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Notation

Except where actual units are needed, units are such that the speed of light is one, c = 1, and Newton's
gravitational constant is one, G = 1.

The metric signature is −+++.

Greek (brown) letters κ, λ, ..., denote spacetime (4D, usually) coordinate indices. Latin (black) letters k,
l, ..., denote spacetime (4D, usually) tetrad indices. Early-alphabet greek letters α, β, ... denote spatial (3D,
usually) coordinate indices. Early-alphabet latin letters a, b, ... denote spatial (3D, usually) tetrad indices.
To avoid distraction, colouring is applied only to coordinate indices, not to the coordinates themselves.
Early-alphabet latin letters a, b, ... are also used to denote spinor indices.

Sequences of indices, as encountered in multivectors (Chapter 13) and di�erential forms (Chapter 15), are
denoted by capital letters. Greek (brown) capital letters Λ, Π, ... denote sequences of spacetime (4D, usually)
coordinate indices. Latin (black) capital letters K, L, ... denote sequences of spacetime (4D, usually) tetrad
indices. Early-alphabet capital letters denote sequences of spatial (3D, usually) indices, coloured brown A,
B, ... for coordinate indices, and black A, B, ... for tetrad indices.

Speci�c (non-dummy) components of a vector are labelled by the corresponding coordinate (brown) or
tetrad (black) direction, for example Aµ = {At, Ax, Ay, Az} or Am = {At, Ax, Ay, Az}. Sometimes it is
convenient to use numerical indices, as in Aµ = {A0, A1, A2, A2} or Am = {A0, A1, A2, A3}. Allowing the
same label to denote either a coordinate or a tetrad index risks ambiguity, but it should be apparent from
the context (or colour) what is meant. Some texts distinguish coordinate and tetrad indices for example by
a caret on the latter (there is no widespread convention), but this produces notational overload.

Boldface denotes abstract vectors, in either 3D or 4D. In 4D, A = Aµeµ = Amγγm, where eµ denote
coordinate tangent axes, and γγm denote tetrad axes.

Repeated paired dummy indices are summed over, the implicit summation convention. In special and
general relativity, one index of a pair must be up (contravariant), while the other must be down (covariant).
If the space being considered is Euclidean, then both indices may be down.

∂/∂xµ denotes coordinate partial derivatives, which commute. ∂m denotes tetrad directed derivatives,
which do not commute. Dµ and Dm denote respectively coordinate-frame and tetrad-frame covariant deriva-
tives.
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Notation 3

Choice of metric signature

There is a tendency, by no means unanimous, for general relativists to prefer the −+++ metric signature,
while particle physicists prefer +−−−.
For someone like me who does general relativistic visualization, there is no contest: the choice has to be

−+++, so that signs remain consistent between 3D spatial vectors and 4D spacetime vectors. For example,
the 3D industry knows well that quaternions provide the most e�cient and powerful way to implement
spatial rotations. As shown in Chapter 13, complex quaternions provide the best way to implement Lorentz
transformations, with the subgroup of real quaternions continuing to provide spatial rotations. Compatibility
requires −+++. Actually, OpenGL and other graphics languages put spatial coordinates in the �rst three
indices, leaving time to occupy the fourth index; but in these notes I stick to the physics convention of
putting time in the zeroth index.
In practical calculations it is convenient to be able to switch transparently between boldface and in-

dex notation in both 3D and 4D contexts. This is where the +−−− signature poses greater potential for
misinterpretation in 3D. For example, with this signature, what is the sign of the 3D scalar product

a · b ?

Is it a · b =
∑3
a=1 aab

a or a · b =
∑3
a=1 a

aba? To be consistent with common 3D usage, it must be the
latter. With the +−−− signature, it must be that a · b = −aaba, where the repeated indices signify implicit
summation over spatial indices. So you have to remember to introduce a minus sign in switching between
boldface and index notation.
As another example, what is the sign of the 3D vector product

a× b ?

Is it a×b =
∑3
b,c=1 εabca

bbc or a×b =
∑3
b,c=1 ε

a
bca

bbc or a×b =
∑3
b,c=1 ε

abcabbc? Well, if you want to switch
transparently between boldface and index notation, and you decide that you want boldface consistently to
signify a vector with a raised index, then maybe you'd choose the middle option. To be consistent with
standard 3D convention for the sign of the vector product, maybe you'd choose εabc to have positive sign for
abc an even permutation of xyz.
Finally, what is the sign of the 3D spatial gradient operator

∇ ≡ ∂

∂x
?

Is it ∇ = ∂/∂xa or ∇ = ∂/∂xa? Convention dictates the former, in which case it must be that some boldface
3D vectors must signify a vector with a raised index, and others a vector with a lowered index. Oh dear.
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Concept Questions

1. What does c = universal constant mean? What is speed? What is distance? What is time?
2. c+ c = c. How can that be possible?
3. The �rst postulate of special relativity asserts that spacetime forms a 4-dimensional continuum. The

fourth postulate of special relativity asserts that spacetime has no absolute existence. Isn't that a
contradiction?

4. The principle of special relativity says that there is no absolute spacetime, no absolute frame of reference
with respect to which position and velocity are de�ned. Yet does not the cosmic microwave background
de�ne such a frame of reference?

5. How can two people moving relative to each other at near c both think each other's clock runs slow?
6. How can two people moving relative to each other at near c both think the other is Lorentz-contracted?
7. All paradoxes in special relativity have the same solution. In one word, what is that solution?
8. All conceptual paradoxes in special relativity can be understood by drawing what kind of diagram?
9. Your twin takes a trip to α Cen at near c, then returns to Earth at near c. Meeting your twin, you see

that the twin has aged less than you. But from your twin's perspective, it was you that receded at near
c, then returned at near c, so your twin thinks you aged less. Is it true?

10. Blobs in the jet of the galaxy M87 have been tracked by the Hubble Space Telescope to be moving at
about 6c. Does this violate special relativity?

11. If you watch an object move at near c, does it actually appear Lorentz-contracted? Explain.
12. You speed towards the centre of our Galaxy, the Milky Way, at near c. Does the centre appear to you

closer or farther away?
13. You go on a trip to the centre of the Milky Way, 30,000 lightyears distant, at near c. How long does the

trip take you?
14. You surf a light ray from a distant quasar to Earth. How much time does the trip take, from your

perspective?
15. If light is a wave, what is waving?
16. As you surf the light ray, how fast does it appear to vibrate?
17. How does the phase of a light ray vary along the light ray? Draw surfaces of constant phase on a

spacetime diagram.

7
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18. You see a distant galaxy at a redshift of z = 1. If you could see a clock on the galaxy, how fast would
the clock appear to tick? Could this be tested observationally?

19. You take a trip to α Cen at near c, then instantaneously accelerate to return at near c. If you are
looking through a telescope at a clock on the Earth while you instantaneously accelerate, what do you
see happen to the clock?

20. In what sense is time an imaginary spatial dimension?
21. In what sense is a Lorentz boost a rotation by an imaginary angle?
22. You know what it means for an object to be rotating at constant angular velocity. What does it mean

for an object to be boosting at a constant rate?
23. A wheel is spinning so that its rim is moving at near c. The rim is Lorentz-contracted, but the spokes

are not. How can that be?
24. You watch a wheel rotate at near the speed of light. The spokes appear bent. How can that be?
25. Does a sunbeam appear straight or bent when you pass by it at near the speed of light?
26. Energy and momentum are uni�ed in special relativity. Explain.
27. In what sense is mass equivalent to energy in special relativity? In what sense is mass di�erent from

energy?
28. Why is the Minkowski metric unchanged by a Lorentz transformation?
29. What is the best way to program Lorentz transformations on a computer?



What's important?

1. The postulates of special relativity.
2. Understanding conceptually the uni�cation of space and time implied by special relativity.

a. Spacetime diagrams.
b. Simultaneity.
c. Understanding the paradoxes of relativity � time dilation, Lorentz contraction, the twin paradox.

3. The mathematics of spacetime transformations.
a. Lorentz transformations.
b. Invariant spacetime distance.
c. Minkowski metric.
d. 4-vectors.
e. Energy-momentum 4-vector. E = mc2.
f. The energy-momentum 4-vector of massless particles, such as photons.

4. What things look like at relativistic speeds.

9



1

Special Relativity

Special relativity is a fundamental building block of general relativity. General relativity postulates that the
local structure of spacetime is that of special relativity.
The primary goal of this Chapter is to convey a clear conceptual understanding of special relativity.

Everyday experience gives the impression that time is absolute, and that space is entirely distinct from time,
as Galileo and Newton postulated. Special relativity demands, in apparent contradiction to experience, the
revolutionary notion that space and time are united into a single 4-dimensional entity, called spacetime.
The revolution forces conclusions that appear paradoxical: how can two people moving relative to each other
both measure the speed of light to be the same, both think each other's clock runs slow, and both think the
other is Lorentz-contracted?
In fact special relativity does not contradict everyday experience. It is just that we humans move through

our world at speeds that are so much smaller than the speed of light that we are not aware of relativistic
e�ects. The correctness of special relativity is con�rmed every day in particle accelerators that smash particles
together at highly relativistic speeds.
See https://jila.colorado.edu/~ajsh/sr/ for animated versions of several of the diagrams in this Chapter.

1.1 Motivation

The history of the development of special relativity is rich and human, and it is beyond the intended scope
of this book to give any reasonable account of it. If you are interested in the history, I recommend starting
with the popular account by Thorne (1994).
As �rst proposed by James Clerk Maxwell in 1864, light is an electromagnetic wave. Maxwell believed

(Goldman, 1984) that electromagnetic waves must be carried by some medium, the luminiferous aether,
just as sound waves are carried by air. However, Maxwell knew that his equations of electromagnetism had
empirical validity without any need for the hypothesis of an aether.
For Albert Einstein, the theory of special relativity was motivated by the curious circumstance that

Maxwell's equations of electromagnetism seemed to imply that the speed of light was independent of the
motion of an observer. Others before Einstein had noticed this curious feature of Maxwell's equations. Joseph

10
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Larmor, Hendrick Lorentz, and Henri Poincaré all noticed that the form of Maxwell's equations could be
preserved if lengths and times measured by an observer were somehow altered by motion through the aether.
The transformations of special relativity were discovered before Einstein by Lorentz (1904), the name �Lorentz
transformations� being conferred by Poincaré (1905).
Einstein's great contribution was to propose (Einstein, 1905) that there was no aether, no absolute space-

time. From this simple and profound idea stemmed his theory of special relativity.

1.2 The postulates of special relativity

The theory of special relativity can be derived formally from a small number of postulates:
1. Space and time form a 4-dimensional continuum;
2. The existence of globally inertial frames;
3. The speed of light is constant;
4. The principle of special relativity.

The �rst two postulates are assertions about the structure of spacetime, while the last two postulates form
the heart of special relativity. Most books mention just the last two postulates, but I think it is important
to know that special (and general) relativity simply postulate the 4-dimensional character of spacetime, and
that special relativity postulates moreover that spacetime is �at.

1. Space and time form a 4-dimensional continuum. The correct mathematical word for continuum
is manifold. A 4-dimensional manifold is de�ned mathematically to be a topological space that is locally
homeomorphic to Euclidean 4-space R4.
The postulate that spacetime forms a 4-dimensional continuum is a generalization of the classical Galilean

concept that space and time form separate 3 and 1 dimensional continua. The postulate of a 4-dimensional
spacetime continuum is retained in general relativity.
Physicists widely believe that this postulate must ultimately break down, that space and time are quantized

over extremely small intervals of space and time, the Planck length
√
G~/c3 ≈ 10−35 m, and the Planck time√

G~/c5 ≈ 10−43 s, where G is Newton's gravitational constant, ~ ≡ h/(2π) is Planck's constant divided by
2π, and c is the speed of light.

2. The existence of globally inertial frames. Statement: �There exist global spacetime frames with
respect to which unaccelerated objects move in straight lines at constant velocity.�
A spacetime frame is a system of coordinates for labelling space and time. Four coordinates are needed,

because spacetime is 4-dimensional. A frame in which unaccelerated objects move in straight lines at con-
stant velocity is called an inertial frame. One can easily think of non-inertial frames: a rotating frame, an
accelerating frame, or simply a frame with some bizarre Dahlian labelling of coordinates.
A globally inertial frame is an inertial frame that covers all of space and time. The postulate that

globally inertial frames exist is carried over from classical mechanics (Newton's �rst law of motion).
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Notice the subtle shift from the Newtonian perspective. The postulate is not that particles move in straight
lines, but rather that there exist spacetime frames with respect to which particles move in straight lines.
Implicit in the assumption of the existence of globally inertial frames is the assumption that the geometry of

spacetime is �at, the geometry of Euclid, where parallel lines remain parallel to in�nity. In general relativity,
this postulate is replaced by the weaker postulate that local (not global) inertial frames exist. A locally

inertial frame is one which is inertial in a �small neighbourhood� of a spacetime point. In general relativity,
spacetime can be curved.

3. The speed of light is constant. Statement: �The speed of light c is a universal constant, the same in
any inertial frame.�
This postulate is the nub of special relativity. The immediate challenge of this chapter, �1.3, is to confront

its paradoxical implications, and to resolve them.
Measuring speed requires being able to measure intervals of both space and time: speed is distance travelled

divided by time elapsed. Inertial frames constitute a special class of spacetime coordinate systems; it is with
respect to distance and time intervals in these special frames that the speed of light is asserted to be constant.
In general relativity, arbitrarily weird coordinate systems are allowed, and light need move neither in

straight lines nor at constant velocity with respect to bizarre coordinates (why should it, if the labelling
of space and time is totally arbitrary?). However, general relativity asserts the existence of locally inertial
frames, and the speed of light is a universal constant in those frames.
In 1983, the General Conference on Weights and Measures o�cially de�ned the speed of light to be

c ≡ 299,792,458 m s−1, (1.1)

and the metre, instead of being a primary measure, became a secondary quantity, de�ned in terms of the
second and the speed of light.

4. The principle of special relativity. Statement: �The laws of physics are the same in any inertial frame,
regardless of position or velocity.�
Physically, this means that there is no absolute spacetime, no absolute frame of reference with respect to

which position and velocity are de�ned. Only relative positions and velocities between objects are meaningful.
Mathematically, the principle of special relativity requires that the equations of special relativity be

Lorentz covariant.
It is to be noted that the principle of special relativity does not imply the constancy of the speed of light,

although the postulates are consistent with each other. Moreover the constancy of the speed of light does
not imply the Principle of Special Relativity, although for Einstein the former appears to have been the
inspiration for the latter.
An example of the application of the principle of special relativity is the construction of the energy-

momentum 4-vector of a particle, which should have the same form in any inertial frame (�1.11).
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1.3 The paradox of the constancy of the speed of light

The postulate that the speed of light is the same in any inertial frame leads immediately to a paradox.
Resolution of this paradox compels a revolution in which space and time are united from separate 3 and
1-dimensional continua into a single 4-dimensional continuum.
Figure 1.1 shows Vermilion emitting a �ash of light, which expands away from her in all directions.

Vermilion thinks that the light moves outward at the same speed in all directions. So Vermilion thinks that
she is at the centre of the expanding sphere of light.
Figure 1.1 shows also Cerulean, who is moving away from Vermilion at about half the speed of light. But,

says special relativity, Cerulean also thinks that the light moves outward at the same speed in all directions
from him. So Cerulean should be at the centre of the expanding light sphere too. But he's not, is he. Paradox!

Figure 1.1 Vermilion emits a �ash of light, which (from left to right) expands away from her in all directions. Since

the speed of light is constant in all directions, she �nds herself at the centre of the expanding sphere of light. Cerulean

is moving to the right at half of the speed of light relative to Vermilion. Special relativity declares that Cerulean too

thinks that the speed of light is constant in all directions. So should not Cerulean think that he too is at the centre

of the expanding sphere of light? Paradox!

Concept question 1.1. Does light move di�erently depending on who emits it? Would the light
have expanded di�erently if Cerulean had emitted the light?

Exercise 1.2. Challenge problem: the paradox of the constancy of the speed of light. Can you
�gure out a solution to the paradox? Somehow you have to arrange that both Vermilion and Cerulean regard
themselves as being in the centre of the expanding sphere of light.

1.3.1 Spacetime diagram

A spacetime diagram suggests a way of thinking, �rst advocated by Minkowski (1909), that leads to the
solution of the paradox of the constancy of the speed of light. Indeed, spacetime diagrams provide the way
to resolve all conceptual paradoxes in special relativity, so it is thoroughly worthwhile to understand them.
A spacetime diagram, Figure 1.2, is a diagram in which the vertical axis represents time, while the

horizontal axis represents space. Really there are three dimensions of space, which can be thought of as
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Figure 1.2 A spacetime diagram shows events in space and time. In a spacetime diagram, time goes upward, while

space dimensions are horizontal. Really there should be 3 space dimensions, but usually it su�ces to show 1 spatial

dimension, as here. In a spacetime diagram, the units of space and time are chosen so that light goes one unit of

distance in one unit of time, i.e. the units are such that the speed of light is one, c = 1. Thus light moves upward and

outward at 45◦ from vertical in a spacetime diagram.

�lling additional horizontal dimensions. But for simplicity a spacetime diagram usually shows just one spatial
dimension.
In a spacetime diagram, the units of space and time are chosen so that light goes one unit of distance in

one unit of time, i.e. the units are such that the speed of light is one, c = 1. Thus light always moves upward
at 45◦ from vertical in a spacetime diagram. Each point in 4-dimensional spacetime is called an event. Light

Time

Space

Figure 1.3 Spacetime diagram of Vermilion emitting a �ash of light. This is a spacetime diagram version of the

situation illustrated in Figure 1.1. The lines along which Vermilion and Cerulean move through spacetime are called

their worldlines. Each point in 4-dimensional spacetime is called an event. Light signals converging to or expanding

from an event follow a 3-dimensional hypersurface called the lightcone. In the diagram, the sphere of light expanding

from the emission event is following the future lightcone. There is also a past lightcone, not shown here.



1.3 The paradox of the constancy of the speed of light 15

signals converging to or expanding from an event follow a 3-dimensional hypersurface called the lightcone.
Light converging on to an event in on the past lightcone, while light emerging from an event is on the
future lightcone.
Figure 1.3 shows a spacetime diagram of Vermilion emitting a �ash of light, and Cerulean moving relative

to Vermilion at about 1
2 the speed of light. This is a spacetime diagram version of the situation illustrated in

Figure 1.1. The lines along which Vermilion and Cerulean move through spacetime are called their world-
lines.
Consider again the challenge problem. The problem is to arrange that both Vermilion and Cerulean are

at the centre of the lightcone, from their own points of view.
Here's a clue. Cerulean's concept of space and time may not be the same as Vermilion's.

1.3.2 Centre of the lightcone

The solution to the paradox is that Cerulean's spacetime is skewed compared to Vermilion's, as illustrated
by Figure 1.4. The thing to notice in the diagram is that Cerulean is in the centre of the lightcone, according
to the way Cerulean perceives space and time. Vermilion remains at the centre of the lightcone according
to the way Vermilion perceives space and time. In the diagram Vermilion and her space are drawn at one
�tick� of her clock past the point of emission, and likewise Cerulean and his space are drawn at one �tick� of
his identical clock past the point of emission. Of course, from Cerulean's point of view his spacetime is quite
normal, and it is Vermilion's spacetime that is skewed.
In special relativity, the transformation between the spacetime frames of two inertial observers is called a

Time

Time

S

p

a

c
e

Space

Figure 1.4 The solution to how both Vermilion and Cerulean can consider themselves to be at the centre of the

lightcone. Cerulean's spacetime is skewed compared to Vermilion's. Cerulean is in the centre of the lightcone, according

to the way Cerulean perceives space and time, while Vermilion remains at the centre of the lightcone according to the

way Vermilion perceives space and time. In the diagram Vermilion (red) and her space are drawn at one �tick� of her

clock past the point of emission, and likewise Cerulean (blue) and his space are drawn at one �tick� of his identical

clock past the point of emission.
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Lorentz transformation. In general, a Lorentz transformation consists of a spatial rotation about some
spatial axis, combined with a Lorentz boost by some velocity in some direction.
Only space along the direction of motion gets skewed with time. Distances perpendicular to the direction

of motion remain unchanged. Why must this be so? Consider two hoops which have the same size when at
rest relative to each other. Now set the hoops moving towards each other. Which hoop passes inside the
other? Neither! For suppose Vermilion thinks Cerulean's hoop passed inside hers; by symmetry, Cerulean
must think Vermilion's hoop passed inside his; but both cannot be true; the only possibility is that the hoops
remain the same size in directions perpendicular to the direction of motion.
If you have understood all this, then you have understood the crux of special relativity, and you can

now go away and �gure out all the mathematics of Lorentz transformations. The mathematical problem is:
what is the relation between the spacetime coordinates {t, x, y, z} and {t′, x′, y′, z′} of a spacetime interval,
a 4-vector, in Vermilion's versus Cerulean's frames, if Cerulean is moving relative to Vermilion at velocity v
in, say, the x direction? The solution follows from requiring
1. that both observers consider themselves to be at the centre of the lightcone, as illustrated by Figure 1.4,

and

2. that distances perpendicular to the direction of motion remain unchanged, as illustrated by Figure 1.5.
An alternative version of the second condition is that a Lorentz transformation at velocity v followed by a
Lorentz transformation at velocity −v should yield the unit transformation.
Note that the postulate of the existence of globally inertial frames implies that Lorentz transformations

are linear, that straight lines (4-vectors) in one inertial spacetime frame transform into straight lines in other
inertial frames.
You will solve this problem in the next section but two, �1.6. As a prelude, the next two sections, �1.4 and

�1.5 discuss simultaneity and time dilation.

Time

S
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e

Figure 1.5 Same as Figure 1.4, but with Cerulean moving into the page instead of to the right. This is just Figure 1.4

spatially rotated by 90◦ in the horizontal plane. Distances perpendicular to the direction of motion are unchanged.
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1.4 Simultaneity

Most (all?) of the apparent paradoxes of special relativity arise because observers moving at di�erent velocities
relative to each other have di�erent notions of simultaneity.

1.4.1 Operational de�nition of simultaneity

How can simultaneity, the notion of events occurring at the same time at di�erent places, be de�ned opera-
tionally?
One way is illustrated in the sequences of spacetime diagrams in Figure 1.6. Vermilion surrounds herself

with a set of mirrors, equidistant from Vermilion. She sends out a �ash of light, which re�ects o� the mirrors
back to Vermilion. How does Vermilion know that the mirrors are all the same distance from her? Because the
re�ected �ash from the mirrors arrives back to Vermilion all at the same instant. Vermilion asserts that the
light �ash must have hit all the mirrors simultaneously. Vermilion also asserts that the instant when the light
hit the mirrors must have been the instant, as registered by her wristwatch, precisely half way between the
moment she emitted the �ash and the moment she received it back again. If it takes, say, 2 seconds between
�ash and receipt, then Vermilion concludes that the mirrors are 1 lightsecond away from her. The spatial
hyperplane passing through these events is a hypersurface of simultaneity. More generally, from Vermilion's
perspective, each horizontal hyperplane in the spacetime diagram is a hypersurface of simultaneity.
Cerulean de�nes surfaces of simultaneity using the same operational setup: he encompasses himself with

mirrors, arranging them so that a �ash of light returns from them to him all at the same instant. But whereas
Cerulean concludes that his mirrors are all equidistant from him and that the light bounces o� them all at the
same instant, Vermilion thinks otherwise. From Vermilion's point of view, the light bounces o� Cerulean's
mirrors at di�erent times and moreover at di�erent distances from Cerulean, as illustrated in Figure 1.7.
Only so can the speed of light be constant, as Vermilion sees it, and yet the light return to Cerulean all at
the same instant.
Of course from Cerulean's point of view all is �ne: he thinks his mirrors are equidistant from him, and

Time
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Space

Time

Space

Time

Space

Time
Space

Figure 1.6 How Vermilion de�nes hypersurfaces of simultaneity. She surrounds herself with (green) mirrors all at the

same distance. She sends out a light beam, which re�ects o� the mirrors, and returns to her all at the same moment.

She knows that the mirrors are all at the same distance precisely because the light returns to her all at the same

moment. The events where the light bounced o� the mirrors de�nes a hypersurface of simultaneity for Vermilion.
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Figure 1.7 Cerulean de�nes hypersurfaces of simultaneity using the same operational setup as Vermilion: he bounces

light o� (green) mirrors all at the same distance from him, arranging them so that the light returns to him all at the

same time. But from Vermilion's frame, Cerulean's experiment looks skewed, as shown here.

that the light bounces o� them all at the same instant. The inevitable conclusion is that Cerulean must
measure space and time along axes that are skewed relative to Vermilion's. Events that happen at the same
time according to Cerulean happen at di�erent times according to Vermilion; and vice versa. Cerulean's
hypersurfaces of simultaneity are not the same as Vermilion's.

From Cerulean's point of view, Cerulean remains always at the centre of the lightcone. Thus for Cerulean,
as for Vermilion, the speed of light is constant, the same in all directions.

1.5 Time dilation

Vermilion and Cerulean construct identical clocks, Figure 1.8, consisting of a light beam which bounces o� a
mirror. Tick, the light beam hits the mirror, tock, the beam returns to its owner. As long as Vermilion and
Cerulean remain at rest relative to each other, both agree that each other's clock tick-tocks at the same rate
as their own.

But now suppose Cerulean goes o� at velocity v relative to Vermilion, in a direction perpendicular to the
direction of the mirror. A far as Cerulean is concerned, his clock tick-tocks at the same rate as before, a tick
at the mirror, a tock on return. But from Vermilion's point of view, although the distance between Cerulean
and his mirror at any instant remains the same as before, the light has farther to go. And since the speed
of light is constant, Vermilion thinks it takes longer for Cerulean's clock to tick-tock than her own. Thus
Vermilion thinks Cerulean's clock runs slow relative to her own.



1.6 Lorentz transformation 19

γυ

γ 1

Figure 1.8 Vermilion and Cerulean construct identical clocks, consisting of a light beam that bounces o� a (green)

mirror and returns to them. In the left panel, Cerulean is at rest relative to Vermilion. They both agree that their

clocks are identical. In the middle panel, Cerulean is moving to the right at speed v relative to Vermilion. The vertical

distance to the mirror is unchanged by Cerulean's motion in a direction orthogonal to the direction to the mirror.

Whereas Cerulean thinks his clock ticks at the usual rate, Vermilion sees the path of the light taken by Cerulean's

clock is longer, by a factor γ, than the path of light taken by her own clock. Since the speed of light is constant,

Vermilion thinks Cerulean's clock takes longer to tick, by a factor γ, than her own. The sides of the triangle formed

by the distance 1 to the mirror, the length γ of the lightpath to Cerulean's clock, and the distance γv travelled by

Cerulean, form a right-angled triangle, illustrated in the right panel.

1.5.1 Lorentz gamma factor

How much slower does Cerulean's clock run, from Vermilion's point of view? In special relativity the factor
is called the Lorentz gamma factor γ, introduced by the Dutch physicist Hendrik A. Lorentz in 1904, one
year before Einstein proposed his theory of special relativity.
In units where the speed of light is one, c = 1, Vermilion's mirror in Figure 1.8 is one tick away from her,

and from her point of view the vertical distance between Cerulean and his mirror is the same, one tick. But
Vermilion thinks that the distance travelled by the light beam between Cerulean and his mirror is γ ticks.
Cerulean is moving at speed v, so Vermilion thinks he moves a distance of γv ticks during the γ ticks of time
taken by the light to travel from Cerulean to his mirror. Thus, from Vermilion's point of view, the vertical
line from Cerulean to his mirror, Cerulean's light beam, and Cerulean's path form a triangle with sides 1,
γ, and γv, as illustrated in Figure 1.8. Pythogoras' theorem implies that

12 + (γv)2 = γ2 . (1.2)

From this it follows that the Lorentz gamma factor γ is related to Cerulean's velocity v by

γ =
1√

1− v2
, (1.3)

which is Lorentz's famous formula.

1.6 Lorentz transformation

A Lorentz transformation is a rotation of space and time. Lorentz transformations form a 6-dimensional
group, with 3 dimensions from spatial rotations, and 3 dimensions from Lorentz boosts.
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If you wish to understand special relativity mathematically, then it is essential for you to go through the
exercise of deriving the form of Lorentz transformations for yourself. Indeed, this problem is the challenge
problem posed in �1.3, recast as a mathematical exercise. For simplicity, it is enough to consider the case of
a Lorentz boost by velocity v along the x-axis.
You can derive the form of a Lorentz transformation either pictorially (geometrically), or algebraically.

Ideally you should do both.
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Figure 1.9 Spacetime diagram representing the experiments shown in Figures 1.6 and 1.7. The right panel shows a

detail of how the spacetime diagram can be drawn using only a straight edge and a compass. If Cerulean's position is

drawn �rst, then Vermilion's position follows from drawing the arc as shown.

Exercise 1.3. Pictorial derivation of the Lorentz transformation. Construct, with ruler and compass,
a spacetime diagram that looks like the one in Figure 1.9. You should recognize that the square represents the
paths of lightrays that Vermilion uses to de�ne a hypersurface of simultaneity, while the rectangle represents
the same thing for Cerulean. Notice that Cerulean's worldline and line of simultaneity are diagonals along his
light rectangle, so the angles between those lines and the lightcone are equal. Notice also that the areas of the
square and the rectangle are the same, which expresses the fact that the area is multiplied by the determinant
of the Lorentz transformation matrix, which must be one (why?). Use your geometric construction to derive
the mathematical form of the Lorentz transformation.

Exercise 1.4. 3D model of the Lorentz transformation. Make a 3D spacetime diagram of the Lorentz
transformation, something like that in Figure 1.4, with not only an x-dimension, as in Exercise 1.3, but also
a y-dimension. You can use a 3D computer modelling program, or you can make a real 3D model. Make the
lightcone from �exible paperboard, the spatial hypersurface of simultaneity from sti� paperboard, and the
worldline from wooden dowel.

Exercise 1.5. Mathematical derivation of the Lorentz transformation. Relative to person A (Ver-
milion, unprimed frame), person B (Cerulean, primed frame) moves at velocity v along the x-axis. Derive
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the form of the Lorentz transformation between the coordinates (t, x, y, z) of a 4-vector in A's frame and the
corresponding coordinates (t′, x′, y′, z′) in B's frame from the assumptions:
1. that the transformation is linear;

2. that the spatial coordinates in the directions orthogonal to the direction of motion are unchanged;

3. that the speed of light c is the same for both A and B, so that x = t in A's frame transforms to x′ = t′

in B's frame, and likewise x = −t in A's frame transforms to x′ = −t′ in B's frame;

4. the de�nition of speed; if B is moving at speed v relative to A, then x = vt in A's frame transforms to
x′ = 0 in B's frame;

5. spatial isotropy; speci�cally, show that if A thinks B is moving at velocity v, then B must think that A
is moving at velocity −v, and symmetry (spatial isotropy) between these two situations then �xes the
Lorentz γ factor.

Your logic should be precise, and explained in clear, concise English.

You should �nd that the Lorentz transformation for a Lorentz boost by velocity v along the x-axis is

t′ = γt− γvx
x′ = − γvt+ γx

y′ = y

z′ = z

,

t = γt′ + γvx′

x = γvt′ + γx′

y = y′

z = z′

. (1.4)

The transformation can be written more elegantly in matrix notation:
t′

x′

y′

z′

 =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1




t

x

y

z

 , (1.5)

with inverse 
t

x

y

z

 =


γ γv 0 0

γv γ 0 0

0 0 1 0

0 0 0 1




t′

x′

y′

z′

 . (1.6)

A Lorentz transformation at velocity v followed by a Lorentz transformation at velocity v in the opposite
direction, i.e. at velocity −v, yields the unit transformation, as it should:

γ γv 0 0

γv γ 0 0

0 0 1 0

0 0 0 1




γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.7)



22 Special Relativity

The determinant of the Lorentz transformation is one, as it should be:∣∣∣∣∣∣∣∣
γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣ = γ2(1− v2) = 1 . (1.8)

Indeed, requiring that the determinant be one provides another derivation of the formula (1.3) for the Lorentz
gamma factor.

Concept question 1.6. Determinant of a Lorentz transformation. Why must the determinant of a
Lorentz transformation be one?

1.7 Paradoxes: Time dilation, Lorentz contraction, and the Twin paradox

There are several classic paradoxes in special relativity. One of them has already been met above, the paradox
of the constancy of the speed of light in �1.3. This section collects three famous paradoxes: time dilation,
Lorentz contraction, and the Twin paradox.
If you wish to understand special relativity conceptually, then you should work through all these paradoxes

yourself. As remarked in �1.4, most (all?) paradoxes in special relativity arise because di�erent observers
have di�erent notions of simultaneity, and most (all?) paradoxes can be solved using spacetime diagrams.
The Twin paradox is particularly helpful because it illustrates several di�erent facets of special relativity,

not only time dilation, but also how light travel time modi�es what an observer actually sees.

1.7.1 Time dilation

If a timelike interval {t, r} corresponds to motion at velocity v, then r = vt. The proper time along the
interval is

τ =
√
t2 − r2 = t

√
1− v2 =

t

γ
. (1.9)

This is Lorentz time dilation: the proper time interval τ experienced by a moving person is a factor γ less
than the time interval t according to an onlooker.

1.7.2 Fitzgerald-Lorentz contraction

Consider a rocket of proper length l, so that in the rocket's own rest frame (primed) the back and front ends
of the rocket move through time t′ with coordinates

{t′, x′} = {t′, 0} and {t′, l} . (1.10)
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From the perspective of an observer who sees the rocket move at velocity v in the x-direction, the worldlines
of the back and front ends of the rocket are at

{t, x} = {γt′, γvt′} and {γt′ + γvl, γvt′ + γl} . (1.11)

However, the observer measures the length of the rocket simultaneously in their own frame, not the rocket
frame. Solving for γt′ = t at the back and γt′ + γvl = t at the front gives

{t, x} = {t, vt} and

{
t, vt+

l

γ

}
(1.12)

which says that the observer measures the front end of the rocket to be a distance l/γ ahead of the back
end. This is Lorentz contraction: an object of proper length l is measured by a moving person to be shorter
by a factor γ.

Exercise 1.7. Time dilation. On a spacetime diagram such as that in the left panel of Figure 1.10, show
how two observers moving relative to each other can both consider the other's clock to run slow compared
to their own.

Figure 1.10 (Left) Time dilation, and (right) Lorentz contraction spacetime diagrams.

Exercise 1.8. Lorentz contraction. On a spacetime diagram such as that in the right panel Figure 1.10,
show how two observers moving relative to each other can both consider the other to be contracted along
the direction of motion.

Concept question 1.9. Is one side of a cube shorter than the other? Figure 1.11 shows a picture
of a 3-dimensional cube. Is one edge shorter than the other? Projected on to the page, it appears so, but in
reality all the edges have equal length. In what ways is this situation similar or dissimilar to time dilation
and Lorentz contraction in 4-dimensional relativity?
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Figure 1.11 A cube. Are the lengths of its sides all equal?

Exercise 1.10. Twin paradox. Your twin leaves you on Earth and travels to the spacestation Alpha,
` = 3 lyr away, at a good fraction of the speed of light, then immediately returns to Earth at the same speed.
Figure 1.12 shows on a spacetime diagram the corresponding worldlines of both you and your twin. Aside
from part 1 and the �rst part of 2, you should derive your answers mathematically, using logic and Lorentz
transformations. However, the diagram is accurately drawn, and you should be able to check your answers
by measuring.
1. On a spacetime diagram such that in Figure 1.12, label the worldlines of you and your twin. Draw the

worldline of a light signal which travels from you on Earth, hits Alpha just when your twin arrives,
and immediately returns to Earth. Draw the twin's �now� (line of simultaneity) when just arriving at
Alpha, and the twin's �now� (line of simultaneity) just departing from Alpha (in the �rst case the twin
is moving toward Alpha, while in the second case the twin is moving back toward Earth).

2. From the diagram, measure the twin's speed v relative to you, in units where the speed of light is unity,
c = 1. Deduce the Lorentz gamma factor γ, and the redshift factor 1 + z = [(1 + v)/(1− v)]1/2, in the
cases (i) where the twin is receding, and (ii) where the twin is approaching.

3. Choose the spacetime origin to be the event where the twin leaves Earth. Argue that the position
4-vector of the twin on arrival at Alpha is

{t, x, y, z} = {`/v, `, 0, 0} . (1.13)

Lorentz transform this 4-vector to determine the position 4-vector of the twin on arrival at Alpha, in
the twin's frame. Express your answer �rst in terms of `, v, and γ, and then in (light)years. State in
words what this position 4-vector means.

4. How much do you and your twin age respectively during the round trip to Alpha and back? What is
the ratio of these ages? Express your answers �rst in terms of `, v, and γ, and then in years.

5. What is the distance between the Earth and Alpha from the twin's point of view? What is the ratio
of this distance to the distance between Earth and Alpha from your point of view? Explain how your
arrived at your result. Express your answer �rst in terms of `, v, and γ, and then in lightyears.

6. You watch your twin through a telescope. How much time do you see (through the telescope) elapse
on your twin's wristwatch between launch and arrival on Alpha? How much time passes on your own
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Figure 1.12 Twin paradox spacetime diagram.

wristwatch during this time? What is the ratio of these two times? Express your answers �rst in terms
of `, v, and γ, and then in years.

7. On arrival at Alpha, your twin looks back through a telescope at your wristwatch. How much time does
your twin see (through the telescope) has elapsed since launch on your watch? How much time has
elapsed on the twin's own wristwatch during this time? What is the ratio of these two times? Express
your answers �rst in terms of `, v, and γ, and then in years.

8. You continue to watch your twin through a telescope. How much time elapses on your twin's wristwatch,
as seen by you through the telescope, during the twin's journey back from Alpha to Earth? How much
time passes on your own watch as you watch (through the telescope) the twin journey back from Alpha
to Earth? What is the ratio of these two times? Express your answers �rst in terms of `, v, and γ, and
then in years.

9. During the journey back from Alpha to Earth, your twin likewise continues to look through a telescope
at the time registered on your watch. How much time passes on your wristwatch, as seen by your twin
through the telescope, during the journey back? How much time passes on the twin's wristwatch from
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the twin's point of view during the journey back? What is the ratio of these two times? Express your
answers �rst in terms of `, v, and γ, and then in years.

Concept question 1.11. What breaks the symmetry between you and your twin? From your
point of view, you saw the twin recede from you at velocity v on the outbound journey, then approach you
at velocity v on the inbound journey. But the twin saw the essentially same thing: from the twin's point of
view, the twin saw you recede at velocity v on the outbound journey, then approach the twin at velocity
v on the inbound journey. Isn't the situation symmetrical, so shouldn't you and the twin age identically?
What breaks the symmetry, allowing your twin to age less?

1.8 The spacetime wheel

1.8.1 Wheel

Figure 1.13 shows an ordinary 3-dimensional wheel. As the wheel rotates, a point on the wheel describes an
invariant circle. The coordinates {x, y} of a point on the wheel relative to its centre change, but the distance
r between the point and the centre remains constant

r2 = x2 + y2 = constant . (1.14)

More generally, the coordinates {x, y, z} of the interval between any two points in 3-dimensional space (a
vector) change when the coordinate system is rotated in 3 dimensions, but the separation r of the two points
remains constant

r2 = x2 + y2 + z2 = constant . (1.15)

y

x

Figure 1.13 A wheel.
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Figure 1.14 A spacetime wheel.

1.8.2 Spacetime wheel

Figure 1.14 shows a spacetime wheel. The diagram here is a spacetime diagram, with time t vertical and
space x horizontal. A rotation between time t and space x is a Lorentz boost in the x-direction. As the
spacetime wheel boosts, a point on the wheel describes an invariant hyperbola. The spacetime coordinates
{t, x} of a point on the wheel relative to its centre change, but the spacetime separation s between the point
and the centre remains constant

s2 = − t2 + x2 = constant . (1.16)

More generally, the coordinates {t, x, y, z} of the interval between any two events in 4-dimensional spacetime
(a 4-vector) change when the coordinate system is boosted or rotated, but the spacetime separation s of the
two events remains constant

s2 = − t2 + x2 + y2 + z2 = constant . (1.17)

1.8.3 Lorentz boost as a rotation by an imaginary angle

The − sign instead of a + sign in front of the t2 in the spacetime separation formula (1.17) means that time
t can often be treated mathematically as if it were an imaginary spatial dimension. That is, t = iw where
i ≡
√
−1 and w is a �fourth spatial coordinate.�

A Lorentz boost by a velocity v can likewise be treated as a rotation by an imaginary angle. Consider a
normal spatial rotation in which a primed frame is rotated in the wx-plane clockwise by an angle a about
the origin, relative to the unprimed frame. The relation between the coordinates {w′, x′} and {w, x} of a
point in the two frames is (

w′

x′

)
=

(
cos a − sin a

sin a cos a

)(
w

x

)
. (1.18)
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Now set t = iw and α = ia with t and α both real. In other words, take the spatial coordinate w to be
imaginary, and the rotation angle a likewise to be imaginary. Then the rotation formula above becomes(

t′

x′

)
=

(
coshα − sinhα

− sinhα coshα

)(
t

x

)
(1.19)

This agrees with the usual Lorentz transformation formula (1.5) if the boost velocity v and boost angle α
are related by

v = tanhα , (1.20)

so that

γ = coshα , γv = sinhα . (1.21)

The boost angle α is commonly called the rapidity. This provides a convenient way to add velocities in
special relativity: the rapidities simply add (for boosts along the same direction), just as spatial rotation
angles add (for rotations about the same axis). Thus a boost by velocity v1 = tanhα1 followed by a boost
by velocity v2 = tanhα2 in the same direction gives a net velocity boost of v = tanhα where

α = α1 + α2 . (1.22)

The equivalent formula for the velocities themselves is

v =
v1 + v2

1 + v1v2
, (1.23)

the special relativistic velocity addition formula.

1.8.4 Trip across the Universe at constant acceleration

Suppose that you took a trip across the Universe in a spaceship, accelerating all the time at one Earth
gravity g. How far would you travel in how much time?
The spacetime wheel o�ers a cute way to solve this problem, since the rotating spacetime wheel can be

regarded as representing spacetime frames undergoing constant acceleration. Points on the right quadrant of
the rotating spacetime wheel, Figure 1.15, represent worldlines of persons who accelerate with constant ac-
celeration in their own frame. The spokes of the spacetime wheel are lines of simultaneity for the accelerating
persons.
If the units of space and time are chosen so that the speed of light and the gravitational acceleration are

both one, c = g = 1, then the proper time experienced by the accelerating person is the rapidity α, and the
time and space coordinates of the accelerating person, relative to a person who remains at rest, are those of
a point on the spacetime wheel, namely

{t, x} = {sinhα, coshα} . (1.24)
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Figure 1.15 The right quadrant of the spacetime wheel represents the worldlines and lines of simultaneity of persons

who accelerate in the x direction with uniform acceleration in their own frames.

In the case where the acceleration is one Earth gravity, g = 9.80665 m s−2, the unit of time is

c

g
=

299,792,458 m s−1

9.80665 m s−2
= 0.97 yr , (1.25)

Table 1.1: Trip across the Universe.

Time elapsed Time elapsed
on spaceship on Earth Distance travelled To
in years in years in lightyears

α sinhα coshα− 1

0 0 0 Earth (starting point)
1 1.175 .5431

2 3.627 2.762

2.34 5.12 4.22 Proxima Cen
3.962 26.3 25.3 Vega
6.60 368 367 Pleiades
10.9 2.7× 104 2.7× 104 Centre of Milky Way
15.4 2.44× 106 2.44× 106 Andromeda galaxy
18.4 4.9× 107 4.9× 107 Virgo cluster
19.2 1.1× 108 1.1× 108 Coma cluster
25.3 5× 1010 5× 1010 Edge of observable Universe
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just short of one year. For simplicity, Table 1.1, which tabulates some milestones along the way, takes the
unit of time to be exactly one year, which would be the case if you were accelerating at 0.97 g = 9.5 m s−2.
After a slow start, you cover ground at an ever increasing rate, crossing 50 billion lightyears, the distance

to the edge of the currently observable Universe, in just over 25 years of your own time.
Does this mean you go faster than the speed of light? No. From the point of view of a person at rest

on Earth, you never go faster than the speed of light. From your own point of view, distances along your
direction of motion are Lorentz-contracted, so distances that are vast from Earth's point of view appear
much shorter to you. Fast as the Universe rushes by, it never goes faster than the speed of light.
This rosy picture of being able to �it around the Universe has drawbacks. Firstly, it would take a huge

amount of energy to keep you accelerating at g. Secondly, you would use up a huge amount of Earth time
travelling around at relativistic speeds. If you took a trip to the edge of the Universe, then by the time
you got back not only would all your friends and relations be dead, but the Earth would probably be gone,
swallowed by the Sun in its red giant phase, the Sun would have exhausted its fuel and shrivelled into a
cold white dwarf star, and the Solar System, having orbited the Galaxy a thousand times, would be lost
somewhere in its milky ways.
Technical point. The Universe is expanding, so the distance to the edge of the currently observable Universe

is increasing. Thus it would actually take longer than indicated in the table to reach the edge of the currently
observable Universe. Moreover if the Universe is accelerating, as evidence from the Hubble diagram of Type Ia
Supernovae indicates, then you will never be able to reach the edge of the currently observable Universe,
however fast you go.

Exercise 1.12. Length of a particle accelerator that reaches the GUT or Planck scale. Consider
a linear particle accelerator able to accelerate particles at constant acceleration g in the particles' own
frame.
1. How long must the particle accelerator be to reach a Lorentz gamma factor of γ?

2. Estimate the acceleration g for a contemporary accelerator such as the Large Hadron Collider.

3. Estimate the length of a particle accelerator needed to accelerate a proton, rest mass 1 GeV, to a GUT
energy of 1016 GeV, or alternatively to a Planck energy of 1019 GeV.

4. Show that a GUT density of 1 GUT mass per (GUT length)3 is about 1081 times the density of water.
Approximately what is the Planck density relative to the density of water?

5. To what Lorentz γ factor would you have to accelerate two rocks so that they achieve a GUT or Planck
density when slammed together? How long would the particle accelerator be to achieve this γ factor?

Solution.

1. The rapidity α achieved by a particle that accelerates at constant acceleration g in its own frame for a
proper time τ is

α =
gτ

c
. (1.26)

The Lorentz gamma factor γ is related to the rapidity by γ = coshα, equation (1.21). The distance x
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the particle moves in the background frame is

x =
c2

g
(coshα− 1) =

c2

g
(γ − 1) . (1.27)

In the highly relativistic regime, γ � 1, the distance travelled is

x ≈ c2γ

g
. (1.28)

The distance x increases linearly with γ.

2. The Large Hadron Collider (LHC) accelerates protons and heavier nuclei to energies of order 1 TeV,
whereat a proton has a gamma factor of γ ≈ 103. The acceleration occurs over scales of kilometres, or
103 m. So the acceleration is about one per metre,

g

c2
≈ 1 m−1 . (1.29)

3. A GUT energy of 1016 GeV requires a gamma factor of 1016, hence a particle accelerator of length

x ≈ 1016 m ≈ 1 lyr . (1.30)

A Planck energy of 1019 GeV requires a particle accelerator of length

x ≈ 1019 m ≈ 1000 lyr . (1.31)

4. The Planck energy 1019 GeV is 103 higher than the GUT density 1016 GeV. The Planck density is then
(103)4 = 1012 times higher than the GUT density of 1081 gm cm−3. The Planck density is 1093 gm cm−3.

5. When two objects are slammed together at Lorentz factor γ, the energy of each object is enhanced by
a factor γ, and the length of each object is contracted along the direction of motion by another factor
of γ, so overall the density is increased by a factor of γ2. To reach a GUT density of 1081 gm cm−3

by slamming together two rocks of initial density say 10 gm cm−3 would require a gamma factor of√
1080 = 1040. Which would require a particle accelerator of length 1040 m, or 1024 lyr, or about 1014

times the size of the observable Universe.

1.9 Scalar spacetime distance

The fact that Lorentz transformations leave unchanged a certain distance, the spacetime distance, between
any two events in spacetime is one the most fundamental features of Lorentz transformations. The scalar
spacetime distance ∆s between two events separated by {∆t,∆x,∆y,∆z} is given by

∆s2 = −∆t2 + ∆r2

= −∆t2 + ∆x2 + ∆y2 + ∆z2 . (1.32)
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A quantity such as ∆s2 that remains unchanged under any Lorentz transformation is called a scalar. You
should check yourself that ∆s2 is unchanged under Lorentz transformations (see Exercise 1.14). Lorentz
transformations can be de�ned as linear spacetime transformations that leave ∆s2 invariant.
The single scalar spacetime squared interval ∆s2 replaces the two scalar quantities

time interval ∆t

spatial interval ∆r =
√

∆x2 + ∆y2 + ∆z2
(1.33)

of classical Galilean spacetime.

1.9.1 Timelike, lightlike, spacelike

The scalar spacetime distance squared ∆s2, equation (1.32), between two events can be negative, zero, or
positive. A spacetime interval {∆t,∆x,∆y,∆z} ≡ {∆t,∆r} is called

timelike if ∆t > ∆r or equivalently if ∆s2 < 0 ,

null or lightlike if ∆t = ∆r or equivalently if ∆s2 = 0 ,

spacelike if ∆t < ∆r or equivalently if ∆s2 > 0 ,

(1.34)

as illustrated in Figure 1.16.
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Figure 1.16 Spacetime diagram illustrating timelike, lightlike, and spacelike intervals.

1.9.2 Proper time, proper distance

The scalar spacetime distance squared ∆s2 has a physical meaning.
If an interval {∆t,∆r} is timelike, ∆t > ∆r, then the square root of minus the spacetime interval squared

is the proper time ∆τ along it

∆τ =
√
−∆s2 =

√
∆t2 −∆r2 . (1.35)

This is the time experienced by an observer moving along that interval.
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If an interval {∆t,∆r} is spacelike, ∆t < ∆r, then the spacetime interval equals the proper distance
∆l along it

∆l =
√

∆s2 =
√

∆r2 −∆t2 . (1.36)

This is the distance between two events measured by an observer for whom those events are simultaneous.

Concept question 1.13. Proper time, proper distance. Justify the assertions (1.35) and (1.36).

1.9.3 Minkowski metric

It is convenient to denote an interval using an index notation,

∆xm ≡ {∆t,∆r} ≡ {∆t,∆x,∆y,∆z} . (1.37)

The indices run over m = t, x, y, z, or sometimes m = 0, 1, 2, 3. The scalar spacetime length squared ∆s2 of
an interval ∆xm can be abbreviated

∆s2 = ηmn∆xm∆xn , (1.38)

where ηmn is the Minkowski metric

ηmn ≡


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.39)

Equation (1.38) uses the implicit summation convention, according to which paired indices, one lowered
and one raised, are implicitly summed over.

1.10 4-vectors

1.10.1 Contravariant 4-vector

Under a Lorentz transformation, a coordinate interval ∆xm transforms as

∆xm → ∆x′m = Lmn ∆xn , (1.40)

where Lmn denotes a Lorentz transformation. The paired indices n on the right hand side of equation (1.40),
one lowered and one raised, are implicitly summed over. In matrix notation, Lmn is a 4 × 4 matrix. For
example, for a Lorentz boost by velocity v along the x-axis, Lmn is the matrix on the right hand side of
equation (1.5).
In special relativity a contravariant 4-vector is de�ned to be a quantity

am ≡ {at, ax, ay, az} , (1.41)
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that transforms under Lorentz transformations like an interval ∆xm of spacetime,

am → a′m = Lmn a
n . (1.42)

The indices run over m = t, x, y, z, or sometimes m = 0, 1, 2, 3.

1.10.2 Covariant 4-vector

In special and general relativity, besides the contravariant 4-vector am, with raised indices, it is convenient
to introduce a covariant 4-vector am, with lowered indices, obtained by multiplying the contravariant
4-vector by the metric,

am ≡ ηmnan . (1.43)

With the Minkowski metric (1.39), the covariant components am are

am = {−at, ax, ay, az} , (1.44)

which di�er from the contravariant components am only in the sign of the time component.
The reason for introducing the two species of vector is that their implicitly summed product

amam ≡ ηmnaman

= ata
t + axa

x + aya
y + aza

z

= − (at)2 + (ax)2 + (ay)2 + (az)2 (1.45)

is a Lorentz scalar, a fact you will prove in Exercise 1.14.
The notation may seem overly elaborate, but it proves extremely useful in general relativity, where the

metric is more complicated than Minkowski. Further discussion of the formalism of 4-vectors is deferred to
Chapter 2.

Exercise 1.14. Scalar product. Suppose that am and bm are two 4-vectors. Show that ambm is a scalar,
that is, it is unchanged by any Lorentz transformation. [Hint: For the Minkowski metric of special relativity,
amb

m = − atbt + axbx + ayby + azbz. Show that a′mb
′m = amb

m. You may assume without proof the familiar
result that the 3D scalar product a · b = axbx + ayby + azbz of two 3-vectors is unchanged by any spatial
rotation, so it su�ces to consider a Lorentz boost, say in the x direction.]

Exercise 1.15. The principle of longest proper time. Consider a person whose worldline goes from
spacetime event P0 to spacetime event P1 at velocity v1 relative to some inertial frame, and then from P1

to spacetime event P2 at velocity v2, as illustrated in Figure 1.17. Assume for simplicity that the velocities
are both in the (positive or negative) x-direction. Show that the proper time along a straight line from P0

to P2 is always greater than or equal to the sum of the proper times along the two straight lines from P0

to P1 followed by P1 to P2. Hence conclude that the longest proper time between two events is a straight
line. What does this imply about the twin paradox? [Hint: It is simplest to use rapidities α rather than
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Figure 1.17 The longest proper time between P0 and P2 is a straight line.

velocities. Let the segment from P0 to P1 be {t1, x1} = τ1{coshα1, sinhα1}, and the segment from P1 to P2

be {t2, x2} = τ2{coshα2, sinhα2}. The segment from P0 to P2 is the sum of these, {t, x} = {t1 + t2, x1 +x2}.
Show that

τ2 − (τ1 + τ2)2 = 4τ1τ2 sinh2

(
α2 − α1

2

)
, (1.46)

which is a minimum for α2 = α1.]

1.11 Energy-momentum 4-vector

The foremost example of a 4-vector other than the interval ∆xm is the energy-momentum 4-vector.
One of the great insights of modern physics is that conservation laws are associated with symmetries.

The Principle of Special Relativity asserts that the laws of physics should take the same form at any point.
There is no preferred origin in spacetime in special relativity. In special relativity, spacetime has translation
symmetry with respect to both time and space. Associated with those symmetries are laws of conservation
of energy and momentum:

Symmetry Conservation law
Time translation Energy
Space translation Momentum

Since one-dimensional time and three-dimensional space are united in special relativity, this suggests that
the single component of energy and the three components of momentum should be combined into a 4-vector:

energy = time component
momentum = space component

}
of a 4-vector. (1.47)
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The Principle of Special Relativity requires that the equation of energy-momentum conservation

energy
momentum

= constant (1.48)

should take the same form in any inertial frame. The equation should be Lorentz covariant, that is, the
equation should transform like a Lorentz 4-vector.

1.11.1 Construction of the energy-momentum 4-vector

The energy-momentum 4-vector of a particle of mass m at position {t, r} moving at velocity v = dr/dt can
be derived by requiring
1. that is a 4-vector, and
2. that it goes over to the Newtonian limit as v → 0.

In the Newtonian limit, the 3-momentum p equals mass m times velocity v,

p = mv = m
dr

dt
. (1.49)

To obtain a 4-vector, two things must be done to the Newtonian momentum:
1. replace r by a 4-vector xn = {t, r}, and
2. replace dt by a scalar; the only available scalar measure of time is the proper time interval dτ along the

worldline of the particle.
The result is the energy-momentum 4-vector pn:

pn = m
dxn

dτ

= m

{
dt

dτ
,
dr

dτ

}
= m {γ, γv} . (1.50)

The components of the energy-momentum 4-vector are the special relativistic versions of energy E and
momentum p,

pn = {E, p} = {mγ, mγv} . (1.51)

1.11.2 Special relativistic energy

From equation (1.51), the special relativistic energy E is the product of the rest mass and the Lorentz
γ-factor,

E = mγ (units c = 1) , (1.52)

or, restoring standard units,

E = mc2γ . (1.53)
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For small velocities v, the Taylor expansion of the Lorentz factor γ is

γ =
1√

1− v2/c2
= 1 +

1

2

v2

c2
+ ... . (1.54)

Thus for small velocities, the special relativistic energy E Taylor expands as

E = mc2
(

1 +
1

2

v2

c2
+ ...

)
= mc2 +

1

2
mv2 + ... . (1.55)

The �rst term, mc2, is the rest-mass energy. The second term, 1
2mv

2, is the non-relativistic kinetic energy.
Higher-order terms give relativistic corrections to the kinetic energy.
Einstein did not discard the constant term, but rather interpreted it seriously as indicating that mass

contains energy, the rest-mass energy

E = mc2 , (1.56)

perhaps the most famous equation in all of physics.

1.11.3 Rest mass is a scalar

The scalar quantity constructed from the energy-momentum 4-vector pn = {E,p} is

pnp
n = −E2 + p2

= −m2(γ2 − γ2v2)

= −m2 , (1.57)

minus the square of the rest mass. The minus sign is associated with the choice −+++ of metric signature
in this book.
Elementary texts sometimes state that special relativity implies that the mass of a particle increases as its

velocity increases, but this is a confusing way of thinking. Mass is rest mass m, a scalar, not to be confused
with energy. That being said, Einstein's famous equation (1.56) does suggest that rest mass is a form of
energy, and indeed that proves to be the case. Rest mass is routinely converted into energy in chemical or
nuclear reactions that liberate heat.

1.12 Photon energy-momentum

The energy-momentum 4-vectors of photons are of special interest because when you move through a scene
at near the speed of light, the scene appears distorted by the Lorentz transformation of the photon 4-vectors
that you see.
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A photon has zero rest mass

m = 0 . (1.58)

Its scalar energy-momentum squared is thus zero,

pnp
n = −E2 + p2 = −m2 = 0 . (1.59)

Consequently the 3-momentum of a photon equals its energy (in units c = 1),

p ≡ |p| = E . (1.60)

The energy-momentum 4-vector of a photon therefore takes the form

pn = {E, p}
= E{1, n}
= hν{1, n} (1.61)

where ν is the photon frequency. The photon velocity is n, a unit vector. The photon speed is one, the speed
of light.

1.12.1 Lorentz transformation of the photon energy-momentum 4-vector

The energy-momentum 4-vector pm of a photon follows the usual rules for 4-vectors under Lorentz transfor-
mations. In the case that the emitter (primed frame) is moving at velocity v along the x-axis relative to the
observer (unprimed frame), the transformation is

p′t

p′x

p′y

p′z

 =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1




pt

px

py

pz

 =


γ(pt − vpx)

γ(px − vpt)
py

pz

 . (1.62)

Equivalently

hν′


1

n′x

n′y

n′z

 =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

hν


1

nx

ny

nz

 = hν


γ(1− nxv)

γ(nx − v)

ny

nz

 . (1.63)

These mathematical relations imply the rules of 4-dimensional perspective, �1.13.2.

1.12.2 Redshift

The wavelength λ of a photon is related to its frequency ν by

λ = c/ν . (1.64)
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Astronomers de�ne the redshift z of a photon by the shift of the observed wavelength λobs compared to its
emitted wavelength λem,

z ≡ λobs − λem

λem
. (1.65)

In relativity, it is often more convenient to use the redshift factor 1 + z,

1 + z ≡ λobs

λem
=
νem

νobs
. (1.66)

Sometimes it is useful to use a blueshift factor which is just the reciprocal of the redshift factor,

1

1 + z
≡ λem

λobs
=
νobs

νem
. (1.67)

1.12.3 Special relativistic Doppler shift

If the emitter frame (primed) is moving with velocity v in the x-direction relative to the observer frame
(unprimed) then the emitted and observed frequencies are related by, equation (1.63),

hνem = hνobsγ(1− nxv) . (1.68)

The redshift factor is therefore

1 + z =
νem

νobs

= γ(1− nxv)

= γ(1− n · v) . (1.69)

Equation (1.69) is the general formula for the special relativistic Doppler shift. In special cases,

1 + z =



√
1− v
1 + v

velocity directly towards observer (v aligned with n) ,

γ velocity in the transverse direction (v · n = 0) ,√
1 + v

1− v
velocity directly away from observer (v anti-aligned with n) .

(1.70)

1.13 What things look like at relativistic speeds

1.13.1 Light travel time e�ects

When you move through a scene at near the speed of light, the scene appears distorted not only by time
dilation and Lorentz contraction, but also by di�erences in the light travel time from di�erent parts of the
scene. The e�ect of di�erential light travel times is comparable to the e�ects of time dilation and Lorentz
contraction, and cannot be ignored.
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An excellent way to see the importance of light travel time is to work through the twin paradox, Exer-
cise 1.10. Nature provides a striking example of the importance of light travel time in the form of superluminal
(faster-than-light) jets in galaxies, the subject of Exercise 1.16.

Exercise 1.16. Superluminal jets.

Radio observations of galaxies show in many cases twin jets emerging from the nucleus of the galaxy. The
jets are typically narrow and long, often penetrating beyond the optical extent of the galaxy. The jets are
frequently one-sided, and in some cases that are favourable to observation the jets are found to be superlu-
minal. A celebrated example is the giant elliptical galaxy M87 at the centre of the Local Supercluster, whose
jet is observed over a broad range of wavelengths, including optical wavelengths. Hubble Space Telescope
observations, Figure 1.18, show blobs in the M87 jet moving across the sky at approximately 6c.
1. Draw a spacetime diagram of the situation, in Earth's frame of reference. Assume that the velocity of

the galaxy M87 relative to Earth is negligible. Let the x-axis be the direction to M87. Choose the y-axis
so the jet lies in the x�y-plane. Let the jet be moving at velocity v at angle θ away from the direction
towards us on Earth, so that its spatial velocity relative to Earth is v ≡ {vx, vy} = {−v cos θ, v sin θ}.

2. In Earth coordinates {t, x, y}, the jet moves in time t a distance l = {lx, ly} = vt. Argue that during an

1994

1995

1996

1997

1998

6.0 5.5 6.1 6.0

Figure 1.18 The left panel shows an image of the galaxy M87 taken with the Advanced Camera for Surveys on the

Hubble Space Telescope. A jet, bluish compared to the starry background of the galaxy, emerges from the galaxy's

central nucleus. Radio observations, not shown here, reveal that there is a second jet in the opposite direction. Credit:

STScI/AURA. The right panel is a sequence of Hubble images showing blobs in the jet moving superluminally, at

approximately 6c. The slanting lines track the moving features, with speeds given in units of c. The upper strip shows

where in the jet the blobs were located. Credit: John Biretta, STScI.
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Earth time t, the jet has moved a distance lx nearer to the Earth (the distances lx and ly are both tiny
compared to the distance to M87), so the apparent time as seen through a telescope is not t, but rather
t diminished by the light travel time lx (units c = 1). Hence conclude that the apparent transverse
velocity on the sky is

vapp =
v sin θ

1− v cos θ
. (1.71)

3. Sketch the apparent velocity vapp as a function of θ for some given velocity v. In terms of v and the
Lorentz factor γ, what are the values of θ and of vapp at the point where vapp reaches its maximum?
What can you conclude about the jet in M87?

4. What is the expected redshift 1 + z, or equivalently blueshift 1/(1 + z), of the jet as a function of v and
θ? By expressing v in terms of vapp and θ using equation (1.71), show that the blueshift factor is

1

1 + z
=
√

1 + 2vapp cot θ − v2
app . (1.72)

[Hint: Remember to use the correct redshift formula, equation (1.69).]
5. In terms of vapp, at what value of θ is the blueshift (i) in�nite, or (ii) zero? What are these angles in

the case of M87? If the redshift of the jet were measurable, could you deduce the velocity v and opening
angle θ? Unfortunately the redshift of a superluminal jet is not usually observable, because the emission
is a continuum of synchrotron emission over a broad range of wavelengths, with no sharp atomic or ionic
lines to provide a redshift.

6. Why is the opposing jet not visible?

1.13.2 The rules of 4-dimensional perspective

The distortion of a scene when you move through it at near the speed of light can be calculated most directly
from the Lorentz transformation of the energy-momentum 4-vectors of the photons that you see. The result
is what I call the �Rules of 4-dimensional perspective.�
Figure 1.19 illustrates the rules of 4-dimensional perspective, also called �special relativistic beaming,�

which describe how a scene appears when you move through it at near light speed.
On the left, you are at rest relative to the scene. Imagine painting the scene on a celestial sphere around

you. The arrows represent the directions of light rays (photons) from the scene on the celestial sphere to you
at the center.
On the right, you are moving to the right through the scene, at 0.8 times the speed of light. The celestial

sphere is stretched along the direction of your motion by the Lorentz gamma-factor γ = 1/
√

1− 0.82 = 5/3

into a celestial ellipsoid. You, the observer, are not at the centre of the ellipsoid, but rather at one of its foci
(the left one, if you are moving to the right). The focus of the celestial ellipsoid, where you the observer are, is
displaced from centre by γv = 4/3. The scene appears relativistically aberrated, which is to say concentrated
ahead of you, and expanded behind you.
The lengths of the arrows are proportional to the energies, or frequencies, of the photons that you see.

When you are moving through the scene at near light speed, the arrows ahead of you, in your direction
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1

1
γυ

γ

υ = 0.8Observer

Figure 1.19 The rules of 4-dimensional perspective. In special relativity, the scene seen by an observer moving through

the scene (right) is relativistically beamed compared to the scene seen by an observer at rest relative to the scene

(left). On the left, the observer at the center of the circle is at rest relative to the surrounding scene. On the right,

the observer is moving to the right through the same scene at v = 0.8 times the speed of light. The arrowed lines

represent energy-momenta of photons. The length of an arrowed line is proportional to the perceived energy of the

photon. The scene ahead of the moving observer appears concentrated, blueshifted, and farther away, while the scene

behind appears expanded, redshifted, and closer.

of motion, are longer than at rest, so you see the photons blue-shifted, increased in energy, increased in
frequency. Conversely, the arrows behind you are shorter than at rest, so you see the photons red-shifted,
decreased in energy, decreased in frequency. Since photons are good clocks, the change in photon frequency
also tells you how fast or slow clocks attached to the scene appear to you to run.
This table summarizes the four e�ects of relativistic beaming on the appearance of a scene ahead of you

and behind you as you move through it at near the speed of light:

E�ect Ahead Behind
Aberration Concentrated Expanded
Colour Blueshifted Redshifted
Brightness Brighter Dimmer
Time Speeded up Slowed down

Mathematical details of the rules of 4-dimensional perspective are explored in the next several Exercises.

Exercise 1.17. The rules of 4-dimensional perspective.

1. In terms of the photon energy-momentum 4-vector pk in an unprimed frame, what is the photon energy
momentum 4-vector p′k in a primed frame of reference moving at speed v in the x direction relative to
the unprimed frame? Argue that the photon 4-vectors in the unprimed and primed frames are related
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geometrically by the �celestial ellipsoid� transformation illustrated in Figure 1.19. Bear in mind that the
photon vector is pointed towards the observer.

2. Aberration. The photon 4-vector seen by an observer is the null vector pk = E(1,−n), where E is the
photon energy, and n is a unit 3-vector in the direction away from the observer, the minus sign taking
into account the fact that the photon vector is pointed towards the observer. An object appears in the
unprimed frame at angle θ to the x-direction and in the primed frame at angle θ′ to the x-direction.
Show that µ′ ≡ cos θ′ and µ ≡ cos θ are related by

µ′ =
µ+ v

1 + vµ
. (1.73)

3. Redshift. By what factor a = E′/E is the observed photon frequency from the object changed? Express
your answer as a function of γ, v, and µ.

4. Brightness. Photons at frequency E in the unprimed frame appear at frequency E′ in the primed
frame. Argue that the brightness F (E), the number of photons per unit time per unit solid angle per
log interval of frequency (about E in the unprimed frame, and E′ in the primed frame),

F (E) ≡ dN(E)

dt do d lnE
, (1.74)

goes as

F ′(E′)

F (E)
=
E′

E

dµ

dµ′
= a3 . (1.75)

[Hint: Photons number conservation implies that dN ′(E′) = dN(E).]
5. Time. By what factor does the rate at which a clock ticks appear to change?

Exercise 1.18. Circles on the sky. Show that a circle on the sky Lorentz transforms to a circle on the sky.
Let the primed frame be moving at velocity v in the x-direction, let θ be the angle between the x-direction
and the direction m to the center of the circle, and let α be the angle between the circle axis m and the
photon direction n. Show that the angle θ′ in the primed frame is given by

tan θ′ =
sin θ

γ(v cosα+ cos θ)
, (1.76)

and that the angular radius α′ in the primed frame is given by

tanα′ =
sinα

γ(cosα+ v cos θ)
. (1.77)

[This result was �rst obtained by Penrose (1959) and Terrell (1959), prior to which it had been widely
thought that circles would appear Lorentz-contracted and therefore squashed. The following simple proof
was told to me by Engelbert Schucking (NYU). The set of null 4-vectors pk = E{1,−n} on the circle
satis�es the Lorentz-invariant equation xkpk = 0, where xk = |x|{− cosα,m} is a spacelike 4-vector whose
spatial components |x|m point to the center of the circle. Note that |x| is a magnitude of a 3-vector, not a
Lorentz-invariant scalar.]
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Exercise 1.19. Lorentz transformation preserves angles on the sky. From equation (1.73), show
that the angular metric do2 ≡ dθ2 + sin2θ dφ2 on the sky Lorentz transforms as

do′2 =
1− v2

(1 + v cos θ)2
do2 . (1.78)

This kind of transformation, which multiplies the metric by an overall factor, called a conformal factor, is
called a conformal transformation. The conformal transformation (1.78) of the angular metric shrinks
and expands patches on the sky while preserving their shapes, that is, while preserving angles between lines.

Exercise 1.20. The aberration of starlight. The aberration of starlight was discovered by James Bradley
(1728) through precision measurements of the position of γ Draconis observed from London with a specially
commissioned �zenith sector.� Stellar aberration results from the annual motion of the Earth about the
Sun. Calculate the size of the e�ect, in arcseconds. Are special relativistic e�ects important? How does the
observational signature of stellar aberration di�er from that of stellar parallax?

Concept question 1.21. Apparent (a�ne) distance. The rules of 4-dimensional perspective illustrated
in Figure 1.19 suggest that when you move through a scene at near lightspeed, the scene ahead looks farther
away (and not Lorentz-contracted at all). Is the scene really farther away, or is it just an illusion? Answer.
What is reality? In a deep sense, reality is what can be observed (by something, not necessarily a person).
So yes, the scene ahead really is farther away. Let the observer take a tape measure that is at rest relative
to the observer, and lay it out to the emitter. The laying has to be done in advance, because the emitter
is moving. Observers who move at di�erent velocities lay out tapes that move at di�erent velocities. The
observer moving faster toward the emitter indeed sees the emitter farther away, according to their tape
measure. The distance measured in this fashion is called the a�ne distance, �2.18, a measure of distance
along the past lightcone of the observer.

1.14 Occupation number, phase-space volume, intensity, and �ux

Exercise 1.17 asked you to discover how the appearance of an emitter changes when the observer boosts
into a di�erent frame. The change (1.75) in brightness can be derived at a more fundamental level from the
concepts of occupation number and phase-space volume.
The intensity of light can be described by the number dN of photons in a 3-volume element d3r of space

(as measured by an observer in their own rest frame) with momenta in a 3-volume element d3p of momentum
(again as measured by an observer). The 6-dimensional product d3r d3p of spatial and momentum 3-volumes,
called the phase-space volume, is Lorentz-invariant, unchanged by a boost or rotation of the observer's frame
(see �10.26.1 for a proof). Indeed, as shown in �4.22, the phase-space volume element d3r d3p is invariant
under a wide range of transformations (called canonical transformations, �4.17).
In quantum mechanics, the phase volume divided by (2π~)3 (which is the same as h3; but in quantum

mechanics ~ is a more natural unit; for example, angular momentum is quantized in units of ~, and spin in
units of 1

2~) counts the number of free states of particles, here photons. Particles typically have spin, and an



1.14 Occupation number, phase-space volume, intensity, and �ux 45

associated discrete number of distinct spin states. Photons have spin 1, and two spin states. The occupation
number f(t, r,p) is de�ned to be the number of photons per state at time t and spatial position r with
momenta p. The number dN of photons is the product of the occupation number f , the number g of spin
states, and the number d3r d3p/(2π~)3 of free quantum states,

dN(t, r,p) = f(t, r,p)
g d3r d3p

(2π~)3
. (1.79)

The number dN of photons, the occupation number f , the number g of spin states, and the phase volume
d3r d3p/(2π~)3 are all Lorentz invariant.
Astronomers conventionally de�ne the intensity Iν of light observed from an object to be the energy

received per unit time t per unit area A (of the telescope mirror or lens) per unit solid angle o per unit
frequency ν. Often intensity is quoted per unit wavelength λ or per unit energy E instead of per unit
frequency ν, and the intensity is subscripted accordingly, Iλ or IE . The intensity measures are related by
Iν dν = Iλ dλ = IE dE with λ = c/ν and E = 2π~ν. The intensity IE per unit energy is related to the
occupation number f by

IE ≡
E dN

dt dAdo dE
= cf

g p3

(2π~)3
, (1.80)

the spatial and momentum 3-volumes being d3r = c dt dA and d3p = p2dp do. The p3 factor in equation (1.80)
reproduces the brightness factor a3 ≡ (E′/E)3 in equation (1.75).
Stars typically appear to astronomers as point sources. Astronomers de�ne the �ux Fν from a source to be

the intensity Iν integrated over the solid angle of the source. Again, �ux is often quoted per unit wavelength
λ or per unit energy E, and subscripted accordingly, Fλ or FE .

Concept question 1.22. Brightness of a star. How does the �ux from a star change when an observer
boosts into another frame? The �ux that an observer, or a telescope, actually sees depends on the spectrum
of the light incident on the observer (the �ux as a function of photon energy) and on the sensitivity of the
detector as a function of photon energy. But imagine a perfect detector that sees all photons incident on it,
of any photon energy.
Solution. The �ux FE in an interval dE of energy is

FE ≡
E dN

dt dAdE
= c

g p3

(2π~)3

∫
f do . (1.81)

Since the solid angle varies as do ∝ p−2, while the occupation number f is Lorentz invariant, and the photon
energy and momentum are related by E = pc, the �ux FE varies as

FE ∝ E , (1.82)

that is, the �ux is proportional to the blueshift factor. Physically, the observed number of photons per unit
time increases in proportion to the photon frequency. The �ux integrated over d lnE counts the total number
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of photons observed per unit time, which again increases in proportion to the blueshift factor,∫
FE d lnE ∝ E . (1.83)

The �ux integrated over dE counts the total energy observed per unit time, which increases as the square
of the blueshift factor, ∫

FE dE ∝ E2 . (1.84)

1.15 How to program Lorentz transformations on a computer

3D gaming programmers are familiar with the fact that the best way to program spatial rotations on a
computer is with quaternions. Compared to standard rotation matrices, quaternions o�er increased speed
and require less storage, and their algebraic properties simplify interpolation and splining.
Section 1.8 showed that a Lorentz boost is mathematically equivalent to a rotation by an imaginary

angle. Thus suggests that Lorentz transformations might be treated as complexi�ed spatial rotations, which
proves to be true. Indeed, the best way to program Lorentz transformation on a computer is with complex
quaternions, �14.5.

tach
yon

Figure 1.20 Tachyon spacetime diagram.

Exercise 1.23. Tachyons. A tachyon is a hypothetical particle that moves faster than the speed of light. The
purpose of this problem is to discover that the existence of tachyons would imply a violation of causality.
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1. On a spacetime diagram such as that in Figure 1.20, show how a tachyon emitted by Vermilion at speed
v > 1 can appear to go backwards in time, with v < −1, in another frame, that of Cerulean.

2. What is the smallest velocity that Cerulean must be moving relative to Vermilion in order that the
tachyon appears to go backwards in Cerulean's time?

3. Suppose that Cerulean returns the tachyonic signal at the same speed v > 1 relative to his own frame.
Show on the spacetime diagram how Cerulean's tachyonic signal can reach Vermilion before she sent
out the original tachyon.

4. What is the smallest velocity that Cerulean must be moving relative to Vermilion in order that his
tachyon reach Vermilion before she sent out her tachyon?

5. Why is the situation problematic?
6. If it is possible for Vermilion to send out a particle with v > 1, do you think it should also be possible

for her to send out a particle backward in time, with v < −1, from her point of view? Explain how she
might do this, or not, as the case may be.



Concept Questions

1. What assumption of general relativity makes it possible to introduce a coordinate system?
2. Is the speed of light a universal constant in general relativity? If so, in what sense?
3. What does �locally inertial� mean? How local is local?
4. Why is spacetime locally inertial?
5. What assumption of general relativity makes it possible to introduce clocks and rulers?
6. Consider two observers at the same point and with the same instantaneous velocity, but one is acceler-

ating and the other is in free-fall. What is the relation between the proper time or proper distance along
an in�nitesimal interval measured by the two observers? What assumption of general relativity implies
this?

7. Does Einstein's principle of equivalence imply that two unequal masses will fall at the same rate in a
gravitational �eld? Explain.

8. In what respects is Einstein's principle of equivalence (gravity is equivalent to acceleration) stronger
than the weak principle of equivalence (gravitating mass equals inertial mass)?

9. Standing on the surface of the Earth, you hold an object of negative mass in your hand, and drop it.
According to the principle of equivalence, does the negative mass fall up or down?

10. Same as the previous question, but what does Newtonian gravity predict?
11. You have a box of negative mass particles, and you remove energy from it. Do the particles move faster

or slower? Does the entropy of the box increase or decrease? Does the pressure exerted by the particles
on the walls of the box increase or decrease?

12. You shine two light beams along identical directions in a gravitational �eld. The two light beams are
identical in every way except that they have two di�erent frequencies. Does the equivalence principle
imply that the interference pattern produced by each of the beams individually is the same?

13. What is a �straight line,� according to the principle of equivalence?
14. If all objects move on straight lines, how is it that when, standing on the surface of the Earth, you throw

two objects in the same direction but with di�erent velocities, they follow two di�erent trajectories?
15. In relativity, what is the generalization of the �shortest distance between two points�?
16. What kinds of general coordinate transformations are allowed in general relativity?

48
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17. In general relativity, what is a scalar? A 4-vector? A tensor? Which of the following is a scalar/vector/
tensor/none-of-the-above? (a) a set of coordinates xµ; (b) a coordinate interval dxµ; (c) proper time
τ?

18. What does general covariance mean?
19. What does parallel transport mean?
20. Why is it important to de�ne covariant derivatives that behave like tensors?
21. Is covariant di�erentiation a derivation? That is, is covariant di�erentiation a linear operation, and does

it obey the Leibniz rule for the derivative of a product?
22. What is the covariant derivative of the metric tensor? Explain.
23. What does a connection coe�cient Γκµν mean physically? Is it a tensor? Why, or why not?
24. An astronaut is in free-fall in orbit around the Earth. Can the astronaut detect that there is a gravita-

tional �eld?
25. Can a gravitational �eld exist in �at space?
26. How can you tell whether a given metric is equivalent to the Minkowski metric of �at space?
27. How many degrees of freedom does the metric have? How many of these degrees of freedom can be

removed by arbitrary transformations of the spacetime coordinates, and therefore how many physical
degrees of freedom are there in spacetime?

28. If you insist that the spacetime is spherical, how many physical degrees of freedom are there in the
spacetime?

29. If you insist that the spacetime is spatially homogeneous and isotropic (the cosmological principle), how
many physical degrees of freedom are there in the spacetime?

30. In general relativity, you are free to prescribe any spacetime (any metric) you like, including metrics
with wormholes and metrics that connect the future to the past so as to violate causality. True or false?

31. If it is true that in general relativity you can prescribe any metric you like, then why aren't you bumping
into wormholes and causality violations all the time?

32. How much mass does it take to curve space signi�cantly (signi�cantly meaning by of order unity)?
33. What is the relation between the energy-momentum 4-vector of a particle and the energy-momentum

tensor?
34. It is straightforward to go from a prescribed metric to the energy-momentum tensor. True or false?
35. It is straightforward to go from a prescribed energy-momentum tensor to the metric. True or false?
36. Does the principle of equivalence imply Einstein's equations?
37. What do Einstein's equations mean physically?
38. What does the Riemann curvature tensor Rκλµν mean physically? Is it a tensor?
39. The Riemann tensor splits into compressive (Ricci) and tidal (Weyl) parts. What do these parts mean,

physically?
40. Einstein's equations imply conservation of energy-momentum, but what does that mean?
41. Do Einstein's equations describe gravitational waves?
42. Do photons (massless particles) gravitate?
43. How do di�erent forms of mass-energy gravitate?
44. How does negative mass gravitate?



What's important?

1. The postulates of general relativity. How do the various postulates imply the mathematical structure of
general relativity?

2. The road from spacetime curvature to energy-momentum:
metric gµν
→ connection coe�cients Γκµν
→ Riemann curvature tensor Rκλµν
→ Ricci tensor Rκµ and scalar R
→ Einstein tensor Gκµ = Rκµ − 1

2gκµR

→ energy-momentum tensor Tκµ
3. 4-velocity and 4-momentum. Geodesic equation.
4. Bianchi identities guarantee conservation of energy-momentum.
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Fundamentals of General Relativity

As of writing (2013), general relativity continues to beat all-comers in the Darwinian struggle to be top theory
of gravity and spacetime (Will, 2005). Despite its success, most physicists accept that general relativity cannot
ultimately be correct, because of the di�culty in reconciling it with that other pillar of physics, quantum
mechanics. The other three known forces of Nature, the electromagnetic, weak, and colour (strong) forces,
are described by renormalizable quantum �eld theories, the so-called Standard Model of Physics, that agree
extraordinarily well with experiment, and whose predictions have continued to be con�rmed by ever more
precise measurements. Attempts to quantize general relativity in a similar fashion fail. The attempt to unite
general relativity and quantum mechanics continues to exercise some of the brightest minds in physics.
One place where general relativity predicts its own demise is at singularities inside black holes. What

physics replaces general relativity at singularities? This is a deep question, providing one of the motivations
for this book's emphasis on black hole interiors.
The aim of this chapter is to give a condensed introduction to the fundamentals of general relativity, using

the traditional coordinate-based approach to general relativity. The approach is neither the most insightful
nor the most powerful, but it is the fastest route to connecting the metric to the energy-momentum content
of spacetime. The chapter does not attempt to convey a deep conceptual understanding, which I think is
di�cult to gain from the mathematics by itself. Later chapters, starting with Chapter 7 on the Schwarzschild
geometry, present visualizations intended to aid conceptual understanding.
One of the drawbacks of the coordinate approach is that it works with frames that are aligned at each point

with the tangent vectors eµ to the coordinates at that point. General relativity postulates the existence of
locally inertial frames, so the coordinates at any point can always be arranged such that the tangent vectors
at that one point are orthonormal, and the spacetime is locally �at (Minkowski) about that point. But
in a curved spacetime it is impossible to arrange the coordinate tangent vectors eµ to be orthonormal
everywhere. Thus the coordinate approach inevitably presents quantities in a frame that is skewed compared
to the natural, orthonormal frame. It is like looking at a scene with your eyes crossed. The problem is not so
bad if the spacetime is empty of energy-momentum, as in the Schwarzschild and Kerr geometries for ideal
spherical and rotating black holes, but it becomes a signi�cant handicap in realistic spacetimes that contain
energy-momentum.
The coordinate approach is adequate to deal with ideal black holes, Chapter 6 to 9, and with the Friedmann-
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Lemaître-Robertson-Walker spacetime of a homogeneous, isotropic cosmology, Chapter 10. After that, the
book restarts essentially from scratch. Chapter 11 introduces the tetrad formalism, the springboard for
further explorations of gravity, black holes, and cosmology.
The convention in this book is that greek (brown) dummy indices label curved spacetime coordinates,

while latin (black) dummy indices label locally inertial (more generally, tetrad) coordinates.

2.1 Motivation

Special relativity was unsatisfactory almost from the outset. Einstein had conceived special relativity by
abolishing the aether. Yet for something that had no absolute substance, the spacetime of special relativity
had strikingly absolute properties: in special relativity, two particles on parallel trajectories would remain
parallel for ever, just as in Euclidean geometry.
Moreover whereas special relativity neatly accommodated the electromagnetic force, which propagated

at the speed of light, it did not accommodate the other force known at the beginning of the 20th century,
gravity. Plainly Newton's theory of gravity could not be correct, since it posited instantaneous transmission
of the gravitational force, whereas special relativity seemed to preclude anything from moving faster than
light, Exercise 1.23. You might think that gravity, an inverse square law like electromagnetism, might satisfy
a similar set of equations, but this is not so. Whereas an electromagnetic wave carries no electric charge, and
therefore does not interact with itself, any wave of gravity must carry energy, and therefore must interact
with itself. This proves to be a considerable complication.
A partial solution, the principle of equivalence of gravity and acceleration, occurred to Einstein while

working on an invited review on special relativity (Einstein, 1907). Einstein realised that �if a person falls
freely, he will not feel his own weight,� an idea that Einstein would later refer to as �the happiest thought of
my life.� The principle of equivalence meant that gravity could be reinterpreted as a curvature of spacetime.
In this picture, the trajectories of two freely-falling particles that pass either side of a massive body are caused

Figure 2.1 Particles initially on parallel trajectories passing either side of the Earth are caused to converge by the

Earth's gravity. According to Einstein's principle of equivalence, the situation is equivalent to one where the particles

are moving in straight lines in local free-fall frames. This allows the gravitational force to be reinterpreted as being

produced by a curvature of spacetime induced by the presence of the Earth.
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to converge not because of a gravitational force, but rather because the massive body curves spacetime, and
the particles follow straight lines in the curved spacetime, Figure 2.1.
Einstein's principle of equivalence is only half the story. The principle of equivalence determines how

particles must move in a spacetime of given curvature, but it does not determine how spacetime is itself
curved by mass. That was a much more di�cult problem, which Einstein took several more years to crack.
The eventual solution was Einstein's equations, the �nal version of which he set out in a presentation to the
Prussian Academy at the end of November 1915 (Einstein, 1915).
Contemporaneously with Einstein's discovery, David Hilbert derived Einstein's equations independently

and elegantly from an action principle (Hilbert, 1915). In the present chapter, Einstein's equations are simply
postulated, since their real justi�cation is that they reproduce experiment and observation. A derivation of
Einstein's equations from the Hilbert action is deferred to Chapter 16.

2.2 The postulates of General Relativity

General relativity follows from three postulates:
1. Spacetime is a 4-dimensional di�erentiable manifold;
2. Einstein's principle of equivalence;
3. Einstein's equations.

2.2.1 Spacetime is a 4-dimensional di�erentiable manifold

A 4-dimensional manifold is de�ned mathematically to be a topological space that is locally homeomorphic
to Euclidean 4-space R4. A homeomorphism is a continuous map that has a continuous inverse.
The postulate that spacetime is a 4-dimensional manifold means that it is possible to set up a coordinate

system, possibly in patches, called charts,

xµ ≡ {x0, x1, x2, x3} (2.1)

such that each point of a chart of the spacetime has a unique coordinate.
It is not always possible to cover a manifold with a single chart, that is, with a coordinate system such

that every point of spacetime has a unique coordinate. A simple example of a 2-dimensional manifold that
cannot be covered with a single chart is the 2-sphere S2, the 2-dimensional surface of a 3-dimensional sphere,
as illustrated in Figure 2.2. Inevitably, lines of constant coordinate must cross somewhere on the 2-sphere.
At least two charts are required to cover a 2-sphere.
When more than one chart is necessary, neighbouring charts are required to overlap, in order that the

structure of the manifold be consistent across the overlap. General relativity postulates that the mapping
between the coordinates of overlapping charts be at least doubly di�erentiable. A manifold subject to this
property is called di�erentiable.
In practice one often uses coordinate systems that misbehave at some points, but in an innocuous fashion.

The 2-sphere again provides a classic example, where the standard choice of polar coordinates xµ = {θ, φ}



54 Fundamentals of General Relativity

x

y

θ

φ

Figure 2.2 The 2-sphere is a 2-manifold, a topological space that is locally homeomorphic to Euclidean 2-space R2.

Any attempt to cover the surface of a 2-sphere with a single chart, that is, with coordinates x and y such that each

point on the sphere is speci�ed by a unique coordinate {x, y}, fails at at least one point. In the left panel, a coordinate

grid draped over the sphere fails at one point, the south pole, where coordinate lines cross. At least two charts are

required to cover the surface of a 2-sphere, as illustrated in the middle panel, where one chart covers the north pole,

the other the south pole. Where the two charts overlap, the two sets of coordinates are related di�erentiably. The right

panel shows standard polar coordinates θ, φ on the 2-sphere. The polar coordinatization fails at the north and south

poles, where lines of longitude cross, the azimuthal angle φ is not unique, and a person passing smoothly through the

pole would see the azimuthal angle jump by π. Such misbehaving points, called coordinate singularities, are however

innocuous: they can be removed by cutting out a patch around the coordinate singularity, and pasting on a separate

chart.

misbehaves at the north and south poles, Figure 2.2. A person passing smoothly through a pole sees the
azimuthal coordinate jump discontinuously by π. This is called a coordinate singularity. It is innocuous
because it can be removed by excising a patch around the pole, and pasting on a separate chart.

2.2.2 Principle of equivalence

The weak principle of equivalence states that: �Gravitating mass equals inertial mass.� General relativity
satis�es the weak principle of equivalence, but then so also does Newtonian gravity.
Einstein's principle of equivalence is actually two separate statements: �The laws of physics in a

gravitating frame are equivalent to those in an accelerating frame,� and �The laws of physics in a non-
accelerating, or free-fall, frame are locally those of special relativity.�
Einstein's principle of equivalence implies that it is possible to remove the e�ects of gravity locally by going

into a non-accelerating, or free-fall, frame. The structure of spacetime in a non-accelerating, or free-fall, frame
is locally inertial, with the local structure of Minkowski space. By locally inertial is meant that at each point
of spacetime it is possible to choose coordinates such that (a) the metric at that point is Minkowski, and (b)
the �rst derivatives of the metric are all zero1. In other words, Einstein's principle of equivalence asserts the
existence of locally inertial frames.
1 Actually, general relativity goes a step further. The metric is the scalar product of coordinate tangent axes, equation (2.26).
General relativity postulates, �2.10.1, that the �rst derivatives not only of the metric, but also of the tangent axes
themselves, vanish. See also Concept question 2.5.
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Since special relativity is a metric theory, and the principle of equivalence asserts that general relativity
looks locally like special relativity, general relativity inherits from special relativity the property of being a
metric theory. A notable consequence is that the proper times and distances measured by an accelerating
observer are the same as those measured by a freely-falling observer at the same point and with the same
instantaneous velocity.

2.2.3 Einstein's equations

Einstein's equations comprise a 4× 4 symmetric matrix of equations

Gµν = 8πGTµν . (2.2)

Here G is the Newtonian gravitational constant, Gµν is the Einstein tensor, and Tµν is the energy-
momentum tensor.
Physically, Einstein's equations signify

(compressive part of) curvature = energy-momentum content . (2.3)

Einstein's equations generalize Poisson's equation

∇2Φ = 4πGρ (2.4)

where Φ is the Newtonian gravitational potential, and ρ the mass-energy density. Poisson's equation is the
time-time component of Einstein's equations in the limit of a weak gravitational �eld and slowly moving
matter, �2.27.

2.3 Implications of Einstein's principle of equivalence

2.3.1 The gravitational redshift of light

Einstein's principle of equivalence implies that light will redshift in a gravitational �eld. In a weak gravita-
tional �eld, the gravitational redshift of light can be deduced quantitatively from the equivalence principle
without any further assumption (such as Einstein's equations), Exercises 2.1 and 2.2. A fully general rel-
ativistic treatment for the redshift between observers at rest in a stationary gravitational �eld is given in
Exercise 2.9.

Exercise 2.1. The equivalence principle implies the gravitational redshift of light, Part 1. A
rigorous general relativistic version of this exercise is Exercise 2.10. A person standing at rest on the surface
of the Earth is to a good approximation in a uniform gravitational �eld, with gravitational acceleration g.
The principle of equivalence asserts that the situation is equivalent to that of a frame uniformly accelerating
at g. Assume that the non-accelerating, free-fall frame is Minkowski to a good approximation. De�ne the
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Figure 2.3 Einstein's principle of equivalence implies the gravitational redshift of light, and the gravitational bending

of light. In the left panel, persons A and B are at rest relative to each other in a uniform gravitational �eld. They

are shown moving to the right to bring out the evolution of the system in time. A sends a beam of light upward to

B. The principle of equivalence asserts that the uniform gravitational �eld is equivalent to a uniformly accelerating

frame. The right panel shows the equivalent uniformly accelerating situation as perceived by a person in free-fall. In

the free-fall frame, the light moves on a straight line, and has constant frequency. Back in the gravitating/accelerating

frame in the left panel, the light appears to bend, and to redshift as it climbs from A to B.

potential Φ by the usual Newtonian formula g = −∇Φ. Show that for small di�erences in their gravitational
potentials, B perceives the light emitted by A to be redshifted by (with units restored)

z =
Φobs − Φem

c2
. (2.5)

Exercise 2.2. The equivalence principle implies the gravitational redshift of light, Part 2. A
rigorous general relativistic version of this exercise is Exercise 2.11. Consider a person who, at rest in
Minkowski space, whirls a clock around them on the end of string, so fast that the clock is moving at near
the speed of light. The person sees the clock redshifted by the Lorentz γ-factor (the string is of �xed length,
so the light travel time from clock to observer is always the same, and does not a�ect the redshift). Tugged
on by the string, the clock experiences a centripetal acceleration towards the whirling person. According to
the principle of equivalence, the centripetal acceleration is equivalent to a centrifugal gravitational force. In a
Newtonian approximation, if the clock is whirling around at angular velocity ω, then the e�ective centrifugal
potential at radius r from the observer is

Φ = − 1
2ω

2r2 . (2.6)

Show that, for non-relativistic velocities ωr � c, the observer perceives the light emitted from the clock to
be redshifted by (with units restored)

z = −Φ

c2
. (2.7)
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2.3.2 The gravitational bending of light

The principle of equivalence also implies that light will appear to bend in a gravitational �eld, as illustrated
by Figure 2.3. However, a quantitative prediction for the bending of light requires full general relativity. The
bending of light in a weak gravitational �eld is the subject of Exercise 2.17.

2.4 Metric

Postulate (1) of general relativity means that it is possible to choose coordinates

xµ ≡ {x0, x1, x2, x3} (2.8)

covering a patch of spacetime.
Postulate (2) of general relativity implies that at each point of spacetime it is possible to choose locally

inertial coordinates

ξm ≡ {ξ0, ξ1, ξ2, ξ3} (2.9)

such that the metric is Minkowski,

ds2 = ηmn dξ
mdξn , (2.10)

in an in�nitesimal neighbourhood of the point. In�nitesimal neighbourhood means that the metric is the
Minkowski metric ηmn at the point, and that the �rst derivatives of the metric vanish at the point. The
spacetime distance squared ds2 is a scalar, a quantity that is unchanged by the choice of coordinates.
Whereas in special relativity the Minkowski formula (1.32) for the spacetime distance ∆s2 held for �nite
intervals ∆xm, in general relativity the metric formula (2.10) holds only for in�nitesimal intervals dξm.
General relativity requires, postulate (1), that two sets of coordinates are di�erentiably related, so locally

inertial intervals dξm and coordinate intervals dxµ are related by the Leibniz rule,

dξm =
∂ξm

∂xµ
dxµ . (2.11)

It follows that the scalar spacetime distance squared is

ds2 = ηmn
∂ξm

∂xµ
∂ξn

∂xν
dxµdxν , (2.12)

which can be written in terms of coordinate intervals dxµ as

ds2 = gµν dx
µdxν , (2.13)

where gµν is the metric, a 4× 4 symmetric matrix

gµν = ηmn
∂ξm

∂xµ
∂ξn

∂xν
. (2.14)

The metric is the essential mathematical object that converts an in�nitesimal interval dxµ to a proper
measurement of an interval of time or space.
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2.5 Timelike, spacelike, proper time, proper distance

General relativity inherits from special relativity the physical meaning of the scalar spacetime distance
squared ds2 along an interval dxµ. The scalar spacetime distance squared can be negative, zero, or positive,
and accordingly timelike, lightlike, or spacelike:

timelike: ds2 < 0 , dτ =
√
−ds2 = interval of proper time ,

lightlike: ds2 = 0 ,

spacelike: ds2 > 0 , dl =
√
ds2 = interval of proper distance .

(2.15)

2.6 Orthonormal tetrad basis γγm

You are familiar with the idea that in ordinary 3-dimensional Euclidean geometry it is often convenient to
treat vectors in an abstract coordinate-independent formalism. Thus for example a 3-vector is commonly
written as an abstract quantity r. The coordinates of the vector r may be {x, y, z} in some particular
coordinate system, but one recognizes that the vector r has a meaning, a magnitude and a direction, that is
independent of the coordinate system adopted. In an arbitrary Cartesian coordinate system, the Euclidean
3-vector r can be expressed

r =
∑
a

x̂a xa = x̂x+ ŷ y + ẑ z (2.16)

where x̂a ≡ {x̂, ŷ, ẑ} are unit vectors along each of the coordinate axes. The unit vectors satisfy a Euclidean
metric

x̂a · x̂b = δab . (2.17)

The same kind of abstract notation is useful in general relativity. Because the spacetime of general relativity
is only locally inertial, not globally inertial, vectors must be thought of as living not in the spacetime manifold
itself, but rather in the tangent space of the manifold. The existence and structure of such a tangent space
follows from the postulate of the existence of locally inertial frames. Let ξm be a set of locally inertial
coordinates at a point of spacetime. De�ne the vectors γγm, called a tetrad, to be tangent to the locally
inertial coordinates at the point in question,

γγm ≡ {γγ0,γγ1,γγ2,γγ3} , (2.18)

as illustrated in the left panel of Figure 2.4. Each tetrad basis vector γγm is a 4-dimensional object, with
both magnitude and direction. The basis vectors γγm are introduced so that vectors in spacetime can be
expressed in an abstract coordinate-independent fashion. The prototypical vector is an in�nitesimal interval
dξm of spacetime, which can be expressed in coordinate-independent fashion as the abstract vector interval
dx de�ned by

dx ≡ γγm dξm = γγ0 dξ
0 + γγ1 dξ

1 + γγ2 dξ
2 + γγ3 dξ

3 . (2.19)
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Figure 2.4 (Left) The tetrad vectors γγm form an orthonormal basis of vectors tangent to a set of locally inertial

coordinates ξm at a point. (Right) The coordinate tangent vectors eµ are the basis of vectors tangent to the coordinates

at each point. The background square grid represents a locally inertial frame, the existence of which is asserted by

general relativity.

The interval dξm transforms under a Lorentz transformation of the locally inertial coordinates as a con-
travariant Lorentz vector. To make the abstract vector interval dx invariant under Lorentz transformation,
the basis vectors γγm must transform as a covariant Lorentz vector.
The scalar length squared of the abstract vector interval dx is

ds2 = dx · dx = γγm · γγn dξmdξn . (2.20)

Since this must reproduce the locally inertial metric (2.10), the scalar products of the tetrad vectors γγm
must form the Minkowski metric

γγm · γγn = ηmn . (2.21)

A basis of tetrad vectors whose scalar products form the Minkowski metric is called orthonormal.
Tetrads are explored in depth in Chapter 11.

2.7 Basis of coordinate tangent vectors eµ

In general relativity, coordinates can be chosen arbitrarily, subject to di�erentiability conditions. In an
arbitrary system of coordinates xµ, the coordinate tangent vectors eµ at each point,

eµ ≡ {e0, e1, e2, e3} , (2.22)

are de�ned to satisfy

dx ≡ eµ dxµ = γγm dξ
m . (2.23)

The letter e derives from the German word einheit, meaning unity. The relation (2.11) between coordinate
intervals dxµ and locally inertial coordinate intervals dξm implies that the coordinate tangent vectors eµ
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must be related to the orthonormal tetrad vectors γγm by

eµ = γγm
∂ξm

∂xµ
. (2.24)

Like the tetrad axes γγm, each coordinate tangent axis eµ is a 4-dimensional vector object, with both mag-
nitude and direction, as illustrated in the right panel of Figure 2.4.
The scalar length squared of the abstract vector interval dx is

ds2 = dx · dx = eµ · eν dxµdxν , (2.25)

from which it follows that the scalar products of the coordinate tangent axes eµ must equal the coordinate
metric gµν ,

gµν = eµ · eν . (2.26)

Like the orthonormal tetrad vectors γγm, the coordinate tangent vectors eµ form a basis for the 4-
dimensional tangent space at each point. The tangent space has three basic mathematical properties. First,
the tangent space is a vector space, that is, it has the properties of linearity that de�ne a vector space.
Second, the tangent space has an inner (or scalar) product, de�ned by the metric (2.26). Third, vectors in
the tangent space can be di�erentiated with respect to coordinates, as will be elucidated in �2.9.3.
Some texts represent the tangent vectors eµ with the notation ∂µ, on the grounds that eµ transforms

like the coordinate derivatives ∂µ ≡ ∂/∂xµ. This notation is not used in this book, to avoid the potential
confusion between ∂µ as a derivative and ∂µ as a vector.

2.8 4-vectors and tensors

2.8.1 Contravariant coordinate 4-vector

Under a general coordinate transformation

xµ → x′µ , (2.27)

a coordinate interval dxµ transforms as

dx′µ =
∂x′µ

∂xν
dxν . (2.28)

In general relativity, a coordinate 4-vector is de�ned to be a quantity Aµ = {A0, A1, A2, A3} that trans-
forms under a coordinate transformation (2.27) like a coordinate interval

A′µ =
∂x′µ

∂xν
Aν . (2.29)

Just because something has an index on it does not make it a 4-vector. The essential property of a con-
travariant coordinate 4-vector is that it transforms like a coordinate interval, equation (2.29).
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2.8.2 Abstract 4-vector

A 4-vector may be written in coordinate-independent fashion as

A = eµA
µ . (2.30)

The quantity A is an abstract 4-vector. Although A is a 4-vector, it is by construction unchanged by a
coordinate transformation, and is therefore a coordinate scalar. See �2.8.7 for commentary on the distinction
between abstract and coordinate vectors.

2.8.3 Lowering and raising indices

De�ne gµν to be the inverse metric, satisfying

gλµ g
µν = δνλ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.31)

The metric gµν and its inverse gµν provide the means of lowering and raising coordinate indices. The
components of a coordinate 4-vector Aµ with raised index are called its contravariant components, while
those Aµ with lowered indices are called its covariant components,

Aµ = gµν A
ν , (2.32)

Aµ = gµν Aν . (2.33)

2.8.4 Dual basis eµ

The contravariant dual basis elements eµ are de�ned by raising the indices of the covariant tangent basis
elements eν ,

eµ ≡ gµνeν . (2.34)

You can check that the dual vectors eµ transform as a contravariant coordinate 4-vector. The dot products
of the dual basis elements eµ with each other are

eµ · eν = gµν . (2.35)

The dot products of the dual and tangent basis elements are

eµ · eν = δµν . (2.36)



62 Fundamentals of General Relativity

2.8.5 Covariant coordinate 4-vector

Under a general coordinate transformation (2.27), the covariant components Aµ of a coordinate 4-vector
transform as

A′µ =
∂xν

∂x′µ
Aν . (2.37)

You can check that the transformation law (2.37) for the covariant components Aµ is consistent with the
transformation law (2.29) for the contravariant components Aµ.
You can check that the tangent vectors eµ transform as a covariant coordinate 4-vector.

2.8.6 Scalar product

If Aµ and Bµ are coordinate 4-vectors, then their scalar product is

AµB
µ = AµBµ = gµνA

µBν . (2.38)

This is a coordinate scalar, a quantity that remains invariant under general coordinate transformations.
The ability to form a scalar by contracting over paired indices, always one raised and one lowered, is what
makes the introduction of two species of vector, contravariant (raised index) and covariant (lowered index),
so advantageous.
In abstract vector formalism, the scalar product of two 4-vectors A = eµA

µ and B = eµB
µ is

A ·B = eµ · eν AµBν = gµνA
µBν . (2.39)

2.8.7 Comment on vector naming and notation

Di�erent texts follow di�erent conventions for naming and notating vectors and tensors.
This book follows the convention of calling both Aµ (with a dummy index µ) and A ≡ Aµeµ vectors.

Although Aµ and A are both vectors, they are mathematically di�erent objects.
If the index on a vector indicates a speci�c coordinate, then the indexed vector is the component of the

vector; for example A0 (or At) is the x0 (or time t) component of the coordinate 4-vector Aµ.
In this book, the di�erent species of vector are distinguished by an adjective:
1. A coordinate vector Aµ, identi�ed by greek (brown) indices µ, is one that changes in a prescribed

way under coordinate transformations. A coordinate transformation is one that changes the coordinates
of the spacetime without actually changing the spacetime or whatever lies in it.

2. An abstract vector A, identi�ed by boldface, is the thing itself, and is unchanged by the choice of
coordinates. Since the abstract vector is unchanged by a coordinate transformation, it is a coordinate
scalar.

All the types of vector have the properties of linearity (additivity, multiplication by scalars) that identify
them mathematically as belonging to vector spaces. The important distinction between the types of vector
is how they behave under transformations.
In referring to both Aµ and A as vectors, this book follows the standard physics practice of mentally
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regarding Aµ and A as equivalent objects. You are familiar with the advantages of treating a vector in
3-dimensional Euclidean space either as an abstract vector A, or as a coordinate vector Aa. Depending on
the problem, sometimes the abstract notation A is more convenient, and sometimes the coordinate notation
Aa is more convenient. Sometimes it's convenient to switch between the two in the middle of a calculation.
Likewise in general relativity it is convenient to have the �exibility to work in either coordinate or abstract
notation, whatever suits the problem of the moment.

2.8.8 Coordinate tensor

In general, a coordinate tensor Aκλ...µν... is an object that transforms under general coordinate transforma-
tions (2.27) as

A′κλ...µν... =
∂x′κ

∂xπ
∂x′λ

∂xρ
...
∂xσ

∂x′µ
∂xτ

∂x′ν
... Aπρ...στ... . (2.40)

You can check that the metric tensor gµν and its inverse gµν are indeed coordinate tensors, transforming
like (2.40).
The rank of a tensor is the number of indices of its expansion Aκλ...µν... in components. A scalar is a tensor

of rank 0. A 4-vector is a tensor of rank 1. The metric and its inverse are tensors of rank 2. The rank of a

tensor with n contravariant (upstairs) and m covariant (downstairs) indices is sometimes written

(
n

m

)
.

2.9 Covariant derivatives

2.9.1 Derivative of a coordinate scalar

Suppose that Φ is a coordinate scalar. Then the coordinate derivative of Φ is a coordinate 4-vector

∂Φ

∂xµ
a coordinate tensor (2.41)

transforming like equation (2.37).
As a shorthand, the ordinary partial derivative is often denoted in the literature with a comma

∂Φ

∂xµ
= Φ,µ . (2.42)

For the most part this book does not use the comma notation.

2.9.2 Derivative of a coordinate 4-vector

The ordinary partial derivative of a contravariant coordinate 4-vector Aµ is not a tensor

∂Aµ

∂xν
not a coordinate tensor (2.43)
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Figure 2.5 The change δe0 in the tangent vector e0 over a small interval δx1 of spacetime is de�ned to be the di�erence

between the tangent vector e0(x1 + δx1) at the shifted position x1 + δx1 and the tangent vector e0(x1) at the original

position x1, parallel-transported to the shifted position. The parallel-transported vector is shown as a dashed arrowed

line. The parallel transport is de�ned with respect to a locally inertial frame, shown as a background square grid.

because it does not transform like a coordinate tensor.
However, the 4-vector A = eµA

µ, being by construction invariant under coordinate transformations, is a
coordinate scalar, and its partial derivative is a coordinate 4-vector

∂A

∂xν
=
∂eµA

µ

∂xν

= eµ
∂Aµ

∂xν
+
∂eµ
∂xν

Aµ a coordinate tensor . (2.44)

The last line of equation (2.44) assumes that it is legitimate to di�erentiate the tangent vectors eµ, but
what does this mean? The partial derivatives of basis vectors eµ are de�ned in the usual way by

∂eµ
∂xν

≡ lim
δxν→0

eµ(x0, ..., xν+δxν , ..., x3)− eµ(x0, ..., xν , ..., x3)

δxν
. (2.45)

This de�nition relies on being able to compare the vectors eµ(x) at some point x with the vectors eµ(x+δx)

at another point x+δx a small distance away. The comparison between two vectors a small distance apart
is made possible by the existence of locally inertial frames. In a locally inertial frame, two vectors a small
distance apart can be compared by parallel-transporting one vector to the location of the other along
the small interval between them, that is, by transporting the vector without accelerating or precessing with
respect to the locally inertial frame. Thus the right hand side of equation (2.45) should be interpreted as
eµ(x+δx) minus the value of eµ(x) parallel-transported from position x to position x+δx along the small
interval δx between them, as illustrated in Figure 2.5.
The notion of the tangent space at a point on a manifold was introduced in �2.6. Parallel transport allows

the tangent spaces at neighbouring points to be adjoined in a well-de�ned fashion to form the tangent
manifold, whose dimension is twice that of the underlying spacetime. Coordinates for the tangent manifold
are provided by a combination {xµ, ξm} of coordinates xµ on the parent manifold and tangent space coor-
dinates ξm extrapolated from a locally inertial frame about each point. The tangent space coordinates ξm

vary smoothly over the manifold provided that the locally inertial frames are chosen to vary smoothly.
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2.9.3 Coordinate connection coe�cients

The partial derivatives of the basis vectors eµ that appear on the right hand side of equation (2.44) de�ne
the coordinate connection coe�cients Γκµν ,

∂eµ
∂xν

≡ Γκµν eκ not a coordinate tensor . (2.46)

The de�nition (2.46) shows that the connection coe�cients express how each tangent vector eµ changes,
relative to parallel-transport, when shifted along an interval δxν .

2.9.4 Covariant derivative of a contravariant 4-vector

Expression (2.44) along with the de�nition (2.46) of the connection coe�cients implies that

∂A

∂xν
= eµ

∂Aµ

∂xν
+ ΓκµνeκA

µ

= eκ

(
∂Aκ

∂xν
+ ΓκµνA

µ

)
a coordinate tensor . (2.47)

The expression in parentheses is a coordinate tensor, and de�nes the covariant derivative DνA
κ of the

contravariant coordinate 4-vector Aκ

DνA
κ ≡ ∂Aκ

∂xν
+ ΓκµνA

µ a coordinate tensor . (2.48)

As a shorthand, the covariant derivative is often denoted in the literature with a semi-colon

DνA
κ = Aκ;ν . (2.49)

For the most part this book does not use the semi-colon notation.

2.9.5 Covariant derivative of a covariant coordinate 4-vector

Similarly,

∂A

∂xν
= eκDνAκ a coordinate tensor (2.50)

where DνAκ is the covariant derivative of the covariant coordinate 4-vector Aκ

DνAκ ≡
∂Aκ
∂xν

− ΓµκνAµ a coordinate tensor . (2.51)
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2.9.6 Covariant derivative of a coordinate tensor

In general, the covariant derivative of a coordinate tensor is

DπA
κλ...
µν... =

∂Aκλ...µν...

∂xπ
+ ΓκρπA

ρλ...
µν... + ΓλρπA

κρ...
µν... + ...− ΓρµπA

κλ...
ρν... − ΓρνπA

κλ...
µρ... − ... (2.52)

with a positive Γ term for each contravariant index, and a negative Γ term for each covariant index.

Concept question 2.3. Does covariant di�erentiation commute with the metric? Answer. Yes,
essentially by construction. The covariant derivative of a tangent basis vector eµ,

Dνeµ =
∂eν
∂xµ

− Γκµνeκ = 0 , (2.53)

vanishes by de�nition of the coordinate connections, equation (2.46). Consequently the covariant derivative of
the metric gµν ≡ eµ ·eν also vanishes. As a corollary, covariant di�erentiation commutes with the operations
of raising and lowering indices, and of contraction.

2.10 Torsion

2.10.1 No-torsion condition

The existence of locally inertial frames requires that it must be possible to arrange not only that the tangent
axes eµ are orthonormal at a point, but also that they remain orthonormal to �rst order in a Taylor expansion
about the point. That is, it must be possible to choose the coordinates such that the tangent axes eµ are
orthonormal, and unchanged to linear order:

eµ · eν = ηµν , (2.54a)

∂eµ
∂xν

= 0 . (2.54b)

In view of the de�nition (2.46) of the connection coe�cients, the second condition (2.54b) is equivalent to
the vanishing of all the connection coe�cients:

Γκµν = 0 . (2.55)

Under a general coordinate transformation xµ → x′µ, the tangent axes transform as eµ = ∂x′κ/∂xµ e′κ.
The 4×4 matrix ∂x′κ/∂xµ of partial derivatives provides 16 degrees of freedom in choosing the tangent axes
at a point. The 16 degrees of freedom are enough � more than enough � to accomplish the orthonormality
condition (2.54a), which is a symmetric 4 × 4 matrix equation with 10 degrees of freedom. The additional
16− 10 = 6 degrees of freedom are Lorentz transformations, which rotate the tangent axes eµ, but leave the
metric ηµν unchanged.
Just as it is possible to reorient the tangent axes eµ at a point by adjusting the matrix ∂x′κ/∂xµ of �rst
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partial derivatives of the coordinate transformation xµ → x′µ, so also it is possible to reorient the derivatives
∂eµ/∂x

ν of the tangent axes by adjusting the matrix ∂2x′κ/∂xµ∂xν of second partial derivatives of the
coordinate transformation. The second partial derivatives comprise a set of 4 symmetric 4× 4 matrices, for
a total of 4 × 10 = 40 degrees of freedom. However, there are 4 × 4 × 4 = 64 connection coe�cients Γκµν ,
all of which the condition (2.55) requires to vanish. The matrix of second derivatives is thus 64 − 40 = 24

degrees of freedom short of being able to make all the connections vanish. The resolution of the problem
is that, as shown below, equation (2.58), there are 24 combinations of the connections that form a tensor,
the torsion tensor. If a tensor is zero in one frame, then it is automatically zero in any other frame. Thus
the requirement that all the connections vanish requires that the torsion tensor vanish. This requires, from
the expression (2.58) for the torsion tensor, the no-torsion condition that the connection coe�cients are
symmetric in their last two indices

Γκµν = Γκνµ . (2.56)

It should be emphasized that the condition of vanishing torsion is an assumption of general relativity, not
a mathematical necessity. It has been shown in this section that torsion vanishes if and only if spacetime is
locally �at, meaning that at any point coordinates can be found such that conditions (2.54) are true. The
assumption of local �atness is central to the idea of the principle of equivalence. But it is an assumption,
not a consequence, of the theory.

Concept question 2.4. Parallel transport when torsion is present. If torsion does not vanish, then
there is no locally inertial frame. What does parallel-transport mean in such a case? Answer. A general
coordinate transformation can always be found such that the connection coe�cients Γκµν vanish along any
one direction ν. Parallel-transport along that direction can be de�ned relative to such a frame. For any given
direction ν, there are 16 second partial derivatives ∂2x′κ/∂xµ∂xν , just enough to make vanish the 4×4 = 16

coe�cients Γκµν .

2.10.2 Torsion tensor

General relativity assumes no torsion, but it is possible to consider generalizations to theories with torsion.
The torsion tensor Sµκλ is de�ned by the commutator of the covariant derivative acting on a scalar Φ

[Dκ, Dλ] Φ = Sµκλ
∂Φ

∂xµ
a coordinate tensor . (2.57)

Note that the covariant derivative of a scalar is just the ordinary derivative, DλΦ = ∂Φ/∂xλ. The expres-
sion (2.51) for the covariant derivatives shows that the torsion tensor is

Sµκλ = Γµκλ − Γµλκ a coordinate tensor (2.58)

which is evidently antisymmetric in the indices κλ.
In Einstein-Cartan theory, the torsion tensor is related to the spin content of spacetime. Since this vanishes
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in empty space, Einstein-Cartan theory is indistinguishable from general relativity in experiments carried
out in vacuum.

2.11 Connection coe�cients in terms of the metric

The connection coe�cients have been de�ned, equation (2.46), as derivatives of the tangent basis vectors eµ.
However, the connection coe�cients can be expressed purely in terms of the (�rst derivatives of the) metric,
without reference to the individual basis vectors. The partial derivatives of the metric are

∂gλµ
∂xν

=
∂eλ · eµ
∂xν

= eλ ·
∂eµ
∂xν

+ eµ ·
∂eλ
∂xν

= eλ · eκ Γκµν + eµ · eκ Γκλν

= gλκ Γκµν + gµκ Γκλν

= Γλµν + Γµλν , (2.59)

which is a sum of two connection coe�cients. Here Γλµν with all indices lowered is de�ned to be Γκµν with
the �rst index lowered by the metric,

Γλµν ≡ gλκΓκµν . (2.60)

Combining the metric derivatives in the following fashion yields an expression for a single connection,

∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

= Γλµν + Γµλν + Γλνµ + Γνλµ − Γµνλ − Γνµλ

= 2 Γλµν − Sλµν − Sµνλ − Sνµλ , (2.61)

with Sλµν ≡ gλκSκµν , which shows that, in the presence of torsion,

Γλµν =
1

2

(
∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

+ Sλµν + Sµνλ + Sνµλ

)
not a coordinate tensor . (2.62)

If torsion vanishes, as general relativity assumes, then

Γλµν =
1

2

(
∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

)
not a coordinate tensor . (2.63)

This is the formula that allows connection coe�cients to be calculated from the metric.

2.12 Torsion-free covariant derivative

Einstein's principle of equivalence postulates that a locally inertial frame exists at each point of spacetime,
and this implies that torsion vanishes. However, torsion is of special interest as a generalization of gen-
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eral relativity because, as discussed in �2.19.2, the torsion tensor and the Riemann curvature tensor can
be regarded as �elds associated with local gauge groups of respectively displacements and Lorentz trans-
formations. Together displacements and Lorentz transformations form the Poincaré group of symmetries of
spacetime. Torsion arises naturally in extensions of general relativity such as supergravity (Nieuwenhuizen,
1981), which unify the Poincaré group by adjoining supersymmetry transformations.
The torsion-free part of the covariant derivative is a covariant derivative even when torsion is present (that

is, it yields a tensor when acting on a tensor). The torsion-free covariant derivative is important, even when
torsion is present, for several reasons. Firstly, as will be discovered from an action principle in Chapter 4,
the covariant derivative that goes in the geodesic equation (2.88) is the torsion-free covariant derivative,
equation (2.90). Secondly, the torsion-free covariant curl de�nes the exterior derivative in the theory of
di�erential forms, �15.6. The exterior derivative has the property that it is inverse to integration over curved
hypersurfaces. Integration is central to various aspects of general relativity, such as the development of
Lagrangian and Hamiltonian mechanics. Thirdly, the Lie derivative, �7.34, is a covariant derivative de�ned
in terms of torsion-free covariant derivatives. Finally, Yang-Mills gauge symmetries, such as the U(1) gauge
symmetry of electromagnetism, require the gauge �eld to be de�ned in terms of the torsion-free covariant
derivative, in order to preserve the gauge symmetry.
When torsion is present and it is desirable to make the torsion part explicit, it is convenient to distinguish

torsion-free quantities with a˚ overscript. The torsion-free part Γ̊λµν of the connection, also called the Levi-
Civita connection, is given by the right hand side of equation (2.63). When expressed in a coordinate
frame (as opposed to a tetrad frame, �11.15), the components of the torsion-free connections Γ̊λµν are also
called Christo�el symbols. Sometimes, the components Γ̊λµν with all indices lowered are called Christo�el
symbols of the �rst kind, while components Γ̊λµν with �rst index raised are called Christo�el symbols of the
second kind. There is no need to remember the jargon, but it is useful to know what it means if you meet it.
The torsion-full connection Γλµν is a sum of the torsion-free connection Γ̊λµν and a tensor called the

contortion tensor (not contorsion!) Kλµν ,

Γλµν = Γ̊λµν +Kλµν not a coordinate tensor . (2.64)

From equation (2.62), the contortion tensor Kλµν is related to the torsion tensor Sλµν by

Kλµν = 1
2 (Sλµν + Sµνλ + Sνµλ) = −Sνλµ + 3

2S[λµν] a coordinate tensor . (2.65)

The contortion Kλµν is antisymmetric in its �rst two indices,

Kλµν = −Kµλν , (2.66)

and thus like the torsion tensor Sλµν has 6 × 4 = 24 degrees of freedom. The torsion tensor Sλµν can be
expressed in terms of the contortion tensor Kλµν ,

Sλµν = Kλµν −Kλνµ = −Kµνλ + 3K[λµν] a coordinate tensor . (2.67)

The torsion-full covariant derivative Dν di�ers from the torsion-free covariant derivative D̊ν by the con-
tortion,

DνA
κ ≡ D̊νA

κ +Kκ
µνA

µ a coordinate tensor . (2.68)
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In this book torsion will not be assumed automatically to vanish, and thus by default the symbol Dν will
denote the torsion-full covariant derivative. When torsion is assumed to vanish, or when Dν denotes the
torsion-free covariant derivative, it will be explicitly stated so.

Concept question 2.5. Can the metric be Minkowski in the presence of torsion? In �2.10.1 it was
argued that the postulate of the existence of locally inertial frames implies that torsion vanishes. The basis
of the argument was the proposition that derivatives of the tangent axes vanish, equation (2.54b). Impose
instead the weaker condition that the derivatives of the metric (i.e. scalar products of tangent axes) vanish,

∂gλµ
∂xν

= 0 . (2.69)

Can torsion be non-vanishing under this weaker condition? Answer. Yes. In fact torsion may exist even
in �at (Minkowski) space, where the metric is everywhere Minkowski, gλµ = ηλµ. The condition (2.69) of
vanishing metric derivatives is equivalent to the vanishing of the torsion-free connections,

1

2

∂gλµ
∂xν

= Γ(λµ)ν = Γ̊(λµ)ν +K(λµ)ν = Γ̊(λµ)ν = 0 . (2.70)

Thus the condition (2.69) of vanishing metric derivatives imposes no condition on torsion.

Exercise 2.6. Covariant curl and coordinate curl. Show that the covariant curl of a covariant vector
Aλ is

DκAλ −DλAκ =
∂Aλ
∂xκ

− ∂Aκ
∂xλ

+ SµκλAµ . (2.71)

Conclude that the coordinate curl of a vector equals its torsion-free covariant curl,

D̊κAλ − D̊λAκ =
∂Aλ
∂xκ

− ∂Aκ
∂xλ

. (2.72)

Of course, if torsion vanishes as general relativity assumes, then the covariant curl is the torsion-free covariant
curl. Note that since both DκAλ − DλAκ on the left hand side and SµκλAµ on the right hand side of
equation (2.71) are both tensors, it follows that the coordinate curl ∂Aλ/∂xκ − ∂Aκ/∂xλ is a tensor even in
the presence of torsion.

Exercise 2.7. Covariant divergence and coordinate divergence. Show that the covariant divergence
of a contravariant vector Aµ is

DµA
µ =

1√
−g

∂(
√
−gAµ)

∂xµ
+ SνµνA

µ , (2.73)

where g ≡ |gµν | is the determinant of the metric matrix. Conclude that the torsion-free covariant divergence
is

D̊µA
µ =

1√
−g

∂(
√
−gAµ)

∂xµ
. (2.74)

Of course, if torsion vanishes as general relativity assumes, then the covariant divergence is the torsion-free
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covariant divergence. Note that since both the covariant divergence on the left hand side of equation (2.73)
and the torsion term on the right hand side of equation (2.73) are both tensors, the torsion-free covariant
divergence (2.74) is a tensor even in the presence of torsion.
Solution. The covariant divergence is

DµA
µ =

∂Aµ

∂xµ
+ ΓνµνA

µ . (2.75)

From equation (2.62),

Γνµν =
1

2
gλν

∂gλν
∂xµ

+ Sνµν

=
∂ ln |

√
−g|

∂xµ
+ Sνµν . (2.76)

The second line of equations (2.76) follows because for any matrix M ,

δ ln |M | = ln |M + δM | − ln |M |
= ln |M−1(M + δM)|
= ln |1 +M−1δM |
= ln(1 + Tr M−1δM)

= Tr M−1δM . (2.77)

The torsion-free covariant divergence is

D̊µA
µ =

∂Aµ

∂xµ
+ Γ̊νµνA

µ , (2.78)

where the torsion-free coordinate connection is

Γ̊νµν =
1

2
gλν

∂gλν
∂xµ

=
∂ ln |

√
−g|

∂xµ
. (2.79)

Concept question 2.8. If torsion does not vanish, does torsion-free covariant di�erentiation

commute with the metric? Answer. Yes. Unlike the torsion-full covariant derivative, Concept Ques-
tion 2.3, the torsion-free covariant derivative of the tangent basis vectors eκ does not vanish, but rather
depends on the contortion Kν

κµeν ,

D̊µeκ = Dµeκ +Kν
κµeν = Kν

κµeν . (2.80)

However, the torsion-free covariant derivative of the metric, that is, of scalar products of the tangent basis
vectors, does vanish,

D̊µgκλ = D̊µ(eκ · eλ) = Kν
κµeν · eλ +Kν

λµeκ · eν = Kλκµ +Kκλµ = 0 , (2.81)

thanks to the antisymmetry of the contortion tensor in its �rst two indices. As a corollary, torsion-free
covariant di�erentiation commutes with the operations of raising and lowering indices, and of contraction.
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2.13 Mathematical aside: What if there is no metric?

General relativity is a metric theory. Many of the structures introduced above can be de�ned mathematically
without a metric. For example, it is possible to de�ne the tangent space of vectors with basis eµ, and to
de�ne a dual vector space with basis eµ such that eµ · eν = δµν , equation (2.36). Elements of the dual vector
space are called covectors. Similarly it is possible to de�ne connections and covariant derivatives without a
metric. However, this book follows general relativity in assuming that spacetime has a metric.

2.14 Coordinate 4-velocity

Consider a particle following a worldline

xµ(τ) , (2.82)

where τ is the particle's proper time. The proper time along any interval of the worldline is dτ ≡
√
−ds2.

De�ne the coordinate 4-velocity uµ by

uµ ≡ dxµ

dτ
a coordinate 4-vector . (2.83)

The magnitude squared of the 4-velocity is constant

uµu
µ = gµν

dxµ

dτ

dxν

dτ
=
ds2

dτ2
= −1 . (2.84)

The negative sign arises from the choice of metric signature: with the signature −+++ adopted here, there
is a − sign between ds2 and dτ2. Equation (2.84) can be regarded as an integral of motion associated with
conservation of particle rest mass.

2.15 Geodesic equation

Let u ≡ eµu
µ be the 4-velocity in coordinate-independent notation. The principle of equivalence (which

imposes vanishing torsion) implies that the geodesic equation, the equation of motion of a freely-falling
particle, is

du

dτ
= 0 . (2.85)

Why? Because du/dτ = 0 in the particle's own free-fall frame, and the equation is coordinate-independent.
In the particle's own free-fall frame, the particle's 4-velocity is uµ = {1, 0, 0, 0}, and the particle's locally
inertial axes eµ = {e0, e1, e2, e3} are constant.
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What does the equation of motion look like in coordinate notation? The acceleration is

du

dτ
=
dxν

dτ

∂u

∂xν

= uνeκDνu
κ

= uνeκ

(
∂uκ

∂xν
+ Γκµνu

µ

)
= eκ

(
duκ

dτ
+ Γκµνu

µuν
)
. (2.86)

The geodesic equation is then

duκ

dτ
+ Γκµνu

µuν = 0 . (2.87)

Another way of writing the geodesic equation is

Duκ

Dτ
= 0 , (2.88)

where D/Dτ is the covariant proper time derivative

D

Dτ
≡ uνDν . (2.89)

The above derivation of the geodesic equation invoked the principle of equivalence, which postulates that
locally inertial frames exist, and thus that torsion vanishes. What happens if torsion does not vanish? In
Chapter 4, equation (4.15), it will be shown from an action principle that in the presence of torsion, the
covariant derivative in the geodesic equation should simply be replaced by the torsion-free covariant derivative
D̊/Dτ = uµD̊µ,

D̊uκ

Dτ
= 0 . (2.90)

Thus the geodesic motion of particles is una�ected by the presence of torsion.

2.16 Coordinate 4-momentum

The coordinate 4-momentum of a particle of rest mass m is de�ned to be

pµ ≡ muµ = m
dxµ

dτ
a coordinate 4-vector . (2.91)

The momentum squared is, from equation (2.84),

pµp
µ = m2uµu

µ = −m2 (2.92)

minus the square of the rest mass. Again, the minus sign arises from the choice −+++ of metric signature.
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2.17 A�ne parameter

For photons, the rest mass is zero, m = 0, but the 4-momentum pµ remains �nite. De�ne the a�ne

parameter λ by

λ ≡ τ

m
a coordinate scalar (2.93)

which remains �nite in the limit m → 0. The a�ne parameter λ is unique up to an overall linear transfor-
mation (that is, αλ + β is also an a�ne parameter, for constant α and β), because of the freedom in the
choice of mass m and the zero point of proper time τ . In terms of the a�ne parameter, the 4-momentum is

pµ =
dxµ

dλ
. (2.94)

The geodesic equation is then in coordinate-independent notation

dp

dλ
= 0 , (2.95)

or in component form
dpκ

dλ
+ Γκµνp

µpν = 0 , (2.96)

which works for massless as well as massive particles.
Another way of writing this is

Dpκ

Dλ
= 0 , (2.97)

where D/Dλ is the covariant a�ne derivative

D

Dλ
≡ pνDν . (2.98)

In the presence of torsion, the connection in the geodesic equation (2.96) should be interpreted as the
torsion-free connection Γ̊κµν , and the covariant derivative in equations (2.97) and (2.98) are torsion-free
covariant derivatives.

2.18 A�ne distance

The freedom in the overall scaling of the a�ne parameter can be removed by setting it equal to the proper
distance near the observer in the observer's locally inertial rest frame. With the scaling �xed in this fashion,
the a�ne parameter is called the a�ne distance, so called because it provides a measure of distance along
null geodesics. When you look at a scene with your eyes, you are looking along null geodesics, and the natural
measure of distance to objects that you see is the a�ne distance (Hamilton and Polhemus, 2010).
In special relativity, the a�ne distance coincides with the perceived (e.g. binocular) distance to objects.
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Exercise 2.9. Gravitational redshift in a stationary metric. Let xµ ≡ {t, xα} constitute time t
and spatial coordinates xα of a spacetime. The metric gµν is said to be stationary if it is independent of
the coordinate t. A comoving observer in the spacetime is one that is at rest in the spatial coordinates,
dxα/dτ = 0.
1. Argue that the coordinate 4-velocity uν ≡ dxν/dτ of a comoving observer in a stationary spacetime is

uν = {γ, 0, 0, 0} , γ ≡ 1√
−gtt

. (2.99)

2. Argue that the proper energy E of a particle, massless or massive, with energy-momentum 4-vector pν

seen by a comoving observer with 4-velocity uν , equation (2.99), is

E = −uνpν . (2.100)

3. Consider a particle, massless or massive, that follows a geodesic between two comoving observers. Since
the metric is independent of the time coordinate t, the covariant momentum pt is a constant of motion,
equation (4.50). Argue that the ratio Eobs/Eem of the observed to emitted energies between two comoving
observers is

Eobs

Eem
=
γobs

γem
. (2.101)

4. Can comoving observers exist where gtt is positive?

Exercise 2.10. Gravitational redshift in Rindler space. Rindler space is Minkowski space expressed in
the coordinates of uniformly accelerating observers, called Rindler observers. Rindler observers are precisely
the observers in the right quadrant of the spacetime wheel, Figure 1.14.
1. Start with Minkowski space in a Cartesian coordinate system {t, x, y, z}. De�ne Rindler coordinates l, α

by

t = l sinhα , x = l coshα . (2.102)

Show that the line-element in Rindler coordinates is

ds2 = − l2dα2 + dl2 + dy2 + dz2 . (2.103)

2. A Rindler observer is a comoving observer in Rindler space, one who follows a worldline of constant l,
y, and z. Since Rindler spacetime is stationary, conclude that the ratio Eobs/Eem of the observed to
emitted energies between two Rindler observers is, equation (2.101),

Eobs

Eem
=
lem

lobs
. (2.104)

3. Can Rindler space be considered equivalent to a spacetime containing a uniform gravitational �eld? Do
Rindler observers all accelerate at the same rate?
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Exercise 2.11. Gravitational redshift in a uniformly rotating space. Start with Minkowski space in
cylindrical coordinates {t, r, φ, z},

ds2 = − dt2 + dr2 + r2dφ2 + dz2 . (2.105)

De�ne a uniformly rotating azimuthal angle χ by

χ ≡ φ− ωt , (2.106)

which is constant for observers who are at rest in a system rotating uniformly at angular velocity ω. The
line-element in uniformly rotating coordinates is

ds2 = − dt2 + dr2 + r2(dχ+ ω dt)2 + dz2 . (2.107)

1. A comoving observer in the uniformly rotating system follows a worldline at constant r, χ, and z. Since
the uniformly rotating spacetime is stationary, conclude that the ratio Eobs/Eem of the observed to
emitted energies between two comoving observers is, equation (2.101),

Eobs

Eem
=
γem

γobs
, (2.108)

where

γ =
1√

1− v2
, v = ωr . (2.109)

2. What happens where v > 1?

Concept question 2.12. Can Minkoswki space rotate? Exercise 2.11 considered Minkowski space in
rotating coordinates. Can Minkowski space rotate globally? Answer. No. General relativity allows arbitrary
choices of coordinates, including choices that allow physical objects to move through the coordinates faster
than light. However, the choice of coordinates does not a�ect physical observables in any way. The metric
encodes locally inertial frames, determining what intervals are timelike, lightlike, or spacelike (ds2 less than,
equal to, or greater than zero). That locally inertial structure is independent of the choice of coordinates.
Objects cannot move through locally inertial frames than light. Thus Minkoswki spacetime does not rotate
globally, regardless of the choice of coordinates.

2.19 Riemann tensor

2.19.1 Riemann curvature tensor

The Riemann curvature tensor Rκλµν is de�ned by the commutator of the covariant derivative acting
on a 4-vector. In the presence of torsion,

[Dκ, Dλ]Aµ = SνκλDνAµ +RκλµνA
ν a coordinate tensor . (2.110)
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If torsion vanishes, as general relativity assumes, then the de�nition (2.110) reduces to

[Dκ, Dλ]Aµ = RκλµνA
ν a coordinate tensor . (2.111)

The expression (2.51) for the covariant derivative yields the following formula for the Riemann tensor in
terms of connection coe�cients

Rκλµν =
∂Γµνλ
∂xκ

− ∂Γµνκ
∂xλ

+ ΓπµλΓπνκ − ΓπµκΓπνλ a coordinate tensor . (2.112)

This is the formula that allows the Riemann tensor to be calculated from the connection coe�cients. The
same formula (2.112) remains valid if torsion does not vanish, but the connection coe�cients Γλµν themselves
are given by (2.62) in place of (2.63).
In �at (Minkowski) space, covariant derivatives reduce to partial derivatives, Dκ → ∂/∂xκ, and

[Dκ, Dλ]→
[
∂

∂xκ
,
∂

∂xλ

]
= 0 in �at space (2.113)

so that Rκλµν = 0 in �at space.

Exercise 2.13. Derivation of the Riemann tensor. Con�rm expression (2.112) for the Riemann tensor.
This is an exercise that any serious student of general relativity should do. However, you might like to defer
this rite of passage to Chapter 11, where Exercises 11.3�11.6 take you through the derivation and properties
of the tetrad-frame Riemann tensor.

2.19.2 Commutator of the covariant derivative acting on a general tensor

The commutator of the covariant derivative is of fundamental importance because it de�nes what is meant
by the �eld in gauge theories.
It has seen above that the commutator of the covariant derivative acting on a scalar de�ned the torsion

tensor, equation (2.57), which general relativity assumes vanishes, while the commutator of the covariant
derivative acting on a vector de�ned the Riemann tensor, equation (2.111). Does the commutator of the
covariant derivative acting on a general tensor introduce any other distinct tensor? No: the torsion and
Riemann tensors completely de�ne the action of the commutator of the covariant derivative on any tensor.
Acting on a general tensor, the commutator of the covariant derivative is

[Dκ, Dλ]Aπρ...µν... = SσκλDσA
πρ...
µν... +Rκλµ

σAπρ...σν... +Rκλν
σAπρ...µσ... −RκλσπAσρ...µν... −RκλσρAπσ...µν... . (2.114)

In more abstract notation, the commutator of the covariant derivative is the operator

[Dκ, Dλ] = SµκλDµ + R̂κλ (2.115)

where the Riemann curvature operator R̂κλ is an operator whose action on any tensor is speci�ed by equa-
tion (2.114). The action of the operator R̂κλ is analogous to that of the covariant derivative (2.52): there's
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a positive R term for each covariant index, and a negative R term for each contravariant index. The action
of R̂κλ on a scalar is zero, which re�ects the fact that a scalar is unchanged by a Lorentz transformation.
The general expression (2.114) for the commutator of the covariant derivative reveals the meaning of the

torsion and Riemann tensors. The torsion and Riemann tensors describe respectively the displacement and the
Lorentz transformation experienced by an object when parallel-transported around a curve. Displacements
and Lorentz transformations together constitute the Poincaré group, the complete group of symmetries of
�at spacetime.
How can an object detect a displacement when parallel-transported around a curve? If you go around

a curve back to the same coordinate in spacetime where you began, won't you necessarily be at the same
position? This is a question that goes to heart of the meaning of spacetime. To answer the question, you
have to consider how fundamental particles are able to detect position, orientation, and velocity. Classically,
particles may be structureless points, but quantum mechanically, particles possess frequency, wavelength,
spin, and (in the relativistic theory) boost, and presumably it is these properties that allow particles to
�measure� the properties of the spacetime in which they live. For example, a Dirac spinor (relativistic spin- 1

2

particle) Lorentz transforms under the fundamental (spin- 1
2 ) representation of the Lorentz group, and is

thus endowed with precisely the properties that allow it to �measure� boost and rotation, �14.10. The Dirac
wave equation shows that a Dirac spinor propagating through spacetime varies as ∼ eipµx

µ

, whose phase
encodes the displacement of the Dirac spinor. Thus a Dirac spinor could potentially detect a displacement
through a change in its phase when parallel-transported around a curve back to the same point in spacetime.
Since a change in phase is indistinguishable from a spatial rotation about the spin axis of the Dirac spinor,
operationally torsion rotates particles, whence the name torsion.

2.19.3 No torsion

In the remainder of this chapter, torsion will be assumed to vanish, as general relativity postulates. A
decomposition of the Riemann tensor into torsion-free and contortion parts is deferred to �11.18.

2.19.4 Symmetries of the Riemann tensor

In a locally inertial frame (necessarily, with vanishing torsion), the connection coe�cients all vanish, Γλµν = 0,
but their partial derivatives, which are proportional to second derivatives of the metric tensor, do not vanish.
Thus in a locally inertial frame the Riemann tensor is

Rκλµν =
∂Γµνλ
∂xκ

− ∂Γµνκ
∂xλ

=
1

2

(
∂2gµν
∂xκ∂xλ

+
∂2gµλ
∂xκ∂xν

− ∂2gνλ
∂xκ∂xµ

− ∂2gµν
∂xλ∂xκ

− ∂2gµκ
∂xλ∂xν

+
∂2gνκ
∂xλ∂xµ

)
=

1

2

(
∂2gµλ
∂xκ∂xν

− ∂2gνλ
∂xκ∂xµ

− ∂2gµκ
∂xλ∂xν

+
∂2gνκ
∂xλ∂xµ

)
. (2.116)

You can check that the bottom line of equation (2.116):
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1. is antisymmetric in κ↔ λ,
2. is antisymmetric in µ↔ ν,
3. is symmetric in κλ↔ µν,
4. has the property that the sum of the cyclic permutations of the last three (or �rst three, or indeed any

three) indices vanishes

Rκλµν +Rκνλµ +Rκµνλ = 0 . (2.117)

Actually, as shown in Exercise 11.6, the last two of the four symmetries, the symmetric symmetry and the
cyclic symmetry, imply each other. The �rst three of the four symmetries can be expressed compactly

Rκλµν = R([κλ][µν]) , (2.118)

in which [ ] denotes anti-symmetrization and ( ) symmetrization, as in

A[κλ] ≡ 1
2 (Aκλ −Aλκ) , A(κλ) ≡ 1

2 (Aκλ +Aλκ) . (2.119)

The symmetries (2.118) imply that the Riemann tensor is a symmetric matrix of antisymmetric matrices. An
antisymmetric tensor is also known as a bivector, much more about which you can discover in Chapter 13
on the geometric algebra. An antisymmetric matrix, or bivector, in 4 dimensions has 6 degrees of freedom.
A symmetric matrix of bivectors is a 6 × 6 symmetric matrix, which has 21 degrees of freedom. The �nal,
cyclic symmetry of the Riemann tensor, equation (2.117), which can be abbreviated

Rκ[λµν] = 0 , (2.120)

removes 1 degree of freedom. Thus the Riemann tensor has a net 20 degrees of freedom.
Although the above symmetries were derived in a locally inertial frame, the fact that the Riemann tensor

is a tensor means that the symmetries hold in any frame. If you prefer, you can add back the products of
connection coe�cients in equation (2.112), and check that the claimed symmetries remain.
Some of the symmetries of the Riemann tensor persist when torsion is present, and others do not. The

relation between symmetries of the Riemann tensor and torsion is deferred to Exercises 11.4�11.6.

2.20 Ricci tensor, Ricci scalar

The Ricci tensor Rκµ and Ricci scalar R are the essentially unique contractions of the Riemann curvature
tensor. The Ricci tensor, the compressive part of the Riemann tensor, is

Rκµ ≡ gλνRκλµν a coordinate tensor . (2.121)

If torsion vanishes as general relativity assumes, then the Ricci tensor is symmetric

Rκµ = Rµκ (2.122)

and therefore has 10 independent components.
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The Ricci scalar is

R ≡ gκµRκµ a coordinate tensor (a scalar) . (2.123)

2.21 Einstein tensor

The Einstein tensor Gκµ is de�ned by

Gκµ ≡ Rκµ − 1
2 gκµR a coordinate tensor . (2.124)

For vanishing torsion, the symmetry of the Ricci and metric tensors imply that the Einstein tensor is likewise
symmetric

Gκµ = Gµκ , (2.125)

and thus has 10 independent components.

2.22 Bianchi identities

The Jacobi identity

[Dκ, [Dλ, Dµ]] + [Dλ, [Dµ, Dκ]] + [Dµ, [Dκ, Dλ]] = 0 (2.126)

implies the Bianchi identities which, for vanishing torsion, are

DκRλµνπ +DλRµκνπ +DµRκλνπ = 0 . (2.127)

The torsion-free Bianchi identities can be written in shorthand

D[κRλµ]νπ = 0 . (2.128)

The Bianchi identities constitute a set of di�erential relations between the components of the Riemann
tensor, which are distinct from the algebraic symmetries of the Riemann tensor. There are 4 ways to pick
[κλµ], and 6 ways to pick antisymmetric νπ, giving 4 × 6 = 24 Bianchi identities, but 4 of the identities,
D[κRλµν]π = 0, are implied by the cyclic symmetry (2.120), which is a consequence of vanishing torsion.
Thus there are 24−4 = 20 non-trivial torsion-free Bianchi identities on the 20 components of the torsion-free
Riemann tensor.

Exercise 2.14. Jacobi identity. Prove the Jacobi identity (2.126).
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2.23 Covariant conservation of the Einstein tensor

The most important consequence of the torsion-free Bianchi identities (2.128) is obtained from the double
contraction

gκνgλπ (DκRλµνπ +DλRµκνπ +DµRκλνπ) = −DκRκµ −DλRλµ +DµR = 0 , (2.129)

or equivalently

DκGκµ = 0 , (2.130)

where Gκµ is the Einstein tensor, equation (2.124). Equation (2.130) is a primary motivation for the form
of the Einstein equations, since it implies energy-momentum conservation, equation (2.132). It is worth
remarking that the derivation of the contracted Bianchi identities (3.6) holds in arbitrarily many spacetime
dimensions, so the factor of 1

2 multiplying the Ricci scalar R in the de�nition (2.124) of the Einstein tensor
holds in arbitrarily many spacetime dimensions, not just 4.

2.24 Einstein equations

Einstein's equations are

Gκµ = 8πGTκµ a coordinate tensor equation . (2.131)

What motivates the form of Einstein's equations?
1. The equation is generally covariant.

2. For vanishing torsion, the Bianchi identities (2.128) guarantee covariant conservation of the Einstein
tensor, equation (2.130), which in turn guarantees covariant conservation of energy-momentum,

DκTκµ = 0 . (2.132)

3. The Einstein tensor depends on the lowest (second) order derivatives of the metric tensor that do not
vanish in a locally inertial frame.

In Chapter 16, the Einstein equations will be derived from an action principle. Although Einstein derived his
equations from considerations of theoretical elegance, the real justi�cation for them is that they reproduce
observation.
Einstein's equations (2.131) constitute a complete set of gravitational equations, generalizing Poisson's

equation of Newtonian gravity. However, Einstein's equations by themselves do not constitute a closed set
of equations: in general, other equations, such as Maxwell's equations of electromagnetism, and equations
describing the microphysics of the energy-momentum, must be adjoined to form a closed set.
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Exercise 2.15. Einstein tensor in 3 or more dimensions. What is the Einstein tensor in N ≥ 3

spacetime dimensions?
Solution. The Einstein tensor must be covariantly conserved to ensure that its source, energy-momentum,
is covariantly conserved. The doubly-contracted Bianchi identities (3.6) hold as long as there are at least 3
spacetime dimensions. In N = 2 spacetime dimensions, there are zero Bianchi identities (2.128), since there
are zero ways of picking 3 distinct indices. Thus the expression (2.124) for the Einstein tensor holds in any
number N ≥ 3 of spacetime dimensions. See �11.19 for general relativity in 2 spacetime dimensions.

2.25 Summary of the path from metric to the energy-momentum tensor

1. Start by de�ning the metric gµν .

2. Compute the connection coe�cients Γλµν from equation (2.63).

3. Compute the Riemann tensor Rκλµν from equation (2.112).

4. Compute the Ricci tensor Rκµ from equation (2.121), the Ricci scalar R from equation (2.123), and the
Einstein tensor Gκµ from equation (2.124).

5. The Einstein equations (2.131) then imply the energy-momentum tensor Tκµ.
The path from metric to energy-momentum tensor is straightforward to program on a computer, but

the results are typically messy and complicated, even for fairly simple spacetimes. Inverting the path to
recover the metric from a given energy-momentum content is typically highly non-trivial, the subject of a
vast literature.
The great majority of metrics gµν yield an energy-momentum tensor Tκµ that cannot be achieved with

normal matter.

2.26 Energy-momentum tensor of a perfect �uid

The simplest non-trivial energy-momentum tensor is that of a perfect �uid. In this case Tµν is taken to be
isotropic in the locally inertial rest frame of the �uid, taking the form

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (2.133)

where

ρ is the proper mass-energy density ,
p is the proper pressure .

(2.134)
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The expression (2.133) is valid only in the locally inertial rest frame of the �uid. An expression that is valid
in any frame is

Tµν = (ρ+ p)uµuν + p gµν , (2.135)

where uµ is the 4-velocity of the �uid. Equation (2.135) is valid because it is a tensor equation, and it is true
in the locally inertial rest frame, where uµ = {1, 0, 0, 0}.

2.27 Newtonian limit

The Newtonian limit is obtained in the limit of a weak gravitational �eld and non-relativistic (pressureless)
matter. In Cartesian coordinates, the metric in the Newtonian limit is (see Chapter 27)

ds2 = − (1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) , (2.136)

in which

Φ(x, y, z) = Newtonian potential (2.137)

is a function only of the spatial coordinates x, y, z, not of time t.
For this metric, to �rst order in the potential Φ the only non-vanishing component of the Einstein tensor

is the time-time component

Gtt = 2∇2Φ , (2.138)

where∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2 is the usual 3-dimensional Laplacian operator. This component (2.138)
of the Einstein tensor plugged into Einstein's equations (2.131) implies Poisson's equation (2.4).

Exercise 2.16. Special and general relativistic corrections for clocks on satellites. The metric just
above the surface of the Earth is well-approximated by

ds2 = − (1 + 2Φ)dt2 + (1− 2Φ)dr2 + r2(dθ2 + sin2θ dφ2) , (2.139)

where

Φ(r) = −GM
r

(2.140)

is the familiar Newtonian gravitational potential.
1. Proper time. Consider an object at �xed radius r, moving along the equator θ = π/2 with constant

non-relativistic velocity r dφ/dt = v. Compare the proper time of this object with that at rest at in�nity.
[Hint: Work to �rst order in the potential Φ. Regard v2 as �rst order in Φ. Why is that reasonable?]

2. Orbits. Consider a satellite in orbit about the Earth. The conservation of energy E per unit mass,
angular momentum L per unit mass, and rest mass per unit mass are expressed by (�4.8)

ut = −E , uφ = L , uµu
µ = −1 . (2.141)



84 Fundamentals of General Relativity

For equatorial orbits, θ = π/2, show that the radial component ur of the 4-velocity satis�es

ur =
√

2(∆E − U) , (2.142)

where ∆E is the energy per unit mass of the particle excluding its rest mass energy,

∆E = E − 1 , (2.143)

and the e�ective potential U is

U = Φ +
L2

2r2
. (2.144)

[Hint: Neglect air resistance. Remember to work to �rst order in Φ. Treat ∆E and L2 as �rst order in
Φ. Why is that reasonable?]

3. Circular orbits. From the condition that the potential U be an extremum, �nd the circular orbital
velocity v = r dφ/dt of a satellite at radius r.

4. Special and general relativistic corrections for satellites. Compare the proper time of a satellite
in circular orbit to that of a person at rest at in�nity. Express your answer in the form

dτsatellite

dt
− 1 = −Φ⊕ (fGR + fSR) , (2.145)

where fGR and fSR are the general relativistic and special relativistic corrections, and Φ⊕ is the dimen-
sionless gravitational potential at the surface of the Earth,

Φ⊕ = −GM⊕
c2R⊕

. (2.146)

What is the value of Φ⊕ in milliseconds per year?
5. Special and general relativistic corrections for satellites vs. Earth observer. Compare the

proper time of a satellite in circular orbit to that of a person on Earth at one of the poles (so the person
has no motion from the Earth's rotation). Express your answer in the form

dτsatellite

dt
− dτperson

dt
= −Φ⊕ (fGR + fSR) . (2.147)

At what satellite radius r, in units of Earth radius R⊕, do the special and general relativistic corrections
cancel?

6. Special and general relativistic corrections for ISS and GPS satellites.What are the corrections
(be careful to get the sign right!) in units of Φ⊕, and in units of ms yr−1, for (i) a satellite in low Earth
orbit, such as the International Space Station; (ii) a nearly geostationary satellite, such as a GPS
satellite? Google the numbers that you may need.

Exercise 2.17. Equations of motion in weak gravity. Take the metric to be the Newtonian met-
ric (2.136) with the Newtonian potential Φ(x, y, z) a function only of the spatial coordinates x, y, z, not of
time t, equation (2.137).
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1. Con�rm that the non-zero connection coe�cients are (coe�cients as below but with the last two indices
swapped are the same by the no-torsion condition Γκµν = Γκνµ)

Γttα = Γαtt = Γαββ = −Γββα = −Γααα =
∂Φ

∂xα
(α 6= β = x, y, z) . (2.148)

[Hint: Work to linear order in Φ.]

