∗-algebras in B(H)
For an alternative proof of Proposition B.106, one observes that

ψ →
∫ 1

0
fψ =

∫ 1

0
bψ = 〈

√
|ψ|,bψ/

√
|ψ|〉 (B.625)

defines a bounded functional on L2(0,1) seen as a dense subspace of L1(0,1), and
use the duality L1(0,1)∗ ∼= L∞(0,1). Indeed, using Cauchy–Schwarz, one has∣∣∣∣∫ 1

0
fψ
∣∣∣∣= |〈√|ψ|,bψ/

√
|ψ|〉| ≤ ‖b‖‖

√
|ψ|‖2‖ψ/

√
|ψ|‖2 = ‖b‖‖ψ‖1. (B.626)

§B.17. Classification of maximal abelian ∗-algebras in B(H)
Theorem B.118 goes back to von Neumann (1931); for the details of the second

proof see Kadison & Ringrose (1986), §9.4, or, very lucidly, Stevens (2016).
§B.20. The trace

The trace is often neglected in functional analysis books, except when these tend
to quantum mechanics (Reed & Simon, 1972) or to operator algebras (Pedersen,
1989). Eqs. (B.476) - (B.477) and (B.496) reflect the function space dualities

�0(N)∗ ∼= �1(N); (B.627)
�1(N)∗ ∼= �∞(N); (B.628)
�2(N)∗ ∼= �2(N). (B.629)

Similar to the �p-spaces, one has Banach spaces Bp(H) residing in B0(H) for each
1≤ p < ∞, called Schatten–von Neumann ideals, see e.g. Simon (2005).
§B.21. Spectral theory for unbounded self-adjoint operators

Our approach to unbounded operators via the bounded transform combines ideas
from Kaufman (1978), Woronowicz (1991), Woronowicz & Napiórkowski (1992),
Schmüdgen (2012), and Koliha (2014). The proof of Theorem B.159 via Lemma
B.160 (due to Nelson, 1959), was suggested to the author by Nigel Higson. The last
part of §B.21 was inspired by Lemma 5.2.8 in Pedersen (1989), in which we have
simply replaced the Cayley transform by the bounded transform.

The idea of affiliating closed operators to von Neumann algebra goes back to von
Neumann; our brief treatment is hopefully more appealing than the elaborate con-
structions in Kadison & Ringrose (1983), §5.6. A number of details were supplied
in the M.Sc Thesis of Christian Budde (2015); see also Budde & Landsman (2016).

For general C*-algebras A, the multiplier algebra consists of all maps m : A→ A
for which there exists an adjoint n ≡ m∗ : A→ A such that b∗m(a) = n(b)∗a. Such
maps are automatically linear and bounded, and M(A) is a C*-algebra itself as a
subalgebra of the Banach space B(A) of all bounded linear maps on A, enriched
with the adjoint m∗ = n. See, e.g., Lance (1995), or §C.10 below. For commuta-
tive C*-algebras this reduces to the definition in the main text, which dates from
Wang (1961). For unbounded multipliers see Woronowicz (1991) and Lance (1995);
Woods (1979) treats the bounded case.



Appendix C

Operator algebras

This appendix provides a short course in operator algebras, building on the previous
appendix. Indeed, there is surprisingly little algebra in the subject (so that there are
hardly any prerequisites in that direction), and quite a lot of functional analysis,
involving both operators on Hilbert space and more general Banach space theory.

Traditionally, the field of operator algebras has had two branches: C*-algebras
and von Neumann algebras. Although historically speaking the latter (invented by
von Neumann in 1930) preceded the former (introduced by Gelfand and Naimark
in 1943), the logical order of presentation is the opposite, since von Neumann al-
gebras turned out to be special cases of C*-algebras (with additional structure).
Furthermore, for reasons in the foundations of quantum mechanics (as explained in
the main text), beside von Neumann algebras we will discuss a few lesser known
special cases of C*-algebras, such as scattered C*-algebras and AW*-algebras.

C.1 Basic definitions and examples

A C*-algebra is both an associative algebra and a Banach space, as follows:

Definition C.1. 1. A Banach algebra is a Banach space A that is simultaneously
an algebra in which

‖ab‖ ≤ ‖a‖‖b‖ (a,b ∈ A). (C.1)

2. An involution on an algebra A is a real-linear map ∗ : A→ A, written a �→ a∗,
such that a∗∗ = a, (ab)∗ = b∗a∗, and (λa)∗ = λa∗ for all a,b ∈ A and λ ∈C. An
algebra with involution is also called a ∗-algebra.

3. A C*-algebra is a Banach algebra A with involution in which

‖a∗a‖= ‖a‖2 (a ∈ A). (C.2)

With the same proof as (A.22), these axioms imply

‖a∗‖= ‖a‖. (C.3)
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The three main examples (at least for a first orientation) are:

• The space C0(X) of all continuous functions f : X → C that vanish at infinity,
where X is some locally compact Hausdorff space (see §B.3). This is an algebra
under pointwise operations: addition is given by (λ · f + g)(x) = λ f (x)+ g(x),
and multiplication is ( f g)(x) = f (x)g(x). Furthermore, it has a natural involution
f ∗(x) = f (x), and a natural norm ‖ f‖∞ = supx∈X{| f (x)|}, cf. (B.23). The above
axioms of a C*-algebra are easily verified. Note that C0(X) has a unit (namely the
function 1X equal to 1 for any x) iff X is compact. It is of fundamental importance
for physics and mathematics that C0(X) is a commutative C*-algebra.

• The space B(H) of all bounded operators on some Hilbert space H, with obvious
algebraic operations, involution given by the adjoint (see (A.15)), and the stan-
dard operator norm ‖a‖= sup{‖aψ‖,ψ ∈H,‖ψ‖= 1}. See Proposition A.7 and
Theorem B.33 for the proof that B(H) is a C*-algebra; it has a unit, given by the
identity 1H . If dim(H)> 1, this is a highly non-commutative C*-algebra.

• The space B0(H) of all compact operators on some Hilbert space H, with oper-
ations inherited from B(H); see Theorem B.130, which not merely shows that
B0(H) is a C*-algebra, but also that it is a (closed) two-sided ideal in B(H). It
fails to have a unit whenever H is infinite-dimensional (this follows from almost
any result in §B.19, such as Theorem B.135).

Definition C.2. 1. A homomorphism between C*-algebras A and B is a linear map
ϕ : A→ B that for all a,b ∈ A satisfies

ϕ(ab) = ϕ(a)ϕ(b); (C.4)
ϕ(a∗) = ϕ(a)∗. (C.5)

2. An isomorphism between two C*-algebras is an invertible homomorphism. If A
and B are isomorphic as C*-algebras in this sense, we write A∼= B.

It follows from linear algebra that the set-theoretic inverse of an invertible linear
map ϕ : A→ B is automatically linear. It is similarly easy to show that the inverse
of an invertible homomorphism is itself a homomorphism, but it is a deeper fact
about C*-algebras that an isomorphism is automatically isometric (and hence has
an isometric inverse); see Theorem C.62. Furthermore, if B = C, then the property
ϕ(a∗) = ϕ(a)∗ follows from the other conditions on a homomorphism.

The following notion, originally inspired by quantum mechanics (and turned into
mathematics by von Neumann), gives a geometric flavor to operator algebras.

Definition C.3. A state on a C*-algebra A is a bounded linear map ω : A→ C that
satisfies:

1. ω(a∗a)≥ 0, a ∈ A (positivity);
2. ‖ω‖= 1 (normalization).

If A has a unit, the definition of a state considerably simplifies.

Lemma C.4. Let A be a C*-algebra with unit and let ω : A→ C be a linear map.
Then ω is positive iff it is bounded and satisfies ‖ω‖= ω(1A).
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The proof requires some positivity theory in C*-algebras, so we postpone it to §C.7,
but as of now, we immediately infer that in the unital case we have:

Proposition C.5. A linear map ω : A→ C on a unital C*-algebra is a state iff ω is
positive and satisfies ω(1A) = 1, and hence iff ω is bounded with ‖ω‖=ω(1A) = 1.

Using the Banach–Alaoglu Theorem B.48, this implies that the state space S(A) of
a unital C*-algebra A, i.e., the set of all states on A, is a compact convex subset of A∗
in its w∗-topology. Defining the pure state space P(A) of A as the extreme boundary
∂eS(A), the Krein–Milman Theorem B.50 almost immediately implies:

Theorem C.6. Let A be a C*-algebra with unit, having state space S(A) and pure
state space P(A) = ∂eS(A). Then P(A) �= /0 and S(A) = co(P(A))−.

In words, C*-algebras have sufficiently many pure states to approximate general
states arbitrarily well, at least in the w∗-topology (of “expectation values”).

The only complication in applying Theorem B.50 to K = S(A) ⊂ A∗ is that A is
a complex Banach space, but the situation may be reduced to the real Banach space

Asa = {a ∈ A | a∗ = a}. (C.6)

Lemma C.7. Let A be a C*-algebra with unit. If ω ∈ S(A), then ω(a∗) = ω(a).

Proof. Using Definition C.3.2 and eq. (C.2), for any a∗ = a and t ∈ R we have

|ω(a+ it)|2 ≤ ‖a+ it‖2 = ‖(a− it)(a+ it)‖= ‖a2 + t2‖ ≤ ‖a‖2 + t2. (C.7)

Writing ω(a) = α+ iβ , where α,β ∈R, this gives α2+β 2+2β t ≤ ‖a‖2 for all t ∈
R, which forces β = 0. This proves the claim for self-adjoint a. For the general case,
one uses the following decomposition of a as a sum of two self-adjoint operators:

a = b+ ic (b∗ = b,c∗ = c); (C.8)
b = 1

2 (a+a∗), c =− 1
2 i(a−a∗). (C.9)

Consequently, we may restrict a state ω ∈ S(A) to a real-linear functional

ωR = ω|Asa : Asa → R (C.10)

that satisfies ω(1A) = 1 and ω(a2) ≥ 0 for any a ∈ Asa, where we used Theorem
C.52 below to reformulate the positivity condition on states in terms of self-adjoint
operators alone. Conversely, we may extend a state ωR on Asa to a state ω on A by

ω(a) = ωR(b)+ iωR(c), (C.11)

assuming (C.8) - (C.9). We then have ‖ω‖ = ‖ωR‖ = 1, since obviously ‖ωR‖ ≤
‖ω‖ = 1 (since its sup-norm is computed on fewer operators), but also ω(1A) = 1.
Thus we may regard S(A) as a compact convex set in the real Banach space A∗sa rather
than in the complex Banach space A∗, and Theorem B.50 applies. Alternatively, one
could have extended the latter to the complex case, which is possible with a similar
(lack of) effort as in the procedure above.
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C.2 Gelfand isomorphism

The example A =C0(X) of a commutative C*-algebra given in the previous section
is more than that; as proved in the very first (1943) paper on C*-algebras by Gelfand
and Naimark (despite whom one often speaks of , it is generic.

Theorem C.8. Every commutative C*-algebra A is isomorphic to C0(X) for some
locally compact Hausdorff space X, which is unique up to homeomorphism.

The proof is technically intricate at points, but the main idea is quite simple:

1. The space X may be taken to be the Gelfand spectrum Σ(A) of A, i.e., the set of
all nonzero linear maps ω : A → C that satisfy ω(ab) = ω(a)ω(b) (and hence
are homomorphisms A→ C as algebras). For example, if A is already given as
C0(X), then each x ∈ X defines ωx ∈ Σ(A) by ωx( f ) = f (x), which is linear
multiplicative (by the pointwise definition of addition and multiplication in A).

2. The Gelfand transform maps each a ∈ A to a function â : Σ(A)→ C by

â(ω) = ω(a), (a ∈ A, ω ∈ Σ(A)). (C.12)

3. The Gelfand topology is the weakest topology on Σ(A) making all functions â
continuous (i.e., the topology generated by the sets â−1(U), U ∈C open, a ∈ A).
In this topology, Σ(A) is compact iff A has a unit, and locally compact otherwise.

4. The isomorphism A→C0(Σ(A)), then, is just given by the Gelfand transform.

This picture becomes even more compelling from the following observation:

Lemma C.9. For any (i.e. not necessarily commutative) C*-algebra A we have
Σ(A)⊂ A∗. Furthermore, for any ω ∈ Σ(A),

‖ω‖= 1, (C.13)

and if A has a unit, 1A, then also

ω(1A) = 1. (C.14)

In other words, multiplicative linear functionals on A are automatically continuous
(recall that A∗ is the Banach space of continuous linear maps from A to C, see §B.9).

Throughout the rest of this section we restrict all proofs to the unital case; the
general case may be handled by the technique of unitization to be discussed in §C.6.

Proof. Let ω ∈ Σ(A). By multiplicativity, ker(ω) is a two-sided ideal in A. Trivially,
for any a ∈ A, we have a−ω(a) ·1A ∈ ker(ω). If this element were invertible, then
ker(ω) would contain the unit 1A and hence would coincide with A, contradicting
the definition of Σ(A) (which requires ω to be nonzero). Hence ω(a) ∈ σ(a). By
the spectral radius formula (B.255) we have |ω(a)| ≤ ‖a‖, whence ω ∈ A∗.

Furthermore, ω(1A)
2 =ω(1A), whence ω(1A) = 1 or 0, the latter being excluded

since it would imply that ω(a) = 0 for all a ∈ A. This gives (C.14) (which also
follows from Lemma C.4, given Lemma C.11 below), which in turn gives (C.13). �
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The Gelfand topology on Σ(A) coincides with the weak∗ topology inherited
from A∗, which is simply the topology of pointwise convergence (i.e. ωλ → ω iff
ωλ (a)→ ω(a) for each a ∈ A), and the Gelfand transform a �→ â is (by abuse of
notation) the image of a in A∗∗ under the canonical injection A ↪→ A∗∗ appearing in
Proposition B.44, restricted (as a function on A∗) to the subset Σ(A)⊂ A∗. From this
perspective, continuity of â immediately follows from Proposition B.46.

This picture of the Gelfand topology also has a technical advantage, for we infer:

Lemma C.10. If A is unital, then its Gelfand spectrum Σ(A) is compact Hausdorff.

Proof. By Lemma C.9, Σ(A) lies in the unit ball of A∗, which by the Banach–
Alaoglu Theorem is compact in its weak∗ topology. So we are ready if we show
that Σ(A) is a weak∗-closed subset of A∗, which is obvious from its definition: if
ωλ → ω , then for any a ∈ A we obviously have

ω(ab) = lim
λ

ωλ (ab) = lim
λ

ωλ (a)ωλ (b) = ω(a)ω(b). (C.15)

We know show that the Hausdorff property of Σ(A) is inherited from A∗. A subbasis
of its weak∗ topology is given by sets of the form

Uε
a (ϕ) = {ρ ∈ A∗, |ϕ(a)−ρ(a)|< ε}, (C.16)

where a ∈ A, ϕ ∈ A∗, and ε > 0. Replacing ρ ∈ A∗ by ρ ∈ Σ(A) we thus obtain
a subbasis of the Gelfand topology. If ω and ω ′ are distinct points in Σ(A), there
exists a ∈ A such that ω(a) �= ω ′(a). Taking some 0 < ε < |ω(a)−ω ′(a)|/2, the
two points in question are separated by the opens Uε

a (ω) and Uε
a (ω ′). �

It is immediate from the definition of Σ(A) that a �→ â is an algebra homomorphism,
since we have

âb(ω) = ω(ab) = ω(a)ω(b) = â(ω)b̂(ω) = (â · b̂)(ω). (C.17)

The fact that the Gelfand transform preserves the involution follows from:

Lemma C.11. If ω ∈ Σ(A), then ω(a∗) = ω(a), and hence â∗ = (â)∗.

Proof. Using (C.14) and (C.2), the proof is the same as for Lemma C.7. �

The hard part of the proof of Theorem C.8 is isometricity of the Gelfand transform:

‖â‖∞ = ‖a‖. (C.18)

As always, isometricity obviously implies injectivity. Surprisingly, using the Stone–
Weierstrass Theorem B.51, in this case isometricity also yields surjectivity of the
map a �→ â. Namely, if we take X = Σ(A), and B to be the image Â of A under the
Gelfand transform, then the conditions on B in Theorem B.51 are easily verified. As-
suming (C.18), this image is obviously closed, so that Â=C(Σ(A)). With injectivity
also implied by (C.18), it follows that the Gelfand transform is an isomorphism.
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It remains to prove (C.18), which conceptually is a conjunction of two equalities:

‖â‖∞ = r(a); (C.19)
‖a‖ = r(a) (a∗ = a), (C.20)

where r(a) = sup{|λ |,λ ∈ σ(a)} is the spectral radius of a, see Theorem B.84.
These immediately yield (C.18) for self-adjoint a, from which the general case fol-
lows from (C.2), noting that a∗a is self-adjoint for any a: asuming (C.19) - (C.20)
as well as the homomorphism property of the Gelfand transform, we compute

‖â‖2
∞ = ‖â∗â‖∞ = ‖â∗a‖∞ = ‖a∗a‖= ‖a‖2. (C.21)

Since (C.20) just repeats (B.257), we already know it is true for general C*-algebras
(so far, with unit). As we shall now show, (C.19) holds in any commutative Banach
algebra with unit. The key is the following lemma.

Lemma C.12. Let A be a commutative Banach algebra with unit and let a ∈ A. For
any λ ∈ σ(a) there is an element ω ∈ Σ(A) such that λ = ω(a).

Granted this, and using the proof of Lemma C.9 as well as (B.253), we obtain

σ(a) = σ(â), (C.22)

for any a∈A. Given (B.254), this yields (C.19) and hence the Gelfand isomorphism.
There are two approaches to our crucial Lemma C.12, each having its own merits.

The first and best known proof, going back to Gelfand himself, relies on the theory
of (maximal) ideals in Banach algebras. It is based on the following identification:

Proposition C.13. Let A be a commutative Banach algebra with unit. There is a
bijective correspondence between Σ(A) and the set M (A) of maximal ideals in A,

ω ↔ ker(ω). (C.23)

This will be proved in §C.8 below, which also contains the relevant background.
It implies Lemma C.12, as follows: if λ ∈ σ(a), then by definition a−λ is not

invertible in A, so that J = {(a−λ )b | b ∈ A} is an ideal in A. By Zorn’s Lemma (or
Hausdorff’s Maximality Theorem), applied to the partially ordered set of all proper
ideals in A that contain J, ordered by inclusion), J is contained in some maximal
ideal, so that J ⊆ ker(ω) for some ω ∈ Σ(A). Since a−λ ∈ J (take b = 1A), from
(C.14) we obtain ω(a) = λ . Note the non-constructive nature of this argument!

The other line of proof, due to Kadison, uses a different characterization of Σ(A):

Proposition C.14. Let A be a commutative C*-algebra with unit. Then the Gelfand
spectrum Σ(A) coincides with the pure state space P(A).

Recall Definition 1.10 and Theorem C.6; the pure state space P(A) = ∂eS(A) of a
C*-algebra A is defined as the boundary of the state space of A. The argument that
instantly delivers Lemma C.12 from Proposition C.14, then, is as follows:
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Proposition C.15. Let A be a C*-algebra with unit. For any normal element a ∈ A
(i.e., aa∗ = a∗a) and λ ∈ σ(a), there is a pure state ω ∈ P(A) such that ω(a) = λ .

The proof of both results uses some positivity theory for C*-algebras, which is
systematically developed in §C.7 below. Here, we just need that a ∈ A is positive,
written a≥ 0, iff a = b∗b for some b ∈ A, iff a is self-adjoint with σ(a)⊂ [0,∞).

We write a≥ b or b≤ a if a−b is positive. Also, a linear functional ω : A→C is
called positive iff ω(a)≥ 0 for all a≥ 0, and we write ω ≥ ϕ or ϕ ≤ω if ω−ϕ ≥ 0.

Let us note that the proofs of these results in §C.7 use some Gelfand theory, but
this use is limited to Theorem C.25, which could have been proved à la Theorem
C.24, whose proof derives the Gelfand isomorphism in the special case at hand.
Therefore, the use of Propositions C.14 and C.15 in the proof of (C.18) and hence
of Theorem C.8 does not render this line of proof of the latter circular.

In particular, the proof of Proposition C.14 relies on:

Lemma C.16. If a∗ = a ∈ A there is a number t ≥ 0 such that t±a≥ 0.

Proof. Since σ(a)⊂R is compact (see Corollary C.27 and Theorem B.84), we have
σ(a)⊆ [−t, t] for some t ≥ 0. It is clear from the definition of σ(a) that σ(t±a) =
t±σ(a), which yields the lemma by the criterion for positivity just stated. �

We now prove Proposition C.14.

Proof. It is clear from Lemma C.11 and eq. (C.14) that ω ∈ Σ(A) is a state. To show
that ω is pure, we use the fact that for any state ω ∈ S(A), the expression

〈b,a〉= ω(b∗a) (C.24)

defines an hermitian form on A; the easy proof again uses use Lemma C.11. Apply-
ing Cauchy–Schwarz with b � 1A and using 1∗A = 1A = 12

A gives

|ω(a)|2 ≤ ω(a∗a). (C.25)

Now suppose that ω = λω1 +(1−λ )ω2 with ωi ∈ S(A) and λ ∈ (0,1). Applying
(C.25) (in the opposite direction) to ω1 and ω2 gives

ω(a∗a)≥ λ |ω1(a)|2 +(1−λ )|ω2(a)|2. (C.26)

On the other hand, multiplicativity of ω gives

ω(a∗a) = λ 2|ω1(a)|2 +λ (1−λ )(ω1(a)ω2(a)+ω2(a)ω1(a))+(1−λ )2|ω2(a)|2.

Subtracting this from (C.26) gives the inequality 0≥ λ (1−λ )|ω1(a)−ω2(a)|2, so
that ω1 = ω2, and hence ω is pure by definition. This shows that Σ(A)⊆ P(A).

To prove the converse inclusion, we need another lemma.

Lemma C.17. Let ω ∈ P(A) be a pure state on A. If τ : A→C is a linear functional
such that 0≤ τ ≤ ω , then we can find a scalar s ∈ [0,1] such that τ = sω .
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Proof. We assume τ �= 0 and τ �= ω (otherwise the claim is trivially true). By
Lemma C.16, this implies τ(1A) �= 0 and τ(1A) �= 1. For if τ(1A) = 0, then for
a∗= a we find t as in Lemma C.16, so that t±a≥ 0 and hence 0≤ τ(t±a) =±τ(a).
Hence τ(a) = 0 on each self-adjoint a, which forces τ = 0 by the usual decompo-
sition (C.8). If τ(1A) = 1, we apply a similar argument to the positive functional
ω − τ . Therefore, t = 1− τ(1A) satisfies t ∈ (0,1), and defining ω1 = (ω − τ)/t
and ω2 = τ/τ(1A) we obtain a decomposition ω = tω1 + (1− t)ω2. Since ω is
pure, this gives ω1 = ω2 = ω and hence τ = τ(1A)ω . Clearly, 0 ≤ τ ≤ ω enforces
0≤ τ(1A)≤ 1, so the claim follows with s = τ(1A). �

We now prove that ω ∈ P(A) is multiplicative on arbitrary a ∈ A, and b ∈ A such
that (for the moment) 0 ≤ b ≤ 1A. Define ωb : A → C by ωb(a) = ω(ab). Then
0≤ ωb ≤ ω: taking b = c∗c, the first inequality 0≤ ωb follows from

ωb(a∗a) = ω(c∗ca∗a) = ω((ac)∗ac)≥ 0, (C.27)

since A is abelian, and the second is analogous, using the fact that 0≤ b≤ 1A implies
0≤ 1A−b≤ 1A. Therefore, Lemma C.17 gives ωb = sω with s = ωb(1A) = ω(b).

For general 0 �= b≥ 0, we rewrite b as b = ‖b‖ · (b/‖b‖), and use linearity of ω
and the previous result to obtain multiplicativity. For general self-adjoint b we use
Lemma C.53, and finally we use (C.8). �
At last, we are now in a position to prove Proposition C.15, so let a ∈ A be normal.

Proof. Let C∗(a) be the commutative C*-algebra generated by a (and hence a∗) and
1A within A; as in Theorem C.25 below, this is the norm-closure of all polynomials in
a and a∗, and C(σ(a))∼=C∗(a) via the map f (λ ,λ ) �→ f (a,a∗). Using Proposition
C.14, define a pure state ωλ on C∗(a) by linear and multiplicative extension of
ωλ (1A) = 1, ωλ (a) = λ , and ωλ (a∗) = λ , i.e., ωλ ( f (a,a∗)) = f (λ ,λ ).

Since ‖ωλ‖ = 1, Hahn–Banach (Corollary B.41, with V � A and W � C∗(a))
yields a linear extension ω ′λ : A → C of ωλ , which is in fact a state by Lemma
C.4. To show that ω ′λ may be chosen to be pure also on A, let Sλ (A) ⊂ S(A) be the
set of all states on A that extend ωλ . This is a nonempty weak∗-closed and hence
weak∗-compact convex subset of S(A), which by the Krein–Milman Theorem B.50
has nonempty boundary ∂eSλ (A). It is easy to show that ∂eSλ (A)⊂ ∂eS(A) = P(A):
for ω ∈ ∂eSλ (A), suppose ω = tω1 +(1− t)ω2, with t ∈ (0,1) and ωi ∈ S(A). Since
ω|C∗(a) = ωλ is pure, we have ω1|C∗(a) = ω2|C∗(a) = ωλ , or ωi ∈ Sλ (A). But ω was
assumed pure in Sλ (A), so that ω1 = ω2 = ω , i.e., ω ∈ ∂eS(A). Hence if we choose
ω ′λ ∈ ∂eSλ (A), then the extension ω ′λ of ωλ is also pure on A. �

The following ingredients are still missing from the proof of Theorem C.8:

• The proof the uniqueness of X up to homeomorphism (see §C.3).
• The proof of Proposition C.13 (see §C.8).
• The extension of the entire argument to the non-unital case (see §C.6).

We start with the first issue, which we fill in more broadly than needed for the proof
of Theorem C.8, namely, as part of a broader picture called Gelfand duality (which
will fall into place if one uses the language of category theory, see Appendix E).
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C.3 Gelfand duality

Theorem C.8 is a consequence of the following two propositions.

Proposition C.18. Let A and B be unital commutative C*-algebras. Then

ϕ = α∗, (C.28)

where α∗(ω) =ω ◦α , establishes a bijective correspondence between unital homo-
morphisms α : A→ B and continuous maps ϕ : Σ(B)→ Σ(A).

In particular, Σ(A) and Σ(B) are homeomorphic iff A and B are isomorpic.

Proof. Since α(ab) = α(a)α(b), if ω ∈ Σ(B) it is clear that then α∗(ω) ∈ Σ(A).
Conversely, denoting the pertinent Gelfand transforms by GA : A→C(Σ(A)) and

GB : A→C(Σ(B)), given ϕ : Σ(B)→ Σ(A), we define α : A→ B by

α = G−1
B ◦ϕ∗ ◦GA, (C.29)

where ϕ∗ : C(Σ(A))→C(Σ(B)) is the pullback of ϕ (i.e., ϕ∗( f ) = f ◦ϕ).
It is easy to verify that given ϕ , the map α defined in (C.29) returns ϕ through

(C.28), whereas given α , the map ϕ defined in (C.28) returns α through (C.29). �
Proposition C.19. For any compact Hausdorff space X, the evaluation map

ev : X → Σ(C(X)); (C.30)
evx( f ) = f (x), (C.31)

is a homeomorphism, so that
Σ(C(X))∼= X . (C.32)

Proof. Injectivity of ev immediately follows from Urysohn’s lemma (which applies
because a compact Hausdorff space is normal), which implies that C(X) separates
points on X (i.e., for all x �= y there is an f ∈C(X) for which f (x) �= f (y)).

To prove surjectivity, suppose there is ω ∈ Σ(C(X)) such that ω �= evx for all x ∈
X . Now ker(ω) = ker(evx) would imply ω = evx (because ω( f ) = λ then implies
f − λ · 1X ∈ ker(ω), and hence f (x) = λ , and vice versa), so ker(ω) �= ker(evx).
Since evx ∈ Σ(C(x)), and ω ∈ Σ(C(x)) by assumption, by Proposition C.13 both
kernels are maximal ideals in C(X), and hence ker(ω)⊂ ker(evx) is impossible (and
so is the opposite inclusion). Therefore, for each x there is a function fx ∈ ker(ω)
for which fx(x) �= 0 (for otherwise f (x) = 0 for all f ∈ ker(ω), so that ker(ω) ⊆
ker(evx)). Redefining fx by a phase if necessary, we may assume that fx(x)> 0, and
taking the real part of fx if necessary, we may also assume that f is real-valued.

For each x, the set Ux where fx > 0 is open, because f is continuous. This
gives a covering {Ux}x∈X of X , which by compactness has a finite subcovering
{Uxn}n=1,...,N . Then define the function

f =
N

∑
n=1

fxn , (C.33)
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which is strictly positive by construction, so that it is invertible. But ker(ω) is an
ideal, so that, with all fxn ∈ ker(ω) (since all fx ∈ ker(ω)) also f ∈ ker(ω). But
an ideal containing an invertible element must contain 1X and hence coincides with
C(X), contradicting the fact that ker(ω) was maximal. Hence ev is surjective.

Finally, to prove that ev is a homeomorphism, we equip X with the topology
induced by ev, in which the open sets are of the form ev−1(U), with U open in
Σ(C(X)) in the Gelfand topology. We claim that this new topology on X is weaker
than the original one (this terminology includes the possibility that the two topolo-
gies in question coincide). Namely, for f ∈C(X) one has f̂ ◦ev= f . Therefore, since
the Gelfand topology on Σ(C(X)) is the weakest topology for which all Gelfand
transforms f̂ are continuous, the new topology on X is the weakest topology for
which all f are continuous. But f was already continuous with respect to the given
topology, so the claim follows. Without proof we now state a result from topology:

Lemma C.20. If a set X is Hausdorff in some topology O1(X) and compact in a
topology O2(X), and if O1(X)⊆ O2(X), then O1(X) = O2(X).

Since X is in fact compact and Hausdorff in both topologies, we conclude from this
lemma that the new topology on X must coincide with the original one. �

Uniqueness of the Gelfand spectrum up to homeomorphism follows from Proposi-
tions C.18 and C.19: if A is a unital commutative C*-algebra for which A ∼= C(X)
as well as A∼=C(Y ), then applying Σ and using (C.32) makes X and Y both home-
omorphic to Σ(A), and hence to each other.

With minor changes, the proof of Proposition C.19: applies also to “well-
behaved” manifolds, by which we mean second countable smooth locally compact
Hausdorff manifolds. These are the ones encountered in physics (especially in clas-
sical mechanics); we need this for Theorem 3.10 in the main text. Such manifolds
admit partitions of unity subordinate to any given cover (Uλ ) that are locally finite
as well as countable, i.e., sequences of smooth functions χn :→ [0,1] such that:

1. Each x ∈ X has an open neighbourhood U that intersects only finitely many of
the sets supp(χn);

2. For each x ∈ X we have ∑n χn(x) = 1 (where the sum is finite);
3. Each set supp(χn) is contained in some Uλ .

Furthermore, Σ(C∞(X)) is defined as for any complex associative algebra A, i.e.,
as the set of nonzero multiplicative linear maps ω : C∞(X)→ C.

Proposition C.21. For any second countable smooth locally compact Hausdorff
manifold X, the evaluation map ev : X → Σ(C∞(X)) in (C.31) is a bijection.

Proof. Since X is not necessarily compact, we cannot use Urysohn’s Lemma di-
rectly to prove that C∞(X) separates points of X (so that ev is injective), but this time,
if U ⊆ X is open and F ⊂U is closed, there exists a smooth function χ : X → [0,1]
such that χ = 1 on F and χ = 0 on X\U . Indeed, {U,X\F} is an open cover of X ,
and if (χU ,χX\F) is a partition of unity subordinate to this cover, χ = χU will do.
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Now for x �= y, take F = {x} and use the Hausdorff property to separate (x,y) by
disjoint open sets (U,V ), and we have χ(x) = 1 whilst χ(y) = 0.

The proof of surjectivity is the same as for C(X), including the proof that ker(ω)
is a maximal ideal in C∞(X), until the point (C.33) is reached. Here compactness is
no longer available, so that we need to replace (C.33) by the expression

f = ∑
n

cnχn fxn , (C.34)

where (χn) is a smooth partition of unity subordinate to the cover (Ux), for each
n ∈ N, fxn is picked by no. 3 in the list of properties of a partition of unity listed
above, and the coefficients cn are chosen so that 0 < cn < (n2‖χn fxn‖∞)

−1 (note that
χn and hence χn fxn has compact support and is continuous, so that it is bounded).
Since ∑n(1/n2) < ∞, the insertion of the cn makes f bounded and the sum (C.34)
uniformly convergent. which is necessary to pull ω through the sum so as to prove
that f ∈ ker(ω), as follows. Since the sup-norm is not defined on all of C∞(X), we
need a little argument here. Take t > ‖ f‖∞, so that t ·1X ± f nowhere vanishes and
hence is invertible, so that ω(t · 1X ± f ) = t ±ω( f ) �= 0 by multiplicativity of f ,
i.e., ±ω( f ) �= t. Since f and hence ω( f ) is real, this gives |ω( f )| ≤ ‖ f‖∞. Since
ω( fxn) = 0, and similarly for each finite sum in (C.34), we finally obtain

|ω( f )|=
∣∣∣∣∣ω( f −

N

∑
n=1

cnχn fxn)

∣∣∣∣∣≤
∥∥∥∥∥ f −

N

∑
n=1

cnχn fxn)

∥∥∥∥∥ , (C.35)

so letting N → ∞ gives ω( f ) = 0, or f ∈ ker(ω). Since f is invertible, this implies
1X ∈ ker(ω) and hence ker(ω) =C(X), contradicting ω �= 0. �

Corollary C.22. Let X and Y be compact Hausdorff spaces. Then α( f ) = f ◦ϕ , i.e.,

α = ϕ∗, (C.36)

establishes a canonical bijective correspondence between unital homomorphisms
α : C(Y )→C(X) (as C*-algebras) and continuous maps ϕ : X → Y . In particular,
C(X) and C(Y ) are isomorphic iff X and Y are homeomorphic.

Likewise, X and Y are second countable smooth locally compact Hausdorff man-
ifolds, eq. (C.36) gives a canonical bijective correspondence between homomor-
phisms α : C∞(Y )→C∞(X) (as commutative algebras) and smooth maps ϕ : X →Y .
In particular, C∞(X) and C∞(Y ) are isomorphic iff X and Y are diffeomorphic.

Proof. The passage from ϕ to α is obvious. We write evX : X → Σ(C(X)) and
evY : Y → Σ(C(Y )) for the bijections previously just called ev. Since these maps are
invertible by the previous proposition, we may define a map ϕ : X → Y by

ϕ = ev−1
Y ◦α∗ ◦ evX , (C.37)

where α∗ : Σ(C(X))→ Σ(C(Y )) is defined by α∗(ω) = ω ◦α; this lies in Σ(C(Y )),
because α is linear and α( f g) = α( f )α(g). Eq. (C.36) then holds by construction.
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• In the compact case, we still need to prove that ϕ is continuous. To do so, note
that a compact Hausdorff space Y is completely regular, and as such a subbase for
its topology is given by sets of the form U = f−1(U ′), where f ∈C(Y ) and U ′ ∈
O(C). Hence ϕ−1(U) = (ϕ∗ f )−1(U ′), and since we know that ϕ∗ f = α( f ) ∈
C(X), we conclude that ϕ−1(U) is open in X . Thus ϕ is continuous.

• Similarly, in the manifold case, a map ϕ : X → Y is smooth iff ϕ∗ f ∈C∞(X) for
each f ∈ C∞(Y ); using localization by bump functions à la the first part of the
proof of Proposition C.21, it is enough to prove this for open sets X ⊂ Rn and
Y ⊂Rm, so that ϕ(y) = (ϕ1(y), . . . ,ϕn(y)). Knowing that ϕ∗ f is smooth for each
f ∈C∞(Y ), we simply take f (x1, . . . ,xn) = xk to be the k’th coordinate function.
This declares each ϕk to be smooth, and therewith also ϕ itself. �

We now state Gelfand duality, explaining its categorical interpretation in §E.1.

Theorem C.23. 1. If X is a compact Hausdorff space, then C(X) is a unital commu-
tative C*-algebra. A continuous map ϕ : X →Y induces a unital homomorphism
C( f )≡ ϕ∗ : C(Y )→C(X), which behaves well under composition, in that:

• If ϕ is the identity, then so is C(ϕ).
• If ψ : Y → Z is another continuous map, then C(ϕ ◦ψ) =C(ψ)◦C(ϕ).

2. If A is a unital commutative C*-algebra, then Σ(A) is a compact Hausdorff space.
A unital homomorphism α : A→ B induces a continuous function Σ(α) ≡ α∗ :
Σ(B)→ Σ(A), which behaves well under composition in a similar way:

• If α is the identity, then so is Σ(α).
• If β : B→C is another unital homomorphism, then Σ(β ◦α) = Σ(α)◦Σ(β ).

3. There are canonical homeomorphisms and isomorphisms:

evX : X
∼=→ Σ(C(X)); (C.38)

GA : A
∼=→C(Σ(A)), (C.39)

with the following “naturality” properties:

• If Σ ◦C(ϕ) : Σ(C(X))→ Σ(C(Y )) is the map induced by ϕ : X → Y , then

Σ ◦C(ϕ)◦ evX = evY ◦ϕ; (C.40)

• If C ◦Σ(α) : C(Σ(A))→C(Σ(B)) is the map induced by α : A→ B, then

C ◦Σ(α)◦GA = GB ◦α. (C.41)

Proof. The proof is an assembly of previous results and routine verifications. �
In the language of category theory, Theorem C.23 states that the categories CH of
compact Hausdorff spaces (with continuous functions as arrows) and CCA1 of com-
mutative unital C*-algebras (with unital homomorphisms as arrows, cf. Definition
C.2) are dual (i.e., contravariantly equivalent). In particular, we have an adjunction
between the functors C : CH→ CCA1 and Σ : CCA1 → CH.
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C.4 Gelfand isomorphism and spectral theory

As an example of Gelfand’s theory, Theorem 4.3 may be reformulated as follows:

Theorem C.24. Let H be a Hilbert space, and let a = a∗ ∈ B(H)sa, with associated
(commutative) C*-algebra C∗(a) generated by a and 1H. The Gelfand spectrum
Σ(C∗(a)) of C∗(a) is homeomorphic to σ(a), under the mutually inverse maps

Σ(C∗(a))
∼=−→ σ(a), ω �→ ω(a); (C.42)

σ(a)
∼=−→ Σ(C∗(a)), λ �→ ωλ : f (a) �→ f (λ ). (C.43)

In particular, the image of the map ω �→ ω(a) from Σ(C∗(a)) to C is σ(a), and the
isomorphism C∗(a)→ C(σ(a)), f (a) �→ f , of Theorem B.94 is obtained by com-
posing the Gelfand transform f (a) �→ f̂ (a) from C∗(a) to C(Σ(C∗(a))) with the
isomorphism C(Σ(C∗(a)))

∼=−→C(σ(a)) obtained by pulling back the map (C.43).

Proof. First, we note that map (C.43) is well defined. Indeed, it follows from
(B.289) that the map ωλ : C∗(a)→ C is linear for any λ ∈ σ(a), whilst the fol-
lowing computation, which uses (B.290), implies that ωλmultiplicative:

ωλ ( f (a)g(a)) =ωλ ( f g(a)) = ( f g)(λ ) = f (λ )g(λ ) =ωλ ( f (a))ωλ (g(a)). (C.44)

Injectivity of the map λ �→ ωλ holds because σ(a) is Hausdorff, so that f (λ ′) =
f (λ ) for each f ∈C(σ(a)) implies λ ′ = λ . Surjectivity follows from (B.253), since

σC∗(a)( f (a)) = σC(σ(a))( f ) = Ran( f ), (C.45)

where we used invariance of the spectrum under isomorphisms. Consider the func-
tion f (x) = x, so that f (a) = a. It follows from (C.43) that ωλ (a) = λ . Conversely,
using the same function f , for given ω ∈ Σ(C∗(a)) we find ωω(a) = ω , so that the
maps in (C.42) - (C.43) are mutually inverse. It is clear from (C.42) - (C.43) dat
ωλi →ωλ in the Gelfand topology on Σ(C∗(a)) (which is the topology of pointwise
convergence) iff f (λi)→ f (λ ) for each f ∈C(σ(a)), which is the case iff λi → λ
on σ(a). Hence both of our maps Σ(C∗(a))↔ σ(a) are continuous.

The final claim is a definition chase, using the computation

f̂ (a)(ωλ ) = ωλ ( f (a)) = f (λ ). �

If dim(H)< ∞, one may replace this proof by using the fact that σ(a) consists of
the eigenvalues of a. If p is a polynomial, then ω ∈Σ(C∗(a)) must satisfy ω(p(a))=
p(ω(a)). The characteristic polynomial pc of a, i.e., pc(x)=∏n

i=1(λi−x), where the
λi are the n = dim(H) eigenvalues of a (including repetitions), satisfies pc(a) = 0,
so that ω(pc(a)) = 0, i.e., ∏n

i=1(λi−ω(a)) = 0, and hence ω(a) = λi for some i,
or ω(a) ∈ σ(a). Thus (C.42) is well defined. In the opposite direction, eqs. (A.53) -
(A.55) show that (C.43) is also well defined, in that indeed ωλ ∈ Σ(C∗(a)).



658 C Operator algebras

The construction of C∗(a) as a C*-algebra within B(H) may trivially be gener-
alized to arbitrary unital C*-algebras A, i.e., if a ∈ A, we define C∗(a) as the C*-
algebra generated ( within A) by a and the unit 1A. If a = a∗, then C∗(a) still equals
the norm-closure of the algebra of all polynomials in a, and hence C∗(a) is once
again commutative. Defining the spectrum σ(a) as in Definition B.81, we then have
the following generalization of Theorem C.24:

Theorem C.25. Let A be a unital C*-algebra and let a∗ = a ∈ A. Then

Σ(C∗(a)) ∼= σ(a), ω ↔ ω(a); (C.46)
C∗(a) ∼= C(σ(a)), f (a)↔ f , (C.47)

as spaces and as (commutative) C*-algebras, respectively. Under the Gelfand iso-
morphism (C.47), the Gelfand transform â of a∈C∗(a) is the identity idσ(a) : λ→ λ ,
whereas the Gelfand transform 1̂A of 1A ∈C∗(a) is the unit 1σ(a) : λ → 1.

This continuous functional calculus may be proved in exactly the same way as
Theorems B.94 and C.24, with B(H) � A. However, these proofs did not invoke
Gelfand’s Theorem (but rather derived it in the special case at hand), so it may give
additional insight in the situation if we reprove Theorem C.25 from Theorem C.8.

Proof. We now assume the isomorphism C∗(a) ∼= C(Σ(C∗(a))) via the Gelfand
transform. According to (C.22) and (B.253), which imply σ(â) = ran(â), the func-
tion â : Σ(C∗(a))→ C is surjective onto the spectrum σ(a) ⊂ C. We now prove
injectivity. If ω1,ω2 ∈ Σ(C∗(a)) and ω1(a) = ω2(a), then, for all n ∈ N, we have

ω1(an) = ω1(a)n = ω2(a)n = ω2(an), (C.48)

Since also ω1(1A) = ω2(1A) = 1, we conclude by linearity that ω1 = ω2 on all
polynomials in a. By continuity (cf. Lemma C.9) this implies that ω1 = ω2, since
by definition the linear span of all polynomials is dense in C∗(a). Using (C.12), we
have therefore proved that â(ω1) = â(ω2) implies ω1 = ω2, i.e., â is injective.

Since â ∈C(Σ(C∗(a))) by Theorem C.8, â is continuous. To prove continuity of
the inverse, recall that â : Σ(C∗(a))→ σ(a) is the map ω �→ ω(a), so that for λ ∈
σ(a), the functional â−1(λ ) ∈ Σ(C∗(a)) maps a to λ . By multiplicativity, â−1(λ )
then maps an to λ n. Hence ny linearity and (C.14), for polynomials p in a one has

â−1(λ ) : p(a) �→ p(λ ). (C.49)

Since polynomials are continuous, if λn → λ in σ(a), then p(λn)→ p(λ ), so

(â−1(λn))(p)→ (â−1(λ ))(p). (C.50)

Since such polynomials p(a) are dense in C∗(a) by definition, and functionals in
Σ(C∗(a)), being continuous, are therefore determined by their values on polynomi-
als, we conclude that â−1(λn)→ â−1(λ ) pointwise. Since the Gelfand topology is
the topology of pointwise convergence, we conclude that â−1 is continuous, so that
â is a homeomorphism. This proves (C.46).
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Finally, for compact Hausdorff spaces X and Y , a homeomorphism ϕ : X → Y
induces an isomorphism ϕ∗ : C(Y )→C(X) of C*-algebras, where ϕ( f ) = f ◦ϕ (cf.
§C.3). Theorem C.8 and (C.46) give (C.47). Unfolding the latter isomorphism gives

C∗(a) GT−→C(Σ(C∗(a)))
(â−1)∗−→ C(σ(a)), (C.51)

where GT is the Gelfand transform and (â−1)∗ is the pullback of the homeomor-
phism â−1 : σ(a)→ Σ(C∗(a)), as in ϕ∗ above. Following these arrows and using
(C.49), one obtains the last claim. �
Corollary C.26. Let A be a unital C*-algebra and let a∗ = a ∈ A, with spectrum
σ(a). For each selfadjoint element a∈ A and each f ∈C(σ(a)), there is an operator
f (a) ∈ A, which is the obvious expression when f is a polynomial (and in general is
given via the uniform approximation of f by polynomials), such that

‖ f (a)‖ = ‖ f‖∞; (C.52)
σ( f (a)) = f (σ(a)). (C.53)

Eq. (C.53) is called the spectral mapping property. Furthermore, the norm and
spectrum of a as an element of A coincide with the norm and spectrum of a in
C∗(a).

Proof. We write (C.51) in the opposite direction, i.e.,

C(σ(a))
(ω �→ω(a))∗−→ C(Σ(C∗(a))) â�→a−→C∗(a). (C.54)

Indeed, if f̃ ∈C(Σ(C∗(a))) is the image of f ∈C(σ(a)) under the first arrow, then
f̃ (ω) = f (ω(a)), and the second arrow says that f̂ (a) = f̃ . Together these give
f (ω(a)) = ω( f (a)), which by multiplicativity, linearity, and (C.14), is the case for
polynomials f = p; the general case follows from the polynomial case by continuity.

Eq. (C.52) follows from (C.18) and the fact that also the first arrow in (C.54) is
an isometry, and (C.53) follows from (C.22), with with a � f (a).

To close, take f = idσ(a); then (C.52) gives ‖a‖A = r(a), cf. (B.257), whilst
(C.18) gives ‖a‖C∗(a) = r(a), too. Finally, (C.47) and (B.253) show that the spec-
trum of a in C∗(a) is σ(a), which by definition is its spectrum in A. �
Corollary C.27. If a∗ = a, then σ(a)⊂ R.

By Corollary C.26, we may take the spectrum of a in C∗(a). By Lemma C.11, the
Gelfand transform â is real-valued. Then use the last part of Theorem C.25. �
Corollary C.28. The norm in a C*-algebra is unique (given all other structure).

Using (B.257) for a = a∗, and then (C.2), for arbitrary a ∈ A we find

‖a‖=
√

r(a∗a). (C.55)

Since the spectrum (and hence the spectral radius r) is determined by the algebraic
structure, (C.55) shows that the norm is determined by the algebraic structure. �



660 C Operator algebras

C.5 C*-algebras without unit: general theory

In classical physics, non-compact phase spaces are described by commutative C*-
algebras without unit. Proper ideals in C*-algebras necessarily lack a unit, too. To
set the stage, we first assume that A is a Banach algebra, and form the vector space

Ȧ = A⊕C, (C.56)

and turn this into an algebra in the obvious way, i.e., by means of

(a+λ ·1Ȧ)(b+μ ·1Ȧ) = ab+λb+μa+λμ ·1Ȧ, (C.57)

where we have written a+λ ·1Ȧ for (a,λ ), etc. This turns the number 1 in C into a
unit 1Ȧ for Ȧ, and this is the point: Ȧ is unital, even if A lacks a unit. Defining

‖a+λ ·1Ȧ‖= ‖a‖+ |λ |, (C.58)

we also have a norm on Ȧ, with ‖1Ȧ‖= 1. Using (C.1), (C.57), and (C.58), we have

‖(a+λ ·1Ȧ)(b+μ ·1Ȧ)‖ ≤ ‖a‖‖b‖+ |λ |‖b‖+ |μ|‖a‖+ |λ | |μ|
= ‖a+λ ·1Ȧ‖‖b+μ ·1Ȧ‖,

so that Ȧ is a Banach algebra with unit. Since by (C.58) the norm of a ∈ A in A
coincides with the norm of a+0 ·1Ȧ in A⊕C, we have shown the following:

Proposition C.29. For every Banach algebra (with or without unit) there exists a
unital Banach algebra Ȧ, called the unitization of A, and an isometric (hence in-
jective) morphism A→ Ȧ, such that Ȧ/A∼= C.

If A is a C*-algebra, (C.58) fails to be a C*-norm with respect to the involution

(a+λ ·1Ȧ)
∗ = a∗+λ ·1Ȧ, (C.59)

since (C.2) is not satisfied. Instead, the correct norm in which A⊕C is a unital
C*-algebra is the one borrowed from B(A), i.e., the Banach space of bounded linear
maps from A to A (regarded as a Banach space), relying on an embedding A⊂ B(A):

Proposition C.30. Let A be a C*-algebra (with or without unit).

1. The map L : A→ B(A) , a �→ La, given by

La(b) = ab (C.60)

establishes an isometric isomorphism between A and L(A)⊂ B(A).
2. When A has no unit, define a norm on Ȧ = A⊕C by

‖a+λ ·1Ȧ‖= ‖La +λ ·1B(A)‖, (C.61)

where the right-hand side uses the operator norm in B(A). With the operations
(C.57) and (C.59), the norm (C.61) turns Ȧ into a C*-algebra with unit.
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Proof. By (C.1) we have ‖Lab‖ = ‖ab‖ ≤ ‖a‖ ‖b‖ for all b, so that ‖La‖ ≤ ‖a‖.
On the other hand, using (C.2) and (A.22), assuming a �= 0, we can write

‖a‖= ‖aa∗‖/‖a‖=
∥∥∥∥La

a∗

‖a‖
∥∥∥∥ ≤ ‖La‖. (C.62)

Hence
‖La‖= ‖a‖. (C.63)

Being isometric, the map L must be injective; it is clearly a homomorphism, so that
we have proved the first claim of the proposition.

It is clear from (C.57) and (C.59) that the map a+λ · 1Ȧ �→ La +λ · 1B(H) is a
homomorphism. Hence the norm (C.61) satisfies (C.1), for this is satisfied in the
Banach algebra B(A). In order to prove that the norm (C.61) satisfies (C.2), we
note that if an involution on a Banach algebra A satisfies ‖a‖2 ≤ ‖a∗a‖, then A is
a C*-algebra, because substituting a � a∗ gives ‖a∗‖2 ≤ ‖aa∗‖ ≤ ‖a‖‖a∗‖, i.e.,
‖a∗‖ ≤ ‖a‖, so that ‖a∗a‖ ≤ ‖a‖2 and hence ‖a‖2 = ‖a∗a‖.

Thus it suffices to show that for each a ∈ A and λ ∈ C we have

‖La +λ ·1Ȧ‖2 ≤ ‖(La +λ ·1Ȧ)
∗(La +λ ·1Ȧ)‖. (C.64)

To prove (C.64), we note that by definition of the norm in B(A), for given T ∈
B(A) and ε > 0, there exists a b ∈ A, with ‖b‖= 1, such that ‖T‖2− ε ≤ ‖T (b)‖2.
Applying this with T = La +λ ·1Ȧ, we infer that for every ε > 0 one has

‖La +λ ·1Ȧ‖2− ε ≤ ‖(La +λ ·1Ȧ)b‖2 = ‖ab+λb‖2 = ‖(ab+λb)∗(ab+λb)‖.

Here we used (C.2) in A. Using (C.60), the right-hand side may be rearranged as

‖Lb∗La∗+λ ·1Ȧ
La+λ ·1Ȧ

b‖ ≤ ‖Lb∗‖ ‖(La +λ ·1Ȧ)
∗(La +λ ·1Ȧ)‖‖b‖. (C.65)

Since ‖Lb∗‖ = ‖b∗‖ = ‖b‖ = 1 by (C.63) and (A.22), and ‖b‖ = 1 also in the last
term, the inequality (C.64) follows by letting ε → 0. �

Hence the C*-algebraic version of Theorem C.29, slightly supplemented, is:

Theorem C.31. For every C*-algebra A, there is a unique unital C*-algebra Ȧ and
an isometric (hence injective) morphism A→ Ȧ, such that Ȧ/A∼= C. Moreover, any
homomorphism α : A→ B extends to a unital homomorphism α̇ : Ȧ→ Ḃ by

α̇(a+λ ·1Ȧ) = α(a)+λ ·1Ḃ. (C.66)

Proof. Uniqueness of Ȧ follows from Corollary C.28; the rest is obvious. �

This is very important, if only for the following reason:

Definition C.32. Let A be a C*-algebra without unit. Then the spectrum σ(a) of
any a ∈ A consists of all λ ∈ C for which the operator a−λ is not invertible in Ȧ.

Proposition C.33. If A has no unit, then 0 ∈ σ(a) for any a ∈ A.
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Proof. If 0 /∈ σ(a), i.e., if a were invertible in Ȧ, then a−1 = b+ μ · 1Ȧ, for some
b ∈ A and μ ∈ C. Then 1Ȧ = aa−1 = ab+μa ∈ A. This is a contradiction. �

The spectral theory of compact operators provides a nice illustration of this proposi-
tion: see Theorem B.136.4. At the commutative end of the operator-algebraic world,
we have the obvious fact that if X is not compact, no f ∈C0(X) is invertible.

The construction of Ȧ through (C.56), (C.57), (C.59), and (C.61) also works ver-
batim if A already has a unit 1A, in which case the spectrum σ(a) of a ∈ A may be
compared with the spectrum σ(ȧ) of its image ȧ≡ (a,0) in Ȧ.

Lemma C.34. Let A be a C*-algebra with unit, embedded in Ȧ. For any a ∈ A, the
spectrum σ(a) in A is related to the spectrum σ(ȧ) of its image ȧ≡ (a,0) in Ȧ by

σ(ȧ) = σ(a)∪{0}. (C.67)

This will be important for the proof of the fundamental Theorem C.62 below.

Proof. Suppose 0 �= z ∈ ρ(a), so that b≡ (a− z ·1A)
−1 exists and satisfies

ab− zb = ba− zb = 1A. (C.68)

Then b′ = b + z−1 · (1A − 1Ȧ) satisfies ab′ − zb′ = b′a− zb′ = 1Ȧ, so that b′ =
(a− z · 1Ȧ)

−1 exists in Ȧ, and hence z ∈ ρ(ȧ). Conversely, if 0 �= z ∈ ρ(ȧ) with
corresponding b′ as before, then we first form b = b′ − z−1 · (1A− 1Ȧ), which sat-
isfies (C.68) but may not lie in A. If b = b′′+β · 1Ȧ, where b′′ ∈ A and β ∈ C, this
is remedied by redefining b′′′ = b+β · (1A− 1Ȧ), which lies in A and is inverse to
a− z · 1A. Furthermore, by the proof of Proposition C.33 with a � ȧ, we always
have 0 ∈ σ(ȧ). If 0 ∈ σ(a), then the above argument gives σ(ȧ) = σ(a), which is a
special case of (C.67). If 0 /∈ σ(a), then (C.67) follows as it stands. �

To close this section, we intoduce the technique of approximate units, which will
play a decisive role in the theory of ideals in C*-algebras (see §C.9). Let us first
give an example. For any noncompact space X , the C*-algebra C0(X) has no unit
(the unit would be 1X , which does not vanish at infinity because it is constant). There
is a certain substitute for the absentee unit, though. Taking X =R for simplicity, and
pick a sequence of functions 1n, n∈N, that take the value 1 on [−n,n] and vanish for
|x| > n+ 1. It is clear that one does not have 1n → 1R in the sup-norm, but instead
one has limn→∞ ‖1n f − f‖∞ = 0 for all f ∈C0(R). More generally, one puts:

Definition C.35. An approximate unit in a non-unital C*-algebra A indexed by
some directed set Λ is a family {1λ}λ∈Λ of selfadjoint elements of A, such that

‖1λ‖ ≤ 1, (C.69)

and, for each a ∈ A,

lim
λ→∞

‖1λa−a‖= lim
λ→∞

‖a1λ −a‖= 0. (C.70)
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Here the limit is meant in the sense of convergence of the nets λ �→ ‖1λa−a‖ and
λ �→ ‖a1λ − a‖ in R indexed by Λ (i.e., for each open neighbourhood U of 0 in R
there is some λU ∈Λ such that ‖1λa−a‖ ∈U for all λ ≥ λU , etc.).

Proposition C.36. Every non-unital C*-algebra A has an approximate unit {1λ}λ∈Λ .
When A is separable, one may choose the directed set Λ countable (i.e. Λ = N).

Proof. One takes Λ to be the set of all finite subsets of A (or, if A is separable, from
a countable dense subset of A), partially ordered by inclusion. Hence λ ∈ Λ is of
the form λ = {a1, . . . ,an}, from which we build the element bλ = ∑i a∗i ai. Clearly
bλ is selfadjoint, and according to Theorem C.52 and Proposition C.51 one has
σ(bλ )⊂ R+, so that n−11Ȧ +bλ is invertible in the unitization Ȧ of A. Take

1λ = bλ (n
−11Ȧ +bλ )

−1. (C.71)

Since b∗λ = b∗λ and bλ commutes with functions of itself like (n−11Ȧ + bλ )−1, one
has 1∗λ = 1λ . Although (n−11Ȧ + bλ )−1 is computed in Ȧ, so that it is of the form
c+ μ1Ȧ (for some c ∈ A and μ ∈ C), one has 1λ = bλ c+ μbλ , which lies in A.
Using the continuous functional calculus (i.e. Theorem C.25) with f (t) = t/(n+ t)
on bλ , one sees from (C.53) and the positivity of bλ that σ(1λ )⊂ [0,1]. This implies
(C.69) because of (B.257). Putting ci = 1λai−ai, a simple computation shows that

∑
i

cic∗i = n−2bλ (n
−11Ȧ +bλ )

−2. (C.72)

We now apply (C.52) with a � bλ and f (t) = n−2t(n−1 + t)−2. Since f ≥ 0, and f
assumes its maximum at t = 1/n, one has supt∈R+ | f (t)| = 1/4n. As σ(bλ ) ⊂ R+,
it follows that ‖ f‖∞ ≤ 1/4n. Therefore, by (C.52) we have

‖n−2bλ (n
−11Ȧ +bλ )

−2‖ ≤ 1/4n, (C.73)

so that ‖∑i cic∗i ‖ ≤ 1/4n by (C.72). By Lemma C.37 below this implies that
‖cic∗i ‖ ≤ 1/4n for each i = 1, . . . ,n. Since any a ∈ A sits in some directed subset
of Λ with n→ ∞, eq. (C.2) implies

lim
λ→∞

‖1λa−a‖2 = lim
λ→∞

‖(1λa−a)∗1λa−a‖= lim
λ→∞

‖c∗i ci‖= 0. (C.74)

The other equality in (C.70) follows analogously. �

In this proof we used the following lemma.

Lemma C.37. If a,b ∈ A+ and ‖a+b‖ ≤ k, then ‖a‖ ≤ k.

Proof. We first pass to the unitization Ȧ of A. By (C.83) we have a + b ≤ k1Ȧ,
hence 0 ≤ a ≤ k1Ȧ− b by linearity of ≤ (see Proposition C.51 below), which also
implies that k1Ȧ−b≤ k1Ȧ, as 0≤ b. Hence, using−k1Ȧ≤ 0 (since k≥ 0), we obtain
−k1Ȧ ≤ a≤ k1Ȧ, from which ‖a‖ ≤ k by (C.84)). �
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C.6 C*-algebras without unit: commutative case

We still owe the reader a proof of Theorems C.8 and C.23 for the nonunital case.
In the commutative case, the unitization procedure has a simple topological

meaning, which illustrates the general principle that the use of commutative C*-
algebras often allows one to trade topological properties for algebraic ones.

The one-point compactification Ẋ of a non-compact locally compact topological
space X is the set Ẋ = X ∪∞, topologized by the open sets in X plus those subsets of
X ∪∞ whose complement is compact in X . The injection i : X ↪→ Ẋ is continuous,
and any continuous function f ∈ C0(X) extends uniquely to a function ḟ ∈ C(Ẋ)
satisfying ḟ (∞) = 0. The space Ẋ is the solution (unique up to homeomorphism)
of a universal problem: if ϕ : X → Y is a map between locally compact Hausdorff
spaces such that Y\ f (X) is a point and f is a homeomorphism onto its image, then
there is a unique homeomorphism ψ : Ẋ → Y such that ϕ = ψ ◦ i. All this is true
even when X is compact, in which case ∞ is an isolated point of Ẋ .

The unitization of C0(X) corresponds to the one-point compactification of X :

Lemma C.38. Let X be a locally compact Hausdorff space. Then Ċ0(X)∼=C(Ẋ).

Proof. The map cX : Ċ0(X)→C(Ẋ) given by cX ( f +λ ·1Ȧ)= ḟ +λ ·1X is obviously
an injective homomorphism. To prove surjectivity, note that any f ∈C(Ẋ) assumes
the form f = ḟ + f (∞) ·1Ẋ , where ḟ = f − f (∞) ·1Ẋ is such that ḟ|X ∈C0(X). Thus
our map is an algebraic isomorphism, which by Theorem C.62 is also isometric. �

Lemma C.39. Let A be a commutative C*-algebra, with unitization Ȧ. Then the fol-
lowing map sA : Σ̇(A)→ Σ(Ȧ) between their Gelfand spectra is a homeomorphism:

1. Each ω ∈ Σ(A) extends to a character ω̇ ≡ sA(ω) on Ȧ by

ω̇(a+λ1Ȧ) = ω(a)+λ . (C.75)

2. The following functional ω∞ ≡ sA(∞) on Ȧ is a character of Ȧ:

ω∞(a+λ1Ȧ) = λ . (C.76)

3. There are no other characters on Ȧ (i.e. except ω∞ and ω̇ , where ω ∈ Σ(A)).

Proof. Only the third part is nontrivial: any ω ′ ∈ Σ(Ȧ) restricts to Σ(A); if this
restriction is zero, then ω ′ = ω∞, and if not, we have ω ′ = ω̇ with ω = ω ′|Σ(A). �

We are now in a position to prove Theorem C.8 also in the nonunital case. Ap-
plying the unital case of Theorem C.8 to Ȧ and using Lemma C.39, one finds

A⊕C= Ȧ∼=C(Σ(Ȧ))∼=C(Σ̇(A))∼= Ċ0(Σ(A)) =C0(Σ(A))⊕C. (C.77)

Keeping track of all isomorphisms, the initial C is duly mapped to the final C (as
befits an isomorphism of unital C*-algebras), and A is mapped to C0(Σ(A)). �
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Next, we return to Theorem C.23. If X fails to be compact, the difficulty arises
that a map ϕ : X → Y does not, in general, pull back to a morphism ϕ∗ : C0(Y )→
C0(X). For example, with Y equal to a point, any f ∈ C(Y ) ∼= C pulls back to a
constant function on X , which does not vanish at infinity. Hence some restriction is
necessary on the class of allowed maps between locally compact Hausdorff spaces.

Definition C.40. A map ϕ : X → Y between locally compact Hausdorff spaces is
proper when ϕ−1(K) is compact for any compact set K ⊂ Y .

Without proof (since this is basic topology), we list some properties of proper maps.

Lemma C.41. Let ϕ : X → Y be a map between locally compact Hausdorff spaces.

1. ϕ is proper iff it is closed and ϕ−1(pt) is compact for any point pt ∈ Y .
2. If X is compact and ϕ is continuous, then ϕ is proper.
3. If Y is compact and X is not, proper maps ϕ (trivially) do not exist.
4. If ϕ is continuous, then ϕ is proper iff ϕ̇ : Ẋ → Ẏ , given by ϕ̇(x) = ϕ(x), x ∈ X,

and ϕ̇(∞X ) = ∞Y , is continuous (which is automatic if X is compact, of course).
5. The composition of two proper maps is again proper.

The algebraic (or “noncommutative”) counterpart of a proper map is as follows.

Definition C.42. A homomorphism α : A→ B between C*-algebras is called non-

degenerate when α(A)B− = B, in other words, if α(A)B (i.e., the linear span of all
expressions of the form α(a)b, a ∈ A, b ∈ B) is dense in B.

For example, any unital homomorphism between unital C*-algebras is trivially
nondegenerate, and conversely, a nondegenerate homomorphism α : A→B between
unital C*-algebras is automatically unital. To see this, it follows from (C.4) - (C.5)
that e = α(1A) is a projection in B (i.e., e2 = e∗ = e), so that α(A)B ⊆ eB. Since
B = eB⊕ (1B− e)B as a vector space, α(A)B and hence eB can only be dense in
B when e = 1B. Similarly, using an approximate unit in B it is easy to show that
nondegenerate homomorphisms A→ B cannot exist if A is unital but B is not.

This is a “noncommutative” version of the third part of Lemma C.41 above.

Lemma C.43. Let ϕ : X →Y be a continuous proper map between locally compact
Hausdorff spaces. If f ∈C0(Y ), then f ◦ϕ ∈C0(X), and the corresponding pullback
ϕ∗ : C0(Y )→C0(X) is a nondegenerate homomorphism of C*-algebras.

Proof. Let f ∈C0(Y ) and ε > 0, giving a compact K ⊂ Y such that | f (y)| < ε for
each y /∈ K. Then K′ = ϕ−1(K)⊂ X is compact, and |ϕ∗ f (x)|< ε for each x /∈ K′.

For nondegeneracy, take g ∈C0(X) and ε > 0; these yield a compact set L ⊂ X
such that |g(x)|< ε for each x /∈ L. Then ϕ(L)⊂Y is compact, so Urysohn gives us
f ∈Cc(Y ) with 0≤ f (y)≤ 1 for each y ∈ Y and f (y) = 1 for each y ∈ ϕ(L). Then:

‖(ϕ∗ f ) ·g−g‖∞ = sup
x/∈L
{| f (ϕ(x))g(x)−g(x)|}< 2ε. �

The (commutative) C*-algebraic counterpart of this lemma is as follows:
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Lemma C.44. Let α : A → B be a nondegenerate homomorphism between com-
mutative C*-algebras. If ω ∈ Σ(B), then ω ◦α ∈ Σ(A), and the ensuing pullback
α∗ : Σ(B)→ Σ(A) is a continuous proper map between the two Gelfand spectra.

Proof. Multiplicativity of ω ◦α is clear, as α is a homomorphism. If ω ◦α were
identically zero, then (since ω is not), α(a) = 0 for each a ∈ A, which contradicts
the assumption that α be nondegenerate. Continuity of α∗ follows from the fact
that the Gelfand topology is the topology of pointwise convergence. Finally, in the
present context, properness of α∗ is most appropriately derived as follows:

1. Use (C.66) to pass to a unital homomorphism α̇ : Ȧ→ Ḃ.
2. Theorem C.23.2 gives a continuous map (α̇)∗ : Σ(Ḃ)→ Σ(Ȧ).
3. Lemma C.46 below and continuity of sB and s−1

A make (α∗)· continuous.
4. Lemma C.41.4 then proves that α∗ is proper (and continuous). �

This suggests the following generalization of Theorem C.23:

Theorem C.45. 1. If X is a locally compact Hausdorff space, then C0(X) is a unital
commutative C*-algebra. A continuous proper map ϕ : Y → X induces a non-
degenerate homomorphism C0( f ) ≡ ϕ∗ : C0(X)→ C0(Y ), which behaves well
under composition (exactly as in Theorem C.23).

2. If A is a commutative C*-algebra, then Σ(A) is a locally compact Hausdorff
space. A nondegenerate homomorphism α : A→ B induces a continuous proper
map Σ(α)≡ α∗ : Σ(B)→ Σ(A), which behaves well under composition, too.

3. There are canonical homeomorphisms and isomorphisms,

evX : X
∼=→ Σ(C0(X)); (C.78)

GA : A
∼=→C0(Σ(A)), (C.79)

with similar naturalness properties as the corresponding maps in Theorem C.23.

Categorically speaking, Theorem C.23 thus expanded states that the category LCHp
of locally compact Hausdorff spaces and proper continuous maps is dual to the
category CCAn of commutative C*-algebras and nondegenerate homomorphisms.

Proof. Parts 1 and 2 are Lemmas C.43 and C.44, respectively; correct composition
of the maps in question is easily checked (as simply as in the unital case).

Eq. (C.79) has already been proved, cf. (C.77). Similarly, using Proposition C.19
(with X � Ẋ) and Lemma C.39 (with A �C0(X)), we have

X ∪{∞}= Ẋ ∼= Σ(C(Ẋ))∼= Σ(Ċ0(X))∼= Σ̇(C0(X)) = Σ(C0(X))∪ω∞. (C.80)

Keeping track of the isomorphisms in question, it is easily verified that X and ∞ are
mapped to Σ(C0(X)) and ω∞, respectively, and this proves (C.78).

Naturality follows from the unital case (Theorem C.23) and the following lemma:

Lemma C.46. 1. Let α : A→ B be a nondegenerate homomorphism between com-
mutative C*-algebras. Then the following diagram commutes:
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Σ̇(B) sB−−−−→ Σ(Ḃ)⏐⏐2(α∗)·
⏐⏐2(α̇)∗

Σ̇(A) sA−−−−→ Σ(Ȧ),

where sA and sB are defined in Lemma C.39, α̇ is defined in (C.66), and (α∗)· ≡ ϕ̇
for ϕ = α∗ : Σ(B)→ Σ(A), where the dot is defined as in Lemma C.41.4.

2. Let ϕ : X → Y be a proper continuous map between locally compact Hausdorff
spaces. Then the following diagram commutes:

Ċ0(Y )
cY−−−−→ C(Ẏ )⏐⏐2(ϕ∗)·

⏐⏐2(ϕ̇)∗

Ċ0(X)
cX−−−−→ C(Ẋ),

where cX and cY are defined in the proof of Lemma C.38, (ϕ∗)· ≡ α̇ for α = ϕ∗ :
C0(Y )→C0(X) defined by (C.66), and ϕ̇ : Ẋ → Ẏ is defined in Lemma C.41.4.

The proof is a diagram chase, but let us note that in clause 1 the role of nondegen-
eracy is to ensure that α∗ (and hence (α∗)·) is defined in the first place (cf. Lemma
C.44). Similarly, in clause 2, the properness assumption on ϕ ensures that ϕ∗ (and
hence (ϕ∗)·) is defined. Once defined, commutativity of these diagrams is obvious.