2. Consider a massive, non-relativistic particle moving with 4-velocity uµ ≡ dxµ/dτ = {ut, ux, uy, uz}.
Show that uµuµ = −1 implies that

ut = 1 +
1

2
u2 − Φ , (2.149)

whereas

ut = −
(

1 +
1

2
u2 + Φ

)
(2.150)

where u ≡
[
(ux)2 + (uy)2 + (uz)2

]1/2
. One of ut or ut is constant. Which one? [Hint: Work to linear

order in Φ. Note that u2 is of linear order in Φ.]

3. Equation of motion of a massive particle. From the geodesic equation

duκ

dτ
+ Γκµνu

µuν = 0 (2.151)

show that
duα

dt
= − ∂Φ

∂xα
α = x, y, z . (2.152)

Why is it legitimate to replace dτ by dt? Show further that

dut

dt
= − 2uα

∂Φ

∂xα
(2.153)

with implicit summation over α = x, y, z. Does the result agree with what you would expect from
equation (2.149)?

4. For a massless particle, the proper time along a geodesic is zero, and the a�ne parameter λ must be
used instead of the proper time. The 4-velocity of a massless particle can be de�ned to be (and really
this is just the 4-momentum pµ up to an arbitrary overall factor) vµ ≡ dxµ/dλ = {vt, vx, vy, vz}. Show
that vµvµ = 0 implies that

vt = (1− 2Φ)v , (2.154)

whereas

vt = −v , (2.155)

where v ≡
[
(vx)2 + (vy)2 + (vz)2

]1/2
. One of vt or vt is constant. Which one?
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5. Equation of motion of a massless particle. From the geodesic equation

dvκ

dλ
+ Γκµνv

µvν = 0 (2.156)

show that the spatial components v ≡ {vx, vy, vz} satisfy

dv

dλ
= 2v × (v ×∇Φ) , (2.157)

where boldface symbols represent 3D vectors, and in particular ∇Φ is the spatial 3D gradient ∇Φ ≡
∂Φ/∂xα = {∂Φ/∂x, ∂Φ/∂y, ∂Φ/∂z}.

6. Interpret your answer, equation (2.157). In what ways does this equation for the acceleration of photons
di�er from the equation governing the acceleration of massive particles? [Hint: Without loss of generality,
the a�ne parameter can be normalized so that the photon speed is one, v = 1, so that v is a unit vector
representing the direction of the photon.]

7. Consider an observer who happens to be at rest in the Newtonian metric, so that ux = uy = uz = 0.
Argue that the energy of a photon observed by this observer, relative to an observer at rest at zero
potential, is

− uµvµ = 1− Φ . (2.158)

Does the observed photon have higher or lower energy in a deeper potential well?

Exercise 2.18. De�ection of light by the Sun.

1. Consider light that passes by a spherical mass M su�ciently far away that the potential Φ is always
weak. The potential at distance r from the spherical mass can be approximated by the Newtonian
potential

Φ = − GM

r
. (2.159)

Approximate the unperturbed path of light past the mass as a straight line. The plan is to calculate
the de�ection as a perturbation to the straight line (physicists call this the Born approximation). For
de�niteness, take the light to be moving in the x-direction, o�set by a constant amount y away from
the mass in the y-direction (so y is the impact parameter, or periapsis). Argue that equation (2.157)
becomes

dvy

dλ
= vx

dvy

dx
= − 2 (vx)2 ∂Φ

∂y
. (2.160)

Integrate this equation to show that

∆vy

vx
= − 4GM

y
. (2.161)

Argue that this equals the de�ection angle ∆φ.

2. Calculate the predicted de�ection angle ∆φ in arcseconds for light that just grazes the limb of the Sun.
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Exercise 2.19. Shapiro time delay. The three classic tests of general relativity are the gravitational
redshift (Exercise 2.9), the gravitational bending of light around the Sun (Exercise 2.18), and the precession
of Mercury (Exercise 7.8). Shapiro (1964) pointed out a fourth test, that the round-trip time for a light
beam bounced o� a planet or spacecraft would be lengthened slightly by the passage of the light through
the gravitational potential of the Sun. The experiment could be done with radio signals, since the Sun does
not overwhelm a radio signal passing near its limb. In Exercise 2.17 you showed that the time component of
the 4-velocity vµ ≡ dxµ/dλ of a massless particle moving through a weak gravitational potential Φ is (units
c = 1)

vµ ≡
{
dt

dλ
,
dx

dλ

}
= {vt,v} = {1− 2Φ,v} , (2.162)

where v is a 3-vector of unit magnitude. Equation (2.162) implies that

dt

dl
= 1− 2Φ , (2.163)

where dl ≡ |dx| is the magnitude of the 3-vector interval dx. The Shapiro time delay comes from the 2Φ

correction.

b
l
E

l
V

r
E

r
V

Figure 2.6 A person on Earth sends out a radio signal that passes by the Sun, bounces o� the planet Venus, and

returns to Earth.

1. Time delay. The potential Φ at distance r from the Sun is

Φ = −GM�
r

. (2.164)

Assume that the path of the light can be well-approximated as a straight line, as illustrated in Figure 2.6.
Show that the round-trip time ∆t is, with units of c restored,

∆t =
2

c
(lE + lV) +

4GM�
c3

ln

[
(rE + lE)(rV + lV)

b2

]
, (2.165)

where, as illustrated in Figure 2.6, rE and rV are the distances of Earth and Venus from the Sun, b is the
impact parameter, and lE and lV are the distances of Earth and Venus from the point of closest approach.
The �rst term in equation (2.165) is the Newtonian expectation, while the last term in equation (2.165)
is the Shapiro term.
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2. Shapiro time delay for the Earth-Venus-Sun system. Evaluate the Shapiro time delay, in mil-
liseconds, for the Earth-Venus-Sun system when the radio signal just grazes the limb of the Sun,
with b = R�. [Hint: The Earth-Sun distance is rE = 1.496 × 1011 m, while the Venus-Sun distance
is rV = 1.082× 1011 m.]

3. Change in the time delay as the planets orbit. Assume that Earth and Venus are in circular orbit
about the Sun (so rE and rV are constant). What are the derivatives dlE/db and dlV/db, in terms of lE,
lV, and b? Deduce an expression for c d∆t/db. Identify which is the Newtonian contribution, and which
the Shapiro contribution. Among the terms in the Shapiro contribution, which one term dominates for
small impact parameters, where b� rE and b� rV?

4. Relative sizes of Newtonian and Shapiro terms. From your results in part (c), calculate approx-
imately the relative sizes of the Newtonian and Shapiro contributions to the variation c d∆t/db of the
time delay when the radio signal just grazes the limb of the Sun, b = R�. Comment.

Exercise 2.20. Gravitational lensing. In Exercise 2.18 you found that, in the weak �eld limit, light
passing a spherical mass M at impact parameter y is de�ected by angle

∆φ =
4GM

yc2
. (2.166)

1. Lensing equation. Argue that the de�ection angle ∆φ is related to the angles α and β illustrated in

α

∆φ

β

yA

yL
yS

Observer Lens

Source

Image

DL DLS

DS

Figure 2.7 Lensing diagram.

the lensing diagram in Figure 2.7 by

αDS = βDS + ∆φDLS . (2.167)
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Lens

Source

Image

image
2nd

Figure 2.8 The appearance of a source lensed by a point lens. The lens in this case is a black hole, whose physical size

is the �lled circle, and whose apparent (lensed) size is the surrounding un�lled circle. However, any mass, not just a

black hole, will lens a background source.

Hence or otherwise obtain the �lensing equation� in the form commonly used by astronomers

β = α− α2
E

α
, (2.168)

where

αE =

(
4GM

c2
DLS

DLDS

)1/2

. (2.169)

2. Solutions. Equation (2.168) has two solutions for the apparent angles α in terms of β. What are they?
Sketch both solutions on a lensing diagram similar to Figure 2.7.

3. Magni�cation. Figure 2.8 illustrates the appearance of a �nite-sized source lensed by a point gravita-
tional lens. If the source is far from the lens, then the source redshift is unchanged by the gravitational
lensing. But the distortion changes the apparent brightness of the source by a magni�cation µ equal to
the ratio of the apparent area of the lensed source to that of the unlensed source. For a small source,
the ratio of areas is

µ =
yA dyA

yS dyS
. (2.170)

What is the magni�cation of a small source in terms of α and αE? When is the magni�cation largest?
4. Einstein ring around the Sun? The case α = αE evidently corresponds to the case where the source

is exactly behind the lens, β = 0. In this case the lensed source appears as an �Einstein ring� of light
around the lens. Could there be an Einstein ring around the Sun, as seen from Earth?

5. Einstein ring around SgrA∗.What is the maximum possible angular size of an Einstein ring around
the 4× 106 M� black hole at the center of our Milky Way, 8 kpc away? Might this be observable?
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More on the coordinate approach

3.1 Weyl tensor

The trace-free, or tidal, part of the Riemann curvature tensor de�nes the Weyl tensor Cκλµν

Cκλµν ≡ Rκλµν − 1
2 (gκµRλν − gκνRλµ + gλνRκµ − gλµRκν) + 1

6 (gκµgλν − gκνgλµ)R a coordinate tensor .

(3.1)
The Weyl tensor is by construction trace-free, meaning that it vanishes on contraction of any two indices,
which is true with or without torsion.
If torsion vanishes as general relativity assumes, then the Weyl tensor has 10 independent components,

which together with the 10 components of the Ricci tensor account for the 20 distinct components of the
Riemann tensor. The Weyl tensor Cκλµν inherits the symmetries (2.118) of the Riemann tensor, which for
vanishing torsion are

Cκλµν = C([κλ][µν]) . (3.2)

Whereas the Einstein tensor Gκµ necessarily vanishes in a region of spacetime where there is no energy-
momentum, Tκµ = 0, the Weyl tensor does not. The Weyl tensor expresses the presence of tidal gravitational
forces, and of gravitational waves.
If torsion does not vanish, then the Weyl tensor has 20 independent components, which together with the

16 components of the Ricci tensor account for the 36 distinct components of the Riemann tensor with torsion.
The 6 antisymmetric components G[κµ] of the Einstein tensor vanish if torsion vanishes, and likewise the 10
antisymmetric components C[[κλ][µν]] of the Weyl tensor vanish if torsion vanishes. With or without torsion,
the 10 symmetric components C([κλ][µν]) of the Weyl tensor encode gravitational waves that propagate in
empty space.

Exercise 3.1. Number of components of the Riemann, Ricci, and Weyl tensors in arbitrary di-

mensions. How many components do the Riemann, Ricci, and Weyl tensors have inN spacetime dimensions,
assuming vanishing torsion?
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Solution. In N spacetime dimensions, the number of components of the torsion-free Riemann tensor is

Riemann: 1
12 (N − 1)N2(N + 1) . (3.3)

In 2 spacetime dimensions, the usual Einstein equations do not apply, �11.19. For N = 2, the Riemann tensor
has 1 component, the Ricci tensor 1 component, and the Weyl tensor 0 components. In N ≥ 3 spacetime
dimensions, the number of components of the Ricci and Weyl tensors are

Ricci: 1
2N(N + 1) , Weyl: 1

12 (N − 3)N(N + 1)(N + 2) . (3.4)

Exercise 3.2. Weyl tensor in arbitrary dimensions. What is the Weyl tensor in N spacetime dimen-
sions?
Solution. The Weyl tensor is the trace-free part of the Riemann tensor. In N spacetime dimensions it is
given by the same expression (3.1) but with di�erent coe�cients,

Cκλµν ≡ Rκλµν −
1

N − 2
(gκµRλν − gκνRλµ + gλνRκµ − gλµRκν) +

1

(N − 1)(N − 2)
(gκµgλν − gκνgλµ)R .

(3.5)
The Weyl tensor vanishes identically in N = 2 and 3 spacetime dimensions.

3.2 Evolution equations for the Weyl tensor, and gravitational waves

This section shows how the evolution equations for the Weyl tensor resemble Maxwell's equations for the
electromagnetic �eld, and how the Weyl tensor encodes gravitational waves. In this section, torsion is taken
to vanish, as general relativity assumes.
Contracted on one index, the torsion-free Bianchi identities (2.127) are

D[κRλµ]ν
κ = DκRλµν

κ +DλRµν −DνRλν = 0 . (3.6)

In 4-dimensional spacetime, there are 20 such independent contracted identities, consisting of 4 trace iden-
tities obtained by contracting over λν, and 16 trace-free identities. Since this is the same as the number of
independent torsion-free Bianchi identities, it follows that the contracted Bianchi identities (3.6) are equiva-
lent to the full set of Bianchi identities (2.128). An explicit expression for the Bianchi identities in terms of
the contracted Bianchi identities is, in 4-dimensions (in 5 or higher dimensions there are additional terms),

D[κRλµ]
νπ =

(
18 δρ[κδ

σ
λδ

[ν
µ]δ

π]
τ + 9 δρτ δ

σ
[κδ

ν
λδ
π
µ]

)
D[υRρσ]

τυ (4D spacetime) . (3.7)

If the Riemann tensor is separated into its trace (Ricci) and traceless (Weyl) parts, equation (3.1), then the
contracted Bianchi identities (3.6) become the Weyl evolution equations

DκCκλµν = Jλµν , (3.8)

where Jλµν is the Weyl current

Jλµν ≡ 1
2 (DµGλν −DνGλµ)− 1

6 (gλνDµG− gλµDνG) . (3.9)
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The Weyl evolution equations (3.8) can be regarded as the gravitational analogue of Maxwell's equations of
electromagnetism.
The Weyl current Jλµν is a vector of bivectors, which would suggest that it has 4 × 6 = 24 components,

but it loses 4 of those components because of the cyclic identity (2.117), valid for vanishing torsion, which
implies the cyclic symmetry

J[λµν] = 0 . (3.10)

Thus the torsion-free Weyl current Jλµν has 20 independent components, in agreement with the above
assertion that there are 20 independent torsion-free contracted Bianchi identities. Since the Weyl tensor is
traceless, contracting the Weyl evolution equations (3.8) on λµ yields zero on the left hand side, so that the
contracted Weyl current satis�es

Jλλν = 0 . (3.11)

This doubly-contracted Bianchi identity, which is the same as equation (2.130), enforces conservation of
energy-momentum. Unlike the cyclic symmetry (3.10), which follows from the cyclic symmetry of the Rie-
mann tensor and is not a di�erential condition on the Riemann tensor, equations (3.11) constitute a non-
trivial set of 4 di�erential conditions on the Einstein tensor. Besides the algebraic relations (3.10) and (3.11),
the Weyl current satis�es 6 di�erential identities comprising the conservation law

DλJλµν = 0 (3.12)

in view of equation (3.8) and the antisymmetry of Cκλµν with respect to the indices κλ. The Weyl current
conservation law (3.12) follows from the form (3.9) of the Weyl current, coupled with covariant conservation
of the Einstein tensor, equation (2.130), so does not impose any additional non-trivial conditions on the
Riemann tensor. The Weyl current conservation law (3.12) is the gravitational analogue of the conservation
law for electric current that follows from Maxwell's equations.
The 4 relations (3.11) and the 6 identities (3.12) account for 10 of the 20 contracted torsion-free Bianchi

identities (3.6). The remaining 10 equations comprise Maxwell-like equations (3.8) for the evolution of the
10 components of the Weyl tensor.
Whereas the Einstein equations relating the Einstein tensor to the energy-momentum tensor are postulated

equations of general relativity, the 10 evolution equations for the Weyl tensor, and the 4 equations enforcing
covariant conservation of the Einstein tensor, follow mathematically from the Bianchi identities, and do not
represent additional assumptions of the theory.

Exercise 3.3. Number of Bianchi identities. Con�rm the counting of degrees of freedom.

Exercise 3.4. Wave equation for the Riemann and Weyl tensors. From the Bianchi identities, show
that the Riemann tensor satis�es the covariant wave equation

�Rκλµν = DκDµRλν −DκDνRλµ +DλDνRκµ −DλDµRκν , (3.13)
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where � is the D'Alembertian operator, the 4-dimensional wave operator

� ≡ DπDπ . (3.14)

Show that contracting equation (3.13) with gλν yields the identity �Rκµ = �Rκµ. Conclude that the wave
equation (3.13) is non-trivial only for the trace-free part of the Riemann tensor, the Weyl tensor Cκλµν .
Show that the wave equation for the Weyl tensor is

�Cκλµν = (DκDµ − 1
2 gκµ�)Rλν − (DκDν − 1

2 gκν �)Rλµ

+ (DλDν − 1
2 gλν �)Rκµ − (DλDµ − 1

2 gλµ�)Rκν

+ 1
6 (gκµgλν − gκνgλµ)�R . (3.15)

Conclude that in a vacuum, where Rκµ = 0,

�Cκλµν = 0 . (3.16)

3.3 Geodesic deviation

This section on geodesic deviation is included not because the equation of geodesic deviation is crucial to
everyday calculations in general relativity, but rather for two reasons. First, the equation o�ers insight into
the physical meaning of the Riemann tensor. Second, the derivation of the equation o�ers a �ne illustration
of the fact that in general relativity, whenever you take di�erences at in�nitesimally separated points in
space or time, you should always take covariant di�erences.
Consider two objects that are free-falling along two in�nitesimally separated geodesics. In �at space the

acceleration between the two objects would be zero, but in curved space the curvature induces a �nite
acceleration between the two objects. This is how an observer can measure curvature, at least in principle:
set up an ensemble of objects initially at rest a small distance away from the observer in the observer's
locally inertial frame, and watch how the objects begin to move. The equation (3.23) that describes this
acceleration between objects an in�nitesimal distance apart is called the equation of geodesic deviation.
The covariant di�erence in the velocities of two objects an in�nitesimal distance δxµ apart is

Dδxµ

Dτ
= δuµ . (3.17)

In general relativity, the ordinary di�erence between vectors at two points a small interval apart is not
a physically meaningful thing, because the frames of reference at the two points are di�erent. The only
physically meaningful di�erence is the covariant di�erence, which is the di�erence in the two vectors parallel-
transported across the gap between them. It is only this covariant di�erence that is independent of the frame
of reference. On the left hand side of equation (3.17), the proper time derivative must be the covariant proper
time derivative, D/Dτ = uλDλ. On the right hand side of equation (3.17), the di�erence in the 4-velocity
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at two points δxκ apart must be the covariant di�erence δ = δxκDκ. Thus equation (3.17) means explicitly
the covariant equation

uλDλδx
µ = δxκDκu

µ . (3.18)

To derive the equation of geodesic deviation, �rst vary the geodesic equation Duµ/Dτ = 0 (the index µ is
put downstairs so that the �nal equation (3.23) looks cosmetically better, but of course since everything is
covariant the µ index could just as well be put upstairs everywhere):

0 = δ
Duµ
Dτ

= δxκDκ

(
uλDλuµ

)
= δuλDλuµ + δxκuλDκDλuµ . (3.19)

On the second line, the covariant di�erence δ between quantities a small distance δxκ apart has been set
equal to δxκDκ, while D/Dτ has been set equal to the covariant time derivative uλDλ along the geodesic.
On the last line, δxκDκu

λ has been replaced by δuµ. Next, consider the covariant acceleration of the interval
δxµ, which is the covariant proper time derivative of the covariant velocity di�erence δuµ:

D2δxµ
Dτ2

=
Dδuµ
Dτ

= uλDλ (δxκDκuµ)

= δuκDκuµ + δxκuλDλDκuµ . (3.20)

As in the previous equation (3.19), on the second line D/Dτ has been set equal to uλDλ, while δ has been
set equal to δxκDκ. On the last line, uλDλδx

κ has been set equal to δuµ, equation (3.18). Subtracting (3.19)
from (3.20) gives

D2δxµ
Dτ2

= δxκuλ[Dλ, Dκ]uµ , (3.21)

or equivalently

D2δxµ
Dτ2

+ Sνκλδx
κuλDνuµ +Rκλµνδx

κuλuν = 0 . (3.22)

If torsion vanishes as general relativity assumes, then

D2δxµ
Dτ2

+Rκλµνδx
κuλuν = 0 , (3.23)

which is the desired equation of geodesic deviation.
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Action principle for point particles

This chapter describes the action principle for point particles in a prescribed gravitational �eld. The action
principle provides a powerful way to obtain equations of motion for particles in a given spacetime, such as
a black hole, or a cosmological spacetime. An action principle for the gravitational �eld itself is deferred to
Chapter 16, after development of the tetrad formalism in Chapter 11.
Hamilton's principle of least action postulates that any dynamical system is characterized by a scalar

action S, which has the property that when the system evolves from one speci�ed state to another, the path
by which it gets between the two states is such as to minimize the action. The action need not be a global
minimum, just a local minimum with respect to small variations in the path between �xed initial and �nal
states.
That nature appears to respect a principle of such simplicity and power is quite remarkable, and a deep

mystery. But it works, and in modern physics, the principle of least action has become a basic building block
with which physicists construct theories.
From a practical perspective, the principle of least action, in either Lagrangian or Hamiltonian form,

provides the most powerful way to solve equations of motion. For example, integrals of motion associated
with symmetries of the spacetime emerge automatically in the Lagrangian or Hamiltonian formalisms.

4.1 Principle of least action for point particles

The path of a point particle through spacetime is speci�ed by its coordinates xµ(λ) as a function of some
arbitrary parameter λ. In non-relativistic mechanics it is usual to take the parameter λ to be the time t, and
the path of a particle through space is then speci�ed by three spatial coordinates xa(t). In relativity however
it is more natural to treat the time and space coordinates on an equal footing, and to regard the path of a
particle as being speci�ed by four spacetime coordinates xµ(λ) as a function of an arbitrary parameter λ, as
illustrated in Figure 4.1. The parameter λ is simply a di�erentiable parameter that labels points along the
path, and has no physical signi�cance (for example, it is not necessarily an a�ne parameter).
The path of a system of N point particles through spacetime is speci�ed by 4N coordinates xµ(λ). The

action principle postulates that, for a system ofN point particles, the action S is an integral of a Lagrangian
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x
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λ

Figure 4.1 The action principle considers various paths through spacetime between �xed initial and �nal conditions,

and chooses that path that minimizes the action.

L(xµ, dxµ/dλ) which is a function of the 4N coordinates xµ(λ) together with the 4N velocities dxµ/dλ with
respect to the arbitrary parameter λ. The action from an initial state at λi to a �nal state at λf is thus

S =

∫ λf

λi

L

(
xµ,

dxµ

dλ

)
dλ . (4.1)

The principle of least action demands that the actual path taken by the system between given initial and
�nal coordinates xµi and xµf is such as to minimize the action. Thus the variation δS of the action must be
zero under any change δxµ in the path, subject to the constraint that the coordinates at the endpoints are
�xed, δxµi = 0 and δxµf = 0,

δS =

∫ λf

λi

(
∂L

∂xµ
δxµ +

∂L

∂(dxµ/dλ)
δ(dxµ/dλ)

)
dλ = 0 . (4.2)

Linearity of the derivative,

d

dλ
(xµ + δxµ) =

dxµ

dλ
+
d(δxµ)

dλ
, (4.3)

shows that the change in the velocity along the path equals the velocity of the change, δ(dxµ/dλ) =

d(δxµ)/dλ. Integrating the second term in the integrand of equation (4.2) by parts yields

δS =

[
∂L

∂(dxµ/dλ)
δxµ

]λf

λi

+

∫ λf

λi

(
∂L

∂xµ
− d

dλ

∂L

∂(dxµ/dλ)

)
δxµ dλ = 0 . (4.4)

The surface term in equation (4.4) vanishes, since by hypothesis the coordinates are held �xed at the
endpoints, so δxµ = 0 at the endpoints. Therefore the integral in equation (4.4) must vanish. Indeed least
action requires the integral to vanish for all possible variations δxµ in the path. The only way this can happen
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is that the integrand must be identically zero. The result is the Euler-Lagrange equations of motion

d

dλ

∂L

∂(dxµ/dλ)
− ∂L

∂xµ
= 0 . (4.5)

It might seem that the Euler-Lagrange equations (4.5) are inadequately speci�ed, since they depend on
some arbitrary unknown parameter λ. But in fact the Euler-Lagrange equations are the same regardless of
the choice of λ. An example of the arbitrariness of λ will be seen in �4.3. Since λ can be chosen arbitrarily,
it is common to choose it in some convenient fashion. For a massive particle, λ can be taken equal to the
proper time τ of the particle. For a massless particle, whose proper time never progresses, λ can be taken
equal to an a�ne parameter.

Concept question 4.1. Redundant time coordinates? How can it be possible to treat the time co-
ordinate t for each particle as an independent coordinate? Isn't the time coordinate t the same for all N
particles? Answer. Di�erent particles follow di�erent trajectories in spacetime. One is free to choose t(λ)

to be a di�erent function of the parameter λ for each particle, in the same way that the spatial coordinate
xα(λ) may be a di�erent function for each particle.

4.2 Generalized momentum

The left hand side of the Euler-Lagrange equations of motion (4.5) involves the partial derivative of the
Lagrangian with respect to the velocity dxµ/dλ. This quantity plays a fundamental role in the Hamiltonian
formulation of the action principle, �4.10, and is called the generalized momentum πµ conjugate to the
coordinate xµ,

πµ ≡
∂L

∂(dxµ/dλ)
. (4.6)

4.3 Lagrangian for a test particle

According to the principle of equivalence, a test particle in a gravitating system moves along a geodesic, a
straight line relative to local free-falling frames. A geodesic is the shortest distance between two points. In
relativity this translates, for a massive particle, into the longest proper time between two points. The proper
time along any path is dτ =

√
−ds2 =

√
−gµνdxµdxν . Thus the action Sm of a test particle of constant rest

mass m in a gravitating system is

Sm = −m
∫ λf

λi

dτ = −m
∫ λf

λi

√
−gµν

dxµ

dλ

dxν

dλ
dλ . (4.7)
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The factor of rest massm brings the action, which has units of angular momentum, to standard normalization.
The overall minus sign comes from the fact that the action is a minimum whereas the proper time is a
maximum along the path. The action principle requires that the Lagrangian L(xµ, dxµ/dλ) be written as a
function of the coordinates xµ and velocities dxµ/dλ, and it is seen that the integrand in the last expression
of equation (4.7) has the desired form, the metric gµν being considered a given function of the coordinates.
Thus the Lagrangian Lm of a test particle of mass m is

Lm = −m
√
−gµν

dxµ

dλ

dxν

dλ
. (4.8)

The partial derivatives that go in the Euler-Lagrange equations (4.5) are then

∂Lm
∂(dxκ/dλ)

= −m
−gκν

dxν

dλ√
−gπρ(dxπ/dλ)(dxρ/dλ)

, (4.9a)

∂Lm
∂xκ

= −m
−1

2

∂gµν
∂xκ

dxµ

dλ

dxν

dλ√
−gπρ(dxπ/dλ)(dxρ/dλ)

. (4.9b)

The denominators in the expressions (4.9) for the partial derivatives of the Lagrangian are√
−gπρ(dxπ/dλ)(dxρ/dλ) = dτ/dλ. It was not legitimate to make this substitution before taking the partial

derivatives, since the Euler-Lagrange equations require that the Lagrangian be expressed in terms of xµ and
dxµ/dλ, but it is �ne to make the substitution now that the partial derivatives have been obtained. The
partial derivatives (4.9) thus simplify to

∂Lm
∂(dxκ/dλ)

= mgκν
dxν

dλ

dλ

dτ
= muκ , (4.10a)

∂Lm
∂xκ

=
1

2
m
∂gµν
∂xκ

dxµ

dλ

dxν

dλ

dλ

dτ
= mΓµνκu

µuν
dτ

dλ
, (4.10b)

in which uκ ≡ dxκ/dτ is the usual 4-velocity, and the derivative of the metric has been replaced by connections
in accordance with equation (2.59). The generalized momentum πκ, equation (4.6), of the test particle
coincides with its ordinary momentum pκ:

πκ = pκ ≡ muκ . (4.11)

The resulting Euler-Lagrange equations of motion (4.5) are

dmuκ
dλ

= mΓµνκu
µuν

dτ

dλ
. (4.12)

As remarked in �4.1, the choice of the arbitrary parameter λ has no e�ect on the equations of motion. With
a factor of mdτ/dλ cancelled, equation (4.12) becomes

duκ
dτ

= Γµνκu
µuν . (4.13)
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Splitting the connection Γµνκ into its torsion free-part Γ̊µνκ and the contortion Kµνκ, equation (2.64), gives

duκ
dτ

= (̊Γµνκ +Kµνκ)uµuν = Γ̊µκνu
µuν , (4.14)

where the last step follows from the symmetry of the torsion-free connection Γ̊µνκ in its last two indices,
and the antisymmetry of the contortion tensor Kµνκ in its �rst two indices. With or without torsion, equa-
tion (4.14) yields the torsion-free geodesic equation of motion,

D̊uκ
Dτ

= 0 . (4.15)

Equation (4.15) shows that presence of torsion does not a�ect the geodesic motion of particles.

Concept question 4.2. Throw a clock up in the air.

1. This question is posed by Rovelli (2007). Standing on the surface of the Earth, you throw a clock up in
the air, and catch it. Which clock shows more time elapsed, the one you threw up in the air, or the one
on your wrist?

2. Suppose you throw the clock so hard that it goes around the Moon. Which clock shows more time
elapsed?

4.4 Massless test particle

The equation of motion for a massless test particle is obtained from that for a massive particle in the limit of
zero mass, m→ 0. The proper time τ along the path of a massless particle is zero, but an a�ne parameter
λ ≡ τ/m proportional to proper time can be de�ned, equation (2.93), which remains �nite in the limit
m→ 0. In terms of the a�ne parameter λ, the momentum pκ of a particle can be written

pκ ≡ muκ =
dxκ

dλ
, (4.16)

and the equation of motion (4.15) becomes

D̊pκ
Dλ

= 0 , (4.17)

which works for massless as well as massive particles.
The action for a test particle in terms of the a�ne parameter λ de�ned by equation (2.93) is

S = −m2

∫
dλ , (4.18)

which vanishes for m→ 0. One might be worried that the action seemingly vanishes identically for a massless
particle. An alternative nice action is given below, equation (4.30), that vanishes in the massless limit only
after the equations of motion are imposed.
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Concept question 4.3. Conventional Lagrangian. In the conventional Lagrangian approach, the pa-
rameter λ is set equal to the time coordinate t, and the Lagrangian L(t, xα, dxα/dt) of a system of N particles
is considered to be a function of the time t, the 3N spatial coordinates xα, and the 3N spatial velocities
dxα/dt. Compare the conventional and covariant Lagrangian approaches for a point particle. Answer. The
Euler-Lagrange equations in the conventional Lagrangian approach are

d

dt

∂L

∂(dxα/dt)
− ∂L

∂xα
= 0 . (4.19)

For a point particle, the Euler-Lagrange equations (4.19) yield the spatial components of the geodesic equa-
tion of motion (4.17),

D̊pα
Dλ

= 0 . (4.20)

What about the time component of the geodesic equation of motion? The geodesic equation for the time
component is a consequence of the geodesic equations for the spatial components, coupled with conservation
of rest mass m,

p0 D̊p0

Dλ
=

1

2

D̊p0p0

Dλ
= −1

2

D̊(pαpα +m2)

Dλ
= −pα D̊pα

Dλ
= 0 . (4.21)

Put another way, the covariant Lagrangian approach applied to a point particle enforces conservation of the
rest mass m of the particle, a conservation law that the conventional Lagrangian approach simply assumes.
Invariance of the action with respect to reparametrization of λ implies conservation of rest mass.

4.5 E�ective Lagrangian for a test particle

A drawback of the test particle Lagrangian (4.8) is that it involves a square root. This proves to be problematic
for various reasons, among which is that it is an obstacle to deriving a satisfactory super-Hamiltonian, �4.12.
This section describes an alternative approach that gets rid of the square root, making the test particle
Lagrangian quadratic in velocities dxµ/dλ, equation (4.25).
After equations of motion are imposed, the Lagrangian (4.8) for a test particle of constant rest mass m is

Lm = −mdτ

dλ
. (4.22)

If the parameter λ is chosen such that dτ/dλ is constant,

dτ

dλ
= constant , (4.23)

so that the Lagrangian Lm is constant after equations of motion are imposed, then the Euler-Lagrange
equations of motion (4.5) are unchanged if the Lagrangian is replaced by any function of it,

L′m = f(Lm) . (4.24)
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A convenient choice of alternative Lagrangian L′m, also called an e�ective Lagrangian, is

L′m = − L2
m

2m2
=

1

2
gµν

dxµ

dλ

dxν

dλ
. (4.25)

For the e�ective Lagrangian (4.25), the partial derivatives (4.9) are

∂L′m
∂(dxκ/dλ)

= gκν
dxν

dλ
, (4.26a)

∂L′m
∂xκ

=
1

2

∂gµν
∂xκ

dxµ

dλ

dxν

dλ
= Γµνκ

dxµ

dλ

dxν

dλ
. (4.26b)

The Euler-Lagrange equations of motion (4.5) are then

d

dλ

(
gκν

dxν

dλ

)
= Γµνκ

dxµ

dλ

dxν

dλ
. (4.27)

Equations (4.27) are valid subject to the condition (4.23), which asserts that dλ ∝ dτ . The constant of
proportionality does not a�ect the equations of motion (4.27), which thus reproduce the earlier equations of
motion in either of the forms (4.15) or (4.17).
If the test particle is moving in a prescribed gravitational �eld and there are no other �elds, then the

equations of motion are unchanged by the normalization of the e�ective Lagrangian L′m. But if there are other
�elds that a�ect the particle's motion, such as an electromagnetic �eld, �4.7, then the e�ective Lagrangian
L′m must be normalized correctly if it is to continue to recover the correct equations of motion. The correct
normalization is such that the generalized momentum of the test particle, de�ned by equation (4.26a), equal
its ordinary momentum pµ, in agreement with equation (4.11),

gκν
dxν

dλ
= pκ ≡ gκνm

dxν

dτ
. (4.28)

This requires that the constant in equation (4.23) must equal the rest mass m,

dτ

dλ
= m . (4.29)

This is just the de�nition of the a�ne parameter λ, equation (2.93). Thus the λ in the de�nition (4.25) of
the e�ective Lagrangian L′m should be interpreted as the a�ne parameter.
Notice that the value of the e�ective Lagrangian L′m after condition (4.29) is applied (after equations of

motion are imposed) is −m2/2, which is half the value of the original Lagrangian Lm (4.8).

4.6 Nice Lagrangian for a test particle

The e�ective Lagrangian (4.25) has the advantage that it does not involve a square root, but this advantage
was achieved at the expense of imposing the condition (4.29) ad hoc after the equations of motion are
derived. It is possible to retain the advantage of a Lagrangian quadratic in velocities, but get rid of the ad
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hoc condition, by modifying the Lagrangian so that the ad hoc condition essentially emerges as an equation
of motion. I call the resulting Lagrangian (4.31) the �nice� Lagrangian.
As seen in �4.1, the equations of motion are independent of the choice of the arbitrary parameter λ

that labels the path of the particle between its �xed endpoints. The equations of motion are said to be
reparametrization independent. Introduce, therefore, a parameter µ(λ), an arbitrary function of λ, that
rescales the parameter λ, and let the action for a test particle of mass m be

Sm =

∫
1

2

(
gµν

dxµ

µdλ

dxν

µdλ
−m2

)
µdλ , (4.30)

with nice Lagrangian

Lm =
µ

2

(
gµν

dxµ

µdλ

dxν

µdλ
−m2

)
. (4.31)

Variation of the action with respect to xµ and dxµ/dλ yields the Euler-Lagrange equations in the form

d

µ dλ

(
gκν

dxν

µdλ

)
= Γµνκ

dxµ

µdλ

dxν

µdλ
. (4.32)

Variation of the action with respect to the parameter µ gives

δSm =

∫
1

2

(
−gµν

dxµ

µdλ

dxν

µdλ
−m2

)
δµ dλ , (4.33)

and requiring that this be an extremum imposes

gµν
dxµ

µdλ

dxν

µdλ
= −m2 . (4.34)

Equation (4.34) is equivalent to

µdλ =
dτ

m
, (4.35)

where the sign has been taken positive without loss of generality. Substituting equation (4.35) into the
equations of motion (4.32) recovers the usual equations of motion (4.15).
Condition (4.35) substituted into the action (4.30) recovers the standard test particle action (4.7) with

the correct sign and normalization.

4.7 Action for a charged test particle in an electromagnetic �eld

The equations of motion for a test particle of charge q in a prescribed gravitational and electromagnetic
�eld can be obtained by adding to the test particle action Sm an interaction action Sq that characterizes the
interaction between the charge and the electromagnetic �eld,

S = Sm + Sq . (4.36)
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In �at (Minkowski) space, experiment shows that the required equation of motion is the classical Lorentz
force law (4.45). The Lorentz force law is recovered with the interaction action

Sq = q

∫ λf

λi

Aµ dx
µ = q

∫ λf

λi

Aµ
dxµ

dλ
dλ , (4.37)

where Aµ is the electromagnetic 4-vector potential. The interaction Lagrangian Lq corresponding to the
action (4.37) is

Lq = qAµ
dxµ

dλ
. (4.38)

If the electromagnetic potential Aµ is taken to be a prescribed function of the coordinates xµ along the
path of the particle, then the Lagrangian Lq (4.38) is a function of coordinates xµ and velocities dxµ/dλ
as required by the action principle. The partial derivatives of the interaction Lagrangian Lq with respect to
velocities and coordinates are

∂Lq
∂(dxκ/dλ)

= qAκ , (4.39a)

∂Lq
∂xκ

= q
∂Aµ
∂xκ

dxµ

dλ
= q

∂Aµ
∂xκ

uµ
dτ

dλ
. (4.39b)

The generalized momentum πκ, equation (4.6), of the test particle of mass m and charge q in the electro-
magnetic �eld of potential Aµ is, from equations (4.10a) and (4.39a),

πκ ≡
∂(Lm + Lq)

∂(dxκ/dλ)
= muκ + qAκ . (4.40)

Applied to the Lagrangian L = Lm + Lq, the Euler-Lagrange equations (4.5) are

d

dλ
(muκ + qAκ) =

(
mΓµνκu

µuν + q
∂Aµ
∂xκ

uµ
)
dτ

dλ
, (4.41)

which rearranges to
dmuκ
dτ

= mΓµνκu
µuν + qFκµu

µ , (4.42)

where the antisymmetric electromagnetic �eld tensor Fκµ is de�ned to be the torsion-free covariant curl of
the electromagnetic potential Aµ,

Fκµ ≡
∂Aµ
∂xκ

− ∂Aκ
∂xµ

. (4.43)

The de�nition (4.43) of the electromagnetic �eld holds even in the presence of torsion (see �16.5). Splitting
the connection in equation (4.42) into its torsion-free part and the contortion, as done previously in equa-
tion (4.14), yields the Lorentz force law for a test particle of mass m and charge q moving in a prescribed
gravitational and electromagnetic �eld, with or without torsion,

D̊muκ
Dτ

= qFκµu
µ . (4.44)
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Equation (4.44), which involves the torsion-free covariant derivative D̊/Dτ , shows that the Lorentz force law
is una�ected by the presence of torsion.
In �at (Minkowski) space, the spatial components of equation (4.44) reduce to the classical special rela-

tivistic Lorentz force law
dp

dt
= q (E + v ×B) . (4.45)

In equation (4.45), p is the 3-momentum and v is the 3-velocity, related to the 4-momentum and 4-velocity
by pk = {pt,p} = muk = mut{1,v} (note that d/dt = (1/ut) d/dτ). In �at space, the components of the
electric and magnetic �elds E = {Ex, Ey, Ez} and B = {Bx, By, Bz} are related to the electromagnetic �eld
tensor Fmn by (the signs in the expression (4.46) are arranged precisely so as to agree with the classical
law (4.45))

Fmn =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 , Fmn =


0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 . (4.46)

If the electromagnetic 4-potential Am is written in terrms of a classical electric potential φ and electric
3-vector potential A ≡ {Ax, Ay, Az},

Am = {φ,A} . (4.47)

then in �at space equation (4.43) reduces to the traditional relations for the electric and magnetic �elds E
and B in terms of the potentials φ and A,

E = −∇φ− ∂A

∂t
, B = ∇×A , (4.48)

where ∇ ≡ {∂/∂x, ∂/∂y, ∂/∂z} is the spatial 3-gradient.

4.8 Symmetries and constants of motion

If a spacetime possesses a symmetry of some kind, then a test particle moving in that spacetime possesses
an associated constant of motion. The Lagrangian formalism makes it transparent how to relate symmetries
to constants of motion.
Suppose that the Lagrangian of a particle has some spacetime symmetry, such as time translation symme-

try, or spatial translation symmetry, or rotational symmetry. In a suitable coordinate system, the symmetry
is expressed by the condition that the Lagrangian L is independent of some coordinate, call it ξ. In the case
of time translation symmetry, for example, the coordinate would be a suitable time coordinate t. Coordinate
independence requires that the metric gµν , along with any other �eld, such as an electromagnetic �eld, that
may a�ect the particle's motion, is independent of the coordinate ξ. Then the Euler-Lagrangian equations



4.9 Conformal symmetries 105

of motion (4.5) imply that the derivative of the covariant ξ-component πξ of the conjugate momentum of
the particle vanishes along the trajectory of the particle,

dπξ
dλ

=
∂L

∂ξ
= 0 . (4.49)

Thus the covariant momentum πξ is a constant of motion,

πξ = constant . (4.50)

4.9 Conformal symmetries

Sometimes the Lagrangian possesses a weaker kind of symmetry, called conformal symmetry, in which
the Lagrangian L depends on a coordinate ξ only through an overall scaling of the Lagrangian,

L = e2ξL̃ , (4.51)

where the conformal Lagrangian L̃ is independent of ξ. The factor eξ is called a conformal factor. The
Euler-Lagrangian equation of motion (4.5) for the conformal coordinate ξ is then

dπξ
dλ

=
∂L

∂ξ
= 2L . (4.52)

As an example, consider a test particle moving in a spacetime with conformally symmetric metric

gµν = e2ξ g̃µν , (4.53)

where the conformal metric g̃µν is independent of the coordinate ξ. The e�ective Lagrangian L′m of the test
particle is given by equation (4.25). The equation of motion (4.52) becomes

dpξ
dλ

= 2L′m = −m2 . (4.54)

If the test particle is massive, m 6= 0, then equation (4.54) integrates to

pξ = −mτ , (4.55)

where a constant of integration has been absorbed, without loss of generality, into a shift of the zero point
of the proper time τ of the particle. If the test particle is massless, m = 0, then equation (4.54) implies that

pξ = constant . (4.56)
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Exercise 4.4. Geodesics in Rindler space. The Rindler line-element (2.103) can be written

ds2 = e2ξ
(
− dα2 + dξ2

)
+ dy2 + dz2 , (4.57)

where the Rindler coordinates α and ξ are related to Minkowski coordinates t and x by

t = eξ sinhα , x = eξ coshα . (4.58)

What are the constants of motion of a test particle? Integrate the Euler-Lagrange equations of motion.
Solution. The Rindler metric is independent of the coordinates α, y, and z. The three corresponding
constants of motion are

pα , py , pz . (4.59)

A fourth integral of motion follows from conservation of rest mass

pνpν = −m2 . (4.60)

x

t

Figure 4.2 Rindler wedge of Minkowski space. Purple and blue lines are lines of constant Rindler time α and constant

Rindler spatial coordinate ξ respectively. The grid of lines is equally spaced by 0.2 in each of α and ξ. The Rindler

coordinates α and ξ, each extending over the interval (−∞,∞), cover only the x > |t| quadrant of Minkowski space.

The fact that the Rindler metric is conformally Minkowski in α and ξ (the line-element is proportional to − dα2 +dξ2,

equation (4.57)) shows up in the fact that small areal elements of the α�ξ grid are rhombi with null (45◦) diagonals.

The straight black line is a representative geodesic. The solid dot marks the point where the geodesic goes through

{α0, ξ0}. Open circles mark α = ∓∞, where the geodesic passes through the null boundaries t = ∓x of the Rindler

wedge.
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Equation (4.60) rearranges to give

dξ

dλ
≡ pξ = e−ξ

√
(e−ξpα)2 − µ2 , (4.61)

where µ is the positive constant

µ ≡
√
p2
y + p2

z +m2 . (4.62)

Equation (4.61) integrates to give ξ as a function of λ,

e2ξ =
p2
α

µ2
− µ2λ2 , (4.63)

where a constant of integration has been absorbed without loss of generality into a shift of the zero point of
the a�ne parameter λ along the trajectory of the particle. The coordinate ξ passes through its maximum
value ξ0 where λ = 0, at which point

eξ0 = −pα
µ
, (4.64)

the sign coming from the fact that pα = gααp
α = −e2ξdα/dλ must be negative, since the particle must move

forward in Rindler time α. The trajectory is illustrated in Figure 4.2; the trajectory is of course a straight
line in the parent Minkowski space.
The evolution equation (4.63) for ξ(λ) can be derived alternatively from the Euler-Lagrange equation for

ξ,

dpξ
dλ

= −µ2 . (4.65)

The Euler-Lagrange equation (4.65) integrates to

pξ = −µ2λ , (4.66)

where a constant of integration has again been absorbed into a shift of the zero point of the a�ne parameter
λ (this choice is consistent with the previous one). Given that pξ = gξξp

ξ = e2ξdξ/dλ, equation (4.66)
integrates to yield the same result (4.63), the constant of integration being established by the rest-mass
relation (4.60).
The evolution of Rindler time α along the particle's trajectory follows from integrating pα = gααp

α =

−e2ξdα/dλ, which gives

α− α0 = −1

2
ln

(
eξ0 + µλ

eξ0 − µλ

)
, (4.67)

where α0 is the value of α for λ = 0, where ξ takes its maximum ξ0. The Rindler time coordinate α varies
between limits ∓∞ at µλ = ∓eξ0 .



108 Action principle for point particles

4.10 (Super-)Hamiltonian

The Lagrangian approach characterizes the paths of particles through spacetime in terms of their 4N coor-
dinates xµ and corresponding velocities dxµ/dλ along those paths. The Hamiltonian approach on the other
hand characterizes the paths of particles through spacetime in terms of 4N coordinates xµ and the 4N gen-
eralized momenta πµ, which are treated as independent from the coordinates. In the Hamiltonian approach,
the Hamiltonian H(xµ, πµ) is considered to be a function of coordinates and generalized momenta, and
the action is minimized with respect to independent variations of those coordinates and momenta. In the
Hamiltonian approach, the coordinates and momenta are treated essentially on an equal footing.
The Hamiltonian H can be de�ned in terms of the Lagrangian L by

H ≡ πµ
dxµ

dλ
− L . (4.68)

Here, as previously in �4.1, the parameter λ is to be regarded as an arbitrary parameter that labels the
path of the system through the 8N -dimensional phase space of coordinates and momenta of the N particles.
Misner, Thorne, and Wheeler (1973) call the Hamiltonian (4.68) the super-Hamiltonian, to distinguish
it from the conventional Hamiltonian, equation (4.74), where the parameter λ is taken equal to the time
coordinate t. Here however the super-Hamiltonian (4.68) is simply referred to as the Hamiltonian, for brevity.
In terms of the Hamiltonian (4.68), the action (4.1) is

S =

∫ λf

λi

(
πµ
dxµ

dλ
−H

)
dλ . (4.69)

In accordance with Hamilton's principle of least action, the action must be varied with respect to the
coordinates and momenta along the path. The variation of the �rst term in the integrand of equation (4.69)
can be written

δ

(
πµ
dxµ

dλ

)
= δπµ

dxµ

dλ
+ πµ

dδxµ

dλ
= δπµ

dxµ

dλ
+

d

dλ
(πµδx

µ)− dπµ
dλ

δxµ . (4.70)

The middle term on the right hand side of equation (4.70) yields a surface term on integration. Thus the
variation of the action is

δS = [πµδx
µ]
λf

λi
+

∫ λf

λi

{
−
(
dπµ
dλ

+
∂H

∂xµ

)
δxµ +

(
dxµ

dλ
− ∂H

∂πµ

)
δπµ

}
dλ , (4.71)

which takes into account that the Hamiltonian is to be considered a function H(xµ, πµ) of coordinates and
momenta. The principle of least action requires that the action is a minimum with respect to variations of
the coordinates and momenta along the paths of particles, the coordinates and momenta at the endpoints
λi and λf of the integration being held �xed. Since the coordinates are �xed at the endpoints, δxµ = 0, the
surface term in equation (4.71) vanishes. Minimization of the action with respect to arbitrary independent
variations of the coordinates and momenta then yields Hamilton's equations of motion

dxµ

dλ
=
∂H

∂πµ
,

dπµ
dλ

= − ∂H
∂xµ

. (4.72)
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4.11 Conventional Hamiltonian

The conventional Hamiltonian of classical mechanics is not the same as the super-Hamiltonian (4.68). In the
conventional approach, the parameter λ is set equal to the time coordinate t. The Lagrangian is taken to be
a function L(t, xα, dxα/dt) of time t and of the 3N spatial coordinates xα and 3N spatial velocities dxα/dt.
The generalized momenta are de�ned to be, analogously to (4.6),

πα ≡
∂L

∂(dxα/dt)
. (4.73)

The conventional Hamitonian is taken to be a function H(t, xα, πα) of time t and of the 3N spatial coor-
dinates xα and corresponding 3N generalized momenta πα. The conventional Hamiltonian is related to the
conventional Lagrangian by

H ≡ πα
dxα

dt
− L . (4.74)

The conventional Hamilton's equations are

dxα

dt
=
∂H

∂πα
,

dπα
dt

= − ∂H
∂xα

. (4.75)

The advantage of the super-Hamiltonian (4.68) over the conventional Hamiltonian (4.74) in general rela-
tivity will become apparent in the sections following.

4.12 Conventional Hamiltonian for a test particle

The test-particle Lagrangian (4.8) is

Lm = −m
√
−gµν

dxµ

dλ

dxν

dλ
. (4.76)

The corresponding test-particle Hamiltonian is supposedly given by equation (4.68). However, one runs into
a di�culty. The Hamiltonian is supposed to be expressed in terms of coordinates xµ and momenta pµ. But
the expression (4.68) for the Hamiltonian depends on the arbitrary parameter λ, whereas as seen in �4.3 the
coordinates xµ and momenta pµ are (before the least action principle is applied) independent of the choice
of λ. There is no way to express the Hamiltonian in the prescribed form without imposing some additional
constraint on λ. Two ways to achieve this are described in the next two sections, �4.13 and �4.14.
A third approach is to revert to the conventional approach of �xing the arbitrary parameter λ equal to

coordinate time t. This choice eliminates the time coordinate and corresponding generalized momentum as
parameters to be determined by the least action principle. It also breaks manifest covariance, by singling out
the time coordinate for special treatment. For simplicity, consider �at space, where the metric is Minkowski
ηmn. The Lagrangian (4.76) becomes

Lm = −m
√
−ηmn

dxm

dt

dxn

dt
= −m

√
1− v2 , (4.77)
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where v ≡
√
ηabvavb is the magnitude of the 3-velocity va,

va ≡ dxa

dt
. (4.78)

The generalized momentum πa de�ned by (4.73) equals the ordinary momentum pa,

πa = pa ≡
mva√
1− v2

. (4.79)

The Hamiltonian (4.74) is

H = pav
a − L =

m√
1− v2

. (4.80)

Expressed in terms of the spatial momenta pa, the Hamiltonian is

H =
√
p2 +m2 , (4.81)

where p ≡
√
ηabpapb is the magnitude of the 3-momentum pa. Hamilton's equations (4.75) are

dxa

dt
=

pa√
p2 +m2

,
dpa

dt
= 0 . (4.82)

The Hamiltonian (4.81) can be recognized as the energy of the particle, or minus the covariant time compo-
nent of the 4-momentum,

H = −p0 . (4.83)

A similar, more complicated, analysis in curved space leads to the same conclusion, that the conventional
Hamiltonian H is minus the covariant time component of the 4-momentum,

H = −pt . (4.84)

The expression for the Hamiltonian in terms of spatial coordinates xα and momenta pα can be inferred from
conservation of rest mass,

gµνpµpν +m2 = 0 . (4.85)

Explicitly, the conventional Hamiltonian is

H = −pt =
1

gtt

[
gtαpα +

√
(gtαgtβ − gttgαβ)pαpβ − gttm2

]
. (4.86)

In the presence of an electromagnetic �eld, replace the momenta pt and pα in equation (4.86) by pµ =

πµ − qAµ, and set the Hamiltonian equal to −πt,

H = −πt . (4.87)

The super-Hamiltonians (4.90) and (4.96) derived in the next two sections are more elegant than the
conventional Hamiltonian (4.86). All lead to the same equations of motion, but the super-Hamiltonian
exhibits general covariance more clearly.
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4.13 E�ective (super-)Hamiltonian for a test particle with electromagnetism

In the e�ective approach, the condition (4.29) on the parameter λ is applied after equations of motion are
derived. The e�ective test-particle Lagrangian (4.25), coupled to electromagnetism, is

L = Lm + Lq =
1

2
gµν

dxµ

dλ

dxν

dλ
+ qAµ

dxµ

dλ
, (4.88)

where the metric gµν and electromagnetic potential Aµ are considered to be given functions of the coordinates
xµ. The corresponding generalized momentum (4.6) is

πµ = gµν
dxν

dλ
+ qAµ . (4.89)

The (super-)Hamiltonian (4.68) expressed in terms of coordinates xµ and momenta πµ as required is

H =
1

2
gµν(πµ − qAµ)(πν − qAν) . (4.90)

Hamilton's equations (4.72) are

dxµ

dλ
= pµ ,

dpκ
dλ

= Γµνκp
µpν + qFκµp

µ , (4.91)

where pµ is de�ned by

pµ ≡ πµ − qAµ . (4.92)

The equations of motion (4.91) having been derived from the Hamiltonian (4.90), the parameter λ is set
equal to the a�ne parameter in accordance with condition (4.29). In particular, the �rst of equations (4.91)
together with condition (4.29) implies that pµ = mdxµ/dτ , as it should be. The equations of motion (4.91)
thus reproduce the equations (4.42) derived in Lagrangian approach. The value of the Hamiltonian (4.90)
after the equations of motion and condition (4.29) are imposed is constant,

H = −m
2

2
. (4.93)

Recall that the super-Hamiltonian H is a scalar, associated with rest mass, to be distinguished from the
conventional Hamiltonian, which is the time component of a vector, associated with energy. The minus sign
in equation (4.93) is associated with the choice of metric signature −+++, where scalar products of timelike
quantities are negative. The negative Hamiltionian (4.93) signi�es that the particle is propagating along a
timelike direction. If the particle is massless, m = 0, then the Hamiltonian is zero (after equations of motion
are imposed), signifying that the particle is propagating along a null direction.

4.14 Nice (super-)Hamiltonian for a test particle with electromagnetism

The nice test-particle Lagrangian (4.31), coupled to electromagnetism, is

L =
µ

2

(
gµν

dxµ

µdλ

dxν

µdλ
−m2

)
+ qAµ

dxµ

dλ
. (4.94)
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The corresponding generalized momentum (4.6) is

πµ = gµν
dxν

µdλ
+ qAµ . (4.95)

The associated nice (super-)Hamiltonian (4.68) expressed in terms of coordinates xµ and momenta πµ as
required is

H =
µ

2

[
gµν(πµ − qAµ)(πν − qAν) +m2

]
. (4.96)

The nice Hamiltonian H, equation (4.96), depends on the auxiliary parameter µ as well as on xµ and πµ,
and the action must be varied with respect to all of these to obtain all the equations of motion. Compared
to the variation (4.71), the variation of the action contains an additional term proportional to δµ:

δS = [πµδx
µ]
λf

λi
+

∫ λf

λi

{
−
(
dπµ
dλ

+
∂H

∂xµ

)
δxµ +

(
dxµ

dλ
− ∂H

∂πµ

)
δπµ −

∂H

∂µ
δµ

}
dλ . (4.97)

Requiring that the variation (4.97) of the action vanish under arbitrary variations of the coordinates xµ and
momenta πµ yields Hamilton's equations (4.72), which here are

dxµ

µdλ
= pµ ,

dpκ
µdλ

= Γµνκp
µpν + qFκµp

µ , (4.98)

with pµ de�ned by

pµ ≡ πµ − qAµ . (4.99)

The condition (4.103) found below, substituted into the �rst of Hamilton's equations (4.98), implies that pµ

coincides with the usual ordinary momentum pµ = mdxµ/dτ , as it should. Requiring that the variation (4.97)
of the action vanish under arbitrary variation of the parameter µ yields the additional equation of motion

∂H

∂µ
= 0 . (4.100)

The additional equation of motion (4.100) applied to the Hamiltonian (4.96) implies that

gµν(πµ − qAµ)(πν − qAν) = −m2 . (4.101)

From the �rst of the equations of motion (4.98) along with the de�nition (4.99), equation (4.101) is the same
as

gµν
dxµ

µdλ

dxν

µdλ
= −m2 , (4.102)

which in turn is equivalent to

µdλ =
dτ

m
, (4.103)

recovering equation (4.35) derived using the Lagrangian formalism. Inserting the condition (4.103) into
Hamilton's equations (4.98) recovers the equations of motion (4.42) for a test particle in a prescribed gravi-
tational and electromagnetic �eld. The value of the Hamiltonian (4.96) after the equation of motion (4.101)
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is imposed is zero,

H = 0 . (4.104)

4.15 Derivatives of the action

Besides being a scalar whose minimum value between �xed endpoints de�nes the path between those points,
the action S can also be treated as a function of its endpoints along the actual path. Along the actual path,
the equations of motion are satis�ed, so the integral in the variation (4.4) or (4.71) of the action vanishes
identically. The surface term in the variation (4.4) or (4.71) then implies that δS = πµδx

µ. This means that
the partial derivatives of the action with respect to the coordinates are equal to the generalized momenta,

∂S

∂xµ
= πµ . (4.105)

This is the basis of the Hamilton-Jacobi method for solving equations of motion, �4.16.
By de�nition, the total derivative of the action S with respect to the arbitrary parameter λ along the

actual path equals the Lagrangian L. In addition to being a function of the coordinates xµ along the actual
path, the action may also be an explicit function S(λ, xµ) of the parameter λ. The total derivative of the
action along the path may thus be expressed

dS

dλ
= L =

∂S

∂λ
+

∂S

∂xµ
dxµ

dλ
. (4.106)

Comparing equation (4.106) to the de�nition (4.68) of the Hamiltonian shows that the partial derivative of
the action with respect to the parameter λ is minus the Hamiltonian

∂S

∂λ
= −H . (4.107)

In the conventional approach where the parameter λ is �xed equal to the time coordinate t, equa-
tions (4.105) and (4.107) together show that

∂S

∂t
= πt = −H , (4.108)

in agreement with equation (4.87). In the super-Hamiltonian approach, the Hamiltonian H is constant, equal
to −m2/2 in the e�ective approach, equation (4.93), and equal to zero in the nice approach, equation (4.104).

Concept question 4.5. Action vanishes along a null geodesic, but its gradient does not. How can
it be that the gradient of the action pµ = ∂S/∂xµ is non-zero along a null geodesic, yet the variation of the
action dS = −mdτ is identically zero along the same null geodesic? Answer. This has to do with the fact
that a vector can be �nite yet null,

dS

dλ
=
dxµ

dλ

∂S

∂xµ
= πµπµ = −m2 = 0 for m = 0 . (4.109)
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4.16 Hamilton-Jacobi equation

The Hamilton-Jacobi equation provides a powerful way to solve equations of motion. The Hamilton-Jacobi
equation proves to be separable in the Kerr-Newman geometry for an ideal rotating black hole, Chapter 23.
The hypothesis that the Hamilton-Jacobi equation be separable provides one way to derive the Kerr-Newman
line-element, Chapter 22, and to discover other separable spacetimes.
The Hamilton-Jacobi equation is obtained by writing down the expression for the Hamiltonian H in terms

of coordinates xµ and generalized momenta πµ, and replacing the Hamiltonian H by −∂S/dλ in accordance
with equation (4.107), and the generalized momenta πµ by ∂S/∂xµ in accordance with equation (4.105).
For the e�ective Hamiltonian (4.90), the resulting Hamilton-Jacobi equation is

− ∂S

∂λ
=

1

2
gµν

(
∂S

∂xµ
− qAµ

)(
∂S

∂xν
− qAν

)
, (4.110)

whose left hand side is −m2/2, equation (4.93). For the nice Hamiltonian (4.96), the resulting Hamilton-
Jacobi equation is

− ∂S

µ∂λ
=

1

2

[
gµν

(
∂S

∂xµ
− qAµ

)(
∂S

∂xν
− qAν

)
+m2

]
, (4.111)

whose left hand side is zero, equation (4.104). The Hamilton-Jacobi equations (4.110) and (4.111) agree, as
they should. The Hamilton-Jacobi equation (4.110) or (4.111) is a partial di�erential equation for the action
S(λ, xµ). In spacetimes with su�cient symmetry, such as Kerr-Newman, the partial di�erential equation can
be solved by separation of variables. This will be done in �22.3.

4.17 Canonical transformations

The Lagrangian equations of motion (4.5) take the same form regardless of the choice of coordinates xµ of
the underlying spacetime. This expresses general covariance: the form of the Lagrangian equations of motion
is unchanged by general coordinate transformations.
Coordinate transformations also preserve Hamilton's equations of motion (4.72). But the Hamiltonian

formalism allows a wider range of transformations that preserve the form of Hamilton's equations. Transfor-
mations of the coordinates and momenta that preserve Hamilton's equations are called canonical trans-
formations. The construction of canonical transformations is addressed in �4.17.1.
The wide range of possible canonical transformations means that the coordinates and momenta lose much

of their original meaning as actual spacetime coordinates and momenta of particles. For example, there is
a canonical transformation (4.117) that simply exchanges coordinates and their conjugate momenta. It is
common therefore to refer to general systems of coordinates and momenta that satisfy Hamilton's equations
as generalized coordinates and generalized momenta, and to denote them by qµ and pµ,

qµ , pµ . (4.112)
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4.17.1 Construction of canonical transformations

Consider a canonical transformation of coordinates and momenta

{qµ, pµ} → {q′µ(q, p), p′µ(q, p)} . (4.113)

By de�nition of canonical transformation, both the original and transformed sets of coordinates and momenta
satisfy Hamilton's equations.
For the equations of motion to take Hamiltonian form, the original and transformed actions S and S′ must

take the form

S =

∫ λf

λi

pµdq
µ −Hdλ , S′ =

∫ λf

λi

p′µdq
′µ −H ′dλ . (4.114)

One way for the original and transformed coordinates and momenta to yield equivalent equations of motion
is that the integrands of the actions di�er by the total derivative dF of some function F ,

dF = pµ dq
µ − p′µ dq′µ − (H −H ′) dλ . (4.115)

When the actions S and S′ are varied, the di�erence in the variations is the di�erence in the variation of F
between the initial and �nal points λi and λf , which vanishes provided that whatever F depends on is held
�xed on the initial and �nal points,

δS − δS′ = [δF ]
λf

λi
= 0 . (4.116)

Because the variations of the actions are the same, the resulting equations of motion are equivalent. The
function F is called the generator of the canonical transformation between the original and transformed
coordinates.
Given any function F (λ, q, q′), equation (4.115) determines pµ, −p′µ, and H−H ′ as partial derivatives of F

with respect to qµ, q′µ, and λ. For example, the function F =
∑
µ q
′µqµ generates a canonical transformation

that simply trades coordinates and momenta,

pµ =
∂F

∂qµ
= q′µ , p′µ = − ∂F

∂q′µ
= −qµ . (4.117)

The generating function F (λ, q, q′) depends on qµ and q′µ. Other generating functions depending on either
of qµ or pµ, and either of q′µ or p′µ, are obtained by subtracting pµqµ and/or adding p′µq

′µ to F . For example,
equation (4.115) can be rearranged as

dG = pµ dq
µ + q′µ dp′µ − (H −H ′)dλ , (4.118)

where G ≡ F + p′νq
′ν is now some function G(λ, q, p′). For example, the function G(q, p′) =

∑
µ f

µ(q) p′µ,
in which fµ(q) is some function of the coordinates qν but not of the momenta pν , generates the canonical
transformation

pµ =
∂G

∂qµ
=
∑
ν

∂fν

∂qµ
p′ν , q′µ =

∂G

∂p′µ
= fµ(q) . (4.119)

This is just a coordinate transformation qµ → q′µ = fµ(q).
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If the generator of a canonical transformation does not depend on the parameter λ, then the Hamiltonians
are the same in the original and transformed systems,

H(qµ, pµ) = H ′(q′µ, p′µ) . (4.120)

In the super-Hamiltonian approach, where the parameter λ is arbitrary, the Hamiltonian is without loss of
generality independent of λ, and there is no physical signi�cance to canonical transformations generated by
functions that depend on λ. The super-Hamiltonian H(qµ, pµ) is then a scalar, invariant with respect to
canonical transformations that do not depend explicitly on λ. This contrasts with the conventional Hamil-
tonian approach, where the parameter λ is set equal to the coordinate time t, and the conventional Ham-
iltonian is the time component of a 4-vector, which varies under canonical transformations generated by
functions that depend on time t.

4.17.2 Evolution is a canonical transformation

The evolution of the system from some initial hypersurface λ = 0 to some �nal hypersurface λ is itself a
canonical transformation. This is evident from the fact that Hamilton's equations (4.72) hold for any value of
the parameter λ, so in particular Hamilton's equations are unchanged when initial coordinates and momenta
qµ(0) and pµ(0) are replaced by evolved values qµ(λ) and pµ(λ),

qµ(0)→ q′µ = qµ(λ) , pµ(0)→ p′µ = pµ(λ) . (4.121)

The action varies by the total derivative dS = pµ dq
µ − H dλ along the actual path of the system, equa-

tion (4.106), so the initial and evolved actions di�er by a total derivative, equation (4.115),

dF = pµ(0) dqµ(0)− pµ(λ) dqµ(λ)−
[
H(0)−H(λ)

]
dλ = dS(0)− dS(λ) . (4.122)

Thus the canonical transformation from an initial λ = 0 to a �nal λ is generated by the di�erence in the
actions along the actual path of the system,

F = S(0)− S(λ) . (4.123)

4.18 Symplectic structure

The generalized coordinates qµ and momenta pµ of a dynamical system of particles have a geometrical struc-
ture that transcends the geometrical structure of the underlying spacetime manifold. For N coordinates qµ

and N momenta pµ, the geometrical structure is a 2N -dimensional manifold called a symplectic manifold.
A symplectic manifold is also called phase space, and the coordinates {qµ, pµ} of the manifold are called
phase-space coordinates.
A central property of a symplectic manifold is that the Hamiltonian dynamics de�ne a scalar product with

antisymmetric symplectic metric ωij . Let zi with i = 1, ..., 2N denote the combined set of 2N generalized
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coordinates and momenta {qµ, pµ},

{z1, ..., zN , zN+1, ..., z2N} ≡ {q1, ..., qN , p1, ..., pN} . (4.124)

Hamilton's equations (4.72) can be written

dzi

dλ
= ωij

∂H

∂zj
, (4.125)

where ωij is the antisymmetric symplectic metric (actually the inverse symplectic metric)

ωij ≡ δi+N, j − δi, j+N =


1 if zi = qµ and zj = pµ ,

−1 if zi = pµ and zj = qµ ,

0 otherwise .
(4.126)

As a matrix, the symplectic metric ωij is the 2N × 2N matrix

ωij =

(
0 1

−1 0

)
, (4.127)

where 1 denotes the N × N unit matrix. Inverting the inverse symplectic metric ωij yields the symplectic
metric ωij , which is the same matrix but �ipped in sign,

ωij ≡ (ωij)−1 = (ωij)> = −ωij =

(
0 −1

1 0

)
. (4.128)

Let z′i be another set of generalized coordinates and momenta satisfying Hamilton's equations with the same
Hamiltonian H,

dz′i

dλ
= ωij

∂H

∂z′j
. (4.129)

It is being assumed here that the Hamiltonian H does not depend explicitly on the parameter λ. In the super-
Hamiltonian approach, there is no loss of generality in taking the Hamiltonian H to be independent of λ,
since the parameter λ is arbitrary, without physical signi�cance. The important point about equation (4.129)
is that the symplectic metric ωij is the same regardless of the choice of phase-space coordinates. Under a
canonical transformation zi → z′i(z) of generalized coordinates and momenta, dz′i/dλ transforms as

dz′i

dλ
=
∂z′i

∂zk
dzk

dλ
=
∂z′i

∂zk
ωkl

∂H

∂zl
=
∂z′i

∂zk
ωkl

∂z′j

∂zl
∂H

∂z′j
. (4.130)

Comparing equations (4.129) and (4.130) shows that the symplectic matrix ωij is invariant under a canonical
transformation,

ωij =
∂z′i

∂zk
ωkl

∂z′j

∂zl
. (4.131)

Equation (4.131) can be expressed as the invariance under canonical transformations of

ωij
∂

∂zi
∂

∂zj
= ωij

∂

∂z′i
∂

∂z′j
. (4.132)
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Equivalently,

ωij dz
idzj = ωij dz

′idz′j . (4.133)

The invariance of the symplectic metric ωij under canonical transformations can be thought of as analogous
to the invariance of the Minkowski metric ηmn under Lorentz transformations. But whereas the Minkowski
metric ηmn is symmetric, the symplectic metric ωij is antisymmetric.

4.19 Symplectic scalar product and Poisson brackets

Let f(zi) and g(zi) be two functions of phase-space coordinates zi. Their tangent vectors in the phase space
are ∂f/∂zi and ∂g/∂zi. The symplectic scalar product of the tangent vectors de�nes the Poisson bracket

of the two functions f and g,

[f, g] ≡ ωij ∂f
∂zi

∂g

∂zj
=

∂f

∂qµ
∂g

∂pµ
− ∂f

∂pµ

∂g

∂qµ
. (4.134)

The invariance (4.132) of the symplectic metric implies that the Poisson bracket is a scalar, invariant under
canonical transformations of the phase-space coordinates zi. The Poisson bracket is antisymmetric thanks
to the antisymmetry of the symplectic metric ωij ,

[f, g] = −[g, f ] . (4.135)

4.19.1 Poisson brackets of phase-space coordinates

The Poisson brackets of the phase-space coordinates and momenta themselves satisfy

[zi, zj ] = ωij . (4.136)

Explicitly in terms of the generalized coordinates and momenta qµ and pµ,

[qµ, pν ] = δµν , [qµ, qν ] = 0 , [pµ, pν ] = 0 . (4.137)

Reinterpreting equations (4.137) as operator equations provides a path from classical to quantum mechanics.

4.20 (Super-)Hamiltonian as a generator of evolution

The Poisson bracket of a function f(zi) with the Hamiltonian H is

[f,H] =
∂f

∂qµ
∂H

∂pµ
− ∂f

∂pµ

∂H

∂qµ
. (4.138)

Inserting Hamilton's equations (4.72) implies

[f,H] =
∂f

∂qµ
dqµ

dλ
+

∂f

∂pµ

dpµ
dλ

=
df

dλ
. (4.139)
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That is, the evolution of a function f(qµ, pµ) of generalized coordinates and momenta is its Poisson bracket
with the Hamiltonian H,

df

dλ
= [f,H] . (4.140)

Equation (4.140) shows that the (super-)Hamiltonian de�ned by equation (4.68) can be interpreted as gen-
erating the evolution of the system.
The same derivation holds in the conventional case where λ is taken to be time t, but generically the

function f(t, qα, pα) and conventional Hamiltonian H(t, qα, pα) must be allowed to be explicit functions of
time t as well as of generalized spatial coordinates and momenta qα and pα. Equation (4.140) becomes in
the conventional case

df

dt
=
∂f

∂t
+ [f,H] . (4.141)

4.21 In�nitesimal canonical transformations

A canonical transformation generated by G = qµp′µ is the identity transformation, since it leaves the coordi-
nates and momenta unchanged. Consider a canonical transformation with generator in�nitesimally shifted
from the identity transformation, with ε an in�nitesimal parameter,

G = qµp′µ + ε g(q, p′) . (4.142)

The resulting canonical transformation is, from equation (4.119),

q′µ =
∂G

∂p′µ
= qµ + ε

∂g

∂p′µ
, pµ =

∂G

∂qµ
= p′µ + ε

∂g

∂qµ
. (4.143)

Because ε is in�nitesimal, the term ε ∂g/∂p′µ can be replaced by ε ∂g/∂pµ to linear order, yielding

q′µ = qµ + ε
∂g

∂pµ
, p′µ = pµ − ε

∂g

∂qµ
. (4.144)

Equations (4.144) imply that the changes δpµ and δqµ in the coordinates and momenta under an in�nitesimal
canonical transformation (4.142) is their Poisson bracket with g,

δpµ = ε [pµ, g] , δqµ = ε [qµ, g] . (4.145)

As a particular example, the evolution of the system under an in�nitesimal change δλ in the parameter λ
is, in accordance with the evolutionary equation (4.140), generated by a canonical transformation with g in
equation (4.142) set equal to the Hamiltonian H,

δpµ = δλ [pµ, H] , δqµ = δλ [qµ, H] . (4.146)
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4.22 Constancy of phase-space volume under canonical transformations

The invariance of the symplectic metric under canonical transformations implies the invariance of phase-space
volume under canonical transformations.
The volume V of a region of 2N -dimensional phase space is

V ≡
∫
dV ≡

∫
dz1...dz2N ≡

∫
dq1...dqN dp1...dpN , (4.147)

integrated over the region. Under a canonical transformation zi → z′i(z) of phase-space coordinates, the
phase-space volume element dV transforms by the Jacobian of the transformation, which is the determinant∣∣∂z′i/∂zj∣∣,

dV ′ =

∣∣∣∣∂z′i∂zj

∣∣∣∣ dV . (4.148)

But equation (4.131) implies that ∣∣ωij∣∣ =

∣∣∣∣∂z′i∂zk

∣∣∣∣ ∣∣ωkl∣∣ ∣∣∣∣∂z′j∂zl

∣∣∣∣ , (4.149)

so the Jacobian must be 1 in absolute magnitude,∣∣∣∣∂z′i∂zj

∣∣∣∣ = ±1 . (4.150)

If the canonical transformation can be obtained by a continuous transformation from the identity, then the
Jacobian must equal 1. As a particular case, the Jacobian equals 1 for the canonical transformation generated
by evolution, �4.22.1, since evolution is continuous from initial to �nal conditions.

4.22.1 Constancy of phase-space volume under evolution

Since evolution is a canonical transformation, �4.17.2 and �4.21, phase-space volume V is preserved under
evolution of the system. Each phase-space point inside the volume V evolves according to the equations
of motion. As the system of points evolves, the region distorts, but the magnitude of the volume V of the
region remains constant. The constancy of phase-space volume as it evolves was proved explicitly in 1871 by
Boltzmann, who later referred to the result as �Liouville's theorem� since the proof was based in part on a
mathematical theorem proved by Liouville (see Nolte, 2010).

4.23 Poisson algebra of integrals of motion

A function f(zi) of the generalized coordinates and momenta is said to be an integral of motion if it is
constant as the system evolves. In view of equation (4.140), a function f(zi) is an integral of motion if and
only if its Poisson brackets with the Hamiltonian vanishes,

[f,H] = 0 . (4.151)
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As a particular example, the antisymmetry of the Poisson bracket implies that the Poisson bracket of the
Hamiltonian with itself is zero,

[H,H] = 0 , (4.152)

so the Hamiltonian H is itself a constant of motion. The super-Hamiltonian H is a constant of motion in
general, while the conventional Hamiltonian H is constant provided that it does not depend explicitly on
time t.
Suppose that f(zi) and g(zi) are both integrals of motion. Then their Poisson brackets with each other is

also an integral of motion,

[[f, g], H] = − [[g,H], f ]− [[H, f ], g] = 0 , (4.153)

the �rst equality of which expresses the Jacobi identity, and the last equality of which follows because the
Poisson bracket of each of f and g with the Hamiltonian H vanishes. The Poisson bracket of two integrals
of motion f and g may or may not yield a further distinct integral of motion. A set of linearly independent
integrals of motion whose Poisson brackets close forms a Lie algebra is called a Poisson algebra.

Concept question 4.6. How many integrals of motion can there be? How many distinct integrals
of motion can there be in a dynamical system described by N coordinates and N momenta? A distinct
integral of motion is one that cannot be expressed as a function of the other integrals of motion (this is more
stringent than the condition that the integrals be linearly independent). Answer. The dynamical motion of
the system is described by a 1-dimensional line in a 2N -dimensional phase-space manifold consisting of the N
coordinates and N momenta. Any constant of motion f(xµ, πµ) de�nes a (2N−1)-dimensional submanifold
of the phase-space manifold. A 1-dimensional line can be the intersection of no more than 2N−1 distinct
such submanifolds, so there can be at most 2N−1 distinct constants of motion. In the super-Hamiltonian
formulation, the phase space of a single particle in 4 spacetime dimensions is 8-dimensional, and there are
at most 7 distinct integrals of motion. A particle moving along a straight line in Minkowski space provides
an example of a system with a full set of 7 integrals of motion: 4 integrals constitute the covariant energy-
momentum 4-vector pm, and a further 3 integrals of motion comprise xa − vat = xa(0) where va ≡ pa/p0 is
the velocity, and xm(0) is the origin of the line at t = 0. In the conventional Hamiltonian formulation, the
phase space of a single particle is 6-dimensional, and there are at most 5 distinct integrals of motion. The
apparent discrepancy in the number of integrals occurs because in the super-Hamiltonian formalism the time
t and time component πt of the generalized momentum are treated as distinct variables whose equations
of motion are determined by Hamilton's equations, whereas in the conventional Hamiltonian formalism the
arbitrary parameter λ is set equal to the time t, which is therefore no longer an independent variable, and
the generalized momentum πt, which equals minus the conventional Hamiltonian H, equation (4.108), is
eliminated as an independent variable by re-expressing it in terms of the spatial coordinates and momenta.



Concept Questions

1. What evidence do astronomers currently accept as indicating the presence of a black hole in a system?
2. Why can astronomers measure the masses of supermassive black holes only in relatively nearby galaxies?
3. To what extent (with what accuracy) are real black holes in our Universe described by the no-hair

theorem?
4. Does the no-hair theorem apply inside a black hole?
5. Black holes lose their hair on a light-crossing time. How long is a light-crossing time for a typical

stellar-sized or supermassive astronomical black hole?
6. Relativists say that the metric is gµν , but they also say that the metric is ds2 = gµν dx

µdxν . How can
both statements be correct?

7. The Schwarzschild geometry is said to describe the geometry of spacetime outside the surface of the
Sun or Earth. But the Schwarzschild geometry supposedly describes non-rotating masses, whereas the
Sun and Earth are rotating. If the Sun or Earth collapsed to a black hole conserving their mass M and
angular momentum L, roughly what would the spin a/M = L/M2 of the black hole be relative to the
maximal spin a/M = 1 of a Kerr black hole?

8. What happens at the horizon of a black hole?
9. As cold matter becomes denser, it goes through the stages of being solid/liquid like a planet, then

electron degenerate like a white dwarf, then neutron degenerate like a neutron star, then �nally it
collapses to a black hole. Why could there not be a denser state of matter, denser than a neutron star,
that brings a star to rest inside its horizon?

10. How can an observer determine whether they are �at rest� in the Schwarzschild geometry?
11. An observer outside the horizon of a black hole never sees anything pass through the horizon, even to

the end of the Universe. Does the black hole then ever actually collapse, if no one ever sees it do so?
12. If nothing can ever get out of a black hole, how does its gravity get out?
13. Why did Einstein believe that black holes could not exist in nature?
14. In what sense is a rotating black hole �stationary� but not �static�?
15. What is a white hole? Do they exist?
16. Could the expanding Universe be a white hole?
17. Could the Universe be the interior of a black hole?
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18. You know the Schwarzschild metric for a black hole. What is the corresponding metric for a white hole?
19. What is the best kind of black hole to fall into if you want to avoid being tidally torn apart?
20. Why do astronomers often assume that the inner edge of an accretion disk around a black hole occurs

at the innermost stable orbit?
21. A collapsing star of uniform density has the geometry of a collapsing Friedmann-Lemaître-Robertson-

Walker cosmology. If a spatially �at FLRW cosmology corresponds to a star that starts from zero velocity
at in�nity, then to what do open or closed FLRW cosmologies correspond?

22. Your friend falls into a black hole, and you watch her image freeze and redshift at the horizon. A shell
of matter falls on to the black hole, increasing the mass of the black hole. What happens to the image
of your friend? Does it disappear, or does it remain on the horizon?

23. Is the singularity of a Reissner-Nordström black hole gravitationally attractive or repulsive?
24. If you are a charged particle, which dominates near the singularity of the Reissner-Nordström geometry,

the electrical attraction/repulsion or the gravitational attraction/repulsion?
25. Is a white hole gravitationally attractive or repulsive?
26. What happens if you fall into a white hole?
27. Which way does time go in Parallel Universes in the Reissner-Nordström geometry?
28. What does it mean that geodesics inside a black hole can have negative energy?
29. Can geodesics have negative energy outside a black hole? How about inside the ergosphere?
30. Physically, what causes mass in�ation?
31. Is mass in�ation likely to occur inside real astronomical black holes?
32. What happens at the X point, where the outgoing and ingoing inner horizons of the Reissner-Nordström

geometry intersect?
33. Can a particle like an electron or proton, whose charge far exceeds its mass (in geometric units), be

modelled as Reissner-Nordström black hole?
34. Does it makes sense that a person might be at rest in the Kerr-Newman geometry? How would the

Boyer-Lindquist coordinates of such a person vary along their worldline?
35. In identifying M as the mass and a the angular momentum per unit mass of the black hole in the

Boyer-Lindquist metric, why is it su�cient to consider the behaviour of the metric at r →∞?
36. Does space move faster than light inside the ergosphere?
37. If space moves faster than light inside the ergosphere, why is the outer boundary of the ergosphere not

a horizon?
38. Do closed timelike curves make sense?
39. What does Carter's fourth integral of motion Q signify physically?
40. What is special about a principal null congruence?
41. Evaluated in the locally inertial frame of a principal null congruence, the spin-0 component of the Weyl

scalar of the Kerr geometry is C = −M/(r−ia cos θ)3, which looks like the Weyl scalar C = −M/r3 of the
Schwarzschild geometry but with radius r replaced by the complex radius r−ia cos θ. Is there something
deep here? Can the Kerr geometry be constructed from the Schwarzschild geometry by complexifying
the radial coordinate r?



What's important?

1. Astronomical evidence suggests that stellar-sized and supermassive black holes exist ubiquitously in
nature.

2. The no-hair theorem, and when and why it applies.
3. The physical picture of black holes as regions of spacetime where space is falling faster than light.
4. A physical understanding of how the metric of a black hole relates to its physical properties.
5. Penrose (conformal) diagrams. In particular, the Penrose diagrams of the various kinds of vacuum black

hole: Schwarzschild, Reissner-Nordström, Kerr-Newman.
6. What really happens inside black holes. Collapse of a star. Mass in�ation instability.
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5

Observational Evidence for Black Holes

It is beyond the intended scope of this book to discuss the extensive and rapidly evolving observational
evidence for black holes in any detail. However, it is useful to summarize a few facts.
1. Observational evidence supports the idea that black holes occur ubiquitously in nature. They are not

observed directly, but reveal themselves through their e�ects on their surroundings. Two kinds of black
hole are observed: stellar-sized black holes in x-ray binary systems, mostly in our own Milky Way galaxy,
and supermassive black holes in Active Galactic Nuclei (AGN) found at the centres of our own and other
galaxies.

2. The primary evidence that astronomers accept as indicating the presence of a black hole is a lot of mass
compacted into a tiny space.
a. In an x-ray binary system, if the mass of the compact object exceeds 3 M�, the maximum theoretical

mass of a neutron star, then the object is considered to be a black hole. Many hundreds of x-ray
binary systems are known in our Milky Way galaxy, but only tens of these have measured masses,
and in about 20 the measured mass indicates a black hole (McClintock et al., 2011).

b. Several tens of thousands of AGN have been catalogued, identi�ed either in the radio, optical,
or x-rays. But only in nearby galaxies can the mass of a supermassive black hole be measured
directly. This is because it is only in nearby galaxies that the velocities of gas or stars can be
measured su�ciently close to the nuclear centre to distinguish a regime where the velocity becomes
constant, so that the mass can be attribute to an unresolved central point as opposed to a continuous
distribution of stars. The masses of about 40 supermassive black holes have been measured in this
way (Kormendy and Gebhardt, 2001). The masses range from the 4×106 M� mass of the black hole
at the centre of the Milky Way (Ghez et al., 2008; Gillessen et al., 2009) to the 6.6± 0.4× 109 M�
mass of the black hole at the centre of the M87 galaxy at the centre of the Virgo cluster at the
centre of the Local Supercluster of galaxies (Gebhardt et al., 2011; Akiyama, 2019).

3. Secondary evidences for the presence of a black hole are:
a. high luminosity;
b. non-stellar spectrum, extending from radio to gamma-rays;
c. rapid variability.
d. relativistic jets.
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Figure 5.1 The supermassive black hole in the M87 galaxy imaged by the Event Horizon Telescope (Akiyama, 2019).

Jets in AGN are often one-sided, and a few that are bright enough to be resolved at high angular
resolution show superluminal motion. Both evidences indicate that jets are commonly relativistic, moving
at close to the speed of light. There are a few cases of jets in x-ray binary systems, sometimes called
microquasars.

4. Stellar-sized black holes are thought to be created in supernovae as the result of the core-collapse of
stars more massive than about 25 M� (this number depends in part on uncertain computer simulations).
Supermassive black holes are probably created initially in the same way, but they then grow by accretion
of gas funnelled to the centre of the galaxy. The growth rates inferred from AGN luminosities are
consistent with this picture.

5. Long gamma-ray bursts (lasting more than about 2 seconds) are associated observationally with su-
pernovae. It is thought that in such bursts we are seeing the formation of a black hole. As the black
hole gulps down the huge quantity of material needed to make it, it regurgitates a relativistic jet that
punches through the envelope of the star. If the jet happens to be pointed in our direction, then we see
it relativistically beamed as a gamma-ray burst.

6. Astronomical black holes present the only realistic prospect for testing general relativity in the strong
�eld regime, since such �elds cannot be reproduced in the laboratory. At the present time the obser-
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vational tests of general relativity from astronomical black holes are at best tentative. One test is the
redshifting of 7 keV iron lines in a small number of AGN, notably MCG-6-30-15, which can be interpreted
as being emitted by matter falling on to a rotating (Kerr) black hole.

7. The �rst direct detection of gravitational waves was with the Laser Interferometer Gravitational wave
Observatory (LIGO) on 14 September 2015 (Abbott et al., 2016). The wave-form was consistent with
the merger of two black holes of masses 29 and 36M�.

8. Before gravitational waves were detected directly, their existence was inferred from the gradual speed-
ing up of the orbit of the Hulse-Taylor binary, which consists of two neutron stars, one of which,
PSR1913+16, is a pulsar. The parameters of the orbit have been measured with exquisite precision, and
the rate of orbital speed-up is in good agreement with the energy loss by quadrupole gravitational wave
emission predicted by general relativity.



6

Ideal Black Holes

6.1 De�nition of a black hole

What is a black hole? Doubtless you have heard the standard de�nition: It is a region whose gravity is so
strong that not even light can escape.
But why can light not escape from a black hole? A standard answer, which John Michell (1784) would

have found familiar, is that the escape velocity exceeds the speed of light. But that answer brings to mind
a Newtonian picture of light going up, turning around, and coming back down, that is altogether di�erent
from what general relativity actually predicts.

Figure 6.1 The �sh upstream can make way against the current, but the �sh downstream is swept to the bottom of

the waterfall (Art by Wildrose Hamilton). This painting appeared on the cover of the June 2008 issue of the American

Journal of Physics (Hamilton and Lisle, 2008). A similar depiction appeared in Susskind (2003).
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A better de�nition of a black hole is that it is a

region where space is falling faster than light.

Inside the horizon, light emitted outwards is carried inward by the faster-than-light in�ow of space, like a
�sh trying but failing to swim up a waterfall, Figure 6.1.
The de�nition may seem jarring. If space has no substance, how can it fall faster than light? It means that

inside the horizon any locally inertial frame is compelled to fall to smaller radius as its proper time goes by.
This fundamental fact is true regardless of the choice of coordinates.
A similar concept of space moving arises in cosmology. Astronomers observe that the Universe is expand-

ing. Cosmologists �nd it convenient to conceptualize the expansion by saying that space itself is expanding.
For example, the picture that space expands makes it more straightforward, both conceptually and mathe-
matically, to deal with regions of spacetime beyond the horizon, the surface of in�nite redshift, of an observer.

6.2 Ideal black hole

The simplest kind of black hole, an ideal black hole, is one that is stationary, and electrovac outside its
singularity. Electrovac means that the energy-momentum tensor Tµν is zero except for the contribution
from a stationary electromagnetic �eld. The most important ideal black holes are those that extend to
asymptotically �at empty space (Minkowski space) at in�nity. There are ideal black hole solutions that do
not asymptote to �at empty space, but most of these have little relevance to reality. The most important
ideal black hole solutions that are not �at at in�nity are those containing a non-zero cosmological constant.
The next several chapters deal with ideal black holes in asymptotically �at space. The importance of ideal

black holes stems from the no-hair theorem, discussed in the next section. The no-hair theorem has the
consequence that, except during their initial collapse, or during a merger, real astronomical black holes are
accurately described as ideal outside their horizons.

6.3 No-hair theorem

I will state and justify the no-hair theorem, but I will not prove it mathematically, since the proof is technical.
The no-hair theorem states that a stationary black hole in asymptotically �at space is characterized by

just three quantities:
1. Mass M ;
2. Electric charge Q;
3. Spin, usually parameterized by the angular momentum a per unit mass.
The mechanism by which a black hole loses its hair is gravitational radiation. When initially formed,

whether from the collapse of a massive star or from the merger of two black holes, a black hole will form a
complicated, oscillating region of spacetime. But over the course of several light crossing times, the oscillations
lose energy by gravitational radiation, and damp out, leaving a stationary black hole.
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Real astronomical black holes are not isolated, and continue to accrete (cosmic microwave background
photons, if nothing else). However, the timescale (a light crossing time) for oscillations to damp out by
gravitational radiation is usually far shorter than the timescale for accretion, so in practice real black holes
are extremely well described by no-hair solutions almost all of their lives.
The physical reason that the no-hair theorem applies is that space is falling faster than light inside the

horizon. Consequently, unlike a star, no energy can bubble up from below to replace the energy lost by
gravitational radiation. The loss of energy by gravitational radiation brings the black hole to a state where it
can no longer radiate gravitational energy. The properties of a no-hair black hole are characterized entirely
by conserved quantities.
As a corollary, the no-hair theorem does not apply from the inner horizon of a black hole inward, because

space ceases to fall superluminally inside the inner horizon.
If there exist other absolutely conserved quantities, such as magnetic charge (magnetic monopoles), or

various supersymmetric charges in theories where supersymmetry is not broken, then the black hole will also
be characterized by those quantities.
Black holes are expected not to conserve quantities such as baryon or lepton number that are thought not

to be absolutely conserved, even though they appear to be conserved in low energy physics.
It is legitimate to think of the process of reaching a stationary state as analogous to reaching a condition

of thermodynamic equilibrium, in which a macroscopic system is described by a small number of parameters
associated with the conserved quantities of the system.
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Schwarzschild Black Hole

The Schwarzschild geometry was discovered by Karl Schwarzschild in late 1915 at essentially the same
time that Einstein was arriving at his �nal version of the General Theory of Relativity. Schwarzschild
was Director of the Astrophysical Observatory in Potsdam, perhaps the foremost astronomical position in
Germany. Despite his position, he joined the German army at the outbreak of World War 1, and was serving
on the front at the time of his discovery. Sadly, Schwarzschild contracted a rare skin disease on the front.
Returning to Berlin, he died in May 1916 at the age of 42.
The realisation that the Schwarzschild geometry describes a collapsed object, a black hole, was not under-

stood by Einstein and his contemporaries. Understanding did not emerge until many decades later, in the
late 1950s. Thorne (1994) gives a delightful popular account of the history.

7.1 Schwarzschild metric

The Schwarzschild metric was discovered �rst by Karl Schwarzschild (1916b), and then independently
by Johannes Droste (1916). In a polar coordinate system {t, r, θ, φ}, and in geometric units c = G = 1, the
Schwarzschild metric is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2do2 , (7.1)

where do2 (this is the Landau & Lifshitz notation) is the metric of a unit 2-sphere,

do2 = dθ2 + sin2θ dφ2 . (7.2)

With units restored, the time-time component gtt of the Schwarzschild metric is

gtt = −
(

1− 2GM

c2r

)
. (7.3)

The Schwarzschild geometry describes the simplest kind of black hole: a black hole with mass M , but no
electric charge, and no spin.
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The geometry describes not only a black hole, but also any empty space surrounding a spherically sym-
metric mass. Thus the Schwarzschild geometry describes to a good approximation the spacetimes outside
the surfaces of the Sun and the Earth.
Comparison with the spherically symmetric Newtonian metric

ds2 = − (1 + 2Φ)dt2 + (1− 2Φ)(dr2 + r2do2) (7.4)

with Newtonian potential

Φ(r) = −M
r

(7.5)

establishes that the M in the Schwarzschild metric is to be interpreted as the mass of the black hole
(Exercise 7.1).
The Schwarzschild geometry is asymptotically �at, because the metric tends to the Minkowski metric in

polar coordinates at large radius

ds2 → − dt2 + dr2 + r2do2 as r →∞ . (7.6)

Exercise 7.1. Schwarzschild metric in isotropic form. The Schwarzschild metric (7.1) does not have
the same form as the spherically symmetric Newtonian metric (7.4). By a suitable transformation of the
radial coordinate r, bring the Schwarzschild metric (7.1) to the isotropic form

ds2 = −
(

1−M/2R

1 +M/2R

)2

dt2 + (1 +M/2R)
4

(dR2 +R2do2) . (7.7)

What is the relation between R and r? Hence conclude that the identi�cation (7.5) is correct, and therefore
that M is indeed the mass of the black hole. Is the isotropic form (7.7) of the Schwarzschild metric valid
inside the horizon?

7.2 Stationary, static

The Schwarzschild geometry is stationary. A spacetime is said to be stationary if and only if there exists
a timelike coordinate t such that the metric is independent of t. In other words, the spacetime possesses
time translation symmetry: the metric is unchanged by a time translation t → t + t0 where t0 is some
constant. Evidently the Schwarzschild metric (7.1) is independent of the timelike coordinate t, and is therefore
stationary, time translation symmetric.
As will be found below, �7.6, the Schwarzschild time coordinate t is timelike outside the horizon, but

spacelike inside. Some authors therefore refer to the spacetime inside the horizon of a stationary black hole
as being homogeneous. However, I think it is less confusing to refer to time translation symmetry, which is
a single symmetry of the spacetime, by a single name, stationarity, everywhere in the spacetime.
The Schwarzschild geometry is also static. A spacetime is static if and only if in addition to being
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stationary with respect to a time coordinate t, spatial coordinates can be chosen that do not change along
the direction of the tangent vector et. This requires that the tangent vector et be orthogonal to all the spatial
tangent vectors eα

et · eα = gtα = 0 . (7.8)

The Kerr geometry for a rotating black hole is an example of a geometry that is stationary but not static. If
time t and azimuthal φ coordinates are coordinates associated with time and azimuthal symmetry, then the
scalar product et ·eφ of their tangent vectors in the Kerr geometry is a non-vanishing scalar, �9.3. Physically,
in a static geometry, a system of static observers, those who are at rest in static spatial coordinates, see each
other to remain at rest as time passes. In a non-static geometry, no such system of static observers exists.
The Gullstrand-Painlevé metric for the Schwarzschild geometry, discussed in �7.12, is an example of a

metric that is stationary, since the metric coe�cients are independent of the free-fall time tff , but not explicitly
static. Observers at rest with respect to Gullstrand-Painlevé spatial coordinates fall into the black hole, and
do not see each other as remaining at rest as time goes by. The Schwarzschild geometry is nevertheless static
because there exist coordinates, the Schwarzschild coordinates, with respect to which the metric is explicitly
static, gtα = 0. The Schwarzschild time coordinate t is thus identi�ed as a special one: it is the unique time
coordinate with respect to which the Schwarzschild geometry is manifestly static.

7.3 Spherically symmetric

The Schwarzschild geometry is also spherically symmetric. This is evident from the fact that the angular
part r2do2 of the metric is the metric of a 2-sphere of radius r. This can be seen as follows. Consider the
metric of ordinary �at 3-dimensional Euclidean space in Cartesian coordinates {x, y, z}:

ds2 = dx2 + dy2 + dz2 . (7.9)

Convert to polar coordinates {r, θ, φ}, de�ned so that

x = r sin θ cosφ , (7.10a)

y = r sin θ sinφ , (7.10b)

z = r cos θ . (7.10c)

Substituting equations (7.10a) into the Euclidean metric (7.9) gives

ds2 = dr2 + r2(dθ2 + sin2θ dφ2) . (7.11)

Restricting to a surface r = constant of constant radius then gives the metric of a 2-sphere of radius r

ds2 = r2(dθ2 + sin2θ dφ2) (7.12)

as claimed.
The radius r in Schwarzschild coordinates is the circumferential radius, de�ned such that the proper
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circumference of the 2-sphere measured by observers at rest in Schwarzschild coordinates is 2πr. This is a
coordinate-invariant de�nition of the meaning of r, which implies that r is a scalar.

7.4 Energy-momentum tensor

It is straightforward (especially if you use a computer algebraic manipulation program) to follow the cookbook
summarized in �2.25 to check that the Einstein tensor that follows from the Schwarzschild metric (7.1) is
zero. Einstein's equations then imply that the Schwarzschild geometry has zero energy-momentum tensor.
If the Schwarzschild geometry is empty, should not the spacetime be �at, the Minkowski spacetime? There

are two answers to this question. Firstly, the Schwarzschild geometry describes the geometry of empty space
around a static spherically symmetric mass, such as the Sun or Earth. The geometry inside the spherically
symmetric mass is described by some other metric, which connects continuously and di�erentiably (but not
necessarily doubly di�erentiably, if the spherical object has an abrupt surface) to the Schwarzschild metric.
The second answer is that the Schwarzschild geometry describes the geometry of a collapsed object, a

black hole, which is singular at zero radius, r = 0, but is otherwise empty of energy-momentum.

Exercise 7.2. Derivation of the Schwarzschild metric. There are neater and more insightful ways
to derive it, but the Schwarzschild metric can be derived by turning a mathematical crank without the
need for deeper conceptual understanding. Start with the assumption that the metric of a static, spherically
symmetric object can be written in polar coordinates {t, r, θ, φ} as

ds2 = −A(r) dt2 +B(r) dr2 + r2(dθ2 + sin2θ dφ2) , (7.13)

where A(r) and B(r) are some to-be-determined functions of radius r. Write down the components of the
metric gµν , and deduce its inverse gµν . Compute all the components of the coordinate connections Γλµν ,
equation (2.63). Of the 40 distinct connections, 9 should be non-vanishing. Compute all the components of
the Riemann tensor Rκλµν , equation (2.112). There should be 6 distinct non-zero components. Compute all
the components of the Ricci tensor Rκµ, equation (2.121). There should be 4 distinct non-zero components.
Now impose that the spacetime be empty, that is, the energy-momentum tensor is zero. Einstein's equations
then demand that the Ricci tensor vanishes identically. Use the requirement that gttRtt − grrRrr = 0 to
show that AB = 1. Then use gttRtt = 0 to derive the functional form of A. Finally, use the Newtonian limit
−gtt ≈ 1 + 2Φ with Φ = −GM/r, valid at large radius r, to �x A.

7.5 Birkho�'s theorem

Birkho�'s theorem, whose proof is deferred to Chapter 20, Exercise 20.2, states that the geometry of
empty space surrounding a spherically symmetric matter distribution is the Schwarzschild geometry. That
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is, if the metric is of the form

ds2 = A(t, r) dt2 +B(t, r) dt dr + C(t, r) dr2 +D(t, r) do2 , (7.14)

where the metric coe�cients A, B, C, and D are allowed to be arbitrary functions of t and r, and if the
energy momentum tensor vanishes, Tµν = 0, outside some value of the circumferential radius r′ de�ned by
r′2 = D, then the geometry is necessarily Schwarzschild outside that radius.
This means that if a mass undergoes spherically symmetric pulsations, then those pulsations do not a�ect

the geometry of the surrounding spacetime. This re�ects the fact that there are no spherically symmetric
gravitational waves.

7.6 Horizon

The horizon of the Schwarzschild geometry lies at the Schwarzschild radius r = rs

rs =
2GM

c2
, (7.15)

where units of c and G have been momentarily restored. Where does this come from? The Schwarzschild
metric shows that the scalar spacetime distance squared ds2 along an interval at rest in Schwarzschild
coordinates, dr = dθ = dφ = 0, is timelike, lightlike, or spacelike depending on whether the radius is greater
than, equal to, or less than the Schwarzschild radius rs:

ds2 = −
(

1− rs
r

)
dt2


< 0 if r > rs ,

= 0 if r = rs ,

> 0 if r < rs .

(7.16)

Since the worldline of a massive observer must be timelike, it follows that a massive observer can remain at
rest only outside the horizon, r > rs. An object at rest at the horizon, r = rs, follows a null geodesic, which
is to say it is a possible worldline of a massless particle, a photon. Inside the horizon, r < rs, neither massive
nor massless objects can remain at rest. To remain at rest, a particle inside the horizon would have to go
faster than light.
A full treatment of what is going on requires solving the geodesic equation in the Schwarzschild geometry,

but the results may be anticipated already at this point. In e�ect, space is falling into the black hole. Outside
the horizon, space is falling less than the speed of light; at the horizon space is falling at the speed of light;
and inside the horizon, space is falling faster than light, carrying everything with it. This is why light cannot
escape from a black hole: inside the horizon, space falls inward faster than light, carrying light inward even if
that light is pointed radially outward. The statement that space is falling superluminally inside the horizon
of a black hole is a coordinate-invariant statement: massive or massless particles are carried inward whatever
their state of motion and whatever the coordinate system.
Whereas an interval of coordinate time t switches from timelike outside the horizon to spacelike inside the
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horizon, an interval of coordinate radius r does the opposite: it switches from spacelike to timelike:

ds2 =
(

1− rs
r

)−1

dr2


> 0 if r > rs ,

=∞ if r = rs ,

< 0 if r < rs .

(7.17)

It appears then that the Schwarzschild time and radial coordinates swap roles inside the horizon. Inside the
horizon, the radial coordinate becomes timelike, meaning that it becomes a possible worldline of a massive
observer. That is, a trajectory at �xed t and decreasing r is a possible worldline. Again this re�ects the fact
that space is falling faster than light inside the horizon. A person inside the horizon is inevitably compelled,
as their proper time goes by, to move to smaller radial coordinate r.

Concept question 7.3. Going forwards or backwards in time inside the horizon. Inside the horizon,
can a person can go forwards or backwards in Schwarzschild time t? What does that mean?

7.7 Proper time

The proper time experienced by an observer at rest in Schwarzschild coordinates, dr = dθ = dφ = 0, is

dτ =
√
−ds2 =

(
1− rs

r

)1/2

dt . (7.18)

For an observer at rest at in�nity, r →∞, the proper time is the same as the coordinate time,

dτ → dt as r →∞ . (7.19)

Among other things, this implies that the Schwarzschild time coordinate t is a scalar: not only is it the
unique coordinate with respect to which the metric is manifestly static, but it coincides with the proper time
of observers at rest at in�nity. This coordinate-invariant de�nition of Schwarzschild time t implies that it is
a scalar.
At �nite radii outside the horizon, r > rs, the proper time dτ is less than the Schwarzschild time dt, so

the clocks of observers at rest run slower at smaller than at larger radii.
At the horizon, r = rs, the proper time dτ of an observer at rest goes to zero,

dτ → 0 as r → rs . (7.20)

This re�ects the fact that an object at rest at the horizon is following a null geodesic, and as such experiences
zero proper time.
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7.8 Redshift

An observer at rest at in�nity looking through a telescope at an emitter at rest at radius r sees the emitter
redshifted by a factor

1 + z ≡ λobs

λem
=
νem

νobs
=
dτobs

dτem
=
(

1− rs
r

)−1/2

. (7.21)

This is an example of the universally valid statement that photons are good clocks: the redshift factor is given
by the rate at which the emitter's clock appears to tick relative to the observer's own clock. Equation (7.21)
is an example of the general formula (2.101) for the redshift between two comoving (= rest) observers in a
stationary spacetime.
It should be emphasized that the redshift factor (7.21) is valid only for an observer and an emitter at rest

in the Schwarzschild geometry. If the observer and emitter are not at rest, then additional special relativistic
factors will fold into the redshift.
The redshift goes to in�nity for an emitter at the horizon

1 + z →∞ as r → rs . (7.22)

Here the redshift tends to in�nity regardless of the motion of the observer or emitter. An observer watching
an emitter fall through the horizon will see the emitter appear to freeze at the horizon, becoming ever slower
and more redshifted. Physically, photons emitted vertically upward at the horizon by an infaller remain at
the horizon for ever, taking an in�nite time to get out to the outside observer.

7.9 �Schwarzschild singularity�

The apparent singularity in the Schwarzschild metric at the horizon rs is not a real singularity, because it
can be removed by a change of coordinates, such as to Gullstrand-Painlevé coordinates, equation (7.27).
Einstein, and other in�uential physicists such as Eddington, failed to appreciate this. Einstein thought that
the �Schwarzschild singularity� at r = rs marked the physical boundary of the Schwarzschild spacetime.
After all, an outside observer watching stu� fall in never sees anything beyond that boundary.
Schwarzschild's choice of coordinates was certainly a natural one. It was natural to search for static

solutions, and his time coordinate t is the only one with respect to which the metric is manifestly static.
The problem is that physically there can be no static observers inside the horizon: they must necessarily fall
inward as time passes. The fact that Schwarzschild's coordinate system shows an apparent singularity at the
horizon re�ects the fact that the assumption of a static spacetime necessarily breaks down at the horizon,
where space is falling at the speed of light.
Does stu� �actually� fall in, even though no outside observer ever sees it happen? The answer is yes: when

a black hole forms, it does actually collapse, and when an observer falls through the horizon, they really do
fall through the horizon. The reason that an outside observer sees everything freeze at the horizon is simply
a light travel time e�ect: it takes an in�nite time for light to lift o� the horizon and make it to the outside
world.
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7.10 Weyl tensor

For Schwarzschild, the Einstein tensor vanishes identically (because the spacetime is by assumption empty of
energy-momentum). The only part of the Riemann curvature tensor that does not vanish is the Weyl tensor.
The non-vanishing Weyl tensor says that gravitational tidal forces are present, even though the spacetime
is empty of energy-momentum. Non-vanishing gravitational tidal forces are the signature that spacetime is
curved.
The covariant (all indices down) components Cκλµν of the coordinate-frame Weyl tensor of the Schwarz-

schild geometry, computed from equation (3.1), appear at �rst sight to be a mess (go ahead, compute them).
However, the mess is an artefact of looking at the tensor through the distorting lens of the coordinate basis
vectors eµ, which are not orthonormal. After tetrads, Chapter 11, it will be found that the 10 components
of the Weyl tensor, the tidal part of the Riemann tensor, can be decomposed in any locally inertial frame
into 5 complex components of spin 0, ±1, and ±2. In a locally inertial frame whose radial direction coincides
with the radial direction of the Schwarzschild metric, all components of the Weyl tensor of the Schwarzschild
geometry vanish except the real spin-0 component. Spin 0 means that the Weyl tensor is unchanged under
a spatial rotation about the radial direction (and it is also unchanged by a Lorentz boost in the radial di-
rection). This spin-0 component is a coordinate-invariant scalar, the Weyl scalar C. The fact that the Weyl
tensor of the Schwarzschild geometry has only a single independent non-vanishing component is plausible
from the fact that the non-zero components of the coordinate-frame Weyl tensor written with two indices
up and two indices down are (no implicit summation over repeated indices)

− 1
2C

tr
tr = − 1

2C
θφ
θφ = Ctθtθ = Ctφtφ = Crθrθ = Crφrφ = C , (7.23)

where C is the Weyl scalar,

C = −M
r3

. (7.24)

The trick of writing the 4-index Weyl tensor with 2 indices up and 2 indices down, in order to reveal a simple
pattern, works in a simple spacetime like Schwarzschild, but fails in more complicated spacetimes.

7.11 Singularity

The Weyl scalar, equation (7.24), goes to in�nity at zero radius,

C →∞ as r → 0 . (7.25)

The diverging Weyl tensor implies that the tidal force diverges at zero radius, signalling that there is a
genuine singularity at zero radius in the Schwarzschild geometry.
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Figure 7.1 (Left) The light (yellow) shaded region shows the region visible to an infaller (blue) who falls radially to

the singularity of a Schwarzschild black hole; the dark (grey) shaded region shows the region that remains invisible to

the infaller. If another infaller (purple) falls along a di�erent radial direction, the two infallers not only fail to meet

at the singularity, they lose causal contact with each other already some distance from the singularity. Since the two

infallers fall to two causally disconnected places, the singularity cannot be a point. (Right) Same, showing the shortest

causal path (red) joining the two infallers asymptotically near the singularity. The shortest causal path is a pair of

light rays that start at the starred point, move in opposite azimuthal directions, and reach the infallers asymptotically

near the singularity. The shortest causal path remains non-zero even though the spatial distance between the infallers

tends to zero.

Concept question 7.4. Is the singularity of a Schwarzschild black hole a point? Is the singularity
at the centre of the Schwarzschild geometry a point? Answer. No. Familiar experience in 3-dimensional
space would suggest the answer is yes, but that conception is misleading. In the �rst place, general relativity
fails at singularities: the locally inertial description of spacetime fails, and general relativity cannot continue
worldlines of infallers beyond a singularity. Therefore singularities are not part of the spacetime described by
general relativity. Presumably some other physical theory takes over at singularities, but what that theory
is remains equivocal at the present time. In the second place, infallers who fall into a Schwarzschild black
hole at di�erent angular positions do not approach each other as they approach the singularity. Rather,
the diverging tidal force near the singularity funnels each infaller along radially converging lines, e�ectively
keeping the infallers isolated from each other. Moreover, the future lightcones of infallers who fall in at the
same time t but at di�erent angular positions cease to intersect once they are close enough to the singularity.
Thus the infallers not only fail to touch each other, they cease even to be able to communicate with each other
as they approach the singularity, as illustrated in Figure 7.1. The reader may object that the Schwarzschild
metric shows that the proper angular distance between two observers separated by angle φ is r dφ, which
goes to zero at the singularity r → 0. This objection fails because infallers approaching the singularity cease
to be able to measure angular distances, since angularly separated points cease to be causally accessible to
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the infaller. The region accessible to an infaller is cusp-like near the singularity. See Exercise 7.9 for a more
quantitative treatment of this problem.

Concept question 7.5. Separation between infallers who fall in at di�erent times. Consider two
infallers who free-fall radially into the black hole at the same angular position, but at di�erent times t. What
is the proper spatial separation between the two observers at the instants they hit the singularity, at r → 0?
Answer. In�nity. At the same angular position, dθ = dφ, the proper radial separation is

dl =
√
ds2 =

√
rs
r
− 1 dt→∞ as r → 0 . (7.26)

7.12 Gullstrand-Painlevé metric

An alternative metric for the Schwarzschild geometry was discovered independently by Allvar Gullstrand and
Paul Painlevé in 1921 (Gullstrand, 1922; Painlevé, 1921). (Gullstrand has priority because his paper, though
published in 1922, was submitted in May 1921, whereas Painlevé's paper was a write-up of a presentation
to L'Académie des Sciences in Paris in October 1921). After tetrads, it will become clear that the standard

Horizon

Singularity

Figure 7.2 The Gullstrand-Painlevé metric for the Schwarzschild geometry encodes locally inertial frames (tetrads)

that free-fall radially into the black hole at the Newtonian escape velocity β, equation (7.28). The infall velocity is

less than the speed of light outside the horizon, equal to the speed of light at the horizon, and faster than light inside

the horizon. The infall velocity tends to in�nity at the central singularity.
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way in which metrics are written encodes not only metric but also a tetrad. The Gullstrand-Painlevé line-
element (7.27) encodes a tetrad that represents locally inertial frames free-falling radially into the black hole
at the Newtonian escape velocity, Figure 7.2, although at the time no one, including Einstein, Gullstrand,
and Painlevé, understood this. Unlike Schwarzschild coordinates, there is no singularity at the horizon
in Gullstrand-Painlevé coordinates. It is striking that the mathematics was known long before physical
understanding emerged.
The Gullstrand-Painlevé metric is

ds2 = − dt2ff + (dr − β dtff)2 + r2do2 . (7.27)

Here β is the Newtonian escape velocity (with a minus sign because space is falling inward),

β = −
(

2GM

r

)1/2

, (7.28)

and tff is the proper time experienced by an object that free falls radially inward from zero velocity at in�nity.
The free fall time tff is related to the Schwarzschild time coordinate t by

dtff = dt− β

1− β2
dr , (7.29)

which integrates to

tff = t+ rs

(
2
√
r/rs+ ln

∣∣∣∣∣
√
r/rs − 1√
r/rs + 1

∣∣∣∣∣
)
. (7.30)

The time axis etff in Gullstrand-Painlevé coordinates is not orthogonal to the radial axis er, but rather is
tilted along the radial axis, etff · er = gtffr = −β.
The proper time of a person at rest in Gullstrand-Painlevé coordinates, dr = dθ = dφ = 0, is

dτ = dtff
√

1− β2 . (7.31)

The horizon occurs where this proper time vanishes, which happens when the infall velocity β is the speed
of light

|β| = 1 . (7.32)

According to equation (7.28), this happens at r = rs, which is the Schwarzschild radius, as it should be.

Exercise 7.6. Geodesics in the Schwarzschild geometry. The Schwarzschild metric is

ds2 = −∆(r) dt2 +
1

∆(r)
dr2 + r2 (dθ2 + sin2θ dφ2) , (7.33)

where ∆(r) is the horizon function

∆(r) = 1− 2M

r
. (7.34)
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1. Constants of motion. Argue that, without loss of generality, the trajectory of a freely falling particle
may be taken to lie in the equatorial plane, θ = π/2. Argue that, for a massive particle, conservation of
energy per unit rest mass E, angular momentum per unit rest mass L, and rest mass per unit rest mass
implies that the 4-velocity uµ ≡ dxµ/dτ satis�es

ut = −E , (7.35a)

uφ = L , (7.35b)

uµu
µ = −1 . (7.35c)

2. E�ective potential. Show that the radial component ur of the 4-velocity satis�es

ur = ±
(
E2 − U

)1/2
, (7.36)

where U is the e�ective potential

U =

(
1 +

L2

r2

)
∆ . (7.37)

3. Proper time in radial free-fall. What is the proper time τ for an observer to free-fall from radius
r to the singularity at zero radius, for the particular case of an observer who falls radially from rest
at in�nity. [Hint: What are the energy E and angular momentum L for an observer who falls radially
starting from rest at in�nity?]

4. Proper time in radial free-fall � numbers. Evaluate the proper time, in seconds, to fall from the
horizon to the singularity in the case of a black hole with the mass 4× 106 M� of the black hole at the
centre of our Galaxy, the Milky Way.

5. Circular orbits. Circular orbits occur where the e�ective potential U is an extremum. Find the radii
at which this occurs, as a function of angular momentum L. Solutions exist only if the absolute value
|L| of the angular momentum exceeds a certain critical value Lc. What is this critical value Lc?

6. Graph. Graph the e�ective potential U for values of L (i) less than, (ii) equal to, (iii) greater than the
critical value Lc. Describe physically, in words, what the possible orbital trajectories are for the various
cases. [Hint: For cases (i) and (iii), values near the critical value Lc show the distinction most clearly.]

7. Range of orbits. Identify the ranges of radii over which circular orbits are: (i) stable, (ii) unstable, (iii)
non-existent. [Hint: Stability depends on whether the extremum of the e�ective potential is a minimum
or a maximum. Which is which? You will �nd it helps to consider U as a function of 1/r rather than r.]

8. Angular momentum and energy in circular orbit. Show that the angular momentum per unit
mass for a circular orbit at radius r satis�es

|L| = r

(r/M − 3)
1/2

, (7.38)

and hence show also that the energy per unit mass in the circular orbit is

E =
r − 2M

[r(r − 3M)]
1/2

. (7.39)
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9. Drop in orbit. There is a certain circular orbit that has the same energy as a massive particle at rest
at in�nity. This is useful for starship captains to know, because it is possible to drop into this orbit
using only a small amount of energy. What is the radius of the orbit? Is it stable or unstable?

10. Photon sphere. There is a radius where photons can orbit in circular orbits. What is the radius of
this orbit? [Hint: Photons can be taken as the limit of a massive particle whose energy per unit mass E
vastly exceeds its rest mass energy per unit mass, which is 1.]

11. Orbital period. Show that the orbital period t, as measured by an observer at rest at in�nity, of a
particle in circular orbit at radius r is given by Kepler's 3rd law (remarkably, Kepler's 3rd law remains
true even in the fully general relativistic case, as long as t is taken to be the time measured at in�nity),

GMt2

(2π)2
= r3 . (7.40)

[Hint: Argue that the azimuthal angle φ evolves according to dφ/dt = uφ/ut = L∆/(Er2).]

Exercise 7.7. Geodesics in the Schwarzschild geometry in 3 or more dimensions. Standard general
relativity breaks down in N = 2 spacetime dimensions, �11.19, and there are no black holes in N = 2

spacetime dimensions in the closest approximation to general relativity, Exercise 11.9 (there are however
black holes in N = 2 spacetime dimensions in extensions of general relativity). The Schwarzschild metric in
N ≥ 3 spacetime dimensions is

ds2 = −∆(r) dt2 +
1

∆(r)
dr2 + r2 do2 , (7.41)

where do2 is the metric of a unit N−2 sphere, and ∆(r) is the horizon function

∆(r) = 1− 2M

rN−3
. (7.42)

What happens when N = 3? What happens when N ≥ 5?. Argue that equations (7.35)�(7.37) hold, with ∆

in the e�ective potential U being given by equation (7.42).
Solution. For N = 3, the horizon function 7.42 is constant ∆ = 1 − 2M . For N = 3, a coordinate
transformation to coordinates t′ = t

√
∆ and r′ = r/

√
∆ brings the Schwarzschild line-element (7.41) to

ds2 = − dt′2 + dr′2 + r′2∆ do2 , (7.43)

which is the metric of a cone, with angle 2π
√

∆ around a circumference. The spacetime looks �at except for
a conical vertex at r′ = 0. A mass M bends geodesics around it, but there are no bound orbits.
The condition for a circular orbit is that the e�ective potential be an extremum, dU/dr = 0. The boundary

between stable and unstable circular orbits occurs when the potential is a double extremum, dU/dr =

d2U/dr2 = 0. The boundary between stable and unstable circular orbits occurs at

rc
rs

=

(
N − 1

5−N

)1/(N−3)

,
Lc
rs

=

(
N − 1

5−N

)(5−N)/[2(N−3)]

, (7.44)

which has real �nite solutions only for 2 ≤ N ≤ 4. For N = 2, equations (7.44) do not apply. For N = 3,
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equations (7.44) give rc/rs = e and Lc/rs = e (where e is the exponential); but these values are really valid
not for N = 3, but rather for values of N in�nitesimally close to but not equal to 3.
For N ≥ 5, there are no stable circular orbits. For N ≥ 5, the only circular orbits are unstable, which

occur for L > 1 if N = 5 or L > 0 if N ≥ 6. Besides unstable circular orbits, there are unbound geodesics,
and geodesics that fall into the black hole. The case N = 4 is the only dimension for which stable circular
orbits exist.

Exercise 7.8. General relativistic precession of Mercury.

1. Conclude from Exercise 7.6 that the 4-velocity uµ ≡ dxµ/dτ of a massive particle on a geodesic in the
equatorial plane of the Schwarzschild geometry satis�es

ut =
E

∆
, uφ =

L

r2
, ur =

[
E2 −

(
1 +

L2

r2
∆

)]1/2

. (7.45)

2. Letting x ≡ 1/r, show that

φ =

∫
L dx

[(E2 − 1) + 2Mx− L2x2 + 2ML2x3]
1/2

. (7.46)

[Hint: This is a straightforward application of equations (7.45). Do not try to solve this integral; leave
it as given above.]

3. Suppose that the orbit varies between a known periapsis r− and apoapsis r+. De�ne x− ≡ 1/r− and
x+ ≡ 1/r+ (note that r− < r+ so x− > x+). Argue that equation (7.46) must take the form

φ =

∫
dx

[(x− x+)(x− − x)(a− 2Mx)]
1/2

, (7.47)

where

a ≡ 1− 2M(x− + x+) . (7.48)

[Hint: This is not hard, but there are two things to do. First, you have to argue that, given the assumption
that the orbit is a bounded stable orbit, there must be 3 real roots to the cubic, which must be ordered
as 0 < x+ < x− < a/2M < ∞. Second, you should compare the coe�cients of x3 and x2 in the cubic
in the integrands of (7.46) and (7.47)].

4. By the transformation

x = x+ + (x− − x+)y (7.49)

bring the integral (7.47) to the form

φ =

∫
dy

[y(1− y)(q − py)]
1/2

, (7.50)

where

p = 2M(x− − x+) , q = 1− 2M(x− + 2x+) . (7.51)
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5. Argue that the angle φ integrated around a full period, from apoapsis at y = 0 to periapsis at y = 1

and back, is

φ =
4

q1/2
K(p/q) , (7.52)

where K(m) is the complete elliptic integral of the �rst kind, one de�nition of which is

K(m) ≡ 1

2

∫ 1

0

dy

[y(1− y)(1−my)]
1/2

. (7.53)

6. The Taylor series expansion of the complete elliptic integral is

K(m) =
π

2

(
1 +

m

4
+ ...

)
. (7.54)

Argue that to linear order in mass M , the angle around a full period is

φ = 2π + 3πM(x− + x+) . (7.55)

7. Calculate the predicted precession of the perihelion of the orbit of Mercury, expressing your answer in
arcseconds per century. Google the perihelion and aphelion distances of Mercury, and its orbital period.

Exercise 7.9. A body cannot remain rigid as it approaches the Schwarzschild singularity. You
have already found from Exercise 7.6 that the azimuthal angle φ at radius r of a particle of rest mass m on
a geodesic with energy E and azimuthal angular momentum L in the equatorial plane of the Schwarzschild
geometry satis�es

φ =

∫
Ldr√

(E2 −m2)r4 + L2r2∆
. (7.56)

1. De�ne J ≡ L/E to be the angular momentum per unit energy. Argue that for photons, which are
massless,

φ =

∫
J dr√

r4 − J2r2∆
. (7.57)

2. Argue that inside the horizon (∆ < 0) the largest possible rate of change dφ/dr of the azimuthal angle
φ with respect to radius r occurs for J →∞.

3. Show that a null geodesic with J =∞ in a Schwarzschild black hole satis�es

r = rs sin2(φ/2) . (7.58)

Equation (7.58) is the equation of a cardioid.
4. Parameterize the J =∞ null geodesic satisfying equation (7.58) by {x, y} ≡ {r cosφ, r sinφ}. Show that

dy

dx
= tan (3φ/2) . (7.59)

Sketch the situation geometrically. Conclude that the radius h of a cylinder whose centre falls radially
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Horizon

Singularity

φ

φ/ 2

h

Figure 7.3 The arrowed lines, which are initially parallel, represent the worldtube of a body that remains as rigid as

possible (having constant cross-sectional radius h) as it falls to the singularity at the centre of a Schwarzschild black

hole. (The blow-up at right shows some details.) The dashed (purple) line shows geodesics with the maximum possible

angular motion inside the horizon, namely null geodesics with in�nite angular momentum per unit energy, J = ∞.

Since the walls of the infalling body cannot exceed the speed of light, their horizontal motion near the singularity is

bounded by that of J =∞ null geodesics, as illustrated. The diagram gives the impression that the di�erent (left and

right) sides of the worldtube encounter each other at the singularity, but this is false. The left side of the tube can

send a signal to the right side only as long as the two sides are connected by a J =∞ null geodesic. The dashed line,

marked with �lled dots where the signal is emitted by the left side and observed by the right side, is the last such

geodesic connecting the two sides: inside this dashed line the left side can no longer in�uence causally the right side.

must satisfy h ≤ r sin (φ/2) in order that the walls of the cylinder not exceed the speed of light.
Equivalently, conclude that a cylinder of radius h can remain rigid only down to a radius r satisfying

h ≤ r3/2/r1/2
s . (7.60)

5. Do the parts of a body that falls into a Schwarzschild black hole encounter each other at the singularity?
Solution. See Figure 7.3. The answer to part 5 is no, parts of a body that fall into a Schwarzschild black hole
do not encounter each other at the singularity. Indeed, as illustrated in Figure 7.3, parts of a body cease to
be in causal contact (cease to be able to in�uence each other) once they are close enough to the singularity.
From the perspective of an infaller inside the horizon, the closest they ever see any point an angle φ away is
at the edge of their past light cone, along the J =∞ null geodesic.

Exercise 7.10. A�ne distance between infallers who fall along di�erent radial directions. Proper
distances and times in general relativity are prescribed by the metric. But an individual observer does not
necessarily have the freedom to wander around with a ruler checking up on all the measurements. This is
especially true for an observer about to hit the singularity. Such an observer can no longer in�uence the
outside � all signals from the observer are headed to the singularity. All the observer can do in their last
moments before hitting the singularity is watch the view along their past lightcone. Consider two infallers
who free-fall radially along radial paths separated by angle φ. How far away do the infallers perceive each
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other to be as they approach the singularity? One measure of perceived distance is the a�ne distance along
an observer's past lightcone. The a�ne distance along a null geodesic is the a�ne parameter λ along the
null geodesic, normalized to measure proper distance in the locally inertial frame of the observer. What is
the a�ne distance between two infallers as they approach the singularity?
Solution. Per equation (7.45), the a�ne distance λ along a geodesic in any spherical geometry satis�es

dλ ∝ r2dφ , (7.61)

which is an expression of conservation of angular momentum. For a radially freely-falling observer, proper
distances at constant proper time tff satisfy, according to the Gullstrand-Painlevé metric, dl2 = dr2 + r2dφ2.
To normalize the a�ne distance to measure proper distance near the observer, multiply by dl/dλ, which is

dl

dλ
=

√
dr2 + r2dφ2

r2dφ
. (7.62)

As seen in Exercise 7.9, the last an infaller can see of their neighbour is along the J =∞ null geodesic. The
relation between r and φ along such a geodesic is given by equation (7.58). The normalization factor (7.62)
along such a geodesic is then

dl

dλ
=
r

1/2
s

r3/2
. (7.63)

Thus the a�ne distance, correctly normalized, is

λ =
r

1/2
s

r
3/2
obs

∫ em

obs

r2 dφ

=
rs

sin3(φobs/2)

[
3
8φ−

1
2 sinφ+ 1

16 sin 2φ
]em

obs
(7.64)

≈ rs
10

φ5
em − φ5

obs

φ3
obs

. (7.65)

For an observer near the singularity watching an emitter at �xed φem,

λ→ rs
10

φ5
em

φ3
obs

, (7.66)

which diverges as λ ∝ φ−3
obs ∝ r−3/2 ∝ t−1

ff . In other words, radially free-falling observers who fall in at
di�erent angular positions, as illustrated in Figure 7.1, have the impression that they recede from each other
in the transverse direction as they approach the singularity. This is the opposite of what you might naively
have expected, which is that the two observers would have the impression that they approach each other as
they approach the �central� singularity.

Exercise 7.11. Maximum transverse velocity of a light signal inside the horizon. Again consider
two infallers who free-fall radially along radial paths at di�erent angular positions. The maximum transverse
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velocity with which they can send signals to each other is, once again, along J = ∞ null geodesics. Show
that this maximum transverse velocity is

rdφ

dtff

∣∣∣∣
J=∞

=

√
1− r

rs
. (7.67)

The maximum transverse velocity is always less than the speed of light, but tends to the speed of light at
the singularity.
Solution. The relation between the radius r and angle φ along a J = ∞ null geodesic is given by equa-
tion (7.58). The relation between radius r and proper time tff for a radial free-faller follows from dr/dtff = β

in the Gullstrand-Painlevé metric (7.27).

7.13 Embedding diagram

An embedding diagram is a visual aid to understanding geometry. It is a depiction of a lower dimensional
geometry in a higher dimension. A classic example is the illustration of the geometry of a 2-sphere embedded
in 3-dimensional space, Figure 2.2.
Figure 7.4 shows an embedding diagram of the spatial Schwarzschild geometry at a �xed instant of Schwarz-

schild time t. To the polar coordinates r, θ, φ of the 3D Schwarzschild spatial geometry, adjoin a fourth spatial
coordinate w. The metric of 4D Euclidean space in the coordinates w, r, θ, φ, is

dl2 = dw2 + dr2 + r2do2 . (7.68)

The spatial Schwarzschild geometry is represented by a 3D surface embedded in the 4D Euclidean geometry,
such that the proper distance dl in the radial direction satis�es equation (7.17), that is

dl2 =
dr2

1− rs/r
= dw2 + dr2 . (7.69)

Equation (7.69) rearranges to

dw =
dr√

r/rs − 1
, (7.70)

which integrates to

w = 2

√
r

rs
− 1 . (7.71)

The embedded Schwarzschild surface has the shape of a square root, in�nitely steep at the horizon r = rs,
as illustrated by Figure 7.4.
Inside the horizon, proper radial distances change to being timelike, dl2 < 0, equation (7.17). Here the

Schwarzschild geometry at �xed Schwarzschild time t (which is a spacelike coordinate inside the horizon)
can be embedded in a 4D Minkowski space in which the fourth coordinate w is timelike,

dl2 = − dw2 + dr2 + r2do2 . (7.72)
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Figure 7.4 Embedding diagram of the Schwarzschild geometry. The 2-dimensional surface represents the 3-dimensional

Schwarzschild geometry at a �xed instant of Schwarzschild time t. Each circle represents a sphere, of proper circumfer-

ence 2πr, as measured by observers at rest in the geometry. The proper radial distance measured by observers at rest

is stretched in the radial direction, as shown in the diagram. The stretching is in�nite at the horizon, so the spatial

geometry there looks like a vertical cli�. Radial lines in the Schwarzschild geometry are spacelike outside the horizon,

but timelike inside the horizon.

The embedded surface inside the horizon satis�es

w = −2

√
1− r

rs
, (7.73)

with a minus sign chosen so that the coordinate w is negative inside the horizon, whereas it is positive
outside the horizon. The two embeddings (7.71) and (7.73) can be patched together at the horizon (though
not doubly di�erentiably), as illustrated in Figure 7.4.
It should be emphasized that the embedding diagram of the Schwarzschild geometry at �xed Schwarzschild

time t has a limited physical meaning. Fixing the time t means choosing a certain hypersurface through the
geometry. Other choices of hypersurface will yield di�erent embedding diagrams. For example, the Gullstrand-
Painlevé metric (7.27) is spatially �at at �xed free-fall time tff , so in that case the embedding diagram would
simply illustrate �at space, with no funny business at the horizon.
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Figure 7.5 Spacetime diagram of the Schwarzschild geometry, in Schwarzschild coordinates. The horizontal axis is the

circumferential radius r, while the vertical axis is Schwarzschild time t. The horizon (pink) is at one Schwarzschild

radius, r = rs. The singularity (cyan) is at zero radius, r = 0. The more or less diagonal lines (black) are outgoing

and infalling null geodesics. The outgoing and infalling null geodesics appear not to cross the horizon, but this is an

artefact of the Schwarzschild coordinate system.

7.14 Schwarzschild spacetime diagram

In general relativity as in special relativity, a spacetime diagram is a plot of space versus time.
Figure 7.5 shows a spacetime diagram of the Schwarzschild geometry. In this diagram, Schwarzschild time

t increases vertically upward, while circumferential radius r increases horizontally.
The more or less diagonal lines in Figure 7.5 are outgoing and infalling radial null geodesics. The radial

null geodesics are not at 45◦, as they would be in a special relativistic spacetime diagram. In Schwarzschild
coordinates, light rays that fall radially (dθ = dφ = 0) inward or outward follow null geodesics

ds2 = −
(

1− rs
r

)
dt2 +

(
1− rs

r

)−1

dr2 = 0 . (7.74)

Radial null geodesics thus follow

dr

dt
= ±

(
1− rs

r

)
, (7.75)

in which the ± sign is + for outgoing, − for infalling rays. Equation (7.75) shows that dr/dt → 0 as
r → rs, suggesting that null rays, whether infalling or outgoing, never cross the horizon. In the Schwarzschild
spacetime diagram 7.5, null geodesics asymptote to the horizon, but never actually cross it. This feature of
Schwarzschild coordinates was �rst noticed by Droste (1916), and contributed to the historical misconception
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Figure 7.6 Gullstrand-Painlevé, or free-fall, spacetime diagram, in units rs = c = 1. In this spacetime diagram the

time coordinate is the Gullstrand-Painlevé time tff , which is the proper time of observers who free-fall radially from

zero velocity at in�nity. The radial coordinate r is the circumferential radius, and the horizon and singularity are at

r = rs and r = 0, as in the Schwarzschild spacetime diagram, Figure 7.5. In contrast to the spacetime diagram in

Schwarzschild coordinates, in Gullstrand-Painlevé coordinates infalling light rays do cross the horizon.

that black holes stopped at their horizons. The failure of geodesics to cross the horizon is an artefact of
Schwarzschild's choice of coordinates, which are adapted to observers at rest, whereas no locally inertial
frame can remain at rest at the horizon.

7.15 Gullstrand-Painlevé spacetime diagram

Figure 7.6 shows a spacetime diagram of the Schwarzschild geometry in Gullstrand-Painlevé (1921) coordi-
nates tff and r in place of Schwarzschild coordinates t and r. As the spacetime diagram shows, in Gullstrand-
Painlevé coordinates infalling light rays cross the horizon. Unfortunately, neither Gullstrand nor Painlevé,
nor anyone else at that time, grasped the physical signi�cance of their metric.

7.16 Eddington-Finkelstein spacetime diagram

In 1958, David Finkelstein (1958) carried out an elementary transformation of the time coordinate which
seemed to show that infalling light rays could indeed pass through the horizon. It turned out that Eddington
had already discovered the transformation in 1924 (Eddington, 1924), though at that time the physical
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Figure 7.7 Finkelstein spacetime diagram, in units rs = c = 1. Here the time coordinate is taken to be the Finkelstein

time coordinate tF, equation (7.77). The Finkelstein time coordinate tF is constructed so that radially infalling light

rays are at 45◦.

implications were not grasped. Again, it is striking that the mathematics was in place long before physical
understanding emerged.
In Schwarzschild coordinates, radially outgoing or infalling light rays follow equation (7.75). Equation (7.75)

integrates to

t = ± (r + rs ln|r − rs|) , (7.76)

which shows that Schwarzschild time t approaches ±∞ logarithmically as null rays approach the horizon.
Finkelstein de�ned his time coordinate tF by

tF ≡ t+ rs ln |r − rs| , (7.77)

which has the property that infalling null rays follow

tF + r = constant . (7.78)

In other words, on a spacetime diagram in Finkelstein coordinates, Figure 7.7, radially infalling light rays
move at 45◦, the same as in a special relativistic spacetime diagram.
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Figure 7.8 Kruskal-Szekeres spacetime diagram, in units rs = c = 1. Kruskal-Szekeres coordinates are arranged such

that not only infalling, but also outgoing null rays move at 45◦ on the spacetime diagram. The Kruskal-Szekeres

spacetime diagram reveals the causal structure of the Schwarzschild geometry. The singularity (cyan) at r = 0, at

the upper edge of the spacetime diagram, is revealed to be a spacelike surface. Besides the usual horizon (pink),

there is an antihorizon (red), which was not apparent in Schwarzschild or Finkelstein coordinates. In the Kruskal-

Szekeres spacetime diagram, lines of constant circumferential radius r (blue) are hyperboloids, while lines of constant

Schwarzschild time t (violet) are straight lines passing through the origin, the same as in the spacetime wheel,

Figure 1.14, or as in Rindler space. Contours of constant Schwarzschild time t (violet) are spaced uniformly at

intervals of 1 (in units rs = c = 1), and similarly infalling and outgoing null rays (black) are spaced uniformly by 1,

while lines of constant circumferential radius r (blue) are drawn spaced uniformly by 1/4.

7.17 Kruskal-Szekeres spacetime diagram

After Finkelstein had transformed coordinates so that radially infalling light rays moved at 45◦ in a spacetime
diagram, it was natural to look for coordinates in which outgoing as well as infalling light rays are at 45◦.
Kruskal and Szekeres independently provided such a transformation in 1960 (Kruskal, 1960; Szekeres, 1960).
De�ne the tortoise, or Regge-Wheeler (Regge and Wheeler, 1957), coordinate r∗ by

r∗ ≡
∫

dr

1− 2M/r
= r + 2M ln |r − 2M | . (7.79)

Then radially infalling and outgoing null rays follow

r∗ + t = constant infalling ,

r∗ − t = constant outgoing .
(7.80)

In a spacetime diagram in coordinates t and r∗, infalling and outgoing light rays are indeed at 45◦. Unfor-
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Figure 7.9 From left to right, the Finkelstein spacetime diagram, Figure 7.7, morphs into the Kruskal-Szekeres space-

time diagram, Figure 7.8. The morph illustrates how the antihorizon, or past horizon (red), emerges from the depths

of t = −∞. Like the horizon, the antihorizon is a null surface, thus appearing at 45◦ in the Kruskal-Szekeres spacetime

diagram.

tunately the metric in these coordinates is still singular at the horizon r = 2M :

ds2 =

(
1− 2M

r

)(
− dt2 + dr∗2

)
+ r2do2 . (7.81)

The singularity at the horizon can be eliminated by the following transformation into Kruskal-Szekeres
coordinates tK and rK:

rK + tK = 2M exp

(
r∗ + t

4M

)
,

rK − tK = ±2M exp

(
r∗ − t
4M

)
,

(7.82)

where the ± sign in the last equation is + outside the horizon, − inside the horizon. The Kruskal-Szekeres
metric is

ds2 =
8M

r
e−r/2M

(
− dt2K + dr2

K

)
+ r2do2 , (7.83)

which is non-singular at the horizon. The Schwarzschild radial coordinate r, which appears in the factors
(8M/r)e−r/2M and r2 in the Kruskal metric, is to be understood as an implicit function of the Kruskal
coordinates tK and rK.

7.18 Antihorizon

The Kruskal-Szekeres spacetime diagram reveals a new feature that was not apparent in Schwarzschild or
Finkelstein coordinates. Dredged from the depths of t = −∞ appears a null line rK + tK = 0, Figure 7.9.
The null line is at radius r = 2M , but it does not correspond to the horizon that a person might fall into.
The null line is called the antihorizon.
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Figure 7.10 Embedding diagram of the analytically extended Schwarzschild geometry. The analytically extended

geometry is constructed by gluing together two copies of the Schwarzschild geometry along the antihorizon. The

extended geometry contains a Universe, a Parallel Universe, a Black Hole, and a White Hole.
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Figure 7.11 Analytically extended Kruskal-Szekeres spacetime diagram, in units rs = c = 1. The analytically extended

horizon and antihorizon (crossing pink/red lines at 45◦) divide the spacetime into 4 regions, a Universe region at right,

a Black Hole region bounded by the singularity at top, a Parallel Universe region at left, and a White Hole region

bounded by a singularity at bottom. The White Hole is a time-reversed version of the Black Hole.
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7.19 Analytically extended Schwarzschild geometry

The Schwarzschild geometry is analytic, and there is a unique analytic continuation of the geometry through
the antihorizon. The extended geometry consists of two copies of the Schwarzschild geometry, glued along
their antihorizons, as illustrated in the embedding diagram in Figure 7.10. The embedding diagram 7.10
gives the impression of a static wormhole, but this is an artefact of everything being frozen at the horizon
in Schwarzschild coordinates.

Figure 7.11 shows the Kruskal spacetime diagram of the analytically extended Schwarzschild geometry,
Whereas the original Schwarzschild geometry showed an asymptotically �at region and a black hole region
separated by a horizon, the complete analytically extended Schwarzschild geometry shows two asymptotically

Figure 7.12 Sequence of embedding diagrams of spatial slices of the analytically extended Schwarzschild geometry,

progressing in time from left to right. Two white holes merge, form an Einstein-Rosen bridge, then fall apart into

two black holes. The wormhole formed by the Einstein-Rosen bridge is non-traversable. The (yellow) arrows indicate

the direction in which an object can cross the horizon. At left, travellers in the two universes cannot fall into their

respective white holes, because objects can cross the white hole horizons (red) only in the outward direction. The

horizons cross in the middle diagram, without the arrows changing direction. After this point, travellers in the two

universes can fall through their respective black hole horizons (pink) into the Einstein-Rosen bridge, and temporarily

meet up with each other. Unfortunately, having fallen through the black hole horizons, they cannot exit, and are

doomed to hit the singularity. The insets at top show the adopted spatial slicings on the Kruskal spacetime diagram.

The adopted slicings are engineered to give the embedding diagrams an appealing look, and have no fundamental

signi�cance.
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�at regions, together with a black hole and a white hole. Relativists typically label the regions I, II, III, and
IV, but I like to call them by name: �Universe,� �Black Hole,� �Parallel Universe,� and �White Hole.�
The white hole is a time-reversed version of the black hole. Whereas space falls inward faster than light

inside the black hole, space falls outward faster than light inside the white hole. In the Gullstrand-Painlevé
metric (7.27), the velocity β = ±(2M/r)1/2 is negative for the black hole, positive for the white hole.
The Kruskal diagram shows that the universe and the parallel universe are connected, but only by spacelike

lines. This spacelike connection is called the Einstein-Rosen bridge, and constitutes a wormhole connecting
the two universes. Because the connection is spacelike, it is impossible for a traveller to pass through this
wormhole. The wormhole is said to be non-traversable.
Figure 7.12 illustrates a sequence of embedding diagrams for spatial slices of the analytically extended

Schwarzschild geometry. Although two travellers, one from the universe and one from the parallel universe,
cannot travel to each other's universe, they can meet, but only inside the black hole. Inside the black hole,
they can talk to each other, and they can see light from each other's universe. Sadly, the enlightenment is
only temporary, because they are doomed soon to hit the central singularity.
It should be emphasized that the white hole and the wormhole in the Schwarzschild geometry are a

mathematical construction with as far as anyone knows no relevance to reality. Nevertheless it is intriguing
that such bizarre objects emerge already in the simplest general relativistic solution for a black hole.

7.20 Penrose diagrams

Roger Penrose, as so often, had a novel take on the business of spacetime diagrams (Penrose, 2011). Penrose
conceived that the primary purpose of a spacetime diagram should be to portray the causal structure of
the spacetime, and that the speci�c choice of coordinates was largely irrelevant. After all, general relativity
allows arbitrary choices of coordinates.
In addition to requiring that light rays be at 45◦, Penrose wanted to bring regions at in�nity (in time or

space) to a �nite position on the spacetime diagram, so that the entire spacetime could be seen at once. Such
diagrams are called Penrose diagrams, or conformal diagrams.
Penrose diagrams are bona-�de spacetime diagrams. Penrose time and space coordinates tP and rP can

be de�ned by any conformal transformation of Kruskal-Szekeres coordinates

rP ± tP = f(rK ± tK) (7.84)

for which f(z) is �nite as z → ±∞. The transformation (7.84) brings spatial and temporal in�nity to �nite
values of the coordinates, while keeping infalling and outgoing light rays at 45◦ in the spacetime diagram.
It is common to draw a Penrose diagram with the singularity horizontal, which can be accomplished by
choosing the function f(z) to be odd, f(−z) = −f(z). Figure 7.13 shows a spacetime diagram in Penrose
coordinates with f(z) set to

f(z) =
2

π
atan z . (7.85)
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Figure 7.13 Penrose spacetime diagram, in units rs = c = 1. The Penrose coordinates tP and rP here are de�ned

by equations (7.84) and (7.85). Lines of constant Schwarzschild time t (violet), and infalling and outgoing null lines

(black) are spaced uniformly at intervals of 1 (units rs = c = 1), while lines of constant circumferential radius r (blue)

are spaced uniformly in the tortoise coordinate r∗, equation (7.79), so that the intersections of t and r lines are also

intersections of infalling and outgoing null lines.

Figure 7.14 From left to right, the Kruskal-Szekeres spacetime diagram, Figure 7.8, morphs into the Penrose spacetime

diagram, Figure 7.13.

Figure 7.14 illustrates a morph of the Kruskal-Szekeres spacetime diagram, Figure 7.8, into the Penrose
spacetime diagram, Figure 7.13.

Figure 7.15 illustrates the Penrose diagram of the analytically extended Schwarzschild geometry.
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Figure 7.15 Penrose spacetime diagram of the analytically extended Schwarzschild geometry. This is the analytically

extended version of Figure 7.13.

7.21 Penrose diagrams as guides to spacetime

In the literature, Penrose diagrams are usually sketched, not calculated, the aim being to convey a conceptual
understanding of the spacetime without obsessing over detail.
Figure 7.16 shows a Penrose diagram of the Schwarzschild geometry, with the Universe and Black Hole

regions, and the various boundaries of the diagram, marked. The 45◦ edges of the Penrose diagram at in�nite
radius, r = ∞, are called past and future null in�nity, often designated in the mathematical literature
by I+ and I− (commonly pronounced scri-plus and scri-minus, scri being short for script-I). The corners of
the Penrose diagram in the in�nite past or future are called past and future in�nity, often designated i−
and i+, while the corner at in�nite radius is called spatial in�nity, often designated i0.
The Schwarzschild geometry, being asymptotically �at (Minkowski), has no boundary at in�nity. Thus

the boundary at in�nity in the Penrose diagram is not part of the spacetime manifold. However, a worldline
that extends into the inde�nite past converges towards past in�nity, while a worldline that extends into the
inde�nite future outside the black hole converges towards future in�nity.
A Penrose diagram is an indispensable guide to �nding your way around a complicated spacetime such

as a black hole. However, a Penrose diagram can be deceiving, because the conformal mapping distorts
the spacetime. Most of the physical spacetime in the Penrose diagram of the Schwarzschild geometry is
compressed to the corners of the diagram, to past, future, and spatial in�nity, and to the top left point at
the intersection of the antihorizon with the singularity.
Figure 7.17 shows the Penrose diagram of the analytically extended Schwarzschild geometry, with the four
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Figure 7.17 Penrose diagram of the analytically extended Schwarzschild geometry.

regions, Universe, Black Hole, Parallel Universe, and White Hole marked. Again, relativists typically call
these regions I, II, III, and IV, but I like to give them names. I've also given names to the various horizons.
The names are unconventional, but reasonable.
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Concept question 7.12. Penrose diagram of Minkowski space. Draw a Penrose diagram of Minkowski
space.

7.22 Future and past horizons

Hawking and Ellis (1973) de�ne the future horizon of the worldline of an observer to be the boundary of
the past lightcone of the continuation of the worldline into the inde�nite future. Likewise the past horizon
of the worldline of an observer is the boundary of the future lightcone of the continuation of the worldline
into the inde�nite past. The de�nition of future and past horizons is observer-dependent.
The horizon of a Schwarzschild black hole is a future horizon for observers who remain at a �nite distance

outside the black hole for ever. The antihorizon of a Schwarzschild black hole is a past horizon for observers
who remained a �nite distance outside the black hole in the inde�nite past.
The causal diamond of an observer is the part of spacetime bounded by the observer's past and future

horizons. The causal diamond is the region of spacetime to which the observer can, at some point on their
worldline, send a signal, and from which the observer can, at some other point on their worldline, receive a
signal. For example, the Universe region of the Penrose diagram 7.16 is the causal diamond of an observer
who starts at past in�nity and ends at future in�nity, without falling into the black hole.

7.23 Oppenheimer-Snyder collapse to a black hole

Realistic collapse of a star to a black hole is not expected to produce a white hole or parallel universe.
The simplest model of a collapsing star is a spherical ball of uniform density and zero pressure which free

falls from zero velocity at in�nity, a problem �rst solved by Oppenheimer and Snyder (1939). In this simple
model, the interior of the star is described by a collapsing Friedmann-Lemaître-Robertson-Walker metric
(see Chapter 10), while the exterior is described by the Schwarzschild solution. The assumption that the star
collapses from zero velocity at in�nity implies that the FLRW geometry is spatially �at, the simplest case.
To continue the geometry between Schwarzschild and FLRW geometries, it is neatest to use the Gullstrand-
Painlevé metric, with the Gullstrand-Painlevé infall velocity β at the edge of the star set equal to minus r
times the Hubble parameter of the collapsing FLRW metric, −rH ≡ −r d ln a/dt. Section 20.15 describes a
systematic approach to solving the Oppenheimer-Snyder problem.
Figure 7.18 shows the star collapse as seen by an outside observer at rest at a radius of 10 Schwarzschild

radii. The Figure is correctly ray-traced, taking into account the di�erent travel times of light from the
various parts of the star to the observer. The collapsing star appears to freeze at the horizon, taking on the
appearance of a Schwarzschild black hole.
When Oppenheimer & Snyder �rst did their calculation, the result seemed paradoxical. An outsider saw

the collapsing star freeze at its horizon and never get further, even to the end of time. Yet an observer who



162 Schwarzschild Black Hole

−20

−10

0

10

20

A
n
g
le

(d
e
g
re
e
s)

Figure 7.18 Three frames in the collapse of a uniform density, pressureless, spherical star from zero velocity at in�nity

(Oppenheimer and Snyder, 1939), as seen by an outside observer at rest at a radius of 10 Schwarzschild radii. The

frames are spaced by 10 units of Schwarzschild time (c = rs = 1). The star is made transparent, so you can see inside.

Two layers are shown, one at the surface of the star, the other at half its radius. The centre of the star is shown as

a dot. The frames are accurately ray-traced, and include the e�ect of the di�erent light travel times from di�erent

parts of the star to the observer. As time goes by, from left to right, the collapsing star appears to freeze at the

horizon, taking on the appearance of a Schwarzschild black hole. The di�erent layers of the star appear to merge into

one. The radius of the nearest point on the surface at the time of emission is 3.72, 1.50, and 1.01 Schwarzschild radii

respectively.

collapsed with the star would �nd themself falling uneventfully through the horizon to the central singularity
in a �nite proper time. How could these two perspectives be reconciled?
The solution is that the freezing at the horizon is an illusion. As pictured in Figure 7.2, space is falling at

the speed of light at the horizon. Light emitted outward at the horizon just hangs there, barrelling at the
speed of light through space that is falling at the speed of light. It takes an in�nite time for light to lift o�
the horizon and make it to the outside world. The star really did collapse, but the in�nite light travel time
from the horizon gives the illusion that the star freezes at the horizon.
That radially outgoing light rays at the horizon remain on the horizon is apparent in the Penrose diagram,

which shows the horizon as a null line, at 45◦.

7.24 Apparent horizon

Since light can escape from the surface or interior of the collapsing star as long as it is even slightly larger
than its Schwarzschild radius, it is possible to take the view that the horizon comes instantaneously into
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being at the moment that the star collapses through its Schwarzschild radius. This de�nition of the horizon is
called the apparent horizon. More generally, the apparent horizon is a null surface on which the congruence
of light rays that form the surface are neither diverging nor converging. In spherically symmetric spacetimes,
an apparent horizon is a place where radially moving null geodesics remain at rest in circumferential radius
r,

dr

dλ
= 0 . (7.86)

7.25 True horizon

An alternative de�nition of the horizon is to take it to be the boundary between outgoing null rays that
fall into the black hole versus those that go to in�nity. In any evolving situation, this de�nition of the
horizon, which is called the true horizon, or absolute horizon, depends formally on what happens in the
inde�nite future, but in a slowly evolving system the absolute horizon can be located with some precision
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Figure 7.19 Finkelstein, Kruskal-Szekeres, and Penrose spacetime diagrams of the Oppenheimer-Snyder of a pressure-

less, spherical star. The thick (red) line is the surface of the collapsing star. The geometry outside the surface of the

star is Schwarzschild, and the spacetime diagrams there look like those shown previously, Figures 7.7, 7.8, and 7.13.