Finally, the property that LCHp is indeed a category is trivial (as the identity maps
id : X → X are proper), but the corresponding fact for CCAn is not, for we need to
show that the identity arrows id : A→ A are nondegenerate. This comes down to the
property that A2 = A ·A is dense in A. In fact, the situation is even better:

Lemma C.47. In any C*-algebra A one has A2 = A (and hence An = A, n ∈ N).

Proof. We prove that any self-adjoint a ∈ A takes the form

a = a1a2, (C.81)

for suitable a1,a2 ∈ A. Since the linear span of such a is A, this proves the lemma.
We assume A has no unit, for otherwise the claim is trivial. We then embed A⊂ Ȧ

and, for a∗ = a ∈ A, consider C∗(a) ⊂ Ȧ. We factor the identity function t �→ t on
σ(a) ⊂ R as t = f1(t) f2(t) for some fi ∈ C(σ(a)), so that by Corollary C.26, we
have (C.81) for ai = fi(a)∈C∗(a). By the properties of the map f �→ f (a) mentioned
in Corollary C.26, including the fact that f (1σ(a)) = 1Ȧ, it follows that if f (a) = b+
μ ·1Ȧ for some b ∈ A and μ ∈ C, then f (0) = μ; note that 0 ∈ σ(a) by Proposition
C.33. Consequently, imposing the additional condition fi(0) = 0 enforces ai ∈ A. �

Corollary C.48. Each nondegenerate homomorphism α : C0(Y ) → C0(X) is in-
duced by a proper continuous map ϕ : X → Y via α = ϕ∗.

Proof. Given (C.78), the proof is the same as for the compact case, cf. Corollary
C.22. In particular, ϕ is given by (C.37), which map is proper because α∗ is proper
by Lemma C.44 and evX , and evX are homeomorphisms. �
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C.7 Positivity in C*-algebras

We now turn to the important notion of positivity. First, we give two examples:

• An operator a ∈ B(H) on a Hilbert space H is called positive when 〈ψ,aψ〉 ≥ 0
for each ψ ∈ H. By Proposition B.99, this property is equivalent to a∗ = a and
σ(a)⊆R+, or to a= b∗b for some b∈B(H), or to a= c2 for some c= c∗ ∈B(H).

• A function f on some space X is called positive when f (x)≥ 0 for all x∈ X . This
applies, in particular, to elements of the commutative C*-algebra C0(X).

These examples are not as dissimilar as they might appear at first sight: a ∈ B(H)
is positive iff its Gelfand transform idσ(a) = â is positive as a function in C(σ(a));
cf. Theorem C.24. Hence we have a notion of positivity for certain concrete C*-
algebras, which we would like to generalize to arbitrary abstract C*-algebras.

Definition C.49. An element a of a C*-algebra A is called positive when a = a∗ and
its spectrum is positive; i.e., σ(a)⊂ R+. We write a≥ 0 when a is positive, and A+

for the set of all positive elements in A.

The basic structure of A+ is captured by the following definition.

Definition C.50. A convex cone in a real vector space V is a subspace V+ such
that:

1. If v ∈V+ and t ∈ R+, then tv ∈V+.
2. If v,w ∈V+, then v+w ∈V+.
3. V+∩−V+ = {0}.
A linear partial ordering in V is a partial ordering ≤ in which v ≤ w implies
tv≤ tw for all t ∈ R+, as well as v+u≤ w+u for all u ∈V .

These structures are equivalent: A convex cone V+ ⊂ V defines a linear partial or-
dering ≤ by v≤ w if w− v ∈V+, and conversely, ≤ yields V+ = {v ∈V | 0≤ v}.
Proposition C.51. The set A+ of all positive elements of a C*-algebra A is a convex
cone in the real vector space Asa, see (C.6).

Proof. Let a ∈ A+. Property 1 follows from σ(ta) = tσ(a), which is a special case
of (B.270). Since σ(a) ⊆ [0,r(a)], we have |c− λ | ≤ c for all λ ∈ σ(a) and all
c ≥ r(a). Hence supλ∈σ(a) |c · 1σ(a)− â(λ )| ≤ c by (C.22) and Theorem C.24, i.e.,
‖c ·1σ(a)− â‖∞ ≤ c. Gelfand transforming back to C∗(a), by (C.18) this implies

‖c ·1A−a‖ ≤ c, (C.82)

for all c ≥ ‖a‖. Inverting this, one sees that if (C.82) holds for some c ≥ ‖a‖, then
σ(a)⊂ R+. Use this with a � a+b and c = ‖a‖+‖b‖, so c≥ ‖a+b‖. Then

‖c ·1A− (a+b)‖ ≤ ‖(‖a‖−a)‖+‖(‖b‖−b)‖ ≤ c,

where in the last step we used the previous paragraph for a ∈ A+ and b ∈ A+ sep-
arately. As for a, this inequality implies a + b ∈ A+. Finally, when a ∈ A+ and
a ∈−A+ it must be that σ(a) = {0}, hence a = 0 by (B.257) and Definition A.1. �



C.7 Positivity in C*-algebras 669

For example, when a = a∗ one checks the validity of the important inequalities

−‖a‖ ·1A ≤ a≤ ‖a‖ ·1A, (C.83)

by taking the Gelfand transform of C∗(a). This also yields the implication

−b≤ a≤ b =⇒ ‖a‖ ≤ ‖b‖, (C.84)

because the antecedent and (C.83) with a � b yield−‖b‖·1A ≤ a≤ ·‖b‖1A, so that
σ(a)⊆ [−‖b‖,‖b‖], hence ‖a‖ ≤ ‖b‖ by (B.257) and (B.254).

We now come to the central result in the theory of positivity in C*-algebras,
which generalizes the cases A = B(H) and A =C0(X) discussed at the beginning.

Theorem C.52. With A+ = {a ∈ A | a≥ 0} as in Definition C.49, one has

A+ = {a2 | a∗ = a} (C.85)
= {a∗a|a ∈ A}. (C.86)

Proof. If σ(a) ⊂ R+ and a = a∗, then
√

a ∈ A is defined by Corollary C.26 for
f =

√·, and satisfies
√

a2
= a. Hence A+ ⊆ {a2 | a∗ = a}. The opposite inclusion

follows from (C.53) and Corollary C.27. This proves (C.85).
Towards (C.86), the inclusion A+ ⊆ {a∗a|a ∈ A} is trivial from (C.85).

Lemma C.53. Each selfadjoint element a has a unique decomposition

a = a+−a−, (C.87)

where a+,a− ∈ A+ and a+a− = 0. Moreover, ‖a±‖ ≤ ‖a‖= max{‖a‖+,‖a‖−}.
Proof. Apply Corollary C.26 with f = idσ(a) = f+− f−, where idσ(a)(t) = t and
f±(t) = max{±t,0}. The norm property follows from (C.52). Uniqueness follows
from the corresponding property in C(σ(a)), where it is obvious. �

Apply the lemma to a = b∗b (noting that a is selfadjoint). Then

(a−)3 =−a−(a+−a−)a− =−a−aa− =−a−b∗ba− =−(ba−)∗ba−. (C.88)

Since σ(a−) ⊂ R+ because a− is positive, we see from (C.53) with f (t) = t3 that
(a−)3 ≥ 0. Hence −(ba−)∗ba− ≥ 0.

Lemma C.54. If −c∗c ∈ A+ for some c ∈ A then c = 0.

Proof. We can write c = d + ie, d and e selfadjoint, so that

c∗c = 2d2 +2e2− cc∗. (C.89)

Now for any a,b ∈ A one has

σ(ab)∪{0}= σ(ba)∪{0}. (C.90)
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This is because for z �= 0, invertibility of ab−z implies invertibility of ba−z; indeed,

(ba− z)−1 = z−1(b(ab− z)−1a−1A). (C.91)

Applying (C.90) with a � c and b � c∗, it follows that σ(c∗c) ⊂ R− implies
σ(cc∗) ⊂ R−, hence σ(−cc∗) ⊂ R+. By (C.85) and Proposition C.51 (applied to
Definition C.50.2), eq. (C.89) then implies that c∗c ≥ 0, i.e., σ(c∗c) ⊂ R+, so that
the assumption−c∗c∈ A+ now yields σ(c∗c) = 0. Hence c = 0 by Proposition C.51
applied to Definition C.50.3. �

By this lemma, the last claim preceding it implies ba− = 0. As

(a−)3 =−(ba−)∗ba− = 0, (C.92)

we see that (a−)3 = 0, and finally a− = 0 by Corollary C.26 with f (t) = t1/3. Hence
b∗b = a+ ∈ A+. Thus {a∗a|a ∈ A} ⊆ A+, which ends the proof of Theorem C.52. �

An important consequence of (C.86) is the fact that inequalities a1 ≤ a2 for
selfadjoint a1,a2 are stable under conjugation by arbitrary elements b ∈ A, so that
a1 ≤ a2 implies b∗a1b≤ b∗a2b. This is because a1 ≤ a2 is the same as a2−a1 ≥ 0,
and hence by (C.86) there is an a3 ∈ A such that a2−a1 = a∗3a3. But (a3b)∗a3b≥ 0,
i.e., b∗ab≤ b∗a2b. For example, replace a in (C.83) by a∗a, and use (C.2), yielding
a∗a≤ ‖a‖21A. Applying the above principle gives the operator inequality

b∗a∗ab≤ ‖a‖2b∗b (a,b ∈ A). (C.93)

We note that the definition of a state implies that if a≤ b, then ω(a)≤ω(b), so that

ω(b∗a∗ab)≤ ‖a‖2ω(b∗b), (C.94)

from (C.93). This is a key lemma for the GNS-construction (cf. Theorem C.88).
At last, we are also in a position to prove the fundamental Lemma C.4.

Proof. If ω is positive and a∗ = a, then (C.83) in the form ‖a‖ · 1A± a ≥ 0 gives
ω(a) ≤ ‖a‖ω(1A), and hence ω(a) ∈ R. For general a ∈ A, eq. (C.8) then im-
plies ω(a∗) = ω(a) (which may alternatively be proved from Lemma C.53). This,
in turn, makes the form (C.24) hermitian. Cauchy–Schwarz then gives |ω(a)|2 ≤
ω(a∗a)ω(1A), as in (C.25). Furthermore, if ‖a‖ ≤ 1 then also ‖a∗a‖ ≤ 1 by
(C.2), so that (C.83) gives ω(a∗a) ≤ ω(1A). Combining these inequalities yields
|ω(a)| ≤ ω(1A), so ω is bounded with ‖ω‖ ≤ ω(1A); taking a = 1A gives equality.

Conversely, assume that ‖ω‖ = ω(1A) = 1. In proving that ω(a) ≥ 0 whenever
a≥ 0, we may also assume that 0≤ a≤ 1A. Then (C.7) shows that α ≡ ω(a) ∈ R.
Also, we have σ(a) ⊆ [0,1] and hence σ(1A− a) ⊆ [0,1], which in turns implies
0≤ (1A−a)≤ 1A, and hence ‖1A−a‖ ≤ 1, cf. (C.84). Then

1−α ≤ |1−α|= |ω(1A−a)| ≤ ‖ω‖‖1A−a‖ ≤ 1, (C.95)

whence α ≥ 0, and hence ω(a)≥ 0. �
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C.8 Ideals in Banach algebras

This section returns to general Banach algebras. It has two aims: it completes the
(first) proof of Theorem C.8, and it prepares for the theory of ideals in C*-algebras.

Definition C.55. Let A be a Banach algebra.

• A left ideal (right ideal) in A is a closed linear subspace J for which a ∈ J
implies ba ∈ J (ab ∈ J) for all b ∈ A.

• An ideal in A is both a left and a right ideal (i.e., a closed two-sided ideal).
• A maximal ideal is a proper ideal J ⊂ A (i.e., J �= {0} and J �= A) that is not

properly contained in any larger proper ideal.

Thus an ideal is closed by definition. However, it is useful to know that if we omit
the word ‘closed’ throughout Definition C.55, a maximal ideal J ⊂ A (defined in the
purely algebraic sense) is automatically closed. Indeed, note that the closure J of J
cannot be A, since J does not contain any invertible element of A (otherwise it would
coincide with A), and the set A∗ of all invertible elements in A is open (see the proof
of Theorem B.84). Since J ⊆ J ⊂ A and J is maximal, J = J.

Furthermore, one often uses the fact that an ideal J that contains an invertible
element a must coincide with A (since a−1a = 1A must then lie in J, whence J = A).

In the commutative case, left and right ideals are the same as ideals. For example,
if A=C(X) for a compact space X , then each closed subspace Y ⊂X defines an ideal

C(X ;Y ) = { f ∈C(X) | f (x) = 0 ∀x ∈ Y}. (C.96)

Note that C(X ;Y ) is indeed closed by definition of the sup-norm, and that

C(X ;Y )∼=C0(X\Y ). (C.97)

Proposition C.83 in §C.11 shows that all ideals in C(X) are of this form. It is not
necessary to assume that Y is closed, but this assumption entails no loss of general-
ity, since C(X ;Y ) =C(X ;Y ), where Y is the closure of Y . We will see that C(X ;Y )
is maximal iff Y is a point, and that all maximal ideals in C(X) are of this form.

The next proposition is predicated on an elementary Banach space result:

Lemma C.56. If V is a Banach space and W is a closed linear subspace of V , then
the vector space quotient V/W is a Banach space in the “distance to W” norm

‖τ(v)‖= inf
w∈W

‖v−w‖, (C.98)

where τ : V →V/W is the canonical projection. Also, ‖τ(v)‖ ≤ ‖v‖ for any v ∈V .

Proof. First, (C.98) is well defined, for if τ(v′) = τ(v), i.e., v− v′ = w′ ∈W , then

‖τ(v′)‖ = inf{‖v′ −w‖,w ∈W}= inf{‖v′ −w−w′‖,w ∈W}
= inf{‖v−w‖,w ∈W}= ‖τ(v)‖.
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The axioms for a norm are easily verified, except positive definiteness: we have
‖τ(v)‖= 0 iff inf{‖v−w‖,w ∈W}= 0; hence there must be a sequence (wn) in W
with v−wn → 0, or wn → v. Since W is closed, v ∈W , so that τ(v) = 0. For the last
claim, eq. (C.98) yields ‖[τ(v)‖ ≤ ‖v−w‖ for all w ∈W ; take w = 0.
There seems to be no natural proof of the completeness of V/W , but here is a
trick: for any Cauchy sequence (τ(vn))n in V/W , find a subsequence (τ(vnk))k with
‖τ(vnk+1)−τ(vnk)‖< 2−k for all k. Using induction in k, one finds a sequence (uk) in
V with τ(uk) = τ(vnk) and ‖uk+1−uk‖< 2−k. Hence uk → u (since V is complete),
and hence τ(vnk)→ τ(u) by continuity of τ . Then also (τ(vn))n → 0. �

Proposition C.57. If J is an ideal in a Banach algebra A, then the quotient A/J is a
Banach algebra with multiplication

τ(a)τ(b) = τ(ab). (C.99)

If A is unital and J is proper, A/J is unital, with unit τ(1A) satisfying

‖τ(1A)‖= 1. (C.100)

Proof. As far as the Banach algebra structure is concerned, first note that (C.99) is
well defined: when j1, j2 ∈ J one has

τ(a+ j1)τ(b+ j2) = τ(ab+a j2 + j1b+ j1 j2) = τ(ab) = τ(a)τ(b), (C.101)

since a j2 + j1b+ j1 j2 ∈ J by definition of an ideal, and τ( j) = 0 for all j ∈ J.
To prove (C.1), observe that, by definition of the infimum, for given a ∈ A, for

each ε > 0 there exists a j ∈ J such that

‖τ(a)‖+ ε ≥ ‖a+ j‖. (C.102)

For if such a j would not exist, then ‖τ(a)‖ ≤ ‖a+ j‖− ε for all j ∈ J, violating
(C.98). On the other hand, for any j ∈ J, it is clear from (C.98) that

‖τ(a)‖= ‖τ(a+ j)‖ ≤ ‖a+ j‖. (C.103)

For a,b∈A, choose ε > 0 and j1, j2 ∈ J such that (C.102) holds for a,b, and estimate

‖τ(a)τ(b)‖ = ‖τ(a+ j1)τ(b+ j2)‖= ‖τ((a+ j1)(b+ j2))‖
≤ ‖(a+ j1)(b+ j2)‖ ≤ ‖a+ j1‖‖b+ j2‖
≤ (‖τ(a)‖+ ε)(‖τ(b)‖+ ε). (C.104)

Letting ε → 0 yields
‖τ(a)τ(b)‖ ≤ ‖τ(a)‖‖τ(b)‖. (C.105)

If A has a unit, τ(1A) is a unit in A/J, cf. (C.99). By (C.103) with a = 1A and
j = 0 one has ‖τ(1A)‖ ≤ ‖1A‖ = 1. On the other hand, from (C.105) and (C.99)
with b = 1A and a ∈ A\J, one derives ‖τ(1A)‖ ≥ 1. Hence (C.100) follows. �
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In a C*-algebra the last step is unnecessary, since a unit necessarily has norm one.
In the commutative case, a nice example (with X and Y compact, as above), is

C(X)/C(X ;Y )∼=C(Y ), (C.106)

as two elements f ,g of C(X) are identified in C(X)/C(X ;Y ) when f −g ∈C(X ;Y ),
i.e., when they coincide on Y . If one looks at C(X ;Y ) as the kernel of the restriction
map rY : C(X)→C(Y ), then ran(rY )∼=C(X)/ker(rY ), which is just (C.106).

We now prove Proposition C.13, which we unfold as:

1. If ω ∈ Σ(A), then Jω = ker(ω) is a maximal ideal in A;
2. ω1 = ω2 iff Jω1 = Jω2 ;
3. Every maximal ideal J is of the form J = Jω , for some ω ∈ Σ(A).

For the first claim, Jω is an ideal since ω is multiplicative. To prove maximality,
suppose Jω ⊆ I⊂A for some ideal I. Then ω(I) is an ideal in C, so either ω(I)= {0}
or ω(I) = C. In the former case, I = Jω (since I ⊆ kerω = J), in the latter, I = A
(because for any a ∈ A there is b ∈ I such that ω(a) = ω(b), whence a− b ∈ kerω
and hence a−b ∈ I, or a ∈ b+ I = I). Thus Jω is maximal.

For the second, if ω1(a) = c, then ω1(a− c ·1A) = 0 by (C.14), so if ker(ω1) =
ker(ω2), then also ω2(a− c ·1A) = 0 and hence ω2(a) = c = ω1(a).

Finally, let J be maximal. Since J �= A, there is a nonzero b ∈ A, b /∈ J. Form

Jb = {ba+ j | a ∈ A, j ∈ J}. (C.107)

Since A is commutative, Jb is an ideal. Taking a = 0 gives J ⊆ Jb. Taking a = 1A
and j = 0 gives b ∈ Jb, so that Jb �= J. Hence Jb = A, as J is maximal. In particular,
1A ∈ Jb, so that 1A = ba+ j for some a ∈ A, j ∈ J. Applying τ : A→ A/J gives

τ(1A) = 1A = τ(ba) = τ(b)τ(a), (C.108)

because of (C.99) and τ(J) = 0. Hence τ(a) = τ(b)−1 in A/J. Since b �= 0 was
arbitrary, this shows that every nonzero element of A/J is invertible. At this point it
is therefore appropriate to invoke the Gelfand–Mazur Theorem:

Theorem C.58. If every nonzero element of a unital commutative Banach algebra
B is invertible (i.e., if B is simple), then B∼= C as Banach algebras.

Proof. Since σ(b) �= /0, for each b �= 0 there is λ ∈ C for which b− λ · 1B is not
invertible. Hence b−λ ·1B = 0 by assumption, and b �→ λ is an isomorphism. �

Hence there is an isomorphism ψ : A/J → C, from which we define ω : A → C
by ω(a) = ψ(τ(a)). This map is clearly linear (since τ and ψ are), and nonzero
(because ω(1A) = 1). Also, ω(a)ω(b) = ω(ab) by (C.99) and the fact that ψ is a
homomorphism, so ω ∈ Σ(A). Finally, since ker(τ) = J and ψ is an isomorphism,
J = ker(ω). This proves claim 3 above, and therefore Proposition C.13 also follows.
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C.9 Ideals in C*-algebras

Definition C.55 verbatim applies to C*-algebras. One would expect that an ideal in
a C*-algebra is required to be selfadjoint by definition, but this is unnecessary:

Proposition C.59. Let J be an ideal in a C*-algebra A. If a∈ J then a∗ ∈ J; in other
words, every ideal in a C*-algebra is automatically selfadjoint.

The proof (which generalizes a similar argument for compact operators, given at the
end of §B.18) relies on the theory of approximate units (see §C.5).

Proof. Let J⊂A be the given ideal, and put J∗= {a∗|a∈ J}. Note that j ∈ J implies
j∗ j ∈ J∩ J∗: it lies in J because J is an ideal, hence a left-ideal, and it lies in J∗ be-
cause J∗ is an ideal, hence a right-ideal. Since J is an ideal, J∩J∗ is a C*-subalgebra
of A. Hence by C.36 it has an approximate unit {1λ}. Take j ∈ J. Using (C.2),

‖ j∗ − j∗1λ‖2 = ‖( j−1λ j)( j∗ − j∗1λ )‖
= ‖( j∗ j− j∗ j1λ )‖+‖1λ‖‖( j j∗ − j j∗1λ )‖, (C.109)

since 1∗λ = 1λ . As we have seen, j∗ j ∈ J∩ J∗, so that, also using (C.69), both terms
vanish for λ →∞. Hence limλ→∞ ‖ j∗− j∗1λ‖= 0. But 1λ lies in J∩J∗, so certainly
1λ ∈ J, and since J is an ideal it must be that j∗1λ ∈ J for all λ . Hence j∗ is a norm-
limit of elements in J; since J is closed, it follows that j∗ ∈ J. �

We now turn to a C*-algebraic analogue of Proposition C.57, which is of suffi-
cient importance to promote it to the status of a theorem:

Theorem C.60. Let J be an ideal in a C*-algebra A. Then A/J is a C*-algebra with
respect to the norm (C.98), the multiplication (C.99), and the involution

τ(a)∗ = τ(a∗). (C.110)

The proof of this theorem uses approximate units, too. In view of Proposition C.57,
all we need to prove to establish Theorem C.60 is the property (C.2). This uses:

Lemma C.61. Let {1λ} be an approximate unit for J, and let a ∈ A. Then

‖τ(a)‖= lim
λ→∞

‖a−a1λ‖. (C.111)

Proof. It is obvious from (C.98) that

‖a−a1λ‖ ≥ ‖τ(a)‖. (C.112)

For the opposite inequality, add a unit 1A to A if necessary, pick any j ∈ J, and write

‖a−a1λ‖= ‖(a+ j)(1−1λ )+ j(1λ −1)‖ ≤ ‖a+ j‖‖1−1λ‖+‖ j1λ − j‖.
(C.113)

Note that
‖1−1λ‖ ≤ 1, (C.114)
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by Definition C.35 and the proof of Proposition C.51. The second term on the right-
hand side goes to zero for λ → ∞, since j ∈ J. Hence

lim
λ→∞

‖a−a1λ‖ ≤ ‖a+ j‖. (C.115)

For each ε > 0 we can choose j ∈ J so that (C.102) holds. For this specific j, we
combine (C.112), (C.115), and (C.102) to find

lim
λ→∞

‖a−a1λ‖− ε ≤ ‖τ(a)‖ ≤ ‖a−a1λ‖. (C.116)

Letting ε → 0 proves (C.111). �
We now prove (C.2) in A/J. Successively using (C.111), (C.2) in Ȧ, (C.114),

(C.111), (C.99), and (C.110), we find

‖τ(a)‖2 = lim
λ→∞

‖a−a1λ‖2 = lim
λ→∞

‖(a−a1λ )
∗(a−a1λ )‖

= lim
λ→∞

‖(1A−1λ )a
∗a(1A−1λ )‖ ≤ lim

λ→∞
‖1−1λ‖‖a∗a(1A−1λ )‖

≤ lim
λ→∞

‖a∗a(1A−1λ )‖= ‖τ(a∗a)‖= ‖τ(a)τ(a∗)‖
= ‖τ(a)τ(a)∗‖. (C.117)

As in the proof of Proposition C.30, this implies (C.2), and hence Theorem C.60.�
We now state and prove the key result about morphisms.

Theorem C.62. Let α : A→ B be a nonzero homomorphism between C*-algebras.

1. The homomorphism α is continuous, with norm ‖α‖= 1.
2. Its kernel ker(α) is an ideal in A.
3. If α is injective, then it is isometric.
4. An isomorphism of C*-algebras is automatically isometric.
5. The range α(A) is a C*-subalgebra of B; in particular, α(A) is closed in B.

Proof. If necessary, we first reduce the proof of the first claim to the case where
A and B have units and α is unital: we do so by replacing A and B by Ȧ and Ḃ,
respectively (even if A and/or B was already unital in the first place, but α was not),
and replacing α by the homomorphism α̇ : Ȧ → Ḃ defined in (C.66). If we do so,
it follows from Lemma C.34 that in the worst case the spectrum of a or α(a) is
modified by adding 0, which does not change the spectral radius. Therefore, the
move from α to α̇ makes no difference to the argument to follow, so we assume
that 1A ∈ A and 1B ∈ B, and α(1A) = 1B. If z ∈ ρ(a), so that (a− z)−1 exists in
A, then α(a− z) is certainly invertible in B, for (C.4) implies that (α(a− z))−1 =
α((a− z)−1). Hence ρ(a)⊆ ρ(α(a)), so that

σ(α(a))⊆ σ(a). (C.118)

Replacing a by a∗a this gives r(α(a∗a))≤ r(a∗a), and since α(a∗a) = α(a)∗α(a),
eq. (C.55) yields ‖α(a)‖ ≤ ‖a‖, and hence ‖α‖ ≤ 1. This proves continuity of α .
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Recalling that ideals in C*-algebras have to be closed by definition, this also
implies the second claim of the theorem (whose algebraic content is trivial).

We now prove the third claim of the theorem (which trivially implies the fourth).
Assume there is b ∈ A for which ‖α(b)‖ �= ‖b‖, so that by σ(a) �= σ(α(a)) for a =
b∗b by (C.55). Then (C.118) implies the strict inclusion σ(α(a))⊂σ(a) (as a closed
subset). By Urysohn’s lemma, there is a nonzero function f ∈C(σ(a)) that vanishes
on σ(α(a)), so that f (α(a)) = 0 by Corollary C.26. By Lemma C.63 below, this
implies α( f (a)) = 0. If α is injective, this contradicts the property f (a) �= 0, which
follows from f �= 0 and (C.52). Thus α must be isometric.

Combining the second claim with Theorem C.60, we see that A/ker(α) is a C*-
algebra. By the theory of vector spaces, we have a vector space isomorphism

ψ : A/ker(α)→ α(A), (C.119)

so that
ψ ◦ τ = α. (C.120)

Since α and τ are homomorphisms between C*-algebras, so is ψ . Since ψ is injec-
tive, it is isometric, as we have just shown. Hence ψ(A/ker(α)) has closed range
in B. But ψ(A/ker(α)) = α(A), so that α has closed range in B. Since α is a mor-
phism, its image is a ∗-algebra in B, which by the preceding sentence is closed in
the norm of B. Hence α(A), inheriting all operations in B, is a C*-algebra.

Finally, we prove that for the projection τ : A→ A/J in the case at hand we have

‖τ‖= 1. (C.121)

If A has a unit, this follows from Lemma C.56 with (C.100). If not, the argu-
ment is similar, using an approximate identity (1λ ) for A: from (C.105) we obtain
limλ ‖τ(1λ‖ ≥ 1, which with (C.69) gives supλ ‖τ(1λ‖ = 1. Since ‖τ‖ ≤ 1 from
Lemma C.56, this yields (C.121).

Because ψ is an isometry, it then follows from (C.120) that ‖α‖= 1. �

Here we used a nice property of the continuous functional calculus (Theorem C.25):

Lemma C.63. If α : A→ B is a morphism, and a = a∗, then

f (α(a)) = α( f (a)) ( f ∈C(σ(a))). (C.122)

Here f (a) and f (α(a)) are defined through Theorem C.25, cf. (C.118).

Proof. The property is true for polynomials by (C.4), since for those functions, f (a)
and f (α(a)) have their naive meaning. The general claim follows by continuity. �

Corollary C.64. Every ideal in a C*-algebra is the kernel of some homomorphism.

Proof. This follows from Proposition C.59, since J is the kernel of τ : A → A/J,
where A/J is a C*-algebra and τ is a morphism by (C.99), and (C.110). �
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C.10 Hilbert C*-modules and multiplier algebras

In §C.5 we explained the minimal way of adding a unit to a C*-algebra that did not
have one to begin with (although the procedure even works if it does). There is also
a maximal way, which embeds a non-unital C*-algebra in its multiplier algebra. In
our view, this maximal extension is actually more elegant and useful than the min-
imal one, although the commutative case might give the oppositie impression: here
(as we have seen), the minimal extension corresponds to the simple one-point com-
pactification of the Gelfand spectrum, whereas the maximal one extends the latter to
its awesome Čech–Stone compactification. In topology one may doubt if the latter is
indeed the neater choice, but for many noncommutative C*-algebras the multiplier
algebra comes naturally. For example, the C*-algebra B0(H) of compact operators
on a Hilbert space H is thereby turned into the C*-algebra B(H) of bounded ones.

There are various ways of defining multiplier algebras. Although not strictly nec-
essary, we offer the powerful entrance provided by Hilbert C*-modules, which are
simultaneous generalizations of C*-algebras, Hilbert spaces, and vector bundles.

Definition C.65. A pre-Hilbert C*-module over a C*-algebra A consists of:

• A right A-module E, i.e., a complex linear space equipped with a bilinear map
E×A→ A, written (ψ,a) �→ ψa (where ψ ∈ E and a ∈ A) such that

(ψb)a = ψ(ba). (C.123)

• A map 〈 , 〉A : E×E → A, linear in the second entry (the axioms below implying
antilinearity in the first entry) that for all ψ,ϕ ∈ E and b ∈ A, satisfies

〈ψ,ϕ〉∗A = 〈ϕ,ψ〉A; (C.124)
〈ψ,ϕa〉A = 〈ψ,ϕ〉Aa; (C.125)
〈ψ,ψ〉A ≥ 0; (C.126)
〈ψ,ψ〉A = 0 ⇔ ψ = 0. (C.127)

It is useful to note that (C.124) and (C.125) imply that

〈ψa,ϕ〉A = a∗〈ψ,ϕ〉A. (C.128)

Lemma C.66. In a pre-Hilbert C*-module E over a C*-algebra A one has:

〈ψ,ϕ〉A〈ϕ,ψ〉A ≤ ‖ϕ‖2 〈ψ,ψ〉A; (C.129)
‖〈ψ,ϕ〉A‖ ≤ ‖ψ‖‖ϕ‖; (C.130)

‖ψa‖ ≤ ‖ψ‖‖a‖. (C.131)

in which the following expression (which duly defines a norm on E) occurs:

‖ψ‖= ‖〈ψ,ψ〉A‖1/2. (C.132)
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Proof. To prove (C.129), we assume ϕ �= 0 (otherwise, the claim clearly holds), so
that also ‖ϕ‖> 0 by (C.127) and (C.132). Replacing ϕ by ϕ/‖ϕ‖ if necessary, (i.e.,
if ‖ϕ‖ �= 1), it is then enough to show that whenever ‖ϕ‖= 1, we have

〈ψ,ϕ〉A〈ϕ,ψ〉A ≤ 〈ψ,ψ〉A. (C.133)

To this effect, we substitute ϕ〈ϕ,ψ〉A−ψ for ψ in (C.126) and use (C.128), (C.124),
and (C.125), and (C.93), the latter in form b∗cb≤ ‖c‖b∗b for any b and c≥ 0 in A.
This gives (C.129). Eqs. (C.2), (C.124), and (C.129) then imply (C.130). Eq. (C.131)
follows from (C.128), (C.93), (C.84), and (C.2).

Finally, (C.132) defines a norm: scaling is clear, positive definiteness follows
from (C.127), and the triangle inequality is easily derived from (C.130). �
Corollary C.67. The inner product on a pre-Hilbert C*-module is nondegenerate,
in that ψ = 0 iff 〈ψ,ϕ〉B = 0 for all ϕ ∈ E.

Proof. It follows from (C.129) that for any ψ ∈ E, we have

‖ψ‖= sup{‖〈ψ,ϕ〉B‖,ϕ ∈ E,‖ϕ‖= 1}. (C.134)

. We now come to the main definition.

Definition C.68. A Hilbert C*-module over A is a pre-Hilbert C*-module over A
that is complete in the norm (C.132). We also say that E is a Hilbert A-module.

The three most straightforward examples of this concept, written “E � A”, are:

• C*-algebras themselves: E = A with action (a,b) �→ ab and inner product

〈a,b〉A = a∗b. (C.135)

By (C.2), the norm in E defined by (C.132) coincides with the original norm.
• Hilbert spaces: E = H and A =C, acting on H by the given scalar multiplication.
• Hermitian vector bundles E over locally compact Hausdorff spaces X : here E =

C0(X ,E ) consists of the continuous cross-sections ψ of E vanishing at infinity,
A =C(X) has natural action on E given by (ψa)(x) = a(x)ψ(x), and the C0(X)-
valued inner product is given by the hermitian structure < ·, ·>Ex on each fiber,

〈ψ,ϕ〉C(X) = x �→< ψ(x),ϕ(x)>Ex . (C.136)

This implies a norm ‖ψ‖= sup{‖ψ(x)‖Ex ,x ∈ X}, where ‖v‖2
Ex

=< v,v >Ex .

A Hilbert C*-module E � A defines a C*-algebra C∗(E,A) that consists of all
maps a : E → E for which there exists a map a∗ : E → E such that for all ψ,ϕ ∈ E,

〈ψ,aϕ〉A = 〈a∗ψ,ϕ〉A. (C.137)

Such maps are called adjointable. For example, if E = A, as in the first example
above, then any element a ∈ A defines an adjointable map simply by left multipli-
cation (i.e., a(b) = ab). If A has a unit, then this is it, whereas in the nonunital case
there are (many) more adjointable maps on A � A.
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We now show that adjointable maps on a Hilbert C*-module form a C*-algebra.

Theorem C.69. 1. An adjointable map on a Hilbert A-module is automatically C-
linear, A-linear (that is, (aψ)b = a(ψb) for all ψ ∈ E and b ∈ A), and bounded.

2. The adjoint of an adjointable map is unique, and the map a �→ a∗ defines an
involution on the space C∗(E,A) of all adjointable maps on E.

3. Equipped with this involution, and with the usual operator norm on the Banach
space E, the space C∗(E,A) is a C*-algebra.

4. For each a ∈C∗(E,A) and ψ ∈ E, the usual bound ‖aψ‖ ≤ ‖a‖‖ψ‖ sharpens to

〈aψ,aψ〉A ≤ ‖a‖2〈ψ,ψ〉A. (C.138)

Proof. The property of C-linearity is obvious, whereas A-linearity follows from
(C.128): this gives 〈a(ψb),ϕ〉A = 〈a(ψ)b,ϕ〉A, upon which Corollary C.67 yields
the claim. A similar argument shows that a∗ ∈C∗(E,A) when a ∈C∗(E,A).

To prove boundedness, fix ψ ∈ E and a ∈ C∗(E,A), and define Tψ : E → A by
Tψϕ = 〈a∗aψ,ϕ〉A. It is clear from (C.130) that ‖Tψ‖ ≤ ‖a∗aψ‖, so that Tψ is
bounded. On the other hand, since a is adjointable, one has Tψϕ = 〈ψ,a∗aϕ〉A, so
that, using (C.130) once again, one has ‖Tψϕ‖ ≤ ‖a∗aϕ‖‖ψ‖. Since E is complete
we may apply the Banach–Steinhaus Theorem B.78, which gives

sup{‖Tψ‖,ψ ∈ E,‖ψ‖= 1}< ∞. (C.139)

It then follows from (C.132) that ‖a‖ < ∞. Uniqueness and involutivity of the ad-
joint are proved as for Hilbert spaces; the former follows from (C.127), the latter
in addition requires (C.124). The space C∗(E,A) is norm-closed, since one easily
verifies from (C.137) and (C.132) that if an → a, then a∗n converges to a∗. As a
norm-closed space of linear maps on a Banach space, C∗(E,A) is a Banach algebra,
so that its satisfies (C.1). To check (C.2), one infers from (C.132) and the definition
(C.137) of the adjoint that ‖a‖2 ≤ ‖a∗a‖; using (C.1) and the argument leading to
(A.22), one first obtains ‖a∗‖= ‖a‖, and subsequently ‖a∗a‖= ‖a2‖.

Finally, it follows from (C.126), (C.86), and (C.137) that for fixed ψ ∈ E, the
map a �→ 〈ψ,aψ〉A from C∗(E,A) to A is positive. Replacing a by a∗a in (C.83) and
using (C.2) and (C.137) then leads to (C.138). �

In our first example the C*-algebra C∗(A,A) is usually called the multiplier alge-
bra, denoted by M(A). If A has a unit, then M(A) = A, but in general M(A) is much
larger than A, and obviously it always has a unit (given by the unit operator on A).

Proposition C.70. For any commutative C*-algebra A we have an isomorphism

M(A)
∼=→ Cb(Σ(A)); (C.140)

a �→ â, (C.141)

where, in terms of the Gelfand isomorphisms A∼=C0(Σ(A)), f �→ f̂ , we have

â( f ) = â f̂ . (C.142)
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In particular, for any locally compact space X we have an isomorphism

M(C0(X))∼=Cb(X), (C.143)

where a ∈Cb(X) simply acts on f ∈C0(X) by a( f ) = a f .

Proof. If A is commutative, then by Theorem C.69.1, any a ∈M(A) satisfies

a( f g) = a( f )g = f a(g), f ,g ∈ A. (C.144)

For any f ,g∈A and ω ∈Σ(A) such that ω( f ) �= 0 and ω(g) �= 0, the second equality
in (C.144) gives ω(a( f ))/ω( f ) = ω(a(g))/ω(g). Since ω �= 0, there is at least one
f ∈ A for which ω( f ) �= 0, so that the function â : Σ(A)→ C given by

â(ω) =
ω(a( f ))
ω( f )

=
â( f )(ω)

f̂ (ω)
, (C.145)

is well defined. Thus (C.142) holds by construction. Since a( f ) ∈ A, continuity of
the Gelfand transform makes â continuous. Next, we estimate

|â(ω) f̂ (ω)|= |â( f )(ω)| ≤ ‖â( f )‖∞ = ‖a( f )‖ ≤ ‖a‖‖ f‖, (C.146)

where we used (C.145) and isometry of the Gelfand transform, cf. (C.18). Hence

|â(ω)|=
∣∣∣∣ â(ω) f̂ (ω)

f̂ (ω)

∣∣∣∣≤ ‖a‖
| f̂ (ω)| , (C.147)

for any f ∈ A, and ω ∈ Σ(A) for which ω( f ) �= 0 and ‖ f‖= 1. For those, we have

inf{| f̂ (ω)|−1 | ω ∈ Σ(A),ω( f ) �= 0,‖ f‖= 1} =
(sup{| f̂ (ω)| | ω ∈ Σ(A),ω( f ) �= 0,‖ f‖= 1})−1 = ‖ f̂‖−1

∞ = 1, (C.148)

again using ‖ f‖= ‖ f̂‖∞. Together with (C.147), this gives |â(ω)| ≤ ‖a‖, and hence

‖â‖∞ ≤ ‖a‖. (C.149)

In particular, â is bounded, so that the map (C.140) - (C.141) is well defined. This
map has an inverse, as clearly any function â ∈ Cb(Σ(A)) defines an element of
M(C0(Σ(A))) by multiplication, and hence defines an element a ∈ M(A) by the
inverse Gelfand transform, cf. (C.142). �

Since an isomorphism of C*-algebras is isometric, we have ‖â‖∞ = ‖a‖. This may
also be proved directly from (C.149) and the converse inequality

‖a‖= sup{‖a( f )‖ | f ∈ A,‖ f‖= 1}= sup{‖â( f )‖∞ | f ∈ A,‖ f̂‖∞ = 1}
= sup{‖â f̂‖∞ | f ∈ A,‖ f̂‖∞ = 1} ≤ ‖â‖∞. (C.150)
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Most of this argument also works for the pre-Hilbert C0(X) module E = Cc(X)
(whose completion is C0(X), of course), except for the inequality (C.149), which
relies on boundedness of a (cf. Theorem C.69). This is lost if E fails to be complete,
and we now merely obtain an isomorphism of algebras with involution:

M(Cc(X))∼=C(X). (C.151)

For a slightly different take on this, for a general C*-algebra A we define an un-
bounded multiplier on A (seen as a Hilbert A-module) as a closed C-linear and
A-linear map m : D(m)→ A, where D(m) is a dense right-ideal in A (in the algebraic
sense, i.e., by exception we do not require an ideal to be closed). In general, the set
UM(A) of all unbounded multipliers on A has little algebraic structure (like the set
of all closed operators on a Hilbert space), but in the commutative case we have

UM(C0(X))∼=C(X), (C.152)

under the same identification as in (C.143). This means that any unbounded multi-
plier on C0(X) takes the form g �→ f g for some f ∈C(X), with domain

D( f ) = {g ∈C0(X) | f g ∈C0(X)}. (C.153)

The argument is the same as in the proof of Proposition C.70 (except for bounded-
ness), adding that fact that Cc(X) is a core for each f , in that its closure (defined as
usual by the set of all g ∈C0(X) for which there is a sequence (gn) in Cc(X) such
that gn → g and f gn is Cauchy) is given by D( f ); then f gn → f g (in the sup-norm).

Let us return to the bounded case, concentrating on the multiplier algebra

M(A) =C∗(A,A). (C.154)

Proposition C.71. There is an inclusion A ↪→ M(A), where A (seen as a subspace
of B(A)) acts on A (seen as a Hilbert A-module) by left multiplication. Moreover, A
is an essential ideal in M(A), in having nonzero intersection with any other ideal.

Proof. We first note that each map La : b �→ ab (a,b ∈ A) is adjointable, because

〈c,La(b)〉A = 〈c,ab〉A = c∗ab = (a∗c)∗b = 〈a∗c,b〉A = 〈La∗(c),b〉A,

so that the adjoint of La is La∗ . Furthermore, La = 0 iff a = 0, as can be seen by
taking an approximate unit in A, or from Lemma C.47. Hence A⊂M(A), which is a
proper inclusion iff A has no unit (since M(A) always has one, i.e. the unit of B(A)).

Now let m ∈ M(A) and a ∈ A. Then (m ◦ a)(b) = m(ab) = m(a)b, since m ∈
C∗(A,A) is A-linear. Hence ma ≡ m ◦ a ∈ A, since m(a) ∈ A. Since am = (m∗a∗)∗,
this argument shows that also am ∈ A, making A an ideal in M(A).

To see that this ideal is essential, we note (as a little exercise) that an ideal J ⊂ B
in a C*-algebra B is essential iff bJ = 0 (i.e., b j = 0 for each j ∈ J and some b ∈ B)
implies b = 0. Again by Lemma C.47, if m( ja) = 0 for each j ∈ A, a ∈ A, and some
b ∈M(A), then b(c) = 0 for each c ∈ A, and hence c = 0. �
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In general, one may compute M(A) as follows. If A and B are C*-algebras and
E is a Hilbert A-module, we say that a homomorphism α : B→C∗(E,A) is nonde-
generate if α(B)E− = E, that is, if the closed linear span of all vectors of the type
α(b)ψ , where b ∈ B and ψ ∈ E, equals E. It can be shown (from the Cohen–Hewitt
factorization theorem) that in this case one needs neither the linear span nor the
closure to recover E, in that each each element of E literally factorizes:

E = {α(b)ψ | b ∈ B,ψ ∈ E}. (C.155)

Theorem C.72. Suppose A and B are C*-algebras, E is a Hilbert A-module, and

α : B→C∗(E,A)

is a nondegenerate homomorphism. If B is an ideal in a C*-algebra C, then α has a
unique extension to C (which is injective if B is essential in C and α is injective).

Proof. The idea is easy: write ϕ ∈ E as ϕ = α(b)ψ for some b ∈ B and ψ ∈ E, cf.
(C.155), and define the desired extension

α̃ : C→C∗(E,A) (C.156)

by
α̃(c)ϕ = α(cb)ψ, (C.157)

provided this is well defined (in which case α̃ is clearly uniquely determined by α).
Adjointability then also follows, since we may define α̃(c)∗ = α̃(c∗), and compute

〈α̃(c)∗α(b′)ψ ′,α(b)ψ〉B = 〈α(c∗b′)ψ ′,α(b)ψ〉B = 〈ψ ′,α(c∗b′)∗α(b)ψ〉B
= 〈ψ ′,α(b′)∗α(cb)ψ〉B
= 〈α(b′)ψ ′, α̃(c)α(b)ψ〉B. (C.158)

Furthermore, it is easy to see that α̃ is a homomorphism. Also, α(c) = 0 for c ∈C
implies α(cb) = 0 for each b ∈ B; if α is injective, then cb = 0, and if B is an
essential ideal in C, then c = 0, so that α̃ is injective.

To show that (C.157) is independent of the representatives b and ψ , we estimate

‖α̃(c)α(b)ψ‖= lim
λ
‖α(ceλb)ψ‖= lim

λ
‖α(ceλ )α(b)ψ‖

≤ lim
λ
‖α(ceλ )‖‖α(b)ψ‖ ≤ lim

λ
‖ceλ‖‖α(b)ψ‖

= ‖c‖‖‖α(b)ψ‖, (C.159)

where (eλ ) is an approximate unit in C. In particular, if α(b)ψ = α(b′)ψ ′, then
α̃(c)α(b)ψ = α̃(c)α(b′)ψ ′. �

This proof works also without (C.155); one then has a finite sum ϕ = ∑iα(bi)ψi,
and a computation similar one to the previous one shows that α̃(c) is bounded on
the dense subspace of E consisting of such sums.
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This theorem (with B � A and E � A) explains in which sense M(A) is a max-
imal unitization of A (whereas Ȧ is a minimal one): all we need to do is abstractly
define a unitization of a non-unital C*-algebra A as a unital C*-algebra containing
A as an essential ideal (cf. Proposition C.71). This incorporates both Ȧ and M(A),
each being distinguished by a universal property it satisfies, namely:

Corollary C.73. For each unital C*-algebra C containing A as an essential ideal,
there are unique injective homomorphisms: C→M(A) and Ȧ→C whose restriction
to A is the identity map. In other words, denoting the inclusion of A into C by ι , we
have commutative diagrams

A Ȧ

C
ι ∃!

A M(A)

C
ι ∃!

The topological counterpart of this corollary is the construction of the one-point
compactification Ẋ and of the Čech-Stone compactification βX , respectively; cf.
Lemma C.38, which we may now supplement by simply defining βX as the Gelfand
spectrum of the commutative C*-algebra Cb(X)∼=C(βX). In this analogy, the con-
dition on an ideal B⊂C to be essential simply corresponds to a non-compact space
X being a dense subspace of some compactification of it.

Corollary C.74. Let E be some Hilbert A-module E and let α : B→C∗(E,A) be an
injective nondegenerate homomorphism. The unique extension ã : M(B)→C∗(E,A)
of α that exists according to Theorem C.72 maps M(B) isomorphically onto

Zα(E) = {a ∈C∗(E,A) | aα(b) ∈ α(B),α(b)a ∈ α(B)∀b ∈ B}. (C.160)

Proof. Note that Zα(E) is essential in C∗(E,A), as easily follows from the nonde-
generacy of α . Therefore, by the argument just given (plus the abstract nonsense
that shows that universal objects are unique up to isomorphism), we only need to
prove that Zα(E) is a maximal unitization of B. Let B be an essential ideal in C
and consider the injective extension ã : C→C∗(E,A) of α given by Theorem C.72.
Then ã maps C into Zα(E) by construction, as α̃(c)α(b) = α(bc) ∈ α(B), etc. �

Corollary C.75. A nondegenerate homomorphism α : B→M(A) has a unique ex-
tension to a homomorphism α̃ : M(B)→M(A).

Proof. Take C = M(B) and E = A in Theorem C.72.1. �

Note that two nondegenerate homomorphisms α : A→M(B) and β : B→M(C)
can be composed into a nondegenerate homomorphism β ◦α : A → M(C), which
by definition equals β ◦ α̃ . Thus one obtains a category CAm whose objects are C*-
algebras and whose arrows are nondegenerate homomorphism α : A→M(B), with a
full subcategory CCAm whose objects are commutative C*-algebras (with the same
arrows). This leads to a neat extension of Gelfand duality (cf. Theorem C.45):
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Theorem C.76. The category LCH of locally compact Hausdorff spaces and contin-
uous maps is dual to the category CCAm of commutative C*-algebras just defined.

This claim may be unfolded as in Theorem C.45, omitting ‘proper’ on the topologi-
cal side and replacing α : A→ B on the algebraic side by α : A→M(B).

Proof. First, a continuous map ϕ : Y → X trivially induces a nondegenerate ho-
momorphism ϕ∗ : C0(X)→ Cb(Y ). Second, since ω ∈ Σ(B) defines a nondegen-
erate homomorphism B → C, by Theorem C.72 it extends to a homomorphism
ω̃ : M(B)→ C. Thus the pullback α∗ : Σ(B)→ Σ(A) of a nondegenerate homo-
morphism α : A→M(B) is well defined (and still continuous). Part 3 of Theorem
C.45 stays the same, and the pertinent naturality properties are easily verified. �
Corollary C.77. A nondegenerate homomorphism α : C0(X)→ B(H) has a unique
extension to a homomorphism α̃ : Cb(X)→ B(H).

Proof. Taking A = C, E = H, and B = B0(H), Theorem C.72.2 gives

M(B0(H))∼= B(H). (C.161)

Combine this with the previous corollary (with B �C0(X) and A � B0(H)). �
Finally, we show how to reconstruct A as a C*-algebra from A as a Hilbert A-

module. The key to this is a more general construction:

Definition C.78. The collection C∗0(E,A) of “compact” operators on a Hilbert A-
module E is the C*-algebra generated (within C∗(E,A)) by all operators of the type
|ϕ〉〈ψ|, where ϕ,ψ ∈ E, and

|ϕ〉〈ψ|(ζ ) = ϕ〈ψ,ζ 〉A. (C.162)

Such operators are easily seen to be adjointable, with adjoint

|ϕ〉〈ψ|∗ = |ψ〉〈ϕ|, (C.163)

and hence bounded, with norm majorized by ‖ψ‖‖ϕ‖. If E = H is a Hilbert space,
then C∗0(H,C) = B0(H), since the maps |ϕ〉〈ψ| obviously generate the finite-rank
operators on H, whose norm-closure is B0(H), cf. Proposition B.131. Hence the
name “compact” operators, but in general elements of C∗0(E,A) need not be compact
(as operators on a Banach space) at all. The next and final example is a case in point:

Proposition C.79. If E = A as a Hilbert A-module in the usual way, then

C∗0(A,A)∼= A. (C.164)

Proof. We have |a〉〈b| = Lab∗ , where a �→ La is the canonical map from A to
C∗(A,A) ⊂ B(A) given by La(b) = ab, see Proposition C.30. This map is isomet-
ric, cf. (C.63), and hence injective. The map |a〉〈b| �→ ab∗ from the linear span of
all operators (C.162) within C∗0(E,A) to A is therefore bounded, and has dense im-
age by Lemma C.47. Its unique continuous extension maps C∗0(E,A) onto A, see
Theorem C.62.5 (or use the Cohen–Hewitt factorization theorem to conclude). �
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C.11 Gelfand topology as a frame

In the traditional approach to the Gelfand isomorphism, which we have followed
so far, the Gelfand spectrum Σ(A) of a commutative unital C*-algebra A is first
constructed as a set, upon which it is equipped with a natural topology O(Σ(A)),
i.e., the Gelfand topology. Alternatively, one may start with the latter and reconstruct
Σ(A) as a set from it. This not only gives a better conceptual understanding of
Gelfand’s theory (relating it, for example, to a well-known construction in algebraic
geometry); it also has the technical advantage of making good sense in constructive
mathematics and hence in topos theory (which the classical theory does not).

In the language of lattice theory, the topology O(X) of any space X is an example
of a so-called frame (cf. Appendix D, compared to which we change notation so as
to avoid abuse of the ubiquitous symbol X) i.e., a complete lattice L in which

U ∧
∨

S =
∨
{U ∧V,V ∈ S}, (C.165)

for arbitrary elements U ∈ L and subsets S ⊂ L. This is sometimes written in the
form U ∧(∨λ Vλ ) =

∨
λ (U ∧Vλ ), from which it is clear that the (binary) distributive

law U ∧ (V ∨W ) = (U ∧V )∨ (U ∧W ), which of course is implied by (C.165), is
now required for arbitrary families. Indeed, the definition of a frame is primarily
motivated by the example L =O(X), in which it should be noted that the supremum∨

S =
⋃

S≡
⋃
λ
{Uλ ∈ S}, (C.166)

is simply given by the set-theoretic union of the elements of S, which are open sets
whose union is open by definition of a topology, whereas the infimum of arbitrary
families of open sets has to be doctored so as to make it open, and hence is given by∧

S =
∨
{U ∈ O(X) |U ⊆V ∀V ∈ S}. (C.167)

Frame maps, then, are defined as order-preserving maps between the underlying
posets that preserve finite infima and arbitrary joins. For example, if

ϕ : Y → X (C.168)

is a continuous map, then the inverse image map

ϕ−1 : O(X)→ O(Y ) (C.169)

is a frame map. This also defines the category Frm of frames, whose opposite cat-
egory (that has the same objects but all arrows inverted) is called the category Loc
of locales. Thus a locale is a frame, seen as an object in the opposite category. If
no confusion arises (which, unfortunately, is rarely the case), elements of Frm are
written as O(X), even if they are not topologies (and indeed there are such frames,
see below), in which case the corresponding element of Loc is written as X .
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In this spirit, frame maps are always written as (C.169), in which case the map in
the opposite direction between the corresponding locales is (C.168). This notation
suggests the right way of thinking, and we will use it whenever it is convenient.

Frames are very closely related to Heyting algebras, which were originally meant
to formalize the intuitionistic (propositional) logic of Brouwer, and are defined as
distributive lattices L (with top # and bottom ⊥) equipped with a binary map

→: L×L→ L, (C.170)

playing the role of implication in logic, that satisfies the axiom

U ≤ (V →W ) iff (U ∧V )≤W. (C.171)

Every Boolean algebra is a Heyting algebra, but not vice versa; in fact, a Heyting
algebra is Boolean iff ¬¬U =U for all U , which is the case iff (¬U)∨U =# for all
U (which states the law of the excluded middle denied by Brouwer). In a Heyting
algebra (unlike a Boolean algebra), negation is a derived notion, defined by

¬U =U →⊥. (C.172)

A Heyting algebra is complete when it is complete as a lattice, in that arbitrary
suprema (and hence also infima) exist. The infinite distributivity law (C.165) is au-
tomatically satisfied in a complete Heyting algebra, which therefore is also a frame.
Conversely, a frame may be turned into a complete Heyting algebra by defining

V →W =
∨
{U |U ∧V ≤W}. (C.173)

Frames and complete Heyting algebras drift apart as soon as morphisms are con-
cerned, for although in both cases one requires maps to preserve the partial order,
maps between Heyting algebras must preserve→ rather than infinite suprema.

The map X �→ O(X) from topological spaces to frames (which extends to a con-
travariant functor in the obvious way, i.e., via (C.168) - (C.169)) is a competitor to
the map X �→C0(X) from topological spaces to commutative C*-algebras, and one
goal of this section is to find out how these two constructions are related.

First, there is a frame-theoretic analogue of the categorical duality between lo-
cally compact Hausdorff spaces and commutative C*-algebras (cf. Theorem C.45),
in which locally compact Hausdorff spaces are replaced by so-called sober spaces
(and no restrictions on continuous maps are made), whilst the category of frames
must be restricted to so-called spatial frames (which move is somewhat analogous
to restricting C*-algebras to commutative ones). We now explain these notions.

A particularly simple frame is 2 = {0,1} ≡ {⊥,#}, with order 0≤ 1; this is just
the topology O(∗) of a singleton ∗. In agreement of the above convention, a frame
map p−1 : O(X)→ 2 will be written as a locale map p : ∗→ X . Such a map defines
a point of the locale X (i.e., of the frame O(X)), and we denote the set of points of
X by Pt(X). To appreciate this definition, let us suppose that O(X) is the topology
of some space X . Each point x ∈ X then corresponds to a genuine map
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px : ∗→ X , px(∗) = x; (C.174)

whose inverse image map p−1
x : O(X)→ 2 is frame map and hence defines a point

in the above sense. Conversely, if X is sober (see below), each point of O(X) arise
in that way. The set Pt(X) has a natural topology, with opens

Pt(U) = {p ∈ Pt(X) | p(∗) ∈U}, (C.175)

where U ∈O(X); here p(∗) ∈U really means p−1(U) = 1. This gives a frame map

U �→ Pt(U) (C.176)

from O(X) to Pt(X). We say O(X) (or the locale X) is spatialspatial if this map
is an isomorphism of frames. Roughly speaking, therefore, spatial frames are just
topologies (an example of a non-spatial frame is the lattice Oreg(R) of regular open
subsets of R, i.e., of open subsets U with the property ¬¬U = U , where ¬U is the
interior of the complement of U). This does not mean, however, that any topology
O(X) (seen as a frame) is isomorphic to O(Pt(X)), since Pt(X) may not be homeo-
morphic to X .

Spaces X for which this is the case are called sober; more precisely, this means
that the map x �→ px from X to Pt(X) considered above is a homeomorphism; less
precisely, we may say that sober spaces X may be reconstructed from their topology
O(X), up to homeomorphism. To give a more direct topological characterization
of sobriety, call W ∈ O(X) meet-irreducible if U ∩V ⊆W (where U,V ∈ O(X))
implies either U ⊆W or V ⊆W . In any space X , all open sets of the form Wx =X\x−
are meet-irreducible, where x ∈ X (and x− is the closure of {x}). A space X is sober,
then, iff these are the only such opens. For example, any Hausdorff space is sober
(an example of a non-sober space is X = N with the unusual topology in which all
complements of finite subsets are open, along with the empty set, of course).

The category Frm, then, has a full subcategory Spat of spatial frames, whilst
likewise the category Top of topological spaces has a full subcategory Sob of sober
spaces. We now have the following counterpart of Theorem C.45:

Theorem C.80. The categories Spat and Sob are dual, in that:

1. If X is a sober space, then O(X) is a spatial frame. A continuous map ϕ : Y → X
induces a frame map ϕ−1 : O(X)→ O(Y ) in the natural way, such that if we
have another continuous map ψ : Z → Y , then (ϕ ◦ψ)−1 = ψ−1 ◦ϕ−1.

2. If O(X) is a spatial frame, then Pt(X) is a sober space. Furthermore, a locale
map ϕ : Y → X (i.e., a frame map ϕ−1 : O(X)→ O(Y )) induces a continuous
function ϕ∗ : Pt(Y )→ Pt(X) by ϕ∗(p) = ϕ ◦ p (i.e., ϕ∗(p−1) = p−1 ◦ϕ−1), which
similarly behaves well under composition.

3. There are canonical homeomorphisms and frame maps:

pX : X
∼=↔ Pt(O(X)), x �→ px; (C.177)

PtX : O(X)
∼=↔ O(Pt(O(X))), U �→ Pt(U), (C.178)
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cf. (C.174) - (C.176), with the correct naturality properties (cf. Theorem C.23).

Proof. We will not give a complete proof of this, but the main points are that:

• Any locale defined by the topology of some space is spatial.
• Any space Pt(X) of points of some locale X (not necessarily a space) is sober.
• The map pX in (C.177) is a homeomorphism by definition of sobriety (which,

alternatively, could have been defined by requiring bijectivity of pX , in which
case it can be shown that this map is continuous as well as open).

• By definition of the topology on Pt(X), the map (C.176) is surjective for any
locale X . If X is spatial; then for any distinct elements U,V ∈ O(X) there is a
point p such that p−1(U) �= p−1(V ), but this is the same as saying that Pt(U) =
Pt(V ) implies U =V . So in that case, (C.176) is also injective. �
Our aim is to apply these ideas to Gelfand duality, specifically to an independent

description of the topology O(Σ(A)) of the Gelfand spectrum Σ(A) of a commu-
tative C*-algebra A. To put this in perspective, let A for the moment be a general
C*-algebra, and recall Definition C.55 of left, right and two-sided ideals (all taken
to be closed by definition). Further to these, there is another interesting notion.

Definition C.81. A hereditary subalgebra of a C*-algebra A is a C*-subalgebra B
of A with the property that a≤ b for b ∈ B+ and a ∈ A+ implies a ∈ B+. The set of
of all hereditary subalgebras of A is denoted by H(A).

It is a simple exercise to show that there are bijective correspondences between
hereditary subalgebras B of A, left ideals L of A, and right ideals R of A, given by:

L = {a ∈ A | a∗a ∈ B+}; (C.179)
R = {a ∈ A | aa∗ ∈ B+}; (C.180)
B = L∩L∗ = R∩R∗. (C.181)

Furthermore, one has I(A)⊆ H(A), where I(A) is the set of closed two-sided ideals
in A, and likewise we write L(A) and R(A). If A is commutative, these ideals are
two-sided, so that L∗ = L etc., and L = R = B, so that H(A) = I(A) = L(A) = R(A).

Proposition C.82. The set H(A) is a complete lattice under inclusion as the partial
order, with inf and sup of any subset S⊂ H(A) given by∧

S =
⋂

S; (C.182)∨
S =

⋂
{U ∈ H(A) |V ⊆U ∀V ∈ S}. (C.183)

Moreover, if A is commutative, then H(A) = I(A) = L(A) = R(A) is a frame.

Proof. The defining conditions on hereditary subalgebras of A are preserved by ar-
bitrary intersections, which means that H(A) has infima of arbitrary subsets, given
by (C.182). This implies that H(A) also has arbitrary suprema, given by (C.183),
which is a standard formula in lattice theory. Hence H(A) is a complete lattice.

The last claim follows from Corollary C.84 below (and the ensuing fact for topol-
ogy). It may also be proved directly, using the fact that H(A) = I(A). �
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Proposition C.83. Let X be a locally compact Hausdorff space. Then the map

O(X)
∼=→ H(C0(X)); (C.184)

U �→ C0(U), (C.185)

where C0(U) is seen as a subspace of C0(X), is a frame isomorphism, with inverse

H(C0(X))
∼=→ O(X); (C.186)

B �→ X\FB, (C.187)

where, for any subset B⊂C0(X) one defines the (necessarily closed) set FB ⊂ X by

FB = {x ∈ X | f (x) = 0∀ f ∈ B}. (C.188)

Proof. For any open U ∈ O(X), we may regard f ∈C0(U) as an element of C0(X)
by extending f to all of X through f|X\U = 0. Continuity of f is only an issue at
boundary points of Uc ≡ X\U , so take x0 ∈ ∂Uc (i.e., any neighbourhood of x0 has
nonempty intersection with both Uc and U). Since f (x0) = 0, to prove continuity of
f at x0 we need to show that for any ε > 0, there is neigbourhood N of x0 such that
| f (x)| < ε for each x ∈ N. Indeed, since f ∈ C0(U), there is a compact set K ⊂U
such that | f (x)| < ε for each x ∈ U\K (and hence also for each x ∈ X\K). Then
x0 /∈ K (since x0 ∈Uc), so, we may take the open neighbourhood N = X\K.

Since the ordering in C0(X) is pointwise, it is trivial that C0(U)∈H(C0(X)). The
map (C.185) also clearly preserves the order, i.e., if U ⊆V , then C0(U)⊆C0(V ).

Half of the proof that (C.185) and (C.187) are mutually inverse is the equality

C0(U) =C0(X ;X\U), (C.189)

where for any F ⊂ X (usually taken to be closed), we define C0(X ;F)⊂C0(X) by

C0(X ;F) = { f ∈C0(X) | f|F = 0}. (C.190)

To prove (C.189), we just need to prove that C0(X ;X\U)⊆C0(U), since the oppo-
site inclusion has been proved before Proposition C.83. Since f ∈C0(X), for each
ε > 0 and each boundary point x ∈ ∂Uc, there is an open neighbourhood Nx of x
where | f |< ε , as well as a compact set K ⊂ X outside which the same is true. Then
V = ∪x∈∂UcUx ∩U is open in U , so that its complement U\V is closed in U , and
K′ = (U\V )∩K is compact in U . Clearly, | f |< ε outside K′, whence f ∈C0(U).

Having proved (C.189), the other half of the proof of bijectivity of (C.184) is

B =C0(X ;FB), (C.191)

for any B ∈ H(C0(X)). The inclusion B⊆C0(X ;FB) is trivial. For the converse, we
exploit the fact that B is an ideal in C0(X), so that C0(X)/B is a C*-algebra by
Theorem C.60. Let τ : C0(X)→C0(X)/B be the canonical projection. If f /∈ B, then
τ( f ) �= 0. Hence there is a character ω ′ ∈ Σ(C0(X)/B), such that ω ′(τ( f )) �= 0.
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Lift ω ′ to ω = ω ′ ◦ τ ∈ Σ(C0(X))∼= X , so that there is x ∈ X such that ω(g) = g(x)
for all g ∈ C0(X). Since τ(g) = 0 for each g ∈ B, we have ω(g) = 0, and hence
g(x) = 0 for each g ∈ B, so that x ∈ FB. But f (x) �= 0, so f /∈C0(X ;FB), and hence
we have proved the inclusion C0(X ;FB)⊆ B. �
Thus C.83 could just as well have been formulated in terms of closed sets, albeit at
the cost of inverting the partial order. Also, note the isomorphism

C0(X)/C0(U)
∼=−→C0(X\U), [ f ] �→ f|X\U . (C.192)

Corollary C.84. For any commutative C*-algebra A, there is a frame isomorphism

O(Σ(A))∼= H(A). (C.193)

This sheds new light on maximal ideals in A as points of the Gelfand spectrum Σ(A),
cf. Proposition C.13. We need a lemma that applies to any frame O(X). A prime
element P ∈ O(X) is an element P �= # such that U ∧V ≤ P iff U ≤ P or V ≤ P.
For a point p−1 : O(X)→ 2, we write ker(p−1) for {U ∈ O(X) | p−1(U) = 0}.
Lemma C.85. For any frame O(X) (i.e. locale X), there is a bijective correspon-
dence between points p−1 : O(X)→ 2 of X and prime elements P ∈ O(X), viz.

P =
∨

ker(p−1); (C.194)

p−1(U) = 0 iff U ≤ P. (C.195)

Under this correspondence, the topology on Pt(X) is given by the Zariski topology,
whose closed sets FP consist of all Q⊇ P, where P is some prime element of O(X).

Proof. The requirement that p−1 be a frame map implies the following properties
of its kernel K = ker(p−1): # /∈ K, U ∧V ∈ K iff U ∈ K or V ∈ K, and

∨
S ∈ K iff

each V ∈ S is in K. Any subset K ⊂O(X) satisfying these properties in turn defines
a point p of X whose kernel is K. Then P =

∨
K is a prime element of O(X), and

conversely, K (and hence p) may be recovered from P as its downset K =↓ P.
The given topology on the set of prime elements is a rewriting of (C.175). �
The prime elements of H(A), where A is a commutative C*-algebra, are the prime

ideals in A, i.e., the proper ideals J ⊂ A such that J1J2 ⊂ J iff J1 ⊆ A or J2 ⊆ A, for
any ideals J1,J2 of A (closed by definition, like J); note that J1J2 = J1∩ J2.

Theorem C.86. 1. The frame H(A) of hereditary subalgebras of a commutative C*-
algebra A is spatial, with Pt(H(A))∼= Σ(A) as topological spaces.

2. The prime elements of H(A) are the maximal ideals of A, so that, equipping the
set M (A) of maximal ideals of A with the Zariski topology, also M (A)∼= Σ(A).

Proof. 1. Proposition C.83 bijectively relates prime elements in H(A) to meet-
irreducible sets in Σ(A). The description of sobriety in terms of meet-irreducibility
after (C.176), which applies because Σ(A) is locally compact Hausdorff and
hence sober, then bijectively relates these meet-irreducible sets to points of Σ(A).

2. Proposition C.13 in turn relates points of Σ(A) to maximal ideals of A. �
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C.12 The structure of C*-algebras

Having understood the structure of commutative C*-algebras, we now turn to the
general case. We already know that the algebra B(H) of all bounded operators on
some Hilbert space H is a C*-algebra in the obvious way (i.e., the algebraic op-
erations are the natural ones, the involution is the operator adjoint a �→ a∗, and
the norm is the operator norm of Banach space theory). Moreover, each (operator)
norm-closed ∗-algebra in B(H) is a C*-algebra. Our goal is to prove the converse:

Theorem C.87. Each C*-algebra A is isomorphic to a norm-closed ∗-algebra in
B(H), for some Hilbert space H. Equivalently, for any C*-algebra A there exist a
Hilbert space H and an injective homomorphism π : A→ B(H).

A homomorphism π : A→ B(H) is called a representation of A on H. The equiva-
lence between the two statements in the theorem follows from Theorem C.62.

Let us note that Theorems C.8 and C.87 harmonize as follows: any measure μ
on X satisfying μ(U)> 0 for each open U ⊂ X leads to an injective representation
of C0(X) on L2(X ,μ) by multiplication operators, that is, π( f ) = m f , cf. (B.238).

The proof of Theorem C.87 uses the elegant GNS-construction, named after
Gelfand, Naimark, and Segal, which is important in its own right. We initially as-
sume that A is unital. First, we call a representation π cyclic if its carrier space H
contains a cyclic vector Ω for π , i.e., the closure of π(A)Ω coincides with H.

Theorem C.88. Let ω be a state on a C*-algebra A. There exists a cyclic represen-
tation πω of A on a Hilbert space Hω with cyclic unit vector Ωω such that

ω(a) = 〈Ωω ,πω(a)Ωω〉, a ∈ A. (C.196)

Proof. We first give the proof in the special case that A has a unit 1A, and ω(a∗a)> 0
for all a �= 0. Define a sesquilinear form (−,−) on A by

(a,b) = ω(a∗b). (C.197)

This form is positive definite by definition of a state, so that we may complete A in
the ensuing norm

‖a‖ω =
√

ω(a∗a), (C.198)

to a Hilbert space called Hω . For each a ∈ A, we then define a map

πω(a) : A → A; (C.199)
πω(a)b = ab. (C.200)

Regarding A as a dense subspace of Hω , this defines an operator πω(a) on a dense
domain in Hω . This operator is bounded, since (C.94) implies

‖πω(a)‖ ≤ ‖a‖. (C.201)



692 C Operator algebras

Hence πω(a) may be extended from A to Hω by continuity, and we obtain a map
πω : A→ B(Hω). Simple computations show that πω is a representation. The special
vector Ωω is the unit 1A ∈ A, seen as an element of Hω : its cyclicity is obvious, and:

‖Ωω‖2 = 〈Ωω ,Ωω〉= ω(1∗A1A) = ω(1A) = 1; (C.202)
〈Ωω ,πω(a)Ωω〉= ω(1∗Aa1A) = ω(a). (C.203)

Under our standing assumption ω(a∗a)> 0 if a �= 0, this not only proves Theorem
C.88, but also Theorem C.87: for πω(a) = 0 implies ‖πω(a)Ωω‖2 = 0, whose left-
hand side is precisely (Ωω ,πω(a∗a)Ωω) = ω(a∗a). Thus πω is faithful.