The geometry inside the surface of the star is that of a uniform density, pressureless Friedmann-Lemaître-Robertson-

Walker universe. The lines of constant time (purple) are lines of constant Schwarzschild time outside the star's surface,

and lines of constant FLRW time inside the star's surface. Lines of constant circumferential radius r (blue) are spaced

uniformly in the tortoise coordinate r∗, equation (7.79), so before collapse appear bunched around the radius r = rs
that after collapse becomes the horizon radius. The thick (pink) line at 45◦ in the Kruskal and Penrose diagrams is the

true, or absolute, horizon, which divides the spacetime into a region where light rays are trapped, eventually falling

to zero radius, and a region where light rays can escape to in�nity. A singularity (cyan) forms when outgoing light

rays can no longer escape from zero radius, which happens slightly before the surface of the collapsing star reaches

zero radius.
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without knowing the future. The true horizon is part of the future horizon of an observer who remains at a
�nite distance outside the black hole into the inde�nite future.
Figure 7.19 shows Finkelstein, Kruskal, and Penrose spacetime diagrams of the Oppenheimer-Snyder col-

lapse of a star to a Schwarzschild black hole. The diagrams show the freely-falling surface of the collapsing
star, and the formation of the true horizon and of the singularity. The true horizon of the collapsing star
forms before the star has collapsed, and grows to meet the apparent horizon as the star falls through its
Schwarzschild radius. The central singularity forms slightly before the star has collapsed to zero radius. The
formation of the singularity is marked by the fact that light rays emitted at zero radius cease to be able to
move outward. In other words, the singularity forms when space starts to fall into it faster than light.

7.26 Penrose diagrams of Oppenheimer-Snyder collapse

Figure 7.20 shows a sequence of Penrose diagrams of Oppenheimer-Snyder collapse, progressing in time from
left to right. The diagrams are drawn from the perspective of an observer before collapse on the left, to
that of an observer after collapse on the right. The diagrams illustrate that, even though a Penrose diagram
supposedly encompasses all of the spacetime, it crams most of the spacetime into a few boundary points, and
the appearance of the diagram can vary dramatically depending on what part of the spacetime the diagram
centres. In Figure 7.20, the Penrose diagram looks like Minkowski well before collapse, and like Schwarzschild
well after collapse.
The Penrose diagrams in Figure 7.20 are drawn in the Penrose coordinates de�ned by equations (7.84)

with the function f(z) given by equation (7.85). Requiring the singularity to be horizontal, as is conventional,
imposes that f(z) be odd. Since other choices of f(z) could be made, the shapes of the Penrose diagrams
are not unique. However, other choices of smooth, monotonic, odd f(z) give diagrams quite similar to those

Figure 7.20 Sequence of Penrose diagrams illustrating the Oppenheimer-Snyder collapse of a pressureless, spherical

star to a Schwarzschild black hole, progressing in time of collapse from left to right. On the left, the collapse is to

the future of an observer at the centre of the diagram; on the right, the collapse is to the past of an observer at the

centre of the diagram. The diagrams are at times −16, −4, 0, 4, and 16 Schwarzschild time units (c = rs = 1) relative

to the middle diagram. On the left the Penrose diagram resembles that of Minkowski space, while on the right the

diagram resembles that of the Schwarzschild geometry. These Penrose diagrams are spacetime diagrams calculated in

the Penrose coordinates de�ned by equations (7.84) and (7.85).
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shown. In particular, as long as the singularity is chosen to be horizontal, it is impossible to arrange that
the left edge of the diagram, de�ned by the centre of the collapsing star at r = 0, be vertical.
In the evolving Penrose diagram of Figure 7.20, spacetime appears to �ow out of future in�nity, the point

at the top right of the diagram, down into past in�nity, the point at the bottom of the diagram. Inside the
horizon, as Schwarzschild time t goes by, spacetime appears to �ow to the left, to the top left corner of the
spacetime diagram. An infaller inside the horizon must of course follow a worldline at less than 45◦ from
vertical. However, infallers who fall in at di�erent times fall to di�erent places on the spacelike singularity.
From the perspective of an outside observer, infallers who fell in long ago are crammed to the top left corner
of the Penrose diagram.

7.27 Illusory horizon

The simple Oppenheimer-Snyder model of stellar collapse shows that the antihorizon of the complete Schwarz-
schild geometry is replaced by the surface of the collapsing star, and that beyond the star's surface is not
a parallel universe and a white hole, but merely the interior of the star, and the distant Universe glimpsed
through the star's interior.

singularity

illusory
horizon

tr
ue
ho
ri
zo
n

Black
Hole

Universe

pa
st
nu
ll
in
fin
ity

future
null

infinity

past
infinity

spatial
infinity

future
infinity

singularity
formed

Figure 7.21 Penrose diagram of a collapsed spherical star at late times. The Penrose diagram looks essentially identical

to the Penrose diagram 7.16 of the Schwarzschild geometry, except that the antihorizon is replaced by the illusory

horizon. The wiggly lines show the paths of outgoing light rays from the illusory horizon, and ingoing light rays from

the true horizon, as seen by an infaller who falls through the true horizon. An infaller looking directly towards the

black hole sees the illusory horizon ahead of them, whether they are outside or inside the true horizon. The true

horizon becomes visible to an infaller only after they have fallen through it. Once inside, the infaller sees the true

horizon behind them, in the direction away from the black hole.
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Figure 7.22 Six frames from a visualization of the view seen by an observer who free-falls into a Schwarzschild black

hole. The infaller is on a geodesic with energy per unit mass E = 1, and angular momentum per unit mass L = 1.96 rs.

From left to right and top to bottom, the observer is at radii 3.008, 1.501, 0.987, 0.508, 0.102, and 0.0132 Schwarzschild

radii. The illusory horizon is painted with a dark red grid, while the true horizon is painted with a grid coloured with

an appropriately red- or blue-shifted blackbody colour. The schematic map at the lower left of each frame shows

the trajectory (white line) of the observer through regions of stable circular orbits (green), unstable circular orbits

(yellow), no circular orbits (orange), the horizon (red line), and inside the horizon (red). The clock at the lower right

of each frame shows the proper time left to hit the singularity, in seconds, scaled to the mass 4× 106 M� of the Milky

Way's supermassive black hole (Ghez et al., 2005; Eisenhauer et al., 2005). The background is Axel Mellinger's Milky

Way (Mellinger, 2009) (with permission).
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As time goes by, the surface of the collapsing star becomes dimmer and more redshifted, taking on the
appearance of the Schwarzschild antihorizon, Figure 7.18. The name illusory horizon for the exponentially
dimming and redshifting surface was coined by Hamilton and Polhemus (2010). Figure 7.21 shows a Penrose
diagram of a spherical collapsed star, with the true and illusory horizons marked. The Penrose diagram is
just the limit of the sequence of the diagrams in Figure 7.20 from the perspective of an observer for whom the
star collapsed long ago. The Penrose diagram 7.21 looks identical to the Penrose diagram of a Schwarzschild
black hole, Figure 7.13, except that the antihorizon is replaced by the illusory horizon.
Unlike the antihorizon, the illusory horizon is not a future or past horizon, as de�ned by Hawking and Ellis

(1973). As the Penrose diagrams 7.20 show, the illusory horizon is neither the boundary of the past lightcone
of the future development of the worldline of any observer, nor the boundary of the future lightcone of the
past development of the worldline of any observer.
An object similar to the illusory horizon, the stretched horizon, was introduced by Susskind, Thorlacius,

and Uglum (1993). The stretched horizon was conceived as the place where, from the perspective of an outside
observer, Hawking radiation comes from, and the place where, from the perspective of an outside observer,
the interior quantum states of a black hole reside. The stretched horizon was argued to be located on a
spacelike surface one Planck area above the true horizon. However, the restriction to an outside observer is
too limiting, and the notion that the stretched horizon lives literally just above the true horizon has been
a source of confusion in the theoretical physics literature. If you go down to the true horizon, you do not
encounter the putative stretched horizon. The stretched horizon is an illusion, a mirage. Better call it the
illusory horizon.
Figure 7.22 shows six frames from a visualization (Hamilton and Polhemus, 2010) of the appearance of a

Schwarzschild black hole and its true and illusory horizons as perceived by an observer who free-falls through
the true horizon. The illusory horizon, the exponentially redshifting image of the long-ago collapsed star, is
painted with a dark red grid, as be�ts its dimmed, redshifted appearance. The true horizon is painted with
blackbody colours blueshifted or redshifted according to the shift that the infalling observer would see on
an emitter free-falling radially through the true horizon from zero velocity at in�nity. When an infaller falls
through the true horizon, they do not catch up with the illusory horizon, the image of the collapsed star,
which remains ahead of them. The visualization gives the impression that the illusory horizon is a �nite
distance ahead of the infaller, and this impression is correct: the a�ne distance between the illusory horizon
and an infaller at the true horizon is �nite, not zero. Calculation of what an infaller sees involves working in
the locally inertial frame (tetrad) of the infaller, so is deferred until after tetrads.
An infaller does not encounter the illusory horizon at the true horizon, but, as illustrated by the visual-

ization 7.22, they do have the impression of encountering the illusory horizon at the singularity. The a�ne
distance between the infaller and the illusory horizon tends to zero at the singularity.

7.28 Collapse of a shell of matter on to a black hole

The antihorizon of a Schwarzschild black hole is located at the horizon radius, one Schwarzschild radius.
Where is the illusory horizon located? From the perspective of an observer watching a spherical black hole
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Figure 7.23 Three frames in the collapse of a thin spherical shell of matter on to a pre-existing Schwarzschild black

hole, as seen by an outside observer at rest at a radius of 10 Schwarzschild radii (Schwarzschild radius of the �nal

black hole). The frames are spaced by 10 units of Schwarzschild time (c = rs = 1). The shell has the same mass as

the original black hole, so the black hole doubles in mass from beginning to end. During the collapse, the horizon of

the pre-existing black hole appears to expand outward, in due course reaching the size of the new black hole. The

expansion of the image of the pre-existing black hole is caused by gravitational lensing by the shell.

that collapsed from a star long ago, the illusory horizon appears to be located at (exponentially close to) the
antihorizon of the Schwarzschild black hole of the same mass.
What happens to the illusory horizon if the black hole accretes mass, and grows larger? Figure 7.23 shows

three frames in the collapse of a thin spherical shell, �20.17, of pressureless matter on to a pre-existing black
hole. The shell collapses from zero velocity at in�nity. As usual in this book, the frames are accurately ray-
traced. The shell of matter here has the same mass as the pre-existing black hole, so the black hole doubles
in mass as the shell collapses on to it. The visualization shows that the illusory horizon of the pre-existing
black hole expands to meet the infalling shell of matter. The apparent expansion is caused by gravitational
lensing of the pre-existing black hole by the shell. As time goes by, the shell appears to merge with the
horizon of the pre-existing black hole. The merged shell and expanded horizon take on the appearance of
the antihorizon of a Schwarzschild black hole of twice the original mass.
Figure 7.24 shows a Finkelstein spacetime diagram of the collapse of the shell of matter on to the black

hole. The initial black hole has half the mass of the �nal black hole. The initial apparent horizon at 0.5rs,
half the Schwarzschild radius of the �nal black hole, follows a null geodesic until the infalling shell hits it.
The shell de�ects the null geodesic, which falls to the central singularity. The true horizon follows a null
geodesic that joins continuously with the apparent horizon of the �nal black hole.
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Figure 7.24 Finkelstein spacetime diagram of a thin spherical shell of matter collapsing on to a pre-existing Schwarz-

schild black hole, in units rs of the Schwarzschild radius of the �nal black hole. The mass of the (red) shell equals that

of the pre-existing black hole, so the black hole doubles in mass as a result of accreting the shell. Whereas the apparent

horizon jumps discontinuously from 0.5rs to 1rs at the shell boundary, the true horizon increases continuously.

Concept question 7.13. Penrose diagram of a thin spherical shell collapsing on to a Schwarz-

schild black hole. Sketch a Penrose diagram of a thin spherical shell collapsing on to a pre-existing Schwarz-
schild black hole. Where are the apparent and true horizons?Answer. The Penrose diagram looks essentially
the same as Figure 7.13 (di�ering in that lines of constant time and radius are di�erent inside the shell).
The apparent horizon before collapse follows an outgoing null (45◦) line that hits the singularity inside the
true horizon, consistent with the Finkelstein diagram 7.24.

7.29 The illusory horizon and black hole thermodynamics

As will be discussed later in this book, the illusory horizon plays a central role in the thermodynamics of
black holes. The illusory horizon is the source of Hawking radiation, for observers both outside and inside
the true horizon. If, as proposed by Susskind, Thorlacius, and Uglum (1993), there is a holographic mapping
between the interior quantum states of a black hole and its horizon, then that holographic mapping must be
to the illusory horizon, for observers both outside and inside the true horizon.
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Figure 7.25 Rindler diagram, which is a Minkowski spacetime diagram showing lines of constant Rindler coordinates

α and l, equations (7.87) and (7.89). The Rindler lines are uniformly spaced by 0.2 in α and ln l. The spacetime

diagram resembles that of the analytically extended Schwarzschild geometry in Kruskal coordinates, Figure 7.11. The

null lines passing through the origin constitute future (line from lower left to upper right) and past (line from lower

right to upper left) horizons for Rindler observers in the right quadrant.

7.30 Rindler space and Rindler horizons

Rindler space is Minkowski space expressed in the coordinates of, and as experienced by, a system of uniformly
accelerating observers, called Rindler observers. A Rindler observer who accelerates uniformly in their own
frame with proper acceleration 1/l, passing through position {t, x} = {0, l}, follows a worldline in Minkowski
space

{t, x} = l {sinhα, coshα} (7.87)

with �xed l and varying α. The Rindler observer's worldline follows a point on the rim of the rotating space-
time wheel, �1.8.2. The Rindler line-element is the Minkowski line-element expressed in Rindler coordinates
{α, l, y, z}, Exercise 2.10,

ds2 = − l2dα2 + dl2 + dy2 + dz2 . (7.88)

Despite the fact that Rindler spacetime is Minkowski spacetime in disguise, it nevertheless resembles Schwarz-
schild spacetime in that, from the perspective of Rindler observers, Rindler space contains horizons. Moreover
Rindler observers are expected to see Hawking radiation, which in this context is called Unruh (1976) radi-
ation.
Figure 7.25 shows a Rindler diagram, a spacetime time diagram of Minkowski space, drawn in standard

Minkowski coordinates t and x, showing lines of constant Rindler coordinates α and l. The Rindler spacelike
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coordinate l is positive in the right quadrant, negative in the left quadrant. The Rindler coordinate vanishes,
l = 0, at the boundaries of the right and left quadrants, which form the null lines at 45◦ passing through
the origin in the Rindler diagram 7.25. The Rindler metric (7.88) has a coordinate singularity at l = 0. In
the upper and lower quadrants, the Rindler coordinate l switches from being spacelike to timelike (dl2 < 0).
Rindler coordinates in the upper and lower quadrants are de�ned by

{t, x} = l {coshα, sinhα} , (7.89)

where the timelike coordinate l is positive in the upper quadrant, negative in the lower quadrant.
The null (45◦) lines passing through the origin in Figure 7.25 are future and past horizons for Rindler

observers in the right quadrant of the Rindler diagram. A Rindler observer following a worldline (7.87) in
the right quadrant never gets to see the part of spacetime to the future of the null surface x = t, which
therefore constitutes a future horizon for the Rindler observer. The same Rindler observer can never send a
signal into the part of spacetime to the past of the null surface x = −t, which therefore constitutes a past
horizon, an antihorizon, for the Rindler observer.
The Rindler diagram 7.25 resembles the Kruskal diagram 7.11 of the analytically extended Schwarzschild

geometry, albeit without singularities. The Minkowski coordinates t and x are analogues of the Kruskal
coordinates tK and rK, while the Rindler coordinates α and l are analogues of the Schwarzschild coordinates
t and r. The Schwarzschild and Rindler time coordinates t and α are both Killing coordinates, �7.32. Lines
of constant Schwarzschild and Rindler time t and α follow straight lines in the corresponding Kruskal and
Rindler diagrams, Figures 7.11 and 7.25. The Schwarzschild and Rindler spatial coordinates r and l are
spacelike in the right and left quadrants, timelike in the upper and lower quadrants.

7.30.1 Penrose diagram of Rindler space

Figure 7.26 is a Penrose diagram of Rindler space. This is just a Penrose diagram of Minkowski space showing
lines of constant Rindler coordinates α and l. Penrose time and space coordinates tP and xP can be de�ned
by any conformal transformation

tP ± xP ≡ f(t± x) (7.90)

for which f(z) is �nite at z → ±∞. The Rindler lines acquire a symmetrical appearance on the Penrose
diagram provided that the conformal function f(z) is chosen to satisfy f(z) + f(−z) = constant. For the
Penrose diagram in Figure 7.26, the conformal function f(z) is

f(z) ≡ sign(z) +
2

π
atan

(
z − z−1

2

)
. (7.91)

The choice (7.91) is inspired by the form (10.180) of the coordinates that gives the Penrose diagram of de
Sitter space a symmetrical appearance. The Penrose diagram 7.26 resembles that of the analytically extended
Schwarzschild geometry, Figure 7.15, but without singularities.
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Concept question 7.14. Spherical Rindler space. The Rindler line-element (7.88) is plane-parallel,
with all the Rindler observers accelerating in the x-direction. Would not a better analogue of a spherical
black hole be the spherically symmetric Rindler line-element

ds2 = − r2
R dα

2 + dr2
R + r2do2 , (7.92)

where all Rindler observers accelerate in the radial direction with {t, r} = rR{sinhα, coshα}? Answer. The
spherical Rindler line-element (7.92) is indeed a viable line-element. However, it does not provide a better
analogue of a spherical black hole because the past and future horizons of a Rindler observer accelerating
in, say, the x-direction are �at surfaces at x± t = 0, not spherical surfaces at r ± t = 0.

7.31 Rindler observers who start at rest, then accelerate

Rindler space provides an analogue of the analytically extended Schwarzschild geometry. But a spherical
black hole formed from the collapse of a star is not described by the analytically extended geometry. Rather,
the analytic extension through the antihorizon is replaced by the interior of the collapsed star.
A Rindler analogue of a black hole that forms from the collapse of a star is obtained by considering a
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Figure 7.26 Penrose diagram of Rindler space. This is the Penrose diagram of Minkowski space corresponding to

the Rindler diagram 7.25. The Penrose coordinates tP and xP are related to Minkowski coordinates t and x by

equations (7.90). The Rindler lines are uniformly spaced by 0.4 in α and ln l. The Penrose diagram resembles that of

the analytically extended Schwarzschild geometry, Figure 7.15, but without singularities.
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Figure 7.27 Minkowski spacetime diagram, showing worldlines of observers who start at rest, then begin accelerating

uniformly, as Rindler observers, at t = 0. At t ≤ 0, the lines are lines of constant Minkowski time and space t and x,

while at t ≥ 0, the lines are lines of constant Rindler time and space α and l, equations (7.87) and (7.89). The Rindler

lines are uniformly spaced by 0.2 in α and ln l. The null line starting at the origin {t, x} = {0, 0} extending upward

at 45◦ from vertical is a future horizon for the Rindler observers.

Figure 7.28 Three frames in the appearance of Minkowski space as seen by a uniformly accelerating observer, a Rindler

observer. Minkowski space is represented by a unit box at rest, centred at the origin. The box is drawn as a 5× 5× 5

lattice. The Rindler observer starts at rest at unit distance from the origin, and watches rearward while accelerating

at unit acceleration away from the box. The �eld of view is 120◦ across the horizontal. The frames increase in time

from left to right, and are at 0, 2, and 4 units of proper time after the Rindler observer begins accelerating. As time

goes by, the lattice appears to freeze towards a two-dimensional surface, the illusory Rindler horizon.
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system of Rindler observers who are initially at rest, and begin accelerating only at some time t = 0. The
situation is illustrated in the spacetime diagram shown in Figure 7.27. This diagram is similar to the Rindler
diagram 7.25, except that the Rindler observers start accelerating at t = 0 instead of having been accelerating
into the inde�nite past. Just as a black hole formed from the collapse of a star has a future horizon but no
past horizon, so also the Rindler space of Rindler observers who start at rest contains a future horizon but
no past horizon.
Despite having no past horizon, a Rindler observer who starts from rest sees an illusory horizon form,

Figure 7.28, in much the same way that an observer watching a star collapse to a black hole sees an illu-
sory horizon form, Figure 7.18. The illusory horizon is the exponentially dimming and redshifting image of
Minkowski space around the Rindler observer. Figure 7.28 shows three frames in the appearance of a portion
of Minkowski space as seen by an Rindler observer watching rearward. As time goes by, Minkowski space
appears to compress and freeze toward a surface, the illusory horizon. The Rindler observer sees the illu-
sory horizon dim and redshift exponentially. Exercise 7.15 quanti�es the appearance of the Rindler illusory
horizon, which forms a hyperbola around the Rindler observer, with the Rindler observer at its focus.

7.31.1 Penrose diagram of Rindler observers who start at rest, then accelerate

Figure 7.29 shows a sequence of Penrose diagrams drawn from the perspective of Rindler observers who start
at rest and begin to accelerate at time t = 0, as in the spacetime diagram 7.27. These Penrose diagrams are

Figure 7.29 Sequence of Penrose diagrams of the Minkowski space shown in Figure 7.27, progressing in time from left

to right. The left edge of each diagram is the surface at x = 0. The diagrams at left are in the frames of observers

who are at rest relative to each other. In the middle diagram, the observers start to accelerate as Rindler observers.

The diagrams at right are in the frames of the Rindler observers, which become progressively more Lorentz boosted

compared to the rest frame. The diagrams are at times −8, −2, 0, 2, and 8 units of proper time of the observer who is

initially at rest at unit distance (x = 1 in Figure 7.27) from the origin. The Rindler lines are uniformly spaced by 0.4

in α and ln l. This sequence of Penrose diagrams resembles that of the Oppenheimer-Snyder collapse of a star shown

in Figure 7.20.
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calculated, not sketched, with Penrose coordinates given by equations (7.90). The left edge of each diagram
is the surface at x = 0. This sequence resembles the sequence of Penrose diagrams of Oppenheimer-Snyder
collapse of a star to a black hole, Figure 7.20, except that there is no singularity.
At left, before the observers start to accelerate, the Penrose diagram looks like that of Minkowski space.

The Rindler portion of the spacetime (the part above the green line) is crammed along the top right edge of
the Penrose diagram. At right, after the Rindler observers have started to accelerate, the Penrose diagram
is tilted by the Lorentz boost of the Minkowski space. The Minkowski portion of the spacetime (the part
below the green line) crams towards the bottom right edge of the diagram.
Aren't the Penrose diagrams in Figure 7.29 misleading because they omit the spacetime to the left of

the diagrams, at x < 0? Since Rindler observers are con�ned to the right quadrant of Rindler space, they
never get to see the region beyond their future horizon. Therefore there is no loss of generality to draw
the Minkowski spacetime diagram 7.27 with re�ection symmetry about x = 0. Applied to the Penrose
diagrams 7.29, re�ection symmetry means that light that passes that passes from x < 0 to x > 0 can be
considered to �bounce� at 45◦ o� the left edge of the diagram at x = 0. Whatever the case, as seen in
Exercise 7.15, light emitted from x < 0 appears to a Rindler observer asymptotically to dim, redshift, and
freeze at the observer's illusory horizon.

Exercise 7.15. Rindler illusory horizon. The purpose of this problem is to �gure out the appearance
to a Rindler observer of their illusory horizon. For simplicity, choose time units such that the Rindler
observer accelerates with unit acceleration. The coordinates {x, y, z} are spatial coordinates in Minkowski
space. Starting from rest on the x-axis at position x = 1, the Rindler observer accelerates in the positive
x-direction, reaching position x = x0 in the rest frame. After a su�ciently long Rindler proper time α, the
position x0 = coshα is large.
1. Shape. Show that points {x, y, z} that are close to the origin, in the sense of satisfying |x| � x0 and√

y2 + z2 � x0, appear to a Rindler observer to freeze towards a time-independent surface {l, y, z}, the
illusory horizon, satisfying

l = 1
2 (y2 + z2 − 1) . (7.93)

The Rindler observer sees their illusory horizon as a parabola with themself at the focus, the origin.

2. Redshift. Show further that the Rindler observer sees points on the illusory horizon redshifting expo-
nentially, at rate eα.

Solution.

1. Shape. In the Minkowski rest frame, a spatial point {x, y, z} relative to an observer at {x0, 0, 0} is at
position {x−x0, y, z}. If the observer is moving at velocity v in the x-direction, then according to the
rules of 4-dimensional perspective, �1.13.2, the point appears in the observer's frame to lie at position
{l, y, z} with transverse coordinates y, z unchanged, and l given by

l = γ(x− x0) + γv
√

(x− x0)2 + y2 + z2 , (7.94)

where γ = 1/
√

1− v2 is the Lorentz gamma factor. Points near the origin, with |x| < x0, are behind the
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observer, satisfying x− x0 < 0. Thus equation (7.94) factors to

l = γ(x− x0)
[
1− v

√
1 + (y2 + z2)/(x− x0)2

]
, (7.95)

which rearranges to

l =
γ(x− x0)[1− v2 − v2(y2 + z2)/(x− x0)2]

1 + v2
√

1 + (y2 + z2)/(x− x0)2

=
1

1 + v2
√

1 + (y2 + z2)/(x− x0)2

[
x− x0

γ
− v2(y2 + z2)γ

x− x0

]
. (7.96)

For a Rindler observer, the position x0 is just equal to the Lorentz gamma factor, x0 = coshα = γ.
Under the conditions x0 ≡ γ � 1, along with x0 � |x| and x0 �

√
y2 + z2, equation (7.96) reduces to

l ≈ − 1
2 + 1

2 (y2 + z2) , (7.97)

yielding equation (7.93) as claimed.
2. Redshift. According to the rules of 4-dimensional perspective, �1.13.2, the redshift factor, the ratio
Eem/Eobs of emitted to observed photon energies from a point, equals the ratio of the emitted to
observed distances to the point,

Eem

Eobs
=

√
(x− x0)2 + y2 + z2√

l2 + y2 + z2
. (7.98)

A point {l, y, z} on the Rindler observer's illusory horizon appears �xed to the observer, l satisfying
equation (7.97). The only quantity on the right hand side of equation (7.98) that various with the Rindler
observer's time α is x0. Under the conditions x0 ≡ coshα� 1, along with x0 � |x| and x0 �

√
y2 + z2,

the redshift factor satis�es
Eem

Eobs

∝∼ x0 ∝∼ e
α . (7.99)

The redshift factor of a point on the Rindler observer's illusory horizon thus increases exponentially
with Rindler time α.

Exercise 7.16. Area of the Rindler horizon. What is the area of a Rindler observer's horizon?
Solution. The area of the Rindler horizon is the area of the spatial y�z plane orthogonal to the Rindler
observer's boost plane t�x. For a Rindler observer who starts accelerating at a �nite time, the illusory horizon
after α acceleration times is well-formed only over a region of size

√
y2 + z2 . eα about the origin. Thus the

area of the illusory Rindler horizon is of order ∼ e2α.

7.32 Killing vectors

The Schwarzschild metric presents an opportunity to introduce the concept of Killing vectors (after Wil-
helm Killing, not because the vectors kill things, though the latter is true), which are associated with
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symmetries of the spacetime. The �ow through spacetime of the Killing vectors associate with a symmetry
is called the Killing vector �eld. A coordinate that is constant along the �ow lines of a Killing vector �eld
is called a Killing coordinate.

7.32.1 Time translation symmetry

The time translation invariance of the Schwarzschild geometry is evident from the fact that the metric is
independent of the Schwarzschild time coordinate t. Equivalently, the partial time derivative ∂/∂t of the
Schwarzschild metric is zero. The associated Killing vector ξµ at each point of the spacetime is then de�ned
by

ξµ
∂

∂xµ
=

∂

∂t
, (7.100)

so that in Schwarzschild coordinates {t, r, θ, φ}

ξµ = {1, 0, 0, 0} . (7.101)

In coordinate-independent notation, the Killing vector is

ξ = eµξ
µ = et . (7.102)

The Schwarzschild time coordinate t is a Killing coordinate.
This may seem like overkill � couldn't one just say that the metric is independent of time t and be done

with it? The answer is that symmetries are not always evident from the metric, as will be seen in the next
section 7.32.2.
Because the Killing vector et is the unique timelike Killing vector of the Schwarzschild geometry, it has

a de�nite meaning independent of the coordinate system. It follows that its scalar product with itself is a
coordinate-independent scalar

ξµξ
µ = et · et = gtt = −

(
1− 2M

r

)
. (7.103)

In curved spacetimes, it is important to be able to identify scalars, which have a physical meaning independent
of the choice of coordinates.

7.32.2 Spherical symmetry

The azimuthal rotational symmetry of the Schwarzschild metric is evident from the fact that the metric is
independent of the azimuthal coordinate φ, implying that φ is a Killing coordinate. The associated Killing
vector at each point of the spacetime is

eφ (7.104)

with components {0, 0, 0, 1} in Schwarzschild coordinates {t, r, θ, φ}. Figure 7.30 illustrates the Killing vector
�eld corresponding to the azimuthal rotational symmetry.



178 Schwarzschild Black Hole

φ

Figure 7.30 The Killing vector �eld associated with rotation of a 2-sphere about an axis.

The Schwarzschild metric is fully spherically symmetric, not just azimuthally symmetric. Since the 3D
rotation group O(3) is 3-dimensional, it is to be expected that there are three Killing vectors. You may
recognize from quantum mechanics that ∂/∂φ is (modulo factors of i and ~) the z-component of the angular
momentum operator L = {Lx, Ly, Lz} in a coordinate system where the azimuthal axis is the z-axis. The 3
components of the angular momentum operator are given by:

iLx = y
∂

∂z
− z ∂

∂y
= − sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ
, (7.105a)

iLy = z
∂

∂x
− x ∂

∂z
= cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ
, (7.105b)

iLz = x
∂

∂y
− y ∂

∂x
=

∂

∂φ
. (7.105c)

The 3 rotational Killing vectors are correspondingly:

rotation about x-axis: − sinφ eθ − cot θ cosφ eφ , (7.106a)

rotation about y-axis: cosφ eθ − cot θ sinφ eφ , (7.106b)

rotation about z-axis: eφ . (7.106c)

The 3 Killing vectors span the 2-dimensional surface of the unit sphere, and are therefore not linearly
independent. Speci�cally, they satisfy

xLx + yLy + zLz = 0 . (7.107)

Note that although a linear combination of Killing vectors with constant coe�cients is a Killing vector, a
linear combination with non-constant coe�cients is not necessarily a Killing vector.
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You can check that the action of the x and y rotational Killing vectors on the metric does not kill the
metric. For example, iLxgφφ = 2r2 cosφ sin θ cos θ does not vanish. This example shows that a more powerful
and general condition, described in the next section 7.32.3, is needed to establish whether a quantity is or is
not a Killing vector.
Because spherical symmetry does not de�ne a unique azimuthal axis eφ, its scalar product with itself

eφ · eφ = gφφ = −r2 sin2θ is not a coordinate-invariant scalar. However, the sum of the scalar products of
the 3 rotational Killing vectors is rotationally invariant, and is therefore a coordinate-invariant scalar

(− sinφ eθ − cot θ cosφ eφ)2 + (cosφ eθ − cot θ sinφ eφ)2 + e2
φ = gθθ + (cot2θ + 1)gφφ = −2r2 . (7.108)

This shows that the circumferential radius r is a scalar, as you would expect.

7.32.3 Killing equation

As seen in the previous section, a Killing vector does not always kill the metric in a given coordinate system.
This is not really surprising given the arbitrariness of coordinates in general relativity. What is true is that
a quantity is a Killing vector if and only if there exists a coordinate system (possibly in patches) such that
the Killing vector kills the metric in that system.
Suppose that in some coordinate system the metric is independent of the coordinate φ. Then the covariant

φ-momentum pφ of a particle along a geodesic is a constant of motion, equation (4.50),

pφ = constant . (7.109)

Equivalently

ξνpν = constant , (7.110)

where ξν is the associated Killing vector, whose only non-zero component is ξφ = 1 in this particular
coordinate system. The converse is also true: if ξνpν = constant along all geodesics, then ξν is a Killing
vector. The constancy of ξνpν along all geodesics is equivalent to the condition that its a�ne derivative
vanish along all geodesics

dξνpν
dλ

= 0 . (7.111)

But this is equivalent to

0 = pµD̊µ(ξνpν) = pµpνD̊µξν = 1
2p
µpν(D̊µξν + D̊νξµ) , (7.112)

the ˚ atop D̊µ serving as a reminder that this is the torsion-free covariant derivative, �2.12. The second
equality of equations (7.112) follows from the geodesic equation, pµD̊µpν = 0, and the last equality is true
because of the symmetry of pµpν in µ ↔ ν. A necessary and su�cient condition for equation (7.112) to be
true for all geodesics is that

D̊(µξν) = 0 , (7.113)

which is Killing's equation. This equation is the desired necessary and su�cient condition for ξν to be
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a Killing vector. It is a generally covariant equation, valid in any coordinate system. Equation (7.113) can
also be written as the statement that the Lie derivative of the metric, equation (7.151), along the Killing
direction ξν vanishes,

Lξgµν = 0 . (7.114)

7.32.4 Conformal Killing vector

Sometimes a spacetime has a weaker conformal symmetry in which, instead of the metric being indepen-
dent of a coordinate (in some system of coordinates), the metric depends on a coordinate φ only through an
overall scaling, gµν ∝ e2φ, equation (4.53). In that case the covariant momentum pφ is constant only along
null geodesics, equation (4.56),

pφ = constant along null geodesics . (7.115)

The associated conformal Killing vector ξν , satisfying equation (7.110), is the vector whose only non-zero
component is ξφ = 1 in a coordinate system where φ is one of the coordinates. Equation (7.112) is modi�ed
to

0 = pµpν(D̊(µξν) − 1
4gµνD̊κξ

κ) , (7.116)

which holds because pµpνgµν = 0 for null geodesics. A necessary and su�cient for equation (7.116) to hold
for all null geodesics is the conformal Killing equation

D̊(µξν) − 1
4gµνD̊κξ

κ = 0 , (7.117)

the left hand side of which is the trace-free part of D̊(µξν). The factor of
1
4 in equations (7.116) and (7.117)

is for 4 spacetime dimensions (where gµνgµν = 1
4 ); the factor should be replaced by 1/N in N spacetime

dimensions.

7.33 Killing tensors

Some symmetries are expressed by Killing tensors ξµν rather than Killing vectors. Whereas for a Killing
vector, ξνpν is a constant of motion along geodesics, equation (7.110), for a Killing tensor

ξµνpµpν = constant . (7.118)

A Killing tensor ξµν is symmetric without loss of generality. The metric gµν is itself a Killing tensor in any
spacetime, since

gµνpµpν = −m2 = constant . (7.119)

The condition of the constancy of ξµνpµpν along geodesics is equivalent to the condition that its a�ne
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derivative vanishes along all geodesics, analogously to equation (7.111). A necessary and su�cient condition
for this to be true is Killing's equation

D̊(κξµν) = 0 , (7.120)

where the parentheses denote symmetrization over all indices.
A conformal Killing tensor is one that satis�es equation (7.118) only along null geodesics. The corre-

sponding Killing equation is the trace-free part of equation (7.120).

7.34 Lie derivative

It was remarked above that Killing's equation (7.113) can be recast as the statement that the Lie derivative
of the metric along the Killing vector vanishes, equation (7.114). This section presents an exposition of the
Lie derivative.
The Lie derivative of a coordinate tensor, whose mathematical form is derived in ��7.34.2�7.34.6, is

physically minus the rate of change of the coordinate tensor with respect to a prescribed change in the
coordinates, equation (7.121). The change in coordinates should be understood as leaving the spacetime
itself and physical quantities within it unchanged.
Let the coordinates xµ be changed by an in�nitesimal amount ε with a prescribed shape ξµ(x) as a function

of spacetime,

xµ → x′µ = xµ + εξµ . (7.121)

The Lie derivative of a coordinate tensor Aκλ..µν... is de�ned such that the change in the coordinate tensor
under the coordinate transformation (7.121) is given by ε times minus its Lie derivative, denoted LξAκλ...µν...,

Aκλ...µν...(x)→ A′κλ..µν...(x) = Aκλ...µν...(x)− εLξAκλ...µν... . (7.122)

Equivalently,

LξAκλ...µν... = lim
ε→0

Aκλ...µν...(x)−A′κλ..µν...(x)

ε
. (7.123)

The reason for the minus sign in the de�nition (7.122) of the Lie derivative is that, as will be seen below,
equation (7.148), the principal term in the expansion of the Lie derivative of a tensor A.... in terms of ordinary
derivatives is just its directed derivative along the direction ξκ,

LξA.... = ξκ
∂A....
∂xκ

+ ... . (7.124)

As its name suggests, the Lie derivative acts like a derivative: it is linear, and it satis�es the Leibniz rule.
The Lie derivative is also a covariant derivative: the Lie derivative of a coordinate tensor is a coordinate
tensor. Whereas the usual covariant derivative of a tensor is a tensor of rank one higher, the Lie derivative
of a tensor is a tensor of the same rank. The Lie derivative can be expressed entirely in terms of coordinate
derivatives without any connection coe�cients, or equivalently in terms of torsion-free covariant derivatives.
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Concept question 7.17. What use is a Lie derivative? Answer. The general rule to remember is that
the change in any object under an in�nitesimal coordinate transformation is, by construction, (minus) its Lie
derivative. A prominent application of the Lie derivative is in general relativistic perturbation theory, Chap-
ter 26, where it is essential to distinguish between genuine physical perturbations of the spacetime geometry
and perturbations associated with transformations of the coordinates. Another important application of the
Lie derivative is to derive the general relativistic law of conservation of energy-momentum, �16.11.2. The
conservation law is a consequence of symmetry of the general relativistic action under coordinate transfor-
mations. Finally (the nominal motivation for introducing Lie derivatives here), if a spacetime possesses some
special symmetry under a coordinate transformation, then that symmetry may be expressed as the vanishing
of the Lie derivative of the metric with respect to the symmetry, equation (7.114).

7.34.1 The di�erence between the covariant derivative and the Lie derivative

The usual covariant derivative of a tensor A (dropping indices for brevity) follows from the di�erence between
the tensor A(x′) evaluated at a shifted position x′, and the tensor A(x) evaluated at the original position x
parallel-transported to the shifted position x′,

DA ∝ A(x′)−A(x)parallel−transported . (7.125)

Now if the shift between x′ and x is the result of an in�nitesimal coordinate transformation, x′ = x + εξ.
then there is another object A′(x′) available, which is the tensor A(x) transformed into the new (primed)
coordinate frame. The Lie derivative is the di�erence between the tensor A(x′) evaluated at a shifted position
x′, and the tensor A(x) evaluated at the original position x, transformed into the new frame, and parallel-
transported to the shifted position x′,

LξA ∝ A(x′)−A′(x′)parallel−transported . (7.126)

Concept question 7.17 discusses the physical justi�cation for this mathematical arti�ce.

7.34.2 Lie derivative of a coordinate scalar

Under a coordinate transformation (7.121), a coordinate-frame scalar Φ(x) remains unchanged

Φ(x)→ Φ′(x′) = Φ(x) . (7.127)

Here the scalar Φ′(x′) is evaluated at position x′, which is the same as the original physical position x since
all that has changed is the coordinates, not the physical position. However, the Lie derivative gives the
change in a tensor evaluated at �xed coordinate position x, not at �xed physical position. The value of Φ′

at x is related to that at x′ by

Φ′(x) = Φ′(x′ − εξ) = Φ′(x′)− εξκ ∂Φ′

∂xκ
. (7.128)
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Since ε is a small quantity, and Φ′ di�ers from Φ by a small quantity, the last term εξκ∂Φ′/∂xκ in equa-
tion (7.132) can be replaced by εξκ∂Φ/∂xκ to linear order in ε. Putting equations (7.127) and (7.128) together
shows that the coordinate scalar Φ changes under a coordinate transformation (7.121) as

Φ(x)→ Φ′(x) = Φ(x)− εLξΦ , (7.129)

where LξΦ is the Lie derivative of the scalar Φ,

LξΦ = ξκ
∂Φ

∂xκ
. (7.130)

7.34.3 Lie derivative of a contravariant coordinate vector

A similar argument applies to coordinate vectors. Under an in�nitesimal coordinate transformation (7.121),
a contravariant coordinate 4-vector Aµ(x) transforms in the usual way as

Aµ(x)→ A′µ(x′) = Aκ(x)
∂x′µ

∂xκ
= Aµ(x) + εAκ(x)

∂ξµ

∂xκ
. (7.131)

As in the scalar case, the vector A′µ(x′) is evaluated at position x′, which is the same as the original physical
position since all that has changed is the coordinates, not the physical position. Again, the Lie derivative
gives the change in the vector evaluated at coordinate position x, not x′. The value of A′µ at x is related to
that at x′ by

A′µ(x) = A′µ(x′ − εξ) = A′µ(x′)− εξκ ∂A
′µ

∂xκ
. (7.132)

The last term εξκ∂A′µ/∂xκ in equation (7.132) can be replaced by εξκ∂Aµ/∂xκ to linear order in the
in�nitesimal parameter ε. Putting equations (7.131) and (7.132) together shows that the coordinate 4-vector
Aµ changes under a coordinate transformation (7.121) as

Aµ(x)→ A′µ(x) = Aµ(x)− εLξAµ , (7.133)

where LξAµ is the Lie derivative of the contravariant vector Aµ,

LξAµ = ξκ
∂Aµ

∂xκ
−Aκ ∂ξ

µ

∂xκ
. (7.134)

The ordinary partial derivatives in equation (7.134) can be replaced by torsion-free covariant derivatives
(the ˚ atop D̊κ is a reminder that it is the torsion-free covariant derivative)

LξAµ = ξκD̊κA
µ −AκD̊κξ

µ a coordinate vector . (7.135)

Equation (7.135) holds, and the Lie derivative is a tensor, regardless of whether torsion is present. An
equivalent expression for the Lie derivative of a coordinate vector Aµ in terms of torsion-full covariant
derivatives Dκ is

LξAµ = ξκDκA
µ −AκDκξ

µ +AκξλSµκλ , (7.136)
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where Sµκλ is the torsion.

Exercise 7.18. Equivalence of expressions for the Lie derivative. Con�rm that equations (7.134),
(7.135), and (7.136) are all equivalent.

7.34.4 Lie bracket

If Aµ and Bµ are two contravariant coordinate vectors, then the Lie derivative with respect to Aµ of Bµ is
minus the Lie derivative with respect to Bµ of Aµ,

LABµ = Aκ
∂Bµ

∂xκ
−Bκ ∂A

µ

∂xκ
= −LBAµ . (7.137)

This antisymmetric property motivates de�ning the antisymmetric Lie bracket of two vectors A ≡ eµAµ
and B ≡ eµBµ to be

[A,B] ≡ LAB = eµLABµ = −[B,A] . (7.138)

The Lie bracket elevates the space of vectors on the manifold to a Lie algebra.

Exercise 7.19. Commutator of Lie derivatives.

1. Show that if A, B, and C are vectors, then the commutator of Lie derivatives of C is

[LA,LB]C = [[A,B],C] . (7.139)

2. Show that the commutator of Lie derivatives is the Lie derivative of the commutator,

[LA,LB] = L[A,B] . (7.140)

Solution.

1. This is an application of the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 . (7.141)

The commutator of Lie derivatives of C is

[LA,LB]C = LA(LBC)− LB(LAC) = [A, [B,C]]− [B, [A,C]] = [[A,B],C] . (7.142)

2. It is straightforward to check that equation (7.140) holds when acting on scalars. Equation (7.140) also
holds when acting on vectors, since the rightmost side of equation (7.142) is, from equation (7.138),
L[A,B]C, so that for vectors C,

[LA,LB]C = L[A,B]C . (7.143)

Since LA and LB satisfy the Leibniz rule, so also does their commutator [LA,LB]. It then follows that
equation (7.140) holds when acting on arbitrary products. Thus equation (7.140) holds acting on a
general tensor.
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7.34.5 Lie derivative of a covariant coordinate vector

Under a coordinate transformation (7.121), a covariant coordinate 4-vector Aµ(x) transforms in the usual
way as

Aµ(x)→ A′µ(x′) = Aκ(x)
∂xκ

∂x′µ
= Aµ(x)− εAκ(x)

∂ξκ

∂xµ
. (7.144)

Again, the vector A′µ(x′) is evaluated at position x′, which is the same as the original physical position x
since all that has changed is the coordinates, not the physical position. And again, the Lie derivative gives
the change in the vector evaluated at coordinate position x, not the physical position x′. The value of A′µ at
x is related to that at x′ by

A′µ(x) = A′µ(x′ − εξ) = A′µ(x′)− εξκ
∂A′µ
∂xκ

, (7.145)

and again, the last term εξκ∂A′µ/∂x
κ in equation (7.145) can be replaced by εξκ∂Aµ/∂xκ to linear order in

ε. Putting equations (7.131) and (7.132) together shows that the covariant coordinate 4-vector Aµ changes
under a coordinate transformation (7.121) as

Aµ(x)→ A′µ(x) = Aµ(x)− εLξAµ , (7.146)

where LξAµ is the Lie derivative of the covariant vector Aµ,

LξAµ = ξκ
∂Aµ
∂xκ

+Aκ
∂ξκ

∂xµ
. (7.147)

7.34.6 Lie derivative of a coordinate tensor

In general, the Lie derivative of a coordinate tensor Aκλ...µν... is de�ned by

LξAκλ...µν... ≡ ξπ
∂Aκλ...µν...

∂xπ
+Aκλ...πν...

∂ξπ

∂xµ
+Aκλ...µπ...

∂ξπ

∂xν
... −Aπλ...µν...

∂ξκ

∂xπ
−Aκπ...µν...

∂ξλ

∂xπ
a coordinate tensor ,

(7.148)
with an overall ∂A term, and a +∂ξ term for each covariant index and a −∂ξ term for each contravariant
index. Equivalently, in terms of torsion-free covariant derivatives,

LξAκλ...µν... = ξπD̊πA
κλ...
µν... +Aκλ...πν...D̊µξ

π +Aκλ...µπ...D̊νξ
π ... −Aπλ...µν... D̊πξ

κ −Aκπ...µν...D̊πξ
λ a coordinate tensor .

(7.149)
Equivalently, in terms of torsion-full covariant derivatives,

LξAκλ...µν... = ξπDπA
κλ...
µν... +Aκλ...πν...Dµξ

π +Aκλ...µπ...Dνξ
π ... −Aπλ...µν...Dπξ

κ −Aκπ...µν...Dπξ
λ ...

+
(
Aκλ...πν...S

π
µρ +Aκλ...µπ...S

π
νρ ... −Aπλ...µν...S

κ
πρ −Aκπ...µν...S

λ
πρ

)
ξρ a coordinate tensor . (7.150)
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Exercise 7.20. Lie derivative of the metric. What is the Lie derivative of the metric tensor gµν along
the direction ξκ?
Solution. The Lie derivative of the metric gµν along ξκ is

Lξgµν = ξκ
∂gµν
∂xκ

+ gκν
∂ξκ

∂xµ
+ gµκ

∂ξκ

∂xν

=
∂ξν
∂xµ

+
∂ξµ
∂xν
− 2Γ̊κµνξ

κ

= D̊µξν + D̊νξµ , (7.151)

where Γ̊κµν is the torsion-free coordinate-frame connection, equation (2.63), and D̊µ is the torsion-free
covariant derivative.

Exercise 7.21. Lie derivative of the inverse metric. Show that the Lie derivative of a Kronecker delta
is zero,

Lξδκµ = 0 . (7.152)

Show that the Lie derivative of the inverse metric tensor gκλ is

Lξgκλ = −gκµgλνLξgµν = −
(
D̊κξλ + D̊λξκ

)
. (7.153)

Exercise 7.22. Lie derivative of the metric determinant. Show that the Lie derivative of the metric
determinant is

Lξ ln |g| = gµνLξgµν = ξµ
∂ ln |g|
∂xµ

+ 2
∂ξµ

∂xµ
. (7.154)

Solution. The �rst equality of equation (7.154) follows because a Lie derivative is a variation (with respect to
a coordinate transformation), and the variation of the determinant of any matrix is given by equation (2.77).
The second equality of equation (7.154) follows from the �rst line of equations (7.151).
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Reissner-Nordström Black Hole

The Reissner-Nordström geometry, discovered independently by Hans Reissner (1916), HermannWeyl (1917),
and Gunnar Nordström (1918), describes the unique spherically symmetric static solution for a black hole
with mass and electric charge in asymptotically �at spacetime.
As with the Schwarzschild geometry, the mathematics of the Reissner-Nordström geometry was under-

stood long before conceptual understanding emerged. The meaning of the Reissner-Nordström geometry was
eventually clari�ed by Graves and Brill (1960).

8.1 Reissner-Nordström metric

The Reissner-Nordström metric for a black hole of mass M and electric charge Q is, in geometric units
c = G = 1,

ds2 = −∆ dt2 + ∆−1dr2 + r2do2 , (8.1)

where ∆(r) is the horizon function,

∆ ≡ 1− 2M

r
+
Q2

r2
. (8.2)

The Reissner-Nordström metric (8.1) looks like the Schwarzschild metric (7.1) with the replacement

M →M(r) = M − Q2

2r
. (8.3)

The quantity M(r) in equation (8.3) has a coordinate-independent interpretation as the mass M(r) interior
to radius r, which here is the mass M at in�nity, minus the mass in the electric �eld E = Q/r2 outside r,∫ ∞

r

E2

8π
4πr2dr =

∫ ∞
r

Q2

8πr4
4πr2dr =

Q2

2r
. (8.4)

This seems like a Newtonian calculation of the energy in the electric �eld, but it turns out to be valid also
in general relativity, essentially because the radial electric �eld E is unchanged by a Lorentz boost along the
radial direction.
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Real astronomical black holes probably have very little electric charge, because the Universe as a whole
appears almost electrically neutral (and Maxwell's equations in fact demand that the Universe in its entirety
should be exactly electrically neutral), and a charged black hole would quickly neutralize itself. It would
probably not neutralize itself completely, but have some small residual positive charge, because protons
(positive charge) are more massive than electrons (negative charge), so it is slightly easier for protons than
electrons to overcome a Coulomb barrier.
Nevertheless, the Reissner-Nordström solution is of more than passing interest because its internal geom-

etry resembles that of the Kerr solution for a rotating black hole.

Concept question 8.1. Units of charge of a charged black hole. What is the charge Q in standard
(either gaussian or SI) units?

8.2 Energy-momentum tensor

The Einstein tensor of the Reissner-Nordström metric (8.1) is diagonal, with elements given by

Gνµ =


Gtt 0 0 0

0 Grr 0 0

0 0 Gθθ 0

0 0 0 Gφφ

 = 8π


−ρ 0 0 0

0 pr 0 0

0 0 p⊥ 0

0 0 0 p⊥

 =
Q2

r4


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 . (8.5)

The trick of writing one index up and the other down on the Einstein tensor Gνµ partially cancels the
distorting e�ect of the metric, yielding the proper energy density ρ, the proper radial pressure pr, and
transverse pressure p⊥, up to factors of ±1. A more systematic way to extract proper quantities is to work
in the tetrad formalism, Chapter 11.
The energy-momentum tensor is that of a radial electric �eld

E =
Q

r2
. (8.6)

Notice that the radial pressure pr is negative, while the transverse pressure p⊥ is positive. It is no coincidence
that the sum of the energy density and pressures is twice the energy density, ρ+ pr + 2p⊥ = 2ρ.
The negative pressure, or tension, of the radial electric �eld produces a gravitational repulsion that domi-

nates at small radii, and that is responsible for much of the strange phenomenology of the Reissner-Nordström
geometry. The gravitational repulsion mimics the centrifugal repulsion inside a rotating black hole, for which
reason the Reissner-Nordström geometry is often used a surrogate for the rotating Kerr-Newman geometry.
At this point, the statements that the energy-momentum tensor is that of a radial electric �eld, and that

the radial tension produces a gravitational repulsion that dominates at small radii, are true but unjusti�ed
assertions.
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8.3 Weyl tensor

As with the Schwarzschild geometry (indeed, any spherically symmetric geometry), only 1 of the 10 inde-
pendent spin components of the Weyl tensor is non-vanishing, the real spin-0 component, the Weyl scalar
C. The Weyl scalar for the Reissner-Nordström geometry is

C = − M

r3
+
Q2

r4
. (8.7)

The Weyl scalar goes to in�nity at zero radius,

C →∞ as r → 0 , (8.8)

signalling the presence of a genuine singularity at zero radius, where the curvature, the tidal force, diverges.

8.4 Horizons

The Reissner-Nordström geometry has not one but two horizons. The horizons occur where an object at rest
in the geometry, dr = dθ = dφ = 0, follows a null geodesic, ds2 = 0, which occurs where the horizon function
∆, equation (8.2), vanishes,

∆ = 0 . (8.9)

This is a quadratic equation in r, and it has two solutions, an outer horizon r+ and an inner horizon r−

r± = M ±
√
M2 −Q2 . (8.10)

It is straightforward to check that the Reissner-Nordström time coordinate t is timelike outside the outer
horizon, r > r+, spacelike between the horizons r− < r < r+, and again timelike inside the inner horizon
r < r−. Conversely, the radial coordinate r is spacelike outside the outer horizon, r > r+, timelike between
the horizons r− < r < r+, and spacelike inside the inner horizon r < r−.
The physical meaning of this strange behaviour is akin to that of the Schwarzschild geometry. As in the

Schwarzschild geometry, outside the outer horizon space is falling at less than the speed of light; at the outer
horizon space hits the speed of light; and inside the outer horizon space is falling faster than light. But a new
ingredient appears. The gravitational repulsion caused by the negative pressure of the electric �eld slows
down the �ow of space, so that it slows back down to the speed of light at the inner horizon. Inside the inner
horizon space is falling at less than the speed of light.

8.5 Gullstrand-Painlevé metric

Deeper insight into the Reissner-Nordström geometry comes from examining its Gullstrand-Painlevé metric.
The Gullstrand-Painlevé metric for the Reissner-Nordström geometry has the same form as that for the
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Figure 8.1 Depiction of the Gullstrand-Painlevé metric for the Reissner-Nordström geometry, for a black hole of charge

Q = 0.96M . The Gullstrand-Painlevé line-element de�nes locally inertial frames attached to observers who free-fall

radially from zero velocity at in�nity. Frames fall at less than the speed of light outside the outer horizon, hit the

speed of light at the outer horizon, and fall faster than light in the black hole region inside the outer horizon. The

gravitational attraction from the mass of the black hole is counteracted by a gravitational repulsion produced by the

tension (negative radial pressure) of the electric �eld. The repulsion grows stronger at smaller radii, slowing the in�ow.

The in�ow slows back down to the speed of light at the inner horizon, comes to a halt at the turnaround radius, turns

around, and accelerates outward. Now moving outward, the �ow hits the speed of light at the inner horizon, and passes

outward through the inner horizon into a new region of spacetime, a white hole, where frames are moving outward

faster than light. The repulsion from the tension of the electric �eld weakens at larger radii, slowing the out�ow. The

out�ow drops back down to the speed of light at the outer horizon of the white hole, and exits the outer horizon into

a new piece of spacetime.

Schwarzschild geometry,

ds2 = − dt2ff + (dr − β dtff)2 + r2do2 . (8.11)

The velocity β is again the escape velocity, but this is now

β = ∓
√

2M(r)

r
, (8.12)

where M(r) = M − Q2/2r is the interior mass already given as equation (8.3). Horizons occur where the
magnitude of the velocity β equals the speed of light

|β| = 1 , (8.13)

which happens at the outer and inner horizons r = r+ and r = r−, equation (8.10).
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The Gullstrand-Painlevé metric once again paints the picture of space falling into the black hole. Outside
the outer horizon r+ space falls at less than the speed of light, at the horizon space falls at the speed of
light, and inside the horizon space falls faster than light. But the gravitational repulsion produced by the
tension of the radial electric �eld starts to slow down the in�ow of space, so that the infall velocity reaches
a maximum at r = Q2/M . The infall slows back down to the speed of light at the inner horizon r−. Inside
the inner horizon, the �ow of space slows all the way to zero velocity, β = 0, at the turnaround radius

r0 =
Q2

2M
. (8.14)

Space then turns around, the velocity β becoming positive, and accelerates back up to the speed of light.
Space is now accelerating outward, to larger radii r. The outfall velocity reaches the speed of light at the
inner horizon r−, but now the motion is outward, not inward. Passing back out through the inner horizon,
space is falling outward faster than light. This is not the black hole, but an altogether new piece of spacetime,
a white hole. The white hole looks like a time-reversed black hole. As space falls outward, the gravitational
repulsion produced by the tension of the radial electric �eld declines, and the out�ow slows. The out�ow
slows back to the speed of light at the outer horizon r+ of the white hole. Outside the outer horizon of the
white hole is a new universe, where once again space is �owing at less than the speed of light.
What happens inward of the turnaround radius r0, equation (8.14)? Inside this radius the interior mass

M(r), equation (8.3), is negative, and the velocity β is imaginary. The interior massM(r) diverges to negative
in�nity towards the central singularity at r → 0. The singularity is timelike, and in�nitely gravitationally
repulsive, unlike the central singularity of the Schwarzschild geometry. Is it physically realistic to have a
singularity that has in�nite negative mass and is in�nitely gravitationally repulsive? Undoubtedly not.

8.6 Radial null geodesics

In Reissner-Nordström coordinates, light rays that fall radially (dθ = dφ = 0) follow

dr

dt
= ±∆ . (8.15)

Equation (8.15) shows that dr/dt→ 0 as r → r±, suggesting that null rays can never cross a horizon. As in
the Schwarzschild geometry, this is an artefact of the choice of coordinate system. As in the Schwarzschild
geometry, the Reissner-Nordström metric (8.1) appears singular at the horizons, where ∆ = 0, but this is a
coordinate singularity, not a true singularity, as is evident from the fact that the Riemann curvature tensor
remains �nite at the horizons.
Figure 8.2 shows a spacetime diagram of the Reissner-Nordström geometry in Reissner-Nordström coor-

dinates. The spacetime diagram illustrates the apparent freezing of infalling and outgoing null geodesics at
both outer and inner horizons.
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Figure 8.2 Spacetime diagram of the Reissner-Nordström geometry, in Reissner-Nordström coordinates, for a black

hole of charge Q = 0.8M , plotted in units of the outer horizon radius r+ of the black hole. The geometry has two

horizons (pink), an outer horizon, and an inner horizon at r− = 0.25r+. The more or less diagonal lines (black) are

outgoing and infalling null geodesics. The outgoing and infalling null geodesics appear not to cross the horizon, but

this is an artefact of the Reissner-Nordström coordinate system.

8.7 Finkelstein coordinates

Finkelstein and Kruskal-Szekeres coordinates can be constructed for the Reissner-Nordström geometry just
as in the Schwarzschild geometry.
Introduce the tortoise coordinate r∗ de�ned by

r∗ ≡
∫
dr

∆
= r +

1

2κ+
ln

∣∣∣∣1− r

r+

∣∣∣∣+
1

2κ−
ln

∣∣∣∣1− r

r−

∣∣∣∣ , (8.16)

where κ± are the surface gravities at the two horizons

κ± = ±r+ − r−
2r2
±

. (8.17)

Radially infalling and outgoing null geodesics follow

r∗ + t = constant infalling ,
r∗ − t = constant outgoing .

(8.18)

Finkelstein time tF is de�ned by

tF + r = t+ r∗ , (8.19)
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Figure 8.3 Finkelstein spacetime diagram of the Reissner-Nordström geometry, for a black hole of charge Q = 0.8M ,

plotted in units of the outer horizon radius r+ of the black hole. The Finkelstein time coordinate tF is constructed so

that radially infalling light rays are at 45◦.

which is constructed so that infalling null rays follow tF + r = 0. Figure 8.3 shows the Finkelstein spacetime
diagram of the Reissner-Nordström geometry.

8.8 Kruskal-Szekeres coordinates

With respect to the coordinates t and r∗, the Reissner-Nordström line-element is

ds2 = ∆
(
− dt2 + dr∗2

)
+ r2do2 . (8.20)

This metric is still ill-behaved at the horizons, where ∆ = 0 and where the tortoise coordinate r∗ diverges
logarithmically, with r∗ → −∞ as r → r+ and r∗ → +∞ as r → r−. The misbehaviour at the two horizons
can be removed by transforming to Kruskal coordinates rK and tK de�ned by

rK + tK ≡ f(r∗ + t) , (8.21a)

rK − tK ≡ sf(r∗ − t) + 2nk , (8.21b)
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Figure 8.4 Kruskal spacetime diagram of the Reissner-Nordström geometry, plotted in units of k, equation (8.23),

for a black hole of charge Q = 0.96M . The Kruskal coordinates tK and rK are de�ned by equations (8.21), and are

constructed so that radially infalling and outgoing light rays are at 45◦. Lines of constant Reissner-Nordström time t

(violet), and infalling and outgoing null lines (black) are spaced uniformly at intervals of 1 (units r+ = 1), while lines

of constant circumferential radius r (blue) are spaced uniformly in the tortoise coordinate r∗, equation (8.16), so that

the intersections of t and r lines are also intersections of infalling and outgoing null lines.

where the function f(z) is

f(z) ≡


eκ+z

κ+
z ≤ 0 ,

eκ−z

κ−
+ k z ≥ 0 ,

(8.22)

which varies from f(z) → 0 as z → −∞, to f(z) → k as z → +∞, and is continuous and di�erentiable at
the junction z = 0. The constant k is

k ≡ 1

κ+
− 1

κ−
=

2(r2
+ + r2

−)

r+ − r−
. (8.23)

The constants s and n in equation (8.21b) are a sign and an integer that �x the sign and o�set of the Kruskal
coordinates in each quadrant of the Kruskal diagram. Figure 8.4 shows the resulting Kruskal spacetime
diagram, containing three quadrants, a region outside the outer horizon, a region between the two horizons,
and a region inside the inner horizon. The integers {s, n} in the three quadrants are {1, 0} in the region
outside the outer horizon, {−1, 0} in the region between the two horizons, and {1,−1} in the region inside
the inner horizon.
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Figure 8.5 Kruskal spacetime diagram of the analytically extended Reissner-Nordström geometry, plotted in units of

k, equation (8.23), for a black hole of charge Q = 0.96M .

The transformation (8.21) to Kruskal coordinates brings in�nite time t and radius r to �nite values, as in
a Penrose diagram. This is associated with the fact that the tortoise coordinate r∗ is +∞ at both r =∞ and
r = r−, so any transformation of r∗±t that maps the inner horizon r− to a �nite coordinate also maps in�nite
radius to a �nite coordinate. It would be possible to allow rK to be in�nite at in�nite r, as in Schwarzschild,
by choosing di�erent Kruskal coordinate transformations for the regions near the inner horizon and near
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in�nity, but it is advantageous to enforce the same transformation, since the Kruskal coordinate system can
then be extended analytically across both inner and outer horizons.
The Kruskal diagram 8.4 shows that the singularity of the Reissner-Nordström geometry is timelike, not

spacelike. This is associated with the fact that the singularity is gravitationally repulsive, not attractive.
The Penrose diagram of the Reissner-Nordström geometry is commonly drawn with the singularity vertical.

The singularity in the Kruskal diagram 8.4 is not vertical. It is possible to construct Kruskal-like coordinates
such that the singularity is vertical in the resulting spacetime diagram, for example by setting κ− = −κ+

in the Kruskal transformation formulae (8.22) and (8.23). However, the metric coe�cients in tK and rK are
then zero, not �nite, at the inner horizon. If the metric coe�cients are required to be �nite at both outer
and inner horizons, then it is impossible to construct a Kruskal coordinate transformation that makes the
singularity vertical.

8.9 Analytically extended Reissner-Nordström geometry

Like the Schwarzschild geometry, the Reissner-Nordström geometry can be analytically extended. Figure 8.5
shows the Kruskal spacetime diagram of the analytically extended geometry. The extension is considerably
more complicated than that for Schwarzschild, as discussed in the next section.

8.10 Penrose diagram

Figure 8.6 shows a Penrose diagram of the analytic continuation of the Reissner-Nordström geometry. This
is essentially a schematic version of the Kruskal diagram 8.5, with the various parts of the geometry labelled.
The analytic continuation consists of an in�nite ladder of universes and parallel universes connected to each
other by black hole → wormhole → white hole tunnels. I call the various pieces of spacetime �Universe,�
�Parallel Universe,� �Black Hole,� �Wormhole,� �Parallel Wormhole,� and �White Hole.� These pieces repeat
in an in�nite ladder. The various horizons in the Penrose diagram are labelled with descriptive names.
Relativists tend to use more abstract terminology.
The Wormhole and Parallel Wormhole contain separate central singularities, the �Singularity� and the

�Parallel Singularity,� which are oppositely charged. If the black hole is positively charged as measured by
observers in the Universe, then it is negatively charged as measured by observers in the Parallel Universe,
and the Wormhole contains a positive charge singularity while the Parallel Wormhole contains a negative
charge singularity.
Where does the electric charge of the Reissner-Nordström geometry �actually� reside? This comes down

to the question of how observers detect the presence of charge. Observers detect charge by the electric �eld
that it produces. Equip all (radially moving) observers with a gyroscope that they orient consistently in
the same radial direction, which can be taken to be towards the black hole as measured by observers in
the Universe. Observers in the Parallel Universe �nd that their gyroscope is pointed away from the black
hole. Inside the black hole, observers from either Universe agree that the gyroscope is pointed towards the
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Figure 8.6 Penrose diagram of the analytically extended Reissner-Nordström geometry.
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Wormhole, and away from the Parallel Wormhole. All observes agree that the electric �eld is pointed in the
same radial direction. Observers who end up inside the Wormhole measure an electric �eld that appears to
emanate from the Singularity, and which they therefore attribute to charge in the Singularity. Observers
who end up inside the Parallel Wormhole measure an electric �eld that appears to emanate in the opposite
direction from the Parallel Singularity, and which they therefore attribute to charge of opposite sign in the
Parallel Singularity. Strange, but all consistent.

8.11 Antiverse: Reissner-Nordström geometry with negative mass

It is also possible to consider the Reissner-Nordström geometry for negative values of the radius r. I call the
extension to negative r the �Antiverse.� There is also a �Parallel Antiverse.�
Changing the sign of r in the Reissner-Nordström metric (8.1) is equivalent to changing the sign of the

mass M . Thus the Reissner-Nordström metric with negative r describes a charged black hole of negative
mass

M < 0 . (8.24)

The negative mass black hole is gravitationally repulsive at all radii, and it has no horizons.

8.12 Outgoing, ingoing

The black hole in the Reissner-Nordström geometry has not one but two inner horizons. The inner horizon
plays a central role in the in�ationary instability described in �8.13 below.
The inner horizons can be called outgoing and ingoing. Persons freely falling in the Black Hole region are

all moving inward in coordinate radius r, but they may be moving either forward or backward in Reissner-
Nordström coordinate time t. In the Black Hole region, the conserved energy along a geodesic is positive if
the time coordinate t is decreasing, negative if the time coordinate t is increasing1. Persons with positive
energy are ingoing, while persons with negative energy are outgoing. Both outgoing and ingoing persons
fall inward, to smaller radii, but outgoing persons think that the inward direction is towards the Parallel
Wormhole, while ingoing persons think that the inward direction is in the opposite direction, towards the
Wormhole. Outgoing persons fall through the outgoing inner horizon, while ingoing persons fall through the
ingoing inner horizon.
Coordinate time t moves forwards in the Universe and Wormhole regions, and geodesics have positive

energy in these regions. Conversely, coordinate time t moves backwards in the Parallel Universe and Parallel
Wormhole regions, and geodesics have negative energy in these regions. Of course, all observers, wherever

1 The fact that positive energy geodesics go backwards in Reissner-Nordström coordinate time t in the Black Hole region is
counter-intuitive, but it does make sense. An outgoing infaller who fell through the horizon earlier can meet an ingoing
infaller who falls in later. Thus outgoers, who have negative energy, progress forward in time t, while ingoers, who have
positive energy, progress backward in time t.



8.13 The in�ationary instability 199

they may be, always perceive their own proper time to be moving forward in the usual fashion, at the rate
of one second per second.

8.13 The in�ationary instability

Roger Penrose (1968) �rst pointed out that a person passing through the outgoing inner horizon (also
called the Cauchy horizon) of the Reissner-Nordström geometry would see the outside Universe in�nitely
blueshifted, and he suggested that this would destabilize the geometry. Perturbation theory calculations,
starting with Simpson & Penrose (1973) and culminating with Chandrasekhar and Hartle (1982), con�rmed
that waves become in�nitely blueshifted as they approach the outgoing inner horizon, and that their energy
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Figure 8.7 Penrose diagram illustrating why the Reissner-Nordström geometry is subject to the in�ationary instability.

Outgoing and ingoing streams just outside the inner horizon must pass through separate outgoing and ingoing inner

horizons into causally separated pieces of spacetime where the timelike time coordinate t goes in opposite directions. To

accomplish this, the outgoing and ingoing streams must exceed the speed of light through each other, which physically

they cannot do. The in�ationary instability is driven by the pressure of the relativistic counter-streaming between

outgoing and ingoing streams. The inset shows the direction of coordinate time t in the various regions. Proper time

of course always increases upward in a Penrose diagram.
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density diverges. The perturbation theory calculations were widely construed as indicating that the Reissner-
Nordström geometry was �unstable,� although the precise nature of this instability remained obscure.
It was not until a seminal paper by Poisson & Israel (1990) that the nonlinear nature of the instability at

the inner horizon was clari�ed. Poisson & Israel showed that the Reissner-Nordström geometry is subject to
an exponentially growing instability which they dubbedmass in�ation. The term refers to the fact that the
interior mass M(r) grows exponentially during mass in�ation. The interior mass M(r) has the property of
being a gauge-invariant, scalar quantity, so it has a physical meaning independent of the coordinate system.
What causes mass in�ation? Actually it has nothing to do with mass: the in�ating mass is just a symptom

of the underlying cause. What causes mass in�ation is relativistic counter-streaming between outgoing and
ingoing streams. Since the name mass in�ation can be misleading, I prefer to call it the in�ationary

instability. As the Penrose diagram of the Reissner-Nordström geometry shows, outgoing and ingoing
streams must drop through separate outgoing and ingoing inner horizons into separate pieces of spacetime,
the Wormhole and the Parallel Wormhole. The regions of spacetime must be separate because coordinate time
t is timelike in both regions, but going in opposite directions in the two regions, forward in the Wormhole,
backward in the Parallel Wormhole, as illustrated in Figure 8.7. In other words, outgoing and ingoing streams
cannot co-exist in the same subluminal region of spacetime because they would have to be moving in opposite
directions in time, which cannot be.
In the Reissner-Nordström geometry, outgoing and ingoing streams resolve their di�erences by exceeding

the speed of light relative to each other, and passing into causally separated regions. As the outgoing and
ingoing streams drop through their respective inner horizons, they each see the other stream in�nitely
blueshifted.
In reality however, this cannot occur: outgoing and ingoing streams cannot exceed the speed of light relative

to each other. Instead, as the outgoing and ingoing streams move ever faster through each other in their
e�ort to drop through the inner horizon, their counter-streaming generates a radial pressure. The pressure,
which is positive, exerts an inward gravitational force. As the counter-streaming approaches the speed of
light, the gravitational force produced by the counter-streaming pressure eventually exceeds the gravitational
force produced by the background Reissner-Nordström geometry. At this point, the in�ationary instability
begins.
The gravitational force produced by the counter-streaming is inwards, but, in the strange way that general

relativity operates, the inward direction is in opposite directions for the ingoing streams, towards the black
hole for the ingoing stream, and away from the black hole for the outgoing stream. Consequently the counter-
streaming pressure simply accelerates the outgoing and ingoing streams ever faster through each other. The
result is an exponential feedback instability. The increasing pressure accelerates the streams faster through
each other, which increases the pressure, which increases the acceleration.
The interior mass is not the only thing that increases exponentially during mass in�ation. The proper

density and pressure, and the Weyl scalar (all gauge-invariant scalars) exponentiate together.
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Exercise 8.2. Blueshift of a photon crossing the inner horizon of a Reissner-Nordström black

hole. Show that, in the Reissner-Nordström geometry, the blueshift of a photon with energy vt = ∓1 and
angular momentum per unit energy v⊥ = J observed by observer on a geodesic with energy per unit mass
ut = −E and angular momentum per unit mass u⊥ = L is (the minus sign in −uµvµ makes the blueshift
positive)

−uµvµ =
something

∆
. (8.25)

Argue that the blueshift diverges at the horizon for outgoing observers observing ingoing photons, and for
ingoing observers observing outgoing photons.
Solution. The solution for geodesics is similar to that in the Schwarzschild geometry, Exercise 7.6. The
radial velocities ur and vr are both necessarily negative just above the inner horizon. The blueshift of a
photon is

−uµvµ = −
(
gttutvt + grru

rvr + g⊥⊥u⊥v⊥
)

=
∓E +

√
[E2 − (1 + L2/r2)∆] [1− (J2/r2)∆]

−∆
− LJ

r2
. (8.26)

Note that ∆ is negative between the outer and inner horizons. The ∓ sign of ∓E is negative if ut and vt
have the same sign, positive if ut and vt have opposite signs. The latter case holds for outgoing observers
observing ingoing photons, or for ingoing observers observing outgoing photons, in which case the blueshift
near the inner horizon, where ∆→ −0, diverges as

−uµvµ →
∣∣∣∣2utvt∆

∣∣∣∣ as ∆→ −0 if utvt < 0 . (8.27)

8.14 The X point

The point in the Reissner-Nordström geometry where the outgoing and ingoing inner horizons intersect,
the X point, is a special one. This is the point through which geodesics of zero energy, E = 0, must pass.
Persons with zero energy who reach the X point see both outgoing and ingoing streams, coming from opposite
directions, in�nitely blueshifted.

8.15 Extremal Reissner-Nordström geometry

So far the discussion of the Reissner-Nordström geometry has centred on the case Q < M (or more generally,
|Q| < |M |) where there are separate outer and inner horizons. In the special case that the charge and mass
are equal,

Q = M , (8.28)



202 Reissner-Nordström Black Hole

Horizon

Singularity

T

ur
naround

Figure 8.8 Depiction of the Gullstrand-Painlevé metric for the extremal Reissner-Nordström geometry, with Q = M .

In the extremal geometry, the inner and outer horizons are at the same radius, so there is only one horizon.

the inner and outer horizons merge into one, r+ = r−, equation (8.10). This special case describes the
extremal Reissner-Nordström geometry.
The extremal Reissner-Nordström geometry is of particular interest in quantum gravity because its Hawk-

ing temperature is zero, and in string theory because extremal black holes have a higher degree of symmetry,
making them more tractable for theoretical investigation.
Figure 8.8 shows the Gullstrand-Painlevé model of an extremal Reissner-Nordström black hole. It looks

like that of a non-extremal Reissner-Nordström black hole except that the two horizons merge into one. The
infall velocity β into an extremal black hole reaches its maximum, the speed of light, at the horizon.
The Penrose diagram of the extremal Reissner-Nordström geometry, Figure 8.9, di�ers from that of the

standard Reissner-Nordström geometry in having no Black Hole, White Hole, or Parallel regions. The fact
that extremal black hole di�ers topologically from a non-extremal black hole suggests that it would be
physically impossible by any causal mechanism to change a black hole from non-extremal to extremal.

8.16 Super-extremal Reissner-Nordström geometry

The Reissner-Nordström geometry with charge greater than mass,

Q > M , (8.29)
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Figure 8.9 Penrose diagram of the extremal Reissner-Nordström geometry.

has no horizons. The geometry is called super-extremal. The change in geometry from an extremal black
hole, with horizon at �nite radius r+ = r− = M , to a super-extremal black hole without horizons is
discontinuous. This suggests that there is no way to pack a black hole with more charge than its mass.
Indeed, if you try to force additional charge into an extremal black hole, then the work needed to do so
increases its mass so that the charge Q does not exceed its mass M .
Real fundamental particles nevertheless have charge far exceeding their mass. For example, the charge-to-
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mass ratio of a proton is
e

mp
≈ 1018 (8.30)

where e is the square root of the �ne-structure constant α ≡ e2/~c ≈ 1/137, and mp ≈ 10−19 is the mass
of the proton in Planck units. However, the Schwarzschild radius of such a fundamental particle is far tinier
than its Compton wavelength ∼ ~/m (or its classical radius e2/m = α~/m), so quantum mechanics, not
general relativity, governs the structure of these fundamental particles.

8.17 Reissner-Nordström geometry with imaginary charge

It is possible formally to consider the Reissner-Nordström geometry with imaginary charge Q

Q2 < 0 . (8.31)

This is completely unphysical. If charge were imaginary, then electromagnetic energy would be negative.
However, the Reissner-Nordström metric with Q2 < 0 is well-de�ned, and it is possible to calculate

geodesics in that geometry. What makes the geometry interesting is that the singularity, instead of being
gravitationally repulsive, becomes gravitationally attractive. Thus particles, instead of bouncing o� the
singularity, are attracted to it, and it turns out to be possible to continue geodesics through the singularity.
Mathematically, the geometry can be considered as the Kerr-Newman geometry in the limit of zero spin. In

Singularity

Tu
rnaround

Figure 8.10 Depiction of the Gullstrand-Painlevé metric for a super-extremal Reissner-Nordström geometry, with

Q = 1.04M . The super-extremal geometry has no horizons.
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Figure 8.11 Penrose diagram of the Reissner-Nordström geometry with imaginary charge Q. If charge were imaginary,

then electromagnetic energy would be negative, which is completely unphysical. But the metric is well-de�ned, and

the spacetime is fun.

the Kerr-Newman geometry, geodesics can pass from positive to negative radius r, and the passage through
the singularity of the Reissner-Nordström geometry can be regarded as this process in the limit of zero spin.

Su�ce to say that it is intriguing to see what it looks like to pass through the singularity of a charged
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black hole of imaginary charge, however unrealistic. The Penrose diagram is even more eventful than that
for the usual Reissner-Nordström geometry.
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Kerr-Newman Black Hole

The geometry of a stationary, rotating, uncharged black hole in asymptotically �at empty space was discov-
ered unexpectedly by Roy Kerr in 1963 (Kerr, 1963). Kerr's own account of the history of the discovery is
at Kerr (2009). You can read in that paper that the discovery was not mere chance: Kerr used sophisticated
mathematical methods to make it. The extension to a rotating electrically charged black hole was made
shortly thereafter by Ted Newman (Newman et al., 1965). Newman told me (private communication 2009)
that, after seeing Kerr's work, he quickly realised that the extension to a charged black hole was straightfor-
ward. He set the problem to the graduate students in his relativity class, who became coauthors of Newman
et al. (1965).
The importance of the Kerr-Newman geometry stems in part from the no-hair theorem, which states

that this geometry is the unique end state of spacetime outside the horizon of an undisturbed black hole in
asymptotically �at space.

9.1 Boyer-Lindquist metric

The Boyer-Lindquist metric of the Kerr-Newman geometry is

ds2 = − R2∆

ρ2

(
dt− a sin2θ dφ

)2
+

ρ2

R2∆
dr2 + ρ2dθ2 +

R4 sin2θ

ρ2

(
dφ− a

R2
dt
)2

, (9.1)

where R and ρ are de�ned by

R ≡
√
r2 + a2 , ρ ≡

√
r2 + a2 cos2θ , (9.2)

and ∆ is the horizon function de�ned by

∆ ≡ 1− 2Mr

R2
+
Q2

R2
. (9.3)

IfM = Q = 0, so that ∆ = 1, the Boyer-Lindquist metric (9.1) goes over to the metric of Minkowski space
expressed in ellipsoidal coordinates.

207
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At large radius r, the Boyer-Lindquist metric is

ds2 → −
(

1− 2M

r

)
dt2 − 4aM sin2θ

r
dtdφ+

(
1 +

2M

r

)
dr2 + r2

(
dθ2 + sin2θ dφ2

)
. (9.4)

By comparison, the weak-�eld metric in Newtonian gauge, equation (27.62), around an object of mass M
and angular momentum L takes the form

ds2 = − (1 + 2Ψ)dt2 − 2Wr sin θ dtdφ+ (1− 2Φ)(dr2 + r2do2) , (9.5)

where, from equations (27.80) and (27.87), the scalar Ψ, Φ and vector W potentials are

Ψ = Φ = −M
r
, W = −2L sin θ

r2
. (9.6)

The asymptotic Boyer-Lindquist metric (9.4) is not quite in the Newtonian form (9.5), but a transformation
of the radial coordinate brings it to Newtonian form, Exercise 7.1. Comparison of the two metrics establishes
that M is the mass of the black hole and a = L/M is its angular momentum per unit mass. For positive a,
the black hole rotates right-handedly about its polar axis θ = 0.
The Boyer-Lindquist line-element (9.1) de�nes not only a metric but also a tetrad. The Boyer-Lindquist

coordinates and tetrad are carefully chosen to exhibit the symmetries of the geometry. In the locally inertial
frame de�ned by the Boyer-Lindquist tetrad, the energy-momentum tensor (which is non-vanishing for
charged Kerr-Newman) and the Weyl tensor are both diagonal. These assertions becomes apparent only
in the tetrad frame, �19.3, and are obscure in the coordinate frame.

9.2 Oblate spheroidal coordinates

Boyer-Lindquist coordinates r, θ, φ are oblate spheroidal coordinates (not polar coordinates). Correspond-
ing Cartesian coordinates are

x = R sin θ cosφ ,

y = R sin θ sinφ ,

z = r cos θ .

(9.7)

Surfaces of constant r are confocal oblate spheroids, satisfying

x2 + y2

R2
+
z2

r2
= 1 . (9.8)

Equation (9.8) implies that the spheroidal coordinate r is given in terms of x, y, z by the quadratic equation

r4 − r2(x2 + y2 + z2 − a2)− a2z2 = 0 . (9.9)

Figure 9.1 illustrates the spatial geometry of a Kerr black hole, and of a Kerr-Newman black hole, in
Boyer-Lindquist coordinates.
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Figure 9.1 Spatial geometry of (upper) a Kerr black hole with spin parameter a = 0.96M , and (lower) a Kerr-Newman

black hole with charge Q = 0.8M and spin parameter a = 0.56M . The upper half of each diagram shows r ≥ 0, while

the lower half shows r ≤ 0, the Antiverse. The outer and inner horizons are confocal oblate spheroids whose focus is

the ring singularity. For the Kerr geometry, the turnaround radius is at r = 0. The Sisytube is a torus enclosing the

ring singularity, that contains closed timelike curves.
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9.3 Time and rotation symmetries

The Boyer-Lindquist metric coe�cients are independent of the time coordinate t and of the azimuthal angle
φ. This shows that the Kerr-Newman geometry has time translation symmetry, and rotational symmetry
about its azimuthal axis. The time and rotation symmetries means that the tangent vectors et and eφ in
Boyer-Lindquist coordinates are Killing vectors. It follows that their scalar products

et · et = gtt = − 1

ρ2

(
R2∆− a2 sin2θ

)
,

et · eφ = gtφ = − aR2 sin2θ

ρ2
(1−∆) ,

eφ · eφ = gφφ =
R2 sin2θ

ρ2

(
R2 − a2 sin2θ∆

)
, (9.10)

are all gauge-invariant scalar quantities. As will be seen below, gtt = 0 de�nes the boundary of ergospheres,
gtφ = 0 de�nes the turnaround radius, and gφφ = 0 de�nes the boundary of the sisytube, the toroidal region
containing closed timelike curves.
The Boyer-Lindquist time t and azimuthal angle φ are arranged further to satisfy the condition that et

and eφ are each orthogonal to both er and eθ.

9.4 Ring singularity

The Kerr-Newman geometry contains a ring singularity where the Weyl tensor (9.26) diverges, ρ = 0, or
equivalently at

r = 0 and θ = π/2 . (9.11)

The ring singularity is at the focus of the confocal ellipsoids of the Boyer-Lindquist metric. Physically, the
singularity is kept open by the centrifugal force.
Figure 9.2 illustrates contours of constant ρ in a Kerr black hole.

9.5 Horizons

The horizon of a Kerr-Newman black hole rotates, as observed by a distant observer, so it is incorrect to try
to solve for the location of the horizon by assuming that the horizon is at rest. The worldline of a photon
that sits on the horizon, battling against the in�ow of space, remains at �xed radius r and polar angle θ, but
it moves in time t and azimuthal angle φ. The photon's 4-velocity is vµ = {vt, 0, 0, vφ}, and the condition
that it is on a null geodesic is

0 = vµv
µ = gµνv

µvν = gtt(v
t)2 + 2 gtφ v

tvφ + gφφ(vφ)2 . (9.12)
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Figure 9.2 Not a mouse's eye view of a snake coming down its mousehole, uhoh. Contours of constant ρ and their

covariant normals ∂ρ/∂xµ in a spatial cross-section of a Kerr black hole of spin parameter a = 0.96M , in Boyer-

Lindquist coordinates. The thicker contours are the outer and inner horizons, which are confocal spheroids with the

ring singularity at their focus. The ring singularity is at ρ = 0, the snake's eyes.

This equation has solutions provided that the determinant of the 2× 2 matrix of metric coe�cients in t and
φ is less than or equal to zero (why?). The determinant is

gttgφφ − g2
tφ = −R2 sin2θ∆ , (9.13)

where ∆ is the horizon function de�ned above, equation (9.3). Thus if ∆ ≥ 0, then there exist null geodesics
such that a photon can be instantaneously at rest in r and θ, whereas if ∆ < 0, then no such geodesics exist.
The boundary

∆ = 0 (9.14)

de�nes the location of horizons. With ∆ given by equation (9.3), equation (9.14) gives outer and inner

horizons at

r± = M ±
√
M2 −Q2 − a2 . (9.15)

Between the horizons ∆ is negative, and photons cannot be at rest. This is consistent with the picture that
space is falling faster than light between the horizons.
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9.6 Angular velocity of the horizon

The angular velocity of the horizon as observed by observers at rest at in�nity can be read o� directly from
the Boyer-Lindquist metric (9.1). The horizon is at dr = dθ = 0 and ∆ = 0, and then the null condition
ds2 = 0 implies that the angular velocity is

dφ

dt
=

a

R2
. (9.16)

The derivative is with respect to the proper time t of observers at rest at in�nity, so this is the angular
velocity observed by such observers.

9.7 Ergospheres

There are �nite regions, just outside the outer horizon and just inside the inner horizon, within which the
worldline of an object at rest, dr = dθ = dφ = 0, is spacelike. These regions, called ergospheres, are places
where nothing can remain at rest (the place where little children come from). Objects can escape from within
the outer ergosphere (whereas they cannot escape from within the outer horizon), but they cannot remain
at rest there. A distant observer will see any object within the outer ergosphere being dragged around by
the rotation of the black hole. The direction of dragging is the same as the rotation direction of the black
hole in both outer and inner ergospheres.
The boundary of the ergosphere is at

gtt = 0 , (9.17)

which occurs where

R2∆ = a2 sin2θ . (9.18)

Equation (9.18) has two solutions, the outer and inner ergospheres. The outer and inner ergospheres touch
respectively the outer and inner horizons at the poles, θ = 0 and π.

9.8 Turnaround radius

The turnaround radius is the radius inside the inner horizon at which infallers who fall from zero velocity
and zero angular momentum at in�nity turn around. The radius is at

gtφ = 0 , (9.19)

which occurs where ∆ = 1, or equivalently at

r =
Q2

2M
. (9.20)

In the uncharged Kerr geometry, the turnaround radius is at zero radius, r = 0, but in the Kerr-Newman
geometry the turnaround radius is at positive radius.
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9.9 Antiverse

The surface at zero radius, r = 0, forms a disk bounded by the ring singularity. Objects can pass through
this disk into the region at negative radius, r < 0, the Antiverse.
The Boyer-Lindquist metric (9.1) is unchanged by a symmetry transformation that simultaneously �ips

the sign both of the radius and mass, r → −r and M → −M . Thus the Boyer-Lindquist geometry at
negative r with positive mass is equivalent to the geometry at positive r with negative mass. In e�ect, the
Boyer-Lindquist metric with negative r describes a rotating black hole of negative mass

M < 0 . (9.21)

9.10 Sisytube

Inside the inner horizon there is a toroidal region around the ring singularity, which I call the sisytube,
within which the light cone in t-φ coordinates opens up to the point that φ as well as t is a timelike
coordinate. In the Wormhole, the direction of increasing proper time along t is t increasing, and along φ is
φ decreasing, which is retrograde. In the Parallel Wormhole, the direction of increasing proper time along
t is t decreasing, and along φ is φ increasing, which is again retrograde. Within the toroidal region, there
exist timelike trajectories that go either forwards or backwards in coordinate time t as they wind retrograde
around the toroidal tunnel. Because the φ coordinate is periodic, these timelike curves connect not only the
past to the future (the usual case), but also the future to the past, which violates causality. In particular, as
�rst pointed out by Carter (1968), there exist closed timelike curves (CTCs), trajectories that connect to
themselves, connecting their own future to their own past, and repeating interminably, like Sisyphus pushing
his rock up the mountain.
The boundary of the sisytube torus is at

gφφ = 0 , (9.22)

which occurs where

R2 = a2 sin2θ∆ . (9.23)

In the uncharged Kerr geometry the sisytube is entirely at negative radius, r < 0, but in the Kerr-Newman
geometry the sisytube extends to positive radius, Figure 9.1.

9.11 Extremal Kerr-Newman geometry

The Kerr-Newman geometry is called extremal when the outer and inner horizons coincide, r+ = r−, which
occurs where

M2 = Q2 + a2 . (9.24)
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Figure 9.3 Spatial geometry of (upper) an extremal (a = M) Kerr black hole, and (lower) an extremal Kerr-Newman

black hole with charge Q = 0.8M and spin parameter a = 0.6M .

Figure 9.3 illustrates the structure of an extremal Kerr (uncharged) black hole, and an extremal Kerr-Newman
(charged) black hole.
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Figure 9.4 Spatial geometry of a super-extremal Kerr black hole with spin parameter a = 1.04M . A super-extremal

black hole has no horizons.

9.12 Super-extremal Kerr-Newman geometry

If M2 < Q2 + a2, then there are no horizons. The geometry is called super-extremal. Figure 9.4 illustrates
the structure of a super-extremal Kerr black hole. A super-extremal black hole has a naked ring singularity,
and CTCs in a sisytube unhidden by a horizon.

9.13 Energy-momentum tensor

The coordinate-frame Einstein tensor of the Kerr-Newman geometry in Boyer-Lindquist coordinates is a bit
of a mess. The trick of raising one index, which for the Reissner-Nordström metric brought the Einstein
tensor to diagonal form, equation (8.5), fails for Boyer-Lindquist (because the Boyer-Lindquist metric is not
diagonal). The problem is endemic to the coordinate approach to general relativity. After tetrads it will
emerge that, in the Boyer-Lindquist tetrad, the Einstein tensor is diagonal, and that the proper density ρ,
the proper radial pressure pr, and the proper transverse pressure p⊥ in that frame are (do not confuse the
notation ρ for proper density with the radial parameter ρ, equation (9.2), of the Boyer-Lindquist metric)

ρ = −pr = p⊥ =
Q2

8πρ4
. (9.25)

This looks like the energy-momentum tensor (8.5) of the Reissner-Nordström geometry with the replacement
r → ρ. The energy-momentum is that of an electric �eld produced by a charge Q seemingly located at the
ring singularity.
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9.14 Weyl tensor

The Weyl tensor of the Kerr-Newman geometry in Boyer-Lindquist coordinates is likewise a mess. After
tetrads, it will emerge that the 10 components of the Weyl tensor can be decomposed into 5 complex
components of spin 0, ±1, and ±2. In the Boyer-Lindquist tetrad, the only non-vanishing component is
the spin-0 component, the Weyl scalar C, but in contrast to the Schwarzschild and Reissner-Nordström
geometries the spin-0 component is complex, not real:

C = − 1

(r − ia cos θ)3

(
M − Q2

r + ia cos θ

)
. (9.26)

9.15 Electromagnetic �eld

The expression for the electromagnetic �eld in Boyer-Lindquist coordinates is again a mess. After tetrads,
it will emerge that, in the Boyer-Lindquist tetrad, the electromagnetic �eld is purely radial, and the electro-
magnetic potential has only a time component. For reference, the covariant electromagnetic potential Aµ in
the Boyer-Lindquist coordinate (not tetrad) frame is

Aµ =
Qr

ρ2

{
−1, 0, 0,

a sin θ

R
√

∆

}
. (9.27)

9.16 Principal null congruences

The Kerr-Newman geometry admits a special set of space-�lling, non-overlapping null geodesics called the
principal outgoing and ingoing null congruences. These are the directions with respect to which the Weyl
tensor and the electric �eld vector align. Photons that hold steady on the outer horizon are on the principal
outgoing null congruence. The construction and special character of the principal null congruences will be
demonstrated after tetrads, in �23.6.
Geodesics along the principal null congruences satisfy

dθ = dφ− ω dt = 0 , (9.28)

where ω = a/R2 is the azimuthal angular velocity of the geodesics through the coordinates. The Boyer-
Lindquist line-element (9.1) is speci�cally constructed so that it aligns with the principal null congruences.



9.17 Finkelstein coordinates 217

9.17 Finkelstein coordinates

Along the principal outgoing and ingoing null congruences, where equations (9.28) hold, the Boyer-Lindquist
metric (9.1) reduces to

ds2 =
ρ2∆

R2

(
− dt2 +

dr2

∆2

)
. (9.29)

A tortoise coordinate r∗ in the Kerr-Newman geometry may be de�ned analogously to that (8.16) in the
Reissner-Nordström geometry,

r∗ ≡
∫
dr

∆
, (9.30)

which integrates to the same expressions (8.16) and (8.17) in terms of horizon radii r± and surface gravities
κ± as in the Reissner-Nordström geometry. Principal outgoing and ingoing null geodesics follow

r∗ − t = constant outgoing ,
r∗ + t = constant ingoing .

(9.31)

A Finkelstein time coordinate tF can be de�ned as in the Reissner-Nordström geometry, equation (8.19).
Likewise, Kruskal-Szekeres coordinates can be de�ned as in the Reissner-Nordström geometry, equations (8.21)
and (8.22). The Finkelstein and Kruskal spacetime diagrams for the Kerr-Newman geometry look identical
to those of the Reissner-Nordström geometry (if the horizon radii r± are the same), Figures 8.3 and 8.4. The
discussion in ��8.7�8.9 carries through essentially unchanged for the Kerr-Newman geometry.
The behaviour of geodesics in the angular direction is more complicated in the Kerr-Newman than Reissner-

Nordström geometry, but this complexity is hidden in the Finkelstein and Kruskal diagrams.

9.18 Doran coordinates

For the Kerr-Newman geometry, the analogue of the Gullstrand-Painlevé metric is the Doran (2000) metric

ds2 = − dt2ff +

[
ρ

R
dr − βR

ρ

(
dtff − a sin2θ dφff

)]2

+ ρ2dθ2 +R2 sin2θ dφ2
ff , (9.32)

where the free-fall time tff and azimuthal angle φff are related to the Boyer-Lindquist time t and azimuthal
angle φ by

dtff = dt− β

1− β2
dr , dφff = dφ− aβ

R2(1− β2)
dr . (9.33)

The free-fall time tff is the proper time experienced by persons who free-fall from rest at in�nity, with zero
angular momentum. They follow trajectories of �xed θ and φff , with radial velocity dr/dtff = βR2/ρ2. The
4-velocity uν ≡ dxν/dτ of such free-falling observers is

utff = 1 , ur =
R2β

ρ2
, uθ = 0 , uφff = 0 . (9.34)
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For the Kerr-Newman geometry, the velocity β is

β = ∓
√

2Mr −Q2

R
(9.35)

where the ∓ sign is − (infalling) for black hole solutions, and + (outfalling) for white hole solutions.
Horizons occur where the magnitude of the velocity β equals the speed of light

β = ∓1 . (9.36)

The boundaries of ergospheres occur where the velocity is

β = ∓ ρ
R
. (9.37)

The turnaround radius is where the velocity is zero

β = 0 . (9.38)

The sisytube is bounded by the imaginary velocity

β = i
ρ

a sin θ
. (9.39)



9.18 Doran coordinates 219

r
=

∞

r
=
∞

r
=
∞

r
=

∞

r
=
−
∞

r
=

−
∞

r
=

−
∞

r
=
−
∞

White Hole

P
a
ra
ll
e
l
A
n
ti
h
o
ri
z
o
n

A
n
tih
o
riz
o
n

Parallel Universe Universe

P
a
ra
lle
l
H
o
riz
o
n

H
o
ri
z
o
n

Black Hole

In
n
e
r
H
o
ri
z
o
n

P
a
ra
lle
l
In
n
e
r
H
o
riz
o
n

W
o
r
m
h
o
le P

a
r
a
lle

l

W
o
r
m
h
o
le

Antiverse
Parallel

Antiverse

White HoleIn
n
e
r
A
n
tih
o
riz
o
n

P
a
ra
ll
e
l
In
n
e
r
A
n
ti
h
o
ri
z
o
n

New Parallel Universe New Universe

Figure 9.6 Penrose diagram of the Kerr-Newman geometry. The diagram is similar to that of the Reissner-Nordström

geometry, except that it is possible to pass through the disk at r = 0 from the Wormhole region into the Antiverse

region. This Penrose diagram, which represents a slice at �xed θ and φ, does not capture the full richness of the

geometry, which contains closed timelike curves in a torus around the ring singularity, the sisytube.
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9.19 Penrose diagram

The Penrose diagram of the Kerr-Newman geometry, Figure 9.6, resembles that of the Reissner-Nordström
geometry, Figure 8.6, except that in the Kerr-Newman geometry an infaller can reach the Antiverse by
passing through the disk at r = 0 bounded by the ring singularity. In the Reissner-Nordström geometry,
the ring singularity shrinks to a point, and passing into the Antiverse would require passing through the
singularity itself.



Concept Questions

1. What does it mean that the Universe is expanding?
2. Does the expansion a�ect the solar system or the Milky Way?
3. How far out do you have to go before the expansion is evident?
4. What is the Universe expanding into?
5. In what sense is the Hubble constant constant?
6. Does our Universe have a centre, and if so where is it?
7. What evidence suggests that the Universe at large is homogeneous and isotropic?
8. How can the Cosmic Microwave Background (CMB) be construed as evidence for homogeneity and

isotropy given that it provides information only over a 2D surface on the sky?
9. What is thermodynamic equilibrium? What evidence suggests that the early Universe was in thermo-

dynamic equilibrium?
10. What are cosmological parameters?
11. What cosmological parameters can or cannot be measured from the power spectrum of �uctuations of

the CMB?
12. Friedmann-Lemaître-Robertson-Walker (FLRW) universes are characterized as closed, �at, or open.

Does �at here mean the same as �at Minkowski space?
13. What is it that astronomers call dark matter?
14. What is the primary evidence for the existence of non-baryonic cold dark matter?
15. How can astronomers detect dark matter in galaxies or clusters of galaxies?
16. How can cosmologists claim that the Universe is dominated by not one but two distinct kinds of myste-

rious mass-energy, dark matter and dark energy, neither of which has been observed in the laboratory?
17. What key property or properties distinguish dark energy from dark matter?
18. A FLRW universe conserves entropy. Is that true? If so, can the entropy of the Universe increase?
19. Does the annihilation of electron-positron pairs into photons generate entropy in the early Universe, as

its temperature cools through 1 MeV?
20. How does the wavelength of light change with the expansion of the Universe?
21. How does the temperature of the CMB change with the expansion of the Universe?

221
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22. How does a blackbody (Planck) distribution change with the expansion of the Universe? What about a
non-relativistic distribution? What about a semi-relativistic distribution?

23. What is the horizon of our Universe? What is the Hubble distance?
24. What happens beyond the horizon of our Universe?
25. What caused the Big Bang?
26. What happened before the Big Bang?
27. What will be the fate of the Universe?



What's important?

1. The Cosmic Microwave Background (CMB) indicates that the early (≈ 400,000 year old) Universe was
(a) uniform to a few ×10−5, and (b) in thermodynamic equilibrium. This indicates that

the Universe was once very simple .
It is this simplicity that makes it possible to model the early Universe with some degree of con�dence.

2. The power spectrum of �uctuations of the CMB has enabled precise measurements of cosmological
parameters.

3. There is a remarkable concordance of evidence from a broad range of astronomical observations �
supernovae, big bang nucleosynthesis, the clustering of galaxies, the abundances of clusters of galaxies,
measurements of the Hubble constant from Cepheid variables and supernovae, and the ages of the oldest
stars.

4. Observational evidence is consistent with the predictions of the theory of in�ation in its simplest form
� the expansion of the Universe, the spatial �atness of the Universe, the near uniformity of temperature
�uctuations of the CMB (the horizon problem), the presence of acoustic peaks and troughs in the power
spectrum of �uctuations of the CMB, the near power law shape of the power spectrum at large scales,
its spectral index (tilt), the gaussian distribution of �uctuations at large scales.

5. What is non-baryonic dark matter?
6. What is dark energy? What is its equation of state w ≡ p/ρ, and how does w evolve with time?
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Homogeneous, Isotropic Cosmology

10.1 Observational basis

Since 1998, observations have converged on a Standard �ΛCDM� Model of Cosmology, a spatially �at
Universe dominated by gravitationally repulsive dark energy whose equation of state is consistent with that
of a cosmological constant (Λ), and by gravitationally attractive non-baryonic cold dark matter (CDM). The
mass-energy of the Standard Model of the Universe consists of 70% dark energy, 25% non-baryonic cold dark
matter (CDM), 5% baryonic matter, and a sprinkling of photons and neutrinos. The designation �baryonic�
is conventional but misleading: it refers to all atomic matter, including not only baryons (nuclei), but also
non-relativistic charged leptons (electrons).

10.1.1 The expansion of the Universe

The Hubble diagram, a diagram of distance versus redshift of distant astronomical objects, indicates that
the Universe is expanding.
Hubble's law states that galaxies are receding with velocity proportional to distance, v = H0d, with

constant of proportionality the Hubble constant H0 (the 0 subscript signi�es the present day value). Hubble's
law was �rst proposed by Georges Lemaître (1927) and by Edwin Hubble (1929) on the basis of observations.
The recession velocity v of an astronomical object can be determined with some precision from the redshift

of its spectral lines, but its distance d is more di�cult to measure, because astronomical objects, such as
galaxies, typically have a wide range of intrinsic luminosities. Hubble estimated distances to galaxies using
Cepheid variable stars, which had been discovered by Henrietta Leavitt (1912) to have periods proportional
to their luminosities. A good distance estimator should be a �standard candle� of predictable luminosity, and
it should be bright, so that it can be seen over cosmological distances.
The best modern Hubble diagram is that of Type Ia supernovae, illustrated in Figure 10.1, from data

tabulated by Betoule et al. (2014). A Type Ia supernova is thought to represent the thermonuclear explosion
of a white dwarf star that through accretion from a companion star reaches the Chandrasekhar mass limit of
1.4 M�. Having a similar origin, such supernovae approximate standard candles (or standard bombs) having
the same luminosity. Actually, some variation in luminosity is observed, which may be associated with the
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Figure 10.1 Hubble diagram of 740 Type Ia supernovae from a compilation of surveys, from data tabulated by Betoule

et al. (2014). The vertical axis is the luminosity distance dL in units of the present-day Hubble distance c/H0. The

bottom panel shows residuals. The various smooth curves are 5 theoretical model Hubble diagrams, with parameters

as indicated. The solid line is a �at ΛCDM model with ΩΛ = 0.7 and Ωm = 0.3.

amount of 56Ni synthesized in the explosion, and which can be corrected at least in part through an empirical
relation between luminosity and how rapidly the lightcurve decays (higher luminosity supernovae decay more
slowly).
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10.1.2 The acceleration of the Universe

Since light takes time to travel from distant parts of the Universe to astronomers here on Earth, the higher
the redshift of an object, the further back in time astronomers are seeing.
In 1998 two teams, the Supernova Cosmology Project (Perlmutter, 1999), and the High-z Supernova Search

team (Riess et al., 1998), precipitated the revolution that led to the Standard Model of Cosmology. They
reported that observations of Type Ia supernova at high redshift indicated that the Universe is not only
expanding, but also accelerating. The acceleration requires the mass-energy density of the Universe to be
dominated at the present time by a gravitationally repulsive component, such as a cosmological constant Λ.
In the Hubble diagram of Type Ia supernova shown in Figure 10.1, the �tted curve is a best-�t �at

cosmological model containing a cosmological constant and matter.

10.1.3 The Cosmic Microwave Background (CMB)

The single most powerful observational constraints on the Universe come from the Cosmic Microwave Back-
ground (CMB). Modern observations of the CMB have ushered in an era of precision cosmology, where key
cosmological parameters are being measured with percent level uncertainties.
The CMB was discovered serendipitously by Arno Penzias & Robert Wilson (1965), who were puzzled

by an apparently uniform excess temperature from a horn antenna, 6 metres in size, tuned to a wavelength
of ∼ 7 cm, that they had built to detect radio waves. They were unaware that Robert Dicke's group at
Princeton had already realised that a hot Big Bang would have left a remnant of blackbody radiation �lling
the Universe, with a present-day temperature of a few Kelvin, and were setting about to try to detect it.
When Penzias heard about Dicke's work, he and Wilson quickly realised that their observations �t what
the Princeton group were predicting. The observations of Penzias and Wilson (1965) were published along
with a theoretical explanation by Dicke et al. (1965) in back-to-back papers in an issue of the Astrophysical
Journal Letters.
Dicke et al. (1965) argued that the temperature of the expanding Universe must have been higher in the

past, and there must have been a time before which the temperature was high enough to ionize hydrogen,
about 3,000 K. Before this time, called recombination, hydrogen and other elements would have been mostly
ionized. The CMB comes to us from the time of recombination, when the Universe transitioned from being
mainly ionized, and therefore opaque, to being mainly neutral, and therefore transparent. Recombination
occurred when the Universe was about 400,000 years old, and the CMB has streamed essentially freely
through the Universe since that time. Thus the CMB provides a snapshot of the Universe at recombination.
The CMB spectrum peaks in microwaves, which are absorbed by water vapour in the atmosphere. Modern

observations of the CMB are therefore made using satellites, or with balloons, or at high-altitude sites with
low water vapour, such as the South Pole, or the Atacama Desert in Chile.
The characteristics of the CMB measured from modern observations are as follows.
The CMB has a remarkably precise black body spectrum, Figure 10.2, with temperature (Fixsen, 2009)

T0 = 2.72548± 0.00057 K . (10.1)

The CMB shows a dipole anisotropy of ∆T = 3.355± 0.008 mK, implying that the solar system is moving
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Figure 10.2 COBE/FIRAS observations of the (monopole) spectrum of the CMB. The observations (points with error

bars multiplied by 500) �t extraordinarily well to a blackbody, or Planck, spectrum at a temperature of 2.725 K (solid

line). In practice, the spectrum was observed by switching between the CMB sky and a blackbody calibrator. The

lower graph shows the measured deviation from the blackbody calibrator. Data from https://lambda.gsfc.nasa.gov/

product/cobe/�ras_monopole_get.cfm.

through the CMB at velocity (Jarosik et al., 2011)

v = 369.1 km s−1 in Galactic coordinate direction {l, b} = {263.◦99± 0.14, 48.◦26± 0.03} . (10.2)

After dipole subtraction, the temperature of the CMB over the sky is uniform to a few parts in 105.
The power spectrum of temperature T �uctuations shows a scale-invariant spectrum at large scales, and

prominent acoustic peaks at smaller scales, Figure 10.3. The power spectrum �ts astonishingly well to
predictions based on the theory of in�ation, �10.22, in its simplest form. The power spectrum yields precision
measurements of some basic cosmological parameters, notably the densities of the principal contributions to
the energy-density of the Universe: dark energy, non-baryonic cold dark matter, and baryons.
Fluctuations in the CMB are expected to be polarized at some level. There are two independent modes of

polarization of opposite parity, electric �E� ((−)` parity) modes and magnetic �B� ((−)`+1 parity) modes.
There are corresponding E-mode and B-mode power spectra. The temperature �uctuation T has electric
parity, so of the cross-power spectra between temperature T and E and B �uctuations, only the T�E cross-
power is expected to be non-vanishing (if the Universe at large is not only homogeneous but also parity
symmetric). The T�E cross-power spectrum has been measured by the WMAP satellite, and is interpreted
as arising from scattering of CMB photons by ionized gas intervening between recombination and us.

https://lambda.gsfc.nasa.gov/product/cobe/firas_monopole_get.cfm
https://lambda.gsfc.nasa.gov/product/cobe/firas_monopole_get.cfm
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Figure 10.3 Power spectrum of �uctuations in the CMB from observations with the Planck satellite (Ade et al., 2013),

WMAP (Hinshaw et al., 2012), the Atacama Cosmology Telescope (Das et al., 2011), and the South Pole Telescope

(Keisler et al., 2011). The plot is logarithmic in harmonic number l up to 100, linear thereafter. The �t is a best-�t

�at ΛCDM model.

10.1.4 The clustering of galaxies

The clustering of galaxies shows a power spectrum in good agreement with the Standard Model, Figure 10.4.
Historically, the principal evidence for non-baryonic cold dark matter was comparison between the power

spectra of galaxies versus CMB. How can tiny �uctuations in the CMB grow into the observed �uctuations
in matter today in only the age of the Universe? The answer was, non-baryonic dark matter that begins to
cluster before recombination, when the CMB was released.
The interpretation of the power spectrum of galaxies is complicated by the facts that galaxies have un-

dergone non-linear clustering at smaller scales, and that galaxies are a biassed tracer of mass. However, the
pattern of clustering at large, linear scales retains an imprint of baryonic acoustic oscillations (BAO) anal-
ogous to those in the CMB. Observations from large galaxy surveys have been able to detect the predicted
BAO, Figure 10.4. Comparison of the scales of acoustic oscillations in galaxies and the CMB allows the
two scales to be matched, pinning the relative scales of galaxies today with those in the CMB at redshift
z ∼ 1100.
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Figure 10.4 Power spectrum of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of

the Sloan Digital Sky Survey III (SDSS-III) (Anderson et al., 2013). The survey contains 264,283 massive galaxies,

covering 3,275 square degrees. The �tted curve is a �at ΛCDM model multiplied by a polynomial. The inset shows

the spectrum with the smooth component divided out to bring out the baryon acoustic oscillations (BAO).

Major plans are underway to measure galaxy clustering as a function of redshift, with the primary aim to
determine whether the evolution of dark energy is consistent with that of a cosmological constant. Such a
measurement cannot be done with CMB observations, since the CMB o�ers only a snapshot of the Universe
at high redshift.

10.1.5 Other supporting evidence

• The observed abundances of light elements H, D, 3He, He, and Li are consistent with the predictions of
big bang nucleosynthesis (BBN) provided that the baryonic density is Ωb ≈ 0.04, in good agreement with
measurements from the CMB.

• The ages of the oldest stars, in globular clusters, agree with the age of the Universe with dark energy, but
are older than the Universe without dark energy.

• The existence of dark matter, possibly non-baryonic, is supported by ubiquitous evidence for unseen dark
matter, deduced from sizes and velocities (or in the case of gravitational lensing, the gravitational potential)
of various objects:
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� The Local Group of galaxies;
� Rotation curves of spiral galaxies;
� The temperature and distribution of x-ray gas in elliptical galaxies, and in clusters of galaxies;
� Gravitational lensing by clusters of galaxies.
• The abundance of galaxy clusters as a function of redshift is consistent with a matter density Ωm ≈ 0.3, but
not much higher. A low matter density slows the gravitational clustering of galaxies, implying relatively
more and richer clusters at high redshift than at the present, as observed.

• The Bullet cluster is a rare example that supports the notion that the dark matter is non-baryonic. In the
Bullet cluster, two clusters recently passed through each other. The baryonic matter, as measured from
x-ray emission of hot gas, appears displaced from the dark matter, as measured from weak gravitational
lensing.

10.2 Cosmological Principle

The cosmological principle states that the Universe at large is
• homogeneous (has spatial translation symmetry),
• isotropic (has spatial rotation symmetry).
The primary evidence for this is the uniformity of the temperature of the CMB, which, after subtraction of
the dipole produced by the motion of the solar system through the CMB, is constant over the sky to a few
parts in 105. Con�rming evidence is the statistical uniformity of the distribution of galaxies over large scales.
The cosmological principle allows that the Universe evolves in time, as observations surely indicate � the

Universe is expanding, galaxies, quasars, and galaxy clusters evolve with redshift, and the temperature of
the CMB has undoubtedly decreased since recombination.

10.3 Friedmann-Lemaître-Robertson-Walker metric

Universes satisfying the cosmological principle are described by the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, equation (10.28) below, discovered independently by Friedmann (1922; 1924) and Lemaître
(1927) (English translation in Lemaître 1931). The FLRW metric was shown to be the unique metric for a
homogeneous, isotropic universe by Robertson (1935; 1936; 1936) and Walker (1937). The metric, and the
associated Einstein equations, which are known as the Friedmann equations, are set forward in the next
several sections, ��10.4�10.9.

10.4 Spatial part of the FLRW metric: informal approach

The cosmological principle implies that

the spatial part of the FLRW metric is a 3D hypersphere . (10.3)
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In this context the term hypersphere is to be construed as including not only cases of positive curvature,
which have �nite positive radius of curvature, but also cases of zero and negative curvature, which have
in�nite and imaginary radius of curvature.
Figure 10.5 shows an embedding diagram of a 3D hypersphere in 4D Euclidean space. The horizontal

directions in the diagram represent the normal 3 spatial x, y, z dimensions, with one dimension z suppressed,
while the vertical dimension represents the 4th spatial dimension w. The 3D hypersphere is a set of points
{x, y, z, w} satisfying (

x2 + y2 + z2 + w2
)1/2

= R = constant . (10.4)

An observer is sitting at the north pole of the diagram, at {0, 0, 0, 1}. A 2D sphere (which forms a 1D circle
in the embedding diagram of Figure 10.5) at �xed distance surrounding the observer has geodesic distance
r‖ de�ned by

r‖ ≡ proper distance to sphere measured along a radial geodesic , (10.5)

and circumferential radius r de�ned by

r ≡
(
x2 + y2 + z2

)1/2
, (10.6)

w

r = Rsinχ

R

x
y

r
// =
R
χ

R
d
χ

Rsin
χdφ

χ

φ

Figure 10.5 Embedding diagram of the FLRW geometry.
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which has the property that the proper circumference of the sphere is 2πr. In terms of r‖ and r, the spatial
metric is

dl2 = dr2
‖ + r2do2 , (10.7)

where do2 ≡ dθ2 + sin2θ dφ2 is the metric of a unit 2-sphere.
Introduce the angle χ illustrated in the diagram. Evidently

r‖ = Rχ ,

r = R sinχ . (10.8)

In terms of the angle χ, the spatial metric is

dl2 = R2
(
dχ2 + sin2χdo2

)
, (10.9)

which is one version of the spatial FLRW metric. The metric resembles the metric of a 2-sphere of radius R,
which is not surprising since the same construction, with Figure 10.5 interpreted as the embedding diagram
of a 2D sphere in 3D, yields the metric of a 2-sphere. Indeed, the construction iterates to give the metric of
an N -dimensional sphere of arbitrarily many dimensions N .
Instead of the angle χ, the metric can be expressed in terms of the circumferential radius r. It follows from

equations (10.8) that

r‖ = R asin(r/R) , (10.10)

whence

dr‖ =
dr√

1− r2/R2

=
dr√

1−Kr2
, (10.11)

where K is the curvature

K ≡ 1

R2
. (10.12)

In terms of r, the spatial FLRW metric is then

dl2 =
dr2

1−Kr2
+ r2do2 . (10.13)

The embedding diagram Figure 10.5 is a nice prop for the imagination, but it is not the whole story. The
curvature K in the metric (10.13) may be not only positive, corresponding to real �nite radius R, but also
zero or negative, corresponding to in�nite or imaginary radius R. The possibilities are called closed, �at, and
open:

K


> 0 closed R real ,
= 0 �at R→∞ ,

< 0 open R imaginary .
(10.14)
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10.5 Comoving coordinates

The metric (10.13) is valid at any single instant of cosmic time t. As the Universe expands, the 3D spa-
tial hypersphere (whether closed, �at, or open) expands. In cosmology it is highly advantageous to work in
comoving coordinates that expand with the Universe. Why? Firstly, it is helpful conceptually and math-
ematically to think of the Universe as at rest in comoving coordinates. Secondly, linear perturbations, such
as those in the CMB, have wavelengths that expand with the Universe, and are therefore �xed in comoving
coordinates.
In practice, cosmologists introduce the cosmic scale factor a(t)

a(t) ≡ measure of the size of the Universe, expanding with the Universe , (10.15)

which is proportional to but not necessarily equal to the radius R of the Universe. The cosmic scale factor
a can be normalized in any arbitrary way. The most common convention adopted by cosmologists is to
normalize it to unity at the present time,

a0 = 1 , (10.16)

where the 0 subscript conventionally signi�es the present time.
Comoving geodesic and circumferential radial distances x‖ and x are de�ned in terms of the proper geodesic

and circumferential radial distances r‖ and r by

ax‖ ≡ r‖ , ax ≡ r . (10.17)

Objects expanding with the Universe remain at �xed comoving positions x‖ and x. In terms of the comoving
circumferential radius x, the spatial FLRW metric is

dl2 = a2

(
dx2

1− κx2
+ x2do2

)
, (10.18)

where the curvature constant κ, a constant in time and space, is related to the curvature K, equation (10.12),
by

κ ≡ a2K . (10.19)

Alternatively, in terms of the geodesic comoving radius x‖, the spatial FLRW metric is

dl2 = a2
(
dx2
‖ + x2do2

)
, (10.20)

where

x =



sin(κ1/2x‖)

κ1/2
κ > 0 closed ,

x‖ κ = 0 �at ,

sinh(|κ|1/2x‖)
|κ|1/2

κ < 0 open .

(10.21)
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Actually it is �ne to use just the top expression of equations (10.21), which is mathematically equivalent to
the bottom two expressions when κ = 0 or κ < 0 (because sin(ix)/i = sinh(x)).
For some purposes it is convenient to normalize the cosmic scale factor a so that κ = 1, 0, or −1. In this

case the spatial FLRW metric may be written

dl2 = a2
(
dχ2 + x2do2

)
, (10.22)

where

x =


sin(χ) κ = 1 closed ,

χ κ = 0 �at ,

sinh(χ) κ = −1 open .

(10.23)

10.6 Spatial part of the FLRW metric: more formal approach

A more formal approach to the derivation of the spatial FLRW metric from the cosmological principle starts
with the proposition that the spatial components Gαβ of the Einstein tensor at �xed scale factor a (all time
derivatives of a set to zero) should be proportional to the metric tensor

Gαβ = −K gαβ (α, β = 1, 2, 3) . (10.24)

Without loss of generality, the spatial metric can be taken to be of the form

dl2 = f(r) dr2 + r2do2 . (10.25)

Imposing the condition (10.24) on the metric (10.25) recovers the spatial FLRW metric (10.13).

Exercise 10.1. Isotropic (Poincaré) form of the FLRW metric. By a suitable transformation of the
comoving radial coordinate x, bring the spatial FLRW metric (10.18) to the �isotropic� form

dl2 =
4a2

(1 + κX2)
2

(
dX2 +X2do2

)
. (10.26)

What is the relation between X and x?
For an open geometry, κ < 0, the isotropic line-element (10.26) is also called the Poincaré ball, or in 2D the

Poincaré disk, Figure 10.6. By construction, the isotropic line-element (10.26) is conformally �at, meaning
that it equals the Euclidean line-element multiplied by a position-dependent conformal factor. Conformal
transformations of a line-element preserve angles.
Solution.

X =
x

1 +
√

1− κx2
=

1√
κ

tan

(√
κx‖

2

)
, x =

2X

1 + κX2
=

1√
κ

sin
(√
κx‖

)
. (10.27)

For an open geometry with κ = −1, X goes from 0 to 1 as x goes from 0 to ∞.
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Figure 10.6 The Poincaré disk depicts the geometry of an open FLRW universe in isotropic coordinates. The lines are

lines of latitude and longitude relative to a �pole� chosen here to be displaced from the centre of the disk. In isotropic

coordinates, geodesics correspond to circles that intersect the boundary of the disk at right angles, such as the lines

of constant longitude in this diagram. The lines of latitude remain unchanged under rotations about the pole.

10.7 FLRW metric

The full Friedmann-Lemaître-Robertson-Walker spacetime metric is

ds2 = − dt2 + a(t)2

(
dx2

1− κx2
+ x2do2

)
, (10.28)

where t is cosmic time, which is the proper time experienced by comoving observers, who remain at rest
in comoving coordinates dx = dθ = dφ = 0. Any of the alternative versions of the comoving spatial FLRW
metric, equations (10.18), (10.20), (10.22), or (10.26), may be used as the spatial part of the FLRW spacetime
metric (10.28).

10.8 Einstein equations for FLRW metric

The Einstein equations for the FLRW metric (10.28) are

−Gtt = 3

(
ȧ2

a2
+

κ

a2

)
= 8πGρ , (10.29a)

Gxx = Gθθ = Gφφ = − 2 ä

a
− ȧ2

a2
− κ

a2
= 8πGp , (10.29b)

where overdots represent di�erentiation with respect to cosmic time t, so that for example ȧ ≡ da/dt. Note
the trick of one index up, one down, to remove, modulo signs, the distorting e�ect of the metric on the



236 Homogeneous, Isotropic Cosmology

Einstein tensor. The Einstein equations (10.29) rearrange to give Friedmann's equations

ȧ2

a2
=

8πGρ

3
− κ

a2
, (10.30a)

ä

a
= −4πG

3
(ρ+ 3p) . (10.30b)

Friedmann's two equations (10.30) are fundamental to cosmology. The �rst one relates the curvature κ of
the Universe to the expansion rate ȧ/a and the density ρ. The second one relates the acceleration ä/a to the
density ρ plus 3 times the pressure p.

10.9 Newtonian �derivation� of Friedmann equations

The Friedmann equations can be reproduced with a heuristic Newtonian argument.

10.9.1 Energy equation

Model a piece of the Universe as a ball of radius a with uniform density ρ, hence of mass M = 4
3πρa

3.
Consider a small mass m attracted by this ball. Conservation of the kinetic plus potential energy of the
small mass m implies

1

2
mȧ2 − GMm

a
= −κmc

2

2
, (10.31)

where the quantity on the right is some constant whose value is not determined by this Newtonian treatment,
but which GR implies is as given. The energy equation (10.31) rearranges to

ȧ2

a2
=

8πGρ

3
− κc2

a2
, (10.32)

a m

M

Figure 10.7 Newtonian picture in which the Universe is modeled as a uniform density sphere of radius a and mass M

that gravitationally attracts a test mass m.
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which reproduces the �rst Friedmann equation.

10.9.2 First law of thermodynamics

For adiabatic expansion, the �rst law of thermodynamics is

dE + p dV = 0 . (10.33)

With E = ρV and V = 4
3πa

3, the �rst law (10.33) becomes

d(ρa3) + p da3 = 0 , (10.34)

or, with the derivative taken with respect to cosmic time t,

ρ̇+ 3(ρ+ p)
ȧ

a
= 0 . (10.35)

Di�erentiating the �rst Friedmann equation in the form

ȧ2 =
8πGρa2

3
− κc2 (10.36)

gives

2ȧä =
8πG

3

(
ρ̇a2 + 2ρaȧ

)
, (10.37)

and substituting ρ̇ from the �rst law (10.35) reduces this to

2ȧä =
8πG

3
aȧ (− ρ− 3p) . (10.38)

Hence

ä

a
= −4πG

3
(ρ+ 3p) , (10.39)

which reproduces the second Friedmann equation.

10.9.3 Comment on the Newtonian derivation

The above Newtonian derivation of Friedmann's equations is only heuristic. A di�erent result could have
been obtained if di�erent assumptions had been made. If for example the Newtonian gravitational force law
mä = −GMm/a2 were taken as correct, then it would follow that ä/a = − 4

3πGρ, which is missing the
all-important 3p contribution (without which there would be no in�ation or dark energy) to Friedmann's
second equation.
It is notable that the �rst law of thermodynamics is built in to the Friedmann equations. This implies

that entropy is conserved in FLRW Universes (but see Concept question 30.5). This remains true even when
the mix of particles changes, as happens for example during the epoch of electron-positron annihilation, or
during big bang nucleosynthesis. How then does entropy increase in the real Universe? Through �uctuations
away from the perfect homogeneity and isotropy assumed by the FLRW metric.



238 Homogeneous, Isotropic Cosmology

10.10 Hubble parameter

The Hubble parameter H(t) is de�ned by

H ≡ ȧ

a
. (10.40)

The Hubble parameter H varies in cosmic time t, but is constant in space at �xed cosmic time t.
The value of the Hubble parameter today is called the Hubble constant H0 (the subscript 0 signi�es the

present time). The Hubble constant measured from Cepheid variable stars and Type Ia supernova is (Riess
et al., 2011; Riess et al., 2018).

H0 = 73.5± 1.7 km s−1 Mpc−1 . (10.41)

The observed CMB power spectrum, Figure 10.3, provides an accurate measurement of the angular lo-
cation of the �rst peak in the power spectrum, which determines the angular size of the sound horizon at
recombination, Chapter 32. This cosmological yardstick translates into a measurement of the Hubble pa-
rameter H0, but only if a cosmological model is assumed. In particular, the angular location of the peak
depends on the spatial curvature. The combination of CMB data with other data, notably Baryon Acoustic
Oscillations in galaxy clustering, Figure 10.4, and the Hubble diagram of Type Ia supernovae, Figure 10.1,
point consistently to a spatially �at cosmological model. If the Universe is taken to be spatially �at, then
CMB data from the Planck satellite yield (Aghanim et al., 2018)

H0 = 67.4± 0.5 km s−1 Mpc−1 . (10.42)

The Cepheid and CMB measurements (10.41) and (10.42) of H0 lie outside each other's error bars. One can
either be impressed that two completely independent measurements of H0 yield almost the same result, or
be worried by the disagreement. I incline to the former view, since these kind of measurements tend to be
beset with systematic uncertainties that can be di�cult to get under control.
The distance d to an object that is receding with the expansion of the universe is proportional to the cosmic

scale factor, d ∝ a, and its recession velocity v is consequently proportional to ȧ. The result is Hubble's
law relating the recession velocity v and distance d of distant objects

v = H0d . (10.43)

Since it takes light time to travel from a distant object, and the Hubble parameter varies in time, the linear
relation (10.43) breaks down at cosmological distances.
We, in the Milky Way, reside in an overdense region of the Universe that has collapsed out of the general

Hubble expansion of the Universe. The local overdense region of the Universe that has just turned around
from the general expansion and is beginning to collapse for the �rst time is called the Local Group of
galaxies. The Local Group consists of order 100 galaxies, mostly dwarf and irregular galaxies. It contains two
major spiral galaxies, Andromeda (M31) and the Milky Way, and one mid-sized spiral galaxy Triangulum
(M33). The Local Group is about 1 Mpc in radius.
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Because of the ubiquity of the Hubble constant in cosmological studies, cosmologists often parameterize
it by the quantity h de�ned by

h ≡ H0

100 km s−1 Mpc−1 . (10.44)

The reciprocal of the Hubble constant gives an approximate estimate of the age of the Universe (c.f. Exer-
cise 10.6),

1

H0
= 9.778h−1 Gyr = 14.0h−1

0.70 Gyr . (10.45)

10.11 Critical density

The critical density ρcrit is de�ned to be the density required for the Universe to be �at, κ = 0. According
to the �rst of Friedmann equations (10.30), this sets

ρcrit ≡
3H2

8πG
. (10.46)

The critical density ρcrit, like the Hubble parameter H, evolves with time.

10.12 Omega

Cosmologists designate the ratio of the actual density ρ of the Universe to the critical density ρcrit by the
fateful letter Ω, the �nal letter of the Greek alphabet,

Ω ≡ ρ

ρcrit
. (10.47)

With no subscript, Ω denotes the total mass-energy density in all forms. A subscript x on Ωx denotes
mass-energy density of type x.
The curvature density ρk, which is not really a form of mass-energy but it is sometimes convenient to treat

it as though it were, is de�ned by

ρk ≡ −
3κc2

8πGa2
, (10.48)

and correspondingly

Ωk ≡
ρk
ρcrit

= − κc2

a2H2
. (10.49)

If the cosmic scale factor is normalized to unity at the present time, equation (10.16), then the relation
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Table 10.1: Cosmic inventory

WMAP Planck
Species Hinshaw et al. (2012) Aghanim et al. (2018)
Dark energy (Λ) ΩΛ 0.72± 0.01 0.685± 0.007

Non-baryonic cold dark matter (CDM) Ωc 0.24± 0.01 0.261± 0.002

Baryonic matter Ωb 0.047± 0.002 0.0490± 0.0005

Neutrinos Ων < 0.02 < 0.004

Photons (CMB) Ωγ 5× 10−5 5× 10−5

Total Ω 1.003± 0.004 0.999± 0.002

Curvature Ωk −0.003± 0.004 0.001± 0.002

between Ωk and the curvature constant κ is Ωk = −κc2/H2
0 . According to the �rst of Friedmann's equa-

tions (10.30), the curvature density Ωk satis�es

Ωk = 1− Ω . (10.50)

Note that Ωk has opposite sign from κ, so a closed universe has negative Ωk.
Table 10.1 gives measurements of Ω in various species, as reported by Hinshaw et al. (2012) from the �nal

analysis of the CMB power spectrum from WMAP, and by Aghanim et al. (2018) from the �nal analysis of
the CMB power spectrum from Planck. Both sets of analyses incorporate measurements from a variety of
other data, including CMB data at smaller scales, Figure 10.3, supernova data, Figure 10.1, galaxy clustering
(Baryonic Acoustic Oscillation, or BAO) data, Figure 10.4, and local measurements of the Hubble constant
H0 (Riess et al., 2011; Riess et al., 2018). It is largely the CMB data that enable cosmological parameters
to be measured to the level of precision given in the Table. However, the CMB data by themselves constrain
tightly only a combination of the Hubble parameter H0 and the curvature Ωk, as illustrated in Figure 26
of Aghanim et al. (2018). Other data, in particular BAO and the supernova Hubble diagram, resolve this
uncertainty, pointing to a �at Universe, Ωk = 0. Importantly, the various data are consistent with each other,
inspiring con�dence in the correctness of the Standard Model. The neutrino limit implies an upper limit to
the sum of the masses of all neutrino species (Aghanim et al., 2018),∑

ν

mν < 0.12 eV . (10.51)

Exercise 10.2. Omega in photons. Most of the energy density in electromagnetic radiation today is in
CMB photons. Calculate Ωγ in CMB photons. Note that photons may not be the only relativistic species
today. Neutrinos with masses smaller than about 10−4 eV would be still be relativistic at the present time,
Exercise 10.20.
Solution. CMB photons have a blackbody spectrum at temperature T0 = 2.725 K, so their density can be
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calculated from the blackbody formula. The present day ratio Ωγ of the mass-energy density ργ of CMB
photons to the critical density ρcrit is

Ωγ ≡
ργ
ρcrit

=
8πGργ
3H2

0

=
8π3G(kT0)4

45H2
0 c

5~3
= 2.471× 10−5 h−2 T 4

2.725 K = 5.0× 10−5 h−2
0.70 T

4
2.725 K . (10.52)

10.13 Types of mass-energy

The energy-momentum tensor Tµν of a FLRW Universe is necessarily homogeneous and isotropic, by as-
sumption of the cosmological principle, taking the form (note yet again the trick of one index up and one
down to remove the distorting e�ect of the metric)

Tµν =


T tt 0 0 0

0 T rr 0 0

0 0 T θθ 0

0 0 0 Tφφ

 =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (10.53)

Table 10.2 gives equations of state p/ρ for generic species of mass-energy, along with (ρ + 3p)/ρ, which
determines the gravitational attraction (deceleration) per unit energy, and how the mass-energy varies with
cosmic scale factor, ρ ∝ an, Exercise 10.3.
As commented in �10.9.2, the �rst law of thermodynamics for adiabatic expansion is built into Friedmann's

equations. In fact the law represents covariant conservation of energy-momentum for the system as a whole

DµT
µν = 0 . (10.54)

As long as species do not convert into each other (for example, no annihilation), covariant energy-momentum
conservation holds individually for each species, so the �rst law applies to each species individually, deter-
mining how its energy density ρ varies with cosmic scale factor a. Figure 10.8 illustrates how the energy
densities ρ of various species evolve as a function of scale factor a.
Vacuum energy is equivalent to a cosmological constant. Einstein originally introduced the cosmological

Table 10.2: Properties of universes dominated by various species

Species p/ρ (ρ+ 3p)/ρ ρ ∝
Radiation 1/3 2 a−4

Matter 0 1 a−3

Curvature �−1/3� �0� a−2

Vacuum −1 −2 a0
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Figure 10.8 Behaviour of the mass-energy density ρ of various species as a function of cosmic time t.

constant Λ as a modi�cation to the left hand side of his equations,

Gκµ + Λgκµ = 8πGTκµ . (10.55)

The cosmological constant term can be taken over to the right hand side and reinterpreted as vacuum energy
Tκµ = −ρΛ gκµ with energy density ρΛ, satisfying

Λ = 8πGρΛ . (10.56)

Exercise 10.3. Mass-energy in a FLRW Universe.

1. First law. The �rst law of thermodynamics for adiabatic expansion is built into Friedmann's equations
(= Einstein's equations for the FLRW metric):

d(ρa3) + p da3 = 0 . (10.57)

How does the density ρ evolve with cosmic scale factor for a species with equation of state p/ρ = w with
constant w? You should get an answer of the form

ρ ∝ an . (10.58)

2. Attractive or repulsive? For what equation of state w is the mass-energy attractive or repulsive?
Consider in particular the cases of �matter,� �radiation,� �curvature,� and �vacuum� energy.
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Concept question 10.4. Mass of a ball of photons or of vacuum. What is the gravitational mass of
a homogeneous, isotropic, spherical, ball of photons embedded in empty space, as measured by an observer
outside the ball? Assume that the boundary of the ball is free to expand or contract. What if the ball of
photons is bounded by a stationary re�ecting spherical wall? What if the ball is a ball of vacuum energy
instead of photons?

10.14 Redshifting

The spatial translation symmetry of the FLRWmetric implies conservation of generalized momentum. As you
will show in Exercise 10.5, a particle that moves along a geodesic in the radial direction, so that dθ = dφ = 0,
has 4-velocity pν satisfying

px‖ = constant . (10.59)

This conservation law implies that the proper momentum px‖ of a radially moving particle decays as

px‖ ≡ ma
dx‖

dτ
∝ 1

a
, (10.60)

which is true for both massive and massless particles.
It follows from equation (10.60) that light observed on Earth from a distant object will be redshifted by

a factor

1 + z =
a0

a
, (10.61)

where a0 is the present day cosmic scale factor. Cosmologists often refer to the redshift of an epoch, since
the cosmological redshift is an observationally accessible quantity that uniquely determines the cosmic time
of emission.

Exercise 10.5. Geodesics in the FLRW geometry. The Friedmann-Lemaître-Robertson-Walker metric
of cosmology is

ds2 = − dt2 + a(t)2

[
dx2
‖ +

sin2(κ1/2x‖)

κ

(
dθ2 + sin2θ dφ2

)]
, (10.62)

where κ is a constant, the curvature constant. Note that equation (10.62) is valid for all values of κ, including
zero and negative values: there is no need to consider the cases separately.
1. Conservation of generalized momentum. Consider a particle moving with comoving 4-momentum
pµ ≡ dxµ/dλ along a geodesic in the radial direction, so that dθ = dφ = 0. Argue that the Lagrangian
equations of motion

d

dλ

∂L

∂px‖
=

∂L

∂x‖
(10.63)
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with e�ective Lagrangian

L = 1
2 gµνp

µpν (10.64)

imply that

px‖ = constant . (10.65)

Argue further from the same Lagrangian equations of motion that the assumption of a radial geodesic
is valid because

pθ = pφ = 0 (10.66)

is a consistent solution. [Hint: The metric gµν depends on the coordinate x‖. But for radial geodesics
with pθ = pφ = 0, the possible contributions from derivatives of the metric vanish.]

2. Proper momentum. Argue that a proper interval of distance measured by comoving observers along
the radial geodesic is a dx‖. Hence show from equation (10.67) that the proper momentum px‖ of the
particle relative to comoving observers (who are at rest in the FLRW metric) evolves as

px‖ ≡ ma
dx‖

dλ
∝ 1

a
. (10.67)

3. Redshift. What relation does your result (10.67) imply between the redshift 1 + z of a distant object
observed on Earth and the expansion factor a since the object emitted its light? [Hint: Equation (10.67)
is valid for massless as well as massive particles. Why?]

4. Temperature of the CMB. Argue from the above results that the temperature T of the CMB evolves
with cosmic scale factor as

T ∝ 1

a
. (10.68)

10.15 Evolution of the cosmic scale factor

Given how the energy density ρ of each species evolves with cosmic scale factor a, the �rst Friedmann
equation then determines how the cosmic scale factor a(t) itself evolves with cosmic time t. If the Hubble
parameter H ≡ ȧ/a is expressed as a function of cosmic scale factor a, then cosmic time t can be expressed
in terms of a as

t =

∫
da

aH
. (10.69)

The de�nition (10.46) of the critical density allows the Hubble parameter H to be written

H

H0
=

√
ρcrit

ρcrit(a0)
. (10.70)
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Figure 10.9 Cosmic scale factor as a function of time in universes with various Ωm and ΩΛ.

The critical density ρcrit is itself the sum of the densities ρ of all species including the curvature density,

ρcrit = ρk +
∑

species x

ρx . (10.71)

For example, in the case that the density is comprised of radiation, matter, and vacuum, the critical density
is

ρcrit = ρr + ρm + ρk + ρΛ , (10.72)

and equation (10.70) is

H(t)

H0
=
√

Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ , (10.73)

where Ωx represents its value at the present time. For density comprised of radiation, matter, and vacuum,
equation (10.73), the time t, equation (10.69), is

t =
1

H0

∫
da

a
√

Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ

, (10.74)

which is an elliptic integral of the third kind. The elliptic integral simpli�es to elementary functions in some
cases relevant to reality, Exercises 10.6 and 10.7.
If one single species in particular dominates the mass-energy density, then equation (10.74) integrates to

give the results in Table 10.3.
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Table 10.3: Evolution of cosmic scale factor in universes dominated by various species

Dominant Species a ∝
Radiation t1/2

Matter t2/3

Curvature t

Vacuum eHt

10.16 Age of the Universe

The present age t0 of the Universe since the Big Bang can be derived from equation (10.74) and cosmological
parameters, Table 10.1. Aghanim et al. (2018) give the age of the Universe to be

t0 = 13.80± 0.02 Gyr . (10.75)

Exercise 10.6. Age of a FLRW universe containing matter and vacuum.

1. Age of a universe dominated by matter and vacuum. To a good approximation, the Universe
today appears to be �at, and dominated by matter and a cosmological constant, with Ωm + ΩΛ = 1.
Show that in this case the relation between age t and cosmic scale factor a is

t =
2

3H0

√
ΩΛ

asinh

√
ΩΛa3

Ωm
. (10.76)

2. Age of our Universe. Evaluate the age t0 of the Universe today (a0 = 1) in the approximation that
the Universe is �at and dominated by matter and a cosmological constant. [Note: Astronomers de�ne
one Julian year to be exactly 365.25 days of 24 × 60 × 60 = 86,400 seconds each. A parsec (pc) is the
distance at which a star has a parallax of 1 arcsecond, whence 1 pc = (60 × 60 × 180/π) au, where
1 au is one Astronomical Unit, the Earth-Sun distance. One Astronomical Unit was o�cially de�ned
by the International Astronomical Union (IAU) in 2012 to be 1 au ≡ 149,597,870,700 m, with o�cial
abbreviation au.]

Exercise 10.7. Age of a FLRW universe containing radiation and matter. The Universe was
dominated by radiation and matter over many decades of expansion including the time of recombination.
Show that for a �at Universe containing radiation and matter the relation between age t and cosmic scale
factor a is

t =
2Ω

3/2
r

3H0Ω2
m

â2(2 +
√

1 + â)

(1 +
√

1 + â)2
, (10.77)
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where â is the cosmic scale factor scaled to 1 at matter-radiation equality,

â ≡ a

aeq
=

Ωma

Ωr
. (10.78)

You may well �nd a formula di�erent from (10.77), but you should be able to recover the latter using the
identity

√
1 + â − 1 = â/(

√
1 + â + 1). Equation (10.77) has the virtue that it is numerically stable to

evaluate for all â, including tiny â.

10.17 Conformal time

It is often convenient to use conformal time η de�ned by (with units c temporarily restored)

a dη ≡ c dt , (10.79)

with respect to which the FLRW metric is

ds2 = a(η)2
(
− dη2 + dx2

‖ + x2do2
)
, (10.80)

with x given by equation (10.21). The term conformal refers to a metric that is multiplied by an overall factor,
the conformal factor (squared). In the FLRW metric (10.80), the cosmic scale factor a is the conformal factor.
Conformal time η is constructed so that radial null geodesics move at unit velocity in conformal coordinates.

Light moving radially, with dθ = dφ = 0, towards an observer at the origin x‖ = 0 satis�es

dx‖

dη
= −1 . (10.81)

Exercise 10.8. Relation between conformal time and cosmic scale factor. What is the relation
between conformal time η and cosmic scale factor a if the energy-momentum is dominated by a species with
equation of state p/ρ = w = constant?
Solution. The conformal time η is related to cosmic scale factor a by (units c = 1)

η =

∫
da

a2H
. (10.82)

For p/ρ = w = constant, a possible choice of integration constant for η is: if w > −1/3 (decelerating), set
η = 0 at a = 0, so that η →∞ at a→∞; if w < −1/3 (accelerating), set η = 0 at a→∞, so that η → −∞
at a→ 0. Then

η =
2

(1 + 3w)aH
∝ ±a(1+3w)/2 , (10.83)
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in which the sign is positive for w > −1/3, negative for w < −1/3, ensuring that conformal time η always
increases with cosmic scale factor a. For the special case of a curvature-dominated universe, w = −1/3,

η =
ln a

aH
∝ ln a , (10.84)

which goes to η → −∞ as a→ 0 and η →∞ as a→∞.

10.18 Looking back along the lightcone

Since light moves radially at unit velocity in conformal coordinates, an object at geodesic distance x‖ that
emits light at conformal time ηem is observed at conformal time ηobs given by

x‖ = ηobs − ηem . (10.85)

The comoving geodesic distance x‖ to an object is

x‖ =

∫ ηobs

ηem

dη =

∫ tobs

tem

c dt

a
=

∫ aobs

aem

c da

a2H
=

∫ z

0

c dz

H
, (10.86)

where the last equation assumes the relation 1 + z = 1/a, valid as long as a is normalized to unity at the
observer (us) at the present time aobs = a0 = 1. In the case that the density is comprised of (curvature and)
radiation, matter, and vacuum, equation (10.86) gives

x‖ =
c

H0

∫ 1

1/(1+z)

da

a2
√

Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ

, (10.87)

which is an elliptical integral of the �rst kind. Given the geodesic comoving distance x‖, the circumferential
comoving distance x then follows as

x =
sinh(

√
ΩkH0x‖/c)√

ΩkH0/c
. (10.88)

To second order in redshift z,

x ≈ x‖ ≈
c

H0

[
z − z2

(
Ωr + 3

4Ωm + 1
2Ωk

)
+ ...

]
. (10.89)

The geodesic and circumferential distances x‖ and x di�er at order z3.
Figure 10.10 illustrates the relation between the comoving geodesic and circumferential distances x‖ and

x, equations (10.87) and (10.88), and redshift z, equation (10.61), in three cosmological models, including
the standard �at ΛCDM model.
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Figure 10.10 In this diagram, each wedge represents a cone of �xed opening angle, with the observer (us) at the point

of the cone, at zero redshift. The wedges show the relation between physical sizes, namely the comoving distances x‖
in the radial (vertical) and x in the transverse (horizontal) directions, and observable quantities, namely redshift and

angular separation, in three di�erent cosmological models: (left) a �at matter-dominated universe, (middle) an open

matter-dominated universe, and (right) a �at ΛCDM universe.

10.19 Hubble diagram

The Hubble diagram of Type Ia supernova shown in Figure 10.1 is a plot of (log) luminosity distance log dL
versus (log) redshift log z. The luminosity distance is explained in �10.19.1 immediately following.

10.19.1 Luminosity distance

Astronomers conventionally de�ne the luminosity distance dL to a celestial object so that the observed
�ux F from the object (energy observed per unit time per unit collecting area of the telescope) is equal to
the intrinsic luminosity L of the object (energy per unit time emitted by the object in its rest frame) divided
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by 4πd2
L,

F =
L

4πd2
L

. (10.90)

In other words, the luminosity distance dL is de�ned so that �ux F and luminosity L are related by the
usual inverse square law of distance. Objects at cosmological distances are redshifted, so the luminosity at
some emitted wavelength λem is observed at the redshifted wavelength λobs = (1 + z)λem. The luminosity
distance (10.90) is de�ned so that the �ux F (λobs) on the left hand side is at the observed wavelength, while
the luminosity L(λem) on the right hand side is at the emitted wavelength. The observed �ux and emitted
luminosity are then related by

F =
L

(1 + z)24πx2
, (10.91)

where x is the comoving circumferential radius, normalized to a0 = 1 at the present time. The factor of
1/(4πx2) expresses the fact that the luminosity is spread over a sphere of proper area 4πx2. Equation (10.91)
involves two factors of 1 + z, one of which come from the fact that the observed photon energy is redshifted,
and the other from the fact that the observed number of photons detected per unit time is redshifted by
1 + z. Equations (10.90) and (10.91) imply that the luminosity distance dL is related to the circumferential
distance x and the redshift z by

dL = (1 + z)x . (10.92)

Why bother with the luminosity distance if it can be reduced to the circumferential distance x by dividing
by a redshift factor? The answer is that, especially historically, �uxes of distant astronomical objects are
often measured from images without direct spectral information. If the intrinsic luminosity of the object
is treated as �known� (as with Cepheid variables and Type Ia supernovae), then the luminosity distance
dL =

√
L/(4πF ) can be inferred without knowledge of the redshift. In practice objects are often measured

with a �xed colour �lter or set of �lters, and some additional correction, historically called the K-correction,
is necessary to transform the �ux in an observed �lter to a common band.

10.19.2 Magnitudes

The Hubble diagram of Type Ia supernova shown in Figure 10.1 has for its vertical axis the astronomers'
system of magnitudes, a system that dates back to the 2nd century BC Greek astronomer Hipparchus.
A magnitude is a logarithmic measure of brightness, de�ned such that an interval of 5 magnitudes m

corresponds to a factor of 100 in linear �ux F . Following Hipparchus, the magnitude system is devised such
that the brightest stars in the sky have apparent magnitudes of approximately 0, while fainter stars have
larger magnitudes, the faintest naked eye stars in the sky being about magnitude 6. Traditionally, the system
is tied to the star Vega, which is de�ned to have magnitude 0. Thus the apparent magnitude m of a star is

m = mVega − 2.5 log (F/FVega) . (10.93)

The absolute magnitude M of an object is de�ned to equal the apparent magnitude m that it would have if
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it were 10 parsecs away, which is the approximate distance to the star Vega. Thus

m−M = 5 log (dL/10 pc) , (10.94)

where dL is the luminosity distance. The di�erence m−M is called the distance modulus.

Exercise 10.9. Hubble diagram. Draw a theoretical Hubble diagram, a plot of luminosity distance dL
versus redshift z, for universes with various values of ΩΛ and Ωm. The relation between dL and z is an elliptic
integral of the �rst kind, so you will need to �nd a program that does elliptic integrals (alternatively, you can
do the integral numerically). The elliptic integral simpli�es to elementary functions in simple cases where
the mass-energy density is dominated by a single component (either mass Ωm = 1, or curvature Ωk = 1, or
a cosmological constant ΩΛ = 1).
Solution. Your model curves should look similar to those in Figure 10.1.

10.20 Recombination

The CMB comes to us from the epoch of recombination, when the Universe transitioned from being mostly
ionized, and therefore opaque, to mostly neutral, and therefore transparent. As the Universe expands, the
temperature of the cosmic background decreases as T ∝ a−1. Given that the CMB temperature today is
T0 ≈ 3 K, the temperature would have been about 3,000K at a redshift of about 1,000. This temperature
corresponds to the temperature at which hydrogen, the most abundant element in the Universe, ionizes. Not
coincidentally, the temperature of recombination is comparable to the ≈ 5,800 K surface temperature of the
Sun. The CMB and Sun temperatures di�er because the baryon-to-photon number density is much greater
in the Sun.
The transition from mostly ionized to mostly neutral takes place over a fairly narrow range of redshifts, just

as the transition from ionized to neutral at the photosphere of the Sun is rather sharp. Thus recombination
can be approximated as occurring almost instantaneously. Aghanim et al. (2018) give the redshift of last
scattering, where the photon-electron scattering (Thomson) optical depth was 1,

z∗ = 1089.8± 0.2 . (10.95)

Hinshaw et al. (2012, supplementary data) give the age of the Universe at recombination,

t∗ = 376,000± 4,000 yr . (10.96)

10.21 Horizon

Light can come from no more distant point than the Big Bang. This distant point de�nes what cosmologists
traditionally refer to as the horizon (or particle horizon) of our Universe, located at in�nite redshift, z =∞.
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Figure 10.11 Spacetime diagram of a FLRW Universe in conformal coordinates η and x‖, in units of the present

day Hubble distance c/H0. The un�lled circle marks our position, which is taken to be the origin of the conformal

coordinates. In conformal coordinates, light moves at 45◦ on the spacetime diagram. The diagram is drawn for a �at

ΛCDM model with ΩΛ = 0.7, Ωm = 0.3, and a radiation density such that the redshift of matter-radiation equality

is 3400, consistent with Aghanim et al. (2018). Horizontal lines are lines of constant cosmic scale factor a, labelled by

their values relative to the present, a0 = 1. Reheating, at the end of in�ation, has been taken to be at redshift 1028.

Filled dots mark the place that cosmologists traditionally call the horizon, at reheating, which is a place of large, but

not in�nite, redshift. In�ation o�ers a solution to the horizon problem because all points on the CMB within our past

lightcone could have been in causal contact at an early stage of in�ation. If dark energy behaves like a cosmological

constant into the inde�nite future, then we will have a future horizon.

Equation (10.86) gives the geodesic distance between us at redshift zero and the horizon as

x‖(horizon) =

∫ ∞
0

c dz

H
. (10.97)

The standard ΛCDM paradigm is based in part on the proposition that the Universe had an early in�a-
tionary phase, �10.22. If so, then there is no place where the redshift reaches in�nity. However, the redshift
is large at reheating, when in�ation ends, and cosmologists call this the horizon,

x‖(horizon) =

∫ huge

0

c dz

H
. (10.98)

Figure 10.11 shows a spacetime diagram of a FLRW Universe with cosmological parameters consistent
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accelerating, vacuum-dominated phase. Whereas in the past redshifts tended to decrease with time, in the future
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with those of (Aghanim et al., 2018). In this model, the comoving horizon distance to reheating is

x‖(horizon) = 3.333 c/H0 = 14.5 Gpc = 47.2 Glyr . (10.99)

The redshift of reheating in this model has been taken at z = 1028, but the horizon distance is insensitive to
the choice of reheating redshift.
The horizon should be distinguished from the future horizon, which Hawking and Ellis (1973) de�ne to

be the farthest that an observer will ever be able to see in the inde�nite future. If the Universe continues
accelerating, as it is currently, then our future horizon will be �nite, as illustrated in Figure 10.11.
A quantity that cosmologists sometimes refer to loosely as the horizon is the Hubble distance, de�ned

to be

Hubble distance ≡ c

H
, (10.100)

The Hubble distance sets the characteristic scale over which two observers can communicate and in�uence
each other, which is smaller than the horizon distance.
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The standard ΛCDM model has the curious property that the Universe is switching from a matter-
dominated period of deceleration to a vacuum-dominated period of acceleration. During deceleration, objects
appear over the horizon, while during acceleration, they disappear over the horizon. Figure 10.12 illustrates
the evolution of the observed redshifts of objects at �xed comoving distances. In the past decelerating phase,
the redshift of objects appearing over the horizon decreased rapidly from some huge value. In the future
accelerating phase, the redshift of objects disappearing over the horizon will increase in proportion to the
cosmic scale factor.

10.22 In�ation

Part of the Standard Model of Cosmology is the hypothesis that the early Universe underwent a period of
in�ation, when the mass-energy density was dominated by �vacuum� energy, and the Universe expanded
exponentially, with a ∝ eHt. The idea of in�ation was originally motivated around 1980 by the idea that
early in the Universe the forces of nature would be uni�ed, and that there is energy associated with that
uni�cation. For example, the in�ationary energy could be the energy associated with Grand Uni�cation
of the U(1) × SU(2) × SU(3) forces of the standard model. The three coupling constants of the standard
model vary slowly with energy, appearing to converge at an energy of around mGUT ∼ 1016 GeV, not much
less than the Planck energy of mP ∼ 1019 GeV. The associated vacuum energy density would be of order
ρGUT ∼ m4

GUT in Planck units.
Alan Guth (1981) pointed at that, regardless of theoretical arguments for in�ation, an early in�ationary

epoch would solve a number of observational conundra. The most important observational problem is the
horizon problem, Exercise 10.11. If the Universe has always been dominated by radiation and matter, and
therefore always decelerating, then up to the time of recombination light could only have travelled a distance
corresponding to about 1 degree on the cosmic microwave background sky, Exercise 10.10. If that were the
case, then how come the temperature at points in the cosmic microwave background more than a degree
apart, indeed even 180◦ apart, on opposite sides of the sky, have the same temperature, even though they
could never have been in causal contact? Guth pointed out that in�ation could solve the horizon problem
by allowing points to be initially in causal contact, then driven out of causal contact by the acceleration
and consequent exponential expansion induced by vacuum energy, provide that the in�ationary expansion
continued over a su�cient number e-folds, Exercise 10.11. Guth's solution is illustrated in the spacetime
diagram in Figure 10.11.
Guth pointed out that in�ation could solve some other problems, such as the �atness problem. However,

most of these problems are essentially equivalent to the horizon problem, Exercise 10.12.
A distinct basic problem that in�ation solves is the expansion problem. If the Universe has always been

dominated by a gravitationally attractive form of mass-energy, such as matter or radiation, then how come
the Universe is expanding? In�ation solves the problem because an initial period dominated by gravitationally
repulsive vacuum energy could have accelerated the Universe into enormous expansion.
In�ation also o�ers an answer to the question of where the matter and radiation seen in the Universe

today came from. In�ation must have come to an end, since the present day Universe does not contain
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the enormously high vacuum energy density that dominated during in�ation (the vacuum energy during
in�ation was vast compared to the present-day cosmological constant). The vacuum energy must therefore
have decayed into other forms of gravitationally attractive energy, such as matter and radiation. The process
of decay is called reheating. Reheating is not well understood, because it occurred at energies well above
those accessible to experiment today. Nevertheless, if in�ation occurred, then so also did reheating.
Compelling evidence in favour of the in�ationary paradigm comes from the fact that, in its simplest

form, in�ationary predictions for the power spectrum of �uctuations of the CMB �t astonishingly well to
observational data, which continue to grow ever more precise.

Exercise 10.10. Horizon size at recombination.

1. Comoving horizon distance. Assume for simplicity a �at, matter-dominated Universe. From equa-
tion (10.97), what is the comoving horizon distance x‖ as a function of cosmic scale factor a?

2. Angular size on the CMB of the horizon at recombination. For a �at Universe, the angular
size on the CMB of the horizon at recombination equals the ratio of the comoving horizon distance
at recombination to the comoving distance between us and recombination. Recombination occurs at
su�ciently high redshift that the latter distance approximates the comoving horizon at the present time.
Estimate the angular size on the CMB of the horizon at recombination if the redshift of recombination
is zrec ≈ 1100.

Exercise 10.11. The horizon problem.

1. Expansion factor. The temperature of the CMB today is T0 ≈ 3 K. By approximately what factor
has the Universe expanded since the temperature was some initial high temperature, say the GUT
temperature Ti ≈ 1029 K, or the Planck temperature Ti ≈ 1032 K?

2. Hubble distance. By what factor has the Hubble distance c/H increased during the expansion of
part 1? Assume for simplicity that the Universe has been mainly radiation-dominated during this period,
and that the Universe is �at. [Hint: For a �at Universe H2 ∝ ρ, and for radiation-dominated Universe
ρ ∝ a−4.]

3. Comoving Hubble distance. Hence determine by what factor the comoving Hubble distance xH =

c/(aH) has increased during the expansion of part 1.
4. Comoving Hubble distance during in�ation. During in�ation the Hubble distance c/H remained

constant, while the cosmic scale factor a expanded exponentially. What is the relation between the
comoving Hubble distance xH = c/(aH) and cosmic scale factor a during in�ation? [You should obtain
an answer of the form xH ∝ a?.]

5. Number of e-foldings to solve the horizon problem. By how many e-foldings must the Universe
have in�ated in order to solve the horizon problem? Assume again, as in part 1, that the Universe
has been mainly radiation-dominated during expansion from the Planck temperature to the current
temperature, and that this radiation-dominated epoch was immediately preceded by a period of in�ation.
[Hint: In�ation solves the horizon problem if the currently observable Universe was within the Hubble
distance at the beginning of in�ation, i.e. if the comoving xH,0 now is less than the comoving Hubble
distance xH,i at the beginning of in�ation. The `number of e-foldings' is ln(af/ai), where ln is the natural
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logarithm, and ai and af are the cosmic scale factors at the beginning (i for initial) and end (f for �nal)
of in�ation.]

Exercise 10.12. Relation between horizon and �atness problems. Show that Friedmann's equa-
tion (10.30a) can be written in the form

Ω− 1 = κx2
H , (10.101)

where xH ≡ c/(aH) is the comoving Hubble distance. Use this equation to argue in your own words how the
horizon and �atness problems are related.

10.23 Evolution of the size and density of the Universe

Figure 10.13 shows the evolution of the cosmic scale factor a as a function of time t predicted by the standard
�at ΛCDM model, coupled with a plausible depiction of the early in�ationary epoch. The parameters of the
model are the same as those for Figure 10.11. In the model, the Universe starts with an in�ationary phase,
and transitions instantaneously at reheating to a radiation-dominated phases. Not long before recombination,
the Universe goes over to a matter-dominated phase, then later to the dark-energy-dominated phase of today.
The relation between cosmic time t and cosmic scale factor a is given by equation (10.69), and some relevant
analytic results are in Exercises 10.6 and 10.7.
Figure 10.13 also shows the evolution of the Hubble distance c/H, which sets the approximate scale within

which regions are in causal contact. The Hubble distance is constant during vacuum-dominated phases, but
is approximately proportional to the age of the Universe at other times. The Figure illustrates that regions
that are in causal contact prior to in�ation can �y out of causal contact during the accelerated expansion
of in�ation. Once the Universe transitions to a decelerating radiation- or matter-dominated phase, regions
that were out of causal contact can come back into causal contact, inside the Hubble distance.
Since in�ation occurred at high energies inaccessible to experiment, the energy scale of in�ation is unknown,

and the number of e-folds during which in�ation persisted is unknown. Figure 10.13 illustrates the case where
the energy scale of in�ation is around the GUT scale, and the number of e-folds is only slightly greater than
the number necessary to solve the horizon problem. Figure 10.13 does not attempt to extrapolate to what
might possibly have happened prior to in�ation.
Figure 10.14 shows the mass-energy density ρ as a function of time t for the same �at ΛCDM model as

shown in Figure 10.13. Since the Universe here is taken to be �at, the density equals the critical density
at all times, and is proportional to the inverse square of the Hubble distance c/H plotted in Figure 10.13.
The energy density is constant during epochs dominated by vacuum energy, but decreases approximately as
ρ ∝∼ t−2 at other times.
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Figure 10.13 Cosmic scale factor a and Hubble distance c/H as a function of cosmic time t, for a �at ΛCDM model

with the same parameters as in Figure 10.11. In this model, the Universe began with an in�ationary epoch where the

density was dominated by constant vacuum energy, the Hubble parameter H was constant, and the cosmic scale factor

increased exponentially, a ∝ eHt. The initial in�ationary phase came to an end when the vacuum energy decayed into

radiation energy, an event called reheating. The Universe then became radiation-dominated, evolving as a ∝ t1/2.

At a redshift of zeq ≈ 3400 the Universe passed through the epoch of matter-radiation equality, where the density

of radiation equalled that of (non-baryonic plus baryonic) matter. Matter-radiation equality occurred just prior to

recombination, at zrec ≈ 1090. The Universe remained matter-dominated, evolving as a ∝ t2/3, until relatively recently
(from a cosmological perspective). The Universe transitioned through matter-dark energy equality at zΛ ≈ 0.4. The

dotted line shows how the cosmic scale factor and Hubble distance will evolve in the future, if the dark energy is a

cosmological constant, and if it does not decay into some other form of energy.

10.24 Evolution of the temperature of the Universe

Figure 10.15 shows the radiation (photon) temperature T as a function of time t corresponding to the
evolution of the scale factor a and temperature T shown in Figures 10.13 and 10.14.
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Figure 10.14 Mass-energy density ρ of the Universe as a function of cosmic time t corresponding to the evolution of

the cosmic scale factor shown in Figure 10.13.

A system of photons in thermodynamic equilibrium has a blackbody distribution of energies. The CMB
has a precise blackbody spectrum, not because it is in thermodynamic equilibrium today, but rather because
the CMB was in thermodynamic equilibrium with electrons and nuclei at the time of recombination, and the
CMB has streamed more or less freely through the Universe since recombination. A thermal distribution of
relativistic particles retains its thermal distribution in an expanding FLRW universe (albeit with a changing
temperature), Exercise 10.13.
The evolution of the temperature of photons in the Universe can be deduced from conservation of entropy.

The Friedmann equations imply the �rst law of thermodynamics, �10.9.2, and thus enforce conservation of
entropy per comoving volume (but see Concept Question 30.5). Entropy is conserved in a FLRW universe
even when particles annihilate with each other. For example, electrons and positrons annihilated with each
other when the temperature fell through T ≈ me = 511 keV, but the entropy lost by electrons and positrons
was gained by photons, for no net change in entropy, Figure 10.16 and Exercise 10.21.

In the real Universe, entropy increases as a result of �uctuations away from the perfect homogeneity and
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Figure 10.15 Radiation temperature T of the Universe as a function of cosmic time t corresponding to the evolution of

the cosmic scale factor shown in Figure 10.13. The temperature during in�ation was the Hawking temperature, equal

to H/(2π) in Planck units. After in�ation and reheating, the temperature decreases as T ∝ a−1, modi�ed by a factor

depending on the e�ective entropy-weighted number gs of particle species, equation (10.103). In this plot, the e�ective

number gs of relativistic particle species has been approximated as changing abruptly at three discrete temperatures,

electron-positron annihilation, the QCD phase transition, and the electroweak phase transition, Table 10.4.

isotropy assumed by the FLRW geometry. By far the biggest repositories of entropy in today's Universe are
black holes, principally supermassive black holes. However, black holes are irrelevant to the CMB, since the
CMB has propagated essentially unchanged since recombination. It is �ne to compute the temperature of
cosmological radiation from conservation of cosmological entropy.

The entropy of a system in thermodynamic equilibrium is approximately one per particle, Exercise 10.18.
The number of particles in the Universe today is dominated by particles that were relativistic at the time
they decoupled, namely photons and neutrinos, and these therefore dominate the cosmological entropy. The
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Figure 10.16 Comoving number densities a3n of photons γ, neutrinos ν, electrons e, and positrons ē as a function of

temperature T around the temperature me near which electrons and positrons annihilate. Annihilating electrons and

positrons dump their entropy into photons, increasing the comoving density of photons, while conserving total entropy

per comoving volume. The comoving densities are normalized to a3nγ = 1 at the present time. The calculations are

described in Exercise 10.21.

ratio ηb ≡ nb/nγ of baryon to photon number in the Universe today is less than a billionth,

ηb ≡
nb

nγ
=

εγΩb

mbΩγ
= 6.1× 10−10 Ωbh

2

0.0224

(
T0

2.725 K

)−3

, (10.102)

where εγ = π4T0/ (30ζ(3)) = 2.701T0 is the mean energy per photon (Exercise 10.15), and mb = 939 MeV

is the approximate mass per baryon. The value is as reported by the Planck team (Aghanim et al., 2018).
Conservation of entropy per comoving volume implies that the photon temperature T at redshift z is

related to the present day photon temperature T0 by (Exercise 10.19)

T

T0
= (1 + z)

(
gs,0
gs

)1/3

, (10.103)

where gs is the entropy-weighted e�ective number of relativistic particle species.
The other major contributors to cosmological entropy today, besides photons, are neutrinos and antineutri-

nos. Neutrinos decoupled at a temperature of about T ≈ 1 MeV. Above that temperature weak interactions
were fast enough to keep neutrinos and antineutrinos in thermodynamic equilibrium with protons and neu-
trons, hence with photons, but below that temperature neutrinos and antineutrinos froze out.
Neutrino oscillation data indicate that at least 2 of the 3 neutrino types have masses that would make
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Table 10.4: E�ective entropy-weighted number of relativistic particle species

Temperature T particles
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gs

T . 0.5 MeV
photon γ 1 1

2

(
1 +

7

8

4

11
3

)
= 3.91

neutrinos νe, νµ, ντ 1
2 1 3 3

0.5 MeV . T . 200 MeV

photon γ 1 1
2

(
1 +

7

8
5

)
= 10.75neutrinos νe, νµ, ντ 1

2 1 3 3

electron e 1
2 2 1 2

200 MeV . T . 100 GeV

photon γ 1 1

2

(
9 +

7

8
25

)
= 61.75

SU(3) gluons 1 8

neutrinos νe, νµ, ντ 1
2 1 3 3

leptons e, µ 1
2 2 2 4

quarks u, d, s 1
2 2 3

2 2 3 18

T & 100 GeV

SU(2)×UY (1) bosons 1 3 + 1

2

(
14 +

7

8
45

)
= 106.75

SU(3) gluons 1 8

complex Higgs 0 2

neutrinos νe, νµ, ντ 1
2 1 3 3

leptons e, µ, τ 1
2 2 3 6

quarks u, d, c, s, t, b 1
2 2 3 2 3 36

cosmic neutrinos non-relativistic at the present time, �10.25. Neutrino oscillations �x only di�erences in
squared masses of neutrinos, leaving unconstrained the absolute mass levels. If the lightest neutrino has
mass mν . 10−4 eV, equation (10.110), then it would remain relativistic at the present time, and it would
produce a Cosmic Neutrino Background (CNB) analogous to the CMB. Because neutrinos froze out be-
fore eē-annihilation, annihilating electrons and positrons dumped their entropy into photons, increasing
the temperature of photons relative to that of neutrinos. The temperature of the CNB today would be,
Exercise 10.20,

Tν =

(
4

11

)1/3

2.725 K = 1.945 K . (10.104)

Sadly, neutrinos interact too weakly for such a background to be detectable with current technology. Like
the CMB, the CNB should have a (redshifted) thermal distribution inherited from being in thermodynamic
equilibrium at T ∼ 1 MeV.
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Table 10.4 gives approximate values of the e�ective entropy-weighted number gs of relativistic particle
species over various temperature ranges. The extra factor of two for gs in the �nal column of Table 10.4
arises because every particle species has an antiparticle (the two spin states of a photon can be construed
as each other's antiparticle). The entropy of a relativistic fermionic species is 7/8 that of a bosonic species,
Exercise 10.16, equation (10.140). The di�erence in photon and neutrino temperatures leads to an extra
factor of 4/11 in the value of gs today, which, with 1 bosonic species (photons) and 3 fermionic species
(neutrinos), together with their antiparticles, is, equation (10.151),

gs,0 = 2

(
1 +

7

8

4

11
3

)
=

43

11
= 3.91 . (10.105)

A more comprehensive evaluation of gs is given by Kolb and Turner (1990, Fig. 3.5), and Aghanim et
al. (2018, Fig. 36). Over the range of energies T . 1 TeV covered by the standard model of physics, there
are four principal epochs in the evolution of the e�ective number gs of relativistic species, punctuated by
electron-positron annihilation at T ≈ 0.5 MeV, the QCD phase transition from bound nuclei to free quarks
and gluons at T ≈ 200 MeV, and the electroweak phase transition above which all standard model particles
are relativistic at T ≈ 100 GeV. There could well be further changes in the number of relativistic species
at higher temperatures, for example if supersymmetry becomes unbroken at some energy, but at present no
experimental data constrain the possibilities.

10.25 Neutrino mass

Neutrinos are created naturally by nucleosynthesis in the Sun, and by interaction of cosmic rays with the
atmosphere. When a neutrino is created (or annihilated) by a weak interaction, it is created in a weak
eigenstate. Observations of solar and atmospheric neutrinos indicate that neutrino species oscillate into each
other, implying that the weak eigenstates are not mass eigenstates. The weak eigenstates are denoted νe, νµ,
and ντ , while the mass eigenstates are denoted ν1, ν2, and ν3. Oscillation data yield mass squared di�erences
between the three mass eigenstates (Forero, Tortola, and Valle, 2012)

|∆m21|2 = (7.6± 0.2)× 10−5 eV2 solar neutrinos , (10.106a)

|∆m31|2 = (2.4± 0.1)× 10−3 eV2 atmospheric neutrinos . (10.106b)

The data imply that at least two of the neutrino types have mass. The squared mass di�erence between m1

and m2 implies that at least one of them must have a mass

mν1 or mν2 ≥
√

7.6× 10−5 eV2 ≈ 0.01 eV . (10.107)

The squared mass di�erence between m1 and m3 implies that at least one of them must have a mass

mν1 or mν3 ≥
√

2.4× 10−3 eV2 ≈ 0.05 eV . (10.108)

The ordering of masses is undetermined by the data. The natural ordering is m1 < m2 < m3, but an inverted
hierarchy m3 < m1 ≈ m2 is possible. Constraints from the CMB impose an upper limit on the sum of the
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masses of the three neutrino types (Aghanim et al., 2018),∑
mν < 0.12 eV . (10.109)

The CNB temperature, equation (10.104), is Tν = 1.945 K = 1.676 × 10−4 eV. The redshift at which a
neutrino of mass mν becomes non-relativistic is then

1 + zν =
mν

Tν
=

mν

1.676× 10−4 eV
. (10.110)

Neutrinos of masses 0.01 eV and 0.05 eV would have become non-relativistic at zν ≈ 60 and 300 respectively.
Only a neutrino of mass . 10−4 eV would remain relativistic at the present time.
The masses from neutrino oscillation data suggest that at least two species of cosmological neutrinos are

non-relativistic today. If so, then the neutrino density Ων today is related to the sum
∑
mν of neutrino

masses by

Ων =
8πG

∑
mνnν

3H2
0

= 5.4× 10−4

( ∑
mν

0.05 eV

)
h−2

0.70 . (10.111)

The number and entropy densities of neutrinos today are una�ected by whether they are relativistic, so
the e�ective number- and entropy-weighted numbers gn,0 and gs,0 are una�ected. On the other hand the
energy density of neutrinos today does depend on whether or not they are relativistic. If just one neutrino
type is relativistic and the other two are non-relativistic, then the e�ective energy-weighted number gρ,0 of
relativistic species today is

gρ,0 = 2 +

(
4

11

)4/3
7

8
2 = 2.45 . (10.112)

The density Ωr of relativistic particles today is Ωr = (gρ,0/2)Ωγ .

10.25.1 The neutrino mass puzzle

The experimental fact that neutrinos have mass is puzzling. The other salient experimental property of
neutrinos is that they are left-handed (and anti-neutrinos are right-handed). A particle whose spin and
momentum point in the same direction is called right-handed, while a particle whose spin and momentum
point in opposite directions is called left-handed. The handedness of a particle is also called its chirality. For
massless particles, chirality is Lorentz-invariant: a massless particle that is purely left-handed in one frame
remains purely left-handed in any Lorentz-transformed frame.
The problem is that a particle cannot be both massive and purely left- or right-handed. A massive particle

that looks left-handed, spin anti-aligned with its momentum, in one frame, looks right-handed to an observer
who overtakes the particle from behind. This does not immediately contradict the experimental fact that
neutrinos are both massive and left-handed, since in all experiments neutrinos are highly relativistic, in which
case the left-handed components are boosted exponentially compared to the right-handed components, as
illustrated in Figure 10.17. But in principle an observer could overtake a left-handed neutrino, which the
observer would then see as right-handed. But then where are the right-handed neutrinos? It is not enough to
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Figure 10.17 According to the Standard Model of physics, a massive fermion acquires its mass by interacting with

the Higgs �eld. The interaction �ips the fermion between left- and right-handed chiralities as it propagates through

spacetime, as illustrated schematically in this spacetime diagram. In the fermion's rest frame, its wavefunction is a

linear combination of left- and right-handed chiralities with equal amplitudes (in absolute value). Boosting the fermion

in a direction opposite to its spin ampli�es the left-handed component by a boost factor eθ/2 and deampli�es the

right-handed component by e−θ/2, so a fermion moving relativistically appears almost entirely left-handed.

say that right-handed neutrinos are too weakly interacting to have been observed. A right-handed neutrino
observed from behind would look like a left-handed neutrino and thereby become interacting, so right-handed
neutrinos should make themselves felt in cosmology.

A leading idea to solve the problem of neutrino mass is that neutrinos are so-called Majorana fermions,
which have the de�ning property that when observed from behind they not only switch from left- to right-
handed, but also from particle to antiparticle. Thus a left-handed neutrino observed from behind looks like
a right-handed antineutrino. Switching from particle to antiparticle would violate charge conservation, so
other fermions, namely electrons and quarks, cannot be Majorana fermions because they possess conserved
charges (electric charge and color charge). Left-handed neutrinos have weak isospin and weak hypercharge,
but those charges are not strictly conserved at energies below the ∼ 100 GeV scale at which the electroweak
UY (1)×SU(2) symmetry breaks down to the Uem(1) electromagnetic symmetry. Thus at energies below the
electroweak scale, neutrinos can be massive Majorana fermions without violating any strict conservation law.

The problem of neutrino mass is resumed in �42.2.1.
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10.26 Occupation number, number density, and energy-momentum

A careful treatment of the evolution of the number and energy-momentum densities of species in a FLRW
universe requires consideration of their momentum distributions.
In this section, including the Exercises, units c, ~, and G are kept explicit, but the Boltzmann constant is

set to unity, k = 1, which is equivalent to measuring temperature T in units of energy.

10.26.1 Occupation number

Choose a locally inertial frame attached to an observer. The distribution of a particle species in the observer's
frame is described by a dimensionless scalar occupation number f(t,x,p) that speci�es the number dN of
particles at the observer's position xµ ≡ {t,x} with momentum pk ≡ {E,p} in a dimensionless Lorentz-
invariant 6-dimensional volume of phase space,

dN = f(t,x,p)
g d3r d3p

(2π~)3
, (10.113)

with g being the number of spin states of the particle. Here d3r and d3p denote the proper spatial and
momentum 3-volume elements in the observer's locally inertial frame. The quantum mechanical normalization
factor (2π~)3 ensures that f counts the number of particles per free-particle quantum state. If the particle
species has rest mass m, then its energy E is related to its momentum by E2− p2c2 = m2c4, which explains
why the occupation number is treated as a function only of momentum p.
The phase-space volume element d3r d3p is a scalar, invariant under Lorentz transformations of the ob-

server's frame. In fact, as shown in �4.22.1, the phase-space volume element is invariant under any canonical
transformation of coordinates and momenta, which includes not only Lorentz transformations but also a
broad range of other transformations. For example, in place of d3r d3p it would be possible to use the
phase-space volume element d3x d3π formed out of the spatial comoving coordinates xα and their conjugate
generalized momenta πα.
The Lorentz invariance of the phase-space volume element d3r d3p can be demonstrated more simplistically

as follows. First, the 3-volume element d3r is related to the scalar 4-volume element dt d3r by

dt d3r

dλ
= E d3r , (10.114)

since dt/dλ = E. The left hand side of equation (10.114) is the derivative of the observer's 4-volume dt d3r

with respect to the a�ne parameter dλ ≡ dτ/m, with τ the observer's proper time. Since both the 4-
volume and a�ne parameter are scalars, it follows that E d3r is a scalar (actually, dt d3r = dt dr1dr2dr3 is
a pseudoscalar, not a scalar, as is E d3r = p0 dr1dr2dr3; see Chapter 15). Second, the momentum 3-volume
element d3p is related to the scalar 4-volume element dE d3p by

δ(E2 − p2c2 −m2c4) dE d3p =
d3p

2E
, (10.115)

where the Dirac delta-function enforces conservation of the particle rest mass m. The 4-volume d4p is a
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scalar, and the delta-function is a function of a scalar argument, hence d3p/E is likewise a scalar (again,
dE d3p = −dp0dp1dp2dp3 and d3p/E = dp1dp2dp3/p

0 are actually pseudoscalars, not scalars). Since E d3r

and d3p/E are both Lorentz-invariant (pseudo-)scalars, so is their product, the phase space volume d3r d3p

(which is a genuine scalar).

10.26.2 Occupation number in a FLRW universe

The homogeneity and isotropy of a FLRW universe imply that, for a comoving observer, the occupation
number f is independent of position and direction,

f(t,x,p) = f(t, p) . (10.116)

10.26.3 Number density

In the locally inertial frame of an observer, the number density and �ux of a particle species form a 4-vector
nk,

nk =

∫
pk f(t,x,p)

g d3p

E(2π~)3
. (10.117)

In particular, the number density n0, with units number of particles per unit proper volume, is the time
component of the number current,

n0 =

∫
f
g d3p

(2π~)3
. (10.118)

In a FLRW universe, the spatial components of the number �ux vanish by isotropy, so the only non-
vanishing component is the time component n0, which is just the proper number density n of the particle
species,

n ≡ n0 =

∫
f(t, p)

g 4πp2dp

(2π~)3
. (10.119)

10.26.4 Energy-momentum tensor

In the locally inertial frame of an observer, the energy-momentum tensor T kl of a particle species is

T kl =

∫
pkpl f(t,x,p)

g d3p

E(2π~)3
. (10.120)

For a FLRW universe, homogeneity and isotropy imply that the energy-momentum tensor in the locally
inertial frame of a comoving observer is diagonal, with time component T 00 = ρ, and isotropic spatial
components T ab = p δab. The proper energy density ρ of a particle species is

ρ =

∫
E f(t, p)

g 4πp2dp

(2π~)3
, (10.121)
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and the proper isotropic pressure p is (don't confuse pressure p on the left hand side with momentum p on
the right hand side)

p =

∫
p2

3E
f(t, p)

g 4πp2dp

(2π~)3
. (10.122)

10.27 Occupation numbers in thermodynamic equilibrium

Frequent collisions tend to drive a system towards thermodynamic equilibrium. Electron-photon scattering
keeps photons in near equilibrium with electrons, while Coulomb scattering keeps electrons in near equi-
librium with ions, primarily hydrogen ions (protons) and helium nuclei. Thus photons and baryons can be
treated as having unperturbed distributions in mutual thermodynamic equilibrium.
In thermodynamic equilibrium at temperature T , the occupation numbers of fermions, which obey an

exclusion principle, and of bosons, which obey an anti-exclusion principle, are

f =


1

e(E−µ)/T + 1
fermion ,

1

e(E−µ)/T − 1
boson ,

(10.123)

where µ is the chemical potential of the species. In the limit of small occupation numbers, f � 1, equivalent
to large negative chemical potential, µ → −large, both fermion and boson distributions go over to the
Boltzmann distribution

f = e(−E+µ)/T Boltzmann . (10.124)

Chemical potential is the thermodynamic potential associated with conservation of number. There is a
distinct potential for each conserved species. For example, radiative recombination and photoionization of
hydrogen,

p+ e↔ H + γ , (10.125)

separately preserves proton and electron number, hydrogen being composed of one proton and one electron.
In thermodynamic equilibrium, the chemical potential µH of hydrogen is the sum of the chemical potentials
µp and µe of protons and electrons,

µp + µe = µH . (10.126)

Photon number is not conserved, so photons have zero chemical potential,

µγ = 0 , (10.127)

which is closely associated with the fact that photons are their own antiparticles. For photons, which are
bosons, the thermodynamic distribution (10.123) becomes the Planck distribution,

f =
1

eE/T − 1
Planck . (10.128)
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Exercise 10.13. Distribution of non-interacting particles initially in thermodynamic equilib-

rium. The number dN of a particle species in an interval d3rd3p of phase space (proper positions r and
proper momenta p, not to be confused with the same symbol p for pressure) for an ideal gas of free particles
(non-relativistic, relativistic, or anything in between) in thermodynamic equilibrium at temperature T and
chemical potential µ is

dN = f
g d3rd3p

(2π~)3
, (10.129)

where the occupation number f is (units k = 1, where k is the Boltzmann constant)

f =
1

e(E−µ)/T ± 1
, (10.130)

with a + sign for fermions and a − sign for bosons. The energy E and momentum p of particles of mass m
are related by E2 = p2c2 +m2c4. For bosons, the chemical potential is constrained to satisfy µ ≤ E, but for
fermions µ may take any positive or negative value, with µ � E corresponding to a degenerate Fermi gas.
As the Universe expands, proper distance increase as r ∝ a, while proper momenta decrease as p ∝ a−1, so
the phase space volume d3rd3p remains constant.
1. Occupation number. Write down an expression for the occupation number f(p) of a distribution of

particles that start in thermodynamic equilibrium and then remain non-interacting while the Universe
expands by a factor a.

2. Relativistic particles. Conclude that a distribution of non-interacting relativistic particles initially
in thermodynamic equilibrium retains its thermodynamic equilibrium distribution in a FLRW universe
as long as the particles remain relativistic. How do the temperature T and chemical potential µ of the
relativistic distribution vary with cosmic scale factor a?

3. Non-relativistic particles. Show similarly that a distribution of non-interacting non-relativistic par-
ticles initially in thermodynamic equilibrium remains thermal. How do the temperature T and chemical
potential µ−m of the non-relativistic distribution vary with cosmic scale factor a?

4. Transition from relativistic to non-relativistic.What happens to a distribution of non-interacting
particles that are relativistic in thermodynamic equilibrium, but redshift to being non-relativistic?

Exercise 10.14. The �rst law of thermodynamics with non-conserved particle number. As seen
in �10.9.2, the �rst law of thermodynamics in the form

T d(a3s) = d(a3ρ) + p d(a3) = 0 (10.131)

is built into Friedmann's equations. But what happens when for example the temperature falls through the
temperature T ≈ 0.5 MeV at which electrons and positrons annihilate? Won't there be entropy production
associated with eē annihilation? Should not the �rst law of thermodynamics actually say

T d(a3s) = d(a3ρ) + p d(a3)−
∑
X

µX d(a3nX) , (10.132)

with the last term taking into account the variation in the number a3nX of various species X?
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Solution. Each distinct chemical potential µX is associated with a conserved number, so the additional
terms contribute zero change to the entropy,∑

X

µX d(a3nX) = 0 , (10.133)

as long as the species are in mutual thermodynamic equilibrium. For example, positrons and electrons in
thermodynamic equilibrium satisfy µē = −µe, and

µe d(a3ne) + µē d(a3nē) = µe d(a3ne − a3nē) = 0 , (10.134)

which vanishes because the di�erence a3ne− a3nē between electron and positron number is conserved. Thus
the entropy conservation equation (10.131) remains correct in a FLRW universe even when number changing
processes are occurring.

Exercise 10.15. Number, energy, pressure, and entropy of a relativistic ideal gas at zero chem-

ical potential. The number density n, energy density ρ, and pressure p of an ideal gas of a single species
of free particles are given by equations (10.119), (10.121), and (10.122), with occupation number (10.130).
Show that for an ideal relativistic gas of g bosonic species in thermodynamic equilibrium at temperature T
and zero chemical potential, µ = 0, the number density n, energy density ρ, and pressure p are (units k = 1;
number density n in units 1/volume, energy density ρ and pressure p in units energy/volume)

n = g
ζ(3)T 3

π2c3~3
, ρ = 3p = g

π2T 4

30c3~3
, (10.135)

where ζ(3) = 1.2020569 is a Riemann zeta function. The entropy density s of an ideal gas of free particles
in thermodynamic equilibrium at zero chemical potential is

s =
ρ+ p

T
. (10.136)

Conclude that the entropy density s of an ideal relativistic gas of g bosonic species in thermodynamic
equilibrium at temperature T and zero chemical potential is (units 1/volume)

s = g
2π2T 3

45c3~3
. (10.137)

Exercise 10.16. A relation between thermodynamic integrals. Prove that∫ ∞
0

xn−1 dx

ex + 1
=
(
1− 21−n) ∫ ∞

0

xn−1 dx

ex − 1
. (10.138)

[Hint: Use the fact that (ex + 1)(ex − 1) = (e2x − 1).] Hence argue that the ratios of number, energy, and
entropy densities of relativistic fermionic (f) to relativistic bosonic (b) species in thermodynamic equilibrium
at the same temperature are

nf

nb
=

3

4
,

ρf

ρb
=
sf

sb
=

7

8
. (10.139)

Conclude that if the number n, energy ρ, and entropy s of a mixture of bosonic and fermionic species in
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thermodynamic equilibrium at the same temperature T are written in the form of equations (10.135) and
(10.137), then the e�ective number-, energy-, and entropy-weighted numbers g of particle species are, in
terms of the number gb of bosonic and gf of fermionic species,

gn = gb +
3

4
gf , gρ = gs = gb +

7

8
gf . (10.140)

Exercise 10.17. Relativistic particles in the early Universe had approximately zero chemical

potential. Show that the small particle-antiparticle symmetry of our Universe implies that to a good ap-
proximation relativistic particles in thermodynamic equilibrium in the early Universe had zero chemical
potential.
Solution. The chemical potentials of particles X and antiparticles X̄ in thermodynamic equilibrium are
necessarily related by

µX̄ = −µX . (10.141)

If the particle-antiparticle asymmetry is denoted η, de�ned for relativistic particles by

nX − nX̄ = η nX , (10.142)

then µX/T ∼ η. More accurately, to linear order in η,

µX
T
≈ η π2

3 ζ(3)
×
{

1 (bosons)
2
3 (fermions)

. (10.143)

Exercise 10.18. Entropy per particle. The entropy of an ideal gas of free particles in thermodynamic
equilibrium is

s =
ρ+ p− µn

T
. (10.144)

Argue that the entropy per particle s/n is a quantity of order unity, whether particles are relativistic or
non-relativistic.
Solution. For relativistic bosons with zero chemical potential, equations (10.135) and (10.137) imply that
the entropy per particle is

s

n
=

2π4

45ζ(3)
×
{

1 = 3.6 (bosons) ,
7
6 = 4.2 (fermions) .

(10.145)

For a non-relativistic species, the number density n is related to the temperature T and chemical potential
µ by

n = g

(
mT

2π~2

)3/2

e(µ−m)/T . (10.146)

Under cosmological conditions, the occupation number of non-relativistic species was small, e(µ−m)/T � 1.
However, tiny occupation numbers correspond to values of (µ − m)/T that are only logarithmically large
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(negative). The entropy per particle of a non-relativistic species is

s

n
=

5

2
+ ln

[
g

n

(
mT

2π~2

)3/2
]
, (10.147)

which remains modest even if the argument of the logarithm is huge.

Exercise 10.19. Photon temperature at high redshift versus today. Use entropy conservation, a3s =

constant, to argue that the ratio of the photon temperature T at redshift z in the early Universe to the photon
temperature T0 today is as given by equation (10.103).

Exercise 10.20. Cosmic Neutrino Background. Neutrino oscillation data imply mass squared di�er-
ences that indicate that at least 2 of the 3 neutrino types are massive today, equations (10.107) and (10.108).
The oscillation data do not constrain the o�set from zero mass. A neutrino of mass . 10−4 eV would remain
relativistic at the present time, equation (10.110), and would produce a Cosmic Neutrino Background. Neutri-
nos that are non-relativistic today would have clustered gravitationally, similar to collisionless non-baryonic
dark matter, except that the fermionic character of neutrinos means that they could become degenerate
(occupation number almost 1) in regions of high density, such as in the cores of galaxies.
1. Temperature of the CNB. Weak interactions were fast enough to keep neutrinos in thermodynamic

equilibrium with protons and neutrons, hence with photons, electrons, and positrons up to just before
eē annihilation, but then neutrinos decoupled. When electrons and positrons annihilated, they dumped
their entropy into that of photons, leaving the entropy of neutrinos unchanged. Argue that conservation
of comoving entropy implies

a3T 3
(
gγ +

7

8
ge

)
= T 3

γ gγ , (10.148a)

a3T 3 gν = T 3
ν gν , (10.148b)

where the left hand sides refer to quantities before eē annihilation, which happened at T ∼ 0.5 MeV, and
the right hand sides to quantities after eē annihilation (including today). Deduce the ratio of neutrino
to photon temperatures today,

Tν
Tγ

. (10.149)

Does the temperature ratio (10.149) depend on the number of neutrino types? What is the neutrino
temperature today in K, if the photon temperature today is 2.725 K?

2. E�ective number of relativistic particle species. Because the temperatures of photons and neutri-
nos are di�erent, the e�ective number g of relativistic species today is not given by equations (10.140).
What are the e�ective number-, energy-, and entropy-weighted numbers gn,0, gρ,0, and gs,0 of relativistic
particle species today? What are their arithmetic values if the relativistic species consist of photons and
three species of neutrino? How are these values altered if, as is likely, neutrinos today are non-relativistic?
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Solution. The ratio of neutrino to photon temperatures after eē annihilation is

Tν
Tγ

=

(
gγ

gγ + 7
8 ge

)1/3

=

(
4

11

)1/3

= 0.714 . (10.150)

No, the temperature ratio does not depend on the number of neutrino types. The ratio depends on neutrinos
having decoupled a short time before eē-annihilation. Equation (10.150) implies that the CNB temperature
is given by equation (10.104). With 2 bosonic degrees of freedom from photons, and 6 fermionic degrees of
freedom from 3 relativistic neutrino types, the e�ective number-, energy-, and entropy-weighted number of
relativistic degrees of freedom is

gn,0 = gγ +

(
Tν
Tγ

)3
3

4
gν = 2 +

4

11

3

4
6 =

40

11
= 3.64 , (10.151a)

gρ,0 = gγ +

(
Tν
Tγ

)4
7

8
gν = 2 +

(
4

11

)4/3
7

8
6 = 3.36 , (10.151b)

gs,0 = gγ +

(
Tν
Tγ

)3
7

8
gν = 2 +

4

11

7

8
6 =

43

11
= 3.91 . (10.151c)

Neutrinos today interact too weakly to annihilate, so their number and entropy today is that of relativistic
species even if they are non-relativistic today. However, their energy density today is not that of relativistic
particles.

Exercise 10.21. Abundance of electrons and positrons in thermodynamic equilibrium. Calcu-
late and plot the comoving number densities a3n of photons, electrons and positrons in thermodynamic
equilibrium as the temperature T cooled through the electron mass mass me.
Solution. The results are shown in Figure 10.16.
Start by considering the more general situation of an ideal gas of any species, either fermionic or bosonic,

rest mass m, in thermodynamic equilibrium at temperature T and chemical potential µ in a volume V . The
logarithm of the grand partition function ZG of such an ideal gas is (units c = k = 1)

lnZG = V

∫
± ln

[
1± e(−E+µ)/T

] g d3p

(2π~)3
, (10.152)

where the ± signs are + for fermions, − for bosons. The laws of thermodynamics state that energy density ρ,
number density n, and pressure p (not to be confused with same symbol for momentum p) in thermodynamic
equilibrium are given by partial derivatives of lnZG with respect to −1/T , µ/T , and V ,

d lnZG = ρV d

(
− 1

T

)
+ nV d

(µ
T

)
+
p

T
dV . (10.153)

For an ideal gas, lnZG is proportional to volume V , and

lnZG
V

=
p

T
= s− ρ

T
+
µn

T
, (10.154)

where s is the entropy density.
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At the present time, the observed small baryon-to-photon ratio nb/nγ of the Universe implies a similarly
small electron-to-photon ratio ne/nγ , from equations (10.102) and (31.8),

ne
nγ

=
f+nb

nγ
= 5.4× 10−10 . (10.155)

The small electron-to-photon ratio today implies a small electron-positron asymmetry before electron-
positron annihilation, implying µe/T � 1 before electron-positron annihilation.
As long as the particle-antiparticle symmetry is small when relativistic, an approximation to the grand

partition function that holds asymptotically at both high and low temperatures, and is accurate to better
than 5% at intermediate temperatures, is

lnZG ≈
gV T 3

2π2~3
e(µ−m)/T c0

(
1 + c1

m

T

)3/2

, (10.156)

where the constants c0 and c1 for respectively fermions and bosons are

c0 ≡
{

7

8
, 1

}
π4

45
≈ {1.894, 2.165} , c1 ≡

(
π

2c20

)1/3

= {0.759, 0.695} . (10.157)

The partial derivatives (10.153) of the approximate logarithmic grand partition function (10.156) yield the
number density n, energy density ρ, and pressure p,

n ≈ gT 3

2π2~3
e(µ−m)/T c0

(
1 + c1

m

T

)3/2

, (10.158a)

ρ ≈ n(m+ qT ) , (10.158b)

p ≈ nT , (10.158c)

where the factor q is

q ≡
3 + 3

2c1m/T

1 + c1m/T
, (10.159)

which varies from q = 3 at T � m to q = 3
2 at T � m. The entropy density s is

s =
ρ+ p− µn

T
≈
(

1 + q +
m− µ
T

)
n . (10.160)

The entropy in photons, which have q = 3 and m = µ = 0, is sγ = 4nγ . The total entropy in all particles
can be written

s = 2gsnγ , (10.161)

which de�nes the e�ective entropy-weighted number gs of relativistic species. The total comoving entropy
a3s is conserved. Conservation of comoving entropy implies that the cube of the product of scale factor a and
temperature T is inversely proportional to the e�ective entropy-weighted number gs of relativistic species,(

aT

a0T0

)3

=
gs,0
gs

. (10.162)
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In the problem being considered, when electrons and positrons annihilate, they dump their entropy into
photons, conserving the total comoving entropy of photons, electrons, and positrons as the Universe expands.
The e�ective entropy-weighted number gs of photons γ, electrons e, and positrons ē through electron-positron
annihilation is approximately

gs ≡
s

2nγ
≈ 1

2nγ

[
4nγ +

(
1 + qe +

me − µe
T

)
ne +

(
1 + qe +

me + µe
T

)
nē

]
≈ 2 +

7

8

[(
1 + qe +

me

T

)
cosh(µe/T )− µe

T
sinh(µe/T )

]
e−me/T

(
1 + c1

me

T

)3/2

. (10.163)

For the purposes of calculating how the cosmic scale factor a changes with temperature T during electron-
positron annihilation, it su�ces to approximate the electron chemical potential as zero, µe ≈ 0, since before
annihilation, when electrons and positrons are relativistic, the chemical potential is much less than the
temperature, µe/T � 1, and after annihilation electrons (and positrons) contribute little to the entropy,
and the value of the chemical potential ceases to make much di�erence. Thus the e�ective entropy-weighted
number gs of photons, electrons, and positrons is approximately

gs ≈ 2 +
7

8

(
1 + qe +

me

T

)
e−me/T

(
1 + c1

me

T

)3/2

. (10.164)

Inserting the expression (10.164) into equation (10.162) yields the cosmic scale factor a in terms of temper-
ature T through electron-positron annihilation.
An expression for chemical potential µe is needed to calculate the number densities of electrons and

positrons through electron-positron annihilation. The chemical potential can be deduced from conservation
of the comoving di�erence a3(ne − nē) in the number densities of electrons and positrons.
The approximation (10.158a), coupled with the thermodynamic equilibrium condition µ̄ = −µ, implies

that the di�erence n − n̄ between the number densities of particles and antiparticles in thermodynamic
equilibrium approximates

n− n̄ ≈ gT 3

π2~3
sinh

(µ
T

)
e−m/T c′0

(
1 + c′1

m

T

)3/2

. (10.165)

In the approximation (10.158a), the constants c′0 and c′1 in equation (10.165) are the same as the con-
stants c0 and c1 given by equations (10.157); but a more accurate approximation for the di�erence n − n̄,
equation (10.165), uses instead the constants c′0 and c′1 de�ned by, for respectively fermions and bosons,

c′0 ≡
{

3

4
, 1

}
2ζ(3) ≈ {1.803, 2.404} , c′1 ≡

(
π

2c′20

)1/3

= {0.785, 0.648} , (10.166)

with ζ(3) ≈ 1.202 the Riemann zeta function. The approximation (10.165) with constants given by equa-
tions (10.166) is asymptotically correct at both high and low temperatures, and is accurate to better than
5% at intermediate temperatures. Putting together equations (10.165), (10.162), and (10.164) yields

ne
nγ

∣∣∣∣
0

=
gs,0(ne − nē)

gsnγ
=
gs,0
gs

2 sinh
(µe
T

)
e−me/T 0.833

(
1 + 0.785

me

T

)3/2

, (10.167)
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where 0.833 = 3
2ζ(3)/(π4/45) and 0.785 are relevant constants from equations (10.157) and (10.166). Equa-

tion (10.167) can be solved for µe/T in terms of temperature T , given the present day value electron-to-photon
ratio ne/nγ |0 from equation (10.155), the e�ective number of degrees of freedom gs from equation (10.164),
and its present day value gs,0 = 2.
With µe/T determined from equation (10.167), comoving number densities a3n in terms of temperature

T follow from equation (10.158a), along with equations (10.162) and (10.164).

10.28 Maximally symmetric spaces

By construction, the FLRW metric is spatially homogeneous and isotropic, which means it has maximal
spatial symmetry. A special subclass of FLRW metrics is in addition stationary, satisfying time translation
invariance. As you will show in Exercise 10.22, stationary FLRW metrics may have curvature and a cos-
mological constant, but no other source. You will also show that a coordinate transformation brings such
FLRW metrics to the explicitly stationary form

ds2 = −
(
1− 1

3Λr2
s

)
dt2s +

dr2
s

1− 1
3Λr2

s

+ r2
s do

2 , (10.168)

where the time ts and radius rs are subscripted s for stationary to distinguish them from FLRW time t and
radius r.
Spacetimes that are homogeneous, isotropic, and stationary, and are therefore described by the met-

ric (10.168), are called maximally symmetric. A maximally symmetric space with a positive cosmological
constant, Λ > 0, is called de Sitter (dS) space, while that with a negative cosmological constant, Λ < 0,
is called anti de Sitter (AdS) space. The maximally symmetric space with zero cosmological constant is
just Minkowski space. Thanks to their high degree of symmetry, de Sitter and anti de Sitter spaces play a
prominent role in theoretical studies of quantum gravity.
de Sitter space has a horizon at radius rH =

√
3/Λ. Whereas inside the horizon the time coordinate ts is

timelike and the radial coordinate rs is spacelike, outside the horizon the time coordinate ts is spacelike and
the radial coordinate rs is timelike.
The Riemann tensor, Ricci tensor, Ricci scalar, and Einstein tensor of maximally symmetric spaces are

Rκλµν = 1
3Λ(gκµgλν − gκνgλµ) , Rκµ = Λgκµ , R = 4Λ , Gκµ = −Λgκµ . (10.169)

10.28.1 de Sitter spacetime as a closed FLRW spacetime

Just as it was possible to conceive the spatial part of the FLRW geometry as a 3D hypersphere embedded in
4D Euclidean space, �10.6, so also it is possible to conceive a maximally symmetric space as a 4D hyperboloid
embedded in 5D space.
For de Sitter space, the parent 5D space is a Minkowski space with metric ds2 = − du2 + dx2 + dy2 +
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Figure 10.18 Embedding spacetime diagram of de Sitter space, shown on the left in 3D, on the right in a 2D projection

on to the u-w plane. Objects are con�ned to the surface of the embedded hyperboloid. The vertical direction is timelike,

while the horizontal directions are spacelike. The position of a non-accelerating observer de�nes a �north pole� at r = 0

and w > 0, traced by the (black) line at the right edge of each diagram. Antipodeal to the north pole is a �south pole�

at r = 0 and w < 0, traced by the (black) line at the left edge of each diagram. The (reddish) skewed circles on the

3D diagram, which project to straight lines in the 2D diagram, are lines of constant stationary time ts, labelled with

their value in units of the horizon radius rH, as measured by the observer at rest at the north pole r = 0. Lines of

constant stationary time ts transform into each other under a Lorentz boost in the u�w plane. The 45◦ dashed lines

are null lines constituting the past and future horizons of the north pole observer (or of the south pole observer). The

2D diagram on the right shows in addition a sample of (bluish) timelike geodesics that pass through u = w = 0 (these

lines are omitted from the 3D diagram).

dz2 + dw2, and the embedded 4D hyperboloid is a set of points

− u2 + x2 + y2 + z2 + w2 = r2
H = constant , (10.170)

with rH the horizon radius

rH =

√
3

Λ
=

√
3

8πρΛ
. (10.171)

The de Sitter hyperboloid is illustrated in Figure 10.18. Let r ≡ (x2 + y2 + z2)1/2, and introduce the boost
angle ψ and rotation angle χ de�ned by

u = rH sinhψ , (10.172a)

r = rH coshψ sinχ , (10.172b)

w = rH coshψ cosχ . (10.172c)

The radius r de�ned by equation (10.172b) is the same as the radius rs in the stationary metric (10.168). In
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terms of the angles ψ and χ, the metric on the de Sitter 4D hyperboloid is

ds2 = r2
H

[
− dψ2 + cosh2ψ

(
dχ2 + sin2χdo2

)]
. (10.173)

The metric (10.173) is of FLRW form (10.28) with t = rHψ and a(t) = rH coshψ and a closed spatial
geometry. The de Sitter space describes a spatially closed FLRW universe that contracts, reaches a minimum
size at t = 0, then reexpands. Comoving observers, those with χ = constant and �xed angular position, move
vertically upward on the embedded hyperboloid in Figure 10.18.
The spatial position at r = 0 and w > 0 de�nes a �north pole� of de Sitter space. Antipodeal to the north

pole is a �south pole� at r = 0 and w < 0. The surface u = w is a future horizon for an observer at the north
pole, and a past horizon for an observer at the south pole. Similarly the surface u = −w is a past horizon for
an observer at the north pole, and a future horizon for an observer at the south pole. The causal diamond
of any observer is the region of spacetime bounded by the observer's past and future horizons. The north
polar observer's causal diamond is the region w > |u|, while the south polar observer's causal diamond is
the region w < −|u|.
The radial coordinate r is spacelike within the causal diamonds of either the north or south polar observers,

where |w| > |u|, but timelike outside those causal diamonds, where |w| < |u|.
The de Sitter hyperboloid possesses a symmetry under Lorentz boosts in the u�w plane. The time ts in

the stationary metric (10.168) is, modulo a factor of rH, the boost angle of this Lorentz boost, which is

ts =

{
rH atanh(u/w) |w| > |u| ,
rH atanh(w/u) |w| < |u| . (10.174)

The stationary time coordinate ts is timelike inside the causal diamonds of either the north or south pole
observers, |w| > |u|, but spacelike outside those causal diamonds, |w| < |u|.

10.28.2 de Sitter spacetime as an open FLRW spacetime

An alternative coordinatization of the same embedded hyperboloid (10.170) for de Sitter space yields a metric
in FLRW form but with an open spatial geometry. Let r ≡ (x2 + y2 + z2)1/2 as before, and de�ne ψ and χ
by

u = rH sinhψ coshχ , (10.175a)

r = rH sinhψ sinhχ , (10.175b)

w = rH coshψ . (10.175c)

The r de�ned by equation (10.175b) is not the same as the rs in the stationary metric (10.168); rather, it is
w that equals rs. In terms of the angles ψ and χ de�ned by equations (10.175), the metric on the de Sitter
4D hyperboloid is

ds2 = r2
H

[
− dψ2 + sinh2ψ

(
dχ2 + sinh2χdo2

)]
. (10.176)

The metric (10.176) is in FLRW form (10.28) with t = rHψ and a(t) = rH sinhψ and an open spatial
geometry. Whereas the coordinates {ψ, χ}, equation (10.172), for de Sitter with closed spatial geometry



278 Homogeneous, Isotropic Cosmology

N S

Figure 10.19 Penrose diagram of de Sitter space. The left and right edges are identi�ed. The topology is that of a

3-sphere in the horizontal (spatial) direction times the real line in the vertical (time) direction. The thick (pink) null

lines are past and future horizons for observers who follow (vertical) geodesics at the �north� and �south� poles at

r = 0, marked N and S. The approximately horizontal and vertical contours are contours of constant stationary time

ts and radius rs in the stationary form (10.168) of the de Sitter metric. The contours are uniformly spaced by 0.4

in ts/rH and the tortoise coordinate r∗s /rH, equation (10.179). The stationary coordinates ts and rs are respectively

timelike (vertical) and spacelike (horizontal) inside the causal diamonds of the north and south pole observers, but

switch to being respectively spacelike and timelike outside the causal diamonds, in the lower and upper wedges.

The lower and upper wedges correspond to the open FLRW version (10.176) of the de Sitter metric. In the lower

wedges, comoving observers collapse to a Big Crunch where their future horizons converge, while in the upper wedges,

comoving observers expand away from a Big Bang from which their past horizons diverge.

cover the entire embedded hyperboloid shown in Figure 10.18, the coordinates {ψ, χ}, equation (10.175), for
de Sitter with open spatial geometry cover only the region of the hyperboloid with |u| ≥ |r| and w ≥ rH.
The region of positive cosmic scale factor, ψ ≥ 0, corresponds to u ≥ 0. Conceptually, for de Sitter with
open spatial geometry, there is a Big Bang at {u, r, w} = {0, 0, 1}rH, comoving observers from which �ll the
region u ≥ |r| and w ≥ rH. Comoving observers, those with χ = constant, follow straight lines in the u�r
plane, bounded by the null cone at u = |r|.
In the open FLRW metric (10.176) for de Sitter space, the coordinates ts and rs of the stationary met-

ric (10.168) are respectively spacelike and timelike. Lines of constant stationary time ts, equation (10.174),
coincide with geodesics of comoving observers, at constant χ, while lines of constant stationary radius rs = w,
equation (10.175c), coincide with lines of constant FLRW time ψ,

ts/rH = χ , (10.177a)

rs/rH = w/rH = coshψ . (10.177b)

10.28.3 Penrose diagram of de Sitter space

Figure 10.19 shows a Penrose diagram of de Sitter space. A natural choice of Penrose coordinates comes
from requiring that vertical lines on the embedded de Sitter hyperboloid 10.18 become vertical lines on the
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Penrose diagram. These vertical lines are geodesics for comoving observers, lines of constant χ, in the closed
FLRW form (10.173) form of the de Sitter metric. The corresponding Penrose time coordinate tP follows
from solving for the radial null geodesics of the metric (10.173), whence tP =

∫
dψ/ coshψ. The resulting

Penrose coordinates for de Sitter space are

tP = atan(sinhψ) = atan(u/rH) , (10.178a)

rP = χ = atan(r/w) . (10.178b)

The radial coordinate r in both the closed and open FLRW forms (10.173) and (10.176) of the de Sitter
metric was chosen so that a comoving observer at the origin was at r = 0, at either the north or the south
pole. The Penrose diagram 10.19 depicts both closed and open FLRW geometries, but the open geometry is
shifted by 90◦ to the equator, so that it appears to interleave with the closed geometry instead of overlapping
it. The thick (pink) null lines at 45◦ outline the causal diamonds of north and south polar observers in the
closed FLRW geometry. The null lines also outline the causal wedges of equatorial observers in the open
FLRW geometry. The lower wedges correspond to collapsing spacetimes that terminate in a Big Crunch
where the null lines cross. The upper wedges correspond to expanding spacetimes that begin in a Big Bang
where the null lines cross. Note that the causal diamonds of any non-accelerating observer are spherically
symmetric about the observer. Thus the causal diamonds of the closed and open observers touch only along
one-dimensional lines, not along three-dimensional hypersurfaces as the Penrose diagram might suggest. The
causal diamonds of observers in de Sitter and anti de Sitter spacetimes are di�erent for di�erent observers,
and there is no reason to expect that the spacetime could be tiled fully by the causal diamonds of some set
of observers.
There is no physical singularity, no divergence of the Riemann tensor, at the Big Crunch and Big Bang

points of the collapsing and expanding open FLRW forms of the de Sitter geometry. Does that mean that the
collapsing de Sitter spacetime evolves smoothly into an expanding spacetime? As long as the spacetime is
pure vacuum, there is no way to tell whether spacetime is expanding or collapsing. Only when the spacetime
contains matter of some kind, as our Universe does, can a preferred set of comoving coordinates be de�ned.
When matter is present, Big Crunches and Big Bangs are, setting aside quantum gravity, genuine singularities
that cannot be removed by a coordinate transformation.
The horizontal and vertical contours in the Penrose diagram 10.19 are contours of constant stationary time

ts and radius rs. Translation in ts is a symmetry of de Sitter spacetime, and to exhibit this symmetry, the
contours of ts in the Penrose diagram are chosen to be uniformly spaced. A similarly symmetric appearance
for the radial coordinate is achieved by choosing contours of rs to be uniformly spaced in the tortoise
coordinate r∗s ,

r∗s ≡
∫

drs

1− r2
s /r

2
H

= rH atanh(rs/rH) . (10.179)

The contours in the Penrose diagram 10.19 are uniformly spaced by 0.4 in ts/rH and r∗s /rH. In terms of the
time and tortoise coordinates ts and r∗s , the Penrose time and radial coordinates are

tP ± rP = atan

[
sinh

(
ts ± r∗s
rH

)]
. (10.180)
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Figure 10.20 Embedding spacetime diagram of anti de Sitter space, shown on the left in 3D, on the right in a 2D

projection on to the v-r plane. The vertical direction winding around the hyperboloid is timelike, while the horizontal

direction is spacelike. The position of a non-accelerating observer de�nes a spatial �pole� at r = 0. In the 3D diagram,

the (red) horizontal line is an example line of constant stationary time ts for the observer at the pole. Lines of constant

stationary time ts transform into each other under a rotation in the u�v plane. The (bluish) lines at less than 45◦

from vertical are a sample of geodesics that pass through the pole at r = 0 at time ψ = 0. In anti de Sitter space, all

timelike geodesics that pass through a spatial point boomerang back to the spatial point in a proper time πrH. The

2D diagram on the right shows in addition (reddish) lines of constant stationary time ts for observers on the various

geodesics.

10.28.4 Anti de Sitter space

For anti de Sitter space, the parent 5D space is a Minkowski space with signature −−+++, metric ds2 =

− du2 − dv2 + dx2 + dy2 + dz2, and the embedded 4D hyperboloid is a set of points

− u2 − v2 + x2 + y2 + z2 = −r2
H = constant , (10.181)

with rH ≡
√
−3/Λ. The anti de Sitter hyperboloid is illustrated in Figure 10.20. Let r ≡ (x2 + y2 + z2)1/2,

and introduce the boost angle χ and rotation angle ψ de�ned by

u = rH coshχ cosψ , (10.182a)

v = rH coshχ sinψ , (10.182b)

r = rH sinhχ . (10.182c)

The time coordinate ψ de�ned by equations (10.182) appears to be periodic, with period 2π, but this is an
artefact of the embedding. In a causal spacetime, the time coordinate would not loop back on itself. Rather,
the coordinate ψ can be taken to increase monotonically as it loops around the hyperboloid, extending from
−∞ to ∞. In terms of the angles ψ and χ, the metric on the anti de Sitter 4D hyperboloid is

ds2 = r2
H

(
− cosh2χdψ2 + dχ2 + sinh2χdo2

)
. (10.183)
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The metric (10.183) is of stationary form (10.168) with ts = rHψ and rs = rH sinhχ.

10.28.5 Anti de Sitter spacetime as an open FLRW spacetime

An alternative coordinatization of the same embedded hyperboloid 10.20 for anti de Sitter space,

u = rH cosψ , (10.184a)

v = rH sinψ coshχ , (10.184b)

r = rH sinψ sinhχ . (10.184c)

yields a metric in FLRW form with an open spatial geometry,

ds2 = r2
H

[
− dψ2 + sin2ψ(dχ2 + sinh2χdo2)

]
. (10.185)

Whereas the coordinates (10.182) cover all of the anti de Sitter hyperboloid 10.20, the open coordinates (10.184)
cover only the regions with |u| ≤ rH. These are the upper and lower diamonds bounded by the (pink) dashed
null lines in the hyperboloid 10.20. In each diamond, the open spacetime undergoes a Big Bang at the earliest
vertex of the diamond, expands to a maximum size, turns around, and collapses to a Big Crunch at the latest
vertex of the diamond.

10.28.6 Anti de Sitter spacetime as a Rindler space

Anti de Sitter spacetime possesses symmetry under Lorentz boosts in any time-space plane, such as the
v�x plane. In the open FLRW form (10.185) of anti de Sitter geometry, such boosts transform geodesics
of comoving observers into each other. Outside the open causal diamonds on the other hand, these boosts
generate the worldlines of a certain set of �Rindler� observers who accelerate with constant acceleration in
the v�x plane. Rindler time and space coordinates {χ, ψ} are de�ned by

u = rH coshψ , (10.186a)

v = rH sinhψ sinhχ , (10.186b)

x = rH sinhψ coshχ , (10.186c)

yielding the AdS Rindler metric

ds2 = r2
H

(
− sinh2ψ dχ2 + dψ2

)
+ dy2 + dz2 . (10.187)

10.28.7 Penrose diagram of anti de Sitter space

Figure 10.21 shows a Penrose diagram of anti de Sitter space. A natural choice of Penrose coordinates comes
from requiring that horizontal lines on the embedded anti de Sitter hyperboloid 10.20 become horizontal
lines on the Penrose diagram. These horizontal lines are lines of constant stationary time ts = rHψ in the
stationary form (10.183) form of the anti de Sitter metric. The corresponding Penrose radial coordinate rP
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Figure 10.21 Penrose diagram of anti de Sitter space. The diagram repeats vertically inde�nitely. The topology is

that of Euclidean 3-space in the horizontal (spatial) direction times the real line in the vertical (time) direction. The

thick (pink) null lines outline the causal diamonds of observers in the open FLRW form (10.185) of the anti de Sitter

spacetime. The spacetime of the open FLRW geometry expands from a Big Bang at a crossing point of the null lines,

and collapses to a Big Crunch at the next crossing point. The thick null lines also outline the causal wedges of Rindler

observers, equation (10.187), at the left and right edges of the diagram. The approximately horizontal and vertical

contours are lines of constant ψ and χ, uniformly spaced by 0.4 in χ and ψ∗, equation (10.190), both in the open

FLRW diamonds and in the left and right Rindler wedges, equations (10.185) and (10.187). The coordinates ψ and

χ are respectively timelike (vertical) and spacelike (horizontal) in the open diamonds, and respectively spacelike and

timelike in the Rindler wedges.

follows from solving for the radial null geodesics of the metric (10.183), whence rP =
∫
dχ/ coshχ. The

resulting Penrose coordinates for de Sitter space are

tP = ψ = ts/rH , (10.188a)

rP = atan(sinhχ) = r∗s /rH , (10.188b)

where r∗s is the tortoise radial coordinate

r∗s ≡
∫

drs

1 + r2
s /r

2
H

= rH atan(rs/rH) . (10.189)

Thus, for anti de Sitter, lines of constant time ts and radius rs in the stationary metric (10.168) correspond
also to lines of constant Penrose time and radius tP and rP.
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The thick (pink) null lines in the Penrose diagram 10.21 outline the causal diamonds of comoving observers
in the open FLRW (10.185) form of the anti de Sitter metric. The null lines also outline the causal wedges
of Rindler observers in the Rindler (10.187) form of the anti de Sitter metric.
The approximately horizontal and vertical contours in the Penrose diagram 10.21 are lines of constant ψ

and χ in both the open FLRW (10.185) and Rindler (10.187) forms of the anti de Sitter metric. In the open
FLRW causal diamonds, the horizontal lines are lines of constant cosmic time ψ, while the vertical contours
are geodesics, lines of constant χ. In the Rindler causal wedges, the horizontal contours are lines of constant
boost angle χ, while the vertical contours are worldlines of Rindler observers, lines of constant ψ.
Anti de Sitter space is symmetric under boosts in the v�x plane, corresponding to translations of the

coordinate χ in either of the open FLRW (10.185) or Rindler (10.187) forms of the anti de Sitter metric. The
contours in the Penrose diagram 10.21 are uniformly spaced in χ by 0.4 so as to manifest this symmetry.
A similarly symmetric appearance for the ψ coordinate is achieved by choosing contours to be uniformly
spaced by 0.4 in the tortoise coordinate ψ∗

ψ∗ ≡


∫

dψ

sinψ
= ln tan(ψ/2) open ,∫

dψ

sinhψ
= ln tanh(ψ/2) Rindler .

(10.190)

Exercise 10.22. Maximally symmetric spaces.

1. Argue that in a stationary spacetime, every scalar quantity must be independent of time. In particular,
the Riemann scalar R, and the contracted Ricci product RµνRµν must be independent of time. Conclude
that the density ρ and pressure p of a stationary FLRW spacetime must be constant.

2. Conclude that a stationary FLRW spacetime may have curvature and a cosmological constant, but no
other source. Show that the FLRW metric then takes the form (10.28) with cosmic scale factor

a(t) =



H0t Ωk = 1 , ΩΛ = 0 ,

exp(H0t) Ωk = 0 , ΩΛ = 1 ,√
−Ωk/ΩΛ cosh(

√
ΩΛH0t) Ωk < 0 , ΩΛ > 0 ,√

Ωk/ΩΛ sinh(
√

ΩΛH0t) Ωk > 0 , ΩΛ > 0 ,√
−Ωk/ΩΛ sin(

√
−ΩΛH0t) Ωk > 0 , ΩΛ < 0 ,

(10.191)

with

ΩΛH
2
0 = 1

3Λ , ΩkH
2
0 = −κ . (10.192)

As elsewhere in this chapter, H = H0 at a = 1, and the Ω's sum to unity, Ωk + ΩΛ = 1.

3. Show that the FLRW metric transforms into the explicitly stationary form (10.168) under a coordinate
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transformation to proper radius rs = a(t)x and stationary time ts given by

ts =



√
1− κx2 t Ωk = 1 , ΩΛ = 0 ,

t− 1

H0
ln
√

1−H2
0r

2
s Ωk = 0 , ΩΛ = 1 ,

1√
ΩΛH0

acoth
[√

1− κx2 coth
(√

ΩΛH0t
)]

Ωk < 0 , ΩΛ > 0 ,

1√
ΩΛH0

atanh
[√

1− κx2 tanh
(√

ΩΛH0t
)]

Ωk > 0 , ΩΛ > 0 ,

1√
−ΩΛH0

atan
[√

1− κx2 tan
(√
−ΩΛH0t

)]
Ωk > 0 , ΩΛ < 0 .

(10.193)

Note that in all cases ts = t at the origin rs = 0.

Concept question 10.23. Milne Universe. In Exercise 10.22 you found that the FLRW metric for an
open universe with zero energy-momentum content (Ωk = 1, ΩΛ = 0), also known as the Milne metric, is
equivalent to �at Minkowski space. How can an open universe be equivalent to �at space? Draw a spacetime
diagram of Minkowski space showing (a) worldlines of observers at constant comoving FLRW position x,
and (b) hypersurfaces of constant FLRW time t.

Concept question 10.24. Stationary FLRW metrics with di�erent curvature constants describe

the same spacetime. How can it be that stationary FLRW metrics with di�erent curvature constants κ
(but the same cosmological constant Λ) describe the same spacetime?



PART TWO

TETRAD APPROACH TO GENERAL RELATIVITY





Concept Questions

1. The vierbein has 16 degrees of freedom instead of the 10 degrees of freedom of the metric. What do the
extra 6 degrees of freedom correspond to?

2. Tetrad transformations are de�ned to be Lorentz transformations. Don't general coordinate transfor-
mations already include Lorentz transformations as a particular case, so aren't tetrad transformations
redundant?

3. What does coordinate gauge-invariant mean? What does tetrad gauge-invariant mean?
4. Is the coordinate metric gµν tetrad gauge-invariant?
5. What does a directed derivative ∂m mean physically?
6. Is the directed derivative ∂m coordinate gauge-invariant?
7. Is the tetrad metric γmn coordinate gauge-invariant? Is it tetrad gauge-invariant?
8. What is the tetrad-frame 4-velocity um of a person at rest in an orthonormal tetrad frame?
9. If the tetrad frame is accelerating (not in free-fall), which of the following is true/false?

a. Does the tetrad-frame 4-velocity um of a person continuously at rest in the tetrad frame change
with time? ∂0u

m = 0? D0u
m = 0?

b. Do the tetrad axes γγm change with time? ∂0γγm = 0? D0γγm = 0?
c. Does the tetrad metric γmn change with time? ∂0γmn = 0? D0γmn = 0?
d. Do the covariant components um of the 4-velocity of a person continuously at rest in the tetrad

frame change with time? ∂0um = 0? D0um = 0?
10. Suppose that p = γγmp

m is a 4-vector. Is the proper rate of change of the proper components pm measured
by an observer equal to the directed time derivative ∂0p

m or to the covariant time derivative D0p
m?

What about the covariant components pm of the 4-vector? [Hint: The proper contravariant components
of the 4-vector measured by an observer are pm ≡ γγm ·p where γγm are the contravariant locally inertial
rest axes of the observer. Similarly the proper covariant components are pm ≡ γγm · p.]

11. A person with two eyes separated by proper distance δξn observes an object. The observer observes the
photon 4-vector from the object to be pm. The observer uses the di�erence δpm in the two 4-vectors
detected by the two eyes to infer the binocular distance to the object. Is the di�erence δpm in photon
4-vectors detected by the two eyes equal to the directed derivative δξn∂npm or to the covariant derivative
δξnDnp

m?

287
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12. Suppose that pm is a tetrad 4-vector. Parallel-transport the 4-vector by an in�nitesimal proper distance
δξn. Is the change in pm measured by an ensemble of observers at rest in the tetrad frame equal to
the directed derivative δξn∂npm or to the covariant derivative δξnDnp

m? [Hint: What if �rest� means
that the observer at each point is separately at rest in the tetrad frame at that point? What if �rest�
means that the observers are mutually at rest relative to each other in the rest frame of the tetrad at
one particular point?]

13. What is the physical signi�cance of the fact that directed derivatives fail to commute?
14. Physically, what do the tetrad connection coe�cients Γkmn mean?
15. What is the physical signi�cance of the fact that Γkmn is antisymmetric in its �rst two indices (if the

tetrad metric γmn is constant)?
16. Are the tetrad connections Γkmn coordinate gauge-invariant?



What's important?

This part of the notes describes the tetrad formalism of general relativity.
1. Why tetrads? Because physics is clearer in a locally inertial frame than in a coordinate frame.
2. The primitive object in the tetrad formalism is the vierbein emµ, in place of the metric in the coordinate

formalism.
3. Written suitably, for example as equation (11.9), a metric ds2 encodes not only the metric coe�cients
gµν , but a full vierbein emµ, through ds2 = γmn e

m
µdx

µ enνdx
ν .

4. The tetrad road from vierbein to energy-momentum is similar to the coordinate road from metric to
energy-momentum, albeit a little more complicated.

5. In the tetrad formalism, the directed derivative ∂m is the analogue of the coordinate partial deriva-
tive ∂/∂xµ of the coordinate formalism. Directed derivatives ∂m do not commute, whereas coordinate
derivatives ∂/∂xµ do commute.
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The tetrad formalism

11.1 Tetrad

A tetrad (greek foursome) γγm(x) is a set of axes

γγm ≡ {γγ0,γγ1,γγ2,γγ3} (11.1)

attached to each point xµ of spacetime. The common case, illustrated in Figure 11.1, is that of an orthonor-
mal tetrad, where the axes form a locally inertial frame at each point, so that the dot products of the axes
constitute the Minkowski metric ηmn

γγm · γγn = ηmn . (11.2)

However, other tetrads prove useful in appropriate circumstances. There are spin tetrads, null tetrads (notably
the Newman-Penrose double null tetrad), and others (indeed, the basis of coordinate tangent vectors eµ is

x
0

x
1

γγγγ
0

γγγγ
1

Figure 11.1 Tetrad vectors γγm form a basis of vectors at each point. A common choice, depicted here, is for the

basis vectors γγm to form an orthonormal set, meaning that their dot products constitute the Minkowski metric,

γγm ·γγn = ηmn, at each point. The orthonormal frames at neighbouring points need not be aligned with each other by

parallel transport, and indeed in curved spacetime it is impossible to choose orthonormal frames that are everywhere

aligned.
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a tetrad). In general, the tetrad metric is some symmetric matrix γmn

γγm · γγn ≡ γmn . (11.3)

The convention in this book is that latin (black) indices label tetrad frames, while greek (brown) indices
label coordinate frames.
Why introduce tetrads?
1. The physics is more transparent when expressed in a locally inertial frame (or some other frame adapted

to the physics), as opposed to the coordinate frame, where Salvador Dali rules.
2. If you want to consider spin- 1

2 particles and quantum physics, you better work with tetrads.
3. For good reason, much of the general relativistic literature works with tetrads, so it's useful to understand

them.

11.2 Vierbein

The vierbein (German four-legs, or colloquially, critter) emµ is de�ned to be the matrix that transforms
between the tetrad frame and the coordinate frame (note the placement of indices: the tetrad index m comes
�rst, then the coordinate index µ)

eµ = emµ γγm . (11.4)

The letter e stems from the German word einheit for unity. The vierbein is a 4×4 matrix, with 16 independent
components. The inverse vierbein emµ is de�ned to be the matrix inverse of the vierbein emµ, so that

em
µ emν = δµν , em

µ enµ = δnm . (11.5)

Thus equation (11.4) inverts to

γγm = em
µ eµ . (11.6)

11.3 The metric encodes the vierbein

The scalar spacetime distance is

ds2 = gµν dx
µ dxν = eµ · eν dxµ dxν = γmn e

m
µ e

n
ν dx

µ dxν (11.7)

from which it follows that the coordinate metric gµν is

gµν = γmn e
m
µ e

n
ν . (11.8)

The shorthand way in which metrics are commonly written encodes not only a metric but also a vierbein,
hence a tetrad. For example, the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2θ dφ2 (11.9)
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takes the form (11.7) with an orthonormal (Minkowski) tetrad metric γmn = ηmn, and a vierbein encoded
in the di�erentials (one-forms, �15.6)

e0
µ dx

µ =

(
1− 2M

r

)1/2

dt , (11.10a)

e1
µ dx

µ =

(
1− 2M

r

)−1/2

dr , (11.10b)

e2
µ dx

µ = r dθ , (11.10c)

e3
µ dx

µ = r sin θ dφ , (11.10d)

Explicitly, the vierbein of the Schwarzschild metric is the diagonal matrix

emµ =


(1− 2M/r)1/2 0 0 0

0 (1− 2M/r)−1/2 0 0

0 0 r 0

0 0 0 r sin θ

 , (11.11)

and the corresponding inverse vierbein is (note that, because the tetrad index is always in the �rst place and
the coordinate index is always in the second place, the matrices as written are actually inverse transposes of
each other, not just inverses)

em
µ =


(1− 2M/r)−1/2 0 0 0

0 (1− 2M/r)1/2 0 0

0 0 1/r 0

0 0 0 1/(r sin θ)

 . (11.12)

Concept question 11.1. Schwarzschild vierbein. The components e0
t and e1

r of the Schwarzschild
vierbein (11.11) are imaginary inside the horizon. What does this mean? Is the vierbein still valid inside the
horizon?

11.4 Tetrad transformations

Tetrad transformations are transformations that preserve the fundamental property of interest, for example
the orthonormality, of the tetrad. For most tetrads considered in this book, which includes not only orthonor-
mal tetrads, but also spin tetrads and null tetrads (but not coordinate-based tetrads), tetrad transformations
are Lorentz transformations. The Lorentz transformation may be, and usually is, a di�erent transformation
at each point. Tetrad transformations rotate the tetrad axes γγk at each point by a Lorentz transformation
Lk

m, while keeping the background coordinates xµ unchanged:

γγk → γγ′k = Lk
m γγm . (11.13)
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In the case that the tetrad axes γγk are orthonormal, with a Minkowski metric, the Lorentz transformation
matrices Lkm in equation (11.13) take the familiar special relativistic form, but the linear matrices Lkm in
equation (11.13) signify a Lorentz transformation in any case.
For orthonormal, spin, and null tetrads, the tetrad metric γmn is constant. Lorentz transformations are

precisely those transformations that leave the tetrad metric unchanged

γ′kl = γγ′k · γγ′l = Lk
mLl

n γγm · γγn = Lk
mLl

n γmn = γkl . (11.14)

Exercise 11.2. Generators of Lorentz transformations are antisymmetric. From the condition that
the tetrad metric γkl is unchanged by a Lorentz transformation, show that the generator of an in�nitesimal
Lorentz transformation is an antisymmetric matrix. Is this true only for an orthonormal tetrad, or is it true
more generally?
Solution. An in�nitesimal Lorentz transformation is the sum of the unit matrix and an in�nitesimal piece
∆Lk

m, the generator of the in�nitesimal Lorentz transformation,

Lk
m = δmk + ∆Lk

m . (11.15)

Under such an in�nitesimal Lorentz transformation, the tetrad metric transforms to

γ′kl = (δmk + ∆Lk
m)(δnl + ∆Ll

n)γmn ≈ γkl + ∆Lkl + ∆Llk , (11.16)

which by proposition equals the original tetrad metric γkl, equation (11.14). It follows that

∆Lkl + ∆Llk = 0 , (11.17)

that is, the generator ∆Lkl is antisymmetric, as claimed. The result is true whenever the tetrad metric is
invariant under Lorentz transformations.

11.5 Tetrad vectors and tensors

Just as coordinate vectors (and tensors) were de�ned in �2.8 as objects that transformed like (tensor products
of) coordinate intervals under coordinate transformations, so also tetrad vectors (and tensors) are de�ned
as objects that transform like (tensor products of) tetrad vectors under tetrad (Lorentz) transformations.

11.5.1 Covariant tetrad 4-vector

A tetrad (Lorentz) transformation transforms the tetrad axes γγk in accordance with equation (11.13). A
covariant tetrad 4-vector is de�ned to be a quantity Ak = {A0, A1, A2, A3} that transforms under a tetrad
transformation like the tetrad axes,

Ak → A′k = Lk
mAm . (11.18)
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11.5.2 Lowering and raising tetrad indices

Just as the indices on a coordinate vector or tensor were lowered and raised with the coordinate metric gµν
and its inverse gµν , �2.8.3, so also indices on a tetrad vector or tensor are lowered and raised with the tetrad
metric γmn and its inverse γmn, de�ned to satisfy

γkmγ
mn = δnk . (11.19)

In the tetrads considered in this book (Minkowski, spin, or Newman-Penrose tetrad), the components of the
tetrad metric and its inverse are numerically equal, γmn = γmn, but this need not be the case in general.
The contravariant (raised index) components Am and covariant (lowered index) components Am of a tetrad

vector are related by

Am = γmnAn , Am = γmnA
n . (11.20)

The dual tetrad basis vectors γγm are de�ned by

γγm ≡ γmnγγn . (11.21)

By construction, dot products of the dual and tetrad basis vectors equal the unit matrix,

γγm · γγn = δmn , (11.22)

while dot products of the dual basis vectors with each other equal the inverse tetrad metric,

γγm · γγn = γmn . (11.23)

11.5.3 Contravariant tetrad vector

A contravariant tetrad 4-vector Ak transforms under a tetrad transformation as, analogously to equa-
tion (11.18),

Ak → A′k = LkmA
m , (11.24)

where Lkm is the Lorentz transformation inverse to Lkm. Equation (11.14) implies that Lorentz transforma-
tion matrices with indices variously lowered and raised satisfy

Lk
mLlm = LkmL

lm = LmkL
ml = LmkLm

l = δlk . (11.25)

11.5.4 Abstract vector

A 4-vector can be written in a coordinate- and tetrad- independent fashion as an abstract 4-vector A,

A = γγmA
m = eµA

µ . (11.26)

Although A is a 4-vector, it is by construction unchanged by either a coordinate transformation or a tetrad
transformation, and is therefore, according to the naming convention adopted in this book, �11.6, both a
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coordinate scalar and a tetrad scalar. The coordinate and tetrad components of the 4-vector A are related
by the vierbein,

Aµ = emµAm , Am = em
µAµ . (11.27)

11.5.5 Scalar product

The scalar product of two 4-vectors may be A and B may be written variously

A ·B = AmB
m = AµB

µ . (11.28)

The scalar product is a scalar, unchanged by either a coordinate or tetrad transformation.

11.5.6 Tetrad tensor

In general, a tetrad-frame tensor Akl...mn... is an object that transforms under tetrad (Lorentz) transforma-
tions (11.13) as

A′kl...mn... = LkaL
l
b ... Lm

cLn
d ... Aab...cd... . (11.29)

11.6 Index and naming conventions for vectors and tensors

In the tetrad formalism tensors can be coordinate tensors, or tetrad tensors, or mixed coordinate-tetrad
tensors. For example, the vierbein emµ is itself a mixed coordinate-tetrad tensor.
The convention in this book is to distinguish the various kinds of vector and tensor with an adjective, and

by its index:
1. A coordinate vector Aµ, with a brown greek index, is one that changes in a prescribed way under

coordinate transformations. A coordinate transformation is one that changes the coordinates xµ of the
spacetime without actually changing the spacetime or whatever lies in it. A coordinate vector Aµ does
not change under a tetrad transformation, and is therefore a tetrad scalar.

2. A tetrad vector Am with a black latin index, is one that changes in a prescribed way under tetrad
transformations. A tetrad transformation Lorentz transforms the tetrad axes γγm at each point of the
spacetime without actually changing the spacetime or whatever lies in it. A tetrad vector Am does not
change under a coordinate transformation, and is therefore a coordinate scalar.

3. An abstract vector A, identi�ed by boldface, is the thing itself, and is unchanged by either the choice
of coordinates or the choice of tetrad. Since the abstract vector is unchanged by either a coordinate
transformation or a tetrad transformation, it is a coordinate and tetrad scalar, and has no indices.

All the types of vector have the properties of linearity (additivity, multiplication by scalars) that identify
them mathematically as belonging to vector spaces. The important distinction between the types of vector
is how they behave under transformations.
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Just because something has a coordinate or tetrad index does not make it a coordinate or tetrad tensor. If
however an object is a coordinate and/or tetrad tensor, then its indices are lowered and raised as follows:
1. Lower and raise coordinate indices with the coordinate metric gµν and its inverse gµν ;

2. Lower and raise tetrad indices with the tetrad metric γmn and its inverse γmn;

3. Switch between coordinate and tetrad frames with the vierbein emµ and its inverse emµ.

11.7 Gauge transformations

Gauge transformations are transformations of the coordinates or tetrad. Such transformations do not
change the underlying spacetime.
Quantities that are unchanged by a coordinate transformation are coordinate gauge-invariant (coor-

dinate scalars). Quantities that are unchanged under a tetrad transformation are tetrad gauge-invariant

(tetrad scalars). For example, tetrad tensors are coordinate gauge-invariant, while coordinate tensors are
tetrad gauge-invariant.
Tetrad transformations have the 6 degrees of freedom of Lorentz transformations, with 3 degrees of freedom

in spatial rotations, and 3 more in Lorentz boosts. General coordinate transformations have 4 degrees of
freedom. Thus there are 10 degrees of freedom in the choice of tetrad and coordinate system. The 16 degrees
of freedom of the vierbein, minus the 10 degrees of freedom from the transformations of the tetrad and
coordinates, leave 6 physical degrees of freedom in spacetime, the same as in the coordinate approach to
general relativity, which is as it should be.

11.8 Directed derivatives

Directed derivatives ∂m are de�ned to be the directional derivatives along the axes γγm

∂m ≡ γγm · ∂ = γγm · eµ
∂

∂xµ
= em

µ ∂

∂xµ
a tetrad 4-vector . (11.30)

The directed derivative ∂m is independent of the choice of coordinates, as signalled by the fact that it has
only a tetrad index, no coordinate index.
Unlike coordinate derivatives ∂/∂xµ, directed derivatives ∂m do not commute. Their commutator is

[∂m, ∂n] =

[
em

µ ∂

∂xµ
, en

ν ∂

∂xν

]
= em

µ ∂en
ν

∂xµ
∂

∂xν
− enν

∂em
µ

∂xν
∂

∂xµ

= (− dknm + dkmn) ∂k not a tetrad tensor (11.31)
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where dlmn ≡ γlk dkmn is the inverse vierbein derivative

dlmn ≡ −γlk ekκ enν
∂em

κ

∂xν
not a tetrad tensor . (11.32)

Since the vierbein and inverse vierbein are inverse to each other, an equivalent de�nition of dlmn in terms of
the vierbein is

dlmn ≡ γlk emµ enν
∂ekµ
∂xν

not a tetrad tensor . (11.33)

11.9 Tetrad covariant derivative

The derivation of tetrad covariant derivatives Dm follows precisely the analogous derivation of coordinate
covariant derivatives Dµ. The tetrad-frame formulae look entirely similar to the coordinate-frame formulae,
with the replacement of coordinate partial derivatives by directed derivatives, ∂/∂xµ → ∂m, and the re-
placement of coordinate-frame connections by tetrad-frame connections Γκµν → Γkmn. There are two things
to be careful about: �rst, unlike coordinate partial derivatives, directed derivatives ∂m do not commute;
and second, neither tetrad-frame nor coordinate-frame connections are tensors, and therefore it should be
no surprise that the tetrad-frame connections Γlmn are not related to the coordinate-frame connections
Γλµν by the `usual' vierbein transformations. Rather, the tetrad and coordinate connections are related by
equation (11.44).
If Φ is a scalar, then ∂mΦ is a tetrad 4-vector. The tetrad covariant derivative of a scalar is just the directed

derivative

DmΦ = ∂mΦ a tetrad 4-vector . (11.34)

If Am is a tetrad 4-vector, then ∂nAm is not a tetrad tensor, and ∂nAm is not a tetrad tensor. But the
abstract 4-vector A = γγmA

m, being by construction invariant under both tetrad and coordinate transfor-
mations, is a scalar, and its directed derivative is therefore a 4-vector,

∂nA = ∂n(γγmA
m) a tetrad 4-vector

= γγm∂nA
m + (∂nγγm)Am . (11.35)

For equation (11.35) to make sense, the derivatives ∂nγγm must be de�ned, something that is made possible,
as in the coordinate approach in �2.9.2, by the postulate of the existence of locally inertial frames. The
coordinate partial derivative of γγm are de�ned in the usual way by

∂γγm
∂xν

≡ lim
δxν→0

γγm(x0, ..., xν+δxν , ..., x3)− γγm(x0, ..., xν , ..., x3)

δxν
. (11.36)

The right hand of equation (11.36) involves the di�erence between γγm at two di�erent points x and x+δx.
The di�erence is to be interpreted as γγm(x+δx) at the shifted point, minus the value of γγm(xν) parallel-
transported from position x to the shifted point x+δx along the small distance δx between them, as illustrated
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δx1

δγγγγ
0

γγγγ
0

Figure 11.2 The change δγγ0 in the tetrad vector γγ0 over a small coordinate interval δx1 of spacetime is de�ned to be

the di�erence between the tetrad vector γγ0(x1 + δx1) at the shifted position x1 + δx1 and the tetrad vector γγ0(x1)

at the original position x1, parallel-transported to the shifted position. The parallel-transported vector is shown as a

dashed arrowed line. The parallel transport is de�ned with respect to a locally inertial frame, shown as a background

square grid aligned with the tetrad at the unshifted position.

in Figure 11.2. Parallel transport means, go to a locally inertial frame, then move along the prescribed
direction without boosting or precessing. With the coordinate partial derivatives of the tetrad basis vectors
so de�ned, the directed derivatives follow as ∂nγγm = en

ν∂γγm/∂x
ν .

The directed derivatives of the tetrad basis vectors de�ne the tetrad-frame connection coe�cients,
Γkmn, also known as Ricci rotation coe�cients (or, in the context of Newman-Penrose tetrads, spin coe�-
cients),

∂nγγm ≡ Γkmn γγk not a tetrad tensor . (11.37)

In the usual case where the tetrad metric is Lorentz invariant and the tetrad connections Γkmn are therefore
generators of Lorentz transformations, antisymmetric in their �rst two indices, Exercise 11.2, I like to call the
tetrad connection coe�cients Lorentz connections. With equation (11.37), equation (11.35) then shows
that

∂nA = γγk(DnA
k) a tetrad tensor , (11.38)

where DnA
k is the covariant derivative of the contravariant 4-vector Ak

DnA
k ≡ ∂nAk + ΓkmnA

m a tetrad tensor . (11.39)

The covariant derivative of a covariant tetrad 4-vector Ak follows similarly from

∂nA = γγk(DnAk) a tetrad tensor , (11.40)

where DnAk is the covariant derivative of the covariant 4-vector Ak

DnAk ≡ ∂nAk − ΓmknAm a tetrad tensor . (11.41)

In general, the covariant derivative of a tetrad-frame tensor is

DpA
kl...
mn... = ∂pA

kl...
mn... + ΓkqpA

ql...
mn... + ΓlqpA

kq...
mn... + ...− ΓqmpA

kl...
qn... − ΓqnpA

kl...
mq... − ... (11.42)

with a positive Γ term for each contravariant index, and a negative Γ term for each covariant index.
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11.10 Relation between tetrad and coordinate connections

The relation between the tetrad connections Γkmn and their coordinate counterparts Γκµν follows from

∂eµ
∂xν

= Γκµνeκ =
∂emµγγm
∂xν

not a tetrad tensor

=
∂emµ
∂xν

γγm + emµ
∂γγm
∂xν

= emµe
n
ν

(
dkmn + Γkmn

)
γγk . (11.43)

Thus the relation is

dlmn + Γlmn = el
λ em

µ en
ν Γλµν not a tetrad tensor (11.44)

where

Γlmn ≡ γlk Γkmn . (11.45)

11.11 Antisymmetry of the tetrad connections

The directed derivative of the tetrad metric is

∂nγlm = ∂n(γγl · γγm)

= γγl · ∂nγγm + γγm · ∂nγγl
= Γlmn + Γmln . (11.46)

In most cases of interest, including orthonormal, spin, and null tetrads, the tetrad metric is chosen to be a
constant. For example, if the tetrad is orthonormal, then the tetrad metric is the Minkowski metric, which
is constant, the same everywhere. If the tetrad metric is constant, then all derivatives of the tetrad metric
vanish, and then equation (11.46) shows that the tetrad connections are antisymmetric in their �rst two
indices

Γlmn = −Γmln . (11.47)

This antisymmetry re�ects the fact that Γlmn is the generator of a Lorentz transformation for each n,
Exercise 11.2.

11.12 Torsion tensor

The torsion tensor Smkl , which general relativity assumes to vanish, is de�ned in the usual way, equa-
tion (2.57), by the commutator of the covariant derivative acting on a scalar Φ

[Dk, Dl] Φ = Smkl ∂mΦ a tetrad tensor . (11.48)
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The expression (11.41) for the covariant derivatives coupled with the commutator (11.31) of directed deriva-
tives shows that the torsion tensor is

Smkl = dmkl + Γmkl − dmlk − Γmlk a tetrad tensor , (11.49)

which is equivalent to the coordinate expression (2.58) for the torsion in view of the relation (11.44) between
tetrad and coordinate connections. The torsion tensor Smkl is antisymmetric in k ↔ l, as is evident from its
de�nition (11.48).

11.13 No-torsion condition

General relativity assumes vanishing torsion

Smkl = 0 . (11.50)

For vanishing torsion, equation (11.49) implies

dmkl + Γmkl = dmlk + Γmlk not a tetrad tensor , (11.51)

which is equivalent to the usual symmetry condition Γλκµ = Γλµκ on the coordinate frame connections in
view of the relation (11.44) between tetrad and coordinate connections.

11.14 Tetrad connections in terms of the vierbein

In the general case of non-constant tetrad metric, and non-vanishing torsion, the following manipulation

∂nγlm + ∂mγln − ∂lγmn = Γlmn + Γmln + Γlnm + Γnlm − Γmnl − Γnml (11.52)

= 2 Γlmn + Slnm + Smln + Snlm − dlnm + dlmn − dmln + dmnl − dnlm + dnml

implies that the tetrad connections Γlmn are given in terms of the derivatives ∂nγlm of the tetrad metric,
the torsion Slmn, and the vierbein derivatives dlmn by

Γlmn = 1
2 (∂nγlm + ∂mγln − ∂lγmn + Slmn + Smnl + Snml

+ dlnm − dlmn + dmln − dmnl + dnlm − dnml) not a tetrad tensor . (11.53)

If torsion vanishes, as general relativity assumes, and if furthermore the tetrad metric is constant, then
equation (11.53) simpli�es to the following expression for the tetrad connections in terms of the vierbein
derivatives dlmn de�ned by (11.32)

Γlmn = 1
2 (dlnm − dlmn + dmln − dmnl + dnlm − dnml) not a tetrad tensor . (11.54)

This is the formula that allows tetrad connections to be calculated from the vierbein.
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11.15 Torsion-free covariant derivative

As in �2.12, the torsion-free part of the covariant derivative is a covariant derivative even when torsion is
present. When torsion is present and it is desirable to make the torsion part explicit, it is convenient to
distinguish torsion-free quantities with a ˚ overscript. The torsion-full tetrad connection Γlmn is a sum of
the torsion-free (Levi-Civita) connection Γ̊lmn and the contortion tensor Klmn,

Γlmn = Γ̊lmn +Klmn , (11.55)

where from equation (11.53) the contortion tensor Klmn and the torsion tensor Slmn are related by

Klmn = 1
2 (Slmn − Smln + Snml) = −Snlm + 3

2S[lmn] a tetrad tensor , (11.56a)

Slmn = Klmn −Klnm = −Kmnl + 3K[lmn] a tetrad tensor . (11.56b)

Like the tetrad connection Γlmn, the contortionKlmn is antisymmetric in its �rst two indices. The torsion-full
covariant derivative Dn di�ers from the torsion-free covariant derivative D̊n by the contortion,

DnA
k ≡ D̊nA

k +Kk
mnA

m a tetrad tensor . (11.57)

In this book the symbolDn by default denotes the torsion-full covariant derivative. In some places however,
such as in the theory of di�erential forms, the symbol Dn is used for brevity to denote the torsion-free
covariant derivative, even in the presence of torsion. When Dn denotes the torsion-free covariant derivative,
it will be stated so explicitly.

11.16 Riemann curvature tensor

The Riemann curvature tensor Rklmn is de�ned in the usual way, equation (2.110), by the commutator
of the covariant derivative acting on a 4-vector. In the presence of torsion,

[Dk, Dl]Am ≡ SnklDnAm +RklmnA
n a tetrad tensor . (11.58)

If torsion vanishes, as general relativity assumes, then the de�nition (11.58) reduces to

[Dk, Dl]Am ≡ RklmnAn a tetrad tensor . (11.59)

The expression (11.41) for the covariant derivative coupled with the torsion equation (11.48) yields the
following formula for the tetrad-frame Riemann tensor in terms of tetrad connection, for the general case of
non-vanishing torsion:

Rklmn = ∂kΓmnl − ∂lΓmnk + ΓpmlΓpnk − ΓpmkΓpnl + (Γpkl − Γplk − S
p
kl)Γmnp a tetrad tensor . (11.60)

The formula has extra terms (Γpkl−Γplk−S
p
kl)Γmnp compared to the formula (2.112) for the coordinate-frame

Riemann tensor Rκλµν . If torsion vanishes, as general relativity assumes, then

Rklmn = ∂kΓmnl − ∂lΓmnk + ΓpmlΓpnk − ΓpmkΓpnl + (Γpkl − Γplk)Γmnp a tetrad tensor . (11.61)
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The symmetries of the tetrad-frame Riemann tensor are the same as those of the coordinate-frame Riemann
tensor. For vanishing torsion, these are

Rklmn = R([kl][mn]) , (11.62)

Rk[lmn] = 0 . (11.63)

Exercise 11.3. Riemann tensor. From the de�nition (11.58), derive the expression (11.60) for the Rie-
mann tensor. [Hint: Start by expanding out the de�nition (11.58) using the de�nition (11.42) of the covariant
derivative. You will �nd it easier to derive an expression for the Riemann tensor with one index raised, such
as Rklmn, but you should resist the temptation to leave it there, because the symmetries of the Riemann
tensor are obscured when one index is raised. To switch to all lowered indices, you will need to convert terms
such as ∂kΓnml by

∂kΓnml = ∂k(γnpΓpml) = γnp ∂kΓpml + Γpml ∂kγ
np . (11.64)

You should show that the directed derivative ∂kγnp in this expression is related to tetrad connections through
a formula similar to equation (11.46),

∂kγ
np = −Γnpk − Γpnk , (11.65)

which you should recognize as equivalent to Dkγ
np = 0. To complete the derivation, show that

∂k(Γmnl + Γnml)− ∂l(Γmnk + Γnmk) = [∂k, ∂l]γmn = (Γplk − Γpkl + Spkl)(Γmnp + Γnmp) . (11.66)

Equation (11.66) implies the antisymmetry of Rklmn in mn.]

Exercise 11.4. Antisymmetry of the Riemann tensor. Argue that the antisymmetry of Rklmn in mn,
with or without torsion, can be deduced from

0 = [Dk, Dl]γmn = SpklDpγmn +Rklmpδ
p
n +Rklnpδ

p
m = Rklmn +Rklnm . (11.67)

Exercise 11.5. Cyclic symmetry of the Riemann tensor. Show that the cyclic symmetry (11.63) is a
consequence of the assumption of vanishing torsion.
Solution. Use the Jacobi identity applied to a scalar, [D[k, [Dm, Dl]]]Φ = 0. Show that if Φ is a scalar, then

2D[kDlDm]Φ =
[
D[k, Dl

]
Dm]Φ =

(
R[klm]

n − Sp[klS
n
m]p

)
DnΦ + Sn[klDm]DnΦ

= D[k

[
Dl, Dm]

]
Φ =

(
D[kS

n
lm]

)
DnΦ + Sn[klDm]DnΦ . (11.68)

Consequently

R[klm]
n = D[kS

n
lm] + Sp[klS

n
m]p . (11.69)

An equivalent expression in terms of the torsion-free covariant derivative D̊k and the contortion Kmnl is

R[klm]
n = D̊[kS

n
lm] +Kn

p[kS
p
lm] . (11.70)
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Exercise 11.6. Symmetry of the Riemann tensor. Show that the cyclic symmetry (11.63) implies the
symmetry kl ↔ mn, given the antisymmetries k ↔ l and m ↔ n. Given Exercise 11.5, this shows that the
symmetry kl↔ mn is, like the cyclic symmetry, a consequence of vanishing torsion.
Solution. Show that

2(Rklmn −Rmnkl) = 3
(
Rk[lmn] −Rl[kmn] −Rm[nkl] +Rn[mkl]

)
, (11.71)

or alternatively,

2(Rklmn −Rmnkl) = 3
(
R[klm]n −R[kln]m −R[mnk]l +R[mnl]k

)
. (11.72)

Exercise 11.7. Number of components of the Riemann tensor. How many independent components
does the Riemann tensor have, in 4-dimensional spacetime?
Solution. If torsion vanishes, 20. If torsion does not vanish, 36. The extra 16 components come from R[klm]n,
which is related to torsion by equation (11.69), and which has 4 × 4 = 16 components if torsion does not
vanish.

Concept question 11.8. Must connections vanish if Riemann vanishes?Must the tetrad connections
Γlmn vanish if the Riemann tensor vanishes identically, Rklmn = 0? Answer. No. For a counterexample, take
�at (Minkowski) space expressed in spherical polar coordinates {t, r, θ, φ}. The non-vanishing tetrad-frame
connections are Γ212 = Γ313 = 1/r and Γ323 = cot θ/r (compare equations (20.23)).

11.16.1 Riemann tensor in a mixed coordinate-tetrad frame

In Chapter 16, Einstein's equations will be obtained from an action principle, as �rst done by Hilbert (1915).
The Hilbert Lagrangian takes a particularly insightful form if the Riemann tensor is expressed in a mixed
coordinate-tetrad basis.
The coordinate-frame covariant derivative Dκ of a tetrad-frame vector an is

Dκan = ekκDkan =
∂an
∂xκ

− Γmnκam a coordinate-tetrad tensor , (11.73)

where Γmnκ is the tetrad-frame connection with its last index converted into the coordinate frame with the
vierbein,

Γmnκ ≡ ekκΓmnk a coordinate vector, but not a tetrad tensor . (11.74)

As usual, the connection with all indices lowered is de�ned by Γlnκ ≡ γlmΓmnκ. The connections Γmnκ should
not be confused with the coordinate-frame connections (Christo�el symbols) Γµνκ. The relation between the
two is, from equation (11.44),

Γmnκ = − ekκ dmnk + em
µen

ν Γµνκ . (11.75)

In 4 dimensions there are 6× 4 = 24 distinct connections Γmnκ (with or without torsion), whereas there are
4× 10 = 40 distinct coordinate-frame connections Γµνκ (without torsion, or 4× 4× 4 = 64 with torsion).
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The last term on the right hand side of equation (11.60) for the Riemann tensor can be written, in view
of equations (11.49) and (11.32),

(Γpkl − Γplk − S
p
kl)Γmnp = (∂lek

κ − ∂kelκ)Γmnκ . (11.76)

The Riemann tensor Rκλmn in the mixed coordinate-tetrad basis is then

Rκλmn =
∂Γmnλ
∂xκ

− ∂Γmnκ
∂xλ

+ ΓpmλΓpnκ − ΓpmκΓpnλ a coordinate-tetrad tensor , (11.77)

which is valid with or without torsion. Equation (11.77) resembles super�cially the coordinate-frame expres-
sion (2.112) for the Riemann tensor, but it is more economical in that there are only 24 connections Γmnκ
instead of the 40 (or 64, with torsion) coordinate-frame connections Γµνκ.
The torsion Smκλ in the mixed coordinate-tetrad basis is

Smκλ = − ∂emλ
∂xκ

+
∂emκ
∂xλ

− Γmlκe
l
λ + Γmkλe

k
κ a coordinate-tetrad tensor . (11.78)

Equations (11.77) and (11.78) constitute Cartan's equations of structure (Cartan, 1904) (see �16.14.2).

11.17 Ricci, Einstein, Bianchi

The usual suite of formulae leading to Einstein's equations apply. Since all the quantities are tensors, and
all the equations are tensor equations, their form follows immediately from their coordinate counterparts.
Ricci tensor:

Rkm ≡ γlnRklmn . (11.79)

Ricci scalar:

R ≡ γkmRkm . (11.80)

Einstein tensor:

Gkm ≡ Rkm − 1
2γkmR . (11.81)

Einstein's equations:

Gkm = 8πGTkm . (11.82)

The trace of the Einstein equations implies that R = −8πGT , so the Einstein equations (11.82) can equally
well be written with the trace terms transferred from the left to the right hand side,

Rkm = 8πG
(
Tkm − 1

2γkm T
)
. (11.83)

Bianchi identities in the absence of torsion:

DkRlmnp +DlRmknp +DmRklnp = 0 , (11.84)
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which most importantly imply covariant conservation of the Einstein tensor, hence conservation of energy-
momentum

DkTkm = 0 . (11.85)

11.18 Expressions with torsion

If torsion does not vanish, then the Riemann tensor, and consequently also the Ricci and Einstein tensors,
can be split into torsion-free (distinguished by a˚overscript) and torsion parts (e.g. Hehl, Heyde, and Kerlick
1976). A similar split occurs in the ADM formalism where a certain gauge choice (�xing the time component
γγ0 of the tetrad to be orthogonal to hypersurfaces of constant time) splits the tetrad connection into a tensor
part, the extrinsic curvature, and a remainder, equation (17.27).
The contortion tensor Klmn was de�ned previously as the torsion part of the connection Γlmn, equa-

tion (11.55). The unique non-vanishing contraction of the contortion tensor de�nes the contortion vector
Km,

Km ≡ Kn
mn = Snmn . (11.86)

The torsion-full Riemann tensor Rklmn is a sum of the torsion-free Riemann tensor R̊klmn and a torsion
part (note that Kpkl −Kplk − Spkl = 0, so the �extra� term in Rklmn, equation (11.60), vanishes when Kpkl

is the contortion),

Rklmn = R̊klmn + D̊kKmnl − D̊lKmnk +Kp
mlKpnk −Kp

mkKpnl . (11.87)

The Ricci tensor is

Rkm = R̊km − D̊kKm − D̊nKmnk +KmpnK
np
k −KmpkK

p , (11.88)

and the Ricci scalar is

R = R̊− 2D̊nK
n +KmpnK

npm −KnK
n . (11.89)

The antisymmetric part of the Einstein tensor is, from contracting equation (11.69),

G[km] = 3
2R[klm]

l = 3
2

(
D[kS

l
lm] + Sp[klS

l
m]p

)
, (11.90)

which vanishes for vanishing torsion.
The Jacobi identity (2.126) implies, in addition to the 16 conditions (11.69), the 24 Bianchi identities

D[kRlm]np + Sq[klRm]qnp = 0 . (11.91)

The doubly-contracted Bianchi identities are

− 3
2γ

knγlp
(
D[kRlm]np + Sq[klRm]qnp

)
= DkGmk − 1

2S
q
klRmq

kl − SqkmRq
k = 0 . (11.92)
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11.19 General relativity in 2 spacetime dimensions

General relativity in 2 spacetime dimensions is weird. There are zero Bianchi identities (2.128) in 2 spacetime
dimensions, so the Bianchi identities do not identify any covariantly conserved tensor. The Einstein tensor
itself vanishes identically in 2 spacetime dimensions.
There are consistent extensions of general relativity in 2 spacetime dimensions, such as string-inspired

dilaton gravity (Grumiller, Kummer, and Vassilevich, 2002). However, those will not be considered here.
Historically, the main application of 2-dimensional relativity has been to explore quantum �eld theory

in curved spacetime, since in 2 spacetime dimensions the quantum energy-momentum tensor induced by
any prescribed geometry can be calculated exactly (even though the classical energy-momentum tensor is
indeterminate).
The closest thing to a consistent realisation of classical general relativity in 2 spacetime dimensions is as

follows.
In 2 spacetime dimensions, the Riemann tensor has just one distinct component,R0101, and that component

is determined entirely by the Ricci scalar R. The tetrad-frame Riemann and Ricci tensors are related to the
Ricci scalar R by

Rklmn = 1
2 (γkmγln − γknγlm)R , Rkm = 1

2γkmR . (11.93)

In an arbitrary number of N spacetime dimensions, contracting the Einstein equations implies that the Ricci
scalar R is proportional to the trace T of the energy-momentum tensor,

(1− 1
2N)R = κNT , (11.94)

where κN is Newton's gravitational constant in N spacetime dimensions, suitably normalized. For N = 2,
the factor on the left of equation (11.94) vanishes; but one can imagine absorbing the zero factor into a
rede�nition of the gravitational constant κN , so that

R = κ′2T (11.95)

for some κ′2. Now impose that the energy-momentum tensor Tkm is covariantly conserved,

DkTkm = 0 . (11.96)

In N = 2 spacetime dimensions, the trace relation (11.95) together with the covariant conservation condi-
tion (11.96) imply almost uniquely the form of the energy-momentum tensor.
The conserved energy-momentum tensor Tkm takes its simplest expression when the metric is expressed in

conformally �at form. The metric in N = 2 spacetime dimensions is a symmetric 2× 2 matrix. By a suitable
coordinate transformation of the 2 coordinates, the metric can be brought to the conformally �at form

ds2 = e2ξ(− dt2 + dx2) = −e2ξdvdu , (11.97)

where v ≡ t + x and u ≡ t − x are null coordinates, and ξ is a function of the two coordinates. The
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Newman-Penrose tetrad-frame components of the conserved energy-momentum tensor Tkm are then

−R
2

= −4e−2ξ ∂
2ξ

∂v∂u
= −κ′2

T

2
= κ′2Tvu , (11.98a)

4e−2ξ

[
∂2ξ

∂v2
−
(
∂ξ

∂v

)2

+ f+(v)

]
= κ′2Tvv , (11.98b)

4e−2ξ

[
∂2ξ

∂u2
−
(
∂ξ

∂u

)2

+ f−(u)

]
= κ′2Tuu , (11.98c)

where f+(v) and f−(u) are arbitrary functions of respectively v and u. There is a residual gauge freedom
v → V (v) and u→ U(u) in the choice of null coordinates that allows the conformal function to be adjusted
ξ → ξ + ξ+(v) + ξ−(u) by arbitrary additive functions of v and u. This residual gauge freedom allows the
functions f+(v) and f−(u) in equations (11.98b) and (11.98c) to be adjusted arbitrarily. If desired, f+(v)

and f−(u) can be set to zero.
The classical 2-dimensional general relativity described by equations (11.98) is not very interesting; for

example there is no 2-dimensional analogue of the Schwarzschild black hole, Exercise 11.9.
Where equations (11.98) prove more interesting is that they also describe the expectation value 〈Tkl〉 of the

renormalized quantum energy-momentum induced by a given geometry in 2 spacetime dimensions (Birrell
and Davies, 1982). That is, the expectation value 〈T 〉 of the quantum trace in 2 spacetime dimensions is
proportional to the Ricci scalar (Birrell and Davies, 1982, eq. (6.121)), and the quantum energy-momentum
tensor 〈Tkl〉 is covariantly conserved, therefore equations (11.98) are satis�ed by 〈Tkl〉. In 4 spacetime dimen-
sions the quantum energy-momentum tensor 〈Tkl〉 is extremely di�cult to calculate in a general spacetime,
so clues from 2 spacetime dimensions can be illuminating.

Exercise 11.9. Black holes in 2 spacetime dimensions? Does the analogue of a Schwarzschild black
hole exist in 2 spacetime dimensions?
Solution. No. Require the spacetime to be empty outside some radius. The vanishing of the Ricci scalar (11.98a)
implies that

ξ = ξ+(v) + ξ−(u) (11.99)

for some functions ξ+ and ξ− of the null coordinates v and u. But then the coordinate tranformations of the
null coordinates

dV = e2ξ+(v)dv , dU = e2ξ−(u)du (11.100)

bring the line-element to

ds2 = −dV dU , (11.101)

which is just �at (Minkowski) space in N = 2 dimensions.

Exercise 11.10. Tidal forces falling into a Schwarzschild black hole. In the Schwarzschild or
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Gullstrand-Painlevé orthonormal tetrad, or indeed in any orthonormal tetrad of the Schwarzschild geome-
try where t and r represent the time and radial directions and θ and φ represent the transverse (angular)
directions, the non-zero components of the tetrad-frame Riemann tensor are

1
2Rtrtr = −Rtθtθ = −Rtφtφ = Rrθrθ = Rrφrφ = − 1

2Rθφθφ = C (11.102)

where

C = −M/r3 (11.103)

is the Weyl scalar (the spin-0 component of the Weyl tensor).
1. Tidal forces. A person at rest in the tetrad has, by de�nition, tetrad-frame 4-velocity um = {1, 0, 0, 0}.

From the equation of geodesic deviation, equation (11.104),

D2δξm
Dτ2

+Rklmnδξ
kulun = 0 , (11.104)

deduce the tidal acceleration on the person in the radial and transverse directions. Does the tidal
acceleration stretch or compress? [Hint: The equation of geodesic deviation, �3.3, gives the proper
acceleration between two points a small distance δξm apart, where ξm are the locally inertial coordinates
of the tetrad frame. Notice that this problem is much easier to solve with tetrads than with the traditional
coordinate approach. Note also that since the Weyl tensor takes the same form (11.102) independent of
the radial boost, the tidal acceleration is the same regardless of the radial velocity of the infaller.]

2. Choose a black hole to fall into. What is the mass of the black hole for which the tidal acceleration
M/r3 is 1 gee per metre at the horizon? If you wanted to fall through the horizon of a black hole without
�rst being torn apart, what mass of black hole would you choose? [Hint: 1 gee is the gravitational
acceleration at the surface of the Earth.]

3. Time to die. In a previous problem you showed that the proper time to free-fall radially from radius
r to the singularity of a Schwarzschild black hole, for a faller who starts at zero velocity at in�nity (so
E = 1), is

τ =
2

3

√
r3

2M
. (11.105)

How long, in seconds, does it take to fall to the singularity from the place where the tidal acceleration
is 1 gee per metre? Comment?

4. Tear-apart radius. At what radius r, in km, do you start to get torn apart, if that happens when the
tidal acceleration is 1 gee per metre? Express your answer in terms of the black hole mass M in units
of a solar mass M�, that is, in the form r = ? (M/M�)?.

5. Spaghetti�ed? In Exercise 7.6 you showed that the infall velocity of a person who free-falls radially
from zero velocity at in�nity (so E = 1) is

dr

dτ
= −

√
2M

r
. (11.106)
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Show that radial component (δξr) of the equation of geodesic deviation (11.104) for such a person solves
to

δξr =
A√
r

+Br2 , (11.107)

where A and B are constants. If a person tears apart when the tidal acceleration is 1 gee per metre, and
the parts of the person free-fall thereafter, is the person actually spaghetti�ed? [Hint: If the frame is
in free-fall, then the covariant derivatives D/Dτ in the equation of geodesic deviation may be replaced
by ordinary derivatives d/dτ in that frame. The last part of the question � Is the person actually
spaghetti�ed? � is a concept question: given the solution (11.107), can you interpret what it means?]

Exercise 11.11. Totally antisymmetric tensor.

1. In an orthonormal tetrad γγm where γγ0 points to the future and γγ1, γγ2, γγ3 are right-handed, the
contravariant totally antisymmetric tensor εklmn is de�ned by (this is the opposite sign from the Misner,
Thorne, and Wheeler (1973) notation)

εklmn ≡ [klmn] , (11.108)

and hence

εklmn = −[klmn] , (11.109)

where [klmn] is the totally antisymmetric symbol

[klmn] ≡


+1 if klmn is an even permutation of 0123 ,

−1 if klmn is an odd permutation of 0123 ,

0 if klmn are not all di�erent .
(11.110)

Argue that in a general basis eµ the contravariant totally antisymmetric tensor εκλµν is

εκλµν = ek
κel

λem
µen

ν εklmn = e [κλµν] , (11.111)

while its covariant counterpart is

εκλµν = −e [κλµν] , (11.112)

where e ≡ |emµ| is the determinant of the vierbein.
2. Show that in 4 dimensions

εklmnεκλµν = −4! e[k
κe
l
λe
m
µe
n]
ν . (11.113)

Conclude that

ek
κεklmnεκλµν = −6 e[l

λe
m
µe
n]
ν , (11.114a)

ek
κel

λεklmnεκλµν = −4 e[m
µe
n]
ν , (11.114b)

ek
κel

λem
µεklmnεκλµν = −6 enν , (11.114c)

ek
κel

λem
µen

νεklmnεκλµν = −24 . (11.114d)

The coe�cient of the p'th contraction is −p!(4− p)! .
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Spin and Newman-Penrose tetrads

THIS CHAPTER NEEDS REWRITING.
This chapter discusses spin tetrads (�??) and Newman-Penrose tetrads (�12.2). The chapter goes on to

show how the �elds that describe electromagnetic (�??) and gravitational (�12.3) waves have a natural
and insightful complex structure that is brought out in a Newman-Penrose tetrad. The Newman-Penrose
formalism provides a natural context for the Petrov classi�cation of the Weyl tensor (�12.4).

12.1 Spin tetrad formalism

In quantum mechanics, fundamental particles have spin. The 3 generations of leptons (electrons, muons,
tauons, and their respective neutrino partners) and quarks (up, charm, top, and their down, strange, and
bottom partners) have spin 1

2 (in units ~ = 1). The carrier particles of the electromagnetic force (photons),
the weak force (the W± and Z bosons), and the colour force (the 8 gluons), have spin 1. The carrier of the
gravitational force, the graviton, is expected to have spin 2, though as of 2010 no gravitational wave, let
alone its quantum, the graviton, has been detected.
General relativity is a classical, not quantum, theory. Nevertheless the spin properties of classical waves,

such as electromagnetic or gravitational waves, are already apparent classically.

12.1.1 Spin tetrad

A systematic way to project objects into spin components is to work in a spin tetrad. As will become apparent
below, equation (12.5), spin describes how an object transforms under rotation about some preferred axis. In
the case of an electromagnetic or gravitational wave, the natural preferred axis is the direction of propagation
of the wave. With respect to the direction of propagation, electromagnetic waves prove to have two possible
spins, or helicities, ±1, while gravitational waves have two possible spins, or helicities, ±2. A preferred axis
might also be set by an experimenter who chooses to measure spin along some particular direction. The
following treatment takes the preferred direction to lie along the z-axis γγz, but there is no loss of generality
in making this choice.

311
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Start with an orthonormal tetrad {γγt,γγx,γγy,γγz}. If the preferred tetrad axis is the z-axis γγz, then the
spin tetrad axes {γγ+,γγ−} are de�ned to be complex combinations of the transverse axes {γγx,γγy},

γγ+ ≡ 1√
2
(γγx + iγγy) , (12.1a)

γγ− ≡ 1√
2
(γγx − iγγy) . (12.1b)

The tetrad metric of the spin tetrad {γγt,γγz,γγ+,γγ−} is

γmn =


−1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (12.2)

Notice that the spin axes {γγ+,γγ−} are themselves null, γγ+ · γγ+ = γγ− · γγ− = 0, whereas their scalar product
with each other is non-zero γγ+ · γγ− = 1. The null character of the spin axes is what makes spin especially
well-suited to describing �elds, such as electromagnetism and gravity, that propagate at the speed of light. An
even better trick in dealing with �elds that propagate at the speed of light is to work in a Newman-Penrose
tetrad, �12.2, in which all 4 tetrad axes are taken to be null.

12.1.2 Transformation of spin under rotation about the preferred axis

Under a right-handed rotation by angle χ about the preferred axis γγz, the transverse axes γγx and γγy transform
as

γγx → cosχγγx + sinχγγy ,

γγy → sinχγγx − cosχγγy . (12.3)

It follows that the spin axes γγ+ and γγ− transform under a right-handed rotation by angle χ about γγz as

γγ± → e∓iχ γγ± . (12.4)

The transformation (12.4) identi�es the spin axes γγ+ and γγ− as having spin +1 and −1 respectively.

12.1.3 Spin

More generally, an object can be de�ned as having spin s if it varies by

e−siχ (12.5)

under a right-handed rotation by angle χ about the preferred axis γγz. Thus an object of spin s is unchanged
by a rotation of 2π/s about the preferred axis. A spin-0 object is symmetric about the γγz axis, unchanged
by a rotation of any angle about the axis. The γγz axis itself is spin-0, as is the time axis γγt.
The components of a tensor in a spin tetrad inherit spin properties from that of the spin basis. The general
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rule is that the spin s of any tensor component is equal to the number of + covariant indices minus the
number of − covariant indices:

spin s = number of + minus − covariant indices . (12.6)

12.1.4 Spin �ip

Under a re�ection through the y-axis, the spin axes swap:

γγ+ ↔ γγ− , (12.7)

which may also be accomplished by complex conjugation. Re�ection through the y-axis, or equivalently
complex conjugation, changes the sign of all spin indices of a tensor component

+↔ − . (12.8)

In short, complex conjugation �ips spin, a pretty feature of the spin formalism.

12.1.5 Spin versus spherical harmonics

In physical problems, such as in cosmological perturbations, or in perturbations of spherical black holes, or
in the hydrogen atom, spin often appears in conjunction with an expansion in spherical harmonics. Spin
should not be confused with spherical harmonics.
Spin and spherical harmonics appear together whenever the problem at hand has a symmetry under the 3D

special orthogonal group SO(3) of spatial rotations (special means of unit determinant; the full orthogonal
group O(3) contains in addition the discrete transformation corresponding to re�ection of one of the axes,
which �ips the sign of the determinant). Rotations in SO(3) are described by 3 Euler angles {θ, φ, χ}. Spin
is associated with the Euler angle χ. The usual spherical harmonics Y`m(θ, φ) are the spin-0 eigenfunctions
of SO(3). The eigenfunctions of the full SO(3) group are the spin harmonics SIGN?

sY`m(θ, φ, χ) = Θ`ms(θ, φ, χ)eimφeisχ . (12.9)

12.1.6 Spin components of the Einstein tensor

With respect to a spin tetrad, the components of the Einstein tensor Gmn are

Gmn =


Gtt Gtz Gt+ Gt−
Gtz Gzz Gz+ Gz−
Gt+ Gz+ G++ G+−
Gt− Gz− G+− G−−

 . (12.10)
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From this it is apparent that the 10 components of the Einstein tensor decompose into 4 spin-0 components,
4 spin-±1 components, and 2 spin-±2 components:

−2 : G−− ,

−1 : Gt− , Gz− ,

0 : Gtt , Gtz , Gzz , G+− ,

+1 : Gt+ , Gz+ ,

+2 : G++ .

(12.11)

The 4 spin-0 components are all real; in particular G+− is real since G∗+− = G−+ = G+−. The 4 spin-±1

and 2 spin-±2 components comprise 3 complex components

G∗++ = G−− , G∗t+ = Gt− , G∗z+ = Gz− . (12.12)

In some contexts, for example in cosmological perturbation theory, REALLY? the various spin components
are commonly referred to as scalar (spin-0), vector (spin-±1), and tensor (spin-±2).

12.2 Newman-Penrose tetrad formalism

The Newman-Penrose formalism (Newman and Penrose, 1962; Newman and Penrose, 2009) provides a partic-
ularly powerful way to deal with �elds that propagate at the speed of light. The Newman-Penrose formalism
adopts a tetrad in which the two axes γγv (outgoing) and γγu (ingoing) along the direction of propagation are
chosen to be lightlike, while the two axes γγ+ and γγ− transverse to the direction of propagation are chosen
to be spin axes.
Sadly, the literature on the Newman-Penrose formalism is characterized by an arcane and random notation

whose principal purpose seems to be to perpetuate exclusivity for an old-boys club of people who understand
it. This is unfortunate given the intrinsic power of the formalism. Held (1974) comments that the Newman-
Penrose formalism presents �a formidable notational barrier to the uninitiate.� For example, the tetrad
connections Γkmn are called �spin coe�cients,� and assigned individual greek letters that obscure their
transformation properties. Do not be fooled: all the standard tetrad formalism presented in Chapter 11
carries through unaltered. One ill-born child of the notation that persists in widespread use is ψ2−s for the
spin s component of the Weyl tensor, equations (12.30).
Gravitational waves are commonly characterized by the Newman-Penrose (NP) components of the Weyl

tensor. The NP components of the Weyl tensor are sometimes referred to as the NP scalars. The designation
as NP scalars is potentially misleading, because the NP components of the Weyl tensor form a tetrad-frame
tensor, not a set of scalars (though of course the tetrad-frame Weyl tensor is, like any tetrad-frame quantity, a
coordinate scalar). The NP components do become proper quantities, and in that sense scalars, when referred
to the frame of a particular observer, such as a gravitational wave telescope, observing along a particular
direction. However, the use of the word scalar to describe the components of a tensor is unfortunate.
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12.2.1 Newman-Penrose tetrad

A Newman-Penrose tetrad {γγv,γγu,γγ+,γγ−} is de�ned in terms of an orthonormal tetrad {γγt,γγx,γγy,γγz} by

γγv ≡ 1√
2
(γγt + γγz) , (12.13a)

γγu ≡ 1√
2
(γγt − γγz) , (12.13b)

γγ+ ≡ 1√
2
(γγx + iγγy) , (12.13c)

γγ− ≡ 1√
2
(γγx − iγγy) , (12.13d)

or in matrix form 
γγv
γγu
γγ+

γγ−

 =
1√
2


1 0 0 1

1 0 0 −1

0 1 i 0

0 1 −i 0



γγt
γγx
γγy
γγz

 . (12.14)

All four tetrad axes are null

γγv · γγv = γγu · γγu = γγ+ · γγ+ = γγ− · γγ− = 0 . (12.15)

In a profound sense, the null, or lightlike, character of each the four NP axes explains why the NP formalism is
well adapted to treating �elds that propagate at the speed of light. The tetrad metric of the Newman-Penrose
tetrad {γγv,γγu,γγ+,γγ−} is

γmn =


0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

 . (12.16)

12.2.2 Boost weight

A boost by rapidity θ along the γγz axis multiplies the outgoing and ingoing axes γγv and γγu by a blueshift
factor eθ and its reciprocal,

γγv → eθ γγv ,

γγu → e−θ γγu . (12.17)

In terms of the velocity v = tanh θ, the blueshift factor is the special relativistic Doppler shift factor

eθ =

(
1 + v

1− v

)1/2

. (12.18)
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More generally, object is said to have boost weight n if it varies by

enθ (12.19)

under a boost by rapidity θ along the preferred direction γγz. Thus γγv has boost weight +1, and γγu has
boost weight −1. The spin axes γγ± both have boost weight 0. The NP components of a tensor inherit their
boost weight properties from those of the NP basis. The general rule is that the boost weight n of any tensor
component is equal to the number of v covariant indices minus the number of u covariant indices:

boost weight n = number of v minus u covariant indices . (12.20)

12.2.3 Lorentz transformations

Under a Lorentz transformation consisting of a combination of a Lorentz boost by rapidity ξ about t�x and
a rotation by angle ζ about y�z, an orthonormal tetrad γγm ≡ {γγt,γγx,γγy,γγz} transforms as FIX SIGNS

γγm → γγ′m =


cosh(ξ) − sinh(ξ) 0 0

− sinh(ξ) cosh(ξ) 0 0

0 0 cos(ζ) sin(ζ)

0 0 − sin(ζ) cos(ζ)



γγt
γγx
γγy
γγz

 . (12.21)

Under the same Lorentz transformation, the bivector axes γγtm ≡ {γγtx,γγty,γγtz} transform as

γγtm → γγ′tm =

 1 0 0

0 cos(ζ + iξ) sin(ζ + iξ)

0 − sin(ζ + iξ) cos(ζ + iξ)

 γγtx
γγty
γγtz

 . (12.22)

12.3 Weyl tensor

The Weyl tensor is the trace-free part of the Riemann tensor,

Cklmn ≡ Rklmn − 1
2 (γkmRln − γknRlm + γlnRkm − γlmRkn) + 1

6 (γkmγln − γknγlm)R . (12.23)

By construction, the Weyl tensor vanishes when contracted on any pair of indices. Whereas the Ricci and
Einstein tensors vanish identically in any region of spacetime containing no energy-momentum, Tmn = 0,
the Weyl tensor can be non-vanishing. Physically, the Weyl tensor describes tidal forces and gravitational
waves.

12.3.1 Complexi�ed Weyl tensor

The Weyl tensor is is, like the Riemann tensor, a symmetric matrix of bivectors. Just as the electromagnetic
bivector Fkl has a natural complex structure, so also the Weyl tensor Cklmn has a natural complex structure.
The properties of the Weyl tensor emerge most plainly when that complex structure is made manifest.
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In an orthonormal tetrad {γγt,γγx,γγy,γγz}, the Weyl tensor Cklmn can be written as a 6 × 6 symmetric
bivector matrix, organized as a 2× 2 matrix of 3× 3 blocks, with the structure

C =

(
CEE CEB
CBE CBB

)
=



Ctxtx Ctxty Ctxtz Ctxzy Ctxxz Ctxyx
Ctytx ... ... ... ... ...

Ctztx ... ... ... ... ...

Czytx ... ... ... ... ...

Cxztx ... ... ... ... ...

Cyxtx ... ... ... ... ...


, (12.24)

where E denotes electric indices, B magnetic indices, per the designation (??). The condition of being
symmetric implies that the 3 × 3 blocks CEE and CBB are symmetric, while CBE = C>EB . The cyclic
symmetry (11.63) of the Riemann, hence Weyl, tensor implies that the o�-diagonal 3 × 3 block CEB (and
likewise CBE) is traceless.

The natural complex structure motivates de�ning a complexi�ed Weyl tensor C̃klmn by

C̃klmn ≡
1

4

(
δpkδ

q
l +

i

2
εkl

pq

)(
δrmδ

s
n +

i

2
εmn

rs

)
Cpqrs a tetrad tensor (12.25)

analogously to the de�nition (??) of the complexi�ed electromagnetic �eld. The de�nition (12.25) of the
complexi�ed Weyl tensor C̃klmn is valid in any frame, not just an orthonormal frame. In an orthonormal
frame, if the Weyl tensor Cklmn is organized according to the structure (12.24), then the complexi�ed Weyl
tensor C̃klmn de�ned by equation (12.25) has the structure

C̃ =
1

4

(
1 −i
−i −1

)
(CEE − CBB + i CEB + i CBE) . (12.26)

Thus the independent components of the complexi�ed Weyl tensor C̃klmn constitute a 3 × 3 complex sym-
metric traceless matrix CEE − CBB + i(CEB + CBE), with 5 complex degrees of freedom. Although the
complexi�ed Weyl tensor C̃klmn is de�ned, equation (12.25), as a projection of the Weyl tensor, it neverthe-
less retains all the 10 degrees of freedom of the original Weyl tensor Cklmn.

The same complexi�cation projection operator applied to the trace (Ricci) parts of the Riemann tensor
yields only the Ricci scalar multiplied by that unique combination of the tetrad metric that has the sym-
metries of the Riemann tensor. Thus complexifying the trace parts of the Riemann tensor produces nothing
useful.



318 Spin and Newman-Penrose tetrads

12.3.2 Newman-Penrose components of the Weyl tensor

With respect to a NP null tetrad {γγv,γγu,γγ+,γγ−}, equation (39.1), the Weyl tensor Cklmn has 5 distinct
complex components, here denoted ψs, of spins respectively s = −2, −1, 0, +1, and +2:

−2 : ψ−2 ≡ Cu−u− ,
−1 : ψ−1 ≡ Cuvu− = C+−u− ,

0 : ψ0 ≡ 1
2 (Cuvuv + Cuv+−) = 1

2 (C+−+− + Cuv+−) = Cv+−u ,

+1 : ψ1 ≡ Cvuv+ = C−+v+ ,

+2 : ψ2 ≡ Cv+v+ .

(12.27)

The complex conjugates ψ∗s of the 5 NP components of the Weyl tensor are:

ψ∗−2 = Cu+u+ ,

ψ∗−1 = Cuvu+ = C−+u+ ,

ψ∗0 = 1
2 (Cuvuv + Cuv−+) = 1

2 (C−+−+ + Cuv−+) = Cv−+u ,

ψ∗1 = Cvuv− = C+−v− ,

ψ∗2 = Cv−v− .

(12.28)

whose spins have the opposite sign, in accordance with the rule (12.8) that complex conjugation �ips spin.
The above expressions (12.27) and (12.28) account for all the NP components Cklmn of the Weyl tensor but
four, which vanish identically:

Cv+v− = Cu+u− = Cv+u+ = Cv−u− = 0 . (12.29)

The above convention that the index s on the NP component ψs labels its spin di�ers from the standard
convention, where the spin s component of the Weyl tensor is impenetrably denoted ψ2−s (e.g. Chandrasekhar
(1983)):

−2 : ψ4 ,

−1 : ψ3 ,

0 : ψ2 ,

+1 : ψ1 ,

+2 : ψ0 .

(standard convention, not followed here) (12.30)

12.3.3 Newman-Penrose components of the complexi�ed Weyl tensor

The non-vanishing NP components of the complexi�ed Weyl tensor C̃klmn de�ned by equation (12.25) are

C̃u−u− = ψ−2 ,

C̃uvu− = C̃+−u− = ψ−1 ,

C̃uvuv = C̃+−+− = C̃uv+− = C̃v+−u = ψ0 ,

C̃vuv+ = C̃−+v+ = ψ1 ,

C̃v+v+ = ψ2 .

(12.31)



12.4 Petrov classi�cation of the Weyl tensor 319

whereas any component with either of its two bivector indices equal to v− or u+ vanishes. As with the
complexi�ed electromagnetic �eld, the rule that complex conjugation �ips spin fails here because the com-
plexi�cation operator breaks the rule. Equations (12.31) show that the complexi�ed Weyl tensor in an NP
tetrad contains just 5 distinct non-vanishing complex components, and those components are precisely equal
to the complex spin components ψs.
With respect to a triple of bivector indices ordered as {u−, uv,+v}, the NP components of the complexi�ed

Weyl tensor constitute the 3× 3 complex symmetric matrix

C̃klmn =

 ψ−2 ψ−1 ψ0

ψ−1 ψ0 ψ1

ψ0 ψ1 ψ2

 . (12.32)

12.3.4 Components of the complexi�ed Weyl tensor in an orthonormal tetrad

The complexi�ed Weyl tensor forms a 3 × 3 complex symmetric traceless matrix in any frame, not just an
NP frame. In an orthonormal frame, with respect to a triple of bivector indices {tx, ty, tz}, the complexi�ed
Weyl tensor C̃klmn can be expressed in terms of the NP spin components ψs as

C̃klmn =

 ψ0
1
2 (ψ1 − ψ−1) − i

2 (ψ1 + ψ−1)
1
2 (ψ1 − ψ−1) − 1

2ψ0 + 1
4 (ψ2 + ψ−2) − i

4 (ψ2 − ψ−2)

− i
2 (ψ1 + ψ−1) − i

4 (ψ2 − ψ−2) − 1
2ψ0 − 1

4 (ψ2 + ψ−2)

 . (12.33)

12.3.5 Propagating components of gravitational waves

For outgoing gravitational waves, only the spin −2 component ψ−2 (the one conventionally called ψ4) prop-
agates, carrying gravitational waves from a source to in�nity:

ψ−2 : propagating, outgoing . (12.34)

This propagating, outgoing −2 component has spin −2, but its complex conjugate has spin +2, so e�ectively
both spin components, or helicities, or circular polarizations, of an outgoing gravitational wave are embodied
in the single complex component. The remaining 4 complex NP components (spins −1 to 2) of an outgoing
gravitational wave are short range, describing the gravitational �eld near the source.
Similarly, only the spin +2 component ψ2 of an ingoing gravitational wave propagates, carrying energy

from in�nity:

ψ2 : propagating, ingoing . (12.35)

12.4 Petrov classi�cation of the Weyl tensor

As seen above, the complexi�ed Weyl tensor is a complex symmetric traceless 3 × 3 matrix. If the matrix
were real symmetric (or complex Hermitian), then standard mathematical theorems would guarantee that
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Table 12.1: Petrov classi�cation of the Weyl tensor

Petrov Distinct Distinct Normal form
type eigenvalues eigenvectors of the complexi�ed Weyl tensor

I 3 3

 ψ0 0 0

0 − 1
2ψ0 + 1

2ψ2 0

0 0 − 1
2ψ0 − 1

2ψ2


D 2 3

 ψ0 0 0

0 − 1
2ψ0 0

0 0 − 1
2ψ0


II 2 2

 ψ0 0 0

0 − 1
2ψ0 + 1

4ψ2 − i
4ψ2

0 − i
4ψ2 − 1

2ψ0 − 1
4ψ2


O 1 3

 0 0 0

0 0 0

0 0 0


N 1 2

 0 0 0

0 1
4ψ2 − i

4ψ2

0 − i
4ψ2 − 1

4ψ2


III 1 1

 0 1
2ψ1 − i

2ψ1
1
2ψ1 0 0

− i
2ψ1 0 0



it would be diagonalizable, with a complete set of eigenvalues and eigenvectors. But the Weyl matrix is
complex symmetric, and there is no such theorem.
The mathematical theorems state that a matrix is diagonalizable if and only if it has a complete set of

linearly independent eigenvectors. Since there is always at least one distinct linearly independent eigenvector
associated with each distinct eigenvalue, if all eigenvalues are distinct, then necessarily there is a complete
set of eigenvectors, and the Weyl tensor is diagonalizable. However, if some of the eigenvalues coincide, then
there may not be a complete set of linearly independent eigenvectors, in which case the Weyl tensor is not
diagonalizable.
The Petrov classi�cation, tabulated in Table 12.1, classi�es the Weyl tensor in accordance with the number

of distinct eigenvalues and eigenvectors. The normal form is with respect to an orthonormal frame aligned
with the eigenvectors to the extent possible. The tetrad with respect to which the complexi�ed Weyl tensor
takes its normal form is called the Weyl principal tetrad. The Weyl principal tetrad is unique except in
cases D, O, and N. For Types D and N, the Weyl principal tetrad is unique up to Lorentz transformations
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that leave the eigen-bivector γγtz unchanged, which is to say, transformations generated by the Lorentz rotor
exp(ζγγtz) where ζ is complex.
The Kerr-Newman geometry is Type D. General spherically symmetric geometries are Type D. The

Friedmann-Lemaître-Robertson-Walker geometry is Type O. Plane gravitational waves are Type N.



13

The geometric algebra

The geometric algebra is a conceptually appealing and mathematically powerful formalism. If you want to
understand rotations, Lorentz transformations, spin- 1

2 particles, and supersymmetry, and you want to do
actual calculations elegantly and (relatively) easily, then the geometric algebra is the thing to learn.
The extension of the geometric algebra to Minkowksi space is called the spacetime algebra, which is

the subject of Chapter 14. The natural extensions of the geometric and spacetime algebras to spinors are
called the super geometric algebra and the super spacetime algebra, covered in Chapters 38 and 39. All
these algebras may be referred to collectively as geometric algebras. I am generally unenthusiastic about
mathematical formalism for its own sake. The geometric algebras are a mathematical language that Nature
appears to speak.
The geometric algebra builds on a broad mathematical heritage beginning with the work of Grassmann

(1862; 1877) and Cli�ord (1878). The exposition in this book owes much to the conceptual rethinking of the
subject by David Hestenes (Hestenes, 1966; Hestenes and Sobczyk, 1987).
This chapter starts by setting up the geometric algebra in N -dimensional Euclidean space RN , then

specializes to the cases of 2 and 3 dimensions. The generalization to 4-dimensional Minkowski space, where
the geometric algebra is called the spacetime algebra, is deferred to Chapter 14. The 4-dimensional spacetime
algebra proves to be identical to the Cli�ord algebra of the Dirac γ-matrices, which explains the adoption
of the symbol γγm to denote the basis vectors of a tetrad. Although the formalism is presented initially
in Euclidean or Minkowski space, everything generalizes immediately to general relativity, where the basis
vectors γγm form the basis of an orthonormal tetrad at each point of spacetime.
This book follows the standard physics convention that a rotor R rotates a multivector a as a → RaR

and a spinor ϕ as ϕ → Rϕ. This, along with the standard de�nition (13.19) for the pseudoscalar, has the
consequence that a right-handed rotation corresponds to R = e−iθ/2 with θ increasing, and that rotations
accumulate to the left, that is, a rotation R followed by a rotation S is the product SR. The physics
convention is opposite to that adopted in OpenGL and by the computer graphics industry, where a right-
handed rotation corresponds to R = eiθ/2, and rotations accumulate to the right, that is, R followed by S is
RS.
In this book, a multivector is written in boldface. A rotor is written in normal (not bold) face as a reminder

that, even though a rotor is an even member of the geometric algebra, it can also be regarded as a spin- 1
2

322
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a

θ
a

b

a

b

c

Figure 13.1 Multivectors of grade 1, 2, and 3: a vector a (left), a bivector a∧ b (middle), and a trivector a∧ b∧ c
(right).

object with a transformation law (13.78) di�erent from that (13.59) of multivectors. Earlier latin indices
a, b, ... run over spatial indices 1, 2, ... only, while mid latin indices m,n, ... run over both time and space
indices 0, 1, 2, ....

13.1 Products of vectors

In 3-dimensional Euclidean space R3, there are two familiar ways of taking the product of two vectors, the
scalar product and the vector product.
1. The scalar product a · b, also known as the dot product or inner product, of two vectors a and b is

a scalar of magnitude |a| |b| cos θ, where |a| and |b| are the lengths of the two vectors, and θ the angle
between them. The scalar product is commutative, a · b = b · a.

2. The vector product, a × b, also known as the cross product, is a vector of magnitude |a| |b| sin θ,
directed perpendicular to both a and b, such that a, b, and a× b form a right-handed set. The vector
product is anticommutative, a× b = −b× a.

The de�nition of the scalar product continues to work �ne in a Euclidean space of any dimension, but
the de�nition of the vector product works only in three dimensions, because in two dimensions there is no
vector perpendicular to two vectors, and in four or more dimensions there are many vectors perpendicular
to two vectors. It is therefore useful to de�ne a more general version, the outer product (Grassmann, 1862)
that works in Euclidean space RN of any dimension.
3. The outer product a∧ b, also known as the wedge product or exterior product, of two vectors a and
b is a bivector, a multivector of dimension 2, or grade 2. The bivector a∧ b is the directed 2-dimen-
sional area, of magnitude |a| |b| sin θ, of the parallelogram formed by the vectors a and b, as illustrated
in Figure 13.1. The bivector has an orientation, or handedness, de�ned by circulating the parallelogram
�rst along a, then along b. The outer product is anticommutative, a∧ b = −b∧a, like its forebear the
vector product.
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The outer product can be repeated, so that (a∧ b)∧ c is a trivector, a directed volume, a multivector
of grade 3. The magnitude of the trivector is the volume of the parallelepiped de�ned by the vectors a, b,
and c, illustrated in Figure 13.1. The outer product is by construction associative, (a∧ b)∧ c = a∧(b∧ c).
Associativity, together with anticommutativity of bivectors, implies that the trivector a∧ b∧ c is totally
antisymmetric under permutations of the three vectors, that is, it is unchanged under even permutations, and
changes sign under odd permutations. The ordering of an outer product thus de�nes one of two handednesses.
It is a familiar concept that a vector a can be regarded as a geometric object, a directed length, independent

of the coordinates used to describe it. The components of a vector change when the reference frame changes,
but the vector itself remains the same physical thing. In the same way, a bivector a∧ b is a directed area,
and a trivector a∧ b∧ c is a directed volume, both geometric objects with a physical meaning independent
of the coordinate system.
In two dimensions the triple outer product of any three vectors is zero, a∧ b∧ c = 0, because the volume

of a parallelepiped con�ned to a plane is zero. More generally, in N -dimensional space RN , the outer product
of N + 1 vectors is zero

a1 ∧a2 ∧ · · · ∧aN+1 = 0 (N dimensions) . (13.1)

13.2 Geometric product

The inner and outer products o�er two di�erent ways of multiplying vectors. However, by itself neither
product conforms to the usual desideratum of multiplication, that the product of two elements of a set be
an element of the set. Taking the inner product of a vector with another vector lowers the dimension by one,
while taking the outer product raises the dimension by one.
Grassmann (1877) and Cli�ord (1878) resolved the problem by de�ning a multivector as any linear

combination of scalars, vectors, bivectors, and objects of higher grade. Let γγ1,γγ2, ...,γγn form an orthonormal
basis for N -dimensional Euclidean space RN . A multivector in N = 2 dimensions is then a linear combination
of

1 ,

1 scalar
γγ1 , γγ2 ,

2 vectors
γγ1 ∧γγ2 ,

1 bivector
(13.2)

forming a linear space of dimension 1 + 2 + 1 = 4 = 22. Similarly, a multivector in N = 3 dimensions is a
linear combination of

1 ,

1 scalar
γγ1 , γγ2 , γγ3 ,

3 vectors
γγ1 ∧γγ2 , γγ2 ∧γγ3 , γγ3 ∧γγ1 ,

3 bivectors
γγ1 ∧γγ2 ∧γγ3 ,

1 trivector
(13.3)

forming a linear space of dimension 1 + 3 + 3 + 1 = 8 = 23. In general, multivectors in N dimensions form a
linear space of dimension 2N , with N !/[n!(N−n)!] distinct basis elements of grade n.
A multivector a in N -dimensional Euclidean space RN can thus be written as a linear combination of
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basis elements

a =
∑

distinct {a,b,...,d}⊆{1,2,...,N}

aab...d γγa ∧γγb ∧ ...∧γγd (13.4)

the sum being over all 2N distinct subsets of {1, 2, ..., N}. The index on each component aab...d is a totally
antisymmetric quantity, re�ecting the total antisymmetry of γγa ∧γγb ∧ ...∧γγd.
The point of introducing multivectors is to allow multiplication to be de�ned so that the product of two

multivectors is a multivector. The key trick is to de�ne the geometric product ab of two vectors a and b
to be the sum of their inner and outer products:

ab = a · b+ a∧ b . (13.5)

That is a seriously big trick, and if you buy a ticket to it, you are in for a seriously big ride. As a particular
example of (13.5), the geometric product of any element γγa of the orthonormal basis with itself is a scalar,
and with any other element of the basis is a bivector:

γγaγγb =

{
1 (a = b)

γγa ∧γγb (a 6= b) .
(13.6)

Conversely, the rules (13.6), plus distributivity, imply the multiplication rule (13.5). A generalization of the
rule (13.6) completes the de�nition of the geometric product:

γγaγγb...γγd = γγa ∧γγb ∧ ...∧γγd (a, b, ..., d all distinct) . (13.7)

The rules (13.6) and (13.7), along with the usual requirements of associativity and distributivity, combined
with commutativity of scalars and anticommutativity of pairs of γγa, uniquely de�ne multiplication over the
space of multivectors. For example, the product of the bivector γγ1 ∧γγ2 with the vector γγ1 is

(γγ1 ∧γγ2)γγ1 = γγ1γγ2γγ1 = −γγ2γγ1γγ1 = −γγ2 . (13.8)

Sometimes it is convenient to denote the outer product (13.7) of distinct basis elements by the abbreviated
symbol γγA or γγab...d,

γγA = γγab...d ≡ γγa ∧γγb ∧ ...∧γγd (a, b, ..., d all distinct) . (13.9)

By construction, γγA with A = ab...d is antisymmetric in its indices a, b, ..., d. The product of two general
multivectors a = aAγγA and b = bAγγA is

ab = aAbBγγAγγB , (13.10)

with paired indices A and B implicitly summed over distinct subsets of {1, ..., N}. By construction, the
geometric algebra is associative,

(ab)c = a(bc) . (13.11)

Does the geometric algebra form a group under multiplication? No. One of the de�ning properties of a
group is that every element should have an inverse. But, for example,

(1 + γγ1)(1− γγ1) = 0 (13.12)
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shows that neither 1 + γγ1 nor 1− γγ1 has an inverse.

13.3 Reverse

The reverse of any basis element is de�ned to be the reversed product

γγa ∧γγb ∧ ...∧γγm ≡ γγm ∧ ...∧γγb ∧γγa . (13.13)

The product of a basis multivector γγA and its reverse is 1,

γγAγγA = γγAγγA = 1 . (13.14)

The reverse a of any multivector a is the multivector obtained by reversing each of its components.
Reversion leaves unchanged all multivectors whose grade is 0 or 1, modulo 4, and changes the sign of all
multivectors whose grade is 2 or 3, modulo 4. Thus the reverse of a multivector a of pure grade p is

a = (−)[p/2]a , (13.15)

where [p/2] signi�es the largest integer less than or equal to p/2. For example, scalars and vectors are
unchanged by reversion, but bivectors and trivectors change sign. Reversion satis�es

a+ b = a+ b , (13.16)

ab = ba . (13.17)

Among other things, it follows that the reverse of any product of multivectors is the reversed product, as
you would hope:

ab ... c = c ... ba . (13.18)

13.4 The pseudoscalar and the Hodge dual

Orthogonal to any n-dimensional subspace of N -dimensional space is an (N−n)-dimensional space, called
the Hodge dual space. For example, the Hodge dual of a bivector in 2 dimensions is a 0-dimensional ob-
ject, a pseudoscalar. Similarly, the Hodge dual of a bivector in 3 dimensions is a 1-dimensional object, a
pseudovector.

13.4.1 Pseudoscalar

De�ne the pseudoscalar IN in N dimensions to be

IN ≡ γγ1 ∧γγ2 ∧ ...∧γγN (13.19)
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with reverse

IN = (−)[N/2]IN , (13.20)

where [N/2] signi�es the largest integer less than or equal to N/2. The square of the pseudoscalar is

I2
N = (−)[N/2] =

{
1 if N = (0 or 1) modulo 4
−1 if N = (2 or 3) modulo 4 .

(13.21)

The pseudoscalar anticommutes (commutes) with vectors a, that is, with multivectors of grade 1, if N is
even (odd):

INa = −aIN if N is even
INa = aIN if N is odd .

(13.22)

This implies that the pseudoscalar IN commutes with all even grade elements of the geometric algebra, and
that it anticommutes (commutes) with all odd elements of the algebra if N is even (odd). Concisely, if a has
grade p, then

INa = (−)p(N−p)aIN . (13.23)

Exercise 13.1. Schur's lemma. Prove that the only multivectors that commute with all elements of the
algebra are linear combinations of the scalar 1 and, if N is odd, the pseudoscalar IN .
Solution. Suppose that a is a multivector that commutes with all elements of the algebra. Then in particular
a commutes with every basis element γγa ∧γγb ∧ ...∧γγm. Since multiplication by a basis element permutes
the basis elements amongst each other (and multiplies each by ±1), it follows that a commutes with a
basis element only if each of the components of a commutes separately with that basis element. Thus each
component of a must commute separately with all basis elements of the algebra. Amongst the basis elements
of the algebra, only the scalar 1, and, if the dimension N is odd, the pseudoscalar IN , equation (13.22),
commute with all other basis elements. Thus a must be some linear combination of 1 and, if N is odd, the
pseudoscalar IN .

13.4.2 Hodge dual

The Hodge dual ∗a of a multivector a in N dimensions is de�ned by pre-multiplication by the pseudoscalar
IN ,

∗a ≡ INa . (13.24)

In 3 dimensions, the Hodge duals of the basis vectors γγa are the bivectors

I3γγ1 = γγ2 ∧γγ3 , I3γγ2 = γγ3 ∧γγ1 , I3γγ3 = γγ1 ∧γγ2 . (13.25)

Thus in 3 dimensions the bivector a∧ b is seen to be the pseudovector Hodge dual to the familiar vector
product a× b:

a∧ b = I3 a× b . (13.26)
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13.5 Multivector metric

The scalar product of two basis vectors γγa and γγb, the grade-zero component of their geometric product,
de�nes the metric γab. In Euclidean space, the metric γab is the unit matrix,

γab ≡ γγa · γγb = δab . (13.27)

Similarly, the scalar product of two basis multivectors γγA and γγB , the grade-zero component of their
geometric product, de�nes a multivector metric γAB . Only basis multivectors of the same grade have a non-
vanishing grade-zero component to their geometric product. In Euclidean space, the multivector metric γAB
between basis vectors of grade p is

γAB ≡ γγA · γγB = (−)[p/2]δAB , (13.28)

the sign coming from γγAγγA = (−)[p/2] for any sequence A of p distinct indices.
The inverse multivector metric γAB is de�ned to be the matrix inverse of the multivector metric γAB . In

Euclidean space, the inverse multivector metric γAB coincides with the multivector metric γAB .
Indices on multivectors are raised and lowered with the multivector metric and its inverse,

aA = γABa
B , aA = γABaB . (13.29)

In Euclidean space, the lowered and raised components aA and aA of a multivector a of grade p are related
by

aA = (−)[p/2]aA . (13.30)

13.6 General products of multivectors

13.6.1 Pure grade components of products of multivectors

It is useful to be able to project out a particular grade component of a multivector. The grade p component
of a multivector a is denoted

〈a〉p , (13.31)

so that for example 〈a〉0, 〈a〉1, and 〈a〉2 represent respectively the scalar, vector, and bivector components
of a. By construction, a multivector is the sum of its pure grade components, a = 〈a〉0 + 〈a〉1 + ...+ 〈a〉N .
The geometric product of a multivector a of pure grade p with a multivector b of pure grade q is in general

a sum of multivectors of grades |p−q| to min(p+q,N). The product ab is in general neither commutative
nor anticommutative, but the pure grade components of the product commute or anticommute according to

〈ab〉p+q−2n = (−)pq−n
2

〈ba〉p+q−2n (13.32)

for n = [(p+q−N)/2] to min(p, q). Written out in components, the grade p+q−2n component of the geometric
product of a = aAγγA and b = bAγγA is

〈ab〉p+q−2n = aACbC
BγγA ∧γγB , (13.33)
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implicitly summed over distinct sequences A, B, and C of respectively p−n, q−n, and n indices. Only
components with the p+q+n indices of ABC all distinct contribute.
Equation (13.33) can also be written

〈ab〉p+q−2n =
(p+ q − 2n)!