In general, a C*-algebra may lack such states, and we must adapt the proof of
both theorems. The GNS-construction is easy: for an arbitrary state ω , we introduce

Nω = {a ∈ A |ω(a∗a) = 0}. (C.204)

If aω is the image of a ∈ A in A/Nω , we may define an inner product on the latter by

〈aω ,bω〉= ω(a∗b); (C.205)

this is well defined and positive definite, and we define the Hilbert space Hω as the
completion of A/Nω in this inner product. Furthermore, we define

πω(a) : A/Nω → Hω ; (C.206)
πω(a)bω = (ab)ω ; (C.207)

this is well defined, because Nω is a left ideal in A by (C.94). Finally, we define

Ωω = (1A)ω . (C.208)

The proof that everything works is then a simple exercise. Another way to look at
the cyclic vector Ωω is to let ω define a linear functional ω̃ : A/Nω → C by

ω̃(aω) = ω(a); (C.209)

this functional is continuous on A/Nω ⊂Hω , because |ω(a)|2 ≤ ω(a∗a) = ‖aω‖2
Hω ,

as follows from the Cauchy–Schwarz inequality for the positive semidefinite form
(C.197). Hence by Riesz–Fréchet there is an implementing vector Ωω such that

ω(a) = 〈Ωω ,aω〉. (C.210)

Finally, when A has no unit, in defining Ωω we either use the GNS-construction for
the unitization Ȧ and restrict πω̇(Ȧ) to A to define πω(A), or use (C.210). �

One of the nicest feature of the GNS-construction is the link between purity of
the state ω and irreducibility of the corresponding representation πω .
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Definition C.89. We call a representation π of a C*-algebra A on a Hilbert space
H irreducible if the only closed subspaces K of H that are stable under π(A) (in
the sense that if ψ ∈ K, then π(a)ψ ∈ K for all a ∈ A) are either K = H or K = {0}.
Theorem C.90. Each of the following conditions is equivalent to irreducibility:

1. π(A)′ = C ·1, where S′ is the commutant of S⊂ B(H) (Schur’s Lemma);
2. π(A)′′ = B(H);
3. Every vector in H is cyclic for π(A).

Furthermore, if ω is a state on A, then ω is pure iff the corresponding GNS-
representation πω is irreducible.

Proof. If π(A)′ �= C · 1, then π(A)′ must contain a nontrivial self-adjoint element
a (as it is a ∗-algebra), and hence also a nontrivial projection e (as the spectral
projections eΔ = 1Δ (a) of a, defined as in Theorem B.102, lie in π(A)′, too). But if
e ∈ π(A)′, then eH is stable under π(A), and hence π cannot be irreducible. Thus
irreducibility implies 1. Conversely, if π(A)′ = C ·1, then π must be irreducible by
the same argument, since if not, any projection onto some proper stable subspace
K for π would be an nontrivial element of π(A)′. The equivalence 1 ↔ 2 is clear,
since (C ·1)′ = B(H). Similarly, if ϕ ∈H would fail to be cyclic for π , then π(A)ϕ−
would be a proper, π(A)-stable subspace of H, so that irreducibility implies 3. The
converse is trivial, since if K ⊂ K were stable for π(A), then 3 cannot hold. �

Another useful result relates general representations to GNS-representations. We
call two representations πi : A → B(Hi), i = 1,2, unitarily equivalent if there is a
unitary u : H1→H2 such that uπ1(a)u∗= π2(a) (or uπ1(a) = π2(a)u) for each a∈A.

Proposition C.91. Let π : A→ B(H) be a cyclic representation of H. If ψ ∈ H is a
cyclic unit vector for π , then

ω(a) = 〈ψ,π(a)ψ〉 (C.211)

is a state on A, whose GNS-representation πω is unitarily equivalent to π .

Proof. Define u : Hω → H first on πω(A)Ωω (which is a dense subspace of H) by

uπω(a)Ωω = π(a)ψ. (C.212)

Using (C.211) and (C.196), we then obtain

‖πω(a)Ωω‖2 = ω(a∗a) = 〈ψ,π(a∗a)ψ〉= ‖π(a)ψ‖2. (C.213)

This shows that u is well defined as well as isometric, so that it extends to Hω by
continuity. Its image is then the closure of π(A)ψ , which is H, since ψ is cyclic by
assumption. Thus u is surjective and hence unitary. Finally, we compute

uπω(a)πω(b)Ωω = π(a)π(b)ψ = π(a)uπω(b)Ωω , (C.214)

so that uπω(a) = π(a)u on the dense space πω(A)Ωω , and thence everywhere. �
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We now take up the proof of Theorem C.87, preceded by some general remarks
on direct sums of Hilbert spaces and representations. First, if (H1, . . . ,Hn) is a finite
family of Hilbert spaces, one may form the direct sum H = H1⊕·· ·⊕Hn, initially
merely as a vector space, and subsequently also as a space with inner product

〈(ϕ1, . . . ,ϕn),(ψ1, . . . ,ψn)〉=
n

∑
i=1
〈ϕi,ψi〉. (C.215)

It is easy to see that H is complete in the ensuing norm

‖(ψ1, . . . ,ψn)‖2 =
n

∑
i=1
‖ψi‖2. (C.216)

Some authors write ψ1⊕·· ·⊕ψn, ψ1+̇ · · ·+̇ψn, or ψ1 + · · ·+ψn for (ψ1, . . . ,ψn).
Moreover, if (πi) is a family of representations πi : A→ B(Hi), then one obtains

a new representation
⊕

iπi of A, called the direct sum of the πi, by⊕
i

πi(a)(ψ1, . . . ,ψn) = (π1(a)ψ1, . . . ,πn(a)ψn). (C.217)

This construction works for arbitrary families of Hilbert spaces (Hx) and represen-
tations (πx), where x ∈ X for some index set X . First, the elements of H =

⊕
x Hx

are families (ψ)≡ (ψx)x∈X , where ψx ∈ Hx, such that

‖(ψ)‖2 = sup
F⊂X

∑
x∈F
‖ψx‖2

Hx < ∞, (C.218)

where the supremum is over all finite subsets F of X , so that the sum is defined as in
(B.11). In that case, the obvious linear operations (i.e., ((ψ)+(ϕ))x = ψx +ϕx and
(λ (ψ))x = λ ·ψx) are defined within H, since for each pair (ϕ),(ψ) ∈ H we have,
from the triangle inequality for the norm in each finite direct sum HF =

⊕
x∈F Hx,(

∑
x∈F
‖ψx +ϕx‖2

Hx

)1/2

≤
(

∑
x∈F
‖ψx‖2

)1/2

+

(
∑
x∈F
‖ϕx‖2)

)1/2

≤ ‖(ψ)‖2+‖(ϕ)‖2.

The supremum over F gives ‖(ψ)+(ϕ)‖, which is therefore finite and satisfies the
triangle inequality for the norm. Similarly, the natural inner product in H is well
defined, this time by the full Definition B.6, with V =C and f (x) = 〈ϕx,ψx〉Hx , i.e.,

〈(ϕ),(ψ)〉= ∑
x∈X
〈ϕx,ψx〉Hx . (C.219)

To see this, we apply Cauchy–Schwarz first in each Hx and then in �2(X) to obtain

|〈(ϕ),(ψ)〉| ≤ ∑
x∈X
|〈ϕx,ψx〉Hx | ≤∑

x
‖ϕx‖‖ψx‖ ≤ ‖(ϕ)‖‖(ψ)‖< ∞. (C.220)
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Finally, the proof that the direct sum Hilbert space
⊕

x Hx is complete in the norm
(C.218) is similar to the case where Hx =C for each x, i.e., H = �2(X), cf. Theorem
B.9. Let (ψ)n be a Cauchy sequence in H, consisting of sequences (ψx)n ≡ ψ(n)

x in
each Hx. For each finite F ⊂ X and ε > 0, we must have ∑x∈F ‖ψ(n)

x −ψ(m)
x ‖< ε for

sufficiently large n,m so that each (ψx)n must be Cauchy in Hx, with limit ψx. The
ensuing set (ψ) of vectors lies in H by the argument following (B.19), and the given
Cauchy sequence (ψ)n converges to (ψ), again by the same proof as for �2(X).

If one has a family (πx) of representations πx : A→ B(Hx), their direct sum π =⊕
xπx, defined by (π(a)(ψ))x = πx(a)ψx, is a representation of A on H. Indeed, one

has ‖π(a)‖= supx{‖πx(a)‖}, and since we have ‖πx(a)‖ ≤ ‖a‖ for each x, we also
have ‖π(a)‖ ≤ ‖a‖, so that π(a) ∈ B(H), and hence π maps A into B(H).

Our first use of such direct sums shows that cyclic representation are the building
blocks of any representation π , at least if we require π to be nondegenerate in the
sense that π(a)ψ = 0 for all a ∈ A and ψ ∈ H implies ψ = 0.

Proposition C.92. Any nondegenerate representation π : A→B(H) of a C*-algebra
A on a Hilbert space H is a direct sum of cyclic representations of A.

Proof. Consider families (ψx)x∈X of nonzero vectors in H with the property that

〈π(a)ψx,π(b)ψx′ 〉= 0, (C.221)

for all a,b ∈ A and all x �= x′. Such families are partially ordered by inclusion, and
an easy application of Zorn’s Lemma shows that there is a maximal such family.
For this family (ψx)x∈X , we define Hx as the closure of π(A)ψx in H. Since π is a
homomorhism, each Hx is stable under π(A), and hence the restriction πx(a) of π(a)
to Hx defines a representation of A, which is cyclic by construction. It follows that
H =

⊕
x Hx and π =

⊕
xπx, and so the claim has been proved. �

Our second use is the proof of Theorem C.87, where we have to solve the problem
of the possible lack of injectivity of πω in our previous preliminary proof.

Proof. To do so, we replace Hω by the crazy Hilbert space Hc =
⊕

ω∈P(A) Hω , where
P(A) is the pure state space of A. The Hilbert space Hc carries a representation π =⊕

ω∈P(A)πω . The point is that if π(a) = 0, then π(a∗a)Ωω = 0 for each ω ∈ P(A),
which by (C.196) implies ω(a∗a) = 0. Proposition C.15 then gives σ(a∗a) = {0},
from which the spectral radius formula (C.55) gives ‖a‖ = 0, and hence a = 0. It
follows that π is injective, and Theorem C.87 is proved. �

It should be noted that this proof relies on shock and awe kind of overkill (though
nothing compared to the even crazier space Hec =

⊕
ω∈S(A) Hω , which is tradition-

ally used in the above proof), in that Hc is far larger than necessary (indeed, in all
but the most trivial cases, H is non-separable). For example, already for A = M2(C)
we have P(A) ∼= S2, so that Hc =

⊕
ω∈S2 C2; this Hilbert space is non-separable,

whereas A has an injective representation on C2. More generally, B0(H) or B(H)
has an injective representation on H by definition, whereas Hc is non-separable. In
the commutative case, A =C0(X) yields the non-separable Hc =

⊕
x∈X C, although

A has an injective representation on the (typically) separable space L2(X ,μ).
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As a nice illustration of the GNS-construction, let us treat this example in more
detail (cf. §1.5 for the simple case where X is finite). If μ is some state on C0(X),
then by Theorem B.24, there is a unique probability measure μ on X such that

ω( f ) =
∫

X
dμ f , f ∈C0(X), (C.222)

cf. (B.39). It follows from (C.204) and (C.222) that

Nω =

{
f ∈C0(X) :

∫
X

dμ | f |2 = 0
}
. (C.223)

In particular, the support of μ is X iff Nω = {0}, in which case A/Nω = C0(X).
In the opposite case where ω is a pure state, i.e., ω = ωx for some x ∈ X , with
ωx( f ) = f (x), one has Nω = { f ∈C0(X) | f (x) = 0}, so that A/Nω ∼= C, under the
map [ f ] �→ f (x). In general, from (C.206) - (C.207) we obtain

Hω = L2(X ,μ); (C.224)
πω( f ) = m f ; (C.225)

Ωω = 1X , (C.226)

where m fψ = fψ , cf. (B.238). Analogously to (B.331), we then obtain

πω(C0(X))′′ = L∞(X ,μ). (C.227)

The state ω , initially defined on the commutative C*-algebra C0(X), then has a
normal extension to the commutative von Neumann algebra L∞(X ,μ), cf. (C.222).

More generally, if A is an arbitrary commutative C*-algebra and ω is a state on
A, then, writing Σ(A) for the Gelfand spectrum of A as usual, we have

Hω ∼= L2(Σ(A),μ); (C.228)
πω( f ) ∼= m f̂ ; (C.229)

Ωω ∼= 1Σ(A), (C.230)

where f̂ ∈ C0(Σ(A)) is the Gelfand transform of f ∈ A, and μ is the probabililty
measure on Σ(A) defined by

ω( f ) =
∫
Σ(A)

dμ f̂ . (C.231)

With this commutative case in mind, some authors would call a pair (A,ω), where
A is a general C*-algebra and ω is a state on A, or, alternatively, A is a general
von Neumann algebra and ω is a normal state on A, a non-commutative proba-
bility space. As such, ‘aordinary” probability theory (at least, on locally compact
Hausdorff sample spaces) is merely the commutative case of a much more general
“non-commutative probability theory”.
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C.13 Tensor products of Hilbert spaces and C*-algebras

If HA and HB are Hilbert spaces, their algebraic tensor product HA⊗HB typically
fails to be a Hilbert space in the obvious way, since it is not complete (unless one
of the factors is finite-dimensional). Similarly, the algebraic tensor product A⊗B of
two C*-algebras A and B usually fails to be a C*-algebra. However, the second case
is far more complicated then the first: for Hilbert spaces there is a canonical norm
on the algebraic tensor product and hence a canonical completion of HA⊗HB into a
Hilbert space HA⊗HB. For C*-algebras, on the other hand, there is an embarrasment
of riches, in that there are are many norms turning the completion A⊗̂B of A⊗B in
some such norm into a C*-algebra. However, if A or B is nuclear, there is just one
possibility; see below. For example, this applies of A or B is finite-dimensional.

Let us first review the (algebraic) tensor product of two vector spaces. A and B.

Proposition C.93. Let A and B be (complex) vector spaces. There is a vector space
called A⊗B, in words the algebraic tensor product of A and B (over C), and a
map p : A×B → A⊗B, such that for any vector space C and any bilinear map
β : A×B→C, there is a unique linear map β ′ : A⊗B→C such that β = β ′ ◦ p.

In other words, the following diagram commutes:

A×B A⊗B

C

p

β
∃!β ′ (C.232)

This universal property also shows that A⊗B is unique up to isomorphism.

Proof. In preparation for an explicit construction of A⊗B, define the (complex) free
vector space on any non-empty set X asCc(X), where X has the discrete topology
(i.e., Cc(X) consists of all functions f : X → C with finite support), and pointwise
operations. For each y ∈ X , the delta-function δy ∈Cc(X) is defined by δy(x) = δxy,
so that each element f of Cc(X) is a finite sum f =∑iλiδxi , where λi ∈C and xi ∈ X .

If A and B are (complex) vector spaces, A⊗B is the quotient of the free vector
space Cc(A×B) on X =A×B by the equivalence relation generated by the relations:

δ(a1+a2,b) ∼ δ(a1,b) +δ(a2,b); (C.233)
δ(a,b1+b2) ∼ δ(a,b1) +δ(a,b2); (C.234)
λδ(a,b) ∼ δ(λa,b); (C.235)
λδ(a,b) ∼ δ(a,λb). (C.236)

For a ∈ A,b ∈ B, the image of δ(a,b) in A⊗B is called a⊗b, so that by construction,

(a1 +a2)⊗b = a1⊗b+a2⊗b; (C.237)
a⊗ (b1 +b2) = a⊗b1 +a⊗b2; (C.238)

λ (a⊗b) = (λa)⊗b = a⊗ (λb). (C.239)
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Elements of the algebraic tensor product A⊗B may therefore be written as finite
sums c = ∑i ai⊗bi, with ai ∈ A, bi ∈ B, subject to the above relations.

Now consider some bilinear map β : A×B→C. We extend β to a map

β̃ : Cc(A×B)→C; (C.240)

β̃

(
∑

i
λiδ(ai,bi)

)
= ∑

i
λiβ (ai,bi). (C.241)

Since β is bilinear, it respects the above equivalence relation, so that it duly quotients
to β ′ : A⊗B→C, upon which the property β = β ′ ◦ p holds by construction. Finally,
since p is surjective the latter property uniquely determines β ′. �

Equivalently, A⊗ B is the quotient of formal sums ∑i(ai,bi) by the subspace
consisting of those sums for which there are ωA ∈ A∗ and ωB ∈ B∗ such that
∑iωB(ai)ωB(bi) = 0. Similarly, it is useful to regard A⊗ B as a subspace of the
vector space L(A∗,B) of linear maps from the dual A∗ to B through the map

∑
i

ai⊗bi : ωA �→∑
i
ωA(ai)bi (ωA ∈ A∗); (C.242)

this map is injective by Corollary B.45.2, since we may assume the bi to be linearly
independent. Using the canonical embedding B ↪→ B∗∗ of Proposition B.44, this in
turn yields an injection A⊗B ↪→ L(A∗×B∗,C), i.e., the space of bilinear maps from
A∗ ×B∗ to C, given on arguments (ωA,ωB) by

∑
i

ai⊗bi : (ωA,ωB) �→∑
i
ωA(ai)ωB(bi). (C.243)

Proposition C.93 turns this into an injection A⊗B ↪→ L(A∗ ⊗B∗,C), given by

∑
i

ai⊗bi : ∑
j
(ωA) j⊗ (ωB) j �→∑

i, j
(ωA) j(ai)(ωB) j(bi). (C.244)

If A and B are Hilbert spaces, we call them HA and HB, denote their elements by
α and β , respectively, and attempt to define a sesquilinear form on HA⊗HB by

〈∑
j
α ′j⊗β ′j,∑

i
αi⊗βi〉= ∑

i, j
〈α ′j,α j〉A〈β ′j,βi〉B. (C.245)

It is a non-trivial fact that this form is well defined, because representations ∑iαi⊗βi
of vectors in HA⊗HB may not be unique. For example, if HA = HB = H = Cn, and
(αi) and (α ′i ) are two bases of H, then ∑iαi⊗αi = ∑iα ′i ⊗α ′i (to see this, take inner
products with an arbitrary elementary tensor ψ⊗ϕ , yielding the same result).

To resolve this, we note that the injection HA⊗HB ↪→ L(H∗
A×H∗

B,C) just dis-
cussed combines with the isomorphism H∗ ∼= H of Theorem B.66 to an injection
HA⊗HB ↪→ L(HA×HB,C), i.e., the space of bi-anti-linear maps from HA×HB to
C. Proposition C.93 turns this into an injection HA⊗HB ↪→ L(HA⊗HB,C), viz.
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∑
i
αi⊗βi : ∑

j
α ′j⊗β ′j) �→∑

i, j
〈α ′j,αi〉HA〈β ′j,βi〉HB . (C.246)

Consequently, if ∑iαi⊗βi = 0, then the right-hand-side of (C.245) is zero, too, since
it is the image of ∑ j α ′j⊗β ′j under the zero map. Hence (C.245) is independent of
the choice of representatives in the sum ∑iαi⊗βi, and by hermiticity of the form,
this equally well applies to the other entry ∑ j α ′j⊗β ′j.

It remains to show that (C.245) is an inner product, i.e., that it is positive definite.
To see this, for some given vector ∑iαi⊗βi in HA⊗HB one may take the linear span
H ′

A of all αi in HA, which is a Hilbert space, and pick a basis (υi) in H ′
A. Absorbing

the scalars in the β j, we may therefore write ∑iαi⊗βi = ∑k υk⊗β ′′k , so that

〈∑
i
αi⊗βi,∑

i
αi⊗βi〉= ∑

k,l
〈υk⊗β ′′k ,υl⊗β ′′l 〉= ∑

k
‖β ′′k ‖2

B ≥ 0, (C.247)

with equality at the end iff each β ′′k = 0, and hence ∑iαi⊗βi = 0.
Finally, we complete HA⊗HB in the norm defined by the inner product (C.245);

with abuse of notation the ensuing Hilbert space is often just called HA⊗HB, but it
would be more precise to denote it by HA⊗HB, as we will usually do.

It is easy to show that if (υ(A)
i ) and (υ(B)

j ) are bases for HA and HB, respectively,

then (υ(A)
i ⊗υ(B)

j ) is a basis of HA⊗HB. Also, if (X ,Σ ,μ) and (X ′,Σ ′,μ ′) are σ -
finite measure spaces with X and X ′ well behaved (e.g., Polish), so that the L2-spaces
are separable, one has a natural isomorphism

L2(X ,Σ ,μ)⊗̂L2(X ′,Σ ′,μ ′)∼= L2(X×X ′,Σ ×Σ ′,μ×μ ′), (C.248)

obtained as the closure of the isometric (and hence bounded) map that sends the
vector ∑iψi⊗ψ ′i into the function (x,x′) �→ ∑iψi(x)ψ ′i (x′) on X ×X ′. Here Σ ×Σ ′
is the smallest σ -algebra on X×X ′ that contains all sets A×A′, A ∈ Σ , A′ ∈ Σ ′, and
μ×μ ′ is the familiar product measure defined on elementary measurable sets by

μ×μ ′(A×A′) = μ(A)μ ′(A′). (C.249)

We now turn to tensor products of C*-algebras. If A and B are C*-algebras, then
the algebraic tensor product A⊗B of A and B (just seen as vector spaces) is endowed
with a natural multiplication and involution, given by linear extension of

(a1⊗b1) · (a2⊗b2) = (a1a2)⊗ (b1b2); (C.250)
(a⊗b)∗ = a∗ ⊗b∗, (C.251)

respectively. Thus A⊗B is a ∗-algebra, and Proposition C.93 specializes to:

Proposition C.94. If C is a ∗-algebra and if a bilinear map β : A×B→C satisfies

β (a1a2,b1b2) = β (a1,a2)β (b1,b2); β (a∗,b∗) = β (a,b)∗, (C.252)

then β factors through A⊗B (now seen as a ∗-algebra), as in (C.232).
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The proof is similar. In order to turn A⊗B (seen as a ∗-algebra) into a C*-algebra,
we need a C*-norm, i.e., a norm on A⊗B satisfying the C*-axioms (C.1) - (C.2).
If such a norm exists, we denote the completion of A⊗B in that particular norm by
A⊗̂B, where typically ‖ · ‖ and hence ⊗̂ carry some label. This completion A⊗̂B is
a C*-algebra in the obvious way. There will be no shortage of such norms!

For example, suppose A ⊂ B(HA) and B ⊂ B(HB). For each a ∈ A, we form the
operator a⊗1B on HA⊗HB (where 1B is the unit of B(HB), which is also the unit of
B if it has one). As in (C.247), we may assume that generic elements of HA⊗HB take
the form ∑k υk⊗βk, with the υk orthonormal in HA and βk ∈ HB. We then estimate∥∥∥∥∥(a⊗1B)

(
∑
k
υk⊗βk

)∥∥∥∥∥
2

=

∥∥∥∥∥∑k
(aυk)⊗βk

∥∥∥∥∥
2

≤∑
k
‖(aυk)⊗βk‖2

≤ ‖a‖2

∥∥∥∥∥∑k
υk⊗βk)

∥∥∥∥∥
2

. (C.253)

Hence a⊗1B is bounded on the pre-Hilbert space HA⊗HB, and extends to a bounded
operator on HA⊗HB by continuity; this extension is usually called a⊗1B, too. Sim-
ilarly, any b ∈ B defines a bounded operator 1⊗b on HA⊗HB, and since

a⊗b = (a⊗1B) · (1A⊗b), (C.254)

all elements ∑i ai⊗bi of A⊗B extend to elements of B(HA⊗HB). Now define

‖∑ai⊗bi‖min = ‖∑ai⊗bi‖B(HA⊗HB)
. (C.255)

This is clearly a C*-norm on A⊗B. Moreover, it is a cross-norm, in that

‖a⊗b‖min = ‖a‖‖b‖. (C.256)

This construction generalizes to any two C*-algebras, since by Theorem C.87 we
have injective representations πA : A → B(HA) and πB : A → B(HB) of A and B,
respectively, and it is easy to verify that the norm ‖ · ‖min on A⊗B and ensuing
completion A⊗̂minB are independent of the chosen representation. Furthermore,

‖c‖min = sup{‖πA⊗πB(c)‖B(HA⊗HB)
}, (C.257)

where πA and πB run through all representations of A and B, respectively. The en-
suing completion A⊗̂minB is called the injective tensor product of A and B. Without
proof (which requires more advanced methods than the elementary arguments we
use in this section), we mention that, as its name suggests, ‖ · ‖min is the smallest
C*-norm on A⊗B. This has a very important consequence:

Proposition C.95. Any C*-norm ‖ · ‖ on A⊗B satisfies ‖a⊗b‖= ‖a‖‖b‖.
In other words, any C*-norm ‖ · ‖ on A⊗B is a cross-norm. To prove this from the
minimality of the spatial norm, we need a lemma of wider interest.
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Lemma C.96. If ‖ · ‖ is any C*-norm on A⊗B, then for all a ∈ A and b ∈ B,

‖a⊗b‖ ≤ ‖a‖‖b‖. (C.258)

Consequently, for any C*-norm on A⊗B and any c ∈ A⊗B, we have the bound

‖c‖ ≤ inf

{
∑

i
‖ai‖‖bi‖,c = ∑

i
ai⊗bi

}
. (C.259)

Proof. In any C*-algebra A, if a≥ 0, we have ‖a‖ ≤ 1 iff a2 ≤ a. This is trivial for
A =C(X), and in general can be proved within C∗(a)⊂ A, since C∗(a)∼=C(σ(a)).
Now take a ∈ A and b ∈ B such that a ≥ 0, b ≥ 0, ‖a‖ ≤ 1, and ‖b‖ ≤ 1, so that
(a⊗b)2 = a2⊗b2 ≤ a⊗b2 ≤ a⊗b, and hence ‖a⊗b‖≤ 1. For general a≥ 0, b≥ 0,
rescaling to a/‖a‖ etc. gives (C.258). For general a,b altogether, we compute:

‖a⊗b‖2 = ‖(a⊗b)∗(a⊗b)‖= ‖a∗a⊗b∗b‖ ≤ ‖a∗a‖‖b∗b‖= ‖a‖2‖b‖2. (C.260)

Eq. (C.259) then follows from the triangle inequality on the norm. �

If A and B each have a unit, there is a simpler proof: as in (C.254), we have

‖a⊗b‖= ‖(a⊗1B)(1A⊗b)‖ ≤ ‖a⊗1B‖‖1A⊗b‖= ‖a‖‖b‖, (C.261)

where we used ‖a⊗1B‖= ‖a‖ etc., which is the case because the map a �→ a⊗1B
from A to A⊗̂B is injective and hence is an (isometric) isomorphism onto its image.

We now prove Proposition C.95.

Proof. For any C*-norm ‖ · ‖, we have ‖a⊗ b‖ ≥ ‖a⊗ b‖min = ‖a‖‖b‖, since the
spatial norm is itself a cross-norm, cf. (C.256). Then (C.258) gives equality. �

In view of (C.259) and the existence of at least one C*-norm on A⊗B (namely
the spatial one), it makes sense to define the maximal C*-norm on A⊗B by∥∥∥∥∥∑i

ai⊗bi

∥∥∥∥∥
max

= sup

{∥∥∥∥∥∑i
ai⊗bi

∥∥∥∥∥ ,‖ · ‖ is a C*-norm on A⊗B

}
. (C.262)

This is clearly a C*-norm, and hence it is also a cross-norm. i.e.,

‖a⊗b‖max = ‖a‖‖b‖. (C.263)

This property may be proved without using the deep result that the spatial norm is
the minimal one (which in turn led to Proposition C.95); all we need is the inequality

‖c‖min ≤ ‖c‖max, (C.264)

for any c ∈ A⊗B, which follows from the definition of ‖ ·‖max, upon which (C.264)
may be proved in the same way as for general C*-norms. The completion A⊗̂maxB
of A⊗B in the norm ‖ · ‖max is called the projective tensor product of A and B.
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If we define representations of the pre-C*-algebra A⊗B on Hilbert spaces in the
same way as for C*-algebras, i.e., as linear maps π : A⊗B → B(H) that preserve
the product (C.250) and the involution (C.251), we obtain

‖c‖max = sup{‖π(c)‖}, (C.265)

where c=∑i ai⊗bi ∈A⊗B, and π runs through all representations of A⊗B. Indeed,
according to Theorem C.87 there exists an injective representation π of A⊗̂maxB,
so that ‖c‖max = ‖π(c)‖ for each c ∈ A⊗̂maxB, and hence also of each c ∈ A⊗
B. Furthermore, any representation of A⊗B yields a cross-norm, so that (C.265)
follows. This also shows that the supremum in (C.265) is actually attained.

In what follows, we restrict ourselves to the case that A and B have a unit, which
suffices for our applications, but the claim is true in general (with a slightly more
complicated proof, involving either approximate units or unitizations). If A and B
each have a unit, so does A⊗B, viz. 1A⊗ 1B. States ω on A⊗B are then defined
as for unital C*-algebras, i.e., as positive linear functionals (in the usual sense that
ω(c∗c)≥ 0 for any c ∈ A⊗B) that map the unit 1A⊗AB of A⊗B to 1.

Proposition C.97. Let A and B be unital. Then each state on A⊗B is continuous
with respect to the ‖·‖max-norm, and hence extends to a state on the maximal tensor
product A⊗̂maxB. Thus identifying states on A⊗B and on A⊗̂maxB, we have

S(A⊗B) = S(A⊗̂maxB). (C.266)

Proof. Let ω : A⊗B → C a state. Although A⊗B may not be a C*-algebra, the
GNS-construction Theorem C.88 goes through as if it were. The reason is that the
only delicate point, namely boundedness of πω(a⊗b), may be proved from (C.94),
just as in the usual case. Indeed, for a ∈ A, b ∈ B, and c ∈ A⊗B, we estimate

‖πω(a⊗b)cω‖2 = ω(c∗(a⊗b)∗(a⊗b)c) = ω(c∗(a∗a⊗b∗b)c)
≤ ‖a‖2‖b‖2ω(c∗c) = ‖a‖2‖b‖2‖cω‖2

= ‖a⊗b‖max‖cω‖2,

so that ‖πω(a⊗ b)‖ ≤ ‖a⊗ b‖max, and hence πω(a⊗ b) may be extended to the
completion Hω of (A⊗B)/Nω by continuity. Here we used the facts that:

• (a⊗b)∗(a⊗b) = a∗a⊗b∗b, so that the right-hand side is positive in A⊗B.
• 0≤ a∗a≤ ‖a‖21A and 0≤ b∗b≤ ‖b‖21B, as A and B are C*-algebras, cf. (C.83).
• If c′ ≥ 0 in A⊗B, then c∗c′c≥ 0, as for C*-algebras, see the argument preceding

(C.93). The argument is the same: c∗c′c = c∗d∗dc = (dc)∗dc≥ 0.

Wriiting Ωω = (1A⊗1B)ω for the cyclic vector of Hω , as in (C.208), for any element
c ∈ A⊗B we obtain, using (C.265) in the final inequality, the decisive bound

|ω(c)|= |〈Ωω ,πω(c)Ωω〉| ≤ ‖πω(c)‖ ≤ ‖c‖max. (C.267)

In other words, ω is continuous with respect to the ‖·‖max-norm, and since the latter
is dense in A⊗̂maxB, the state extends to the completed tensor product by continuity.
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It follows from (C.267) and ω(1A⊗1B) = 1 that ‖ω‖= 1 as a functional on A⊗B
equipped with the ‖ · ‖max-norm, so that the in question extension has the same
norm, and hence by Proposition C.5 is a state on A⊗̂maxB. Conversely, a state on
A⊗max B restricts to a state on A⊗B, since the two ∗-algebras have the same unit
and (trivially) if c is positive in the latter, then so it is in the former. �

The above proposition concerns extensions of arbitrary states on A⊗B. However,
product states on A⊗B can be extended to any completed tensor product A⊗̂B.

Proposition C.98. If ωA and ωB are states on A and B, respectively, then the corre-
sponding product state ωA⊗ωB on A⊗B, defined as in (C.243) by

ωA⊗ωB

(
∑

i
ai⊗bi

)
= ∑

i
ωA(ai)ωB(bi), (C.268)

is continuous with respect to any cross-norm ‖ · ‖, and hence extends to A⊗̂B.

Proof. Since the spatial norm is minimal among all cross-norms, it is enough to
prove continuity with respect to ‖ · ‖min. As in the proof of Proposition C.97, we
form the GNS-representation πωA⊗ωB induced by ωA⊗ωB, so that for any c ∈ A⊗B,

(ωA⊗ωB)(c) = 〈ΩωA⊗ωB ,πωA⊗ωB(c)ΩωA⊗ωB〉. (C.269)

Now consider the representation πωA(A)⊗πωB(B) on HωA⊗HωB , with cyclic vector
ΩωA ⊗ΩωB . Writing c = ∑i ai⊗bi as usual, a simple computation gives

〈ΩωA ⊗ΩωB ,(πωA ⊗πωB)(c)ΩωA ⊗ΩωB〉
= ∑

i
〈ΩωA ,πωA(ai)ΩωA〉〈ΩωB ,πωB(bi)ΩωB〉= ∑

i
ωA(ai)ωB(bi)

= (ωA⊗ωB)(c). (C.270)

Using the same reasoning as in (the proof of) Proposition C.91 (which does not ap-
ply literally, since it is about C*-algebras), it follows from (C.270) that πωA⊗ωB(A⊗
B) is unitarily equivalent to πωA(A)⊗πωB(B), so that, using (C.270), analogously to
(C.267) but this time using (C.257) at the end, we have

|(ωA⊗ωB)(c)| ≤ ‖πωA ⊗πωB(c)‖ ≤ ‖c‖min. �

As an application, analogously to (C.248), we show that:

Proposition C.99. For any locally compact Hausdorff spaces X ,Y and any cross-
norm on C0(X)⊗C0(Y ), with completed tensor product C0(X)⊗̂C0(Y ), we have

C0(X)⊗̂C0(Y )∼=C0(X×Y ), (C.271)

under the isomorphism given by continuous extension of the map f ⊗ g �→ f g :
(x,y) �→ f (x)g(y) from the algebraic tensor product C0(X)⊗C0(Y ) to C0(X×Y ).
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Proof. We just prove the unital case, where X and Y are compact.
Let x ∈ X and y ∈ Y , and take the corresponding evaluations maps evx and evy

on C(X) and C(Y ), respectively. These are multiplicative states, cf. Proposition
C.19. Then evx⊗ evx is a nonzero multiplicative state on C(X)⊗C(Y ), and hence
also on C(X)⊗̂C(Y ), cf. Proposition C.98. This gives an injection of X ×Y into
Σ(C(X)⊗̂C(Y )), i.e., the Gelfand spectrum of C(X)⊗̂C(Y ), cf. §C.2.

Conversely, the restriction ω1 of any ω ∈ Σ(C(X)⊗̂C(Y )) to C(X), given by
ω1( f ) = ω( f ⊗ 1Y ), is multiplicative, as is the restriction ω2 of ω to C(Y ), de-
fined by ω2(g) = ω(1X ⊗ g). Then ω = ω1 ⊗ ω2, with ensuing injective map
Σ(C(X)⊗̂C(Y ))→ X ×Y . Thus the above injection is also a surjection, and hence
a bijection, which is easily seen to be a homeomorphism. �
This can also be proved without Proposition C.98, using only the second step: if
Σ(C(X)⊗̂C(Y )) �= X ×Y , then, since Σ(C(X)⊗̂C(Y )) is closed in X ×Y , there are
nonempty opens U ⊂ X and V ⊂ Y such that (U ×V )∩Σ(C(X)⊗̂C(Y )) = /0. Now
take nonzero functions f ∈ Cc(U) and g ∈ Cc(V ) such that ω( f ⊗ g) = 0 for all
ω ∈ Σ(C(X)⊗̂C(Y )). This contradicts the isometry (C.18) of the Gelfand transform.

Proposition C.100. For any locally compact Hausdorff space X and any C*-algebra
B, let C0(X ,B) be the C*-algebra of all continuous functions f̃ : X → B for which
the function x �→ ‖ f̃ (x)‖B is in C0(X), equipped with the supremum norm

‖ f̃‖= sup{‖ f̃ (x)‖B,x ∈ X}. (C.272)

For any C*-norm with ensuing tensor product ⊗̂, one then has

C0(X)⊗̂B∼=C0(X ,B), (C.273)

under continuous extension of the map from C0(X)⊗B to C0(X ,B) defined by

f ⊗b �→ ( f b : x �→ f (x)b). (C.274)

We just prove this for the minimal (i.e. spatial) C*-norm; the general case follows
from nuclearity of C0(X), cf. Proposition C.101 below.

Proof. Take some injective representation πB : B→ B(HB), and represent C0(X ,B)
on �2(X)⊗HB by linear extension of π : C0(X ,B)→ B(�2(X)⊗HB), as defined by

π( f̃ )δx⊗ϕ = δx⊗πB( f (x̃))ϕ, (C.275)

where f̃ ∈C0(X ,B), x ∈ X , and ϕ ∈ HB; this operator is easily seen to be bounded.
In particular, an element f b ∈C0(X ,B), as in (C.274), is represented by

π( f b)(δx⊗ϕ) = f (x)δx⊗πB(b)ϕ. (C.276)

Denoting the representation of C0(X) on �2(X) through multiplication operators by
πm, i.e., πm( f )ψ(x) = f (x)ψ(x), where f ∈C0(X) and ψ ∈ �2(X), we then have

πm⊗πB( f ⊗b) = π( f b). (C.277)
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In this way, C0(X)⊗B is faithfully represented as a subalgebra of

π(C0(X ,B))∼=C0(X ,B), (C.278)

and so the final step is merely to show that C0(X)⊗̂B is dense in C0(X ,B). Indeed,
taking X compact for simplicity (otherwise one needs a further approximation argu-
ment), for given f̃ ∈C(X ,B) and ε > 0, define a cover U = (Ux)x∈X of X by

Ux = {y ∈ X | ‖ f̃ (x)− f̃ (y)‖< ε}. (C.279)

Since X is compact, U has a finite subcover {Ux1 , . . . ,Uxn}, with associated parti-
tion of unity {gx1 , . . . ,gxn}, i.e., one has gxi ∈Cc(Uxi), with 0≤ gxi ≤ 1, and

n

∑
i=1

gxi(x) = 1 (x ∈ X). (C.280)

Define an approximant g ∈C(X)⊗B by

g(x) = ∑
i

gxi ⊗ f̃ (xi), (C.281)

whose image g̃ ∈C(X ,B) is given by g̃(x) = ∑i gxi(x) f̃ (xi). Then for each x ∈ X ,

‖g̃(x)− f̃ (x)‖B =

∥∥∥∥∥∑i
gxi(x)( f̃ (xi)− f̃ (x))

∥∥∥∥∥
B

< ∑
i

gxi(x) · ε = ε, (C.282)

so that, taking supx, we have ‖g̃− f̃‖< ε . This proves the claim. �

Since C0(X×Y )∼=C0(X ,C0(Y )) under the map f �→ f̃ with f (x,y) = ( f̃ (x))(y), the
isomorphism (C.271) is a special case of (C.273).

Another case where the choice of a cross-norm does not matter—this time be-
cause no completion is even needed—is the following. Recall Corollary C.28.

Proposition C.101. Let A be a finite-dimensional C*-algebra. Then for any C*-
algebra B, A⊗B is complete in any C*-norm, and hence all C*-norms coincide.

Thus A⊗̂B = A⊗B, though one still needs a norm on A⊗B to make it a C*-algebra!

Proof. In view of Theorem C.163, we only need to prove this for A=Mn(C), n∈N.
As in the previous proof, we use the spatial tensor product on Mn(C)⊗B, so let us
faithfully represent Mn(C) and B on Cn and HB, respectively, and form the Hilbert
space Cn⊗HB = Cn⊗HB, carrying the representation id⊗ πB of Mn(C)⊗B, and
hence of the (alleged) completion Mn(C)⊗̂minB. Let

c =
n

∑
i, j=1

ei jbi j ∈Mn(C)⊗B, (C.283)

where (ei j) is the standard basis of Mn(C) and bi j ∈ B. For any such c, we have
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‖c‖2
min ≥

∥∥∥∥∥ n

∑
i, j=1

ei jbi j(υk⊗ϕ)

∥∥∥∥∥
2

Cn⊗HB

= ∑
i
‖bikϕ‖2

HB
, (C.284)

where (υ1, . . .υn) is the standard basis of Cn, k = 1, . . . ,n is fixed, and ϕ ∈ HB is a
unit vector. Taking the supremum over ϕ gives∥∥∥∥∥∑i, j ei jbi j

∥∥∥∥∥
min

≥ ‖bi j‖B, (C.285)

for each fixed pair (i, j). Hence any Cauchy sequence (ck) in Mn(C)⊗B takes the
form ck = ∑i, j=1 ei jb

i j
k , where each (bi j

k ) is a Cauchy sequence in B for fixed (i, j).
Then, using the fact that ‖ei j‖Mn(C) = 1, we have

‖c− ck‖min =

∥∥∥∥∥∑i, j ei j(bi j−bi j
k )

∥∥∥∥∥
min

≤ ∑
i, j=1

‖bi j−bi j
k ‖B, (C.286)

for any c ∈ Mn(C)⊗B, as in (C.283). Taking c such that bi j = limk bi j
k , it follows

that ck → c in ‖ · ‖min, i.e., in Mn(C)⊗̂minB. In particular, the limit c of any Cauchy
sequence in Mn(C)⊗B with respect to the norm ‖ · ‖min lies in Mn(C)⊗B, which
is therefore complete already and is a C*-algebra in the spatial norm. Since the
norm in a C*-algebra is unique (cf. Corollary C.28), it follows that any C*-norm on
Mn(C)⊗B must coincide with the spatial one ‖ · ‖min. �
It is also easy to show that

Mn(C)⊗B∼= Mn(B), (C.287)

i.e., the n×n-matrices with entries in B, with obvious operations and norm given by
faithfully representing B on some Hilbert space HB, as above, and then letting Mn(B)
act on Hn

B =HB⊕·· ·⊕HB (i.e., n copies) in the natural way. A specific isomorphism
Mn(C)⊗B→Mn(B) is then given by sending ∑n

i, j=1 ei jbi j to the matrix (bi j).

Finally, one of the highlights of the theory of tensor products on A⊗B is a concept
that apparently makes the entire theory superfluous:

Definition C.102. A C*-algebra A is called nuclear if for any C*-algebra B, the
norms ‖ · ‖min and ‖ · ‖max (and consequently all C*-norms) on A⊗B coincide.

The class of nuclear C*-algebras is large but not exhaustive: if H is infinite-
dimensional, then B0(H) is nuclear but B(H) is not, even if H is separable. However:

• Any commutative C*-algebra is nuclear (this underpins Proposition C.100).
• Any finite-dimensional C*-algebra is nuclear (cf. Proposition C.101).
• The (unique!) tensor product of any two nuclear C*-algebras is nuclear.
• Inductive limits of nuclear C*-algebras are nuclear (see §C.14).
• If 0→ I→ A→ B→ 0 is a short exact sequence (i.e., if I ⊂ A is an ideal in A and

B∼= A/I) in which two of the three C*-algebras are nuclear, the so is the third.
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C.14 Inductive limits and infinite tensor products of C*-algebras

In the main text we deal with infinite quantum systems, albeit as idealizations rather
than physical systems that exist in reality. Mathematically, such systems arise as
infinite tensor products of C*-algebras, which in turn are special cases of inductive
limits, also called direct limits (categorically, these are colimits, see §E.1 below, and
as such they are unique op to isomorphism—in this case, of C*-algebras).

Let I be a directed set (cf. Definition D.1), typically I = N with the usual order.
Let (Ai) a family of C*-algebras indexed by I; in case that I =N, these will often be

An = Bn ≡ ⊗̂n
maxB, (C.288)

where B is some C*-algebra and ⊗̂max is the projective tensor product, extended
from two C*-algebras (as discussed in the previous section) to any finite number of
C*-algebras in the obvious way: for any completed C*-tensor product ⊗̂, n∈N, and
C*-algebras (C1, . . . ,Cn), we inductively define the tensor product of the latter as

C1⊗̂ · · · ⊗̂Cn = (C1⊗̂ · · · ⊗̂Cn−1)⊗̂Cn. (C.289)

In general, the cartesian product ∏i∈I Ai consists of all functions a : I→∪iAi such
that a(i)≡ ai ∈ Ai; we often write such functions as (ai)i, where ai ∈ Ai. The Axiom
of Choice then guarantees (or, following Russell, even states) that—provided none
of the Ai is empty—the set ∏i∈I Ai is non-empty. Since each Ai is a ∗-algebra, we
can turn ∏i∈I Ai into a ∗-algebra in the obvious way, i.e., by defining scalar multipli-
cation as (λ ·a)(i) = λa(i), with pointwise addition, multiplication, and involution.
This ∗-algebra, denoted by ⊕iAi, is the algebraic direct sum of the Ai.

What about the norm? There are various options here, each relying on the choice
of some subspace of ⊕iAi. For example, if A0 consists of all a ∈∏i∈I Ai for which
limi ‖ai‖= 0, then the algebraic direct sum ⊕̂iAi of the Ai is A0, with norm

‖a‖= sup
i
‖ai‖. (C.290)

For the inductive limit we need additional structure, namely a family of homo-
morphisms ϕi j : Ai → A j, defined for each i≤ j in I, such that for each i≤ j ≤ k,

ϕii = idAi ; (C.291)
ϕ jk ◦ϕi j = ϕik. (C.292)

Such maps turn the family (Ai) into a so-called directed system of C*-algebras.
For example, in case of (C.288), and assuming B has a unit 1B (otherwise there are
analogous constructions based on projections), for n < m, define ϕnm : Bn → Bm by

ϕnm(b) = b⊗1B⊗·· ·⊗1B. (C.293)

with m− n units 1B. This can be done also in the more general situation (C.289),
where we assume each Ci to be unital with unit 1i, and define
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An = ⊗̂n
i=1Ci; (C.294)

ϕnm(c) = c⊗1Cn+1 ⊗·· ·⊗1Cm . (C.295)

As a matter of central importance to the theory of quantum spin systems. one
may generalize this construction in allowing more general directed sets, whilst spe-
cializing it in picking very specific C*-algebras Ci. Let Zd ⊂ Rd be the standard
lattice in spatial dimension d, and let I be the set of of all finite subsets Λ of Zd (so
one typically writes Λ instead of i). Furthermore, take some fixed Hilbert space H,
assumed finite-dimensional for simplicity (this also suffices for most applications to
quantum statistical mechanics), and for each Λ ∈ I, define the cartesian product

HΛ = ∏
x∈Λ

Hx, (C.296)

where Hx = H for each x. Thus elements ψ : Λ → H of HΛ are families (ψx)x∈Λ ,
where ψx ∈ H. To define the tensor product

HΛ =⊗x∈ΛHx, (C.297)

we generalize the procedure explained between (C.245) and (C.246) in the previous
section. If dim(HA)< ∞ and dim(HB)< ∞, the injection

HA⊗HB ↪→ L(HA×HB,C), (C.298)

is an isomorphism, and we use this fact (with HA = HB = H) to define HΛ as
L(HΛ ,C), that is, the set of all anti-multi-linear maps ψ̂ : HΛ → C, equipped
with pointwise operations turning it into a complex vector space. Each element
ψ : Λ → H of HΛ itself defines such a map ψ̂ ∈ L(HΛ ,C) via

ψ̂(ϕ) = ∏
x∈Λ
〈ϕx,ψx〉H , (C.299)

through which the inner product on HΛ is defined by linear extension of

〈ψ̂, ϕ̂〉HΛ = ∏
x∈Λ
〈ψx,ϕx〉H . (C.300)

In this realization of HΛ , the elementary tensors ⊗x∈Λψx ∈ HΛ coincide with the
above elements ψ̂ ∈ L(HΛ ,C)≡ HΛ . Furthermore, if (υ1, . . . ,υn) is a basis of H ∼=
Cn, then (⊗x∈Λυs(x)) is a basis of HΛ , where s : Λ →{1, . . . ,n}. Hence

dim(HΛ ) = dim(H)|Λ |. (C.301)

Furthermore, writing n = {1,2, . . . ,n}, and letting nΛ be the set of maps (“classical
spin configurations”) s : Λ → n, there is a natural unitary isomorphism

HΛ ∼= �2(nΛ ). (C.302)
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Indeed, as the functions δs : t �→ δst form a basis of �2, the map δs �→ ⊗x∈Λυs(x)

extends to a unitary from �2(nΛ ) to HΛ . Under this equivalence, elements of HΛ
may be interpreted as “wave-functions” whose argument is a spin configuration.

Returning to C*-algebras, having defined HΛ , we now put

AΛ = B(HΛ ). (C.303)

To fit this into the above framework, we note that the partial order ≤ on I is given
by Λ ≤Λ ′ whenever Λ ⊆Λ ′, in which case there is a canonical embedding

ιΛΛ ′ : AΛ ↪→ AΛ ′ . (C.304)

This embedding is given as in (C.293), i.e., by adding unit operators. Let Λ ⊂ Λ ′
and define Λ ′′ =Λ ′\Λ . We may split ψ ′ :Λ ′ →H as ψ ′ �→ (ψ ′|Λ ,ψ

′
|Λ ′′), from which

HΛ ′ ∼= HΛ ×HΛ ′′ . (C.305)

As in (C.298), this gives isomorphisms

HΛ ′ = L(HΛ ′ ,C)∼= L(HΛ ×HΛ ′′ ,C)∼= L(HΛ ⊗HΛ ′′ ,C)∼= HΛ ⊗HΛ ′′ . (C.306)

This, in turn, induces an isomorphism

AΛ ′ = B(HΛ ′)∼= B(HΛ ⊗HΛ ′′)∼= B(HΛ )⊗B(HΛ ′′) = AΛ ⊗AΛ ′′ , (C.307)

which, through the embedding

B(HΛ ) ↪→ B(HΛ )⊗B(HΛ ′′); (C.308)
a �→ a⊗1B(HΛ ′′ ), (C.309)

gives an embedding B(HΛ ) ↪→ B(HΛ ′). This, then, is the injection (C.304).
Alternatively, B(HΛ ) may be constructed just like HΛ itself, i.e., by starting with

the set B(H)Λ of functions a : Λ → B(H). Any such a defines an operator â on HΛ
by first defining its action on elementary tensors by âψ̂ =⊗x∈Λaxψx, and extending
the result linearly to arbitrary vectors in HΛ . We write â =⊗x∈Λax, and reconstruct
B(HΛ ) as the complex vector space spanned by all such elementary operators. The
injection (C.304) is given by linear extension of the map â �→ â′, where â′x′ = ax
whenever x′ = x ∈Λ ⊂Λ ′, and â′x′ = 1H otherwise, i.e., if x′ ∈Λ ′′.

Either way, we obtain a directed system of C*-algebras (AΛ ), where the finite
subsets Λ ⊂ Zd are partially ordered by inclusion, and the maps ϕΛΛ ′ : AΛ → AΛ ′ ,
with properties like (C.291) - (C.292), are given by the inclusions (C.304).

There is a classical counterpart to this construction, in which the local C*-
algebras are given by “functions of functions”, i.e.,

A(c)
Λ =C(nΛ ) =C(C(Λ ,n)). (C.310)
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Since nΛ is a finite discrete set, any function on it is continuous (and lies in �2, etc.).
If Λ ⊆Λ ′, then, s′ ∈ nΛ

′
being a map s′ : Λ ′ → n, the connecting homomorphisms

ι(c)ΛΛ ′ : A(c)
Λ ↪→ A(c)

Λ ′ , (C.311)

are given quite canonically by

ι(c)ΛΛ ′( f ) : s′ �→ f (s′|Λ ). (C.312)

Note that C(nΛ ) = �2(nΛ ) as vector spaces, so that (C.311) also gives natural maps
�2(nΛ ) ↪→ �2(nΛ

′
), and hence, via (C.302), HΛ ↪→ HΛ ′ . These are given by linear

extension of the map given on basis vectors by ⊗x∈Λυs(x) �→ ∑s′:s′|Λ=s⊗x′∈Λ ′υs′(x′).

Furthermore, analogously tot (C.307), since Λ ′ =Λ ∪Λ ′′ is finite, we have

A(c)
Λ ′ = C(nΛ

′
) =C(C(Λ ′,n)) =C(C(Λ ∪Λ ′′,n))∼=C(C(Λ ,n)×C(Λ ′′,n))

∼= C(C(Λ ,n))⊗C(C(Λ ′′,n)) =C(nΛ )⊗C(nΛ
′′
) = A(c)

Λ ⊗A(c)
Λ ′′ . (C.313)

Given a directed system of C*-algebras (Ai,ϕi j), we define the local part Aloc of
∏i Ai as the set of all elements a = (ai) of ∏i Ai for which there is i0 ∈ I (depending
on a) such that ai = ϕi0i(ai0) whenever i0 ≤ i. This is equivalent to the seemingly
stronger condition that a j = ϕi j(ai) whenever i0 ≤ i≤ j, since

a j = ϕi0 j(ai0) = ϕi j ◦ϕi0i(ai0) = ϕi j(ai). (C.314)

In the example (C.288) with (C.293), this simply means that for each sequence
(an)n∈N, there is n0 ∈ N such that an = an0 ⊗n−n0 1B for each n > n0. Similarly, in
the example (C.303) with (C.304), for each a = (aΛ ), where Λ is a finite subset
of Zd and aΛ ∈ AΛ for each Λ , there is a finite subset Λ0 ⊂ Zd such that for any
Λ ⊇ Λ0 we have aΛ = ιΛ0Λ (aΛ0). It is easy to see that Aloc is a ∗-algebra under the
(pointwise) operations inherited from ∏i Ai. For each (ai) ∈ Aloc, the norms ‖ai‖
form a net in R+. Recall that some net (ti)i∈I in R (which by definition is indexed
by a directed set I) is said to converge to t ∈ R if for each ε > 0, there is i ∈ I such
that |t− t j|< ε for all j ≥ i (since R is Hausdorff, any net in R converges to at most
one point). Because the connecting maps ϕi j are homomorphisms of C*-algebras,
they are norm-decreasing (cf. Theorem C.62.1), i.e., ‖ϕi j(ai)‖ ≤ ‖ai‖. Thus for any
a ∈ Aloc with associated i0 ∈ I, the (sub)net (‖ai‖)i≥i0 lies in the interval [0,‖ai0‖],
and is monotone decreasing in the sense that if j ≥ i≥ i0, then ‖a j‖ ≤ ‖ai‖. As for
sequences (which are just nets indexed by I =R), bounded monotone decreasing (or
increasing) nets in R converge, so that net (‖ai‖)i≥i0 has a limit, and this also means
that (‖ai‖)i has the same limit. Call this limit ‖a‖0. The map a �→ ‖a‖0 generally
fails to define a norm on Aloc, since it may lack the property of positive definiteness,
and even if it had it, the space would not be complete (at least if I is infinite, as we
tacitly assume). We do have the C*-axioms ‖ab‖0 ≤ ‖a‖0‖b‖0 and ‖a∗a‖0 = ‖a‖2

0
though, since these hold for each norm ai �→ ‖ai‖ and are preserved in the limit.
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So we say that ‖a‖0 is a C*-seminorm on Aloc, and there is a canonical procedure
to turn a ∗-algebra with C*-seminorm into a C*-algebra:

1. Define the null space N ⊂ Aloc for ‖ · ‖0 by N = {a ∈ Aloc : ‖a‖0 = 0};
2. Define a norm on the quotient Aloc/N by ‖a + N‖ = ‖a‖0, and complete the

quotient in this norm. The result is a C*-algebra

A = limiAi, (C.315)

called the inductive limit of the directed system (Ai,ϕi j).

For each i∈ I, we now define a canonical homomorphism ϕi : Ai → A. If ai ∈ Ai, put
a j =ϕi j(ai)∈A j if j≥ i, and a j = 0 otherwise. This gives an element a∈Aloc whose
image in Aloc/N ⊂ A is ϕi(a). A computation shows that if i≤ j, then ϕ j ◦ϕi j = ϕi.
Using this fact, it follows that if we put Ãi = ϕi(Ai) ⊂ A, then Ãi ⊆ Ã j whenever
i≤ j, and hence A may be rewritten as the norm-closure of the union of the Ãi, i.e.,

A =
⋃

i

Ãi
‖·‖
. (C.316)

In the simple situation where the maps ϕi j are inclusions and hence isometries, as
in our examples, we have N = {0}, so that Ãi = Ai, and hence (C.316) simplifies to

A =
⋃

i

Ai
‖·‖
. (C.317)

As a case in point, define (An,ϕnm) as in (C.294) - (C.295). The infinite tensor
product of the Ci is then defined through (C.315) and (C.295), i.e., by definition,

⊗̂∞
i=1Ci = limn⊗̂n

i=1Ci =
⋃
n
⊗̂n

i=1Ci
‖·‖
. (C.318)

Here the first equation is general, and in the second it is understood that for any
m > n, we have ⊗̂n

i=1Ci ⊂ ⊗̂m
i=1Ci through the embeddings (C.295).

More generally, let (Ax)x∈X be a family of unital C*-algebras indexed by an ar-
bitrary set X , and let I = P f (X) the set of finite subsets of X , partially ordered by
inclusion. For any F ∈ I, we have a tensor product

AF = ⊗̂x∈F Ax, (C.319)

where once again ⊗̂ is an arbitrary completed C*-tensor product. An explicit con-
struction of this tensor product along the lines of (C.289) requires an ordering of
F , but two such orderings give canonically isomorphic C*-algebras; if F ⊂ G, one
should order G compatibly with F for the connecting homomorphisms ϕFG to be
well defined by (C.295). This gives a directed system of C*-algebras (AF ,ϕFG),
whose inductive limit defines the tensor product over A, i.e.,

⊗̂x∈X Ax = limF⊗̂x∈F Ax. (C.320)
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As a special case, we may rewrite our earlier algebras AΛ and A(c)
Λ as

AΛ = ⊗x∈ΛB(H); (C.321)

A(c)
Λ = ⊗x∈ΛC(n)∼=C

(
∏
x∈Λ

n

)
, (C.322)

cf. (C.313). Hence we have

limΛAΛ = ⊗x∈Zd B(H); (C.323)

limΛA(c)
Λ = ⊗x∈ZdC(n)∼=C

(
∏

x∈Zd

n

)
, (C.324)

where in the last expression the infinite product ∏x∈Zd n is endowed with the prod-
uct topology, so that (by Tychonoff’s Theorem) the space in question is compact.
Thus the ensuing inductive limit may directly be expressed as the standard commu-
tative C*-algebra C(X), where X = ∏x∈Zd n is compact, equipped with pointwise
operations and the sup-norm. If n = 2 and d = 1, this is a model of the Cantor set.

The homomorphisms ϕi enable us to state the universal character of A:

Theorem C.103. Let (Ai,ϕi j) a directed system of C*-algebras with inductive limit
A. For any C*-algebra B endowed with a family homomorphisms βi : Ai → B such
that β j ◦ϕi j = βi, there is a unique homomorphism β : A→ B such that β j = β ◦ϕ j .

In other words, the following diagram commutes:

Ai A j A

B

ϕi j

βi
β j

ϕ j

∃!β
(C.325)

Proof. This is true almost by construction, or rather by (C.316): since β is supposed
to be a homomorphism of C*-algebras, it is continuous, so it is determined by its
values on the dense subalgebra

⋃
i Ãi, and hence by its values on each Ãi. But these

values are necessarily given by β (ϕi(ai)) = βi(ai), where ai ∈ Ai. �

Corollary C.104. Let (Ax)x∈X be a family of mutually commuting unital C*-subalge-
bras of a unital C*-algebra B (sharing the unit of B), such that the C*-algebra gen-
erated by all subalgebras Ax within B is equal to B. Also, let ⊗̂ be some completed
C*-tensor product such that for each finite subset F = {x1, . . . ,xn} ⊂ X, there is an
injective homomorphism ϕF : AF → B (where AF = Ax1⊗̂ · · · ⊗̂Axn) satisfying

ϕF(a1⊗·· ·⊗an) = a1 · · ·an (a1 ∈ Ax1 , . . . ,an ∈ Axn). (C.326)

Then B∼= ⊗̂x∈X Ax.

Proof. In Theorem C.103, take A j �AF and β j �ϕF . In view of (C.320), this gives
a homomorphism β : ⊗̂x∈X Ax → B. Here, this map is an isomorphism. �
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Finally, we give a result on infinite tensor products of states, needed in §8.4.

Proposition C.105. Let (Ci)i∈N be unital C*-algebras, and define their infinite (pro-
jective) tensor product ⊗̂∞

i=1Ci as in (C.318). For each i ∈ N, let ωi be a state on Ci.
Then there is a unique state ⊗̂∞

i=1ωi on ⊗̂∞
n=1Ci such that for each N ∈N and ci ∈Ci,

⊗̂∞
i=1ωi(ϕn(c1⊗·· ·⊗ cn)) =

n

∏
n=1

ωi(ci). (C.327)

Moreover, ⊗̂∞
i=1 is pure iff each ωi is pure.

Proof. We write Cn ≡ ⊗̂n
i=1Ci, and similarly ⊗̂n

i=1ωi ≡ ωn, also for n = ∞.
Eq. (C.327) defines ω∞ on a dense subset ∪n∈Nϕn(Cn) of C∞, which proves

uniqueness. Existence comes from Proposition C.98, according to which the map
c1⊗·· ·⊗ cn �→ ∏n

i=1ωi(ci) extends to a state ⊗n
i ω ′i on Cn, which in turn defines a

state ωn on ϕn(Cn)⊂C∞. Since (⊗n
i ω ′i )|Cm =⊗m

i ω ′i whenever m≤ n, one also has
ωn
|ϕm(Cm) = ωm, so that we may define a functional ω∞ on ∪nϕn(Cn) by its restric-

tions ω∞
|Cn = ωn. Since ωn is a state and hence satisfies ‖ωn‖= ωn(1ϕn(Cn)) = 1, so

does ω∞ (on its dense domain). Since the continuous extension of ω∞ to C∞ has the
same norm, this extension (still called ω∞) is a state by Proposition C.5.

One direction of the second claim is trivial: if at least one of the ωi fails to be
pure, then ωn inherits its convex decomposition so to speak, so contrapositively
we obtain that purity of ωn implies purity of each ωi. We first prove the opposite
direction for n < ∞. Using Proposition C.91 and the fact that Cn is a completion
of the algebraic tensor product ⊗n

i=1Ci, the GNS-representation πωn(Cn) is unitarily
equivalent to the representation πω1 ⊗·· ·⊗πωn on Hω1 ⊗·· ·⊗Hωn , and

(πω1 ⊗·· ·⊗πωn(C
n))′′ = πω1(C1)

′′⊗· · ·⊗πωn(Cn)
′′. (C.328)

Here, for any two von Neumann algebras A and B, A⊗B is the smallest von Neumann
algebra containing the algebraic tensor product A⊗B. The main lemma behind the
second claim is the nontrivial commutation theorem for von Neumann algebras:

(A⊗B)′ = A′⊗B′, (C.329)

which we state without proof. This iterates to n von Neumann algebras. Hence

(πω1 ⊗·· ·⊗πωn(C
n))′ = πω1(C1)

′⊗· · ·⊗πωn(Cn)
′, (C.330)

so that the claim for n < ∞ follows from Theorem C.90.
Now take n = ∞, and assume each ωi is pure. Suppose that for some t ∈ (0,1),

ω∞ = tω ′+(1− t)ω ′′, (C.331)

and restrict this equality to ϕn(Cn). By the previous argument, the restriction of ω∞

to ϕn(Cn), which is just ωn, is pure for any n ∈ N. This gives ω ′|ϕn(Cn) = ω ′′|ϕn(Cn).
This is true for each n, so that ω ′ = ω ′′. Hence ω∞ is pure. �
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C.15 Gelfand isomorphism and Fourier theory

One of the most beautiful applications of Theorem C.8 is to commutative harmonic
analysis. Let G be an abelian locally compact Hausdorff group (e.g., G =R, G =Z,
or G = T). Such groups have an invariant Haar measure dx, which satisfies∫

G
dxLy f (x) =

∫
G

dx f (x−1) =
∫

G
dx f (x), (C.332)

for any f ∈Cc(G) and y ∈ G, where

Ly f (x) = f (y−1x). (C.333)

This measure is unique up to rescaling; if G is compact, it is normalized such that∫
G dx = 1. For G = R, this recovers Lebesgue measure on R, whilst for Z and T,∫

Z
dx f (x) = ∑

n∈Z
f (n); (C.334)

∫
T

dx f (x) =
∫ 2π

0

dθ
2π

f (eiθ ). (C.335)

For f ,g ∈Cc(G), the convolution product f ∗g is defined by

f ∗g(x) =
∫

G
dy f (y)g(y−1x). (C.336)

Using (C.332), it is easy to verify that this product is commutative and associative.
Also, one may define an involution on Cc(G) by

f ∗(x) = f (x−1). (C.337)

We would now like to turn Cc(G) into a commutative C*-algebra, but the obvious
norms like the Lp-ones do not accomplish this. Instead, for f ∈Cc(G) we define an
operator π( f ) on the Hilbert space L2(G) (defined with respect to Haar measure) by

π( f )ψ = f ∗ψ, (C.338)

initially for ψ ∈Cc(G). Equivalently, we may write

π( f ) =
∫

G
dy f (y)Ly, (C.339)

where we regard Ly as an (obviously unitary) operator on L2(G), and the integral is
most easily defined weakly, i.e., π( f ) is the unique bounded operator for which

〈ϕ,π( f )ψ〉=
∫

G
dy f (y)〈ϕ,Lyψ〉. (C.340)
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Since Ly is unitary, this formula also shows that |〈ϕ,π( f )ψ〉| ≤ ‖ f‖1‖‖ϕ‖‖ψ‖,
where ‖ f‖1 =

∫
G dx | f (x)|. Taking ϕ = π( f )ψ gives ‖π( f )ψ‖ ≤ ‖ f‖1‖ψ‖, whence

‖π( f )‖ ≤ ‖ f‖1. (C.341)

Hence π( f ) is bounded and extends from Cc(G) to all of L2(G) by continuity.

Lemma C.106. The map f �→ π( f ) from Cc(G) to B(L2(G)) is injective and satisfies

π( f ∗g) = π( f )π(g); (C.342)
π( f ∗) = π( f )∗. (C.343)

Proof. Eq. (C.342) follows from associativity of convolution, and (C.343) follows
from the last equality in (C.332). To prove injectivity, we fix f ∈Cc(G), pick ε > 0,
and find a neighbourhood U of e ∈ G such that y−1x ∈U implies | f (y)− f (x)|< ε .
Then, using Urysohn’s Lemma, one may find a positive function ψU ∈Cc(U) such
that

∫
U ψU = 1. Injectivity of π then immediately follows from the easy estimate

| f ∗ψU (x)− f (x)| ≤
∫

G
dy | f (y)− f (x)| · |ψU (y−1x)|< ε. �

Definition C.107. Let G be an abelian locally compact Hausdorff group. The group

C*-algebra C∗(G) is the norm closure of π(Cc(G)) in B(L2(G)), with norm

‖ f‖C∗ = ‖π( f )‖B(L2(G)). (C.344)

Since π(Cc(G)) is a commutative ∗-algebra in B(L2(G)) by Lemma C.106, it is
easy to see (from joint continuity of multiplication) that its norm closure C∗(G) is a
commutative C*-algebra, whose Gelfand spectrum we wish to compute.

To this effect, we first define the dual group or character group Ĝ of G as

Ĝ = Hom(G,T), (C.345)

i.e., the set of continuous group homomorphisms from G to T, equipped with the
compact-open topology. This topology is defined as the restriction to Hom(G,C) of
the topology on C(G,C) generated by the neigbourhood basis of some γ ∈ Ĝ, i.e.,

O(γ,K,ε) = {ϕ ∈ Ĝ : |γ(x)−ϕ(x)|< ε ∀x ∈ K}, (C.346)

where K ∈K (G) and ε > 0. The corresponding notion of convergence is uniform
convergence on each compact subset of G; in particular, if G is compact, this is just
uniform convergence. Equipped with this topology, it can be shown that Ĝ is itself
an abelian locally compact Hausdorff group under pointwise operations, i.e.,

(γ1γ2)(x) = γ1(x)γ2(x); (C.347)
γ−1(x) = γ(x); (C.348)

hence the ensuing unit ê in Ĝ is the identity function ê = 1G in Hom(G,T).
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Proposition C.108. We have the following examples of dual groups:

Ẑ ∼= T, γz(n) = zn; (C.349)
R̂ ∼= R, γp(x) = eipx; (C.350)

T̂ ∼= Z, γn(z) = zn; (C.351)

Ẑp ∼= Zp, γ[m]([n]) = e2πimn/p. (C.352)

Here Zp = Z/(p ·Z) is the (finite) group of integers mod p.

Proof. For (C.349), any character γ : Z→ T is determined by its value γ(1) = z,
since for n > 0 we have γ(n) = γ(1+ · · ·+ 1) = γ(1)n = zn, where the sum has n
terms; for n < 0, we obtain the same result from γ(n) = γ(−n)−1 = (z−n)−1 = zn.

To prove (C.350), we need to solve γ(x+ y) = γ(x)γ(y) with γ(0) = 1, where
γ : R→T is continuous. To see that (C.350) gives all solutions, find ε > 0 for which∫ ε

0 dyγ(y)≡ a > 0; this is possible, since γ(0) = 1 and γ is continuous. Then∫ ε

0
dyγ(y)γ(x) =

∫ ε

0
dyγ(x+ y) =

∫ ε+x

x
dyγ(y), (C.353)

so that γ is differentiable, with, writing γ̇ for dγ/dx,

aγ̇(x) = γ(ε+ x)− γ(x) = (γ(ε)−1)γ(x). (C.354)

Hence γ̇(x) = cγ(x) with c = (γ(ε)−1)/a, so that γ(x) = exp(cx). Since |γ(x)|= 1,
this forces c = ip for some p ∈ R. This also implies (C.351), since T = R/Z and
hence the characters of T are those characters of R that map Z to 1. Similarly,
(C.352) follows from (C.349): the characters on Z that are trivial on p ·Z take the
form γ(n) = zn for some p-roots of unity z = exp(2πim/p), m ∈ {1, . . . , p}. �

Theorem C.109. Let G be an abelian locally compact Hausdorff group. Then the
Gelfand spectrum Σ(C∗(G)) is homeomorphic to Ĝ, and the Gelfand isomorphism

C∗(G)∼=C0(Ĝ) (C.355)

is given on the dense subspace Cc(G)⊂C∗(G) by the generalized Fourier transform

f̂ (γ) =
∫

G
dxγ(x) f (x). (C.356)

Thus the Fourier transform is a special case of the Gelfand transform (which is
noteworthy if only because Gelfand himself promulgated the unity of mathematics).

Proof. We will prove that each character γ ∈ Ĝ on G defines a character ωγ on
C∗(G) by continuous extension (i.e., from its dense subspace Cc(G) to C∗(G)) of

ωγ( f ) = f̂ (γ), (C.357)

as in (C.356), and that the map γ �→ ωγ gives a homeomorphism Ĝ
∼=→ Σ(C∗(G)).
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It follows from simple computations that for f ,g ∈Cc(G), one has

ωγ( f ∗g) = ωγ( f )ωγ(g); (C.358)

ωγ( f ∗) = ωγ( f ). (C.359)

To finish the proof, we need three further nontrivial facts about the map γ �→ ωγ :

1. It is surjective, i.e., if ω ∈ Σ(C∗(G)), then ω = ωγ for some γ ∈ Ĝ.
2. It is injective, in that f̂ (γ) = f̂ (γ ′) for all f ∈ Cc(G) implies γ = γ ′. Moreover,

the character ωγ initially defined on Cc(G) by (C.357) will be shown to satisfy

|ωγ( f )| ≤ ‖ f‖C∗ , (C.360)

Thus ωγ : Cc(G)→ C may be extended to C∗(G) by continuity in the usual way.
3. The compact-open topology on Ĝ is mapped to the Gelfand topology on Σ(C∗(G)).

To prove the first point, we restrict a character ω : C∗(G)→ C to Cc(G) and note
that because of the bound (C.341), this restriction in turn extends to an element of
L1(G)∗, which we still call ω . Entry 10 in Table B.1 gives L1(X)∗ ∼= L∞(X), in the
sense that any ϕ ∈ L1(X)∗ is given by ϕ f (g) =

∫
X f g for some f ∈ L∞(X). Hence

ω( f ) =
∫

G
dx ω̃(x) f (x), (C.361)

where ω̃ ∈ L∞(G). The multiplicative property ω( f ∗g) = ω( f )ω(g) then gives

ω̃(xy) = ω̃(x)ω̃(y) (C.362)

almost everywhere (a.e.) with respect to Haar measure.
To prove continuity of ω̃ , compare the following expressions with f ,g ∈Cc(G):

ω( f )ω(g) = ω( f )
∫

G
dx ω̃(x)g(x);

ω( f ∗g) =
∫

G
dxω(Lx f )g(x).

These must coincide, so if we pick some f ∈Cc(G) for which ω( f ) �= 0 (which is
possible since Cc(G) is dense in C∗(G) and ω is not identically zero), then we obtain

ω̃(x) = ω(Lx f )/ω( f ), (C.363)

almost everywhere. Hence we may redefine ω̃ by (C.363) for all x ∈ G. Since

|ω(Lx f )−ω(Ly f )| ≤ ‖Lx f −Ly f‖C∗ ≤ ‖Lx f −Ly f‖1 ≤C‖Lx f −Ly f‖∞, (C.364)

recalling that f has compact support, it follows that the function x �→ ω(Lx f ) is
continuous, whence also ω̃ as redefined by (C.363) is continuous.
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We now show that ω̃(x) ∈ T. If |ω̃(x)|> 1, then ω̃ cannot be bounded (whereas
we know it lies in L∞(G)), because ω̃(xn) = ω̃(x)n by (C.362). But the same is true
if |ω̃(x)| < 1, because using ω̃(x−1) = ω̃(x)−1 (which follows from (C.362) and
(C.363), which gives ω̃(e) = 1), the same argument applies with x−1 instead of x.
Thus ω̃ : G→T is a character γ ∈ Ĝ (where the bar is conventional), so that (C.361)
turns into (C.356). As to injectivity, if f̂ (γ) = f̂ (γ ′) for all f ∈Cc(G), then∫

G
dx(γ(x)− γ ′(x)) f (x) = 0, (C.365)

for all such f , which by standard integration theory gives γ ′ = γ a.e. and hence
everywhere, since both functions are continuous. To prove (C.360), we use a trick:
take some fixed ω0 ∈ Σ(C∗(G)), so that ω0( f ) = f̂ (γ0) for some γ0 ∈ Ĝ by the
previous step of the proof, and ‖ω0( f )‖ ≤ ‖ f‖C∗ for all f ∈C∗(G). For γ ∈ Ĝ and
f ∈ Cc(G), eqs. (C.356) and (C.347) give ωγ( f ) = ω0(γγ0 f ), where γγ0 f is the
pointwise product of the three given functions from G to C. Hence

|ωγ( f )|= |ω0(γγ0 f )| ≤ ‖π(γγ0) f‖= ‖γγ0 f‖C∗ . (C.366)

We now denote γγ0 by γ ′, which lies in Ĝ, and note that for any γ ′ ∈ Ĝ, we have

〈ϕ,π(γ ′ f )ψ〉= 〈γ ′ϕ,π( f )(γ ′ψ)〉 (ϕ,ψ ∈ L2(G), f ∈Cc(G)). (C.367)

Taking ϕ = π(γ ′ f )ψ and using Cauchy–Schwarz as well as ‖γ ′ϕ‖= ‖ϕ‖, gives

‖π(γ ′ f )ψ‖ ≤ ‖π( f )γ ′ψ‖ (ψ ∈ L2(G), f ∈Cc(G),γ ′ ∈ G). (C.368)

Taking the sup over all ψ ∈ L2(G) with ‖ψ‖= 1 (which also means ‖γ ′ψ‖= 1) gives
‖π(γ ′ f )‖ ≤ ‖π( f )‖. Combined with (C.366) and (C.360), this gives the bound

|ωγ( f )| ≤ ‖ f‖C∗ . (C.369)

We now prove continuity of the map ωγ → γ from Σ(C∗(G)) to Ĝ (using se-
quences for simplicity, the argument for nets being similar). If ωγn → ωγ , i.e.,
f̂ (γn) → f̂ (γ) for each f ∈ C∗(G), and hence for each f ∈ Cc(G), then γn → γ
uniformly on any K ⊂K (G). Writing γ ′n = γnγ and g = f γ , we first notice that

|γn(x)− γ(x)| = |γ ′n(x)−1|; (C.370)
f̂ (γn)− f̂ (γ) = ĝ(γ ′n)− ĝ(1G). (C.371)

This shows that we may reduce the proof to the case γ = 1G; otherwise, simply
change γn to γ ′n. Thus we assume that f̂ (γn)→ f̂ (1G) for each f ∈Cc(G). We now
pick some fixed g ∈Cc(G) such that ĝ(1G) =

∫
G dxg(x) = 1. For ε > 0, by uniform

continuity there is a neighbourhood U of the identity e ∈ G such that, cf. (C.364),

‖Lug−g‖1 < ε/3 (u ∈U). (C.372)
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Then ∪x∈G xU covers G, and hence also covers each compact set K ⊂G. Therefore,
K has a finite subcover ∪ j∈Jx jU . Define g j = Lx j g. By invariance of the Haar mea-
sure, we have ĝ j(1G) = 1, so that by definition of ωγn → ω1G , we may find N ∈ N
such that for each j ∈ J and for all n > N, we have

|ĝ j(γn)−1|< ε/3. (C.373)

Also, if x ∈ K, then x = x ju for some j ∈ J and u ∈U . Eq. (C.372) then implies

|ĝ j(γn)(γn(x)−1)|=
∣∣∣∣∫G

dy(Lug(y)−g(y))γn(y)
∣∣∣∣< ε/3. (C.374)

Hence for any K ∈K (G) and x ∈ K as above, we may estimate, for all n > N,

|γn(x)−1| ≤ |γn(x)(1− ĝ j(γn))|+ |ĝ j(γn)(γn(x)−1)|
+ |ĝ j(γn)−1|< ε/3+ ε/3+ ε/3 = ε. (C.375)

Consequently, f̂ (γn)→ f̂ (1G) for each f ∈Cc(G) implies γn → 1G in Ĝ; as we have
argued, this proves continuity of the bijection Σ(C∗(G))→ Ĝ given by ωγ → γ .

If Σ(C∗(G)) and Ĝ are compact (which is the case iff G is discrete, in which case
C∗(G) has a unit δe) we are ready, since a continuous bijection from a compact space
to a Hausdorff space has a continuous inverse, and hence is a homeomorphism (in
our case, both spaces are compact as well as Hausdorff). In general, continuity of the
map γ �→ωγ from Ĝ to Σ(C∗(G)) almost immediately follows from the definition of
the compact-open topology on Ĝ: if γn → γ in this topology (similarly for nets), and
f ∈Cc(G), then f̂ (γn)→ f̂ (γ), and hence ωγn( f )→ ωγ( f ). A simple ε/3-argument
then gives the same result for f ∈C∗(G). �

Note that local compactness of Ĝ (though provable directly) also follows from this
theorem, since we know this for the Gelfand spectrum Σ(C∗(G)), cf. Theorem C.45.

Beside the Gelfand isomorphism (C.355), in which the two function spaces
C∗(G) and C0(Ĝ) are of a different type, there exist more symmetric versions of
the generalized Fourier transform (C.356). In the setting of Banach spaces (as op-
posed to spaces of distributions, which would take us into the territory of locally
convex topological vector spaces, and hence outside the scope of this appendix,
though cf. §5.11), there are (at least) two natural possibilities. The traditional and
most familiar one is provided by the Hilbert spaces L2(G) and L2(Ĝ), defined with
respect to suitably normalized Haar measures dx (on G) and dγ (on Ĝ), respectively.
A second, more recent possibility is to use the following two Banach spaces.

Definition C.110. The Banach space C∗0(G) is the completion of Cc(G) in the norm

‖ f‖0 = max{‖ f‖∞,‖ f̂‖∞}. (C.376)

Similarly, the Banach space C∗0(Ĝ) is the completion of Cc(Ĝ) in the norm

‖ζ‖0 = max{‖ζ‖∞,‖ζ̌‖∞}. (C.377)
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It follows that C∗0(G) can be norm-decreasingly injected into both C∗(G) and C0(G),
so that C∗0(G) is a subspace of C0(G) as well as of C∗(G). By (C.341) and (C.360),

L1(G)∩C0(G)⊂C∗0(G), (C.378)

and similarly for C∗0(Ĝ). Indeed, C∗0(G) (and likewise C∗0(Ĝ)) could equivalently
have been defied as the completion of L1(G)∩C0(G) in the norm (C.376).

Theorem C.111. The Fourier transform (C.356) induces isometric isomorphisms

L2(G)∼= L2(Ĝ); (C.379)

C∗0(G)∼=C∗0(Ĝ), (C.380)

such that, on suitably normalizing dx and dγ , the Fourier inversion formula

f (x) =
∫

Ĝ
dγ γ(x) f̂ (γ), (C.381)

cf. (C.356), in both cases holds verbatim whenever f ∈ L1(G) and f̂ ∈ L1(Ĝ), in
which case f and f̂ are continuous, and (C.356) and (C.381) hold pointwise.

The Fourier inversion formula (C.381) is actually equivalent to its special case

f (e) =
∫

Ĝ
dγ f̂ (γ), (C.382)

where e ∈ G is the unit, since (C.381) follows by substituting Lx−1 f for f and using

L̂x−1 f = γ f̂ . (C.383)

It is also important to realize that conceptually, the inversion formula (C.381) reads

ˇ̂f (x̂) = f (x−1), (C.384)

where the Fourier transform ζ̌ for suitable ζ : Ĝ→ C is defined, as in (C.356), by

ζ̌ (χ) =
∫

Ĝ
dγ χ(γ)ζ (γ). (C.385)

Here χ : Ĝ→ T is some character on Ĝ, i.e., χ ∈ ˆ̂G, and we have a natural map

G → ˆ̂G; (C.386)
x �→ x̂; (C.387)

x̂(γ) = γ(x). (C.388)

Pontryagin duality states that (C.386) - (C.388) define an isomorphism, i.e.,

ˆ̂G∼= G. (C.389)
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We omit the lengthy proof of this beautiful isomorphism of topological groups
(cf. the examples in Proposition C.108), and turn to the proof of Theorem C.111.

Proof. First, we (re)construct a correctly normalized Haar measure on Ĝ by defining∫
Ĝ

: Cc(Ĝ,R)→ R; (C.390)

ζ �→ inf{ f (e) | f ∈C∗0(G), f̂ ≥ ζ (pointwise)}. (C.391)

This map takes values in R, since if f̂ is real, as required by f̂ ≥ ζ in (C.391),
then, noting that the Gelfand (= Fourier) transform on C∗0(G) maps the involution
(C.337) into complex conjugation on C0(Ĝ), so is f (e), cf.(C.337). Furthermore,

∫
Ĝ

is linear, as well as positive: if ζ ≥ 0 (i.e., pointwise), then also f̂ ≥ 0 in C0(Ĝ), so
that f ≥ 0 in C∗(G), because by Theorem C.109 the map f �→ f̂ is an isomorphism,
which by Theorem C.52 preserves positivity. This gives 〈ψ,π( f )ψ〉L2(G) ≥ 0 for
all ψ ∈ L2(G), which by a simple continuity argument (in a proof by contradiction,
using the inclusion C∗0(G)⊂C0(G)) enforces f (e)≥ 0, and hence inf{ f (e)} ≥ 0.

By Theorem B.19, there is a measure dγ on Ĝ defining the integral
∫

Ĝ, i.e,∫
Ĝ

dγ ζ (γ) = inf{ f (e) | f ∈C∗0(G), f̂ ≥ ζ}, (C.392)

where initially ζ is real-valued, upon which the integral is extended to Cc(Ĝ) by
complex linearity, as usual in (Lebesgue) integration. The point is that the measure
dγ is translation invariant and hence is a Haar measure on Ĝ: indeed, replacing g
by Lγ ′g amounts to replacing f (as a function that satisfies f̂ ≥ g) by γ ′ f . Invari-
ance then follows from γ ′(e) = 1 for any character γ ′ ∈ Ĝ, which obviously implies
(γ ′ f )(e) = γ ′(e) f (e) = f (e). The Banach spaces Lp(G) and Lp(Ĝ) are then defined
with respect to dx on G (assumed given) and dγ on Ĝ (as above), respectively.

Furthermore, the proof uses an approximate unit (δU ) of C∗(G) that lies in Cc(G)
and is indexed by shrinking neighbourhoods U of e ∈ G. More precisely, take the
directed set of all symmetric neighbourhoods of e (i.e., U−1 = U), ordered by re-
verse inclusion ⊇, take positive functions hU ∈Cc(W ) for some neighbourhood W
of e satisfying W 2 ⊂U , normalize hU such that

∫
G hU ∗h∗U = 1, and define

δU = hU ∗h∗U ; (C.393)
fU = f ∗δU ( f ∈C∗(G)). (C.394)

We will show that for each f ∈C∗(G), we have

lim
U
‖ fU − f‖C∗ = 0. (C.395)

To this end, we first show that ‖δU‖C∗ ≤ 1, which follows from the estimate

‖π(δU )ψ‖=
∥∥∥∥∫G

dyδU (y)Lyψ
∥∥∥∥≤ ∫G

dyδU (y)‖Lyψ‖= ‖ψ‖. (C.396)
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Similar estimates give f ∗δU → f for f ∈Cc(G), so that finally

‖ f ∗δU − f‖C∗ = ‖ f ∗δU −g∗δU +g∗δU −g+g− f − f‖C∗

≤ 2‖ f −g‖C∗ +‖g∗δU −g‖C∗ . (C.397)

Taking g ∈Cc(G), an ε/3 argument finishes the proof of (C.395). Moreover,

fU ∈C∗0(G) ( f ∈C∗(G)). (C.398)

To prove this, take g,h ∈Cc(G). Regarding g and h as elements of L2(G), note that

g∗h(x) = 〈g∗,Lx−1h〉L2(G), (C.399)

so that Cauchy–Schwarz and unitarity of Lx−1 give ‖g∗h‖∞ ≤ ‖g‖2‖h‖2. Applying
this with g � π( f )g and h � h, where f ∈C∗(G), g ∈Cc(G), and h ∈Cc(G), yields

‖ f ∗g∗h‖∞ ≤ ‖π( f )g‖2‖h‖2 ≤ ‖ f‖C∗‖g‖2‖h‖2; (C.400)
‖ f ∗g∗h‖2 = ‖π( f )(g∗h)‖2 ≤ ‖ f‖C∗‖g∗h‖2. (C.401)

Eq. (C.401) will be applied later, in the proof of (C.379). Eq. (C.400) shows that if
fn → f in C∗(G) for some net ( fn) in Cc(G), then fn ∗g∗h→ f ∗g∗h uniformly, so
that f ∗g∗h ∈C0(G) and fn ∗g∗h→ f ∗g∗h in C0(G). Also,

‖ ̂f ∗g∗h‖∞ = ‖ f̂ ĝĥ‖∞ ≤ ‖ f̂‖∞‖ĝĥ‖∞ = ‖ f‖C∗‖ĝĥ‖∞, (C.402)

by isometry of the Gelfand transform, so that also ̂fn ∗g∗h→ ̂f ∗g∗h in C0(Ĝ). If
fn,g,h ∈Cc(G) then fn ∗ g ∗ h ∈Cc(G) ⊂C∗0(G), and the above computations give
fn ∗g∗h→ f ∗g∗h in C∗0(G). This shows that f ∗g∗h ∈C∗0(G); taking g = hU and
h = h∗U yields (C.398).

We now turn to the Fourier inversion formula (C.381). Since the Gelfand trans-
form C∗(G)→C0(Ĝ) is an isomorphism, for any ζ ∈C0(Ĝ), we can find f ∈C∗(G)
such that f̂ = ζ , and we can find a net fU = f ∗δU in C∗0(G) such that

lim
U
‖ fU − f‖C∗ = lim

U
‖ f̂U − f̂‖C0(Ĝ) = lim

U
‖ f̂U − f̂‖∞ = 0. (C.403)

If ζ ∈Cc(Ĝ), we in addition have ˇ̂fU → ζ̌ in C0(
ˆ̂G), or, equivalently,

lim
U
‖ f̂U − f̂‖C∗(Ĝ) = 0. (C.404)

Eq. (C.403) and the fact that δ̂U is continuous, and hence uniformly continuous on
every compact K ⊂ Ĝ (which we take such that it contains the support of f̂ = ζ ),
gives limU ‖δ̂U−1‖(K)

∞ = 0, where ‖η‖(K)
∞ is the supremum of |η(γ)| over all γ ∈K.

For f̂ ∈ Cc(Ĝ), with f̂U = δ̂U f̂ , this gives f̂U → f̂ in L1(Ĝ). As we trivially have
‖ f̂‖C∗(Ĝ)≤‖ f̂‖L1(Ĝ) (and similarly, of course, on G itself), we obtain (C.404), which
together with (C.403) also yields f̂U → ζ in C∗0(Ĝ).
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Since fU ∈ C∗0(G), the infimum in (C.392) is saturated, and hence the Fourier
inversion formula (C.381) holds for fU . Pontryagin duality then yields isometry,
i.e., ‖ f̂U‖0 = ‖ fU‖0. Convergence of f̂U in C∗0(Ĝ) therefore yields convergence of
fU in C∗0(G), necessarily to f , since we already knew that fU → f in C∗(G), cf.
(C.395). This shows that f ∈C∗0(G), so that (C.381) holds for f , implying

‖ f̂‖0 = ‖ f‖0. (C.405)

Thus the Fourier transform F : C∗(G)→ C0(Ĝ) from Theorem C.109 is given by
continuous extension of F ( f ) = f̂ as defined by (C.356), where f ∈Cc(G).

To prove (C.380), let B(G) be the set of all f ∈C∗0(G) for which f̂ ∈Cc(Ĝ), and
let B(G)− be its closure in C∗0(G). Then F restricts to an isometric isomorphism
B(G)→Cc(Ĝ), and hence also to an isometric isomorphism B(G)− →C∗0(Ĝ); we
recall that (by definition) C∗0(Ĝ) is the completion of Cc(Ĝ) in its norm ‖ · ‖0.

Repeating this construction for Ĝ instead of G, and using Pontryagin duality
(C.389) with the ensuing isomorphisms C∗( ˆ̂G)∼=C∗(G) etc., we also have a Fourier
transform F̌ : C∗(Ĝ)→C0(G). Since the Fourier inversion formula (C.381) holds
on Cc(Ĝ), we see that F̌ maps Cc(Ĝ) isometrically to B(G) and hence by continuity
maps C∗0(Ĝ) to B(G)−. At the same time, F̌ maps B̂(Ĝ) (defined, mutatis mutandis,
like B(G)) to Cc(G), and hence maps B̂(Ĝ)− to C∗0(G). Since B̂(Ĝ)− ⊆C∗0(Ĝ), this
implies B(G)− =C∗0(G) and B̂(Ĝ)− =C∗0(Ĝ). This proves (C.380).

Returning to (C.381), we know from the above analysis that (C.356) and (C.381)
hold if f ∈C∗0(G) and f̂ ∈Cc(Ĝ). If f ∈ L1(G), then, by Lebesgue integration theory,
eq. F ( f ) remains given by (C.356). If also f̂ ∈ L1(Ĝ), then f̂ ∈ L1(Ĝ)∩C0(Ĝ) and
hence f̂ ∈C∗0(Ĝ), cf. (C.378). By (C.380), there exists f̃ ∈C∗0(G) such that f = f̃
in C∗(G), and hence for a.e. x ∈ G (with respect to Haar measure), we have

f (x) = lim
U

f ∗δU (x) = lim
U

f̃ ∗δU (x) = f̃ (x). (C.406)

It follows that f = f̃ a.e., and so the inversion formula (C.382), and hence (C.381),
holds, provided (if necessary) f is replaced by its representative f̃ .

Finally, to prove (C.379), take f = ψ in (C.356) in Cc(G), so that we may com-
pute

‖ψ‖2
2 =

∫
G

dx |ψ(x)|2 = ψ ∗ψ∗(e) =
∫

Ĝ
dγ ψ̂ ∗ψ∗(γ) =

∫
Ĝ

dγ |ψ̂|2 = ‖ψ̂‖2
2.

(C.407)
We may therefore extend F , initially given by F ( f ) = f̂ , from Cc(G) to its com-
petion L2(G) in ‖ · ‖2. Second, we prove surjectivity similarly to the previous part:

Pick ζ ∈ Cc(Ĝ), and hence f ∈ C∗(G) with f̂ = ζ . Then fU = f ∗ δU ∈ L2(G),
as follows from (C.401). Then f̂U → f̂ in L2(Ĝ), since analogously to the previous
proof, we find that ( f̂U ) is a Cauchy net in L2(Ĝ). By isometry of F (as just proved),
this implies that ( fU ) is a Cauchy net in L2(G). Let fU → g in L2(G); continuity of
F gives F (g) = ζ , making F surjective at least onto Cc(Ĝ). Since L2(Ĝ) is the
completion of Cc(Ĝ) in the L2-norm ‖·‖2, the Fourier transform F : L2(G)→ L2(Ĝ)
is an isometric surjection, and hence is unitary. �
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We close this section with the SNAG-Theorem (named after Stone, whose Theo-
rem 5.73 it generalizes, Naimark, Ambrose, and Godement, each of who published
versions of it in 1944). This theorem uses projection-valued measures, which we
have avoided so far, but which are appropriate here as well as in our application of
the SNAG-Theorem to the Goldstone Theorem 10.28. Recall that the Riesz–Radon
representation theorems B.19 and B.24 establish a bijective correspondence between
states on C0(X) and probability measures on X . There is a similar correspondence
between representations of C0(X) and projection-valued measures on X . Cf. §B.4.

Definition C.112. Let X be a set with σ -algebra Σ ⊆P(X), and H a Hilbert space.
A projection-valued measure for (X ,Σ ,H) is a map e : Σ →P(H) such that for
each unit vector ψ ∈ H, the map e(ψ) : Σ → [0,1] defined by

e(ψ)(A) = 〈ψ,e(A)ψ〉, (C.408)

is a probability measure. Equivalently, e( /0) = 0H, e(X) = 1H, e(A∩B) = e(A)e(B),
and e(∪nAn) = ∑n e(An) for pairwise disjoint An in the strong topology on B(H).

The simplest example must be H = L2(X ,Σ ,μ) with e(A) = 1A, cf. §B.6.
As in (B.328), one can integrate any bounded measurable function f : X → C

“against” e, i.e., there is a unique operator
∫

X de f such that for any ε > 0 there is a
finite partition X =

⊔n
i=1 Ai of X into n Borel sets Ai, such that for any xi ∈ Ai,∥∥∥∥∥

∫
X

de f −
n

∑
i=1

f (xi)e(Ai)

∥∥∥∥∥< ε. (C.409)

Analogously to the Riesz–Radon representation theorem, one may then prove:

Theorem C.113. Let X be a locally compact Hausdorff space. There is a bijective
correspondence between non-degenerate representations π : C0(X) → B(H) and
projection-valued measures e for (X ,Σ ,H) (where Σ is the Borel σ -algebra), viz.

π( f ) =
∫

X
de f ; (C.410)

e(A) = π(1A), (C.411)

where π(1A) is defined by extending π from C0(X) to the C*-algebra B(X) of
bounded Borel functions on X (cf. Theorem B.102 and Proposition B.98).

We finally need the existence of a bijective correspondence between continuous
unitary representations u of G and non-degenerate representations of C∗(G) given
by (C.506) in §C.18 below; see the comment below Definition C.119. Combined
with Theorems C.109 and C.113, we then obtain the SNAG-Theorem:

Theorem C.114. There is a bijective correspondence between continuous unitary
representations u of a locally compact abelian group G on some Hilbert space H
and projection-valued measures e : B(Ĝ)→P(H) on the dual group Ĝ, such that

u(x) =
∫

Ĝ
de(γ)γ(x). (C.412)
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C.16 Intermezzo: Lie groupoids

Groupoids generalize groups, group actions, and equivalence relations. As such,
they provide a more flexible language for dealing with symmetries than either of
these. Like Lie groups, one also has Lie groupoids, which form an important tool in
constructing continuous bundles of C*-algebras (see §C.19 below). These, in turn,
provide the mathematical foundation of (deformation) quantization, see Chapter 7.

Definition C.115. A groupoid G = (G1,G0,s, t, i, I) is a small category (i.e. a cat-
egory in which the underlying classes are sets, cf. §E.1) in which each arrow is
invertible. Thus one has a set (of arrows) G1 doubly fibered over some base space
G0 through source, and target maps s, t : G1 → G0. These maps define the set

G2 = {(x,y) ∈ G1×G1 | s(x) = t(y)} (C.413)

of composable pairs, on which a multiplication m : G2 → G1 is defined, which we
simply denote by xy = m(x,y), subject to the axioms

s(xy) = s(y); t(xy) = t(x) (xy ∈ G2); (C.414)
(xy)z = x(yz) (xy ∈ G2,yz ∈ G2), (C.415)

the third being well defined by virtue of the first and the second.
Furthermore, there is an object inclusion map i : G0 ↪→ G1, u �→ idu, satisfying

s(idu) = t(idu) = u (u ∈ G0); (C.416)
xids(x) = idt(x)x = x (x ∈ G1). (C.417)

Finally, what makes a (small) category a groupoid is the existence of an inverse

I : G1 → G1, x �→ x−1,

satisfying

s(x−1) = t(x); t(x−1) = s(x) (x ∈ G1); (C.418)
x−1x = ids(x); xx−1 = idt(x) (x ∈ G1). (C.419)

A Lie groupoid is a groupoid for which G1 and G0 are manifolds, s and t are
surjective submersions, and multiplication and inversion are smooth.

We often identify u with idu, so that x−1x = s(x), etc. We allow manifolds with
boundary, which provide key examples; cf. Proposition C.117 below.

Proposition C.116. In a Lie groupoid, object inclusion is an immersion, inversion
is a diffeomorphism, G2 is a closed submanifold of G1×G1, and for each u ∈ G0,
the fibers s−1(u) and t−1(u) are submanifolds of G1.

Abusing notation, G1 is often called G. Some basic examples of Lie groupoids are:
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• Lie groups G, where G1 = G and G0 = {e}, e ∈ G being the unit.
• Manifolds M, where G1 = G0 = M with the obvious trivial groupoid structure

s(x) = t(x) = idx = x−1 = x, and xx = x.
• Pair groupoids over a manifold G0 = M, where G1 = M×M and s(x,y) = y,

t(x,y) = x, (x,y)−1 = (y,x), (x,y)(y,z) = (x,z), and idx = (x,x).
• Smooth equivalence relations, i.e. immersed submanifolds of M×M.
• Action groupoids Γ �M, which are defined by a smooth (left) action Γ � M of

a Lie group Γ on a manifold M, where G1 = Γ ×M, G0 = M, s(g,m) = g−1m,
t(g,m) = m, (g,m)−1 = (g−1,g−1m), and (g,m)(h,g−1m) = (gh,m).

• Vector bundles π : E → M over a manifold G0 = M, with s = t given by the
bundle projection π , object inclusion M ↪→ E as the zero section, multiplication
as as fiberwise addition of tangent vectors, and inverse ξ−1 =−ξ .

Any Lie groupoid G defines an associated tangent groupoid GT , which will play
a crucial role in §C.19. We first explain the (surprising) underlying differential ge-
ometry in three steps of increasing complexity. We start with the manifold M = Rn,
with tangent bundle T M = R2n. Our goal is to describe a smooth structure on

F = T M' (0,1]×M×M, (C.420)

seen as a bundle over [0,1], where (as the notation already indicates) the fibers are

F0 = T M; (C.421)
Fh̄ = M×M (h̄ > 0). (C.422)

Although each fiber Fh̄ of this bundle is isomorphic to R2n, its smooth structure is
not equal or even diffeomorphic to the usual one on [0,1]×R2n. Instead, we define

φ : [0,1]×T M → T M' (0,1]×M×M; (C.423)
φ(0,ξ ) = ξ ; (C.424)
φ(h̄,ξ ) = (h̄,expW (h̄ξ )) (h̄ > 0), (C.425)

where the symmetrized (“Weyl”) exponential map expW : T M→M×M is given by

expW (x,v) = (x− 1
2 v,x+ 1

2 v). (C.426)

Here the coordinates (x,v) of ξ ∈ TxM denote ξ f (x) = ∑i vi
(

∂ f
∂xi

)
(x)≡∑i vi∂i f (x).

Like its more familiar counterpart (x,v) �→ (x,x+ v), expW is a diffeomorphism.
For M = Rn, our map φ is a bijection, with inverse given by

φ−1(x,v) = (0,x,v); (C.427)

φ−1(h̄,x,y) =
(

h̄,
x+ y

2
,

y− x
h̄

)
(h̄ > 0). (C.428)

We use this to transfer the product topology (and also the smooth structure as a
manifold with boundary) from [0,1]×T M to F . Then a sequence (h̄n,xn,yn) in F ,
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where h̄n → 0, converges iff xn → x, yn → x for some x ∈M, and (yn− xn)/h̄n → v,
in which case (h̄n,xn,yn)→ (0,x,v). More abstractly, F has two key properties:

1. The map F → [0,1]×M×M given by

(x,v) �→ (0,x,x); (C.429)
(h̄,x,y) �→ (h̄,x,y) (h̄ > 0), (C.430)

is smooth. Indeed, as a map [0,1]×T M → [0,1]×M×M, this map is given by

(0,x,v) �→ (0,x,x); (C.431)
(h̄,x,v) �→ (h̄,x− 1

2 h̄v,y+ 1
2 h̄v). (C.432)

2. For any f ∈C∞(M×M) that vanishes on the diagonal

Δ(M) = {(x,x) | x ∈M} ⊂M×M, (C.433)

the function δ f on F defined by

δ f (x,v) = ξ⊥ f (x,x); (C.434)
δ f (h̄,x,y) = f (x,y)/h̄ (h̄ > 0), (C.435)

where the tangent vector ξ⊥ ∈ T(x,x)(M ×M) has components (− 1
2 v, 1

2 v), is
smooth. Indeed, as a function on [0,1]×T M, the pullback δ ∗ f ≡ δ f ◦φ is given
by

δ ∗ f (0,x,v) = ξ⊥ f (x,x); (C.436)
δ ∗ f (h̄,x,v) = f (h̄,x− 1

2 h̄v,y+ 1
2 h̄v)/h̄, (C.437)

which is smooth given our assumptions on f .

A similar construction works for any (smooth) manifold M, except that the
smooth structure on F may no longer be definable in terms of a single map φ . In-
stead, we invoke a special case of the well-known tubular neighbourhood theorem
of Riemannian (or, more generally, affine) geometry, which states that M, identified
with the zero section in its tangent bundle T M, has an open neighbourhood U such
that the (symmetrized) exponential map expW : U → M×M is a diffeomorphism
onto its image. Here expW (ξ ) = (γ(− 1

2 ),γ( 1
2 )), where ξ ∈ TxM and γ is the unique

affinely parametrized geodesic with γ(0) = x and γ̇(0) = ξ . We now replace the
space [0,1]×T M used in the special case M = Rn by the pair of spaces

V1 = {(h̄,ξ ) ∈ [0,1]×T M | h̄ξ ∈U}; (C.438)
V2 = (0,1]×M×M, (C.439)

with associated maps φ1 : V1 → F and φ2 : V2 → F defined by
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φ1(0,ξ ) = ξ ; (C.440)
φ1(h̄,ξ ) = expW (h̄ξ ) (h̄ > 0); (C.441)

φ2(h̄,x,y) = (h̄,x,y) (h̄ > 0). (C.442)

Then φ1 and φ2 are injective and, writing Fi = ϕi(Vi), we have F = F1∪F2, which is
far from a disjoint union; let Fi j = Fi∩Fj. Also, let Vi j = {α ∈Vi | φi(α)∈ Fi j}, with
associated maps φi j = φ−1

j ◦φi : Vi j →Vji. We now define the smooth structure of F
by declaring f : F →R to be smooth iff fi◦φ−1

i : Vi→R is smooth, i= 1,2, where fi
is the restriction of f to Fi. These conditions are compatible on the overlap Fi j, since
φ12(h̄,ξ ) = expW (h̄ξ ) is a diffeomorphism (with inverse φ21). This smooth structure
may also be defined by imposing conditions 1 and 2 above, mutatis mutandis. In
particular, (C.434) should now read

δ f (ξ ) = ξ⊥ f (x,x); ξ⊥ = (− 1
2ξ , 1

2ξ ) ∈ T(x,x)(M×M)∼= TxM⊕TxM. (C.443)

A more general form of the above construction, which will be used to generate a
vast class of continuous bundles of C*-algebras, is as follows. Let M be a closed
submanifold of another manifold G (in the above situation we take G = M×M and
identify M with Δ(M)), and replace T M above by the normal bundle

NMG = TMG/TMM, (C.444)

i.e., the quotient of the restriction TMG of the tangent bundle T G to M ⊂ G by its
subbundle TMM ∼= T M; hence the fiber of NMG at x ∈M ⊂ G is TxG/TxM.

In the above case G = M×M, one therefore has

NM(M×M)∼= T M, (C.445)

through the isomorphism [(ξ1,ξ2)] �→ 1
2 (ξ2− ξ1), where (ξ1,ξ2) ∈ T(x,x)(M×M)

and [(ξ1,ξ2)] is its equivalence class in the quotient T(x,x)(M×M)/T(x,x)(Δ(M)).
Other easy examples are Lie groups G, for which NMG = TeG = g is just the Lie

algebra of G ( at least as a vector space), and G = M, for which NMG = M.
For the bundle F , defined over I = [0,1], we take the fibers and total space as

F0 = NMG; (C.446)
Fh̄ = G (h̄ > 0); (C.447)
F = NMG' (0,1]×G. (C.448)

Once again, there are two equivalent ways to define a smooth structure on F . The
first uses a more general version of the tubular neighbourhood theorem from differ-
ential geometry, which states that M ⊂ NMG (seen as its zero section) has an open
neighbourhood U that is diffeomorphic to some open neighbourhood U ′ of M ⊂ G
via a diffeomorphism ϕ that maps M to itself (i.e., pointwise). Then put
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V1 = {(h̄,ξ ) ∈ [0,1]×NMG | h̄ξ ∈U}; (C.449)
V2 = (0,1]×G, (C.450)

again with associated maps φ1 : V1 → F and φ2 : V2 → F , this time defined by

φ1(0,ξ ) = ξ ; (C.451)
φ1(h̄,ξ ) = ϕ(h̄ξ ) (h̄ > 0); (C.452)
φ2(h̄,n) = (h̄,n) (h̄ > 0). (C.453)

One then proceeds exactly as above. Equivalently, we impose that:

1. The map F → [0,1]×G, defined at h̄ = 0 by ξ �→ (0,x), where ξ ∈ NMG (where
x ∈M ⊂ G), and (h̄,n) �→ (h̄,n) for h̄ > 0 and n ∈ G, is smooth.

2. For each f ∈C∞(G) that vanishes on M, the function δ f on F defined by

δ f (ξ ) = ξ f ; (C.454)
δ f (h̄,n) = f (n)/h̄ (h̄ > 0), (C.455)

is smooth (note that ξ f is well defined despite the fact that ξ ∈ TMG/TMM rather
than ξ ∈ TMG, since any two representatives of ξ in TMG differ by vectors in
TMM, which vanish on f because f|M = 0 by assumption).

After this preparation, we are at last in a position to define tangent groupoids.

Proposition C.117. Any Lie groupoid G over some base space G0 = M defines an
associated tangent groupoid GT , with total space GT = F, cf. (C.448), with smooth
structure as explained, base space GT

0 = [0,1]×M, source and target projections

sT (ξ ) = tT (ξ ) = (0,π(ξ )) (h̄ = 0); (C.456)
sT (h̄,x) = (h̄,s(x)) (h̄ > 0); (C.457)
tT (h̄,x) = (h̄, t(x)) (h̄ > 0), (C.458)

where π : TMG/TMM →M is the bundle projection, and x ∈ G, multiplication

ξ ·η = ξ +η (h̄ = 0); (C.459)
(h̄,x) · (h̄,y) = (h̄,xy) (h̄ > 0), (C.460)

and inverse

ξ−1 = −ξ (h̄ = 0); (C.461)
(h̄,x)−1 = (h̄,x−1) (h̄ > 0). (C.462)

In other words, GT , seen as a bundle over [0,1] is a “bundle of groupoids”: the
groupoid above h̄ = 0 is the normal bundle π : NMG→M, as in the vector bundle
example above, whereas the fibers above h̄ > 0 are G itself.
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C.17 C*-algebras associated to Lie groupoids

One may associate two C*-algebras to a Lie groupoid G, called C∗r (G) and C∗(G),
which coincide for abelian Lie groups, and as such generalize the construction in
§C.15, cf. (C.332) and (C.336) - (C.337). We first generalize the Haar measure.

Definition C.118. A Haar system on a Lie groupoid G is a family of measures
(μu,u ∈ G0), where μu is defined on the t-fiber

Gu = t−1(u), (C.463)

where it is locally equivalent to Lebesgue measure, and each function

u �→
∫

Gu
dμu f ( f ∈C∞

c (G)) (C.464)

on G0 is smooth. A Haar system is left-invariant if for each f ∈C∞
c (G) and x ∈ G,∫

Gt(x)
dμ t(x)(y) f (y) =

∫
Gs(x)

dμs(x)(y) f (xy). (C.465)

It is sometimes convenient to regard μu as a measure on all of G but having support
in Gu. Either way, any Lie groupoid possesses a left-invariant Haar system, briefly
called a left Haar system. For example, if G is a Lie group, u ∈ G0 can only be the
identity e ∈ G, so that a left-invariant Haar system is the same as a left-invariant
Haar measure on G (which exists on any locally compact group). Furthermore:

1. If G = G0 = M, where M is a manifold (as always), then s(x) = t(x) = x = x−1,
and the condition (C.465) is empty, so that a left-invariant Haar system is just a
smooth function μ : M→ (0,∞), i.e. μ(u)≡ μu. In what follows, we simply take
μ(u) = 1 for each u∈M. More generally, whenever Gu is compact, we normalize
a Haar system by imposing μu(Gu) = 1, as in the case of groups.

2. For a pair groupoid G = M×M, on the other hand, (C.465) forces the system of
measures to collapse to a single measure μ on M, i.e., μu = μ for each u ∈ M.
For M = Rn, we take μ to be Lebesgue measure.

3. For the tangent bundle G = T M (with fiberwise addition), which is essentially a
bundle of abelian groups Rn, eq. (C.465) forces each measure μu on

t−1(u) = TuM, (C.466)

to be translation invariant. For M = Rn (or, more generally, if T M is a trivial
bundle), we take all μu to be the same and all equal to Lebesgue measure.

4. For action groupoids Γ �M, we have t−1(u) = G, and any left-invariant Haar
measure dγ on Γ yields a left Haar system on G as dμu = dγ , for each u ∈M.

5. In case of a tangent groupoid GT , the t-fibers are indexed by (h̄,u), where h̄ ∈
[0,1] and u ∈ M, so that a left Haar system consists of a family μ(h̄,u). It turns
out that given any left Haar system (μu,u ∈ M) on G, there exists a (suitably
normalized) left Haar system (μu

0 ,u ∈M) on the vector bundle NMG such that
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μ(0,u) = μu
0 (h̄ = 0); (C.467)

μ(h̄,u) = h̄−nμu (h̄ > 0), (C.468)

where n = dim(G)−dim(M), defines a Haar system on GT ; the extra factor h̄−n

in (C.468) is necessary and sufficient for this Haar system to satisfy the smooth-
ness condition on (C.464). For example, if G = Rn×Rn is the pair groupoid on
Rn, where each fiber Gu ∼= Rn is endowed with Lebesgue measure dnx, then the
fibers Rn of the vector bundle NMG ∼= TRn should carry exactly the same mea-
sure. To see this, in (C.464) we substitute G � GT and u � (h̄,y) (y ∈ Rn), so
that for each f ∈C∞

c (G
T ) the following function on [0,1]×Rn should be smooth:

(0,y) �→
∫
Rn

dnv f (0,y,v); (C.469)

(h̄,y) �→ h̄−n
∫
Rn

dnx f (h̄,x,y) (h̄ > 0). (C.470)

To interpret this condition, we put f = f̃ ◦φ−1, where f̃ is smooth on [0,1]×TRn,
and φ−1 is given by (C.427) - (C.428). This transforms the above function into

(0,y) �→
∫
Rn

dnv f̃ (0,y,v); (C.471)

(h̄,y) �→
∫
Rn

dnv f̃ (h̄,y− 1
2 h̄v,v) (h̄ > 0). (C.472)

We now define C*-algebras C∗(G) and C∗r (G), which depend on the choice of
a left Haar system on G, but different choices lead to isomorphic C*-algebras. We
start from C∞

c (G), on which we define a convolution product and an involution by

f ∗g(x) =
∫

Gs(x)
dμs(x)(y) f (xy)g(y−1); (C.473)

f ∗(x) = f (x−1). (C.474)

We then define a C*-algebra C∗(G) as the completion of C∞
c (G) in the norm

‖ f‖= sup{‖π( f )‖}, (C.475)

where the supremum is over all Hilbert space representations of C∞
c (G) that satisfy

‖π( f )‖ ≤ ‖ f‖1 ≡max{‖ f‖(s)1 ,‖ f‖(t)1 }, (C.476)

where the canonical L1-norm on the right-hand side is defined by

‖ f‖(s)1 = sup
u∈M

∫
Gu

dμu(y) | f (y)|; ‖ f‖(t)1 = sup
u∈M

∫
Gu

dμu(y) | f (y)|. (C.477)

A more tractable possibility is to limit these representations to a selected class, such
as the following one. Further to the t-fiber (C.463), we denote the s-fibers of G by
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Gu = s−1(u), (C.478)

which carries a canonical measure

dμu(x) = dμu(x−1). (C.479)

This leads to Hilbert spaces
Hu = L2(Gu,μu), (C.480)

on which C∞
c (G) can be represented through the formula

πu( f )ψ(x) =
∫

Gu
dμu(y) f (xy)ψ(y−1) (ψ ∈ Hu,x ∈ Gu,y ∈ Gu). (C.481)

Such representations automatically satisfy the bound (C.476); restricting the repre-
sentations π in (C.475) to these πu, u ∈M, gives the reduced groupoid C*-algebra
C∗r (G). In other words, C∗r (G) is the completion of C∞

c (G) in the norm

‖ f‖r = sup{‖πu( f )‖,u ∈M}. (C.482)

One often has C∗r (G) = C∗(G), but if G is for example a non-compact and semi-
simple Lie group, then the two differ (in which case C∗r (G) is a quotient of C∗(G)).
Deferring groups to the next section, the other examples on our list are as follows.

1. For a space G = M, the algebraic operations are

f ∗g(x) = f (x)g(x); (C.483)
f ∗(x) = f (x), (C.484)

from which we obtain
C∗r (M) =C0(M). (C.485)

Indeed, Gx = {x}, so with μ(x) = 1 for each x ∈M, we obtain

Hx = C; (C.486)
πx( f ) = f (x), (C.487)

and hence ‖ f‖r = ‖ f‖∞; the completion of C∞
c (M) in this norm is C0(M).

2. A pair groupoid G = M×M, with left Haar system μu = μ for all u ∈M, gives

f ∗g(u,v) =
∫

M
dμ(w) f (u,w)g(w,v); (C.488)

f ∗(u,v) = f (v,u), (C.489)

which of course is reminiscent of the corresponding operations on matrices. Also,

Hu = L2(M,μ); (C.490)

πu( f )ψ(v) =
∫

M
dμ(w) f (v,w)ψ(w), (C.491)
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where we wrote x = (v,u) and y = (u,w), and identified ψ(v) with ψ(v,u). With
this identification, the representations πu are the same for each u. Using the fact
that C∞

c (M×M) is dense in L2(M×M) and that integral operators (C.491) of
Hilbert–Schmidt type are dense in the compact operators, we obtain

C∗r (M×M)∼= B0(L2(M)). (C.492)

3. For a tangent bundle G = T M, we have, identifying TuM with Rn, n = dim(M),

f ∗g(u,v) =
∫
Rn

dnw f (u,v+w)g(u,−w); (C.493)

f ∗(u,v) = f (v,−u), (C.494)

where we used local coordinates (u,v) on T M. Furthermore, we have

Hu = L2(TuM) = L2(Rn); (C.495)

πu( f )ψ(v) =
∫
Rn

dnw f (u,v+w)ψ(−w), (C.496)

which is diagonalized by a Fourier transform f �→ f̂ (cf. Theorem C.109), with

f̂ (u, p) =
∫
Rn

dnv f (u,v)eipv. (C.497)

This map therefore gives an isomorphism

C∗(T M)∼=C0(T ∗M). (C.498)

4. The (reduced) C*-algebra of an action groupoid G = Γ �M has operations

f ∗g(γ,u) =
∫

G
dδ f (γδ ,u)g(δ−1,δ−1γ−1u); (C.499)

f ∗(γ,u) = f (γ−1,γ−1u), (C.500)

and the special representations πu are given by

Hu = L2(G); (C.501)

πu( f )ψ(γ) =
∫

G
dδ f (γδ ,γu)ψ(δ−1). (C.502)

This gives the (reduced) transformation group C*-algebra (see the end of §C.18)

C∗r (Γ �M) =C∗r (Γ ,M). (C.503)

5. The C*-algebra C∗(GT ) of a tangent groupoid will be analyzed in §C.19.
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C.18 Group C*-algebras and crossed product algebras

It can be shown that in cases 1–3 above we have C∗(G) =C∗r (G). It is useful to give
a more direct and general construction of both C∗(G) and C∗r (G) in the case where
G is a group or an action groupoid; although the former is a special case of the latter
by taking the trivial G-action on a point, we treat the group case separately first.

Let G be a Lie group, or, more generally, a locally compact group, which for
simplicity we assume to be unimodular (so that it has a left Haar measure dx that is
also right invariant). We turn C∞

c (G), or, more generally, Cc(G), into an algebra with
involution by specializing (C.473) - (C.474) to groups, i.e. (changing y �→ x−1y),

f ∗g(x) =
∫

G
dy f (y)g(y−1x); (C.504)

f ∗(x) = f (x−1). (C.505)

Any unitary representation u of G on a Hilbert space H (assumed strongly continu-
ous, as always) then gives rise to a representation u

∫
of this ∗-algebra by

u
∫
( f ) =

∫
G

dy f (x)u(x), (C.506)

in that u
∫
( f ∗g) = u

∫
( f )u

∫
(g) and u

∫
( f ∗) = u

∫
( f )∗. Let

‖ f‖= sup{‖u
∫
( f )‖}, (C.507)

where the supremum is over all continuous unitary representations of G.

Definition C.119. The group C*-algebra C∗(G) of G is the closure of C∞
c (G) or

Cc(G) in the norm (C.507). The reduced group C*-algebra C∗r (G) of G is the
closure of C∞

c (G) or Cc(G) in the norm

‖ f‖r = ‖u
∫
L( f )‖, (C.508)

where uL is the left-regular representation uL(G) on H = L2(G), cf. (7.52).

The relationship between the two group C*-algebras is given by

C∗r (G)∼= u
∫
L(C

∗(G))∼=C∗(G)/ker
(

u
∫
L

)
. (C.509)

Definition C.120. A unitary representation u1 is weakly contained in u2, if ‖u
∫
1 ( f )‖

≤ ‖u
∫
2 ( f )‖ for all f ∈ Cc(G). If every unitary representation of G is weakly con-

tained in uL, and hence ker
(

u
∫
L

)
= {0} and C∗r (G)∼=C∗(G), we call G amenable.

It can be shown that G is amenable iff the commutative C*-algebra Cb(G) of
bounded continuous functions on G with sup-norm has a left-invariant state ω , i.e.,

ω(Ly f ) = ω( f ) (y ∈ G, f ∈Cb(G)). (C.510)
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Here Ly f (x) = f (y−1x) as usual. This is the case, for example, for all compact
groups, all abelian groups, and all solvable groups (and semi-direct products thereof,
like the Euclidean group). Non-compact semi-simple Lie groups, like SLn(R), or the
Lorentz group, are not amenable, similarly for e.g. the Poincaré group.

Bij construction, there is a bijective correspondence u↔ u
∫

between unitary rep-
resentation of G and non-degenerate representations of C∗(G) (which restricts to a
bijection between unitary representation of G that are weakly contained in uL and
non-degenerate representations of C∗r (G)). In one direction, this is given by (C.506),
whilst in the other, one first decomposes u

∫
≡ ρ as a direct sum of cyclic represen-

tations with cyclic vectors Ωi, and then, for each Ωi in the sum, puts

u(x)ρ( f )Ωi = ρ(Lx f )Ωi. (C.511)

Now take any C*-algebra A on which G acts, in that there is a continuous group
homomorphism α : G → Aut(G), i.e., for each x ∈ G we have an invertible ho-
momorphism αx : A → A such that αx ◦αy = αxy and αe = idA (or, equivalently,
α−1

x = αx−1 ), and for each a ∈ A, the function x �→ αx(A) from G to A is continuous.
We turn the space Cc(G,A) into a ∗-algebra by generalizing (C.504) - (C.505) to

f ∗g(x) =
∫

G
dy f (y)αy(g(y−1x)); (C.512)

f ∗(x) = αx( f (x−1)∗). (C.513)

We construct representations of Cc(G,A) as a ∗-algebra from pairs (u(G),π(A)),
where u is a unitary representation of G, and π is a representation of A (both defined
on the same Hilbert space H) that satisfy the covariance condition

π(αx(a)) = u(x)π(a)u(x)∗. (C.514)

Writing π�u
∫

for the associated representation of Cc(G,A), we put

π�u
∫
( f ) =

∫
G

dxπ( f (x))u(x), (C.515)

and define
‖ f‖= sup{‖π�u

∫
( f )‖}, (C.516)

where the supremum runs over all pairs (u(G),π(A)) satisfying (C.515). The clo-
sure C∗(G,A,α) of Cc(G,A) in this norm is a C*-algebra called the crossed prod-
uct or covariance algebra defined by G, A, and α . Once again, by construction
there is a bijective correspondence (u,π)↔ π � u

∫
between pairs (u,π) satisfy-

ing (C.515) and non-degenerate representations π � u
∫
≡ ρ of C∗(G,A,α), in one

direction given by (C.515), and in the other by

u(x)ρ( f )Ωi = ρ(αx(Lx f ))Ωi; (C.517)
π(a)ρ( f )Ωi = ρ(a f )Ωi. (C.518)
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Here αx(Lx f ) ∈Cc(G,A) is the function y �→ αx( f (x−1y)), similarly a f ∈Cc(G,A)
is given by y �→ a f (y), and the cyclic vectors Ωi are defined as in (C.511).

To construct a reduced crossed product, we take any injective representation
πr(A) on some Hilbert space K, and from it construct a new Hilbert space

H = L2(G,K)∼= L2(G)⊗K, (C.519)

consisting of all measure functions ψ : G→ K for which
∫

G dx‖ψ(x)‖2
K < ∞, with

〈ϕ,ψ〉=
∫

G
dx〈ϕ(x),ψ(x)〉K (C.520)

as the inner product. This Hilbert space H carries a covariant pair (u(G),π(A)), viz.

u(y)ψ(x) = ψ(y−1x); (C.521)
π(a)ψ(x) = πr(αx−1(a))ψ(x), (C.522)

and hence an associated representation π�u
∫

of Cc(G,A) given by (C.515), which
by continuity extends to a representation ρr of C∗(G,A,α). As in the group case, we
define C∗r (G,A,α) as the closure of Cc(G,A) in the norm ‖ f‖r = ‖ρr( f )‖, or as

C∗r (G,A,α) = ρr(C∗(G,A,α)). (C.523)

If G is amenable, we once again have C∗r (G,A,α) =C∗(G,A,α), as for C∗r (G).
The main case of interest to us is given by a group action G � Q, as above, which

gives rise to a crossed product C∗(G,C0(Q),α)≡C∗(G,Q) through the choices

A = C0(Q); (C.524)
αx( f̃ ) = Lx f̃ , (C.525)

i.e., αx( f̃ )(q) = f̃ (x−1q). The (reduced) crossed product C∗(r)(G,Q), then, is the
same as the (reduced) C*-algebra of the action groupoid G � Q. Identifying the
spaces Cc(G×Q) and Cc(G,Cc(Q)), eqs. (C.512) - (C.513) now become

f ∗g(x,q) =
∫

G
dy f (y,q)g(y−1x,y−1q); (C.526)

f ∗(x,q) = f (x−1,x−1q). (C.527)

The obvious candidate for a faithful representation of C0(Q) comes from a measure
ν on Q with support Q, so that we may take K = L2(Q,ν) and πr( f̃ ) = m f̃ , i..e,
πr( f̃ )ψ = f̃ψ , f̃ ∈C0(Q). Identifying L2(G)⊗L2(Q) with L2(G×Q), this yields

u(y)ψ(x,q) = ψ(y−1x,q); (C.528)
π( f̃ )ψ(x,q) = f̃ (x−1q)ψ(x,q); (C.529)

ρr( f )ψ(x,q) =
∫

G
dy f (y,xq)ψ(y−1x,q). (C.530)
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C.19 Continuous bundles of C*-algebras

As shown on Chapter 7, continuous bundles of C*-algebras form a mathematical
bridge between the classical and the quantum worlds, but they also form a beautiful
structure in their own right. In what follows, I is an arbitrary locally compact Haus-
dorff space, but in the main text it is a subset of the unit interval [0,1] that always
contains 0 as an accumulation point, so one may have e.g. I = [0,1] itself, or

I = (1/N)∪{0} ≡ 1/Ṅ, (C.531)

where N= {1,2, . . .}). In physics, I plays the role of the value set for Planck’s con-
stant, but also below we generically write h̄∈ I, if only to avoid notational confusion
with x ∈ X (as C0(X) will be a typical fiber of the continuous bundles we study).

Definition C.121. Let I be a locally compact Hausdorff space. A continuous bun-

dle of C*-algebras over I consists of a C*-algebra A, a collection of C*-algebras
(Ah̄)h̄∈I , and surjective homomorphisms ϕh̄ : A→ Ah̄ for each h̄ ∈ I , such that:

1. The function h̄ �→ ‖ϕh̄(a)‖h̄ is in C0(I) for each a ∈ A.
2. Writing ‖ · ‖h̄ for the norm in Ah̄, the norm of any a ∈ A is given by

‖a‖= sup
h̄∈I
‖ϕh̄(a)‖h̄. (C.532)

3. For any f ∈C0(I) and a ∈ A, there is an element f a ∈ A such that for each h̄ ∈ I,

ϕh̄( f a) = f (h̄)ϕh̄(a). (C.533)

A continuous (cross-) section of the bundle in question is a map h̄ �→ a(h̄) ∈ Ah̄,
h̄ ∈ I, for which there is an a ∈ A such that a(h̄) = ϕh̄(a) for each h̄ ∈ I.

Thus A may be identified with the space of continuous sections of the bundle: if we
do so, the homomorphism ϕh̄ is just the evaluation map at h̄. The structure of A as
a C*-algebra then corresponds to pointwise operations on sections. The idea is that
the family (Ah̄)h̄∈I of C*-algebras is glued together by specifying a topology on the
disjoint union 'h̄∈IAh̄, seen as a fibre bundle over I. However, this topology is in
fact given rather indirectly, namely via the specification of the space of continuous
sections. This is reminiscent of Theorem C.23, which specifies the topology on a
locally compact Hausdorff space X via the C*-algebra C0(X). More generally (the
previous case being the trivial vector bundle E = X ×C), the Serre–Swan Theorem
about fiber bundles allows one to reconstruct the topology on a locally trivial vector
bundle E π→ X from the (finitely generated projective) C0(X)-module C0(X ,E) of
continuous sections of E. As in Definition C.121, one has maps ϕx : C0(X ,E)→ Ex
given by evaluation at x, so that (C.533) holds. However, continuous bundles of
C*-algebras need not be locally trivial; for us, this is even the whole point!

Another way of looking at continuous bundles of C*-algebras starts from a non-
degenerate homomorphism ϕ from C0(I) to the center Z(M(A)) of the multiplier
algebra M(A) of A (see §C.10); we simply write f a for ϕ( f )a, and similarly C0(I)A.
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In this notation, nondegeneracy means that C0(I)A is dense in A. Given such a non-
degenerate homomorphism ϕ : C0(I)→ Z(M(A)), one may define fiber algebras by

Ah̄ = A/(C0(I; h̄) ·A); (C.534)
C0(I; h̄) = { f ∈C0(I) | f (h̄) = 0}; (C.535)

since C0(I; h̄) ·A is an ideal in A, the quotient Ah̄ is a C*-algebra. The projections
ϕh̄ : A → Ah̄ are then given by the corresponding quotient maps sending a ∈ A to
its equivalence class in Ah̄. In general, the function h̄ �→ ‖ϕh̄(a)‖h̄ is merely upper
semicontinuous, so that one only obtains a structure equivalent to the one described
in Definition C.121 if one explicitly requires the above function to be in C0(I), in
which case clause 2 of Definition C.121 follows, too.

It is easy to find “trivial” examples of continuous bundles of C*-algebras: fix
some C*-algebra B and take A = C0(I,B) with pointwise operations. In that case,
Ah̄ = B for each h̄ ∈ I, and the map ϕh̄ : A→ B is given by ϕh̄(a) = a(h̄).

It is not so easy to find nontrivial examples, even with isomorphic fibers (these
were first given by Dixmier and Douady, who took the fiber algebras to be the
compact operators B0(H)). To connect classical to quantum, we need bundles over
I ⊆ [0,1] as described above, with non-isomorphic fibers, of which the fiber A0
above h̄ = 0 is isomorphic to C0(X) for some (locally compact) phase space X ,
and hence is commutative, whereas all other fibers are noncommutative. One might
say that it is the job of (deformation) quantization theory to construct such fields.
Without proof, we now describe the main class of examples relevant to physics.

As we have seen, each Lie groupoid G canonically defines an associated C*-
algebra C∗r (G), in which C∞

c functions on G endowed with a generalized convolution
product (C.473) and involution (C.474) form a dense subspace. In particular,

C∗r (T M) ∼= C0(T ∗M); (C.536)
C∗r (M×M) ∼= B0(L2(M)), (C.537)

where M is a manifold (without boundary) with tangent bundle T M and cotangent
bundle T ∗M. More generally, for any given Lie groupoid G one may define

A0 = C∗r (NMG) (h̄ = 0); (C.538)
Ah̄ = C∗r (G) (h̄ > 0), (C.539)

where NMG is the normal bundle to the embedding M ↪→ G, cf. (C.444). Now con-
sider the tangent groupoid GT , which is a bundle over [0,1] with fibers

GT
0 = NMG (h̄ = 0); (C.540)

GT
h̄ = G (h̄ > 0), (C.541)

The interplay between the differential geometry of the tangent groupoid and the
notion of (reduced) Lie groupoid C*-algebras is described by the following lemma.
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Lemma C.122. The map C∞
c (G

T )→C∞
c (G

T
h̄ ) that restricts f to GT

h̄ ⊂ GT continu-
ously extends to a surjective homomorphism ϕh̄ : C∗r (GT )→C∗r (GT

h̄ ), h̄ ∈ [0,1].

Various special cases and this lemma ultimately led to the key result of the 1990s:

Theorem C.123. For any Lie groupoid G, the fibers (C.538) - (C.539) merge into
a continuous bundle of C*-algebras over I = [0,1] with total algebra A = C∗r (GT )
and homomorphisms ϕh̄ : A→ Ah̄ as described in Lemma C.122.

The same result holds for the full groupoid C*-algebras C∗(GT ) and C∗(GT
h̄ ).

For the pair groupoid G =Rn×Rn, as in the argument (C.469) - (C.472) we take
some f̌ ∈C∞

c (TR
n), seen as a function f̃ ∈C∞([0,1]×TRn) that is independent of

h̄. This yields a function f̃ ◦φ−1 ∈C∞
c (G

T ), and by construction,

f̃ ◦φ−1(0,x,v) = f̌ (x,v); (C.542)

f̃ ◦φ−1(h̄,x,v) = f̌
(

x+ y
2

,
y− x

h̄

)
(h̄ > 0). (C.543)

By lemma C.122, the function ϕ0( f̃ ◦φ−1) is an element of

A0 =C∗r (TR
n); (C.544)

this element is just the function f̌ . For h̄ > 0, we see ϕh̄( f̃ ◦φ−1) as an element of

Ah̄ ∼= B0(L2(Rn)), (C.545)

through (C.490) - (C.491). Calling this element QW
h̄ ( f̌ ), we have

QW
h̄ ( f̌ )ψ(x) = h̄−n

∫
Rn

dny f
(

x+ y
2

,
y− x

h̄

)
ψ(y). (C.546)

We now use the isomorphism (C.536), implemented through the Fourier transform

f (x, p) =
∫
Rn

dnv f̌ (x,v)eipv; (C.547)

f̌ (x,v) =
∫
Rn

dn p
(2π)n f (x, p)e−ipv. (C.548)

Hence as an element of C0(T ∗Rn), the operator ϕ0( f̃ ◦φ−1) is f . From this perspec-
tive, using (C.548), eq. (C.546) may be rewritten in the more familiar form

QW
h̄ ( f )ψ(x) =

∫
T ∗Rn

dn pdny
(2π h̄)n eip(x−y)/h̄ψ(y) f ( 1

2 (x+ y), p). (C.549)

It follows that any f̌ ∈C∞
c (TR

n) defines a continuous cross-section of the continu-
ous bundle of C*-algebra defined by A =C∗((Rn×Rn)T ), given by (C.547), and

0 �→ f ∈C0(T ∗Rn); (C.550)
h̄ �→ QW

h̄ ( f ) ∈ B0(L2(Rn)). (C.551)



740 C Operator algebras

See also §7.1. These formulae were written down for the special case M = Rn, but
similar results (based on the exponential map as defined in Riemannian geometry)
apply to any manifold. Moreover, as explained in §§7.2–7.4, Mackey’s theory of
quantization based on systems of imprimitivity and induced group representations
falls squarely under the above umbrella, where G is an action groupoid.

We also employ continuous bundles of C*-algebras with non-isomorphic fibers
even away from h̄= 0. The construction of these fields relies on the following result,
which is a special case of a more general claim; we just state the case we need, in
which I = 1/Ṅ; continuity then imposes conditions at h̄ = 0 only (as I is discrete
elsewhere). We identify the total space A of a (continuous) bundle of C*-algebras
with the space of its (continuous) sections, as explained at the beginning of this
section; thus a ∈ A⊂∏h̄ Ah̄ takes the form a = {ah̄}h̄∈I , ah̄ ∈ Ah̄.

Proposition C.124. Suppose one has a family {Ah̄}h̄∈I of C*-algebras over I = 1/Ṅ,
as well as a subset Ã⊂∏h̄ Ah̄ that satisfies the following conditions:

1. The set {ãh̄ | ã ∈ Ã} is dense in Ah̄ for each h̄ ∈ I.
2. One has limN→∞ ‖ã1/N‖= ‖ã0‖ for each ã ∈ Ã;
3. The set Ã is a ∗-algebra (under pointwise operations).

Let A consist of all a ∈∏h̄ Ah̄ for which one has

lim
N→∞

‖a1/N − ã1/N‖= ‖a0− ã0‖ (ã ∈ Ã). (C.552)

Regard A as a C*-algebra under pointwise operations and norm (C.532), and define

ϕh̄(a) = ah̄. (C.553)

Then (A,{Ah̄,ϕh̄}h̄∈I) is a continuous bundle of C*-algebras (and is the unique such
bundle whose space of sections contains Ã).

The proof relies on the following lemma (which we state for general compact I).

Lemma C.125. The total C*-algebra A of (sections of) a continuous bundle of C*-
algebras is locally uniformly closed. That is, if a ∈ ∏h̄ Ah̄ is such that for every
h̄0 ∈ I and every ε > 0, there exists bh̄0 ∈ A and a neighborhood N of h̄0 in which
‖ah̄−bh̄0

h̄ ‖< ε for all h̄ ∈N , then a ∈ A.
Equivalently, if A (etc.) is a continuous bundle of C*-algebras, and a ∈∏h̄ Ah̄ is

such that the function h̄ �→ ‖ah̄−bh̄‖ lies in C(I) for each b ∈ A, then a ∈ A.

Proof. Since I is compact, it has a finite cover {U1, . . . ,Un}with associated partition
of unity {ui}. With a and ε as in the lemma, take h̄i ∈Ui and bh̄i also as in the lemma,
and define b=∑i uibh̄i . Then b satisfies suph̄∈I ‖ah̄−bh̄‖< ε , and also b∈A, because
of Definition C.121.3. Hence a ∈ A by Definition C.121.2 and completeness of A.

As to the equivalent version, given a∈∏h̄ Ah̄ and h̄0 ∈ I, because ϕh̄ is surjective,
there is a bh̄0 ∈A such that ah̄0 = bh̄0

h̄0
. The assumption in the second part then implies

that the conditions in the first part are satisfied, such that a ∈ A. �

We are now in a position to prove Proposition C.124.
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Proof. We first show that A as defined in the proposition is locally uniformly closed.
With the notation of Lemma C.125 and its proof, take ã∈ Ã, and define the functions

faã : h̄ �→ ‖ah̄− ãh̄‖; (C.554)

fbã : h̄ �→ ‖bh̄0
h̄ − ãh̄‖. (C.555)

Since |(‖X‖−‖Y‖)| ≤ ‖X−Y‖, one obtains

| faã(h̄)− fbã(h̄)| < ε, (C.556)

for all h̄ ∈ I. By assumption, fbã is continuous, so that

| fbã(h̄)− fbã(h̄0)| < ε, (C.557)

for all h̄ in some neighborhood U ′ of h̄0. Combining the two inequalities yields

| faã(h̄)− faã(h̄0)| < 3ε, (C.558)

for all h̄∈U ′. Hence faã is continuous at any h̄0 ∈ I, so that a∈ A by Lemma C.125.
Using this property, it is easily shown that A is a C*-algebra, and that condition 3

in Definition C.121 is satisfied. It is clear from Definition C.121.1 and the definition
of A in the proposition that A is maximal. On the other hand, according to the second
part of Lemma C.125, A is minimal, so that it is unique. �

To close, let us explain to what extent we can say that a given section (a1/N)N of
either one of our continuous bundles A(c) or A(q) “converges” to its value a0.

Proposition C.126. Let (a0,a1/N) and (a′0,a
′
1/N) be continuous cross-sections of

some continuous bundle A of C*-algebras over I = 1/Ṅ, such that

lim
N→∞

‖a′1/N −a1/N‖= 0. (C.559)

Then a′0 = a0. In particular, if (a0,a1/N) is a continuous cross-section, then a0 is
uniquely determined by the (a1/N) and we may symbolically write

a0 = lim
N→∞

a1/N . (C.560)

Proof. The last part of Lemma C.125 states that the function defined by

0 �→ ‖a0−a′0‖;
1/N �→ ‖a1/N −a′1/N‖,

is continuous on 1/Ṅ (i.e., continuous at 0). �
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C.20 von Neumann algebras and the σ -weak topology

In this section and in §C.24 we turn to special classes of C*-algebras that are occa-
sionally used in quantum (field) theory. Since the arguments tend to become very
lengthy and technical, we will only prove some key results (e.g. von Neumann’s
Double Commutant Theorem), and mention other results without proof (references
to which may be found in the Notes). This also applies to the next four sections.

The subject of operator algebras historically started with what we now call von
Neumann algebras, in honour of the founder of the subject (although, curiously,
C*-algebras are not called “Gelfand–Naimark algebras”; perhaps they should!).

The first result in operator algebras was and is the Double Commutant Theorem:

Theorem C.127. Let M be a unital ∗-subalgebra of B(H). Then the following con-
ditions are equivalent—and, if satisfied, define M to be a von Neumann algebra:

(i) M′′ = M;
(ii) M is closed in the weak operator topology;
(iii) M is closed in the strong operator topology.

Recall that the commutant S′ of any S⊂ B(H) is defined by

S′ = {a ∈ B(H) | ab = ba∀b ∈ S}, (C.561)

and that the bicommutant of S is S′′ = (S′)′. If S∗ = S, in that a ∈ S iff a∗ ∈ S, then
S′ is easily seen to be a unital ∗-algebra within B(H). Furthermore, it is obvious that
S⊆ S′′, so that the passage S �→ S′′ is some sort of a closure operation within B(H),
comparable to the closure operation L �→ L⊥⊥ within H itself. Theorem C.127 shows
that if S is a unital ∗-algebra, the algebraic closure operation S �→ S′′ coincides with
two topological closure operations. To this effect, recall also that:

• The weak operator topology on B(H) may be defined by saying that aλ → a
(where (aλ ) is some net in M) iff 〈ϕ,(aλ −a)ψ〉 → 0 for all ϕ,ψ ∈ H;

• The strong operator topology on B(H) yields convergence aλ → a of some net
(aλ ) iff ‖(aλ −a)ψ‖→ 0 for each ψ ∈ H.