(p− n)!(q − n)!
a[ACbC

B]γγAB , (13.34)

implicitly summed over distinct sequences AB and C of respectively p+q−2n and n indices. The binomial
factor is the number of ways of picking the p − n distinct indices of A and the q − n distinct indices of B
from each distinct antisymmetric sequence AB of p+q−2n indices.

13.6.2 Wedge product

The wedge product of multivectors of arbitrary grade is de�ned, consistent with the convention of di�erential
forms, �15.7, to be the highest possible grade component of the geometric product. The wedge product of a
multivector a of grade p with a multivector b of grade q is thus de�ned to be

a∧ b ≡ 〈ab〉p+q . (13.35)

The de�nition (13.35) is consistent with the de�nition of the wedge product of vectors (multivectors of grade
1) in �13.1. The wedge product is commutative or anticommutative as pq is even or odd,

a∧ b = (−)pqb∧a , (13.36)

which is a special case of equation (13.32). The wedge product is associative,

(a∧ b)∧ c = a∧(b∧ c) . (13.37)

In accordance with the de�nition (13.35), the wedge product of a scalar a (a multivector of grade 0) with a
multivector b equals the usual product of the scalar and the multivector,

a∧ b = ab if a is a scalar , (13.38)

again consistent with the convention of di�erential forms.

13.6.3 Dot product

The dot product of multivectors of arbitrary grade is de�ned to be the lowest grade component of their
geometric product,

a · b ≡ 〈ab〉|p−q| . (13.39)

The dot product is symmetric or antisymmetric,

a · b = (−)(p−q)qb · a for p ≥ q . (13.40)

The dot product is not associative.
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13.6.4 Scalar product

The dot product of two multivectors of the same grade is a scalar, and in this case the dot product can be
called the scalar product. The scalar product of two multivectors of the same grade p is

a · b = aAγγA · bBγγB = aAbA , (13.41)

implicitly summed over distinct sequences A of p indices. Equation (13.41) is a special case of equation (13.33).

13.6.5 Triple products of multivectors

The associativity of the geometric product implies that the grade 0 component of a triple product of multi-
vectors a, b, c of grades respectively p, q, r satis�es an associative law

〈abc〉0 = 〈〈ab〉rc〉0 = 〈a〈bc〉p〉0 . (13.42)

More generally, the grade s component of a triple product of multivectors a, b, c of non-zero grades respec-
tively p, q, r (any grade 0 multivector, i.e. scalar, can be taken outside the product) satis�es

〈abc〉s =

r+s∑
n=|r−s|

〈〈ab〉nc〉s =

p+s∑
n=|p−s|

〈a〈bc〉n〉s . (13.43)

Often some terms vanish, simplifying the relation. As an example of the triple-product relation (13.43), if a
and b are multivectors of grades p and q respectively, and neither are scalars, and their wedge product does
not vanish (that is, p + q ≤ N), then the wedge and dot products of a and b are related by Hodge duality
relations

IN (a∧ b) = (INa) · b , (a∧ b)IN = a · (bIN ) , (13.44)

where IN is the pseudoscalar (13.19).

13.7 Re�ection

Multiplying a vector (a multivector of grade 1) by a vector shifts the grade (dimension) of the vector by
±1. Thus, if one wants to transform a vector into another vector (with the same grade, one), at least two
multiplications by a vector are required.
The simplest non-trivial transformation of a vector a is

n : a→ nan , (13.45)

in which the vector a is multiplied on both left and right with a unit vector n. If a is resolved into components
a‖ and a⊥ respectively parallel and perpendicular to n, then the transformation (13.45) is

n : a‖ + a⊥ → a‖ − a⊥ , (13.46)
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n

a

−nan

nan

Figure 13.2 Re�ection of a vector a through axis n.

which represents a re�ection of the vector a through the axis n, a reversal of all components of the
vector perpendicular to n, as illustrated by Figure 13.2. Note that −nan is the re�ection of a through the
hypersurface normal to n, a reversal of the component of the vector parallel to n.
The operation of left- and right-multiplying by a unit vector n re�ects not only vectors, but multivectors

a in general:

n : a→ nan . (13.47)

For example, the product ab of two vectors transforms as

n : ab→ n(ab)n = (nan)(nbn) (13.48)

which works because n2 = 1.
A re�ection leaves any scalar λ unchanged, n : λ→ nλn = λn2 = λ. Geometrically, a re�ection preserves

the lengths of, and angles between, all vectors.

13.8 Rotation

Two successive re�ections yield a rotation. Consider re�ecting a vector a (a multivector of grade 1) �rst
through the unit vector m, then through the unit vector n:

nm : a→ nmamn . (13.49)

Any component a⊥ of a simultaneously orthogonal to bothm and n (i.e.m ·a⊥ = n ·a⊥ = 0) is unchanged
by the transformation (13.49), since each re�ection �ips the sign of a⊥:

nm : a⊥ → nma⊥mn = −na⊥n = a⊥ . (13.50)
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mam
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nmamn

θ

Figure 13.3 Two successive re�ections of a vector a, �rst through m, then through n, yield a rotation of a vector a

by the bivector mn. Ba�ed? Hey, draw your own picture.

Rotations inherit from re�ections the property of preserving the lengths of, and angles between, all vectors.
Thus the transformation (13.49) must represent a rotation of those components a‖ of a lying in the 2-dim-
ensional plane spanned by m and n, as illustrated by Figure 13.3. To determine the angle by which the
plane is rotated, it su�ces to consider the case where the vector a‖ is equal to m (or n, as a check). It is
not too hard to �gure out that, if the angle from m to n is θ/2, then the rotation angle is θ in the same
sense, from m to n.
For example, if m and n are parallel, so that m = ±n, then the angle between m and n is θ/2 = 0 or π,

and the transformation (13.49) rotates the vector a‖ by θ = 0 or 2π, that is, it leaves a‖ unchanged. This
makes sense: two re�ections through the same plane leave everything unchanged. If on the other hand m
and n are orthogonal, then the angle between them is θ/2 = ±π/2, and the transformation (13.49) rotates
a‖ by θ = ±π, that is, it maps a‖ to −a‖.
The rotation (13.49) can be abbreviated

R : a→ RaR (13.51)

where R = nm is called a rotor, and R = mn is its reverse. Rotors are unimodular, satisfying RR =

RR = 1. According to the discussion above, the transformation (13.51) corresponds to a rotation by angle
θ in the m�n plane if the angle from m to n is θ/2. Then m · n = cos θ/2 and m∧n = (γγ1 ∧γγ2) sin θ/2,
where γγ1 and γγ2 are two orthonormal vectors spanning the m�n plane, oriented so that the angle from γγ1

to γγ2 is positive π/2 (i.e. γγ1 is the x-axis and γγ2 the y-axis). Note that the outer product γγ1 ∧γγ2 is invariant
under rotations in the m�n plane, hence independent of the choice of orthonormal basis vectors γγ1 and γγ2.
It follows that the rotor R = nm = n ·m + n∧m corresponding to a right-handed rotation by θ in the
γγ1�γγ2 plane is given by

R = cos
θ

2
− (γγ1 ∧γγ2) sin

θ

2
. (13.52)

The rotor (13.52) can also be written as an exponential of the bivector θ = θ γγ1 ∧γγ2,

R = e−θ/2 . (13.53)
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Figure 13.4 Right-handed rotation of a vector a by angle θ in the γγ1�γγ2 plane. A rotation in the geometric algebra

is an active rotation, which rotates the axes γγa → γγ′a while leaving the components aa of a multivector unchanged,

equation (13.57). In other words, multivectors a are considered to be attached to the frame, and a rotation bodily

rotates the frame and everything attached to it.

It is straightforward to check that the action of the rotor (13.52) on the basis vectors γγa is

R : γγ1 → Rγγ1R = γγ1 cos θ + γγ2 sin θ , (13.54a)

R : γγ2 → Rγγ2R = γγ2 cos θ − γγ1 sin θ , (13.54b)

R : γγa → RγγaR = γγa (a 6= 1, 2) , (13.54c)

which corresponds to a right-handed rotation of the basis vectors γγa by angle θ in the γγ1�γγ2 plane. The
inverse rotation is

R : a→ RaR (13.55)

with

R = cos
θ

2
+ (γγ1 ∧γγ2) sin

θ

2
. (13.56)

A rotation of the form (13.52), a rotation in a single plane, is called a simple rotation.
In the geometric algebra, a rotation is considered to rotate the axes γγa → γγ′a while leaving the components

aa of a multivector unchanged. Thus a rotation transforms a vector a as

R : a = aaγγa → a′ = aaγγ′a . (13.57)

Figure 13.4 illustrates a right-handed rotation by angle θ of a vector a in the γγ1�γγ2 plane.
A rotation �rst by R and then by S transforms a vector a as

SR : a→ SRaRS = SRaSR . (13.58)

Thus the composition of two rotations, �rst R and then S, is given by their geometric product SR. This is the
physics convention, where rotations accumulate to the left (in contrast to the computer graphics convention,
where rotations accumulate to the right). In three dimensions or less, all rotations are simple, but in four
dimensions or higher, compositions of simple rotations can yield rotations that are not simple. For example,
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a rotation in the γγ1�γγ2 plane followed by a rotation in the γγ3�γγ4 plane is not equivalent to any simple
rotation. However, it will be seen in �14.3 that bivectors in the 4D spacetime algebra have a natural complex
structure, which allows 4D spacetime rotations to take a simple form similar to (13.52), but with complex
angle θ and two orthogonal planes of rotation combined into a complex pair of planes.
A rotor R rotates not only vectors, but multivectors a in general:

R : a→ RaR . (13.59)

For example, the product ab of two vectors transforms as

R : ab→ R(ab)R = (RaR)(RbR) (13.60)

which works because RR = 1.
To summarize, the characterization of rotations by rotors has considerable advantages. Firstly, the trans-

formation (13.59) applies to multivectors a of arbitrary grade in arbitrarily many dimensions. Secondly,
the composition law is particularly simple, the composition of two rotations being given by their geometric
product. A third advantage is that rotors rotate not only vectors and multivectors, but also spin- 1

2 objects
� indeed rotors are themselves spin- 1

2 objects � as might be suspected from the intriguing factor of 1
2 in

front of the angle θ in equation (13.52).

Concept question 13.2. How fast do bivectors rotate? Rotors rotate half as fast as vectors. How fast
do bivectors rotate?
1. Bivectors don't rotate.
2. Half as fast as vectors.
3. The same as vectors.
4. Twice as fast as vectors.
5. None of the above.

13.9 Rotor group

The rotor group is the group generated by the bivectors of the geometric algebra. The rotor group in N
dimensions is also called Spin(N), and is the covering group of the special orthogonal group SO(N) of proper
rotations in N dimensions (the S in SO(N) signi�es special, that is, matrices of unit determinant, which
removes improper rotations with determinant −1 that occur when a spatial axis is re�ected).
The rotor, or rotation, group is an example of a continuous group called a Lie group. A right-handed

rotation exp(− 1
2θ γγa ∧γγb) by �nite angle θ in the γγa�γγb plane can be thought of as being built up from an

in�nite number of in�nitesimal rotations exp(− 1
2δθ γγa ∧γγb) by angles δθ. To linear order, an in�nitesimal

rotation by angle δθ in the γγa�γγb plane is

exp(− 1
2δθ γγa ∧γγb) = 1− 1

2δθ γγa ∧γγb . (13.61)
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The bivector −γγa ∧γγb is said to be the generator of a right-handed rotation in the γγa�γγb plane.
The Baker-Campbell-Hausdor� formula states that the product of exponentials of not-necessarily-commuting

elements θ and φ is

exp(θ) exp(φ) = exp
(
θ + φ+ 1

2 [θ,φ] + 1
12 [[θ,φ],φ]− 1

12 [[θ,φ],θ] + ...
)
, (13.62)

where [θ,φ] ≡ θφ− φθ is the commutator of θ and φ, also called their Lie bracket. Thus �nite rotations
are built from exponentials of linear combinations of generators and their commutators. A set of linearly
independent generators that close under commutation provides a basis for the Lie algebra of a Lie group.
The commutator of two bivectors is a bivector, so the Lie algebra of rotations is the set of bivectors. The
rotor group is the Lie group generated by the bivectors.

Concept question 13.3. What is the dimension of the rotor group in N dimensions? Answer.

The dimension of the rotor group is the number of its generators, its bivectors, which is N(N − 1)/2.

Concept question 13.4. Is the rotor group the same as the group of even, unimodular elements

of the geometric algebra? All rotors are even, unimodular elements of the geometric algebra. The proper-
ties of being even and unimodular are preserved under composition, so the set of even, unimodular elements
forms a group. Is the rotor group the same as the group of even, unimodular elements? Answer. In low
dimensions N ≤ 5 yes, but in general no. See part 4 of Exercise 13.6.

Exercise 13.5. The even geometric algebra in N+1 dimensions is isomorphic to the full geo-

metric algebra in N dimensions. Show that the even geometric algebra in N+1 dimensions is isomorphic
to the full geometric algebra in N dimensions. Conclude that the dimension of the even geometric algebra
in N+1 dimensions is 2N .
Solution. Decompose a multivector a in N dimensions into its even and odd parts, a = aeven + aodd. The
mapping

aeven + aodd ↔ aeven + aodd γγN+1 (13.63)

is an isomorphism between the N -dimensional geometric algebra and the (N+1)-dimensional even algebra
(aeven and aodd γγN+1 are both elements of the even algebra in N+1 dimensions). The mapping is an isomor-
phism because it respects addition and multiplication, and it respects rotations that leave γγN+1 invariant,
that is, rotations in the N -dimensional geometric algebra.

Exercise 13.6. Lie groups generated by multivectors. Show that the non-zero commutators of two
orthonormal multivectors of grades respectively p and q in N dimensions have grades p+ q − 2n where

n ∈ [max(0, p+q−N),min(p, q)] (13.64)

is an even integer if both p and q are odd, or an odd integer if either of p or q is even. In particular, show that
the non-zero commutators of two orthonormal multivectors of the same grade p have grades 2 + 4j where
j ∈

[
0, [(p−1)/2]

]
is an integer. Conclude that, if p̂ denotes a multivector of grade p mod 4, then

[p̂, p̂] = 2̂ , [2̂, p̂] = p̂ , [0̂, 1̂] = 3̂ , [0̂, 3̂] = 1̂ , [1̂, 3̂] = 0̂ . (13.65)
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Conclude that the following are Lie groups generated by multivectors in the geometric algebra. An element
R of a group acts on elements a of the geometric algebra by R : a→ RaR−1. All groups preserve the scalar
product of two multivectors. All groups have the rotor group as a subgroup. The notation GA(N) for the
group generated by multivectors with grades modulo 4 in the set A follows Shirokov (2017).
1. The rotor group, generated by bivectors. The rotor group acting on a multivector a preserves the grade

of a. The dimension (number of generators) of the group is N(N−1)/2.
2. The group generated by vectors and bivectors (multivectors of grades 1 and 2). The dimension of the

group is N(N+1)/2.
3. Pseudo versions of the above groups, namely:

a. The group generated by bivectors and pseudobivectors, dimension N(N−1) for N ≥ 5.
b. The group generated by pseudovectors and bivectors, dimension N(N+1)/2 for N ≥ 4.
c. The group generated by vectors, pseudovectors, bivectors and pseudobivectors, dimension N(N+1)

for N ≥ 5.
4. The group G2(N) generated by multivectors of grade 2 mod 4 (thus grades 2, 6, 10, ...). The group may

be called the even unimodular group since it is the largest group whose elements R are all even and
unimodular, satisfying R−1 = R. In dimensions N ≤ 5, the even unimodular group coincides with the
rotor group. The group preserves the grade p mod 4 of a multivector. The dimension of the group is

dim G2(N) = 2[(N−2)/2]
(
2[(N−1)/2] + s

)
, s =


−1

0

1

as (N+2) mod 8 =


1, 2, 3,

0, 4,

5, 6, 7.

(13.66)

5. The group G12(N) generated by multivectors of grade (1 or 2) mod 4 (thus grades 1, 2, 5, 6, 9, 10, ...).
De�ne R̃ to be the �ip (grade involution) of R, de�ned by a → −a for all odd multivectors a. The
group is the largest group whose elements R all have inverses equal to their reverse �ips (or �ip reverses),

R−1 = R̃. The dimension of the group is

dim G12(N) = dim G2(N+1) . (13.67)

6. The group G23(N) generated by multivectors of grade (2 or 3) mod 4 (thus grades 2, 3, 6, 7, 10, 11, ...).
The group may be called the unimodular group, since it is the largest group whose elements R are all
unimodular, satisfying R−1 = R. The dimension of the group is

dim G23(N) = 2N−1 − dim G2(N+1) + 2 dim G2(N)

= 2[(N−1)/2]
(
2[N/2] + s

)
, s =


−1

0

1

as (N+1) mod 8 =


1, 2, 3,

0, 4,

5, 6, 7.

(13.68)

7. The even group G02(N) generated by multivectors of grade 0 mod 2 (thus grades 0, 2, 4, 6, ...). The even
group preserves the grade p mod 2 of a multivector (that is, whether the multivector is even or odd).
The dimension of the group is 2N−1. The special even group SG02(N) is generated by even multivectors
excluding the unit element (thus grades 2, 4, 6, ...). The dimension of the special even group is 2N−1−1.
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8. The full group G0123(N) generated by multivectors of all grades (thus grades 0, 1, 2, 3, ...). The dimension
of the group is 2N . The special even group SG0123(N) is generated by multivectors excluding the unit
element (thus grades 1, 2, 3, ...). The dimension of the special group is 2N − 1.

9. There are also complex Lie groups in which some generators are permitted to be imaginary or complex.
The complex Lie groups are:
a. The complex rotor group generated by complex bivectors.
b. The group generated by imaginary vectors and real bivectors.
c. The group generated by complex vectors and complex bivectors.
d. Pseudo versions of the above.
e. The remaining groups can be denoted GAiB following Shirokov (2017), with real generators of

grades A mod 4 and imaginary generators of grades B mod 4:

G2i2 , G2ip , G2pi2p , G2pi2p , G0123i0123 , (13.69)

where p runs over 0, 1, 3, and 2p denotes the opposite of 2p (for example 20 = 13).
Solution. The dimension of each Lie group GA(N), the number of its generators, is established as follows.
Let mk denote the number of multivectors of grade k mod 4,

mk ≡
∑

p=k mod 4

(
N

p

)
. (13.70)

The binomial theorem implies (i is the imaginary)

(1 + ij)N =

3∑
k=0

ijkmk for j = 0 to 3 , (13.71)

or explicitly 
2N

(1 + i)N

0

(1− i)N

 =


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i




m0

m1

m2

m3

 . (13.72)

Equation (13.71) inverts to

mk =
1

4

3∑
j=0

(−i)kj(1 + ij)N , (13.73)

or explicitly 
m0

m1

m2

m3

 =
1

4


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i




2N

(1 + i)N

0

(1− i)N

 . (13.74)
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The dimensions of the Lie groups are

dim G2(N) = m2 , (13.75a)

dim G12(N) = m1 +m2 , (13.75b)

dim G23(N) = m2 +m3 , (13.75c)

dim G02(N) = m0 +m2 , (13.75d)

dim G0123(N) = m0 +m1 +m2 +m3 . (13.75e)

13.10 Active and passive rotations

So far in this book, indices have indicated how an object transforms, so that the notation

amγγm (13.76)

indicates a scalar, an object that is unchanged by a transformation, because the transformation of the
contravariant vector am cancels against the corresponding transformation of the covariant vector γγm.
However, the transformation (13.59) of a multivector is an example of an active transformation that rotates

the basis vectors γγA while keeping the coe�cients aA �xed, as opposed to a passive transformation that
rotates the tetrad while keeping the thing itself unchanged. An active rotation bodily rotates a multivector
a, whereas a passive rotation rotates the frame without changing the multivector. Figure 13.4 illustrates the
example of an active right-handed rotation by angle θ in the γγ1�γγ2 plane, equations (13.54).
Under an active rotation, a multivector a ≡ aAγγA (implicit summation over distinct antisymmetrized

subsets A of {1, ..., N}) is not a scalar under the transformation (13.59), but rather transforms to the
multivector a′ ≡ aAγγ′A given by

R : aAγγA → aARγγAR = aAγγ′A . (13.77)

13.11 A rotor is a spin-1
2
object

A rotor is an even, unimodular element of the geometric algebra, �13.8. As a multivector, a rotor R would
transform under a rotation by the rotor S as R→ SRS. As a rotor, however, the rotor R transforms under
a rotation by the rotor S as

S : R→ SR , (13.78)

according to the transformation law (13.58). That is, composition in the rotor group is de�ned by the
transformation (13.78): R rotated by S is SR.
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The expression (13.52) for a simple rotation in the γγ1�γγ2 plane shows that the rotor corresponding to a
rotation by 2π is −1. Thus under a rotation (13.78) by 2π, a rotor R changes sign:

2π : R→ −R . (13.79)

A rotation by 4π is necessary to bring the rotor R back to its original value:

4π : R→ R . (13.80)

Thus a rotor R behaves like a spin- 1
2 object, requiring 2 full rotations to restore it to its original state.

The two di�erent transformation laws for a rotor � as a multivector, and as a rotor � describe two
di�erent physical situations. The transformation of a rotor as a multivector answers the question, what is
the form of a rotor R rotated into another, primed, frame? In the unprimed frame, the rotor R transforms
a multivector a to RaR. In the primed frame rotated by rotor S from the unprimed frame, a′ = SaS, the
transformed rotor is SRS, since

a′ = SaS → SRaRS = SRSa′SRS = SRSa′SRS . (13.81)

By contrast, the transformation (13.78) of a rotor as a rotor answers the question, what is the rotor corre-
sponding to a rotation R followed by a rotation S?

13.12 2D rotations and complex numbers

In N ≤ 5 dimensions, the rotor group consists of even, unimodular multivectors of the geometric subalgebra,
part 4 of Exercise 13.6. In two dimensions, the even grade multivectors are linear combinations of the basis
set

1 ,

1 scalar
I2 ,

1 bivector (pseudoscalar)
(13.82)

forming a linear space of dimension 2. The sole bivector is the pseudoscalar I2 ≡ γγ1 ∧γγ2, equation (13.19),
the highest grade element in 2 dimensions. The rotor R that produces a right-handed rotation by angle θ is,
according to equation (13.52),

R = e−θ/2 = e−I2 θ/2 = cos
θ

2
− I2 sin

θ

2
, (13.83)

where θ = I2 θ is the bivector whose magnitude is (θθ)1/2 = θ.
Since the square of the pseudoscalar I2 is minus one, the pseudoscalar resembles the pure imaginary i, the

square root of −1. Sure enough, the mapping

I2 ↔ i (13.84)

de�nes an isomorphism between the algebra of even grade multivectors in 2 dimensions and the �eld of
complex numbers

a+ I2b↔ a+ i b . (13.85)
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With the isomorphism (13.85), the rotor R that produces a right-handed rotation by angle θ is equivalent
to the complex number

R = e−iθ/2 . (13.86)

The associated reverse rotor R is

R = eiθ/2 , (13.87)

the complex conjugate of R. The group of 2D rotors is isomorphic to the group of complex numbers of unit
magnitude, the unitary group U(1),

2D rotors ∼= U(1) . (13.88)

Let z denote an even multivector, equivalent to some complex number by the isomorphism (13.85). Accord-
ing to the transformation formula (13.59), under the rotation R = e−iθ/2, the even multivector, or complex
number, z transforms as

R : z → e−iθ/2z eiθ/2 = e−iθ/2eiθ/2z = z , (13.89)

which is true because even multivectors in 2 dimensions commute, as complex numbers should. Equa-
tion (13.89) shows that the even multivector, or complex number, z is unchanged by a rotation. This
might seem strange: shouldn't the rotation rotate the complex number z by θ in the Argand plane? The
answer is that the rotation R : a → RaR rotates vectors γγ1 and γγ2 (Exercise 13.7), as already seen in the
transformation (13.54). The same rotation leaves the scalar 1 and the bivector I2 ≡ γγ1 ∧γγ2 unchanged. If
temporarily you permit yourself to think in 3 dimensions, you see that the bivector γγ1 ∧γγ2 is Hodge dual to
the pseudovector γγ1 × γγ2, which is the axis of rotation and is itself unchanged by the rotation, even though
the individual vectors γγ1 and γγ2 are rotated.

Exercise 13.7. Rotation of a vector. Con�rm that a right-handed rotation by angle θ rotates the axes
γγa by

R : γγ1 → e−iθ/2γγ1 e
iθ/2 = γγ1 cos θ + γγ2 sin θ , (13.90a)

R : γγ2 → e−iθ/2γγ2 e
iθ/2 = γγ2 cos θ − γγ1 sin θ , (13.90b)

in agreement with (13.54). The important thing to notice is that the pseudoscalar I2, hence i, anticommutes
with the vectors γγa.

13.13 Quaternions

A quaternion can be regarded as a kind of souped-up complex number,

q = a+ ıb1 + b2 + kb3 , (13.91)
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where a and ba (a = 1, 2, 3) are real numbers, and the three imaginary numbers ı, , k, are de�ned to satisfy1

ı2 = 2 = k2 = −ık = −1 . (13.92)

Remark the dotless ı (and ), to distinguish these quaternionic imaginaries from other possible imaginaries.
A consequence of equations (13.92) is that each pair of imaginary numbers anticommutes:

ı = −ı = −k , k = −k = −ı , kı = −ık = − . (13.93)

It is convenient to abbreviate the three imaginaries by ıa with a = 1, 2, 3,

{ı, , k} ≡ {ı1, ı2, ı3} . (13.94)

The quaternion (13.91) can then be expressed compactly as a sum of its scalar a and vector (actually
pseudovector, as will become apparent below from the isomorphism (13.108)) b = ıaba parts

q = a+ b = a+ ıaba , (13.95)

implicitly summed over a = 1, 2, 3. A fundamentally useful formula, which follows from the de�ning equa-
tions (13.92), is

ab = (ıaaa)(ıbbb) = −a · b− a× b = −aaba − ıaεabcabbc , (13.96)

where a·b and a×b denote the usual 3D scalar and vector products, and εabc is the usual totally antisymmetric
matrix, with ε123 = 1. The product of two quaternions p ≡ a+ b and q ≡ c+ d can thus be written

pq = (a+ b)(c+ d) = (a+ ıaba)(c+ ıbdb)

= ac− b · d+ ad+ cb− b× d = ac− bada + ıa(ada + cba − εabcbbdc) . (13.97)

The quaternionic conjugate q of a quaternion q ≡ a + b is (the overbar symbol for quaternionic
conjugation distinguishes it from the asterisk symbol ∗ for complex conjugation)

q = a− b = a− ıaba . (13.98)

The quaternionic conjugate of a product is the reversed product of quaternionic conjugates

pq = qp (13.99)

just like reversion in the geometric algebra, equation (13.17). The choice of the same symbol, an overbar,
to represent both reversion and quaternionic conjugation is not coincidental. The magnitude |q| of the
quaternion q ≡ a+ b is

|q| = (qq)1/2 = (qq)1/2 = (a2 + b · b)1/2 = (a2 + baba)1/2 . (13.100)

1 The choice ık = 1 in the de�nition (13.92) is the opposite of the conventional de�nition ijk = −1 famously carved by
William Rowan Hamilton in the stone of Brougham Bridge while walking with his wife along the Royal Canal to Dublin on
16 October 1843 (O'Donnell, 1983). To map to Hamilton's de�nition, you can take ı = −i,  = −j, k = −k, or alternatively
ı = i,  = −j, k = k, or ı = k,  = j, k = i. The adopted choice ık = 1 has the merit that it avoids a treacherous minus sign
in the isomorphism (13.108) between 3-dimensional pseudovectors and quaternions. The present choice also conforms to the
convention used by OpenGL and other computer graphics programs.
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The magnitude of a quaternion is also called its modulus. A quaternion that has unit modulus, qq = 1, is
called unimodular. The inverse q−1 of the quaternion, satisfying qq−1 = q−1q = 1, is

q−1 = q/(qq) = (a− b)/(a2 + b · b) = (a− ıaba)/(a2 + bbbb) . (13.101)

13.14 3D rotations and quaternions

As before, in N ≤ 5 dimensions, the rotor group consists of even, unimodular multivectors of the geometric
subalgebra. In three dimensions, the even grade multivectors are linear combinations of the basis set

1 ,

1 scalar
I3γγ1 , I3γγ2 , I3γγ3 ,

3 bivectors (pseudovectors)
(13.102)

forming a linear space of dimension 4. The three bivectors are pseudovectors, equation (13.25). The squares
of the pseudovector basis elements are all minus one,

(I3γγ1)2 = (I3γγ2)2 = (I3γγ3)2 = −1 , (13.103)

and they anticommute with each other,

(I3γγ1)(I3γγ2) = −(I3γγ2)(I3γγ1) = −I3γγ3 ,

(I3γγ2)(I3γγ3) = −(I3γγ3)(I3γγ2) = −I3γγ1 , (13.104)

(I3γγ3)(I3γγ1) = −(I3γγ1)(I3γγ3) = −I3γγ2 .

The rotor R that produces a rotation by angle θ right-handedly about unit direction na = {n1, n2, n3},
satisfying nana = 1, is, according to equation (13.52),

R = e−θ/2 = e−n θ/2 = cos
θ

2
− n sin

θ

2
. (13.105)

where θ is the bivector

θ ≡ n θ = I3γγana θ . (13.106)

of magnitude (θθ)1//2 = θ and unit direction n ≡ I3γγana (satisfying nn = 1). The pseudovector I3 is a
commuting imaginary, commuting with all members of the 3D geometric algebra, both odd and even, and
satisfying

I2
3 = −1 . (13.107)

Comparison of equations (13.103) and (13.104) to equations (13.92) and (13.93), shows that the mapping

I3γγa ↔ ıa (a = 1, 2, 3) (13.108)

de�nes an isomorphism between the space of even multivectors in 3 dimensions and the non-commutative
division algebra of quaternions

a+ I3γγaba ↔ a+ ıaba . (13.109)
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With the equivalence (13.109), the rotor R given by equation (13.105) can be interpreted as a quaternion,
with θ the quaternion

θ ≡ n θ = ıana θ . (13.110)

The associated reverse rotor R is

R = eθ/2 = en θ/2 = cos
θ

2
+ n sin

θ

2
, (13.111)

the quaternionic conjugate of R.
The group of rotors is isomorphic to the group of unimodular quaternions, quaternions q = a + ı1b1 +

ı2b2 + ı3b3 satisfying qq = a2 + b21 + b22 + b23 = 1. Unimodular quaternions evidently de�ne a unit 3-sphere
in the 4-dimensional space of coordinates {a, b1, b2, b3}. From this it is apparent that the rotor group in 3
dimensions has the geometry of a 3-sphere S3.

Exercise 13.8. 3D rotation matrices. This exercise is a precursor to Exercise 14.9. The principal message
of the exercise is that rotating using matrices is more complicated than rotating using quaternions. Let
b ≡ γγaba be a 3D vector, a multivector of grade 1 in the 3D geometric algebra. Use the quaternionic
composition rule (13.96) to show that the vector b transforms under a right-handed rotation by angle θ
about unit direction n = γγana as

R : b→ R bR = b+ 2 sin
θ

2
n×

(
cos

θ

2
b+ sin

θ

2
n× b

)
. (13.112)

Here the cross-product n × b denotes the usual vector product, which is dual to the bivector product
n∧ b, equation (13.26). Suppose that the quaternionic components of the rotor R are {w, x, y, z}, that is,
R = e−ıana θ/2 = w+ ı1x+ ı2y + ı3z. Show that the transformation (13.112) is (note that the 3× 3 rotation
matrix is written to the left of the vector, in accordance with the physics convention that rotations accumulate
to the left):

R :

 b1γγ1

b2γγ2

b3γγ3

→
 w2+x2−y2−z2 2(xy−wz) 2(zx+wy)

2(xy+wz) w2−x2+y2−z2 2(yz−wx)

2(zx−wy) 2(yz+wx) w2−x2−y2+z2

 b1γγ1

b2γγ2

b3γγ3

 . (13.113)

Con�rm that the 3 × 3 rotation matrix on the right hand side of the transformation (13.113) is an or-
thogonal matrix (its inverse is its transpose) provided that the rotor is unimodular, RR = 1, so that
w2 +x2 + y2 + z2 = 1. As a simple example, show that the transformation (13.113) in the case of a right-
handed rotation by angle θ about the 3-axis (the 1�2 plane), where w = cos(θ/2) and z = − sin(θ/2),
is

R :

 b1γγ1

b2γγ2

b3γγ3

→
 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 b1γγ1

b2γγ2

b3γγ3

 . (13.114)
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13.15 Pauli matrices

The multiplication rules of the basis vectors γγa of the 3D geometric algebra are identical to those of the
Pauli matrices σa used in the theory of non-relativistic spin- 1

2 particles.
The Pauli matrices form a vector of 2 × 2 complex (with respect to a scalar quantum-mechanical

imaginary i) matrices whose three components are each traceless (Tr σa = 0), Hermitian (σ†a = σa), and
unitary (σ−1

a = σ†):

σ1 ≡
(

0 1

1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0

0 −1

)
. (13.115)

The Pauli matrices anticommute with each other

σ1σ2 = −σ2σ1 = iσ3 , σ2σ3 = −σ3σ2 = iσ1 , σ3σ1 = −σ1σ3 = iσ2 . (13.116)

The particular choice (13.115) of Pauli matrices is conventional but not unique: any three traceless, Hermitian,
unitary, anticommuting 2 × 2 complex matrices will do. The product of the 3 Pauli matrices is i times the
unit matrix,

σ1σ2σ3 = i

(
1 0

0 1

)
. (13.117)

If the scalar 1 in the geometric algebra is identi�ed with the unit 2 × 2 matrix, and the pseudoscalar I3
is identi�ed with the imaginary i times the unit matrix, then the 3D geometric algebra is isomorphic to the
algebra generated by the Pauli matrices, the Pauli algebra, through the mapping

1↔
(

1 0

0 1

)
, γγa ↔ σa , I3 ↔ i

(
1 0

0 1

)
. (13.118)

The 3D pseudoscalar I3 commutes with all elements of the 3D geometric algebra.

Concept question 13.9. Properties of Pauli matrices. The Pauli matrices are traceless, Hermitian,
unitary, and anticommuting. What do these properties correspond to in the geometric algebra? Are all these
properties necessary for the Pauli algebra to be isomorphic to the 3D geometric algebra? Are the properties
su�cient?

In 3 dimensions, the rotation group is the group of even, unimodular multivectors of the geometric algebra.
The isomorphism (13.118) establishes that the rotation group is isomorphic to the group of complex 2 × 2

matrices of the form

a+ iσaba , (13.119)

with a, ba (a = 1, 3) real, and with the unimodular condition requiring that a2+baba = 1. It is straightforward
to check (Exercise 13.10) that the group of such matrices constitutes the group of unitary complex 2 × 2

matrices of unit determinant, the special unitary group SU(2). The isomorphisms

a+ I3γγaba ↔ a+ ıaba ↔ a+ iσaba (13.120)
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have thus established isomorphisms between the group of 3D rotors, the group of unimodular quaternions,
and the special unitary group of complex 2× 2 matrices

3D rotors ∼= unimodular quaternions ∼= SU(2) . (13.121)

An isomorphism that maps a group into a set of matrices, such that group multiplication corresponds to
ordinary matrix multiplication, is called a representation of the group. The representation of the rotation
group as 2× 2 complex matrices may be termed the Pauli representation. The Pauli representation is the
lowest dimensional representation of the 3D rotation group. In the Pauli representation, the rotor (13.105)
corresponding to a right-handed rotation by angle θ about unit axis na is the matrix

R = cos
θ

2
− inaσa sin

θ

2
. (13.122)

Exercise 13.10. Translate a rotor into an element of SU(2). Show that the rotor R = e−ıana θ/2,
equation (13.105), corresponding to a right-handed rotation by angle θ about unit axis na is equivalent to
the special unitary 2× 2 matrix

R↔

 cos
θ

2
− in3 sin

θ

2
−(n2 + in1) sin

θ

2

(n2 − in1) sin
θ

2
cos

θ

2
+ in3 sin

θ

2

 . (13.123)

Show that the reverse rotor R is equivalent to the Hermitian conjugate R† of the corresponding 2×2 matrix.
Show that the determinant of the matrix equals RR, which is 1.

13.16 Pauli spinors as quaternions, or scaled rotors

Any Pauli spinor ϕ can be expressed uniquely in the form of a 2 × 2 matrix q, the Pauli representation of
a quaternion q, acting on the spin-up basis element ε↑ (the precise translation between Pauli spinors and
quaternions is left as Exercises 13.11 and 13.12):

ϕ = q ε↑ . (13.124)

In this section (and in the Exercises) the 2 × 2 matrix q is written in boldface to distinguish it from the
quaternion q that it represents, but the distinction is not fundamental. A quaternion can always decomposed
into a product q = λR of a real scalar λ and a rotor, or unimodular quaternion, R. The real scalar λ can be
taken without loss of generality to be positive, since any minus sign can be absorbed into a rotation by 2π

of the rotor R. Thus a Pauli spinor ϕ can also be expressed as a scaled rotor λR acting on the spin-up basis
element ε↑,

ϕ = λR ε↑ . (13.125)



346 The geometric algebra

One is used to thinking of a Pauli spinor as an intrinsically quantum-mechanical object. The map-
ping (13.124) or (13.125) between Pauli spinors and quaternions or scaled rotors shows that Pauli spinors also
have a classical interpretation: they encode a real amplitude λ, and a rotation R. This provides a mathemat-
ical basis for the idea that, through their spin, fundamental particles �know� about the rotational structure
of space.
The isomorphism between the vector spaces of Pauli spinors and quaternions does not extend to multipli-

cation; that is, the product of two Pauli spinors ϕ1 and ϕ2 equivalent to the complex 2×2 matrices q1 and q2

does not equal the Pauli spinor equivalent to the product q1q2. The problem is that the Pauli representation
of a Pauli spinor ϕ is a column vector, and two column vectors cannot be multiplied. The question of how
to multiply spinors is deferred to Chapter 38 on the super geometric algebra.
Meanwhile, it is possible to multiply a row spinor and a column spinor. The spinor ϕ reverse to the

spinor (13.124) is de�ned to be the row spinor

ϕ ≡ ε>↑ q , (13.126)

where q is the matrix representation of the reverse q of the quaternion q, and ε>↑ is the transpose of the
column spinor ε↑, which is the row spinor

ε>↑ = ( 1 0 ) . (13.127)

The scalar product ϕϕ is real and positive, equation (13.136). It is legitimate to multiply a row spinor ϕ by
a column spinor χ, yielding a complex number. The product ϕχ is a scalar under spatial rotations,

R : ϕχ→ ϕRRχ = ϕχ , (13.128)

and therefore provides a viable de�nition of a scalar product of Pauli spinors. The problem of de�ning a
scalar product of Pauli spinors is resumed in �38.6.

Exercise 13.11. Translate a Pauli spinor into a quaternion. Given any Pauli spinor

ϕ ≡ ϕ↑ε↑ + ϕ↓ε↓ =

(
ϕ↑

ϕ↓

)
, (13.129)

show that the corresponding real quaternion q, and the equivalent 2 × 2 complex matrix q in the Pauli
representation (13.115), such that ϕ = q ε↑, are

q =
{

Reϕ↑ , Imϕ↓ , −Reϕ↓ , Imϕ↑
}
↔ q =

(
ϕ↑ −ϕ↓∗
ϕ↓ ϕ↑∗

)
. (13.130)

Show that the reverse quaternion q and the equivalent 2× 2 matrix q in the Pauli representation are

q =
{

Reϕ↑ , − Imϕ↓ , Reϕ↓ , − Imϕ↑
}
↔ q =

(
ϕ↑∗ ϕ↓∗

−ϕ↓ ϕ↑

)
. (13.131)

Conclude that the reverse matrix q equals its Hermitian conjugate, q = q†, and that the reverse Pauli spinor
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ϕ de�ned by equation (13.126) is

ϕ ≡ ε>↑ q = ε>↑ q
† =

(
ϕ↑∗ ϕ↓∗

)
= ϕ† . (13.132)

Exercise 13.12. Translate a quaternion into a Pauli spinor. Show that the quaternion q ≡ w + ıx+

y + kz is equivalent in the Pauli representation (13.115) to the 2× 2 matrix q

q = {w , x , y , z} ↔ q =

(
w + iz ix+ y

ix− y w − iz

)
. (13.133)

Conclude that the Pauli spinor ϕ = q ε↑ corresponding to the quaternion q is

ϕ ≡ q ε↑ =

(
w + iz

ix− y

)
, (13.134)

and that the reverse spinor ϕ de�ned by equation (13.126) is

ϕ = ϕ† = ε>↑ q
† =

(
w − iz − ix− y

)
. (13.135)

Hence conclude that ϕϕ is the real positive scalar magnitude squared λ2 = qq of the quaternion q,

ϕϕ = ϕ†ϕ = qq = λ2 , (13.136)

with

λ2 = w2 + x2 + y2 + z2 . (13.137)

Exercise 13.13. Can a Pauli spinor be rotated into its complex conjugate? Can a Pauli spinor ϕ
be rotated into its complex conjugate ϕ∗?
Solution. Yes. The question is, does there exist a rotor R such that Rϕ = ϕ∗? If q and q∗ are the quaternions
equivalent to ϕ and ϕ∗, then

R = q∗q−1 . (13.138)

More generally, a Pauli spinor may be rotated into any other Pauli spinor of the same modulus.

13.17 Spin axis

In the Pauli representation, the spinor basis elements εa are eigenvectors of the Pauli operator σ3 with
eigenvalues ±1,

σ3ε↑ = +ε↑ , σ3ε↓ = −ε↓ . (13.139)

The spin axis of a Pauli spinor ϕ is de�ned to be the direction along which the Pauli spinor is pure up.
In the Pauli representation, the spin axis of the spin-up basis spinor ε↑ is the positive 3-axis, while the spin
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axis of the spin-down basis spinor ε↓ is the negative 3-axis. The spin axis of a Pauli spinor ϕ = λR ε↑ is the
unit direction {n1, n2, n3} of the rotated z-axis, given by

σana = Rσ3R . (13.140)

Equation (13.140) is con�rmed by the fact that σana has eigenvalue +1 acting on ϕ:

σana ϕ = (Rσ3R) (λR ε↑) = λRσ3 ε↑ = λR ε↑ = ϕ . (13.141)

Exercise 13.14. Orthonormal eigenvectors of the spin operator. Show that, in the Pauli representa-
tion, the orthonormal eigenvectors ε↑n and ε↓n of the spin operator σana projected along the unit direction
{n1, n2, n3} are

ε↑n =
1√

2(1 + n3)

(
1 + n3

n1 + in2

)
, ε↓n =

1√
2(1− n3)

(
−1 + n3

n1 + in2

)
. (13.142)
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The spacetime algebra

The spacetime algebra is the geometric algebra in Minkowski space. This chapter is restricted to the case
of 4-dimensional Minkowski space, but the formalism generalizes to any number of dimensions where some
of the dimensions are timelike and the others are spacelike. Happily, the elegant formalism of the geometric
algebra carries through to the spacetime algebra. See Exercise 39.6 for the general case of K space dimensions
and M time dimensions.

14.1 Spacetime algebra

Let γγm (m = 0, 1, 2, 3) denote an orthonormal basis of spacetime, with γγ0 representing the time axis, and
γγa (a = 1, 2, 3) the spatial axes. Geometric multiplication in the spacetime algebra is de�ned by

γγmγγn = γγm · γγn + γγm ∧γγn , (14.1)

just as in the geometric algebra, equation (13.5). The key di�erence between the spacetime basis γγm and
Euclidean bases is that scalar products of the basis vectors γγm form the Minkowski metric ηmn,

γγm · γγn = ηmn , (14.2)

whereas scalar products of Euclidean basis elements γγa formed the unit matrix, γγa ·γγb = δab, equation (13.6).
In less abbreviated form, equations (14.1) state that the geometric product of each basis element with itself
is

− γγ2
0 = γγ2

1 = γγ2
2 = γγ2

3 = 1 , (14.3)

while geometric products of di�erent basis elements γγm anticommute

γγmγγn = −γγnγγm = γγm ∧γγn (m 6= n) . (14.4)

In the Dirac theory of relativistic spin- 1
2 particles, �14.7, the Dirac γ-matrices are required to satisfy

{γγm,γγn} = 2 ηmn (14.5)

349
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where {} denotes the anticommutator, {γγm,γγn} ≡ γγmγγn + γγnγγm. The multiplication rules (14.5) for the
Dirac γ-matrices are the same as those for geometric multiplication in the spacetime algebra, equations (14.3)
and (14.4).
A 4-vector a, a multivector of grade 1 in the geometric algebra of spacetime, is

a = amγγm = a0γγ0 + a1γγ1 + a2γγ2 + a3γγ3 . (14.6)

Such a 4-vector a would be denoted 6a in the Feynman slash notation. The product of two 4-vectors a and
b is

ab = a · b+ a∧ b = ambnγγm · γγn + ambnγγm ∧γγn = ambnηmn + 1
2a
mbn[γγm,γγn] . (14.7)

It is convenient to denote three of the six bivectors of the spacetime algebra by σa,

σa ≡ γγ0γγa (a = 1, 2, 3) . (14.8)

The symbol σa is used because the algebra of bivectors σa is isomorphic to the algebra of Pauli matrices σa.
The pseudoscalar, the highest grade basis element of the spacetime algebra, is denoted I

γγ0γγ1γγ2γγ3 = σ1σ2σ3 = I . (14.9)

The pseudoscalar I satis�es

I2 = −1 , Iγγm = −γγmI , Iσa = σaI . (14.10)

The basis elements of the 4-dimensional spacetime algebra are then

1 ,

1 scalar
γγm ,

4 vectors
σa , Iσa ,

6 bivectors
Iγγm ,

4 pseudovectors
I ,

1 pseudoscalar
(14.11)

forming a linear space of dimension 1 + 4 + 6 + 4 + 1 = 16 = 24. The reverse is de�ned in the usual
way, equation (13.13), leaving unchanged multivectors of grade 0 or 1, modulo 4, and changing the sign of
multivectors of grade 2 or 3, modulo 4:

1 = 1 , γγm = γγm , σa = −σa , Iσa = −Iσa , Iγγm = −Iγγm , I = I . (14.12)

In the 3D geometric algebra a bivector was also a rotor, satisfying RR = 1, but in the 4D spacetime algebra
only the spatial bivectors Iσa are rotors, satisfying IσaIσa = 1. The boost bivectors satisfy σaσa = −1 not
1, so are not rotors. Nevertheless, if θσa is a boost bivector, then its exponential R ≡ e−θσa/2 is a rotor,

R = e−θσa/2 = 1− (θ/2)σa +
(θ/2)2

2!
− (θ/2)3

3!
σa + ... = cosh(θ/2)− σa sinh(θ/2) , (14.13)

since its inverse is indeed its reverse R = e−θσa/2 = eθσa/2 = cosh(θ/2) + σa sinh(θ/2).
The mapping

γγ(3)
a ↔ σa (a = 1, 2, 3) (14.14)

(the superscript (3) distinguishes the 3D basis vectors from the 4D spacetime basis vectors) de�nes an iso-
morphism between the 8-dimensional geometric algebra (13.3) of 3 spatial dimensions and the 8-dimensional
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even spacetime subalgebra. Among other things, the isomorphism (14.14) implies the equivalence of the 3D
spatial pseudoscalar I3 and the 4D spacetime pseudoscalar I,

I3 ↔ I , (14.15)

since I3 = γγ
(3)
1 γγ

(3)
2 γγ

(3)
3 and I = σ1σ2σ3.

14.2 Complex quaternions

A complex quaternion (also called a biquaternion by W. R. Hamilton) is a quaternion

q = a+ b = a+ ıaba , (14.16)

in which the four coe�cients a, ba (a = 1, 2, 3) are each complex numbers

a = aR + IaI , ba = ba,R + Iba,I . (14.17)

The imaginary I is taken to commute with each of the quaternionic imaginaries ıa. The choice of symbol I
is deliberate: in the isomorphism (14.33) between the even spacetime algebra and complex quaternions, the
commuting imaginary I is isomorphic to the spacetime pseudoscalar I.
All of the equations in �13.13 on real quaternions remain valid without change, including the multiplication,

conjugation, and inversion formulae (13.96)�(13.101). The quaternionic conjugate q of a complex quaternion
q ≡ a + b is conjugated with respect to the quaternionic imaginaries ıa, but the complex coe�cients a and
ba are not conjugated with respect to the complex imaginary I,

q = a+ b = a− b = a− ıaba . (14.18)

The modulus |q| of a complex quaternion q ≡ a+ b,

|q| = (qq)1/2 = (qq)1/2 = (a2 + b · b)1/2 = (a2 + baba)1/2 , (14.19)

is a complex number, not a real number. The name modulus to denote |q| is preferred over magnitude, to
avoid confusion with the magnitude of a complex number. A quaternion is said to be unimodular if its
modulus is 1,

qq = 1 . (14.20)

The unimodular condition (14.20) is a complex condition, stating that the real and imaginary (with respect
to I) parts of qq are respectively 1 and 0.
The complex conjugate q? of the complex quaternion is (the star symbol ? is used for complex conjugation

with respect to the pseudoscalar I, to distinguish it from the asterisk symbol ∗ for complex conjugation with
respect to the scalar quantum-mechanical imaginary i)

q? = a? + b? = a? + ıab
?
a , (14.21)
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in which the complex coe�cients a and ba are conjugated with respect to the imaginary I, but the quaternionic
imaginaries ıa are not conjugated.
A non-zero complex quaternion can have zero modulus (unlike a real quaternion), in which case it is null.

The null condition

qq = a2 + baba = 0 (14.22)

is a complex condition. The product of two null complex quaternions is a null quaternion. Under multiplica-
tion, null quaternions form a 6-dimensional subsemigroup (not a subgroup, because null quaternions do not
have inverses) of the 8-dimensional semigroup of complex quaternions.

Exercise 14.1. Null complex quaternions. Show that any non-trivial null complex quaternion q can be
written uniquely in the form

q = p(1 + In) = p(1 + Iıana) , (14.23)

where p is a real quaternion, and n = ıana is a real unimodular vector quaternion, with real components
{n1, n2, n3} satisfying nana = 1. Equivalently,

q = (1 + In′)p = (1 + Iıan
′
a)p , (14.24)

where n′ is the real unimodular vector quaternion

n′ =
pnp

|p|2
, (14.25)

with real components {n′1, n′2, n′3} satisfying n′an′a = 1.
Solution. Write the null quaternion q as

q = p+ Ir (14.26)

where p and r are real quaternions, both of which must be non-zero if q is non-trivial. Then equation (14.23)
is true with

n = ıana =
pr

|p|2
. (14.27)

The null condition is qq = 0. The vanishing of the real part, Re(qq) = pp − rr = 0, shows that |p|2 = |r|2.
The vanishing of the imaginary (I) part, Im(qq) = pr + rp = pr + pr = 0 shows that the pr must be a
pure quaternionic imaginary, since the quaternionic conjugate of pr is minus itself, so pr/ |p|2 must be of the
form n = ıana. Its squared modulus nn = nana = pr rp/ |p|4 = 1 is unity, so n is a unimodular 3-vector
quaternion. It follows immediately from the manner of construction that the expression (14.23) is unique, as
long as q is non-trivial.

Exercise 14.2. Nilpotent complex quaternions. An object whose square is zero is said to be nilpotent.
Show that a complex quaternion of the form

q = ıaqa with q · q = qaqa = 0 (14.28)
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is nilpotent,

q2 = 0 . (14.29)

Prove that a nilpotent complex quaternion must take the form (14.28). The set of nilpotent complex quater-
nions forms a 4-dimensional subspace of complex quaternions, since the complex condition qaqa = 0 elimi-
nates 2 of the 6 degrees of freedom in the quaternionic components qa. The product of two nilpotent complex
quaternions is not necessarily nilpotent, so the nilpotent set does not form a semigroup. The set of nilpotent
complex quaternions consists of the subset of null complex quaternions that are purely quaternionic.

14.3 Lorentz transformations and complex quaternions

Lorentz transformations are rotations of spacetime. The rotor group of spacetime rotations in 3+1 dimensions
is, as usual, the Lie group generated by the Lie algebra of bivectors. The rotor group in 3+1 dimensions is
called Spin(3, 1).
The basis elements of the even spacetime algebra are

1 ,

1 scalar
σa , Iσa ,

6 bivectors
I ,

1 pseudoscalar
(14.30)

forming a linear space of dimension 1 + 6 + 1 = 8 over the real numbers. However, it is more elegant to
treat the even spacetime algebra as a linear space of dimension 8/2 = 4 over complex numbers of the form
λ = λR+ IλI . The pseudoscalar I quali�es as an imaginary because I2 = −1, and because it commutes with
all elements of the even spacetime algebra. It is convenient to take the basis elements of the even spacetime
algebra over the complex numbers to be

1 ,

1 scalar
Iσa ,

3 bivectors
(14.31)

forming a linear space of dimension 1 + 3 = 4. The reason for choosing Iσa rather than σa as the elements
of the basis (14.31) is that the basis {1, Iσa} is equivalent to the basis (13.102) of the even algebra of 3-dim-
ensional Euclidean space through the isomorphism (14.14) and (14.15). This basis in turn is equivalent to
the quaternionic basis {1, ıa} through the isomorphism (13.108):

Iσa ↔ I3γγ
(3)
a ↔ ıa (a = 1, 2, 3) . (14.32)

In other words, the even spacetime algebra is isomorphic to the algebra of quaternions with complex coe�-
cients:

a+ Iσaba ↔ a+ ıaba (14.33)

where a = aR + IaI is a complex number, and ba ≡ ba,R + Iba,I is a triple of complex numbers.
The isomorphism (14.33) between even elements of the spacetime algebra and complex quaternions implies
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that the group Spin(3, 1) of Lorentz rotors, which are unimodular elements of the even spacetime algebra, is
isomorphic to the group of unimodular complex quaternions

spacetime rotors ∼= unimodular complex quaternions . (14.34)

In �13.14 it was found that the group of 3D spatial rotors is isomorphic to the group of unimodular real
quaternions. Thus Lorentz transformations are mathematically equivalent to complexi�ed spatial rotations.
The Lorentz rotor that produces a rotation by complex angle θ about the unimodular complex direction

na is, according to equation (13.52),

R = e−θ/2 = e−n θ/2 = cos
θ

2
− n sin

θ

2
, (14.35)

generalizing the 3D rotor (13.105). Here θ is a bivector

θ = n θ = Iσana θ , (14.36)

whose modulus is the complex angle (θθ)1/2 = θ ≡ θR+IθI , and whose direction is the unimodular complex
bivector n = nR + InI . The unimodular condition nn = 1 on n is equivalent to the complex condition
nana = 1 on the complex components na ≡ {n1, n2, n3}. The real and imaginary parts of the unimodular
condition imply the two conditions

na,R na,R − na,I na,I = 1 , 2nR,a nI,a = 0 . (14.37)

The complex angle θ has 2 degrees of freedom, while the complex unimodular bivector n has 4 degrees of
freedom, so the Lorentz rotor R has 6 degrees of freedom, which is the correct number of degrees of freedom
of the group of Lorentz transformations.
With the equivalence (14.32), the Lorentz rotor R given by equation (14.35) can be reinterpreted as a

complex quaternion, with θ the complex quaternion

θ = n θ = ıanaθ , (14.38)

whose complex modulus is θ = |θ| ≡ (θθ)1/2 and whose complex unimodular direction is n ≡ ıana. The
associated reverse rotor R is

R = eθ/2 = en θ/2 = cos
θ

2
+ n sin

θ

2
(14.39)

the quaternionic conjugate of R. Note that θ and n in equation (14.39) are not conjugated with respect to
the imaginary I. The sine and cosine of the complex angle θ appearing in equations (14.35) and (14.39) are
related to its real and imaginary parts in the usual way,

cos
θ

2
= cos

θR
2

cosh
θI
2
− I sin

θR
2

sinh
θI
2
, sin

θ

2
= sin

θR
2

cosh
θI
2

+ I cos
θR
2

sinh
θI
2
. (14.40)

For the case of a pure spatial rotation, the angle θ = θR and axis n = nR in the rotor (14.35) are both
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γγ
1

γγ
0

γγ
1
′

γγ
0
′

θ

θ

a

a′

θ

Figure 14.1 Lorentz boost of a vector a by rapidity θ in the γγ0�γγ1 plane. See Exercise 14.3.

real. The rotor corresponding to a pure spatial rotation by angle θR right-handedly about unit real axis
nR ≡ Iσana,R = ıana,R is the real quaternion

R = e−nR θR/2 = cos
θR
2
− nR sin

θR
2
. (14.41)

A Lorentz boost is a change of velocity in some direction, without any spatial rotation, and represents
a rotation of spacetime about some time-space plane. For example, a Lorentz boost along the γγ1-axis (the
x-axis) is a rotation of spacetime in the γγ0�γγ1 plane (the t�x plane). In the case of a pure Lorentz boost,
the angle θ = IθI is pure imaginary, but the axis n = nR remains pure real (alternatively, the angle is pure
real and the axis is pure imaginary). The rotor corresponding to a boost by rapidity θI , or equivalently by
velocity v = tanh θI , in unit real direction nR ≡ Iσana,R = ıana,R is the complex quaternion

R = e−InR θI/2 = cosh
θI
2
− InR sinh

θI
2
. (14.42)

Exercise 14.3. Lorentz boost. A Lorentz boost by rapidity θ = atanh v along the γγ1-axis (x-axis) (that
is, a rotation in the γγ0�γγ1 plane) is given by the Lorentz rotor

R = e−In1 θ/2 = cosh
θ

2
+ γγ0 ∧γγ1 sinh

θ

2
. (14.43)

Con�rm that the Lorentz boost transforms the axes γγm as

R : γγ0 → Rγγ0R = γγ0 cosh θ + γγ1 sinh θ , (14.44a)

R : γγ1 → Rγγ1R = γγ1 cosh θ + γγ0 sinh θ , (14.44b)

R : γγa → RγγaR = γγa (a 6= 0, 1) . (14.44c)

The boost is illustrated in Figure 14.1.
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Exercise 14.4. Factor a Lorentz rotor into a boost and a rotation. Factor a general Lorentz rotor
R = e−ıana θ/2 into the product LU of a pure spatial rotation U followed by a pure Lorentz boost L. Do the
two factors commute?
Solution. Expand the rotor R as

R = p+ Iq (14.45)

where p and q are real quaternions. Then R can be expressed as the composition of a pure spatial rotation
U followed by a pure Lorentz boost L

R = LU (14.46)

in which

U =
p

|p|
, L = |p|+ I

qp

|p|
(14.47)

where |p| = (pp)1/2 is the (real) absolute value of the real quaternion p. It is straightforward to check that
U and L satisfy the requirements to be pure spatial and boost rotors. The spatial rotor U is by construction
unimodular, UU = 1, and it follows that the boost rotor L = RU is also unimodular, since R is unimodular.
The spatial rotor U is a real quaternion, and therefore satis�es the form (14.41) of a pure spatial rotation.
The real part |p| of the boost rotor L is pure real, while the imaginary part qp/ |p| is a pure quaternionic
imaginary, since unimodularity RR = 1 implies that Im(RR) = qp+ pq = qp+ qp = 0, i.e. the quaternionic
conjugate of qp is minus itself. Thus L satis�es the form (14.42) of a pure Lorentz boost.
The factors U and L commute if the boost and rotation axes are in the same direction, but not in general.

The expression for the rotor R as the composition of a Lorentz boost followed by a spatial rotation, the
opposite order to (14.46), is

R = UL′ (14.48)

where U is the same spatial rotor as before, but the boost rotor L′ is

L′ = |p|+ I
pq

|p|
= ULU (14.49)

whose real part |p| is the same as for L, but whose imaginary part pq/ |p| di�ers in direction, though not
magnitude, from that of L.

Exercise 14.5. Topology of the group of Lorentz rotors. Show that the geometry of the group of
Lorentz rotors is the product of the geometries of the spatial rotation group and the boost group, which is
a 3-sphere times Euclidean 3-space, S3 × R3.

14.4 Spatial inversion (P ) and Time reversal (T )

Spatial inversion, or P for parity, is the operation of re�ecting a (single) spatial direction, γγa → −γγa. Spatial
inversion leaves the scalar product of orthonormal vectors unchanged. A rotation in N spatial dimensions
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can be represented by a matrix in the orthogonal group O(N) of matrices satisfying the condition that
their inverses are their transposes, O−1 = O>. Since transposing a matrix leaves its determinant unchanged,
orthogonal matrices have squared determinant equal to 1. The orthogonal group O(N) thus splits into two
disconnected pieces, proper and improper rotations represented by orthogonal matrices of determinant
respectively +1 and −1. The subgroup group of proper rotations is designated SO(N), the S signifying
Special, meaning matrices of determinant 1.
Inversion of one spatial direction can be represented by a diagonal orthogonal matrix with one of its

diagonal elements equal to −1 and the remainder all 1. Thus spatial inversion is a discrete transformation
of the geometric algebra, which splits the geometric algebra into two disconnected parts that cannot be
transformed into each other by any continuous rotation.
Inversion may be accomplished by re�ecting through any odd number of spatial axes. In spacetimes with

an odd number of spatial dimensions, as here (where there are 3 spatial dimensions), spatial inversion may
be accomplished by re�ecting all spatial vector basis elements γγa → −γγa, while keeping the time vector
basis element γγ0 unchanged. This results in σa → −σa and I → −I. The equivalence Iσa ↔ ıa means that
the quaternionic imaginaries ıa are unchanged. Thus, if multivectors in the spacetime algebra are written as
linear combinations of products of γγ0, ıa, and I, then spatial inversion P corresponds to the transformation

P : γγ0 → γγ0 , ıa → ıa , I → −I . (14.50)

In other words spatial inversion may be accomplished by the rule, take the complex conjugate (with respect
to I) of a multivector.
Time reversal, or T , is the operation of reversing the time direction while keeping all spatial directions un-

changed. Time reversal, like spatial inversion, leaves the scalar product of orthonormal vectors unchanged.
Time reversal cannot be accomplished by any continuous Lorentz transformation starting from the unit
element, nor can it be accomplished by spatial inversion accompanied by any continuous Lorentz transfor-
mation starting from the unit element. Thus the Lorentz group contains 4 disconnected components that
cannot be transformed into each other by any continuous Lorentz transformation starting from the unit
element. The normal and reversed time components of the Lorentz group are sometimes called respectively
orthochronous and antichronous.
Time reversal may be accomplished by re�ecting the time vector basis element γγ0 → −γγ0, while keeping

the spatial vector basis elements γγa unchanged. As with spatial inversion, this results in σa → −σa and
I → −I, which keeps Iσa hence ıa unchanged. If multivectors in the spacetime algebra are written as linear
combinations of products of γγ0, ıa, and I, then time inversion T corresponds to the transformation

T : γγ0 → −γγ0 , ıa → ıa , I → −I . (14.51)

For any multivector, time inversion corresponds to the instruction to �ip γγ0 and take the complex conjugate
(with respect to I).
The combined operation PT of inverting both space and time directions corresponds to

PT : γγ0 → −γγ0 , ı→ ıa , I → I . (14.52)
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For any multivector, spacetime inversion corresponds to the instruction to �ip γγ0, while keeping ıa and I
unchanged.

14.5 How to implement Lorentz transformations on a computer

The advantages of quaternions for implementing spatial rotations are well-known to 3D game programmers.
Compared to standard rotation matrices, quaternions o�er increased speed and require less storage, and
their algebraic properties simplify interpolation and splining. Complex quaternions retain similar advantages
for implementing Lorentz transformations. They are fast, compact, and straightforward to interpolate or
spline (Exercises 14.6 and 14.8). Moreover, since complex quaternions contain real quaternions, Lorentz
transformations can be implemented simply as an extension of spatial rotations in 3D programs that use
quaternions to implement spatial rotations.
Lorentz rotors, 4-vectors, spacetime bivectors, and spinors (spin- 1

2 objects) can all be implemented as
complex quaternions. A complex quaternion

q = w + ı1x+ ı2y + ı3z (14.53)

with complex coe�cients w, x, y, z (so w = wR + IwI , etc.) can be stored as the 8-component object

q =

{
wR xR yR zR
wI xI yI zI

}
. (14.54)

Actually, OpenGL and other computer software store the scalar (w) component of a quaternion in the last
(fourth) place, but here the scalar components are put in the zeroth position to conform to standard physics
convention. The quaternion conjugate q of the quaternion (14.54) is

q =

{
wR −xR −yR −zR
wI −xI −yI −zI

}
, (14.55)

while its complex conjugate q? (with respect to I) is

q? =

{
wR xR yR zR
−wI −xI −yI −zI

}
. (14.56)

A Lorentz rotor R corresponds to a complex quaternion of unit modulus. The unimodular condition RR =

1, a complex condition, removes 2 degrees of freedom from the 8 degrees of freedom of complex quaternions,
leaving the Lorentz group with 6 degrees of freedom, which is as it should be. Spatial rotations correspond
to real unimodular quaternions, and account for 3 of the 6 degrees of freedom of Lorentz transformations. A
spatial rotation by angle θ right-handedly about the 1-axis (the x-axis) is the real Lorentz rotor

R = e−ı1θ/2 = cos(θ/2)− ı1 sin(θ/2) , (14.57)
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or, stored as a complex quaternion,

R =

{
cos(θ/2) − sin(θ/2) 0 0

0 0 0 0

}
. (14.58)

Note that this is the physics convention, where a right-handed rotation corresponds to R = e−ıanaθ/2

and rotations accumulate to the left. The convention in OpenGL and other graphics software is that R =

eıanaθ/2 and rotations accumulate to the right. To change to OpenGL convention, omit the minus sign
in equation (14.58). Lorentz boosts account for the remaining 3 of the 6 degrees of freedom of Lorentz
transformations. A Lorentz boost by velocity v, or equivalently by rapidity θ = atanh(v), along the 1-axis
(the x-axis) is the complex Lorentz rotor

R = e−Iı1θ/2 = cosh(θ/2)− Iı1 sinh(θ/2) , (14.59)

or, stored as a complex quaternion,

R =

{
cosh(θ/2) 0 0 0

0 − sinh(θ/2) 0 0

}
. (14.60)

Again, this is the physics convention. To change to OpenGL convention, omit the minus sign in equa-
tion (14.60). The rule for composing Lorentz transformations is simple: a Lorentz transformation R followed
by a Lorentz transformation S is just the product SR of the corresponding complex quaternions. This is
the physics convention, where rotations accumulate to the left. In the OpenGL convention, where rotations
accumulate to the right, R followed by S is RS.
The inverse of a Lorentz rotor R is its quaternionic conjugate R.
Any even multivector q is equivalent to a complex quaternion by the isomorphism (14.33). According to

the usual transformation law (13.59) for multivectors, the rule for Lorentz transforming an even multivector
q is

R : q → RqR (even multivector) . (14.61)

The transformation (14.61) instructs to multiply three complex quaternions R, q, and R, a one-line expression
in a c++ program. In OpenGL convention, the transformation rule is q → RqR.
As an example of an even multivector, the electromagnetic �eld F is a bivector in the spacetime algebra,

F = 1
2F

mnγγm ∧γγn , (14.62)

the factor of 1
2 compensating for the double-counting over indices m and n (the 1

2 could be omitted if the
counting were over distinct bivector indices only). The imaginary and real parts of F constitute the electric
and magnetic bivectors E = Eaıa and B = Baıa

F = −I(E + IB) . (14.63)

Under the parity transformation P (14.50), the electric �eld E changes sign, whereas the magnetic �eld B
does not, which is as it should be:

P : E → −E , B → B . (14.64)
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In view of the isomorphism (14.33), the electromagnetic �eld bivector F can be written as the complex
quaternion

F =

{
0 B1 B2 B3

0 −E1 −E2 −E3

}
. (14.65)

According to the rule (14.61), the electromagnetic �eld bivector F Lorentz transforms as F → RFR, which
is a powerful and elegant way to Lorentz transform the electromagnetic �eld.
A 4-vector a ≡ γγmam is a multivector of grade 1 in the spacetime algebra. A general odd multivector in

the spacetime algebra is the sum of a vector (grade 1) part a and a pseudovector (grade 3) part Ib = Iγγmb
m.

The odd multivector can be written as the product of the time basis vector γγ0 and an even multivector q

a+ Ib = γγ0q = γγ0

(
a0 + Iıaa

a − Ib0 + ıab
a
)
. (14.66)

By the isomorphism (14.33), the even multivector q is equivalent to the complex quaternion

q =

{
a0 b1 b2 b3

−b0 a1 a2 a3

}
. (14.67)

According to the usual transformation law (13.59) for multivectors, the rule for Lorentz transforming the
odd multivector γγ0q is

R : γγ0q → Rγγ0qR = γγ0R
?qR . (14.68)

In the last expression of (14.68), the factor γγ0 has been brought to the left, to be consistent with the
convention (14.66) that an odd multivector is γγ0 on the left times an even multivector on the right. Notice
that commuting γγ0 through R converts the latter to its complex conjugate R? (with respect to I), which is
true because γγ0 commutes with the quaternionic imaginaries ıa, but anticommutes with the pseudoscalar I.
Thus if the components of an odd multivector are stored as a complex quaternion (14.67), then that complex
quaternion q Lorentz transforms as

R : q → R?qR (odd multivector) . (14.69)

In OpenGL convention, q → R
?
qR. The rule (14.69) again instructs to multiply three complex quaternions

R?, q, and R, a one-line expression in a c++ program. The transformation rule (14.69) for an odd multivector
encoded as a complex quaternion di�ers from that (14.61) for an even multivector in that the �rst factor R
is complex conjugated (with respect to I).
A vector a di�ers from a pseudovector Ib in that the vector a changes sign under a parity transforma-

tion P whereas the pseudovector Ib does not. However, the behaviour of a pseudovector under a normal
Lorentz transformation (which preserves parity) is identical to that of a vector. Thus in practical situations
two 4-vectors a and b can be encoded into a single complex quaternion (14.67), and Lorentz transformed
simultaneously, enabling two transformations to be done for the price of one.
Finally, a Dirac spinor ψ is equivalent to a complex quaternion q (�14.9). It Lorentz transforms as

R : q → Rq (spinor) . (14.70)
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In OpenGL convention, where rotations accumulate to the right instead of left, q → qR.

Exercise 14.6. Interpolate a Lorentz transformation. Argue that the interpolating Lorentz rotor R(t)

that corresponds to uniform rotation and acceleration between initial and �nal Lorentz rotors R0 and R1 as
the parameter t varies uniformly from 0 to 1 is

R(t) = R0 exp [t ln(R1/R0)] . (14.71)

Exercise 14.7. Exponential and logarithm of a complex quaternion. What are the (1) exponential
and (2) logarithm of a complex quaternion in terms of its components? Address the issue of the multi-valued
character of the logarithm.
Solution.

1. Exponential of a complex quaternion. Decompose the complex quaternion p into the sum of a
complex number w and a complex bivector nθ of complex modulus θ and unimodular complex direction
n (satisfying nn = 1). Then

ep = ew+nθ = ew(cos θ + n sin θ) . (14.72)

2. Logarithm of a complex quaternion. Essentially, reverse the procedure for exponentiation. Denote
the logarithm of the complex quaternion q by ln q ≡ p ≡ w + nθ. The non-quaternionic part of the
logarithm is the complex number w given by the (complex) logarithm of the (complex) modulus of q,

w = 1
2 ln(qq) . (14.73)

The complex quaternion q scaled to unit modulus is then

q√
qq

= cos θ + n sin θ , (14.74)

whose non-quaternionic part cos θ de�nes the (complex) angle θ, and whose quaternionic part n sin θ,
when divided by sin θ, yields the unimodular complex quaternion n. The complex logarithm w is as usual
ambiguous by additive multiples of 2πI, while the complex argument θ of the cos and sin is ambiguous
by additive multiples of 2π. But in addition there is (a) an ambiguity of a choice of sign between n
and sin θ, and (b) an ambiguity of a choice of sign between ew and the sign of cos θ + n sin θ. The �rst
ambiguity may be resolved by �xing the real part of θ to lie in the interval [0, π). The second ambiguity
may be resolved by �xing the real part of ew to be positive, achieved by setting the imaginary part of
w to lie in the interval (−π/2, π/2]. For rotors, which are unimodular by de�nition, ew = 1 and w = 0.

Exercise 14.8. Spline a Lorentz transformation. A spline is a polynomial that interpolates between two
points with given values and derivatives at the two points. Con�rm that the cubic spline of a real function
f(x) with given initial and �nal values f0 and f1 and given initial and �nal derivatives f ′0 and f ′1 at x = 0

and x = 1 is

f(x) = f0 + f ′0x+ [3(f1 − f0)− 2f ′0 − f ′1]x2 + [2(f0 − f1) + f ′0 + f ′1]x3 . (14.75)

The case in which the derivatives at the endpoints are set to zero, f ′0 = f ′1 = 0, is called the �natural� spline.
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Argue that a Lorentz rotor can be splined by splining the quaternionic components of the logarithm of the
Lorentz rotor.

Exercise 14.9. The wrong way to implement a Lorentz transformation. The principal purpose of
this exercise is to persuade you that Lorentz transforming a 4-vector by the rule (14.69) is a much better
idea than Lorentz transforming by multiplying by an explicit 4× 4 matrix. Suppose that the Lorentz rotor
R is the complex quaternion

R =

{
wR xR yR zR
wI xI yI zI

}
. (14.76)

Show that the Lorentz transformation (14.69) transforms the 4-vector amγγm = {a0γγ0, a
1γγ1, a

2γγ2, a
3γγ3} as

(note that the 4 × 4 rotation matrix is written to the left of the 4-vector in accordance with the physics
convention that rotations accumulate to the left):

R :


a0γγ0

a1γγ1

a2γγ2

a3γγ3

→


|w|2 + |x|2 + |y|2 + |z|2 2 (−wRxI + wIxR + yRzI − yIzR)

2 (−wRxI + wIxR − yRzI + yIzR) |w|2 + |x|2 − |y|2 − |z|2

2 (−wRyI + wIyR − zRxI + zIxR) 2 (xRyR + xIyI + wRzR + wIzI)

2 (−wRzI + wIzR − xRyI + xIyR) 2 (zRxR + zIxI − wRyR − wIyI)
2 (−wRyI + wIyR + zRxI − zIxR) 2 (−wRzI + wIzR + xRyI − xIyR)

2 (xRyR + xIyI − wRzR − wIzI) 2 (zRxR + zIxI + wRyR + wIyI)

|w|2 − |x|2 + |y|2 − |z|2 2 (yRzR + yIzI − wRxR − wIxI)
2 (yRzR + yIzI + wRxR + wIxI) |w|2 − |x|2 − |y|2 + |z|2




a0γγ0

a1γγ1

a2γγ2

a3γγ3

 , (14.77)

where | | signi�es the absolute value of a complex number, as in |w|2 = w2
R +w2

I . As a simple example, show
that the transformation (14.77) in the case of a Lorentz boost by velocity v along the 1-axis, where the rotor
R takes the form (14.43), is

R :


a0γγ0

a1γγ1

a2γγ2

a3γγ3

→


γ γv 0 0

γv γ 0 0

0 0 1 0

0 0 0 1




a0γγ0

a1γγ1

a2γγ2

a3γγ3

 , (14.78)

with γ the familiar Lorentz gamma factor

γ = cosh θ =
1√

1− v2
, γv = sinh θ =

v√
1− v2

. (14.79)

Exercise 14.10. Transform a 4-vector into a desired frame. Find Lorentz boosts that transform
respectively (1) a timelike 4-vector ak to point along the 0-axis, and (2) a null 4-vector ak to point along the
0-1 null axis. Find a spatial rotation that transforms (3) a 4-vector {a0, aa} so that its spatial part points
along the 1-axis, leaving the time component a0 unchanged.
Solution.
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1. Lorentz boost of a timelike 4-vector. Let a ≡ ±
√
−akak be the magnitude of the timelike 4-vector

ak, with sign chosen to be that of a0. The Lorentz boost

{wR, xI , yI , zI} =
1√

2a(a0 + a)
{a0+a, a1, a2, a3} (14.80)

transforms ak to {a, 0, 0, 0}.
2. Lorentz boost of a null 4-vector. Choose a to be a non-zero real number with sign equal to that of
a0. The Lorentz boost

{wR, xI , yI , zI} =
1√

2a(a0 ± a1)
{a0+a, a1∓a, a2, a3} (14.81)

transforms ak to {a,±a, 0, 0}.
3. Spatial rotation of a 4-vector. Let a ≡

√
aaaa be the spatial magnitude of the spatial 4-vector

ak = {a0, aa}. The spatial rotation

{wR, xR, yR, zR} =
1√

2a(a1 + a)
{a1+a, 0, a3,−a2} (14.82)

transforms ak to {a0, a, 0, 0}, leaving the time component a0 unchanged.

14.6 Killing vector �elds of Minkowski space

The geometry of Minkowski space is unchanged under two continuous groups of symmetries, the 4-dimensional
group of translations, and the 6-dimensional group of Lorentz transformations. A symmetry transformation is
a transformation of the coordinates that, with a suitable choice of coordinates, leaves the metric unchanged.
Independent of the choice of coordinates, a symmetry transformation is a transformation that leaves the
proper spacetime distance between any two points unchanged.
Any in�nitesimal symmetry transformation de�nes a Killing vector ξµ, �7.32, which shifts the coordinates

by an in�nitesimal amount,

xµ → xµ + εξµ , (14.83)

with ε an in�nitesimal real number. The in�nitesimal transformation de�nes a �ow �eld, called a Killing
vector �eld, in the spacetime. The basic Killing vector �elds of Minkowski space have been met earlier in
this book. The Killing �eld associated with a translation is a set of parallel straight lines (timelike, null, or
spacelike) in Minkowski space. The Killing �eld associated with a spatial rotation is a set of nested spacelike
circles about a spatial axis, Figure 1.13. The Killing �eld associated with a pure Lorentz boost is a set of
nested timelike, null, and spacelike hyperbolae, Figure 1.14.
The most general Killing vector �eld of Minkowski space is a linear combination of translational and Lorentz

Killing vectors with constant coe�cients. The Killing �eld associated with a pure Lorentz transformation
(no translational component) always has at least one �xed point, the origin, which is unchanged by the
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Lorentz transformation. The addition of a translational component corresponds to uniform translational
motion (possibly superluminal) of the origin of the Lorentz transformation. In some cases the composition
of a translation and a Lorentz transformation simpli�es to a Lorentz transformation. For example, a Lorentz
transformation (either a spatial rotation or a Lorentz boost) in a given 2-dimensional plane, coupled with a
translation in the same plane, always has a �xed point, and is equivalent to another Lorentz transformation
in the same plane with origin at the �xed point.
The remainder of this section considers the Killing �eld of a pure Lorentz transformation (no translational

component). The Killing vector associated with a Lorentz transformation is its generator, which is a bivector,
or equivalently complex quaternion, θ ≡ θR + IθI . The real part θR of the bivector is the generator of a
spatial rotation, while the imaginary part θI is the generator of a Lorentz boost. The decomposition of the
bivector into real and imaginary parts is analogous to the decomposition of the electromagnetic �eld into
magnetic and electric parts, equation (14.63). The complex modulus squared |θ|2 of the bivector,

|θ|2 ≡ θθ = −θ2 = θ2
I − θ2

R − 2IθR · θI , (14.84)

is invariant under Lorentz transformations. By a suitable Lorentz transformation, the bivector θ may be
adjusted arbitrarily, subject only to the condition that its complex modulus is �xed, that is, θ2

I − θ2
R and

θR · θI are constant.
If the bivector is non-null, |θ| 6= 0, then by a suitable Lorentz transformation the real (magnetic) θR

and imaginary (electric) θI parts can be taken to be parallel, directed along a common unimodular spatial
direction, n, say. So transformed, the bivector θ is the complex quaternion

θ = (θR + IθI) ı · n . (14.85)

The bivector (14.85) generates a uniform proper spatial rotation about the n axis, coupled with a uniform
proper acceleration along the n axis. A Killing trajectory x(λ) ≡ xm(λ)γγm, parametrized by a�ne parameter
λ along the trajectory, is obtained by Lorentz transforming an initial 4-vector x0 ≡ x(0) by a rotor R ≡
e−λθ/2, equation (14.35),

x = Rx0R . (14.86)

De�ne Killing coordinates α and φ by

α ≡ λθI , φ ≡ λθR . (14.87)

If the unimodular direction n is taken to be the x-direction, then Minkowski coordinates xm ≡ {t, x, y, z}
along a Killing trajectory (14.86) starting at xm0 = {0, l, r, 0} are

{t, x, y, z} = { l sinhα , l coshα , r cosφ , r sinφ } . (14.88)

The Killing trajectory (14.88) is arranged, without loss of generality, such that it is initially at rest in the
parallel x-direction, and moving with some initial velocity v⊥ in the perpendicular z-direction,

v⊥ =
dz

dt

∣∣∣∣
init

=
r dφ

l dα
. (14.89)



14.6 Killing vector �elds of Minkowski space 365

y

t

x

Figure 14.2 3D spacetime diagram of a sample of (blue) timelike Killing trajectories in Minkowski space. The two

outermost of the trajectories shown lie on the light cylinder, and are lightlike. Motion in the z spatial direction is

suppressed. The trajectories accelerate with uniform proper linear acceleration in the x-direction, and with uniform

rotation in the y�z plane. The trajectories shown are for the case of a Killing vector with equal acceleration and

rotational components, |θI | = |θR| (corresponding to the motion of charges in equal electric and magnetic �elds,

|E| = |B|, Exercise 14.11). The crossing (purple) lines are spacelike lines of constant a�ne parameter λ.

A trajectory is timelike provided that

|v⊥| < 1 . (14.90)

Null trajectories, with |v⊥| = 1, de�ne the light cylinder. Killing trajectories outside the light cylinder are
spacelike. The metric with respect to Killing coordinates {α, φ} and comoving coordinates {l, r} is

ds2 = − l2dα2 + dl2 + dr2 + r2dφ2 . (14.91)

The proper time along a Killing trajectory dl = dr = 0 is

dτ =
√
l2dα2 − r2dφ2 = l|θI |

√
1− v2

⊥ dλ = r|θR|
√
v−2
⊥ − 1 dλ . (14.92)

The condition that λ be an a�ne parameter, dλ = dτ/m, implies that the lengths l and r are related to θI
and θR by

l =
mγ⊥
|θI |

, r =
mγ⊥|v⊥|
|θR|

, (14.93)
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where γ⊥ ≡ 1/
√

1− v2
⊥ is the Lorentz gamma-factor corresponding to the velocity v⊥. The 4-momentum

p ≡ dx/dλ and 4-acceleration κ ≡ dp/dλ along the Killing trajectory are

p = Rp0R , κ = Rκ0R , (14.94)

with initial values

p0 =
dx

dλ

∣∣∣∣
0

= − 1
2 [θ,x0] , κ0 =

dp

dλ

∣∣∣∣
0

= − 1
2 [θ,p0] . (14.95)

Figure 14.2 illustrates a sample of Killing trajectories for the case of equal boost and rotational components,
|θI | = |θR|.
The above was for the case where the generating bivector θ of the symmetry transformation was non-null.

Alternatively, the generating bivector may be null, θθ = 0. In this case the real and imaginary parts of the
bivector are orthogonal, θR · θI = 0, and their magnitudes are equal, |θR| = |θI |, equation (14.84). A null
bivector is also nilpotent, θ2 = 0, so the rotor R obtained by exponentiating θ is linear in θ,

R ≡ e−λθ/2 = 1− λθ/2 . (14.96)

A Killing trajectory x starting from an initial 4-vector x0 is

x ≡ Rx0R = x0 −
λ

2
[θ,x0] , (14.97)

which is a straight line passing through x0. It can be checked that the line may be spacelike or null, but
never timelike. It is not clear whether this is a useful result.

Exercise 14.11. Motion of a charged particle in uniform parallel electric and magnetic �elds.
Calculate the trajectory in Minkowski space of a particle of mass m and charge q in an electromagnetic �eld
where the electric and magnetic �elds are uniform and parallel, E = En and B = Bn (Landau and Lifshitz,
1975, �22, Problem 1).
Solution. As long as the electromagnetic �eld F = B − IE, equation (14.63), is non-null, |F | 6= 0, the
electric and magnetic �elds can be made parallel by a suitable Lorentz transformation. The electric and
magnetic �elds are unchanged by a complex (with respect to I) Lorentz transformation along the common
direction n, that is, by a combination of a spatial rotation about n and a Lorentz boost along n. Thus the
symmetry of Minkowski space under Lorentz transformations along n is preserved by the introduction of
uniform electric and magnetic �elds along n. The trajectories of charged particles are Killing trajectories of
Lorentz transformations along the direction n. The equation of motion (4.44),

dp

dλ
= 1

2q[F ,p] , (14.98)

implies that the Killing bivector is θ = −qF , or equivalently

θI = qE , θR = −qB . (14.99)
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14.7 Dirac matrices

The multiplication rules (14.1) for the basis vectors γγm of the spacetime algebra are identical to the
rules (14.5) governing the Cli�ord algebra of the Dirac γ-matrices used in the Dirac theory of relativistic
spin- 1

2 particles.
The Dirac γ-matrices are conventionally represented by 4 × 4 complex (with respect to the quantum-

mechanical imaginary i) unitary matrices. The matrices act on 4-component complex (with respect to i)
Dirac spinors, which are spin- 1

2 particles, �14.8. Four complex components are precisely what is needed to
represent a complex quaternion, or Dirac spinor, �14.9.
An essential feature of a successful theory of relativistic spinors is the existence of an inner product

of spinors, necessary to allow a scalar probability to be de�ned. The systematic construction of a scalar
product of spinors is deferred to Chapter 39, �39.5. Meanwhile, in the traditional Dirac approach, a spinor
ψ is represented as a column vector with 4 complex (with respect to i) components, while its Hermitian
conjugate ψ† is a row vector with 4 complex components that are the complex conjugates (with respect to i)
of the components of ψ. The product ψ†ψ is a real number, but is not satisfactory as a scalar product since it
is not Lorentz invariant. Rather, ψ†ψ proves to be the time component n0 of a 4-vector number current nk,
which the Dirac equation then shows to be covariantly conserved, D̊kn

k = 0, equation (41.20). The number
current nk is interpreted as a conserved probability current. The requirement that the Dirac number current
density n0 be positive imposes the condition, equation (39.104), that taking the Hermitian conjugate of any
of the basis vectors γγm be equivalent to raising its index,

γγ†m = γγm . (14.100)

Condition (14.100) is the same as requiring that the basis vectors be unitary matrices, γγ−1
m = γγ†m.

The high-energy physics community commonly adopts the +−−− metric signature, which is opposite to
the convention adopted here. With the high-energy +−−− signature, the traditional Dirac representation
of unitary γ-matrices satisfying the scalar product condition (14.5) is

γγ0 =

(
1 0

0 −1

)
, γγa =

(
0 −σa
σa 0

)
, (14.101)

where 1 denotes the unit 2× 2 matrix, and σa denote the three 2× 2 Pauli matrices (13.115). The choice of
γγ0 as a diagonal matrix is motivated by Dirac's discovery that eigenvectors of the time basis vector γγ0 with
eigenvalues of opposite sign de�ne particles and antiparticles in their rest frames (see �14.8).
With the −+++ metric signature adopted here, the Dirac representation of the γ-matrices can be

taken to be

γγ0 = i

(
1 0

0 −1

)
, γγa =

(
0 σa
σa 0

)
. (14.102)

The representation (14.102) has the advantage that the resulting chiral basis vectors are all real, equa-
tions (39.17). In the representation (14.102), the bivectors σa and Iσa and the pseudoscalar I of the space-
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time algebra are

γγ0γγa = σa = i

(
0 σa
−σa 0

)
, 1

2εabcγγbγγc = Iσa = i

(
σa 0

0 σa

)
, I =

(
0 −1

1 0

)
. (14.103)

The Hermitian conjugates of the bivector and pseudoscalar basis elements are

σ†a = σa , (Iσa)† = −Iσa , I† = −I . (14.104)

The conventional chiral matrix γ5 of Dirac theory is de�ned to be −i times the pseudoscalar,

γ5 ≡ −iγγ0γγ1γγ2γγ3 = −iI =

(
0 i

−i 0

)
. (14.105)

The chiral matrix γ5 is Hermitian (γ†5 = γ5) and unitary (γ−1
5 = γ†5), so its square is the unit matrix,

γ†5 = γ5 , γ2
5 = 1 . (14.106)

14.8 Dirac spinors

A Dirac spinor is a spin- 1
2 particle in Dirac's theory of relativistic spin- 1

2 particles. A Dirac spinor ψ is a
complex (with respect to the quantum-mechanical imaginary i) linear combination of 4 basis spinors εa with
indices a running over {⇑↑,⇑↓,⇓↑,⇓↓}, a total of 8 degrees of freedom in all,

ψ = ψaεa . (14.107)

The basis spinors εa are basis elements of a super spacetime algebra, Chapter 39. In the Dirac representa-
tion (14.102), the four basis spinors are the column spinors

ε⇑↑ =


1

0

0

0

 , ε⇑↓ =


0

1

0

0

 , ε⇓↑ =


0

0

1

0

 , ε⇓↓ =


0

0

0

1

 . (14.108)

The Dirac γ-matrices operate by pre-multiplication on Dirac spinors ψ, yielding other Dirac spinors. The
basis spinors are eigenvectors of the time basis vector γγ0 and of the bivector Iσ3, with ε⇑ and ε⇓ denoting
eigenvectors of γγ0, and ε↑ and ε↓ eigenvectors of Iσ3,

γγ0 ε⇑ = i ε⇑ , γγ0 ε⇓ = −i ε⇓ , Iσ3 ε↑ = i ε↑ , Iσ3 ε↓ = −i ε↓ . (14.109)

The bivector Iσ3 is the generator of a spatial rotation about the 3-axis (z-axis), equation (14.32). Simulta-
neous eigenvectors of γγ0 and Iσ3 exist because γγ0 and Iσ3 commute.
A pure spin-up Dirac spinor ε↑ can be rotated into a pure spin-down spinor ε↓, or vice versa, by a spatial

rotation about the 1-axis or 2-axis. By contrast, a pure time-up spinor ε⇑ cannot be rotated into a pure
time-down spinor ε⇓, or vice versa, by any Lorentz transformation. Consider for example trying to rotate
the pure time-up spin-up ε⇑↑ spinor into any combination of pure time-down ε⇓ spinors. According to the
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expression (14.122), the Dirac spinor ψ obtained by Lorentz transforming the ε⇑↑ spinor is pure ε⇓ only if the
corresponding complex quaternion q is pure imaginary (with respect to I). But a pure imaginary quaternion
has negative squared modulus qq, so cannot be equivalent to any unimodular rotor.
Thus the pure time-up and pure time-down spinors ε⇑ and ε⇓ are distinct spinors that cannot be trans-

formed into each other by any Lorentz transformation. The two spinors represent distinct species, particles
and antiparticles (see �14.10).
Although a pure time-up spinor cannot be transformed into a pure time-down spinor or vice versa by any

Lorentz transformation, the time-up and time-down spinors ε⇑ and ε⇓ do mix under Lorentz transformations.
The manner in which Dirac spinors transform is described in �14.9.
The choice of time-axis γγ0 and spin-axis γγ3 with respect to which the eigenvectors are de�ned can of course

be adjusted arbitrarily by a Lorentz boost and a spatial rotation. The eigenvectors of a particular time-axis
γγ0 correspond to either particles or antiparticles that are at rest in that frame. The eigenvectors associated
with a particular spin-axis γγ3 correspond to particles or antiparticles that are either pure spin-up or pure
spin-down in that frame.

14.9 Dirac spinors as complex quaternions

In �13.16 it was found that a spin- 1
2 object in 3D space, a Pauli spinor, is isomorphic to a real quaternion, or

equivalently scaled 3D rotor, equation (13.125). In the relativistic theory, the corresponding spin- 1
2 object,

a Dirac spinor ψ, is isomorphic (14.113) to a complex quaternion. The 4 complex degrees of freedom of the
Dirac spinor ψ are equivalent to the 8 degrees of freedom of a complex quaternion. A physically interesting
complication arises in the relativistic case because a non-trivial Dirac spinor can be null, isomorphic to a
null complex quaternion, whereas any non-trivial Pauli spinor is necessarily non-null. The cases of non-null
(massive) and null (massless) Dirac spinors are considered respectively in �14.10 and �14.11. If the Dirac
spinor is non-null, then it is equivalent to a scaled rotor, equation (14.140), but if the Dirac spinor is null,
then it is not simply a scaled rotor. The present section establishes an isomorphism (14.113) between Dirac
spinors and complex quaternions that is valid in general, regardless of whether the Dirac spinor is null or
not.
If a is a spacetime multivector, equivalent to an element of the Cli�ord algebra of Dirac γ-matrices, then

under rotation by Lorentz rotor R, the multivector a operating on the Dirac spinor ψ transforms as

R : aψ → (RaR)(Rψ) = Raψ . (14.110)

This shows that a Dirac spinor ψ Lorentz transforms, by construction, as

R : ψ → Rψ . (14.111)

The rule (14.111) is precisely the transformation rule (13.78) for spacetime rotors under Lorentz transfor-
mations: under a rotation by rotor R, a rotor S transforms as S → RS. More generally, the transformation
law (14.111) holds for any linear combination of Dirac spinors ψ. The isomorphism (14.34) between spacetime
rotors and unimodular quaternions, coupled with linearity, shows that the vector space of Dirac spinors is
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isomorphic to the vector space of complex quaternions. Speci�cally, any Dirac spinor ψ can be expressed
uniquely in the form of a 4× 4 matrix q, the Dirac representation of a complex quaternion q, acting on the
time-up spin-up column vector ε⇑↑ (the precise translation between Dirac spinors and complex quaternions
is left as Exercises 14.12 and 14.13):

ψ = q ε⇑↑ . (14.112)

In this section (including the Exercises) the 4× 4 matrix q is written in boldface to distinguish it from the
quaternion q that it represents; but the distinction is not fundamental. The mapping (14.112) establishes an
isomorphism between the vector spaces of Dirac spinors and quaternions

ψ ↔ q . (14.113)

The isomorphism means that there is a one-to-one correspondence between Dirac spinors ψ and complex
quaternions q, and that they transform in the same way under Lorentz transformations.
The isomorphism between the vector spaces of Dirac spinors and complex quaternions does not extend to

multiplication; that is, the product of two Dirac spinors ψ1 and ψ2 equivalent to the complex 4× 4 matrices
q1 and q2 does not equal the Dirac spinor equivalent to the product q1q2. The problem is that the Dirac
representation of a Dirac spinor ψ is a column vector, and two column vectors cannot be multiplied. The
question of how to multiply Dirac spinors is resumed in Chapter 39 on the super spacetime algebra.

14.9.1 Reverse Dirac spinor

An essential feature of any viable theory of spinors is the existence of a scalar product of spinors. The scalar
product must be a complex (with respect to the quantum mechanical imaginary i) number that is invariant
under Lorentz transformations. Now the product qq of the reverse of a quaternion with itself is a Lorentz-
invariant complex (with respect to I) number. This suggests de�ning a row Dirac spinor ψ reverse to the
column Dirac spinor ψ de�ned by equation (14.112) by

ψ ≡ ε>⇑↑ q , (14.114)

where q is the matrix representation of the reverse q of the complex quaternion q, and ε>a denotes the basis of
row Dirac spinors obtained by transposing the basis of column Dirac spinors de�ned by equations (14.108),

ε>⇑↑ =
(

1 0 0 0
)
, ε>⇑↓ =

(
0 1 0 0

)
, ε>⇓↑ =

(
0 0 1 0

)
, ε>⇓↓ =

(
0 0 0 1

)
.

(14.115)
The reverse Dirac spinor ψ is also called the Dirac adjoint spinor. It is related to the Hermitian conjugate
Dirac spinor ψ† by equation (14.130), and is the same as the Dirac row conjugate spinor ψ̄ · discussed in
Chapter 39, equation (39.102).
As found in equation (14.125a), ψψ is a Lorentz-invariant real number. More generally, the product χψ

of a row spinor χ with a column spinor ψ is a Lorentz-invariant complex (with respect to i) number, and
therefore provides a viable de�nition of a scalar product of Dirac spinors. The problem of de�ning a scalar
product of Dirac spinors is resumed in �39.5.1.
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Exercise 14.12. Translate a Dirac spinor into a complex quaternion. Given any Dirac spinor in the
Dirac representation (14.102),

ψ = ψaεa =


ψ⇑↑

ψ⇑↓

ψ⇓↑

ψ⇓↓

 , (14.116)

show that the corresponding complex quaternion q, and the equivalent 4×4 matrix q such that ψ = q ε⇑↑, are
(the complex conjugates ψa∗ of the components ψa of the spinor are with respect to the quantum-mechanical
imaginary i)

q =

{
Reψ⇑↑ Imψ⇑↓ −Reψ⇑↓ Imψ⇑↑

Reψ⇓↑ Imψ⇓↓ −Reψ⇓↓ Imψ⇓↑

}
↔ q =


ψ⇑↑ −ψ⇑↓∗ −ψ⇓↑ ψ⇓↓∗

ψ⇑↓ ψ⇑↑∗ −ψ⇓↓ −ψ⇓↑∗
ψ⇓↑ −ψ⇓↓∗ ψ⇑↑ −ψ⇑↓∗
ψ⇓↓ ψ⇓↑∗ ψ⇑↓ ψ⇑↑∗

 . (14.117)

Show that the reverse complex quaternion q and the equivalent 4 × 4 matrix q in the Dirac representa-
tion (14.102), are

q =

{
Reψ⇑↑ − Imψ⇑↓ Reψ⇑↓ − Imψ⇑↑

Reψ⇓↑ − Imψ⇓↓ Reψ⇓↓ − Imψ⇓↑

}
↔ q =


ψ⇑↑∗ ψ⇑↓∗ −ψ⇓↑∗ −ψ⇓↓∗
−ψ⇑↓ ψ⇑↑ ψ⇓↓ −ψ⇓↑
ψ⇓↑∗ ψ⇓↓∗ ψ⇑↑∗ ψ⇑↓∗

−ψ⇓↓ ψ⇓↑ −ψ⇑↓ ψ⇑↑

 . (14.118)

Conclude that the reverse spinor ψ de�ned by equation (14.114) is

ψ ≡ ε>⇑↑ q =
(
ψ⇑↑∗ ψ⇑↓∗ −ψ⇓↑∗ −ψ⇓↓∗

)
. (14.119)

Exercise 14.13. Translate a complex quaternion into a Dirac spinor. Show that the complex quater-
nion q ≡ w + ıx+ y + kz is equivalent in the Dirac representation (14.102) to the 4× 4 matrix q

q =

{
wR xR yR zR
wI xI yI zI

}
↔ q =


wR + izR ixR + yR −wI − izI − ixI − yI
ixR − yR wR − izR − ixI + yI −wI + izI
wI + izI ixI + yI wR + izR ixR + yR
ixI − yI wI − izI ixR − yR wR − izR

 . (14.120)

Show that the reverse quaternion q, the complex conjugate (with respect to I) quaternion q?, and the reverse
complex conjugate (with respect to I) quaternion q? are respectively equivalent to the 4× 4 matrices

q ↔ q = −γγ0q
†γγ0 , (14.121a)

q? ↔ q† = −γγ0qγγ0 , (14.121b)

q? ↔ q† = −γγ0qγγ0 , (14.121c)
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where γγ0 is the Dirac γ-matrix given by equation (14.102). Conclude that the Dirac spinor ψ ≡ q ε⇑↑
corresponding to the complex quaternion q is

ψ ≡ q ε⇑↑ =


wR + izR
ixR − yR
wI + izI
ixI − yI

 , (14.122)

that the reverse spinor ψ, equation (14.114), is

ψ ≡ ε>⇑↑ q =
(
wR − izR − ixR − yR −wI + izI ixI + yI

)
, (14.123)

and that the Hermitian conjugate spinor ψ† is

ψ† ≡ ε>⇑↑ q† =
(
wR − izR −ixR − yR wI − izI − ixI − yI

)
. (14.124)

Hence conclude that ψψ and ψ†ψ are

ψψ = Re(qq) = qRqR − qIqI , (14.125a)

ψ†ψ = qRqR + qIqI , (14.125b)

with

qRqR = w2
R + x2

R + y2
R + z2

R , (14.126a)

qIqI = w2
I + x2

I + y2
I + z2

I . (14.126b)

Exercise 14.14. Pseudoscalar times a Dirac spinor. In �14.10 it will be found that multiplying a Dirac
spinor ψ by the pseudoscalar I converts to an antispinor. In Chapter 39, equation (39.137), it will be seen
that Iψ is the PT conjugate of I, the spinor obtained by reversing all 4 axes of space and time. Show that
the product Iq of the pseudoscalar I with the complex quaternion q ≡ w + ıx+ y + kz is equivalent in the
Dirac representation (14.102) to the 4× 4 matrix Iq

Iq =

{
−wI −xI −yI −zI
wR xR yR zR

}
↔ Iq =


−wI − izI − ixI − yI −wR − izR − ixR − yR
− ixI + yI −wI + izI − ixR + yR −wR + izR
wR + izR ixR + yR −wI − izI − ixI − yI
ixR − yR wR − izR − ixI + yI −wI + izI

 .

(14.127)
Conclude that the Dirac antispinor Iψ ≡ Iq ε⇑↑ corresponding to the complex quaternion Iq is

Iψ = Iq ε⇑↑ =


−wI − izI
− ixI + yI
wR + izR
ixR − yR

 , (14.128)

Conclude that the pseudomagnitude ψIψ is

ψIψ = − Im(qq) = −2(wRwI + xRxI + yRyI + zRzI) . (14.129)
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Exercise 14.15. Relation between ψ and ψ†. Show that ψ and ψ† are related by

ψ = −iψ†γγ0 , ψ† = −iψγγ0 , (14.130)

by showing from equations (14.123) and (14.124) that

ψ† = −iε>⇑↑ qγγ0 . (14.131)

The same result follows from equation (14.121b). The Hermitian conjugate matrix is q† = −γγ0qγγ0, and
ε>⇑↑ γγ0 = iε>⇑↑, so ψ

† ≡ ε>⇑↑ q† = −iε>⇑↑ qγγ0.

Exercise 14.16. Translate a Dirac spinor into a pair of Pauli spinors. Show that in terms of the
real and imaginary (with respect to I) parts of the complex quaternion q, the equivalent 4× 4 matrix q is

q = qR + IqI ↔ q =

(
qR −qI
qI qR

)
, (14.132)

where qR and qI are the complex 2×2 special unitary matrices equivalent to the real quaternions qR and qI ,
equation (13.133). Show that the reverse quaternion q, the complex conjugate (with respect to I) quaternion
q?, and the reverse complex conjugate (with respect to I) quaternion q? are respectively

q ↔ q =

(
q†R −q†I
q†I q†R

)
, (14.133a)

q? ↔ q† =

(
qR qI
−qI qR

)
, (14.133b)

q? ↔ q† =

(
q†R q†I
−q†I q†R

)
. (14.133c)

Conclude that the Dirac spinor ψ ≡ q ε⇑↑ corresponding to the complex quaternion q is

ψ ≡ q ε⇑↑ =

(
ψR
ψI

)
, (14.134)

where ψR and ψI are the Pauli spinors corresponding to the real quaternions qR and qI , equation (13.134).
Conclude further that the antispinor Iψ is

Iψ ≡ Iq ε⇑↑ =

(
−ψI
ψR

)
, (14.135)

that the reverse spinor ψ, equation (14.114), is

ψ ≡ ε>⇑↑ q =
(
ψ†R −ψ†I

)
, (14.136)

and that the Hermitian conjugate spinor ψ† is

ψ† ≡ ε>⇑↑ q† =
(
ψ†R ψ†I

)
. (14.137)
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Hence conclude that ψψ, ψIψ, and ψ†ψ are given by

ψψ = ψ†RψR − ψ
†
IψI , (14.138a)

ψIψ = −(ψ†RψI + ψ†IψR) , (14.138b)

ψ†ψ = ψ†RψR + ψ†IψI . (14.138c)

Exercise 14.17. Is the group of Lorentz rotors isomorphic to SU(4)? Previously, Exercise 13.10,
it was found that the group Spin(3) of spatial rotors in 3 dimensions is isomorphic to SU(2). Is the group
Spin(3, 1) of Lorentz rotors isomorphic to the group SU(4) of complex 4 × 4 unitary matrices with unit
determinant?
Solution. No. The Dirac representation of the group Spin(3, 1) of Lorentz rotors shares with SU(4) the
property that its matrices are complex 4× 4 matrices with unit determinant. From the equivalence (14.120),
the determinant of the 4× 4 complex matrix q equivalent to a complex quaternion q is

det q = (qq)?(qq) . (14.139)

Since a Lorentz rotor is unimodular, with qq = 1, its Dirac representation has unit determinant. However,
the Dirac representation of a Lorentz rotor is not unitary (its inverse is not its Hermitian conjugate), despite
the fact that all the generators of the group, namely the 6 bivectors σa and Iσa, are unitary. Rather, the
inverse of a rotor R is its reverse R, related to its Hermitian conjugate by equation (14.121a). The condition
for the matrices of a group to be unitary is that the generators be skew-Hermitian (they equal minus their
Hermitian conjugates). The 3 spatial generators Iσa are indeed skew-Hermitian, but the 3 boost generators
σa are Hermitian.

14.10 Non-null Dirac spinor

A non-null, or massive, Dirac spinor ψ is one that is isomorphic (14.113) to a non-null complex quaternion q.
A non-null complex quaternion can be factored as a non-zero complex (with respect to I) scalar λ = λR+IλI
times a unimodular complex (with respect to I) quaternion R, a Lorentz rotor. Thus a non-null Dirac spinor
can be expressed as, equation (14.112) (the boldface for q, adopted in �14.9 to distinguish a quaternion q
from its matrix representation q, is dropped henceforth, since the distinction is not fundamental),

ψ = q ε⇑↑ , q = λR . (14.140)

The complex scalar λ can be taken without loss of generality to lie in the right hemisphere of the complex
plane (positive real part), since a minus sign can be absorbed into a spatial rotation by 2π of the rotor
R. There is no further ambiguity in the decomposition (14.140) into scalar and rotor, because the squared
modulus λRλR = λ2 of the scaled rotor λR is the same for any decomposition (do not confuse reversion
with complex conjugation; the reverse of a scalar is itself, λ = λ; the product λ2 is a complex (with respect
to I) number).
The fact that a non-null Dirac spinor ψ encodes a Lorentz rotor shows that a non-null Dirac spinor in
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some sense �knows� about the Lorentz structure of spacetime. It is profound that the Lorentz structure of
spacetime is built in to a non-null Dirac particle.
As discussed in �14.8, a pure time-up eigenvector ε⇑ represents a particle in its own rest frame, while a pure

time-down eigenvector ε⇓ represents an antiparticle in its own rest frame. The time-up spin-up eigenvector
ε⇑↑ is by de�nition (14.140) equivalent to the unit scaled rotor, λR = 1, so in this case the scalar λ is
pure real. Lorentz transforming the eigenvector multiplies it by a rotor, but leaves the scalar λ unchanged,
therefore pure real. Conversely, if the time-up spin-up eigenvector ε⇑↑ is multiplied by the imaginary I, then
according to the expression (14.122) the resulting spinor can be Lorentz transformed into a pure ε⇓ spinor,
corresponding to a pure antiparticle. Thus one may conclude that the real and imaginary parts (with respect
to I) of the complex scalar λ = λR + IλI correspond respectively to particles and antiparticles.
The Lorentz-invariant decomposition of a non-null Dirac spinor ψ into its particle ψ⇑ and antiparticle ψ⇓

parts is accomplished by

ψ = ψ⇑ + Iψ⇓ , ψ⇑ ≡
Reλ

λ
ψ , ψ⇓ ≡

Imλ

λ
ψ , λ =

√
ψψ − I(ψIψ) . (14.141)

The decomposition (14.141) is not the same as the decomposition (14.134) of the Dirac spinor into a pair of
Pauli spinors. The decomposition (14.141) into particle and antiparticle parts is Lorentz-invariant, whereas
the Pauli spinors of the decomposition (14.134) mix under Lorentz boosts. The Lorentz-invariant magnitude
ψψ of the Dirac spinor, equation (14.125a), is the di�erence between the probabilities λ2

R of particles and λ2
I

of antiparticles,

ψψ = ψ⇑ψ⇑ − ψ⇓ψ⇓ , ψ⇑ψ⇑ = λ2
R , ψ⇓ψ⇓ = λ2

I . (14.142)

Thus ψψ is positive for particles, negative for antiparticles. The Lorentz-invariant pseudomagnitude ψIψ,
equation (14.129), is minus twice the product λRλI of the amplitudes of particles and antiparticles,

ψIψ = −ψ⇑ψ⇓ − ψ⇓ψ⇑ , ψ⇑ψ⇓ = ψ⇓ψ⇑ = λRλI . (14.143)

The sum of the probabilities λ2
R of particles and λ2

I of antiparticles equals the number density in the rest
frame, which can be written in the manifestly Lorentz-invariant form

ψ⇑ψ⇑ + ψ⇓ψ⇓ = λ2
R + λ2

I =

√
(ψγγmψ)(ψγγmψ) . (14.144)

Since λR and λI are invariant under Lorentz transformations, all three terms ψ⇑ψ⇑, ψ⇓ψ⇓, and ψ⇑ψ⇓ = ψ⇓ψ⇑
are Lorentz-invariant scalars.

Concept question 14.18. Is ψψ real or complex? If ψ ≡ λ ε⇑↑ is a Dirac spinor corresponding to a
complex quaternion λ = λR + IλI with no quaternionic part (so λ = λ), should it not be that

ψψ = ε>⇑↑ λλ ε⇑↑ = ε>⇑↑ λ
2 ε⇑↑ = λ2 , (14.145)

which is a complex number, not a real number? Answer. No. Do not confuse the quantum-mechanical
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imaginary i with the pseudoscalar I. The combination ε>⇑↑ I ε⇑↑ does not equal I ε
>
⇑↑ε⇑↑. The complex (with

respect to I) number λ, and its matrix representation λ are, equation (14.120),

λ = λR + IλI ↔ λ = λR

(
1 0

0 1

)
+ iλI

(
0 1

1 0

)
, (14.146)

where the 1's in the matrices on the right hand side denote the 2× 2 unit matrix. The product ψψ is

ψψ =
(
λR 0 iλI 0

)
λR
0

iλI
0

 = λ2
R − λ2

I , (14.147)

in agreement with equation (14.142), not equation (14.145).

Concept question 14.19. Is ψγγmψ a scalar or a 4-vector? Under a Lorentz transformation ψγγmψ

transforms as

R : ψγγmψ → ψRRγγmRRψ = ψγγmψ , (14.148)

which appears to be a scalar. Yet ψγγmψ also looks like it transforms as a 4-vector. Which is it? Answer.
The transformations of spinors ψ = ψaεa and vectors a = amγγm considered in this chapter are active
transformations, �13.10, which rotate the basis spinors εa and vectors γγm while keeping coe�cients ψa and
am �xed. Under active transformations the combination ψaψ is indeed a scalar, transforming as

R : ψaψ → ψRRaRRψ = ψaψ . (14.149)

In fact ψaψ is a scalar product by construction, as will be explored in greater depth in a later chapter,
�39.5, so the fact that it transforms like a scalar should not be a surprise. However, as usual, one is free
to make choices as to whether a transformation is active (bodily rotates an object) or passive (rotates
the frame while leaving the object itself unchanged), �13.10. In most of this book, the convention is that
transformations are passive, meaning that a transformation rotates both the coe�cients and basis elements of
a spinor ψ = ψaεa or vector a = amγγm, while leaving the spinor or vector itself unchanged. With the passive
convention, ψγγmψ indeed transforms as a covariant vector (while ψaψ = ψamγγmψ transforms as a scalar,
the transformation of the covariant vector γγm cancelling against the transformation of the contravariant
vector am). The advantage of the passive convention is that the transformation properties of an object are
evident from the indices attached to it. However, the active convention of the present chapter is needed in
order to establish the fundamentals of how spinors transform.

14.11 Null Dirac Spinor

A null Dirac spinor is a Dirac spinor ψ constructed from a null complex quaternion q acting on the
rest-frame eigenvector ε⇑↑,

ψ = q ε⇑↑ , qq = 0 . (14.150)
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Physically, a null Dirac spinor represents a spin- 1
2 particle moving at the speed of light. A non-trivial null

spinor must be moving at the speed of light because if it were not, then there would be a rest frame where
the rotor part of the spinor ψ = λR ε⇑↑ would be unity, R = 1, and the spinor, being non-trivial, λ 6= 0,
would not be null. The null condition (14.150) is a complex constraint, which eliminates 2 of the 8 degrees of
freedom of a complex quaternion, so that a null spinor has 6 degrees of freedom. The null condition qq = 0

is equivalent to the two conditions

ψψ = ψIψ = 0 . (14.151)

Any non-trivial null complex quaternion q can be written uniquely as the product of a real quaternion λU
and a null factor (1− In) (Exercise 14.1):

q = λU(1− In) . (14.152)

Here λ is a positive real scalar, U is a purely spatial (i.e. real, with no I part) rotor, and n = ıana, a = 1, 2, 3, is
a real unimodular vector quaternion, satisfying nana = 1 with real na. Physically, equation (14.152) contains
the instruction to boost to light speed in the direction n, then scale by the real scalar λ and rotate spatially
by U . The minus sign in front of In comes from that the fact that a boost in direction n is described by a
rotor R = cosh(θ/2) − In sinh(θ/2), equation (14.42), which becomes proportional to 1 − In as the boost
tends to in�nity, θ → ∞. The 1 + 3 + 2 = 6 degrees of freedom from the real scalar λ, the spatial rotor U ,
and the real unimodular vector n in the expression (14.152) are precisely the number needed to specify a
null quaternion. The boost axis n is Lorentz-invariant. For if the boost factor 1− In is Lorentz transformed
by pre-multiplying by any complex quaternion p+ Ir, then the result

(p+ Ir)(1− In) = (p+ rn)(1− In) (14.153)

is the same unchanged boost factor 1− In pre-multiplied by the real quaternion p+ rn, the latter being a
product of a real scalar and a pure spatial rotation. Equation (14.153) is true because n2 = −1. The null
Dirac spinor ψ corresponding to the null complex quaternion q, equation (14.152), is

ψ ≡ q ε⇑↑ = λU(1− In) ε⇑↑ . (14.154)

The boost axis n speci�es the direction of the boost relative to the spin rest frame, where the spin is pure
up ↑. Because the boost axis n is Lorentz-invariant, Lorentz transforming a given null Dirac spinor �lls out
only 4 of the 6 degrees of freedom of null spinors.

Concept question 14.20. The boost axis of a null spinor is Lorentz-invariant. It may seem counter-
intuitive that the boost axis n of a null spinor is Lorentz-invariant. Should not a spatial rotation rotate the
boost direction, the direction in which the null spinor moves?Answer. The direction n speci�es the direction
of the boost axis relative to the spin axis. A Lorentz transformation of a null spinor e�ectively rotates both
boost and spin directions simultaneously. For example, if the boost and spin axes are parallel in one frame,
then they are parallel in any frame.
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Equation (14.153) shows that a Lorentz transformation of the null Dirac spinor ψ (14.154) is equivalent
to a scaling and a spatial rotation of that spinor,

(p+ Ir)ψ = (p+ Ir)λU(1− In) ε⇑↑ = (p+ rn′)ψ , (14.155)

where

n′ = UnU . (14.156)

The real quaternion p + rn′ on the right hand side of equation (14.155) is not necessarily unimodular (a
spatial rotor) even if the complex quaternion p+ Ir on the left hand side is unimodular (a Lorentz rotor). As
a simple example, a Lorentz boost e−Inθ/2 by rapidity θ along the boost axis n, equation (14.42), multiplies
the null spinor (1− In) ε⇑↑ by the real scalar eθ/2. Physically, when a null spinor is Lorentz transformed, it
gets blueshifted (multiplied by a real scalar).
The spinor reverse to the spinor (14.154) is

ψ ≡ ε>⇑↑ q = ε>⇑↑ (1 + In)λU . (14.157)

The spinor is null, qq = 0, because the boost factor is null, (1 + In)(1− In) = 0.

14.11.1 Weyl spinor

A Weyl spinor is a null Dirac spinor in the special case where the boost axis n in equation (14.154) aligns
with the spin axis. For a right-handed spinor, the boost and spin axes point in the same direction. For a
left-handed spinor, the boost and spin axes point in opposite directions. If the spin axis is taken along the
positive 3-direction (z-axis), as in the Dirac representation (14.102), then for a right-handed spinor, the
boost direction is n = ı3, while for a left-handed spinor, the boost direction is n = −ı3.
The bivector ı3 generates a spatial rotation about the 3-axis, yielding, in the Dirac representation, i when

acting on the spin-up eigenvector, ı3 ε↑ = i ε↑, equation (14.109). For right- and left-handed Weyl spinors,
the null boost factor 1− Iı · n acting on the rest-frame spinor ε⇑↑ becomes

(1− Iı · n) ε⇑↑ = (1∓ Iı3) ε⇑↑ = (1∓ Ii) ε⇑↑ = (1± γ5) ε⇑↑ , (14.158)

where γ5 ≡ −iI is the chiral operator. A general right- or left-handed Weyl spinor may be written uniquely
as the right- or left-handed basis spinor de�ned by equation (14.158) pre-multiplied by a positive real scalar
λ and a purely spatial rotor U ,

ψR
L

= λU(1± γ5)ε⇑↑ . (14.159)

A Weyl spinor has de�nite chirality, positive for a right-handed spinor ψR, negative for a left-handed spinor
ψL,

γ5ψR
L

= ±ψR
L
. (14.160)
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The complex quaternionic components of the right- or left-handed basis Weyl spinors (14.158) are

(1∓ Iı3) ε⇑↑ = (1± σ3) ε⇑↑ =

{
1 0 0 0

0 0 0 ±1

}
, (14.161)

the Dirac representation of the bivector σ3 being given by equations (14.103), which translates to a complex
quaternion in accordance with the equivalence (14.117). If the components of the real quaternion in equa-
tion (14.159) are λU = {w, x, y, z}, then the complex quaternionic components of the right- or left-handed
Weyl spinor are

ψR
L

=

{
w x y z

∓z ∓y ±x ±w

}
. (14.162)

Concept question 14.21. What makes Weyl spinors special? What is special about choosing the
boost axis n of a null spinor to align with the spin axis? Why not consider null spinors with arbitrary boost
axis n? Answer. The property that the boost axis aligns with the spin axis is Lorentz invariant. If the boost
aligns with the spin in one frame, then it does so in any Lorentz-transformed frame. This is the same thing
as saying that chirality is a Lorentz invariant. In the Standard Model of Physics, �42.1, the fundamental
fermions are natively massless right- or left-handed Weyl spinors. The fermions acquire their masses through
interaction with a scalar Higgs �eld. Right- and left-handed fermions are distinctly di�erent because only
left-handed fermions (and right-handed antifermions) feel weak interactions.

The extension of the spacetime algebra to a super spacetime algebra, wherein the spacetime algebra of
multivectors is shown to be isomorphic to the algebra of outer products of spinors, is resumed in Chapter 39.
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Geometric Di�erentiation and Integration

The problem of integrating over a curved hypersurface crops up routinely in general relativity, for example
in developing the Lagrangian or Hamiltonian mechanics of a �eld, Chapter 16. The apparatus developed
by mathematicians to allow integration over curved hypersurfaces is called di�erential forms, �15.6. The
geometric algebra provides an elegant way to understand di�erential forms.
In standard calculus, integration is inverse to di�erentiation. In the theory of di�erential forms, integration

is inverse to something called exterior di�erentiation, �15.8. The exterior derivative, conventionally written
d (distinguished here by latin font), is the (coordinate and tetrad) scalar derivative operator

d ≡ dxν ∂

∂xν
∧ , (15.1)

the wedge ∧ signifying that the derivative is a curl. A more explicit de�nition of the exterior derivative is
given by equation (15.61). A closely related derivative is the covariant spacetime derivative D de�ned by

D ≡ eνDν = γγnDn , (15.2)

where Dν and Dn are respectively the coordinate- and tetrad-frame covariant derivatives. The exterior
derivative d is isomorphic to the torsion-free covariant spacetime curl D̊∧ (see equation (15.76) for a more
precise statement of the isomorphism),

d↔ D̊∧ . (15.3)

The �rst part of this chapter shows how to take the covariant derivative of a multivector, and de�nes
the covariant spacetime derivative D. The second part, starting from �15.6, shows how these ideas relate
to di�erential forms and the exterior derivative, and derives the main result of the theory, the generalized
Stokes' theorem.
If torsion is present, then the torsion-full covariant derivative di�ers from the torsion-free covariant deriva-

tive, equation (2.68). In sections 15.1�15.4, the covariant derivativeDn and the covariant spacetime derivative
D signify either the torsion-full or the torsion-free derivative; all the results hold either way. In the theory of
di�erential forms, however, starting at �15.6, the covariant spacetime derivative is the torsion-free derivative
D̊ even when torsion is present.

380
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In this chapter N denotes the dimension of the parent manifold in which the hypersurface of integration
is embedded. In the standard spacetime of general relativity, N equals 4 and the signature is −+++, but
all the results extend to manifolds of arbitrary dimension and arbitrary signature.

15.1 Covariant derivative of a multivector

The geometric algebra suggests an alternative approach to covariant di�erentiation in general relativity, in
which the connection is treated as a vector of operators Γ̂n, the covariant derivative Dn being written

Dn = ∂n + Γ̂n . (15.4)

Acting on any object, the connection operator Γ̂n generates a Lorentz transformation.
In the spacetime algebra, a Lorentz transformation (13.51) by rotor R transforms a multivector a by a→

RaR. The generator of a Lorentz transformation is a bivector. The rotor corresponding to an in�nitesimal
Lorentz transformation generated by a bivector Γ is R = eεΓ/2 = 1+ 1

2εΓ. The resulting in�nitesimal Lorentz
transformation transforms the multivector a by a→ a+ 1

2ε[Γ,a], where [Γ,a] ≡ Γa−aΓ is the commutator.
It follows that the action of the connection operator Γ̂n on a multivector a must take the form

Γ̂na = 1
2 [Γn,a] (15.5)

for some set of bivectors Γn. Since rotation does not change the grade of a multivector, [Γn,a] for each n is
a multivector with the same grade as a.

Concept question 15.1. Commutator versus wedge product of multivectors. Is the commutator
1
2 [a, b] of two multivectors the same as their wedge product a∧ b? Answer. No. In the �rst place, the wedge
product anticommutes only if both a and b have odd grade, equation (13.36). In the second place, the anti-
commutator selects all grade components of the geometric product that anticommute, per equation (13.32).
The only case where a∧ b = 1

2 [a, b] is true is where either a or b is a vector (a multivector of grade 1), and
both a and b are odd.

To establish the relation between the bivectors Γn and the usual tetrad connections Γkmn, consider the
covariant derivative of the vector a = amγγm:

Dna = ∂na+ 1
2 [Γn,a] = γγm∂na

m + 1
2 [Γn,γγm]am . (15.6)

Notice that the directed derivative ∂n in equation (15.6) is to be interpreted as acting only on the components
am of the vector, not on the tetrad γγm; rather, the variation of the tetrad under parallel transport is embodied
in the 1

2 [Γn,γγm] term. The expression (15.6) must agree with the expression (11.35) obtained in the earlier
treatment, namely

Dna = γγm∂na
m + Γkmnγγka

m . (15.7)
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Comparison of equations (15.6) and (15.7) shows that

1
2 [Γn,γγm] = Γkmnγγk . (15.8)

The N -tuple (not vector) of bivectors Γn satisfying equation (15.8) is

Γn ≡ 1
2Γklnγγ

k ∧γγl (15.9)

(the factor of 1
2 would disappear if the implicit summation were over distinct antisymmetric pairs kl of

indices). Equation (15.9) can be proved with the help of the identity

1
2 [γγk ∧γγl,γγm] = δlmγγ

k − δkmγγl . (15.10)

The same formula (15.5) applies, with the bivector Γn given by the same equation (15.9), if the vector a is
expressed as a sum a = amγγ

m over its covariant am rather than contravariant am components. In this case

Dna = γγm∂nam + 1
2 [Γn,γγ

m]am , (15.11)

which reproduces the earlier equations (11.40) and (11.41),

Dna = γγm∂nam − Γmknγγ
kam , (15.12)

since
1
2 [Γn,γγ

m] = −Γmknγγ
k . (15.13)

The same formula (15.5) with the same bivector (15.9) applies to any multivector, which follows because the
connection operator Γ̂n is additive over any product of vectors or multivectors:

Γ̂nab = 1
2 [Γn,ab] = 1

2 [Γn,a]b+ 1
2a[Γn, b] = (Γ̂na)b+ a(Γ̂nb) . (15.14)

To summarize, the covariant derivative of a multivector a can be written

Dna = ∂na+ 1
2 [Γn,a] , (15.15)

with the N -tuple of bivectors Γn given by equation (15.9). In equation (15.15), as previously in equa-
tion (15.6), for a multivector a = γγAa

A, the directed derivative ∂n is to be interpreted as acting only on
the components aA of the multivector, ∂na = γγA ∂na

A. Equation (15.15) is just another way to write the
covariant derivative of a multivector, yielding exactly the same result as the earlier method from �11.9.
The earlier (�11.9) and multivector approaches to covariant di�erentiation can be combined as needed.

For example, the covariant derivative of a covariant vector am of multivectors is

Dnam = ∂nam − Γkmnak + 1
2 [Γn,am] . (15.16)

As always, covariant di�erentiation is de�ned so that it commutes with the tetrad basis elements; that is,
covariant derivatives of the tetrad basis elements vanish by construction,

Dnγγm = 0 . (15.17)
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For example, equation (15.17) is implied by the equality

Dn(γγma
m) = γγmDna

m , (15.18)

which is true by construction.
The covariant derivative of a multivector a can also be expressed as a coordinate derivative

Dνa =
∂a

∂xν
+ 1

2 [Γν ,a] , (15.19)

where the coordinate and directed derivatives are related as usual by ∂/∂xν = enν ∂n, and where the
connection vector Γν is related to the tetrad connection Γn de�ned by equation (15.9) by

Γν ≡ enνΓn . (15.20)

The components Γklν ≡ enνΓkln of Γν ≡ 1
2Γklνγγ

k ∧γγl constitute a coordinate-frame vector, but not a tetrad-
frame tensor. The connection Γν is given by equation (15.20), not by a direct relation to the coordinate-frame
connections Γµνκ, that is, Γν 6= 1

2Γκλν e
κ ∧ eλ.

15.2 Riemann tensor of bivectors

As discussed in �2.19.2, the commutator of the covariant derivative de�nes two fundamental geometric
objects, the torsion tensor Snkl and the Riemann curvature tensor Rklmn. The commutator can be written

[Dk, Dl] = SnklDn + R̂kl , (15.21)

where Snkl is the torsion tensor, and the Riemann curvature operator R̂kl is an operator whose action on any
tensor was given previously by equation (2.114). De�ne the Riemann antisymmetric tensor of bivectors Rkl

by

Rkl ≡ 1
2Rklmn γγ

m ∧γγn (15.22)

(again, the factor of 1
2 would disappear if the implicit summation were over distinct antisymmetric pairs mn

of indices). Acting on any multivector a, the Riemann curvature operator yields

R̂kla = 1
2 [Rkl,a] , (15.23)

which is an antisymmetric tensor of multivectors of the same grade as a. The Riemann tensor of bivectors
Rkl, equation (15.22), is related to the connection N -tuple of bivectors Γk, equation (15.9), by

Rkl = ∂kΓl − ∂lΓk + 1
2 [Γk,Γl] + (Γmkl − Γmlk − Smkl )Γm , (15.24)

where, in conformity with the convention of equation (15.15), directed derivatives ∂kΓl are to be interpreted
as acting only on the components Γmnl of Γl ≡ 1

2Γmnlγγ
m ∧γγn, not on the tetrad axes γγm. Equation (15.24)

can be derived either from the tetrad-frame expression (11.60) for the Riemann tensor, or from the expres-
sion (15.15) for the covariant derivative of a multivector.
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Transforming equation (15.24) into a coordinate frame,Rκλ = ekκe
l
λRkl, and substituting equation (11.76)

gives, with or without torsion, the elegant expression

Rκλ =
∂Γλ
∂xκ

− ∂Γκ
∂xλ

+ 1
2 [Γκ,Γλ] , (15.25)

which can also be written as the commutator

1
2Rκλ =

[
∂

∂xκ
+ 1

2Γκ ,
∂

∂xλ
+ 1

2Γλ

]
. (15.26)

Equation (15.25) is Cartan's second equation of structure, explored in depth in �16.14.2. The components
of Rκλ = 1

2Rκλmnγγ
m ∧γγn constitute the Riemann tensor Rκλmn in the mixed coordinate-tetrad basis,

equation (11.77).

15.3 Torsion tensor of vectors

De�ne the torsion antisymmetric tensor of vectors Sκλ by (the minus sign is chosen so that equation (15.29)
resembles equation (15.25))

Sκλ ≡ −Smκλ γγm . (15.27)

In components, the torsion tensor of vectors Sκλ is, from equation (11.49),

Sκλ =

(
∂emλ
∂xκ

− ∂emκ
∂xλ

+ Γmκλ − Γmλκ

)
γγm , (15.28)

which can be written elegantly

Sκλ =
∂eλ
∂xκ

− ∂eκ
∂xλ

+ 1
2 [Γκ, eλ]− 1

2 [Γλ, eκ] , (15.29)

where eκ ≡ ekκγγk are the usual tangent basis vectors, and again the coordinate derivative ∂/∂xκ is to be
interpreted as acting only on the components ekκ of eκ, not on the tetrad axes γγk. Equation (15.29) is
Cartan's �rst equation of structure, �16.14.2. Equation (15.29) can also be written in terms of covariant
derivatives

Sκλ = Dκeλ −Dλeκ . (15.30)

15.4 Covariant spacetime derivative

The covariant derivative Dn, equation (15.4), acts on multivectors, but it does not yield a multivector (it
yields a vector of multivectors). A covariant derivative that does map multivectors to multivectors is the
covariant spacetime derivative D de�ned by

D ≡ γγnDn . (15.31)
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The covariant spacetime derivative D is a sum of a directed derivative ∂ and a connection operator Γ̂,

D = ∂ + Γ̂ , ∂ ≡ γγn∂n , Γ̂ ≡ γγnΓ̂n . (15.32)

The action of the connection operator Γ̂ on a multivector a is

Γ̂a = 1
2γγ

n[Γn,a] (15.33)

(not Γ̂a = 1
2 [Γ,a]). The covariant spacetime derivative of a multivector a is

Da = γγnDna = γγn
(
∂na+ 1

2 [Γn,a]
)
. (15.34)

The covariant spacetime derivative (15.31) can equally well be written in terms of the coordinate deriva-
tives,

D ≡ eνDν . (15.35)

The covariant spacetime derivative (15.34) of a multivector can then also be written

Da = eνDνa = eν
(
∂a

∂xν
+ 1

2 [Γν ,a]

)
. (15.36)

Acting on a multivector a, the covariant spacetime derivative D yields a sum of two multivectors, a
covariant divergence D · a with one grade lower that a, and a covariant curl D∧a with one grade higher
than a,

Da = D · a+D∧a multivector . (15.37)

In the particular case that a is a scalar a (a multivector of grade 0), the covariant divergence (de�ned to be
one grade lower than a) is zero, D · a = 0. If torsion vanishes, the curl D∧a is essentially the same as the
exterior derivative in the mathematics of di�erential forms, �15.8.
The covariant spacetime divergence and curl of a grade-p multivector a = (1/p!)γγlm...nalm...n are

D · a =
1

(p−1)!
γγm...n(D · a)m...n , (D · a)m...n = Dlalm...n , (15.38a)

D∧a =
1

(p+1)!
γγklm...n(D∧a)klm...n , (D∧a)klm...n = (p+ 1)D[kalm...n] . (15.38b)

The factorial factors could be dropped if the implicit summations were taken over distinct antisymmetric
sequences of indices, but are retained here for explicitness. For example, the components of the covariant
divergences and curls of a scalar ϕ, a vector A = γγnAn, and a bivector F = 1

2γγ
m ∧γγnFmn, are respectively

D · ϕ = 0 , (D∧ϕ)n = Dnϕ = ∂nϕ , (15.39a)

D ·A = DnAn , (D∧A)mn = DmAn −DnAm , (15.39b)

(D · F )n = DmFmn , (D∧F )lmn = DlFmn +DmFnl +DnFlm . (15.39c)

A divergence can be converted to a curl, and vice versa, by post-multiplying by the pseudoscalar IN ,

D∧(aIN ) = (D · a)IN , D · (aIN ) = (D∧a)IN . (15.40)
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which works because the pseudoscalar IN is covariantly constant, and multiplying by it �ips the grade of a
multivector from p to N − p.
The curl of the wedge product of a grade-p multivector a with a multivector b satis�es the Leibniz-like

rule

D∧(a∧ b) = (D∧a)∧ b+ (−)pa∧(D∧ b) . (15.41)

The square of the covariant spacetime derivative is

DD = D ·D +D∧D = DkD
k + 1

2γγ
k ∧γγl[Dk, Dl] , (15.42)

which is a sum of the scalar d'Alembertian wave operator � ≡ DkD
k, and a bivector operator whose

components constitute the commutator of the covariant derivative, equation (15.21).
For vanishing torsion, the squared spacetime curl of a multivector a vanishes. For example, for a grade 1

multivector a = anγγn,

D∧D∧a = 1
2γγ

k ∧γγl ∧γγmRklmnan = 0 , (15.43)

which vanishes thanks to the cyclic symmetry of the Riemann tensor, R[klm]n = 0, valid for vanishing torsion.

Exercise 15.2. Leibniz rule for the covariant spacetime derivative.

1. What is the covariant derivative Dm(ab) of a geometric product of multivectors a and b in terms of
covariant derivatives of each of a and b?

2. What is the covariant spacetime derivative D(ab) of a geometric product or multivectors a and b in
terms of covariant spacetime derivatives of each of a and b?

Solution.
1. The covariant derivative Dm(ab) satis�es the Leibniz rule

Dm(ab) = (Dma)b+ aDmb . (15.44)

2. If a is a multivector of grade p, then the covariant spacetime derivative D(ab) satis�es the Leibniz-like
rule

D(ab) ≡ γγmDm(ab) = γγm
(
(Dma)b+ aDmb

)
= (Da)b+ (−)p

(
− (a ·D)b+ (a∧D)b

)
. (15.45)

15.5 Torsion-full and torsion-free covariant spacetime derivative

The results of �15.1��15.4 hold with or without torsion.
As in �2.12 and �11.15, when torsion is present and one wishes to make the torsion part explicit, it is con-

venient to distinguish torsion-free quantities with a˚overscript. The torsion-full and torsion-free connection
N -tuples Γn and Γ̊n are related by

Γn = Γ̊n +Kn , (15.46)
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where the contortion vector of bivectors Kn is de�ned, analogously to equation (15.9), in terms of the
contortion tensor Kkln equation (11.56), by

Kn = 1
2Kkln γγ

k ∧γγl , (15.47)

implicitly summed over distinct indices k and l. Acting on a multivector a, the torsion-full and torsion-free
covariant spacetime derivatives D and D̊ are related by

Da = D̊a+ 1
2γγ

n[Kn,a] . (15.48)

From equation (15.25), the Riemann tensor of bivectors Rκλ splits into torsion-free and contortion parts,

Rκλ =
∂(Γ̊λ +Kλ)

∂xκ
− ∂(Γ̊κ +Kκ)

∂xλ
+ 1

2 [Γ̊κ +Kκ, Γ̊λ +Kλ]

= R̊κλ + D̊κKλ − D̊λKκ + 1
2 [Kκ,Kλ] . (15.49)

15.6 Di�erential forms

Di�erential forms, or p-forms, are invariant measures of integration over a p-dimensional hypersurface in
an N -dimensional manifold. In �13.1 it was seen that the wedge product of p vectors de�nes a directed
p-dimensional volume, illustrated in Figure 13.1. A p-form is essentially the same thing, but with the vectors
taken to be in�nitesimals. The purpose of p-forms is to allow integration over p-dimensional hypersurfaces
in a coordinate-independent fashion. By construction, a di�erential form is a coordinate (and tetrad) scalar,
as is essential for integration to be coordinate-independent.
In an N -dimensional manifold with coordinates xµ, a 1-form expressed in the coordinate frame is

a = aµ dx
µ . (15.50)

By de�nition, the di�erential dxµ transforms under coordinate transformations like a contravariant coordinate
vector. Requiring that the 1-form a de�ned by equation (15.50) be a coordinate scalar imposes that aµ
must be a covariant coordinate vector. When the 1-form a is integrated over any line (= 1-dimensional
hypersurface) in the manifold, the result is independent of the choice of coordinates, as desired.
A 2-form expressed in a coordinate frame is

a = 1
2 aµν dx

µ ∧ dxν , (15.51)

implicitly summed over all antisymmetric pairs µν. The factor of 1
2 cancels the double-counting of pairs,

ensuring that each distinct antisymmetric pair µν counts once. The wedge product dxµ ∧ dxν of di�eren-
tials de�nes a parallelogram, a directed in�nitesimal element of area, whose 2-dimensional direction is the
(dxµ�dxν)-plane, and whose magnitude is the area of the parallelogram. The wedge product is antisymmetric,

dxµ ∧ dxν = −dxν ∧ dxµ . (15.52)

The wedge product dxµ ∧ dxν transforms as an antisymmetric contravariant rank-2 coordinate tensor. Re-
quiring that the 2-form a de�ned by equation (15.51) be a coordinate scalar imposes that aµν must be
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a covariant rank-2 coordinate tensor, which can be taken to be antisymmetric without loss of generality.
To see that the antisymmetric prescription recovers correctly the usual behaviour of areal elements of inte-
gration, consider the particular case where the 2-dimensional surface of integration is spanned by just two
coordinates, x and y, all other coordinates being constant on the surface. Under a coordinate transformation
{x, y} → {x′, y′}, the wedge product of di�erentials transforms as

dx′ ∧ dy′ =

(
∂x′

∂x
dx+

∂x′

∂y
dy

)
∧
(
∂y′

∂x
dx+

∂y′

∂y
dy

)
=

(
∂x′

∂x

∂y′

∂y
− ∂x′

∂y

∂y′

∂x

)
dx∧ dy . (15.53)

The factor relating the two areal elements is the familiar Jacobian determinant |∂{x′, y′}/∂{x, y}|. The
de�nition (15.51) of the 2-form a is by construction coordinate-invariant, and is therefore valid when more
than 2 coordinates vary over the surface of integration. However, it is always possible to erect a local
coordinate system in which only 2 of the coordinates vary over the 2-dimensional surface of integration.
In general, a p-form expressed in a coordinate frame is

a =
1

p!
aµ1...µp dx

µ1 ∧ ...∧ dxµp . (15.54)

The factor of 1/p! ensures that each distinct index sequence µ1...µp is counted only once. The 1/p! factor
could be dropped if the implicit sum were taken over distinct antisymmetric sequences of indices. Thus
equation (15.54) could also be written

a = aΛ dx
Λ , (15.55)

where the sum is only over distinct antisymmetric sequences Λ of p indices. The wedge product dxµ1 ∧ ...∧ dxµp
of di�erentials is totally antisymmetric. It transforms like an antisymmetric contravariant rank-p tensor. Re-
quiring that the p-form a de�ned by equation (15.54) be coordinate-invariant imposes that aµ1...µp be a
(without loss of generality antisymmetric) covariant rank-p coordinate tensor.
The de�nition (15.54) of a p-form extends to the case p = 0. A 0-form is simply a scalar.

15.7 Wedge product of di�erential forms

The wedge product of di�erential forms is de�ned consistent with the wedge product of multivectors, equa-
tion (13.35). The wedge product of a 1-form a with a 1-form b de�nes a 2-form

a∧ b = aµdx
µ ∧ bνdxν = a[µbν]dx

µ ∧ dxν = 1
2 (aµbν − aνbµ) dxµ ∧ dxν . (15.56)

The factor of 1
2 in the last expression of equations (15.56) could be omitted if the implicit sum were taken

over distinct antisymmetric pairs µν of indices. In general, the wedge product of a p-form a with a q-form b

de�nes a (p+ q)-form a∧ b,

a∧ b =

(
1

p!
aµ1...µpdx

µ1 ∧ ...∧ dxµp
)
∧
(

1

q!
bν1...νqdx

ν1 ∧ ...∧ dxνq
)

=
1

p!q!
a[µ1...µpbν1...νq ]dx

µ1 ∧ ...∧ dxµp ∧ dxν1 ∧ ...∧ dxνq . (15.57)
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If the forms are expressed as sums a ≡ aΛ d
pxΛ and b ≡ bΠ d

qxΠ over distinct antisymmetric sequences Λ

and Π of respectively p and q indices, then their wedge product is

a∧ b = aΛbΠ d
p+qxΛΠ =

(p+ q)!

p!q!
a[ΛbΠ] d

p+qxΛΠ , (15.58)

where the second expression is implicitly summed over distinct antisymmetric sequences Λ and Π of p and
q indices, while the last expression is implicitly summed over distinct antisymmetric sequences ΛΠ of p+ q

indices.
The wedge product is symmetric or antisymmetric as pq is even or odd,

a∧ b = (−)pqb∧a , (15.59)

consistent with the wedge product (13.35) of two multivectors.
The wedge product of a 0-form (scalar) a with a di�erential form b is just their ordinary product,

a∧ b = ab if a is a scalar , (15.60)

consistent with the result (13.38) for multivectors.

15.8 Exterior derivative

The exterior derivative of a di�erential form is constructed so that integration and exterior di�erentiation
are inverse to each other, �15.12. In the abstract language of di�erential forms, the exterior derivative is
denoted d, and the exterior derivative of a p-form a is the (p+1)-form da de�ned by

da ≡ d

(
1

p!
aµ1...µp dx

µ1 ∧ ...∧xµp
)
≡ 1

p!

∂aµ1...µp

∂xν
dxν ∧ dxµ1 ∧ ...∧ dxµp . (15.61)

Equation (15.61) makes explicit the meaning of the de�nition (15.1) of the exterior derivative d. Thanks to
the antisymmetry of the wedge product of di�erentials, the exterior derivative (15.61) may be rewritten

da =
1

p!
∂[νaµ1...µp] dx

ν ∧ dxµ1 ∧ ...∧ dxµp , (15.62)

where ∂ν ≡ ∂/∂xν . But the antisymmetrized coordinate derivative is just equal to the antisymmetrized
torsion-free covariant derivative (Exercise 2.6),

∂[νaµ1...µp] = D̊[νaµ1...µp] , (15.63)

which is true even when torsion is present (that is, the antisymmetrized coordinate derivative equals the anti-
symmetrized torsion-free covariant derivative, not the antisymmetrized torsion-full covariant derivative). The
antisymmetrized coordinate derivative is a covariant coordinate tensor despite the fact that the derivatives
are coordinate not covariant derivatives, and this is true whether or not torsion is present. Thus the exterior
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derivative da is coordinate-invariant, with or without torsion. If the p-form is expressed as a sum a ≡ aΛ d
pxΛ

over distinct antisymmetric sequences Λ of p indices, then its exterior derivative is the (p+ 1)-form

da = ∂κaΛ d
p+1xκΛ = (p+ 1) ∂[κaΛ] d

p+1xκΛ , (15.64)

where the second expression is implicitly summed over distinct antisymmetric sequences Λ of p indices, while
the last expression is implicitly summed over distinct antisymmetric sequences κΛ of p+ 1 indices,
The simplest case is the exterior derivative of a 0-form (scalar) ϕ, which according to the de�nition (15.61)

is the one-form

dϕ ≡ ∂ϕ

∂xν
dxν . (15.65)

The next simplest case is the exterior derivative of a one-form a, which according to the de�nition (15.61)
is the 2-form

da = d(aν dx
ν) =

∂aν
∂xµ

dxµ ∧ dxν

=
1

2

(
∂aν
∂xµ

− ∂aµ
∂xν

)
dxµ ∧ dxν (15.66)

= 1
2

(
D̊µaν − D̊νaµ

)
dxµ ∧ dxν , (15.67)

implicitly summed over both indices µ and ν. The factor of 1
2 would disappear if the sum were only over

distinct antisymmetric pairs µν.
The exterior derivative of the wedge product of a p-form a with a q-form b satis�es the same Leibniz-like

rule (15.41) as the spacetime curl,

d(a∧ b) ≡ (da)∧ b+ (−)pa∧(db) . (15.68)

15.8.1 The square of the exterior derivative vanishes

The exterior derivative has the notable property that its square vanishes,

dda =
1

p!
∂[ν1ν2aµ1...µp] dx

ν1 ∧ dxν2 ∧ dxµ1 ∧ ...∧ dxµp = 0 , (15.69)

because coordinate derivatives commute. The analogous statement in the geometric algebra is that the
torsion-free covariant spacetime curl squared of a multivector a vanishes, equation (15.43),

D̊∧ D̊∧a = 0 . (15.70)

15.9 An alternative notation for di�erential forms

The mathematicians' abstract notation for di�erential forms, where the p-volume element is absorbed into
the de�nition of a p-form, is elegant, but can be hard to parse. On the other hand the wedge notation



15.9 An alternative notation for di�erential forms 391

dxµ1 ∧ ...∧ dxµp is unwieldy, and seemingly wedded to coordinate frames. It is useful to introduce a compro-
mise notation, equation (15.75), that is more in line with what physicists commonly use. The notation keeps
the p-volume element of integration explicit, but is compact, and �exible enough to work in tetrad as well
as coordinate frames.
Recall that an interval dxµ between two points of spacetime can be written as the abstract vector interval

dx, equation (2.19),

dx ≡ eµ dxµ = γγm e
m
µ dx

µ . (15.71)

De�ne the invariant p-volume element dpx to be the normalized wedge product of p copies of dx,

dpx ≡ 1

p!

p terms︷ ︸︸ ︷
dx∧ ...∧dx =

1

p!
eµ1 ∧ ...∧ eµp dxµ1 ∧ ...∧ dxµp , (15.72)

which is both a p-form and a grade-p multivector. The 1/p! factor ensures that each distinct antisymmetric
sequence µ1...µp of indices counts just once. The 1/p! factor could be omitted from the rightmost expression
of equation (15.72) if the implicit sum were only over distinct antisymmetric sequences of indices. Denote the
components of the invariant p-volume element by dpxA, where A runs over distinct antisymmetric sequences
of p indices (in N dimensions, there are N !/[p!(N − p)!] such distinct sequences). Expanded in components,
the invariant p-volume element is

dpx = γγA d
pxA , (15.73)

with A implicitly summed over distinct antisymmetric sequences of p indices. Notice that the notation has
been switched from coordinate-frame to tetrad-frame, which is �ne because dpx is a (coordinate and tetrad)
gauge-invariant object, so can be expanded in any frame. Equation (15.73) remains valid in a coordinate
frame, where the tetrad basis elements γγm are the coordinate tangent vectors eµ. The components dpxA of
the p-volume element form a contravariant antisymmetric tensor of rank p. The notation d2xkl for an areal
element is to be distinguished from the notation ds2 = dx · dx for the scalar interval squared.
If a = aAγγA is a grade-p multivector, then the corresponding p-form is de�ned to be the scalar product

a · dpx , (15.74)

the dot signifying that the scalar part of the geometric product of the two grade-p multivectors a and dpx
is to be taken. In components, the p-form is a · dpx = aAγγA · γγB dpxB , which simpli�es to

a · dpx = aA d
pxA , (15.75)

with A implicitly summed over distinct antisymmetric sequences of p indices. In a coordinate frame, the
right hand side of equation (15.75) coincides with the right hand side of equation (15.54).
In this notation, the exterior derivative of a p-form a ·dpx is the (p+1)-form corresponding to the torsion-

free covariant spacetime curl D̊∧a of the grade-p multivector a,

d(a · dpx) ≡ (D̊∧a) · dp+1x = (D̊∧a)A d
p+1xA , (15.76)
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with A implicitly summed over distinct antisymmetric sequences of p+1 indices. The components of the
torsion-free covariant curl in equation (15.76) are

(D̊∧a)kl...m = (p+ 1) D̊[kal...m] . (15.77)

In a coordinate frame, the right hand side of equation (15.76) coincides with the right hand side of equa-
tion (15.62).

15.10 Hodge dual form

The Hodge dual ∗a of a di�erential form a is most easily de�ned using the geometric algebra and the notation
of �15.9. Given a p-form a · dpx, a dual q-form ∗(a · dpx) with q = N − p can be de�ned to be the form
corresponding to the Hodge dual INa, equation (13.24), of the multivector a,

∗(a · dpx) ≡ (INa) · dqx , (15.78)

where IN is the pseudoscalar of the geometric algebra in N dimensions, equation (13.19). Equation (15.78)
may also be written

∗(a · dpx) = (−)pqa · ∗dqx , (15.79)

where ∗dqx is the dual q-volume element
∗dqx ≡ INdqx . (15.80)

This is a q-volume element, but a multivector of grade p = N − q. The (−)pq sign comes from commuting
IN through a.
The pseudoscalar IN can be expressed as

IN = εAγγA , (15.81)

where A runs over the one distinct antisymmetric sequence 1...N of N indices, and εA is the total antisym-
metric tensor normalized to ε1...N = 1, as is the convention of this book. Thus the dual INa of a multivector
a = aAγγA may be written

INa = INa
AγγA = εBCγγBC a

AγγA = εBAa
A γγB , (15.82)

implicitly summed over distinct antisymmetric sequences A, B, and C of respectively p, q, and p indices.
Equation (15.82) implies that the multivector components ∗aB of the dual multivector INa = ∗aBγγB are

∗aB = εBAa
A , (15.83)

implicitly summed over distinct antisymmetric sequences A of p indices. Similarly, the dual q-volume element
∗dqx is

∗dqx = INγγB d
qxB = εACγγAC γγB d

qxB = γγA ε
A
B d

qxB , (15.84)
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implicitly summed over distinct antisymmetric sequences A, B, and C of respectively p, q, and p indices.
Equation (15.84) implies that the multivector components ∗dqxB of the dual q-volume ∗dqx = γγA

∗dqxA are

∗dqxA = εAB d
qxB . (15.85)

implicitly summed over distinct antisymmetric sequences B of q indices. The components ∗dqxA of the dual
q-volume element form a contravariant antisymmetric tensor of rank p. In summary, the dual q-form (15.79)
is

∗(a · dqx) = εB
AaA d

qxB = ∗aB d
qxB = (−)pqaA

∗dqxA . (15.86)

In the mathematicians' notation, the dual ∗a of a p-form a = aA d
pxA is the q-form, from equation (15.86),

∗a = εBAa
A dqxB , (15.87)

implicitly summed over distinct antisymmetric sequences A and B of respectively p and q indices.

15.11 Relation between coordinate- and tetrad-frame volume elements

Consider a p-dimensional hypersurface embedded inside an N -dimensional manifold. Choose an orthonormal
tetrad such that the �rst p basis elements γγ1, ... ,γγp of the tetrad are tangent to the p-dimensional hyper-
surface, while the last N − p basis elements γγp+1, ... ,γγN are orthogonal to it. (Such a choice is not always
possible. An example is the case of an integral along a null geodesic. But even in that case an integral can
be de�ned � the a�ne distance � by a suitable limiting procedure. Whatever the case, if an integral can
be de�ned, some version of the equations below applies.) With respect to an orthonormal tetrad frame, the
components dpx1...p of the p-volume element transform like the p-dimensional pseudoscalar Ip. Thus the or-
thonormal tetrad-frame p-volume element is invariant. The coordinate- and tetrad-frame p-volume elements,
which are tensors, are related by the vielbein in the usual way, leading to the result that

e dpxµ1...µp = dpx1...p , (15.88)

where e is the determinant of the p × N vielbein matrix emµ with m running from 1 to p and µ running
from 1 to N ,

e ≡ N !