Proof. The essence of the proof is already contained in the finite-dimensional case
H = Cn, where the nontrivial claim in Theorem C.127 is:

If M is a unital ∗-subalgebra of Mn(C), then M′′ = M.

In fact, all we need to prove is M′′ ⊆ M, since the converse inclusion is obvious.
The idea is to take n arbitrary (and hence possibly linearly independent) vectors
υ1, . . . ,υn in H, and, given a ∈ M′′, find some b ∈ M such that aυi = bυi for all
i = 1, . . . ,n. Hence a = b, so a ∈M. To this end, we start with a single vector υ ∈H.

Form the linear subspace Mυ = {mυ |m∈M} of H, with associated projection e
(i.e. ew = w if w ∈Mυ and ew = 0 if w ∈ (Mυ)⊥). Then e ∈M′, and hence a ∈M′′
commutes with e. Since 1H ∈ M, we have υ ∈ Mυ , so υ = eυ , and we compute
aυ = aeυ = eaυ ∈Mυ . Hence aυ = bυ , for some b ∈M.

Now run the same argument with the following substitutions:
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• H � Hn = H⊕·· ·⊕H (with n terms).
• M � Mn = {diag(m, . . . ,m) | m ∈M}.
• υ � v =⊕iυi ≡ (υ1, . . . ,υn).

We then have (Mn)
′′ = (M′′)n, so for any matrix a = diag(a, . . . ,a) in (M′′)n, the

previous argument yields a matrix b = diag(b, . . . ,b) ∈Mn such that aυ = bυ . But
this is aυi = bυi for all i = 1, . . . ,n, so that a = b and hence M′′ ⊆M.

If H is infinite-dimensional, the above proof may be adapted by taking the closure
of Mυ in H, which gives (3)⇒ (1). Finally, (1)⇒ (2)⇒ (3) is trivial. �

Corollary C.128. Let M be a unital ∗-subalgebra of B(H). Then the closures of M
in the strong and weak topologies coincide with each other and with M′′.

Corollary C.129. A von Neumann algebra is norm-closed, i.e., is a C*-algebra.

Since S′′′ = S′, the commutant of any self-adjoint set S∗ = S ⊂ B(H) is a von
Neumann algebra. As a case in point, take a (strongly continuous) unitary group
representation u : G → B(H). Then u(x)∗ = u(x−1), so u(G)′ is a von Neumann
algebra. In fact, any von Neumann algebra M takes this form, since one may take G
to be the group of all unitaries in M (and u its defining representation). Furthermore,
the bicommutant A′′ of any C*-algebra A ⊂ B(H) is a von Neumann algebra. An
important example of this construction is the abelian von Neumann algebra W ∗(a)=
C∗(a)′′ generated by a self-adjoint operator a = a∗ ∈ B(H), cf. (B.320).

Although the weak and strong topologies on M appear in the fundamental dou-
ble commutant theorem, the most important topology on a von Neumann algebra
(besides the norm topology) is the so-called the σ -weak topology (sometimes called
the ultraweak topology). This topology corresponds to the following convergence:

• One has aλ → a σ -weakly iff Tr(b(aλ −a))→ 0 for each b ∈ B1(H).

To begin with, as far as Theorem C.127 is concerned this topology is at least on a
par with the weak and the strong ones:

Theorem C.130. Let M be a unital ∗-subalgebra of B(H). Then M′′ = M (i.e. M is
a von Neumann algebra) iff M is closed in the σ -weak operator topology.

This one is a bit more technical, so we just sketch the proof.

Proof. Define a new Hilbert space H∞ = H⊗ �2, whose elements v are infinite se-
quences of vectors (υ1,υ2, . . .) in H with ∑i ‖υi‖2 < ∞. The inner product is

〈v,v′)H∞ = ∑
i
〈υi,υ ′i 〉H . (C.562)

The obvious (diagonal) embedding of B(H) in B(H∞), whose image is denoted by
B(H)∞, restricts to M⊂ B(H), with image M∞ ⊂ B(H∞). Then the σ -weak topology
on B(H) is the relative weak topology on B(H)∞ (i.e., the weak topology on B(H∞)
restricted to B(H)∞), so that Theorem C.130 follows from Theorem C.127. �
This brings us to an important refinement of Theorem C.127, called Kaplansky’s
Density Theorem (which should actually be seen as a lemma for numerous results):
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Theorem C.131. Let A⊂ B(H) be a C*-algebra (or a ∗-algebra). Then the unit ball
of A is dense in the unit ball of A′′ in the weak, strong, and σ -weak topologies.

The real significance of the σ -weak topology comes from Sakai’s Theorem:

Theorem C.132. A C*-algebra M ⊂ B(H) is a von Neumann algebra iff M is the
(Banach) dual of a unique Banach space M∗ (called the predual of M).

We turn to the proof below. For example, by Theorem B.146, the predual of B(H) is

B(H)∗ ∼= B1(H). (C.563)

In the commutative case, entry 10 in Table B.1 in §B.9 gives

L∞(X ,μ)∗ ∼= L1(X ,μ); (C.564)

the fact that L∞(X ,μ), acting on H = L2(X ,μ) as multiplication operators, is a von
Neumann algebra was established in §B.16. In the first example, the σ -weak topol-
ogy on B(H) obviously coincides with the weak∗-topology defined by B(H)∗.

In general, there is a canonical embedding M∗ ↪→M∗, ϕ̌ �→ ϕ , with ϕ(a) = a(ϕ̌),
cf. §B.9. Proposition B.46 then shows that the image of M∗ in M∗ consists precisely
of the weak∗-continuous functionals on M (recall that the weak∗-topology on M is
the topology of pointwise convergence, seeing M as the dual of M∗). If we now iden-
tify ϕ̌ with ϕ , we have the following generalization of the observation just made:

Theorem C.133. Let M ⊂ B(H) be a von Neumann algebra. The predual M∗ of
M (seen as a subspace of M∗) coincides with the space of σ -weakly continuous
functionals on M, and hence the σ -weak topology on M coincides with the weak∗-
topology in its role as the dual Banach space of M∗.

σ -weakly continuous functionals on a von Neumann algebra M are called normal.

Proof. Identifying ϕ̌ with ϕ , we introduce the following spaces:

M⊥ = {ϕ ∈ B(H)∗ | ϕ(a) = 0∀a ∈M};
M⊥⊥ = {a ∈ B(H) | ϕ(a) = 0∀ϕ ∈M⊥}.

Having proved the theorem for M = B(H), i.e., (C.563), the key is to show that

M⊥⊥ = M; (C.565)
M∗ ∼= B(H)∗/M⊥, (C.566)

where (C.566) denotes an isometric isomorphism of normed spaces. Since the right-
hand side of (C.566) is a Banach space, so is the left-hand side. This yields the first
claim. Combining (C.566) with (C.565) and the duality B(H) = B1(H)∗, we have

M∗
∗ ∼= (B(H)∗/M⊥)∗ = M⊥⊥ = M.

This is the second claim. The first equality sign is true, because if Y is a closed
subspace of a Banach space Y , then (X/Y )∗ = {ϕ ∈ X∗ | ϕ � Y = 0}.



C.20 von Neumann algebras and the σ -weak topology 745

For the remainder of the theorem, recall that aλ → a σ -weakly in M whenever
ϕ(aλ − a)→ 0 for all ϕ ∈ B(H)∗. By (C.566), this is equivalent to aλ → a in the
weak∗-topology, since a possible component of ϕ in M⊥ drops out.

We next prove (C.565). The inclusion M ⊂M⊥⊥ is trivial. For the converse, pick
a /∈M; since M is a von Neumann algebra, it is σ -weakly closed, so its complement
Mc in B(H) is σ -weakly open. Hence there are ϕ ∈ B(H)∗ and ε > 0 such that the
open neighbourhood O(a) = {b ∈ B(H) : |ϕ(a)−ϕ(b)| < ε} of a entirely lies in
Mc. So |ϕ(a)−ϕ(b)| ≥ ε for all b ∈ M. This implies ϕ(b) = 0 by linearity in b.
Hence |ϕ(a)| ≥ ε , so a /∈M⊥⊥, hence M⊥⊥ ⊂M.

For (C.566), first note that M⊥ is a norm-closed subspace of B(H)∗ = B1(H),
which is a Banach space in the trace-norm (which coincides with the norm inherited
from B(H)∗, since the injection B1(H) ↪→ B(H)∗ is an isometry). Hence the quotient
B(H)∗/M⊥ is a Banach space in the canonical norm ‖ϕ̇‖= inf{‖ϕ+ψ‖ |ψ ∈M⊥},
where ϕ̇ is the image of ϕ ∈ B(H)∗ under the canonical projection, and the norm is
the one in B(H)∗. Let ϕ� = ϕ � M be the restriction of ϕ ∈ B(H)∗ to M. It is clear
that the map ϕ� �→ ϕ̇ is well defined and is a linear bijection from M∗ to B(H)∗/M⊥.
In fact, this map is isometric. First, one trivially has

‖ϕ�‖= sup{|ϕ(a)| | a ∈Mu}= inf
ψ∈M⊥

sup{|ϕ(a)+ψ(a)| | a ∈Mu}, (C.567)

since ψ(a) = 0. But this is clearly majorized by

‖ϕ̇‖= inf
ψ∈M⊥

sup{|ϕ(a)+ψ(a)|,a ∈ B(H)1}, (C.568)

since now the supremum is taken over a larger set. Hence ‖ϕ�‖ ≤ ‖ϕ̇‖.
Conversely, for any ϕ ∈ B(H)∗ with ‖ϕ̇‖ = 1, by Corollary B.41 there exists

an a ∈ B(H) with ǎ ∈ M⊥⊥, ϕ(a) = 1 and ‖a‖ = 1. From (C.565), one then has
‖ϕ�‖ ≥ |ϕ(a)|= 1 = ‖ϕ̇‖. This finishes the proof of Theorem C.133. �

Half of Theorem C.132 evidently follows from Theorem C.133. The converse
(‘if’) implication uses a refinement of the GNS-construction, where the state ω is as-
sumed to be σ -weakly continuous. In that case, using the theory of σ -weakly closed
ideals of von Neumann algebras, it can be shown that πω(M) coincides with πω(M)′′
and hence is a von Neumann algebra. Since normal pure state on a von Neumann
algebra may not exist (for example, take M = L∞(0,1)), the ‘crazy’ Hilbert space Hc
in the proof of Theorem C.87 must be replaced by the perhaps even crazier direct
sum Hec =

⊕
ω∈Sn(M) Hω , where this time the sum is over all normal states on M.

Similarly, in Lemma C.15 one should now have a normal state instead of a pure
state. Otherwise, the proof that M has a faithful representation as a von Neumann
algebra on a Hilbert space essentially follows the proof of Theorem C.87.

Finally, uniqueness of the predual follows from Corollary C.139 below. �

Corollary C.134. Let M ⊂ B(H) be a von Neumann algebra. Each normal func-
tional ϕ ∈M∗ on M is of the form ϕ(a) = Tr(ba), for some b∈ B1(H). In particular,
ϕ is a normal state iff b is a density operator.



746 C Operator algebras

C.21 Projections in von Neumann algebras

General C*-algebras need not have any nontrivial projections; think of C0([0,1]).
On the other hand, von Neumann algebras are generated by their projections:

Theorem C.135. Let P(M) = {p ∈M | e2 = e∗ = e}, where M is a von Neumann
algebra. Then M is the norm-closure of the linear span of P(M), and M =P(M)′′.

This is Corollary B.105. In addition, P(M) is not just a set.

Proposition C.136. The set P(M) of projections in a von Neumann algebra M is a
complete lattice under the partial ordering e≤ f iff e f = f e = e.

Proof. Since e≤ f in M ⊂ B(H) iff eH ⊆ f H, the supremum e∨ f is the projection
on eH + f H, whilst the infimum e∧ f is the projection on eH ∩ f H. For arbitrary
families (eλ )λ∈Λ of projections, ∨λ eλ equals the projection on the closure of the
linear span of all subspaces Hλ ≡ eλH, whereas ∧λ eλ ≡ e is the projection on their
intersection. To show that the latter lies in M (provided all the eλ do, of course), note
that each unitary u∈M′ satisfies uHλ =Hλ for all λ , so that also u(∩λHλ ) =∩λHλ .
Hence eu = ue and so e ∈M′′ = M (since each element of a von Neumann algebra
is a linear combination of at most four unitaries in it; the proof is similar to Lemma
B.145). Finally, by de Morgan’s Law we have ∨λ eλ = (∧λ e⊥λ )

⊥, with f⊥ = 1− f
for any f ∈P(M). Hence also ∨λ eλ ∈M. �

This is nice in itself, but is also implies a very important result about maps between
von Neumann algebras. Recall that a (purely algebraic) isomorphism between C*-
algebras (seen as ∗-algebras) is automatically isometric and hence norm-continuous;
see Theorem C.62. An even better result holds for von Neumann algebras:

Theorem C.137. A (purely algebraic) isomorphism ϕ : M → N between von Neu-
mann algebras (seen as ∗-algebras) is an isomorphism of Banach spaces as well as
a homeomorphism with respect the σ -weak topologies on M and N.

This theorem only seems to have rather difficult proofs. One, based on Proposition
C.136, is based on the following result. First, we say that a map ϕ : M → N of von
Neumann algebras is completely additive if for any family (eλ ) in P(M),

ϕ(∨λ eλ ) = ∨λϕ(eλ ). (C.569)

Lemma C.138. Let ϕ : M → N be a homomorphism of von Neumann algebras.

1. ϕ is σ -weakly continuous iff it is completely additive.
2. If ϕ is a (purely algebraic) isomorphism, then it is completely additive.

The proof of claim 2 is easy, as is the implication from σ -weak continuity to com-
pletely additivity in claim 1. The converse implication, however, is quite difficult.
In any case, Theorem C.137 now follows, so that we may speak of isomorphisms
between von Neumann algebras without any ambiguity.
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Corollary C.139. If two von Neumann algebras are algebraically isomorphic, then
their preduals M∗ and N∗ are isomorphic as Banach spaces. In particular (take M =
N), the predual of a von Neumann algebra is unique (up to isometric isomorphism).

A second proof of Theorem C.137 uses Theorem C.132 (and hence provides no
non-circular proof of Corollary C.139), as follows.

Proof. Since ϕ is isometric by Corollary C.129 and Theorem C.62, it induces a
dual isomorphism (of Banach spaces) ϕ∗ : N∗ → M∗, with the property that M ∼=
(ϕ∗(N∗))∗ under the map

a �→ (ϕ∗(ω) �→ ω(ϕ(a))) (a ∈M, ω ∈ N∗). (C.570)

Uniqueness of the predual then yields ϕ∗(N∗) ∼= M∗, which in turn implies that
ϕ preserves pointwise convergent nets: if ω ′(aλ )→ ω ′(a) for all ω ′ ∈ M∗, then
ω(ϕ(aλ ))→ ω(ϕ(a)) for all ω ∈ N∗. Hence ϕ is σ -weakly continuous. �

Theorem C.137 shows that the notion of isomorphism to be used in the classifi-
cation of von Neumann algebras M is unambiguous. There are two totally different
cases of von Neumann algebras (only M = C falls in both classes):

• Abelian von Neumann algebras, which equal their center (M∩M′ = M);
• Factors, which have trivial center (M∩M′ = C ·1).

A factor has no nontrivial decomposition M = M1⊕M2, whereas an abelian von
Neumann algebra (except M = C) does have such a decomposition (typically even
many of them). Using von Neumann’s technique of direct integrals, which gener-
alizes direct sums (and will not be reviewed here), the classification of general von
Neumann algebras may be reduced to these two cases. We start with the first class.

We know that if (X ,Σ ,μ) is some σ -finite Borel space with associated Hilbert
space L2(X ,μ), then the commutative C*-algebra L∞(X ,μ) is mapped isometrically
into B(L2(X ,μ)) via f �→m f , see Proposition B.73 and especially (B.240). If we de-
note the image of this map by L∞(X ,μ) also, then L∞(X ,μ)′′= L∞(X ,μ) by (B.346),
so L∞(X ,μ)⊂ B(L2(X ,μ)) is an abelian von Neumann algebra. In general:

Theorem C.140. Let M ⊂ B(H) be an abelian von Neumann algebra, Then

M ∼= L∞(X ,μ), (C.571)

for some locally compact space X and probability measure μ on X.

If H is separable, this follows from Theorems B.116 (including the remarks after its
proof) and B.117 in §B.16. The proof for arbitrary Hilbert space is quite technical
and will be omitted, but the idea is to find an abelian C*-algebra A for which M =
A′′, upon which X = Σ(A), and the measure μ is constructed such that μ(Δ) = 0
iff μψ(Δ) = 0 for all unit vectors ψ ∈ H, with μψ defined similarly to (B.304).
In general, one cannot take A = M, since Σ(M) may not support such measures.
Thus we have a complete and satisfactory characterization of abelian von Neumann
algebras, including their projections: these are simply the (equivalence classes of)
characteristic functions 1A, where A ∈ Σ is a Borel set in X (modulo null sets).
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The advantage of this approach is that there are often simple models for X ; we
know from the classification of maximal abelian von Neumann algebras on separa-
ble Hilbert space in §B.17 that X = [0,1] with (Lebesgue measure) and X =N (with
counting measure) are enough in that case. However, the pair (X ,μ) lacks intrinsic
uniqueness properties. Thus it also makes sense to apply Theorem C.8 to abelian
von Neumann algebras, so that M ∼=C(X). Since by Theorem C.135, M has plenty
of projections, which as elements of C(X) are realized by characteristic functions
1A, where A⊂ X , the space X must have lots of clopen (i.e. closed and open) sets.

It can be shown that X arises as the Gelfand spectrum of some abelian von Neu-
mann algebra iff it is hyperstonean, where we say that a compact Hausdorff X is:

• Stone if the only connected subsets are points (equivalently, a Stone space is
compact, T0, and has a basis of clopen sets).

• stonean if it is Stone and the closure of each open set is open.
• hyperstonean if it is stonean, and for any nonzero f ∈ C(X ,R+) there exists a

completely additive positive measure μ such that μ( f )> 0.

This replaces the classification of abelian von Neumann algebras up to isomorphism
by the classification of hyperstonean spaces up to homeomorphism, which is hardly
an improvement (the only other area of mathematics where such wacky spaces ap-
pear is algebraic logic). However, we do obtain a nice relationship between the
projection lattice of an abelian von Neumann algebra and its Gelfand spectrum (at
this point please recall Theorem D.5 and surrounding text in Appendix D).

Theorem C.141. The projection lattice P(M) of a von Neumann algebra M is
Boolean iff M is abelian, in which case there is a homeomorphism

Σ(M)∼= S (P(M)) (C.572)

between the Gelfand spectrum of M (as a commutative C*-algebra) and the Stone
spectrum of P(M) (as a Boolean lattice). Hence we have isomorphisms

M ∼= C(S (P(M))); (C.573)
O(Σ(M)) ∼= Idl(P(M)), (C.574)

as (commutative) C*-algebras and as frames, respectively.

Proof. In the commutative case, the lattice operations in P(M) are given by

e∧ f = e f ; (C.575)
e∨ f = e+ f − e f ; (C.576)

e⊥ = 1M− e, (C.577)

as may be verified by embedding M ⊂ B(H) and using the proof of Proposition
C.136; eq. (C.577) is true for any M. One then finds that M is distributive, since

e∧ ( f ∨g) = e f + eg− e f g = (e∧ f )∨ (e∧g), (C.578)
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and similarly with ∨ and ∧ swapped. Since P(M) is orthomodular for arbitrary
von Neumann algebras M and is distributive if M is abelian, it follows that P(M)
is Boolean. Conversely, if P(M) is Boolean, we may compute

(e∧ (e∧ f )⊥)⊥ = (e∧ (e⊥∨ f⊥))⊥ = ((e∧e⊥)∨ (e∧ f⊥))⊥ = (e∧ f⊥)⊥ = e⊥∨ f ,

and since f ≤ g∨ f for any g, this implies f ≤ (e∧ (e∧ f )⊥)⊥. Now f ≤ g⊥ implies
f g = g f = 0, so

f (e∧ (e∧ f )⊥) = (e∧ (e∧ f )⊥) f = 0. (C.579)

If g≤ e, then e∧g = g, hence e∧g⊥+g = e∧ (1M−g)+g = e. So g = e∧ f gives

e− (e∧ f ) = e∧ (e∧ f )⊥. (C.580)

Using (C.579) - (C.580) finally yields

e f = ((e∧ f )+ e− (e∧ f )) f = (e∧ f ) f +(e∧ (e∧ f )⊥) f = e∧ f , (C.581)

and since e∧ f = f ∧e, we find e f = f e for any two projections e, f ∈P(M). Hence
M is abelian by Theorem C.135.

If we now realize the Gelfand spectrum Σ(M) as the multiplicative state space of
M, and realize the Stone spectrum S (P(M)) as the space Pt(P(M)) of points of
P(M), then a homeomorphism Σ(M)∼= Pt(P(M)) arises as follows:

• First, the restriction ϕ : P(M)→ C of any multiplicative state ϕ : M → C must
be {0,1}-valued. Using (C.575) - (C.577), it is then easy to show that the ensuing
map ϕ : P(M)→{0,1} is a homomorphism of Boolean lattices.

• Vice versa, by Corollary B.104 a point ϕ : P(M)→{0,1} extends by continuity
to a map ϕ : M→C. Since ϕ must preserve⊥, this map is nonzero. By continuity,
multiplicativity in general follows from multiplicativity on projections, which
follows by running the previous point backward (or from Theorem C.168).

Finally, (C.573) and (C.574) follow from (C.572) and the Gelfand isomorphism
(Theorem C.8) and eq. (D.35), respectively. See also Theorem C.168 below. �

Note that (C.574) is a special case of Corollary C.84, for if M is a commutative
von Neumann algebra, and H(M) its frame of heriditary subalgebras, we have

H(M) ∼= Idl(P(M)); (C.582)
J �→ {e ∈P(M) |Me⊆ J}, (C.583)

whose inverse maps an ideal I ⊂P(M) to the norm-closure of
⋃

e∈I Me in M. In
particular, if J is σ -weakly closed, then J = Me for a unique projection e ∈P(M),
in which case the right-hand side of (C.583) is just the principal ideal ↓ e. To see
this special case, we quote a useful result about arbitrary von Neumann algebras:

Proposition C.142. Let I be a σ -weakly closed left (right) ideal in a von Neumann
algebra M. Then there is a unique projection e ∈P(M) such that I = Me (I = eM).

Indeed, e is the σ -weak limit of any approximate identity in I.
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C.22 The Murray–von Neumann classification of factors

After this analysis of abelian von Neumann algebras, we now turn to their opposites,
viz. factors. The main tool in the classification of factors, introduced by Murray and
von Neumann, is a new partial ordering � on the projection lattice P(M), which is
defined for general von Neumann algebras M. Unlike the familiar partial ordering
≤ (see Proposition C.136), � gives a total ordering on P(M) if M is a factor.

Definition C.143. Let P(M) be the projection lattice of a von Neumann algebra
M. We say that e∼ f in P(M) iff there exists u ∈M such that u∗u = e and uu∗ = f .
Subsequently, we write e � f if there is e′ ∈P(M) with e∼ e′ and e′ ≤ f .

It is easy to show that ∼ is an equivalence relation. The operator u in this definition
is unitary from eH to f H, vanishes on (eH)⊥, and has range f H. Such an operator
is therefore a partial isometry (cf. Definition A.27), with initial projection e and
final projection f . It follows that a necessary condition for e∼ f is that dim(eH) =
dim( f H), but (unless M = B(H)) this is by no means sufficient, since the unitary
u that maps eH to f H is required to lie in M. For example, if H = C⊕C, then
e = diag(1,0) is equivalent to f = diag(0,1) with respect to M = M2(C), but not
with respect to M = D2(C) = C⊕C (i.e., the diagonal 2×2 matrices).

To see how natural this definition is, consider a unitary representation u of a
group G on H. If Hi ⊂ H is stable under u(G), i = 1,2, then the restrictions ui of
u to Hi are unitarily equivalent precisely when e1 ∼ e2 with respect to M = u(G)′
(where ei is the projection onto Hi). Furthermore, u1 is unitarily equivalent to a
subrepresentation of u2 iff e1 � e2. More generally, if N ⊂ B(H) is a von Neumann
algebra, with stable subspaces Hi, i = 1,2, then the restrictions Ni to Hi are unitarily
equivalent iff e1 ∼ e2 with respect to M = N′, et cetera.

One may compare projections in M with sets and compare ≤, ∼, and � with ⊆
(inclusion), ∼= (isomorphism), and ↪→ (the existence of an injective map), respec-
tively. The Schröder–Bernstein Theorem of set theory (which von Neumann knew
well) states that if X ↪→ Y and Y ↪→ X , then X ∼= Y . Similarly, it can be shown that:

Proposition C.144. If e � f and f � e, then e∼ f .

The special role of factors with respect to the partial ordering � now emerges.

Proposition C.145. If M is a factor, then � is a total ordering (i.e., e � f or f � e).

The property of a factor that leads to this result is:

Lemma C.146. Let M be a factor. For any nonzero projections e, f ∈P(M), there
are nonzero projections e′, f ′ ∈P(M) such that e′ ≤ e, f ′ ≤ f , and e′ ∼ f ′.

The first step in the Murray—von Neumann classification of factors is as follows:

Definition C.147. A projection e in M is called finite if f ∼ e and f ≤ e for some
f ∈P(M) implies f = e, and minimal if f ≤ e, f ∈P(M), implies f = e or f = 0.

Accordingly, a factor M is called finite iff 1M is finite, semifinite iff 1M majorizes
a finite projection, and purely infinite iff all nonzero projections are infinite.
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For M = B(H), which is evidently a factor, a projection e is (in)finite iff dim(eH)
is (in)finite, so that B(H) is finite iff H is finite-dimensional, and semifinite other-
wise. Surprisingly, we will see that finite factors different from Mn(C) exist, as do
semifinite factors different from B(�2). Even purely infinite factors (initailly defined
as what was left out from the previous two cases) turn out to exist (even in physics).

We first rephrase Definition C.147 in terms of generalized traces.

Definition C.148. A trace on a von Neumann algebra M is a map

tr : M+→ [0,∞] (C.584)

satisfying

tr(λ ·a+b) = λ · tr(a)+ tr(b) (a,b ∈M+,λ ≥ 0; (C.585)
tr(aa∗) = tr(a∗a) (a ∈M). (C.586)

Equivalently, tr(uau∗)= tr(a) for all a∈M+ and unitary u∈M (so that uau∗ ∈M+).
A trace is finite if tr(a)< ∞ for all a ∈M+, semifinite if for any a ∈M+ there is

a nonzero b≤ a in M+ for which tr(b)< ∞, and infinite otherwise.

The usual trace Tr is a trace tr on B(H) in this new sense, which is finite iff dim(H)
is finite. As we will see, other factors admit other traces. The following result could
have been used as a definition of (semi)finite and purely infinite factors.

Proposition C.149. A factor is (semi)finite iff it admits a faithful σ -weakly contin-
uous (semi)finite trace, and is purely infinite otherwise.

It can be shown that a finite trace on a factor is automatically σ -weakly continuous,
so a factor is finite iff it admits a faithful finite trace. Hence we recover the fact that
B(H) is finite iff dim(H)< ∞, and semifinite otherwise. For a completely different
kind of trace, defined on factors remote from B(H), we turn to discrete groups G.
For these, Haar measure is simple the counting measure, so that L2(G) = �2(G), and
convolution (C.504) and involution (C.505), initially defined on Cc(G), are given by

f ∗g(x) = ∑
y∈G

f (xy−1)g(y); f ∗(x) = f (x−1). (C.587)

According to Definition C.119, the reduced group C*-algebra C∗r (G) is the norm-
closure of the ∗-algebra in B(L2(G)) containing all operators

u
∫
L( f )ψ(x) = ∑

y∈G
f (y)ψ(y−1x) ( f ∈Cc(G)). (C.588)

Thus C∗r (G) is realized as a concrete C*-algebra of operators on B(�2(G)), so that,
following von Neumann himself, we may form the group!von Neumann algebra

W ∗(G) =C∗r (G)′′. (C.589)
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Theorem C.150. The group von Neumann algebra W ∗(G) of a countable group is
a factor iff all nontrivial conjugacy classes in G (i.e., all except {e}) are infinite.

In that case, we say that G has (or “is”) icc, i.e., has infinite conjugacy classes.

Proof. From (C.587), for f ∈ Cc(G) we have f ∗ g = g ∗ f for each g ∈ Cc(G) iff
f (yxy−1) = f (x) for all x,y ∈ G. In other words, f lies in the center of Cc(G) ⊂
W ∗(G) iff f is constant on each conjugacy class of G. If G is icc, this implies that
f can have support only at e, i.e., f = λ ·δe, λ ∈ C. Noting that δe is the unit in the
algebra Cc(G), this proves the claim, except for the fact that we should extend this
argument from Cc(G) to W ∗(G), which by Theorem C.127 is its strong closure.

The key to this extension is the fact that one has f ∗g(x) = 〈Rx−1 f ∗,g〉 for f and
g in Cc(G) , where Rx f (y) = f (yx) and the inner product is in �2(G). Hence

| f ∗g(x)|= |〈Rx−1 f ∗,g〉| ≤ ‖Rx−1 f‖2‖g‖2 = ‖ f‖2‖g‖2, (C.590)

so that the sum in (C.587) is actually defined and converges (absolutely) for f ,g ∈
�2(G). This also shows that if fn strongly converges to some a ∈ B(�2(G)), i.e.,
‖ fn ∗ψ − aψ‖ → 0 for each ψ ∈ �2(G), then aψ = f ∗ψ , where f ∈ �2(G) is the
limit of ( fn) seen as a sequence in �2(G). Hence W ∗(G) ⊂ �2(G), and the above
computation of the center of W ∗(G) remains valid: we have f ∈W ∗(G)∩W ∗(G)′
iff f is constant on each conjugacy class of G. Conversely, any f that is constant
on some finite conjugacy class (different from {e}) and zero elsewhere is central
without being a multiple of the unit. �

Whether or not G has icc, we have a map tr : W ∗(G)→ C, defined by

tr( f ) = f (e), (C.591)

which satisfies (C.585) - (C.586) and hence defines a finite trace on W ∗(G). Also,

tr( f ) = 〈δe, f ∗δe〉, (C.592)

so this trace is σ -weakly continuous.

Corollary C.151. If G has icc, W ∗(G) is a finite factor non-isomorphic to any B(H).

Since G must obviously be infinite for it to have icc, W ∗(G) is infinite-dimensional,
and hence W ∗(G)
Mn(C) for any n∈N. Furthermore, if H is infinite-dimensional,
then B(H) does not admit any σ -weakly continuous finite faithful trace:

Proposition C.152. Any two nonzero σ -weakly continuous (semi)finite traces tr, tr′
on a (semi)finite factor are proportional, i.e., tr′ = λ tr for some λ ∈ R+.

See also Theorem C.155 below. Consequently, since Tr and tr are both σ -weakly
continuous, and Tr(1H) = ∞ on B(H), whereas tr(1�2(G)) = 1 on W ∗(G), we con-
clude that W ∗(G)
 B(H) for any H. Note also that (still assuming that G has icc),
all projections in W ∗(G) are finite, and W ∗(G) has no minimal projections (see be-
low), whereas B(H) has both finite and infinite projections, and also has plenty of
minimal projections, namely those with one-dimensional range.



C.22 The Murray–von Neumann classification of factors 753

Do such “icc” groups actually exist? In fact, there are infinitely many of them:
each free group on n> 1 generators is an example. Another example is the group S∞
of finite permutations of N. A j-cycle is a cyclic permutation of j objects (called the
carrier of the cycle in question). Any element p of S∞ = ∪nSn is a finite product
of j-cycles with disjoint carriers, and for each j ∈N, the number of j-cycles in such
a decomposition of p is uniquely determined by p. Two permutations in S∞, then,
are conjugate iff they have the same number of j-cycles, for all j ∈ N

We present the type classification of factors due to Murray and von Neumann.

Definition C.153. A factor M is said to be of type:

• I if it has at least one minimal projection, subdivided into:

– Type In (n ∈ N) if M is finite and 1M is the sum of n minimal projections.
– Type I∞ if M is type I and semifinite but not finite.

• II if it has no minimal projections, but has some nonzero finite projection, with:

– Type II1 if M is type II and finite.
– Type II∞ if M is type II and semifinite but not finite.

• III if all nonzero projections are infinite.

A nice understanding of these types arises from a construction similar to the trace.

Definition C.154. A dimension function on a von Neumann algebra M is a func-
tion d : P(M)→ [0,∞] such that d(e) < ∞ iff e is finite, d(e+ f ) = d(e)+d( f ) if
e f = 0 (i.e., eH ⊥ f H), and d(e) = d( f ) if e∼ f .

Paraphrasing results in Murray and von Neumann’s great series of papers, we have:

Theorem C.155. For any von Neumann algebra M, the restriction of a trace to
P(M) is a dimension function. If M ⊂ B(H) is a factor, with H separable, then:

1. Any σ -weakly continuous trace on M restricts to a completely additive dimension
function with the additional property that d(e) = d( f ) if and only if e∼ f .

2. Any dimension function with this additional property arises from a σ -weakly
continuous trace, and hence is completely additive, and unique up to scaling.

3. In that case, the dimension function d induces an isomorphism between P(M)/∼
and some subset of [0,∞]. Suitably scaling d, this subset must be one of:

• {0,1,2, . . . ,n}, for some n ∈ N (type In).
• N∪∞ (type I∞).
• [0,1] (type II1).
• [0,∞] (type II∞).
• {0,∞} (type III).

We may now strengthen the few examples we had so far in the following way:

Corollary C.156. • If dim(H) = n, then B(H) is a factor of type In.
• If dim(H) = ∞, then B(H) is a factor of type I∞.
• Let G be icc. Then W ∗(G) is a factor of type II1.



754 C Operator algebras

C.23 Classification of hyperfinite factors

Throughout this section we assume that our von Neumann algebras M ⊆ B(H) act
on a separable Hilbert space H. We say that M is hyperfinite if M = (∪nMn)

′′, for
a family of finite-dimensional von Neumann subalgebras Mn ⊂M with Mn ⊂Mn+1.
For example, M = B(H) is hyperfinite. If G is a group such that G = ∪nGn for finite
subgroups Gn ⊂ Gn+1, as is the case e.g. for the (icc) group S∞ = ∪nSn of finite
permutations of N, then the associated von Neumann algebra W ∗(G) is hyperfinite.

Murray and von Neumann partly classified hyperfinite factors, as follows:

Theorem C.157. Let M ⊂ B(H) be a hyperfinite factor.

• If M is type In, then M ∼= Mn(C).
• If M is type I∞, then M ∼= B(�2).
• If M is type II1, then M ∼=W ∗(S∞).

The unique hyperfinite II1-factor W ∗(S∞), which turns out to be isomorphic to
W ∗(G) for any finitely generated icc group G, is usually called R. Similarly (and
trivially), B(�2)∼= B(H ′) for any separable infinite-dimensional Hilbert space H ′.

An example of a hyperfinite II∞ factor is also quickly found, viz. M = R⊗B(�2),
but Murray and von Neumann were unable to classifiy such factors. About type III,
they knew almost nothing, except for a couple of examples from ergodic theory.
Between 1971–1975, Connes made two decisive steps forward in this area:

1. Dividing type III factors into IIIλ , λ ∈ [0,1], by means of a new invariant.
2. Completely classifying hyperfinite type II∞ and type III factors, as follows:

• There is a unique hyperfinite II∞ factor, namely R⊗B(�2).
• There is a unique hyperfinite III1 factor (Connes and Haagerup).
• There is a unique hyperfinite IIIλ factor for each λ ∈ (0,1).
• There is an infinite family of hyperfinite III0 factors, completely classified by

the so-called flow of weights introduced by Connes and Takesaki.

We list III1 separately from IIIλ for λ ∈ (0,1) for two reasons: first, “hyperfinite
III1” turns out to be the factor occurring in quantum field theory and quantum statis-
tical mechanics of infinite systems, whereas IIIλ for λ ∈ (0,1) seems artificial) and
second, the proof of uniqueness of the hyperfinite III1 factor is much more difficult.

An important technical tool of Connes was his own profound discovery that a
von Neumann algebra M ⊂ B(H) is hyperfinite iff it is injective, in that there exists
a σ -weakly continuous conditional expectation E : B(H) → M, that is, a linear
map E : B(H)→ B(H) such that E(a) ∈ M and E(a∗) = E(a)∗ for all a ∈ B(H),
E2 = E, and ‖E‖ = 1. It follows that E(abc) = aE(b)c for all a,c ∈M, b ∈ B(H).
The equivalence of hyperfiniteness and injectivity implies, for example, that if M =
N⊗B(�2) is hyperfinite, then so is N. Another crucial tool was the Tomita–Takesaki
theory, which we briefly summarize (this theory was paralleled by simultaneous
and independent work in mathematical physics by the German-Dutch mathematical
physics trio Haag–Hugenholtz–Winnink, which among other things allowed a direct
definition of thermal equilibrium states in infinite volume, see §9.6.
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Definition C.158. A von Neumann algebra M ⊂ B(H) is in standard form if H
contains a unit vector Ω that is cyclic and separating for M.

Recall that Ω is separating for M if aΩ �= 0 for all nonzero a ∈ M, and that Ω is
cyclic for M iff it is separating for M′. Any von Neumann algebra can be brought
into standard form. For separable H, this follows by picking an injective density
operator ρ on H, whose associated state ω(a) = Tr(ρa) is faithful (in that ω(a∗a)>
0 for all nonzero a ∈ M), and passing to the GNS-representation πω(M) ∼= M. For
example, M = B(H) acting on H is not in standard form, but acting on B2(H) by left
multiplication it is, where B2(H) is the Hilbert space of Hilbert–Schmidt operators
on H with the familiar inner product 〈a,b〉 = Tr(a∗b). If ρ ∈ B1(H) is an injective
density operator on H, then Ω =

√ρ ∈ B2(H) brings M into standard form. In this
case, M′ ∼= B(H)op (where the suffix “op” means that multiplication is done in the
opposite order, i.e. ab in B(H)op is equal to ba in B(H)), which acts on B2(H) by
right multiplication. If H = Cn, one simply has B(H) = B2(H) = Mn(C).

Let M⊂B(H) be in standard form. Tomita introduced the (unbounded) antilinear
operator S as the closure of the operator S0 having domain D(S0) = MΩ and action

S0(aΩ) = a∗Ω . (C.593)

This domain is dense because Ω is cyclic for M, the action is well defined since
Ω is separating for M, and S0 indeed turns out to be closable, with closure S. Any
closed operator a has a polar decomposition a = v|a|, where v is a partial isometry
and |a|=√a∗a. We write the polar decomposition of the above operator S as

S = JΔ 1/2, (C.594)

where J is an antilinear partial isometry, and Δ = S∗S. Since S is injective with dense
range, J is actually anti-unitary, satisfying J∗ = J and J2 = 1. Furthermore, Δ ≥ 0,
so that Δ it is well defined for t ∈R: writing Δ = exp(h) for the self-adjoint operator
h = logΔ , we have Δ it = exp(ith). We then have the Tomita–Takesaki Theorem:

Theorem C.159. Let M⊂ B(H) be a von Neumann algebra in standard form. Then:

• M′ = JMJ ≡ {JaJ | a ∈M}.
• For each t ∈ R and a ∈M, the operator αt(a) = Δ itaΔ−it lies in M.
• The map t �→ αt is a group homomorphism from R to Aut(M) (i.e., the group of

all automorphisms of M), which is continuous, in that for each a∈M the function
t �→ αt(a) from R to M (with σ -weak topology) is continuous.

The image of R in Aut(M) by α is called the modular group of M associated with
the cyclic and separating vector Ω (or rather, with the associated σ -weakly con-
tinuous faithful state ω). Simple examples show that the modular group explicitly
depends on the vector Ω . In his thesis, Connes analyzed the dependence of α on Ω ,
and showed it was innocent. To state the simplest version of his result, assume that
H contains two different vectors Ω1 and Ω2, each of which is cyclic and separating
for M. We write α(i)

t for the modular group derived from Ωi, i = 1,2.
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Theorem C.160. There is a family Ut of unitary operators in M (t ∈ R), such that

α(1)
t (a) = Utα

(2)
t (a)U∗

t ; (C.595)

Ut+s = Usα
(2)
s (Ut). (C.596)

Proof. The proof of this theorem is Connes’s favourite (as he declared in an inter-
view), so we present it in some detail. It is based on the following idea. Extend M
to Mat2(M), i.e., the von Neumann algebra of 2×2 matrices with entries in M, and
let Mat2(M) act on H2 = H ⊕H in the obvious way. Subsequently, let Mat2(M)
act on H4 = H⊕H⊕H⊕H = H2⊕H2 by simply doubling the action on H2. The
vector Ω = (Ω1,0,0,Ω2) ∈H4 is then cyclic and separating for Mat2(M), with cor-
responding modular operator Δ = diag(Δ1,Δ4,Δ3,Δ2). Here Δ1 and Δ2 are just the
operators on H originally defined by Ω1 and Ω2, respectively, and Δ3 and Δ4 are
certain operators on H. Denoting elements of Mat2(M) by

a =

(
a11 a12
a21 a22

)
, (C.597)

we then have

Δ it
(

a 0

0 a

)
Δ−it =

(
α̃(1)

t (a) 0

0 α̃(2)
t (a)

)
; (C.598)

α̃(1)
t (a) =

(
Δ it

1 a11Δ−it
1 Δ it

1 a12Δ−it
4

Δ it
4 a21Δ−it

1 Δ it
4 a22Δ−it

4

)
; (C.599)

α̃(2)
t (a) =

(
Δ it

3 a11Δ−it
3 Δ it

3 a12Δ−it
2

Δ it
2 a21Δ−it

3 Δ it
2 a22Δ−it

2

)
. (C.600)

But by Theorem C.159, the right-hand side of (C.598) must be of the form diag(b,b)
for some b∈Mat2(M), so that α̃(1)

t (a)= α̃(2)
t (a). This allows us to replace Δ it

4 a22Δ−it
4

in (C.599) by Δ it
2 a22Δ−it

2 . We then put Ut =Δ it
1 Δ

−it
4 , which, unlike either Δ it

1 or Δ−it
4 ,

lies in M, because each entry in α̃(1)
t (a) must lie in M if all the ai j do, and here we

have taken a12 = 1. All claims of the theorem may then be verified using elementary
computations with 2×2 matrices. For example, combining(

a 0
0 0

)
=

(
0 1
0 0

)(
0 0
0 a

)(
0 0
1 0

)
(C.601)

with the property α̃(1)
t (ab) = α̃(1)

t (a)α̃(1)
t (b), we recover (C.595). Using the identity(

0 Ut
0 0

)
=

(
0 1
0 0

)(
0 0
0 Ut ,

)
, (C.602)

evolving each side to time s yields (C.596). A proof from The Book! �
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We say that an automorphism γ : M →M is inner if there exists a unitary element
u ∈M such that γ(a) = uau∗ for all a ∈M. The inner automorphisms of M form a
normal subgroup Inn(M) of the group Aut(M) of all automorphisms, with quotient
Out(M) = Aut(M)/Inn(M). Theorem C.160 shows that the image π(α(R)) of the
modular group in Out(M) under the canonical projection π : Aut(M)→ Out(M) is
independent of Ω , and invariants of this image will be invariants of M itself.

Such invariants are trivial if M is a factor of type I or II, since in that case
π(α(R)) = {e}; to see this in the finite case (i.e., type In or type II1), take a finite
trace τ on M and check that Δ = 1 for πτ(M)∼= M. For the semifinite but not finite
case (i.e., type I∞ or type II∞), a slight generalization of the GNS-construction leads
to the same conclusion. To find invariants for type III factors, we therefore need to
extract information from the modular group t �→ αt up to inner automorphisms.

Definition C.161. Let α : R→Aut(M) be a continuous action of R on M, defining:

Mα = {x ∈M | αt(x) = x∀t ∈ R}; (C.603)
Me = {x ∈M | xe = ex = x} (e ∈P(Mα)). (C.604)

• The Arveson spectrum sp(α) of α consists of all p ∈ R for which there is a
sequence (xn) in M with ‖xn‖= 1 and limn→∞ ‖αt(xn)− eiptxn‖= 0∀t ∈ R.

• For each e ∈P(Mα), the map αt : M→M restricts to αe
t : Me →Me, defining a

(group) homomorphism αe : R→Aut(Me), t �→ αe
t . The Connes spectrum of α

is Γ (α) = exp(Γ ′(α))⊂ R+∗ , where Γ ′(α) =
⋂

0�=e∈P(Mα ) sp(αe)⊂ R.

The Connes spectrum Γ (α) is a closed subgroup of R+∗ , which has the great virtue
that if π(α(R)) = π(α ′(R)), then Γ (α) = Γ (α ′). So if α is the modular group of
M with respect to some state ω , then Γ (α) is independent of ω , and may therefore
be called Γ (M). This invariant can also be defined through the usual spectrum of
self-adjoint operators on Hilbert space. To this effect, Connes defined and proved

S(M) =
⋂
ω
σ(Δω) =

⋂
0 �=e∈P(Mα )

σ(Δϕe), (C.605)

where the first intersection is over all σ -weakly continuous faithful states ω on M,
whereas in the second one takes a fixed σ -weakly continuous faithful state ϕ on M,
and restricts it to ϕe = ϕ|Me . Furthermore, Δω denotes the operator Δ on Hω , defined
with respect to the usual cyclic unit vector Ωω of the GNS-construction, etc. If M is
a type I or II factor, one has S(M) = {1}, whereas 0 ∈ S(M) iff M is type III.

Connes showed that Γ (M) = S(M)∩R+∗ , and the known classification of closed
subgroups of R+∗ yields his path-breaking parametrization of type III factors:

Definition C.162. Let M be a type III factor. Then M is said to be of type:

• III0 if Γ (M) = {1};
• IIIλ , where λ ∈ (0,1), if Γ (M) = λZ;
• III1 if Γ (M) = R+∗ .

The unique hyperfinite III1 factor appears throughout algebraic quantum field the-
ory, where it plays the role of a universal algebra of localized observables.
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C.24 Other special classes of C*-algebras

There are many other special classes of C*-algebras apart from von Neumann alge-
bras and commutative C*-algebras. The classes we consider here contain both com-
mutative and non-commutative C*-algebras; in the spirit of (exact) Bohrification,
whenever possible we try to characterize them through properties of their (maximal)
commutative subalgebras. Like the von Neumann algebras already studied, each
class in this section is sandwiched between the finite-dimensional C*-algebras, i.e.
those C*-algebras that are finite-dimensional as a vector space (which it contains),
and the real rank zero C*-algebras defined below (in which it is contained).

Finite-dimensional C*-algebras admit a straightforward classification:

Theorem C.163. Every finite-dimensional C*-algebra A is isomorphic to a direct
sum of matrix algebras, i.e., A∼=⊕kMnk(C), where nk ∈ N, and the sum is finite.

Proof. Let A be a finite-dimensional C*-algebra, and take the injective representa-
tion π =

⊕
ω∈P(A)πω on Hc =

⊕
ω∈P(A) Hω , where P(A) is the pure state space of

A; cf. the last stage of the proof of Theorem C.87. The proof now unfolds:

1. Since Hω is the closure of πω(A)Ωω , it must be finite-dimensional.
2. Since each ω is pure, by Theorem C.90 we must have πω(A)′′ = B(Hω).
3. By Theorem C.127, πω(A)′′ equals the weak or strong closure of πω(A), but since

this algebra is finite-dimensional by step 1, these closures coincide with πω(A),
and hence πω(A) = B(Hω)∼= Mn(C), where n = dim(Hω).

4. One can find an injective subrepresentation πi of π using only a finite number of
pure states (proof by contradiction to dim(A)< ∞), so that πi(A)∼= A. �

The real rank of a C*-algebra A is a non-commutative generalization of the
(Lebesgue) covering dimension of a non-empty space X , defined as follows. First
say that dim(X) ≤ n iff every open cover of X has an open refinement U for
which every x ∈ X is contained in at most n+ 1 elements of U . We then say that
dim(X) = n iff dim(X)≤ n but dim(X)� n−1 (such n need not exist).

If X is a compact Hausdorff space, then dim(X) = n iff n is the smallest integer
n such that for every f ∈C(X ,Rn+1) and ε > 0, there is g ∈C(X ,Rn+1) such that
g(x) �= 0 for all x and ‖ f − g‖∞ < ε , where ‖ f‖∞ = supx∈X{| f (x)|}. If no such n
exists, we say that dim(X) = ∞. If g : X → Rn+1 is described by its coordinates
(g1, . . . ,gn+1), then g(x) �= 0 iff ∑n+1

k=1 gk(x)2 > 0, or equivalently, ∑k g2
k is invertible

in C(X). We may replace the usual norm ‖v‖ in Rn+1 by the equivalent max-norm,
i.e., ‖v‖= maxi{|vi|}, where v = (v1, . . . ,vn+1). If we do so, we may generalize the
covering dimension to possibly noncommutative unital C*-algebras, as follows.

Let An = A⊕·· ·⊕A (with n terms) be the C*-algebra A×·· ·×A with pointwise
operations and norm ‖(a1, . . . ,an)‖ = maxi{‖ai‖}. Let Q(An) be the set of all self-
adjoint elements (a1, . . . ,an) in An for which ∑i a2

i is invertible (i.e. in A). The real
rank rr(A) of a unital C*-algebra A is defined as the smallest integer n for which
Q(An+1) is dense in An+1

sa , i.e., if for every a ∈ An+1
sa and ε > 0, there is b ∈Q(An+1)

such that ‖a−b‖< ε . If no such n exists, we define rr(A) = ∞. If A has no unit, we
define its real rank as rr(A) = rr(Ȧ), i.e., as the real rank of its unitization.
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Taking A =C(X), it follows from the previous paragraph that

rr(C(X)) = dim(X). (C.606)

Now dim(X) = 0 iff X has a basis of clopen sets, and if X is compact Hausdorff,
then dim(X) = 0 iff X is a Stone space. Hence from (C.606) we immediately have:

Proposition C.164. If A is a commutative C*-algebra, rr(A) = 0 iff Σ(A) is Stone.

This makes dimension zero somewhat pathological. On the other hand, for non-
commutative C*-algebras real rank zero is ubiquitous. Note that if a = a∗ and a2

is invertible, then its inverse is positive, too, and has a square-root which inverts a.
Thus A has real rank zero iff its invertible self-adjoint elements are dense in Asa.

Proposition C.165. Any von Neumann algebra has real rank zero.

Proof. For a ∈ Asa and ε > 0, with A⊆ B(H), use Theorem B.102 to define

b = (idσ(a) + ( 1
2ε ·1σ(a)− idσ(a)) ·1[−ε/2,ε/2])(a). (C.607)

Using (B.322), we may then compute

‖a−b‖ ≤ ‖ 1
2ε ·1σ(a)− idσ(a) ·1[−ε/2,ε/2]‖∞

≤ ‖ 1
2ε ·1σ(a)‖∞ +‖idσ(a) ·1[−ε/2,ε/2]‖∞

≤ 1
2ε+ 1

2ε = ε. (C.608)

Writing (C.607) as b = f (a), the function f ∈ B(σ(a)) satisfies f (x) = x if x /∈
[−ε/2,ε/2] and f (x) = 1

2ε if x ∈ [−ε/2,ε/2]; either way, f (x) �= 0. Hence f is
invertible in B(σ(a)), and therefore b = f (a) is invertible in W ∗(a) and in B(H).�

We now turn to classes of C*-algebras that are sandwiched between the finite-
dimensional ones at the lower end and those with real rank zero at the upper end.

Definition C.166. Let A be a unital C*-algebra. Then A is said to be:

1. Finite-dimensional if it is finite-dimensional as a vector space.
2. AF (Approximately Finite-dimensional) if it is the norm-closure of the union of

some (not necessarily countable) directed set of finite-dimensional C*-subalgebras.
3. Scattered if every a ∈ Asa has countable spectrum.
4. A W*-algebra if it is the dual of a Banach space, and a von Neumann algebra

if it is a represented W*-algebra, i.e., A⊆ B(H); this can always be achieved.
5. Monotone complete if every upward directed bounded subset in Asa (under the

usual order ≤) has a least upper bound (i.e. supremum).
6. AW∗ if for each nonempty subset S⊂ A there is e ∈P(A) so that R(S) = eA.
7. Rickart if for each a ∈ A there is a projection e ∈P(A) so that R(a) = eA.
8. Real rank zero if its invertible self-adjoint elements are dense in Asa.

Here a subset S of a poset P is upward directed if for each x,y ∈ S there is z ∈ S
such that x≤ z and y≤ z (for example, this is true in a complete lattice).
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Furthermore, the right-annihilator R(S) of S⊂ A is defined as

R(S) = {a ∈ A | ba = 0∀b ∈ S}, (C.609)

and R(a) ≡ R({a}); in the presence of an involution, equivalent definitions may be
given in terms of the left-annihilator. In all cases, the projection e is unique. Since
Rickart himself already showed that A is Rickart iff for each nonempty countable
subset S ⊂ A there is e ∈P(A) so that R(S) = eA, the difference between Rickart
and AW* lies in the countability assumption on S in the former but not in the latter.

It is known that if a C*-algebra A has a faithful representation on a separable
Hilbert space, then it is a Rickart C*-algebra iff it is an AW*-algebra, but other-
wise these classes are different. Similarly, an AW*-algebra is a W*-algebra iff it
has a separating family of normal states, where normality of functionals on AW*-
algebras is defined as in Definition 4.11, i.e. through complete additivity on or-
thogonal familes of projections, which always have an upper bound (cf. Theorem
C.169 below). This is the case in all examples relevant to mathematical physics, but
set-theoretically the class of AW*-algebras has higher cardinality than the class of
W*-algebras it contains. It is generally believed that a C*-algebra is Rickart iff it is
monotone σ -complete, and that it is AW* iff it is monotone complete, but there are
neither proofs of nor counterexamples to these claims. We have the inclusions:

W ∗ ⊂ monotone complete ⊆ AW ∗ ⊂ Rickart⊂ real rank zero;
AF ⊂ real rank zero;

scattered ⊂ real rank zero.

Scattered C*-algebras may alternatively be characterized as those C*-algebras
on which every state is a w∗-convergent convex sum of pure states; this condition is
far stronger than what the Krein–Milman theorem gives, namely that every state is
a w∗-limit of some net consisting of finite convex sums of pure states. For example,
for any Hilbert space the compact operators B0(H) form a scattered C*-algebra
(extending the definition of the latter to the non-unital case as appropriate).

Two kinds of results are of interest for Bohrification: one is the topological char-
acterization of the commutative case of each class, the other is the characterization
of the class itself through properties of its commutative subalgebras. Without proof
we state what is known in this respect.

Theorem C.167. Let A be a commutative unital C*-algebra. Then A is:

1. Finite-dimensional iff Σ(A) is finite (with discrete topology).
2. AF iff Σ(A) is a Stone space.
3. Scattered iff Σ(A) is scattered.
4. A W*-algebra or a von Neumann algebra iff Σ(A) is hyperstonean.
5. Monotone complete iff Σ(A) is stonean.
6. AW* iff Σ(A) is stonean.
7. Rickart iff Σ(A) is σ -stonean.
8. Real rank zero iff Σ(A) is a Stone space.
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Here we used the convention that a Stone space is a zero-dimensional compact
Hausdorff space (equivalently, it is compact Hausdorff and totally disconnected in
the sense that the only connected subsets are points). A (σ -) stonean space is a
Stone space with the additional property that Clopen(Σ(A)) is a (σ -) complete lat-
tice (equivalently, a stonean space is a compact Hausdorff space that is extremally
disconnected in that the closure of each open set is open). Furthermore, a space is
hyperstonean if it is stonean, and for any nonzero f ∈C(X ,R+) there exists a com-
pletely additive positive measure μ such that μ( f ) > 0. In particular, in the com-
mutative case the classes AF and real rank zero coincide, as do AW* and monotone
complete algebras. A space X is called scattered if each non-empty closed subset
C ⊂ X contains an isolated point (i.e., a point x ∈C with an open neighbourhood U
such that U ∩C = {x}). If X is scattered, then it is totally disconnected. An example
of a compact scattered space is (1/N)∪{0} with the relative topology from R.

This leads to the following generalization and extension of Theorem C.141.

Theorem C.168. Let A be a commutative unital C*-algebra. The projections P(A)
in A form a Boolean lattice, which is related to the Gelfand spectrum Σ(A) through

P(A)∼= Clopen(Σ(A)). (C.610)

If A is also AF, then its Gelfand spectrum Σ(A) is a Stone space, and we have

Σ(A) ∼= S (P(A)); (C.611)
O(Σ(A)) ∼= Idl(P(A)); (C.612)

A ∼= C(S (P(A))), (C.613)

as topological spaces, frames, and (commutative) C*-algebras, respectively.
Conversely, for any Boolean lattice L the C*-algebra C(S (L)) is AF, and

L∼= P(C(S (L))). (C.614)

Proof. Using the Gelfand isomorphism A∼=C(Σ(A)), eq. (C.610) follows from

P(C(X))∼= Clopen(X), (C.615)

where X is some compact Hausdorff space. Indeed, if e2 = e∗ = e ∈ C(X), then e
must be {0,1}-valued, so it must be e = 1U for some U ⊂ X , viz. U = e−1({1}).
Since e∈C(X) is continuous, U must be clopen. Conversely, for each U ∈Clopen(X),
the function 1U ∈C(X) is a projection, and the maps U �→ 1U and e �→ e−1({1}) are
each other’s inverse. Theorem D.5 then implies that P(A) is Boolean.

If A ∼= C(X) is AF , then C(X) = (∪λAλ )
− is the norm-closure of the union of

finite-dimensional C*-algebras Aλ , which union by the Stone–Weierstrass theorem
separates points of X . Since each Aλ is the linear span of its projections, the finite-
dimensional projections ∪λP(Aλ ) already separate points in X , and this in turn
implies that X is totally separated, i.e., for each x �= y ∈ X , there is U ∈ Clopen(X)
such that x ∈U and y /∈U . Since a compact Hausdorff space is zero-dimensional
(and hence Stone) iff it is totally separated, X is a Stone space.
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Again using Theorem C.8, we only need to prove (C.611) in the special case

X ∼= S (P(C(X))), (C.616)

where X is a Stone space; this follows from (C.615) and Theorem D.5. Eq. (C.612)
follows from (D.35), whilst (C.613) is immediate from (C.611) and Theorem C.8.

Finally, using Theorem D.5 we see that (C.614) reduces to (C.615), so we only
need to prove that C(X) is AF for any Stone space X . This is just the above proof
of the converse ran backwards: since X is totally separated, for each x �= y we find
U ∈Clopen(X) separating x and y, so that also the associated projection 1U separates
x and y, and hence P(C(X)) separates X . Taking Λ to label the finite subsets of
P(C(X)), and Aλ to be the finite-dimensional C*-algebra generated by λ ∈ Λ , by
Stone–Weierstrass we have C(X) = (∪λAλ )

−. Hence C(X) is AF . �.

Theorem C.169. The claim that a unital C*-algebra lies in class X iff each of its
maximal abelian ∗-subalgebras lies in class X is true for the following classes:

1. Finite-dimensional C*-algebras.
2. Scattered C*-algebras.
3. von Neumann algebras.
4. AW*-algebras.
5. Rickart C*-algebras.

The claim is false for AF-algebras, true for monotone complete C*-algebras iff these
coincide with AW*-algebras, false for real rank zero C*-algebras, and unknown for
W*-algebras, which we therefore state as a conjecture:

A C*-algebra is a W*-algebra iff each maximal abelian ∗-subalgebra is a W*-algebra.

Proposition C.170. For any C*-algebra A and any projections e, f ∈ P(A), we
have e f = e iff e≤ f (with partial ordering ≤ as defined in Asa via A+, cf. §C.7).

Proof. As explained above (C.93), if a1 ≤ a2, then b∗a1b≤ b∗a2b, so e≤ f implies

(1A− f )e(1A− f )≤ (1A− f ) f (1A− f ) = 0. (C.617)

However, since e2 = e∗ = e, with c = e(1A− f ) we have (1A− f )e(1A− f ) = c∗c,
and hence (1A− f )e = 0 (as c∗c≥ 0), or e = f e. Taking adjoints gives e f = e, and
consequently e f = f e. Conversely, if e f = e, we have e f = f e and hence

( f − e)2 = f −2e+ e = f − e. (C.618)

Of course, f − e = ( f − e)∗, so that (C.618) makes f − e a projection. Since any
projection lies in A+, we have f − e≥ 0, and hence e≤ f . �
The set of projections P(A) in a C*-algebra is always a poset in the order ≤, but
it is not automatically a lattice. It is a σ -complete lattice if A is Rickart, and hence
also in all “lower” classes, including von Neumann algebras (cf. Proposition C.136),
where P(A) is even a complete lattice.



C.25 Jordan algebras and (pure) state spaces of C*-algebras 763

C.25 Jordan algebras and (pure) state spaces of C*-algebras

Let A be a unital C*-algebra. As we know, the state space S(A) is the set of all
states on A, seen as a compact convex set in the w∗-topology inherited from the
embedding S(A) ⊂ A∗ (note that S(A) fails to be compact if A lacks a unit). To see
which information S(A) carries about A, we need to impoverish A as follows.

Definition C.171. A Jordan algebra is a real commutative (but generally non-asso-
ciative) algebra A whose product ◦ satisfies (writing a2 = a◦a):

a◦ (b◦a2) = (a◦b)◦a2. (C.619)

A JB-algebra is a Jordan algebra that is also a (real) Banach space such that:

‖a◦b‖ ≤ ‖a‖‖b‖; (C.620)
‖a‖2 ≤ ‖a2 +b2‖. (C.621)

Given (C.620), axiom (C.621) is equivalent to ‖a2‖ ≤ ‖a2 +b2‖ and ‖a2‖= ‖a‖2.
It is easy to see that the self-adjoint part Asa of any C*-algebra A is a JB-algebra if

we put a◦b = 1
2 (ab+ba), cf. (5.14). If A and B are unital C*-algebras, we say that a

linear map ϕ : Asa → Bsa is a Jordan homomorphism if it preserves ◦; to this effect
it clearly suffices that ϕ(a2) = ϕ(a)2 for each a. If ϕ in addition is bijective, then it
is called a Jordan isomorphism; in that case its inverse is necessarily linear and also
preserves te Jordan product ◦. A JordanJordan automorphism of a C*-algebra A is
a Jordan isomorphism Asa → Asa. Of course, we may complexify ϕ : Asa → Bsa so
as to obtain a C-linear map ϕC : A→ B that equally well satisfies ϕC(a2) = ϕC(a)2,
this time for all a ∈ A (rather than all a ∈ Asa). However, the conceptual point here
is that quantum-mechanical observables are supposed to be self-adjoint, and that
the Jordan product (but not the ordinary associative product) always preserves self-
adjointness. Generalizing Proposition 5.19, we then have the key result:

Theorem C.172. Let A and B be unital C*-algebras. There is a bijective correspon-
dence between Jordan isomorphisms ϕ : Asa → Bsa and affine homeomorphisms
f : S(B)→ S(A), given by f = ϕ∗ (i.e. f (ω)(a) = ω(ϕ(a))). In particular, each
affine homeomorphism of S(A) is induced by a Jordan automorphism of A.

The proof is similar to Proposition 5.19; generalizing Lemma 5.20 we now have:

Lemma C.173. Let A and B be unital C*-algebras. Then f = ϕ∗ gives a bijective
correspondence between affine bijections f : S(B)→ S(A) and unital positive linear
bijections ϕ : Asa → Bsa. Moreover, if ϕ : Asa → Bsa is a unital linear bijection, then
ϕ is positive iff ϕ is isometric iff ϕ is a Jordan isomorphism.

Most of the proof is practically the same as for Lemma 5.20 (so we omit it), ex-
pect for the last equivalence between invertible unital isometries and Jordan isomor-
phisms, which is deeper and relies on Kadison’s inequality ϕ(a∗a)≥ ϕ(a)∗ϕ(a) for
positive unital linear maps ϕ between C*-algebras and normal operators a.

A similar result is Hamhalter’s generalization of Dye’s Theorem to AW*-algebras:
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Theorem C.174. Let A and B be AW*-algebras and let N : P(A)→P(B) be an
isomorphism of the corresponding orthocomplemented projection lattices that in
addition preserves arbitrary suprema. If A has no summand isomorphic to either C2

or M2(C), then there is a unique Jordan isomorphism J : Asa → Bsa that extends N
(and hence Jordan isomorphisms are characterized by their values on projections).

This generalizes Corollary 5.22 in the main text, but has a much more difficult proof.

Proof. If e, f ∈P(A) are orthogonal, then so are N(e) and N( f ), so that

N(e+ f ) = N(e)+N( f ). (C.622)

Gleason’s Theorem for AW*-algebras then gives a Jordan homomorphism

J(e, f ) : AW ∗(e, f )sa → Bsa, (C.623)

where AW ∗(e, f ) is the AW*-algebra generated by e, f , and the unit 1A, which in
particular preserves all Jordan triple products

{a,b,c}= (a◦b)◦ c+a◦ (b◦ c)−b◦ (a◦ c), (C.624)

which in terms of the usual operator product equals 1
2 (abc+ cba). This implies

N((1A−2e) f (1A−2e)) = (1B−2N(e))N( f )(1B−2N(e)), (C.625)

which (in the second major step of the proof, after the application of Gleason’s
Theorem) is necessary and sufficient for ϕ to extend to a Jordan isomorphism. �

The structure of Jordan isomorphisms may be inferred from the following re-
markable result, in which a linear map ϕ : A→ B between C*-algebras is called an
anti-homomorphism of ϕ(a∗) = ϕ(a)∗ as usual, but ϕ(ab) = ϕ(b)ϕ(a).

Theorem C.175. If ϕ : Asa → B(H)sa is a Jordan homomorphism (where A is a C*-
algebra and H is a Hilbert space), there exist three mutually orthogonal projections
e1, e2, e3 in the center ϕ(A)′ ∩ϕ(A)′′ of the von Neumann algebra ϕ(A)′′, such that:

1. e1 + e2 + e3 = 1H;
2. The map a �→ ϕC(a)e1 from A to B(e1H) is a homomorphism (of C*-algebras).
3. The map a �→ ϕC(a)e2 from A to B(e2H) is an anti-homomorphism (ibid.).
4. The map a �→ ϕC(a)e3 from A to B(e3H) is both a homomorphism and an anti-

homomorphism of C*-algebras (so that ϕC(A)e3 is commutative).

If in addition a �→ ϕC(a)e1 is not an anti-homomorphism and a �→ ϕC(a)e2 is not a
homomorphism, then e1, e2, and e3 are uniquely determined by these conditions.

Like the previous theorem, the proof of this one exceeds the scope of this book.

Corollary C.176. Let J : B(H)sa → B(H)sa be a Jordan isomorphism. Then JC :
B(H)→B(H) is either a homomorphism or an anti-homomorphism of C*-algebras.

Proof. The center of B(H) is trivial, so either e1 = 1H or e2 = 1H . �
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The pure state space P(A) = ∂eS(A) is the extreme boundary of the state space S(A).
According to the Krein–Milman Theorem B.50, P(A) is not empty, and

S(A) = (co∂eP(A))−, (C.626)

see (B.165) for notation. In order to recover S(A) from P(A), the latter obviously
needs more structure than just that of a set. First, it inherits the w∗-topology from
A∗, but it turns out that we need to equip P(A) with the more refined w∗-uniformity.

In general, a uniform structure on a set X (also called an entourage uniformity)
is a nonempty filter U on X ×X (i.e.,a collection U ⊂P(X ×X) of subsets of
X ×X such that U ∈ U and U ⊂ V imply V ∈ U , and U ∈ U and V ∈ U imply
U ∩V ∈U ) satisfying the following conditions:

1. Each U ∈U contains the diagonal ΔX = {(x,x) | x ∈ X};
2. If U ∈U , then UT ∈U , where UT = {(y,x) | (x,y) ∈U};
3. If U ∈U , then there is some V ∈U such that V 2 ⊆U , where

V 2 = {(x,z) | ∃y ∈ X : (x,y) ∈V,(y,z) ∈V}. (C.627)

A set with a uniformity is called a uniform space. If X and Y are uniform spaces, a
function f : X → Y is uniformly continuous if f−1(V ) ∈UX whenever V ∈UY .

The w∗-unformity Uw∗ on A∗, where A is any Banach space, is the smallest one
containing all subsets of the type

{(ϕ,ϕ ′) ∈ A×A : |ϕ(a)−ϕ ′(a)|< ε}, (C.628)

where a ∈ A and ε > 0; this implies that U ∈Uw∗ iff U contains some such subset.
Second, P(A) carries a natural transition probability, cf. Definition 1.17 and

(2.43). For ω,ω ′ ∈ P(A), this function τ : P(A)×P(A)→ [0,1] is defined by

τ(ω,ω ′) = inf{ω(a) | a ∈ A,0≤ a≤ 1A,ω ′(a) = 1}. (C.629)

This definition, and the following result, are valid even if A has no unit.

Proposition C.177. Let A be C*-algebra and define τ by (C.629). Then

τ(ω,ω ′) = 1− 1
4‖ω−ω ′‖2, (C.630)

and the following dichotomy applies:

1. If ω and ω ′ are equivalent (in the sense that the corresponding GNS-representations
πω and πω ′ are unitarily equivalent), so that we may assume that the associated
cyclic vectors Ωω and Ωω ′ lie in the same Hilbert space, we have

τ(ω,ω ′) = Tr(eΩω eΩω ′ ) = |〈Ωω ,Ωω ′ 〉|2. (C.631)

2. If ω and ω ′ are inequivalent (in that πω and πω ′ are inequivalent), then

τ(ω,ω ′) = 0. (C.632)
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Proof. We first show that (C.630) yields (C.631) and (C.632). In the first case,

‖ω−ω ′‖ = sup{|ω(a)−ω ′(a)|,a ∈ A,‖a‖= 1}
= sup{|〈Ωω ,πω(a)Ωω〉−〈Ωω ′ ,πω(a)Ωω ′ 〉|,a ∈ A,‖a‖= 1}
= sup{|Tr((eΩω − eΩω ′ )πω(a))|,a ∈ A,‖a‖= 1}
= sup{|Tr((eΩω − eΩω ′ )a)|,a ∈ πω(A),‖a‖= 1}
= sup{|Tr((eΩω − eΩω ′ )a)|,a ∈ B(Hω),‖a‖= 1}
= ‖eΩω − eΩω ′ ‖1, (C.633)

where ‖ · ‖1 is the trace norm on B1(Hω). In the fifth step we used the fact that the
map a �→Tr(ba) is σ -weakly continuous for any b∈B1(Hω), so that we may replace
the supremum over a ∈ πω(A) by the supremum over a in the σ -weak closure of
πω(A) which by the Theorem C.130 is πω(A)′′, which in turn is B(Hω) because
πω(A) is irreducible (since ω is pure, cf. Theorem C.90). The last step then follows
from Theorem B.146. To compute the last expression in (C.633), we assume that
Ωω and Ωω ′ are not proportional (if they are, then ω = ω ′, so that (C.630) reduces
to 1 = 1, and hence holds). We may then work in the 2-dimensional Hilbert space
spanned by Ωω ≡ (1,0) and Ωω ′ = (c1,c2), with |c1|2 + |c2|2 = 1. In that case,

(eΩω − eΩω ′ )
2 = |c2|2 ·12; (C.634)

|eΩω − eΩω ′ |=
√
(eΩω − eΩω ′ )

2 = |c2| ·12; (C.635)

‖eΩω − eΩω ′ ‖1 = Tr(|eΩω − eΩω ′ |) = 2|c2|. (C.636)

Using (C.633), this gives

1− 1
4‖ω−ω ′‖2 = 1− 1

4‖eΩω −eΩω ′ ‖2
1 = 1−|c2|2 = |c1|2 = |〈Ωω ,Ωω ′ 〉|2. (C.637)

To deal with the second case, we use the following version of Schur’s Lemma:

Lemma C.178. Let πω and πω ′ be irreducible representations of some C*-algebra
A, and let w : Hω → Hω ′ be an intertwiner, i.e., a bounded linear map that satisfies

wπω(a) = πω ′(a)w (a ∈ A). (C.638)

• If πω and πω ′ are equivalent, then w is either zero or invertible.
• If πω and πω ′ are inequivalent, then w is zero.

Proof. The proof is the same as for group representations: taking the adjoint of
(C.638), it follows that w∗w ∈ πω(A)′ and ww∗ ∈ πω ′(A)′, so by Theorem C.90 (i.e.
the mother of all Schur’s lemma’s) we have w∗w = λ · 1Hω and ww∗ = μ · 1Hω ′ ,
for some λ ,μ ∈ R+ (since w∗w and ww∗ are positive operators). Moreover, since
w = λww∗w = μw, in fact we have λ = μ whenever w �= 0. If λ > 0, then the
operator (λ )−1/2w : Hω →Hω ′ is a unitary intertwiner, so πω and πω ′ are equivalent.
If λ = 0, then w∗w = 0 and hence w = 0, since ‖w∗w‖= ‖w‖2. �
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Continuing the proof of (C.632), we form the direct sum

π(A) = πω(A)⊕πω ′(A); (C.639)
H = Hω ⊕Hω ′ . (C.640)

The second case of Lemma C.178 then gives

(πω(A)⊕πω ′(A))′ = πω(A)′ ⊕πω ′(A)′, (C.641)

whose right-hand side consist of operators λ ·1Hω ⊕μ ·1Hω ′ (λ ,μ ∈ C), so that

(πω(A)⊕πω ′(A))′′ = πω(A)′′ ⊕πω ′(A)′′ = B(Hω)⊕B(Hω ′). (C.642)

Once again using Theorem C.130, a computation à la (C.633) therefore gives

‖ω−ω ′‖ = sup{|Tr((eΩω − eΩω ′ )a)|,a ∈ B(Hω)⊕B(Hω ′),‖a‖= 1}
= sup{|Tr(eΩω a)−Tr(eΩω ′ a

′)|,a ∈ B(Hω),a′ ∈ B(Hω ′),‖a⊕a′‖= 1}
= sup{|Tr(eΩω a)|,a ∈ B(Hω),‖a‖= 1}
+ sup{|Tr(eΩω ′ a

′)|,a′ ∈ B(Hω ′),‖a′‖= 1}
= ‖eΩω‖1 +‖eΩω ′ ‖1 = 1+1 = 2, (C.643)

since the trace may be computed in a basis of Hω ⊕Hω ′ consisting of a basis of Hω
and a basis of Hω ′ , and ‖a⊕a′‖= max{‖a‖,‖a′‖} for a ∈ B(Hω) and a′ ∈ B(Hω ′).

Finally, we prove that (C.629) and (C.630) coincide. If ω and ω ′ are equivalent,

τ(ω,ω ′) = inf{Tr(eΩωπω(a)) | a ∈ A,0≤ a≤ 1A,Tr(eΩω ′πω(a)) = 1} (C.644)

and, as in (C.633), Theorem C.130 allows us to replace the infimum over a ∈ A by
the one over a∈B(Hω). The claim then follows from Theorem 2.12 and eq. (C.631).

Similarly, if ω and ω ′ are inequivalent, eq. (C.642) and Theorem C.130 give

τ(ω,ω ′) = inf{Tr(eΩω a) | a ∈ B(Hω)⊕B(Hω ′),0≤ a≤ 1H ,Tr(eΩω ′a) = 1},

and notice that the infimum zero is reached by a = 0 ·1Hω ⊕1Hω ′ . �
The final result of this appendix, then, is the “pure” counterpart of Theorem C.172:

Theorem C.179. Let A and B be unital C*-algebras. There is a bijective corre-
spondence f = ϕ∗ between Jordan isomorphisms ϕ : Asa → Bsa and bijections
f : P(B)→ P(A) that preserve transition probabilities and are w∗-uniformly contin-
uous along with their inverse. In particular, ϕ : Asa → Asa is a Jordan automorphism
of A iff ϕ∗ : P(A)→ P(A) has the properties just stated for f .

The proof of this theorem is far more difficult than Theorem C.172, so we omit it.
If A ∼=C(X) and B ∼=C(Y ) are commutative, we obtain a variation on Corollary

C.22 featuring uniform homeomorphisms. Also, we see from Wigner’s Theorem
5.4.1 that for A = B(H) it is enough to consider normal pure states, in which case
also the (uniform) continuity condition on f is superfluous.
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Notes

As already mentioned in the Introduction, the theory of operator algebras on Hilbert
spaces was created by von Neumann, partly in collaboration with his assistant Mur-
ray (von Neumann, 1930, 1931, 1938, 1940, 1949; Murray & von Neumann, 1936,
1937, 1943, reprinted in von Neumann, 1961). His motivation for doing so certainly
included quantum mechanics, but also functional analysis, measure theory, ergodic
theory, and representation theory, all of which fields in turn benefited from their
interaction with operator algebras. Von Neumann (and Murray) studied what they
called “rings of operators”, which are now deservedly called von Neumann alge-
bras. John von Neumann (1903–1957) was one of the greatest mathematicians in
history, especially considering the totality of his oeuvre in pure and applied mathe-
matics (including numerical mathematics, computer science, and mathematical eco-
nomics). His work in mathematical physics, notably on the mathematical structure
of quantum mechanics, in some sense forms a bridge between the two.

Von Neumann was a Hungarian prodigy; he wrote his first mathematical paper at
the age of seventeen. Except for this first paper, his early work was in set theory and
the foundations of mathematics. In the Fall of 1926, he moved to Göttingen to work
with Hilbert. Around 1920, Hilbert had initiated his Beweistheory, an approach to
the foundations of mathematics whose specific technical goals were not achieved
because of Gödel’s work, but whose overall view of mathematics (i.e. as an activity
whose correctness is to be established purely syntactically and whose meaning is a
semantic matter to be distinguished from its syntax) still reigns. However, at the time
that von Neumann arrived, Hilbert was also interested in quantum mechanics. Apart
from his broad interest in general (mathematical) physics (for example, his Sixth
Problem from 1900 called for the mathematical axiomatization of physics), Hilbert
was specifically attracted to quantum mechanics because Göttingen was, next to
Copenhagen, a leading center for research in this area. Indeed, Heisenberg’s (1925)
paper initiating quantum mechanics (at least in its preliminary guise of “matrix me-
chanics”) was followed by the Dreimännerarbeit of Born, Heisenberg, and Jordan
(1926), and all three were in Göttingen at the time. Born was one of the few physi-
cists of his day to be familiar with the concept of a matrix; in previous research he
had even used infinite matrices. Born turned to his former teacher Hilbert for math-
ematical advice. Aided by his assistants Nordheim and von Neumann, Hilbert thus
ran a seminar on the mathematical structure of quantum mechanics, and the three
wrote a joint paper on the subject (which is now exclusively of historical value).

It was von Neumann (1927ab) who, at the age of 23, discovered the mathematical
structure of quantum mechanics. In this process, he defined the abstract concept of
a Hilbert space, which previously had only appeared in examples that went back to
the work of Hilbert and his pupils on integral equations, spectral theory, and infinite-
dimensional quadratic forms. Hilbert’s famous memoirs on integral equations had
appeared between 1904 and 1906; in 1908, his student Schmidt had defined the
space �2 in the modern sense, and F. Riesz had studied the space of all continuous
linear maps on �2 in 1912. Various examples of L2-spaces had emerged around the
same time (with hindsight, Hilbert himself mainly worked with the unit ball of �2).
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However, the abstract notion of a Hilbert space was missing until von Neumann
provided it. In particular, von Neumann saw that Schrödinger’s wave functions were
unit vectors in a Hilbert space of L2 type, and that Heisenberg’s observables were
linear operators on a different Hilbert space, of �2 type. A unitary transformation
between these spaces provided the the mathematical equivalence between wave me-
chanics and matrix mechanics. Moreover, von Neumann developed the spectral the-
ory of bounded as well as unbounded normal operators on a Hilbert space. This work
culminated in his book Mathematische Grundlagen der Quantenmechanik (1932).

Despite the tremendous prestige of von Neumann, initially few mathematicians
recognized the importance of his subsequent theory of operator algebras. For exam-
ple, after a lecture by von Neumann on operator algebras in the weekly mathematics
colloquium at Harvard sometime in the 1930s, G. H. Hardy, one of the leading math-
ematicians of his time, is reported to have said:1

“He is quite clearly a brilliant man, but why does he waste his time on this stuff?”

Fortunately, among those who did study operator algebras were Gelfand & Naimark
(1943), who linked the subject to Gelfand’s earlier work on (commutative) Banach
algebras and in doing so created the theory of C*-algebras. This, in turn, was picked
up by Segal (1947ab), who thereby also restored the link with quantum theory.

A survey of von Neumann’s mathematical work is given in Oxtoby et al (1958),
which contains a biographical introduction by von Neumann’s friend and colleague
Ulam, and some of von Neumann’s correspondence is collected in Rédei (2005b),
which also contains a short mathematical biography. One of the most insightful
documents about von Neumann is the rare manuscript Vonneumann (1987) by his
brother Nicholas, of which the author got a copy from von Neumann’s only PhD stu-
dent Israel Halperin, who visited Cambridge on a peace mission in the early 1990s.2

Politically, von Neumann was a controversial figure because of his enthusiastic con-
tributions to nuclear weapons and the arms race between the USA and the Soviet
Union; see Heims (1980) and Macrae (1992) for different perspectives on this. A
substantial scholarly scientific biography of von Neumann remains to be written.

The history of operator algebras (i.e. von Neumann algebras and C*-algebras,
which terms were probably introduced by Dieudonné and Segal, respectively) has
been described in Kadison (1982), Doran & Belfi (1986), and Doran (1994).

Leading textbooks on operator algebras, written by some of the original contrib-
utors, are Neumark (1968), Sakai (1971), Dixmier (1977, 1981), Pedersen (1979),
Kadison & Ringrose (1983, 1986), and Takesaki (2002, 2003a, 2003b). See also
Murphy (1990), Li (1992), Davidson (1996), Blackadar (2006), and the remarkable
lectures on von Neumann algebras by algebraic topologist Lurie (2011). Connes
(1994), written by arguably the greatest contemporary mathematician working in
operator algebras, also provides innumerable fascinating insights into the subject.

1 Reported by G.D. Birkhoff (who overheard Hardy saying this) to his son, Garrett Birkhoff, who
in turn mentioned it to G.C. Rota, who wrote it down in the Introduction to Stern (1991).
2 According to Rhodes (1996, pp. 245–246), Halperin was a spy for the Soviet Union, although his
evidence seems limited to the fact Halperin was arrested in 1946 suspected of espionage, having
Klaus Fuchs in his address book.
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§C.1.Basic definitions and examples

As in the notes to the previous appendix, we only comment on results whose
origins are less well known or which are less standard by themselves, the rest be-
longing to the foundations of the field as described in the textbooks just mentioned.
Once again, for this reason not all sections in this appendix come with notes.
§C.2. Gelfand isomorphism

The implication ω ∈ Σ(A) ⇒ ω(a) ∈ σ(a) (a ∈ A) in the proof of Lemma C.9
also holds in the oppositie direction (given that A is a Banach algebra with unit and
ω : A→C is linear); this is the Gleason-Kahane-Zelazko Theorem (Sourour, 1994).
A recent monograph about C(X) is Groenewegen & van Rooij (2016), following up
on earlier books like Semadeni (1971) and Gillman & Jerison (1976).
§C.3.Gelfand duality

Proposition C.19 is due to Gelfand & Kolmogorov (1939). In the spirit of the
proof of the Stone–Weierstrass Theorem B.51 in §B.10, let us give an alternative
proof of this proposition (Simon, 2011), which is based on Proposition C.14 and
Corollary B.17. These identify Σ(C(X)) with the set ∂eM+

1 (X) of extreme com-
pletely regular probability measures on X , provided we identify the latter with the
corresponding functionals on C(X), as in (B.39). That is, we must prove that the
map x �→ δx (i.e., the Dirac measure at x, which, seen as a functional on C(X), is just
the evaluation map evx) is a bijection.

Proof. We first show that a measure μ ∈ ∂eM+
1 (X) must satisfy μ(A) = 1 or

μ(A) = 0 for any A ∈ Σ . For if there is some C ∈ Σ for which 0 < μ(C) < 1,
we have a nontrivial convex decomposition μ = tμ1 +(1− t)μ2, namely t = μ(C),
μ1(A) = μ(A|C) (i.e., μ(A∩C)/μ(C)), and μ2(A) = μ(A\C)/μ(X\C). From this,
we show that supp(μ) is a point. Indeed, if both x and y �= x would lie in supp(μ),
we could separate these with disjoint open sets x ∈U and y ∈ V . This would leave
four (im)possibilities:

• μ(U) = μ(V ) = 1 would imply μ(X)≥ 2, contradicting μ(X) = 1;
• μ(U) = 0 would make Uc ∩ supp(μ) a proper closed subset of supp(μ) whose

open complement has measure zero, contradicting the definition of supp(μ); this
applies to all four cases μ(V ) = 0, μ(V ) = 1, μ(U) = 1, and μ(V ) = 0.

Thus supp(μ) = {x} for some x ∈ X , i.e., μ = δx, so that ∂eM+
1 (X)⊆ X . Finally, we

also have X ⊆ ∂eM+
1 (X), since δx = tμ1 +(1− t)μ2 forces

supp(μ1) = supp(μ2) = {x}, (C.645)

and hence μ1 = μ2 = δx. �
In the unital/compact case, categorical Gelfand duality was first established in

Negrepontis (1969, 1971), and was reproved in a different way by Johnstone (1982).
Our proof of is taken from Landsman (2004), with some improvements in the non-
unital case due to Brandenburg (2015), but it should be considered “folklore”.

In the smooth case, Corollary C.22 is often called Milnor’s exercise. The result
even holds without the second countability assumption on the manifold X , but with
a completely different proof (Mrĉun, 2005). See also Burtscher (2009).
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§C.6. C*-algebras without unit: commutative case

For proper maps see e.g. Bourbaki (1989), §I.10.
§C.10. Hilbert C*-modules and multiplier algebras

The theory of Hilbert C*-modules goes back to Kaplansky, Paschke, and Rieffel.
See Lance (1995) and Raeburn & Williams for textbook coverage, and Landsman
(1998a) for applications to mathematical physics (e.g. constrained quantization).

Theorem C.76 is due to An Huef, Raeburn, & Williams (2010).
The Cohen–Hewitt Factorization Theorem à la Fell & Doran (1988), Theorem

V.9.2, adapted to C*-algebras, states that if A and B are C*-algebras and α : A→ B)
is a homomorphism, then {α(a)b | a ∈ A,b ∈ B} is a closed linear subspace of B.
Consequently, if α is nondegenerate, then each element c ∈ B factors as c = α(a)b.
In particular, taking B = A and α to be the identity, we see that Lemma C.47 may
be sharpened to the claim that any c ∈ A takes the form c = ab for suitable a,b ∈ A.
§C.11. Gelfand topology as a frame

Our treatment of frames and locales has been borrowed from Mac Lane & Mo-
erdijk (1992), where also the details of the proof of Theorem C.80 may be found.
See also Picado & Pultr (2012). Hereditary subalgebras are discussed e.g. in Peder-
sen (1979) and Blackadar (2006).

The fact that H(A) forms a complete lattice was noted by Akemann & Bice
(2014), who also pursued the analogy with open sets, though not in a frame-theoretic
setting. The theory is still disappointing in various ways, most notably in the fact
that H(A) fails to be a frame unless A is commutative. Also, Theorem C.86 has (so
far) been proved by conventional means, i.e., via the Gelfand isomorphism; it would
be preferable to prove it purely algebraically (and if possible constructively).

From a localic point of view, the Gelfand transform â : Σ(A)→C of a∈ A should
primarily be described as the corresponding frame map â−1 : O(C)→O(Σ(A)), and
hence, using Corollary C.84, as a frame map

â−1 : O(C)→ H(A). (C.646)

Denoting the hereditary subalgebra generated by a by Ha, i.e., the closure of a ·A,
for U ∈ O(C)) we obtain a nice formula whose use remains to be established:

â−1(U) =
⋂

z∈C\U
Ha−z. (C.647)

A direct proof of the last claim of Proposition C.82 uses the property H(A)= I(A)
(in the commutative case), the identification of I∧ J with (IJ)− (i.e., the closure of
the linear span of all ab, a ∈ I, b ∈ J, which follows by taking an approximate unit
in I or J), and the identification of

∨
S with the closure of the linear span of

⋃
S.

§C.13. Tensor products of Hilbert spaces and C*-algebras

For the proof of (C.248) see Reed & Simon (1972), Theorem II.10.
For tensor products of C*-algebra we mainly relied on Lance (1982), Li (1992),

Wegge-Olsen (1993), and Takesaki (2002), by one of the founders of the theory.
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Tensor products of Banach spaces and Hilbert spaces were first studied by Schatten
(1946) and Schatten & von Neumann (1946, 1948). The subject was subsequently
taken up by Grothendieck (1955) for locally convex spaces, and hence involves two
of the greatest mathematicians of the twentieth century. Nuclearity of C*-algebras
is a vast and important field, to which Takesaki (2003) is a good introduction.

Yet another expression for the maximal C*-norm on A⊗B arises if we say that
two representations πA : A→ B(H) and πB : B→ B(H) on the same Hilbert space H
commute if πA(a)πB(b) = πB(b)πA(a) for all a ∈ A and b ∈ B. Such a pair defines a
representation πA⊗πB of A⊗B by

πA⊗πB(c) = ∑
i

πA(ai)⊗πB(bi), (C.648)

which makes sense because (a,b) 7→ π(a)π(b) is bilinear and hence (by universality
of ⊗) factors through A⊗B. This gives a third formula for ‖ · ‖max, namely

‖c‖max = sup{‖πA⊗πB(c)‖B(HA⊗HB)
}, (C.649)

where πA and πB run through all commuting representations of A and B. Indeed,
the restrictions of any representation of A⊗B to A and B define commuting repre-
sentations, so that although at first sight the expression (C.649) appears to majorize
(C.265), it must be equal to it in view of the equality of (C.265) and (C.263).

The name projective tensor product for A⊗̂maxB, where A and B are C*-algebras,
is actually confusing, since if A and B are regarded as Banach algebras, their pro-
jective tensor product is usually defined as the completion of A⊗B in the norm

‖c‖proj = inf

{
∑

i
‖ai‖‖bi‖,c = ∑

i
ai⊗bi

}
, (C.650)

cf. (C.259), which is defined for any two Banach algebras A and B. This may not be
a C*-norm, and hence A⊗̂projB may not be a C*-algebra. However, for any Banach
algebra C with involution, one may canonically construct a C*-algebra C* (sic)
and a homomorphism ϕ : C→C∗ of involutive Banach algebras, with the universal
property that for any morphism β : C → D, where D is a C*-algebra, there is a
unique homomorphism β ′ : C∗→ D of C*-algebras such that β = β ′ ◦ϕ . This C*-
algebra C*, which by the usual argument is unique up to isomorphism, is called the
C*-envelope of C. An explicit construction is obtained by completing C in the norm

‖c‖= sup{‖π(c)‖}, (C.651)

where the supremum runs over all representations of C on Hilbert spaces; it is fi-
nite since ‖π(c)‖ ≤ ‖c‖ for each c ∈ C, see Dixmier (1977), §1.3.7 and §2.7. It is
easy to see that ‖ · ‖proj is a cross-norm on A⊗B, and that one has a bijective corre-
spondence between representations of A⊗B that satisfy ‖π(a⊗ b)‖ ≤ ‖a‖‖b‖ and
representations of A⊗̂projB. The point, then, is that one has A⊗̂maxB = (A⊗̂projB)∗.
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C*-algebras (with homomorphism) and ⊗̂max form a monoidal category (also
called a tensor category), with commutative C*-algebras as a full subcategory CCA.
The map X 7→C0(X) then defines a duality as monoidal categories between the cat-
egory LCHp of locally compact Hausdorff spaces and proper continuous maps (with
cartesian product as a tensor product) and the category CCAn of commutative C*-
algebras and nondegenerate homomorphisms (with its unique C*-algebraic tensor
product, for example realized as ⊗̂max). Cf. Theorem C.45. See Hofmann (1970).
§C.14. Inductive limits and infinite tensor products of C*-algebras

For inductive limits of C*-algebras see in particular Sakai (1971); they were orig-
inally a Japanese invention (Takeda). Infinite tensor products of operator algebras
(which partly motivated inductive limits) go back to von Neumann (1938). Bounded
monotone nets converge under very general conditions; see McArthur (1970).
§C.15. Gelfand isomorphism and Fourier theory

For details on the Haar measure and for the proof of local compactness of Ĝ see
Weil (1965), §27. Our approach to the Fourier transform is largely taken from Deit-
mar & Echterhoff (2009), where complete proofs may be found (though we some-
times followed a slightly different approach). In particular, these authors introduced
the Banach spaces C∗0(G) and C∗0(Ĝ), whose use forms a marked improvement over
older and less elegant treatments, as in e.g. Rudin (1962) or Folland (1995).

Eq. (C.379) is often called Plancherel’s Theorem.
We may add a third entry to the ‘symmetric’ isomorphisms (C.379) - (C.380).

The Bruhat space S (G) of rapidly decreasing functions on G is defined by

A(G) = { f ∈ L∞(G) | ∃K ∈K (G)∀n > 0∃Cn > 0∀k > 0 : ‖ f|G\Kk‖∞ ≤Cnk−n};

S (G) = { f ∈ L∞(G) | f ∈ A(G), f̂ ∈ A(Ĝ)}.

For G = R this recovers the usual test functions S (R) (cf. Definition 5.64), where
the condition f ∈ A(R) gives rapid decrease whereas f̂ ∈ A(R) gives smoothness.
Pontryagin duality then yields an isomorphism S (G)∼= S (Ĝ) (Osborne, 1975).

The author originally learnt the SNAG-Theorem from Barut & Raçka (1977),
whose proof (due to K. Maurin) is quite different; the argument given above was
inspired by the treatment of projection-valued spectral measures in Conway (2007,
Ch. 9, §1), who calls them spectral measures. Conway also proves our Theorem
C.113 as his Theorem 1.14, albeit for the case where X is compact; passage to the
locally compact case may be done through unitization, as in §C.6. The need for π to
be non-degenerate may then be traced back to (our) Lemma C.43.
§C.16. Intermezzo: Lie groupoids

For introductions to Lie groupoids see Moerdijk & Mrčun (2003) or Mackenzie
(2005), who also described the link with symplectic geometry. For their use in non-
commutative geometry and mathematical physics cf. Connes (1994) and Landsman
(1998a, 2006b), respectively. The tangent groupoid was invented by Connes, with
further contributions by Hilsum & Skandalis (1987), Weinstein (1989) and Lands-
man (1998a). See also Connes (1994), Landsman (2003), Higson (2010), and van
Erp (2010) for applications of the tangent groupoid to index theory.
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§C.17. C*-algebras associated to Lie groupoids
C*-algebras associated to locally compact groupoids (with Haar system) were

first studied in detail by Renault (1980). Originally in the setting of foliation theory,
the Lie (i.e. smooth) case was pioneered by Connes (1994), who noted in particular
that Lie groupoids carry an intrinsic Haar system, and gave many interesting exam-
ples. The uniqueness of C∗(G) for Lie groupoids G, i.e., the independence of the
underlying left Haar system (up to isomorphism) is proved in Paterson (1999).
§C.18. Group C*-algebras and crossed product algebras

The locus classicus is Pedersen (1979), but Williams (2007) may even be better.
§C.19. Continuous bundles of C*-algebras

The bundles studied in this section were originally introduced by Fell (1961) and
their theory was further developed by Dixmier & Douady (1963); see also Dixmier
(1977), Fell & Doran (1988), and, for a modern treatment, Raeburn & Williams
(1998). Lemma C.125 was part of Dixmier’s definition of a continuous field of C*-
algebras, before it was recast into the rather more appealing Definition C.121 by
Kirchberg & Wassermann (1995) and Blanchard (1996). Theorem C.123 is due to
Landsman & Ramazan (2001); see also Landsman (1998a) for a detailed discussion.
Aastrup, Nest, & Schrohe (2006) discuss applications to manifolds with boundary.
§C.20. von Neumann algebras and the σ -weak topology

There are many other topologies on von Neumann algebras, se e.g. Takesaki
(2002), Chapter II. In any case, we only scratch the surface of the subject.
§C.21.Projections in von Neumann algebras

The first part of the proof of Theorem C.141 is taken from Rédei (1998), Prop.
4.16. The remainder is adapted from Heunen, Landsman, & Spitters (2012). The de-
tails of the proof of Theorem C.140 may be found in Takesaki (2002), Thm. III.1.18;
see also Dixmier (1981), Ch. 7 and Lurie (2011), lectures 13–17.
§C.23. Classification of hyperfinite factors

This material, which is a high point in modern mathematics, is explained in great
detail in Takesaki (2003ab). See also Wright (1989) for the uniqueness of the hy-
perfinite III1 factor. In his review MR1030046 (91a:46059) of the latter book for
Mathematical Reviews in 1991, E. Størmer wrote:

‘At the time of writing this review, by far the deepest and most difficult proof in von Neu-
mann algebra theory is the one of Connes and Haagerup on the uniqueness of the injective
factor of type III1 with separable predual.’

The applications of C*-algebras and von Neumann algebras to quantum field the-
ory are reviewed in Haag (1992), where the identification of the unique hyperfi-
nite III1 factor with local algebras of observables may be found in §V.6. This book
also explains the relationship between Tomita–Takesaki theory and quantum sta-
tistical mechanics, as do Bratteli & Robinson (1981). It should be mentioned that
the Tomita–Takesaki theory, including the modular group (i.e. of time translations)
has a classical analogue in Poisson geometry (Weinstein, 1997), which somewhat
softens the spectacular claim by Connes & Rovelli (1994) that time has a quantum-
mechanical (or non-commutative) origin related to thermodynamics.
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§C.24. Other special classes of C*-algebras
The classic reference on AW*-algebras and Rickart C*-algebras is Berberian

(1972). For monotone complete C*-algebras see the monograph by Saitô & Mait-
land Wright (2015b). Real rank zero was introduced by Brown & Pedersen (1991),
who also proved that the definition of real rank zero in the main text may be replaced
by an equivalent property that is often taken as the definition:

Proposition C.180. Let A be a unital C*-algebra. Then rr(A) = 0 iff the set of self-
adjoint elements with finite spectrum is dense in Asa.

See Davidson (1996), Theorem V.7.3, for a streamlined proof.
Scattered C*-algebras were independently introduced by Jensen (1977) and Hu-

ruya (1978). The results in the main text are due to Kusuda (2011).
Theorem C.167.1 should be obvious. No. 2 is due to Kusuda (2011), no. 3 may

be found in Takesaki (2002), §III.1, no. 4 is (a restatement of) Theorem 2.3.7 in
Saitô & Maitland Wright (2015b), no. 5 is Theorem 1.7.1 in Berberian (1972), no.
6 is Theorem 1.8.1 in the same reference, no. 7 is from Saitô & Maitland Wright
(2015a), and finally no. 8 may be found in Blackadar (1994), §6.1.3.

Theorem C.169.1 is Exercise 4.6.12 in Kadison & Ringrose (1983); it should
be hidden from students that the AMS published two volumes with the answers to
all their exercises! No. 2 is in Kusuda (2011), no. 3 is in Pedersen (1972), no. 4
is (a restatement of) Theorem 8.2.5 in Saitô & Maitland Wright (2015b), and no.
5 easily follows from Corollary 2.7 in Saitô & Maitland Wright (2015a). See also
Lindenhovius (2016), where results of this kind are used to study the invariant C (A).

§C.25. Jordan algebras and (pure) state spaces of C*-algebras
Theorem C.172 is Corollary 4.20 in Alfsen & Shultz (2001), based on Kadison

(1951). See also Roberts & Roepstorff (1969). Theorem C.174 is due to Hamhalter
(2015); the second step in the proof had been given earlier by Heunen & Reyes
(2014). A complete proof of Lemma C.173 may be found in Bratteli & Robinson
(1997), Theorem 3.2.3. In particular, Kadison’s inequality is Proposition 3.2.4 in the
same book. Theorem C.175 is the culmination of a long chain of argument, starting
with Jacobson & Rickart (1950) and ending with Thomsen (1982). See also Bratteli
& Robinson (1987), Theorem 3.2.3.

The formula (C.629) was proposed by Mielnik (1968, 1969). Otherwise, case 1
of Proposition C.177 is due to Roberts & Roepstorff (1969), who state case 2 with-
out proof, referring to Glimm & Kadison (1960). Theorem C.179 is due to Shultz
(1982). A completely different proof of the last claim, based on a reconstruction of
A from P(A), appears in Landsman (1998a), §I.3. Both authors add further structure
to P(A) to make it an invariant for A as a C*-algebra, viz. an orientation and a Pois-
son structure, respectively. The notion of an orientation was originally introduced
by Alfsen & Shultz in order to make S(A) a complete invariant for A; see their final
work Alfsen & Shultz (2001, 2003).



Appendix D

Lattices and logic

In this appendix we collect some basic material from the theory of lattices, includ-
ing Stone’s representation theorem for Boolean lattices and the connection between
Boolean (Heyting) lattices and classical (intuitionistic) propositional logic. In prepa-
ration for Appendix E, we also provide an introduction to first-order logic.

D.1 Order theory and lattices

One hopes that the reader has seen some of the following concepts before!

Definition D.1. 1. A preorder on a set X is a subset R⊂ X ×X (i.e., a relation on
X), where we write x ≤ y or y ≥ x iff (x,y) ∈ R, such that x ≤ x, and x ≤ y and
y ≤ z imply x ≤ z. A preorder is a partial order if in addition x ≤ y and y ≤ x
imply x = y. A set with a partial order is called a poset (for partially ordered
set). A a poset (or preorder) is directed if every pair {x,y} has an upper bound,
i.e., some z for which x ≤ z and y ≤ z. A poset may have a largest element (also
called a top element) denoted by 1 or # that satisfies x ≤ # for each x ∈ X,
and/or a smallest element (also called a bottom element) 0 or ⊥ that satisfies
⊥≤ x for each x ∈ X. For x,z ∈ X, the order interval [x,z] is defined by

[x,z] = {y | x≤ y≤ z}. (D.1)

An atom in a poset with 0 is an element x �= 0 for which [0,x] = {0,x}. In other
words, x is an atom if x �= 0, and 0 ≤ y ≤ x implies y = 0 or y = x. Thus x is an
atom iff x covers 0, where we say that x covers y if x �= y and [y,x] = {y,x}.
A homomorphism between posets is a map that preserves ≤. As usual, an iso-

morphism is an invertible (i.e. bijective) homomorphism, such that the inverse
also preserves the given structure (which, in this case, is ≤).
Thus a bijection ϕ : X → Y between posets X and Y is an isomorphism when
ϕ(x) ≤ ϕ(y) iff x ≤ y). In some cases, the inverse of a bijective homomorphism
automatically preserves the relevant structure.

© The Author(s) 2017
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2. A lattice is a poset in which for any two elements x,y, there exists:

• an element x∨ y, called the a supremum (sup) of x and y, such that

x≤ x∨ y; (D.2)
y≤ x∨ y, (D.3)

and if x≤ z and y≤ z for some z, then x∨ y≤ z;
• an element x∧ y, called the infimum (inf) of x and y, such that

x≥ x∧ y; (D.4)
y≥ x∧ y, (D.5)

and if x≥ z and y≥ z for some z, then x∧ y≥ z.

Suprema and infima are unique (if they exist). Equivalently, a lattice may be de-
fined algebraically (rather than order-theoretically) as a set equipped with two
idempotent, commutative, and associative binary operations ∨,∧ that satisfy

x∨ (y∧ x) = x; (D.6)
x∧ (y∨ x) = x. (D.7)

The corresponding partial ordering is then defined by x≤ y if x∧ y = x.
3. A homomorphism between lattices is a map that preserves ∨ and ∧.

In this case, an isomorphism of lattices may be defined as a bijective homomor-
phism, which automatically preserves ∨ and ∧, (and similarly in all other cases
below). One may also consider order homomorphisms between lattices just re-
garded as posets. This is a weaker notion: a lattice homomorphism is an order
homomorphism, but not necessarily the other way round. However, an order iso-
morphism between lattices turns out to be the same as a lattice isomorphism.

4. A complete lattice is a poset X in which each subset S of X has a supremum
∨

S
(i.e., x ≤ ∨S for each x ∈ S, and x ≤ z for each x ∈ S implies

∨
S ≤ z), as well

as an infimum
∧

S (i.e., x ≥ ∧S for each x ∈ S, and x ≥ z for each x ∈ S implies∨
S ≥ z). Clearly, taking S finite makes a complete lattice (merely) a lattice. A

complete lattice X has a largest element 0 =
∨

X and a smallest element 1 =
∧

X .
5. A lattice is distributive if either one (and hence both) of the following equivalent

properties holds:

x∨ (y∧ z) = (x∨ y)∧ (x∨ z); (D.8)
x∧ (y∨ z) = (x∧ y)∨ (x∧ z). (D.9)

6. A frame is a complete lattice X which is “infinitely distributive” in that

x∧
∨

S =
∨
{x∧ y,y ∈ S}, (D.10)

for arbitrary subsets S ⊂ X. A frame is clearly distributive. Frame homomor-
phism by definition preserve finite infima and arbitrary suprema.
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7. A Heyting algebra is a lattice X with top # and bottom ⊥, equipped with a map
��: X×X → X, called (material) implication that satisfies

x≤ (y �� z) iff (x∧ y)≤ z. (D.11)

A Heyting algebra is automatically distributive. Negation is defined by

¬x≡ (x ��⊥). (D.12)

A Heyting algebra is complete when it is complete as a lattice, in that arbitrary
suprema (and hence also infima) exist. In that case, (D.10) is satisfied, so that a
complete Heyting algebra is a frame. Conversely, a frame becomes a complete
Heyting algebra if we define the implication arrow �� by

y �� z =
∨
{x ∈ X | x∧ y≤ z}. (D.13)

However, frames and complete Heyting algebras drift apart as soon as morphisms
are concerned, for although in both cases one requires maps to preserve the partial
order, maps between Heyting algebras must preserve �� rather than

∨
.

8. An orthocomplementation on a lattice (poset) X with 0 and 1 is a map

⊥: X → X , x→ x⊥, (D.14)

that satisfies:

x⊥⊥ = x; (D.15)

x≤ y iff y⊥ ≤ x⊥; (D.16)

x∧ x⊥ = 0 (x∧ x⊥ exists and equals 0); (D.17)

x∨ x⊥ = 1 (x∨ x⊥ exists and equals 1). (D.18)

A lattice (poset) with an orthocomplementation is called orthocomplemented.
A homomorphism of orthocomplemented lattices (posets) is an lattice (order)
morphism that also preserves the orthocomplementation, as well as 0 or 1.

9. A lattice is called modular if x≤ z implies x∨(y∧z) = (x∨y)∧z for each y (i.e.,
if distributivity holds merely if x≤ z).
Hence modularity is a weakening of the following property:

10. A distributive orthocomplemented lattice is called Boolean. A homomorphism

between Boolean lattices is just a homomorphism of orthocomplemented lattices.
An isomophism of Boolean lattices is a map that preserves ∨, ∧, and ⊥, i.e., an
invertible homomophism.

11. An orthocomplemented lattice (poset) is called orthomodular if x ≤ z implies
(that x∨ z⊥ and hence x⊥ ∧ z exist and that)

x∨ (x⊥ ∧ z) = z. (D.19)
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That is, the modularity axiom holds for y = x⊥ (note that x∨ (x⊥ ∧ z) = z exists
because x≤ x∨ z⊥). For lattices this axiom is equivalent to each of:

• x≤ z and x⊥ ∧ z = 0 imply x = z.
• xCy iff yCx, where xCy if x = (x∧ y)∨ (x∧ y⊥) (i.e., x and y are compatible).

In a Boolean lattice any two elements are compatible, reconfirming the fact
that orthomodularity is a weakening of modularity and hence of Booleanity.
A homomorphism between orthomodular lattices (posets) is a map ϕ that
preserves 0 and ⊥ (and hence preserves 1), and satisfies ϕ(x∨ y) = ϕ(x)∨
ϕ(y) (if x ≤ y⊥). An isomorphism between orthomodular lattices (posets) is
an invertible homomorphism, which is automatically an order isomorphism.

Every Boolean algebra is a Heyting algebra, but not vice versa; a Heyting algebra is
Boolean iff one and hence both of the following equivalent conditions hold:

¬¬x = x (x ∈ X); (D.20)
(¬x)∨ x =# (x ∈ X), (D.21)

which state the law of the excluded middle (famously denied by Brouwer).
The following result will be used implicitly throughout the main text.

Proposition D.2. An order isomorphism of a lattice preserves all suprema and in-
fima that exist. Hence in a complete lattice all suprema and infima are preserved.

An important source of orthocomplemented lattices is provided by (possibly
infinite-dimensional) complex vector spaces V with inner product, cf. Definition
A.1: the elements of X are the orthoclosed subspaces L ⊂ V , i.e., those subspaces
for which L⊥⊥ = L, where L⊥⊥ = (L⊥)⊥, and orthocomplementation is defined by

L⊥ = {v ∈V | ∀w ∈ L : 〈v,w〉= 0}, (D.22)

and the partial ordering is given by inclusion. This yields

L∧M = L∩M; (D.23)
L∨M = (L+M)⊥⊥ = (L⊥ ∩M⊥)⊥, (D.24)

where L+M is the linear span of L and M. We have the Amemiya–Araki Theorem:

Theorem D.3. The lattice of orthoclosed subspaces of an inner product space V is
orthomodular iff V is complete in the norm (A.2) associated to the inner product.

A space X is called totally disconnected if it has no other connected subspaces
than its points (so any larger subspace �= X is the union of two proper clopen sets).

Definition D.4. A Stone space is a totally disconnected compact Hausdorff space.

Any finite set (with the discrete topology) is a Stone space. The best-known example
of an infinite Stone space is the Cantor set {0,1}N with product topology, which in
addition is metrizable and has no isolated points (these properties even characterize
the Cantor set up to homeomorphism). Stone’s Representation Theorem reads:
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Theorem D.5. A lattice L is Boolean iff it is isomorphic to the lattice Clopen(X) of
all clopen subsets of some Stone space X (partially ordered by set-theoretic inclu-
sion), where X is uniquely determined by L up to homeomorphism.

Thus the lattice operations in Clopen(X) are simply geven set-theoretically by

U ∨W =U ∪W ; (D.25)
U ∧V =U ∩W, (D.26)

with orthocomplementation given by set-theoretic complementation (the theorem is
obviously predicated on the fact that such a lattice is Boolean). The space X is called
the Stone spectrum of L, generically denoted by S (L). Just like Gelfand duality,
Theorem D.5 extends to a categorical duality theorem in an obvious way.

The Stone spectrum S (L) of L has the following canonical realizations:

1. Consider the space Pt(L) = Hom(L,2), where 2 = {0,1} is seen as a Boolean
lattice ordered by 0 ≤ 1 (and 0 6= 1), with topology inherited from the product
topology on 2L. That is, the basic opens in Pt(L) are the sets

Ux = {ϕ ∈ Pt(L) | ϕ(x) = 1}, (D.27)

where x ∈ L, and similarly with 1 0. This is a Stone space, with isomorphism

L
∼=→ Clopen(Pt(L)); (D.28)

x 7→Ux. (D.29)

2. Generalizing the case of a power set (cf. Definition B.49), a filter in a (Boolean)
lattice L is a nonempty subset F ⊂ L such that x,y ∈ F implies x∧ y ∈ F , and
y ≥ x ∈ F implies y ∈ F (whence 1 ∈ F). A filter F is proper if F 6= L, which
is the case iff 0 /∈ F . An ultrafilter is a filter that is maximal in the set of all
proper filters, ordered by inclusion. Ultrafilters (i.e. maximal filters) in a Boolean
lattice are the same as prime filters, which are filters for which x∨ y ∈ F implies
x ∈ F or y ∈ F . More generally, in a distributive lattice with 0 any maximal filter
is prime, and the presence of an orthocomplementation also gives the converse
inclusion. Moreover, a filter F in a Boolean lattice is maximal (and hence prime)
iff for any x ∈ L either x ∈ F or x⊥ ∈ F (but not both). For x ∈ L, let

U ′x = {F ∈U (L) | x ∈ F}, (D.30)

where U (L) is the set of all ultrafilters on L. One has U ′x ∩U ′y = U ′x∧y, as well
as U ′x∪U ′y =U ′x∨y, U ′x ⊆U ′y if x ≤ y, and subsets U ′x ⊂U (L) form the basis of a
topology on U (L) whose open sets are sets U ′ ⊆U (L) with the property that for
each F ∈U ′ there is x ∈ L with F ∈U ′x ⊆U ′. This topology makes U (L) a Stone
space, whose basis of clopen sets is given by the U ′x, x ∈ L, with isomorphism
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L
∼=→ Clopen(U (L)); (D.31)

x �→U ′
x. (D.32)

3. Instead of filters, one may consider the dual notion of ideals, obtained by revers-
ing the order (and hence swapping ∧ and ∨). Thus an ideal in L is a subset I ⊆ L
such that x,y ∈ I implies x∨y ∈ I, and y≤ x ∈ I implies y ∈ I (whence 0 ∈ I). An
ideal I is proper if I �= L, which is the case iff 1 /∈ I. A maximal ideal is an ideal
that is maximal in the set of all proper ideals, ordered by inclusion. In a Boolean
lattice, maximal ideals coincide with prime ideals, which are ideals I that do not
contain 1, and where x∧y∈ I implies x∈ I or y∈ I. In a distributive lattice with 0
any maximal ideal is prime. The (set-theoretic) complement of a maximal ideal
is a maximal filter (i.e. an ultrafilter), so that an ideal I in a Boolean lattice is
maximal (and hence prime) iff for any x ∈ L either x ∈ I or x⊥ ∈ I (but not both).
The space I (L) of all maximal (i.e. prime) ideals in L is topologized by basic
opens U ′′

x = {I ∈I (L) | x /∈ I}, and so this time the desired isomorphism is

L
∼=→ Clopen(I (L)); (D.33)

x �→U ′′
x . (D.34)

4. Finally, the set Idl(L) of all ideals in a (Boolean) lattice L is a frame if it is
partially ordered by inclusion (cf. §C.11). One may realize the points of the frame
Idl(L) as its prime elements (cf. Lemma C.85), which are simply the prime (and
hence maximal) ideals in L considered above. Hence Pt(Idl(L)) forms a model of
the Stone spectrum X of L, too. The advantage of this realization is that it gives
a direct description of the topology of X (seen as a frame), namely as

O(X)∼= Idl(L). (D.35)

The relationship between the first three approaches is that for any ϕ ∈ Pt(L), the
set ϕ−1({1}) is a maximal filter in L, whose complement ϕ−1({0}) is a maxi-
mal ideal. This can be shown to give homeomorphisms Pt(L) ∼= U (L) ∼= I (L),
under which the opens Ux, U ′

x, and U ′′
x are mapped to each other. The (contravari-

ant) functorial nature of the Stone spectrum comes out particularly clearly in the
first description: given a homomorphism h : L→ L′, we immediately obtain a map
h∗ : Pt(L′) → Pt(L) by pullback (i.e., h∗ϕ = ϕ ◦ h). In this description the iso-
morphism X

∼=→ Pt(Clopen(X)) is given by x �→ ϕx, where ϕx(U) = 1U (x), with
U ∈ Clopen(X). In the second description, the isomorphism X

∼=→ U (Clopen(X))
is given by x �→ {U ∈ Clopen(X) | x ∈ U}, which also gives the isomorphism
X
∼=→I (Clopen(X)) of the third description as x �→ {U ∈ Clopen(X) | x /∈U}.
Eq. (D.35) follows from Theorem D.5, which implies an isomorphism of frames

O(X)
∼=→ Idl(Clopen(X)); (D.36)

U �→ {V ∈ Clopen(X) |V ⊆U}, (D.37)
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with inverse I �→ ⋃
U∈I U . However, by itself, eq. (D.35) may also be taken as a

constructive version of Stone’s Representation Theorem; the next, non-constructive
step (relying on Zorn’s Lemma) then gives the points of X from Idl(L), cf. §C.11.

To close this brief introduction to lattice theory, we present a general construction
of free distributive lattices, possibly with relations, which will be needed for the
theory of the constructive Gelfand spectrum in §12.2. The main advantage of this
construction is that it can be performed in any topos, as will indeed be done in §12.4.

Definition D.6. The free distributive lattice LS on a set S is the set of irredundant
finite subsets {A1, . . . ,An} of the finite power set P f of S, i.e., Ai ⊂ S, |Ai| < ∞,
n ∈ N, and no Ai is a proper subset of any A j, with lattice operations inductively
generated (using distributivity) from the following singleton cases:

{{s}}∨{{t}}= {{s},{t}}; (D.38)
{{s}}∧{{t}}= {{s, t}}. (D.39)

For {A1, . . . ,An} ∈LS as above, and similarly {B1, . . . ,Bm} ∈LS, these rules imply

{A1, . . . ,An}∨{B1, . . . ,Bm}= {A1, . . . ,An,B1, . . . ,Bm}ir; (D.40)
{A1, . . . ,An}∧{B1, . . . ,Bm}= {Ai∪B j | i = 1, . . . ,n, j = 1, . . . ,m}ir, (D.41)

where the subscript ir means that redundancies in the above sense have been re-
moved by deleting any set on the list that properly contains some other set on the
list. The motivation for this rule is that, using distributivity, any element x of a dis-
tributive lattice can be brought into the (“normal”) form x = x1∨·· ·∨xn, where each
xi = y(1)i ∧ ·· · ∧ y(mi)

i is a finite meet. We then identify Ai with {y(1)i , · · · ,y(mi)
i }, so

that xi =
∧

Ai, and identify {A1, . . . ,An} with x1 ∨ ·· · ∨ xn. If we allow empty sets
(as we do), then LS has both a bottom element ⊥=

∨
/0 and a top element #=

∧
/0.

Consequently, an equivalent description of LS is to first define the set Σ of all
formal expressions inductively defined by the rules: (i) S ⊂ Σ , ⊥ ∈ Σ , and # ∈ Σ ;
(ii) if x ∈ Σ and y ∈ Σ , then x∨y ∈ Σ and x∧y ∈ Σ . Secondly, we quotient Σ by the
equivalence relation generated by all of the basic identities in a distributive lattice,
i.e., the commutativity, associativity, idempotency, and distributivity laws for ∨ and
∧, the rules x∨⊥ = x and x∧# = x, and the absorption law x∨ (x∧ y) = x. The
lattice operations on the quotient are the ones inherited from concatenation on Σ .

As in most free constructions, the map S �→ LS is left adjoint to the forgetful
functor from the category of distributive lattices into Sets. One has a canonical map
i : S → LS, given by i(s) = {s}, with the universal property that any function f :
S→ L from S to some distributive lattice L factors through LS, i.e., there is a unique
lattice homomorphism g : LS → L such that f = g◦ i. Indeed, g may be inductively
generated from the special case g({{s}}) = f (s) using the rules (D.38) - (D.39).

One may enrich this construction by introducing a congruence∼ on LS, e.g., one
generated by relations xi = yi, i ∈ I. In that case, the ensuing quotient LS/∼ exists,
and is universal for homomorphisms f : LS →M of distributive lattices that satisfy
f (xi) = f (yi), i.e., if p : LS →LS/∼ is the canonical projection, there is a unique
homomorphisms of distributive lattices g : (LS/∼)→M such that f = g◦ p.
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D.2 Propositional logic

The topos-theoretical approach to quantum logic discussed in Chapter 12 uses an ad-
vanced version of an elementary construction in algebraic logic that relates classical
propositional logic to Boolean algebras (or lattices), and similarly relates intuition-
istic propositional logic to Heyting algebras. Tough easy to state, these relationships
are conceptually quite deep, based as they are on a separation between syntax and
semantics that is decidedly “modern”, reflecting a view on the nature of mathematics
that would have been completely foreign to e.g. Newton and Euler or even Gauss,
not to speak of Euclid and Archimedes, notwithstanding their use of the axiomatic-
deductive method that has been a defining property of (real) mathematics since its
birth in Plato’s Academy. As expressed by Boole himself, this modern view is:

‘They who are acquainted with the present state of the theory of Symbolic Algebra, are
aware that the validity of the processes of analysis does not depend upon the interpretation
of the symbols which are employed, but solely upon the laws of their combination.’
(Boole, 1847, Preface)

The formalization of mathematics starts with propositional logic, whose notation
consists of the following groups of symbols in terms of which a theory is defined:

1. Purely logical symbols ¬, ∧, ∨, and → (which, because of the axioms they will
be subject to, may later be interpreted as not, and, or, implies, respectively).

2. Non-logical symbols p1, p2, . . . (also written p, p′, . . . or p,q, . . .), which denote
atomic propositions (being the simplest examples of propositions, see below).
The set Σ = {p1, . . .} (at most countable) is called the signature of a theory.

As in arithmetic, there is some ambiguity to be dispelled. This may be done either by
introducing brackets ( , ), subject to obvious rules we omit, or by conventions to the
effect that ¬ “binds” symbols more strongly that ∨ and ∧, which in turn “bind” more
strongly than→. For example, ¬α∨δ → β ∧γ is the same as ((¬α)∨δ )→ (β ∧γ).

In propositional logic (unlike in first-order logic), well-formed formulae and
propositions coincide; typically denoted by Greek letters α,β , . . ., both are defined
as expressions in the above symbols that (iteratively) arise in the following way:

i) Each non-logical symbol p1, p2, . . . present in the signature Σ is a proposition.
ii) If α and β are proposition, then so are α ∧β , α ∨β , α → β , and ¬α .

Also here one may use brackets in the obvious way, e.g., if α is p1 → p2, and β is
p1∧ p3, then (p1 → p2)→ (p1∧ p3) is the same as α → β .

For example, one may check that the following expression is a valid proposition:

(p1 → (p2 → p3))→ ((p1 → p2)→ (p1 → p3)). (D.42)

A final informal symbol we use is ≡, as in α ≡ β , which has no logical meaning,
but states that α is the same as β (e.g., for α ≡ (p1 → (p2 → p3)), consider ¬α).

The notion of a (propositional) theory will be picked up later, but we now inter-
rupt the construction of the syntax of propositional logic and discuss its semantics.
In its most elementary form, this means that there is a valuation on Σ , i.e.,
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V : Σ →{0,1}, (D.43)

also called a truth function, where 0 = false and 1 = true; one often writes α = 1
for V (α) = 1 (i.e., α is true, and α = 0 if α is false (this formally introduces a new
symbol “=”, which however is foreign to propositional logic). Let BΣ be the set of
all propositions (i.e., well-formed formulae) on the given signature Σ . With abuse
of notation (justified by the property Σ ⊂ BΣ ), V uniquely extends to a function

V : BΣ →{0,1}, (D.44)

as follows. First, each V (pi) is fixed by the given function (D.43). Second, the value
of V on compound expressions is (iteratively) determined through the use of truth
tables, which formalize the everyday meaning of the symbols ¬,∧,∨,→:

α ¬α
0 1
1 0

α β α ∧β
0 0 0
0 1 0
1 0 0
1 1 1

α β α ∨β
0 0 0
0 1 1
1 0 1
1 1 1

α β α → β
0 0 1
0 1 1
1 0 0
1 1 1

The first table should be read as follows: if α is false, then ¬α is true, and if α
is true, than ¬α is false. Similarly, the second table means that if α and β are both
false, then so is α∧β , etc. For example, to see if γ ≡ p1∧(¬p2) is true or false given
the valuation p1 = p2 = 0, we first look at the truth table for ¬with α ≡ p2, inferring
from the first row that ¬p2 = 1 als p2 = 0. We subsequently inspect the table for ∧
with α ≡ p1 and β ≡ ¬p2. Since p1 = p2 = 0 is the same as p1 = 0 and ¬p2 = 1,
we look at the second row, obtaining γ = 0. Another example, just involving the
implication symbol →, is (D.42), given e.g. p1 = 1, p2 = 0, and p3 = 1. This is
settled through the following steps, each of which involves the table for→:

1. Taking α ≡ p2 = 0 and β ≡ p3 = 1, the second row gives (p2 → p3) = 1.
2. Taking α ≡ p1 = 1 and β ≡ (p2 → p3) = 1, row 4 yields (p1 → (p2 → p3)) = 1.
3. Similarly, (p1 → p2) = 0 and (p1 → p3) = 1.
4. From these, the second row gives ((p1 → p2)→ (p1 → p3)) = 1.
5. Finally, taking α ≡ (p1→ (p2→ p3))= 1 and β ≡ ((p1→ p2)→ (p1→ p3))= 1

in the fourth row gives

(p1 → (p2 → p3))→ ((p1 → p2)→ (p1 → p3)) = 1. (D.45)

The proposition in (D.42) is actually rather special, in that all truth values for the
atomic propositions (p1, p2, p3) it contains make it true (as is easily checked).

Definition D.7. A proposition ϕ that is true whatever the (un)truth of the atomic
propositions it contains, is called a tautology, denoted by � ϕ .
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For example, α→α is a tautology for any proposition α; this follows from the truth
table for → by replacing β by α , in which case only the first and the fourth rows
are consistent (both yielding 1). Introducing a new logical symbol↔ by stipulating
that α ↔ β is the same as (α → β )∧ (β → α), then one easily proves:

Theorem D.8. The proposition α ↔ β is a tautology iff α and β are either both
true or both false for each joint truth value of the atomic propositions they contain.

Here α and β need not contain the same atomic propositions, but if they do, this
proposition says that α ↔ β is a tautology iff α and β have the same truth table.

Here and in what follows, one should distinguish theorems about logic from the-
orems within logic. The former are themselves derived from logical rules that can be
formalized, as first done by Hilbert and his school in “meta-mathematics”. The lat-
ter is what we now turn to, motivated by the above semantic intermezzo. The syntax
of any logical system, such as propositional logic, is completed by stating axioms
and deduction rules that enable one to prove theorems. In the case of propositional
logic, these are propositions (i.e., expressions correctly formed from rules i) and ii)
above) that can be derived from the axioms and deduction rules in a finite number
of steps, starting with (some of) the axioms and applying (some of) the deduction
rules to the previous step of the proof. The axioms are considered to be theorems,
too. Theorems are often denoted by ϕ , and to show that a proposition ϕ is indeed a
theorem we write / ϕ . Thus the question if / ϕ holds is purely syntactic, and hence
is independent of the truth-value of the atomic propositions pi in ϕ .

This is a baby version of the fundamental idea of Boole mentioned above, that the
possible meaning of mathematical symbols should not affect the validity of mathe-
matical reasoning about them, Nonetheless, there is a consistency requirement (on
the axioms and deduction rules) that one should not be able to derive ϕ if ϕ is se-
mantically false under some truth assignment to the atomic propositions it contains.
In other words, a theorem must be true for any truth assignment to the pertinent
atomic propositions, or, then again, a theorem within propositional logic must be a
tautology, symbolically: / ϕ implies � ϕ (meta-mathematically). This is the sound-
ness condition on any logical system. Conversely, one would like to prove as many
true propositions as possible. Optimally, this is expressed by the completeness con-
dition that � ϕ imply / ϕ . If both hold, i.e., if a system is sound as well as complete,
one has / ϕ iff � ϕ: in (other) words, a proposition is a theorem iff it is a tautology.

Achieving this should be the goal of our axioms and deduction rules. This can
indeed be done in propositional logic (and also in first-order logic, on a suitable in-
terpretation of �, see §D.4). Even this requirement does not fix the axioms and the
deduction rules, although it clearly makes any two such systems equivalent, in the
sense that each leads to the same theorems (namely the tautologies). In particular,
one can switch between axioms and deduction rules (matters like this were first sys-
tematically sorted out by Hilbert and his school, notably Bernays and Ackermann,
partly motivated by the Principia Mathematica of Russell and Whitehead).

One particularly convenient choice has just a single deduction rule, namely:

• Modus ponens: if / α and / α → β , then / β .
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Even so, the axioms of propositional logic may be stated in many different ways.
Although it is even possible to use a single logical symbol (namely the Sheffer
stroke |, called NAND in computer science, where α|β means ¬(α∧β )), we proceed
less radically and initially use two symbols. To this end, it is easy to show that

α ∧β ↔¬(α →¬β ) (D.46)
α ∨β ↔¬α → β (D.47)

are tautologies, so that in principe the symbols ∨ and ∧ are superfluous, in that α∧β
may be regarded as an abbreviation of ¬(α →¬β ), and likewise, α ∨β stands for
¬α → β . A possible choice for the axioms that regulate ¬ and→, is:

/ β → (α → β ); (D.48)
/ (β → (γ → δ ))→ ((β → γ)→ (β → δ )); (D.49)
/ (¬α →¬β )→ ((¬α → β )→ α). (D.50)

The third axiom axiom settles the use of ¬ and, jointly, with modus ponens, justifies
proof by contradiction or reductio ad absurdum: suppose one has established

/ ¬α → β ; (D.51)
/ ¬α →¬β , (D.52)

then (D.50) and modus ponens yield (¬α → β )→ α . Axiom (D.48) and modus
ponens then yield α . Furthermore, as another proof technique (i.e. a theorem about
propositional calculus) one can prove the deduction theorem:

Theorem D.9. If α and (γ1, . . . ,γn) imply β , then (γ1, . . . ,γn) imply / α → β .

Introducing an external implication symbol⇒, such statements are often written:

(α,γ1, . . . ,γ1) / β ⇒ (γ1, . . . ,γ1) / α → β . (D.53)

Writing the external “and” as a comma, one can similarly prove the rules

β → γ,γ → δ ⇒ β → δ ; (D.54)
β → (γ → δ ),γ ⇒ β → δ . (D.55)

As already mentioned, the central result about propositional logic is:

Theorem D.10. For any proposition ϕ , one has / ϕ iff � ϕ .

Proof. We only prove the easy direction. Axioms are tautologies, and modus ponens
preserves truth, in that � α and � α → β imply � β , as follows from the fourth row
of the truth table for α → β . Hence each step in a proof preserves tautologies. �

Nonetheless, the notions of theorem and tautology are quite different conceptually:
the first is defined syntactically, whereas the latter is defined semantically.
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At the other end of the spectrum, we mention an axiom system that involves all
four logical connectives (whilst keeping modus ponens as the only deduction rule):

/ (β ∧ γ)→ β ; (D.56)
/ (β ∧ γ)→ γ; (D.57)
/ β → (γ → (β ∧ γ)); (D.58)
/ β → (β ∨ γ); (D.59)
/ γ → (β ∨ γ); (D.60)
/ (β → δ )→ ((γ → δ )→ ((β ∨ γ)→ δ )); (D.61)
/ β → (γ → β ); (D.62)
/ (β → (γ → δ ))→ ((β → γ)→ (β → δ )); (D.63)
/ ¬β → (β → γ); (D.64)
/ (β → γ)→ ((β →¬γ)→¬β ); (D.65)
/ ¬¬β → β . (D.66)

We now describe the relationship between propositional logic and Boolean alge-
bras. Define an equivalence relation ∼ on the set BΣ of propositions by

ϕ ∼ ψ iff ψ / ϕ and ϕ / ψ, (D.67)

where, as in (D.53), the notation ψ / ϕ means that ϕ can be derived from ψ , which
is the case iff / ψ ↔ ϕ . The ensuing set of equivalence classes

LΣ = BΣ/∼ (D.68)

is called the (classical) Lindenbaum (–Tarski) algebra for the given signature Σ .

Theorem D.11. The set LΣ defined by (D.68) is partially ordered by

[ψ]≤ [ϕ] iff ψ / ϕ. (D.69)

In this ordering, the ensuing poset is a Boolean algebra, with operations

[ψ]∨ [ϕ] = [ψ ∨ϕ]; (D.70)
[ψ]∧ [ϕ] = [ψ ∧ϕ]; (D.71)

[ψ]⊥ = [¬ψ]. (D.72)

Furthermore, the bottom and top elements of LΣ are the equivalence classes of
any contradiction and any tautology, respectively. The Boolean algebra LΣ thus
obtained is the free Boolean algebra BΣ on the set Σ , and hence any valuation
(D.44) - (D.43), induces a homomorphism of Boolean algebras

V : BΣ →{0,1}. (D.73)
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Here the free Boolean algebra BΣ on a set Σ is defined as usual, namely as “the”
Boolean algebra (unique up to isomorphism), along with an injection ι : Σ →BΣ ,
such that any map g : Σ → A, where A is some Boolean algebra, factors through ι
(i.e., there is a unique homomorphism f : BΣ → A such that g = f ◦ ι).

Constructions like this become more interesting for propositional theories, in
which (beyond specifying the signature Σ ) further axioms are added to whatever
system for which Theorem D.10 holds. Let us call the list of such axioms T , where
we assume that the theory is consistent, in that no contradiction can be derived
from T (in propositional logic—as opposed to predicate logic—this question is
decidable). We also assume that T contains no tautologies (which would add no
new theorems). We now write T / ϕ if ϕ can be derived (in a finite number of
steps) from T and the basic axioms and decuction rule(s). Unless T is empty, the
set of theorems will be larger now (e.g., any member of T itself, say / p1, is trivially
a theorem of T ). In order to preserve Theorem D.10, now in the form

T / ϕ iff T � ϕ, (D.74)

we should define the right-hand side appropriately. Call a valuation (D.43), or,
equivalently, the corresponding homomorphism (D.73), a binary model of T if

V (α) = 1, (D.75)

for each α ∈ T ⊂ BΣ (by soundness this is already the case for the axioms of
propositional logic per se). We then say that T � ϕ iff V (ϕ) = 1 (i.e., ϕ is true) in
any binary model of T . On this definition of T �, eq. (D.74), and hence Theorem
D.10 (with T added to the axioms), holds. Moreover, for α,β ∈ BΣ , define

α ∼T β iff T / (α ↔ β ), (D.76)

where the right-hand side stands for (T ,α) / β and (T ,β ) / α . Then define

L(Σ ,T ) = BΣ/∼T , (D.77)

and (partially) order L(Σ ,T ) by [ψ]≤ [ϕ] iff (T ,ψ) / ϕ; as before, this is equivalent
with T / (ψ→ ϕ). This construction obviously generalizes (D.67), etc. Then The-
orem D.11 holds (mutatis mutandis) for L(Σ ,T ). In particular, L(Σ ,T ) is a Boolean
algebra, which can also be shown to have the following universal property.

A model of T in some Boolean algebra B is a map V : Σ → B whose unique
extension V : BΣ → B makes the axioms of T true, i.e. V (ϕ) =# for each ϕ ∈ T
(where # is the top element of B). Note that α �→ [α] is a model of T in L(Σ ,T ).

Theorem D.12. For each model V : Σ → B of T , there is a unique homomorphism
V ′ : L(Σ ,T )→ B of Boolean algebras such that V (α) =V ′([α]) for each α ∈ BΣ .
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D.3 Intuitionistic propositional logic

In view of its importance for quantum mechanics and topos theory, we now briefly
discuss the intuitionistic version of the preceding material on (classical) proposi-
tional logic. Intuitionism in mathematics originated with the Dutch mathematician
L.E.J. Brouwer (1881–1966), who was also one of the most important early con-
tributors to the field of (algebraic) topology. Brouwer held a rather subjective view
of mathematics (sometimes even tending towards solipsism), in which mathematics
primarily resided within the mind of the “creative subject” (perhaps the right trans-
lation of Brouwers’ “scheppend” is: “creating” rather than “creative”). Any means
of communication supposedly weakened this effort, so that Brouwer saw the formal-
ization of mathematics (including logic) as secondary and even potentially danger-
ous; he openly (and polemically) opposed his views to the “formalism” he attributed
to Hilbert, with whom he also fell out personally. A more technical consequence
of Brouwer’s intuitionism was an emphasis on explicit constructions, rejecting not
only proofs by contradiction, but even the abstract existence of mathematical objects
in general (as claimed by the so-called Platonic philosophy of mathematics).

Brouwer’s lasting influence on logic is partly due to his student Arend Heyting
(1989–1980), who was less radical than his teacher and formalized (!) intuitionis-
tic logic analogously to its classical counterpart. In fact, the system (D.56) - (D.65),
with modus ponens, gives axioms for intuitionistic propositional logic, which there-
fore differs from classical propositional logic exclusively by the absence of the law
of the excluded middle (D.66). It is customary in intuitionistic logic to use the purely
logical symbols ∧,∨,→ and ⊥, in terms of which negation is defined by

¬α ≡ α →⊥. (D.78)

In that case, axiom (D.65) is simply replaced by

/ ⊥→ α, (D.79)

and in the presence of (D.56) - (D.64) with (D.79), the axiom that makes the system
classical may now be formulated as the validity of reductio ad absurdum, i.e.,

/ ((α →⊥)→⊥)→ α, (D.80)

which is therefore denied in intuitionistic logic. Similarly, classical rules like:

α ∨¬α; (D.81)
¬¬α ∨¬α; (D.82)
(¬α →¬β )→ (β → α); (D.83)
(α → β )∨ (β → α); (D.84)
¬(¬α ∧¬β )→ (α ∨β ); (D.85)
¬(¬α ∨¬β )→ (α ∧β ), (D.86)
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are invalid in intuitionistic logic, as is, of course, (D.66). Fortunately, as theorems
of intuitionistic propositional logic one does have:

/ α →¬¬α; (D.87)
/ ¬¬¬α ↔¬α; (D.88)
/ (α → β )→ (¬β →¬α); (D.89)
/ ¬α ∨¬β →¬(α ∧β ); (D.90)
/ ¬(α ∨β )→ (¬α ∧¬β ); (D.91)
/ (α → β )→ (¬β →¬α). (D.92)

More generally, Gödel’s negative translation of classical (propositional) logic into
intuitionistic (propositional) logic establishes the fact that if one puts ¬¬ in front of
atomic propositions and recursively replaces α ∨β by ¬(¬α ∧¬β ), which changes
nothing classically, the ensuing proposition is intuitionistically valid. In this sense,
intuitionistic logic is stronger than classical logic, although at first sight it looks
weaker (as is has fewer axioms). Also more generally, one often sees that classi-
cal results whose proofs apparently rely on intuitionistically invalid reasoning are
classically equivalent to intuitionistically valid results. (e.g. Gelfand duality).

A natural (and complete) semantics for intuitionistic propositional logic is given
by Heyting algebras (replacing the Boolean algebras of the classical case). Let IΣ
denote the set of all propositions (i.e., well-formed formulae) on some signature Σ
built from the letters p ∈ Σ and the symbols ∧,∨,→ and⊥, where in formation rule
i) preceding (D.42) we also declare ⊥ to be a proposition, and we omit ¬α at the
end of rule ii), as it is a special case of the preceding part with (D.78). If H is a
Heyting algebra, we may then extend any function V : Σ → H to a function

V : IΣ → H (D.93)

by recursively using the following rules, where • is ∧, ∨, or→ in IΣ and �� in H:

V (⊥) =⊥; (D.94)
V (α •β ) =V (α)•V (β ). (D.95)

Then each axiom ϕ of intuitionistic propositional logic is valid, in that

V (ϕ) =#. (D.96)

Moreover, if Γ is some finite set of propositions, then

Γ / ϕ implies V
(∧

Γ
)
≤V (ϕ). (D.97)

In particular, suppose we a theory T . As in the classical case, we call a valuation
(D.93) a model of T if (D.96) holds for each ϕ ∈ T . It then follows from (D.97)
that each model V of T is sound in that for all propositions ϕ one has the rule:
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T / ϕ implies V (ϕ) =#. (D.98)

That is, ϕ is true in the given model. As in Theorem D.10, soundness and com-
pleteness of Heyting algebra semantics of intuitionistic propositional logic are then
jointly expressed by the following result (where / denotes derivability using only
the intuitionistically valid axioms (D.56) - (D.64) with (D.79), and modus ponens):

Theorem D.13. For any theory T in intuitionistic propositional logic, T / ϕ holds
iff T � ϕ , i.e., V (ϕ) =# for all Heyting algebra models V : IΣ → H.

The classical construction of the Lindenbaum algebra may also be copied by defin-
ing LΣ and L(Σ ,T ) as (D.67) - (D.68), where this time the symbol / defining ∼
through (D.67) or (D.76) is the one using the intuitionistically valid axioms only.
It follows that any Heyting algebra model V : IΣ → H factors through a homomor-
phism LΣ →H of Heyting algebras, just as in the classical case (cf. Theorem D.11).