(N − p)!
e1

[µ1
... epµp] . (15.89)

The factor of N !/(N − p)! in equation (15.89) arises because there are that many distinct terms in the
determinant, one for each choice of µ1...µp, and antisymmetrization over indices conventionally denotes the
average, not the sum. Thus the N !/(N − p)! factor ensures that each term in the determinant appears with
coe�cient ±1, as it should. Equation (15.88) implies that e dpxµ1...µp is an invariant measure of the p-volume
element. Despite the lack of indices, e is not a scalar, but rather is the antisymmetric coordinate and tetrad
tensor de�ned by the right hand side of equation (15.89).
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Dual q-volume elements are related similarly,

e ∗dqxµ1...µp = ∗dqx1...p , (15.90)

with the same e, equation (15.89).

15.12 Generalized Stokes' theorem

The most important result in the mathematics of di�erential forms is a generalization of the theorems of
Cauchy, Gauss, Green, and Stokes relating the integral of a derivative of a function to a surface integral of the
function. In the mathematicians' compact notation, the generalized Stokes' theorem says that the integral
of the exterior derivative da of a p-form a over a (p+1)-dimensional hypersurface V equals the integral of
the p-form a over the p-dimensional boundary ∂V of the hypersurface:∫

V

da =

∮
∂V

a . (15.91)

In the more explicit notation of �15.9, if a = aAγγ
A is a grade-p multivector, Stokes' theorem states∫

V

(D̊∧a)B d
p+1xB =

∮
∂V

aA d
pxA , (15.92)

where (D̊∧a)B = (p + 1) D̊[nam1...mp] denotes the components of the torsion-free covariant curl D̊∧a,
equation (15.38b), and A and B are implicitly summed over distinct antisymmetric sequences of p and p+1

indices respectively.
In the case of a 0-form (scalar) ϕ, the exterior derivative dϕ, equation (15.65), is the total derivative. The

integral of the 1-form dϕ along any line (1-dimensional hypersurface) xµ(λ) parametrized by an arbitrary
di�erentiable parameter λ, from initial value λ0 to �nal value λ1, is∫ λ1

λ0

dϕ =

∫ λ1

λ0

∂ϕ

∂xν
dxν =

∫ λ1

λ0

∂ϕ

∂xν
dxν

dλ
dλ =

∫ λ1

λ0

dϕ

dλ
dλ = ϕ(λ1)− ϕ(λ0) . (15.93)

Equation (15.93) can be recognized as the fundamental theorem of calculus. Equation (15.93) is equa-
tion (15.91) or (15.92) for the case where a is the 0-form (scalar) ϕ. The hypersurface V is the 1-dimensional
path of integration. The boundary ∂V is the two endpoints of the path.
Here is a sketch of a proof of the generalized Stokes' theorem (15.91). The key ingredient is that da is

coordinate-invariant, so one can use any convenient coordinate system to evaluate the integral, and the result
will be independent of the choice of coordinates.
First, partition the hypersurface V into rectangular patches. Rectangular means that a system of coordi-

nates can be chosen such that the patch extends over a �xed �nite interval xµ0 ≤xµ≤x
µ
1 of each coordinate.

Figure 15.1 illustrates a partition of a 2-dimensional disk into �ve rectangular patches. Thanks to the ar-
bitrariness of the choice of coordinates, although each patch appears to be non-rectangular, coordinates
can always be chosen so that the patch is rectangular with respect to those coordinates. Notice that the
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Figure 15.1 Partition of a disk into �ve rectangular patches. The arrowed circles show the direction of circulation of

the integral over the boundary of each patch.

(p+1)-dimensional hypersurface could be embedded in a higher dimensional manifold, so there could poten-
tially be more coordinates available than the dimension of the hypersurface; but again the arbitrariness of
coordinates means that coordinates can always be chosen such that only p+1 of them vary over the (p+1)-
dimensional hypersurface, the remaining coordinates being constant. With such convenient coordinates, the
integral over a patch is a straightforward integration in Euclidean space. For simplicity, consider the integral
in 2 dimensions. The integral over a single rectangular patch x0 ≤ x ≤ x1 and y0 ≤ y ≤ y1 is∫

patch

da =

∫ y1

y0

∫ x1

x0

(
∂ay
∂x
− ∂ax

∂y

)
dx∧ dy

=

∫ y1

y0

(∫ x1

x0

∂ay
∂x

dx

)
∧ dy −

∫ x1

x0

(∫ y1

y0

∂ax
∂y

dy

)
∧ dx

=

∫ y1

y0

(∫ x1

x0

∂ay
∂x

dx

)
dy −

∫ x1

x0

(∫ y1

y0

∂ax
∂y

dy

)
dx

=

∫ y1

y0

[ay(x1)− ay(x0)] dy −
∫ x1

x0

[ax(y1)− ax(y0)] dx

=

∮
∂patch

aµ dx
µ =

∮
∂patch

a . (15.94)

The �rst line of equations (15.94) is the standard expression (15.67) for the exterior derivative of a 1-form
a; the double count over pairs of indices eliminates the factor of 1

2 . The second line of equations (15.94)
rearranges the �rst. The third line of equations (15.94) di�ers from the second by the loss of the ∧ signs;
the equality holds because

∫
(∂ax/∂y) dy is a scalar for any interval of integration, and the wedge product of

a scalar with a di�erential form is just the ordinary product of the scalar with the form, equation (15.60).
The fourth line of equations (15.94) follows from the fundamental theorem of calculus, equation (15.93). The
integral contains 4 contributions, corresponding to the 4 edges of the rectangular patch. The signs of the
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4 contributions are such that they circulate anti-clockwise about the patch, as illustrated in Figure 15.1.
The last line of equations (15.94) expresses the fourth in more compact notation, with ∂patch denoting the
boundary, the 4 edges, of the patch. Equations (15.94) prove Stokes' theorem for a patch.
The �nal step of the proof is to add together the contributions from all the patches of the partition.

Where two patches abut, the contributions from the common edge cancel, because consistent circulation
about the boundaries causes the integral along the common edge to be in opposite directions, as illustrated
in Figure 15.1. Once again, the coordinate-invariant character of the di�erential form a ensures that the
integral along a prescribed path is independent of the choice of coordinates, so the contributions from
abutting edges of patches do indeed cancel.

15.13 Exact and closed forms

Consider the 1-form dφ de�ned by the exterior derivative of the azimuthal angle φ around a circle. The
integral of the angle around the circle is ∫ 2π

0

dφ = 2π . (15.95)

But since the circle has no boundary, should not Stokes' theorem imply that the integral vanishes? The
resolution of the problem is that φ is not a single-valued scalar. The 1-form dφ constructed from φ is well-
de�ned, being single-valued and continuous everywhere on the circle, but φ itself is not. The circle can be
cut at any point, and a single-valued scalar φ de�ned on the cut circle. But since the scalar is discontinuous
at the cut point, the contributions on the boundary do not cancel, but rather produce a �nite contribution,
namely 2π.
A di�erential form F is said to be exact if it can be expressed as the exterior derivative of a di�erential

form A,

F = dA . (15.96)

Stokes' theorem implies that an integral of an exact form over a surface with no boundary must vanish. The
condition of exactness is a global condition. The above example 1-form dφ in equation (15.95) is not exact,
because φ is not a single-valued 0-form (scalar).
A di�erential form F is said to be closed if its exterior derivative vanishes,

dF = 0 . (15.97)

The rule dd = 0 implies that every exact form is closed. The inverse theorem, that every closed form is
exact, is true locally, but not globally. Poincaré's lemma states that a form that is closed over a volume
V that is continuously contractible to point is exact over that volume. The condition of being closed can be
thought of as a local test of exactness. The example form dφ is closed, but not exact. In the Cartesian x�y
plane, the 1-form dφ is

dφ = d atan(y/x) =
x dy − y dx

x2 + y2
, (15.98)
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which is singular at the origin x = y = 0. Consistent with Poincaré's lemma, the 1-form dφ is not continuously
contractible to a point.
The above example illustrates that topological properties of di�erentiable manifolds, such as winding

number, can be inferred from the behaviour of integrals.

15.14 Generalized Gauss' theorem

In physics, Stokes' theorem (15.92) is most commonly encountered in the form of Gauss' theorem, which
relates the volume integral of the divergence of a vector to the integral of the �ux of the vector through the
surface of the volume. The relation (15.40) shows that a covariant curl as required by Stokes' theorem (15.92)
can be converted to a covariant divergence by post-multiplying by the pseudoscalar IN ,

D̊∧(aIN ) = (D̊ · a)IN . (15.99)

If a = aAγγ
A is a grade-p multivector, substituting equation (15.99) into Stokes' theorem (15.92) gives the

generalized Gauss' theorem, with q ≡ N − p,∫
V

(D̊ · a)B
∗dq+1xB =

∮
∂V

aA
∗dqxA , (15.100)

where (D̊ · a)B = D̊m1am1...mp denotes the components of the torsion-free covariant divergence D̊ · a,
equation (15.38a), ∗dqxA denotes the components of the dual q-volume element as de�ned in �15.10, and A
and B are implicitly summed over distinct antisymmetric sequences of p and p−1 indices respectively.
In the mathematicians' notation, equation (15.100) is

(−)(p+1)(q−1)

∫
V

∗(da) = (−)pq
∮
∂V

∗a , (15.101)

the signs coming from commuting the pseudoscalar through da on the left hand side and through a on the
right hand side. Equivalently,

(−)N−1

∫
V

∗(da) =

∫
V

d(∗a) =

∮
∂V

∗a , (15.102)

the (−)N−1 sign coming from commuting the pseudoscalar through the 1-form exterior derivative d.
In the remainder of this book, the dual q-volume element ∗dqxk...n is often abbreviated to dqxk...n without

the Hodge star symbol, since the dual nature is usually evident from the number of indices k...n, which is q
for the standard q-volume, or p ≡ N−q for the dual q-volume. The only ambiguity occurs when q = p = N/2.
For example, the dual N -volume element, which is a scalar, will be abbreviated to dNx, whereas the standard
N -volume element, which is a pseudoscalar, is written dNx1...N .
Beware that physics texts commonly use dNx to denote the pseudoscalar N -volume, and e dNx or equiv-

alently
√
−g dNx to denote the dual scalar N -volume. The common physics convention seems designed to
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confuse the smart student who expects a notation that manifests, not obscures, the transformational prop-
erties of a volume element. However, this book does use the convention dpx in boldface for the abstract
p-volume element, equation (15.72).
The simplest and most common application of Gauss' theorem is where a = amγγ

m is a vector (a grade-1
multivector), in which case ∫

V

D̊mam d
Nx =

∮
∂V

am d
N−1xm , (15.103)

where, as just remarked, dNx and dN−1xm denote respectively the dual scalar N -volume and the dual vector
(N−1)-volume.

15.15 Dirac delta-function

A Dirac delta-function can be thought of as a special function that is in�nity at the origin, zero everywhere
else, and has unit volume in the sense that it yields one when integrated over any region containing the
origin. In curved spacetime, in order that the integral be a scalar, the p-dimensional Dirac delta-function
must transform oppositely to the p-dimensional volume element.
The p-dimensional Dirac delta-function δp(x) ≡ γγAδpA(x) is de�ned such that for any scalar function f(x),

the integral ∫
f(x) δp(x) · dpx =

∫
f(x) δpA(x) dpxA = f(0) , (15.104)

yields the value f(0) of the function at the origin when integrated over any p-dimensional volume V containing
the origin x = 0. The Dirac delta-function δp(x) is a grade-p multivector with components δpA(x), where A
runs over distinct antisymmetric sequences of p indices.
The dual q-dimensional Dirac delta-function ∗δq(x) = γγA ∗δqA(x) with q ≡ N − p, is de�ned to behave

similarly when integrated over the dual q-volume element ∗dqx de�ned by equation (15.80),∫
f(x) ∗δq(x) · ∗dqx =

∫
f(x) ∗δqA(x) ∗dqxA = f(0) . (15.105)

The dual q-dimensional Dirac delta-function ∗δq(x) is a grade-p multivector with components ∗δqA(x) where
A runs over distinct antisymmetric sequences of p indices.
As with the dual q-volume, the dual Dirac delta-function ∗δqk...n(x) will often be abbreviated in this book

to δqk...n(x) without the Hodge star symbol, since the dual nature can usually be inferred from the number
of indices.
The most common use of the Dirac delta-function is in integration over N -dimensional space,∫

f(x) δN(x) dNx = f(0) , (15.106)
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where δN(x) and dNx denote respectively the dual scalar N -dimensional Dirac delta-function, and the dual
scalar N -volume. The lack of indices on δN (x) and dNx signals that they are scalars.

15.16 Integration of multivector-valued forms

In Chapter 16, �16.14, it will be found that the Hilbert action of general relativity takes its most insightful
form when expressed in the language of multivector-valued forms. These are forms whose coe�cients are
themselves multivectors,

a = aΛ d
pxΛ = aAΛ γγ

A dpxΛ , (15.107)

implicitly summed over distinct sequences A of multivector indices and distinct sequences Λ of p coordinate
indices. The advantage of the multivector-valued forms notation is that it makes manifest the two distinct
symmetries of general relativity: Lorentz transformations, encoded in the transformation of the multivector,
and translations (coordinate transformations), encoded in the transformation of the form.
Stokes' theorem for multivector-valued forms is an immediate generalization of Stokes's theorem (15.91)

for forms: the integral of the exterior derivative da of a p-form multivector a, equation (15.107), over a
(p+1)-dimensional hypersurface V equals the integral of the p-form multivector a over the p-dimensional
boundary ∂V of the hypersurface: ∫

V

da =

∮
∂V

a . (15.108)

In other words, the fact that the coordinate components aΛ of the form a are themselves multivectors leaves
Stokes' theorem intact and unchanged.



16

Action principle for electromagnetism and
gravity

One of the profound realisations of physics in the second half of the twentieth century was that the four forces
of the Standard Model of physics � the electromagnetic, weak, strong (or colour), and gravitational forces
� all emerge from an action that is invariant with respect to local symmetries called gauge transformations.
Gauge transformations rotate internal degrees of freedom of �elds at each point of spacetime.
The simplest of the forces is the electromagnetic force, which is based on the 1-dimensional unitary group

U(1) of rotations about a circle. Since the mid 1970s, the electromagnetic group has been understood to
be the unbroken remnant of a larger electroweak group UY (1) × SU(2), which through interactions with a
scalar �eld called the Higgs �eld breaks down to the electromagnetic group U(1) at collision energies less
than the electroweak scale of about 1 TeV (the UY (1) electroweak hypercharge group is not the same as the
U(1) electromagnetic group). The group SU(N) is the special unitary group in N dimensions, the group of
N -dimensional unitary matrices of unit determinant. The colour group is SU(3).
The gravitational force is likewise a gauge force. The gravitational group is the group of spacetime trans-

formations, also known as the Poincaré group, which is the product of the 6-dimensional Lorentz group and
the 4-dimensional group of translations.
It is quite remarkable that so much of physics is captured by so simple a mathematical structure as a

group of symmetries. During the 1980s there was hope that perhaps all of physics might be described by
some theory-of-everything group, and all that was left to do was to discover that group and �gure out its
consequences. That hope was not realised.
Gravity has been at the heart of the problem. Whereas the three other forces are successfully described by

renormalizable quantum �eld theories, albeit equipped with a large number of seemingly arbitrary param-
eters, gravity has resisted quantization. Currently the most successful (some would dispute that adjective)
theory of quantum gravity is string theory, or more speci�cally superstring theory (which includes spin-1

2

particles), or more speci�cally some enveloping theory that contains not only strings, 1-dimensional objects
sweeping out 2-dimensional worldsheets, but also fundamental objects, branes, of other dimensions. The
topic of string theory is beyond the scope of this book. Su�ce to say that string theory is apparently a much
larger and richer theory than a putative theory of just our Universe. The good thing is that string theory
(probably) contains the laws of physics of our Universe. The embarrassing thing (embarras de richesses,
advocates would say) is that string theory (probably) contains many other possible laws of physics. This has

400
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led to the conjecture that our Universe is just one of a multiverse of universes with di�erent sets of laws
of physics. Such ideas are fascinating, but at present distanced from experimental or observational reality.
String theory remains work in progress.
This chapter starts by applying the action principle to the simple example of an unspeci�ed template �eld

ϕ, deriving the Euler-Lagrange equations in �16.1, and Hamilton's equations in �16.2.
The chapter goes on to apply the action principle to the simplest example of a gauge �eld, the electromag-

netic �eld, �rst in index notation, �16.5, and then in the more di�cult but powerful language of di�erential
forms, �16.6. The electromagnetic example brings out features that appear in more complicated form in
the gravitational �eld. Notably, the covariant equations of motion for the electromagnetic �eld resolve into
genuine equations of motion for physical degrees of freedom, constraint equations whose ongoing satisfaction
is guaranteed by conservation laws arising from gauge symmetries, and identities that de�ne auxiliary �elds
that arise in a covariant treatment.
The chapter then proceeds to apply the action principle to the Hilbert (1915) Lagrangian to derive the

equations of motion of gravity, namely the Einstein equations, along with equations for the connection
coe�cients. The tetrad-frame approach followed in this chapter makes manifest the dependence of Hilbert's
Lagrangian on the two distinct symmetries of general relativity, namely symmetry with respect to local
Lorentz transformations, and symmetry with respect to general coordinate transformations.
The chapter treats the gravitational action using three di�erent mathematical languages, progressing from

the more explicit to the more abstract. The �rst approach, starting at �16.7, lays out all indices explicitly. The
second approach, �16.13, uses multivectors. The �nal approach, �16.13, uses multivector-valued di�erential
forms. The multivector forms notation provides an elegant formulation of the de�nitions of curvature and
torsion, equations (16.206) and (16.210), �rst formulated by Cartan (1904), and elegant versions of the
equations of motion (16.248) that govern them. The dense, abstract notation can be hard to unravel (which
is why more explicit approaches are helpful), but o�ers the clearest picture of the structure of the gravitational
equations. A clear picture is essential both from the practical perspective of numerical relativity, and from
the esoteric perspective of aspiring to a deeper understanding of the unsolved mysteries of (quantum) gravity.
As expounded in Chapter 15, d4x denotes the invariant scalar 4-volume element, equation (15.103), while

d4x0123 denotes the pseudoscalar coordinate 4-volume element, the indices 0123 serving as a reminder that
the coordinate 4-volume element is a totally antisymmetric coordinate tensor of rank 4. The two are related
by a factor of the determinant e of the vierbein, d4x = e d4x0123, equation (15.90).

16.1 Euler-Lagrange equations for a generic �eld

Let ϕ(xµ) denote some unspeci�ed classical continuous �eld de�ned throughout spacetime. The least action
principle asserts that the equations of motion governing the �eld can be obtained by minimizing an action
S, which is asserted to be an integral over spacetime of a certain scalar Lagrangian. The scalar Lagrangian is
asserted to be a function L(ϕ, D̊µϕ) of �coordinates� which are the values of the �eld ϕ(xµ) at each point of
spacetime, and of �velocities� which are the torsion-free covariant derivatives D̊µϕ of the �eld. The torsion-free
covariant derivatives are prescribed because application of the least action principle involves integration by
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parts, and, as established in Chapter 15, equation (15.92), it is precisely the torsion-free covariant derivative
that can be integrated to yield surface terms.
It should be commented that in the case of spinors ψ, the Lagrangian can be considered to be a function

L(ψ,Dµψ) of the spinor �eld ψ and its torsion-full covariant dervative Dµψ, since Gauss' theorem occurs in
a form (40.21) where the contortion contribution vanishes on integration by parts. The action principle for
spinor �elds is deferred to Chapter 41.
The Lagrangian L(ϕ, D̊µϕ) is actually a function of functions. Mathematicians refer to such a thing as

a functional. Derivatives of a functional with respect to the functions it depends on are called functional
derivatives, or variational derivatives, and are denoted with a δ symbol. For example, the derivative of the
functional L with respect to the function ϕ is denoted δL/δϕ.
Least action postulates that the evolution of the �eld is such that the action

S =

∫ λf

λi

L(ϕ, D̊µϕ) d4x (16.1)

takes a minimum value with respect to arbitrary variations of the �eld, subject to the constraint that the �eld
is �xed on its boundary, the initial and �nal surfaces. The integral in equation (16.1) is over 4-dimensional
spacetime between a �xed initial 3-dimensional hypersurface and a �xed �nal 3-dimensional hypersurface,
labelled respectively λi and λf . The variation δS of the action with respect to the �eld and its derivatives is

δS =

∫ λf

λi

(
δL

δϕ
δϕ+

δL

δ(D̊µϕ)
δ(D̊µϕ)

)
d4x = 0 . (16.2)

Linearity of the covariant derivative,

D̊µ(ϕ+ δϕ) = D̊µϕ+ D̊µ(δϕ) , (16.3)

implies that the variation of the derivative equals the derivative of the variation, δ(D̊µϕ) = D̊µ(δϕ). De�ne
the canonical momentum πµ conjugate to the �eld ϕ to be

πµ ≡ δL

δ(D̊µϕ)
. (16.4)

The second term in the integrand of equation (16.2) can be written

πµδ(D̊µϕ) = D̊µ(πµδϕ)− (D̊µπ
µ)δϕ , (16.5)

The �rst term on the right hand side of equation (16.5) is a torsion-free covariant divergence, which integrates
to a surface term. With the second term in the integrand of equation (16.2) thus integrated by parts, the
variation of the action is

δS =

[∮
πµδϕ d

3xµ
]λf

λi

+

∫ λf

λi

(
δL

δϕ
− D̊µπ

µ

)
δϕ d4x = 0 . (16.6)

The surface term in equation (16.6), which is an integral over each of the three-dimensional initial and
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�nal hypersurfaces, vanishes since by hypothesis the �elds are �xed on the initial and �nal hypersurfaces,
δϕi = δϕf = 0. Consequently the integral term must also vanish. Least action demands that the integral
vanish for all possible variations δϕ of the �eld. The only way this can happen is that the integrand must
be identically zero. The result is the Euler-Lagrange equations of motion for the �eld,

D̊µπ
µ =

δL

δϕ
. (16.7)

All of the above derivations carry through with the �eld ϕ replaced by a set of �elds ϕi, with conjugate
momenta πµi ≡ δL/δ(D̊µϕi). The index i could simply enumerate a list of �elds, or it could signify the
components of a set of �elds that transform into each other under some group of symmetries.

16.2 Super-Hamiltonian formalism

The Lagrangians L of the �elds that Nature �elds turn out to be writable in super-Hamiltonian form

L = πµD̊µϕ−H , (16.8)

in which the super-Hamiltonian H(ϕ, πµ) is a scalar function of the �eld ϕ and its conjugate momenta πµ,
de�ned in terms of the Lagrangian by equation (16.4).
Varying the action with Lagrangian (16.8) with respect to the �eld ϕ and its conjugate momenta πµ gives

δS =

∫ λf

λi

(
πµD̊µδϕ+ δπµD̊µϕ−

δH

δϕ
δϕ− δπµ δH

δπµ

)
d4x . (16.9)

Integrating the �rst term in the integrand by parts brings the variation of the action to

δS =

[∮
πµδϕ d3xµ

]λf

λi

+

∫ λf

λi

[
−
(
D̊µπ

µ +
δH

δϕ

)
δϕ+ δπµ

(
D̊µϕ−

δH

δπµ

)]
d4x . (16.10)

The principle of least action requires that the variation vanish with respect to arbitrary variations δϕ and
δπµ of the �eld and its conjugate momenta, subject to the condition that the �eld is held �xed on the initial
and �nal hypersurfaces. The result is Hamilton's equations of motion,

D̊µπ
µ = −δH

δϕ
, D̊µϕ =

δH

δπµ
. (16.11)

Hamilton's equations (16.11) for the �eld ϕ can be compared to Hamilton's equations (4.72) for particles.

16.3 Conventional Hamiltonian formalism

The conventional Hamiltonian is not the same as the super-Hamiltonian. In the conventional Hamiltonian
formalism, the coordinates xµ are split into a time coordinate t and spatial coordinates xα. The momentum
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π conjugate to the �eld ϕ is de�ned to be

π ≡ δL

δ(D̊tϕ)
. (16.12)

The conventional Hamiltonian H is de�ned in terms of the Lagrangian L by

H = π D̊tϕ− L . (16.13)

In the context of general relativity, the covariant super-Hamiltonian approach to �elds is, as in the case of
point particles, �4.10, simpler and more natural than the non-covariant conventional Hamiltonian approach.
Indeed, the most straightforward way to implement the conventional Hamiltonian approach is to use the
super-Hamiltonian approach, and then carry out a 3+1 split into space and time coordinates at the end,
rather than doing a 3+1 split at the outset.

16.4 Symmetries and conservation laws

Associated with every symmetry is a conserved quantity. The relation between symmetries and conserved
quantities is called Noether's theorem (Noether, 1918), equations (16.17) and (16.18). Examples of
Noether's theorem include local electromagnetic gauge symmetry implying conservation of electric charge
(�16.5.6), local Lorentz symmetry implying conservation of angular-momentum (�16.11.1), and general co-
ordinate transformations implying conservation of energy-momentum (�16.11.2).
All four of the known forces of Nature, including gravity, arise from local symmetries, in which the La-

grangian is invariant under symmetry transformations that are allowed to vary arbitrarily over spacetime.
Commonly, such transformations change not just one �eld, but multiple �elds at the same time. However,
the Lagrangian of an individual �eld may by itself be symmetric, to the extent that the �eld does not inter-
act with other �elds. For example, the local gauge symmetry of electromagnetism changes simultaneously
the electromagnetic �eld and all charged �elds, and that symmetry implies the law of conservation of total
electric charge. However, an individual �eld, such as an electron �eld or a proton �eld, may individually
conserve charge, to the extent that the �eld does not interact with other �elds.
Consider varying the template �eld ϕ(x) by a transformation with a prescribed shape δϕ(x) as a function

of spacetime,

ϕ(x)→ ϕ(x) + ε δϕ(x) , (16.14)

where ε is an in�nitesimal constant parameter. The torsion-free covariant derivatives D̊mϕ of the �eld
transform correspondingly as

D̊mϕ→ D̊mϕ+ ε D̊m(δϕ) . (16.15)

The torsion-free covariant derivative is prescribed for the reason explained at the beginning of �16.1. The
variation (16.14) is a symmetry of the �eld if the Lagrangian L(ϕ, D̊mϕ) is unchanged by it. The vanishing
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of the variation of the Lagrangian implies

0 =
δL

δε

=
δL

δϕ
δϕ+

δL

δ(D̊mϕ)
D̊m(δϕ)

= D̊m

(
δL

δ(D̊mϕ)
δϕ

)
+

(
δL

δϕ
− D̊m

δL

δ(D̊mϕ)

)
δϕ

= D̊m (πmδϕ) +

(
δL

δϕ
− D̊mπ

m

)
δϕ , (16.16)

with πm the momentum conjugate to the �eld, equation (16.4). The Euler-Lagrange equation of motion (16.7)
for the �eld implies that the second term on the last line of (16.16) vanishes. Consequently the current jm

de�ned by

jm ≡ πmδϕ (16.17)

is covariantly conserved,

D̊mj
m = 0 . (16.18)

The result (16.18) is Noether's theorem.

16.5 Electromagnetic action

Electromagnetism is a gauge �eld based on the simplest of all continuous groups, the 1-dimensional unitary
group U(1) of rotations about a circle.

16.5.1 Electromagnetic gauge transformations

Under an electromagnetic gauge transformation, a �eld ϕ of charge e transforms as

ϕ→ e−ieθϕ , (16.19)

where the phase θ(x) is some arbitrary function of spacetime. The charge e is dimensionless (in units c = ~ =

1). The Lagrangian of the charged �eld ϕ involves the torsion-free derivative D̊µϕ of the �eld. The torsion-
free covariant derivative is prescribed for the reason explained at the beginning of �16.1. To ensure that the
Lagrangian remains invariant also under an electromagnetic gauge transformation (16.19), the derivative D̊µ

must be augmented by an electromagnetic connection Aµ, which equals the thing historically known as the
electromagnetic potential. The result is an electromagnetic gauge-covariant derivative D̊µ + ieAµ with
the de�ning property that, when acting on the charged �eld ϕ, it transforms under the electromagnetic gauge
transformation (16.19) as

(D̊µ + ieAµ)ϕ→ e−ieθ(D̊µ + ieAµ)ϕ . (16.20)
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In other words, the gauge-covariant derivative of the �eld ϕ is required to transform under electromagnetic
gauge transformations in the same way as the �eld ϕ. The gauge-covariant derivative D̊µ + ieAµ transforms
correctly provided that the gauge �eld Aµ transforms under the electromagnetic gauge transformation (16.19)
as

Aµ → Aµ + D̊µθ . (16.21)

Since θ is a scalar phase, its covariant derivative reduces to its partial derivative, D̊µθ = ∂θ/∂xµ.

16.5.2 Electromagnetic �eld tensor

The commutator of the gauge-covariant derivative D̊µ+ieAµ de�nes the electromagnetic �eld tensor Fµν ,

[D̊µ + ieAµ, D̊ν + ieAν ] ≡ ieFµν . (16.22)

The electromagnetic �eld Fµν has the key property that it is invariant under an electromagnetic gauge
transformation (16.19), in contrast to the electromagnetic potential Aν itself. Explicitly, the electromagnetic
�eld Fµν is, from equation (16.22),

Fµν ≡ D̊µAν − D̊νAµ

=
∂Aν
∂xµ

− ∂Aµ
∂xν

, (16.23)

the second line of which follows because the coordinate connections cancel in a torsion-free covariant co-
ordinate curl, equation (2.72). The expression on the second line of equations (16.23) is invariant under
an electromagnetic gauge transformation (16.21) thanks to the commutation of coordinate derivatives,
∂2θ/∂xµ∂xν − ∂2θ/∂xν∂xµ = 0, so the electromagnetic �eld Fµν is electromagnetic gauge-invariant as
claimed. If the torsion-free derivative D̊µ in equation (16.23) were replaced by the torsion-full derivative Dµ,
then the electromagnetic �eld Fµν would not be electromagnetic gauge-invariant.

16.5.3 Source-free Maxwell's equations

For brevity, denote the electromagnetic gauge-covariant derivative by Dµ ≡ D̊µ + ieAµ. The gauge-covariant
derivative satis�es the Jacobi identity

[D[λ, [Dµ,Dν]]] = 0 . (16.24)

The electromagnetic Jacobi identity (16.24) implies that

D̊λFµν + D̊µFνλ + D̊νFλµ = 0 . (16.25)

Since the torsion-free coordinate connections cancel in such an antisymmetrized expression, equation (16.25)
can also be written

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0 . (16.26)

Equations (16.26) constitute a set of 4 equations comprising the source-free Maxwell's equations.
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16.5.4 Electromagnetic Lagrangian

The electromagnetic action Se is

Se =

∫ λf

λi

Le d
4x , (16.27)

with electromagnetic Lagrangian

Le ≡ −
1

16π
FµνFµν , (16.28)

where Fµν is the electromagnetic �eld tensor de�ned by equation (16.23). The electromagnetic Lagrangian
Le, equation (16.28) is, as required, a scalar with respect to electromagnetic gauge transformations (16.21),
as well as with respect to coordinate and tetrad transformations. The justi�cation for the choice (16.28) is
that it reproduces Maxwell's equations, which have ample experimental veri�cation. The Lagrangian (16.28)
is normalized to Gaussian units. High-energy physicists commonly used Heaviside units (SI units with ε0 =

µ0 = 1), for which the normalization factor is 1/4 instead of 1/(16π).
The momenta conjugate to the electromagnetic coordinates Aν are, modulo a factor, the electromagnetic

�eld components Fµν ,
δLe

δ(D̊µAν)
= − 1

4π
Fµν . (16.29)

In Heaviside instead of Gaussian units, the factor is 1 instead of 4π, which explains why high-energy theorists
prefer Heaviside units.
In the presence of electrically charged matter, the matter action generically contains an interaction term

Sq

Sq =

∫ λf

λi

Lq d
4x , (16.30)

with interaction Lagrangian Lq taking the form

Lq = Aνj
ν , (16.31)

where jν is the electric current vector.
The combined electromagnetic and charged matter action S = Se + Sq is, with the Lagrangian expressed

as required in terms of the electromagnetic coordinates Aν and their velocities D̊µAν ,

S =

∫ λf

λi

[
− 1

16π

(
D̊µAν − D̊νAµ

)(
D̊µAν − D̊νAµ

)
+ jνAν

]
d4x . (16.32)

Varying the action (16.32) with respect to the electromagnetic coordinates Aν and their velocities D̊µAν ,
along the same lines as equations (16.2)�(16.6) for the template �eld ϕ, yields

δS = − 1

4π

[∮
FµνδAν d

3xµ

]λf

λi

+
1

4π

∫ λf

λi

(
D̊µF

µν + 4πjν
)
δAν d

4x . (16.33)
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Least action requires that the variation of the action with respect to arbitrary variations δAν be zero, subject
to the constraint that the �eld is �xed on the boundary of integration, δAν = 0. The resulting Euler-Lagrange
equations (16.7) are

D̊µF
νµ = 4πjν . (16.34)

The factor 4π disappears if Heaviside units are used in place of Gaussian units. The Euler-Lagrange equa-
tions (16.34) constitute 4 equations comprising the source-full Maxwell's equations.

16.5.5 Electromagnetic super-Hamiltonian

The electromagnetic Lagrangian (16.28), coupled with the charged matter interaction Lagrangian (16.31), is
in super-Hamiltonian form Le + Lq = pµ∂µq −H with coordinates q = Aν and momenta pµ = −Fµν/4π,

Le = − 1

4π
FµνD̊µAν −H , (16.35)

and super-Hamiltonian H

H ≡ − 1

16π
FµνFµν −Aνjν . (16.36)

The Hamiltonian (16.36) looks like the Lagrangian but with a �ip of the sign of the interaction term Aνj
ν .

The electromagnetic Hamiltonian (16.36) is expressed as required in terms of the coordinates Aν and the
momenta Fµν .
Varying the action with Lagrangian (16.35) with respect to the coordinates Aν and momenta Fµν gives

δS =
1

4π

∫ (
−FµνD̊µδAν − δFµνD̊µAν + 1

2δF
µνFµν + 4πjνδAν

)
d4x . (16.37)

Integrating the �rst term in the integrand of equation (16.37) by parts yields

δS = − 1

4π

∮
FµνδAν d

3xµ +
1

4π

∫ [(
D̊µF

µν + 4πjν
)
δAν − 1

2

(
D̊µAν − D̊νAµ + Fµν

)
δFµν

]
d4x . (16.38)

The surface term vanishes provided that the electromagnetic coordinates Aν are held �xed on the boundary.
Requiring that the variation of the action vanish with respect to arbitrary variations δAν and δFµν of the
coordinates and momenta then yields Hamilton's equations,

D̊µF
νµ = 4πjν , (16.39a)

D̊µAν − D̊νAµ = Fµν . (16.39b)

The �rst Hamilton equation (16.39a) reproduces the Euler-Lagrange equation (16.34) obtained in the La-
grangian approach. The second Hamilton equation (16.39b) implies, as an equation of motion, the rela-
tion (16.23) between the �eld Fµν and the derivatives of Aν that was simply assumed in the Lagrangian
approach.
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16.5.6 Electric charge conservation

Maxwell's source-full equations (16.34) enforce covariant conservation of electric charge jν ,

D̊νj
ν = 0 . (16.40)

At a more profound level, the conservation of electric charge is a consequence of symmetry with respect to
electromagnetic gauge transformations. Under an electromagnetic gauge transformation, the �eld Aν varies
as, equation (16.21),

δAν = D̊νθ . (16.41)

There are many distinct electrically charged �elds in nature (for example, electrons and protons), and the
action for each distinct charged �eld is electromagnetic gauge-invariant (absent interactions that create or
destroy charged �elds). The variation of a charged matter �eld under an electromagnetic gauge transforma-
tion (16.19) is

δSq =

∫
jνD̊νθ d

4x . (16.42)

Integrating equation (16.42) by parts gives

δSq =

∮
jνθ d3xν −

∫ (
D̊νj

ν
)
θ d4x . (16.43)

Electromagnetic gauge-invariance requires that the variation vanish with respect to arbitrary choices of the
gauge parameter θ, subject to the condition that θ is �xed on the boundary. Covariant conservation of electric
charge follows,

D̊νj
ν = 0 . (16.44)

The charge conservation law (16.44) is an example of Noether's theorem (Noether, 1918), which relates
symmetries and conservation laws.

16.5.7 Electromagnetic wave equation

Eliminating Fµν from Hamilton's equations (16.39) yields a second order di�erential equation for the elec-
tromagnetic potential Aν ,

− �̊Aν + R̊νλA
λ + D̊νD̊µA

µ = 4πjν , (16.45)

where �̊ ≡ D̊µD̊
µ is the torsion-free d'Alembertian. The last term D̊νD̊µA

µ on the left hand side of equa-
tion (16.45) may be eliminated by imposing the Lorenz (not Lorentz!) gauge condition D̊µA

µ = 0. Equa-
tion (16.45) is a wave equation with the torsion-free Ricci tensor R̊νλ acting as an e�ective potential, and
the electromagnetic current jν acting as a source.
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16.5.8 Space+time (3+1) split of the electromagnetic equations

In Chapter 4 it was found that, applied to point particles, the action principle yielded equal numbers of co-
ordinates and momenta, and Hamilton's equations supplied �rst order di�erential equations determining the
evolution of each and every one of the coordinates and momenta. This was true in both the super-Hamiltonian
and conventional Hamiltonian approaches, where Hamilton's equations were respectively equations (4.72)
and (4.75).

Applied to �elds, the super-Hamiltonian approach does not yield equal numbers of coordinates and mo-
menta, and Hamilton's equations cannot be interpreted straightforwardly as equations of motion for each
and every one of the coordinates and momenta. For example, in the electromagnetic case, the �rst set of
Hamilton's equations (16.39a) apparently constitute 4 equations for 6 momenta F νµ, while the second set
of Hamilton's equations (16.39b) apparently constitute 6 equations for 4 coordinates Aν . The mismatch
of numbers of equations is not a practical barrier to solving Hamilton's equations of motion. Hamilton's
equations (16.39) comprise 10 equations for 10 unknowns. If, for example, the 6 equations (16.39b) are in-
terpreted not as �rst order di�erential equations of motion for the coordinates Aν , but rather as de�ning the
6 momenta Fµν , then eliminating the momenta yields a set of 4 second order di�erential wave equations for
the 4 coordinates Aν , equation (16.45) (see �27.6 for further exposition). Treating the 6 equations (16.39b)
as identities is the same as reverting to the Lagrangian, or second order, approach.

It is nevertheless desirable to attain a better understanding of the �rst order Hamiltonian formalism
for �elds, partly so as to understand how to integrate the �eld equations numerically, and partly because
quantization of �elds, as usually implemented, requires identifying the physical degrees of freedom in a
matching number of �elds and their conjugate momenta.

The problem of mismatching numbers of coordinates and momenta in the super-Hamiltonian formalism
arises because symmetry under general coordinate transformations means that di�erent con�gurations of
�elds are symmetrically equivalent. The covariant super-Hamiltonian description contains more �elds than
there are physical degrees of freedom.

Dirac's (1964) solution to the mismatch of numbers of equations is to break general covariance by splitting
spacetime into space and time coordinates, and to interpret only the equations involving time derivatives
of the �elds as genuine equations of motion, while the remainder of the equations, those not involving
time derivatives, are �constraints,� relations between the �elds that serve to remove the redundant degrees
of freedom. In the relativist community, the term �constraint� is commonly used to describe an equation
which must be arranged to be satis�ed in the initial conditions, but which is guaranteed thereafter by some
conservation law. Some of Dirac's constraint equations, which Dirac calls ��rst-class constraints,� are of
this character, but others, which Dirac calls �second-class constraints,� are identities that e�ectively de�ne
some �elds in terms of others. This book follows the relativists' convention that a constraint is an equation
whose ongoing satisfaction is guaranteed by a conservation law, a �rst-class constraint. Dirac's second-class
constraint equations will be called identities.

Suppose then that the coordinates are split into time and space components, xµ = {t, xα}. In electro-
magnetism, the Hamilton's equations (16.39) involving time derivatives of the coordinates and momenta are
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3 equations of motion: D̊tF
αt + D̊βF

αβ = 4πjα , (16.46a)

3 equations of motion: D̊tAα − D̊αAt = Ftα . (16.46b)

Equation (16.46a) comprises 3 equations of motion for the 3 momenta Fαt, while equation (16.46b) comprises
3 equations of motion for the 3 coordinates Aα. The physical degrees of freedom are thus identi�ed as the
3 spatial coordinates Aα and their 3 conjugate momenta Fαt, which comprise the 3 components Eα ≡ F tα

of the electric �eld. The remaining electromagnetic Hamilton's equations (16.39), those not involving time
derivatives of the coordinates and momenta, are

1 constraint: D̊βF
tβ = 4πjt , (16.47a)

3 identities: D̊αAβ − D̊βAα = Fαβ . (16.47b)

The �rst equation (16.47a) has the property that, as long as the equation is satis�ed on the initial spatial
hypersurface, then conservation of electric charge ensures that the equation continues to be satis�ed there-
after. Of course, in numerical computations charge is conserved only so long as the equations of motion of
charged matter are chosen such as to conserve electric charge, as they should be. If the matter equations
conserve charge, then the constraint equation (16.47a) is redundant, but provides a numerical check that
electric charge is being conserved.
The second set of equations (16.47b) are identities relating the 3 purely spatial components Fαβ , which

comprise the 3 components Bα ≡ εtαβγFβγ of the magnetic �eld, to the spatial curl of the spatial coordinates
Aα. Since the equations of motion (16.46b) already determine completely the spatial coordinates Aα, the
identities (16.47b) cannot be independent equations, but must be interpreted as de�ning the magnetic �eld as
an auxiliary �eld that does not represent additional physical degrees of freedom. The magnetic �eld is needed
as part of the equations of motion, the second term on the left hand side of the equation of motion (16.46a).
The magnetic �eld could be discarded after having been replaced by the curl of Aα in accordance with
the identity (16.47b); but the magnetic �eld is part of the covariant 4-dimensional electromagnetic �eld
tensor Fµν , and discarding the magnetic �eld would obscure the covariant structure of the electromagnetic
equations.

16.6 Electromagnetic action in forms notation

Especially in the mathematical literature, actions are often written in the compact notation of di�erential
forms, �15.6. The advantage of forms notation is not that it makes calculations any easier, but rather that
it reveals the structure of the action unburdened by indices. Once one gets over the language barrier, forms
notation can be a powerful clari�er.
In this section 16.6, implicit sums are over distinct antisymmetric sequences of indices, since this removes

the ubiquitous factorial factors that would otherwise appear.
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16.6.1 Electromagnetic potential and �eld forms

The electromagnetic potential 1-form A and �eld 2-form F are de�ned by

A ≡ Aν dxν , (16.48a)

F ≡ Fµν d2xµν , (16.48b)

where in the case of F the implicit summation is over distinct antisymmetric pairs µν of indices. With the
electromagnetic gauge-covariant derivative 1-form denoted DDD ≡ (D̊µ + ieAµ)dxµ for brevity, the �eld 2-form
F is de�ned by the commutator of the gauge-covariant derivative,

[DDD,DDD] ≡ ieF . (16.49)

Equation (16.49) implies that the �eld 2-form F is the exterior derivative of the potential 1-form A,

F = dA =

(
∂Aν
∂xµ

− ∂Aµ
∂xν

)
d2xµν , (16.50)

implicitly summed over distinct antisymmetric pairs µν of indices.

16.6.2 Electromagnetic potential and �eld multivectors

When working with forms, it is often easier to do calculations in multivector language. In multivector
language, the electromagnetic potential is a vector A, while the electromagnetic �eld is a bivector F ,

A ≡ An γγn , (16.51a)

F ≡ Fmn γγm ∧γγn , (16.51b)

with in the case of F implicit summation over distinct antisymmetric pairs mn of indices. The �eld F ,
equation (16.50), is in multivector language the torsion-free covariant curl of the potential A,

F = D̊∧A . (16.52)

In multivector language, the combined electromagnetic (16.28) and charged interaction (16.31) Lagrangian
is the scalar

Le + Lq =
1

8π
F · F +A · j , (16.53)

where j ≡ jn γγn is the electric current vector. The action is

S =

∫
(Le + Lq) d

4x . (16.54)

Recall that the scalar volume element d4x that goes into the action (16.54) is really the dual scalar 4-
volume ∗d4x, equation (15.80). To convert to forms language, the Hodge dual must be transferred from the
volume element to the integrand. In multivector language, the required result is

(a · b) · ∗d4x ≡ (a · b) · (I d4x) =
(
(a · b)I

)
· d4x =

(
I(a · b)

)
· d4x =

(
(Ia)∧ b

)
· d4x , (16.55)
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where the second expression is the de�nition (15.80) of the dual volume element, the third expression is an
application of the multivector triple-product relation (13.42), the fourth holds because a · b is a scalar and
therefore commutes with the pseudoscalar I, and the last expression is another application of the triple-
product relation (13.42). The action (16.54) is thus, in multivector language,

S =

∫ (
1

8π
(IF )∧F + (Ij)∧A

)
· d4x . (16.56)

16.6.3 Electromagnetic Lagrangian 4-form

In forms notation, the action (16.56) is

S =

∫
Le + Lq , (16.57)

with, in accordance with equation (15.75), Lagrangian 4-form

Le + Lq =
1

8π
∗F ∧F + ∗j ∧A . (16.58)

Here A and F are the potential 1-form and �eld 2-form de�ned by equations (16.48). The symbol ∗ denotes
the form dual, equation (15.87). The dual ∗F is a 2-form, while the dual ∗j is the 3-form dual of the 1-form
electric current j ≡ jν dxν .

16.6.4 Electromagnetic super-Hamiltonian 4-form

The Lagrangian 4-form (16.58) is in super-Hamiltonian form p∧dq−H with coordinates q = A and momenta
p = ∗F /4π,

Le + Lq =
1

4π
∗F ∧dA−H , (16.59)

and super-Hamiltonian 4-form

H =
1

8π
∗F ∧F − ∗j ∧A . (16.60)

The variation of the action with Lagrangian (16.59) with respect to the coordinates A and momenta ∗F is

δS =
1

4π

∫
∗F ∧dδA+ δ ∗F ∧dA− δ ∗F ∧F + 4π ∗j ∧ δA . (16.61)

Integrating the ∗F ∧dδA term in equation (16.61) by parts brings the variation of the action to

δS =
1

4π

∮
∗F ∧ δA+

1

4π

∫
−(d∗F − 4π ∗j)∧ δA+ δ ∗F ∧(dA− F ) . (16.62)

Requiring that the variation of the action vanish with respect to arbitrary variations δA and δ ∗F of the
electromagnetic coordinates and momenta, subject to the condition that A is �xed on the boundary, yields
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Hamilton's equations,

d∗F = 4π ∗j , (16.63a)

dA = F . (16.63b)

The �rst Hamilton equation (16.63a) is a 3-form with 4 components comprising Maxwell's source-full equa-
tions. The second Hamilton equation (16.63b) is a 2-form with 6 components that enforce the relation (16.50)
between the electromagnetic �eld F and the electromagnetic potential A that is assumed in the Lagrangian
formalism.
Taking the exterior derivative of the �rst Hamilton equation (16.63a) yields, since d2 = 0, the electric

current conservation law

d∗j = 0 . (16.64)

Taking the exterior derivative of the second Hamilton equation (16.63b) yields

dF = 0 , (16.65)

which comprises Maxwell's source-free equations.

16.6.5 Electromagnetic wave equation in forms notation

As is common, it is easier to manipulate form equations by translating them into multivector language. In
multivector language, the electromagnetic Hamilton's equations (16.63) are

D̊ · F = −4πj , (16.66a)

D̊∧A = F . (16.66b)

Applying the multivector triple-product relation (13.43) gives the multivector identities (the torsion-free curl
of A vanishes, equation (15.43), so D̊D̊A has only a vector part, no trivector part)

D̊D̊A = D̊(D̊A) = D̊ · (D̊∧A) + D̊∧(D̊ ·A)

= (D̊D̊)A = (D̊ · D̊)A+ (D̊∧ D̊) ·A . (16.67)

Eliminating F from Hamilton's equations (16.66) then yields a second order di�erential equation for the
electromagnetic potential A,

− �̊A− (D̊∧ D̊) ·A+ D̊(D̊ ·A) = 4πj , (16.68)

where �̊ ≡ D̊ · D̊ is the torsion-free d'Alembertian operator. Equation (16.68) is equation (16.45) expressed
in multivector language. The last term on the left hand side of equation (16.68) can be made to vanish by
imposing the Lorenz gauge condition D̊ ·A = 0, in which case equation (16.68) reduces to

− �̊A− (D̊∧ D̊) ·A = 4πj , (16.69)
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or more simply

− (D̊D̊)A = 4πj . (16.70)

Equation (16.70) is a wave equation for the electromagnetic potential A, with source the electric current j.

16.6.6 Space+time (3+1) split of the electromagnetic equations in forms notation

As discussed in �16.5.8, the super-Hamiltonian approach yields di�erent numbers of coordinates and mo-
menta, and the resulting Hamilton's equations are unbalanced. Hamilton's equations (16.63) have the ap-
pearance of �rst order di�erential equations of motion for the momenta and coordinates, but the �rst equa-
tion (16.63a) is 4 equations for the 6 components of the momenta ∗F , while the second equation (16.63b) is
6 equations for the 4 components of the coordinates A.
The solution to the problem is, as in �16.5.8, to break general covariance by splitting spacetime into

time and space coordinates, xµ = {t, xα}, and to interpret only those Hamilton's equations involving time t
derivatives as genuine equations of motion, while the remaining equations are either constraint equations or
identities.
In splitting a form a into time and space components, it is convenient to adopt a notation in which the

form at̄ (subscripted t̄) represents all the temporal parts of the form, while the form aᾱ represents the
remaining all-spatial components. The bars on the time and spatial indices t̄ and ᾱ serves to distinguish the
forms at̄ ≡ atA dpxtA and aᾱ ≡ aαA dpxαA from their components atA and aαA. Thus a 1-form a ≡ aκ dxκ
splits into

a = at̄ + aᾱ ≡ at dt+ aα dx
α , (16.71)

while a 2-form a ≡ aκλ dxκλ splits into

a = at̄ + aᾱ ≡ atα d2xtα + aαβ d
2xαβ , (16.72)

implicitly summed over distinct sequences of indices. The time component of the exterior product of two
forms a and b is

(a∧ b)t̄ = at̄ ∧ bᾱ + aᾱ ∧ bt̄ (16.73)

with no minus signs, the minus signs from the antisymmetry of indices cancelling the minus signs from
commuting dt through a spatial form.
The electromagnetic �eld 2-form F splits as

F = Ft̄ + Fᾱ = Ftα dx
tα + Fβγ dx

βγ , (16.74)

whose time and space parts encode the electric and magnetic �elds. The dual electromagnetic �eld 2-form
∗F splits as

∗F = ∗Ft̄ + ∗Fᾱ = εtαβγF
βγ dxtα + εtαβγF

tα dxβγ , (16.75)

whose time and space parts conversely encode the magnetic and electric �elds. With the de�nitions Eα ≡ F tα
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and Bα ≡ εtαβγFβγ of electric and magnetic �eld components, the form expression (16.75) agrees with the
equivalent multivector expression (14.63).
The time components of Hamilton's equations (16.63) comprise 3 equations of motion for the 3 spatial

components ∗Fᾱ of the momenta, which is the electric �eld, and 3 equations of motion for the 3 spatial
components Aᾱ of the coordinates,

3 equations of motion: (d∗F )t̄ ≡ dt̄
∗Fᾱ + dᾱ

∗Ft̄ = 4π ∗jt̄ , (16.76a)

3 equations of motion: (dA)t̄ ≡ dt̄Aᾱ + dᾱAt̄ = Ft̄ . (16.76b)

The exterior time and space derivatives here are the 1-forms dt̄ = dt ∂/∂t, and dᾱ = dxα ∂/∂xα. Equa-
tions (16.76) are the same as equations (16.46), but in forms notation in place of index notation. In translating
the forms equations (16.76) into indexed equations (16.46), note minus signs that come from commuting dt
through a spatial form, for example dᾱAt̄ = dxα ∂/∂xα dtAt = −∂At/∂xα d2xtα. The remaining Hamilton's
equations (16.63), those not involving any time derivatives, are

1 constraint: dᾱ
∗Fᾱ = 4π ∗jᾱ , (16.77a)

3 identities: dᾱAᾱ = Fᾱ . (16.77b)

In accordance with the relativists' convention, an equation is a constraint if it must be arranged to be
satis�ed on the initial hypersurface ti of constant time, but is guaranteed thereafter by some conservation
law. Equation (16.77a) is an example of such a constraint equation, in this case guaranteed by conservation
electric charge. The 4-dimensional equation representing conservation of charge,

d (d∗F − 4π ∗j) = −4πd∗j = 0 , (16.78)

becomes in a 3+1 split

dt̄ (d∗F − 4π ∗j)ᾱ + dᾱ (d∗F − 4π ∗j)t̄ = 0 . (16.79)

The second term on the left hand side of equation (16.79) vanishes on the equation of motion (16.76a), so
equation (16.79) reduces to

dt̄ (d∗F − 4π ∗j)ᾱ = 0 . (16.80)

If the spatial components (d∗F −4π ∗j)ᾱ are arranged to vanish on the initial spatial hypersurface of constant
time, then the equation of motion (16.80) guarantees that those spatial components vanish thereafter. Pro-
vided, of course, that the equations governing the charged matter are arranged to satisfy charge conservation,
as they should.
Equation (16.77b) on the other hand, which expresses the magnetic �eld Fᾱ as the spatial curl of the

spatial potential Aᾱ, is a constraint in Dirac's (1964) sense, but not in the relativists' sense, since it is
not guaranteed by any conservation law. As in �16.5.8, this book follows the relativists' convention that
a constraint is an equation whose ongoing satisfaction is guaranteed by a conservation law, a �rst-class
constraint. Dirac's second-class constraint equations are called identities.
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16.6.7 3+1 split of the variation of the electromagnetic action

The equations of motion (16.76) and constraint and identities (16.77) follow directly from splitting Hamilton's
equations (16.46) into time and space parts; but they can also be derived more fundamentally from splitting
the variation (16.62) of the action into time and space parts,

δS =

[
1

4π

∮
∗F ∧ δA

]tf
ti

(16.81)

+
1

4π

∫ tf

ti

−(d∗F − 4π ∗j)t̄ ∧ δAᾱ − (d∗F − 4π ∗j)ᾱ ∧ δAt̄ + δ ∗Fᾱ ∧(dA− F )t̄ + δ ∗Ft̄ ∧(dA− F )ᾱ .

From this variation it can be seen that the equations of motion (16.76) arise from minimizing the action
with respect to the 3 spatial coordinates Aᾱ and 3 spatial momenta ∗Fᾱ. The 1 constraint (16.77a) arises
from minimizing the action with respect to the 1 time component At̄ of the coordinates, and the 3 iden-
tities (16.77b) from minimizing with respect to the 3 time components ∗Ft̄ of the momenta. Now At̄ is a
gauge variable: it can be adjusted arbitrarily by an electromagnetic gauge transformation,

At̄ → At̄ + dt̄θ . (16.82)

Minimizing the action with respect to the gauge variable At̄ yields the constraint equation (16.77a) that
e�ectively expresses current conservation.
The mere fact that At̄ can be be treated as a gauge variable does not mean that it must be treated as a

gauge variable. Other gauge-�xing choices can be made; see �27.6 for further discussion of this issue.
The time components ∗Ft̄ of the momenta constitute the magnetic �eld. The dual of ∗Ft̄ constitutes the

spatial components of Fᾱ. The magnetic �eld ∗Ft̄, or equivalently its dual Fᾱ, is not a gauge �eld (that
is, it cannot be adjusted by a gauge transformation), but rather an auxiliary �eld that arises when the
electromagnetic �eld is treated as a generally covariant 4-dimensional object. Minimizing the action (16.81)
with respect to the magnetic �eld ∗Ft̄ determines its own components, the identities (16.77b).

16.6.8 Conventional electromagnetic Hamiltonian

The conventional Hamiltonian H is de�ned by

H ≡ 1

4π
∗Fᾱ ∧dt̄Aᾱ − L . (16.83)

The combined electromagnetic and charged interaction Lagrangian (16.59) can be written

L =
1

4π

[
dᾱ (∗Fᾱ ∧At̄) + ∗Fᾱ ∧dt̄A

− (d∗F − 4π ∗j)ᾱ ∧At̄ + ∗Ft̄ ∧(dA− F )ᾱ − 1
2
∗Fᾱ ∧Ft̄ + 1

2
∗Ft̄ ∧Fᾱ + 4π ∗jt̄ ∧Aᾱ

]
. (16.84)

Dropping the total derivative term dᾱ (∗Fᾱ ∧At̄) from the Lagrangian (16.84), and inserting the rest into
the de�ning equation (16.83) yields the conventional Hamiltonian

H =
1

4π

[
(d∗F − 4π ∗j)ᾱ ∧At̄ − ∗Ft̄ ∧(dA− F )ᾱ + 1

2
∗Fᾱ ∧Ft̄ − 1

2
∗Ft̄ ∧Fᾱ − 4π ∗jt̄ ∧Aᾱ

]
. (16.85)
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The �rst term in the Hamiltonian (16.85) is the constraint (16.77a) wedged with the gauge variable At̄,
while the second term is the identity (16.77b) wedged with the auxiliary �eld ∗Ft̄, the magnetic �eld. Both
terms vanish on the equations of motion. The third and fourth terms (∗Fᾱ ∧Ft̄ − ∗Ft̄ ∧Fᾱ) /(8π) go over
to (E2 +B2)/(8π) d4x in �at space, and comprise the energy density of the electromagnetic �eld. The �nal
term − j ·A d4x is an interaction term.
The conventional Hamiltonian (16.85) is a function of spatial coordinates Aᾱ and their conjugate spatial

momenta ∗Fᾱ, and also a function of the time components At̄ and ∗Ft̄ of the coordinates and momenta. The
spatial derivatives dᾱAᾱ and dᾱ ∗Fᾱ in the conventional Hamiltonian are to be interpreted as functions of the
coordinates and momenta, not as separate degrees of freedom. One should think of Aβ(xα) and ∗Fβγ(xα)

as being in�nite collections of �elds indexed by the spatial position xα; the spatial derivatives of the �elds
are then e�ectively linear combinations of those �elds.
Varying the conventional Hamiltonian (16.85) with respect to Aᾱ, At̄, ∗Fᾱ, and ∗Ft̄ recovers Hamilton's

equations (16.76) and(16.77). In executing the variation, the terms involving the varied derivatives δ(dᾱAᾱ) =

dᾱδAᾱ and δ(dᾱ ∗Fᾱ) = dᾱδ
∗Fᾱ can be integrated by parts.

16.7 Gravitational action

As shown by Hilbert (1915) contemporaneously with Einstein's discovery of the �nal, successful version of
general relativity, Einstein's equations can be derived by the principle of least action applied to the action

Sg =

∫
Lg d

4x , (16.86)

with scalar Hilbert Lagrangian

Lg ≡
1

16πG
R , (16.87)

where R is the Ricci scalar, and G is Newton's gravitational constant. The motivation for the Hilbert
action (16.86) is that the Ricci scalar R is the only non-vanishing scalar that can be constructed linearly
from the Riemann curvature tensor Rklmn.
Least action requires the Lagrangian to be written as a function of the �coordinates� and �velocities�

of the gravitational �eld. The traditional approach, following Hilbert, is to take the coordinates to be the
10 components gµν of the metric tensor. The gravitational Lagrangian Lg is then a function not only of
the coordinates gµν and their velocities ∂gµν/∂xκ, but also of their second derivatives ∂2gµν/∂x

κ∂xλ. The
presence of the second derivatives (�accelerations�) might seem problematic, but they can be removed into a
surface term by integration by parts, leaving a Lagrangian that contains only �rst derivatives.
A modi�ed approach, with a di�erent choice of �coordinates� for the gravitational �eld, brings out the

Hamiltonian structure of the Hilbert Lagrangian, and makes transparent the dependence of the Hilbert
Lagrangian on the two distinct symmetries underlying general relativity, namely general coordinate transfor-
mations, and local Lorentz transformations. In terms of the Riemann tensor (11.77) (valid with or without
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torsion) written in a mixed coordinate-tetrad basis, the Hilbert Lagrangian (16.87) is (units c = G = 1)

Lg =
1

16π
emκenλRκλmn =

1

16π
emκenλ

(
∂Γmnλ
∂xκ

− ∂Γmnκ
∂xλ

+ ΓpmλΓpnκ − ΓpmκΓpnλ

)
. (16.88)

As usual in this book, greek (brown) indices are coordinate indices, while latin (black) indices are tetrad
indices in a tetrad with prescribed constant metric γmn. If the tetrad is orthonormal, then the tetrad metric
is Minkowski, γmn = ηmn, but any tetrad with constant metric γmn, such as Newman-Penrose, will do. The
Lagrangian (16.88) manifests the dependence of the gravitational Lagrangian on coordinate transformations,
encoded in the 16 components of the inverse vierbein emκ, and on Lorentz transformations, encoded in the
24 connections Γmnκ. The connections Γmnκ form a coordinate vector (index κ) of generators of Lorentz
transformations (antisymmetric indicesmn), and they constitute the connection associated with a local gauge
group of Lorentz transformations. The Lorentz connections Γmnκ are sometimes called �spin connections� in
the literature. In a local gauge theory such as electromagnetism or Yang-Mills, the connections Γmnκ would
be interpreted as the �coordinates� of the �eld.
The mixed coordinate-tetrad expression for the Riemann tensor Rκλmn on the right hand side of equa-

tion (16.88) is not the same as the coordinate expression (2.112), despite the resemblance of the two ex-
pressions. There are 24 Lorentz connections Γmnκ, but 40 (without torsion, or 64 with torsion) coordinate
connections Γµνκ. It is possible � indeed, this is the traditional Hilbert approach � to work entirely with
coordinate-frame expressions, the coordinate metric and the coordinate connections, without introducing
tetrads. The advantage of the mixed coordinate-tetrad approach is that it makes manifest the fact that the
Hilbert Lagrangian is invariant with respect to two distinct symmetries, coordinate transformations encoded
in the tetrad, and local Lorentz transformations encoded in the Lorentz connections. Extremization of the
Hilbert action with respect to the tetrad yields Einstein's equations, with source the energy-momentum of
matter. Extremization of the Hilbert action with respect to the Lorentz connections yields expressions for
those connections in terms of the tetrad and its derivatives, with source the spin angular-momentum of
matter.
Whereas a purely coordinate approach to extremizing the Hilbert action is possible, a purely tetrad

approach is not. In general relativity, tetrad axes γγm(xµ) are de�ned at each point xµ of spacetime. The
coordinates xµ of the spacetime manifold provide the canvas upon which tetrads can be erected, and through
which tetrads can be transported. It is possible to do without tetrads by working with coordinate tangent
axes eµ and the associated coordinate connections, but it is not possible to do without coordinates.
If the Lorentz connections Γmnκ are taken to be the coordinates of the gravitational �eld, then the

corresponding canonical momenta are (a factor of 8π is inserted for convenience; or one could use units
where 8πG = 1 in place of the units G = 1 adopted here)

emnκλ ≡ 8π δLg

δ(∂Γmnλ/∂xκ)
= 1

2 (emκenλ − emλenκ) . (16.89)

The momentum tensor emnκλ is antisymmetric in mn and in κλ, and as such apparently has 6 × 6 = 36

components, but the requirement that it be expressible in terms of the vierbein in accordance with the right
hand side of equation (16.89) means that the momentum tensor has only 16 independent degrees of freedom.
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The approach followed below, �16.8, is to treat the 16 components of the vierbein emκ as the independent
degrees of freedom. (A possible approach, not followed here, is to work with the 36-component momentum
tensor emnκλ instead of the 16-component vierbein, subjecting the momentum to the identities (constraints,
in Dirac's terminology)

εκλµνe
klκλemnµν = εklmn , (16.90)

which is a symmetric 6× 6 matrix of conditions, or 21 conditions, except that the normalization of εκλµν =

−e[κλµν], where e is the vierbein determinant, is arbitrary, so equations (16.90) constitute a set of 20 distinct
identities.)
The gravitational Lagrangian (16.88) can be written

Lg =
1

8π
emnκλ

(
∂Γmnλ
∂xκ

+ ΓpmλΓpnκ

)
. (16.91)

The Lagrangian (16.91) is in (super)-Hamiltonian form Lg = pκ∂κq − Hg with coordinates q = Γmnλ and
momenta pκ = emnκλ/8π,

Lg =
1

8π
emnκλ

∂Γmnλ
∂xκ

−Hg , (16.92)

and (super-)Hamiltonian Hg(Γmnλ, e
mnκλ)

Hg = − 1

8π
emnκλγpqΓpmλΓqnκ . (16.93)

Since a coordinate curl is a torsion-free covariant curl, equation (2.72), the coordinate partial derivatives
∂/∂xκ in the Lagrangian (16.91) or in the de�nition (16.89) of momenta could be replaced by torsion-free
covariant derivatives D̊κ, as was done earlier in the case of the electromagnetic �eld, equation (16.35).
The development below works with coordinate derivatives, but one could equally well choose to work with
torsion-free covariant derivatives.

16.7.1 The Lorentz connection is not a tetrad tensor, but any variation of it is

The Lorentz connection Γmnλ ≡ elλΓmnl is a coordinate vector but not a tetrad tensor. Although the Lorentz
connection is not a tetrad tensor, any variation of it with respect to an in�nitesimal local Lorentz trans-
formation of the tetrad is a tetrad tensor. Generators of Lorentz transformations are antisymmetric tetrad
tensors, Exercise 11.2. Under a local Lorentz transformation generated by the in�nitesimal antisymmetric
tensor εnm, a tetrad vector an varies as

an → a′n = an + δan = an + εn
mam . (16.94)

The variation δan of the tetrad vector,

δan = εn
mam , (16.95)
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is thus also a tetrad vector. The Lorentz connection is de�ned by Γmnλ ≡ γγm · ∂γγn/∂xλ, equation (11.37).
Its variation under an in�nitesimal Lorentz transformation generated by the antisymmetric tensor εnm is

δΓmnλ = δ

(
γγm ·

∂γγn
∂xλ

)
= γγm ·

∂(εn
pγγp)

∂xλ
+ εm

pγγp ·
∂γγn
∂xλ

=
∂εnm
∂xλ

+ εn
pΓmpλ + εm

pΓpnλ

= Dλεnm a coordinate and tetrad tensor . (16.96)

Equation (16.96) shows that the variation δΓmnλ is a covariant derivative of a tetrad tensor, therefore a
coordinate and tetrad tensor. The variation of the Lorentz connection by a derivative under an in�nitesimal
Lorentz transformation is analogous to the variation δAλ = ∂λθ of the electromagnetic potential Aλ by the
gradient of a scalar θ under a gauge transformation of an electromagnetic �eld.
As a corollary, it follows that although the Hamiltonian Hg, equation (16.93), is not a tetrad scalar, any

variation of it with respect to an in�nitesimal local Lorentz transformation is a scalar.

16.8 Variation of the gravitational action

The gravitational action Sg with the Lagrangian (16.91) is

Sg =
1

8π

∫
emnκλ

(
∂Γmnλ
∂xκ

+ ΓpmλΓpnκ

)
e d4x0123 . (16.97)

Equations of motion governing the 16 vierbein emκ and the 24 Lorentz connections Γmnκ are obtained
by varying the action (16.97) with respect to these �elds. As shown below, variation with respect to the
vierbein emκ yields Einstein's equations in vacuo, equation (16.105), while variation with respect to the
Lorentz connections Γmnκ recovers the torsion-free expression (11.54) for the tetrad-frame connections Γmnk,
equation (16.110).
The approach of treating the vierbein and connections as independent �elds to be varied is the Hamiltonian

(as opposed to Lagrangian) approach. In the context of the Hilbert action, the Hamiltonian approach is
commonly called the Palatini approach, after Palatini (1919), who �rst treated the 10 components of the
coordinate metric gµν and the 40 coordinate connections Γµνκ as independent �elds.
Before the gravitational action is varied, the spacetime is a manifold equipped with coordinates xµ, but

there is no prior coordinate metric gµν , since the metric is determined by the vierbein, which remain un-
speci�ed until determined by the variation itself. Therefore, in varying the action, it is necessary to take the
coordinate volume element d4x0123, which is a pseudoscalar, as the primitive measure of volume. The scalar
volume element d4x is related to the pseudoscalar coordinate volume element by a factor of the determinant
e of the vierbein, d4x = e d4x0123, equation (15.90), and this determinant e must be varied when the vierbein
are varied.
Varying the action (16.97) with respect to the vierbein emκ and the Lorentz connections Γmnκ yields

δSg =
1

8π

∫ [
emnκλ

∂δΓmnλ
∂xκ

+ emnκλδ(ΓpmλΓpnκ) +

(
∂Γmnλ
∂xκ

+ ΓpmλΓpnκ

)
e−1δ(e emnκλ)

]
e d4x0123 .

(16.98)
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To arrive at Hamilton's equations, the �rst term of the integrand on the right hand side of equation (16.98)
(the pκ∂κ(δq) term) must be integrated by parts, which is accomplished by

emnκλ
∂δΓmnλ
∂xκ

=
e−1∂(e emnκλδΓmnλ)

∂xκ
− e−1∂(e emnκλ)

∂xκ
δΓmnλ . (16.99)

Since emnκλδΓmnλ is a coordinate tensor (and also a tetrad tensor, equation (16.96)), the �rst term on the
right hand side of equation (16.99) is a torsion-free covariant divergence in accordance with equation (2.74)
(the˚atop D̊κ is a reminder that it is torsion-free),

e−1∂(e emnκλδΓmnλ)

∂xκ
= D̊κ

(
emnκλδΓmnλ

)
, (16.100)

and therefore integrates to a surface term in accordance with Gauss' theorem (15.103). The remaining terms
in the integrand of equation (16.98) must be expressed in terms of the variations δΓpnκ and δemκ of the
connections and vierbein. The second term in the integrand on the right hand side of equation (16.98) is

emnκλδ(ΓpmλΓpnκ) = 2 emnκλΓpmλδΓpnκ . (16.101)

The variation δ ln e of the vierbein determinant e in may be written in terms of the variation δemκ of the
vierbein, equation (2.77),

δ ln e = −emκ δemκ . (16.102)

The last term in the integrand on the right hand side of equation (16.98) is then(
∂Γmnλ
∂xκ

+ ΓpmλΓpnκ

)
e−1δ(e emnκλ) = 1

2Rκλmn e
−1δ
(
e emκenλ

)
=
(
Rκm − 1

2emκR
)
δemκ = Gkm e

k
κ δe

mκ ,

(16.103)
where Gkm ≡ Rkm − 1

2γkmR is the tetrad-frame Einstein tensor. The 1
2γkmR part of the Einstein tensor

comes from variation of the vierbein determinant, equation (16.102).
The substitutions (16.99)�(16.103) bring the variation (16.98) of the gravitational action to

8π δSg =

∮
emnκλδΓmnλ d

3xκ

+

∫ [(
− e−1∂(e emnκλ)

∂xκ
+ 2 Γ[m

pκe
n]pκλ

)
δΓmnλ +Gκm δe

mκ

]
d4x . (16.104)

The surface term vanishes provided that the connections Γmnλ are held �xed on the boundary of integration,
so that their variation δΓmnλ vanishes on the boundary. Hamilton's equations follow from extremizing the
remaining integral. Extremizing the action (16.104) with respect to the variation δemκ of the vierbein yields
Einstein's equations in vacuo,

Gkm = 0 . (16.105)

Extremizing the action with respect to the variation δΓmnλ of the Lorentz connections gives

e−1∂(e emnκλ)

∂xκ
= 2 Γ[m

pκe
n]pκλ . (16.106)
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Abbreviate the left hand side of equation (16.106) by

f lmn ≡ elλ
e−1∂(e emnκλ)

∂xκ
, (16.107)

which is antisymmetric in its last two indices, flmn = fl[mn]. In terms of the vierbein derivatives dlmn de�ned
by equation (11.32), the quantities flmn de�ned by equation (16.107) are

flmn = dl[mn] − γlmdk[kn] + γlnd
k

[km] . (16.108)

Inverting equation (16.106) yields the tetrad-frame connections Γmnl in terms of flmn,

Γmnl = 2flmn − 3f[lmn] + 2γl[mf
p
n]p . (16.109)

Inserting the expression (16.108) into equations (16.109) yields the standard torsion-free expression (11.54)
for the tetrad-frame connection Γmnl in terms of vierbein derivatives dmnl,

Γmnl = Γ̊mnl = 2dl[mn] − 3d[lmn] . (16.110)

The expression for the Ricci scalar in the Hilbert Lagrangian (16.88) is valid with or without torsion, but
extremization of the action in vacuo has yielded the torsion-free connection. There remains the possibility
that torsion could be generated by matter, �16.11.

16.9 Trading coordinates and momenta

In the Hamiltonian approach, the coordinates and momenta appear on an equal footing. A Lagrangian in
Hamiltonian form L = p ∂q−H can be replaced by an alternative Lagrangian L′ = − q ∂p−H which di�ers
from the original by a total derivative, L′ = L − ∂(pq), and thus yields identical equations of motion. The
alternative Lagrangian L′ is in Hamiltonian form with q → p and p→ −q.
Consider integrating the �rst term of the gravitational Lagrangian (16.91) by parts (this is essentially the

same integration by parts as (16.99), but with the connection Γmnλ itself instead of the varied connection
δΓmnλ),

emnκλ
∂Γmnλ
∂xκ

=
e−1∂(e emnκλΓmnλ)

∂xκ
− e−1∂(e emnκλ)

∂xκ
Γmnλ . (16.111)

Now emnκλΓmnλ is a coordinate tensor but not a tetrad tensor. However, its variation with respect to any
in�nitesimal Lorentz transformation is a tetrad tensor, �16.7.1. Therefore the variation of the �rst term
on the right hand side of equation (16.111) is a torsion-free covariant divergence D̊κδ(e

mnκλΓmnλ), which
can be discarded from the Lagrangian without changing the equations of motion. The resulting alternative
gravitational Lagrangian is

8π L′g = −e
−1∂(e emnκλ)

∂xκ
Γmnλ + emnκλΓpmλΓpnκ . (16.112)

Again, this alternative Lagrangian is a coordinate scalar but not a tetrad scalar, but any variation of it is a
tetrad scalar, so is a satisfactory Lagrangian.
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In this alternative Lagrangian (16.112), the coordinates are the vierbein enλ, and the corresponding canon-
ically conjugate momenta are

πn
κ
λ ≡

8π δL′g
∂(∂enλ/∂xκ)

= emκπnmλ , (16.113)

where πnmλ and Γnmλ are related by

πnmλ ≡ Γnmλ − enλΓpmp + emλΓpnp , Γnmλ = πnmλ − 1
2 enλπ

p
mp + 1

2 emλπ
p
np . (16.114)

Like the tetrad connection Γnmλ, the covariant momentum πnmλ is antisymmetric in its �rst two indices
nm, and therefore has 6 × 4 = 24 independent components. The traces are related by πpmp = −2Γpmp. The
alternative Lagrangian (16.112) is in Hamiltonian form L′g = pκ∂κq − Hg with coordinates q = enλ and
momenta pκ = πn

κ
λ/8π,

L′g =
1

8π
πn

κ
λ
∂enλ

∂xκ
−Hg , (16.115)

and the same (super-)Hamiltonian (16.93) as before.
Equations of motion come from varying the alternative action δS′g with respect to the coordinates emκ and

momenta πmnλ. The coe�cients of the variations δemκ and δπmnλ are linear combinations of the coe�cients
of δemκ and δΓmnλ in the varied action of equation (16.104). The end result is the same equations of motion
as before, equations (16.105) and (16.110). The only di�erence is that variation of the alternative action
gives a revised surface term,

8π δS′g =

∮
πnmλδe

nλ d3xm +

∫
as eq. (16.104) . (16.116)

The surface term vanishes provided that the vierbein enλ is held �xed on the boundary.

16.10 Matter energy-momentum and the Einstein equations with matter

Einstein's equations in vacuo, equation (16.105), emerged from varying the gravitational action with respect
to the vierbein. Einstein's equations including matter are obtained by including the variation of the matter
action with respect to the vierbein. The variation of the matter action Sm with respect to the vierbein de�nes
the energy-momentum tensor Tκm of matter,

δSm = −
∫
Tκm δe

mκ d4x . (16.117)

Adding the variation (16.104) of the gravitational action and the variation (16.117) of the matter action
gives

8π (δSg + δSm) =

∫
(Gκm − 8π Tκm) δemκ d4x , (16.118)
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extremization of which implies Einstein's equations in the presence of matter

Gkm = 8π Tkm . (16.119)

The Einstein equations (16.119) constitute a set of 16 equations. Conditions on the energy-momentum
imposed by the invariance of the matter action under local Lorentz transformations and under coordinate
transformations are discussed in ��16.11.1 and 16.11.2 below.
If the matter action is Sm =

∫
Lm d4x, then the matter energy-momentum is the sum of a part from the

variation of the matter Lagrangian Lm, and a part from the variation of the vierbein determinant in the
scalar volume element d4x ≡ e d4x0123,

Tκm = − δLm

δemκ
+ Lmemκ . (16.120)

16.11 Spin angular-momentum

In the standard UY (1)× SU(2)× SU(3) model of physics, the connections associated with the gauge groups
are dynamical �elds, the gauge bosons, which include photons, weak gauge bosons, and gluons. As has been
seen above, the gauge symmetries of general relativity include not only coordinate transformations, encoded
in the vierbein emκ, but also Lorentz transformations, encoded in the Lorentz connection Γmnλ. Treating
the vierbein as a dynamical �eld leads to Einstein's equations (16.119) and standard general relativity. If the
Lorentz connection is treated similarly as a dynamical �eld, as it surely should be, then the inevitable con-
sequence is the extension of general relativity to include torsion, which is called Einstein-Cartan theory.
Einstein-Cartan theory follows general relativity in taking the Lagrangian to be the Hilbert Lagrangian, the

only di�erence being that the Lorentz connections Γmnλ in the Riemann tensor are allowed to have torsion.
The Riemann tensor with torsion equals the torsion-free Riemann tensor plus extra terms depending on the
contortion, equation (15.49). Since torsion is a tensor, it is possible to include additional torsion-dependent
terms in the Lagrangian (Hammond, 2002; Hehl, 2012; Blagojevi¢ and Hehl, 2013), but the various possible
extensions go beyond the scope of this book.
As shown below, in Einstein-Cartan theory, torsion vanishes in empty space, and it does not propagate as

a wave, unlike the (trace-free, Weyl part of the) Riemann curvature. Consequently conventional experimental
tests of gravity do not rule out torsion. The gravitational force is intrinsically much weaker than the other
three forces of the standard model. It makes itself felt only because gravity is long-ranged, and cumulative
with mass. Since torsion in Einstein-Cartan theory is local, it is hard to detect.
Just as the variation of the matter action with respect to the vierbein emκ de�nes the energy-momentum

tensor Tkm, so also the variation of the matter action with respect to the Lorentz connections Γmnλ de�nes
the spin angular-momentum tensor Σλmn,

δSm = 1
2

∫
Σλmn δΓmnλ d

4x (16.121)

(implicitly summed over both indicesm and n). The spin angular-momentum tensor Σλmn is so-called because
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it is sourced by the spin of fermionic �elds such as Dirac �elds, Exercise 16.5. The spin angular-momentum
vanishes for gauge �elds such as the electromagnetic �eld, Exercise 16.4. Like the torsion tensor Sλmn, the
spin angular-momentum Σλmn is antisymmetric in its last two indices mn. Adding the variation (16.104) of
the gravitational action and the variation (16.121) of the matter action gives

8π (δSg + δSm) =

∫ (
− e−1∂(e emnκλ)

∂xκ
+ 2 Γ[m

pκe
n]pκλ + 4πΣλmn

)
δΓmnλ d

4x , (16.122)

extremization of which implies

e−1∂(e emnκλ)

∂xκ
= 2 Γ[m

pκe
n]pκλ + 4πΣλmn . (16.123)

Inverting equation (16.123) along the lines of equations (16.106)�(16.110) recovers the usual expression (11.55)
for the torsion-full tetrad connection Γmnλ as a sum of the torsion-free connection Γ̊mnλ given by equa-
tion (16.110), and a contortion tensor Kmnλ,

Γmnλ = Γ̊mnλ +Kmnλ , (16.124)

with the contortion tensor Kmnl being related to the spin angular-momentum Σlmn by

Kmnl = 8π
(
−Σlmn + 3

2Σ[lmn] − γl[mΣpn]p

)
. (16.125)

The contortion Kmnl is related to the torsion Smnl by equations (11.56). Equation (16.125) implies that the
torsion Sλmn is related to the spin angular-momentum Σλmn by

Sλmn = 8π
(

Σλmn + e[m
λ Σkn]k

)
. (16.126)

Equation (16.126) inverts to

Sλmn + 2 e[m
λ Skn]k = 8πΣλmn . (16.127)

Equation (16.127) relating the torsion to the spin angular-momentum is the analogue of Einstein's equa-
tions (16.119) relating the Einstein tensor to the matter energy-momentum. Whereas the Einstein equa-
tions (16.119) determine only 10 of the 20 components of the Riemann tensor (for vanishing torsion) leav-
ing 10 components (the Weyl tensor) to describe tidal forces and gravitational waves, the torsion equa-
tions (16.127) determine all 24 components of the torsion tensor in terms of the 24 components of the spin
angular-momentum. Thus, at least in this vanilla version of general relativity with torsion, torsion vanishes
in empty space, and it cannot propagate as a wave.
An equivalent spin angular-momentum tensor Σ̃λmn is obtained by varying the matter action with respect

to πmnλ in place of Γmnλ,

δSm = 1
2

∫
Σ̃λmn δπmnλ d

4x . (16.128)

The relation between the torsion Sλmn and the modi�ed spin angular-momentum Σ̃λmn is

Sλmn = 8π Σ̃λmn . (16.129)
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Comparing equation (16.129) to equation (16.126) shows that the modi�ed and original spin angular-
momenta Σ̃λmn and Σλmn di�er by a trace term,

Σ̃λmn = Σλmn + e[m
λ Σkn]k , Σλmn = Σ̃λmn + 2 e[m

λ Σ̃kn]k . (16.130)

As seen above, the torsion, contortion, and spin angular-momentum tensors are all invertibly related to each
other. The relations between them are conceptually clearer when decomposed into irreducible parts. Each is
a 24-component tensor that decomposes into a 4-component trace part, a 4-component totally antisymmetric
part, and a remaining 16-component trace-free antisymmetry-free part. The torsion Slmn, contortion Klmn,
and spin angular-momentum Σlmn package these parts with di�erent weights. The three parts are related by

Spnp = Kp
np = −4πΣpnp trace part ,

S[lmn] = 2K[mnl] = 8πΣ[lmn] totally antisymmetric part ,

Slmn = −Kmnl = 8πΣlmn trace-free, antisymmetry-free part .

(16.131)

16.11.1 Conservation of angular-momentum and the symmetry of the

energy-momentum tensor

The action Sm of any matter �eld is invariant under Lorentz transformations. Symmetry under Lorentz
transformations implies a conservation law (16.136) of angular-momentum. If torsion vanishes, the conserva-
tion law (16.136) implies that the energy-momentum tensor Tmn of the �eld is symmetric, equation (16.137).
I thank Prof. Fred Hehl for pointing out that the antisymmetric part of the energy-momentum tensor can
be interpreted consistently as half the divergence of orbital angular-momentum, �19(c) of Corson (1953),
so that equation (16.136) can be interpreted as a conservation law of total angular momentum, spin plus
orbital.
Equation (16.95) gives the variation of a tetrad vector under a local Lorentz transformation generated by

the in�nitesimal antisymmetric tensor εmn. Under such an in�nitesimal Lorentz transformation, the vierbein
tensor emκ varies as

δemκ = εmne
nκ = εmκ . (16.132)

Equation (16.96) gives the variation of the Lorentz connection under an in�nitesimal Lorentz transformation
generated by εmn,

δΓmnλ = −Dλεmn . (16.133)

The coe�cients of the variation δSm of the matter action with respect to δemκ and δΓmnλ are by de�nition
the energy-momentum and spin angular-momentum of the matter, equations (16.121) and (16.117). Inserting
the variations (16.132) and (16.133) with respect to Lorentz transformations yields the variation of the matter
action under a Lorentz transformation,

δSm = −
∫ (

1
2ΣλmnDλεmn + Tκmε

mκ
)
d4x . (16.134)
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An integration by parts brings the variation to

δSm = −
∮

1
2Σλ

mnεmn d
3xλ +

∫ (
1
2DλΣλmn + T [mn]

)
εmn d

4x . (16.135)

Requiring that the matter action be invariant under Lorentz transformations imposes that the variation
(16.135) must vanish under arbitrary variations of the antisymmetric Lorentz generators εmn, subject to the
generators being �xed on the initial and �nal hypersurfaces of integration. Therefore the integrand of the
rightmost integral in equation (16.135) must vanish, implying the conservation law

1
2DλΣλmn + T [mn] = 0 . (16.136)

If the spin angular-momentum of the matter component vanishes, Σλmn = 0, then the energy-momentum
tensor of the matter component is symmetric,

Tmn = Tnm . (16.137)

16.11.2 Conservation of energy-momentum

The action Sm of any matter �eld is also invariant under coordinate transformations. Symmetry under
coordinate transformations implies a conservation law (16.145) for the energy-momentum Tmn of the �eld.
Under a coordinate transformation generated by the coordinate shift δxµ = εµ, the variation of any

quantity is given by minus its Lie derivative Lε with respect to the coordinate shift εµ, equation (7.122).
The Lie derivative of a coordinate tensor is given by equation (7.150), and this equation continues to hold
for tensors that are tetrad as well as coordinate tensors, the tetrad components being treated as coordinate
scalars (because tetrad components are unchanged under a coordinate transformation). However, a di�culty
arises because the Lie derivative of a tetrad tensor is not a tetrad tensor (see Concept Question 26.2).
Consequently, although the vierbein is a coordinate and tetrad tensor, its Lie derivative is a coordinate
tensor but not a tetrad tensor. The solution to the di�culty is pointed out at the beginning of �5.2.1 of Hehl
et al. (1995): the Lagrangian is a Lorentz scalar, so its coordinate derivative is also its Lorentz-covariant
derivative. Thus in varying the Lagrangian, the coordinate derivative of any tetrad tensor can be replaced
by its Lorentz-covariant derivative. The Lorentz-covariant Lie derivative LΓε of the vierbein is

LΓεe
mκ = − emλ ∂ε

κ

∂xλ
+ ελ

(
∂emκ

∂xλ
+ Γmnλe

nκ

)
= − D̊mεκ − ελKmκλ

= −Dmεκ − εlSκml , (16.138)

which di�ers from equation (26.18) in that the derivative of emκ on the right hand side of the �rst line
is covariant with respect to the tetrad index m. The expressions on the second and third lines of equa-
tions (16.138) are equivalent; the second line is in terms of the torsion-free covariant derivative D̊, while the
third line is in terms of the torsion-full covariant derivative D. Thus the vierbein tensor emκ varies under a
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coordinate transformation as, equation (26.18),

δemκ = −LΓεe
mκ = D̊mεκ + ελK

mκλ . (16.139)

The Lorentz connection Γmnλ is not a tetrad-frame tensor, so the usual formula for the Lie derivative
does not apply. Rather, the variation δΓmnλ of the Lorentz connection follows from a di�erence of covariant
derivatives,

δDλan −Dλδan = δ(∂λan − Γmnλam)− (∂λδan − Γmnλδam) = −(δΓmnλ)am . (16.140)

Thus the variation of the Lorentz connection under a coordinate transformation by εκ satis�es

(δΓmnλ)am = LΓε(Dλan)−DλLΓεan = εκ
(

∂

∂xκ
Dλan − ΓmnκDλam

)
+ (Dκan)

∂εκ

∂xλ
−Dλ(εκDκan)

= εκamRλκmn . (16.141)

Equation (16.142) is true for arbitrary am, so

δΓmnλ = εκRλκmn . (16.142)

Inserting the variations (16.139) and (16.142) of the vierbein and Lorentz connection into the varia-
tions (16.117) and (16.121) of the matter action yields the variation of the matter action under a coordinate
transformation by εκ,

δSm =

∫ [
−Tκm

(
D̊mεκ + ελK

mκλ
)

+ 1
2Σλmn εκRλκmn

]
d4x . (16.143)

An integration by parts brings the variation of the matter action to

δSm = −
∮
Tκλε

κ d3xλ +

∫ (
D̊mTκm + TmnKmnκ + 1

2ΣλmnRλκmn

)
εκ d4x . (16.144)

Invariance of the action under coordinate transformations requires that the variation (16.144) vanish for
arbitrary coordinate shifts εκ that vanish on the boundary. Therefore the integrand of rightmost integral in
equation (16.144) must vanish, implying the law of conservation of energy-momentum,

D̊mTκm + TmnKmnκ + 1
2ΣλmnRλκmn = 0 . (16.145)

Since the contortion Kmnκ is antisymmetric in its �rst two indices mn, the second term of the conservation
law (16.295) depends on the antisymmetric part T [mn] of the energy-momentum tensor.
If the spin angular-momentum of the matter component vanishes, Σλmn = 0, then its matter energy-

momentum tensor Tmn is symmetric, equation (16.136), and the energy-momentum conservation equa-
tion (16.145) of the matter component simpli�es to

D̊mT
nm = 0 . (16.146)
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Concept question 16.1. Can the coordinate metric be Minkowski in the presence of torsion?

Can the coordinate metric be the Minkowski metric gµν = ηµν over a �nite region of spacetime where torsion
does not vanish? Answer. As discussed in Concept Question 2.5, yes, torsion could technically be �nite even
in �at (Minkowski) space. In practice, no, because torsion at any point of spacetime is determined by the
spin angular-momentum of matter there, which contributes energy-momentum that ensures that the metric
is not Minkowski over the �nite region (of course, the metric can always be made locally Minkowski).

Concept question 16.2. What kinds of metric or vierbein admit torsion? Answer. Any kind.
Coordinate derivatives of the metric or vierbein determine torsion-free connections, placing no constraint on
torsion.

Concept question 16.3. Why the names matter energy-momentum and spin angular-momentum?

What is the justi�cation for calling Tκm the matter energy-momentum and Σλmn the spin angular-momentum?
Answer. In �at spacetime, conservation of energy and momentum are associated with translation symmetry
with respect to time and space. Conservation of angular momentum is associated with rotational symme-
try of space. In general relativity, these global symmetries are replaced by local symmetries. Translation
symmetry is replaced by symmetry under coordinate transformations; rotational symmetry is replaced by
symmetry under local Lorentz transformations (which include Lorentz boosts as well as spatial rotations).
The matter energy-momentum tensor Tκm satis�es a conservation law (16.145) that arises as a result of
symmetry under coordinate transformations. The spin angular-momentum tensor Σλmn satis�es a conser-
vation law (16.136) that arises as a result of symmetry under local Lorentz transformations. The reason for
the adjective �spin� is that, as seen in Exercises 16.4 and 16.5, spin angular-momentum vanishes for bosonic
�elds such as electromagnetism, but is non-vanishing for fermionic (half-integral spin) �elds.

Exercise 16.4. Energy-momentum and spin angular-momentum of the electromagnetic �eld.De-
rive the energy-momentum and spin angular-momentum of the electromagnetic �eld. The energy-momentum
and spin angular-momentum of a �eld are de�ned by equations (16.117) and (16.121).
Solution.

1. Energy-momentum of the electromagnetic �eld. The Lagrangian of the electromagnetic �eld is,
equation (16.28),

L ≡ − 1

16π
gκµgλνFκλFµν , (16.147)

where the inverse metric is in terms of the vierbein,

gκµ = ηkme
kκemµ . (16.148)

The fact that the Lagrangian depends on the vierbein only in the symmetrized combination constituting
the inverse metric guarantees that the energy-momentum tensor is symmetric. The variation of the
electromagnetic Lagrangian (16.147) with respect to the vierbein is

δL = − 1

4π
FκλFk

λ δekκ . (16.149)
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An additional contribution to the energy-momentum comes from variation of the vierbein determinant
in the volume element, equation (16.120). The resulting tetrad-frame energy-momentum tensor Tkl of
the electromagnetic �eld is the symmetric tensor

Tkl =
1

4π

(
FkmFl

m − 1

4
γklFmnF

mn

)
. (16.150)

The factor 1/4π factor is for Gaussian units, and is not present in Heaviside units.

2. Spin angular-momentum of the electromagnetic �eld. The Lagrangian of the electromagnetic
�eld depends on the torsion-free curl of the electromagnetic potential, so does not involve any Lorentz
connections. Therefore the spin angular-momentum of the electromagnetic �eld is zero,

Σlmn = 0 . (16.151)

Exercise 16.5. Energy-momentum and spin angular-momentum of a Dirac �eld. Find the energy-
momentum and spin angular-momentum of a Dirac spinor �eld.
Solution.

1. Energy-momentum of a Dirac �eld. The Lagrangian of a Dirac �eld is, equation (41.4),

L = 1
2 ψ̄ ·

(
ekλγγkDλ +m

)
ψ − 1

2ψ ·
(
ekλγγkDλ +m

)
ψ̄ , (16.152)

where the (torsion-full) covariant derivative isDλ = ∂λ+ 1
4Γmnλ γγ

m ∧γγn (implicit sum over both indices
m and n). The two terms in the Lagrangian (16.152) are complex conjugates of each other, ensuring
that the Lagrangian is real. Variation with respect to the vierbein ekλ yields the energy-momentum
tensor Tlk = el

λTλk, which is not symmetric in lk,

Tlk = 1
2 ψ̄ · γγkDlψ − 1

2ψ · γγkDlψ̄ . (16.153)

The Dirac Lagrangian L vanishes on the equations of motion, so the contribution to the energy-
momentum, equation (16.120), arising from variation of the vierbein determinant in the scalar volume
element d4x ≡ e d4x0123 vanishes. Again, the two terms in the energy-momentum (16.153) are complex
conjugates of each other, ensuring that the energy-momentum is real.

2. Spin angular-momentum of a Dirac �eld. Variation with respect to the connection Γmnλ yields the
spin angular-momentum Σlmn ≡ elλΣλmn, which is a trivector current totally antisymmetric in lmn,

Σlmn = 1
2 ψ̄ · γγl ∧γγm ∧γγnψ . (16.154)

The possible vector current contribution cancels between the two terms on the right hand side of
equation (16.152).

Exercise 16.6. Electromagnetic �eld in the presence of torsion. Does torsion a�ect the propagation
of the electromagnetic �eld?
Solution. No. The electromagnetic �eld equations involve only torsion-free derivatives, so the propagation
of the electromagnetic �eld is una�ected by torsion.
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Exercise 16.7. Dirac spinor �eld in the presence of torsion. How does torsion a�ect the propagation
of a massive Dirac spin-1

2 �eld? Assume for simplicity that the background metric is Minkowski, that the
spinor �eld is uniform (a plane wave) and at rest, and that the spin angular-momentum Σmnk is uniform.
Solution. The torsion-free part of the connection vanishes for a Minkowski metric, so the only non-vanishing
part of the connection is the contortion Kmnk. If the spin angular-momentum is uniform, then so is the
contortion. The equation of motion of a Dirac spinor �eld of rest mass m is[

γγk(∂k + 1
4Kmnk γγ

m ∧γγn) +m
]
ψ = 0 . (16.155)

For simplicity, go to the rest frame of the spinor �eld, where the particle is in a time-up and spin-up eigenstate
ψ ∝ ε⇑↑, equation (14.108), which means that the particle is a particle, not an antiparticle, and its spin is
along the positive 3-direction. The only Dirac γ-matrices that are non-vanishing when acting on a spinor ψ
in this state are γγ0 and γγ1 ∧γγ2. Thus the equation of motion in the rest frame is(

∂0 + 3
2K[012] +Ka

0a +m
)
ψ = 0 . (16.156)

The solutions are

ψ ∝ e−i(m+δm)t , (16.157)

where the mass change δm is

δm = 3
2K[012] +Ka

0a = 4πG
(
Σ[012] − Σa0a

)
, (16.158)

the contortion being related to the spin angular-momentum Σmnk by equations (16.131). Thus the e�ect of
torsion is to change the e�ective mass m of the spinor particle. The trace part of the spin angular-momentum
produces a mass change that has opposite signs for particles and antiparticles, but is independent of the
direction of the spin of the particle, while the totally antisymmetric part of the spin angular-momentum
produces a mass change that depends on the direction of the spin of the particle. As seen in Exercise 16.5, a
Dirac spinor �eld produces only a totally antisymmetric spin angular-momentum Σ[mnk]. This antisymmetric
component is directional, so tends to cancel if the spins of the background system of spinor particles are
pointed in random directions. The antisymmetric spin angular-momentum is signi�cant only if the spins
of the background particles are aligned. Whatever the case, since the gravitational coupling G is so weak
compared to typical electromagnetic couplings, the resulting change in the mass of a spinor is typically tiny.

16.12 Lagrangian as opposed to Hamiltonian formulation

In the Lagrangian approach to the least action principle, as opposed to the Hamiltonian approach followed
above, the Lagrangian is required to be a function of the coordinates and velocities, as opposed to the
momenta. For gravity, the coordinates are the vierbein enλ, and the velocities are their coordinate derivatives
∂enλ/∂xκ. In the Lagrangian approach, the Lorentz connections Γmnλ are not independent coordinates, but
rather are taken to be given in terms of the coordinates and velocities enλ and ∂enλ/∂xκ. In other words,
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the Lorentz connections are assumed to satisfy the equations of motion that in the Hamiltonian approach
are derived by varying the action with respect to the connections.
The Hilbert Lagrangian depends not only on the vierbein and its �rst derivatives, but also on its second

derivatives. To bring the Hilbert Lagrangian to a form that depends only on the �rst, not second, derivatives
of the vierbein, the Hilbert action must be integrated by parts. This is precisely the integration by parts
that was carried out in the previous section �16.9. In the Lagrangian approach, the alternative Lagrangian
L′g given by equation (16.112) provides a satisfactory Lagrangian, once the connections Γmnκ are expressed
in terms of the vierbein emκ and its �rst derivatives.

16.12.1 Quadratic gravitational Lagrangian

The derivative term on the right hand side of the expression (16.112) for the Lagrangian L′g was previously
determined by Hamilton's equations to be given by equation (16.106), in which the connection proved to
be the torsion-free connection. Substituting equation (16.106) (with torsion-free connection Γ̊mpκ) brings the
alternative Lagrangian (16.112) to

8π L′g = emnκλ
(
− 2 Γ̊pmλΓpnκ + ΓpmλΓpnκ

)
= emnκλ

(
− Γ̊pmλΓ̊pnκ +Kp

mλKpnκ

)
, (16.159)

the last step of which follows from expanding the torsion-full connection as a sum of the torsion-free con-
nection and the contortion tensor, Γmnκ = Γ̊mnκ + Kmnκ, equation (11.55). The torsion-free connections
Γ̊pnκ ≡ ekκΓ̊pnk here are given by expression (16.110) (same as equation (11.54)), which are functions of the
vierbein, linear in its �rst derivatives. The Lagrangian (16.159) is quadratic in the torsion-free connections,
and therefore quadratic in the �rst derivatives of the vierbein, but independent of any second derivatives.
If torsion vanishes, as general relativity assumes, then

8π L′g = − emnκλ ΓpmλΓpnκ . (16.160)

Thus, for vanishing torsion, the �rst (�surface�) term in the original alternative Lagrangian (16.112) equals
minus twice the second (�quadratic�) term. Padmanabhan (2010) has termed this property of the Hilbert
Lagrangian �holographic,� and has suggested that it points to profound consequences.

16.12.2 A quick way to derive the quadratic gravitational Lagrangian

There is a quick way to derive the quadratic gravitational Lagrangian (16.159) that seems like it should not
work, but it does. Suppose, incorrectly, that the Lorentz connections Γmnλ formed a coordinate and tetrad
tensor. Then contracting the Riemann tensor would give the Ricci scalar in the form

R = 2 D̊κ

(
emnκλΓmnλ

)
+ 2 emnκλ

(
− Γ̊pmλΓ̊pnκ +Kp

mλKpnκ

)
. (16.161)

Discarding the torsion-free covariant divergence recovers the quadratic gravitational Lagrangian (16.159).
Why does this work? The answer is that, as discussed in �16.12, although Γmnλ is not a tetrad tensor, it is a
tetrad tensor with respect to in�nitesimal tetrad transformations about the value that satis�es the equations
of motion. In the Lagrangian formalism, the connections are assumed to satisfy their equations of motion.
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Since least action invokes only in�nitesimal variations of the coordinates and tetrad, for the purposes of
applying least action, the argument emnκλΓmnλ of the covariant divergence can be treated as a tensor, and
the covariant divergence thus discarded legitimately.

16.13 Gravitational action in multivector notation

The derivation of the gravitational equations of motion from the Hilbert action can be translated into
multivector language. Translating into multivector language does not make calculations any easier, but,
by removing some of the blizzard of indices, it makes the structure of the gravitational Lagrangian more
manifest. The multivector approach followed in this section 16.13 is a stepping stone to the even more
compact, abstract, and powerful notation of multivector-valued di�erential forms, dealt with starting from
�16.14.

16.13.1 Multivector gravitational Lagrangian

In multivector notation, the Hilbert Lagrangian (16.88) is

Lg ≡
1

16π
(eλ ∧ eκ) ·Rκλ =

1

16π
(eλ ∧ eκ) ·

(
∂Γλ
∂xκ

− ∂Γκ
∂xλ

+ 1
2 [Γκ,Γλ]

)
, (16.162)

implicitly summed over both indices κ and λ. In equation (16.162), eκ = em
κγγm are the usual coordinate

(co)tangent vectors, equation (11.6), and the bivectors Γκ and Rκλ are given by equations (15.20) and
(15.25). The dot in equation (16.162) signi�es the multivector dot product, equation (13.39), which here is
a scalar product of bivectors. The order of eλ ∧ eκ is �ipped to cancel a minus sign from taking a scalar
product of bivectors, equation (13.28).
Applying the multivector triple-product relation (13.42) to the derivative term in the rightmost expression

of equation (16.162) brings the Hilbert Lagrangian to

Lg =
1

16π

(
2 eλ · (∂ · Γλ) + 1

2 (eλ ∧ eκ) · [Γκ,Γλ]
)
, (16.163)

where ∂ ≡ eκ ∂/∂xκ. The form of the Lagrangian (16.163) indicates that the �velocities� corresponding
to the �coordinates� Γλ are ∂ · Γλ. The Lagrangian (16.163) is in (super-)Hamiltonian form with bivector
coordinates Γλ, vector velocities ∂ · Γλ, and vector momenta eλ/8π,

Lg =
1

8π
eλ · (∂ · Γλ)−Hg , (16.164)

and (super-)Hamiltonian Hg(Γλ, e
λ) (compare (16.93))

Hg = − 1

32π
(eλ ∧ eκ) · [Γκ,Γλ] . (16.165)

Whereas in tensor notation the gravitational coordinates and momenta appeared to be objects of di�erent
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types, with di�erent numbers of indices, in multivector notation the coordinates and momenta are all mul-
tivectors, albeit of di�erent grades. In multivector notation, the number of coordinates Γλ and momenta eλ

is the same, 4.

16.13.2 Variation of the multivector gravitational Lagrangian

In multivector notation, the �elds to be varied in the gravitational Lagrangian are the Lorentz connection
bivectors Γλ and the coordinate vectors eκ. In multivector notation, when the �elds are varied, it is the
coe�cients Γklλ and ekκ that are varied, the tetrad basis vectors γγk being considered �xed. Thus the variation
δΓλ of the Lorentz connections is

δΓλ ≡ 1
2 (δΓklλ)γγk ∧γγl (16.166)

(implicitly summed over all indices; the factor of 1
2 would disappear if the sum were over distinct antisym-

metric indices kl). The variation δeκ of the coordinate vectors is

δeκ ≡ (δek
κ)γγk . (16.167)

As remarked in �16.8, when the vierbein are varied, the variation of the determinant e of the vierbein that
goes into the scalar volume element d4x = e d4x0123 must be taken into account. The variation of the vierbein
determinant is related to the variation δeκ of the coordinate vectors by

δ ln e = −ekκ δekκ = −eκ · δeκ . (16.168)

The variation of the gravitational action with the multivector Lagrangian (16.169) is

δSg =
1

16π

∫ [
(eλ ∧ eκ) ·

(
2
∂δΓλ
∂xκ

+ 1
2δ[Γκ,Γλ]

)
+ e−1δ(e eλ ∧ eκ) ·Rκλ

]
d4x . (16.169)

The �rst term in the integrand of equation (16.169) integrates by parts to

(eλ ∧ eκ) · ∂δΓλ
∂xκ

= D̊κ

(
(eλ ∧ eκ) · δΓλ

)
− e−1∂(e eλ ∧ eκ)

∂xκ
· δΓλ . (16.170)

The second term in the integrand of equation (16.169) is

1
2 (eλ ∧ eκ) · δ[Γκ,Γλ] = (eλ ∧ eκ) · [Γκ, δΓλ] = [eλ ∧ eκ,Γκ] · δΓλ , (16.171)

the last step of which follows from the multivector triple-product relation (13.42) and the fact that (half)
the anticommutator of two bivectors is the bivector part of their geometric product. The third term in the
integrand of equation (16.169) is

Rκλ · e−1δ(e eλ ∧ eκ) = 2Rκλ · (eλ ∧ δeκ)−
(
Rκλ · (eλ ∧ eκ)

)
eµ · δeµ

=
(
2Rκλ · eλ −R eκ

)
· δeκ

= 2Gκ · δeκ , (16.172)
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where the second line again follows from the multivector triple-product relation (13.42), and Gκ is the
Einstein vector

Gκ ≡ Rκλ · eλ − 1
2R eκ =

(
Rκm − 1

2Remκ
)
γγm . (16.173)

The manipulations (16.170)�(16.172) bring the variation (16.169) of the action to

δSg =
1

8π

∮
(eλ ∧ eκ) · δΓλ d3xκ +

1

8π

∫ [(
− e−1∂(e eλ ∧ eκ)

∂xκ
+ 1

2 [eλ ∧ eκ,Γκ]

)
· δΓλ +Gκ · δeκ

]
d4x .

(16.174)
The surface term vanishes provided that Γλ is held �xed on the boundaries of integration. Extremizing the
action (16.174) with respect to the variation δeκ of coordinate vectors yields the Einstein equations in vacuo,

Gκ = 0 . (16.175)

Extremizing the action (16.174) with respect to the variation δΓλ of the Lorentz connections yields the
multivector equivalent of equation (16.106),

e−1∂(e eλ ∧ eκ)

∂xκ
= 1

2 [eλ ∧ eκ,Γκ] . (16.176)

The left hand side of equation (16.176) is

e−1∂(e eλ ∧ eκ)

∂xκ
= ∂ ∧ eλ − eλ ∧

(
eµ · (∂ ∧ eµ)

)
. (16.177)

The �velocities� of the coordinate vectors are their curls ∂ ∧ eλ,

∂ ∧ eλ ≡ eκ ∧ ∂e
λ

∂xκ
= dλ[mn]γγ

m ∧γγn (16.178)

implicitly summed over both indices m and n. The dλmn ≡ elλdlmn in equation (16.178) are the vierbein
derivatives de�ned by equation (11.32). Equation (16.176) solves to yield the torsion-free relation between
the connections Γλ and the velocities ∂ ∧ eλ of the coordinate vectors,

Γλ = Γ̊λ = ∂ ∧ eλ − eλ ·
(
eµ ∧(∂ ∧ eµ)

)
, ∂ ∧ eλ = Γ̊λ − 2 eλ · (eµ ∧ Γ̊µ) . (16.179)

16.13.3 Alternative multivector gravitational action

As in �16.9, since the Lagrangian (16.162) is in Hamiltonian form, the coordinates Γλ and momenta eλ can
be traded without changing the equations of motion. Integrating the Lagrangian (16.162) by parts gives

8πLg =
e−1∂

(
(eλ ∧ eκ) · Γλ

)
∂xκ

− e−1∂(e eλ ∧ eκ)

∂xκ
· Γλ + 1

4 (eλ ∧ eκ) · [Γκ,Γλ] . (16.180)

As in �16.9, the connection Γλ is not a tetrad tensor, but any in�nitesimal variation of it is, �16.7.1,
so the variation of the �rst term on the right hand side of equation (16.180) is a covariant divergence
D̊κδ

(
(eλ ∧ eκ) · Γλ

)
, which can be discarded from the Lagrangian without changing the equations of mo-

tion.
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The middle term on the right hand side of equation (16.180) can be written

− Γλ ·
e−1∂(e eλ ∧ eκ)

∂xκ
= πλ · (∂ ∧ eλ) , (16.181)

where ∂ ∧ eλ is given by equation (16.178), and πλ is the trace-modi�ed Lorentz connection bivector

πλ = Γλ − eλ ∧(eµ · Γµ) , Γλ = πλ − 1
2 eλ ∧(eµ · πµ) , (16.182)

with components

πλ = 1
2 πmnλ γγ

m ∧γγn . (16.183)

The components πmnλ are as given by equation (16.114).
Discarding the torsion-free divergence from the Lagrangian (16.180) yields the alternative Lagrangian

L′g =
1

8π
πλ · (∂ ∧ eλ)−Hg , (16.184)

with the same (super-)Hamiltonian (16.165) as before. The alternative Lagrangian (16.184) is in Hamiltonian
form with coordinates eλ, velocities ∂ ∧ eλ, and corresponding canonically conjugate momenta πλ/(8π). As
with the alternative Lagrangian (16.112) in index notation, the alternative Lagrangian (16.184) in multivector
notation is not a tetrad scalar because the Lorentz connection is not a tetrad tensor, but any in�nitesimal
variation of it is a (coordinate and) tetrad tensor, so the alternative Lagrangian (16.184) is satisfactory
despite not being a tetrad scalar.

16.13.4 Einstein equations with matter, in multivector notation

In multivector notation, Einstein's equations including matter are obtained by including the variation of the
matter action with respect to the variation δeκ of the coordinate vectors. The variation de�nes the matter
energy-momentum vector Tκ,

δSm = −
∫
Tκ · δeκ d4x , (16.185)

with

Tκ = Tκm γγ
m . (16.186)

The combined variation of the gravitational and matter actions with respect to δeκ is

8π(δSg + δSm) =

∫
(Gκ − 8π Tκ) · δeκ d4x , (16.187)

extremization of which yields Einstein's equations with matter,

Gκ = 8π Tκ . (16.188)
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16.13.5 Spin angular-momentum in multivector notation

Just as the variation of the matter action with respect to the the variation δeκ of the coordinate vectors
de�nes the matter energy-momentum vector Tκ, so also the variation of the matter action with respect to
the the variation δΓλ of the Lorentz connection bivectors de�nes the spin angular-momentum bivector Σλ,

δSm =

∫
Σλ · δΓλ d4x , (16.189)

with (the minus sign is introduced for the same reason as the minus in equation (15.27))

Σλ ≡ − 1
2 Σλmn γγ

m ∧γγn , (16.190)

implicitly summed over both indices m and n. As in �16.11, the usual expression (15.46) for the torsion-full
tetrad connections Γλ as a sum of the torsion-free connection Γ̊λ and the contortion Kλ is recovered,

Γλ = Γ̊λ +Kλ , (16.191)

provided that the torsion bivector Sλ ≡ − 1
2 S

λ
mn γγ

m ∧γγn is related to the spin angular-momentum bivector
Σλ by

Sλ = 8π
(
Σλ − 1

2 e
λ ∧(eµ ·Σµ)

)
, Sλ − eλ ∧(eµ · Sµ) = 8πΣλ . (16.192)

16.14 Gravitational action in multivector forms notation

Especially in the mathematical literature, actions are often written in the even more compact notation of
di�erential forms. The reward, if you can get over the language barrier, is a succinct picture of the structure
of the gravitational action and equations of motion. For example, forms notation facilitates the intricate
problem of executing a satisfactory 3+1 split of the gravitational equations, �16.15. If you aspire to a deeper
understanding of numerical relativity or of quantum gravity, you would do well to understand forms.
As seen in �16.7, the Hilbert action is most insightful when the local Lorentz symmetry of general rela-

tivity, encoded in the tetrad γγm, is kept distinct from the symmetry with respect to coordinate transforma-
tions, encoded in the tangent vectors eµ. The distinction can be retained in forms language by considering
multivector-valued forms. Local Lorentz transformations transform the multivectors while keeping the forms
unchanged, while coordinate transformations transform the forms while keeping the multivectors unchanged.
To avoid con�ict between multivector and form notations, it is convenient to reserve the wedge sign ∧ to

signify a wedge product of multivectors, not of forms. No ambiguity results from omitting the wedge sign for
forms, since there is only one way to multiply forms, the exterior product1. Similarly, it is convenient to reserve
the Hodge duality symbol ∗ to signify the dual of a form, equation (15.86), not the dual of a multivector, and
to write Ia for the Hodge dual of a multivector a, equation (13.24). The form dual of a p-form a = aΛ d

pxΛ

1 This is not true. The entire apparatus of multivectors can be translated into forms language. However, I take the point of
view that, since multivectors are easier to manipulate than forms, there is not much to be gained from such a translation.
The only occasion I �nd that necessitates introducing a dot product of forms is in deriving the law of conservation of
energy-momentum in multivector forms language, equation (16.295).
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with multivector coe�cients aΛ is the multivector q-form ∗a given by (this is equation (15.86) generalized
to allow multivector coe�cients)

∗a ≡ (∗a)Π d
qxΠ = (−)pqaΛ

∗dqxΛ = εΠΛ a
Λ dqxΠ , (16.193)

implicitly summed over distinct sequences Λ and Π of respectively p and q ≡ N − p (in N dimensional
spacetime) coordinate indices. The dual (16.193) is a form dual, not a multivector dual. If a is a multivector
of grade n (not necessarily equal to p or q), the dual form ∗a remains a multivector of the same grade n.
The double dual of a multivector form a, both a multivector dual and a form dual, crops up often enough
to merit its own notation, a double-asterisk overscript ∗∗,

∗∗
a ≡ I ∗a . (16.194)

In this section 16.14 and in the remainder of this chapter, implicit sums are over distinct antisymmetric
sequences of indices, since this removes the ubiquitous factorial factors that otherwise appear.

Exercise 16.8. Commutation of multivector forms.

1. Argue that if a ≡ aKΛ γγ
K dpxΛ is a multivector form of grade k and form index p, and b ≡ aKΛ γγ

K dqxΛ

is a multivector form of grade l and form index q, then the grade k+ l− 2n component of their product
ab commutes or anticommutes as

〈ab〉k+l−2n = (−)kl−n+pq 〈ba〉k+l−2n . (16.195)

As particular cases of equation (16.195), conclude that

a · a = 0 p odd , (16.196a)

a∧a = 0 k + p odd . (16.196b)

2. What is the form index of the product ab of multivector forms a and b of form index p and q?
3. Argue that the commutator of a multivector p-form a with a multivector q-form b is commuting if p

and q are both odd, anticommuting otherwise,

[a, b] =

{
[b,a] p and q odd ,
−[b,a] otherwise .

(16.197)

As a corollary, conclude that the (anti-)commutator of a p-form a with itself vanishes if p is (odd) even,

{a,a} = 0 p odd , (16.198a)

[a,a] = 0 p even . (16.198b)

Solution.

1. This is a combination of equations (13.32) and (15.59).
2. A product of forms is always their exterior product, so the form index of the product ab is p+ q.
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3. The anticommutation of the multivectors cancels the anticommutation of the forms when p and q are
both odd.

16.14.1 Interval, connection

In multivector notation, the gravitational coordinates and momenta proved to be Γκ and eκ (or vice versa).
In forms notation, the corresponding coordinates and momenta are the Lorentz connection bivector 1-form
Γ and the line interval vector 1-form e de�ned by

Γ ≡ Γκ dx
κ = Γklκ γγ

k ∧γγl dxκ , (16.199a)

e ≡ eκ dxκ = ekκ γγ
k dxκ , (16.199b)

with, for Γ, implicit summation over distinct antisymmetric sets of indices kl. The Lorentz connection 1-
form Γ and coordinate interval 1-form e are abstract coordinate and tetrad gauge-invariant objects, whose
components in any coordinate and tetrad frame constitute the Lorentz connection Γklκ and the vierbein ekκ
in the mixed coordinate-tetrad basis.
The line interval e is essentially the same as the object dx �rst introduced in this book in equation (2.19).

I contemplated using the symbol dx in place of e everywhere in this chapter, to emphasize that using forms
language does not require switching to a whole new set of symbols. But e is the symbol for the line-interval
form conventionally used in the literature; and the symbol dx risks being misinterpreted as a composition of
d and x (for example, an exterior derivative of x), as opposed to the single holistic object dx that it really
is. Moreover, if the dot product e · e is de�ned (as here) to be a form, then that dot product is not the same
as the scalar spacetime interval squared ds2 = dx · dx, equation (2.25) (see Concept Question 16.9).
It is convenient to use the symbol ep to denote the normalized p-volume element dpx introduced in

equation (15.72),

ep ≡ dpx ≡ 1

p!

p terms︷ ︸︸ ︷
e∧ ...∧ e . (16.200)

The factor of 1/p! compensates for the multiple counting of distinct indices, and ensures that ep correctly
measures the p-volume element.

Concept question 16.9. Scalar product of the interval form e. In Chapter 2, the scalar product of
the line interval with itself de�ned its scalar length squared, ds2 = dx · dx = gµν dx

µdxν , equation (2.25).
Is this still true in multivector forms language? Answer. No. A di�erential p-form represents physically a
p-volume element, and as such is always a sum of antisymmetrized products of p intervals. The scalar product
of the interval 1-form e with itself is

e · e = 2 gµν d
2xµν = 0 (16.201)

(implicitly summed over distinct antisymmetric sequences µν, hence the factor 2). The scalar product van-
ishes because of the symmetry of the metric gµν and the antisymmetry of the area element d2xµν .
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A di�erent version of a dot product of forms (not much used in this book) can be de�ned in precise analogy
to a dot product of multivectors to yield a form of smaller form index, equation (16.280). This form dot
product of the interval 1-form e with itself yields the 0-form

e . e = gµν = 4 , (16.202)

which again di�ers from the scalar product ds2 = dx · dx.

16.14.2 Curvature and torsion forms

The Riemann bivector 2-form R is de�ned by, in the forms notation of equation (15.75),

R ≡ Rκλ d
2xκλ = Rκλmn γγ

m ∧γγn d2xκλ , (16.203)

again implicitly summed over distinct antisymmetric indices mn and κλ. The exterior derivative of the
Lorentz connection 1-form is, equation (15.67), the 2-form

dΓ =

(
∂Γλ
∂xκ

− ∂Γκ
∂xλ

)
d2xκλ =

(
∂Γmnλ
∂xκ

− ∂Γmnκ
∂xλ

)
γγm ∧γγn d2xκλ , (16.204)

implicitly summed over distinct antisymmetric indices mn and κλ. The commutator 1
4 [Γ,Γ] of the 1-form Γ

with itself is the bivector 2-form

1
4 [Γ,Γ] = 1

2 [Γκ,Γλ] d2xκλ = (ΓpmλΓpnκ − ΓpmκΓpnλ) γγm ∧γγn d2xκλ , (16.205)

again implicitly summed over distinct antisymmetric indices mn and κλ. The commutator [Γ,Γ] of the
bivector 1-form Γ is symmetric, the anticommutation of multivectors cancelling against the anticommutation
of 1-forms, equation (16.197). Equations (16.204) and (16.205) imply that the Riemann 2-form R is related
to the Lorentz connection 1-form Γ by

R ≡ dΓ + 1
4 [Γ,Γ] . (16.206)

Equation (16.206) is Cartan's second equation of structure. It constitutes the de�nition of Riemann
curvature R in terms of the Lorentz connection Γ.
The torsion vector 2-form S is de�ned by (the minus sign ensures that Cartan's equation (16.210) takes

conventional form)

S ≡ −Smκλ γγm d2xκλ , (16.207)

implicitly summed over distinct antisymmetric indices κλ. The exterior derivative of the line interval 1-form
e is the 2-form

de ≡
(
∂eλ
∂xκ

− ∂eκ
∂xλ

)
d2xκλ =

(
∂emλ
∂xκ

− ∂emκ
∂xλ

)
γγm d2xκλ = −2 dm[κλ] γγ

m d2xκλ , (16.208)

again implicitly summed over distinct antisymmetric indices κλ. The dmκλ in the rightmost expression of
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equations (16.208) are the vierbein derivatives de�ned by equation (11.33). The commutator 1
2 [Γ, e] of the

1-forms Γ and e is the vector 2-form

1
2 [Γ, e] = [Γκ, eλ] d2xκλ = −2 Γmκλ γγ

m d2xκλ , (16.209)

implicitly summed over distinct antisymmetric indices κλ. The fundamental relation (11.49), or equiva-
lently (15.29), between the torsion and the vierbein derivatives and Lorentz connections translates in multi-
vector forms language to, from equations (16.207)�(16.209),

S ≡ de+ 1
2 [Γ, e] . (16.210)

Equation (16.210) is Cartan's �rst equation of structure. Cartan's equations of structure (16.210)
and (16.206), introduced by Cartan (1904), are not equations of motion; rather, they are compact and
elegant expressions of the de�nition (11.58) of torsion and curvature. Equations of motion (16.248) for the
torsion and curvature are obtained from extremizing the Hilbert action.

16.14.3 Area and volume forms

The other factor in the gravitational Lagrangian (16.162) is eκ ∧ eλ. The 2-form corresponding to eκ ∧ eκ is
the element of area e2 de�ned by equation (16.200),

e2 = 1
2 e∧ e = eκ ∧ eλ d2xκλ = (emκenλ − emλenκ)γγm ∧γγn d2xκλ , (16.211)

implicitly summed over distinct antisymmetric pairs mn and κλ of indices.
The exterior derivative dep of the p-volume element is

dep = (−)p−1ep−1 ∧de . (16.212)

The 1/p! factor in the de�nition (16.200) of the p-volume element absorbs the factor of p from di�erentiating
p products of e. The (−)p−1 sign comes from commuting de past ep−1.
The form dual of the p-volume ep is the dual q-volume, ∗(ep) ≡ ∗eq, which in turn equals the pseudoscalar

I times the q-volume, equation (15.80),

∗(ep) = ∗eq = I eq . (16.213)

The p-volume and its q-form dual are both multivectors of grade p. For example, the form dual, equa-
tion (16.193), of the area element e2 is the dual area element ∗e2,

∗e2 = εκλµν e
µ ∧ eν d2xκλ = 2 εκλµν em

µen
ν γγm ∧γγn d2xκλ = 2 εklmne

k
κe
l
λ γγ

m ∧γγn d2xκλ , (16.214)

implicitly summed over distinct antisymmetric indices κλ, µν, kl, and mn. The exterior derivative d ∗eq of
the dual q-volume element is

d ∗eq = (−)N−1I deq = (−)pI (eq−1 ∧de) = (−)p(I eq−1) · de = (−)p ∗eq−1 · de , (16.215)

the third equality following from the duality relation (13.44).



16.14 Gravitational action in multivector forms notation 443

Exercise 16.10. Triple products involving products of the interval form e. Let a be a multivector
form of grade n and any form index.
1. Show that

e∧(e · a) = e · (e∧a) . (16.216)

2. Conclude that if n ≥ q then
ep ∧(eq · a) = eq · (ep ∧a) . (16.217)

3. Prove that the grade p+ n− q part of the multivector form ep+qa is

〈ep+qa〉p+n−q = eq · (ep ∧a) . (16.218)

Equation (16.218) is equivalent to

〈ep+qa〉p+n−q = 〈eq〈epa〉p+n〉p+n−q . (16.219)

The proof below of equations (16.218) or (16.219) uses the triple-product relation (13.43). The proof
demonstrates along the way the triple-product relation

〈ep〈eqa〉q+n−2l〉p+q+n−2k−2l =
(k + l)!

k!l!

(p+ q − k − l)!
(p− k)!(q − l)!

〈ep+qa〉p+q+n−2k−2l . (16.220)

Solution.

1. Equation (16.216) can be proved by expanding the multivector forms e and a in components.
2. Equation (16.217) follows from successive application of equation (16.216).
3. Equation (16.219) can be proved by induction. Certainly equation (16.219) holds for p = 0 or q = 0, in

which case the equation becomes an identity. Recall that, in view of the way that volume elements ep

are normalized, equation (15.72),

ep+q =
p!q!

(p+ q)!
ep ∧ eq . (16.221)

The triple-product relation (13.43), along with the fact that e · e = 0, implies

〈ep+qa〉p+q+n−2m =
p!q!

(p+ q)!

m∑
l=0

〈ep〈eqa〉q+n−2l〉p+q+n−2m . (16.222)

Assume that equation (16.218) is inductively true up to some p and q. The inductive hypothesis (16.218)
implies

〈eqa〉q+n−2l = el · (eq−l ∧a) (16.223)

subject to the conditions that q − l, l, n, and q + n − 2l are all non-negative integers. Inserting the
hypothesis (16.223), and a similar one for 〈ep...〉, into equation (16.222) implies that the summand on
the right hand side of equation (16.222) is

〈ep〈eqa〉q+n−2l〉p+q+n−2k−2l = ek ·
(
ep−k ∧

(
el · (eq−l ∧a)

))
. (16.224)
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The sum in equation (16.222) is over non-negative integers k and l satisfying k + l = m, k ≤ p, and
l ≤ q. By equation (16.217), the summand (16.224) rearranges as

〈ep〈eqa〉q+n−2l〉p+q+n−2k−2l = (ek ∧ el) · (ep−k ∧ eq−l ∧a)

=
(k + l)!

k!l!

(p+ q − k − l)!
(p− k)!(q − l)!

ek+l · (ep+q−k−l ∧a)

=
m!

k!l!

(p+ q −m)!

(p− k)!(q − l)!
em · (ep+q−m ∧a) . (16.225)

Equation (16.222) thus reduces to

〈ep+qa〉p+q+n−2m = em · (ep+q−m ∧a)
p!q!

(p+ q)!

∑
k+l=m, k≤p, l≤q

m!(p+ q −m)!

k!l!(p− k)!(q − l)!
. (16.226)

The summed term on the right hand side of equation (16.226) equals (p + q)!/(p!q!), cancelling the
prefactor p!q!/(p+ q)!. To prove this, it su�ces to restrict to p = 1 or q = 1, with m ≥ 1 (the result is
trivial for m = 0), and then the general result follows by induction. For p = 1 the sum is over k = 0 and
1, while for q = 1 the sum is over l = 0 and 1. For example, for q = 1,

p!1!

(p+ 1)!

1∑
l=0

m!(p+ 1−m)!

(m− l)!l!(p+ l −m)!(1− l)!
=

1

p+ 1

[
(p+ 1−m) +m

]
= 1 . (16.227)

Thus, at least for p = 1 or q = 1, equation (16.226) reduces to

〈ep+qa〉p+q+n−2m = em · (ep+q−m ∧a) , (16.228)

reproducing the to-be-proved equation (16.218). The result for p = 1 or q = 1 establishes the desired re-
sult (16.218) inductively for all p and q. Equation (16.225) and (16.228) together imply equation (16.220).

16.14.4 Gravitational Lagrangian 4-form

Recall that the scalar volume element d4x that goes into the action is really the dual scalar 4-volume ∗d4x,
equation (15.80). To convert to forms language, the Hodge dual must be transferred from the volume ele-
ment to the integrand. In multivector language, the required result is equation (16.55), invoked previously
to convert the electromagnetic Lagrangian to forms language. Translated back into forms language, equa-
tion (16.55) says that a �scalar product� of 2-forms a and b over a dual scalar volume element is the 4-form
equal to the exterior product of the dual form ∗a with the form b.
The gravitational action thus becomes

Sg =

∫
Lg , (16.229)

where Lg is the gravitational Lagrangian scalar 4-form corresponding to the Lagrangian (16.162),

Lg ≡ −
1

8π
∗e2 ·R = − 1

8π
∗e2 ·

(
dΓ + 1

4 [Γ,Γ]
)
. (16.230)
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The dot in ∗e2 ·R signi�es a scalar product of the bivectors ∗e2 and R. The minus sign comes from taking
a scalar product of bivectors, equation (13.28). The product ∗e2 ·R is an exterior product of two 2-forms,
hence a 4-form. As remarked at the beginning of this section 16.14, the wedge sign for the exterior product
of forms is suppressed because it con�icts with the wedge sign for a multivector product, and because it is
unnecessary, there being only one way to multiply forms. The Lagrangian 4-form (16.230) is in Hamiltonian
form Lg = p · dq − Hg with coordinates q = Γ and momenta p = −∗e2/(8π), and (super-)Hamiltonian
4-form

Hg =
1

32π
∗e2 · [Γ,Γ] . (16.231)

The Lagrangian scalar 4-form (16.230) can be written elegantly, from the expression (16.213) for the dual
volume ∗e2 and the duality relation (13.44),

Lg ≡ −
I

8π
e2 ∧R = − I

8π
e2 ∧

(
dΓ + 1

4 [Γ,Γ]
)
. (16.232)

Expanded in components, the gravitational Lagrangian 4-form (16.230) or (16.232) is

Lg = − 1

8π
εµνπρ (eπ ∧ eρ) ·Rκλ d

4xκλµν = − I

8π
eµ ∧ eν ∧Rκλ d

4xκλµν , (16.233)

implicitly summed over distinct antisymmetric indices κλ, µν, and πρ. The Lagrangian 4-form (16.232)
is in Hamiltonian form Lg = I(p∧dq) − Hg with coordinates q = Γ and momenta p = −e2/(8π), and
(super-)Hamiltonian scalar 4-form

Hg =
I

32π
e2 ∧[Γ,Γ] . (16.234)

16.14.5 Variation of the gravitational action in multivector forms notation

Equations of motion for the gravitational �eld are obtained by varying the action with respect to the Lorentz
connection Γ and the line-element e. In forms notation, when the �elds are varied, it is the coe�cients Γklκ
and ekκ that are varied, the tetrad γγk and the line interval dxκ being considered �xed. Thus the variation
δΓ of the Lorentz connection is

δΓ ≡ (δΓκ) dxκ ≡ (δΓklκ)γγk ∧γγl dxκ , (16.235)

implicitly summed over distinct antisymmetric indices kl, and the variation δe of the line interval is

δe ≡ (δeκ) dxκ ≡ (δekκ)γγk dxκ . (16.236)

The variation δep of the p-volume element de�ned by equation (16.200) is

δep = ep−1 ∧ δe . (16.237)

The variation δ ∗eq of the dual q-volume element is

δ ∗eq = I δeq = I(eq−1 ∧ δe) = (Ieq−1) · δe = ∗eq−1 · δe , (16.238)
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the third equality following from the duality relation (13.44).
The variation of the action with gravitational Lagrangian (16.232) with respect to the �elds Γ and e is

δSg = − I

8π

∫
e2 ∧d(δΓ) + 1

4 e
2 ∧ δ[Γ,Γ] + δ(e2)∧R . (16.239)

The �rst term integrates by parts to

e2 ∧d(δΓ) = d(e2 ∧ δΓ)− d(e2)∧ δΓ . (16.240)

The second term in the integrand of (16.239) is

1
4 e

2 ∧ δ[Γ,Γ] = 1
2 e

2 ∧[Γ, δΓ] = 1
2 [e2,Γ]∧ δΓ = − 1

2 [Γ, e2]∧ δΓ , (16.241)

the second step of which applies the multivector triple-product relation (13.42). The coe�cients of the ∧ δΓ
terms in equations (16.240) and (16.241) combine to

− d(e2)− 1
2 [Γ, e2] = e∧S , (16.242)

the torsion S being de�ned by equation (16.210). To switch between commutators [Γ, e] and commutators
[Γ, e2], use the result (16.216) along with the fact that e · a = 1

2 [e,a] for any bivector form a. The third
term in the integrand of (16.239) is

δ(e2)∧R = δe∧ e∧R = δe∧
∗∗
G , (16.243)

where
∗∗
G ≡ e∧R is the double dual, equation (16.194), of the Einstein vector 1-form G ≡ Gνn γγn dxν ,

G ≡ I ∗(e∧R)

= εk
lmn εκ

λµν elλRµνmn γγ
k dxκ

= 6 e[k
[κe

m
µe
n]
ν]R

µν
mn γγk dx

κ

=
(
Rκk − 1

2Rekκ
)
γγk dxκ , (16.244)

implicitly summed over distinct antisymmetric sequences mn and µν, and over all k, l, κ, and λ. Combining
equations (16.240)�(16.243) brings the variation (16.239) of the gravitational action to

δSg = − I

8π

∮
e2 ∧ δΓ− I

8π

∫
(e∧S)∧ δΓ + δe∧(e∧R) . (16.245)

The variation of the matter action Sm with respect to δΓ and δe de�nes the spin angular-momentum Σ

(compare equation (16.121)), and the matter energy-momentum T (compare equation (16.117)),

δSm = −
∫
∗Σ · δΓ + δe · ∗T = I

∫
∗∗
Σ∧ δΓ + δe∧

∗∗
T , (16.246)

where
∗∗
Σ and

∗∗
T are the double duals, equation (16.194), of the spin angular-momentum Σ and energy-

momentum T of the matter. The components of the spin angular-momentum bivector 1-form Σ and the
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energy-momentum vector 1-form T are (the minus sign in the de�nition of Σ conforms to the convention for
the de�nition of torsion S, equation (16.207))

Σ ≡ Σκ dx
κ = −Σκlm γγ

l ∧γγm dxκ , (16.247a)

T ≡ Tκ dxκ = Tκm γγ
m dxκ , (16.247b)

with, for Σ, implicit summation over distinct antisymmetric sets of indices kl. Extremizing the combined
gravitational and matter actions with respect to δΓ and δe yields the torsion and Einstein equations of
motion in the form

e∧S = 8π
∗∗
Σ , (16.248a)

e∧R = 8π
∗∗
T . (16.248b)

The torsion equation of motion (16.248a) is a bivector 3-form with 6 × 4 = 24 components, while the
Einstein equation of motion (16.248b) is a pseudovector 3-form with 4 × 4 = 16 components. The Einstein
equation (16.248b) is equivalent to the traditional expression

G = 8πT . (16.249)

The contracted Bianchi identities (16.397) enforce conservation laws for the total spin angular-momentum
∗∗
Σ and total matter energy-momentum

∗∗
T , �16.14.8 and �16.14.9.

16.14.6 Alternative gravitational action in multivector forms notation

As in �16.9 and �16.13.3, the coordinates and momenta can be traded without changing the equations of
motion. Integrating the −e2 ∧dΓ term in the Lagrangian (16.232) by parts gives

−e2 ∧dΓ = −d(e2 ∧Γ) + de∧(e∧Γ)

= dϑ+ π ∧de , (16.250)

where π is the momentum conjugate to e, a trivector 2-form with 24 components,

π ≡ −e∧Γ , (16.251)

and ϑ is the expansion, the contraction of π, a pseudoscalar 3-form with 4 components,

ϑ ≡ 1
2e∧π = −e2 ∧Γ . (16.252)

The double dual of the expansion is the scalar 1-form
∗∗
ϑ = Γpκp dx

κ . (16.253)

The transpose (16.267) of the double dual of the expansion is
∗∗
ϑ> = Γpkp γγ

k , (16.254)
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whose tetrad time component Γp0p is what is commonly called the expansion, �18.3, justifying the nomencla-
ture.
Discarding the total divergence dϑ yields the alternative Lagrangian

L′g ≡ Lg − dϑ =
I

8π
π ∧de−Hg =

I

8π
π ∧

(
de+ 1

4 [Γ, e]
)
, (16.255)

with Hg is the same (super-)Hamiltonian as before, equation (16.234). The alternative Lagrangian (16.255)
is in Hamiltonian form with coordinates e and momenta π/(8π).
The Lorentz connection Γ, which is a bivector 1-form, and the momentum π, which is a pseudovector

2-form, both have the same number of components, 24. The components are invertibly related to each other,
the Lorentz connection Γ being given in terms of the momentum π by

Γ = − ∗∗π> + e∧
∗∗
ϑ> , (16.256)

where > denotes the transpose operation (16.267).
Variation of the gravitational action S′g with the alternative Lagrangian (16.255) yields

δS′g =
I

8π

∮
π ∧ δe+

I

8π

∫
δπ ∧S −Π∧ δe , (16.257)

where the curvature pseudovector 3-form Π is de�ned to be

Π ≡ e∧R− S ∧Γ = dπ + 1
2 [Γ,π]− 1

4 e∧[Γ,Γ] . (16.258)

Previously, variation of the matter action Sm with respect to δΓ and δe de�ned the (double duals of the) spin
angular-momentum Σ and matter energy-momentum T , equation (16.246). Variation of the matter action
Sm instead with respect to δπ and δe de�nes modi�ed versions Σ̃ and T̃ of the spin angular-momentum and
energy-momentum,

δSm = I

∫
− δπ ∧ Σ̃ + T̃ ∧ δe . (16.259)

where the vector 2-form Σ̃ is (the minus sign conforms to the convention for the torsion S and spin angular-
momentum Σ, equations (16.207) and (16.247a))

Σ̃ = −Σ̃λmn γγ
m ∧γγn dxλ . (16.260)

The original Σ and modi�ed Σ̃ spin angular-momenta are invertibly related to each other, while the (double
dual of the) original T and modi�ed T̃ energy-momenta di�er by a term depending on the spin angular-
momentum,

∗∗
Σ = e∧ Σ̃ , (16.261a)
∗∗
T = T̃ − Σ̃∧Γ . (16.261b)
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In components, the relation (16.261a) between the original Σ and modi�ed Σ̃ spin angular-momenta is
equation (16.130). The equations of motion for the torsion S and curvature Π are

S = 8πΣ̃ , (16.262a)

Π = 8πT̃ . (16.262b)

More explicitly, the equations of motion are

de+ 1
2 [Γ, e] = 8πΣ̃ , (16.263a)

dπ + 1
2 [Γ,π]− 1

4 e∧[Γ,Γ] = 8πT̃ . (16.263b)

The expansion ϑ is a pseudoscalar, so its exterior derivative equals its Lorentz-covariant exterior derivative,
dϑ = dϑ+ 1

2 [Γ,ϑ], which is

dϑ = 1
2

(
de+ 1

2 [Γ, e]
)
∧π − 1

2 e∧
(
dπ + 1

2 [Γ,π]
)
, (16.264)

which rearranges to

dϑ+ 1
4 e

2 ∧[Γ,Γ] = − e2 ∧R+ e∧S ∧Γ . (16.265)

The �rst term on the right hand side of equation (16.265) is proportional to the double-dual of the trace G

of the Einstein tensor, e2 ∧R =
∗∗
G. If e2 ∧R and e∧S are replaced by their matter energy-momentum and

spin angular-momentum sources in accordance with equation (16.248), then the equation of motion (16.265)
for the expansion becomes

dϑ+ 1
4 e

2 ∧[Γ,Γ] = 8π
(
− 1

2

∗∗
T +

∗∗
Σ∧Γ

)
. (16.266)

16.14.7 Transpose of a multivector form

The transpose a> of a multivector form a ≡ aKΛ γγ
K dpxΛ of grade n and form index p is de�ned to be the

multivector form, of grade p and form index n, with multivector and form indices transposed,

a> =
(
aKΛ γγ

K dpxΛ
)> ≡ eKΠeL

Λ aKΛ γγ
L dpxΠ = aΠL γγ

L dkxΠ , (16.267)

implicitly summed over distinct sequences K, L, Λ, Π of indices. For example, the transpose of a vector
2-form is the bivector 1-form(

akλµ γγ
k d2xλµ

)> ≡ ekκelλemµ akλµ γγl ∧γγm dxκ = aκlm γγ
l ∧γγm dxκ . (16.268)

The transpose of a symmetric tensor a, one satisfying, akλ ≡ aklelλ = alke
l
λ ≡ aλk, is itself,

a> = (akλ γγ
k dxλ)> = aλk γγ

k dxλ = akλ γγ
k dxλ = a . (16.269)

As a particular example, the vierbein is symmetric in this sense, because the tetrad metric is symmetric,
ekλ = ηkle

l
λ, so the transpose of the line interval e is itself,

e> = (ekλ γγ
k dxλ)> = ekκel

λekλ γγ
l dxκ = elκ γγ

l dxκ = e . (16.270)
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The transpose of a wedge product of multivector forms a and b is the wedge product of their transposes,

(a∧ b)> = a> ∧ b> . (16.271)

The transpose of the double dual of a multivector form a is the double dual of its transpose

∗∗
a
>

=
∗∗
a> . (16.272)

16.14.8 Conservation of angular momentum in multivector forms language

The action Sm of any individual matter �eld is Lorentz invariant. Lorentz symmetry implies a conservation
law (16.277) of angular momentum.
Under an in�nitesimal Lorentz transformation generated by the bivector ε = εkl γγ

k ∧γγl, any multivector
form a whose multivector components transform like a tensor varies as, equation (16.95),

δa = 1
2 [ε,a] . (16.273)

In particular, since the vierbein ekκ is a tetrad vector, the variation of the line interval e ≡ ekκ γγk dxκ under
an in�nitesimal Lorentz transformation is

δe = 1
2 [ε, e] . (16.274)

The components of the Lorentz connection Γ ≡ Γmnλ γγ
m ∧γγn dxλ do not constitute a tetrad tensor, so do

not transform like equation (16.273). Rather, the Lorentz connection transforms as equation (16.96), which
in multivector forms language translates to

δΓ = −
(
dε+ 1

2 [Γ, ε]
)
. (16.275)

Inserting the variations (16.274) and (16.275) of the line interval e and Lorentz connection Γ into the
variation (16.246) of the matter action yields the variation of the matter action under an in�nitesimal
Lorentz transformation generated by the bivector ε,

δSm = I

∫
−
∗∗
Σ∧

(
dε+ 1

2 [Γ, ε]
)

+ 1
2 [ε, e]∧

∗∗
T

= I

∮
∗∗
Σ∧ ε− I

∫ (
d
∗∗
Σ + 1

2 [Γ,
∗∗
Σ]− e ·

∗∗
T
)
∧ ε . (16.276)

Invariance of the action under local Lorentz transformations requires that the variation (16.276) must vanish
for arbitrary choices of the bivector ε vanishing on the initial and �nal hypersurfaces. Consequently the spin

angular-momentum
∗∗
Σ must satisfy the covariant conservation equation

d
∗∗
Σ + 1

2 [Γ,
∗∗
Σ]− e ·

∗∗
T = 0 . (16.277)

Equation (16.277) is the same as the conservation equation (16.136) derived previously in index notation.
Equation (16.277) is consistent with the contracted torsion Bianchi identity (16.397a), which enforces the
angular-momentum conservation equation (16.277) summed over all species. If the spin angular-momentum
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of a matter component vanishes, then the conservation equation (16.277) implies that the energy-momentum
tensor of that matter component is symmetric,

e ·
∗∗
T = 0 . (16.278)

16.14.9 Conservation of energy-momentum in multivector forms language

The action Sm of any individual matter �eld is invariant under coordinate transformations. Symmetry under
coordinate transformations implies a conservation law (16.295) for the energy-momentum of the �eld.
Any in�nitesimal 1-form ε ≡ εκ dxκ generates an in�nitesimal coordinate transformation

xκ → xκ + εκ . (16.279)

As discussed in �7.34, the variation of any quantity a with respect to an in�nitesimal coordinate transforma-
tion ε is, by construction, minus its Lie derivative, −Lεa, with respect to the vector εκ. The Lie derivative
of a form is written most elegantly in terms of a dot product of forms. As usual, algebraic operations with
forms are derived most easily by translating from multivector language into forms language. Thus the dot
product of a 1-form ε with a p-form a ≡ aΛ d

pxΛ is, mirroring the multivector dot product (13.39) (the form
dot . is written slightly larger than the multivector dot · to distinguish the two),

ε .a ≡ p εκaκΛ d
p−1xΛ , (16.280)

implicitly summed over distinct antisymmetric sets of indices κΛ. A useful result is that for any two mul-
tivector forms a and b with product ab (a geometric product of multivectors and an exterior product of
forms), the dot product of the 1-form ε with the product ab is

ε .(ab) = (ε .a)b+ (−)pa(ε . b) , (16.281)

where p is the form index of a.
From the de�nition (7.148) of the Lie derivative of a coordinate tensor, it can be shown (Exercise 16.11

asks you to do this) that the Lie derivative of a p-form a with respect to a 1-form ε is given by the elegant
expression

Lεa = ε .(da) + d(ε .a) , (16.282)

which is known as Cartan's magic formula. Cartan's magic formula (16.282), along with the vanishing of
the exterior derivative squared, d2 = 0, implies that, acting on forms, the Lie derivative Lε commutes with
the exterior derivative d,

Lεda− dLεa = 0 . (16.283)

Cartan's magic formula (16.282) holds also for multivector-valued forms, since multivectors are coordinate
scalars (they are unchanged by coordinate transformations). However, a di�culty arises because the Lie
derivative of a tetrad tensor is not a tetrad tensor (see Concept Question 26.2). Consequently the Lie
derivative of neither the line interval nor the Lorentz connection is a tetrad tensor. However, as pointed
out at the beginning of �5.2.1 of Hehl et al. (1995), the Lagrangian is a Lorentz scalar, so in varying the
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Lagrangian 4-form L, the exterior derivative can be replaced by the Lorentz-covariant exterior derivative,
da→ DΓa ≡ da+ 1

2 [Γ,a] (see �16.17.1),

LεL = LΓεL ≡ ε .(DΓL) + DΓ(ε .L) . (16.284)

Thus the variation of the Lagrangian under a coordinate transformation can be carried out using the Lorentz-
covariant Lie derivative

LΓεa ≡ ε .(DΓa) + DΓ(ε .a) (16.285)

in place of the usual Lie derivative (16.282). The advantage of this replacement is that the Lorentz-covariant
Lie derivatives of the line interval and Lorentz connection are then (coordinate and tetrad) tensors, and
the resulting law of conservation of energy-momentum is manifestly tensorial, as it should be. The Lorentz-
covariant derivative DΓ is torsion-free acting on coordinate indices, but torsion-full acting on multivector
(Lorentz) indices. An alternative version of the covariant magic formula (16.285) in terms of the torsion-free
exterior derivative D̊ and the contortion K is

LΓεa = ε .(D̊a) + D̊(ε .a) + 1
2 [ε .K,a] , (16.286)

which follows from Γ = Γ̊ +K and the relation (16.281). As a particular example of the Lorentz-covariant
magic formula (16.285), the variation δe of the line interval under an in�nitesimal coordinate transforma-
tion (16.279) generated by ε is

δe = −LΓεe = − ε .(DΓe)−DΓ(ε . e) = −d(ε . e)− 1
2 [Γ, ε . e]− ε .S . (16.287)

Alternatively, in terms of the torsion-free exterior derivative D̊,

δe = −LΓεe = − D̊(ε . e)− 1
2 [ε .K, e] = −d(ε . e)− 1

2 [Γ̊, ε . e]− 1
2 [ε .K, e] , (16.288)

which is the forms version of equation (16.139) derived earlier in index notation.
The Lorentz connection Γ is a coordinate tensor but not a tetrad tensor, so the covariant magic for-

mula (16.285) does not apply to the Lorentz connection. Rather, the variation δΓ of the Lorentz connection
follows from the di�erence

δDΓa−DΓδa = δ
(
da+ 1

2 [Γ,a]
)
−
(
dδa+ 1

2 [Γ, δa]
)

= 1
2 [δΓ,a] . (16.289)

Thus the variation δΓ of the Lorentz connection under an in�nitesimal coordinate transformation generated
by ε satis�es

1
2 [δΓ,a] = −LΓεDΓa+ DΓLΓεa = − ε .(DΓDΓa) + DΓDΓ(ε .a) = − 1

2ε .[R,a] + 1
2 [R, ε .a] = − 1

2 [ε .R,a] ,

(16.290)
where R is the Riemann curvature bivector 2-form. Equation (16.289) holds for all multivector forms a, so

δΓ = −LΓεΓ = −ε .R . (16.291)

which is the forms version of equation (16.142) derived earlier in index notation.
Inserting the variations (16.287) and (16.291) of the line interval e and Lorentz connection Γ into the
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variation (16.246) of the matter action yields the variation of the action under an in�nitesimal coordinate
transformation (16.279) generated by the 1-form ε,

δSm = −I
∫ (

d(ε . e) + 1
2 [Γ, ε . e] + ε .S)∧ ∗∗T +

∗∗
Σ∧(ε .R) . (16.292)

Integrating the d(ε . e)∧
∗∗
T term by parts, and rearranging the 1

2 [Γ, ε . e]∧
∗∗
T term using the multivector

triple-product relation (13.42), yields

δSm = −I
∮

(ε . e)∧
∗∗
T + I

∫
(ε . e)∧

(
d
∗∗
T + 1

2 [Γ,
∗∗
T ]
)
− (ε .S)∧

∗∗
T −

∗∗
Σ∧(ε .R) . (16.293)

Invariance of the action under coordinate transformations requires that the variation (16.293) must vanish
for arbitrary choices of the 1-form ε vanishing on the initial and �nal hypersurfaces. Consequently the matter

energy-momentum
∗∗
T must satisfy the conservation equation

(ε . e)∧
(
d
∗∗
T + 1

2 [Γ,
∗∗
T ]
)
− (ε .S)∧

∗∗
T −

∗∗
Σ∧(ε .R) = 0 . (16.294)

Equivalently, in terms of the torsion-free connection Γ̊ and the contortion K,

(ε . e)∧
(
d
∗∗
T + 1

2 [Γ̊,
∗∗
T ]
)
− 1

2 [ε .K, e]∧
∗∗
T −

∗∗
Σ∧(ε .R) = 0 . (16.295)

I don't know a way to recast equations (16.294) or (16.295) in multivector forms notation with the arbitrary
1-form ε factored out, but in components equation (16.295) reduces to equation (16.145) derived earlier.

If the spin angular-momentum of a matter component vanishes,
∗∗
Σ = 0, then the energy-momentum

conservation law (16.295) for that matter component simpli�es to

d
∗∗
T + 1

2 [Γ̊,
∗∗
T ] = 0 . (16.296)

If the energy-momentum conservation law (16.294) is summed over all matter components, and the total

spin angular-momentum
∗∗
Σ and energy-momentum

∗∗
T eliminated in favour of torsion S and curvature R

using Hamilton's equations (16.248), then the law of conservation of total energy-momentum becomes

(ε . e)∧
(
d(e∧R) + 1

2 [Γ, e∧R]
)
− (ε .S)∧ e∧R− e∧S ∧(ε .R) = 0 , (16.297)

which by the relation (16.281) rearranges to

(ε . e)∧
(
d(e∧R) + 1

2 [Γ, e∧R]− S ∧R
)

= 0 . (16.298)

Equation (16.298) is true for arbitrary in�nitesimal ε, so the law of conservation of total energy-momentum
is

d(e∧R) + 1
2 [Γ, e∧R]− S ∧R = 0 , (16.299)

which agrees with the contracted Bianchi identity (16.397b).
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Exercise 16.11. Lie derivative of a form. Con�rm from the de�nition (7.148) that the Lie derivative of
a p-form is indeed given by Cartan's magic formula (16.282).