Kripke models are special Heyting algebra models, which already form a com-
plete semantics for intuitionistic propositional logic. For any poset X , the set

Upper(X) = O(X) (D.99)

of all upper subsets U of X (i.e. y ≤ x ∈ U implies y ∈ U), which by definition
coincides with the set O(X) of open sets in the Alexandrov topology on X , is a
Heyting algebra in the partial order defined by inclusion, with ∨= ∪, ∧= ∩, and

U ��V = {x ∈ X | (↑x)∩U ⊆V}. (D.100)

Given a valuation V : Σ → Upper(X) with associated Heyting algebra homomor-
phism V : IΣ → Upper(X), for any x ∈ X and ϕ ∈ IΣ we write x � ϕ iff x ∈ V (ϕ),
and say that x forces ϕ . Then V (ϕ) =# iff x � ϕ for all x ∈ X , and we have:

x � ϕ and y≥ x imply y � ϕ; (D.101)
x �⊥ for no x ∈ X ; (D.102)
x � ϕ ∧ψ iff x � ϕ and x � ψ; (D.103)
x � ϕ ∨ψ iff x � ϕ or x � ψ; (D.104)
x � ϕ → ψ iff for all y≥ x : y � ϕ implies y � ψ; (D.105)
x � ¬ϕ iff for all y≥ x, y � ϕ is false. (D.106)

Hence these are properties of any homomorphism V : IΣ → Upper(X); originally,
(D.101) - (D.105), which imply (D.106), were taken to be axioms extending a binary
“forcing” relation x � p on X ×Σ to X × IΣ . In topos theory, generalizations of the
rules (D.101) - (D.106), once again theorems rather than axioms, will provide the
Kripke–Joyal semantics of the (intuitionistic) internal logic op toposes (cf. §E.5).
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D.4 First-order (predicate) logic

Propositional logic lacks the structure to describe arithmetic (not to speak of set the-
ory), because it has neither variables—as we shall see, the symbols pi are not vari-
ables but predicate symbols—nor quantification symbols like ‘there exists’ (∃) and
‘for all’ (∀). This defect is remedied by the formalism of predicate logic, also called
first-order logic, which was essentially introduced by Frege and was adopted by
Hilbert’s school as a universal language for mathematics (as they knew it), in which
for example the Zermelo–Fraenkel (ZF) axioms for set theory may be formulated
as a foundation of mathematics (against competitors like the Principia Mathematica
system of Russell and Whitehead, and others). A simple mathematical theory that
can be formalized using classical first-order logic is Peano Arithmetic (PA).

• The notation of a first-order theory consists of symbols from two groups:

1. The purely logical symbols are the familiar symbols ¬,∧,∨,→ from proposi-
tional logic (or some logically independent subset thereof, such as ¬ and→),
supplemented by the equality sign = and the quantification symbols ∀ and ∃
(the latter is in fact superfluous in the classical system discussed here, since,
the combination ∃x defined below is the same as ¬∀x¬).

2. Unlike the ones above, the non-logical symbols (comprising the signature of
the theory) depend on the field of mathematics to be formalized (such as set
theory or arithmetic), but the general format is as follows. One has:
a. Variables a,b,c, . . . ,x,y,z,x1,x2, . . ., assumed countable many at most. For

example, in PA these variables may be thought of as denoting natural num-
bers, whereas in ZF they will be sets, but of course such interpretations do
not form part of the syntax! This warning also applies to the next items.
In many-sorted theories the variables are sorted, in that there is a set
{A,B, . . .} of sorts, and each variable x≡ xA belongs to one of these sorts.

b. Constants, arbitrarily formatted. For example, PA has just one constant,
called 0, to be interpreted as the number zero. Also ZF has just a single
(even superfluous) constant /0, to be interpreted as the empty set.

c. Function symbols f ,g, . . .. Each such symbol has an arity a( f ), which is
a natural number indicating the number of variables it has (as formalized
below). Formally, one allows a( f ) = 0, in which case f is also a constant.
PA has three function symbols, viz. S, +, and ×, with arities a(S) = 1,
a(+)= 2, and a(×) = 2 (these will be interpreted as the successor function
n �→ n+1, addition, and multiplication, respectively). Perhaps surprisingly
(especially in the light of category theory), ZF has no function symbols: in
set theory, functions f : X → Y are defined as special subsets of X×Y .

d. Predicate symbols P, . . . , coming with an arity a(P) ∈ N, too. These will
play a role in the construction of formulae, see below (some authors count
= as a predicate symbol with arity 2, instead of as a purely logical symbol).
PA has no predicate symbols. ZF has one predicate symbol ∈, with arity 2.
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• According to rules we are about to state, from these symbols one subsequently
constructs terms, formulae, and sentences (or closed formulae). Sentences are
at least candidates for theorems, in that one may attempt to prove them (and may
either succeed or fail, the latter even in two possible ways: the sentence may be
false, in that its negation can be proved, or it may be undecidable, in that neither it
nor its negation can be proved—it was Hilbert’s outspoken intention to exclude
the last possibility, which however was famously shown to be unavoidable by
Gödel). For example, both x2 = 1 and ∃x(x2 = 1) are formulae in PA, but only the
latter is a sentence, which is even a theorem. The rules, then, are as follows.

1. Term formation is done by iterating the steps:
a. Any variable xi is a term.
b. Any constant is a term.
c. Any function symbol f and any set of k = a( f ) terms (t1, . . . , tk) jointly

yield a term f (t1, . . . , tk); if a( f ) = 0 this reduces to the previous case.
In PA, this means that S(t) is a term, and that t1 + t2 ≡ +(t1, t2) and t1× t2 ≡
×(t1, t2) are terms (provided t, t1, and t2 are terms). For example, the constant
0 is a terms, and hence S(0) is a term, which one calls 1. Similarly, Sn(0) is
a term called n, where e.g. S2(0) ≡ S(S(0)), etc.). From these, we can make
terms n+m, or n× xi, and subsequently (n+m)× (n× xi), enz.
In ZF, the only terms are /0 and the variables (as ZF lacks function symbols).

2. Formulae are (once again iteratively) constructed from terms using the equal-
ity sign = and the predicate symbols, according to the following rules:
a. If t1 and t2 are terms, then t1 = t2 is a formula.
b. Any predicate symbol P and any set of k = a(P) terms (t1, . . . , ta(P)) jointly

yield a formula P(t1, . . . , ta(P)); if a(P) = 0, then P is a formula by itself.
c. As in propositional logic: if ϕ and ψ are formulae, then so are ¬ϕ , ϕ ∨ψ ,

ϕ ∧ψ , and ϕ → ψ . What is new to first-order logic is that also ∃xϕ and
∀xϕ are formulae, for any variable x (which may or may not occur in ϕ).

In PA, the expression t1 = t2 is a formula (provided t1 and t2 are terms).
In ZF, the expressions t1 ∈ t2 and t1 = t2 are formulae (if t1 and t2 are terms).

3. A variable x occurring in a formula ϕ is called bound if it only occurs via
∀xψi(x) and/or ∃xψi(x), where ψ is a subformula of ϕ; otherwise, x is free. A
formula containing at least one free variable is called open; if x occurs freely
in an open formula ϕ , the latter is sometimes called ϕ(x), and analogously
ϕ(x1, . . . ,xn). If all variables in a formula are bound (or if it contains no vari-
ables at all), then it is said to be closed. A sentence is a closed formula.

• Axioms are, syntactically speaking, special cases of formulae. As for propo-
sitional logic, we may either keep ∧ and ∨, and add adding (D.46) - (D.47)
as axioms, or, equivalently, we may see α ∧ β and α ∨ β as abbreviations for
¬(α → ¬β ) and ¬α → β , respectively. Similarly, we may see ∃ as a derived
symbol, in that ∃xϕ is an abbreviation for ¬∀x¬ϕ .
As in propositional logic, the axioms for predicate logic come in two groups:
purely logical axioms and domain specific axioms. We will state the latter for the
theories PA and ZF in §D.5 below, and now discuss the former (common to both).
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From propositional logic, we adopt (D.48) - (D.50), where α,β ,γ,δ are arbitrary
formulae. These are also Axioms 1–3 of predicate logic, to which one adds:

Axiom 4 : / (∀xϕ(x))→ ϕ(t) for any term t (unless x occurs freely in ϕ through
a subformula ∀yψ where y occurs in t); some authors write ϕ(x/t) for ϕ(t).

Axiom 5 : / (∀x(ϕ → ψ))→ (∀xϕ →∀xψ).
Axiom 6 : / ∀x(x = x).
Axiom 7 : / ∀x∀y((x = y)→ (ϕ(x)→ ϕ(y))) for each formula ϕ that contains the

variable x freely and contains y either freely or not at all.

• The only two deduction rules of predicate logic (for formulae ϕ,ψ) are:

1. Modus ponens: / (ϕ → ψ) and / ϕ imply / ψ .
2. Universal generalization: / ϕ(x) implies / ∀xϕ(x).

These rules also apply to theories, provided that in the second, T / ϕ(x) implies
T / ∀xϕ(x) provided no formula in T used in the proof of ϕ freely contains x.

• A theorem is a sentence ϕ that can be proved form the axioms using the deduc-
tion rules in a finite number of steps. In that case, we write / ϕ .

• A theory T is a set of formulae (assumed contradiction-free, although for e.g. ZF
this cannot been proved within ZF because of Gödel’s Incompleteness Theorem).

• An interpretation of a theory T consists of a nonempty set M (the carrier of
the interpretation), elements [[c]]M ∈ M for each constant c, functions [[ f ]]M :
Ma( f )→M for each function symbol f of arity a( f ), and subsets [[P]]M ⊂M(a(P)

for each predicate symbol P of arity a(P). The interpretation [[ϕ]]M of a formula
ϕ then follows by giving the logical symbols ¬,∧,∨,→, and = their usual mean-
ings of “not”, “and”, “or”, “implies”, and “is equal to”, whereas the range of each
variable x occurring in ∀x or ∃x in taken to be M. If a sentence ϕ is true in this
interpretation, we write M � ϕ . If each axiom of T is true, then we call the given
interpretation a model of T (so that in a model, T / ϕ implies M � ϕ).

Gödel’s Completeness Theorem (to be contrasted with his incompleteness theorem,
which roughly states that any first-order theory that incorporates PA contains unde-
cidable sentences) generalizes Theorem D.10 and eq. (D.74) to first-order logic:

Theorem D.14. A first-order theory T is consistent iff it has a model. In that case,
a sentence ϕ of T is a theorem iff it is true in all models of T .

Propositional logic is a special case of predicate logic, namely by assuming
no variables, constants, and function symbols, and taking the atomic propositions
(p1, . . .) to be predicate symbols with arity zero (or else {0,1}-valued variables).
The rules of term formation in predicate logic then show that propositional logic has
no terms, so that step 2.a above is empty, and step 2.b only yields the pi. These may
be turned into compound expressions by the original uses of propositional logic,
which in this case coincide with the rules of predicate logic (since there are no
variables, ∃xϕ and ∀xϕ are both equivalent to ϕ). Finally, formulae coincide with
sentences, since in the absence of variables, all formulae are closed.
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As a transition to the next appendix, we continue our discussion on intuitionistic
logic started in §D.3. The propositional fragment of first-order intuitionistic logic is
still given by (D.56) - (D.65), in which the connectives ∧,∨,→, and ¬ (or ⊥) are
independent. The equality sign = is treated with suspicion in intuitionism, and hence
is omitted, whilst ∃ can no longer be defined in terms of ∀ through the classical
identification of ∃x with ¬∀x¬. Instead, it is regulated by the two axioms

/(∀x(ϕ → ψ))→ (∃xϕ →∃xψ); (D.107)
/ϕ(t)→∃xϕ(x), (D.108)

subject to the same proviso as Axiom 4 of the classical case, plus a deduction rule:

• ∃-elimination: / ∃xϕ implies / ϕ (provided x is not free in ϕ).

This will be the logic on which the topos theory of the next chapter is based. Scary
examples of intuituitionistically invalid rules involving ∀ and ∃ include:

¬∀x¬ϕ(x)↔∃xϕ(x); (D.109)
∀x¬¬ϕ(x)↔∀xϕ(x); (D.110)
¬¬∃xϕ(x)↔∃x¬¬ϕ(x); (D.111)
(ϕ →∃xψ(x))→∃x(ϕ → ψ(x)), (D.112)

whereas useful intuituitionistically valid theorems containing ∀ and ∃ are, e.g.,

¬∃xϕ(x)↔∀x¬ϕ(x); (D.113)
¬¬∀xϕ(x)↔∀x¬¬ϕ(x); (D.114)
¬¬∃xϕ(x)↔¬∀x¬ϕ(x). (D.115)

Gödel’s negative translation of classical logic to intuitionistic logic extends to first-
order logic: if, further to the manipulations mentioned after (D.92), one also replaces
∃xϕ(x) by ¬∀x¬ϕ(x), then theorems ϕ of classical first-order logic are turned into
theorem of intuitionstic first-order logic. Although we will not use it, we mention
that the notion of a Kripke model also extends from propositional to predicate in-
tuitionistic logic: compared to a classical model carried by a set M, as described
above, we now have a family of (classical!) sets (Mp) indexed by some poset P,
in which constants, functions, and predicate symbols are similarly interpreted as
families [[c]]Mx ∈ Mx, ([[ f ]]Mx : M(a( f )

x → Mx), and ([[P]]Mx ⊂ M(a(P)
x ), such that if

x ≤ y, then Mx ⊆My, [[c]]Mx = [[c]]My , G([[ f ]]Mx) ⊆ G([[ f ]]My) (where G( f ) is the
graph of f ), and [[P]]Mx ⊂ [[P]]My . Further to the forcing rules (D.101) - (D.106) for
intuitionistic propositional logic, there are additional ones for ∃ and ∀, viz.

x � ∃ϕ(x) if there exists m ∈Mx such that x � [[ϕ]]Mx(m); (D.116)
x � ∀xϕ(x) if for all y≥ x and all m ∈My one has y � [[ϕ]]Mx(m). (D.117)

We will revisit these rules in topos theory, see §E.5; indeed, Kripke models for
intuitionistic predicate logic emerge much more naturally in categorical language.
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D.5 Arithmetic and set theory

Completing our running examples (for classical first-order logic), we now give the
theories PA and ZF, starting with the axioms of Peano Arithmetic:

PA1 / ∀x(¬(S(x) = 0));
PA2 / ∀x∀y(S(x) = S(y)→ x = y);
PA3 / ∀x(x+0 = x);
PA4 / ∀x∀y(x+S(y) = S(x+ y));
PA5 / ∀x(x×0 = 0);
PA6 / ∀x∀y(x×S(y) = (x× y)+ x);
PA7 (ϕ(0)∧ (∀x(ϕ(x)→ ϕ(S(x))))→∀xϕ(x), for any formula ϕ(x).

Thinking of the variables in question as natural numbers (which is what Peano him-
self still did), these axioms obviously capture their properties pretty well and may
require no further explanation (except perhaps the last one, which enables the proof
technique of induction). The point, however, is that the axioms only form a syntax;
the natural numbers N (as a set) themselves form a model of PA in the general sense
discussed in the previous section (though by no means the only possible model, and
hence N is called the standard model of PA). In particular, this means that the set
N is assumed to be known (e.g. via ZF, see below), upon which the interpretation
[[ϕ]]N of some formula ϕ in PA is determined by the rules given earlier. In particular:

• The constant 0 is interpreted as the number zero.
• The function (symbol) S is interpreted as S(x) = x+ 1, whilst the functions +

and × are interpreted as addition and multiplication, respectively.
• The range of all variables is taken to be N, i.e., ∀x means “for all x ∈ N”, and ∃x

means “there exists x ∈ N”.

According to the general definition, a sentence ϕ of PA is then called true in the
given model (i.e., in the natural numbers) if [[ϕ]]N is true, in which case we write
N�ϕ . For example, [[∀x∀y(x+y= y+x)]]N means that for all natural numbers x,y∈
N, one has x+y = y+x (which is true, isn’t it). Another example is 1+1 = 2, which
abbreviates S(0)+ S(0) = S(S(0)). The interpretation of [[1+ 1 = 2]]N is given by
1+1 = 2 (which once again is true!). In particular, the above axioms of PA are true
in this interpretation. The key conceptual point here is that (following Hilbert) one
interprets a theory in a domain that is supposed to be known and consistent, so that
it has its own methods of proof (for otherwise the semantic entailment symbol �
would be undefined). In this particular case, the domain is ZF set theory (or at least
its lower echelons); see the comments to axioms ZF7 below.

It is quite instructive to see the crucial role of the seemingly technical axiom PA7.
Suppose we try to define a model of PA in the set Q+ of positive rational numbers
(including zero), so that ∀x means “for all x ∈ Q+”, and ∃x stands for “there exists
x ∈Q+”; the number zero (as the interpretation of the constant 0) and the functions
S, +, and× have their usual meaning, however. Then all of PA1–PA6 hold, but PA7

fails, and hence the given interpretation of PA in Q+ is not a model of PA.
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The axioms of ZF are a trifle more complex than those of PA, but then they are
supposed to describe all of mathematics! We use the following abbrevations:

∀x,y ≡ ∀x∀y; (D.118)
α ↔ β ≡ (α → β )∧ (β → α); (D.119)

x �= y ≡ ¬(x = y); (D.120)
x /∈ y ≡ ¬(x ∈ y). (D.121)

Other notation of ZF will be explained in the text following the axioms, which are:

ZF1 / ∀x,y ((∀z(z ∈ x↔ z ∈ y))↔ x = y) (Extensionality)

ZF2 / ∀x∃y∀z(((z ∈ x)∧ϕ(z))↔ z ∈ y) (Separation)

ZF3 / ¬∃xx ∈ /0 (Empty set)

ZF4 / ∀v,w∃y∀z(z ∈ y↔ (z = v)∨ (z = w)) (Pairing)

ZF5 / ∀x∃y∀z(z ∈ y↔∃w∈xz ∈ w) (Union)

ZF6 / ∀x∃y∀z(z ∈ y↔ z⊂ x) (Power set)

ZF7 / ∃x( /0 ∈ x∧∀y(y ∈ x→ y+ ∈ x)) (Infinity)

ZF8 / ∀u((∀x∈u∃!zϕ(x,z))→∃y∀z(z ∈ y↔∃x∈uϕ(x,z))) (Replacement)

ZF9 / ∀v�= /0∃x∈v∀y(y ∈ x→ y /∈ v) (Regularity)

AC / ∀u∃w((w⊂P(u)×u)∧ (∀x∈P(u)(x �= /0→∃!y∈x < x,y >∈ w))) (Choice)

In ZF2 and ZF8, ϕ(·) is an arbitrary formula with at least the specified free vari-
ables, so that these axioms are more properly thought of as axiom schemes.

These axioms have been the subject of entire monographs, but we will be brief
here. All intuition about the axioms comes from “naive” sets, although the whole
point should be that the axioms stand on their own, and circumvent the problem
of defining sets conceptually (as Frege and Cantor desperately tried to do, much
as Euclid tried to define in vain what a point is, before he was was liberated by
Hilbert). The axioms may be put into two groups: Axioms ZF1, ZF3, ZF9, and
AC are concerned with given sets, whereas nos. ZF2, ZF4, ZF5, ZF6, ZF7, and
ZF8 regulate the way new sets may be constructed from old ones. Here are some
comments on the axioms one by one (which should, however, be seen as a whole).

ZF1 states that a set is determined by its members (which themselves are sets!).
ZF2 is a correct version of the naive idea of Cantor, Dedekind, and Frege that
every property (or predicate) defines a set. If we look at a predicate as a formula
ϕ(z) stating that z has a certain property, the naive idea of these gentlemen was
that y = {z | ϕ(z)} is a set. This idea would be secured by the axiom

∃y∀z(ϕ(z)↔ z ∈ y), (D.122)

which however leads to Russell’s Paradox (in which ϕ(z)≡ z /∈ z).



D.5 Arithmetic and set theory 799

The crucial difference between ZF2 and this naive version is that in ZF one re-
stricts set formation to those z that satisfy ϕ(z) and are a member of some set x
that is already given. By ZF1, the set y defined by ZF2 is unique; it is written as

y≡ {z ∈ x | ϕ(z)}. (D.123)

This notation introduces the familiar brackets {· · ·} from naive set theory, which
are therefore derived concepts not belonging to the notation of ZF. This is also
true for most of the other symbols from naive set theory (except ∈, which is a
predicate symbol in ZF). For example, for arbitrary “sets” x and v (which so far
are really just variables in ZF), we introduce x∩v as a name (i.e., an abbreviation)
for the set y defined by taking ϕ(z) in ZF2 to be z∈ v. Using the notation (D.123),
this defines the symbol ∩ (for “intersection”) by

x∩ v≡ {z ∈ x | z ∈ v}. (D.124)

ZF3 states that /0, which was the only constant in ZF, has no elements. According
to ZF1 this set is unique, so that /0 may be thought of as the empty set. In partic-
ular, ZF3 implies that there are sets in the first place (instead of defining it as a
constant, one could alternatively introduce the symbol /0 at this stage).
An equivalent form of ZF3 is: / ∀x¬(x ∈ /0), also written as ∀xx /∈ /0.

ZF4 states that for given sets v and w, there exists a set y with exactly those two
members. We write this y as y = {v,w}, which uses brackets {· · ·} consistently:
in ZF2 take ϕ(z) to be (z = v)∨ (z = w) and take x to be the y just considered.
This may be iterated, so that we may write {x1, . . . ,xn} for the set y that satisfies

∀x1,...,xn∃y∀z(z ∈ y↔ (z = x1)∨·· ·∨ (z = xn)); (D.125)

this set is unique by ZF1. Using the notation from ZF2 we may then write

{x1, . . . ,xn} ≡ {z ∈ y | (z = x1)∨·· ·∨ (z = xn)}. (D.126)

ZF5 postulates the existence of a set y whose elements are the elements of x. In
this axiom, the generic notation

∃w∈xψ ≡ ∃w((w ∈ x)∧ψ), (D.127)

is used, where ψ is some formula, which in ZF5 is z∈w. We write y=∪x, which
defines the symbol ∪, i.e.,

∪x≡ {z ∈ y | ∃w∈xz ∈ w}, (D.128)

where y = ∪x is the set whose existence is guaranteed by ZF5. In the special
case x = {x1, . . . ,xn}, we write

x1∪ ·· ·∪ xn ≡ ∪{x1, . . . ,xn}. (D.129)
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ZF6 calls for each x to have a power set y. The notation

z⊂ x≡ ∀y(y ∈ z→ y ∈ x), (D.130)

defines the symbol ⊂; note that z = x is allowed, so that ⊂≡⊆. As usual, the set
y is unique due to ZF1, and is denoted by P(x), whose elements are therefore
the subsets z of x. We may write this à la (D.123) as (y being the set from ZF6):

P(x)≡ {z ∈ y | z⊂ x}. (D.131)

ZF7 postulates the existence of a set y whose elements are

/0, /0+ = { /0},{ /0}+ = { /0,{ /0}},{ /0,{ /0}}+ = { /0,{ /0},{ /0,{ /0}}}, . . . (D.132)

in which the notation
y+ ≡

⋃
{y,{y}}= y∪{y}, (D.133)

is underwritten by ZF5. Hence the elements of y+ are the elements of y, supple-
mented with the single element y. Following von Neumann, the sets in (D.132)
are called 0̇, 1̇, 2̇, 3̇, . . ., respectively, where 0̇ is identified with the empty set, and
n> 0 is realized in a very specific way. Thus ZF7 states the existence of a set con-
taining 0̇, 1̇, 2̇, 3̇, . . .. The intersection of all sets with this property is the smallest
set containing 0̇, 1̇, 2̇, 3̇, . . .; this is the smallest infinite set, called ω . In the stan-
dard model of ZF (see below), ω is (a copy of) the set N of natural numbers.

ZF8, in which ϕ should not contain y, states that if some formula ϕ(x,z) assigns
exactly one z to any given x, then these z form a set, provided the variables x form
a set (i.e., u). Such a formula ϕ is really a function f so that f (x) = z, and hence
this axioms states that the image of any set under some function is again a set.
Using the notation (D.123), we then have

f (u) = {z ∈ y | ∃x∈uϕ(x,z)}. (D.134)

ZF9 is the most contrived axiom in ZF, stating that every nonempty set v contains
some element x disjoint from x. Its formulation uses the generic abbreviation

∀v�= /0ψ ≡ ∀v((∃zz ∈ v)→ ψ) (D.135)

Using the symbol ∩ from (D.124), one easily checks that ∀y(y ∈ x → y /∈ v) is
the same as x∩ v = /0, in terms of which ZF9 reads

/ ∀v�= /0∃x∈v (x∩ v = /0). (D.136)

This implies x /∈ x, which avoids all kinds of paradoxes (though not Russell’s,
which was taken care of by ZF2). Moreover, ZF9 enables transfinite induction.
AC warrants the choice of an element of each nonempty subset of any set. Indeed,
rewriting the expression ∃!y∈x(x,y) ∈ w as ∃!y∈u((x,y) ∈ w∧ y ∈ x), AC reads



D.5 Arithmetic and set theory 801

/ ∀u∃w((w⊂P(u)×u)∧(∀x∈P(u)(x �= /0→∃!y∈u(x,y)∈w∧y∈ x))). (D.137)

As we shall see shortly, this shows that there exists a function

f : P(u)−→ u (D.138)

that maps x ∈P(u) to f (x) ∈ u, such that ∀x∈P(u)(x �= /0→ f (x) ∈ x). Although
∃ f is undefined in (first-order) ZF, one may therefore informally rewrite AC as

∀u∃ f :P(u)−→u∀x∈P(u),x �= /0 f (x) ∈ x. (D.139)

We now formally define functions, which, as already noted, are curiously absent
in ZF (which lacks function symbols). This relies on the following theorem of ZF:

/ ∀u,v∀x,y ((x ∈ u)∧ (y ∈ v))→{{x},{x,y}} ∈P(P(u∪ v)). (D.140)

We now introduce the abbreviation

< x,y >≡ {{x},{x,y}}, (D.141)

which by (D.140) is an element of the double power set P(P(u∪ v)) (assuming
that x ∈ u and y ∈ v); this notation makes < x,y > an ordered pair, as opposed to
{x,y}= {y,x}. The (cartesian) product of two sets u and v is now defined as the set

u× v≡ {z ∈P(P(u∪ v)) | ∃x∈u∃y∈vz =< x,y >}, (D.142)

i.e., in ZF2 we substitute x � P(P(u∪ v)) as well as

ϕ(z)� ∃x∈u∃y∈v z =< x,y >, (D.143)

and denote the (unique) set y thus defined by u× v. Informally, one often writes

u× v = {< x,y >| x ∈ u,y ∈ v}. (D.144)

We are now in a position to define functions in ZF set theory:

Definition D.15. A function f : u→ v is a subset G f ⊂ u× v for which

∀x∈u∃!y∈v < x,y >∈ G f . (D.145)

Here ∃!y∈vψ(y) abbreviates

∃y((y ∈ v)∧ (∀z(ψ(z)↔ z = y))), (D.146)

cf. (D.127)), which yields (D.145) upon the substitution ψ(y)�< x,y >∈ G f .
More generally, one has

∃!yψ(y)≡ ∃y∀z(ψ(z)↔ z = y). (D.147)



802 D Lattices and logic

Hence in ZF set theory a function f is defined by (or even identified with) its
graph G f , which closes the historical circle: Newton clearly looked at what we now
call functions through their graphs, upon which Euler began to assign some value
f (x) ∈ v to x ∈ u (though always through some concrete prescription). The 19th
century brought the abstract idea of a function as a map between sets, which, as we
just saw, ZF set theory replaced by the view that a function is defined by its graph.

Compared to the standard interpretation of PA in the natural numbers, which was
a special case of the general notion of a model described in §D.4, the standard model
of ZF is unusual, in that its carrier is not a set (but a so-called class), called the set-
theoretic universe (or cumulative hierarchy) V, whose construction was first given
by none other than von Neumann, whose name already pervaded this book. We
will not go into the details of this construction except by noting that—much as the
natural numbers may be built from zero by repeated use of the successor function
S—the universe V is constructed from the empty set /0 by “repeated” use of:

• The successor operation V �→V+ ≡V ∪{V}, cf. ZF7.
• The union operation V �→ ∪V , cf. ZF5.
• The power set operation V �→P(V ), cf. ZF6.

However, what is really meant here by “repeated” defies imagination (and may drive
one crazy); fortunately, most of mathematics only uses the lower echelons of V.

Furthermore, interpreting the constant /0 by the usual empty set (with the same
name), the interpretation ε of ∈ in V needs to be defined. This is done as follows:

1. There exists no set Z such that Zε /0.
2. One has ZεV+ iff ZεV or Z =V .
3. One has Zε

⋃
V iff there exists WεV with ZεW .

4. One has ZεP(V ) iff Z ⊆V , where we say Z ⊆V iff for all Yε Z one has YεV .

Here V , Y , and Z are sets in V. Applying these rules “iteratively” (see, however, the
above comment on “repeated”), for all sets X and Y in V, it can in principle be estab-
lished whether or not XεY , so that the symbol ε is defined within V. Having access
to the universe V, ε , and the empty set /0, one may then define the interpretation
[[ϕ]]V of some formula ϕ of ZF in V by the following rules (cf. PA and N):

1. The range of all variables is V, i.e., ∀xϕ(x) means that ϕ(V ) holds for all V ∈ V.
2. The constant /0 is interpreted as the empty set.
3. The predicate symbol ∈ is interpreted as the membership relation ε .

A sentence ϕ in ZF is then true, denoted by V � ϕ , if [[ϕ]]V is true. For example, all
axioms of ZF are true in this interpretation (which is by no means trivial!).

In particular, in this model we interpret ṅ (see the explication of ZF7 above) as
the n-fold iteration of the successor operation to /0, i.e., ṅ = /0+···+ (with n pluses),
seen as an element of V, and recover the standard model of the natural numbers
(and hence the carrier of the standard interpretation of PA) as N= ∪nṅ, which is the
intersection of all sets in V that contain all sets ṅ (for any finite n).
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Notes

The “modernist” transformation of mathematics led by Hilbert, including its com-
plete prehistory and aftermath, is delightfully described in Gray (2008). The revo-
lutionary nature of Hilbert’s views, which started with his influential book Grund-
lagen der Geometrie from 1899, is nowhere clearer than from his correspondence
with Frege (cf. Gabriel et al, 1980), who, though one of the fathers of the formal-
isation of mathematics (specifically through first-order logic), infuriated Hilbert by
stating that the latter did not bother to define the notions of “point” or “line” because
Hilbert assumed these to be familiar to his readers. But no, quite to the contrary:

‘Hier liegt wohl der Cardinalpunkt des Misverständnisses (. . . ) Ich will nichts als bekannt
voraussetzen (. . . ) Wenn ich unter meinen Punkten irgendwelche Systeme von Dingen, z.B.
das System: Liebe, Gesetz, Schornsteinfeger . . . , denke und dann meine sämtlichen Ax-
iome als Beziehungen zwischen diesen Dingen annehme, so gelten meine Sätze, z.B. der
Pythagoras, auch von diesen Dingen.’ (Hilbert to Frege, 29-12-1899).1

This may be an exaggeration, however. Einstein probably came closer to the truth:

‘An dieser Stelle nun taucht ein Rätsel auf, das Forscher aller Zeiten so viel beunruhigt hat.
Wie ist es möglich, daß die Mathematik, die doch ein von aller Erfahrung unabhängiges
Produkt des menschlichen Denkens ist, auf die Gegenstände der Wirklichkeit so vortre-
fflich paßt? Kann denn die menschliche Vernunft ohne Erfahrung durch bloßes Denken
Eigenschaften der wirklichen Dinge ergründen?

Hierauf ist nach meiner Ansicht kurz zu antworten: Insofern sich die Sätze der Mathematik
auf die Wirklichkeit beziehen, sind sie nicht sicher, und insofern sie sicher sind, beziehen
sie sich nicht auf die Wirklichkeit.’ (Einstein, 1921).2

The great irony is that Hilbert’s call for abstraction, which at first sight decoupled
mathematics from its origins in physics and other applications, in fact very rapidly
led to the deepest applications of mathematics to physics so far, such as the use of
(pseudo) Riemannian geometry in general relativity, and the use of Hilbert (!) spaces
and operator algebras in quantum mechanics. In the present book, a high point of this
paradox is the use of Grothendieck toposes (cf. Appendix E) in quantum mechanics
(see Chapter 12), especially because Grothendieck himself almost made a sport of
extreme abstraction, partly motivated by internal mathematical needs in algebraic
geometry, but undoubtedly also by his indignation about the use of (mathematical)
physics for military purposes (which put him diametrically against von Neumann).

1 This is surely the central point of the misunderstanding (. . . ) I do not want to assume anything
as known (. . . ) If I interpret my notions by arbitrary things, for example, by the system: love, law,
chimney sweeper, and subsequently interpret my axioms as relations between these things, then
my theorems, like the one of Pythagoras, hold about these things. (Translation by the author)
2 At this point an enigma presents itself, which in all ages has agitated inquiring minds. How
can it be that mathematics, being after all a product of human thought which is independent of
experience, is so admirably appropriate to the objects of reality? Is human reason, then, without
experience, merely by taking thought, able to fathom the properties of real things?

In my opinion the answer to this question is, briefly, this: as far as the propositions of mathe-
matics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.
(Translation: Sonja Bargmann)
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§D.1. Order theory and lattices

For lattice theory in general and Stone’s Theorem see Givant & Halmos (2009),
Davey & Priestley (2002), and Johnstone (1982). For (D.36) - (D.37) see Theorem
33 in Chapter 35 of Givant & Halmos (2009).
§D.2. Propositional logic

Halmos & Givant (1998) is an elementary exposition of the connection between
Boolean lattices and logic. Other useful (propositional as well as first-order) logic
texts include Bell & Machover (1977), Johnstone (1987), Kaye (2007), and Mendel-
son (2010).
§D.3. Intuitionistic propositional logic

Key writings on intuitionism (at least from the Dutch school) include Brouwer
(1907, 1918, 1975), Heyting (1956) and Troelstra & van Dalen (1988). See also
Dummett (2000) for a view from abroad. Our treatment of Kripke models for intu-
itionisistic propositional logic is taken from Goldblatt (1984) and Palmgren (2009).

§D.4. First-order (predicate) logic

For the history of first-order logic see Grattan-Guinness (2000) and Mancosu,
Zach, & Badesa (2004), plus innumerable books about Frege, Russell, Hilbert, etc.
It is regrettable that the close companionship of mathematics and philosophy at the
time, whose cross-fertilization has given us both the modern foundations of mathe-
matics on the one hand and analytic philosophy on the other, has not lasted.
§D.5. Arithmetic and set theory For PA see e.g. Kaye (1991), which focuses on
non-standard models. The bible of ZF set theory is Jech (2006).



Appendix E

Category theory and topos theory

This appendix gives a brief introduction to category theory, moving towards the par-
ticular categories that are of interest to quantum theory (viz. categories of presheaves
and sheaves) as quickly as possible (but not more quickly). However, even the basic
setup of category theory is already relevant for e.g. the conceptually most satisfac-
tory formulation of Gelfand duality, as described below Theorem C.23 (see also
Theorem C.45), and likewise of Stone duality, see Theorem D.5. Otherwise, this
material will only be used in Chapter 12 on quantum logic. We omit most proofs.

Categories were originally introduced by Eilenberg & Mac Lane (1945) in order
to define natural transformations, through which they formalized (and explained)
the intuition that certain isomorphism in mathematics are “natural” or “canonical”
(like the one between the second dual V ∗∗ of a finite-dimensional vector space V and
V itself, as opposed to the isomorphism between V ∗ and V ). Natural transformations
are predicated on categories and functors, i.e. maps between categories, which are
analogous to continuous functions between topological spaces, and in turn give rise
to new categories, similarly to functions giving rise to function spaces in functional
analysis. Initially meant to organize certain fields of mathematics in a systematic
way (such as algebraic topology and homological algebra), categories soon became
objects of study in their own right. As such, the basic vocabulary of category theory
is completed by defining adjoint functors (invented by Kan in 1958) and (co)limits.

Toposes are categories with enough structure to support the interpretation of first-
order (and even higher-order) intuitionistic logic, similar to set theory providing
semantics for classical predicate logic, which in turn generalizes the relationship
between propositional logic and Boolean algebra, cf. §D. In this respect, the pres-
ence of a truth object (i.e. subobject classifier) partly explains their potential rel-
evance to quantum mechanics. However, toposes were introduced in the 1960s by
Grothendieck from a completely different motivation, namely algebraic geometry,
and were originally seen by him as generalizations of topological spaces. This as-
pect plays an equally important role for quantum mechanics, and hence we quote:

‘A startling aspect of topos theory is that it unifies two seemingly wholly distinct mathe-
matical subjects: on the one hand, topology and algebraic geometry, and on the other hand,
logic and set theory.’ (Mac Lane & Moerdijk, 1992, p. 1).

© The Author(s) 2017
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E.1 Basic definitions

The definition of a category emphasizes the idea that one is at least as interested
in the maps between objects as in the objects themselves. The only complication
(which we ignore) is the uses of classes; categories are often too big to be sets, and
hence they require an axiomatization of mathematics different from standard ZF set
theory (such as von Neumann–Bernays–Gödel set theory or algebraic set theory).

Definition E.1. A category C= (C1,C0, i,s, t,m) consists of:

• A class C0 of objects.
• A class C1 of arrows (also called morphisms).
• Maps s : C1 → C0 (the source map), t : C1 → C0 (the target map), i : C0 → C1

(the identities map), and m : C2 = C1×C0 C1 → C1 (multiplication), where

C1×C0 C1 = {( f ,g) ∈ C1×C1 | s( f ) = t(g)}, (E.1)

such that, writing f g≡ m( f ,g) and idx ≡ i(x),

s( f g) = s(g); (E.2)
t( f g) = t( f ); (E.3)
( f g)h = f (gh); (E.4)
s(idx) = t(idx) = x; (E.5)
f ids( f ) = idt( f ) f = f . (E.6)

Note that (E.4) is well defined by virtue of (E.2) - (E.3). We often write x
f→ y or

f : x→ y or, even better in principle but cumbersome in practice (see below), y
f← x,

when f ∈ C1 satisfies s( f ) = x and t( f ) = y, and interpret f as an arrow from x to
y, so that idx is an arrow from x to x. Composition f ◦ g ≡ f g of arrows is defined
whenever s( f ) = t(g) (so that on paper the preferred direction of an arrow is from
right to left!). Arrow composition is associative whenever defined, and each i(x) acts
as an identity under this composition operation. The class of all arrows from x to y
in a category C is sometimes written as HomC(x,y), or simply as Hom(x,y), when C
is unambiguous. A category is called small if both C0 and C1 are sets (otherwise, a
category is called large), and locally small if for each x,y∈ C0 the class HomC(x,y)
is a set (although C1 itself may be a proper class). All categories used in this book
are locally small (though not necessarily small). Here are some examples.

• Sets has sets as objects and functions as arrows. Sets is a large category, but it
follows from the ZF axioms for set theory that it is locally small (as promised).

• Any set X with a preorder ≤ (and hence any poset) defines a category X where
X0 = X and Hom(x,y) contains a unique arrow iff x≤ y, being empty otherwise.

• A small category in which each arrow is invertible is called a groupoid; see
§C.16. In particular, any group may be seen as a category with just a single object.
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Categories come with an intrinsic notion of isomorphism: one calls two objects
x,y ∈ C0 isomorphic, written x∼= y, when there exist arrows f : x→ y and g : y→ x
such that f g = idy and g f = idx. For example, two sets are in bijective correspon-
dence iff they are isomorphic objects in Sets, two topological spaces are homeomor-
phic iff they are isomorphic in the category of topological spaces and continuous
maps, and two C*-algebras are isomorphic in the sense of Definition C.2 iff they are
isomorphic in CA, where we define the following useful categories of C*-algebras:

• CA, which has C*-algebras as objects and homomorphims as arrows.
• CAm, again having C*-algebras as objects, but now with nondegenerate homo-

morphims into the multiplier algebra as arrows (cf. Theorem C.76 etc.).
• CAn, with C*-algebras and nondegenerate homomorphims (cf. Definition C.42).
• CA1, with unital C*-algebras as objects and unital homomorphims as arrows.
• CCA, CCAm, CCAn, and CCA1, i.e. the full subcategories of CA, CAm, CAn,

and CCA1, respectively, in which the objects are commutative C*-algebras.

Here the notion of a subcategory C⊂ D is the obvious one, i.e. C0 ⊂ D0, C1 ⊂ D1,
and C is a category by itself (in particular, C is closed under the maps s, t, i,m). We
say that C is a full subcategory of D if HomC(x,y) = HomD(x,y) for all x,y ∈ C0.

We now define the “canonical” maps between categories (which, in the spirit of
the subject, are often more important than the underlying categories themselves!).

Definition E.2. Let C and D be categories. A covariant functor or simply functor

F : C→ D consists of a pair of maps Fi : Ci → Di, i = 0,1, such that:

iD ◦F0 = F1 ◦ iC; (E.7)
sD ◦F1 = F0 ◦ sC; (E.8)
tD ◦F1 = F0 ◦ tC; (E.9)
F1( f g) = F1( f )F1(g) ( f ,g ∈ C2), (E.10)

where iD : D0 → D1 is the inclusion map in D, etc.
A contravariant functor F : C→ D is a pair Fi : Ci → Di, i = 0,1, such that:

iD ◦F0 = F1 ◦ iC; (E.11)
sD ◦F1 = F0 ◦ tC; (E.12)
tD ◦F1 = F0 ◦ sC; (E.13)
F1( f g) = F1(g)F1( f ) ( f ,g ∈ C2). (E.14)

It follows that F0 is determined by F1, since i is injective, but nonetheless it is useful
to keep them apart. The use of contravariant functors may be avoided by introducing
the opposite category Cop of C, which has the same objects and arrows as C, but the
latter going in the opposite direction (i.e. sCop = tC, etc.). For example, if C = X is
a preorder, in the category Xop the partial order is reversed. A contravariant functor
F : C→ D is then obviously the same thing as a covariant functor F : C→ Dop, or,
equivalently, F : Cop → D. This is very important for us, because Gelfand duality is
based on contravariant functors and hence on opposite categories; see below.
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Definition E.3. A natural transformation between two functors F : C→D and G :
C→D (that are either both covariant or both contravariant) is a map τ : C0 →D1,
written x �→ τx, such that sD(τx) = F0(x) and tD(τx) = G0(x)— in other words, τ is
a collection of maps τx : F0(x)→ G0(x) indexed by x ∈ C0—such that the following
diagram commutes for all arrows f : x→ y:

F0(x) G0(x)

F0(y) G0(y)

τx

F1( f ) G1( f )

τy

(E.15)

Two functors F and G as above are called naturally isomorphic, written F ∼= G,
when there exists a natural transformation τ between them for which all arrows τx
are invertible (i.e., are isomorphisms).

It follows that if F and G are naturally isomorphic, then F0(x)∼=G0(x) for all x∈C0,
but this condition is not sufficient by itself to render F and G naturally isomorphic,
for the isomorphisms τx between F(x) and G(x) must be compatible with the arrows,
as expressed by the diagram in the above definition; this is even the whole point!

Definition E.3 clarifies the idea that the double dual V ∗∗ of any finite-dimensional
vector space V is isomorphic to V in a “natural” way: namely, the functor ∗∗ from
the category of finite-dimensional vector spaces (over C) to itself (with linear maps
as arrows) is naturally isomorphic to the identity functor through the natural trans-
formation whose components τV : V → V ∗∗ are given by the “Gelfand transform”
v �→ v̂, where v̂(θ) = θ(v) for θ ∈V ∗. In contrast, the dual V ∗ is isomorphic to V in
an “unnatural” way, in that any isomorphism depends on the choice of a basis.

Definition E.4. Two categories C,D are called equivalent, written C ) D, when
there exist (covariant) functors F : C→ D and G : D→ C such that F ◦G ∼= idD
and G◦F ∼= idC. Similarly, C and D are called dual when there exist contravariant
functors with the same properties, i.e., if C and Dop are equivalent.

Here idC is the identity functor on C, etc. Spelling out what this means, using Defi-
nition E.3, yields the commutative diagrams

G0 ◦F0(x) x

G0 ◦F0(y) y

τx

G1◦F1( f ) f
τy

(E.16)

for all f : x→ y in C1, where each τx is invertible, and also for all f ′ : x′ → y′ in D1,

F0 ◦G0(x′) x′

F0 ◦G0(y′) y′

τ ′x′

F1◦G1( f ′) f ′
τ ′y′

(E.17)
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We are now in a position to give a categorical (re)formulation of Gelfand duality.
Further to the categories of commutative C*-algebras CCA1, CCAn, and CCAm
defined earlier in this section, this involves the following categories of spaces:

• CH, i.e. the category of compact Hausdorff spaces and continuous maps.
• LCHp, with locally compact Hausdorff spaces and proper continuous maps.
• LCH, the category of locally compact Hausdorff spaces and continuous maps.

Theorem E.5. There are categorical equivalences (i.e., dualities if ‘op’ is omitted):

CCA1 ) CHop; (E.18)
CCAn) LCHpop; (E.19)
CCAm) LCHop. (E.20)

Proof. In the proof of Theorem C.23, the maps evX provide a natural isomorphism
between the functors idCH and Σ ◦C from CH to itself, whilst the maps GA perform
the same job for the functors idCCA1 and C ◦Σ from CCA1 to itself; the naturality
properties (C.40) and (C.41) precisely express commutativity of the above diagrams.
Likewise for the other two cases, which restate Theorems C.45 and C.76. �
Similarly, Stone’s Theorem D.5 is best seen categorically, stating that the category
of Boolean lattices (with homomorphisms preserving ∨, ∧, and ⊥ as arrows) is
dual to the category of Stone spaces (as a full subcategory of CH). With hindsight,
Stone’s Theorem (which predated category theory) was the first such duality result.

Definition E.4 may be strengthened by replacing the isomorphisms

F ◦G∼= idD; (E.21)
G◦F ∼= idC, (E.22)

by equalities, i.e.,

F ◦G = idD; (E.23)
G◦F = idC. (E.24)

In that case, the categories C and D are called isomorphic. However, this is less rele-
vant than the following weakening of the first two conditions, called an adjunction:

Definition E.6. Two functors F :C→D and G :D→C form an adjoint pair if there
exist natural transformations η from idC to G◦F (called the unit of the adjunction),
and ε from F ◦G to idD (called the counit of the adjunction), such that the following
diagrams of natural transformarions (i.e. the triangle identities) commute:

F FGF

F

F0◦η

id
ε◦F0

G GFG

G.

η◦G0

id
G0◦ε (E.25)

We write F 0G, and say that F is left-adjoint to G, or that G is right-adjoint to F.
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It is easy to see that if they exist, left or right adjoints are unique up to isomorphism.
If we assume that C is locally small (in that all classes HomC(x,y) and HomD(x′,y′)
are sets), then the above definition states that the functors HomD(F(−),−) and
HomC(−,G(−)), both defined from Cop×D to Sets, are naturally isomorphic. In
other words, for each x ∈ C0 and y′ ∈ D0, we have a bijection:

HomD(F(x),y′)∼= HomC(x,G(y′)) (E.26)

that is natural in both variables x and y′ (i.e., for each y′ ∈ D0, the functors
HomD(F(−),y′) and HomC(−,G(y′)) from Cop to Sets are naturally isomorphic,
and for each x ∈ C0, the functors HomD(F(x),−) and HomC(x,G(−)) from D to
Sets are naturally isomorphic). Indeed, the natural bijection (E.26) is given by(

F(x)
f ′−→ y′

)
�→
(

x
ηx−→ GF(x)

G( f ′)−→ G(y′)
)

; (E.27)(
x

f−→ G(y′)
)
�→
(

F(x)
F( f )−→ FG(y′)

εy′−→ y′
)
. (E.28)

This may even be interesting if C= D, and hence F : C→ C and G : C→ C. For
example, a Heyting algebra H (seen as a posetal category) is home to an adjunction

(−)∧ y 0 y �� (−), (E.29)

for any fixed y ∈ H, where, writing (E.29) as F 0 G as usual, we put

F0(x) = x∧ y; (E.30)
G0(x) = (y �� x). (E.31)

Definition E.4 of an equivalence of categories involves an adjunction F 0 G
whose unit and counit are both natural isomorphisms, as opposed to mere natural
transformations, as in Definition E.6 of an adjunction. In that case, G is an inverse
to F up to isomorphism of objects (which still falls short of an exact inverse, which
as mentioned would lead to the less important notion of isomorphism of categories).
But even for an adjunction, one may regard G as a weak kind of inverse to F , which
allows one to move between categories in the direction opposite to F .

Other than equivalences of categories, the traditional examples of adjunctions
yield left adjoints to so-called forgetful functors, which strip some class of math-
ematical objects of (some of) its structure. For example, if Grp is the category of
groups and homomorphisms, the forgetful functor G : Grp→ Sets sends a given
group to its underlying set; this functor has a left adoint F : Sets→ Grp that assigns
the free group on a set X to X . Similarly for vector spaces, Boolean algebras, etc.

We now move on to limits and colimits, whose general definition we precede by
a few special cases. These abstract the corresponding constructions from Sets (and
hence pave the way for topos theory, which resembles set theory in various ways),
so that for the right “feeling” we switch to labeling objects in a category by capitals.
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Definition E.7. Let C be a category (for simplicity assumed to be locally small).

• A product of a pair X ,Y ∈ C0 is an object X×Y ∈ C0, with arrows p1 : X×Y →
X and p2 : X×Y →Y , such that for all arrows q1 : Z → X and q2 : Z →Y , there
is a unique arrow Z → X×Y making the following diagram commute:

Z

X X×Y Y

q1 q2∃!

p1 p2

(E.32)

If each pair of objects in C0 has a product, C is said to have binary products.
The next part of the definition relies on the following fact about products, which
is easy to prove: given f : X → X ′ and g : Y → Y ′ in C1, there is a unique arrow

f ×g : X×Y → X ′ ×Y ′ (E.33)

such that the following diagram commutes:

X X×Y Y

X ′ X ′ ×Y ′ Y ′
f

p1 p2

∃! f×g g

p′1 p′2

(E.34)

• A function space or exponential of a pair Y,Z ∈ C0 in a category C with binary
products is an object ZY ∈ C0 (which in Sets is the set of all functions g : Y → Z)
with an evaluation map ev : ZY ×Y → Z (which in Sets is (g,y) �→ g(y) ∈ Z),
such that for each f : X ×Y → Z there is a unique arrow f̃ : X → ZY (which in
Sets is f̃ (x)(y) = f (x,y)) making the following diagram commute:

X×Y Z

ZY ×Y

f

f̃×idY
ev (E.35)

• A terminal object is an object 1∈C0 such that for each X ∈C0, there is a unique
arrow X → 1 (in other words, HomC(X ,1) contains precisely one element).

• A category C having a terminal object, binary products, and function spaces for
all objects, is called cartesian closed.

The relationship between products and function spaces is just the adjunction

(−)×Y 0 (−)Y , (E.36)

for each Y ∈ C0, where the left-hand side denotes the following functor:
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(−)×Y : C→ C; (E.37)
X �→ X×Y ; (E.38)

( f : X → X ′) �→ ( f × idY : X×Y → X ′ ×Y ). (E.39)

Here f × idY is a special case of (E.33), whilst the right-hand side of (E.36) is

(−)Y : C→ C; (E.40)

Z �→ ZY ; (E.41)

(g : Z → Z′) �→ (g̃◦ ev : ZY → (Z′)Y ), (E.42)

where the arrow g̃◦ ev is defined as in the text above (E.35), in which we substitute
X � ZY , Z � Z′, and f � g◦ ev; note that the latter is an arrow ZY ×Y → Z′.

As in (E.26), the adjunction (E.36) gives a bijection

HomC (X×Y,Z)∼= HomC

(
X ,ZY ) , (E.43)

which of course is precisely the correspondence f ↔ f̃ ; the counit of (E.36) is ε = ev
(i.e., its component at Z is ev : ZY ×Y → Z), whereas the unit (at Z) is the map
f̃ : X → ZY corresponding to f : X×Y → Z on the choices X � Z, Z � Z×Y , and
f : Z×Y → Z×Y being the identity arrow.

The following construction, generalizing binary products, is very important.

Definition E.8. The pullback of two arrows f : X → Z and g : Y → Z consists of two
arrows p : P→ X and q : P→ Y such that the following square commutes, and has
the universal property that for any arrows p′ : P′ →X and q′ : P′ →Y with f p′= gq′,
there is a unique arrow h : P′ → P such that the entire diagram commutes:

P′

P X

Y Z

p′

q′

∃!h

p

q f

g

(E.44)

One says that q is a pullback of f over g, whilst p is a pullback of g over f .

In the category Sets, pullbacks coincide with fibered products, that is,

P = X×Z Y ≡ {(x,y) ∈ X×Y | f (x) = g(y)}, (E.45)

where p and q are the projections on the first and the second coordinate, respectively.
In particular, taking Z to be a singleton reproduces binary products as special cases
of pullbacks. This can be done in all categories C with a terminal object.

At last, we turn to limits and colimits in a category. A (finite) diagram in a
category C is a functor D : J→ C, where J is some (finite) category. In case that
J is empty, we say that there is a unique functor D into C; even this is interesting!
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The diagram just consisting of two objects X ,Y ∈C0 corresponds to J0 = {0,1}with
0 �= 1 and only identity arrows. The next case is an arrow f : X → Y , obtained from
J0 = {0,1} as a poset, i.e., 0 ≤ 1. Finally, consider J0 = {0,1,2} with nontrivial
arrows 0→ 1 and 2→ 1; this defines a diagram

Y
g→ Z

f← X . (E.46)

For any C ∈ C0, let DC : J→ C be the constant functor that sends all j ∈ J0 to C, and
all arrows in J to idC. A cone over a diagram D : J→ C is an object C ∈ C0 (called
the vertex of the cone) with a natural transformation from DC to D, i.e., a collection
of arrows c j : C→D j ≡D0( j) indexed by j ∈ J0, such that for each arrow χ : j→ k
in J1, with induced arrow J1(χ) : D j → Dk, the following triangle commutes:

C Dk

D j

ck

c j
J1(χ) (E.47)

A cone over the empty diagram is just a loose object C. A cone over our two-object
diagram without arrows is X ←C→ Y , whereas a cone over (E.46) is a commuting
square as in (E.44). A limit of a diagram D : J→ C is a universal cone over D, i.e.,
a cone (C,{c j : C→D j} j∈J0) such that for any other cone (C′,{c′j : C′ →D j} j) for
the same diagram there is a unique arrow h : C′ →C such that

c j ◦h = c′j ( j ∈ J0). (E.48)

A more elegant way of phrasing this is via the category Cone(D), whose objects are
cones over D, and whose arrows are arrows h : C′ → C in C1 satisfying (E.48). A
limit of D, then, is just a terminal object in Cone(D). Either way, it is clear from
the universal property that any two limits of a given diagram must be isomorphic.
Despite this lack of uniqueness, the typical notation for a limit of a diagram D is

C = lim←− j D j. (E.49)

It should now be clear that a terminal object is a limit over the unique diagram
over the empty category, a (binary) product is a limit over a two-object diagram
obtained from J0 = {0,1} with only identities, and finally a pullback is a limit over
the diagram (E.46) obtained via J0 = {0,1} seen as a posetal category.

Especially in connection with topos theory, the following fact is quite useful:

Proposition E.9. A category has all finite limits (i.e. limits based on finite diagrams)
iff it has all pullbacks and has a terminal object.

Replacing C by its opposite category Cop, we obtain the colimit C = lim−→ j D j of a
diagram, which is defined as a limit of the same diagram seen in Cop, so that in
all definitions all arrows are reversed. Thus terminal objects are replaced by initial
objects, products become coproducts, and pullbacks are turned into pushouts.
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E.2 Toposes and functor categories

The last ingredient we need for the definition of a topos is a categorical abstraction
of subsets X ⊂ Y and their characteristic functions 1X , i.e. a subobject classifier.

Definition E.10. 1. An arrow m : X → Y in any category C is a monomorphism

(or briefly a mono) if for any g,h : Z → X, the equality mg = mh implies g = h.
Similarly, abstracting surjectivity rather than injectivity, e : X → Y is called an
epimorphism or an epi if for any g,h : Y → Z, the equality ge= he implies g= h.

2. Two monomorphisms m : X → Y and m′ : X ′ → Y are equivalent if there is a
(necessarily unique) isomorphism h : X → X ′ such that m = m′h.

3. A subobject of Y is an equivalence class of monomorphisms m : X → Y . The
class of all subobjects of Y (which is not necessarily a set) is called Sub(Y ).

4. A subobject classifier in a category C is a mono t : 1→Ω such that all pullbacks
of t exist in C, and for any mono m : X → Y there is a unique arrow χm : Y →Ω
(called the characteristic function or classifying map of m, or, loosely, of X)
that makes the following diagram a pullback (and hence makes it commutative):

X 1

Y Ω

∃!

m t

χm

(E.50)

It follows that the object 1 is terminal in C (which of course constrains C to have a
terminal object in the first place); Ω is often called the truth object of C.

Proposition E.11. If a locally small category C has a subobject classifier, then for
any Y ∈ C0, the class Sub(Y ) is a set, and the map m �→ χm induces a bijection

Sub(Y )∼= HomC(Y,Ω). (E.51)

Proof. It follows from the definition of a pullback that equivalent monos m : X →Y
and m′ : X ′ → Y yield the same arrow χm, so that the map m �→ χm from monos to
arrows passes to equivalence classes, i.e., we have a map [m] �→ χm. The universal
part in the definition of a pullback (i.e., monos with the same classifying maps are
isomorphic) makes the latter map injective, whereas surjectivity follows from the
general fact that the pullback (namely m) of any arrow (namely χ) over a mono
(namely t) is a mono, where we see (E.50) as a pullback for given χ and t. �

For example, in Sets a mono is an injective function (and an epi is surjective), so
that any mono into Y originates in some set that is isomorphic to some subset of Y .
Any singleton 1 = ∗= { /0} serves as a terminal object, and Sets has a truth object

Ω = 2 = {0,1}, (E.52)

with subobject classifier t(∗)= 1; if X ⊂Y , and m is the inclusion map, then χm = 1X
is just the characteristic function of X , and Sub(X)∼= P(X) is the power set of X .
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The haunting name “truth object” for Ω might explain some of the fascination
logicians and quantum physicists have felt for topos theory, which we now define:

Definition E.12. A topos is a cartesian closed category (i.e., having a terminal ob-
ject, binary products, and function spaces) with pullbacks and a subobject classifier.

More precisely, this defines an elementary topos. It follows from Proposition E.9
that a topos has all finite limits, and it can be shown that it also has all finite colimits.

It should be clear that Sets is a topos; indeed, in our presentation the presence of
the necessary ingredients of a topos within Sets partly motivated these ingredients.
More generally, all toposes relevant to this book are of the following sort. We first
note that for any two categories C and D we obtain a new category [C,D] whose
objects are (covariant) functors from C to D, and whose arrows are natural transfor-
mations between such functors. It is often natural to consider contravariant functors,
giving the category [Cop,D]. If D= Sets, such functors are called presheaves on C.
The category [Cop,Sets] is often denoted by SetsC

op
. An important special case is

C= O(X), (E.53)

i.e. the topology of some space X (seen as a posetal category); with slight abuse of
notation, functors F : O(X)op → Sets are called presheaves on X .

Theorem E.13. For any small category C, the category [Cop,Sets] is a topos.

Proof. We focus on the subobject classifier; the remainder following from the fact
that limits in [Cop,Sets] (including pullbacks and function spaces) are computed
pointwise, i.e., if D : J→ [Cop,Sets] is a diagram, then for each C ∈ C1 we obtain
a diagram DC in Sets defined by DC( j) = D( j)(C). Since Sets has all limits, we
obtain limits CC for each DC. These form a single functor C , which is a limit of D.

The simplest example is the terminal object in [Cop,Sets], which comes out as
10(C) = ∗ for each C ∈ C1, where ∗ is some arbitrary (but fixed) singleton.

To discuss the truth object in [Cop,Sets], we need a few definitions.

Definition E.14. 1. In any small category C, a sieve on an object C ∈ C0 is a set S
of arrows with target C such that if f ∈ S, then f h ∈ S whenever f h is defined.

2. The maximal sieve S(C)
max on C consists of all arrows with target C.

3. The pullback sieve f ∗S (on D) over an arrow f : D→C consists of all arrows

f ∗S = {h : X → D | f h ∈ S}. (E.54)

4. We denote the set of all sieves on C by Sieves(C).

Clearly, if idC ∈ S, then S = S(C)
max. We will show that the truth object in [Cop,Sets] is

Ω0(C) = Sieves(C); (E.55)
Ω1( f ) = f ∗. (E.56)
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The subobject classifier in [Cop,Sets], then, is the natural transformation

t : 1→Ω ; (E.57)
tC : 10(C)→ Sieves(C); (E.58)

tC(∗) = S(C)
max. (E.59)

To understand this, we need the Yoneda Lemma E.15 below. In preparation, for any
(fixed) C ∈ C0, we define a functor yC : Cop → Sets by

(yC)0(D) = HomC(D,C); (E.60)

(yC)1

(
D

f→ D′
)
= (g �→ g f ), (E.61)

the latter being a map from HomC(D′,C) to HomC(D,C). This is often written as

yC = HomC(−,C), (E.62)

and the functors yC are called representable presheaves. Since f : C →C′ induces
a natural transformation yC → yC′ in the obvious way, i.e., its component τD at D is
the map g �→ f g from HomC(D,C) to HomC(D,C′), the map C �→ yC extends to a
functor y : C→ [Cop,Sets], called the Yoneda embedding.

Lemma E.15. For any F ∈ [Cop,Sets], any D ∈ C0, and x ∈ F0(C), the map

τ(x)D : HomC(D,C)→ F0(D); (E.63)(
D

f→C
)
�→ F1( f )(x), (E.64)

where F1( f ) duly maps F0(C) to F0(D), forms the component at D of a natural
transformation τ(x) from yC to F, and the ensuing map x �→ τ(x) gives a bijection

F0(C)∼= Hom[Cop,Sets](yC,F). (E.65)

Recall that by definition of a functor category, the right-hand side of (E.65) consists
precisely of the set Nat(yC,F) of natural transformations from yC to F .

Lemma E.16. For any C ∈ C0 and S ∈ Sieves(C), the presheaf X (S) defined by

X (S)
0 (D) = HomC(D,C)∩S; (E.66)

X (S)
1

(
D

f→ D′
)
= {g f | g ∈ X (S)

0 (D′)}, (E.67)

defines a subobject m : X (S)→ yC, and the ensuing map S �→ X (S) yields a bijection

Sieves(C)
∼=→ Sub(yC). (E.68)

More generally, if X and Y (generalizing X (S) and yC above) are presheaves on C
with X0(D)⊆ Y0(D) for all D, then the equivalence class of X is a subobject of Y .



E.2 Toposes and functor categories 817

The proof of Lemma E.16 below uses the converse fact: any subobject of Y has a
representative X ′ for which X ′ is a subfunctor of Y , i.e., X ′0(D) ⊆ Y0(D) for all D,
and X ′1 is the restriction of Y1, as in (E.70). below. To see this, suppose one has a
mono m : X → Y , so that each component mD : X0(C)→ Y0(D) of m is an injective
function. We now define a presheaf X ′ on C by

X ′0(D) = mD(X0(D))⊆ Y0(D); (E.69)
X ′1( f ) = Y1( f )|X ′0(D′) ( f : D→ D′). (E.70)

Furthermore, we define a natural transformation m′ : X ′ → Y , whose components
m′D : X ′0(D)→Y0(D) are given by set-theoretic inclusion. The natural transformation
h : X → X ′, defined through its components hD = m̃D (where m̃′D is mD, but seen as
a map from X0(D) to X ′0(D) rather than to Y0(D)) then renders m and m′ isomorphic.

Proof. The map S �→ X (S) has an inverse X �→ SX , where SX ∈ Sieves(C) is given by

SX =
⋃

D∈C0

X0(D). �

Combining (E.55) - (E.56) with Lemma E.15 applied to F =Ω , gives

Hom[Cop,Sets](yC,Ω)∼= Sieves(C), (E.71)

so that Lemma E.16 yields a bijective correspondence between arrows from yC to
Ω as defined in (E.55) - (E.56), and subobjects of yC. At D, diagram (E.50) is

HomC(D,C)∩S ∗

HomC(D,C) Sieves(D)

∃!

mD tD

(χm)D

, (E.72)

where mD is the inclusion map, tD(∗) = Smax(D), and (χm)D( f ) = f ∗S. Commuta-
tivity of this diagram follows from the fact that if f ∈ HomC(D,C)∩ S, then f ∗S
is the maximal sieve on D, as trivially follows from the definition of a sieve. The
pullback condition is then easy to verify from Lemma E.16.

If we replace yC by any presheaf Y , the classifying map χm is given by

(χm)D : Y0(D)→ Sieves(D); (E.73)
x �→ { f : D′ → D | Y1( f )(x) ∈ X0(D′)}, (E.74)

noting that Yi( f ) maps Y0(D) into Y0(Z), and X0(Z)⊆Y0(Z), since we assume that X
represents a subobject of Y such that X0(D)⊆ Y0(D). This generalizes the previous
case where Y = yC. To show that χm is unique, we write down (E.50) at D:
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X0(D) ∗

Y0(D) Sieves(D)

∃!

mD tD

(χm)D

. (E.75)

Also, the condition that χm be a natural transformation implies that the diagram

Y0(D) Sieves(D)

Y0(D′) Sieves(D′)

(χm)D

Y1( f ) f ∗

(χm)D′

(E.76)

commutes for any f : D′ → D. Then (E.75) with D � D′ implies that for any y ∈
Y0(D′), we have y ∈ X0(D′) iff (χm)D′(y) = Smax(D′). In particular, we may take
y =Y1( f )(x) for x ∈Y0(D), so that Y1( f )(x) ∈ X0(D′) iff χD′(Y1( f )(x)) = Smax(D′).
Commutativity of the diagram (E.76) gives (χm)D′ ◦Y1( f ) = f ∗ ◦ (χm)D, so that
Y1( f )(x) ∈ X0(D′) iff f ∗((χm)D(x)) = Smax(D′), which in turn is the case if and
only if f ∈ (χm)D(x). Hence we finally obtain

f ∈ (χm)D(x) iff Y1( f )(x) ∈ X0(D′), (E.77)

which is the definition (E.73) - (E.74) of χm, and renders it unique (given m).
Finally, the universal property of (E.50) follows from Proposition E.11: since

if X ′ in (E.50) is like P′ in (E.44), then m′ : X ′ → Y is the pullback of χ over t,
and hence m′ must be equivalent to m. But we know (cf. Definition E.10.2) that an
equivalence between mono’s is unique. This closes the proof of Theorem E.13. �

Refining presheaves, we also introduce the category Sh(X) of sheaves on X ,
which is the full subcategory of [O(X)op,Sets] defined by the following condition.

Definition E.17. A presheaf F : O(X)op → Sets on X is a sheaf if for any open
U ∈O(X), any open cover U = ∪ jUj of U, and any family {s j ∈ F0(Uj)} such that

F1(Ujk ≤Uj)(s j) = F1(Ujk ≤Uk)(sk), (E.78)

for all j,k, there is a unique s ∈ F(U) such that s j = F(Uj ≤U)(s) for all j.

Here Ujk =Uj∩Uk, and F1(V ≤W ) : F0(W )→F0(V ) is the arrow part of the functor
F . If F is a sheaf on X , then for each open U =∪ j∈JUj, it has the continuity property

F0(U) = lim←− j F0(Uj), (E.79)

where the limit is defined with respect to the diagram D : J→ Sets where J is the
posetal category whose objects are j ∈ J, and (i, j)∈ J×J provided Ui j �= /0, ordered
by i≤ (i, j) and j ≤ (i, j), with D(i) = F(Ui) and D(i, j) = F(Ui j), etc.

A key example of a sheaf on X is the sheaf of continuous functions, where

F0(U) =C(U,R). (E.80)
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If U ≤ V , then the associated map F1(U ≤ V ) : C(V,R) → C(U,R) is simply
given by restriction. Sheaves may be defined far more generally (as done by
Grothendieck), namely on a site (which is a category equipped with a so-called
Grothendieck topology), but sheaves on a space are all we need in this book.

Analogously to Theorem E.13, Sh(X) is a topos, whose truth object is the sheaf

Ω0(U) = O(U); (E.81)
Ω1(U ≤V ) = (−)∩U, (E.82)

i.e., if W ∈O(V ), then Ω1(W ) =W ∩U ∈O(U). With the terminal object in Sh(X)
being borrowed from [O(X),Sets], i.e., 10(U) = ∗, its subobject classifier is

tU (∗) =U. (E.83)

In fact, let X be a poset equipped with its intrinsic Alexandrov topology, whose
open sets are the upper sets, i.e. those U ⊆ X for which x ∈U and x ≤ y implies
y ∈U . Examples of opens are up-sets U = ↑x = {y ∈ X | x≤ y}, which form a basis
of the Alexandrov topology; in fact, ↑x is the smallest open set containing x. For any
x ∈ X , we write Upper(x) for the set of all upper sets containing ↑x.

Proposition E.18. If X is a poset, the category [X ,Sets] of functors F : X → Sets
(where X is seen as a category defined by the underlying poset) is isomorphic to the
category Sh(X) of sheaves on X (equipped with the Alexandrov topology), i.e.,

[X ,Sets]∼= Sh(X). (E.84)

Note that [X ,Sets] consists of presheaves on Xop (in which x≤ y iff y≤ x in X).

Proof. This isomorphism is given by mapping a functor F : X → Sets to a sheaf
F : O(X)op → Sets, by defining the latter on a basis of the Alexandrov topology as

F(↑x) = F(x), (E.85)

extended to general Alexandrov opens by (E.79). Vice versa, a sheaf F on X imme-
diately defines F by reading (E.85) from right to left. �

Corollary E.19. If X is a poset, the subobject classifier in [X ,Sets] is given by

Ω0(x) = Upper(x); (E.86)
Ω1(x≤ y) = (−)∩ (↑y); (E.87)

tx(∗) = ↑x. (E.88)

Proof. If C is a poset X , then a sieve on x ∈ X is a lower subset of ↓ x (i.e., if y ∈ S
then y ≤ x, and if also z ≤ y, then z ∈ S). Recalling the comment after (E.84), the
claim then follows from (E.55) - (E.59). Alternatively, using Proposition E.18, the
claim also follows from (E.86) - (E.88). �
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E.3 Subobjects and Heyting algebras in a topos

There are numerous connections between topos theory and intuitionistic logic, most
of which generalize links between set theory and classical logic. The beginning of
algebraic logic was Boole’s work, which in modern parlance structured the power
set P(X) of any set as a Boolean lattice, and hence provided a semantics for classi-
cal propositional logic, cf. §D.2. From a categorical view, P(X) is the set Sub(X),
cf. (E.52) and subsequent text. This generalizes to any topos in which Sub(X) is a
set (rather than a proper class), except for the decisive difference that Sub(X) is no
longer a Boolean lattice but a Heyting algebra, making topos logic intuitionistic.

Proposition E.20. For any object X in a locally small topos T, the set Sub(X) of
subobjects of X is a Heyting algebra with respect to the partial ordering ≤ defined
by [m : U → X ]≤ [m′ : V → X ] iff there is h : U →V such that m′h = m.

It is easy to show from Definition E.10.1 that ≤ is well defined, and since it is
defined “on the nose”, i.e., at the level of representatives of the equivalence classes
in question, in what follows we will use mono’s rather than their equivalence classes.