16.15 Space+time (3+1) split in multivector forms notation

As discussed in �16.5.8, when applied to �elds, the super-Hamiltonian approach does not yield equal numbers
of coordinates and momenta. The problem arises because symmetry under general coordinate transformations
means that di�erent con�gurations of �elds are symmetrically equivalent. To permit manifest covariance,
the super-Hamiltonian formalism is forced to admit more �elds than there are physical degrees of freedom.
As found previously with the electromagnetic �eld, �16.6.6, the solution to the problem is to break general
covariance by splitting spacetime into separate space and time coordinates.
Executing a 3+1 split of the gravitational equations successfully, in the sense of achieving a balanced

number of coordinates and momenta with the right number of physical degrees of freedom, is, unsurprisingly,
a more complicated challenge than splitting the electromagnetic equations.
In splitting a multivector form a into time and space components, it is convenient to adopt the notation

of �16.6.6, generalized to multivector-valued forms. A multivector p-form a splits into a component at̄
(subscripted t̄) that represents all the coordinate time t parts of the form, and a component a that represents
the remaining spatial-coordinate components (the spatial indices being suppressed for brevity),

a→ at̄ + a ≡ aAtΛ γγA dpxtΛ + aAΛ γγ
A dpxΛ , (16.300)

implicitly summed over distinct antisymmetric sequences of indices. Note that only the coordinates are being
split: the Lorentz indices are not split into time and space parts. The option of also splitting the Lorentz
indices is explored further in �16.15.5, equation (16.325).
The time component of a product (geometric product of multivectors, exterior product of forms) of any

two multivector forms a and b satis�es

(ab)t̄ = at̄b+ abt̄ (16.301)

with no minus signs (minus signs from the antisymmetry of form indices cancel minus signs from commuting
dt through a spatial form).

16.15.1 3+1 split of the gravitational Lagrangian in multivector forms notation

Consider �rst a 3+1 split of the standard gravitational Lagrangian (16.232). The gravitational coordinates
in this case are the Lorentz connections Γ, and their conjugate momenta are, depending on how one chooses
to proceed, either the interval 1-form e, or else the area 2-form e2. After the coordinate 3+1 split, the
coordinates are the spatial components of the Lorentz connection Γ, which is a bivector 1-form with 6×3 = 18

components,

Γ = Γα dx
α = Γklα γγ

k ∧γγl dxα . (16.302)
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The momenta are either the spatial components of the line interval e, which is a vector 1-form with 4×3 = 12

components, or else the spatial components of the area element e2, which is a bivector 2-form with 6×3 = 18

spatial components,

e = eα dx
α = ekα γγ

k dxα , e2 = eα ∧ eβ d2xαβ = 2 ekαelβ γγ
k ∧γγl d2xαβ , (16.303)

with in the case of e2 implicit summation over distinct antisymmetric pairs kl and αβ of indices.
Either choice of conjugate momentum is problematic. The number 18 of components of the spatial area

element e2 matches the number 18 of components of the spatial connection Γ, which is good. However, the
18-component spatial area element e2 contains super�uous degrees of freedom compared to the 12-component
spatial interval e.
A traditional solution, the one adopted so far in this chapter, is to treat the line interval e as the momentum

conjugate to the coordinates Γ. This approach encounters the di�culty that the number 12 of components
of the spatial interval form e does not match the number 18 of components of the spatial connection form
Γ.
Despite the mismatch of coordinates and momenta, it is useful to pursue the approach further, because

it leads to a set of constraint equations commonly called the Gaussian and Hamiltonian constraints. These
constraints are analogous to the electromagnetic constraint (16.77a), which has the property that, provided
that it is satis�ed initially, it is guaranteed thereafter by conservation of electric charge. Conservation of elec-
tric charge is a consequence of electromagnetic gauge symmetry. The Gaussian and Hamiltonian constraints
are similarly constraint equations which, if satis�ed initially, are guaranteed thereafter respectively by the
conservation equations for spin angular-momentum and energy-momentum. These conservation equations
are in turn a consequence of symmetries under Lorentz transformations and coordinate transformations.
The equations of motion (16.305) and constraint equations (16.306) follow directly from splitting equa-

tions (16.248) into time and space parts, but they can be derived at a more fundamental level by splitting
the variation δS of the action into time and space parts. Splitting the variation δSg of the gravitational
action, equation (16.245), into time and space parts gives

δSg = − I

8π

∮ tf

ti

(e2 ∧ δΓ)t̄ −
[∮

e2 ∧ δΓ
]tf
ti

− I

8π

∫
(e∧S)t̄ ∧ δΓ + δe∧(e∧R)t̄ + (e∧S)∧ δΓt̄ + δet̄ ∧(e∧R) . (16.304)

The two surface integrals are respectively over the timelike spatial boundary of the 4-volume from ti to tf ,
and over the two spacelike caps of the 4-volume at ti and tf . Variation of the combined gravitational and
matter actions with respect to the variations δΓ and δe of the spatial coordinates and momenta yields the
equations of motion,

18 equations of motion: (e∧S)t̄ = 8π
∗∗
Σt̄ , (16.305a)

12 equations of motion: (e∧R)t̄ = 8π
∗∗
T t̄ . (16.305b)

These are just the coordinate time components of the equations of motion (16.248). Variation with respect
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to the variations δΓt̄ and δet̄ of the time components of the coordinates and momenta yields the Gaussian
and Hamiltonian constraints,

6 Gaussian constraints: e∧S = 8π
∗∗
Σ , (16.306a)

4 Hamiltonian constraints: e∧R = 8π
∗∗
T . (16.306b)

These are the purely spatial coordinate components of the equations of motion (16.248). Whereas the equa-
tions of motion (16.305) involve derivatives with respect to time t, the constraint equations (16.306) involve
no time derivatives. More explicitly, the equations of motion (16.305) are

18 equations of motion: e∧
(
dt̄e+ 1

2 [Γt̄, e] + det̄ + 1
2 [Γ, et̄]

)
+ et̄ ∧S = 8π

∗∗
Σt̄ , (16.307a)

12 equations of motion: e∧
(
dt̄Γ + dΓt̄ + 1

2 [Γ,Γt̄]
)

+ et̄ ∧R = 8π
∗∗
T t̄ . (16.307b)

The exterior time derivative here is the 1-form dt̄ ≡ dt ∂/∂t. The equations of motion (16.307) are problematic
not only because they remain unbalanced despite the 3+1 split, but also because the time derivative is not
dt̄ but rather e∧dt̄.
Both Γt̄ and et̄ can be treated as gauge variables: the 6 components of Γt̄ can be adjusted arbitrarily by a

Lorentz transformation; and the 4 components of et̄ can be adjusted arbitrarily by a coordinate transforma-
tion. Thus the Gaussian and Hamiltonian constraint equations (16.306) can be interpreted as representing

conserved Noether charges. The spin angular-momentum
∗∗
Σ on the right hand side of the Gaussian constraint

equation (16.306a) satis�es the conservation law (16.277). The energy-momentum
∗∗
T on the right hand side

of the Hamiltonian constraint equation (16.306b) satis�es the conservation law (16.295). The left hand sides
of the Gaussian and Hamiltonian constraints satisfy corresponding conservation laws enforced by the con-
tracted Bianchi identities (16.397). The Gaussian and Hamiltonian constraints are constraint equations in
the sense commonly used by relativists: if the equations are arranged to be satis�ed on the initial spatial
hypersurface of constant time, then the conservation equations ensure that the equations will continue to be
satis�ed thereafter.

16.15.2 Conventional gravitational Hamiltonian

Split into time and spatial components, the gravitational Lagrangian 4-form (16.232) is

Lg = − I

8π

(
e2 ∧

(
dt̄Γ + dΓt̄ + 1

2 [Γ,Γt̄]
)

+ et̄ ∧ e∧R
)
. (16.308)

The e2 ∧ dt̄Γ term in the Lagrangian (16.308) indicates that the momentum conjugate to the 18-component
spatial connection Γ is the 18-component spatial area element e2. But, as discussed in the �16.15.1 above,
the spatial area element has excess degrees of freedom compared to the 12-component line interval e. The
�x adopted in �16.15.1 was to regard the spatial line interval e rather than the spatial area element as the
conjugate momentum. Indeed, if all 18 degrees of freedom of the area element were treated as independent,
then the Einstein equation (16.305b) would be replaced by an equation for R in place of e∧R, and the result
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would not be general relativity, contradicting observation and experiment. To treat Γ and e as conjugate
variables, the e2 ∧dt̄Γ term may be rewritten

e2 ∧dt̄Γ = 1
2 e∧ (e∧dt̄Γ) . (16.309)

Equation (16.309) e�ectively replaces the time derivative dt̄ with e∧ dt̄, consistent with the time derivative
in the equations of motion (16.307). The remaining terms in the gravitational Lagrangian (16.308) rearrange
as follows. The dΓt̄ term integrates by parts to

e2 ∧dΓt̄ = d
(
e2 ∧Γt̄

)
− (de2)∧Γt̄ . (16.310)

The 1
2 [Γ,Γt̄] term rearranges by the multivector triple-product relation (13.42) to

1
2 e

2 ∧[Γ,Γt̄] = 1
2 [e2,Γ]∧Γt̄ = 1

2 [Γ, e2]∧Γt̄ . (16.311)

The coe�cients of the ∧Γt̄ terms in equations (16.310) and (16.311) are

− de2 − 1
2 [Γ, e2] = e∧S , (16.312)

where S is the torsion de�ned by equation (16.210). The manipulations (16.309)�(16.312) bring the gravita-
tional action to

Sg = − I

8π

∮ tf

ti

e2 ∧Γt̄ −
I

8π

∫
1
2 e∧ (e∧dt̄Γ) + (e∧S)∧Γt̄ + et̄ ∧(e∧R) . (16.313)

With the surface term discarded, the gravitational action (16.313) is in conventional Hamiltonian form
Lg = I

(
p∧(e∧dt̄q)

)
−Hg with coordinates q ≡ Γ and momenta p ≡ −e/(16π), and a somewhat strange

time derivative e∧dt̄. The conventional (not super-) Hamiltonian 4-form Hg is

Hg =
I

8π

(
(e∧S)∧Γt̄ + et̄ ∧(e∧R)

)
. (16.314)

The conventional Hamiltonian (16.314) is a sum of the Gaussian and Hamiltonian constraints (16.306) wedged
with the gauge variables Γt̄ and et̄.
The Hamiltonian (16.314) is �ne as a conventional Hamiltonian in which the coordinates and momenta are

the 18-component spatial connection Γ and the 12-component spatial line interval e. But the Hamiltonian
cannot be satisfactory because it yields only 12 equations of motion (16.307b) for the 18 components of Γ,
and because the time derivative in those equations is e∧dt̄ rather than dt̄. Ultimately, these problems stem
from the fact that there remain redundant degrees of freedom in Γ despite the 3+1 split.

16.15.3 3+1 split of the alternative gravitational Lagrangian in multivector forms

notation

A 3+1 split of the alternative Lagrangian (16.255) yields a more promising result: a balanced set of equa-
tions of motion, and a time derivative that is just dt̄ as opposed to e∧dt̄. In the alternative Lagrangian,
the gravitational coordinates are the line interval e, and their conjugate momenta are π de�ned by equa-
tion (16.251). After the 3+1 split, the coordinates are the spatial components of e, which is a vector 1-form
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with 4×3 = 12 components, while the momenta are the spatial components of π, which is a trivector 2-form
also with 4× 3 = 12 components.
Once again, the equations of motion (16.316) and constraints and identities (16.320) follow directly from

splitting equations (16.262) into time and space parts, but they can be derived more fundamentally by
splitting the variation δS of the action into time and space parts. Splitting the variation δSg of the alternative
gravitational action (16.257) into time and space parts gives

δS′g =
I

8π

∮ tf

ti

(π ∧ δe)t̄ +
I

8π

[∮
π ∧ δe

]tf
ti

+
I

8π

∫
δπ ∧St̄ −Π∧ δet̄ + δπt̄ ∧S − δe∧Πt̄ . (16.315)

Variation of the combined gravitational and matter actions with respect to the variations δe and δπ of the
spatial coordinates and momenta yields 12 + 12 = 24 equations of motion involving time derivatives,

12 equations of motion: St̄ = 8πΣ̃t̄ , (16.316a)

12 equations of motion: Πt̄ = 8πT̃t̄ . (16.316b)

Variation of the action with respect to the variations δet̄ and δπt̄ of the time components of the coordinates
and momenta yields 6 identities and 10 constraint equations involving only spatial derivatives,

6 Gaussian constraints and 6 identities: S = 8πΣ̃ , (16.317a)

4 Hamiltonian constraints: Π = 8πT̃ . (16.317b)

The Gaussian constraints are the subset of equations (16.317a) comprising

6 Gaussian constraints: e∧S = 8π(e∧ Σ̃) . (16.318)

More explicitly, the equations of motion (16.316) are

12 equations of motion: dt̄e+ 1
2 [Γt̄, e] + det̄ + 1

2 [Γ, et̄] = 8πΣ̃t̄ , (16.319a)

12 equations of motion: dt̄π + 1
2 [Γt̄,π] + dπt̄ + 1

2 [Γ,πt̄]− 1
4 (e∧[Γ,Γ])t̄ = 8πT̃t̄ , (16.319b)

and the constraints and identities (16.317) are

6 Gaussian constraints and 6 identities: de+ 1
2 [Γ, e] = 8πΣ̃ , (16.320a)

4 Hamiltonian constraints: dπ + 1
2 [Γ,π]− 1

4 e∧[Γ,Γ] = 8πT̃ . (16.320b)

Equations (16.319a) comprise 12 equations of motion for the 12 coordinates e, while equations (16.319b)
comprise 12 equations of motion for the 12 momenta π. The equations of motion (16.319) do not su�er from
the peculiarities of the earlier equations of motion (16.307): the time evolution operator is dt̄ ≡ dt ∂/∂t; and
the number of equations of motion matches the number of dynamical variables.
In numerical calculations, the 6 Gaussian constraints and 6 identities packaged together in the 12 equa-

tions (16.317a) must be separated out, since the constraints can be dropped after being imposed in the
initial conditions, while the identities must be imposed at every time step. As discussed in �16.15.8, equa-
tions (16.335) and (16.336), the Gaussian constraint constrains a set of 6 linear combinations of the 12
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quantities 1
2 [Γ, e]. The null space of the 6 linear combinations de�nes another set of 6 linear combinations

of 1
2 [Γ, e]. The 6 identities are equations governing this null space of combinations of 1

2 [Γ, e].
The 12 + 12 gravitational equations of motion (16.316) together with their 10 constraints and 6 identi-

ties (16.317) may be compared to the 3 + 3 electromagnetic equations of motion (16.76) together with their
1 constraint and 3 identities (16.77).

16.15.4 Alternative conventional Hamiltonian

Splitting the alternative Lagrangian L′g, equation (16.255), into time and space components, and rearranging
along lines similar to those leading to the gravitational action (16.313), brings the alternative gravitational
action S′g to

S′g =
I

8π

∮ tf

ti

π ∧ et̄ +
I

8π

∫
π ∧ dt̄e+ πt̄ ∧S −Π∧ et̄ . (16.321)

With the surface term discarded, the gravitational action (16.321) is in conventional Hamiltonian form with
coordinates e and momenta π/(8π). The alternative conventional gravitational Hamiltonian H ′g is

H ′g =
I

8π
(−πt̄ ∧S + Π∧ et̄) . (16.322)

Part of deriving equation (16.322) involves proving that

(e∧Γt̄)∧(e · Γ) = (e∧Γ)∧(e · Γt̄) . (16.323)

The alternative conventional Hamiltonian (16.322) is a sum of constraints and identities, equations (16.317),
wedged with time components et̄ and πt̄ of the coordinates and momenta. Unlike the standard conventional
Hamiltonian (16.314), the multipliers are not all gauge variables. The 4-component multiplier et̄ can be
considered a gauge variable as before, being arbitrarily adjustable by a coordinate transformation, and its
partner Π satis�es a constraint equation, the Hamiltonian constraint. But only 6 degrees of freedom of the
12-component multiplier πt̄ can be adjusted by a gauge (Lorentz) transformation. The remaining 6 degrees
of freedom of πt̄ must be considered as constituting an auxiliary �eld, analogous to the magnetic components
of the electromagnetic �eld, variation with respect to which e�ectively determines the components of the
auxiliary �eld itself.
In contrast to the conventional Hamiltonian (16.314), the alternative conventional Hamiltonian (16.322)

accomplishes the goal of a balanced number, 12 each, of coordinates and momenta.

16.15.5 ADM gauge condition

Section 16.15.1 rejected the possibility of treating the 18-component spatial connection Γ as the gravitational
coordinates, and the 18-component spatial area element e2 as their conjugate momenta, on the grounds that
the area element contains excess degrees of freedom compared to the 12-component spatial line interval e.
However, the idea of working with Γ and e2, as opposed to e and π, is attractive, �rstly because in Yang-Mills
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theories such as electromagnetism the coordinates are the connections, and Γ are the (Lorentz) connections
of gravity, and secondly because black hole thermodynamics points to area as the thing that is quantized in
general relativity.
One way to reduce the excess degrees of freedom in the area element is to impose gauge conditions on the

line interval e. A simple strategy is to eliminate the gauge freedom of the vierbein under Lorentz boosts by
imposing the 3 ADM gauge conditions

e0α = 0 . (16.324)

The gauge choice (16.324) is the starting point of the ADM formalism, Chapter 17, and is carried over
into the BSSN formalism, �17.7. The gauge choice (16.324) is also a basic ingredient of Loop Quantum
Gravity, �16.16. The ADM gauge condition (16.324) reduces the number of degrees of freedom of the spatial
line interval e from 12 to 3 × 3 = 9, and of the spatial area element e2 from 18 to the same number,
3× 3 = 9. The 9 components of the spatial line interval and spatial area element subject to the ADM gauge
condition (16.324) are invertibly related to each other.
To explore the consequences of the ADM gauge condition (16.324), it is convenient to extend the 3+1

form-splitting notation (16.300) to a double 3+1 split in which both coordinate indices and tetrad (Lorentz)
indices are split out. Thus a multivector form a splits into 4 components a0̄t̄, a0̄, at̄, and a that represent
respectively the time-time, time-space, space-time, and space-space components of the multivector form,

a→ a0̄t̄+a0̄ +at̄+a ≡ a0AtΛ γγ
0 ∧γγA dpxtΛ +a0AΛ γγ

0 ∧γγA dpxΛ +aAtΛ γγ
A dpxtΛ +aAΛ γγ

A dpxΛ , (16.325)

implicitly summed over distinct antisymmetric sequences of tetrad and coordinate indices A and Λ. In this
notation, the ADM gauge condition (16.324) is

e0̄ = 0 . (16.326)

The spatial area element e2 is the 9-component bivector 2-form

e2 = 1
2 e∧ e = 2 eaαebβ γγ

a ∧γγb d2xαβ . (16.327)

implicitly summed over distinct antisymmetric sets of spatial indices ab and αβ. The momenta conjugate to
the spatial area element e2 are the 3 × 3 = 9 components of the spatial Lorentz connections Γ0̄ with one
Lorentz index the tetrad time index 0, also called (minus) the extrinsic curvature, �17.1.4,

Γ0̄ = Γ0aα γγ
0 ∧γγa dxα . (16.328)

Double-splitting the variation δSg of the gravitational action, equation (16.245) into time and space parts
gives

δSg = − I

8π

∮ tf

ti

(e2 ∧ δΓ)0̄t̄ −
[∮

(e2 ∧ δΓ)0̄

]tf
ti

− I

8π

∫
(e∧S)0̄t̄ ∧ δΓ + (e∧S)t̄ ∧ δΓ0̄ + (e∧S)0̄ ∧ δΓt̄ + (e∧S)∧ δΓ0̄t̄

+ δe∧(e∧R)0̄t̄ + δe0̄ ∧(e∧R)t̄ + δet̄ ∧(e∧R)0̄ + δe0̄t̄ ∧(e∧R) . (16.329)
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Variation of the combined gravitational and matter actions with respect to the variations δΓ0̄ and δe yields
9 + 9 = 18 equations of motion for the area element e2 and their conjugate momenta Γ0̄,

9 equations of motion: (e∧S)t̄ = 8π
∗∗
Σt̄ , (16.330a)

9 equations of motion: (e∧R0̄)t̄ = 8π
∗∗
T 0̄t̄ , (16.330b)

while variation with respect to δe0̄ yields the 3 equations of motion

3 equations of motion: (e∧R)t̄ = 8π
∗∗
T t̄ . (16.331)

Note that the ADM gauge condition e0̄ = 0 is a gauge condition, �xed after equations of motion are
derived, so it is correct to vary e0̄ in the action, leading to equation (16.331). Explicitly, the equations of
motion (16.330) and (16.331) are, similarly to equations (16.307),

9 equations of motion: −dt̄e
2 + 1

2 [Γt̄, e
2]− e∧

(
det̄ + 1

2 [Γ, et̄]
)

+ et̄ ∧S = 8π
∗∗
Σt̄ , (16.332a)

9 equations of motion: e∧
(
dt̄Γ0̄ + 1

2 [Γt̄,Γ0̄] + dΓ0̄t̄ + 1
2 [Γ,Γ0̄t̄]

)
+ et̄ ∧R0̄ = 8π

∗∗
T 0̄t̄ , (16.332b)

3 equations of motion: e∧
(
dt̄Γ + dΓt̄ + 1

2 [Γ,Γt̄]
)

+ et̄ ∧R = 8π
∗∗
T t̄ . (16.332c)

Equation (16.331) is an equation of motion in the sense that it involves a time derivative dt̄Γ; but Γ is not one
of the momenta Γ0̄ conjugate to the area element e2, so equation (16.331) has a di�erent status from the 9+9

equations of motion (16.330). In the ADM formalism, �16.15.6, equation (16.331) is discarded as redundant
with the 3 momentum constraints (16.333d), on the grounds that the energy-momentum tensor is symmetric
(for vanishing torsion). The BSSN formalism on the other hand, �16.15.7, retains equation (16.331) as a
distinct equation of motion.
The earlier equations (16.307) had the problem that the time derivative in the equation of motion for

Γ was e∧dt̄ as opposed to just dt̄. Equation (16.332b) seems to have the same di�culty, but here it is no
longer a problem, because the 9-component trivector 3-form e∧dt̄Γ0̄ is invertibly related to the 9-component
bivector 2-form dt̄Γ0̄, so equation (16.332b) can be rearranged as an equation for dt̄Γ0̄.
Variation of the action with respect to δΓ, δΓt̄, δΓ0̄t̄, δet̄ and δe0̄t̄ yields 9 identities and 10 constraints

involving only spatial derivatives

9 identities: (e∧S0̄)t̄ = 8π
∗∗
Σ0̄t̄ , (16.333a)

3 Gaussian constraints: e∧S0̄ = 8π
∗∗
Σ0̄ , (16.333b)

3 Gaussian constraints: e∧S = 8π
∗∗
Σ , (16.333c)

3 momentum constraints: e∧R0̄ = 8π
∗∗
T 0̄ , (16.333d)

1 Hamiltonian constraint: e∧R = 8π
∗∗
T . (16.333e)

The 9 identities (16.333a) are not equations of motion (they involve no time derivatives), despite having a
form index t̄. Explicitly,

9 identities: 1
2 [Γ0̄t̄, e

2] + 1
2 [Γ0̄, e

2
t̄ ] = 8π

∗∗
Σ0̄t̄ . (16.334)
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16.15.6 ADM formalism

The ADM formalism is pursued at length in Chapter 17 in traditional (coordinate and tetrad) index notation.
However, it is useful to o�er a few comments on the ADM formalism in the present context of multivector
forms notation.

In addition to invoking the ADM gauge condition (16.324), the ADM formalism assumes from the outset
that torsion vanishes, as indeed general relativity assumes. One of the consequences of vanishing torsion is
that the energy-momentum tensor is symmetric, equation (16.278). This motivates the ADM strategy of
simply discarding the 6 antisymmetric components of the Einstein equations. These 6 components comprise
the 3 antisymmetric components of the 9 equations of motion (16.330b), corresponding to the 3 antisymmetric
space-space Einstein equations, and the 3 equations of motion (16.331), corresponding to the 3 antisymmetric
time-space Einstein equations. Discarding the antisymmetric Einstein's equations seems innocent enough,
until one realises that the antisymmetry of the energy-momentum is a consequence of the law of conservation
of spin angular-momentum, equation (16.277), which law is responsible for the Gaussian constraints (16.333b)
and (16.333c). Thus discarding the 6 antisymmetric Einstein equations is equivalent to using up the 6
Gaussian constraints. As a corollary, the 6 Gaussian constraints can no longer be treated as constraints;
rather, they must be treated as identities. This should raise a red �ag: it may not be a good numerical
strategy to trade hyperbolic equations of motion for elliptic identities.

Finally, the usual ADM strategy (though not a necessary one � see Chapter 17), is to work entirely with
coordinate-frame quantities. An advantage of this approach is that all quantities are spatially Lorentz gauge-
invariant (the ADM gauge choice (16.324) removes the gauge freedom of Lorentz boosts). In particular, the
9 spatial vierbein eaα reduce to the 6 components of the Lorentz gauge-invariant spatial metric gαβ , and the
24 Lorentz connections are replaced by the 6 components of the symmetric (for vanishing torsion) extrinsic
curvatures Γα0β together with the 3 × 6 = 18 torsion-free coordinate-frame spatial connections (Christo�el
symbols) Γαβγ . In summary, in the ADM formalism there are 6 + 6 = 12 equations of motion for gαβ and
Γα0β , 18 identities for Γαβγ , and 4 Hamiltonian constraints.

16.15.7 BSSN formalism

The BSSN formalism, discussed further in Chapter 17, �17.7, has gained popularity because it proves to
have better numerical stability when applied to problems such as the merger of two black holes (Shibata and
Nakamura, 1995; Baumgarte and Shapiro, 1998; Shinkai, 2009; Baumgarte and Shapiro, 2010; Brown et al.,
2012).

The BSSN formalism follows ADM for the most part, in particular imposing the ADM gauge choice (16.324).
However, BSSN retains the 3 momentum Einstein equations (16.331) as equations of motion, and restores
the 3 Gaussian constraints (16.333c). Like the Hamiltonian constraints, the Gaussian constraints must be
arranged to be satis�ed in the initial conditions, but may be discarded thereafter.
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16.15.8 An alternative strategy for solving the gravitational equations numerically

A drawback of the ADM and BSSN approaches is that expending 3 of the Lorentz gauge conditions on
the vierbein, equation (16.324), preempts being able to use those Lorentz gauge conditions in potentially
advantageous ways on the Lorentz connections, as is done for example in proofs of singularity theorems
(conditions (18.26), for example). Moreover, as discussed in �16.15.6, transferring Lorentz gauge conditions
from the Lorentz connections to the vierbein has the side-e�ect of replacing �nice� hyperbolic equations of
motion with �nasty� elliptic identities.
This suggests that better numerical behaviour could result from using the Hamiltonian system gravitational

equations in the native form derived in �16.15.3, where they consist of 12 + 12 equations of motion, 6 + 4

constraints, and 6 identities, equations (16.316) and (16.317) (as opposed to the 6 + 6 equations of motion,
4 constraints, and 18 identities of the ADM formalism). As remarked previously, the system of gravitational
equations derived in �16.15.3 resembles the Hamiltonian system of electromagnetic equations, which consist
of 3 + 3 equations of motion, 1 constraint, and 3 identities, equations (16.76) and (16.77).
Consider brie�y the problem of solving the system of gravitational equations (16.316) and (16.317) nu-

merically. First, all 40 equations must be arranged to be satis�ed on an initial hypersurface of constant time.
Subsequently, the 10 constraint equations may be discarded (or kept as a check of numerical accuracy). In
integrating the remaining system of 30 equations from one hypersurface of constant time to the next, the
�rst step is to use the 12 + 12 equations of motion to �nd the 12 gravitational coordinates e and their 12
conjugate momenta π on the next (upper) hypersurface. As in ADM, coordinate gauge freedom allows the
time components et̄ of the vierbein (the lapse and shift) to be chosen arbitrarily. The 12 components of e
and the 4 components of et̄ account for all 16 components of the vierbein. Lorentz gauge freedom allows the
time components Γt̄ of the Lorentz connection to be chosen arbitrarily. The 12 components of π and the 6
components of Γt̄ account for 18 of the 24 degrees of freedom of the Lorentz connection. The remaining 6
degrees of freedom of the Lorentz connection are determined by the 6 identities.
The 6 identities are packaged together with the 6 Gaussian constraints in the 12 equations (16.320a). Now

the 12 equations (16.320a) comprise an expression for the 12 components of the spatial vector 2-form 1
2 [Γ, e]

in terms of spatial exterior derivatives de of the spatial vierbein and the spin angular-momentum (the latter
vanishing if torsion is assumed to vanish). Since e over the upper spatial hypersurface of constant time is
already in hand from integrating the equations of motion, taking the spatial exterior derivative de is a matter
of di�erentiating numerically over the spatial hypersurface. The 12 components of 1

2 [Γ, e] are

1
2 [Γ, e] = Γ · e = −2 Γk[αβ] γγ

k d2xαβ . (16.335)

The Gaussian constraints involve the 6 components of 1
2 [Γ, e] comprising

e∧ 1
2 [Γ, e] = −12 ekα Γl[βγ] γγ

k ∧γγl d3xαβγ , (16.336)

summed over distinct antisymmetric sequences of indices kl and αβγ. The components of equation (16.336)
may be regarded as a 6× 12 matrix acting on a 12-component vector consisting of the Γk[αβ]. The null space
of the 6×12 matrix is another 6×12 matrix which, when acting on the 12-component vector Γk[αβ], gives the
6 linear combinations of 1

2 [Γ, e] whose values are determined by the 6 identities distinct from the 6 Gaussian
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constraints. Actually, it is not essential to choose the 6 identities to lie in the 6-dimensional null space; it
su�ces that the 6 identities span the null space. That is, the 6 identities and 6 Gaussian constraints should
together span the full 12-dimensional space of 1

2 [Γ, e]. Equivalently, no linear combination of the 6 identities
should be a constraint.

16.16 Loop Quantum Gravity

16.16.1 Ashtekar variables

Loop quantum gravity (LQG) was instigated by Ashtekar (1987), who was inspired by the fact that in 4
dimensions bivectors have a natural complex structure. The complex structure allows bivectors to be split
into distinct right- and left-handed chiral parts. Selecting one of the two chiral parts of each of the spatial
Lorentz connection Γ and the spatial area element e2, both bivectors, halves the number of degrees of freedom
of each from 18 to 9. The 9 components of the chiral spatial area element are invertibly related to the 9
components of the spatial line interval e subject to the ADM condition (16.324). Thus the ADM analysis
of �16.15.5 carries through, with the di�erence that the elimination of 9 degrees of freedom in the spatial
connection eliminates the need for the 9 identities (16.333a). It was hoped that the resulting simpli�cation of
the gravitational equations would facilitate quantization. The hope was not realised, but Ashtekar's approach
rekindled interest in the prospect of quantizing gravity by traditional methods of quantum �eld theory.
The complex structure of bivectors in 4 dimensions arises because, in 4 dimensions, the pseudoscalar I

times a bivector is a bivector. The complex structure allows bivectors to be split into two distinct complex
chiral parts. Thus the Lorentz connection Γ splits into right-handed Γ+ and left-handed Γ− chiral parts,

Γ = Γ+ + Γ− , Γ± ≡ 1
2 (1± γ5)Γ , (16.337)

where γ5 ≡ −iI is the chiral operator of the spacetime algebra, equation (14.105). The chiral factors are
projection operators P± ≡ 1

2 (1 ± γ5) satisfying P 2
± = P±, and with zero overlap, P+P− = 0. The Rie-

mann curvature bivector R has corresponding right- and left-handed components R±, satisfying the Cartan
structure equation

R = R+ +R− , R± ≡ 1
2 (1± γ5)R = dΓ± + 1

4 [Γ±,Γ±] . (16.338)

The area-element bivector e2 similarly splits into right-and left-handed components,

e2 = e2
+ + e2

− , e2
± ≡ 1

2 (1± γ5)e2 . (16.339)

Without loss of generality, restrict to the right-handed (+) case. Consider the chiral gravitational La-
grangian 4-form

L+ ≡ (1 + γ5)L = − I

4π
e2 ∧R+ = − I

4π
e2

+ ∧R+ = − I

4π
e2

+ ∧
(
dΓ+ + 1

4 [Γ+,Γ+]
)
. (16.340)

An equivalent expression for the chiral Lagrangian (16.340) is (compare equation (16.230); recall that in
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the notation adopted here, explained at the beginning of �16.14, the dot product signi�es a dot product of
multivectors, but an exterior product of forms)

L+ = − 1

8π
(∗e2 + i e2) ·R . (16.341)

The real part of the chiral Lagrangian (16.341) coincides with the usual gravitational Lagrangian, ReL+ = L,
equation (16.230). The imaginary part of the chiral Lagrangian 4-form is

ImL+ = − 1

8π
e2 ·R =

6

8π
R0123 d

4x0123 , (16.342)

which involves the purely antisymmetric part R0123 of the Riemann tensor. The purely antisymmetric Rie-
mann tensor vanishes if torsion vanishes. Note that for the imaginary contribution (16.342) to be non-trivial,
it is necessary to regard torsion as a dynamical �eld that vanishes (or not) only as a result of the equations
of motion. Thus if torsion vanishes, the Lagrangian (16.342) vanishes only after equations of motion are
imposed. An explicit expression for the imaginary part of the chiral action in terms of the torsion S is

− 1

8π

∫
e2 ·R = − 1

16π

∫
e · (e ·R) =

1

16π

∫
e ·
(
dS + 1

2 [Γ,S]
)

= − 1

16π

∮
e · S +

1

16π

∫
S · S , (16.343)

the third expression of which follows from the Bianchi identity (16.394a), and the �nal expression from an
integration by parts.
Ashtekar (1987) proposed replacing the standard Hilbert Lagrangian with the chiral Lagrangian (16.340).

The gravitational coordinates are nominally the right-handed connections Γ+, a complex bivector 1-form
with (6 × 4)/2 = 12 degrees of freedom, and the right-handed area element e2

+, a complex bivector 2-form
with (6× 6)/2 = 18 degrees of freedom. However, the 18-component complex right-handed area element e2

+

has excess degrees of freedom compared to the 16-component real line interval e. Notwithstanding LQG's
focus on the area element, LQG follows the standard philosophy that the line interval e has (before gauge-
�xing) 16 degrees of freedom. Thus in varying the chiral action (16.340), the degrees of freedom are taken to
be the 12 components of Γ+ and the 16 components of e. Varying the action with chiral Lagrangian (16.340)
with respect to Γ+ and e yields (compare equation (16.245))

δS+ = − I

4π

∮
e2

+ ∧ δΓ+ −
I

4π

∫
(e∧S)+ ∧ δΓ+ + 2 δe∧(e∧R+) . (16.344)

With matter included, Hamilton's equations are then (compare equations (16.248))

(e∧S)+ = 8π
∗∗
Σ+ , (16.345a)

e∧R+ = 8π
∗∗
T . (16.345b)

The torsion equation (16.345a) is a bivector 3-form with (6×4)/2 = 12 complex degrees of freedom, while the
Einstein equation (16.345b) is a trivector 3-form with 4×4 = 16 complex degrees of freedom. The imaginary
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part of the Einstein equation (16.345b) is

Im(e∧R+) = −e∧(IR) = −I(e ·R) = −R[κλµ]n Iγγ
n d3xκλµ , (16.346)

which vanishes provided that torsion vanishes. Thus the chiral Einstein equation (16.345b) is real and re-
produces the usual Einstein equation provided that torsion vanishes. The torsion equation (16.345a) has
12 complex components, half the usual (non-chiral) number 24 of torsion equations, but 12 is the correct
number to determine the 12 complex components of the chiral connection Γ+.
The next step is to carry out a 3+1 split similar to that in �16.15.5. After the 3+1 split, the gravitational

coordinates are the 9 components of the spatial chiral connection Γ+, and their conjugate momenta are the
9 components of the spatial chiral area element e2

+. These coordinates and momenta are called Ashtekar
variables,

Γ+ , e2
+ canonically conjugate Ashtekar variables . (16.347)

The remaining 28 − 18 = 10 degrees of freedom in the connection and line interval are all gauge degrees
of freedom. The 6 Lorentz gauge freedoms can be used to �x the 3 tetrad-time components e0̄ of the line
interval and the 3 time components Γ+t̄ of the Lorentz connection. The 4 coordinate gauge freedoms can
be used to �x the 4 time components et̄ of the line interval. The 9 components of the spatial chiral area
element e2

+ are invertibly related to the 9 real components e of the line interval subject to the ADM gauge
condition (16.324). In all, variation of the action with respect to δΓ+ and δe yields 9 + 9 = 18 equations of
motion (compare equations (16.330)),

9 equations of motion: (e∧S)+t̄ = 8π
∗∗
Σ+t̄ , (16.348a)

9 equations of motion: (e∧R+)0̄t̄ = 8π
∗∗
T 0̄t̄ , (16.348b)

while variation with respect to the gauge variables δΓ+t̄, δe0̄, δet̄ and δe0̄t̄ yields 10 constraints (compare
equations (16.333)),

3 Gaussian constraints: (e∧S)+ = 8π
∗∗
Σ+ , (16.349a)

3 Gaussian constraints: (e∧R+)t̄ = 8π
∗∗
T t̄ . (16.349b)

3 momentum constraints: (e∧R+)0̄ = 8π
∗∗
T 0̄ , (16.349c)

1 Hamiltonian constraint: e∧R+ = 8π
∗∗
T . (16.349d)

The novel feature is that there are no identities, only equations of motion and constraints.

16.16.2 Loop Quantum Gravity

Ashtekar's proposal simpli�ed the system of gravitational equations, but at the price of complexifying the
connection Γ. Complexi�cation introduced other di�culties (the need to introduce additional �reality con-
straints�) that obstructed successful quantization.
Meanwhile, it began to be realised, starting with Jacobson and Smolin (1988), that if gravity is treated as a
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gauge theory of Lorentz transformations, then a gauge rotation (spatial Lorentz transformation) by 2π around
a loop will have a quantum mechanical e�ect analogous to the Aharonov-Bohm e�ect of electromagnetism.
This was the origin of Loop Quantum Gravity.
Eventually it was realised that the loop structure of LQG could be retained without the problems of

complexi�cation, by using a real version of the chiral action, the Holst Lagrangian (Holst, 1996),

Lβ ≡ −
I

8π
e2 ∧Rβ , (16.350)

where

Rβ ≡
(

1 +
I

β

)
R , (16.351)

and β is an arbitrary constant called the Barbero-Immirzi parameter (Barbero G., 1995; Immirzi, 1997).
The choice β =∞ gives the classic Hilbert action, while β = i recovers Ashtekar's chiral Lagrangian (16.340).
Most later studies in LQG choose β to be real. The canonically conjugate variables are

Γβ ≡
(

1 +
I

β

)
Γ , e2 . (16.352)

The reader is referred to the arXiv for recent reviews of LQG.

Exercise 16.12. Gravitational equations in arbitrary spacetime dimensions. In multivector forms
language in N spacetime dimensions:
1. What is the Hilbert gravitational Lagrangian? What is the gravitational super-Hamiltonian?

2. What is the variation of the gravitational Lagrangian?

3. What are the gravitational equations of motion?

4. What is the alternative Hilbert gravitational Lagrangian?

5. What is the variation of the alternative gravitational Lagrangian?

6. What is the space+time (N−1)+1 split of the alternative gravitational equations of motion?

7. What is the space+time (N−1)+1 split of the gravitational equations of motion when the ADM gauge
condition (16.324) is imposed?

Solution.

1. The Hilbert gravitational Lagrangian in N spacetime dimensions is the scalar N -form, generalizing
equation (16.232),

Lg = − IN
κN

eN−2 ∧R , (16.353)

where IN is the N -dimensional spacetime pseudoscalar, and κN is Newton's gravitational constant,
suitably normalized, in N spacetime dimensions. The Lagrangian (16.353) is in super-Hamiltonian form

Lg = − IN
κN

eN−2 ∧dΓ−Hg , (16.354)
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with super-Hamiltonian, generalizing equation (16.234),

Hg =
IN

4κN
eN−2 ∧[Γ,Γ] . (16.355)

2. The variation of the gravitational action in N spacetime dimensions is, generalizing equation (16.245),

δSg = (−)N−1 IN
κN

∮
eN−2 ∧ δΓ− IN

κN

∫
(eN−3 ∧S)∧ δΓ + δe∧(eN−3 ∧R) . (16.356)

The variation of the matter action is de�ned by equations (16.246) in any spacetime dimension. With
matter, the equations of motion generalizing equations (16.248) are

1
2N

2(N − 1) equations of motion: eN−3 ∧S = κN
∗∗
Σ , (16.357a)

N2 equations of motion: eN−3 ∧R = κN
∗∗
T . (16.357b)

3. The alternative Hilbert gravitational Lagrangian in N spacetime dimensions is, generalizing equa-
tion (16.255),

L′g = (−)N−1 IN
κN

π ∧de−Hg , (16.358)

where π is momentum pseudovector (N−2)-form, generalizing equation (16.251),

π ≡ (−)N−3eN−3 ∧Γ , (16.359)

and Hg is the same super-Hamiltonian (16.355) as before.
4. The variation of the alternative action (16.358) is, generalizing equation (16.257)

δS′g =
IN
κN

∮
π ∧ δe+ (−)N−1 IN

κN

∫
δπ ∧S + Π∧ δe , (16.360)

where the curvature pseudovector (N−1)-form Π is, generalizing equations (16.258),

Π ≡ eN−3 ∧R− eN−4 ∧S ∧Γ = dπ + 1
2 [Γ,π] + 1

4 e
N−3 ∧[Γ,Γ] . (16.361)

Note that the eN−4 term in the middle expression vanishes for N = 3. The variation of the matter
action is de�ned by equations (16.259) in any spacetime dimension. With matter, the equations of
motion generalizing equations (16.262) are

1
2N

2(N − 1) equations of motion: S = κN Σ̃ , (16.362a)

N2 equations of motion: Π = κN T̃ . (16.362b)

5. Split into time and space parts, the alternative spacetime equations of motion (16.362) split into equa-
tions of motion that involve time derivatives dt̄ of the N(N − 1) spatial coordinates e and N(N − 1)

spatial momenta π, generalizing equations (16.316),

N(N − 1) equations of motion: St̄ = κN Σ̃t̄ , (16.363a)

N(N − 1) equations of motion: Πt̄ = κN T̃t̄ , (16.363b)



16.16 Loop Quantum Gravity 469

and purely spatial equations involving no time derivatives dt̄, generalizing equations (16.317),

1
2N(N − 1) Gaussian constraints and 1

2N(N − 1)(N − 3) identities: S = κN Σ̃ , (16.364a)

N Hamiltonian constraints: Π = κN T̃ . (16.364b)

6. ADM imposes the N − 1 ADM gauge conditions e0̄ = 0, equation (16.324), reducing the number of
degrees of freedom of the spatial line-element e to (N − 1)2, and likewise the number of degrees of
freedom of the spatial area element eN−2 to (N − 1)2. The momenta conjugate to the spatial area
element are −Γ0̄, again with (N − 1)2 degrees of freedom. There are 2(N − 1)2 equations of motion for
the spatial area element and their conjugate momenta, generalizing equations (16.348),

(N − 1)2 equations of motion: (eN−3 ∧S)t̄ = κN
∗∗
Σt̄ , (16.365a)

(N − 1)2 equations of motion: (eN−3 ∧R0̄)t̄ = κN
∗∗
T 0̄t̄ . (16.365b)

There are a further N − 1 equations of motion that are discarded in the ADM formalism (incidentally
demoting the Gaussian constraints (16.367c) from constraints to identities) but retained in the BSSN
formalism, generalizing equation (16.349b),

N − 1 equations of motion: (eN−3 ∧R)t̄ = κN
∗∗
T t̄ . (16.366)

The remaining equations, containing no time derivatives, comprise 1
2 (N − 1)2(N − 2) identities and

1
2N(N + 1) constraints, generalizing equations (16.349),

1
2 (N − 1)2(N − 2) identities: (eN−3 ∧S0̄)t̄ = κN

∗∗
Σ0̄t̄ , (16.367a)

1
2 (N − 1)(N − 2) Gaussian constraints: eN−3 ∧S0̄ = κN

∗∗
Σ0̄ , (16.367b)

N − 1 Gaussian constraints: eN−3 ∧S = κN
∗∗
Σ , (16.367c)

N − 1 momentum constraints: eN−3 ∧R0̄ = κN
∗∗
T 0̄ , (16.367d)

1 Hamiltonian constraint: eN−3 ∧R = κN
∗∗
T . (16.367e)

Exercise 16.13. Volume of a ball and area of a sphere. What is the volume VN of a unit N -ball, and
the area SN of a unit N -dimensional sphere? A unit N -ball is the interior of a unit (N−1)-sphere, and an
N -sphere is the boundary of a unit (N+1)-ball.
Solution. The volume VN of an N -ball is the area SN−1R

N−1 of an (N−1)-sphere of radius R integrated
over R from 0 to 1,

VN = SN−1

∫ 1

0

RN−1 dR , (16.368)

yielding

VN =
SN−1

N
. (16.369)
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The volume of an N -ball is also the volume VN−1 r
N−1 of an (N−1)-ball of radius r = sin θ integrated over

height z = cos θ from −1 to 1,

VN = VN−1

∫ 1

−1

rN−1 dz = VN−1

∫ π

0

sinNθ dθ . (16.370)

The integral
∫ π

0
sinNθ dθ can be expressed in terms of Γ functions. Iterated twice, equation (16.370) gives

the recurrence relation

VN =
2πVN−2

N
. (16.371)

Equations (16.369) and (16.371) imply

SN = 2πVN−1 . (16.372)

Initial values of the recurrence are V1 = 2 and V2 = π. General expressions for the volume and area are

VN =
πN/2

Γ
(
N
2 + 1

) , SN =
2π(N+1)/2

Γ
(
N+1

2

) . (16.373)

16.17 Bianchi identities in multivector forms notation

The Bianchi identities, equations (16.394) below, are di�erential identities satis�ed by the torsion S and
Riemann R tensors. The Bianchi identities are identities in the sense that if the torsion and Riemann
tensors are expressed in terms of the line interval e and Lorentz connection Γ in accordance with Cartan's
equations (16.210) and (16.206), then the Bianchi identities are satis�ed automatically. The contracted
Bianchi identities (16.397) enforce conservation laws on the total spin angular-momentum Σ and matter
energy-momentum T .

16.17.1 Covariant exterior derivative of a multivector form

The exterior derivatives of the multivector forms Γ and e in equations (16.204) and (16.208) were applied
to the coordinate indices, but not to the tetrad indices. A covariant exterior derivative D, distinguished like
the coordinate exterior derivative d by latin font, can be de�ned that is covariant not only with respect
to coordinate transformations but also with respect to Lorentz transformations. In this context, covariance
means that D commutes with both coordinate and Lorentz transformations. There is a torsion-free covariant
exterior derivative D̊, and a torsion-full covariant exterior derivative D.
If a is a multivector p-form, then its torsion-free covariant exterior derivative D̊a is a sum of the coordinate

exterior derivative plus a torsion-free Lorentz connection term, equation (15.4),

D̊a ≡ da+
ˆ̊
Γa , (16.374)
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where the torsion-free Lorentz connection operator ˆ̊
Γ acting on the multivector form a is, equation (15.19),

ˆ̊
Γa ≡ 1

2 [Γ̊,a] , (16.375)

with Γ̊ ≡ Γ̊klκ γγ
k ∧γγl dxκ the torsion-free bivector 1-form, the torsion-free version of equation (16.199a).

The torsion-full covariant exterior derivative Da is a sum of the coordinate exterior derivative plus a
torsion-full Lorentz connection term plus a torsion term,

Da ≡ da+ Γ̂a+ Ŝa , (16.376)

where the Lorentz connection operator Γ̂ acting on the multivector form a is, equation (15.19),

Γ̂a ≡ 1
2 [Γ,a] . (16.377)

The torsion-full Lorentz connection bivector 1-form Γ, equation (16.199a), is as usual the sum of the torsion-
free Lorentz connection Γ̊ and the contortion K, equations (11.55),

Γ = Γ̊ +K . (16.378)

The coordinate exterior derivative d is a torsion-free covariant curl, so the torsion operator Ŝ in equa-
tion (16.376) must be included when torsion does not vanish, as for example in equation (2.71). The torsion
operator Ŝ is essentially the antisymmetric part of the coordinate connection, which is the only part of the
coordinate connection that survives in a (covariant) exterior derivative. The torsion operator Ŝ acts only
on the coordinate indices of the form a, while the Lorentz connection operator Γ̂ acts only on the tetrad
indices of the multivector a. If a = aλΠ d

pxλΠ is a multivector p-form, with implicit summation over distinct
antisymmetric sequences λΠ of p indices, then the torsion term Ŝa is the multivector (p+1)-form de�ned by

Ŝa ≡ p(p+ 1)

2
SµκλaµΠ d

p+1xκλΠ , (16.379)

implicitly summed over distinct antisymmetric sequences κλΠ of p+ 1 indices. If a is a 0-form (a coordinate
scalar), then the torsion term vanishes, Ŝa = 0. In components, the covariant exterior derivative Da,
equation (16.376), of the multivector p-form a is the (p+ 1)-form

Da = (p+ 1)DκaλΠ d
p+1xκλΠ = (p+ 1)

(
∂κaλΠ + 1

2 [Γκ,aλΠ] + 1
2pS

µ
κλaµΠ

)
dp+1xκλΠ , (16.380)

with the implicit summation over distinct antisymmetric sequences κλΠ of p+ 1 indices.
The covariant exterior derivative D (in both torsion-free and torsion-full versions) acting on the product

of a multivector p-form a and a multivector q-form b satis�es the same Leibniz-like rule as the exterior
derivative d, equation (15.68),

D(ab) = (Da)b+ (−)pa(Db) . (16.381)
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16.17.2 A third, Lorentz-covariant, exterior derivative

A third exterior derivative that is Lorentz-covariant but not coordinate-covariant crops up often enough
to warrant a special notation. The Lorentz-covariant derivative DΓ, subscripted Γ as a reminder that it is
covariant only with respect to Lorentz indices, is

DΓ ≡ d + Γ̂ , (16.382)

which is torsion-free acting on coordinate indices, and torsion-full acting on multivector indices. The Lorentz-
covariant derivative DΓ satis�es the same Leibniz-like rule (16.381) as the other exterior derivatives.
The derivative DΓ is not coordinate-covariant in the sense that it does not commute with the vierbein,

that is, acting on the line interval e, it yields the torsion S, equation (16.384),

DΓe = S . (16.383)

However, the derivative DΓ satis�es other conditions for being a covariant derivative: it yields a (coordinate
and tetrad) tensor when acting on a (coordinate and tetrad) tensor.

16.17.3 Torsion from the covariant exterior derivative

By construction, the covariant exterior derivative D (in either torsion-free or torsion-full versions) commutes
with both coordinate and Lorentz transformations. Thus the covariant exterior derivative of the line-element
e de�ned by equation (16.199b) vanishes, De = 0. Applied to the line interval e, equation (16.376) recovers
the de�nition (16.210) of the torsion vector 2-form S,

0 = De = de+ 1
2 [Γ, e]− S , (16.384)

since Ŝe is just minus the vector 2-form torsion S,

Ŝe = Sµκλemµ γγ
m d2xκλ = Smκλ γγ

m d2xκλ = −S . (16.385)

Equation (16.384) is Cartan's �rst equation of structure. It de�nes the torsion S.
The torsion-free version of Cartan's equation (16.384) is de + 1

2 [Γ̊, e] = 0. Subtracting this from the
torsion-full Cartan's equation (16.384) yields the relation between the torsion S and the contortion K,

S = 1
2 [K, e] . (16.386)

Equation (16.386) can be inverted to yield K in terms of S. The relation between torsion and contortion
was given previously in index notation as equations (11.56).

16.17.4 Lorentz and coordinate connections

Equation (16.376) suggests that the operator Γ̂ should be interpreted as the connection associated with local
Lorentz transformations, while the torsion operator Ŝ should be interpreted as the connection associated
with displacements, but that is not quite right.
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The correct interpretation is that the torsion-free operator ˆ̊
Γ is the connection associated with local Lorentz

transformations, while the sum K̂ + Ŝ of contortion and torsion operators (K̂ acting on Lorentz indices,
and Ŝ acting on coordinate indices) is the connection associated with displacements.

16.17.5 Riemann curvature from the covariant exterior derivative

Whereas the square of the coordinate exterior derivative vanishes because of the commutation of coordinate
partial derivatives, dd = 0, the square of the covariant exterior derivative does not vanish. In components,
the square DD is

DD ≡ [Dκ, Dλ] d2xκλ , (16.387)

implicitly summed over distinct antisymmetric pairs of indices κλ. Acting on any multivector form a, the
square of the covariant exterior derivative gives (compare equation (15.21))

DDa = R̂a+ ŜDa . (16.388)

If a = aµΠ d
pxµΠ is a multivector p-form, then the Riemann operator R̂ acting on a is the (p+ 2)-form (the

DΓŜ term in the following equation was given previously in components by equation (11.70))

R̂a = (DΓDΓ + DΓŜ)a =
(p+ 1)(p+ 2)

2

(
1
2 [Rκλ,aµΠ] + 1

3pRκλµ
νaνΠ

)
dp+2xκλµΠ , (16.389)

implicitly summed over distinct antisymmetric sequences κλµΠ of p+ 2 indices. The components of the Rie-
mann tensor are those of the Riemann bivector 2-form R ≡ Rκλ d

2xκλ, equation (16.203). Equation (16.389)
recovers the de�nition (16.206) of the Riemann curvature R in terms of the Lorentz connection Γ. This
is Cartan's second equation of structure, equation (16.206). In equation (16.388), the scalar 2-form co-
variant derivative operator ŜD acting on the multivector p-form a = aΠ d

pxΠ is, from equations (16.379)
and (16.380), the (p+ 2)-form

ŜDa =
(p+ 1)2(p+ 2)

2
SµκλD[µaΠ] d

p+2xκλΠ , (16.390)

implicitly summed over distinct antisymmetric sequences κλΠ of p+ 2 indices.

16.17.6 Bianchi identities

The Jacobi identity for the covariant exterior derivative is

D(DD)− (DD)D = 0 . (16.391)

Applied to an arbitrary multivector form a, the Jacobi identity (16.391) implies

0 = D(DD)a− (DD)Da = D(R̂+ ŜD)a− (R̂+ ŜD)Da = (DR̂− ŜR̂)a+ (DŜ − ŜŜ − R̂)Da . (16.392)
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Equation (16.392) holds for arbitrary a, so the coe�cients of a and Da must vanish, implying the Bianchi
identities

DS − ŜS + 1
2 [e,R] = 0 , (16.393a)

DR− ŜR = 0 , (16.393b)

where S is the vector 2-form torsion (16.207) with 4 × 6 = 24 components, and R is the bivector 2-form
Riemann curvature (16.203) with 6× 6 = 36 components, These equations (16.393) were given previously in
component form by equations (11.69) and (11.91). Equation (16.393a) is a vector 3-form, with 4 × 4 = 16

components, while equation (16.393b) is a bivector 3-form, with 6 × 4 = 24 components. Equivalently, in
terms of the exterior derivative d instead of the covariant exterior derivative D, the Bianchi identities (16.393)
are

dS + 1
2 [Γ,S] + 1

2 [e,R] = 0 , (16.394a)

dR+ 1
2 [Γ,R] = 0 . (16.394b)

16.17.7 Interpretation of the Bianchi identities

The torsion Bianchi identity (16.394a) looks like a covariant conservation equation for torsion S, except that
there is a source term 1

2 [e,R]. This term is a vector 3-form whose 16 components comprise the antisymmetric
part (in components, R[[kl][mn]]) of the 36-component Riemann tensor (see Exercise 11.6 for the relation
between R[klm]n and R[[kl][mn]]),

1
2 [e,R] = e ·R = R[κλµ]n γγ

n d3xκλµ . (16.395)

Since torsion S is determined completely by its equation of motion (16.248a) or (16.262a) in terms of the
spin angular-momentum Σ, the torsion Bianchi identity (16.394a) can be interpreted as determining the
16-component antisymmetric part e ·R of the Riemann tensor in terms of the torsion and its derivatives. I
thank Fred Hehl for pointing out (2017, private communication) that the e ·R term can be interpreted as
the covariant exterior derivative of orbital angular momentum, �19(c) of Corson (1953), so that the Bianchi
identity (16.394a) can be interpreted as enforcing conservation of total angular momentum, spin plus orbital.
If torsion S vanishes, or more generally if it satis�es the covariant conservation equation dS + 1

2 [Γ,S] = 0,
then the Riemann tensor is symmetric, e ·R = 0, but if torsion does not vanish, then generically the Riemann
tensor is not symmetric.
The Riemann Bianchi identity (16.394b) looks like a covariant conservation equation for the Riemann

tensor R. In contrast to the torsion S, the Riemann tensor R is not determined completely by its equation
of motion (16.248b) or (16.262b) in terms of the matter energy-momentum T . Rather, the equation of mo-
tion determines only the contracted part e∧R of the Riemann tensor, which is the Einstein tensor (strictly,
its double dual, equation (16.244)). The Riemann Bianchi identity (16.394b) has 24 components. Of these
24 components, 4 provide an equation for d(e ·R), which is a di�erential constraint on the antisymmetric
part of the Riemann tensor, a further 4 components provide an equation for d(e∧R), which is a di�eren-
tial constraint on the Einstein tensor, and the remaining 16 components provide Maxwell-like di�erential
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equations on the symmetric part of the Riemann tensor, as discussed previously in �3.2. These Maxwell-like
equations govern the behaviour of gravitational waves, which are encoded in the part of the Riemann tensor
that is not determined by the equations of motion, namely the 10-component symmetric Weyl tensor. The
16 components are subject to a 6-component conservation law,

DΓ(DΓR) = (DΓDΓ)R = 1
2 [R,R] = 0 , (16.396)

the last step of which follows from equation (16.198b). Equation (16.396) represents conservation of the Weyl
current, equation (3.12).

16.17.8 Contracted Bianchi identities

The equations of motion (16.248) for torsion and curvature are sourced by the spin angular-momentum and
matter energy-momentum. The Bianchi identities (16.394) on the other hand are independent of matter
sources. The Bianchi identities impose di�erential constraints on the equations of motion that must be
satis�ed regardless of the form of the spin angular-momentum and matter energy-momentum.
The equations of motion (16.248) are equations for e∧S and e∧R. Di�erential constraints on these

combinations are obtained by contracting the Bianchi identities (16.394) by pre-multiplying by e∧. The
contracted Bianchi identities for torsion and Riemann curvature constitute respectively a bivector 4-form,
with 6 components, and a pseudovector 4-form, with 4 components,

d(e∧S) + 1
2 [Γ, e∧S]− 1

2 [e2,R] = 0 , (16.397a)

d(e∧R) + 1
2 [Γ, e∧R]− S ∧R = 0 . (16.397b)

The �nal term in the contracted torsion Bianchi identity (16.397a) is a bivector 4-form whose 6 components
constitute the antisymmetric part of the Ricci tensor (see eq. (16.216)),

1
2 [e2,R] = e∧(e ·R) = e · (e∧R) = −ekκelλR[µν] γγ

k ∧γγl d4xκλµν . (16.398)

Combining the contracted Bianchi identity (16.397b) with the torsion Bianchi identity (16.394a) yields
the pseudovector 4-form identity for the curvature Π de�ned by equation (16.258),

dΠ + 1
2 [Γ,Π]− 1

2 [e,R]∧Γ + 1
4S ∧[Γ,Γ] = 0 . (16.399)

16.17.9 Interpretation of the contracted Bianchi identities

The contracted torsion Bianchi identity (16.397a) is the 6-component conservation law associated with in-
variance of the gravitational Lagrangian under Lorentz transformations. The contracted Riemann iden-
tity (16.397b), or equivalently (16.399), is the 4-component conservation law associated with invariance of
the gravitational Lagrangian under coordinate transformations.
The contracted torsion Bianchi identity (16.397a) enforces continued satisfaction of the Gaussian con-

straint (16.306a). The contracted Riemann Bianchi identity (16.397b) enforces continued satisfaction of the
Hamiltonian constraint (16.306b).
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Conventional Hamiltonian (3+1) approach

In the previous chapter, gravitational equations of motion were derived from the Hilbert Lagrangian in a fully
covariant fashion, and the (super-)Hamiltonian form of the Hilbert Lagrangian was emphasized. In practical
calculations however, it is usually more convenient to follow a non-covariant 3+1 approach, in which the
spacetime is foliated into hypersurfaces of constant time t, and the system of Einstein (and other) equations
is evolved by integrating from one spacelike hypersurface of constant time to the next.
The traditional 3+1 formalism is called the Arnowitt-Deser-Misner (ADM) formalism, introduced

by Arnowitt, Deser & Misner (1959; 1963). The original purpose of ADM was to cast the gravitational
equations of motion into conventional Hamiltonian form, to facilitate quantization. The goal of quantizing
general relativity failed, but the ADM formalism revealed fundamental insights into the structure of the
Einstein equations. The ADM formalism provides the backbone for modern codes that implement numerical
general relativity.
The ADM formalism shows that the 6 physical degrees of freedom of the gravitational �eld can be regarded

as being carried by the 6 spatial components gαβ of the coordinate metric. The 6 spatial Einstein equations
constitute partial di�erential equations of motion of second order in time t for the 6 physical degrees of
freedom. The remaining 4 degrees of freedom of the coordinate metric can be treated as gauge degrees
of freedom, which can be chosen arbitrarily. The 4 non-spatial Einstein equations are partial di�erential
equations of �rst order in time t, and they are not equations of motion, but rather constraint equations,
which must be arranged to be satis�ed in the initial conditions (on the initial hypersurface of constant time
t), but which are guaranteed thereafter by the contracted Bianchi identities, which enforce conservation of
energy-momentum.
The mere fact that the 6 spatial components gαβ of the coordinate metric can be taken to be the 6

gravitational physical degrees of freedom, and that the remaining 4 degrees of freedom of the coordinate
metric can be treated as gauge degrees of freedom, does not mean that these choices must be made. Gauge
choices other than ADM can be made, and are often preferred. In cosmology for example, the preferred gauge
choice is conformal Newtonian (Copernican) gauge, �29.8, in which only 3 of the 6 physical perturbations
are part of the spatial coordinate metric gαβ (the scalar Φ and the 2 components of the tensor hab), while
the remaining 3 physical perturbations are part of the time components gtt and gtα of the metric (the scalar
Ψ and the 2 components of the vector Wa).

476
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Numerical experiments during the 1990s established that the ADM equations are numerically unstable. The
community of numerical relativists engaged in an intensive e�ort to understand the cause of the instability,
and to �nd a numerically stable formalism. The challenge problem was to compute reliably the evolution of
the merger of a pair of black holes, and to calculate the general relativistic radiation produced as a result. The
e�ort was rewarded in 2005�6 when a number of groups (Pretorius, 2005a; Pretorius, 2006; Baker et al., 2006b;
Baker et al., 2006a; Campanelli et al., 2006; Campanelli, Lousto, and Zlochower, 2006; Diener et al., 2006;
Sopuerta, Sperhake, and Laguna, 2006) reported successful evolution of a binary black hole (or black hole plus
neutron star) merger. The most popular formalism for long-term evolution of spacetimes is the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formalism (Shibata and Nakamura, 1995; Baumgarte and Shapiro,
1998).
This chapter starts with an exposition of the ADM formalism, �17.1. It goes on to apply the ADM

formalism to Bianchi spacetimes, �17.4, which provide a �ne example of the application of the formalism
in a non-trivial case. The gravitational collapse of Bianchi spacetimes reveals that collapse to a singularity
can show a complicated oscillatory behaviour called Belinskii-Khalatnikov-Lifshitz (BKL) oscillations
(Belinskii, Khalatnikov, and Lifshitz, 1970; Belinskii and Khalatnikov, 1971; Belinskii, Khalatnikov, and
Lifshitz, 1972; Belinskii, Khalatnikov, and Lifshitz, 1982; Belinski, 2014), �17.6. The chapter concludes with
an exposition of the BSSN formalism, �17.7, and the elegant 4-dimensional version of it proposed by Pretorius
(2005), �17.8.
In this chapter, torsion is assumed to vanish.

17.1 ADM formalism

The ADM formalism splits the spacetime coordinates xµ into a time coordinate t and spatial coordinates
xα, α = 1, 2, 3,

xµ ≡ {t, xα} . (17.1)

At each point of spacetime, the spacelike hypersurface of constant time t has a unique future-pointing unit
normal γγ0, de�ned to have unit length and to be orthogonal to the spatial tangent axes eα,

γγ0 · γγ0 = −1 , γγ0 · eα = 0 α = 1, 2, 3 . (17.2)

The central idea of the ADM approach is to work in a tetrad frame γγm consisting of this time axis γγ0,
together with three spatial tetrad axes γγa, also called the triad, that are orthogonal to the tetrad time axis
γγ0, and therefore lie in the 3D spatial hypersurface of constant time,

γγ0 · γγa = 0 a = 1, 2, 3 . (17.3)

The tetrad metric γmn in the ADM formalism is thus

γmn =

(
−1 0

0 γab

)
, (17.4)
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and the inverse tetrad metric γmn is correspondingly

γmn =

(
−1 0

0 γab

)
, (17.5)

whose spatial part γab is the inverse of γab. Given the conditions (17.2) and (17.3), the vierbein emµ and
inverse vierbein emµ take the form

emµ =

(
α 0

−eaαβα eaα

)
, em

µ =

(
1/α βα/α

0 ea
α

)
, (17.6)

where α and βα are the lapse and shift (see next paragraph), and eaα and eaα represent the spatial vierbein
and inverse vierbein, which are inverse to each other, eaαebα = δab . As can be read o� from equations (17.6),
the following o�-diagonal time-space components of the vierbein and its inverse vanish, as a direct conse-
quence of the ADM gauge choices (17.2),

e0
α = ea

t = 0 . (17.7)

The ADM line-element is

ds2 = −α2dt2 + gαβ (dxα − βαdt)
(
dxβ − ββdt

)
, (17.8)

where gαβ is the spatial coordinate metric

gαβ = γabe
a
αe
b
β . (17.9)

Essentially all the tetrad formalism developed in Chapter 11 carries through, subject only to the condi-
tions (17.2) and (17.3). As usual in the tetrad formalism, coordinate indices are lowered and raised with the
coordinate metric, tetrad indices are lowered and raised with the tetrad metric, and coordinate and tetrad
indices can be transformed to each other with the vierbein and its inverse.
The vierbein coe�cient α is called the lapse, while βα is called the shift. Physically, the lapse α is the

rate at which the proper time τ of the tetrad rest frame elapses per unit coordinate time t, while the shift βα

is the velocity at which the tetrad rest frame moves through the spatial coordinates xα per unit coordinate
time t,

α =
dτ

dt
, βα =

dxα

dt
. (17.10)

These relations (17.10) follow from the fact that the 4-velocity in the tetrad rest frame is by de�nition
um ≡ {1, 0, 0, 0}, so the coordinate 4-velocity uµ ≡ emµum of the tetrad rest frame is

dxµ

dτ
≡ uµ = e0

µ =
1

α
{1, βα} . (17.11)

The proper time derivative d/dτ in the tetrad rest frame is just equal to the directed derivative ∂0 in the
time direction γγ0,

d

dτ
= uµ

∂

∂xµ
= ∂0 . (17.12)
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Coordinate and tetrad derivatives ∂/∂xµ and ∂m are related to each other as usual by the vierbein and
its inverse,

∂

∂t
= α∂0 − βa∂a , ∂0 =

1

α

(
∂

∂t
+ βα

∂

∂xα

)
, (17.13a)

∂

∂xα
= eaα∂a , ∂a = ea

α ∂

∂xα
, (17.13b)

where βa ≡ eaαβ
α. By construction, the only coordinate derivative involving the directed time derivative

∂0 is the coordinate time derivative ∂/∂t, and conversely the only directed derivative involving a coordinate
time derivative ∂/∂t is the directed time derivative ∂0.

Concept question 17.1. Does Nature pick out a preferred foliation of time? In the ADM formal-
ism, spacetime must be foliated into spacelike hypersurfaces of constant time, but the choice of foliation can
be made arbitrarily. Does Nature pick out any particular foliation? Answer. Yes, apparently. The Cosmic
Microwave Background de�nes a preferred frame of reference in cosmology. More precisely, the preferred
cosmological frame is de�ned by conformal Newtonian (Copernican) gauge, �29.8, which is that gauge for
which the retained gravitational perturbations are precisely the physical perturbations. What caused the
preferred frame to be established is mysterious, but it must have happened during or before early in�a-
tion, when the di�erent parts of what became our Universe were in causal contact. Interestingly, conformal
Newtonian gauge does not conform to ADM gauge choices: in conformal Newtonian gauge, only 3 of the 6
physical perturbations (Φ and hab) are part of the spatial metric, while the remaining 3 physical perturba-
tions (Ψ and Wa) are part of the lapse and shift. Conformal Newtonian gauge holds as long as gravitational
perturbations are weak, which is true even in highly non-linear collapsed systems such as galaxies and solar
systems. Conformal Newtonian gauge breaks down in strongly gravitating systems such as black holes.

17.1.1 Traditional ADM approach

The traditional ADM approach sets the spatial tetrad axes γγa equal to the spatial coordinate tangent axes
eα,

γγa = δαa eα (traditional ADM) , (17.14)

equivalent to choosing the spatial vierbein to be the unit matrix, eaα = δαa . It is natural however to extend the
ADM approach into a full tetrad approach, allowing the spatial tetrad axes γγa to be chosen more generally,
subject only to the condition (17.3) that they be orthogonal to the tetrad time axis, and therefore lie in the
hypersurface of constant time t. For example, the spatial tetrad γγa can be chosen to form 3D orthonormal
axes, γab ≡ γγa · γγb = δab, so that the full 4D tetrad metric γmn is Minkowski.
This chapter follows the full tetrad approach to the ADM formalism, but all the results hold for the

traditional case where the spatial tetrad axes are set equal to the coordinate spatial axes, equation (17.14).
Bianchi spacetimes, discussed in �17.4, provide an illustrative example of the application of the ADM
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formalism to a case where it is advantageous to choose the tetrad to be neither orthonormal nor equal to
the coordinate tangent axes.

17.1.2 Spatial vectors and tensors

Since the tetrad time axis γγ0 in the ADM formalism is de�ned uniquely by the choice of hypersurfaces of
constant time t, there is no freedom of tetrad transformations of the time axis distinct from temporal coor-
dinate transformations (no distinct freedom of Lorentz boosts). However, there is still freedom of coordinate
transformations of the spatial coordinate axes eα, and tetrad transformations of the spatial tetrad axes γγa
(spatial rotations).
A covariant spatial coordinate vector Aα is de�ned to be a vector that transforms like the spatial

coordinate axes eα. Likewise a covariant spatial tetrad vector Aa is de�ned to be a vector that transforms
like the spatial tetrad axes γγa. The usual apparatus of vectors and tensors carries through. For spatial
tensors, coordinate and tetrad spatial indices are lowered and raised with respectively the spatial coordinate
and tetrad 3-metrics gαβ and γab and their inverses, and spatial indices are transformed between coordinate
and tetrad frames with the spatial vierbein eaα and its inverse.

17.1.3 ADM gravitational coordinates and momenta

The ADM formalism follows the conventional Hamiltonian approach of regarding the velocities of the �elds
as being their time derivatives ∂/∂t (as opposed to their 4-gradients ∂/∂xκ), and the momenta as derivatives
of the Lagrangian with respect to these velocities.
If the Lorentz connections Γmnλ are taken to be the coordinates of the gravitational �eld, then the

corresponding conjugate momenta are, equation (16.89) with the factor 8π replaced by 16πα for convenience,

16πα
δLg

δ(∂Γmnλ/∂t)
= α(emtenλ − emλent) . (17.15)

But ADM imposes eat = 0, equations (17.6), so for the momentum to be non-vanishing, one of m or n, say
n, must be the tetrad time index 0. Since the momentum is antisymmetric in mn, the other tetrad index m
must be a spatial tetrad index a. Moreover since the momentum is antisymmetric in tλ, the coordinate index
λ must be a spatial coordinate index α. Finally, with e0t = −1/α, the non-vanishing momenta conjugate to
the Lorentz connections are

16πα
δLg

δ(∂Γa0α/∂t)
= eaα . (17.16)

This shows that the coordinates Γmnλ with non-vanishing conjugate momenta are Γa0α with middle (or �rst)
index the tetrad time index 0 and the other two indices spatial, and that the momenta conjugate to these
coordinates are the spatial vierbein eaα.
If on the other hand the vierbein enλ are taken to be the coordinates of the gravitational �eld, then the
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corresponding canonically conjugate momenta are, with a factor of 8πα thrown in for convenience,

8πα
δL′g

∂(∂enλ/∂t)
= αemtπnmλ , (17.17)

where πnmλ are related to the Lorentz connections Γnmλ by equation (16.114). But again ADM imposes
eat = 0, so the tetrad index m must be the time tetrad index 0. Since πnmλ is antisymmetric in its �rst two
indices, the tetrad index n must be a spatial tetrad index a. And then the non-vanishing of the coordinate
enλ = eaλ requires that λ also be a spatial coordinate index β. Thus the non-vanishing momenta conjugate
to the vierbein coordinates are

8πα
δL′g

∂(∂eaβ/∂t)
= −πa0β , (17.18)

in which the momenta πa0β are related to the Lorentz connections Γa0β by, from equations (16.114) with
e0β = 0,

πa0β ≡ Γa0β − eaβΓc0c , Γa0β = πa0β − 1
2eaβπ

c
0c . (17.19)

This shows that the coordinates enλ with non-vanishing conjugate momenta are the spatial vierbein eaα,
and that the momenta conjugate to these coordinates are πa0β with middle (or �rst) index the tetrad time
index 0 and the other two indices spatial.
As remarked before equation (16.116), the same equations of motion are obtained whether the action is

varied with respect to either πa0β or Γa0β , so one can choose either πa0β or Γa0β as the momentum variables
conjugate to the coordinates eaα. The original choice of Arnowitt, Deser, and Misner (1963) was πa0β , but
equations using Γa0β were proposed by Smarr and York (1978) and York (1979).
A reminder: do not confuse the Lorentz connections Γmnλ (of which there are 24) with the coordinate

connections Γµνλ (of which there are 40, for vanishing torsion). The Lorentz connections Γmnλ with �nal index
a coordinate index λ are related to the Lorentz connections Γmnl with all tetrad indices by, equation (15.20),

Γmnλ ≡ elλΓmnl . (17.20)

17.1.4 ADM acceleration and extrinsic curvature

In the previous subsection 17.1.3 it was found that, given the choice (17.6) of ADM vierbein, the momentum
variables that emerge naturally are the Lorentz connections Γa0b whose middle (or �rst) index is the tetrad
time index 0, and whose other two indices ab are both spatial indices. This set of Lorentz connections is called
the extrinsic curvature, commonly denoted Kab. As will be shown momentarily, the extrinsic curvature
Kab is a spatial tetrad tensor. The other set of Lorentz connections that transforms like a spatial tensor are
the connections Γa00, which are called the acceleration Ka. The combined set of connections with middle
index 0 is called the generalized extrinsic curvature Km0l ≡ Γm0l. The non-vanishing components of
the generalized extrinsic curvature constitute the acceleration and the extrinsic curvature (the remaining
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components vanish, Γ000 = Γ00a = 0):

Ka ≡ Ka00 ≡ Γa00 ≡ γγa · ∂0γγ0 a spatial vector , (17.21a)

Kab ≡ Ka0b ≡ Γa0b ≡ γγa · ∂bγγ0 a spatial tensor . (17.21b)

The acceleration Ka and the extrinsic curvature Kab form a spatial vector and tensor because the time
axis γγ0 is a spatial scalar, so its derivatives ∂0γγ0 and ∂bγγ0 constitute respectively a spatial scalar and a
spatial vector. The vanishing of the ADM tetrad metric γ0a with one time index 0 and one spatial index a,
equation (17.4), implies that the generalized extrinsic curvature is antisymmetric in its �rst two indices,

K0al = −Ka0l , (17.22)

which remains true even in the traditional ADM case, equation (17.14), where the spatial tetrad metric γab
is not constant. The unique non-vanishing contraction of the generalized extrinsic curvature is

Kn ≡ Km
nm = {Km

0m,K
m
am} = {K0,Ka} , (17.23)

whose space part is the acceleration Ka, and whose time part is the trace K of the extrinsic curvature Kab,

K0 = K ≡ Ka
a . (17.24)

The accelerationKa is justly named because the geodesic equation shows that its contravariant components
Ka constitute the acceleration experienced in the tetrad rest frame, where um = {1, 0, 0, 0},

Dua

Dτ
= un∂nu

a + Γamnu
mun = Ka

00 = Ka . (17.25)

The extrinsic curvature Kab describes how the unit normal γγ0 to the 3-dimensional spatial hypersurface of
constant time changes over the hypersurface, and can therefore be regarded as embodying the curvature of
the 3-dimensional spatial hypersurface embedded in the 4-dimensional spacetime.
Momenta πab analogous to those de�ned by equations (17.19) are related to the extrinsic curvatures Kab

by

πab = Kab − γabK , Kab = πab − 1
2γabπ , (17.26)

where π ≡ πaa = −2K is the trace of πab.

17.1.5 Decomposition of connections and curvatures

As seen in the previous subsection 17.1.4, the Lorentz connections decompose into a part, the generalized
extrinsic curvature Km0l ≡ Γm0l with middle (or �rst) index the tetrad time index 0, that transforms like a
tensor under under spatial tetrad transformations, and a remainder, the restricted connections Γ̂abl ≡ Γabl
with �rst two indices ab spatial, that does not transform like a spatial tensor,

Γmnl = Γ̂mnl +Kmnl . (17.27)

Although the acceleration and extrinsic curvature arise in the �rst instance as Lorentz connections, for
which the tetrad metric γmn is constant, it is useful to allow a more general situation in which the spatial
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tetrad metric γab is arbitrary. Whereas Kmnl is necessarily antisymmetric in its �rst two indices mn, equa-
tion (17.22), the restricted connection Γ̂mnl need not be (it is antisymmetric in its �rst two indices if the
spatial tetrad metric γab is constant, but not for example in the traditional ADM case (17.14) where the
spatial tetrad metric equals the spatial coordinate metric). The vanishing components of Γ̂mnl and Kmnl are

Γ̂a0l = Γ̂0al = 0 , Kabl = 0 . (17.28)

As a result of the decomposition (17.27) of the connections, the Riemann curvature tensor Rklmn decomposes
into a restricted part R̂klmn, and a part that depends on the generalized extrinsic curvature Kmnl.
Rather than specializing immediately to the ADM case, consider the more general situation in which,

under some restricted subgroup of tetrad transformations, the tetrad-frame connections Γmnl decompose
as equation (17.27) into a non-tensorial part Γ̂mnl and a tensorial part Kmnl. The resemblance of the
decomposition (17.27) to the split (11.55) between the torsion-free and contortion parts of the tetrad-frame
connection is deliberate: in both cases, the tetrad-frame connection Γmnl is decomposed into non-tensorial
and tensorial parts. The resulting decomposition of the Riemann curvature tensor is consequently quite
similar in the two cases. However, here Kmnl is not the contortion, but rather some part of the tetrad-frame
connections that is tensorial under the restricted group of tetrad transformations.
The unique non-vanishing contraction of the tensor Kmnl is the vector

Kn ≡ Kl
nl . (17.29)

The placement of indices in equation (17.29) follows the usual convention for general relativistic connections,
that Kk

nl = γkmKmnl.
The restricted tetrad-frame derivative D̂k with restricted tetrad-frame connection Γ̂mnl is a covariant

derivative with respect to the restricted group of tetrad transformations. Since the generalized extrinsic
curvature Kmnl is a tensor with respected to the restricted group, its restricted covariant derivative is also
a restricted tensor. Among other things, this implies that the restricted covariant derivatives D̂k of the
vanishing components (17.28) of Kmnl vanish identically.
The tetrad metric γlm commutes by construction with the total covariant derivative Dk, and it also

commutes (even when the tetrad metric is not constant) with the restricted covariant derivative D̂k, as
follows from

0 = Dkγlm = D̂kγlm −Kn
lkγnm −Kn

mkγln = D̂kγlm −Kmlk −Klmk = D̂kγlm , (17.30)

the last step of which is a consequence of the antisymmetry of the extrinsic curvature in its �rst two indices.
Therefore tensors involving the restricted covariant derivative can be contracted in the usual way.
In ADM, the extrinsic curvature is tensorial not only with respect to spatial tetrad transformations, but

also with respect to spatial coordinate transformations. In this case, the restricted covariant derivative D̂k

commutes not only with the tetrad metric, equation (17.30), but also with the vierbein emµ and its inverse
em

µ,

0 = Dke
m
µ = D̂ke

m
µ +Km

nke
n
µ −Kν

µke
m
ν = D̂ke

m
µ +Km

µk −Km
µk = D̂ke

m
µ . (17.31)

Therefore, provided that the extrinsic curvature is tensorial with respect to both coordinate and tetrad spatial
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transformations, tensors involving the restricted covariant derivative can be �ipped between coordinate and
tetrad indices in the usual way.
The tetrad-frame Riemann tensor Rklmn decomposes into a restricted part R̂klmn and a remainder that

depends on the generalized extrinsic curvature Kmnl and its restricted covariant derivatives. The derivation
of the decomposition of the Riemann tensor is most elegant in terms of the multivector Riemann tensor Rκλ

given by equation (15.25). The decomposition of the Riemann tensor into restricted and extrinsic curvature
parts is, analogously to the decomposition (15.49) of the Riemann tensor into torsion-free and contortion
parts,

Rκλ =
∂(Γ̂λ +Kλ)

∂xκ
− ∂(Γ̂κ +Kκ)

∂xλ
+ 1

2 [Γ̂κ +Kκ, Γ̂λ +Kλ]

= R̂κλ + D̂κKλ − D̂λKκ + 1
2 [Kκ,Kλ] , (17.32)

where Kκ ≡ 1
2Kmnκ γγ

m ∧γγn is the generalized extrinsic curvature vector of bivectors. The restricted Rie-
mann tensor R̂κλ is

R̂κλ =
∂Γ̂λ
∂xκ

− ∂Γ̂κ
∂xλ

+ 1
2 [Γ̂κ, Γ̂λ] . (17.33)

In components, the tetrad-frame Riemann tensor decomposes as

Rklmn = R̂klmn + D̂kKmnl − D̂lKmnk +Kp
mlKpnk −Kp

mkKpnl + (Kp
kl −K

p
lk)Kmnp . (17.34)

The restricted Riemann tensor R̂klmn is

R̂klmn = ∂kΓ̂mnl − ∂lΓ̂mnk + Γ̂pmlΓ̂pnk − Γ̂pmkΓ̂pnl + (Γpkl − Γplk)Γ̂mnp . (17.35)

Equation (17.35) looks like the usual tetrad-frame formula (11.61), with connections replaced by restricted
connections, except that the �nal term on the right hand side involves the di�erence Γpkl − Γplk of the full
tetrad-frame connection, not just the restricted connection. The part of the Riemann tensor (17.34) that
depends on the generalized extrinsic curvature is manifestly antisymmetric in kl and in mn, but it is not
necessarily symmetric under kl ↔ mn. Thus the restricted Riemann tensor R̂klmn is antisymmetric in kl

and in mn, but not necessarily symmetric under kl↔ mn.
Contracting the Riemann tensor (17.34) gives the Ricci tensor Rkm,

Rkm = R̂km − D̂kKm + D̂nK
n
mk −K

p
knK

n
mp +Kp

mkKp , (17.36)

with R̂km ≡ γlnR̂klmn the restricted Ricci tensor. Contracting the Ricci tensor (17.36) yields the Ricci
scalar R,

R = R̂− 2D̂mK
m −KpmnKnmp −KpKp , (17.37)

with R̂ ≡ γkmR̂km the restricted Ricci scalar.
A restricted covariant divergence D̂mA

m can be converted to a total covariant divergence DmA
m through

DmA
m = D̂mA

m +Km
pmA

p = D̂mA
m +KpA

p . (17.38)
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With the restricted covariant divergence converted to a total covariant divergence, the Ricci scalar (17.37) is

R = R̂− 2DmK
m −KpmnKnmp +KpKp . (17.39)

17.1.6 ADM Riemann and Ricci tensors

For ADM, the components of the Riemann curvature tensor Rklmn are, from equations (17.34) with the
generalized extrinsic curvature Kmnl replaced by the acceleration Ka ≡ Ka00 and the extrinsic curvature
Kab ≡ Ka0b,

Ra0c0 = D̂aKc − D̂0Kca +KaKc −Kb
aKcb , (17.40a)

Rabc0 = D̂aKcb − D̂bKca − (Kba −Kab)Kc (17.40b)

= Rc0ab = R̂c0ab +KbKac −KaKbc , (17.40c)

Rabcd = R̂abcd +KcaKdb −KcbKda . (17.40d)

Equations (17.40a), (17.40b), (17.40c), and (17.40d) are called respectively the Ricci, Codazzi-Mainardi,
BSSN, and Gauss equations. After equations of motion have been obtained, the extrinsic curvature Kab

will prove to be symmetric (given the ADM gauge condition e0
α = 0, and assuming vanishing torsion),

and consequently the �nal term on the right hand side of equation (17.40b) vanishes. At this point however
no equations of motion have yet been obtained: equations are obtained later, �17.2, from variation of the
action. If torsion vanishes, then the Riemann tensor Rklmn is symmetric in kl ↔ mn, Exercise 11.6. If
the tetrad connections are replaced by their usual torsion-free expressions in terms of derivatives of the
vierbein, then the symmetries of the Riemann tensor are satis�ed identically, so that the right hand sides
of the expressions (17.40b) and (17.40c) for Rabc0 and Rc0ab become identical, and one of them can be
discarded. In the ADM formalism, equation (17.40c) for Rc0ab is discarded as redundant. However, in the
BSSN formalism, �17.7, equation (17.40c) is retained as a distinct equation, and some of the equations
relating the tetrad connections to derivatives of the vierbein are discarded instead.
The restricted Riemann tensor R̂kla0 with one of the �nal two indices the time index 0 vanishes since Γ̂a0l

vanishes, equations (17.28),

R̂kla0 = ∂kΓ̂a0l − ∂lΓ̂a0k + Γ̂palΓ̂p0k − Γ̂pakΓ̂p0l + (Γpkl − Γplk)Γ̂a0p = 0 . (17.41)

The restricted Riemann tensor R̂klmn with one time 0 index does not satisfy the kl↔ mn symmetry of the
full Riemann tensor Rklmn. The restricted Riemann tensor R̂c0ab with one of the �rst two indices the time
index 0 and the last two indices spatial is

R̂c0ab = ∂cΓ̂ab0 − ∂0Γ̂abc + Γ̂da0Γ̂dbc − Γ̂dacΓ̂db0 + (Γpc0 − Γp0c)Γ̂abp . (17.42)

The restricted Riemann tensor R̂abcd with all spatial indices is

R̂abcd = ∂aΓ̂cdb − ∂bΓ̂cda + Γ̂ecbΓ̂eda − Γ̂ecaΓ̂edb + (Γ̂eab − Γ̂eba)Γ̂cde + (Kab −Kba)Γ̂cd0 . (17.43)

Again, after equations of motion have been obtained, the extrinsic curvatureKab will proved to be symmetric,
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equation (17.50), so the �nal term on the right hand side of equation (17.43) vanishes. Consequently the
spatial restricted Riemann tensor R̂abcd depends only on spatial components Γ̂abc of the restricted connections
and their spatial derivatives (not on the restricted connections Γ̂ab0 with one time index). For ADM, the
restricted spatial connections coincide with the full spatial connections, Γ̂abc = Γabc, so for ADM the spatial
restricted Riemann curvature equals the Riemann curvature tensor restricted to the 3-dimensional spatial
hypersurface of constant time. The spatial restricted Riemann tensor R̂abcd satis�es the usual ab ↔ cd

symmetry.
Contracting the Riemann tensor yields the Ricci tensor Rkm,

R00 = D̂mK
m −KbaKab +KaKa , (17.44a)

Ra0 = − D̂aK + D̂bKba −Kb(Kab −Kba) (17.44b)

= R0a = R̂0a −KbKab +KaK , (17.44c)

Rab = R̂ab − D̂aKb + D̂0Kba +KbaK −KaKb . (17.44d)

If torsion vanishes, then the Ricci tensor Rkm is symmetric. Again, if the tetrad connections are replaced
by their torsion-free expressions in terms of vierbein derivatives, then the symmetry of the Ricci tensor is
satis�ed identically, so that two expressions (17.44b) and (17.44c) are identical, and one of them can be
discarded as redundant. In the ADM formalism, equation (17.44c) is discarded. In the BSSN formalism
however, �17.7, equation (17.44c) is retained, and some of the equations relating the tetrad connections to
derivatives of the vierbein are discarded instead. Like the restricted Riemann tensor, the restricted Ricci
tensor R̂km with one time 0 index is not symmetric. While R̂a0 vanishes, R̂0a does not. The purely spatial
Ricci tensor R̂ab is on the other hand symmetric in ab. For ADM, the purely spatial Ricci tensor R̂ab is the
Ricci tensor restricted to the 3-dimensional spatial hypersurface of constant time.
Contracting the Ricci tensor yields the Ricci scalar R,

R = R̂− 2D̂mK
m +KbaKab +K2 − 2KaKa . (17.45)

For ADM, the restricted Ricci scalar R̂ is the Ricci scalar restricted to the 3-dimensional spatial hypersurface
of constant time.
Converting the restricted covariant divergence D̂mK

m to a total covariant derivative DmK
m using equa-

tion (17.38) brings the Ricci scalar to

R = R̂− 2DmK
m +KbaKab −K2 . (17.46)

At this point it is common to argue that the covariant divergence DmK
m has no e�ect on equations of

motion, so can be dropped from the Ricci scalar, yielding the so-called ADM Lagrangian

LADM =
1

16π

(
R̂+KbaKab −K2

)
. (17.47)

The ADM Lagrangian (17.47) is �ne as a Lagrangian, but it is not in Hamiltonian form. Rather, the ADM
Lagrangian (17.47) is in a form analogous to the quadratic Lagrangian (16.159). As discussed in �16.12.1,
the quadratic Lagrangian is valid provided that the tetrad connections satisfy their equations of motion (in
particle physics jargon, the tetrad connections are �on shell�).
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The original purpose of the ADM formalism was to bring the gravitational Lagrangian into (conventional)
Hamiltonian form. As has been seen, �16.7, the Hilbert Lagrangian is already in (super-)Hamiltonian form. In
dropping the covariant divergence DmK

m to arrive at the Lagrangian (17.47), one both implicitly assumes
that the equation of motion for Km is satis�ed, and loses the ability to derive that equation of motion
from the Lagrangian. One could attempt to recover the Hamiltonian form of the Lagrangian from the ADM
Lagrangian (17.47), which would involve re-assuming the equation of motion for Km, but such a procedure
(widely repeated in the physics literature) seems like shooting oneself in the foot. A sensible approach is to
stick with the Hilbert Lagrangian, which is already in (super-)Hamiltonian form. The (super-)Hamiltonian
approach has already identi�ed the gravitational coordinates and momenta for ADM, �17.1.3, and it also
supplies the equations of motion for ADM, �17.2.

17.2 ADM gravitational equations of motion

As shown in �17.1.3, the gravitational coordinates and momenta in the ADM formalism are the spatial
components eaβ of the vierbein, and the extrinsic curvatures Kaβ ≡ Γa0β , equation (17.21b) (or alternatively,
in place of Kaβ , the trace-corrected extrinsic curvatures πaβ de�ned by equations (17.26)).
Gravitational equations of motion in the ADM formalism follow from varying the Hilbert action. All

the equations obtained from varying the Hilbert action in super-Hamiltonian form continue to hold in the
ADM formalism, namely the 24 equations for the (torsion-free) Lorentz connections, and the 10 Einstein
equations (the Einstein tensor is symmetric if torsion vanishes). The di�erence is that only some of the
equations, namely those that come from varying the action with respect to the gravitational coordinates and
momenta eaβ and Kaβ , are interpreted as equations of motion that determine the time evolution of those
coordinates and momenta. The remaining equations are interpreted either as identities (in the case of the
Lorentz connections), or as constraints (in the case of the Einstein equations). A constraint equation is one
that must be satis�ed in the initial conditions, but is thereafter guaranteed to be satis�ed by conservation
laws, here conservation of energy-momentum, guaranteed by the contracted Bianchi identities.
Because the tetrad in this chapter is being allowed a general form, with not necessarily constant tetrad

metric, the connections are not necessarily Lorentz connections, and the relation between the connections
and derivatives of the vierbein and metric, equation (11.53), is more general than that derived from an action
principle in Chapter 16. Su�ce to say that the relation can be derived from an action principle, but that
will not be done here.

17.2.1 ADM connections

Start by considering the equations of motion for the tetrad-frame connections, determined by varying the
Hilbert action with respect to the connections. The connections are given by the usual expressions (11.53) in
terms of the vierbein derivatives dlmn de�ned by equation (11.32) (equations (11.53) allow for a non-constant
spatial tetrad metric γab, thus admitting the traditional ADM approach in which the spatial tetrad γγa are
set equal to the spatial coordinate tangent axes eα, equation (17.14)). The non-vanishing tetrad connections
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are, from the general formula (11.53) with vanishing torsion (note that d0an = 0 since e0
α = 0),

Γa00 = −Γ0a0 ≡ Ka = − d00a , (17.48a)

Γa0b = −Γ0ab ≡ Kab = 1
2 (∂0γab + dab0 + dba0 − da0b − db0a) , (17.48b)

Γab0 ≡ Γ̂ab0 = Kab − dab0 + da0b , (17.48c)

Γabc ≡ Γ̂abc = same as eq. (11.53) , (17.48d)

where the relevant vierbein derivatives dlmn are

d00a = − 1

α
∂aα , da0b = − 1

α
eaα ∂bβ

α , dab0 = γac eb
β ∂0e

c
β . (17.49)

Equation (17.48b) shows that the extrinsic curvature is symmetric,

Kab = Kba (17.50)

(and consequently so also is the momentum πab, equations (17.26)). The symmetry of the extrinsic curvature
is a consequence of the ADM gauge choice e0

α = 0 along with the assumption of vanishing torsion. The
connections (17.48a) and (17.48b) form, as remarked after equations (17.21), a spatial tetrad vector the ac-
celerationKa, and a spatial tetrad tensor the extrinsic curvatureKab, but the remaining connections (17.48c)
and (17.48d) are not spatial tetrad tensors. Note that the purely spatial tetrad connections Γabc, like the
spatial tetrad axes γγa, transform under temporal coordinate transformations despite the absence of tempo-
ral indices. If the spatial tetrad metric γab is taken to be constant, which is true if for example the spatial
tetrad axes γγa are taken to be orthonormal, then the tetrad connections Γab0 and Γabc, equations (17.48c)
and (17.48d), are antisymmetric in their �rst two indices. However, equations (17.48) are valid in general,
including in the traditional case where the spatial axes are taken equal to the spatial coordinate tangent
axes, equation (17.14), in which case Γab0 and Γabc are not antisymmetric in their �rst two indices.
In the ADM formalism, an equation of motion for the ADM spatial coordinate metric gαβ follows from

the vanishing of the restricted covariant time derivative of the spatial tetrad metric γab, equation (17.30),

D̂0γab = 0 . (17.51)

With the expressions (17.48c) for the connections Γ̂ab0, the covariant time derivative is

D̂0γab = ∂0γab − Γ̂ca0γcb − Γ̂cb0γca

= ∂0γab + dab0 + dba0 − da0b − db0a − 2Kab . (17.52)

The time derivatives in expression (17.52) are the directed time derivatives ∂0γab of the spatial tetrad
metric (the tetrad metric γab is not being assumed constant, so as to allow the traditional ADM approach,
equation (17.14)), and the directed time derivatives dcβ0 ≡ ∂0e

c
β of the spatial vierbein. These time derivatives

appear in the expression (17.52) only in the combination

∂0γab + dab0 + dba0 = ea
αeb

β∂0(γcd e
c
α e

d
β) = ea

αeb
β ∂0gαβ . (17.53)

Thus the equation of motion (17.51) e�ectively governs the time evolution of not all 9 components of the
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spatial verbein eaβ , but rather only the 6 components gαβ of the spatial coordinate metric, equation (17.9).
Recast in the coordinate frame, the equation of motion (17.51) is

∂gαβ
∂t

+ βγ
∂gαβ
∂xγ

+ gαγ
∂βγ

∂xβ
+ gβγ

∂βγ

∂xα
= 2αKαβ . (17.54)

Equation (17.54) may also be written

Lugαβ =
1

α

(
∂gαβ
∂t

+ L̂βgαβ
)

= 2Kαβ , (17.55)

where Lu denotes the Lie derivative (7.148) with respect to the 4-velocity uµ = {1/α, βγ/α}, equation (17.11),
and L̂β denotes the Lie derivative (7.148) with respect to the shift βγ , restricted to the hypersurface of
constant time (hence the restricted ˆ overscript),

L̂βgαβ = βγ
∂gαβ
∂xγ

+ gαγ
∂βγ

∂xβ
+ gβγ

∂βγ

∂xα
. (17.56)

As is usual with a Lie derivative, equation (7.149), the coordinate derivatives ∂/∂xα in equation (17.56) can be
replaced, if desired, by the restricted covariant derivatives D̂α. Since the restricted covariant derivative of the
spatial coordinate metric gαβ vanishes, the Lie derivative L̂βgαβ can be written (compare equation (7.151)),

L̂βgαβ = D̂ββα + D̂αββ . (17.57)

The spatial trace of equation (17.52) provides an equation of motion for the determinant γ ≡ |γab| of the
spatial tetrad metric, since γab ∂0γab = ∂0 ln γ. With, from equations (17.49),

da0a = − 1

α
eaα ∂aβ

α = − 1

α

∂βα

∂xα
, daa0 = ea

β ∂0e
a
β = ∂0 ln e , (17.58)

where e ≡ |eaα| is the determinant of the spatial vierbein, the spatial trace of equation (17.52) provides the
equation of motion

∂0 ln(γe2) +
2

α

∂βα

∂xα
= 2K . (17.59)

In the coordinate frame, the trace equation is (see equation (7.22) for the Lie derivative of a metric deter-
minant)

Lu ln g =
1

α

(
∂ ln g

∂t
+ βα

∂ ln g

∂xα
+ 2

∂βα

∂xα

)
= 2K , (17.60)

where g = |gαβ | = γe2 is the determinant of the coordinate-frame spatial metric.
The expression (17.48b) for the extrinsic curvatureKab has thus provided an equation of motion (17.55) for

the spatial ADM metric gαβ . Of the remaining connections (17.48), the acceleration Ka, equation (17.48a),
and the purely spatial connections Γabc, equation (17.48d), involve only spatial derivatives of the vierbein,
not time derivatives. These connections are needed in the ADM equations, but are treated as identities rather
than equations of motion. That is, the equation of motion (17.55) determines the time evolution of the spatial
vierbein eaβ , or rather of the spatial coordinate metric gαβ , which is the quadratic combination (17.9) of
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the spatial vierbein. With the spatial vierbein on a hypersurface of constant time determined, their spatial
derivatives on the hypersurface follow. These spatial derivatives of the vierbein determine the acceleration
Ka and purely spatial connections Γabc through equations (17.48a) and (17.48d).
The �nal set of connections is Γab0, equation (17.48c). These connections do depend on time derivatives,

and they do appear in the equations of motion (17.52) and (17.63), but they cease to appear explicitly when
the equations of motion are expressed as equations for the coordinate metric gαβ and the coordinate-frame
extrinsic curvature Kαβ , equations (17.55) and (17.68).

17.2.2 ADM Einstein equations

The Einstein equations follow from varying the Hilbert action with respect to the vierbein ekκ, equa-
tion (16.104). In the ADM formalism, only the spatial Einstein equations, which come from varying with
respect to the spatial vierbein eaα, are interpreted as equations of motion governing the time evolution of
the system. The remaining equations are interpreted as constraints, �17.2.3.
The spatial Einstein equations are

Gab = 8πTab , (17.61)

which are symmetric for vanishing torsion. Equivalently, with the trace R = −8πT transferred to the right
hand side,

Rab = 8π
(
Tab − 1

2γabT
)
. (17.62)

Substituting the spatial Ricci tensor from equation (17.44d) transforms the spatial Einstein equations (17.62)
into equations of motion for the extrinsic curvature Kab,

D̂0Kab = D̂aKb −KabK +KaKb − R̂ab + 8π
(
Tab − 1

2γabT
)
. (17.63)

The restricted covariant time derivative D̂0Kba on the left hand side of equation (17.63) is, with for-
mula (17.48c) for the connections Γ̂ab0,

D̂0Kab = ∂0Kab − Γ̂cb0Kca − Γ̂ca0Kcb

= ∂0Kab + dcb0K
c
a + dca0K

c
b − dc0bKc

a − dc0aKc
b − 2Kc

aKcb . (17.64)

The time derivatives in equation (17.64) are the directed time derivatives ∂0Kab of the extrinsic curvature,
and the directed time derivatives dcβ0 ≡ ∂0e

c
β of the spatial vierbein. These time derivatives appear in the

expression (17.64) only in a combination analogous to that in equation (17.53),

∂0Kab + dcb0K
c
a + dca0K

c
b = ea

αeb
β ∂0Kβα . (17.65)

Just as equation (17.53) picked out the spatial coordinate metric gαβ , so also equation (17.65) picks out the
coordinate-frame extrinsic curvature Kαβ as the fundamental object whose time evolution is being governed.
Recast in the coordinate frame using equation (17.65), equation (17.64) is

D̂0Kαβ = LuKαβ − 2Kγ
αKγβ =

1

α

(
∂Kαβ

∂t
+ L̂βKαβ

)
− 2Kγ

αKγβ . (17.66)
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where again Lu denotes the Lie derivative (7.148) with respect to the 4-velocity uµ, equation (17.11), and
L̂β denotes the Lie derivative (7.148) with respect to the shift βγ , restricted to the hypersurface of constant
time,

L̂βKαβ = βγ
∂Kαβ

∂xγ
+Kγα

∂βγ

∂xβ
+Kγβ

∂βγ

∂xα
. (17.67)

As usual with a Lie derivative, equation (7.148), the coordinate derivatives ∂/∂xα in equation (17.67) can
be replaced, if desired, by the restricted covariant derivatives D̂α. Substituting equation (17.66) into equa-
tion (17.63) brings the equation of motion for the coordinate-frame extrinsic curvature to

LuKαβ =
1

α

(
∂Kαβ

∂t
+ L̂βKαβ

)
= D̂αKβ + 2Kγ

αKγβ −KαβK +KαKβ − R̂αβ + 8π
(
Tαβ − 1

2gαβT
)
.

(17.68)
All the terms in equation (17.68) are manifestly symmetric in αβ except for D̂αKβ , but this too is symmetric,
for vanishing torsion, as follows from

D̂αKβ =
∂2 lnα

∂xα∂xβ
− Γ̂γβαKγ = D̂βKα , (17.69)

the coordinate connection Γ̂γβα being symmetric in its last two indices, for vanishing torsion. Equations (17.55)
and (17.68) constitute the two fundamental sets of equations of motion for the coordinates gαβ and momenta
Kαβ in the ADM formalism.
The spatial trace of equation (17.63) (which is straightforward to take because the tetrad metric γab

commutes with the restricted covariant derivative D̂k) is

∂0K = D̂aK
a −K2 +KaKa − R̂+ 12π(ρ− p) , (17.70)

where the spatial trace Tαα = 3p de�nes the proper monopole pressure p, and the full spacetime trace is
T = − ρ+ 3p, with ρ the proper energy density. In the coordinate frame, equation (17.70) becomes

LuK =
1

α

(
∂K

∂t
+ βα

∂K

∂xα

)
= D̂αK

α −K2 +KαKα − R̂+ 12π(ρ− p) . (17.71)

17.2.3 ADM constraint equations

Unlike the spatial vierbein eaβ , the vierbein e0µ with a tetrad time index 0, whose components de�ne
the lapse and shift, equation (17.11), have vanishing canonically conjugate momenta, as shown in �17.1.3.
Consequently, in the ADM formalism, the lapse and shift are not considered to be part of the system of
coordinates and momenta that encode the physical gravitational degrees of freedom. Rather, the lapse α and
shift βα are interpreted as gauge variables that can be chosen arbitrarily. The 4 gauge degrees of freedom in
the lapse and shift embody the 4 gauge degrees of freedom of coordinate transformations.
Nevertheless, varying the Hilbert action with respect to e0µ does yield equations of motion, which are the

4 Einstein equations with one tetrad time index 0,

Gm0 = 8πTm0 . (17.72)
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Combining equations (17.44a) and (17.45) yields an expression for the time-time Einstein component G00 ≡
R00 − 1

2γ00R = R00 + 1
2R, while equation (17.44b) gives the space-time Einstein component Ga0 ≡ Ra0,

G00 = 1
2

(
R̂−KabKba +K2

)
= 1

2

(
R̂− πabKba

)
, (17.73a)

Ga0 = D̂bKba − D̂aK = D̂bπba . (17.73b)

Whereas the spatial Einstein equations yielded time evolution equations (17.63) or (17.68) for the momenta,
the expressions (17.73) for the time-time and space-time Einstein components involve only spatial derivatives
of the coordinates and momenta, no time derivatives. Since the coordinates and momenta are determined
fully by their equations of motion, equations (17.52) and (17.63), or (17.55) and (17.68), the Einstein equa-
tions (17.72) with at least one time index cannot be independent equations. However, the equations (17.72)
cannot be discarded completely. Rather, the Einstein equations (17.72) must be arranged to be satis�ed
in the initial conditions (on the initial hypersurface of constant time t), whereafter the Bianchi identities
ensure that the constraints are satis�ed automatically, as you will con�rm in Exercise 17.2. This kind of
equation, which must be satis�ed on the initial hypersurface but is thereafter guaranteed by conservation
laws, is called a constraint equation. In the ADM formalism, the time-time Einstein equation is called the
energy constraint or Hamiltonian constraint, while the space-time Einstein equations are called the
momentum constraints:

1
2

(
R̂−KabKba +K2

)
= 8πT00 Hamiltonian constraint , (17.74a)

D̂bKba − D̂aK = 8πTa0 momentum constraints . (17.74b)

Exercise 17.2. Energy and momentum constraints. Con�rm the argument of this section. Suppose
that the spatial Einstein equations are true, Gab = 8πT ab. Show that if the time-time and space-time
Einstein equations Gm0 = 8πTm0 are initially true, then conservation of energy-momentum implies that
these equations must necessarily remain true at all times. [Hint: Conservation of energy-momentum requires
that DnT

mn = 0, and the Bianchi identities require that the Einstein tensor satis�es DnG
mn = 0, so

Dn(Gmn − 8πTmn) = 0 . (17.75)

By expanding out these equations in full, or otherwise, show that the solution satisfying Gab − 8πT ab = 0

at all times, and Gm0 − 8πTm0 = 0 initially, is Gm0 − 8πTm0 = 0 at all times.]

17.2.4 ADM Raychaudhuri equation

If the Hamiltonian constraint (17.74a) is used to eliminate the restricted Ricci scalar R̂, then the trace
equation (17.71) becomes

LuK =
1

α

(
∂K

∂t
+ βα

∂K

∂xα

)
= D̂αK

α −KαβKβα +KαKα − 4π(ρ+ 3p) . (17.76)
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Equation (17.76) is the Raychaudhuri equation (18.22a) with vanishing vorticity and non-vanishing acceler-
ation Kα.

17.3 Conformally scaled ADM

A common modi�cation of the ADM formalism is to separate out a spatial conformal factor a, which may
be an arbitrary function of coordinates.
It is neater to separate the conformal factor from the vierbein than from the tetrad metric, so that the

tetrad metric γab can still be allowed to be constant, as in the case of an orthonormal tetrad. If the spatial
vierbein eaα is factored as a product of the conformal factor a and a conformal vierbein ẽaα, then the vierbein
and inverse vierbein become

eaα = a ẽaα , ea
α = ẽa

α/a . (17.77)

The conformal vierbein and inverse conformal vierbein are inverse to each other, ẽaαẽbα = δab . The lapse α
and shift βα are unchanged by the conformal scaling. The spatial conformal coordinate metric de�ned by
g̃αβ ≡ γab ẽaα ẽbβ is related to the spatial coordinate metric gαβ by

gαβ = a2 g̃αβ . (17.78)

Section 17.1.5 discussed the splitting of tetrad-frame connections into a generalized extrinsic curvature
Klmn that behaves like a tensor under some restricted group of transformations, and a restricted connection
Γ̂lmn that does not transform like a tensor. In the case of ADM, the restricted group of transformations was
spatial transformations of the tetrad γγm (that is, transformations that leave the time axis γγ0 unchanged).
The conformal factor a is a scalar with respect to the subgroup of spatial tetrad transformations that leave
the conformal factor a unchanged. Thus all of the discussion in �17.1.5 carries through with the restricted
group of transformations taken to be spatial transformations that preserve the conformal factor.
The conformal decomposition of the spatial vierbein implies a corresponding conformal decomposition of

the vierbein derivatives dlmn de�ned by equation (11.32). The vierbein derivatives dlmn with either of the
�rst two indices lm the time index 0 are una�ected, but the vierbein derivatives dabn with �rst two indices
ab spatial decompose as

dabn ≡ γac ebα ∂necα = γac eb
α ecα∂n ln a+ γac ẽb

α ∂ne
c
α = γab ∂n ln a+ d̃abn , (17.79)

which is a sum of a part γab ∂n ln a that depends on derivatives of the conformal factor a, and a conformal
part d̃abn that depends on derivatives of the conformal vierbein ẽcα. The part γab ∂n ln a is a spatial tensor
under the restricted group of spatial transformations that leave the conformal factor a unchanged. It then
follows that the spatial tetrad-frame connections Γabc split into a restricted part Γ̂abc and a tensorial part
Kabc,

Γabc = Γ̂abc +Kabc , (17.80)
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where Kabc is the spatial tensor

Kabc = γac ∂b ln a− γbc ∂a ln a . (17.81)

The accelerationKa ≡ Ka00, extrinsic curvatureKab ≡ Ka0b, and restricted connections Γ̂ab0 with �nal index
the time index 0 are unchanged by the conformal decomposition. Thus the generalized extrinsic curvature
Klmn now consists of the acceleration Ka00, the extrinsic curvature Ka0b, and the derivatives Kabc of the con-
formal factor de�ned by equation (17.81). The generalized extrinsic curvature Klmn remains antisymmetric
in its �rst two indices,

Klmn = −Kmln . (17.82)

The unique non-vanishing contraction Km of the generalized extrinsic curvature is (this repeats equa-
tion (17.23))

Km ≡ Kn
mn = {Kn

0n,K
n
an} = {K0,Ka} , (17.83)

whose time part remains equal to the trace K of the extrinsic curvature Kab, but whose spatial part Ka is
modi�ed to equal the sum of the acceleration Ka00 and a derivative of the conformal factor,

Ka = Ka00 + 2 ∂a ln a = ∂a ln(αa2) . (17.84)

Unlike in ADM, Ka is not the same as the acceleration Ka00.
The restricted tetrad-frame derivative D̂k with restricted tetrad-frame connections Γ̂lmn is a covariant

derivative with respect to the restricted group of spatial transformations that preserve the conformal fac-
tor a. The restricted covariant derivative D̂k di�ers from ADM only in that the restricted connections now
exclude the part depending on derivatives of the conformal factor, which have been absorbed into the spatial
components Kabc of the generalized extrinsic curvature. The vierbein emµ and the tetrad metric γlm continue
to commute with the restricted covariant derivative Dk, equations (17.30) and (17.31). All of the discussion
and equations in �17.1.5 carry through unchanged.
The various expressions for the Riemann and Ricci tensors given in �17.1.6 are modi�ed to include addi-

tional terms involving the spatial components Kabc of the generalized extrinsic curvature. In particular, the
expressions for the Ricci tensor Rkm are modi�ed to, from the general equation (17.36),

R00 = − D̂0K + D̂aK
a
00 −KbaKab +Ka

00Ka , (17.85a)

Ra0 = − D̂aK + D̂bKba −KabK
b
00 +KbaK

b −KcabK
bc , (17.85b)

= R0a = R̂0a − D̂0K
b
ab −Kb

00Kab +Ka00K −KbcKcab , (17.85c)

Rab = R̂ab − D̂aKb + D̂0Kba + D̂cKcba +KbaK −Ka00Kb00 +KcbaK
c −Kc

adK
d
bc . (17.85d)

Like the time-space restricted Ricci tensor R̂0a, the spatial restricted Ricci tensor R̂ab is not symmetric in
ab.
The equations of motion (17.51) or (17.55) for the spatial metric gαβ remain unchanged by the conformal

decomposition. The equation of motion (17.63) for the extrinsic curvature Kab is modi�ed in accordance
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with the modi�ed expression (17.85d) for the spatial Ricci tensor Rab to

D̂0Kab = D̂aKb − D̂cKcba −KabK +Ka00Kb00 −KcbaK
c +Kc

adK
d
bc − R̂ab + 8π

(
Tab − 1

2γabT
)
. (17.86)

Equation (17.86) is essentially the same as the earlier equation of motion (17.63), but it redistributes terms
involving derivatives of the conformal factor a out of the spatial restricted Ricci tensor R̂ab into terms
involving Ka and Kabc. The coordinate-frame version of the equation of motion (17.68) for the extrinsic
curvature Kαβ is modi�ed similarly to

LuKαβ =
1

α

(
∂Kαβ

∂t
+ L̂βKαβ

)
(17.87)

= D̂αKβ − D̂γKγβα + 2Kγ
αKγβ −KαβK +Kα00Kβ00 −KγβαK

γ +Kγ
αδK

δ
βγ − R̂αβ + 8π

(
Tαβ − 1

2gαβT
)
.

Again, this equation of motion is essentially the same as the earlier equation of motion (17.68), with a
redistribution of terms out of R̂αβ into generalized extrinsic curvatures.

17.4 Bianchi spacetimes

A 3-dimensional Lie group is called a Bianchi space (Bianchi, 1898). A Lie group is a group of symmetry
transformations that is also a di�erentiable manifold. Lie groups are generated by in�nitesimal transforma-
tions called the generators of the group. A 3-dimensional Lie group has 3 linearly independent generators.
The properties of a Lie group are determined by the commutators of its generators, or equivalently by its
structure coe�cients ccab, equation (17.88), which for a Lie group are taken to be constant. A Bianchi space
is consequently homogeneous. The assumption that a space is a Lie group is stronger than the assumption
that the space is homogeneous, which requires merely that the tetrad-frame Riemann tensor be spatially
constant. However, most homogeneous 3-dimensional spaces are Lie groups, hence Bianchi spaces, the no-
table exception being the closed cylindrical geometry, equation (17.132). Bianchi spaces are homogeneous
but not necessarily isotropic.
Bianchi spacetimes, also known as Bianchi universes, are Bianchi spaces that evolve in time while preserving

the posited Lie group structure. Bianchi spacetimes o�er a framework for addressing possible large scale
departures from isotropy in cosmology, and provide the prototype for the Belinskii-Khalatnikov-Lifshitz
(BKL) (Belinskii, Khalatnikov, and Lifshitz, 1982; Belinski, 2014) model of anisotropic gravitational collapse,
�17.6. Bianchi spacetimes present a �ne application of both the ADM formalism and the tetrad formalism,
in a situation where the tetrad is neither orthonormal, nor aligned with the coordinates, nor is the tetrad
metric constant (in time).

17.4.1 Bianchi structure coe�cients

The assumption that a space is homogeneous requires that the space has a complete set of spacelike Killing
vectors, thus 3 linearly independent spacelike Killing vectors in 3-dimensional space. The spatial components
γγa of the tetrad can be chosen to coincide with the 3 Killing vectors at each point. Equivalently, the 3 Killing
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vectors can be identi�ed with the directed derivatives ∂a along the 3 spatial tetrad axes (see �7.32). The
commutators of the directed derivatives de�ne the structure coe�cients ccab,

[∂a, ∂b] = ccab∂c , (17.88)

which are necessarily antisymmetric in their last two indices ab. Homogeneity does not require that the
structure coe�cients be spatially constant; rather, homogeneity requires that the tetrad-frame Riemann
tensor be spatially constant. However, Bianchi spaces are by assumption Lie groups, for which the structure
coe�cients are spatially constant. For Bianchi spaces, the Killing vectors ∂a are the generators of the Lie
group, whose properties are determined by the structure coe�cients ccab. The vector space of real linear
combinations of the generators ∂a de�nes a Lie algebra, with multiplication de�ned by equation (17.88).
The structure coe�cients must be such that Jacobi identity [∂[a, [∂b, ∂c]]] = 0 is satis�ed. If the structure

coe�cients are spatially constant, then the Jacobi identity requires

ced[ac
d
bc] = 0 . (17.89)

17.4.2 Bianchi line-element

A Bianchi spacetime is a Bianchi space that evolves in time while preserving the Lie group spatial structure.
The spatial Bianchi line-element can be constructed out of 1-forms eaα dxα which, being aligned with the
Killing vectors γγa, are by construction independent of the choice of spatial coordinates xα. The time coordi-
nate t is chosen so that spatial surfaces of constant time are homogeneous. To preserve spatial homogeneity,
the tetrad metric γab ≡ γγa · γγb must be independent of the spatial coordinates, but it may depend on time
t. As usual in the ADM formalism, the tetrad time axis γγ0 is chosen to be orthogonal to the spatial tetrad
axes γγa, which lie in the surfaces of constant time. The line-element can thus be taken to be

ds2 = − dt2 + gαβ dx
αdxβ = − dt2 + γab(t) e

a
αe
b
β dx

αdxβ , (17.90)

which is in ADM form with unit lapse and zero shift. The vierbein and its inverse are

emµ =

(
1 0

0 eaα

)
, em

µ =

(
1 0

0 ea
α

)
. (17.91)

The tetrad time derivative coincides with the coordinate time derivative, ∂0 = ∂/∂t. The condition that
the homogeneous spatial structure be preserved in time means that the Killing vectors do not depend on
time, [∂0, ∂a] = 0, so the vierbein, and the inverse vierbein, are independent of time. However, despite spatial
homogeneity, the spatial vierbein coe�cients eaα may (and generically do) depend on the spatial coordinates,
as they do for example in FLRW spacetimes. Likewise homogeneity allows that the structure coe�cients ccab
de�ned by the commutators of the directed derivatives, equation (17.88), may be functions of the spatial
coordinates. As emphasized above, Bianchi spaces are by assumption those for which the structure coe�cients
are spatially constant, but this is not required by homogeneity. Whether or not the structure coe�cients are
spatially constant, they satisfy ccab ≡ 2dc[ab], where d

c
ab are the spatial components of the vierbein derivatives,

equation (11.32).
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Table 17.1: Classi�cation of Bianchi spaces

Eigenvalues Type
n1 n2 n3 k = 0 k 6= 0

0 0 0 I V
0 0 + II IV
0 − + VI0 VI
0 + + VII0 VII
− + + VIII
+ + + IX

17.4.3 Classi�cation of Bianchi spaces

Bianchi spaces are classi�ed according to the invariant properties of their constant structure coe�cients ccab.
Choose a point of the spacetime. The structure coe�cients at that point can be written in terms of a 3× 3

matrix ndc, which can be decomposed into symmetric n(dc) and antisymmetric n[dc] parts,

ccab = εabdn
dc = εabd(n

(dc) + n[dc]) . (17.92)

By an orthogonal rotation of axes the symmetric matrix n(dc) can be brought to diagonal form with eigen-
values nc, while the antisymmetric part can be written in terms of a vector ke,

ccab = εabd(δ
dcnc − εdceke) (no sum over c) . (17.93)

The Jacobi identity (17.89) implies that 0 = εabccedac
d
bc = 2εdafn

fenad = 4nfekf , which equals 4neke (no
sum over e) in each direction e, thus

nfekf = neke = 0 (each direction e, no sum over e) . (17.94)

Thus in each direction, either ne or ke equals zero. If the vector ke is non-vanishing, then without loss of
generality it can be chosen to lie along the 1-direction, ke = {k, 0, 0}. The real number k can be non-zero
only if n1 = 0. The commutators (17.88) of the directed derivatives ∂a then reduce to (with at least one of
n1 and k zero)

[∂3, ∂2] = n1∂1 , [∂1, ∂3] = n2∂2 − k∂3 , [∂2, ∂1] = n3∂3 + k∂2 . (17.95)

Under a rescaling of axes ∂c ∝ 1/ac, the eigenvalues scale as n1 ∝ a1/(a2a3) and cyclically for n2 and n3.
Thus by a rescaling of axes, each of the non-zero eigenvalues nc can be scaled to any other value of the same
sign. Flipping any axis changes the signs of all the nc, so the number of positive eigenvalues can always be
chosen to be greater than or equal to the number of negative eigenvalues. Finally, the axes can be reordered
arbitrarily. Thus the invariant properties of the eigenvalues nc are the numbers of negative, zero, and positive
eigenvalues. If the parameter k is non-zero, and if n2 and n3 are non-zero (Bianchi Types VI and VII), then
k cannot be rescaled independently, since k ∝ 1/a1 ∝ |n2n3|1/2 is �xed by the scaling of n2 and n3. If on the



498 Conventional Hamiltonian (3+1) approach

other hand either of n2 and n3 are non-zero (Bianchi Types V and IV), then k can be rescaled independently.
The sign of k changes under a �ip of the 1-axis, so k can be taken to be positive.
Table 17.1 lists the distinct possibilities for the 3 eigenvalues ne, and gives the corresponding traditional

Bianchi type. Missing from the Table is Type III, which is a special case of Type VI with k = 1, if n2 and
n3 are scaled to ±1. Type III is distinguished by the fact that all three eigenvalues of the matrix ndc (the
full matrix, including both symmetric and antisymmetric parts) degenerate to zero.

17.4.4 Bianchi connections and curvatures

The formulae in this section are valid for homogeneous spacetimes regardless of whether the structure
constants ccab are spatially constant.
The non-vanishing tetrad-frame connections are, from equation (11.53),

Γab0 = Γa0b = −Γ0ab = 1
2 γ̇ab , Γabc = 1

2 (ccab + cbac − cabc) , (17.96)

where the overdot represents the time derivative, γ̇ab ≡ dγab/dt (an ordinary derivative because γab varies
only in time, not space), and ccab ≡ γcdc

d
ab. The connections with one time 0 index are symmetric in their

spatial indices ab, while the purely spatial connections Γabc are antisymmetric in their �rst two indices ab. The
tetrad frame is locally inertial (freely falling and non-rotating), as follows from the fact that the acceleration
and precession both vanish, Γa00 = Γ[ab]0 = 0. Altogether there are 6 + 9 = 15 distinct non-vanishing
connections. If the structure coe�cients ccab are spatially constant, then so are the spatial connections Γabc,
but more generally the spatial connections can vary in space. For example, the spatial connections are
spatially variable in all of the variants of the FLRW line-element given in Chapter 10 (although FLRW
spacetimes can be realised as Bianchi spacetimes with constant structure coe�cients � see �17.5). The
spatial connections Γabc also vary in time because, whereas ccab with one index raised is constant in time, the
coe�cients ccab ≡ γcdc

d
ab with all indices lowered depend on time through the time-dependent metric γcd.

Explicitly,

Γabc = 1
2

(
γcdc

d
ab + γbdc

d
ac − γadcdbc

)
. (17.97)

The unique non-vanishing contraction of the spatial connections Γabc is

Γaba = caab = εabcn
ca = −2kb , (17.98)

which is constant in time.
The extrinsic curvature Kab is by de�nition

Kab ≡ Γa0b = 1
2 γ̇ab , (17.99)

with trace

K ≡ Ka
a = 1

2γ
abγ̇ab =

d ln
√
γ

dt
, (17.100)

where γ ≡ |γab| is the determinant of the spatial tetrad metric. The last step of equations (17.100) is
an application of equation (2.77). The proper spatial volume element is d3x =

√
γ d3x123, so the trace K
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measures the logarithmic rate of change of a comoving volume element. Positive K means that the comoving
volume element is expanding, while negative K means that the comoving volume element is contracting.
The tetrad-frame Riemann curvature tensor Rklmn, which homogeneity requires to be spatially constant

regardless of whether the structure coe�cients are spatially constant, is, from equations (17.40),

Ra0b0 = −K̇ab +Kc
aKbc , (17.101a)

Rabc0 = ΓdcbKda − ΓdcaKdb + (Γdab − Γdba)Kcd , (17.101b)

Rabcd = R̂abcd −KcbKda +KcaKdb , (17.101c)

where R̂abcd is the restricted Riemann tensor,

R̂abcd = ∂aΓcdb − ∂bΓcda + ΓecbΓeda − ΓecaΓedb + (Γeab − Γeba)Γcde . (17.102)

If the structure coe�cients are spatially constant, then the two derivative terms on the right hand side
of equation (17.102) can be dropped. For spatially constant structure coe�cients, equations (17.101) and
(17.102) along with equations (17.96) give the Riemann tensor in terms of the structure coe�cients ccab
and the tetrad metric γab, without the need for an explicit form for the vierbein eaα. If the structure
coe�cients were derived from an explicit vierbein, then the usual symmetries of the Riemann tensor (with
vanishing torsion) would be guaranteed. But the symmetries are ensured in any case, since for constant
structure coe�cients the Jacobi identity (17.94) implies that the restricted Riemann tensor satis�es the
cyclic symmetry εbcdR̂abcd = 4γabn

bckc = 0, which in turn ensures that the restricted Riemann tensor R̂abcd
is symmetric in ab↔ cd, Exercise 11.6.
Contracting the Riemann tensor yields the Ricci tensor Rkm,

R00 = − K̇ −KabKab , (17.103a)

Ra0 = ΓbcbK
c
a − ΓcabK

b
c , (17.103b)

Rab = R̂ab + K̇ab − 2Kc
aKbc +KabK , (17.103c)

where R̂ab is the restricted Ricci tensor,

R̂ab = −∂aΓcbc + ∂cΓ
c
ba + ΓebaΓded − ΓeadΓ

d
be . (17.104)

Again, if the structure coe�cients are spatially constant, then the two derivative terms on the right hand
side of equation (17.104) can be dropped. And again, for spatially constant structure coe�cients, the Jacobi
identity (17.94) ensures that the restricted Ricci tensor is symmetric, R̂[ab] = −2εabdn

dckc = 0. Contracting
the Ricci tensor yields the Ricci scalar R,

R = R̂+ 2K̇ +KabKab +K2 , (17.105)

where R̂ is the restricted Ricci scalar.
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17.4.5 Gravitational equations of motion for Bianchi spacetimes

The assumption of spatial homogeneity implies that the energy-momentum tensor of a Bianchi spacetime
can vary in time but must be spatially constant. The components of the energy-momentum tensor Tmn are
the energy density ρ(t), the energy �ux fa(t), and the pressure pab(t),

T00 = ρ , Ta0 = −fa , Tab = pab . (17.106)

The trace of the energy-momentum tensor is T = −ρ + 3p where p ≡ 1
3p
a
a. In the special case of a perfect

�uid at rest in the tetrad frame (which is not being assumed here), the energy �ux fa would vanish, and
the pressure tensor would be proportional to the spatial metric tensor, pab = pγab. The ADM equations of
motion for a Bianchi spacetime are, equations (17.52) and (17.63),

dγab
dt

= 2Kab , (17.107a)

dKab

dt
− 2Kc

aKbc +KabK + R̂ab = 4π [2pab + γab(ρ− 3p)] . (17.107b)

The Hamiltonian constraint and the momentum constraints are

1
2 (−KabKab +K2 + R̂) = 8πρ , (17.108a)

ΓbcbK
c
a − ΓcabK

b
c = −8πfa . (17.108b)

Equations (17.107) combine to yield a second order ordinary di�erential equation for the spatial tetrad metric
γab(t). The spatial tetrad metric can be thought of as an ellipsoid, described by the lengths of its 3 axes,
and 3 rotation angles. The general solution to equations (17.107) is a tetrad ellipsoid that evolves in both
size and rotation. Equation (17.103a) gives an equation for the evolution of the expansion rate K of the
comoving volume element,

K̇ = −KabKab − 4π(ρ+ 3p) , (17.109)

which is the same as the trace of the equation of motion (17.107b) minus twice the Hamiltonian con-
straint (17.108a). Equation (17.109) is the Raychaudhuri equation (17.76) in a Bianchi spacetime. Since the
spatial metric γab is positive de�nite (all positive eigenvalues), KabKab is positive.

Exercise 17.3. Geodesics in Bianchi spacetimes. Solve for the geodesics of particles in a Bianchi
spacetime.
Solution. The e�ective Lagrangian of a particle can be taken to be

L = 1
2γmnp

mpn , (17.110)

where pm ≡ emµ dx
µ/dλ is the tetrad-frame 4-momentum of the particle (not to be confused with pressure

p). There are 3 integrals of motion pa associated with the 3 Killing vectors γγa, plus 1 integral of motion
associated with conservation of rest mass m,

pa = constant (a = 1, 2, 3) , pnpn = −m2 . (17.111)
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The rest mass equation implies that the time component of the tetrad-frame 4-momentum is

p0 =
√
γabpapb +m2 . (17.112)

The time component of the momentum may equivalently be written

p0 =
√
gαβpαpβ +m2 , (17.113)

where pα ≡ eaαpa. The coordinate 4-momentum is

dxµ

dλ
≡ pµ = {pt, pα} = {p0, gαβpβ} = {p0, γabea

αpb} . (17.114)

17.5 Friedmann-Lemaître-Robertson-Walker spacetimes

Friedmann-Lemaître-Robertson-Walker spacetimes are isotropic in addition to being homogeneous. FLRW
spacetimes form a subclass of Bianchi spacetimes for which the 3 scale factors aa are all equal. Applying
the vierbein from Table 17.2 with all three scale factors equal reveals that Type IX includes a strictly
closed FLRW universe, while Types V and VII include an open FLRW universe. The special case k = 0,
corresponding to Types I and VII0, yields a �at FLRW universe.
Bianchi spaces have spatially constant structure coe�cients by assumption, but none of the various versions

of the FLRW line-element given in Chapter 10 have constant structure coe�cients. The non-constancy of the
structure coe�cients poses no obstacle to casting the Friedmann equations into ADM form. For example,
the isotropic (Poincaré) form (10.26) of the FLRW line-element is

ds2 = − dt2 +
4a2

[1 + κ(x2 + y2 + z2)]
2 (dx2 + dy2 + dz2) , (17.115)

which is in ADM form with unit lapse and zero shift. The line-element (17.115) takes ADM form (17.90)
with spatial tetrad metric

γab = a2δab , (17.116)

and spatial vierbein

eaα =
2δαa

1 + κ(x2 + y2 + z2)
. (17.117)

The structure coe�cients, equation (17.93), have zero symmetric part, and non-constant antisymmetric part
given by

ke = κxe . (17.118)

The extrinsic curvature Kab is

Kab = aȧ δab , (17.119)
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and its trace K is 3 times the Hubble parameter,

K =
3ȧ

a
. (17.120)

The restricted Ricci tensor R̂ab is

R̂ab = 2κ δab , (17.121)

and the restricted Ricci scalar R̂ is

R̂ ≡ 6κ

a2
. (17.122)

The Hamiltonian constraint (17.131) is
3

a2

(
ȧ2 + κ

)
= 8πρ , (17.123)

which reproduces the �rst of the Friedmann equations (10.30). The equations of motion reduce to

ä

a
+ 2

ȧ2

a2
+ 2

κ

a2
= 4π(ρ− p) . (17.124)

With a factor of the Hamiltonian constraint (17.123) subtracted, the equation of motion (17.124) becomes

ä

a
= −4π

3
(ρ+ 3p) , (17.125)

which reproduces the second of the Friedmann equations (10.30). Equation (17.125) is the Raychaudhuri
equation (17.76) for an FLRW spacetime.

17.6 BKL oscillatory collapse

An application of Bianchi spacetimes that is of particular relevance to black holes is the collapse of a
Type VIII or IX Bianchi spacetime to a singularity, which shows a complicated oscillatory behaviour called
Belinskii-Khalatnikov-Lifshitz (BKL) oscillations (Belinskii, Khalatnikov, and Lifshitz, 1970; Belinskii and
Khalatnikov, 1971; Belinskii, Khalatnikov, and Lifshitz, 1972; Belinskii, Khalatnikov, and Lifshitz, 1982;
Belinski, 2014). BKL oscillations are also called mixmaster oscillations. The prototypical BKL model is
a Bianchi spacetime, which is spatially homogeneous, but Belinskii, Khalatnikov, and Lifshitz (1982) argue
that oscillatory behaviour is generic for collapse to a singularity in general inhomogeneous spacetimes. See
Berger (2002) and Belinski (2014) for reviews.
In BKL collapse, the comoving volume element decreases monotonically to zero in a �nite proper time,

but one spatial axis always expands while the other two collapse. When one of the collapsing axes becomes
su�ciently small, it �bounces� and starts expanding, while the previously expanding axis turns around and
starts collapsing. Although the behaviour is deterministic, the sensitivity to initial conditions makes it look
chaotic. Bounces occur irregularly in logarithmic time, so that there is an in�nite number of bounces during
the �nite proper time that it takes to reach the singularity. Of course, this ignores quantum gravity, which
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presumably does something once either the density or the curvature reaches the Planck scale. Between
BKL bounces, the three spatial axes expand or contract approximately as power laws aa ∝∼ tqa in time t
with di�erent exponents qa, following a behaviour discovered by Kasner (1921), Exercise 17.4. BKL call the
phases between bounces Kasner epochs.
The simplest BKL model is where the axes of the tetrad ellipsoid γab(t) of the Bianchi spacetime change

in size, but they do not rotate. This is the model pursued in this section, and that you will explore in
Exercise 17.7. Belinskii, Khalatnikov, and Lifshitz (1982) show that when rotation is included, each BKL
bounce changes not only the expansion or contraction of each axis, but also changes its orientation. The
behaviour between bounces remains Kasner.
The equations of motion (17.107) for a Bianchi spacetime show that non-rotating solutions for the tetrad

metric γab exist if the restricted Ricci tensor R̂ab and the pressure tensor pab are diagonal in the frame where
the tetrad metric is diagonal. For such solutions, the extrinsic curvature Kab is diagonal in the frame where
the tetrad metric is diagonal, and the momentum constraints (17.108b) then imply that the energy �ux fa
vanishes. All Bianchi Types except IV include solutions for which the restricted Ricci tensor is diagonal.
The tetrad metric γab in the non-rotating diagonal frame is conveniently written in terms of scale factors

aa along each of the three diagonal directions,

γab(t) = a2
a δab . (17.126)

The corresponding diagonal extrinsic curvature Kab is then, from equation (17.107a),

Kab = aaȧa δab . (17.127)

The pressure is diagonal by assumption, with pressure pa in the a'th direction,

pab = pa δab . (17.128)

The equation of motion (17.107b) for the extrinsic curvature Kab involves the restricted Ricci tensor R̂ab.
A feature of Bianchi spacetimes (with spatially constant structure coe�cients) is that the restricted Ricci
tensor R̂ab, equation (17.104), is given in terms of the structure coe�cients ccab and the tetrad metric γab
without the need for an explicit expression for the vierbein. In most (Type VI with k 6= 0 is an exception)
of the solutions for which R̂ab is diagonal in the frame where the metric is diagonal, including the BKL
solutions, the symmetric part n(cd) of the structure coe�cients is diagonal in the same frame. In this case,
the components of the restricted Ricci tensor R̂ab (17.104) are, in terms of the scale factors aa and the
parameters nc and ke of the structure coe�cients, equation (17.92),

R̂11 = a2
1

(
n2n3 − 2k2

1

a2
1

− 2k2
2

a2
2

− 2k2
3

a2
3

+
n2

1a
2
1

2a2
2a

2
3

− n2
2a

2
2

2a2
3a

2
1

− n2
3a

2
3

2a2
1a

2
2

)
, (17.129a)

R̂23 = k1

(
n2a

2
2 − n3a

3
3

a2
1

)
, (17.129b)

and similarly with permuted indices for the other components. The o�-diagonal components R̂23 and company
must vanish for the restricted Ricci tensor to be diagonal. Equation (17.129b) shows that one possibility,
which covers the majority of cases (Type VII with k ≡ k1 6= 0 and

√
n2 a2 =

√
n3 a3 is an exception), is
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Table 17.2: Bianchi spatial vierbein yielding a diagonal restricted Ricci tensor

Type eaα ea
α

I

 1 0 0

0 1 0

0 0 1

  1 0 0

0 1 0

0 0 1


V

 1 0 0

0 e−kx 0

0 0 e−kx

  1 0 0

0 ekx 0

0 0 ekx


II

 1 0 0

0 1 0

0 −x 1

  1 0 0

0 1 x

0 0 1


VI0

 1 0 0

0 coshx − sinhx

0 − sinhx coshx

  1 0 0

0 coshx sinhx

0 sinhx coshx


III

 1 0 0

0 1
2e
−2x 1

2e
−2x

0 − 1
2

1
2

  1 0 0

0 e2x e2x

0 −1 1


VI

 1 0 0

0 1
2e
−(k+1)x 1

2e
−(k+1)x

0 − 1
2e
−(k−1)x 1

2e
−(k−1)x

  1 0 0

0 e(k+1)x e(k+1)x

0 −e(k−1)x e(k−1)x


VII0

 1 0 0

0 cosx sinx

0 − sinx cosx

  1 0 0

0 cosx sinx

0 − sinx cosx


VII (with a2 = a3)

 1 0 0

0 e−kx cosx e−kx sinx

0 −e−kx sinx e−kx cosx

  1 0 0

0 ekx cosx ekx sinx

0 −ekx sinx ekx cosx


VIII

 1 0 sinh y

0 cosx sinx cosh y

0 − sinx cosx cosh y

  1 0 0

− sinx tanh y cosx sinx sech y

− cosx tanh y − sinx cosx sech y


IX

 1 0 sin y

0 cosx sinx cos y

0 − sinx cosx cos y

  1 0 0

sinx tan y cosx sinx sec y

cosx tan y − sinx cosx sec y





17.6 BKL oscillatory collapse 505

that the antisymmetric part ke of the structure coe�cients vanishes identically (that is, k ≡ k1 = 0). This
is the solution pursued here, since it is the one that leads to the BKL solutions. In this case, where the
symmetric part of the structure coe�cients is diagonal in the frame where the metric is diagonal, and where
the antisymmetric part vanishes identically, the ADM equations of motion (17.107) imply that the equation
of motion for the scale factor a1 is

ä1

a1
+
ȧ1ȧ2

a1a2
+
ȧ1ȧ3

a1a3
+
n2n3

a2
1

+
n2

1a
2
1

2a2
2a

2
3

− n2
2a

2
2

2a2
3a

2
1

− n2
3a

2
3

2a2
1a

2
2

=
R11

a2
1

= 4π(2p1 + ρ− 3p) , (17.130)

and like equations with permuted indices for a2 and a3. The Hamiltonian constraint is

ȧ2ȧ3

a2a3
+
ȧ3ȧ1

a3a1
+
ȧ1ȧ2

a1a2
+
n2n3

2a2
1

+
n3n1

2a2
2

+
n1n2

2a2
3

− n2
1a

2
1

4a2
2a

2
3

− n2
2a

2
2

4a2
3a

2
1

− n2
3a

2
3

4a2
1a

2
2

= 8πρ . (17.131)

You will explore how these equations lead to BKL oscillatory collapse to a singularity in Exercise 17.7.
A central part of the Belinskii, Khalatnikov, and Lifshitz (1982) argument that BKL oscillations are generic

in gravitational collapse to a singularity, as opposed to an artefact of the assumption of spatial homogeneity,
involves the dependence on time of the terms in the equations of motion (17.130) (which are really just the
Einstein equations). The terms involving scale factors aa but not their time derivatives act as �potentials�
that are responsible for BKL bounces when one of the collapsing scale factors becomes su�ciently small. The
potentials arise from the products of spatial connections in the restricted Ricci tensor R̂ab, equation (17.104).
The form of the dependence of the restricted Ricci tensor on the scale factors follows from the fact that the
restricted Ricci tensor (17.104) is proportional to two powers of the contravariant metric γcd, and two powers
of the covariant metric γcd, and that one of the indices on one of the powers of the covariant metric must
be one of the indices a or b of the Ricci component Rab. This form of the dependency of the Ricci tensor on
the metric is generic.
Even though they are not needed in order to write down the Einstein equations, Table 17.2 lists explicit

expressions for the spatial vierbein yielding a diagonal restricted Ricci tensor, which exist for all Bianchi
Types except IV. The coordinates are scaled so that the eigenvalues of the structure coe�cients are all na = 0

or ±1. For the tabulated Types with k = 0, the time-space components R0a of the Ricci tensor also vanish
identically. For the tabulated Types with k 6= 0, the time-space components R0a of the Ricci tensor do not
all vanish identically, and their vanishing must be imposed as constraints on the initial conditions.
The notable exception mentioned at the beginning of �17.4 of a homogeneous space that cannot be realised

as a Bianchi space (the vierbein cannot be chosen such that structure coe�cients ccab are spatially constant),
at least as long as the structure coe�cients are taken to be real, is the closed (κ > 0) cylindrical space
realised by the spatial vierbein

eaα =

 1 0 0

0 cos(
√
κx) 0

0 0 1

 , ea
α =

 1 0 0

0 sec(
√
κx) 0

0 0 1

 . (17.132)

An open (κ < 0) cylindrical space on the other hand can be realised as a Bianchi space of Type III, with
the spatial vierbein given in Table 17.2, with κ = −k/2 = −1/2.
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Exercise 17.4. Kasner spacetime. The Kasner (1921) line-element is

ds2 = − dt2 + a2
xdx

2 + a2
ydy

2 + a2
zdz

2 , (17.133)

where aα(t) are functions only of time t. What Bianchi type is the Kasner line-element (17.133)? Show that
the Kasner line-element (17.133) solves the vacuum Einstein equations if

aα = |t|qα (17.134)

with

qx + qy + qz = 1 , q2
x + q2

y + q2
z = 1 . (17.135)

Show that a parametric solution of equations (17.135) is

qx =
−u

1 + u+ u2
, qy =

1 + u

1 + u+ u2
, qz =

u(1 + u)

1 + u+ u2
. (17.136)

Plot the qα versus u. Show that, if qα are ordered such that q1 ≤ q2 ≤ q3, then

− 1
3 ≤ q1 ≤ 0 ≤ q2 ≤ 2

3 ≤ q3 ≤ 1 . (17.137)

Solution. Type I.

Exercise 17.5. Schwarzschild interior as a Bianchi spacetime. Inside the horizon of the Schwarzschild
geometry, where the horizon function ∆ is negative, the Killing vector associated with time translation
symmetry becomes spacelike, so the spacetime has three spacelike Killing vectors, and is therefore spatially
homogeneous. The line-element inside the horizon is

ds2 = − dR2 + |∆|dt2 + r2
(
dθ2 + sin2θ dφ2

)
, (17.138)

where dR ≡ dr/
√
|∆|. The line-element (17.138) is in the form (17.90) with time coordinate R, spatial

coordinates t, θ, φ, spatial tetrad metric

γab = diag(|∆|, r2, r2) , (17.139)

and spatial vierbein and inverse vierbein

eaα = diag(1, 1, sin θ) , ea
α = diag(1, 1, 1/ sin θ) . (17.140)

What Bianchi type is the Schwarzschild line-element (17.138)? Show that the Schwarzschild interior looks
like a Kasner geometry near the singularity.
Solution. Type V. The interior near the singularity is Kasner (17.133) with t ∝ r3/2, and q1 = − 1

3 ,
q2 = q3 = 2

3 .

Exercise 17.6. Kasner spacetime for a perfect �uid.A generalization of the Kasner line-element (17.133)
is

ds2 = − dt2 +
∑
α

a2
α dx

2
α , (17.141)
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with scale factors

aα = a T qα−1/3 , (17.142)

where a(t) and T (t) are functions of time t, and the constants qα are Kasner coe�cients satisfying equa-
tion (17.135). The overall scale factor a satis�es

a ≡ (a1a2a3)1/3 . (17.143)

1. Show that the Einstein tensor corresponding to the Kasner line-element (17.141) is diagonal.

2. Show that the energy-momentum is that of a perfect �uid (i.e. the pressure is isotropic, with tetrad-frame
pressures pa ≡ Taa = p all equal) provided that a and T are related by

a =

(
3K

dt

d lnT

)1/3

, (17.144)

where K is a constant. Notice that the Kasner spacetime is not isotropic even though the energy-
momentum is isotropic.

3. Show that in this case of a perfect �uid the tetrad-frame Einstein equations are

G00 = 3

(
ȧ2

a2
− K2

a6

)
= 8πρ , (17.145a)

Gaa = − 2ä

a
− ȧ2

a2
− 3K2

a6
= 8πp . (17.145b)

The Einstein equations (17.145) resemble those (10.29) of the FLRW geometry except that the curvature
terms κ/a2 in FLRW are replaced by terms proportional to −K2/a6.

4. The Hubble parameter is de�ned by H ≡ ȧ/a as in FLRW. Conclude that the evolution of the scale
factor a(t) with time t is determined by the same equation (10.69) as for FLRW,

t =

∫
da

aH
. (17.146)

5. Show that the Einstein equations (17.145) enforce that the energy-momentum of the perfect �uid satis�es
the �rst law of thermodynamics, similarly to FLRW, �10.9.2,

dρa3

dt
+ p

da3

dt
= 0 . (17.147)

6. From the �rst law of thermodynamics, show that for a perfect �uid with equation of state p/ρ = w =

constant, the density ρ is related to scale factor a by, as in FLRW,

ρ ∝ a−3(1+w) . (17.148)

7. More generally, as in FLRW, the energy-momentum may comprise multiple perfect �uid components x
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satisfying the �rst law (17.147). The critical density ρcrit is de�ned in terms of the Hubble parameter H
in the usual way by equation (10.46). Argue that the Kasner Einstein equation (17.145a) implies that

3H2

8π
≡ ρcrit = ρK +

∑
species x

ρx , (17.149)

which di�ers from FLRW, equation (10.71), in that the FLRW curvature density ρk ∝ a−2, equa-
tion (10.48), is replaced by the Kasner curvature density ρK ∝ a−6,

ρK ≡
3K2

8πa6
. (17.150)

The Kasner curvature density ρK behaves like a perfect �uid with an ultra-hard equation of state, w = 1.
8. De�ne aK and HK to be the cosmic scale factor and Hubble parameter at density-curvature equality,

where ρ = ρK = 1
2ρcrit. Show that

K =
a3
KHK√

2
. (17.151)

9. From equation (17.144) conclude that the time T equals an integral over scale factor a,

lnT = 3K

∫
da

a4H
. (17.152)

Conclude that for a single perfect �uid with p/ρ = w = constant,

T/TK =
(a/aK)3[

1 +
√

1 + (a/aK)3(1−w)
]2/(1−w)

. (17.153)

Conclude that the small and large a limits of the time T are, for w ≤ 1,

T/TK →

{
(a/aK)3 a� aK ,

1 a� aK .
(17.154)

Hence conclude that the perfect �uid Kasner solution goes over to vacuum Kasner for small a and to
FLRW for large a. The solution approximates vacuum Kasner at small a not because physical den-
sities are going to zero, but rather because the density becomes dominated by the Kasner curvature
density (17.150).

10. For the particular case of a cosmological constant, w = −1, show that K =
√

Λ/3, and that

a/aK = sinh1/3(
√

3Λ t) , T/TK = tanh(
√

3Λ t/2) . (17.155)

Exercise 17.7. Oscillatory Belinskii-Khalatnikov-Lifshitz (BKL) instability. The contracting phase
of a Type VIII or IX Bianchi spacetime provides a model of collapse to a singularity that illustrates how
complicated such a collapse can be (Belinskii, Khalatnikov, and Lifshitz, 1982). Type VIII and IX Bianchi
spacetimes have all three eigenvalues na non-zero, and ka therefore necessarily all zero.



17.6 BKL oscillatory collapse 509

1. De�ne qa by

qa ≡
d ln aa
d ln |t|

, (17.156)

and let q be their sum,

q ≡
∑

qa =
d ln(a1a2a3)

d ln |t|
. (17.157)

Note that in a collapsing spacetime, t is negative and tending to zero, and ln |t| → −∞ as |t| → 0, so qa
is positive for a collapsing scale factor aa. De�ne further

Aa ≡ naa2
a . (17.158)

Show that, for vanishing energy-momentum, the equations of motion (17.130) are

dq1

d ln |t|
+ q1(q − 1) =

1

2

(
t

a1a2a3

)2 [
(A2 −A3)2 −A2

1

]
, (17.159a)

dq2

d ln |t|
+ q2(q − 1) =

1

2

(
t

a1a2a3

)2 [
(A1 −A3)2 −A2

2

]
, (17.159b)

dq3

d ln |t|
+ q3(q − 1) =

1

2

(
t

a1a2a3

)2 [
(A1 −A2)2 −A2

3

]
, (17.159c)

and that the Hamiltonian constraint (17.131) is

q2 −
∑

q2
a =

1

4

(
t

a1a2a3

)2 [
2(A2

1 +A2
2 +A2

3)− (A1 +A2 +A3)2
]
. (17.160)

2. In gravitational collapse, the scale factors aa might be expected to become small. Argue that if the right
hand sides of equations (17.159) and (17.160) are neglected, then the solution is the Kasner solution,
with qa constant, satisfying equation (17.135).

3. In the Kasner solution, the qa satisfy the inequalities (17.137). Argue that if qa are ordered q1 <

q2 < q3, then Kasner evolution tends to drive the Aa so that |A1| > |A2| > |A3|. Then argue from
equations (17.159) that the e�ect of the right hand sides is to drive smaller qa to increase, and larger
qa to decrease.

4. Explore the evolution of the scale factors aa numerically. Choose either Type VIII or Type IX: they are
equally fun. You will �nd better numerical behaviour by transforming to a time variable τ de�ned by

d

dτ
≡ a1a2a3

d

dt
=
a1a2a3

t

d

d ln |t|
, (17.161)

which increases as t increases and ln |t| decreases. De�ne

Qa ≡ − 1
2

d ln |Aa|
dτ

=
a1a2a3

−t
qa , (17.162)
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Figure 17.1 Left panel: Cosmic scale factors aa in BKL collapse of a Bianchi Type IX spacetime (with eigenvalues

normalized to na = 1). The thick (black) line is the geometric average (a1a2a3)1/3 of the scale factors, which is

proportional to the cube root of the comoving volume element. Right panel: Logarithmic derivatives qa of the scale

factors, equation (17.156). The thick (black) line is the sum q ≡ q1 + q2 + q3 of the logarithmic derivatives, which

asymptotes to 1 as collapse proceeds. The initial conditions were a1 = a2 = a3 = 1 and such that the comoving volume

element was initially barely collapsing, Q1 = − 6
7
, Q2 = 0, Q3 = 7

8
, whence

∑
Qa = 1

56
. In the initial conditions,

the Hamiltonian constraint (17.164) determines the third Qa in terms of the other two. Integration established a

posteriori that the initial time was t0 = −1.6859987. By the end of the plotted era, where τ = 105, the comoving

volume element had shrunk to a1a2a3 ≈ 10−230.

which has the same sign as qa. Show that the equation of motion for A1 is

dQ1

dτ
= 1

2

[
A2

1 − (A2 −A3)2
]
, (17.163)

and similarly for A2 and A3. Show that the Hamiltonian constraint is

Q2Q3 +Q3Q1 +Q1Q2 = 1
2 (A2

1 +A2
2 +A2

3)− 1
4 (A1 +A2 +A3)2 . (17.164)

The equation of motion for t/(a1a2a3) tends to become unstable when a1a2a3 is small. These circum-
stances are precisely those where q = 1 to good accuracy. Thus when instability arises for small a1a2a3,
it can be worked around by enforcing q = 1.