Proof. Since we only need this result for presheaf toposes, we just list the pertinent
operations, and omit the verification of the details (which is left to the reader).

• The bottom element ⊥ of Sub(X) is the unique arrow 0 → X , where 0 is the
initial object in T (any category with finite colimits has such an object, denoted
by /0, whose defining property is that for any X there is a unique arrow /0→ X ; as
the notation suggests, in Sets the empty set is an initial object).

• The top element # of Sub(X) is the identity arrow idX at X .
• The inf of m : U → X and m′ : V → X is their pullback, i.e., abusing notation,

U ∧V U

V X ,

p

q m

m′
(E.89)

so that the desired arrow U ∧V → X is mp = m′q (which is indeed a mono).
• The sup of m : U → X and m′ : V → X is more complicated. In any topos T,

arrows have an epi-mono factorization f = me, where m is mono (and as such is
unique up to isomorphism), called the image of f , and e is epi. Furthermore, T
has finite colimits including coproducts. Reversing all arrows in (E.32) gives

X

U U +V V

m

p1

∃! f

p2

m′ (E.90)

The sup U ∨V , then, is “the” image of the arrow f in this diagram.



E.3 Subobjects and Heyting algebras in a topos 821

• Finally, implication �� is defined in terms of an equalizer, which may be con-
structed as a pullback, as follows: taking Y = Z = X and q1 = q2 = idX in
(E.32) gives a unique arrow ΔX : X → X ×X , called the diagonal; in Sets it is
ΔX (x) = (x,x). Furthermore, if we have two arrows f ,g : X → Y , taking Z � X ,
X � Y , q1 � f , and q2 � g in (E.32) gives a unique arrow ( f ,g) : X → Y ×Y ,
which in Sets is of course given by ( f ,g)(x) = ( f (x),g(x)).
The equalizer of f and g, then, is the arrow e : E → X in the pullback

E Y

X Y ×Y.

p

e ΔY

( f , g)

(E.91)

The equalizer indeed deserves its name, because the map p equals both f e and ge;
in Sets, E ⊆ X may simply be taken to be the subset on which f and g coincide.

We return to our monos m : U → X and m′ : V → X , with inf U ∧V : the mono
(U ��V )→ X is the equalizer of the classifying maps χU ,χU∧V : X →Ω . �

Recall that in Sets we may identify Sub(X) with the power set P(X), so that

⊥= /0; (E.92)
#= X . (E.93)

For U,V ⊆ X , the above constructions reduce to the well-known expressions

U ≤V iff U ⊆V ; (E.94)
U ∧V =U ∩V ; (E.95)
U ∨V =U ∪V ; (E.96)

U ��V =Uc∪V, (E.97)

where for comparison below we may rewrite the right-hand side of (E.97) as

Uc∪V = {x ∈ X | x ∈U → x ∈V}. (E.98)

The (derived) expression (D.12) for negation then equates ¬ with complementation:

¬U =Uc = {x ∈ X | x /∈U}. (E.99)

In a presheaf topos [Cop,Sets], one obtains similar expressions for ⊥ and #, viz.

⊥0(C) = /0; (E.100)
#0(C) = X(C), (E.101)

where the functor⊥ is the initial object in [Cop,Sets]. The logical connectives resem-
ble the set-theoretic case, too, except for the last ones: if U and V are representatives
of subobjects of X such that U0(C)⊆ X0(C) and V0(C)⊆ X0(C), we have:
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U ≤V iff U0(C)⊆V0(C) for all C; (E.102)
(U ∧V )0(C) =U0(C)∩V0(C); (E.103)
(U ∨V )0(C) =U0(C)∪V0(C); (E.104)

(U ��V )0(C) = {x ∈ X0(C) | ∀D
f→C : X1( f )(x) ∈U0(D)⇒ X1( f )(x) ∈V0(D)};

(E.105)

¬U0(C) = {x ∈ X0(C) | ∀D
f→C : X1( f )(x) ∈U0(D)⇒ X1( f )(x) /∈V0(D)}.

(E.106)

This Heyting algebra is Boolean iff ¬¬U =U for each U , so we are interested in

¬¬U0(C) = {x ∈ X0(C) | ∀D
g→C∃E

f→ D : X1(g f )(x) ∈U0(E)}. (E.107)

It can be shown that Sub(X) is Boolean for each object X iff Sub(Ω) is Boolean. In
order to settle this, we specialize (E.107) to subfunctors m : U →Ω , which gives

¬¬U0(C) = {S ∈ Sieves(C) | ∀D
g→C∃E

f→ D : (g f )∗S ∈U0(E)}. (E.108)

For example, if C= Xop is a posetal category, this expression becomes

¬¬U0(x) = {S ∈ Upper(x) | ∀y≥ x∃z≥ y : S ∩ (↑z) ∈U0(z)}, (E.109)

which is clearly an additional property of S ∈U0(x); examples abound in Chapter
12. Thus the (propositional) logic of Sub(X) may be genuinely intuitionistic (and
given our examples, this conclusion especially applies to quantum logic).

Although X is an object in a topos, Sub(X) is a Heyting algebra in ordinary set
theory. This is called an external description of X . Alternatively, one may study a
topos using so-called internal reasoning. We will develop the logical foundation of
internal reasoning (at least to some extent) in the next section, and for the moment
just look at a special example, namely Heyting algebras within some given topos.

Definition E.21. Let T be a topos (more generally, a category with all finite limits).

• A preorder on an object X ∈ T0 in T is a mono m≤ : R→ X×X for which:

1. The diagrammatic version of reflexivity (in set theory: x ≤ x ) holds, as fol-
lows. The diagonal ΔX ≡ Δ : X → X ×X factors through m≤, i.e. there is an
arrow X → R such that the following diagram commutes:

X R

X×X
Δ

m≤ (E.110)

2. The diagrammatic version of transitivity (in set theory: x≤ y and y≤ z imply
x≤ z) holds, as follows. First, define P as the pullback
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P R

R X ,

p

q p1◦m≤
p2◦m≤

(E.111)

where p1, p2 : X ×X → X are the arrows in (E.32), and p,q are defined as in
(E.44). The arrows p1 ◦m≤ ◦ p : P→ X and p2 ◦m≤ ◦q : P→ X, then yield an
arrow P : X → X×X via (E.32), which must factor through m≤, too.

• A partial order on X is a preorder that is antisymmetric (in set theory: x ≤ y
and y≤ x imply x = y), in the following sense. First, define the twist map

τ : X×X → X×X (E.112)

by taking Z � X×X, Y � X, q1 � p2 and q2 � p1 in (E.32); in set theory, this
would be τ(x,y) = (y,x). This enables us to reverse the order by defining a monic

m≥ : R→ X×X ; (E.113)
m≥ = τ ◦m≤, (E.114)

with associated pullback

P′ R

R X

p′

q′ m≤
m≥

(E.115)

The arrow m≤ ◦ p′ = m≥ ◦q′ : P′ → X, then, must factor through Δ : X → X×X.
• A lattice in T is a partial order on some object X for which there are arrows

∧ : X×X → X ; (E.116)
∨ : X×X → X , (E.117)

such that:

1. The arrow m≤ : R→ X ×X is an equalizer of the arrows ∧ : X ×X → X and
p1 : X×X → X (in set theory this expresses the property x≤ y iff x∧ y = x).

2. One has ∧◦Δ = idX and ∨◦Δ = idX (i.e., x∧ x = x and x∨ x = x).
3. The following square (stating that x∧ (y∨ x) = (x∧ y)∨ x = x) commutes:

X X×X

X×X X×X×X

X X×X .

∧

c

p1

p1

idX×∨

∧×idX

∨

(E.118)
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Here the middle arrow c is the composition

X×X
Δ×idX−→ (X×X)×X

∼=−→ X× (X×X)
idX×τ−→ X×X×X . (E.119)

• Let 1 be ‘the” terminal object in T, with associated arrow X →X×1 from (E.32),
with Z � X, q1 � idX , and Y � 1. A top element in an internal lattice is an
arrow # : 1→ X such that the following composite arrow is the identity idX :

X
∼=−→ X×1

idX×#−→ X×X ∧−→ X . (E.120)

A bottom element is an arrow ⊥ : 1→ X for which the following arrow is idX :

X
∼=−→ X×1

idX×⊥−→ X×X ∨−→ X . (E.121)

• A Heyting algebra in T is a lattice X with # and ⊥, endowed with an arrow

��: X×X → X , (E.122)

such that the monos m1 and m2 in the double pullback diagram

P1 R P2

X×X×X X×X X×X×X

m1 m≤ m2

∧×idX idX×��
(E.123)

are equivalent (and hence define the same subobject of X×X×X).

The reader may check that in Sets these definitions reduce to the usual ones; as one
can clearly see, finding diagrammatic versions of familiar definitions is an art!

The most important example of an internal Heyting algebra in a topos is Ω .

Theorem E.22. The truth object Ω in a topos T with subobject classifier t : 1→Ω ,
is a Heyting algebra in the partial ordering m≤ : R→Ω×Ω defined as the equalizer
of the projection p1 : Ω ×Ω → Ω and the classifying map χ(t,t) : Ω ×Ω → Ω of
the product arrow (t, t) : 1→Ω ×Ω derived from t : 1→Ω . In particular:

1. The inf arrow ∧ : Ω ×Ω →Ω equals the classifying map χ(t,t) of (t, t).
2. The sup arrow ∨ : Ω×Ω →Ω is the classifying map χ∪ of the arrow (see below)

(t, idΩ )∪ (idΩ , t) : (1×Ω)∪ (Ω ×1)→Ω ×Ω ; . (E.124)

3. The implication arrow ��: Ω ×Ω →Ω is the classifying map χm≤ of m≤.
4. The top element # : 1→Ω coincides with the subobject classifier t : 1→Ω .
5. The bottom element ⊥ : 1→Ω is equal to the classifying map χ0 of 0→ 1.
6. The negation arrow ¬ : Ω →Ω equals the classifying map χ⊥ of ⊥ : 1→Ω .

For every object Y ∈ T0, this structure makes HomT(Y,Ω) an external Heyting
algebra (i.e., in Sets), such that (E.51) is an isomorphism of Heyting algebras.
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We omit the proof of Theorem E.22, which is a straightforward verification.
In no. 1, the arrow (t, t) is a special case of the arrow ( f ,g) defined just before

(E.91). In no. 2, we need the following construction, applied to the arrows

(t, idΩ ) : (1×Ω)→ (Ω ×Ω); (E.125)
(idΩ , t) : (Ω ×1)→ (Ω ×Ω), (E.126)

To define maps like the one in (E.124) in general, recall the the coproduct diagram

X X +Y Y

Z

∃! (E.127)

which is just the opposite of the product diagram (E.32). In particular, for any given
mono’s m1 : X → Z and m2 : Y → Z, we obtain a unique map

(m1,m2) : X +Y → Z. (E.128)

The image of the latter in the sense of its epi-mono factorization (m1,m2) = me, i.e.

(m1,m2) : X +Y e−→ X ∪Y m−→ Z, (E.129)

is the mono denoted by m∪m′ : X∪Y → Z (which is called m in the above diagram).
In no. 5, 0 is the initial object in T. Note that the truth arrow t : 1 → Ω is the

same as the classifying map χid1
of the identity arrow id1 : 1→ 1, so that all arrows

in Theorem E.22 are classifying maps.
In the presheaf topos [Cop,Sets], where C is any category, products are taken

pointwise, and also, set-theoretic intersection commutes with pullback of sheaves:

f ∗(S∩S′) = f ∗(S)∩ f ∗(S′) ( f : D→C; S,S′ ∈ Sieves(C)). (E.130)

These facts imply that the component at ∧C of the natural transformation ∧ is just

∧C(S,S′) = S∩S′ (S,S′ ∈ Sieves(C)), (E.131)

which in turns implies that if R is taken to be a subfunctor of Ω ×Ω , so that

(m≤)C : R0(C) ↪→ Sieves(C)×Sieves(C) (E.132)

is the inclusion map, we have (S,S′) ∈ R0(C) iff S⊆ S′. We also find

��C (S,S′) = { f : D→C | f ∗S⊆ f ∗S′}; (E.133)
¬C(S) = { f : D→C | f /∈ S}, (E.134)

which are easily checked to be natural in C. Finally, the top element#C ∈ Sieves(C)
is the maximal sieve, and similarly the bottom element ⊥C is the empty sieve.
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E.4 Internal frames and locales in sheaf toposes

As we have seen in §D.1 as well as in §C.11, a complete Heyting algebra is the same
qua lattice structure as a frame, except that maps between frames are defined differ-
ently: a frame map is required to preserve order and arbitrary suprema, whereas a
Heyting algebra frame map preserves order and implication. Furthermore, one has
locales, which are frames, too, except that maps go in the opposite direction. Hence
if Frm is the category of frames (within Sets), then the category Loc of locales is

Loc= Frmop. (E.135)

We also recall the bizarre (but wonted) notation X for an object in Loc that is the
same as the object denoted by O(X) in Frm, where nothing is implied about the
spatiality of the frames in question (i.e., it is not necessarily the case that there is
an actual space X of which the given frame called O(X) is the topology). In the
same spirit, frame maps are written f ∗ : O(Y )→O(X) or f−1 : O(Y )→O(X), the
corresponding locale map being f : X → Y (which is the same map between the
same objects), once again, even if no space X in the usual sense is around.

In any case, in order to define internal frames, locales, or complete Heyting al-
gebras in a topos, one must define completeness of internal lattices. This is difficult
diagrammatically, but it can be done through the internal language of §E.5, e.g. by

� ∀S ∃x(S⊆↓x)∧∀y (S⊆↓y→ x≤ y), (E.136)

where S ⊆ X and x,y ∈ X (technically, S is a variable of type ΩX , and x and y are
variables of type X , see §E.5). We may avoid this, however, since due to the iden-
tification (E.84) in Chapter 12 we can work in a sheaf topos Sh(X), where internal
frames have a simple external description, as follows: there is an equivalence

FrmSh(X) ) (FrmSets/O(X))op (E.137)

between the category of internal frames in Sh(X) and the category of frame maps in
Sets with domain O(X), where the arrows between two such maps

π−1
Y : O(X)→ O(Y ); (E.138)

π−1
Z : O(X)→ O(Z); (E.139)

are the frame maps
ϕ−1 : O(Z)→ O(Y ) (E.140)

that satisfy
ϕ−1 ◦π−1

Z = π−1
Y . (E.141)

This looks more palpable in terms of the “virtual” underlying spaces (i.e. locales):
If (E.138) - (E.140) are seen as inverse images of maps πY : Y → X , πZ : Z → X ,
and ϕ : Y → Z, then the condition (E.141) corresponds to the equality πZ ◦ϕ = πY .
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To explain the equivalence (E.137), we underline locales in Sh(X), writing Y
etc.; the corresponding internal frame is denoted by O(Y ) (which is the same object
in Sh(X) as Y ). The external description of Y in Sets, then, is a continuous map

π : Y → X , (E.142)

where Y is a locale in Sets (in which X was a a space to begin with), with frame

O(Y ) = O(Y )(X). (E.143)

Also here, the notation π : Y → X is purely symbolic, and stands for a frame map

π−1 : O(X)→ O(Y ), (E.144)

from which one may reconstruct Y as the sheaf

O(Y ) : U �→ {V ∈ O(Y ) |V ≤ π−1(U)} (U ∈ O(X)). (E.145)

The frame maps (E.138) - (E.140) yield an internal frame map ϕ−1 : O(Z)→O(Y )
in Sh(X), which is a natural transformation, by defining its components as

ϕ−1(U) :↓π−1
Z (U)→↓π−1

Y (U); (E.146)

S �→ ϕ−1(S). (E.147)

As an application, the Dedekind real numbers R can be axiomatized by what is
called a geometric propositional theory T. In any topos T (with natural numbers
object), such a theory determines a certain frame O(T)T, whose “points” are defined
as frame maps O(T)→Ω , where Ω is the subobject classifier in T (more precisely,
the object of points of O(T) in T is the subobject of ΩO(T) consisting of frame
maps). If TR is the theory axiomatizing R, in Sets one simply has the frame

O(TR)Sets = O(R), (E.148)

whose points are R. More generally, if T is some geometric propositional theory, and
X is a space with associated sheaf topos Sh(X), then the internal frame O(T)Sh(X)

is given by the sheaf (E.145) defined by taking the frame map (E.144) to be the
inverse image map π−1

T ≡ π−1
T : O(X)→ O(X ×O(T)Sets) of the projection πT :

X×O(T)Sets→ X onto the first component. Using (E.148), this yields the frame of
Dedekind real numbers O(R)≡ O(TR) in a sheaf topos Sh(X) as the sheaf

O(R)Sh(X) : U �→ O(U×R). (E.149)

The Dedekind real numbers object, on the other hand, is given by the sheaf

(R)Sh(X) : U �→C(U,R). (E.150)

Using (E.85), such results may immediately be transferred to T(A), see §12.1.
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E.5 Internal language of a topos

The internal language (also called Mitchell–Bénabou language) of a given topos
T looks like a first-order language, except that it is typed (i.e., many-sorted), in that
each term σ has a certain type, written σ : X , indexed by the objects X of T. For
example, formulae (by definition) have type Ω . In addition, symbols, terms, and
formulae have a list FV(σ) of free variables. Furthermore, the internal language has
a canonical model in which it may be interpreted, whose carrier is T itself. We often
make no difference in notation between σ as an element of the internal language of
T and its interpretation [[σ ]] in T, which is some arrow in T; the two are so closely
interwoven that making such a difference would be very artificial. Here are the rules.

• Constants c of type X correspond to arrows c : 1→X (and so in Sets are elements
of X) and have no free variables, i.e. FV(c) = /0. Here and in what follows, we
write ‘corresponds to’ in the following sense: for each arrow c : 1→ X there is a
constant c of type X , and the interpretation of this constant is this arrow.

• Logically interesting constants are the subobject classifier t : 1→Ω , which as in
Theorem E.22 we often write as #, and its antipode ⊥ : 1→ Ω , defined as the
classifying map for the mono 0→ 1 (where 0 is the initial object in T).

• Variables x of type X correspond to the identity idX : X → X , with FV(x) = {x}.
• Function symbols f of type Y correspond to arrows f : X → Y . Thus in addition

to its type, f has a source (namely X). Arities are unnecessary here; we may
take Y = Z×·· ·×Z, with n terms, and say that f has source Z with arity n, but
this is superfluous. Similarly, predicate symbols P would be function symbols of
type ΩX , and hence they are redundant (clearly, even constants and variables are
special cases of function symbols, but it is useful to keep them apart).

• Terms are built by iteratively applying the following formation rules:

1. Constants and variables are terms of the given type.
2. If τ : X is a term of type X , and f : X → Y is a function symbol, then f (τ) is

a term of type Y , and FV( f (τ)) = FV(τ). Furthermore, [[ f (τ)]] = f ◦τ = f τ .
3. If we have n terms τi : Xi (i = 1, . . . ,n), with FV(τ1) = · · ·= FV(τn)≡ F , then

(τ1, . . . ,τn) is a term of type X1×·· ·×Xn and FV(τ1, . . . ,τn) = F .
If τi has interpretation τi : Y → Xi, then (τ1, . . . ,τn) : Y → X1×·· ·×Xn is the
corresponding product arrow, as defined (for n = 1) before (E.91).

4. One may add free variables to terms; if τ : Z with interpretation τ : X → Z has
a single free variable x : X , and we add a free variable y, then the interpretation
of the revised term τ ′ with FV(τ ′) = {x,y} is τ ′ : X×Y

p1−→ X τ→ Z (etc.).
5. From τ : X with FV(τ) = {z1, . . . ,zn}with zi : Zi, and n terms σi : Zi, all having

the same free variables FV(σi) = {y1, . . . ,ym}, with y j : Yj, we can form a new
term τ(σ1, . . . ,σn) of type X (i.e. the same type τ had), with free variables

FV(τ(σ1, . . . ,σn)) = {y1, . . . ,ym}. (E.151)

As the notation suggests, the interpretation of τ(σ1, . . . ,σn) is τ ◦(σ1, . . . ,σn).
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• A formula is a term of type Ω . A sentence is a formula without free variables,
which is therefore interpreted as an arrow ϕ : 1→Ω . The rules for formulae are:

1. Let ϕ be a formula with FV(ϕ) = {x,y}, with x : X and y : Y . As in first-order
logic, we may write ϕ as ϕ(x,y). Then {x | ϕ(x,y)} is a term of type ΩX , with

FV({x | ϕ(x,y)}) = {y}. (E.152)

This rule implements the isomorphism (sometimes called λ -conversion)

HomT(X×Y,Ω)∼= HomT

(
Y,ΩX) , (E.153)

which follows from the existence of exponentials in a topos. Indeed, (E.153)
turns the interpretation ϕ : X×Y →Ω into an arrow {x | ϕ(x,y)} : Y →ΩX .
Similarly, from ϕ : X ×Y → Ω we obtain a term {(x,y) | ϕ(x,y)} of type
X×Y , which is none other than the subobject classified by ϕ .
Taking Y = 1 to be the terminal object and using (E.51), we see that

HomT(X ,Ω)∼= Sub(X)∼= HomT

(
1,ΩX) , (E.154)

which shows that ΩX plays the role the power set P(X) of X plays in Sets.
2. If σ : Y and τ : Y are terms with the same free variables, then σ = τ is a

formula having the same set of free variables as τ and σ . If σ : X → Y and
τ : X → Y , then the interpretation [[σ = τ]] : X →Ω is the composite arrow

X
(σ ,τ)−→ Y ×Y =Y−→Ω , (E.155)

where =Y is the classifying map of the diagonal ΔY : Y → Y ×Y .
3. If τ : Y and σ : ΩY are terms with the same free variables, then τ ∈ σ is a

formula with the same free variables. If τ : X → Y and σ : X →ΩY , then

[[τ ∈ σ ]] : X
(τ,σ)−→ Y ×ΩY ev−→Ω . (E.156)

4. As in first-order (or propositional) logic, new formulae may be made from old
ones using the logical connectives ∧, ∨, →, and ¬. To interpret such com-
posites, it is convenient to assume that their components have the same free
variables, which can always be achieved using rule 4 for term-building above
(i.e, by adding free variables). So let ϕ : X →Ω and ψ : X →Ω be (interpre-
tations of) formulae, and let • be either ∧, ∨, or→. We then define

[[ϕ •ψ]] : X
(ϕ,ψ)−→ Ω ×Ω •−→Ω , (E.157)

where the arrow • : Ω×Ω →Ω is defined from the Heyting algebra structure
on Ω described in Theorem E.22. Similarly, negation is given by

[[¬ϕ]] : X
ϕ−→Ω ¬−→Ω . (E.158)
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5. If a formula ϕ(x,y) contains x freely, as well as other free variables collec-
tively called y, then ∃xϕ(x,y) is a formula, whose interpretation we now give,
after a bit of preparation. First, consider the commutative diagram

P Z 1

X Y Ω ,

f ∗m m t

f χm

(E.159)

where m is a mono, so that its equivalence class defines an element of Sub(Y ).
Taking the pullback of either m and f , or, equivalently, of t and χm ◦ f , we
obtain a monic f ∗m : P→X , whose equivalence class is an element of Sub(Y ).
Consequently, any arrow f : X → Y induces a map

f ∗ : Sub(Y )→ Sub(X), (E.160)

which is a homomorphism of (external) Heyting algebras (i.e. in Sets). For
example, in Sets, where Sub(X) may be identified with P(X) (see comment
after (E.52)), the map f ∗ : P(Y )→P(X) is simply the inverse image f−1 of
f . If we regard the lattices Sub(X) and Sub(Y ) as posetal categories, the map
f ∗ has both a left-adjoint and a right-adjoint, denoted by

∃ f : Sub(X)→ Sub(Y ); (E.161)
∀ f : Sub(X)→ Sub(Y ). (E.162)

To justify this suggestive notation, replace X by X×Y and take f : X×Y →Y
to be p2 (i.e., projection on the second space). Hence this gives maps

∃p2 : Sub(X×Y )→ Sub(Y ); (E.163)
∀p2 : Sub(X×Y )→ Sub(Y ). (E.164)

In Sets, we identify the Heyting algebras Sub(X × Y ) and Sub(Y ) (now
Boolean) with P(X×Y ) and P(Y ), respectively, and obtain (on A⊂ X×Y ):

∃p2(A) = {y ∈ Y | ∃x∈X : (x,y) ∈ A}; (E.165)
∀p2(A) = {y ∈ Y | ∀x∈X : (x,y) ∈ A}. (E.166)

Returning to a general topos, given ϕ : X×Y →Ω , the diagram

1 {(x,y) | ϕ(x,y)} ∃p2({(x,y) | ϕ(x,y)}) 1

Ω X×Y Y Ω

t t

ϕ p2 [[∃xϕ(x, y)]]

defines the interpretation [[∃xϕ(x,y)]] (with innocent abuse of notation in ap-
plying the map ∃p2 ). The interpretation of ∀xϕ(x,y) via ∀p2 is quite similar.
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We now define the (semantic) notion of truth for sentences in the internal lan-
guage of a topos; this is a far-reaching categorical generalization of the idea initially
studied in the straightforward context of propositional logic, cf. §D.2.

Definition E.23. 1. A sentence ϕ in the internal language of T is true, written � ϕ ,
if its interpretation [[ϕ]] coincides with the subobject classifier t : 1→Ω .

2. An open formula ϕ(x) is true if its interpretation [[ϕ(x)]] : X →Ω factors through
t, or, equivalently, if (the interpretation of) {x | ϕ(x)}, seen as the subobject of X
classified by ϕ (as explained between (E.153) and (E.154)), is X itself.

The two clauses of this definition are actually equivalent, since no. 1 is obviously a
special case of no. 2 by omitting the free variable x (and hence taking X = 1), but
also, the second reduces to the first, because ϕ(x) is true iff ∀xϕ(x) is true.

As a refinement of this concept of truth, for [[ϕ(x)]] : X →Ω as above, which we
simply write as ϕ : X →Ω , take an arrow f : Y → X . By definition:

Y � ϕ( f ) means � ϕ ◦ f . (E.167)

If ϕ is a sentence (i.e. X = 1), this means that Y � ϕ( f ) iff ϕ = χY (in other words,
ϕ classifies Y → 1). There are (at least) two applications of this idea:

• The notion of partial truth states that ϕ is true at stage Y if Y � ϕ( f ).
• We say that a set G ⊂ T0 of objects generates T if for every pair of parallel

arrows f : X → Y and h : X → Y , the property f g = hg for all arrows g : G→ X
from all objects G∈ G implies f = g. For example, any singleton generates Sets,
and for any category C, it can be shown that the functors yC generate the presheaf
topos [Cop,Sets], as C runs through C0. In general, it then follows that � ϕ holds
iff G � ϕ for all G ∈ G (and, implicitly, all arrows G→ X).

Both play a role in Chapter 12, in the case where T = [Cop,Sets] for a poset C. By
the Yoneda Lemma E.15, any arrow α ′ : yC → X bijectively corresponds to some
element α ∈X0(C). In that case, we write C �ϕ(α) for C �ϕ(α ′), which by (E.167)
that the arrow ϕ ◦α ′ : yC →Ω factors through the subobject classifier t : 1→Ω .

Kripke–Joyal semantics unfolds the expression Y � ϕ( f ) by looking at the for-
mula ϕ in terms of its constituent terms. As one sees in Chapter 12, since this pro-
cedure may be used iteratively, it is extremely useful for computational purposes.

Although more than we need (which is the posetal case), we now give the rules
for the validity of C � ϕ(α) in an arbitrary presheaf topos [Cop,Sets], as just men-
tioned; the posetal case follows in that f : D→C can only mean D≤C.

We use the following notation:

• In clauses 1–4 below, we assume ϕ : X → Ω , and also ψ : X → Ω (as already
noted, this can always be achieved by adding free variables to ϕ and/or ψ).

• In 5–6, we assume ϕ : X×Y →Ω so as to accommodate the free variable y : Y .
• In 7 and 8, we have τ : X → Y , with σ : X → Y in no. 7, and σ : X →ΩY in 8.

We then have the following forcing rules, which generalize the ones given at the
end of §D.3, and should be seen as theorems of categorical logic and topos theory:
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1. C � ϕ(α)∧ψ(α) iff C � ϕ(α) and C � ψ(α).

2. C � ϕ(α)∨ψ(α) iff C � ϕ(α) or C � ψ(α).

3. C � ϕ(α)→ ψ(α) iff D � ϕ(α f ) implies D � ψ(α f ) for each f : D→C.

4. C � ¬ϕ(α) iff no arrow f : D→C exists such that D � ψ(α f ) holds.

5. C � ∃yϕ(y)(α) iff there exists β ∈ Y0(C) such that C � ϕ(α,β ), where

ϕ(α,β ) : C→Ω ; (E.168)
ϕ(α,β )≡ ϕ ◦ (α ′,β ′). (E.169)

is obtained by combining the maps α ′ : yC → X and β ′ : yC → Y into

(α ′,β ′) : yC → X×Y. (E.170)

If ϕ has no free variables except y, then C � ∃yϕ(y) iff there is β ∈ Y0(C) such
that C � ϕ(β ).

6. C � ∀yϕ(y)(α) iff D � ϕ(α f ,β ) for each f : D→C and each β ∈ Y0(D).
Here the arrow f : D→C induces a natural transformation f ′ : yD → yC, yielding
α f ≡ α ′ ◦ f ′ : yD → X , which combines with β ′ : yD → Y to

(α f ,β ) : yD → X×Y. (E.171)

Similarly to the previous case, If ϕ has no free variables except y, we have

C � ∀yϕ(y) iff D � ϕ(β ), (E.172)

for each f : D→C and each β ∈ Y0(D).

7. C � (τ = σ)(α) iff τ ◦α ′ = σ ◦α ′.
8. C � (τ ∈ σ)(α) iff the arrow

(σ ◦α ′,τ ◦α ′) : yC →ΩY ×Y (E.173)

factors through the subobject of ΩY ×Y that is classified by the evaluation map
ev : ΩY ×Y →Ω . As a special case, take Y � 1 and hence τ : X → 1, so that

σ : X →Ω 1 ∼=Ω (E.174)

corresponds to a subobject S→ X (i.e. classified by σ ≡ χ). The above subobject
of Ω 1×1∼= Ω is then simply given by the truth arrow t : 1→ Ω . Writing x ∈ S
for τ ∈ σ (where x : X is a variable of type X), we therefore obtain the rule:

9. C � (x∈ S)(α) iff σ ◦α : yC →Ω factors through t (in other words, the subobject
of yC classified by σ ◦α is yC itself).
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Notes

The standard introduction to category theory by one of its founders is Mac Lane
(1998); see also the book by his student Awodey (2010), as well as the lecture notes
by van Oosten (2002) and Cheng (2002). A nice book, which studies set theory
from the point of view of category theory, is Lawvere & Rosebrugh (2003). At high-
school level, see also Lawvere & Schanuel (1997) or (informally) Cheng (2015).

Toposes were invented by Grothendieck in the early 1960s as part of his rebuild-
ing of algebraic geometry; see Artin, Grothendieck, & Verdier (1972). The history
and philosophy of category theory (including topos theory) has been described by
Krömer (2007) and by Marquis (2009); for categorical logic see also Marquis &
Reyes (2012) and Bell (2005). According to a leading category & topos theorist:

‘category theory was the objective form of dialectical materialism (. . . ) set theory was con-
sidered to be essentially bourgeois since it is founded on the relationship of belonging.’
(Marquis & Reyes, 2012, p. 30).

Books on topos theory and categorical logic we used include (in increasing order
of scope and sophisitication): Goldblatt (1984), Bell (1988), Borceux (1994), Mac
Lane & Moerdijk (1992), and last but not least, the encyclopedic Johnstone (2002).
§E.1. Basic definitions

von Neumann–Bernays–Gödel set theory is discusses in some detail in Mendel-
son (2010); for algebraic set theory see Joyal & Moerdijk (1995). Category theo-
rists also typically rely on the notion of a Grothendieck Universe, see e.g. Mac Lane
(1998, §1.6), Marquis (2009, §5.5), and Krömer (2007, Ch. 6).
§E.2. Toposes and functor categories

An axiomatization of Grothendieck’s toposes (and certain generalizations thereof)
equivalent to Definition E.12 was given in 1970 by Lawvere and Tierney (it seems
to have been customary among the pioneers of topos theory, who also include Joyal,
not to publish their findings too lavishly and in fact no joint paper by Lawvere &
Tierney recording their definition seems to exist at least in the open literature).
§E.3. Subobjects and Heyting algebras in a topos

See Mac Lane & Moerdijk (1992), §§I.8, IV.8, and Borceux (1994), §1.2.
§E.4. Internal frames and locales in sheaf toposes

The external description of internal locales in sheaf toposes originates with Joyal
& Tierney (1984); see also Johnstone (2002), §C1.6.
§E.5. Internal language of a topos

More details and proofs of the Kripke–Joyal semantics for the internal language
of a topos may be found in Bell (1988), Ch. 4, Mac Lane & Moerdijk (1992), §IV.6,
Borceux (1994), §6.6, and Johnstone (2002), §D1.2.

For an analysis of the notion of partial truth (as defined here) applied to quantum
mechanics (differently from our Chapter 12), see Butterfield (2002).
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Birkhäuser.
14. Allahverdyan, A.E., Balian, R., Nieuwenhuizen, Th.M. (2013). Understanding quantum

measurement from the solution of dynamical models. Physics Reports 525, 1–166.
15. Altland, A., Simons, B. (2010). Condensed Matter Field Theory. Cambridge: Cambridge

University Press.
16. Amir, D. (1986). Characterizations of Inner Product Spaces. Basel: Birkhäuser.
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169. Cassinello, A., Sánchez-Gómez, J.L. (1996). On the probabilistic postulate of quantum me-
chanics. Foundations of Physics 26, 1357–1374.

170. Cator, E., Landsman, N.P. (2014). Constraints on determinism: Bell versus Conway–Kochen.
Foundations of Physics 44, 781–791.

171. Caves, C.M., Fuchs, C.A., Schack, R. (2002a). Unknown quantum states: the quantum de
Finetti representation. Journal of Mathematical Physics 43, 4537–4559.

172. Caves, C.M., Fuchs, C.A., Schack, R. (2002b). Quantum probabilities as Bayesian probabil-
ities. Physical Review A 65, 022305.

173. Caves, C.M., Fuchs, C.A., Manne, K.K., Renes, J.M. (2004). Gleason-type derivations of the
quantum probability rule for generalized measurements. Foundations of Physics 34, 193–
209.

174. Caves, C., Schack, R. (2005). Properties of the frequency operator do not imply the quantum
probability postulate. Annals of Physics (N.Y.) 315, 123–146.

175. Cederquist, J., Coquand, T. (2000). Entailment relations and distributive lattices. Lecture
Notes in Logic 13, 127–139.

176. Cesi, F. (1989). An algorithm to study tunneling in a wide class of one-dimensional multiwell
potentials. I.Journal of Physics A22, 1027–1052.

177. Cesi, F., Rossi, G.C., Testa, M. (1991). Non-symmetric double well and Euclidean functional
integral. Annals of Physics 206, 318–333.

178. Chayes, L., Crawford, N., Ioffe, D., Levit, A. (2008). The phase diagram of the quantum
Curie–Weiss model. Journal of Statistical Physics 133, 131–149.

179. Cheng, E. (2002). Category Theory. University of Cambridge Lecture Notes.
cheng.staff.shef.ac.uk/catnotes/categorynotes-cheng.pdf.

180. Cheng, E. (2015). Cakes, Custard and Category Theory: Easy Recipes for Understanding
Complex Maths. London: Profile Books.

181. Clauser, J.F., Horne, M.A, Shimony, A., Holt, R.H. (1969). Proposed experiment to test local
hidden-variable theories. Physical Review Letters 23, 880–884.

182. Claverie, P., Jona-Lasinio, G. (1986). Instability of tunneling and the concept of molecu-
lar structure in quantum mechanics: The case of pyramidal molecules and the enantiomer
problem. Physical Review A33, 2245–2253.

183. Clifton, R. (1993). Getting contextual and nonlocal elements-of-reality the easy way. Ameri-
can Journal of Physics 61, 443–447.

184. Clifton, R., Kent, A. (2000). Simulating quantum mechanics by non-contextual hidden vari-
ables. Proceedings of the Royal Society of London A 456, 2101–2114.

185. Clifton, R., Redhead, M., J. Butterfield, J. (1990). Nonlocal influences and possible worlds—
A Stapp in the wrong direction. The British Journal for the Philosophy of Science 41, 5–58.

186. Clifton, R., Redhead, M., J. Butterfield, J. (1991). Generalization of the Greenberger–Horne–
Zeilinger algebraic proof of nonlocality. Foundations of Physics 21, 149–184.

187. Coecke, B. (2002). Quantum logic in intuitionistic perspective. Studia Logica 70, 411–440.
188. Colbeck, R., Renner, R. (2011). No extension of quantum theory can have improved predic-

tive power. Nature Communications 2:411.



842 References

189. Colbeck, R., Renner, R. (2012a). Is a system’s wave function in one-to-one correspondence
with its elements of reality? Physical Review Letters 108, 150402.

190. Colbeck, R., Renner, R. (2012b). The completeness of quantum theory for predicting mea-
surement outcomes. arXiv:1208.4123.

191. Combes, J. M., Duclos, P., Seiler, R. (1983). Convergent expansions for tunneling. Commu-
nications in Mathematical Physics 92, 229–245.

192. Connes, A. (1994). Noncommutative Geometry. San Diego: Academic Press.
193. Connes, A., Marcolli, M. (2008). Noncommutative Geometry, Quantum Fields, and Motives.

New Delhi: Hindustan Book Agency.
194. Connes, A., Rovelli, C. (1994). Von Neumann algebra automorphisms and time-

thermodynamics relation in generally covariant quantum theories. Classical and Quantum
Gravity 11, 2899-2917.

195. Conway, J.B. (2007). A Course in Functional Analysis. Second Edition. New York: Springer.
196. Conway, J.H. (2009). Six video lectures on the Free Will Theorem.

paw.princeton.edu/issues/2009/07/15/pages/6596/index.xml.
197. Conway, J.H., Kochen, S. (2006). The Free Will Theorem. Foundations of Physics 36, 1441–

1473.
198. Conway, J.H., Kochen, S. (2009). The Strong Free Will Theorem. Notices of the American

Mathematical Society 56, 226–232.
199. Cooke, R., Keane, M., Moran, W. (1985). An elementary proof of Gleason’s theorem. Math-

ematical Proceedings of the Cambridge Philosophical Society 98, 117–128.
200. Coquand, T. (2005). About Stone’s notion of a spectrum. Journal of Pure and Applied Alge-

bra 197, 141–158.
201. Coquand, T., Spitters, B. (2005). Formal topology and constructive mathematics: The

Gelfand and Stone–Yosida representation theorems. Journal of Universal Computer Science
11, 1932–1944.

202. Coquand, T., Spitters, B. (2009). Constructive Gelfand duality for C*-algebras. Mathematical
Proceedings of the Cambridge Philosophical Society 147, 339–344.

203. Corry, L. (2004). David Hilbert and the Axiomatization of Physics (1898–19018): From
Grundlagen der Geometrie zur Grundlagen der Physik. Dordrecht: Kluwer Academic Pub-
lishers.

204. Courant, R., Hilbert, D. (1924). Methoden der mathematischen Physik, Vols. I, II. Berlin:
Springer-Verlag.

205. Coxeter, H.S.M. (1948). Regular Polytopes. London: Methuen and Co.
206. Dam, W. van, Hayden, P. (2003). Universal entanglement transformations without commu-

nication. Physical Review A67, 060302(R).
207. Danieri, A., Loinger, A., Prosperi, G.M. (1962). Quantum theory of measurement and ergodic

condition. Nuclear Physics 33, 297–319.
208. Darrigol, O. (1992). From c-Numbers to q-Numbers. Berkeley: University of California

Press.
209. Davey, B.A., Priestley, H.A. (2002). Introduction to Lattices and Order, 2nd ed. Cambridge:

Cambridge University Press.
210. Davidson, K.R. (1996). C*-Algebras by Example. Providence: American Mathematical So-

ciety.
211. Davies, E.B. (1976). Quantum Theory of Open Systems. London: Academic Press.
212. Dawid, R., Thébault, K. (2015). Many worlds: decoherent or incoherent? Synthese 192,

1559–1580.
213. De Gennes, P. (1963). Collective motions of hydrogen bonds. Solid State Communications

1, 132–137.
214. De Mola, D. (2016). Compatibilism and Actual Miracles. MSc Thesis, Radboud University

Nijmegen. www.math.ru.nl/˜landsman/Davide.pdf.
215. Deitmar, A. (2005). A First Course in Harmonic Analysis. New York: Springer-Verlag.
216. Deitmar, A., Echterhoff, S. (2009). Principles of Harmonic Analysis. New York: Springer-

Verlag.



References 843

217. Dennett, D. (1984). I could not have done otherwise, so what? Journal of Philosophy 81,
553–565.

218. DeWitt, B.S., Graham, N. (1973). The Many Worlds Interpretation of Quantum Mechanics.
Princeton: Princeton University Press.

219. Diaconis, P., Freedman, D. (1980). Finite exchangeable sequences. The Annals of Probability
8, 745–764.

220. Dieks, D. (2016a). Niels Bohr and the formalism of quantum mechanics. To appear in Faye
& Folse (2017). philsci-archive.pitt.edu/12312/.

221. Dieks, D. (2016b). Von Neumann’s impossibility proof: Mathematics in the service of
rhetorics. philsci-archive.pitt.edu/12443/.
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347. Hájek, A., Hitchcock, C., eds. (2016). The Oxford Handbook of Probability and Philosophy.

Oxford: Oxford University Press.
348. Hall, B.C. (2013). Quantum Theory for Mathematicians. New York: Springer.
349. Halmos, P.R. (1958). Finite-dimensional Vector Spaces. Princeton: Van Nostrand.
350. Halmos, P.R. (1970). Finite-dimensional Hilbert Spaces. The American Mathematical

Monthly 77, 457–464.
351. Halmos, P.R. (1974). Measure Theory. New York: Springer.
352. Halmos, P.R., Givant, S. (1998). Logic as Algebra. Washington (D.C.): The Mathematical

Association of America.
353. Hamhalter, J. (1993). Pure Jauch-Piron states on von Neumann algebras. Annales de l’IHP
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408. Hilbert, D. (1925). Über das Unendliche. Mathematische Annalen 95, 161–190. English
translation in Benaceraff & Putnam (1983), pp. 183–201.

409. Hilsum, M., Skandalis, G. (1987). Morphismes K-orientés d’espaces de feuilles et fonctori-
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644. Pauli, W. (1927). Über Gasentartung und Paramagnetismus. Zeitschrift für Physik 41, 81–
102.

645. Pauli, W. (1933). Die allgemeinen Prinzipien der Wellenmechanik. 2. Auflage, Band XXIV,
Teil 1. Handbuch der Physik. Geiger, H., Scheel, K, eds. Neu herausgegeben und mit his-
torischen Anmerkungen versehen von N. Straumann in 1990. English translation (1980):
General Principles of Quantum Mechanics. Berlin: Springer–Verlag.

646. Pavicic, M., Merlet, J.P., McKay, B., Megill, N.D. (2005). Kochen-Specker vectors. Journal
of Physics A: Mathematical and General 38, 1577–1592.

647. Pedersen, G.K. (1972). Operator algebras with weakly closed abelian subalgebras. Bulletin
of the London Mathematical Society 4, 171–175.

648. Pedersen, G.K. (1979). C*-algebras and their Automorphism Groups. London: Academic
Press.

649. Pedersen, G.K. (1989). Analysis Now, 2nd ed. New York: Springer-Verlag.
650. Perelomov, A.M. (1972). Coherent states for arbitrary Lie groups. Communications in Math-

ematical Physics 26, 222–236.
651. Perelomov, A. (1986). Generalized Coherent States and their Applications. Berlin: Springer.
652. Peres, A. (1995). Quantum Theory: Concepts and Methods. Dordrecht: Kluwer Academic

Publishers.
653. Pfeuty, P. (1970). The one-dimensional Ising model with a transverse field. Annals of Physics

47, 79–90.
654. Phelps, R. (2001). Lectures on Choquet’s Theorem, Second Edition. Berlin: Springer-Verlag.
655. Philipse, H. (1999). Heidegger’s Philosophy of Being: A Critical Interpretation. Princeton:

Princeton University Press.
656. Picado, J., Pultr, A. (2012). Frames and Locales: Topology Without Points. Basel: Birkhäuser.
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667. Pulmannová, S., Stehlková, B. (1986). Strong law of large numbers and central limit theorem

on a Hilbert space logic. Reports on Mathematical Physics 23, 99–107.
668. Raeburn, I., Williams, D.P. (1998). Morita Equivalence and Continuous-Trace C*-Algebras.

Providence: American Mathematical Society.



References 859

669. Raggio, G.A. (1981). States and composite systems in W*-algebras quantum mechanics. PhD
Thesis, ETH Zürich.
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Hilbert spaces, 694
representations, 694

directed system, 707
dispersion-free, 46, 121
doctrine of classical concepts, vii, 3,

5, 6
Dominated Convergence Theorem,

525
Double Commutant Theorem, 742
double dual, 545
Dreimännerarbeit, 249, 289, 768
dual (of a normed space), 545
dual group, 715
dual morphism, 545
dynamics, 347

weak asymptotic abeliannnes, 379

∃-elimination, 796
Earman’s Principle, 12, 18, 310, 317,

330, 367, 370, 373, 375, 385,
415, 440, 441, 443, 451, 452

effect, 71, 125, 333
in C*-algebra, 334

eigenspace, 500
eigenvalue, 500

degenerate, 500
joint, 504
multiplicity, 500
non-degenerate, 500
simple, 500

eigenvalue-eigenvector link, 317
eigenvector, 500

joint, 504
einselection, 443
Einstein locality, 318
Einstein summation convention, 419
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Einstein, A., 1, 7, 9, 80, 204, 247,
249, 275, 439, 493, 803

Einstein–Podolsky–Rosen, 191, 202
embezzlement, 226
emergence, 12, 430

asymptotic, 367, 451
emergent features, 368
empirical measure, 307
energy, 355

interaction, 383
surface, 383

entourage uniformity, 765
entropy, 356
environment, 442
epimorphism (= epi), 814
equalizer, 821
equivalence relation

as groupoid, 726
equivariance (of quantization), 295
essential range, 582
essential supremum, 525
Euclidean group, 256
evaluation map, 811
event, 23
expectation value, 25
explanatory emergence, 430
exponential, 811
exponential map, 93
external description, 822
extremal decomposition, 29
extreme boundary, 28, 553
extreme points, 28
Eyring–Kramers formula, 377

face, 553
factor, 747

finite, 750
purely infinite, 750
semifinite, 750
type classification, 753

false, 76, 475
fermionic Fock space, 390
field operator, 402
filter, 548, 781

neighbourhood, 640

prime, 548, 781
proper, 781

first-order logic, 793
flow, 86, 87
folium, 328
forcing, 792, 831
formula, 794

closed, 794
in topos, 829
open, 794

Fourier inversion formula, 720
frame, 277

O(X), 685
compact, 466
definition, 778
maps, 685
prime element, 690
regular, 466
spatial, 687

frame function, 64
free energy, 356

equilibrium, 356
free vector space, 697
Free Will Theorem, 202–209
Freedom (assumption), 201, 204,

208, 212, 213, 215, 217
frequency operator, 299
function

affine, 557
concave, 557
continuous, 523
convex, 557
essentially bounded, 534
in ZF set theory, 801
integrable, 524
measurable, 523
of rapid decrease, 178
simple, 523
space, 811
strictly convex, 557
uniformly continuous, 765

function symbol, 793
in topos, 828

functional, 497, 538
sublinear, 541
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functor, 807
contravariant, 807
covariant, 807
forgetful, 810

functors
adjoint pair, 809
left-adjoint, 809
right-adjoint, 809

Gödel’s Completeness Theorem, 795
Gödel’s negative translation, 791,

796
Gårding domain, 157
gap equation, 414
gauge (of convex set), 541
gauge transformation, 424
Gelfand duality, 652, 656, 809
Gelfand isomorphism, 648

constructive, 471
Gelfand spectrum, 26, 84, 648
Gelfand topology, 648
Gelfand transform, 648
Gelfand triple, 178
Gelfand’s Theorem, 83, 648
Gelfand–Mazur Theorem, 673
generalized derivative, 180
generating set, 831
GHZ-Theorem, 210
Gibbs measure, 357
Gleason’s Theorem, 61, 80, 119–122
Gleason-Kahane-Zelazko Theorem,

770
GNS-construction, 36, 691
Goldstone field, 420
Goldstone Theorem, 416–424

classical, 420
Gram–Schmidt procedure, 566
graph (of linear map), 540
group

amenable, 734
as a groupoid, 259
icc (infinite conjugacy classes),

752
modular, 755

group action

asymptotically abelian, 346
group C*-algebra

reduced, 253
group von Neumann algebra, 751
groupoid, 259, 725

action, 726
category, 806
gauge, 291
Lie, 725
pair, 726
tangent, 726, 729

Hölder inequality, 520
Haag duality, 318
Haar basis, 115
Haar measure, 152, 714
Haar system, 730

left, 730
left-invariant, 730

Hadamard’s Lemma, 94
Hahn–Banach Theorem, 542
halving lemma, 122
Hamburger Moment Problem, 106
Hamhalter’s Theorem, 335
Hamhalter–Dye Theorem, 763
Hamilton’s equations, 88
Hamiltonian operator, 347
Hamiltonian vector field, 88
Hard determinism, 205
Hard incompatibilism, 205
Hausdorffication, 484
Heisenberg cocycle, 172
Heisenberg group, 92
Heisenberg model, 348
Heisenberg, W., 1–11, 18, 19, 80,

193, 249, 275, 276, 291, 311,
431, 435, 436, 438–440, 444,
450, 515, 769

Heisenbergification, 11
helicity, 272
Hellinger–Toeplitz Theorem, 569
Hepp’s Lemma, 322
hereditary subalgebra, 688
hermitian form, 495
hermitian map, 530
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Hewitt–Savage Theorem, 307
Heyting algebra, 686

complete, 686, 779
definition, 779
implication, 779
in topos, 824

hidden variable
dispersion-free, 193
non-contextual , 193
normalized, 193
quasi-linear, 194
stochastic, 217
theory, 221

Higgs field, 424
Higgs mechanism, 424–429
Hilbert A-module, 678
Hilbert C*-module, 678

pre, 677
Hilbert space, 1, 36

definition, 517
dimension, 566
finite-dimensional, 497
separable, 566
unit sphere, 498

Hilbert spaces
isomorphic, 566

Hilbert, D., 1, 2, 13, 75, 638, 768,
803

homogeneity (of norm), 495
homomorphism

anti, 764
Boolean lattices, 779
C*-algebras, 646
Jordan, 763
lattices, 778
nondegenerate, 665, 682
order, 778
orthocomplemented lattices, 779
orthomodular lattices, 780
posets, 777

homomorphisms
equivalent, 176

Husimi function, 252
hyperplane, 544

ideal
closed two-sided, 671
essential, 681
in Banach algebra, 671
in lattice, 466
lattice, 782
left, 671
maximal, 671, 782
prime, 690, 782
proper, 782
regular (in lattice), 466
right, 671

idealization, 369
idempotents, 35
identities map, 806
image, 820
implication, 821
Imprimitivity Theorem, 263
Incompatibilism, 205
incomplete tensor product

of Hilbert spaces, 313
indistinghuishable particles,

275–288
inductive limit, 707, 711
inequivalent quantizations, 280
infimum, 778
infinite tensor product

of Hilbert spaces, 312
initial object, 813, 820
inner

Poisson derivation, 96
inner product, 495
integrating curve (of vector field), 86
integration, 523
interaction, 348, 352

nearest-neighbour, 348
interior point, 541
internal language, 828
internal reasoning, 822
interpretation, 795
interval domain, 485
intuitionistic propositional logic, 790
invariant domain, 157
involution, 26, 645
isometric isomorphism, 540
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isometry, 540
isomorphism

Boolean lattices, 779
C*-algebras, 646
Jordan, 763
natural, 808
objects, 807
orthomodular lattices, 780
posets, 777
weak Jordan, 335

Isotony, 318

Jacobi identity, 85
JB-algebra, 763
joint energy-momentum spectrum,

422
joint spectrum, 107
Jordan algebra, 33, 126, 334

definition, 763
Jordan map, 126

weak, 126
Jordan product, 33, 126
Jordan triple product, 764
Jordan’s Theorem, 135, 145
Jordan–Wigner transformation, 391

Kadison’s inequality, 763
Kadison’s Theorem, 133
Kadison–Singer Conjecture, 58,

113–118
Kadison–Singer property, 113
Kaplansky’s Density Theorem, 743
KMS-condition, 358, 359
Kochen–Specker Theorem, 121, 194
Krein–Milman Theorem, 553
Kripke semantics, 475

λ -conversion, 829
ladder operators, 158
Laplacian, 188
lattice, 778

Boolean, 779
complete, 778
conditionally complete, 486
distributive, 778
free distributive, 783

in topos, 823
modular, 779
orthocomplemented, 779
orthomodular, 779

lattice gas, 352
law of contradiction, 75
law of double negation, 75
law of excluded middle, 75, 780
Lebesgue covering dimension, 758
left translation, 152
Leibniz rule, 350
Libertarianism, 205
Lie algebra, 85

as Lie algebroid, 260
of a Lie group, 93
semi-simple, 170
simple, 170

Lie algebroid, 259, 260
integrable, 260

Lie bracket, 93
Lie group, 155

as Lie groupoid, 726
linear, 92
semi-simple, 172
simple, 172

Lie groupoid, 259
Lie’s Third Theorem, 156
Lie–Poisson bracket, 97
Lie–Poisson manifold, 253
Lie–Poisson structure, 97
limit, 813
Lindenbaum (–Tarski) algebra, 788
local gauge group, 424
local observables, 318
local part, 710
local realism, 244
local sequence, 303
locale, 685

point, 686
spatial, 687

Locality (assumption), 204, 212,
213, 215

localization, 486
locally closed, 262
locally uniformly closed, 740
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logical theory, 784, 795
completeness, 786
consistency, 789
many-sorted, 793
signature, 784, 793
soundness, 786

long-range order, 381
Lorentz group, 272

proper orthochronous, 272
lower set (in lattice), 466
lower subset, 819
lower-level theory, 367
Ludwig’s Theorem, 135
Lusin’s Theorem, 639

Mackey–Glimm dichotomy, 262
manifold

as Lie algebroid, 260
as Lie groupoid, 726

map
proper, 665

marginal distributions, 25
mass, 272
matrix mechanics, 1
mean-field theory, 409

homogeneous, 409
measure, 523

atomic part, 604
barycenter, 557
complex, 530
continuous part, 604
countable additivity, 523
finitely additive, 533
finitely additive bounded, 533
finitely additive signed, 533
Hahn–Jordan decomposition, 530
inner, 526
invariant, 263
outer, 526
projection-valued, 724
quasi-invariant, 263
signed, 530
total variation, 530

measure space, 523
σ -finite, 523, 527

atom, 604
completeness, 526
finite, 523
inner regular, 526
outer regular, 526
regularity, 526
standard, 604

measure spaces
equivalent, 602
isomorphic, 602

measurement context, 193
measurement problem, 435–457

big, 441
birth, 435
Decoherence, 442
Heisenberg, 436
insolubility, 445
London and Bauer, 438
new formulation, 453
non-existence, 444
Pauli, 438
Schrödinger, 439
small, 441
solubility, 455
Swiss approach, 440
von Neumann, 437

measurement scheme, 446
preserving probabilities, 447
sound, 448

measures
mutually singular, 530

meet-irreducible, 687
method of the highest weight, 164
metric, 516
metric space

complete, 516
Mexican hat potential, 416
Milnor’s exercise, 770
Minkowski inequality, 520
Minkowski–Weyl Theorem, 245
Mitchell–Bénabou language, 828
mixing (of states), 28
model, 789, 791, 795

binary, 789
Kripke, 792, 796
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sound, 791
standard (PA), 797
standard (ZF), 802

modular lattice, 78
modus ponens, 786, 795
moment (of a measure), 106
momentum map, 96

Hamiltonian, 96
infinitesimally equivariant, 99

monoidal category, 773
monomorphism (= mono), 814
monomorphisms

equivalent, 814
monotone complete, 111
Monotone Convergence Theorem,

525
morphism, 806

between Banach spaces, 538
multiplication, 806
multiplication operator, 37
multiplier, 168

exact, 168
multiplier algebra, 679

natural transformation, 808
Nature (assumption), 201, 204, 212,

214, 215, 217
Nelson operator, 188
Nelson’s criterion, 188
Nelson’s Lemma, 635
Neumann, J. von, viii, 1–3, 10, 15,

17, 38, 42, 75, 80, 81, 152,
153, 187, 191, 192, 194, 231,
289, 312, 313, 330, 435, 437,
438, 445, 448, 450, 457, 459,
515, 566, 570, 590, 625, 638,
639, 643, 645, 646, 753,
768–769

Newton’s equation, 89
Newton, I., ix
no signaling property, 219
Noether’s Theorem, 100
non-contextuality, 56
Non-contextuality (assumption), 201
non-logical symbols, 784, 793

norm, 27, 495
cross, 700
operator, 498, 569
supremum, 512
trace, 509, 618

norm topology, 574
normal (functional), 744
normal bundle, 728
normalization, 30, 43
norms

equivalent, 517
nowhere dense, 640

object, 806
objectification, 7

of pointer observable, 447
observable

on a set with a transition
probability, 33

observables, 27
old-fashioned vector field, 85
one-point compactification, 531, 664
Open Mapping Theorem, 539
operator, 497

absolute value, 509, 618
affiliated to a von Neumann

algebra, 637
anti-linear, 128
anti-unitary, 128
bounded, 538, 569
closable, 177, 572
closed, 177, 571
closure, 177, 572
compact, 608, 609
density, 622
diagonalizable, 611, 612
domain, 570
essentially self-adjoint, 177, 573
finite rank, 610
Hilbert–Schmidt, 623
maximal, 598
multiplication, 571
norm-positive, 583
normal, 583
numerical range, 587
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partial isometry, 510
polar decomposition, 510
positive, 507
pure contraction, 625
self-adjoint, 177, 569, 570
square root, 617
symmetric, 573
trace-class, 618
unbounded, 569
unitary, 506, 510, 566

order interval, 777
order isomorphism, 127
order parameter

strong, 380
orthoclosed

subset of a set with a transition
probability, 32

subspace of vector space, 780
orthocomplement

of a subset of a set with a
transition probability, 32

orthocomplementation, 779
orthodoxy, 435
orthogonal complement, 499, 562

double, 562
orthomodular lattice, 78
orthonormal basis, 497
orthonormal subset

of a set with a transition
probability, 32

oscillation, 65
Outcome Independence, 218
outcome spaces, 448

pair groupoid, 259
Paradox of Probability, 310
Parameter Independence, 218

(assumption), 222
paraparticle, 278
parastate, 278
parastatistics, 276, 278
Parseval’s equality, 565
partial isometry, 510, 750
partial order, 777

in topos, 823

linear, 668
partition, 277
partition function, 356
partition of unity, 705
Pauli matrices, 130
Pauli, W., 1, 80, 108, 435, 438
paving conjecture, 118
Peano Arithmetic, 793

axioms, 797
perfect anti-correlation, 215
perfect correlation, 203, 215
Peter–Weyl Theorem, 153
phenomenological theory, 367
Plancherel’s Theorem, 773
Poincaré group, 272

proper orthochronous, 272
point (of frame), 491
Poisson algebra, 88
Poisson bracket, 88
Poisson derivation, 96
Poisson geometry, 84
Poisson manifold, 88
Poisson tensor, 89
polar decomposition, 510
polar of subset, 244
polarization identity, 496
Pontryagin dual, 173
Pontryagin duality, 720
Pontryagin Duality Theorem, 173
poset, 777

directed, 777
positive definite

inner product, 495
metric, 516
norm, 495

Positive Operator Valued Measure,
74

positivity
in C*-algebra, 668
of map on B(H), 43
of map on B(H)sa, 43
of map on C(X), 30, 526
of quantization, 295

potential, 348
short-range, 349
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POVM, 74
pre-inner product, 495
predicate logic, 793
predicate symbols, 793
predual, 744
preorder, 777

in topos, 822
presheaf, 815

on X , 815
representable, 816

Principle of General Tovariance, 493
Principle of the Identity of

Indiscernibles, 275
Principle of Uniform Boundedness,

576
probability distribution

on E (H), 72
on P(H), 59, 119

probability measure
K-exchangeable, 306
finitely additive, 533
completely additive on P(H),

119
exchangeable, 306
finitely additive on P(H), 119
on P(H), 59, 119
on locale, 489
permutation-invariant, 306

probability space, 104, 523
non-commutative, 696

problem of outcomes, 448
problem of statistics, 446
product, 811

binary, 811
Product Extension (assumption), 222
projection, 499, 502, 573

atomic, 601
finite, 750
minimal, 750

projections, 125, 333
proof by contradiction, 787
proposition, 784
propositional logic, 784
pullback

of a map, 90

of arrows, 812
pure state space, 31, 765

normal, 125
pure thermodynamics phase, 363
purely logical symbols, 784, 793
push-forward

of a diffeomorphism , 90
of a filter, 640

pushout, 813

Q (lost Gospel), 242
quadratic form, 496
Quantum Bayesianism (= QBism),

436
quantum De Finetti Theorem, 301
quantum event, 40, 103
quantum Ising chain, 348
quantum Ising model, 348
quantum logic, 459

Birkhoff–von Neumann, 75–79,
81, 459

intuitionistic, 471–475
quantum probability distribution, 40
quantum random variable, 103
quantum spin systems, 318
quantum toposophy, 459
quantum-mechanical law of strong

numbers, 314
quasi-linear, 121
quasi-local observables, 318
quasi-local sequence, 303
quasi-state, 61, 490

strong, 120
weak, 120

quasi-symmetric sequence, 300

Radon–Nikodym Theorem, 549
rather below (in lattice), 466
reading scale, 447
real numbers

Dedekind, 461, 489
lower, 489
upper, 489

real rank, 758
reductio ad absurdum, 787
regular Lie group action, 262
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regular polyhedra, 561
regular space, 83
relation, 777
relatively open, 262
representation, 36

admissible, 174, 176
cyclic, 691
induced, 263
irreducible, 153, 693
left-regular, 254
nondegenerate, 695
of C*-algebra, 691
parafermionic, 285
primary, 319
skew-adjoint, 155, 188
super-admissible, 174
weakly contained, 734

representations
disjoint, 319
equivalent, 164, 319
equivalent admissible, 176
quasi-equivalent, 319
unitarily equivalent, 693

resolution of the identity
in a set with a transition

probability, 32
resolvent, 577, 581
Riesz Lemma, 563
Riesz Representation Theorem, 526
Riesz–Fréchet Theorem, 568
right translation, 153
right-annihilator, 760
root, 166

positive, 166

σ(V,W )-topology, 546
σ -algebra, 523
σ -weak convergence, 512
σ -weak topology, 111, 512, 743
Sakai’s Theorem, 744
Schatten–von Neumann ideals, 643
Schmidt Extension (assumption),

222
Schrödinger equation, 15, 247, 445,

446, 449, 515

time-dependent, 186
Schrödinger’s Cat, vii, 79, 439, 449,

452, 453, 457
Schrödinger, E., 1, 2, 248, 249, 252,

439, 441, 451, 452
Schur duality, 277
Schur’s Lemma, 153, 693
Schwartz space, 178
Scott topology, 485
second cohomology group of G, 168
self-adjoint operator

maximal, 506
self-adjoint operators, 125, 333
self-adjointness (of quantization),

295
self-consistency equation, 414
semantic entailment, 34
semantic equivalence relation, 76
semantics

Kripke–Joyal, 831
propositional logic, 784

semi-direct product, 256
regular, 268

semi-direct product algebroid, 260
semi-direct product groupoid, 259
seminorm, 178
seminorm (internal), 463
semiring, 532

fundamental lemma, 533
sentence, 794

in topos, 829
separating duality, 546
separation theorem, 544
sequentially complete, 575
sesquilinear form, 495

bounded, 576
set with a transition probability, 31
set-theoretic universe, 802
setting of experiment, 199
sheaf, 818

of continuous functions, 818
Sheffer stroke, 787
shift operator, 392
sieve, 815

maximal, 815
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pullback, 815
simplex, 28, 561

Choquet, 560
SNAG-Theorem, 724
Sobolev Embedding Theorem, 182
source map, 806
space

σ -compact, 527
as a groupoid, 259
compact, 83
Hausdorff (= T2), 83
hyperstonean, 748, 761
locally compact, 83
Polish, 641
scattered, 761
sober, 687
Stone, 748, 761, 780
stonean, 748, 761
totally disconnected, 780
totally separated, 761

spectral mapping property, 580, 659
spectral order, 486
spectral presheaf, 494
spectral projection, 501, 588
spectral radius, 578

formula, 578
spectral resolution, 500, 611

in a set with a transition
probability, 33

spectral subspace, 501
spectral theorem for self-adjoint

operators
approximation by projections, 592
bounded measurable functional

calculus, 591
continuous functional calculus,

590
for compact operators, 612
for unbounded operators, 633
multiplication operator, 596, 598
on finite-dimensional Hilbert

space, 500
spectral theory, 515
spectrum, 500, 577, 581

Arveson, 757

Connes, 757
continuous, 582, 641
discrete, 582
joint, 504
point, 582
residual, 641

Spehner–Haake model, 453
spin, 160, 175, 272
spontaneous symmetry breaking,

345, 367–433
double well, 371–378
mean-field theories, 409–415
quantum spin systems, 379–385

state, 30
K-exchangeable, 301
πi-normal, 319
clustering, 322
coherent, 252, 371
correlated, 243
equilibrium, 345
ergodic, 365
Gibbs, 384
ground, 345, 350, 353, 355
infinitely exchangeable, 301
KMS, 359
local equilibrium, 356
macroscopic, 324
mixed, 31
normal, 109
on B(H), 43
on B(H)sa, 43
on C(X), 527
on C0(X), 84, 529
on C*-algebra, 646
permutation-invariant, 301, 326
primary, 319
probability measure, 28
product, 243
pure, 31
quasi-free, 403
singular, 112
trivial at infinity, 366
uncorrelated, 243

state space, 28, 30, 763
normal, 112, 125
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normal pure, 333
normal total, 333
of B(H), 43
of B(H)sa, 43
of C*-algebra, 334, 647
pure, 334, 647

states
b-distinguishable, 446

Stone spectrum, 781
Stone’s Representation Theorem,

780
Stone’s Theorem, 184
Stone–Weierstrass Theorem, 555
strictly convex (normed space), 543
strong (operator) topology, 574, 742
strong continuity of group action,

344
structure constants, 97
subcategory, 807

full, 807
subfunctor, 817
subobject, 814
subobject classifier, 462, 814

in [Cop,Sets], 816
subrepresentation, 319
sup-norm (= supremum norm), 83,

522
support

of function, 522
of measure, 557

supremum, 778
symmetric sequence, 299
symmetrization operator, 298
symmetry, 125

algebraic quantum theory,
333–366

Bohr, 127, 334
Jordan, 126, 334
Kadison, 126, 334
Ludwig, 127, 334
permutation, 275–288
property of metric, 516
quantum mechanics, 125–191
spatial translation, 346
spontaneously broken, 379

von Neumann, 127, 334
weak Jordan, 126, 334
weakly broken, 379
Wigner, 126, 334

symmetry group, 345
symplectic manifold, 89
system of imprimitivity, 258

tangent bundle (as Lie algebroid),
260

target map, 806
tautological functor, 464
tautology, 785
tempered distribution, 178
tensor category, 773
tensor product

algebraic, 697
C*-norm, 700
cross-norm, 700
injective, 700
maximal C*-norm, 701
product state, 703
projective, 701, 772
spatial, 243
state, 702

term, 794
term formation, 794
terminal object, 461, 811

in [Cop,Sets], 815
terms

in topos, 828
tertium non datur, 75
theorem, 786, 795
theorem of the highest weight, 166
theory

fundamental, 367
higher-level, 367
reduced, 367
reducing, 367

time-evolution, 345
Tomita–Takesaki Theorem, 755
Tomita–Takesaki theory, 754
top element, 777, 820

in internal lattice, 824
topological vector space, 178, 541
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locally convex, 544
topos

definition, 815
elementary, 815

topos theory
and quantum logic, 459–494
introduction to, 805–833

total set of states, 115
trace, 508, 751

finite, 751
infinite, 751
semifinite, 751

transition probability, 31
on P(B(H)), 47
on pure state space, 765

triangle inequality
metric, 516
norm, 495

true, 76, 475, 802
truth

at stages, 831
in topos, 831
partial, 831

truth function, 785
truth object, 461, 814

in [Cop,Sets], 815
truth table, 785
tubular neighbourhood theorem, 727
twist map, 823
two-point function, 217

ultrafilter, 548, 781
free, 548
principal, 548

ultraweak topology, 743
unbounded multiplier, 681
uncorrelated unit vector, 220
uniform space, 765
uniform structure, 765
unilateral shift, 309
unit, 463
unital commutative C*-subalgebra,

125, 333
maximal, 506

unitary dual, 164

unitary gauge, 426
Unitary Invariance (assumption), 222
unitary operator, 125
unitary representation, 151
unitization, 660
universal generalization, 795
upper semicontinuous partition, 336
upper set (= up-set), 819
upward directed, 759
Urysohn’s Lemma, 639

valuation, 491, 784
vanishing at infinity, 83
variable, 793

bound, 794
free, 794
in topos, 828

variance, 25
vector

cyclic, 595, 691
separating, 595

vector bundle
as Lie groupoid, 726

vertex, 813
von Neumann algebra, 2, 590, 742

abelian, 747
center, 318
definition, 742
factor, 747
hyperfinite, 754
injective, 754
maximal commutative, 2
standard form, 755

von Neumann chain, 437

wave mechanics, 1
weak (operator) topology, 574, 742
weak convergence in B(H), 574
weak measurability, 152
weak topology, 546
weak∗ topology (= w∗-topology),

546
weight, 164

dominant, 165
of a frame function, 65



INDEX 881

regular, 165
well inside (in lattice), 466
well-formed formula, 784
Weyl chamber, 165
Weyl group, 164
Weyl operator, 154
Weyl quantization, 251
Weyl’s Program, 259, 289
Weyl, H., 18, 68, 172, 188, 251, 289,

290, 515, 583
Whitehead’s Lemma, 170
Wigner cocycle, 265
Wigner function, 251
Wigner’s Theorem, 132, 147

Wigner, E., 19, 187, 289, 290, 440,
442, 450, 457

would-be Goldstone boson, 424

yes-no questions, 35
Yoneda embedding, 816
Yoneda Lemma, 816
Young diagram, 277
Young tableau, 277

standard, 277

Zariski topology, 690
Zermelo–Fraenkel set theory, 793
ZF-axioms, 798
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