5. Show that for energy-momentum with equation of state p = wρ, the proper energy density ρ varies as

ρ ∝ (a1a2a3)−(1+w) . (17.165)

Show that including energy-momentum in the equations of motion amounts to adding terms proportional
to (a1a2a3)2ρ on the right hand sides of equations (17.163). By comparing these terms to the largest
Aa terms on the right hand side, conclude that the in�uence of energy-momentum is sub-dominant as
|t| → 0.
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6. Following Belinskii, Khalatnikov, and Lifshitz (1970), show that as |t| → 0 the collapse may be described
as a sequence of Kasner epochs punctuated by bounces. The Kasner exponents qa before a bounce are
given by equation (17.136) for some u ≥ 1. After the bounce, the exponents qa satisfy the same equation
with u �ipped,

u→ −u . (17.166)

For u ≥ 2 the �ip reorders the smaller pair of qa while the largest qa remains the largest. For 1 ≤ u ≤ 2

the �ip takes the smallest qa to the largest, leaving the other pair in original order. To prepare for the
next bounce, reset u ≥ 1 by transforming

u→
{

(u− 1)−1 1 ≤ u ≤ 2 ,

u− 1 u ≥ 2 .
(17.167)

Solution. Figure 17.1 illustrates an example computation. To avoid premature over�ow, the computation
used logarithmic quantities ln aa and ln [|t|/(a1a2a3)] as variables.

17.7 BSSN formalism

Numerical experiments during the 1990s established that the ADM equations, whether in the original form
with momenta πab, or in the York-modi�ed form with momenta Kab, are numerically unstable.
The most popular formalism for long-term evolution of spacetimes is the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formalism (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1998), and variants
thereof (Shinkai, 2009; Baumgarte and Shapiro, 2010; Brown et al., 2012). The BSSN formalism di�ers from
ADM in that it adjoins equations of motion (17.180) for a vector set of 3 BSSN momentum variables Ĥα,
and treats the de�nition (17.179) of Ĥα in terms of derivatives of the metric as a constraint equation. The
BSSN equation was discussed in the language of multivector-valued di�erential forms in �16.15.7.
The superior numerical stability of the BSSN over the ADM formalism can be attributed to the fact that

BSSN reorganizes the second derivative structure of the spatial Einstein equations so that their behaviour
as wave equations for the spatial metric gαβ is manifest. Only the 5 trace-free spatial Einstein equations are
genuine wave equations. The spatial trace of the Einstein equations is a non-wave equation, the Raychaudhuri
equation (17.76).

17.7.1 BSSN momentum equation

In the BSSN formalism, the momentum equation is treated as an equation of motion for the evolution with
time t of a momentum variable Ĥα. To identify what this momentum variable Ĥα is, it is most straightforward
to start not with equation (17.40b) for the Riemann components Rabc0, as does ADM, but rather with
equation (17.40c) for Rc0ab. The ab ↔ c0 symmetry of the Riemann tensor Rabc0 means that the two
expressions are identical when expanded in terms of vierbein derivatives, but the two expressions package
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the connections and their derivatives in di�erent ways. The restricted contribution R̂c0ab to the Riemann
tensor, equation (17.42), involves ∂0Γ̂abc, which is a time derivative of an expression Γ̂abc involving spatial
derivatives of the vierbein, which looks promising as a precursor of an object whose time evolution might
be governed by a momentum equation. However, the other derivative ∂cΓ̂ab0 in R̂c0ab also includes mixed
time-space second derivatives of the vierbein.
As with the earlier ADM equations of motion (17.55) for gαβ and (17.68) for Kαβ , the identity of the object

whose time evolution is being governed becomes manifest in the coordinate frame, where the spatial tetrad
is set equal to the spatial coordinate tangent axes, equation (17.14). The desired equation for the coordinate-
frame Riemann components Rγtαβ can be derived from a combination of equations (17.40c) and (17.40d),
but is obtained more directly from the general equation (17.34), with the restricted Riemann components
from equation (17.35),

Rγtαβ = R̂γtαβ +KβtKαγ −KαtKβγ , (17.168a)

R̂γtαβ =
∂Γ̂αβt
∂xγ

− ∂Γ̂αβγ
∂t

+ Γ̂δαtΓ̂
δ
βγ − Γ̂δβtΓ̂

δ
αγ , (17.168b)

where the greek indices are a reminder that this is a coordinate-frame expression, and where the �nal terms
in equations (17.34) and (17.35) vanish because of the symmetry Γµκλ = Γµλκ of coordinate connections, for
vanishing torsion. As shown below, equation (17.173), the index on the restricted coordinate connections in
equation (17.168b) is raised with the spatial coordinate metric, not with the full metric,

Γ̂αβµ ≡ gαγΓ̂γβµ . (17.169)

Thanks to the ADM gauge condition e0
α = 0, the non-vanishing components of the coordinate-frame gen-

eralized extrinsic curvature Kλµν ≡ elλe
m
µe
n
νKlmn are, similarly to the tetrad-frame generalized extrinsic

curvature Klmn, those whose �rst two indices are one spatial α and one time t index,

Kαtν = αKα0ν , (17.170)

which like the tetrad-frame generalized extrinsic curvature is antisymmetric in its �rst two indices αt. The
extrinsic curvature is as usual Kαβ ≡ Kα0β ≡ eaαebβKa0b, which is symmetric in αβ, while the acceleration
is as usual Kα ≡ Kα00 ≡ eaαKa00. The tensor Kαt in equation (17.168a) is

Kαt ≡ Kα0t = emtKα0m = αKα − βδKαδ . (17.171)

The decomposition Γλµν = Γ̂λµν + Kλµν , equation (17.27), holds for coordinate connections, but the coor-
dinate connections di�er from the tetrad connections by a vierbein derivative, equation (11.44). Thus the
restricted coordinate-frame connections Γ̂λµν are related to the restricted tetrad-frame connections Γ̂lmn by

Γ̂λµν = elλe
m
µe
n
ν(dlmn + Γ̂lmn) . (17.172)

The vierbein derivative d0an with �rst index 0 and second index a spatial vanishes because of the ADM
gauge condition e0

α = 0. For convenience, de�ne the restricted coordinate connection with �rst index a tetrad
index k by Γ̂kµν ≡ ek

λΓ̂λµν . Since d0an = 0 it follows that the coordinate-frame connection Γ̂0αν vanishes
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like its tetrad-frame counterpart. Consequently the product of coordinate connections Γ̂παtΓ̂
π
βγ contracted

with the full coordinate metric gπρ equals the product Γ̂δαtΓ̂
δ
βγ contracted with the spatial metric gδε,

Γ̂παtΓ̂
π
βγ = Γ̂pαtΓ̂

p
βγ = Γ̂dαtΓ̂

d
βγ = Γ̂δαtΓ̂

δ
βγ , (17.173)

which justi�es equation (17.169).
The coordinate connection Γ̂[αβ]t antisymmetrized over its spatial indices αβ is an antisymmetric spatial

tensor, which can be denoted Fαβ ,

Fαβ ≡ Γ̂[αβ]t =
1

2

(
∂ββ
∂xα

− ∂βα
∂xβ

)
. (17.174)

The tensorial nature of Fαβ follows from the fact that the coordinate-frame curl of a vector is a tensor,
Exercise 2.6. Expression (17.168b) for the restricted Riemann tensor can thus be written

R̂γtαβ = D̂γFαβ −
∂Γ̂[αβ]γ

∂t
+ Γ̂(δα)tΓ̂

δ
βγ − Γ̂(δβ)tΓ̂

δ
αγ , (17.175)

in which the only term containing mixed time-space second derivatives is ∂Γ̂[αβ]γ/∂t. In equation (17.175),

the coordinate connection Γ̂(αβ)t symmetrized over its spatial indices is

Γ̂(αβ)t =
1

2

∂gαβ
∂t

. (17.176)

Contracting the Riemann tensor Rγtαβ yields the time-space components Rtα of the Ricci tensor,

Rtα = R̂tα −Kβ
t Kαβ +KαtK , (17.177a)

R̂tα = D̂βFβα +
∂Γ̂[αβ]

β

∂t
− Γ̂(δα)tΓ̂

δβ
β + Γ̂(δβ)

tΓ̂αδβ , (17.177b)

in which the only term containing mixed time-space derivatives is ∂Γ̂[αβ]
β/∂t. In terms of derivatives of the

metric, Γ̂[αβ]
β is

Γ̂[αβ]
β =

1

2
gβγ

(
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
= −1

2

gαγ
g

∂(ggβγ)

∂xβ
, (17.178)

where g ≡ |gαβ | is the determinant of the spatial metric. Equations (17.177) show that the variable Γ̂[αβ]
β ap-

pears to be the desired BSSN momentum variable. However, it is common to use a variant BSSN momentum
variable Ĥα in which the spatial metric is scaled by some power of the spatial metric determinant,

Ĥα ≡ Γ̂αβ
β +

p

2

∂ ln g

∂xα
= 2Γ̂[αβ]

β +
(1 + p)

2

∂ ln g

∂xα
= − gαγ

g(1−p)/2
∂
(
g(1−p)/2gβγ

)
∂xβ

, (17.179)

with p an adjustable constant. For example, the choice p = −1 recovers (twice) the original momentum
variable Γ̂[αβ]

β , the choice p = 0 yields a spatial Ricci tensor (17.181) whose only explicit second spatial

derivatives are a Laplacian of the spatial metric, and the choice p = 1/3 gives an Ĥα that depends only on
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the scaled spatial metric g−1/3gαγ with unit determinant (and its inverse g1/3gβγ). In the BSSN formalism,
the evolution of the momentum variable Ĥα is governed by the momentum equation

1

2

∂Ĥα

∂t
= − (1 + p)

4

∂2 ln g

∂t∂xα
+ Γ̂(δα)tΓ̂

[δβ]
β − Γ̂(δβ)

tΓ̂αδβ + D̂βFαβ +Kβ
t Kαβ −KαtK + 8πTtα . (17.180)

In the BSSN formalism, equation (17.179) is a constraint equation, which must be imposed in the initial
conditions, but which is satis�ed automatically thereafter.

17.7.2 BSSN spatial Ricci tensor

In the BSSN formalism, the spatial components R̂αβ of the restricted Ricci tensor are recast in terms of the
BSSN variable Ĥα,

R̂αβ = − p

2

∂2 ln g

∂xα∂xβ
− gγδ

2

∂2gαβ
∂xγ∂xδ

+
1

2

∂Ĥβ

∂xα
+

1

2

∂Ĥα

∂xβ
− Γ̂δαβΓ̂δγ

γ + Γ̂γδαΓ̂βγδ + Γ̂γδβΓ̂αγδ + Γ̂γδαΓ̂γδβ .

(17.181)
The only explicit second spatial derivatives in the expression (17.181) for R̂αβ are a double gradient of
the spatial metric determinant g, and a spatial Laplacian of the spatial metric gαβ , the remaining second
derivatives having been absorbed into �rst spatial derivatives of the BSSN momentum variable Ĥα.
When the restricted spatial Ricci tensor (17.181) is inserted into the equation of motion (17.68) for the

extrinsic curvature Kαβ , the spatial Laplacian combines with a second time derivative coming from ∂Kαβ/∂t

to form a 4-dimensional wave equation for the spatial metric gαβ . Thus the character of the spatial Einstein
equations as wave equations for the spatial metric gαβ is manifest in the BSSN formalism. Explicitly, the
spatial Einstein equations, which are just the equations of motion (17.68) for the spatial extrinsic curvature
Kαβ , are

1

2

[(
∂

α ∂t

)2

− gγδ ∂2

∂xγ∂xδ

]
gαβ +

∂2 ln(αg−p/2)

∂xα∂xβ
+ ... = 8π

(
Tαβ −

1

2
gαβT

)
, (17.182)

where ... signi�es terms involving no higher than �rst time or space derivatives of the lapse α, the shift βα,
the spatial coordinate metric gαβ , the extrinsic curvatures Kαβ , or the BSSN variable Ĥα.
Commonly, only the 5 trace-free equations of motion for Kαβ are used in the BSSN formalism, the trace

equation being replaced by the Raychaudhuri equation (17.76).

17.7.3 BSSN summary

To summarize, the dynamical variables in the BSSN formalism are the spatial metric gαβ , the spatial extrinsic
curvature Kαβ , and the spatial BSSN variable Ĥα. The equations of motion for the dynamical variables
are:
1. the 6 equations (17.55) for the spatial metric gαβ ;
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2. the 5 equations constituting the trace-free part of the 6 equations (17.68) for the spatial extrinsic
curvature Kαβ ;

3. the 1 Raychaudhuri equation (17.76) for the trace K of the extrinsic curvature;
4. the 3 equations (17.180) for the BSSN variable Ĥα.

The constraint equations, which must be arranged to be satis�ed on the initial hypersurface, but which are
thereafter satis�ed automatically are:
1. the 1 Hamiltonian constraint (17.74a);
2. the 3 momentum constraints (17.74b);
3. the 3 constraints (17.179) on the BSSN variable Ĥα.

The Hamiltonian and momentum constraints are di�erential constraints, elliptic partial di�erential equations
of second order in the spatial coordinates, which are in general non-trivial to set up. The constraints on Ĥα on
the other hand are algebraic constraints, which are straightforward to impose once the di�erential constraints
are solved.

17.8 Pretorius formalism

Pretorius (2005) proposed an elegant 4-dimensional version of the BSSN formalism. A natural 4-dimensional
generalization of the BSSN momentum variable Ĥα de�ned by equation (17.179) is (with p = 0)

Hκ ≡ Γκλ
λ = 2Γ[κλ]

λ +
∂ ln
√
−g

∂xκ
= − gκµ√

−g
∂(
√
−g gλµ)

∂xλ
, (17.183)

in which g ≡ |gκλ| is the determinant of the full 4-dimensional metric. If the coordinates xκ are treated as
four scalars (they are not; and neither do they form a 4-vector), then the contravariant components Hκ can
be written as minus the (torsion-free) d'Alembertian � ≡ DλD

λ of the coordinates,

Hκ = − 1√
−g

∂(
√
−g gλκ)

∂xλ
= − 1√

−g
∂

∂xλ

(√
−g gλµ ∂x

κ

∂xµ

)
= −�xκ , (17.184)

which motivates calling Hκ the harmonic function. The coordinates xκ are not scalars, and neither is the
harmonic function Hκ a tensor. In the Pretorius formalism, the Ricci tensor takes the form

Rκλ = −1

2
gµν

∂2gκλ
∂xµ∂xν

+
1

2

∂Hλ

∂xκ
+

1

2

∂Hκ

∂xλ
− ΓνκλHν + ΓµνκΓλµν + ΓµνλΓκµν + ΓµνκΓµνλ , (17.185)

in which the only explicit second derivatives are those in the gµν∂2gκλ/∂x
µ∂xν term. This second derivative

term has the form of a 4-dimensional coordinate wave operator acting on the 4-dimensional coordinate metric
gκλ. The Einstein equations are as usual

Rκλ = 8π
(
Tκλ − 1

2gκλT
)
. (17.186)

Despite the covariant 4-dimensional character of the Pretorius formalism, it is still possible to make ADM
gauge choices, �17.1, that is, to foliate the spacetime into hypersurfaces of constant time t, and to work in
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an ADM tetrad whose time axis γγ0 is the future-pointing unit normal to hypersurfaces of constant time t. In
the ADM tetrad, the tetrad-frame harmonic function Hk ≡ ekκHκ with Hκ de�ned by equation (17.183) is,
in terms of the vierbein derivatives dklm de�ned by equation (11.32), the tetrad-frame restricted connections
Γ̂klm, and the generalized extrinsic curvature Klmn,

Hk ≡ ekκHκ = dkm
m + Γkm

m = dkm
m + Γ̂km

m +Kkm
m = dk0

0 + Ĥk −Kk , (17.187)

where Ĥk ≡ dka
a + Γ̂ka

a = {0, Ĥa} = {0, eaαĤα}, and Ĥα is the BSSN momentum variable de�ned by
equation (17.179) with p = 0. The tetrad-frame components Hk of the harmonic function are

H0 =
1

α
∂0α−K , (17.188a)

Ha =
1

α
eaα∂0β

α + Ĥa −Ka . (17.188b)

Pretorius (2005) points out that the arbitrariness of the choice of coordinates xκ translates into an arbi-
trariness in the choice of the 4 components Hκ of the harmonic function. Thus instead of treating the lapse
and shift as arbitrarily adjustable functions, the harmonic functions Hκ can be adjusted arbitrarily. For
example, the harmonic function can be chosen to vanish identically, Hκ = 0. Equations (17.188) can then
be interpreted as evolution equations for the lapse α and the shift βα. In this case the 4 Einstein equations
with at least one temporal index are not used as evolution equations.
However, it is also possible (Bona et al., 2003) to follow the BSSN strategy of choosing the lapse and

shift arbitrarily, in which case the 4 Einstein equations (17.185) with at least one temporal index provide
evolution equations for the harmonic function Hκ, and equations (17.188) are constraint equations that must
be imposed on the initial hypersurface, but which are guaranteed thereafter.
As in ADM and BSSN, the Hamiltonian and momentum constraints, along with the conditions (17.184),

must be arranged to be satis�ed on the initial hypersurface.

17.9 M+N split

In situations where �elds are highly relativistic, such as inside black holes, or when following gravitational
waves, it can be natural to work in a frame where some of the tetrad axes are null. A null direction γγv is
orthogonal to itself, γγv ·γγv = 0, so it is not possible to carry out a 3+1 split of spacetime into a 1-dimensional
space aligned with γγv and a 3-dimensional space orthogonal to it. It is however possible, as in the Newman-
Penrose formalism, to carry out a 2+2 split of spacetime into a 2-dimensional space spanned by two null
directions γγv and γγu, and a 2-dimensional space orthogonal to the null directions.
This section 17.9 considers the general case of an M+N split of an M+N -dimensional spacetime.
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17.9.1 M+N tetrad and extrinsic curvature

In an M+N split of spacetime, the tetrad-frame axes γγm at each point are split into two orthogonal sets,
of dimensions respectively N and M . Label the N tetrad axes γγz of the �rst set with late letters z, and the
M tetrad axes γγa of the second set with early letters a, and let mid letters kl... run over all indices. The
orthogonality of the tetrad axes from opposite sets is expressed by the MN conditions

γγa · γγz = 0 . (17.189)

In the M+N split, the two orthogonal subspaces at each point are �xed a priori, which amounts to making
a speci�c choice of gauge of the tetrad. The gauge-�xing �xes the two subspaces, but allows tetrad transfor-
mations within each subspace. Under this restricted group of tetrad transformations, the tetrad connections
Γazm with �rst two indices az from opposite subspaces form a tensor, the generalized extrinsic curvature
Kazm,

Kazm ≡ Γazm = γγa · ∂mγγz . (17.190)

These connections form a tensor under the restricted group because the only potentially non-tensorial con-
tribution to γγa · ∂mγγz under a restricted tetrad transformation γγz → Lz

yγγy is

γγa · γγy ∂mLzy = 0 , (17.191)

which vanishes because γγa and γγy are orthogonal. There are MN(M + N) non-vanishing components of
the extrinsic curvature Kazm (hence 12 if M = 3 and N = 1, or 16 if M = N = 2). The remaining tetrad
connections Γmnl, namely those with �rst two indices mn from the same subspace, constitute the restricted
connections Γ̂mnl,

Γ̂mnl ≡ Γmnl for mn = yz or mn = ab . (17.192)

The vanishing of the mixed components γaz of the tetrad metric implies that the generalized extrinsic
curvature is antisymmetric in its �rst two indices,

Kzal = −Kazl . (17.193)

The vanishing components of Kmnl and Γ̂mnl are

Kabl = Kyzl = 0 , Γ̂azl = 0 . (17.194)

17.9.2 M+N Riemann and Ricci tensors

The extrinsic curvature Kmnl is a tensor under the restricted group of tetrad transformations. The restricted
Riemann curvature tensor R̂klaz with its last two indices from opposite subspaces vanishes since Γ̂azk vanishes,

R̂klaz = ∂kΓ̂azl − ∂lΓ̂azk + Γ̂palΓ̂pzk − Γ̂pakΓ̂pzl + (Γpkl − Γplk)Γ̂azp = 0 . (17.195)

If torsion vanishes, then the full Riemann curvature tensor Rklmn is symmetric in kl↔ mn, but the restricted
Riemann tensor R̂klmn is not symmetric. Thus the components R̂azkl of the restricted Riemann curvature
do not vanish even though the components R̂klaz do vanish.
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In the M+N split, the expression (17.34) for the Riemann curvature tensor becomes

Rwxyz = R̂wxyz +Ka
yxKazw −Ka

ywKazx , (17.196a)

Rxyaz = D̂xKazy − D̂yKazx + (Kc
xy −Kc

yx)Kazc (17.196b)

= Razxy = R̂azxy +Kc
xzKcya −Kc

xaKcyz , (17.196c)

Rbyaz = D̂bKazy − D̂yKazb +Kx
byKazx −Kc

ybKazc , (17.196d)

Rbcaz = D̂bKazc − D̂cKazb + (Kx
bc −Kx

cb)Kazx (17.196e)

= Razbc = R̂azbc +Kx
bzKxca −Kx

baKxcz , (17.196f)

Rabcd = R̂abcd +Kz
cbKzda −Kz

caKzdb . (17.196g)

If the tetrad connections are replaced by their torsion-free expressions in terms of derivatives of the vierbein,
then the various alternative expressions for the Riemann tensor become identities. The Ricci tensor Rkm is

Ryz = R̂yz + (D̂a +Ka)Ka
zy − D̂yKz −Kb

yaK
a
zb , (17.197a)

Rza = R̂zba
b + (D̂y +Ky)Ky

az − D̂zKa −Ky
abK

b
zy (17.197b)

= Raz = R̂ayz
y + (D̂b +Kb)K

b
za − D̂aKz −Ky

abK
b
zy (17.197c)

= D̂yK
y
az − D̂zKa + D̂bK

b
za − D̂aKz − 2Ky

abK
b
zy +Ky

abK
b
yz +Ky

baK
b
zy (17.197d)

Rab = R̂ab + (D̂z +Kz)K
z
ba − D̂aKb −Kz

ayK
y
bz . (17.197e)

Contracting the Ricci tensor yields the Ricci scalar R,

R = R̂− 2D̂zK
z − 2D̂aK

a −KbzaKazb −KzayKyaz −KzKz −KaKa . (17.198)

17.10 2+2 split

For the particular case of a 2+2 split, equations (17.197) for the Ricci tensor Rkm become

Rvu = R̂vu − D̂vKu + (D̂a +Ka)Ka
uv −Kb

vaK
a
ub , (17.199a)

Rvv = − D̂vKv + (D̂a +Ka)Ka
vv −Kb

vaK
a
vb , (17.199b)

Rv+ = R̂v++− + D̂vKv+u − D̂uKv+v +KyK
y
+v −K

y
+bK

b
vy (17.199c)

= R+v = − R̂+vvu − D̂+K+v− + D̂−K+v+ +KbK
b
v+ −K

y
+bK

b
vy (17.199d)

= D̂vKv+u − D̂uKv+v − D̂+K+v− + D̂−K+v+ − 2Ky
+bK

b
vy +Ky

+bK
b
yv +Ky

b+K
b
vy , (17.199e)

R++ = (D̂z +Kz)K
z
++ − D̂+K+ −Kz

+yK
y
+z , (17.199f)

R+− = R̂+− + (D̂z +Kz)K
z
−+ − D̂+K− −Kz

+yK
y
−z . (17.199g)



18

Singularity theorems

Singularity theorems prove that, given a number of plausible assumptions, general relativity commits suicide
inside black holes. The conclusion that there are places, called singularities, inside black holes where the
general relativistic description of spacetime fails is profound. It means that new physics, presumably quantum
gravity in some form, must replace general relativity at singularities. Any viable theory of quantum gravity
must be able to resolve the problem of singularities.
The �rst singularity theorem was proved by Penrose (1965). The classic book by Hawking and Ellis (1973)

lays out a variety of singularity theorems. As reviewed by Senovilla (1998), singularity theorems state that
given:
1. a trapped surface condition,
2. a positive energy condition,
3. a causality condition,

then there exist geodesics that are incomplete, in the sense that the geodesics reach a point beyond which
they cannot be continued. The power of singularity theorems is that they show that general relativity fails
inside black holes. The weakness of singularity theorems is that they are quite unspeci�c about the nature
or location of a �singularity.�
This Chapter focuses on the principal ingredients of the singularity theorems, namely the Raychaudhuri

equations, �18.2, and the construction of hypersurface-orthogonal congruences of geodesics, ��18.6 and 18.7.
The Chapter concludes, �18.9, with a brief exposition of the original singularity theorem discovered by
Penrose (1965).

18.1 Congruences

The Raychaudhuri equations govern the evolution of the extrinsic curvature along systems of paths called
congruences, which �ll, and do not cross or overlap in, at least some connected region of spacetime.
Congruences may be timelike or null, and they may be geodesic or otherwise. Congruences are often de�ned
with the restriction that the paths do not cross or overlap anywhere in spacetime, but in this book the more
relaxed condition is imposed, that paths do not cross or overlap over some connected region.

519
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A path is speci�ed by its coordinates xµ(λ) as a function of some parameter λ along the path. The
derivative of the path de�nes the 4-velocity uµ along the path,

uµ ≡ dxµ

dλ
. (18.1)

If the congruence of paths is timelike, then the parameter λ may be taken equal to the proper time τ along
the path. The 4-velocity uµ ≡ dxµ/dτ then satis�es the normalization condition uµuµ = −1. The 4-velocity
vector u ≡ eµuµ de�nes the tetrad time vector γγ0,

γγ0 = u . (18.2)

The tetrad time vector γγ0 is the unique future-pointing vector that is tangent to the timelike path and
normalized to γγ0 · γγ0 = −1.
If the congruence of paths is null, then λ may be any arbitrary parameter, not necessarily an a�ne

parameter. If the parameter λ is an a�ne parameter, then the path is said to be a�nely parameterized. The
4-velocity uµ ≡ dxµ/dλ satis�es the normalization condition uµuµ = 0 regardless of whether the parameter
λ is a�ne. The 4-velocity vector u ≡ eµuµ de�nes the tetrad null vector γγv (say),

γγv = u . (18.3)

Unlike the timelike case, the normalization condition γγv ·γγv = 0 does not determine uniquely the null vector
γγv.
For either a timelike or a null path, the 4-velocity u = umγγm has tetrad-frame components

um = {1, 0, 0, 0} , (18.4)

whose only non-vanishing component is uz = 1, with index z = 0 for a timelike path, z = v for a null path.
The covariant derivative of the 4-velocity along the path is

Dnum = ∂num − Γkmnuk = Γmzn . (18.5)

The components for spatial m = a constitute by de�nition the generalized extrinsic curvature Kazn, equa-
tion (17.190),

Dnua = Kazn . (18.6)

The 4-velocity along the path evolves as

Duk

Dλ
= un∂nu

k + Γkmnu
mun = Γkzz , (18.7)

whose spatial components constitute the acceleration Ka
zz,

Dua

Dλ
= Ka

zz . (18.8)

For a timelike geodesic (z = 0), the time component of the acceleration vanishes automatically, Du0/Dλ =

Γ0
00 = 0. For a null geodesic (z = v), the v-component of the acceleration Duv/Dλ = Γvvv = −Γuvv vanishes

if the path is a�nely parameterized, but not in general. If the null path is a�nely parameterized, then the
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4-velocity um coincides (up to a constant factor) with the momentum pm along the path. Choosing the path
to be a�nely parameterized amounts to choosing the null vector γγv such that the momentum pv is constant
along the null geodesic, that is, a light ray is neither redshifted nor blueshifted as it propagates along the
a�nely parameterized path.
The covariant divergence of the 4-velocity is

Dmu
m = Γzzz +Kz . (18.9)

For a timelike congruence, the covariant divergence is just the traceK ≡ K0 ≡ Ka
0a of the extrinsic curvature.

For a null congruence, the covariant divergence is the acceleration Γvvv plus the traceKv ≡ Ka
va of the extrinsic

curvature. If the null path is a�nely parameterized, then the covariant divergence is just the trace Kv.

18.2 Raychaudhuri equations

TheRaychaudhuri equations, which in their most general form are equations (18.10), govern the evolution
of the extrinsic curvature along arbitrary timelike or null congruences. Actually, the equation traditionally
named after Raychaudhuri (1955) is the equation for the evolution of the trace of the extrinsic curvature.
Here however the full suite of equations for the components of the extrinsic curvature are called Raychaudhuri
equations.
The Raychaudhuri equations come in various �avours, depending on whether the congruence is timelike or

null, whether the congruence is geodesic, and what additional gauge conditions are imposed on the tetrad.
If the congruence is timelike, it is convenient to take the tetrad to be orthonormal, with the time axis γγ0

tangent to the timelike paths, equation (18.2). If the congruence is null, it is convenient to take the tetrad
to be Newman-Penrose, that is, a double-null tetrad, with the null axis γγv tangent to the null paths. To
cover both timelike and null cases at the same time, denote the tangent axis by γγz, with index z = 0 in the
timelike case, and z = v in the null case.
The Raychaudhuri equations are just a subset of the equations (17.196) for the Riemann tensor in an

M+N split of spacetime, �17.9. In 4 spacetime dimensions, the split is 3+1 for a timelike congruence, and
2+2 for a null congruence. In an M+N split of spacetime, the Raychaudhuri equations are the equations for
the components Rbzaz of the Riemann tensor, equation (17.196d),

D̂zKazb − D̂bKazz −Ky
bzKazy +Kc

zbKazc = −Rbzaz (no sum over z) , (18.10)

with z = 0 for a timelike congruence, or z = v for a null congruence. Equation (18.10) is to be interpreted
as an equation governing the evolution of the extrinsic curvature Kazb along any path of the congruence,
that is, along the z-direction. The evolution depends on the Riemann curvature Rbzaz encountered along the
path.
The left hand side of equation (18.10) also depends on a derivative of the spatial acceleration Kazz. A

necessary and su�cient condition for the congruence to be geodesic is that the spatial acceleration vanishes

Kazz = 0 . (18.11)
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For a geodesic congruence (not necessarily a�nely parameterized), the Raychaudhuri equation (18.10) be-
comes

D̂zKazb −Ky
bzKazy +Kc

zbKazc = −Rbzaz (no sum over z) . (18.12)

If the congruence is geodesic, then the tetrad can be chosen to to be parallel-transported along each path
of the congruence. In this case all the components of the tetrad-frame connection with �nal index z vanish

Γklz = 0 . (18.13)

The conditions (18.13) exhaust all the 6 degrees of freedom of Lorentz transformations of the tetrad. In this
case the restricted covariant derivative D̂z in the Raychaudhuri equation (18.12) reduces to the directed
derivative ∂z, and the equation becomes

∂zKazb −Ky
bzKazy +Kc

zbKazc = −Rbzaz (no sum over z) . (18.14)

18.3 Raychaudhuri equations for a timelike geodesic congruence

For a congruence of timelike paths, the extrinsic curvature is the spatial tensor Kab ≡ Ka0b ≡ Γa0b. If the
timelike paths are geodesic, then the acceleration Ka ≡ Ka00 vanishes. Along a timelike geodesic congruence,
the Raychaudhuri equations (18.12) become

D̂0Kab +Kc
bKac = −Rb0a0 . (18.15)

In 4-dimensional spacetime, the 9 components of the extrinsic curvature Kab are commonly resolved into
an expansion scalar ϑ, a 3-component antisymmetric vorticity tensor $ab, and a 5-component traceless
symmetric shear tensor σab,

Kab = δabϑ+$ab + σab . (18.16)

Like the extrinsic curvature, the expansion, vorticity, and shear are restricted tensors, that is, tensors with
respect to the restricted group of spatial Lorentz transformations. The trace of the extrinsic curvature is three
times the expansion, K ≡ Ka

a = 3ϑ. The vorticity is sometimes referred to alternatively as the rotation, or
the twist. If desired, the vorticity can be written $ab = εabc$

c.
If one imagines comoving coordinates attached to the congruence of paths, then the extrinsic curvature

describes the rate at which the comoving volume element distorts, equation (18.5). The expansion ϑ equals
one third the logarithmic rate of change of the volume of the comoving volume element, the vorticity is
the rate at which the comoving volume element rotates (see �18.6), and the shear is the rate at which the
comoving volume element distorts tidally.
To see that the expansion measures the logarithmic rate of change of the volume, choose comoving coor-

dinates consisting of the proper time τ along with 3 spatial coordinates xα that remain constant along the
geodesics of the congruence. The comoving coordinate 4-velocity along geodesics is uµ = {1, 0, 0, 0}. The
inverse vierbein satis�es e0

µ = uµ = {1, 0, 0, 0}, so the determinant e of the full vierbein reduces to the
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determinant of its spatial part, e ≡ |emµ| = |eaα|. The trace K ≡ Ka
0a ≡ K0 equals the covariant divergence

Dmu
m, equation (18.9). The expansion ϑ thus satis�es

3ϑ = K = Dmu
m = Dµu

µ =
1
√
g

∂(
√
guµ)

∂xµ
= uµ

∂ ln
√
g

∂xµ
=
d ln
√
g

dτ
, (18.17)

where
√
g = e is the square root of the determinant of the spatial metric of the comoving line-element, which

is the same as the determinant e of the vierbein.
In the ADM formalism, the tetrad time vector γγ0 is chosen to be orthogonal to hypersurfaces of constant

time t. If γγ0 is so chosen, and if torsion vanishes as general relativity assumes, then vorticity $ab vanishes,
as shown in �18.6, equation (18.38). This explains why in the ADM formalism the extrinsic curvature Kab

is symmetric in ab. The paths of an ADM congruence are vorticity-free, but not necessarily geodesic. They
are geodesic if and only if the lapse α is constant, equation (18.38). In the ADM formalism, the expansion
satis�es equation (17.60), which reduces to equation (18.17) if the lapse is unity and the shift vanishes, that
is, if the spatial coordinates are comoving and the time coordinate t is the proper time τ .
Not all congruences are hypersurface-orthogonal, so vorticity does not vanish in general. For example, if

a congruence is chosen to follow the worldlines of a system of dust particles (dust particles being neutral
and collisionless, to ensure that they follow geodesics), then the vorticity, which is related to the angular
momentum of the system of particles, will generically be non-zero.
The vorticity $ab ≡ K[ab], the antisymmetric part of the extrinsic curvature Γa0b, should be distinguished

from the precession Γ[ab]0 (if the tetrad metric γab is constant, as here, then Γab0 is automatically anti-
symmetric in ab; in the more general case where the tetrad metric is non-constant, as in ADM, �17.2.1, the
precession equals the antisymmetric part of Γab0). The condition for the tetrad frame to be locally inertial,
that is, freely falling and non-rotating, is that the acceleration and precession vanish, Γa00 = Γ[ab]0 = 0.
By a suitable spatial rotation of the tetrad (which rotates the spatial axes γγa while leaving the time axis
γγ0 unchanged) the precession Γ[ab]0 can be arranged to vanish along a congruence. Whereas the precession
describes the spatial rotation of the tetrad frame with respect to locally inertial, the vorticity is related to
the angular momentum of particles following the congruence. Since the extrinsic curvature is a spatial tensor,
if the vorticity vanishes in one frame, then it vanishes in any spatially rotated frame; and conversely if the
vorticity is non-vanishing in one frame, then it is non-vanishing in any spatially rotated frame.
The Raychaudhuri equations (18.15) for the expansion, vorticity, and shear along a timelike geodesic

congruence are

D̂0ϑ+ ϑ2 + 1
3σ

abσab − 1
3$

ab$ab = − 1
3R00 , (18.18a)

(D̂0 + 2ϑ)$ab + σca$cb − σcb$ca = 0 , (18.18b)

(D̂0 + 2ϑ)σab +
(
σcaσcb − 1

3δabσ
cdσcd

)
−
(
$c

a$cb − 1
3δab$

cd$cd

)
= −C0a0b , (18.18c)

where Cklmn is the Weyl tensor, the traceless part of the Riemann tensor. The restricted derivatives in
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equations (18.18) are

D̂0ϑ = ∂0ϑ , (18.19a)

D̂0$ab = ∂0$ab − Γca0$cb − Γcb0$ac , (18.19b)

D̂0σab = ∂0σab − Γca0σcb − Γcb0σac . (18.19c)

If the tetrad is chosen to be parallel-transported along the geodesic, then all 6 of the tetrad connections
with �nal index 0 vanish,

Γkl0 = 0 , (18.20)

including not only the 3 components Ka ≡ Ka00 of the acceleration, but also the 3 components Γab0 of the
precession. In this case, the restricted covariant time derivative simpli�es to the directed time derivative,
which is the same as the proper time derivative d/dτ in the parallel-transported frame,

D̂0 = ∂0 =
d

dτ
. (18.21)

Exercise 18.1. Raychaudhuri equations for a non-geodesic timelike congruence. Derive the Ray-
chaudhuri equations for a timelike congruence that is not geodesic.
Solution. The Raychaudhuri equations for a timelike congruence including non-vanishing acceleration Ka

are

D̂0ϑ+ ϑ2 + 1
3σ

abσab − 1
3$

ab$ab − 1
3D̂

aKa − 1
3K

aKa = − 1
3R00 , (18.22a)

(D̂0 + 2ϑ)$ab + σca$cb − σcb$ca + 1
2 (D̂aKb − D̂bKa) = 0 , (18.22b)

(D̂0 + 2ϑ)σab + σcaσcb −$c
a$cb − 1

2 (D̂aKb + D̂bKa)−KaKb

− 1
3δab(σ

cdσcd −$cd$cd − D̂cKc −KcKc) = −C0a0b , (18.22c)

with the restricted covariant derivatives given by equations (18.19). If the acceleration is the gradient of a
potential, Ka = ∂a lnα, and if torsion vanishes as general relativity assumes, then D̂aKb − D̂bKa = 0, and
vorticity vanishes if it vanishes initially. This is the situation imposed in the ADM formalism. If on the other
hand the acceleration takes a more general form, then vorticity may be generated along the path.

18.4 Raychaudhuri equations for a null geodesic congruence

For a null congruence in 4-dimensional spacetime, it is convenient to work with a Newman-Penrose double-
null tetrad {γγv,γγu,γγ+,γγ−}, with two null directions at each point, an �outgoing� direction γγv, and an
�ingoing� direction γγu. The spin axes γγ+ and γγ− span the two-dimensional spatial plane orthogonal to the
null directions. Late latin indices z, y, ... run over null indices v, u, early latin indices a, b, ... run over spin
indices +, −, and mid latin indices k, l, ... run over all four indices.
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The extrinsic curvature constitutes the components Kazk ≡ Γazk of the tetrad-frame connections with
�rst two indices az from opposite subspaces, equation (17.190). If the null congruence along the outgoing
v-direction is geodesic, then the acceleration Kavv vanishes. Along outgoing null geodesics, the Raychaudhuri
equations (18.12) are

D̂vKavb +Kc
vbKavc = −Rbvav . (18.23)

The condition Kavv = 0 that the outgoing null directions of the congruence be geodesic �xes 2 of the
6 degrees of freedom of Lorentz transformations of the tetrad. Additional convenient gauge choices can be
imposed. A common choice is to impose su�cient conditions that the restricted covariant derivative D̂v in
the Raychaudhuri equation (18.23) reduces to the directed derivative ∂v. This requires that the null axis
γγv and the 2 spatial axes γγ± (but not the null axis γγu) of the tetrad be parallel-transported along the null
geodesic congruence. Parallel-transport of γγv and γγ± amounts to imposing that 4 of the 6 tetrad connections
vanish,

Γuvv = Γ+−v = K+vv = K−vv = 0 . (18.24)

The condition Γuvv = 0 is the condition that the geodesics along γγv be a�nely parameterized, while the
condition Γ+−v = 0 is the condition that the spatial axes γγ± do not rotate in the parallel-transported frame.
Under the conditions (18.24), the restricted covariant derivative in the Raychaudhuri equation (18.23) equals
a derivative with respect to an a�ne parameter λ along the null geodesic,

D̂v = ∂v = γγv · ∂ = u · ∂ =
dxµ

dλ

∂

∂xµ
=

d

dλ
. (18.25)

Other gauge choices can be made. A natural choice is to choose the tetrad so that both outgoing and ingoing
null directions are geodesic. For example, the principal null directions of an ideal black hole are geodesic (the
tetrad that aligns with the principal null directions is the Boyer-Lindquist tetrad). The condition that the
outgoing and ingoing null directions be geodesic translates into the condition that Kazz = 0, or explicitly
the 4 conditions

K+vv = K−vv = K+uu = K−uu = 0 . (18.26)

If the ingoing null direction is geodesic, then the Raychaudhuri equations along the ingoing null geodesic
are the same as equations (18.23) with null indices swapped, v ↔ u. By a suitable Lorentz boost in the
γγv�γγu plane, it is always possible to arrange that the tetrad frame is a�nely parameterized in either the γγv
or the γγu direction (that is, either Γuvv or Γvuu vanishes), but in general it is not possible to arrange that
both null directions are a�nely parameterized. Similarly, by a suitable spatial rotation in the γγ+�γγ− plane,
it is always possible to arrange that the spatial axes are parallel-transported along either the γγv or the γγu
direction (that is, either Γ+−v or Γ+−u vanishes), but in general it is not possible to arrange that the spatial
axes are parallel-transported along both null directions.
The Raychaudhuri equations (18.23) are equations governing the evolution of the extrinsic curvatures

Kavb with middle index the null direction v, and outer indices ab spin indices. Analogously to the 3+1

decomposition (18.16), these 4 components are commonly decomposed into an expansion scalar ϑ, an
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antisymmetric vorticity tensor $ab ≡ εab$, and a traceless symmetric shear tensor σab,

Kavb = γabϑ+ εab$ + σab . (18.27)

Like the extrinsic curvature, the expansion, vorticity, and shear are restricted tensors. As usual in the
Newman-Penrose formalism, complex conjugation �ips the spin indices on any tensor, +↔ −, a consequence
of the fact that the Newman-Penrose spin axes γγ+ and γγ− are complex conjugates of each other. The totally
antisymmetric tensor εab in 2-dimensional spin space �ips sign under complex conjugation, so is purely
imaginary, ε+− = i. The expansion and vorticity scalars ϑ and $ are both real. The shear is complex, with
two components that are complex conjugates of each other, σ−− = σ∗++.
Just as the timelike expansion equals one third the logarithmic rate of change of the comoving volume

element along a timelike congruence, equation (18.17), so also the null expansion equals one half the log-
arithmic rate of change of the comoving area element along a null congruence. First, notice that along an
outgoing null congruence, the ingoing γγu component of the tetrad-frame covariant divergence Dmu

m van-
ishes, Duu

u = ∂uu
u + Γumuu

m = −Γvvu = 0 (no sum over u or v). Therefore the covariant divergence equals
the tetrad-frame covariant divergence restricted to the 3-dimensional hypersurface spanned by the outgoing
geodesic direction γγv and the spatial directions γγ±. Such a 3-dimensional hypersurface can be constructed
by starting with any spatial 2-surface and projecting �outgoing� null geodesics not necessarily orthogonally
from it. Choose comoving coordinates along the null hypersurface consisting of the a�ne parameter λ along
with 2 spatial coordinates xα that remain constant along the geodesics of the congruence. The coordinate
3-velocity within the null hypersurface is uµ ≡ dxµ/dλ = {1, 0, 0}. Then analogously to equation (18.17)
the null expansion satis�es, from equation (18.9) with Γvvv = 0 because the congruence is being taken to be
a�nely parameterized,

2ϑ = Kv = Dmu
m = Dµu

µ =
1
√
g

∂(
√
guµ)

∂xµ
= uµ

∂ ln
√
g

∂xµ
=
d ln
√
g

dλ
, (18.28)

where g is the determinant of 2-dimensional spatial metric of the comoving line-element. Thus the null
expansion ϑ equals one half the logarithmic rate of change of the cross-sectional area of the comoving area
element.
In terms of the expansion, vorticity, and shear, the Raychaudhuri equations (18.23) along the outgoing

null geodesic direction v are

(D̂v + ϑ)ϑ−$2 + σ++σ
∗
++ = −4πTvv , (18.29a)

(D̂v + 2ϑ)$ = 0 , (18.29b)

(D̂v + 2ϑ)σ++ = −Cv+v+ . (18.29c)

The restricted covariant derivatives in equations (18.29) are

D̂vϑ = (∂v + Γuvv)ϑ , (18.30a)

D̂v$ = (∂v + Γuvv)$ , (18.30b)

D̂vσ++ = (∂v + Γuvv + 2Γ+−v)σ++ . (18.30c)
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expansion ϑ vorticity ϖ shear σ

Figure 18.1 Illustrating how the Sachs optical coe�cients, the expansion ϑ, the vorticity $, and the shear σ, char-

acterize the rate at which a congruence of light rays changes shape as it propagates. The congruence of light rays is

coming vertically upward out of the paper.

18.5 Sachs optical coe�cients

If the null axis γγv and the two spatial axes γγ± are taken to be parallel-transported along the null geodesic
directions γγv of the congruence, then the tetrad connections Γuvv and Γ−+v in equations (18.29) vanish.
In this case the expansion ϑ, vorticity $, and the complex shear σ ≡ σ++ are commonly called the Sachs
optical coe�cients (Sachs, 1961), often referred to as Sachs scalars. The Raychaudhuri equations (18.29)
simplify to

(∂v + ϑ)ϑ−$2 + σσ∗ = −4πTvv , (18.31a)

(∂v + 2ϑ)$ = 0 , (18.31b)

(∂v + 2ϑ)σ = −Cv+v+ . (18.31c)

The directed derivative ∂v equals a derivative d/dλ with respect to an a�ne parameter along the geodesic
directions, equation (18.25).
The Sachs coe�cients characterize how the shape of the congruence of light rays evolves as it propagates,

as illustrated in Figure 18.1. The expansion represents how fast the congruence expands, the vorticity how
fast it rotates, and the shear how fast its ellipticity is changing. The amplitude and phase of the complex
shear represent the amplitude and phase of the major axis of the shear ellipse.

Concept question 18.2. Can vorticity be non-zero while shear vanishes? Answer. Yes. The princi-
pal null congruences of the Λ-Kerr-Newman geometry provide an example of congruences that have non-zero
vorticity but are shear-free, Exercise 23.9.

18.6 Hypersurface-orthogonality for a timelike congruence

Singularity theorems consider special congruences that are both geodesic and vorticity-free. The Raychaud-
huri equation (18.18b) guarantees that if the vorticity $ab vanishes on the initial 3-dimensional hypersurface
of a timelike geodesic congruence, then the vorticity will vanish identically everywhere along the congruence.
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This section shows that a timelike congruence is geodesic and vorticity-free if and only if it is hypersurface-
orthogonal, that is, the 4-velocity u along the paths is normal to some hypersurface, equations (18.33),
which proves to be a hypersurface of constant proper time, or equivalently of constant action. The next
subsection, �18.6.1, shows how to construct a timelike hypersurface-orthogonal congruence.
The covariant curl of the 4-velocity u ≡ γγ0 of a congruence of timelike paths is

D∧u = γγm ∧γγn
(
∂mun − Γknmuk

)
= γγm ∧γγn Γn0m = γγ0 ∧γγaKa − γγa ∧γγb$ab . (18.32)

The covariant curl is a 6-component bivector whose 3 time-space parts are the acceleration Ka, and whose
3 space-space parts are the vorticity $ab.
Equation (18.32) shows that the covariant curl D∧u vanishes if and only if both the acceleration Ka and

the vorticity $ab vanish. If the curl vanishes, and if torsion vanishes, then by Poincaré's lemma the 4-velocity
u is, at least locally, the gradient of a scalar τ ,

D∧u = 0 ⇔ u = −∂τ . (18.33)

The scalar τ is just the proper time along the geodesics, as follows from

u · u = −u · ∂τ = −dx
µ

dτ

∂τ

∂xµ
= −1 . (18.34)

Thus the 4-velocity u is normal to 3-dimensional hypersurfaces of constant proper time τ .
The action S of a freely-falling particle of non-zero massm is related to the proper time along the particle's

worldline by, equation (4.7),

S = −mτ . (18.35)

Thus the hypersurfaces of a hypersurface-orthogonal timelike congruence are also hypersurfaces of constant
action for massive, freely-falling particles. The covariant momentum pµ = muµ of the particle is the gradient
of the action, equation (4.105),

pµ =
∂S

∂xµ
, (18.36)

which reproduces the result u = −∂τ .
A weaker condition than the vanishing of D∧u is that the curl D∧(u/α) of the 4-velocity scaled by some

arbitrary factor α vanishes. The covariant curl of the scaled 4-velocity u/α is

αD∧(u/α) = D∧u+ u∧∂ lnα = γγ0 ∧γγa (Ka − ∂a lnα)− γγa ∧γγb$ab . (18.37)

This curl of the scaled 4-velocity vanishes if and only if the acceleration Ka is the gradient of a scalar, and
the vorticity $ab vanishes,

Ka = ∂a lnα , $ab = 0 . (18.38)

The conditions (18.38) are precisely those established in the ADM formalism, with α being the lapse. If
conditions (18.38) hold, thenD∧(u/α) vanishes, and if torsion also vanishes, then by Poincaré's lemma u/α
is, at least locally, the gradient of a scalar t,

D∧(u/α) = 0 ⇔ u = −α∂t . (18.39)



18.6 Hypersurface-orthogonality for a timelike congruence 529

x

t

Figure 18.2 Spacetime diagram of Minkowski space illustrating a hypersurface-orthogonal congruence of timelike

geodesics. The congruence is constructed by starting with an initial 3-dimensional spacelike hypersurface (thick like),

here a cosine perturbation from the t = 0 hypersurface, and projecting geodesics (blue lines) along its timelike normal

direction. Hypersurfaces of constant proper time τ (purple lines) to the past or future of the initial hypersurface

remain orthogonal to the geodesics. Generically, as here, the geodesics cross, and the spatial hypersurfaces of constant

proper time correspondingly develop caustics where the hypersurfaces fold and crease.

The scalar coordinate t is just the ADM time coordinate, as follows from

u = γγ0 = −γγ0 = −e0
µ e

µ = −α et = −α eµ ∂t

∂xµ
= −α∂t . (18.40)

18.6.1 Construction of timelike, geodesic, hypersurface-orthogonal congruences

It is straightforward to construct a timelike, geodesic, hypersurface-orthogonal congruence by starting with
any 3-dimensional spacelike hypersurface and projecting geodesics into the past and future along the normal
to the spacelike hypersurface, as illustrated in Figure 18.2. The geodesics are orthogonal to hypersurfaces
of constant proper time τ , or equivalently of constant action S = −mτ , starting at τ = 0 (or S = 0) on
the initial spacelike hypersurface. Generically, the resulting geodesics will cross at some point in the past
or future or both, and the hypersurface correspondingly develops caustics, as in Figure 18.2. Geodesics
remain orthogonal to hypersurfaces of constant proper time τ even after they cross, but the proper time τ
is multiply-valued at spacetime points crossed by multiple geodesics.
Caustics in collisionless streams of stars are often observed in deep images of elliptical galaxies, as illustrated

in Figure 18.3. When galaxies collide, the gravitational potentials of the galaxies merge, but because galaxies
are mostly empty space, the stars in the galaxies do not collide. When a small galaxy with a small velocity
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Figure 18.3 This deep image of the elliptical galaxy NGC 474 shows shells caused by caustics in collisionless streams

of stars originating from small galaxies accreted by NGC 474 over the last billion years. Astronomy Picture of the

Day, 2011 July 26. Image credit: P.-A. Duc (CEA, CFHT), Atlas 3D Collaboration.

dispersion in its stars falls into a larger galaxy, the smaller galaxy is tidally disrupted by the larger galaxy,
but the stars from the smaller galaxy continue to orbit the larger galaxy in coherent collisionless streams,
forming caustics where the star streams turn around in the merged gravitational potential.

18.7 Hypersurface-orthogonality for a null congruence

For massive particles, the proper time τ , or equivalently the action S = −mτ = −m2λ, where λ is the
a�ne parameter, progresses along geodesics, and momenta along geodesics are orthogonal to hypersurfaces of
constant action, equation (18.36). For massless particles on the other hand, the action does not progress along
null geodesics. For a null congruence, it is not possible to start from an initial 3-dimensional hypersurface
over which the action vanishes, and to project null geodesics into the past and future from this initial
hypersurface, because the failure of the action to progress along null geodesics would then imply that the
action would vanish everywhere, and the spacetime would cease to be foliated into hypersurfaces of constant
action to which geodesics were putatively orthogonal.
Rather, the action must be allowed to vary along the initial 3-dimensional hypersurface of a null congruence.
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The action on the initial 3-dimensional hypersurface foliates it into 2-dimensional spatial surfaces of constant
action. At each point on each 2-dimensional surface there are exactly 2 null directions orthogonal to the spatial
2-surface, one �outgoing,� the other �ingoing.� Projecting null geodesics along these null directions de�nes
a pair of 3-dimensional null hypersurfaces along which the action is constant. The result is a spacetime
that is foliated into pairs of outgoing and ingoing 3-dimensional null hypersurfaces of constant outgoing (+)
and ingoing (−) action S±. The values of the actions are determined by their values on the initial non-null
3-dimensional hypersurface.
Null congruences constructed in this way are said to be hypersurface-orthogonal. This de�nition of

hypersurface-orthogonality for null congruences does not require that equation (18.36) holds across all of
the 4-dimensional spacetime. Rather, hypersurface-orthogonality for null congruences imposes that equa-
tion (18.36) holds in the massless limit along each 3-dimensional null hypersurface of constant action,

pµ = lim
m→0

m2 ∂λ

∂xµ
. (18.41)

To see why the de�nition of hypersurface-orthogonality for null congruences does not impose that the con-
dition (18.36) hold over the entire 4-dimensional spacetime, suppose contrarily that it did. The 4-momentum
along an outgoing null geodesic of the congruence satis�es p = pvγγv = puγγ

u (no sum over v or u). Poincaré's
lemma implies that equation (18.36) holds, at least locally, if and only if the covariant curl of the 4-momentum
vanishes, D∧p = 0. The covariant curl of the 4-momentum is, similarly to equation (18.32),

D∧p = γγm ∧γγn
(
∂mpn − Γknmpk

)
= −pv γγm ∧γγn Γvnm , (18.42)

which vanishes if and only if Γv[nm] = 0. This is a set of 6 conditions on the tetrad connections, requiring
not only that the 2 spatial components of the acceleration Kavv and the 1 component of vorticity Kv[−+] ≡
$+− ≡ ε+−$ vanish, but also that the 1 component of acceleration Γuvv along the null direction γγv and
the 2 components Γv[au] vanish. While the 6 Lorentz gauge freedoms allow these 6 tetrad-frame connections
to be chosen to vanish along the outgoing congruence, the corresponding 6 connections along the ingoing
congruence cannot be made to vanish at the same time. Moreover the Raychaudhuri equations (18.29) have
no dependence on the 2 components Γv[au], and the vorticity equation (18.29b) allows vorticity to vanish
without requiring that Γuvv vanishes.
Thus hypersurface-orthogonality for null congruences is conventionally de�ned by the weaker condition

that the limiting equation (18.41) hold along each 3-dimensional null hypersurface. This requires that only
the components p∧(D∧p) of the covariant curl tangent to each 3-dimensional null hypersurface vanish,
not that the covariant curl vanish identically throughout spacetime. The components of the covariant curl
restricted to the null hypersurface are

p∧(D∧p) = −(pv)2 γγu ∧
(
γγv ∧γγaKavv − γγa ∧γγb$ab

)
. (18.43)

The covariant curl (18.43) is a 3-component bivector whose time-space part is proportional to the spatial
accelerationKavv, and whose space-space part is proportional to the vorticity$ab ≡ εab$. Unlike the timelike
case, equation (18.37), the hypersurface-orthogonality condition (18.43) for null congruences is unchanged
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Figure 18.4 3D spacetime diagram of Minkowski space illustrating a pair of hypersurface-orthogonal congruences of

null geodesics (blue lines) emerging from a 2-dimensional spacelike surface (thick line). The spacelike curves (purple

lines) on the two null hypersurfaces are lines of constant a�ne parameter λ. These lines of constant a�ne parameter

trace the intersections of null hypersurfaces in the remaining spacetime provided that the congruences are constructed

to have translation symmetry in the y-direction (and in the suppressed z-direction), in which case other null hyper-

surfaces are parallel to the two shown, translated in the y-direction. This Figure would look the same as Figure 18.2

if projected on to the t�x plane.

by scaling the momentum p by some arbitrary factor α, since

αp∧ (D∧(p/α)) = p∧(D∧p) + p∧p∧∂ lnα = p∧(D∧p) , (18.44)

because p∧p = 0.

The Raychaudhuri equation (18.29b) for the vorticity $ along an outgoing geodesic of a null congruence
implies that if the vorticity vanishes on the initial 2-dimensional spatial hypersurface spanned by γγ±, then it
is guaranteed to vanish thereafter. Thus a null geodesic congruence that is initially hypersurface-orthogonal
will remain hypersurface-orthogonal thereafter. Note that equation (18.29b) allows the vorticity to vanish
identically without imposing that the geodesic be a�nely parameterized, that is, without imposing that Γuvv
vanishes.

Hypersurface-orthogonality along the outgoing null congruence imposes only 3 conditions on the tetrad,
namely that the outgoing spatial acceleration Kavv and the outgoing vorticity $+− ≡ Kv[−+] vanish. The 6
Lorentz gauge freedoms allow hypersurface-orthogonality to be imposed simultaneously along both outgoing
and ingoing null congruences, by demanding that the spatial accelerations Kazz and the vorticities Kz[+−]

along both congruences vanish.
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18.7.1 Construction of double-null, geodesic, hypersurface-orthogonal congruences

To construct hypersurface-orthogonal congruences of outgoing and ingoing null geodesics, start with any non-
null (timelike or spacelike) 3-dimensional hypersurface. Foliate the hypersurface into 2-dimensional spatial
surfaces labelled by a time coordinate or a spatial coordinate according to whether the parent 3-hypersurface
is timelike or spacelike. Project null geodesics along the two null directions normal to each spatial 2-surface.
The null geodesics projecting from each 2-surface form a pair of 3-dimensional null hypersurfaces, as illus-
trated by Figure 18.4. Each null hypersurface is labelled by a constant null coordinate whose value is set by
the value of the time or spatial coordinate on the 2-surface. The two geodesic null directions at each point
de�ne the null directions γγv and γγu of a Newman-Penrose tetrad. The spatial directions orthogonal to the
two null directions de�ne a plane whose tangent directions form the spatial directions γγ+ and γγ− of the
Newman-Penrose tetrad.

Again it should be emphasized that hypersurface-orthogonality for null congruences is de�ned not by
condition (18.36) imposed over all spacetime, but rather by the limiting condition (18.41) imposed over each
of the 3-dimensional null hypersurfaces of the congruence.

18.8 Focusing theorems

Focusing theorems exist for both timelike and null congruences. The focusing theorem follows from the
Raychaudhuri equation for the expansion ϑ, coupled with assumptions about the sources in that equation.
The assumptions are:

1. the congruence is hypersurface-orthogonal;

2. the expansion is negative at some point, ϑ < 0;

3. the energy-momentum tensor satis�es a positivity condition.

As shown in ��18.6 and 18.7, a hypersurface-orthogonal timelike or null congruence can be constructed
by starting from some arbitrary (spacelike, for a timelike congruence, or non-null, for a null congruence)
initial 3-dimensional hypersurface and projecting geodesics orthogonally from it. The requirement that the
expansion be negative at some point is the reason that singularity theorems posit that a trapped surface has
formed. A trapped surface is de�ned to be a closed 2-dimensional surface from which the expansions along
both outgoing and ingoing orthogonal null directions are negative everywhere along the surface. Trapped
surfaces exist inside the outer horizon of an ideal black hole, and it is plausible that the formation of a
trapped surface is characteristic of the formation of a black hole. The �nal condition, a positivity condition
on the energy-momentum tensor, ensures that the energy-momentum source in the Raychaudhuri equation
is positive.
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18.8.1 Focusing theorem for a null geodesic congruence

If the vorticity $ vanishes, then in the frame parallel-transported along the null congruence, the Raychaud-
huri equation (18.31a) for the expansion ϑ along a null congruence simpli�es to

dϑ

dλ
+ ϑ2 + σσ∗ + 1

2Gvv = 0 . (18.45)

The terms ϑ2 and σσ∗ are necessarily positive. The Newman-Penrose component Gvv of the Einstein tensor
is related to the components in the parent orthonormal tetrad by

Gvv = 1
2G00 +G03 + 1

2G33 . (18.46)

The Einstein component Gvv has boost weight 2, and is therefore multiplied by e2θ under a boost by
rapidity θ in the 3-direction. Consequently positivity of Gvv in one frame implies positivity of Gvv in any
frame boosted in the 3-direction. Boosted along the 3-direction into the centre-of-mass frame, where G03 = 0,
equation (18.46) reduces to

Gvv = 1
2 (G00 +G33) = 4π(ρ+ p3) , (18.47)

where ρ is the energy density and p3 the pressure along the 3-direction. The Einstein component Gvv is
therefore positive provided that

ρ+ p3 ≥ 0 , (18.48)

which is called the null energy condition. If the null energy condition (18.48) holds, then the vorticity-free
Raychaudhuri equation (18.45) shows that the expansion ϑ must always decrease.
The Raychaudhuri equation (18.45) can be arranged as

d(1/ϑ)

dλ
= 1 +

σσ∗ + 1
2Gvv

ϑ2
, (18.49)

whose right hand side is greater than or equal to 1, given the null energy condition (18.48). If the expansion
ϑ is negative (meaning that light rays are converging), then equation (18.49) shows that 1/ϑ will reach 0 at
a �nite value of the a�ne parameter λ. In other words, ϑ must become negative in�nite at some �nite value
of λ.
A negative in�nite value of the expansion means that the cross-sectional area of the null congruence has

shrunk to zero. This does not mean that a singularity has formed; it means simply that geodesics have reached
a crossing point. For example, Figure 18.4 shows crossing geodesics of a null congruence in Minkowski space.
It is only when all geodesics from a hypersurface-orthogonal congruence reach a crossing point that the
spacetime encounters di�culties. In Figure 18.4, while the expansion is negative along some null geodesics,
it is positive along others.
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Figure 18.5 Spacetime diagram illustrating the dog-leg proposition. The dog-leg proposition asserts that any dog-leg

path that joins 2 events A and B by a consecutive pair of null or timelike geodesics can be deformed into a strictly

timelike path of longer proper time between A and B. The proposition is an assertion about the global causal structure

of spacetime.

18.8.2 Focusing theorem for timelike geodesic congruence

The proof of the focusing theorem for timelike geodesics is similar to that for null geodesics. For vanishing
vorticity, the Raychaudhuri equation (18.18a) along a timelike geodesic congruence is

dϑ

dτ
+ ϑ2 + 1

3σ
abσab + 1

3R00 = 0 (18.50)

in the orthonormal tetrad frame freely-falling along the geodesic. The component R00 of the Ricci tensor in
the orthonormal tetrad is

R00 = 4π(ρ+ 3p) , (18.51)

where ρ is the energy density and p ≡ 1
3p
a
a is the isotropic pressure. The Ricci component R00 is positive

provided that

ρ+ 3p ≥ 0 , (18.52)

which is called the strong energy condition. Note that a cosmological constant violates the strong energy
condition (18.52), but not the null energy condition (18.48).

18.9 Singularity theorems

This section gives an account of one version of the singularity theorems, the original null version proved by
Penrose (1965). See Senovilla (1998) for a review of singularity theorems.
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Figure 18.6 Null boundary of the future of a 2-dimensional spacelike surface. The null boundary is a pair of 3-

dimensional null surfaces projecting orthogonally from the 2-surface (thick line), with the parts of the hypersurfaces

excised after geodesic crossing, since the latter parts are connected by timelike geodesics to the 2-surface and are

therefore not part of the null boundary. This is the same as Figure 18.4, but with geodesics terminated where they

cross.

18.9.1 Dog-leg proposition

A building block of singularity theorems is the dog-leg proposition. The dog-leg proposition asserts that
any dog-leg path between two events A and B that consists of two di�erent timelike or null geodesics joined
together can be deformed into a strictly timelike path of longer proper time between A and B, as illustrated in
Figure 18.5. The dog-leg proposition is a statement about the global causal structure of spacetime. The dog-
leg proposition does not hold inside the inner horizon of a Kerr-Newman black hole, Concept question 18.3.
The dog-leg proposition can be replaced by other plausible hypotheses. Much of the content of the book

by Hawking and Ellis (1973) is concerned with exploring di�erent plausible causality conditions. However,
that will not be done here.

18.9.2 Null singularity theorem

Start with any 2-dimensional spatial surface. The future of this 2-surface is the 4-dimensional region of
spacetime comprising all events that can be reached by some non-spacelike future-pointing path that starts
at some point on the 2-surface. In a local neighbourhood of the 2-surface, the boundary of the future of the
2-surface comprises the pair of 3-dimensional null hypersurfaces projected orthogonally from the 2-surface,
as illustrated by Figure 18.4. The dog-leg proposition then implies that the future boundary is formed only
from orthogonally-projected null geodesics. However, orthogonally-projected geodesics can intersect, as in
Figure 18.4. After two orthogonally-projected geodesics intersect, a point to the future of the intersection can
be reached from the 2-surface by starting on one geodesic and switching to the other at the crossing point.
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This dog-leg null path can be deformed into a timelike curve, and is therefore also not part of the future
null boundary. Therefore the boundary of the future of the 2-surface comprises the pair of 3-dimensional
null hypersurfaces projected orthogonally from the 2-surface, truncated where the null geodesics cross, as
illustrated by Figure 18.6.
Now assume that the 2-dimensional surface is a trapped surface, meaning that the expansion along both

the outgoing and ingoing null geodesic directions projected orthogonally from the 2-surface is negative at
every point of the 2-surface. The focusing theorem implies that the expansion along every such null geodesic
reaches negative in�nity at a �nite value of the a�ne parameter λ, indicating that neighbouring null geodesics
are crossing. Points on a null geodesic to the future of a crossing are no longer on the boundary of the future.
Therefore the 3-dimensional boundary of the future of the trapped surface terminates after a �nite a�ne
parameter at a 2-dimensional caustic boundary. This is a contradiction, since the boundary of a boundary
of a manifold is empty. Therefore the future must terminate, as it does for example inside the horizon of the
Schwarzschild geometry.

Concept question 18.3. How do singularity theorems apply to the Kerr geometry? Answer.

The Kerr geometry violates the deg-leg proposition, so for this geometry the future does not terminate, but
rather continues beyond the region where any trapped surface reaches a caustic boundary (see �23.24.1). As
found in Exercise 23.1, the only geodesics that reach the ring singularity (Singularity or Parallel Singularity)
of a Kerr black hole with a 6= 0 are null geodesics that lie in the equatorial plane. Therefore, to reach the
singularity from a non-equatorial point, it is necessary to follow a geodesic down to the equatorial plane
and then dog-leg to the singularity. Such a path cannot be deformed to a timelike geodesic. Similarly, a
geodesic that starts at the singularity is con�ned to the equatorial plane, and a dog-leg is required to get
out of the plane. The region that can be reached from the singularity by a dog-legged geodesic is the region
inside the inner horizon. The ingoing and outgoing inner horizons of a Kerr black hole form the boundary of
predictability, also known as the Cauchy horizon. A similar argument applies to the Kerr-Newman geometry,
except that geodesics that hit the singularity must not only be null and equatorial, but also on one of the
ingoing or outgoing principal null congruences, Exercise 23.1.

Concept question 18.4. How do singularity theorems apply to the Reissner-Nordström geom-

etry? In Reissner-Nordström, the only geodesics that hit the singularity are radial null geodesics, Exer-
cise 23.1. The Reissner-Nordström violates the dog-leg proposition because a dog-leg path that connects to
the singularity cannot be deformed into a strictly timelike path: any path that connects to the singularity
must be null asymptotically near the singularity.



Concept Questions

1. Explain how the equation for the Gullstrand-Painlevé metric (19.22) encodes not merely a metric but a
full vierbein.

2. In what sense does the Gullstrand-Painlevé metric (19.22) depict a �ow of space? [Are the coordinates
moving? If not, then what is moving?]

3. If space has no substance, what does it mean that space falls into a black hole?
4. Would there be any gravitational �eld in a spacetime where space fell at constant velocity instead of

accelerating?
5. In spherically symmetric spacetimes, what is the most important Einstein equation, the one that causes

Reissner-Nordström black holes to be repulsive in their interiors, and causes mass in�ation in non-empty
(non Reissner-Nordström) charged black holes?

538



What's important?

1. The tetrad formalism provides a �rm mathematical foundation for the concept that space falls faster
than light inside a black hole.

2. Whereas the Kerr-Newman geometry of an ideal rotating black hole contains inside its horizon wormhole
and white hole connections to other universes, real black holes are subject to the mass in�ation stability
discovered by Eric Poisson & Werner Israel (Poisson and Israel, 1990).
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Black hole waterfalls

19.1 Tetrads move through coordinates

As already discussed in �11.3, the way in which metrics are commonly written, as a (weighted) sum of squares
of di�erentials,

ds2 = γmn e
m
µ e

n
ν dx

µdxν , (19.1)

encodes not only a metric gµν = γmn e
m
µ e

n
ν , but also a vierbein emµ, and consequently an inverse vierbein

em
µ, and associated tetrad γγm. Most commonly the tetrad metric is orthonormal (Minkowski), γmn = ηmn,

but other tetrad metrics, such as Newman-Penrose, occur. Usually it is self-evident from the form of the
line-element what the tetrad metric γmn is in any particular case.
If the tetrad is orthonormal, γmn = ηmn, then the 4-velocity um of an object at rest in the tetrad, or

equivalently the 4-velocity of the tetrad rest frame itself, is

um = {1, 0, 0, 0} . (19.2)

The tetrad-frame 4-velocity (19.2) of the tetrad rest frame is transformed to a coordinate-frame 4-velocity
uµ in the usual way, by applying the inverse vierbein,

dxµ

dτ
≡ uµ = em

µum = e0
µ . (19.3)

Equation (19.3) says that the tetrad rest frame moves through the coordinates at coordinate 4-velocity given
by the zeroth row of the inverse vierbein, dxµ/dτ = e0

µ. The coordinate 4-velocity uµ is related to the lapse
α and shift βα in the ADM formalism by uµ = {1, βα}/α, equation (17.11).
The idea that locally inertial frames move through the coordinates provides the simplest way to conceptu-

alize black holes. The motion of locally inertial frames through coordinates is what is meant by the �dragging
of inertial frames� around rotating masses.

Exercise 19.1. Tetrad frame of a rotating wheel. Derive the line-element of Minkowski space adapted
to the tetrad frame of a wheel uniformly rotating at angular velocity ω. Show that a clock attached to the
wheel ticks slow by the Lorentz factor γ compared to a clock in the non-rotating frame, and that rulers
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attached to the wheel measure the rim to be Lorentz-contracted by a factor γ compared to the non-rotating
frame.
Solution. Start with the line-element of Minkowski space in cylindrical coordinates xµ ≡ {t, r, φ, z},

ds2 = − dt2 + dr2 + r2dφ2 + dz2 . (19.4)

The vierbein for the line-element (19.4) is emµ = diag(1, 1, r, 1), and the corresponding inverse vierbein is
em

µ = diag(1, 1, 1/r, 1). Lorentz boost the inverse vierbein into the tetrad frame of the wheel rotating at
velocity v = rω in the azimuthal φ direction,

em
µ =


γ 0 γrω 0

0 1 0 0

γrω 0 γ 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1/r 0

0 0 0 1

 =


γ 0 γω 0

0 1 0 0

γrω 0 γ/r 0

0 0 0 1

 . (19.5)

The coordinate-frame 4-velocity of the wheel's tetrad frame through the coordinates is

dxµ

dτ
≡ uµ = e0

µ = {γ, 0, γω, 0} , (19.6)

con�rming that indeed the wheel is moving at dφ/dt = ω. The line-element is

ds2 = − γ2(dt− r2ω dφ)2 + dr2 + γ2r2(dφ− ω dt)2 + dz2 . (19.7)

A point on the wheel follows dr = dφ− ω dt = dz = 0, so its proper time satis�es

dτ = γ(dt− r2ω dφ) = γ(1− r2ω2)dt =
dt

γ
, (19.8)

demonstrating that a clock on the wheel runs slow by γ as claimed. Rulers attached to the rim of the wheel
measure distances that are simultaneous in the frame of the wheel, corresponding to dt− r2ω dφ = 0. Thus
corotating rulers measure azimuthal distances along the rim of

dl = γr(dφ− ω dt) = γr(1− r2ω2)dφ =
r dφ

γ
, (19.9)

demonstrating that the rim is Lorentz-contracted by γ as claimed.

19.2 Gullstrand-Painlevé waterfall

The Gullstrand-Painlevé metric is a version of the metric for a spherical (Schwarzschild or Reissner-Nordström)
black hole discovered in 1921 independently by Allvar Gullstrand (Gullstrand, 1922) and Paul Painlevé
(Painlevé, 1921). Although Gullstrand's paper was published in 1922, after Painlevé's, it appears that Gull-
strand's work has priority. Gullstrand's paper was dated 25 May 1921, whereas Painlevé's is a write up of a
presentation to the Académie des Sciences in Paris on 24 October 1921. Moreover, Gullstrand seems to have
had a better grasp of what he had discovered than Painlevé, for Gullstrand recognized that observables such
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Figure 19.1 Radial velocity β in (upper panel) a Schwarzschild black hole, and (lower panel) a Reissner-Nordström

black hole with electric charge Q = 0.96.

as the redshift of light from the Sun are una�ected by the choice of coordinates in the Schwarzschild geom-
etry, whereas Painlevé, noting that the spatial metric was �at at constant free-fall time, dtff = 0, concluded
in his �nal sentence that, as regards the redshift of light and such, �c'est pure imagination de prétendre tirer
du ds2 des conséquences de cette nature.�
Although neither Gullstrand nor Painlevé understood it, their metric paints a picture of space falling like

a river, or waterfall, into a spherical black hole, Figure 6.1. The river has two key features: �rst, the river
�ows in Galilean fashion through a �at Galilean background, equation (19.25); and second, as a freely-falling
�shy swims through the river, its 4-velocity, or more generally any 4-vector attached to it, evolves by a
series of in�nitesimal Lorentz boosts induced by the change in the velocity of the river from place to place,
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equation (19.30). Because the river moves in Galilean fashion, it can, and inside the horizon does, move
faster than light through the background coordinates. However, objects moving in the river move according
to the rules of special relativity, and so cannot move faster than light through the river.

19.2.1 Gullstrand-Painlevé tetrad

The Gullstrand-Painlevé metric (7.27) is

ds2 = − dt2ff + (dr − β dtff)2 + r2(dθ2 + sin2θ dφ2) , (19.10)

where β is de�ned to be the radial velocity of a person who free-falls radially from rest at in�nity,

β =
dr

dτ
=

dr

dtff
, (19.11)

and tff is the free-fall time, the proper time experienced by a person who free-falls from rest at in�nity. The
radial velocity β is the (apparently) Newtonian escape velocity

β = ∓
√

2M(r)

r
, (19.12)

where M(r) is the interior mass within radius r, and the sign is − (infalling) for a black hole, + (outfalling)
for a white hole. For the Schwarzschild or Reissner-Nordström geometry the interior mass M(r) is the mass
M at in�nity minus the mass Q2/2r in the electric �eld outside r,

M(r) = M − Q2

2r
. (19.13)

Figure 19.1 illustrates the velocity �elds in Schwarzschild and Reissner-Nordström black holes. Horizons
occur where the radial velocity β equals the speed of light

β = ∓1 , (19.14)

with − for black hole solutions, + for white hole solutions. The phenomenology of Schwarzschild and Reissner-
Nordström black holes has already been explored in Chapters 7 and 8.

Exercise 19.2. Coordinate transformation from Schwarzschild to Gullstrand-Painlevé. Show that
the Schwarzschild metric transforms into the Gullstrand-Painlevé metric under the coordinate transformation
of the time coordinate

dtff = dt− β

1− β2
dr . (19.15)

Exercise 19.3. Velocity of a person who free-falls radially from rest. Con�rm that β given by
equation (21.36) is indeed the velocity (19.11) of a person who free-falls radially from rest at in�nity in the
Reissner-Nordström geometry.
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The Gullstrand-Painlevé line-element (19.10) encodes a vierbein with an orthonormal tetrad metric γmn =

ηmn through

e0
µ dx

µ = dtff , (19.16a)

e1
µ dx

µ = dr − β dtff , (19.16b)

e2
µ dx

µ = r dθ , (19.16c)

e3
µ dx

µ = r sin θ dφ . (19.16d)

Explicitly, the vierbein emµ of the Gullstrand-Painlevé line-element (19.10), and the corresponding inverse
vierbein emµ, are the matrices

emµ =


1 0 0 0

−β 1 0 0

0 0 r 0

0 0 0 r sin θ

 , em
µ =


1 β 0 0

0 1 0 0

0 0 1/r 0

0 0 0 1/(r sin θ)

 . (19.17)

According to equation (19.3), the coordinate 4-velocity of the tetrad frame through the coordinates is{
dtff
dτ

,
dr

dτ
,
dθ

dτ
,
dφ

dτ

}
= uµ = e0

µ = {1, β, 0, 0} , (19.18)

consistent with the claim (19.11) that β represents a radial velocity, while tff coincides with the proper time
in the tetrad frame.
The tetrad and coordinate axes γγm and eµ are related to each other by the vierbein in the usual way,

γγm = em
µ eµ and eµ = emµ γγm. The Gullstrand-Painlevé orthonormal tetrad axes γγm are thus related to

the coordinate axes eµ by

γγ0 = etff + βer , γγ1 = er , γγ2 = eθ/r , γγ3 = eφ/(r sin θ) . (19.19)

Physically, the Gullstrand-Painlevé-Cartesian tetrad (19.19) are the axes of locally inertial orthonormal
frames (with spatial axes γγa oriented in the polar directions r, θ, φ) attached to observers who free-fall
radially, without rotating, starting from zero velocity and zero angular momentum at in�nity. The fact
that the tetrad axes γγm are parallel-transported, without precessing, along the worldlines of the radially
free-falling observers can be con�rmed by checking that the tetrad connections Γnm0 with �nal index 0 all
vanish, which implies that

dγγm
dτ

= ∂0γγm ≡ Γnm0γγn = 0 . (19.20)

That the proper time derivative d/dτ in equation (19.20) of a person at rest in the tetrad frame, with
4-velocity (19.2), is equal to the directed time derivative ∂0 follows from

d

dτ
= uµ

∂

∂xµ
= um∂m = ∂0 . (19.21)



19.2 Gullstrand-Painlevé waterfall 545

19.2.2 Gullstrand-Painlevé-Cartesian tetrad

The manner in which the Gullstrand-Painlevé line-element depicts a �ow of space into a black hole is eluci-
dated further if the line-element is written in Cartesian rather than spherical polar coordinates. Introduce a
Cartesian coordinate system xµ ≡ {tff , xα} ≡ {tff , x, y, z}. The Gullstrand-Painlevé metric in these Cartesian
coordinates is

ds2 = − dt2ff + δαβ(dxα − βαdtff)(dxβ − ββdtff) , (19.22)

with implicit summation over spatial indices α, β = x, y, z. The βα in the metric (19.22) are the components
of the radial velocity expressed in Cartesian coordinates

βα = β
{x
r
,
y

r
,
z

r

}
. (19.23)

The vierbein emµ and inverse vierbein emµ encoded in the Gullstrand-Painlevé-Cartesian line-element (19.22)
are

emµ =


1 0 0 0

−β1 1 0 0

−β2 0 1 0

−β3 0 0 1

 , em
µ =


1 βx βy βz

0 1 0 0

0 0 1 0

0 0 0 1

 . (19.24)

The tetrad axes γγm of the Gullstrand-Painlevé-Cartesian line-element (19.22) are related to the coordinate
tangent axes eµ by

γγ0 = etff + βαeα , γγa = δαa eα , (19.25)

and conversely the coordinate tangent axes eµ are related to the tetrad axes γγm by

etff = γγ0 − βaγγa , eα = δaαγγa . (19.26)

Note that the tetrad-frame contravariant components βa of the radial velocity coincide with the coordinate-
frame contravariant components βα; for clari�cation of this point see the more general equation (19.54)
for a rotating black hole. The Gullstrand-Painlevé-Cartesian tetrad axes (19.25) are the same as the tetrad
axes (19.19), but rotated to point in Cartesian directions x, y, z rather than in polar directions r, θ, φ. Like the
polar tetrad, the Cartesian tetrad axes γγm are parallel-transported, without precessing, along the worldlines
of radially free-falling observers, as can be con�rmed by checking once again that the tetrad connections
Γnm0 with �nal index 0 all vanish.
Remarkably, the transformation (19.25) from coordinate to tetrad axes is just a Galilean transformation

of space and time, which shifts the time axis by velocity β along the direction of motion, but which leaves
unchanged both the time component of the time axis and all the spatial axes. In other words, the black
hole behaves as if it were a river of space that �ows radially inward through Galilean space and time at the
Newtonian escape velocity.
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19.2.3 Gullstrand-Painlevé �shies

The Gullstrand-Painlevé line-element paints a picture of locally inertial frames falling like a river of space into
a spherical black hole. What happens to �shies swimming in that river? Of course general relativity supplies
a mathematical answer in the form of the geodesic equation of motion (19.27). Does that mathematical
answer lead to further conceptual insight?
Consider a �shy swimming in the Gullstrand-Painlevé river, with some arbitrary tetrad-frame 4-velocity

um, and consider a tetrad-frame 4-vector pk attached to the �shy. If the �shy is in free-fall, then the geodesic
equation of motion for pk is as usual

dpk

dτ
+ Γkmnu

npm = 0 . (19.27)

As remarked in �11.11, for a constant (for example Minkowski) tetrad metric, as here, the tetrad connections
Γkmn constitute a set of four generators of Lorentz transformations, one in each of the directions n. In
particular Γkmnu

n is the generator of a Lorentz transformation along the path of a �shy moving with 4-
velocity un. In a small (in�nitesimal) time δτ , the �shy moves a proper distance δξn ≡ unδτ relative to the
infalling river. This proper distance δξn = enνδx

ν = δnν (δxν − βνδtff) = δxn − βnδτ equals the distance
δxn moved relative to the background Gullstrand-Painlevé-Cartesian coordinates, minus the distance βnδτ
moved by the river. The geodesic equation (19.27) says that the change δpk in the tetrad 4-vector pk in the
time δτ is

δpk = −Γkmnδξ
npm . (19.28)

Equation (19.28) describes an in�nitesimal Lorentz transformation −Γkmnδξ
n of the 4-vector pk.

Equation (19.28) is quite general in general relativity: it says that as a 4-vector pk free-falls through a
system of locally inertial tetrads, it �nds itself Lorentz-transformed relative those tetrads. What is special
about the Gullstrand-Painlevé-Cartesian tetrad is that the tetrad-frame connections, computed by the usual
formula (11.54), are given by the coordinate gradient of the radial velocity (the following equation is valid
component-by-component despite the non-matching up-down placement of indices)

Γ0
ab = Γa0b = ∂bβ

a = δβb
∂βa

∂xβ
(a, b = 1, 2, 3) . (19.29)

The same property, that the tetrad connections are a pure coordinate gradient, holds also for the Doran-
Cartesian tetrad for a rotating black hole, equation (19.57). With the connections (19.29), the change
δpk (19.28) in the tetrad 4-vector is

δp0 = − δβa pa , δpa = − δβa p0 , (19.30)

where δβa is the change in the velocity of the river as seen in the tetrad frame,

δβa = δξβ
∂βa

∂xβ
. (19.31)

But equation (19.30) is nothing more than an in�nitesimal Lorentz boost by a velocity change δβa. This
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shows that a �shy swimming in the river follows the rules of special relativity, being Lorentz boosted by tidal
changes δβa in the river velocity from place to place.
Is it correct to interpret equation (19.31) as giving the change δβa in the river velocity seen by a �shy? Of

course general relativity demands that equation (19.31) be mathematically correct; the issue is merely one
of interpretation. Shouldn't the change in the river velocity really be

δβa
?
= δxν

∂βa

∂xν
, (19.32)

where δxν is the full change in the coordinate position of the �shy? No. Part of the change (19.32) in the
river velocity can be attributed to the change in the velocity of the river itself over the time δτ , which is
δxνriver∂β

a/∂xν with δxνriver = βνδτ = βνδtff . The change in the velocity relative to the �owing river is

δβa = (δxν − δxνriver)
∂βa

∂xν
= (δxν − βνδtff)

∂βa

∂xν
, (19.33)

which reproduces the earlier expression (19.31). Indeed, in the picture of �shies being carried by the river,
it is essential to subtract the change in velocity of the river itself, as in equation (19.33), because otherwise
�shies at rest in the river (going with the �ow) would not continue to remain at rest in the river.

19.3 Boyer-Lindquist tetrad

The Boyer-Lindquist metric for an ideal rotating black hole was explored already in Chapter 9. With the
tetrad formalism in hand, the advantages of the Boyer-Lindquist tetrad for portraying the Kerr-Newman
geometry become manifest. With respect to the orthonormal Boyer-Lindquist tetrad, the electromagnetic
�eld is purely radial, and the energy-momentum and Weyl tensors are diagonal. The Boyer-Lindquist tetrad
is aligned with the principal (outgoing and ingoing) null congruences.
The Boyer-Lindquist orthonormal tetrad is encoded in the Boyer-Lindquist metric

ds2 = − R2∆

ρ2

(
dt− a sin2θ dφ

)2
+

ρ2

R2∆
dr2 + ρ2dθ2 +

R4 sin2θ

ρ2

(
dφ− a

R2
dt
)2

, (19.34)

where

R ≡
√
r2 + a2 , ρ ≡

√
r2 + a2 cos2θ , ∆ ≡ 1− 2Mr

R2
+
Q2

R2
= 1− β2 . (19.35)

Explicitly, the vierbein emµ of the Boyer-Lindquist orthonormal tetrad is

emµ =


R
√

∆/ρ 0 0 − a sin2θR
√

∆/ρ

0 ρ/(R
√

∆) 0 0

0 0 ρ 0

− a sin θ/ρ 0 0 R2 sin θ/ρ

 , (19.36)



548 Black hole waterfalls

with inverse vierbein emµ

em
µ =

1

ρ


R/
√

∆ 0 0 a/(R
√

∆)

0 R
√

∆ 0 0

0 0 1 0

a sin θ 0 0 1/ sin θ

 , (19.37)

With respect to the Boyer-Lindquist tetrad, only the time component At of the electromagnetic potential
Am is non-vanishing,

Am =

{
Qr

ρR
√

∆
, 0, 0, 0

}
. (19.38)

Only the radial components E and B of the electric and magnetic �elds are non-vanishing, and they are
given by the complex combination

E + I B =
Q

(r − Ia cos θ)2
, (19.39)

or explicitly

E =
Q
(
r2−a2 cos2θ

)
ρ4

, B =
2Qar cos θ

ρ4
. (19.40)

The electromagnetic �eld (19.39) satis�es Maxwell's equations (22.55) with zero electric charge and current,
jn = 0, except at the singularity ρ = 0.
The non-vanishing components of the tetrad-frame Einstein tensor Gmn are

Gmn =
Q2

ρ4


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 , (19.41)

which is the energy-momentum tensor of the electromagnetic �eld. The non-vanishing components of the
tetrad-frame Weyl tensor Cklmn are

− 1
2 C0101 = 1

2 C2323 = C0202 = C0303 = −C1212 = −C1313 = ReC , (19.42a)

1
2 C0123 = C0213 = −C0312 = ImC , (19.42b)

where C is the complex Weyl scalar

C = − 1

(r − Ia cos θ)3

(
M − Q2

r + Ia cos θ

)
. (19.43)

In the Boyer-Lindquist tetrad, the photon 4-velocity vm ≡ emµv
µ = emµdx

µ/dλ on the principal null
congruences is radial,

vt = ± ρ

R
√

∆
, vr = ± ρ

R
√

∆
, vθ = 0 , vφ = 0 . (19.44)
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Exercise 19.4. Dragging of inertial frames around a Kerr-Newman black hole. What is the
coordinate-frame 4-velocity uµ of the Boyer-Lindquist tetrad through the Boyer-Lindquist coordinates?

19.4 Doran waterfall

The picture of space falling into a black hole like a river or waterfall works also for rotating black holes. For
Kerr-Newman rotating black holes, the counterpart of the Gullstrand-Painlevé metric is the Doran (2000)
metric.
The space river that falls into a rotating black hole has a twist. One might have expected that the rotation

of the black hole would be manifested by a velocity that spirals inward, but that is not the case. Instead,
the river is characterized not merely by a velocity but also by a twist. The velocity and the twist together
comprise a 6-dimensional river bivector ωkm, equation (19.58) below, whose electric part is the velocity, and
whose magnetic part is the twist. Recall that the 6-dimensional group of Lorentz transformations is generated
by a combination of 3-dimensional Lorentz boosts and 3-dimensional spatial rotations. A �shy that swims
through the river is Lorentz boosted by tidal changes in the velocity, and rotated by tidal changes in the
twist, equation (19.67).
Thanks to the twist, unlike the Gullstrand-Painlevé metric, the Doran metric is not spatially �at at

constant free-fall time tff . Rather, the spatial metric is sheared in the azimuthal direction. Just as the
velocity produces a Lorentz boost that makes the metric non-�at with respect to the time components, so
also the twist produces a rotation that makes the metric non-�at with respect to the spatial components.

19.4.1 Doran-Cartesian coordinates

In place of the polar coordinates {r, θ, φff} of the Doran metric, equations (9.33), introduce corresponding
Doran-Cartesian coordinates {x, y, z} with z taken along the rotation axis of the black hole (the black hole
rotates right-handedly about z, for positive spin parameter a)

x ≡ R sin θ cosφff , y ≡ R sin θ sinφff , z ≡ r cos θ . (19.45)

The metric in Doran-Cartesian coordinates xµ ≡ {tff , xα} ≡ {tff , x, y, z}, is

ds2 = − dt2ff + δαβ (dxα − βαακdxκ)
(
dxβ − ββαλdxλ

)
(19.46)

where αµ is the rotational velocity vector

αµ =
{

1,
ay

R2
, − ax

R2
, 0
}
, (19.47)

and βµ is the velocity vector

βµ =
βR

ρ

{
0,

xr

Rρ
,
yr

Rρ
,
zR

rρ

}
. (19.48)
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The rotational velocity and radial velocity vectors are orthogonal

αµβ
µ = 0 . (19.49)

For the Kerr-Newman metric, the radial velocity β is

β = ∓
√

2Mr −Q2

R
(19.50)

with − for black hole (infalling), + for white hole (outfalling) solutions. Horizons occur where

β = ∓1 , (19.51)

with β = −1 for black hole horizons, and β = 1 for white hole horizons. Note that the squared magnitude
βµβ

µ of the velocity vector is not β2, but rather di�ers from β2 by a factor of R2/ρ2:

βµβ
µ = βmβ

m =
β2R2

ρ2
. (19.52)

The point of the convention adopted here is that β(r) is any and only a function of r, rather than depending
also on θ through ρ. Moreover, with the convention here, β is ∓1 at horizons, equation (19.51). Finally, the
4-velocity βµ is simply related to β by βµ = (β/r) ∂r/∂xµ.
The Doran-Cartesian metric (19.46) encodes a vierbein emµ and inverse vierbein emµ

emµ = δmµ − αµβm , em
µ = δµm + αmβ

µ . (19.53)

Here the tetrad-frame components αm of the rotational velocity vector and βm of the radial velocity vector
are

αm = em
µαµ = δµmαµ , βm = emµβ

µ = δmµ β
µ , (19.54)

which works thanks to the orthogonality (19.49) of αµ and βµ. Equation (19.54) says that the covariant tetrad-
frame components of the rotational velocity vector are the same as its covariant coordinate-frame components
in the Doran-Cartesian coordinate system, αm = αµ, and likewise the contravariant tetrad-frame components
of the radial velocity vector are the same as its contravariant coordinate-frame components, βm = βµ.

19.4.2 Doran-Cartesian tetrad

Like the Gullstrand-Painlevé tetrad, the Doran-Cartesian tetrad γγm ≡ {γγ0,γγ1,γγ2,γγ3} is aligned with the
Cartesian rest frame eµ ≡ {etff , ex, ey, ez} at in�nity, and is parallel-transported, without precessing, by
observers who free-fall from zero velocity and zero angular momentum at in�nity, as can be con�rmed by
checking that the tetrad connections with �nal index 0 all vanish, Γnm0 = 0, equation (19.20).
Let ‖ and ⊥ subscripts denote horizontal radial and azimuthal directions respectively, so that

γγ‖ ≡ cosφff γγ1 + sinφff γγ2 , γγ⊥ ≡ − sinφff γγ1 + cosφff γγ2 ,

e‖ ≡ cosφff ex + sinφff ey , e⊥ ≡ − sinφff ex + cosφff ey .
(19.55)
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Then the relation between Doran-Cartesian tetrad axes γγm and the tangent axes eµ of the Doran-Cartesian
metric (19.46) is

γγ0 = etff + βαeα , (19.56a)

γγ‖ = e‖ , (19.56b)

γγ⊥ = e⊥ −
a sin θ

R
βαeα , (19.56c)

γγ3 = ez . (19.56d)

The relations (19.56) resemble those (19.25) of the Gullstrand-Painlevé tetrad, except that the azimuthal
tetrad axis γγ⊥ is shifted radially relative to the azimuthal tangent axis e⊥. This shift re�ects the fact that,
unlike the Gullstrand-Painlevé metric, the Doran metric is not spatially �at at constant free-fall time, but
rather is sheared azimuthally.

19.4.3 Doran �shies

The tetrad-frame connections equal the ordinary coordinate partial derivatives in Doran-Cartesian coordi-
nates of a bivector (antisymmetric tensor) ωkm

Γkmn = − δνn
∂ωkm
∂xν

, (19.57)

which I call the river �eld because it encapsulates all the properties of the infalling river of space. The
bivector river �eld ωkm is

ωkm = αkβm − αmβk − ε0kma ζ
a , (19.58)

where βm = ηmnβ
m, the totally antisymmetric tensor εklmn is normalized so that ε0123 = −1, and the vector

ζa points vertically upward along the rotation axis of the black hole

ζa ≡ {0, 0, 0, ζ} , ζ ≡ a
∫ r

∞

β dr

R2
. (19.59)

The electric part of ωkm, where one of the indices is time 0, constitutes the velocity vector βa

ω0a = βa (19.60)

while the magnetic part of ωkm, where both indices are spatial, constitutes the twist vector µa de�ned by

µa ≡ 1
2 ε

0akmωkm = ε0akmαkβm + ζa . (19.61)

The sense of the twist is that induces a right-handed rotation about an axis equal to the direction of µa by
an angle equal to the magnitude of µa. In 3-vector notation, with µ ≡ µa, α ≡ αa, β ≡ βa, ζ ≡ ζa,

µ ≡ α× β + ζ . (19.62)
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In terms of the velocity and twist vectors, the river �eld ωkm is

ωkm =


0 β1 β2 β3

−β1 0 µ3 −µ2

−β2 −µ3 0 µ1

−β3 µ2 −µ1 0

 . (19.63)

Note that the sign of the electric part β of ωkm is opposite to the sign of the analogous electric �eld E
associated with an electromagnetic �eld Fkm, equation (4.46); but the adopted signs are natural in that the
river �eld induces boosts in the direction of the velocity βa, and right-handed rotations about the twist µa.
Like a static electric �eld, the velocity vector βa is the gradient of a potential

βa = δaα
∂

∂xα

∫ r

β dr , (19.64)

but unlike a magnetic �eld the twist vector µa is not pure curl: rather, it is µa + ζa that is pure curl.
Figure 19.2 illustrates the velocity and twist �elds in a Kerr black hole.
With the tetrad connection coe�cients given by equation (19.57), the equation of motion (19.27) for a

4-vector pk attached to a �shy following a geodesic in the Doran river translates to

dpk

dτ
= δνn

∂ωkm
∂xν

unpm . (19.65)

In a proper time δτ , the �shy moves a proper distance δξm ≡ umδτ relative to the background Doran-
Cartesian coordinates. As a result, the �shy sees a tidal change δωkm in the river �eld

δωkm = δξn
∂ωkm
∂xn

. (19.66)

Consequently the 4-vector pk is changed by

pk → pk + δωkm p
m . (19.67)

But equation (19.67) corresponds to an in�nitesimal Lorentz transformation by δωkm, equivalent to a Lorentz
boost by δβa and a rotation by δµa.
As discussed previously with regard to the Gullstrand-Painlevé river, �19.2.3, the tidal change δωkm,

equation (19.66), in the river �eld seen by a �shy is not the full change δxν ∂ωkm/∂xν relative to the
background coordinates, but rather the change relative to the river

δωkm = (δxν − δxνriver)
∂ωkm
∂xν

=
[
δxν − βν(δtff − a sin2θ δφff)

] ∂ωkm
∂xν

, (19.68)

with the change in the velocity and twist of the river itself subtracted o�.
That there exists a tetrad (the Doran-Cartesian tetrad) where the tetrad-frame connections are a coor-

dinate gradient of a bivector, equation (19.57), is a peculiar feature of ideal black holes. It is an intriguing
thought that perhaps the 6 physical degrees of freedom of a general spacetime might always be encoded in
the 6 degrees of freedom of a bivector, but that is not true.
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Figure 19.2 (Upper panel) velocity βa and (lower panel) twist µa vector �elds for a Kerr black hole with spin parameter

a = 0.96. Both vectors lie, as shown, in the plane of constant free-fall azimuthal angle φff . The vertical bar in the

lower panel shows the length of a twist vector corresponding to a full rotation of 360◦.

Exercise 19.5. River model of the Friedmann-Lemaître-Robertson-Walker metric. Show that the
�at FLRW line-element

ds2 = − dt2 + a2(dx2 + x2do2) (19.69)

can be re-expressed as

ds2 = − dt2 + (dr −Hr dt)2 + r2do2 , (19.70)
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where r ≡ ax is the proper radial distance, and H ≡ ȧ/a is the Hubble parameter. Interpret the line-
element (19.70). Is there a generalization to a non-�at FLRW universe?

Exercise 19.6. Program geodesics in a rotating black hole. Write a graphics program that uses the
prescription (19.66) to draw geodesics of test particles in an ideal (Kerr-Newman) black hole, expressed in
Doran-Cartesian coordinates. Attach 3D bodies to your test particles, and use the same prescription (19.66)
to rotate the bodies. Implement an option to translate to Boyer-Lindquist coordinates.
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General spherically symmetric spacetimes

20.1 Spherical spacetime

Spherical spacetimes have 2 physical degrees of freedom. Spherical symmetry eliminates any angular degrees
of freedom, leaving 4 adjustable metric coe�cients gtt, gtr, grr, and gθθ. But coordinate transformations
of the time t and radial r coordinates remove 2 degrees of freedom, leaving a spherical spacetime with a
net 2 physical degrees of freedom. Spherical spacetimes have 4 distinct Einstein equations (20.39). But 2 of
the Einstein equations serve to enforce energy-momentum conservation, so the evolution of the spacetime is
governed by 2 Einstein equations, in agreement with the number of physical degrees of freedom of spherical
spacetime.
The 2 degrees of freedom mean that spherical spacetimes in general relativity have a richer structure than

in Newtonian gravity, which has only one degree of freedom, the Newtonian potential Φ. The richer structure
is most striking in the case of the mass in�ation instability, Chapter 21, which is an intrinsically general
relativistic instability, with no Newtonian analogue.

20.2 Spherical line-element

The spherical line-element adopted in this chapter is, in spherical polar coordinates xµ ≡ {t, r, θ, φ},

ds2 = −α2dt2 +
1

β2
1

(dr − αβ0 dt)
2

+ r2do2 . (20.1)

Here r is the circumferential radius, de�ned such that the circumference around any great circle is 2πr.
The line-element (20.1) is in ADM form (17.8) with lapse α and shift αβ0. The notation βm is motivated
by fact that {β0, β1, 0, 0} forms a tetrad-frame 4-vector, equation (20.9). As expounded in �11.3, through
ds2 = ηmne

m
µe
n
ν dx

µdxν the line-element (20.1) encodes not only a metric, but also a locally inertial tetrad
γγm ≡ {γγ0,γγ1,γγ2,γγ3}. The o�-diagonal character of the line-element allows the tetrad to �ow through the
coordinates. This �exibility is especially useful for black holes, since no locally inertial frame can remain at
rest inside the horizon of a black hole.

555
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The vierbein emµ can be read o� from the line-element (20.1):

e0
µ dx

µ = αdt , (20.2a)

e1
µ dx

µ =
1

β1
(dr − αβ0 dt) , (20.2b)

e2
µ dx

µ = r dθ , (20.2c)

e3
µ dx

µ = r sin θ dθ . (20.2d)

The vierbein emµ and inverse vierbein emµ corresponding to the spherical line-element (20.1) are

emµ =


α 0 0 0

−αβ0/β1 1/β1 0 0

0 0 r 0

0 0 0 r sin θ

 , em
µ =


1/α β0 0 0

0 β1 0 0

0 0 1/r 0

0 0 0 1/(r sin θ)

 . (20.3)

As in the ADM formalism, �17.1, the tetrad time axis γγ0 is chosen to be orthogonal to hypersurfaces of
constant time t. The directed derivatives ∂0 and ∂1 along the time and radial tetrad axes γγ0 and γγ1 are

∂0 = e0
µ ∂

∂xµ
=

1

α

∂

∂t
+ β0

∂

∂r
, ∂1 = e1

µ ∂

∂xµ
= β1

∂

∂r
. (20.4)

The tetrad-frame 4-velocity um of a person at rest in the tetrad frame is by de�nition um = {1, 0, 0, 0}. It
follows that the coordinate 4-velocity uµ of such a person is

uµ = em
µum = e0

µ = {1/α, β0, 0, 0} . (20.5)

A person instantaneously at rest in the tetrad frame satis�es dr/dt = αβ0 according to equation (20.5), so it
follows from the line-element (20.1) that the proper time τ of a person at rest in the tetrad frame is related
to the coordinate time t by

dτ = αdt in tetrad rest frame . (20.6)

The directed time derivative ∂0 is just the proper time derivative along the worldline of a person continuously
at rest in the tetrad frame (and who is therefore not in free-fall, but accelerating with the tetrad frame),
which follows from

d

dτ
=
dxµ

dτ

∂

∂xµ
= uµ

∂

∂xµ
= um∂m = ∂0 . (20.7)

By contrast, the proper time derivative measured by a person who is instantaneously at rest in the tetrad
frame, but is in free-fall, is the covariant time derivative

D

Dτ
=
dxµ

dτ
Dµ = uµDµ = umDm = D0 . (20.8)

Since the coordinate radius r has been de�ned to be the circumferential radius, a gauge-invariant de�nition,



20.2 Spherical line-element 557

it follows that the tetrad-frame gradient ∂m of the coordinate radius r is a tetrad-frame 4-vector (a coordinate
gauge-invariant object),

∂mr = em
µ ∂r

∂xµ
= em

r = βm = {β0, β1, 0, 0} a tetrad 4-vector . (20.9)

This accounts for the notation β0 and β1 introduced above. The component β0 can be interpreted as the
radial velocity of the tetrad frame, equation (20.5),

β0 =
dr

dτ
. (20.10)

The component β1 can be interpreted as the energy per unit mass of an object at rest in the tetrad frame,
equation (20.52).
Since βm is a tetrad 4-vector, its scalar product with itself must be a scalar. This scalar de�nes the interior

mass M(t, r), also called the Misner-Sharp mass (Misner and Sharp, 1964), by

1− 2M

r
≡ βmβm = −β2

0 + β2
1 a coordinate and tetrad scalar . (20.11)

The interpretation of M as the interior mass will become evident below, �20.9.
The horizon function ∆ is de�ned by

∆ ≡ βmβm = 1− 2M

r
. (20.12)

Apparent horizons occur where the horizon function is zero, ∆ = 0, that is, where the 4 vector βm is null, a
gauge-invariant condition. The condition for an apparent horizon is

r = 2M , (20.13)

which holds in any spherically symmetric geometry, not just the Schwarzschild geometry. In general the
interior mass M varies with radius r; only in the Schwarzschild geometry is the interior mass M constant.
Inside horizons, where the horizon function ∆ is negative, the velocity β0 cannot be zero: the tetrad must

move superluminally through the radial coordinate. Similarly, outside horizons, where the horizon function
∆ is positive, the energy per unit mass β1 cannot be zero. Inside horizons, the energy per unit mass β1 can
be either positive, in which case the tetrad frame is called ingoing, or negative, in which case the tetrad
frame is called outgoing. The tetrad can switch between ingoing and outgoing only inside horizons.

Exercise 20.1. Apparent horizon. Show that radial null geodesics in a spherical geometry satisfy

dr

dt
= α(β0 ± β1) . (20.14)

An apparent horizon occurs where outgoing radial null geodesics are not moving radially, dr/dt = 0. Conclude
that an apparent horizon occurs where (choosing α and β1 positive without loss of generality)

β0 = −β1 . (20.15)
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20.3 Rest diagonal line-element

Although this is not the choice adopted here, the line-element (20.1) can always be brought to diagonal form
by a coordinate transformation t→ t× (subscripted × for diagonal) of the time coordinate. The t�r part of
the metric is

gtt dt
2 + 2 gtr dt dr + grr dr

2 =
1

gtt

[
(gtt dt+ gtr dr)

2 + (gttgrr − g2
tr) dr

2
]
. (20.16)

This can be diagonalized by choosing the time coordinate t× such that

f dt× = gtt dt+ gtr dr (20.17)

for some integrating factor f(t, r). Equation (20.17) can be solved by choosing t× to be constant along
integral curves

dr

dt
= − gtt

gtr
. (20.18)

The resulting diagonal rest line-element is

ds2 = −α2
×dt

2
× +

dr2

1− 2M/r
+ r2do2 . (20.19)

The line-element (20.19) corresponds physically to the case where the tetrad frame is taken to be at rest in
the spatial coordinates, β0 = 0, as can be seen by comparing it to the earlier line-element (20.1). In changing
the tetrad frame from one moving at dr/dt = αβ0 to one that is at rest (at constant circumferential radius r),
a tetrad transformation has in e�ect been done at the same time as the coordinate transformation (20.17),
the tetrad transformation being precisely that needed to make the line-element (20.19) diagonal. The metric
coe�cient grr in the line-element (20.19) follows from the fact that β2

1 = 1 − 2M/r when β0 = 0, equa-
tion (20.11). The transformed time coordinate t× is unspeci�ed up to a transformation t× → f(t×). If the
spacetime is asymptotically �at at in�nity, then a natural way to �x the transformation is to choose t× to
be the proper time at rest at in�nity.

20.4 Comoving diagonal line-element

Although once again this is not the path followed here, the line-element (20.1) can also be brought to diagonal
form by a coordinate transformation r → r×, where, analogously to equation (20.17), r× is chosen to satisfy

f dr× = gtr dt+ grr dr ≡
1

β1
(dr − αβ0 dt) (20.20)

for some integrating factor f(t, r). The new coordinate r× is constant along the worldline of an object at
rest in the tetrad frame, with dr/dt = αβ0, equation (20.5), so r× can be regarded as a comoving radial
coordinate. The comoving radial coordinate r× could for example be chosen to equal the circumferential
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radius r at some �xed instant of coordinate time t (say t = 0). The diagonal comoving line-element in
this comoving coordinate system takes the form

ds2 = −α2dt2 + λ2dr2
× + r2do2 , (20.21)

where the circumferential radius r(t, r×) is considered to be a function of time t and the comoving radial
coordinate r×. Whereas in the rest line-element (20.19) the tetrad was changed from one that was moving
at dr/dt = αβ0 to one that was at rest, here the transformation keeps the tetrad unchanged. In both the
rest and comoving diagonal line-elements (20.19) and (20.21) the tetrad is at rest relative to the respective
radial coordinate r or r×; but whereas in the rest line-element (20.19) the radial coordinate was �xed to be
the circumferential radius r, in the comoving line-element (20.21) the comoving radial coordinate r× is a
label that follows the tetrad. Because the tetrad is unchanged by the transformation to the comoving radial
coordinate r×, the directed time and radial derivatives ∂0 and ∂1 are unchanged:

∂0 =
1

α

∂

∂t

∣∣∣∣
r×

=
1

α

∂

∂t

∣∣∣∣
r

+ β0
∂

∂r

∣∣∣∣
t

, ∂1 =
1

λ

∂

∂r×

∣∣∣∣
t

= β1
∂

∂r

∣∣∣∣
t

. (20.22)

20.5 Tetrad connections

Now turn the handle to proceed towards the Einstein equations. The non-vanishing tetrad connections
coe�cients Γkmn corresponding to the spherical line-element (20.1) are

Γ100 = h0 , (20.23a)

Γ101 = h1 , (20.23b)

Γ202 = Γ303 =
β0

r
, (20.23c)

Γ212 = Γ313 =
β1

r
, (20.23d)

Γ323 =
cot θ

r
, (20.23e)

where h0 is the proper radial acceleration (minus the gravitational force) experienced by a person at rest in
the tetrad frame

h0 ≡ ∂1 lnα = β1
∂ lnα

∂r
, (20.24)

and h1 is the �Hubble parameter� of the radial �ow, as measured in the tetrad rest frame, de�ned by

h1 ≡ β0
∂ lnαβ0

∂r
− ∂0 lnβ1 . (20.25)

The interpretation of h0 as a proper acceleration and h1 as a radial Hubble parameter goes as follows. The
tetrad-frame 4-velocity um of a person at rest in the tetrad frame is by de�nition um = {1, 0, 0, 0}. If the
person at rest were in free fall, then the proper acceleration would be zero, but because this is a general
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spherical spacetime, the tetrad frame is not necessarily in free fall. The proper acceleration experienced by
a person continuously at rest in the tetrad frame is the proper time derivative Dum/Dτ of the 4-velocity,
which is

Dum

Dτ
= D0u

m = ∂0u
m + Γm00u

0 = Γm00 = {0,Γ1
00, 0, 0} = {0, h0, 0, 0} , (20.26)

the �rst step of which follows from equation (20.8). Similarly, a person at rest in the tetrad frame will
measure the 4-velocity of an adjacent person at rest in the tetrad frame a small proper radial distance δξ1

away to di�er by δξ1D1u
m. The Hubble parameter of the radial �ow is thus the covariant radial derivative

D1u
m, which is

D1u
m = ∂1u

m + Γm01u
0 = Γm01 = {0,Γ1

01, 0, 0} = {0, h1, 0, 0} . (20.27)

Con�ned to the (γγ0�γγ1)-plane (that is, considering only Lorentz transformations in the (t�r)-plane, which
is to say radial Lorentz boosts), the acceleration h0 and Hubble parameter h1 constitute the components of
a tetrad-frame 2-vector hn = {h0, h1}:

hn = Γ10n . (20.28)

The Riemann tensor, equations (20.30) below, involves covariant derivatives Dmhn of hn. These should be
interpreted either as 4D covariant derivatives of the 4-vector hn ≡ {h0, h1, 0, 0} with zero angular parts,
or equivalently as 2D covariant derivatives D(2)

m hn con�ned to the (γγ0�γγ1)-plane. The contraction hnhn =

−h2
0 + h2

1 is a scalar with respect to radial Lorentz boosts.

Since h1 is a kind of radial Hubble parameter, it can be useful to de�ne a corresponding radial scale factor
λ by

h1 ≡ ∂0 lnλ . (20.29)

The scale factor λ is the same as the λ in the comoving line-element of equation (20.21). This is true because
h1 is a tetrad connection and therefore coordinate gauge-invariant, and the line-element (20.21) is related
to the line-element (20.1) being considered by a coordinate transformation r → r× that leaves the tetrad
unchanged.
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20.6 Riemann, Einstein, and Weyl tensors

The non-vanishing components of the tetrad-frame Riemann tensor Rklmn corresponding to the spherical
line-element (20.1) are

R0101 = D1h0 −D0h1 , (20.30a)

R0202 = R0303 = − 1

r
D0β0 , (20.30b)

R1212 = R1313 = − 1

r
D1β1 , (20.30c)

R0212 = R0313 = − 1

r
D0β1 = − 1

r
D1β0 , (20.30d)

R2323 =
2M

r3
, (20.30e)

where Dm denotes the covariant derivative as usual. The non-vanishing components of the tetrad-frame Ricci
tensor Rkm are

R00 = R0101 + 2R0202 , (20.31a)

R11 = −R0101 + 2R1212 , (20.31b)

R01 = 2R0212 , (20.31c)

R22 = R33 = −R0202 +R1212 +R2323 , (20.31d)

whence

R00 = D1h0 −D0h1 −
2

r
D0β0 , (20.32a)

R11 = −D1h0 +D0h1 −
2

r
D1β1 , (20.32b)

R01 = − 2

r
D0β1 = − 2

r
D1β0 , (20.32c)

R22 = R33 =
1

r
D0β0 −

1

r
D1β1 +

2M

r3
. (20.32d)

The Ricci scalar is

R = − 2D1h0 + 2D0h1 +
4

r
D0β0 −

4

r
D1β1 +

4M

r3
. (20.33)

The non-vanishing components of the tetrad-frame Einstein tensor Gkm are

G00 = 2R1212 +R2323 , (20.34a)

G11 = 2R0202 −R2323 , (20.34b)

G01 = − 2R0212 , (20.34c)

G22 = G33 = R0101 +R0202 −R1212 , (20.34d)
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whence

G00 =
2

r

(
−D1β1 +

M

r2

)
, (20.35a)

G11 =
2

r

(
−D0β0 −

M

r2

)
, (20.35b)

G01 =
2

r
D0β1 =

2

r
D1β0 , (20.35c)

G22 = G33 = D1h0 −D0h1 +
1

r
(D1β1 −D0β0) . (20.35d)

The non-vanishing components of the tetrad-frame Weyl tensor Cklmn are

1
2 C0101 = −C0202 = −C0303 = C1212 = C1313 = − 1

2 C2323 = C , (20.36)

where C is the Weyl scalar (the spin 0 component of the Weyl tensor),

C ≡ 1

6
(R0101 −R0202 +R1212 −R2323) =

1

6

(
G00 −G11 +G22

)
− M

r3
. (20.37)

20.7 Einstein equations

The tetrad-frame Einstein equations

Gkm = 8πT km (20.38)

imply that 
G00 G01 0 0

G01 G11 0 0

0 0 G22 0

0 0 0 G33

 = 8πT km = 8π


ρ f 0 0

f p 0 0

0 0 p⊥ 0

0 0 0 p⊥

 (20.39)

where ρ ≡ T 00 is the proper energy density, f ≡ T 01 is the proper radial energy �ux, p ≡ T 11 is the proper
radial pressure, and p⊥ ≡ T 22 = T 33 is the proper transverse pressure. Proper here means as measured by a
person at rest in the tetrad frame.

20.8 Choose your frame

So far the radial motion of the tetrad frame has been left unspeci�ed. Any arbitrary choice can be made.
For example, the tetrad frame could be chosen to be at rest,

β0 = 0 , (20.40)
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as in the Schwarzschild or Reissner-Nordström line-elements. Alternatively, the tetrad frame could be chosen
to be in free-fall,

h0 = 0 , (20.41)

as in the Gullstrand-Painlevé line-element. For situations where the spacetime contains matter, one natural
choice is the centre-of-mass frame, de�ned to be the frame in which the energy �ux f is zero

G01 = 8πf = 0 . (20.42)

Whatever the choice of radial tetrad frame, tetrad-frame quantities in di�erent radial tetrad frames are
related to each other by a radial Lorentz boost.

20.9 Interior mass

Equations (20.35b) with the middle expression of (20.35c), and (20.35a) with the �nal expression of (20.35c),
respectively, along with the de�nition (20.11) of the interior mass M , and the Einstein equations (20.39),
imply (note that DmM = ∂mM since M is a scalar)

p =
1

β0

(
− 1

4πr2
∂0M − β1f

)
, (20.43a)

ρ =
1

β1

(
1

4πr2
∂1M − β0f

)
. (20.43b)

In the centre-of-mass frame, f = 0, these equations reduce to

∂0M = − 4πr2β0 p , (20.44a)

∂1M = 4πr2β1 ρ . (20.44b)

Equations (20.44) amply justify the interpretation ofM as the interior mass. The �rst equation (20.44a) can
be written

dM

dr
= −4πr2p , (20.45)

where dM/dr = ∂0M/∂0r is the total derivative of the mass M with respect to radius r along the path of
the matter, in the centre-of-mass frame. Equation (20.45) can be recognized as an expression of the �rst law
of thermodynamics,

dE + p dV = 0 , (20.46)

with mass-energy E equal to M and volume V equal to 4
3πr

3. The second equation (20.44b) can be written,
since ∂1 = β1 ∂/∂r, equation (20.4),

∂M

∂r
= 4πr2ρ , (20.47)
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which looks exactly like the Newtonian relation between interior mass M and density ρ. Equation (20.47) is
the Hamiltonian constraint for spherically symmetric spacetimes.
Actually, the apparently Newtonian equation (20.47) is deceiving. The total mass-energy dM in a radial

shell should be distinguished from the proper mass-energy dm of the shell in its own frame. The proper
3-volume element d3r in the centre-of-mass tetrad frame is given by1, equation (15.88),

d3r = e d3xrθφ =
r2 sin θ drdθdφ

β1
, (20.48)

where e = |eaα| is the determinant of the the 3×3 spatial vierbein matrix. Thus the proper 3-volume element
dV ≡ d3r of a radial shell of width dr is

dV =
4πr2dr

β1
. (20.49)

Consequently the proper mass-energy dm associated with the proper density ρ in a proper radial volume
element dV is

dm = ρ dV =
4πr2ρ dr

β1
, (20.50)

whereas the total mass-energy dM from equation (20.47) is

dM = ρ 4πr2dr = β1ρ dV . (20.51)

The factor β1 can be interpreted as the energy per unit mass of the matter,

β1 =
dM

dm
. (20.52)

The di�erence between the total and proper mass-energy

dM − dm = (β1 − 1)ρ dV (20.53)

can be interpreted as a combination of the kinetic and gravitational energy of the matter.

20.10 Energy-momentum conservation

Covariant conservation of the Einstein tensor DmG
mn = 0 implies conservation of energy-momentum

DmT
mn = 0. The transverse component, n = 2, 3, of the conservation equations vanish identically. The

remaining two non-trivial equations represent conservation of energy and of radial momentum, and are

DmT
m0 = ∂0ρ+

2β0

r
(ρ+ p⊥) + h1 (ρ+ p) +

(
∂1 +

2β1

r
+ 2h0

)
f = 0 , (20.54a)

DmT
m1 = ∂1p+

2β1

r
(p− p⊥) + h0 (ρ+ p) +

(
∂0 +

2β0

r
+ 2h1

)
f = 0 . (20.54b)

1 The same conclusion follows from considering the spherical line-element (20.1). In the tetrad frame, by construction
dr − αβ0 dt = 0, and the proper time satis�es dτ = αdt. At constant proper time, the proper radial distance is dr/β1, from
the line-element (20.1).
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In the centre-of-mass frame, f = 0, these energy-momentum conservation equations reduce to

∂0ρ+
2β0

r
(ρ+ p⊥) + h1 (ρ+ p) = 0 , (20.55a)

∂1p+
2β1

r
(p− p⊥) + h0 (ρ+ p) = 0 . (20.55b)

In a general situation where the mass-energy is a sum over several individual components x,

Tmn =
∑

species x

Tmnx , (20.56)

the individual mass-energy components x of the system each satisfy an energy-momentum conservation
equation of the form

DmT
mn
x = Fnx , (20.57)

where Fnx is the �ux of energy into component x. Einstein's equations enforce energy-momentum conservation
of the system as a whole, so the sum of the energy �uxes must be zero∑

species x

Fnx = 0 . (20.58)

20.10.1 First law of thermodynamics

For an individual species x, the energy conservation equation (20.54a) in the centre-of-mass frame of the
species, fx = 0, can be written

DmT
m0
x = ∂0ρx + (ρx + p⊥x)∂0 ln r2 + (ρx + px)∂0 lnλx = F 0

x , (20.59)

where λx is the radial �scale factor,� equation (20.29), in the centre-of-mass frame of the species (the scale
factor is di�erent in di�erent frames). Equation (20.59) can be recognized as an expression of the �rst law
of thermodynamics for a volume element V of species x, in the form

V −1
[
∂0(ρxV ) + p⊥x Vr ∂0V⊥ + px V⊥ ∂0Vr

]
= F 0

x , (20.60)

with transverse volume (area) V⊥ ∝ r2, radial volume (width) Vr ∝ λx, and total volume V ∝ V⊥Vr. The
�ux F 0

x on the right hand side is the heat per unit volume per unit time going into species x. If the pressure
of species x is isotropic, p⊥x = px, then equation (20.60) simpli�es to

V −1
[
∂0(ρxV ) + px ∂0V

]
= F 0

x , (20.61)

with volume V ∝ r2λx.
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20.11 Structure of the Einstein equations

The spherically symmetric spacetime under consideration is described by 3 vierbein coe�cients, α, β0, and β1.
However, some combination of the 3 coe�cients represents a gauge freedom, since the spherically symmetric
spacetime has only two physical degrees of freedom. As commented in �20.8, various gauge-�xing choices can
be made, such as choosing to work in the centre-of-mass frame, f = 0.
Equations (20.35) give 4 equations for the 4 non-vanishing components of the Einstein tensor. The two

expressions for G01 are identical when expressed in terms of the vierbein and vierbein derivatives, so are not
distinct equations. Conservation of energy-momentum of the system as a whole is built in to the Einstein
equations, a consequence of the Bianchi identities, so 2 of the Einstein equations are e�ectively equivalent
to the energy-momentum conservation equations (20.54). If the matter equations are arranged to satisfy
energy-momentum conservation, as they should, then 2 of the Einstein equations are redundant, and can be
dropped.
This leaves 2 independent Einstein equations to describe the 2 physical degrees of freedom of the spacetime.

The 2 equations may be taken to be the evolution equations (20.35c) and (20.35b) for the velocity β0 and
energy per unit mass β1,

D0β0 = −M

r2
− 4πrp , (20.62a)

D0β1 = 4πrf , (20.62b)

which are valid for any choice of tetrad frame, not just the centre-of-mass frame. The covariant derivatives
on the left hand side of equations (20.62) are more explicitly

D0β0 = ∂0β0 − h0β1 , D0β1 = ∂0β1 − h0β0 , (20.63)

where h0 is the proper radial acceleration, equation (20.24).
Equations (20.62) can be taken to be the fundamental equations governing the gravitational �eld in spher-

ically symmetric spacetimes. It is these equations that are responsible (to the extent that equations may
be considered responsible) for the strange internal structure of Reissner-Nordström black holes, and for
mass in�ation. The coe�cient β0 equals the coordinate radial 4-velocity dr/dτ = ∂0r = β0 of the tetrad
frame, equation (20.5), and thus equation (20.62a) can be regarded as giving the proper radial acceleration
D2r/Dτ2 = Dβ0/Dτ = D0β0 of the tetrad frame as measured by a person who is in free-fall and instanta-
neously at rest in the tetrad frame. If the acceleration is measured by an observer who is continuously at rest
in the tetrad frame (as opposed to being in free-fall), then the proper acceleration is ∂0β0 = D0β0 + h0β1.
The presence of the extra term h0β1, proportional to the proper acceleration h0 actually experienced by
the observer continuously at rest in the tetrad frame, re�ects the principle of equivalence of gravity and
acceleration.
The right hand side of equation (20.62a) can be interpreted as the radial gravitational force, which consists

of two terms. The �rst term, −M/r2, looks like the familiar Newtonian gravitational force, which is attractive
(negative, inward) in the usual case of positive mass M . The second term, −4πrp, proportional to the radial
pressure p, is what makes spherical spacetimes in general relativity interesting. In a Reissner-Nordström black
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hole, the negative radial pressure produced by the radial electric �eld produces a radial gravitational repulsion
(positive, outward), according to equation (20.62a), and this repulsion dominates the gravitational force at
small radii, producing an inner horizon. In mass in�ation, the (positive) radial pressure of relativistically
counter-streaming outgoing and ingoing streams just above the inner horizon dominates the gravitational
force (inward), and it is this that drives mass in�ation.
Like the second half of a vaudeville act, the second Einstein equation (20.62b) also plays an indispensable

role. The energy per unit mass β1 ≡ ∂1r on the left hand side is the proper radial gradient of the circumfer-
ential radius r measured by a person at rest in the tetrad frame. The sign of β1 determines which way an
observer at rest in the tetrad frame thinks is �outwards,� the direction of larger circumferential radius r. A
positive β1 means that the observer thinks the outward direction points away from the black hole, while a
negative β1 means that the observer thinks the outward direction points towards from the black hole. Outside
the outer horizon β1 is necessarily positive, because βm must be spacelike there. But inside the horizon β1

may be either positive or negative. A tetrad frame can be de�ned as �ingoing� if the proper radial gradient
β1 is positive, and �outgoing� if β1 is negative. In the Reissner-Nordström geometry, ingoing geodesics have
positive energy, and outgoing geodesics have negative energy. However, the de�nition of outgoing or ingoing
based on the sign of β1 is general � there is no need for a timelike Killing vector such as would be necessary
to de�ne the (conserved) energy of a geodesic.
Equation (20.62b) shows that the proper rate of change D0β1 in the radial gradient β1 measured by an

observer who is in free-fall and instantaneously at rest in the tetrad frame is proportional to the radial energy
�ux f in that frame. But ingoing observers (β1 positive) tend to see energy �ux pointing away from the black
hole (f positive), while outgoing observers (β1 negative) tend to see energy �ux pointing towards the black
hole (f negative). Thus the change in β1 tends to be in the same direction as β1, amplifying β1 whatever its
sign.

Exercise 20.2. Birkho�'s theorem. Prove Birkho�'s theorem from equations (20.62). Birkho�'s theorem
states that any spherically symmetric spacetime that is devoid of energy-momentum between some inner and
outer radii is Schwarzschild between those radii.

Concept question 20.3. Naked singularities in spherical spacetimes? A singularity forms at zero
radius, r = 0, when an apparent horizon develops there, that is, when space starts falling into r = 0 at
the speed of light. Can geodesics emerge from such a singularity? A singularity from which geodesics can
emerge is called a naked singularity. Answer. The surprising answer is yes, naked singularities can occur
in spherical spacetimes. To see that this conclusion is surprising, consider the following �proof� that naked
singularities do not exist. The proof relies on the assumption that the interior mass M and radial pressure
p are both positive, or more precisely, that M/r3 + 4πp is positive; this is certainly a reasonable physical
assumption for real black holes. As seen in Exercise 20.1, outgoing and ingoing radial null geodesics in
a spherical spacetime follow dr/dt = α(β0 ± β1), equation (20.14). An apparent horizon forms when the
outgoing null geodesic ceases to move outward, β0 + β1 = 0. The outgoing and ingoing null geodesics bound
the future lightcone emerging from the apparent horizon: all radial geodesics, timelike or lightlike, must lie
inside or on the lightcone, so that dr/dt ≤ 0 for all radial geodesics at an apparent horizon, with dr/dt = 0 for
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the outgoing radial null geodesic. But the Einstein equation (20.62a), which is valid in any frame arbitrarily
Lorentz-boosted in the radial direction, shows that β0, which equals dr/dτ in that Lorentz-boosted frame,
must decrease along any geodesic, as long as M/r3 + 4πp is positive. Thus once dr/dτ is zero or negative
along a geodesic, it cannot become positive. In particular, this holds true at zero radius, r = 0: as long as
M/r3 + 4πp is positive, once dr/dτ is negative at r = 0, indicating the appearance of a singularity, then
dr/dτ cannot become positive, and therefore no light ray can emerge from the singularity.
The foregoing �proof� that naked singularities cannot exist in spherical spacetimes is �awed because the

infall velocity β0 can be multi-valued at the point at zero radius where a singularity �rst forms. Section 20.16
gives an explicit example for the case of spherically symmetric collapse of pressureless dust.

20.11.1 Comment on the lapse α

Whereas the Einstein equations (20.62) give evolution equations for the vierbein coe�cients β0 and β1,
there is no evolution equation for the vierbein coe�cient α, the lapse. Indeed, the Einstein equations involve
the lapse α only through the connections hm, equations (20.23a) and (20.23b), and thus only as the radial
derivative ∂ lnα/∂r, equations (20.24) and (20.25). This re�ects the fact that, even after the tetrad frame
is �xed, there is still a coordinate freedom t → t′(t) in the choice of coordinate time t. Under such a gauge
transformation, α transforms as α→ α′ = f(t)α where f(t) = ∂t/∂t′ is an arbitrary function of coordinate
time t. Only the radial derivative ∂ lnα/∂r is independent of this coordinate gauge freedom, and thus the
tetrad-frame Einstein equations depend, through hm, only on this radial derivative, not on α itself.
These results are consistent with the arguments in �16.15.1 and �17.2.3 that the lapse α can be treated as

a gauge variable, arbitrarily adjustable by a coordinate transformation of the time coordinate.
A possible gauge choice is to set α = 1 everywhere. According to equation (20.24), this choice requires

that the proper acceleration in the tetrad-frame vanish, h0 = 0, that is, the tetrad-frame is everywhere in
free fall, as for example in the Gullstrand-Painlevé line-element. I like to think of a free-fall frame as being
realised physically by tracer �dark matter� particles that free-fall radially (from zero velocity, typically) at
in�nity, and stream freely, without interacting, through any actual matter that may be present.

20.12 Comparison to ADM (3+1) formulation

The line-element (20.1) is in ADM form with lapse α, shift αβ0, and spatial metric

gαβ = diag(1/β2
1 , r

2, r2 sin2θ) . (20.64)

The non-vanishing components of the acceleration Ka ≡ Γa00 and of the extrinsic curvature Kab ≡ Γa0b are

K1 = h0 , (20.65a)

K11 = h1 , K22 = K33 =
β0

r
. (20.65b)
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20.13 Spherical electromagnetic �eld

The internal structure of a charged black hole resembles that of a rotating black hole because the negative
pressure (tension) of the radial electric �eld produces a gravitational repulsion analogous to the centrifugal
repulsion in a rotating black hole. Since it is much easier to deal with spherical than rotating black holes, it
is common to use charge as a surrogate for rotation in exploring black holes.

20.13.1 Electromagnetic �eld

The assumption of spherical symmetry means that any electromagnetic �eld can consist only of a radial elec-
tric �eld (in the absence of magnetic monopoles). The only non-vanishing components of the electromagnetic
�eld Fmn are then

− F01 = F10 = E =
Q

r2
, (20.66)

where E is the radial electric �eld, and Q(t, r) is the interior electric charge. Equation (20.66) can be regarded
as de�ning what is meant by the electric charge Q interior to radius r at time t.

20.13.2 Maxwell's equations

A radial electric �eld automatically satis�es the two source-free Maxwell equations. For the radial electric
�eld (20.66), the other two Maxwell's equations, the sourced ones (16.34), are

∂1Q = 4πr2q , (20.67a)

∂0Q = −4πr2j , (20.67b)

where q ≡ j0 is the proper electric charge density and j ≡ j1 is the proper radial electric current density in
the tetrad frame.

20.13.3 Electromagnetic energy-momentum tensor

For the radial electric �eld (20.66), the electromagnetic energy-momentum tensor (16.150) in the tetrad
frame is the diagonal tensor

Tmne =
Q2

8πr4


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 . (20.68)

The radial electric energy-momentum tensor is independent of the radial motion of the tetrad frame, which
re�ects the fact that the electric �eld is invariant under a radial Lorentz boost. The energy density ρe and
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radial and transverse pressures pe and p⊥e of the electromagnetic �eld are the same as those from a spherical
charge distribution with interior electric charge Q in �at space

ρe = −pe = p⊥e =
Q2

8πr4
=
E2

8π
. (20.69)

The non-vanishing components of the covariant derivative DmT
mn
e of the electromagnetic energy-mom-

entum (20.68) are

DmT
m0
e = ∂0ρe +

4β0

r
ρe =

Q

4πr4
∂0Q = − jQ

r2
= − jE , (20.70a)

DmT
m1
e = ∂1pe +

4β1

r
pe = − Q

4πr4
∂1Q = − qQ

r2
= − qE . (20.70b)

The �rst expression (20.70a), which gives the rate of energy transfer out of the electromagnetic �eld as the
current density j times the electric �eld E, is the same as in �at space. The second expression (20.70b),
which gives the rate of transfer of radial momentum out of the electromagnetic �eld as the charge density q
times the electric �eld E, is the Lorentz force on a charge density q, and again is the same as in �at space.

20.14 General relativistic stellar structure

Even with the assumption of spherical symmetry, it is by no means easy to solve the system of partial
di�erential equations that comprise the Einstein equations coupled to mass-energy of various kinds. However,
the system simpli�es in some cases.
One simple case is that of a system that is not only spherically symmetric but also static, such as a

star. In this case all time derivatives can be taken to vanish, ∂/∂t = 0, and, since the centre-of-mass frame
coincides with the rest frame, it is natural to choose the tetrad frame to be at rest, β0 = 0. The Einstein
equation (20.62b) then vanishes identically, while the Einstein equation (20.62a) becomes

h0β1 =
M

r2
+ 4πrp , (20.71)

which expresses the proper acceleration h0 in the rest frame in terms of the familiar Newtonian gravitational
force M/r2 plus a term 4πrp proportional to the radial pressure. The radial pressure p, if positive as is the
usual case for a star, enhances the inward gravitational force, helping to destabilize the star. Because β0 is
zero, the interior mass M given by equation (20.11) reduces to

1− 2M/r = β2
1 . (20.72)

When equations (20.71) and (20.72) are substituted into the momentum equation (20.55b), and if the pressure
is taken to be isotropic, so p⊥ = p, the result is the Oppenheimer-Volkov equation for general relativistic
hydrostatic equilibrium

∂p

∂r
= − (ρ+ p)(M + 4πr3p)

r2(1− 2M/r)
. (20.73)
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In the Newtonian limit p� ρ and M � r this goes over to (with units restored)

∂p

∂r
= −ρGM

r2
, (20.74)

which is the usual Newtonian equation of spherically symmetric hydrostatic equilibrium.

Exercise 20.4. Constant density star. Shortly after communicating to Einstein his celebrated solution,
Schwarzschild (1916) sent Einstein a second letter describing the solution for a constant density star. By
adjoining the interior solution to his exterior solution, Schwarzschild had a consistent solution with no
troubling �singularity� at its horizon.
In a spherically symmetric static spacetime, Einstein's equations reduce to an equation for the mass M

interior to r
dM

dr
= 4πr2ρ , (20.75)

and to the Volkov-Oppenheimer equation of hydrostatic equilibrium (20.73).
1. Interior mass. Suppose that the density ρ is constant. From equation (20.75) obtain an expression for

the interior mass M as a function of radius r and the density ρ. [Hint: This is easy.]
2. Hydrostatic equilibrium. Given your expression for M , show that the Volkov-Oppenheimer equa-

tion (20.73) rearranges to ∫
pc

dp

(ρ+ p)(ρ+ 3p)
= −

∫
0

4πr dr

3− 8πr2ρ
(20.76)

where pc is the central pressure, where the radius is zero, r = 0.
3. Solve. Integrate equation (20.76). From the integral evaluated at the edge of the star, where the pressure

is zero, p = 0, and the radius is the stellar radius, r = R?, argue that

ρ+ 3pc
ρ+ pc

=

√
1

1− 2M?/R?
(20.77)

where M? ≡ 4
3πρR

3
? is the total mass of the star.

4. Limits. From the condition that the central pressure be positive and �nite, 0 < pc <∞, deduce that

0 <
2M?

R?
<

8

9
. (20.78)

5. Comment. Comment on what equation (20.78) implies physically. [Hint: What is the Schwarzschild
radius?]

20.15 Freely-falling dust without shell-crossing

Another case where the spherically symmetric equations simplify is that of neutral, radially freely-falling,
pressureless matter, at least as long as shells of matter do not cross each other. Pressureless matter is
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commonly referred to as �dust� in the literature. The collapse of a uniform sphere of dust was �rst solved by
Oppenheimer and Snyder (1939). The formalism of freely falling dust is applied in �20.16 to illustrate the
formation of a naked singularity.
It is natural to choose the tetrad frame to be the rest frame of the freely-falling dust. In the dust rest

frame, the energy �ux and pressure vanish, f = p1 = p⊥ = 0. The geodesic equation for the freely-falling
dust implies that the proper acceleration vanishes, h0 = 0, equation (20.26).
The equations admit two integrals of motion. The �rst integral of motion is the interior mass M , which

equation (20.44a) shows is constant, ∂0M = 0, along the path of the freely-falling dust.
The second integral of motion is β1, as follows from the second of the 2 Einstein equations (20.62). Since

the acceleration vanishes, the covariant time derivative coincides with the directed time derivative, D0 = ∂0.
The 2 Einstein equations (20.62) are then

∂0β0 = −M
r2

, (20.79a)

∂0β1 = 0 . (20.79b)

The second equation (20.79b) shows that β1 is constant as claimed, an integral of motion along the path of
the freely-falling dust. The �rst equation (20.79a), in combination with the de�nition (20.11) of the interior
mass M and the constancy of β1, recovers the constancy of M . The de�nition (20.11) of the interior mass
M implies that the radial velocity β0 ≡ dr/dτ of the freely-falling dust is (the minus sign assumes infalling
dust)

β0 = −
√
β2

1 − 1 + 2M/r . (20.80)

Comparing this to the solution ur ≡ dr/dτ of radially free-falling particles in a Schwarzschild geometry
of mass M , equation (7.36), shows that β1 may be interpreted as the energy E per unit mass that the
freely-falling dust would have if there were no further matter (i.e. the geometry were Schwarzschild) outside
the radius of the dust. This interpretation of β1 is consistent its earlier interpretation as energy per mass,
equation (20.52).
As discussed in �20.11.1, in a free-fall tetrad the lapse α can be set equal to unity everywhere, α = 1. This

corresponds to setting the time coordinate t equal to, up to a shell-dependent constant, the proper time τ
attached to the freely-falling dust. The relation between time t and radius r along the path of the dust is
obtained by integrating the equation for β0 ≡ dr/dτ ,

t− tM = τ =

∫
0

dr

β0
=

∫
0

dr

−
√
β2

1 − 1 + 2M/r
, (20.81)

where the proper time τ is �xed to zero at the time tM when the shell collapses to zero radius. The condition
that shells of positive density collapse to zero radius without crossing requires that the collapse time tM be
an increasing function of interior mass M . A parametric solution for the radius r of the freely-falling dust
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is, with κ ≡ 1− β2
1 ,

r = 2M


κ−1 sin2(κ1/2η/2) |β1| < 1

η2/4 |β1| = 1

|κ|−1 sinh2(|κ|1/2η/2) |β1| > 1

, τ = M


κ−3/2

[
κ1/2η − sin(κ1/2η)

]
|β1| < 1

η3/6 |β1| = 1

|κ|−3/2
[
sinh(|κ|1/2η)− |κ|1/2η

]
|β1| > 1

,

(20.82)
where η is negative, going to zero as the dust radius r collapses to 0. Bound dust, |β1| < 1, reaches a
maximum radius at |κ|1/2η = −π.
It is possible to consider the situation of outgoing dust inside the horizon, for which β1 is negative. However,

there is a coordinate singularity in the line-element (20.1) at β1 = 0, and care needs to be taken interpreting
solutions where β1 passes through zero. The coordinate singularity may be removed by transforming to a
time coordinate di�erent from the free-fall time coordinate. The conclusion is that trajectories with di�erent
signs of β1 belong to distinct pieces of spacetime that abut along the β1 = 0 trajectory.
The relation between energy density ρ and the interior mass M is determined by equation (20.47). The

initial conditions must be set up to satisfy this equation, but the evolution equations guarantee that equa-
tion (20.47) holds thereafter. The equation is a constraint equation: it is the Hamiltonian constraint. An
explicit expression for the proper (centre-of-mass) density ρ at time t and radius r is

ρ = − 1

4πr2β0 ∂t/∂M |r
, (20.83)

where the time t is given as a function ofM (and β1(M)) and r by equation (20.81), t(M, r) = tM +
∫
dr/β0.

The proper pressure vanishes, as it must for freely-falling dust.

Exercise 20.5. Oppenheimer-Snyder collapse. Solve the Oppenheimer and Snyder (1939) problem of
the spherical collapse of a uniform density sphere of pressureless matter that starts from zero velocity at
in�nity.

20.16 Naked singularities in dust collapse

Christodoulou (1984) initiated the study of the formation of naked singularities in spherically symmetric
collapse of dust. Christodoulou showed that if the collapsing dust were su�ciently centrally concentrated,
then the point at which the singularity �rst formed would be visible to the outside world, a �naked� singularity.
The appearance of naked singularities in spherical collapse of dust is generic, requiring only that the collapsing
dust be su�ciently centrally concentrated.
Since the appearance of naked singularities is generic, it su�ces to illustrate the situation in a simple case.

One simplifying assumption is that the dust falls from zero velocity at in�nity, so that β1 = 1, in which case
the infall velocity β0 of dust shells is (with the index on β0 dropped for brevity)

β ≡ β0 = −
√

2M

r
. (20.84)
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Figure 20.1 Spacetime diagram illustrating the formation of a naked singularity in self-similar collapse of dust, for

a = 18, equation (20.86). Infalling (red) lines show trajectories of infalling dust, which are also contours of constant

interior mass M . Approximately diagonal (black) lines show outgoing and ingoing radial null geodesics. Contours are

drawn at intervals of factors of 2. A singularity (cyan) forms where the �rst shell of mass collapses to zero radius.

The naked singularity is the point at the origin {t, r} = {0, 0} where the singularity �rst forms. The apparent horizon

(dashed pink line) is the locus of points where outgoing null rays turn around. The true horizon (thick pink line)

divides outgoing null rays that do not and do reach in�nity. In the region of spacetime between the true horizon (thick

pink line) and the Cauchy horizon (thick green line), outgoing null rays emanate from the naked singularity and extend

to in�nity. The apparent, true, and Cauchy horizons are all straight lines emanating from the naked singularity at the

origin.

Integrating equation (20.81) with β1 = 1 gives the relation between the radius r and time t along the
trajectory of a shell with interior mass M ,

2

3
r3/2 =

√
2M(tM − t) , (20.85)
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where tM , a function of mass M , is the time at which the shell collapses to zero radius, r = 0.
A second simplifying assumption is self-similarity (see �20.18). In the present case, self-similar solutions

occur when the collapse time tM is proportional to the interior mass M ,

tM = aM , (20.86)

with a some positive dimensionless constant. Given the self-similar assumption (20.86), the relation (20.85)
between the radius r and time t reduces to a cubic in the infall velocity β,

aβ3 − 2t

r
β +

4

3
= 0 . (20.87)

Equation (20.87) shows that the infall velocity β is constant along lines t/r = constant, that is, along straight
lines emanating from the origin at {t, r} = {0, 0}. The infall velocity β varies from 0 at t/r = −∞, to −∞
at t/r = +∞. The line-element is Gullstrand-Painlevé, equation (7.27), with β the real negative solution of
the cubic (20.87). The proper pressure in the tetrad frame is zero (as it should be for dust), and the proper
density ρ is

ρ =
1

4πr2

β2

2− 3aβ3
, (20.88)

which is positive everywhere.
Radial outgoing (+) and ingoing (−) null rays passing through the infalling dust follow

dr

dt
= β ± 1 . (20.89)

Equation (20.89) for null geodesics can be recast as a di�erential equation between r and β, which integrates
to

r ∝ exp

[∫
2(β ± 1)(2− 3aβ3) dβ

β(± 4− 2β ± 3aβ3 + 3aβ4)

]
. (20.90)

The integrand in equation (20.90) is a rational function of β, so is integrable in terms of elementary functions.
Special sets of null geodesics occur where the integrand has poles. At poles, null geodesics follow β = constant,
corresponding to straight lines emanating from the origin. For outgoing null geodesics (+ in equation (20.90)),
the quartic denominator 4−2β+3aβ3 +3aβ4 has two real roots at β < 0 provided that the positive constant
a exceeds the threshold value

a ≥ 26

3
+ 5
√

3 ≈ 17.3 . (20.91)

For values of a exceeding the threshold (20.91), there is a naked singularity at the origin. The more negative
of the two real roots (smaller radius) marks the location of the true horizon, while the less negative (larger
radius) marks the so-called Cauchy horizon. Radial outgoing null rays inside the true horizon turn around
and fall to the spacelike singularity, never reaching in�nity. Radial outgoing null rays between the true and
Cauchy horizons propagate from the naked singularity to in�nity.
In mathematics, a Cauchy horizon is de�ned to be the boundary of predictability. In the present case,

the naked singularity at the origin is considered to be a source of unpredictability, since the direction in
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which geodesics emerge from the naked singularity is ambiguous, not determined uniquely by the direction
of geodesics impinging on it.
Figure 20.1 is a spacetime diagram that illustrates the formation of a naked singularity in self-similar

collapse of dust for the case a = 18, which slightly exceeds the threshold (20.91). The roots of the quartic in
this case are

β = −0.791475 , t/r = 4.79558 true horizon ,
β = − 2

3 , t/r = 3 Cauchy horizon .
(20.92)

All outgoing null geodesics inside the true horizon, β < −0.791475, in due course turn around and fall to zero
radius, r = 0. Outgoing null geodesics between the true and Cauchy horizons, −0.791475 < β < − 2

3 , start at
the naked singularity at the origin and reach in�nity. Outgoing null geodesics outside the Cauchy horizon,
β > − 2

3 , start at zero radius before the singularity has formed, and propagate to in�nity. The apparent
horizon, where outgoing null rays turn around, β = −1, occurs at t/r = 25

3 .
The naked singularity in spherical dust collapse has the property that future-directed geodesics can emerge

from it in some directions but not in others. This is a generic feature of naked singularities in general relativity.

20.16.1 Are naked singularities important?

As might be imagined, there is a diversity of opinion regarding the importance of naked singularities in
general relativity. One school of thought holds that singularities that are hidden behind horizons (clothed
singularities) have no e�ect on outside observers, and in that sense do not matter, at least to the outside
observer. From this perspective naked singularities are important precisely because they can a�ect an outside
observer. This seems to me a somewhat anthropocentric point of view. It may be that no human ever falls into
a black hole; but in the cosmos objects fall into black holes all the time. Singularity theorems, Chapter 18,
indicate that general relativity fails inside black holes (more generally, wherever a trapped surface has
formed). The question of what physics replaces general relativity where it fails is profound, regardless of
whether humans can see it.
The possible appearance of naked singularities in gravitational collapse o�ers a potential window to physics

beyond general relativity. However, the collapse of a real black hole is one of the most violent events in
observational astronomy, attended by supernovae and gamma-ray bursts. It is moot whether the signal
from a naked singularity, whatever it might be, would be discernible against the cacophony of astrophysical
processes.

20.17 Thin spherical shells

Sections 20.15 and 20.16 addressed matter that falls freely without shell crossing. Another problem that can
be solved is that of a thin spherical shell. The shell may have internal pressure, and the spherical spacetime
in which it falls need not be empty. The thin shell formalism is used in �20.17.1 to explore the evolution of
a bubble of vacuum energy in empty space, a problem considered by Blau, Guendelman, and Guth (1987).
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As remarked around equation (20.49), the proper radial volume element in the tetrad frame is not 4πr2dr,
but rather 4πr2dr/β1. The surface density “ρ, energy �ux “f , radial pressure “p, and transverse pressure “p⊥ of
a thin shell are de�ned to be integrals over the proper radial element dr/β1,

“ρ ≡
∫ +

−
ρ
dr

β1
, “f ≡

∫ +

−
f
dr

β1
, “p ≡

∫ +

−
p
dr

β1
, “p⊥ ≡

∫ +

−
p⊥

dr

β1
. (20.93)

Minus the surface transverse pressure −“p⊥ is called the surface tension. The Einstein equations governing
the shell are obtained by equating 8π (in units, 8πG) times the surface energy-momenta (20.93) to integrals
of the Einstein tensor (20.35) over the proper volume of the shell. The integrals can be done by inspection:
any term involving a covariant radial derivative D1 integrates to its argument. The Einstein equations for
the spherical shell in its own frame are then

−
2[β1]+−
r

= 8π“ρ , (20.94a)

0 =
2[β0]+−
r

= 8π “f , (20.94b)

0 = 8π“p , (20.94c)

[h0]+− +
[β1]+−
r

= 8π“p⊥ . (20.94d)

The Riemann, Ricci, and Einstein tensors are de�ned in terms of derivatives of the tetrad connections
Γklm. Unsurprisingly, integrals of these tensors over the shell are expressible in terms of [Γklm]+−. The set of
tetrad connections that are tensors under Lorentz transformations within the shell constitute the extrinsic
curvature “Kkm of the shell, de�ned to be the set of tetrad connections [Γk1m]+− with middle index the radial
index 1,

“Kkm ≡ [Γk1m]+− . (20.95)

Recall that in the ADM formalism the extrinsic curvature Kkm ≡ Γk0m is de�ned to be the set of tetrad
connections with middle index the time index 0, equations (17.21). In the ADM case the time axis γγ0

is a spatial scalar, and the extrinsic curvature Kkm is therefore a tetrad tensor with respect to spatial
transformations. In the present case the radial axis γγ1 is a scalar with respect to Lorentz transformations
within the shell, and the connections [Γk1m]+− with middle index the radial index 1 form a tetrad tensor with
respect to Lorentz transformations within the shell. The Ricci tensor “Rkm ≡

∫
Rkm dr/β1 integrated over

the shell, with indices k,m running over 0, 2, 3, equals minus the extrinsic curvature of the shell,

“Rkm = − “Kkm . (20.96)

The Einstein tensor “Gkm integrated over the shell, again with indices k,m running over 0, 2, 3, is then

“Gkm = “Rkm − 1
2ηkm

“R . (20.97)

One can con�rm that the Einstein tensor (20.97) recovers the left hand sides of the Einstein equations (20.94a)
and (20.94d) for the surface density and transverse pressure “ρ and “p⊥.
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The proper mass-energy “m of the shell is, equation (20.94a),

“m ≡ 4πr2 “ρ =

∫ +

−
ρ

4πr2dr

β1
= −r[β1]+− . (20.98)

The proper mass-energy “m of the shell is to be distinguished from the total mass-energy “M in the shell,

“M ≡ [M ]+− =

∫ +

−
ρ 4πr2dr = −

r[β2
1 ]+−
2

, (20.99)

the �nal expression of which follows from the de�nition (20.11) of interior mass M and the fact that the
velocity β0 is constant across the shell, equation (20.94b). The proper mass “m of the shell is related to the
interior mass M by

“m =

∫ +

−

dM

β1
= −r[β1]+− . (20.100)

The ratio “M/ “m of total to proper mass-energy in the shell is

“M

“m
=

[β2
1 ]+−

2[β1]+−
=
β−1 + β+

1

2
= β̄1 , (20.101)

the average β̄1 of the energies per unit mass β±1 either side of the shell. The energies per unit mass β±1 either
side of the shell are

β±1 = β̄1 ± 1
2 [β1]+− =

“M

“m
∓ “m

2r
. (20.102)

The de�nition (20.11) of interior mass, along with the expressions (20.102) for β±1 , implies that average
interior mass M̄ of the shell is

M̄ ≡ M− +M+

2
=
r

2

(
1 + β2

0 −
(β−1 )2 + (β−1 )2

2

)
=
r(1 + β2

0 − β̄
2
1)

2
− “m2

8r
. (20.103)

The Einstein equation (20.94b) implies that the shell velocity β0 is constant across the shell. The de�ni-
tion (20.11) of interior mass implies expressions for the velocity β0 in terms of the interior masses M± and
energies per unit mass β±1 either side of the shell, and equation (20.103) supplies a third expression for β0

in terms of the mean interior mass M̄ and the mean energy per unit mass β̄1,

β0 =

√
(β±1 )2 − 1 +

2M±

r
(20.104a)

=

√
β̄

2
1 − 1 +

2M̄

r
+

“m2

4r2
. (20.104b)

The sign of the velocity β0 is + for outfalling, − for infalling.
Evolution equations for the various energies per unit mass β1 and for the velocity β0 follow from evolu-

tion equations for the proper mass “m of the shell and for the various interior masses. The Einstein equa-
tion (20.62b) in the centre-of-mass frame, f = 0, is ∂0β1−h0β0 = 0, which with the Einstein equations (20.94)
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of the shell implies

0 = ∂0[β1]+− − β0[h0]+− = −4π
(
∂0(r“ρ) + β0(“ρ+ 2“p⊥)

)
= −4πr

(
∂0 “ρ+

2β0

r
(“ρ+ “p⊥)

)
. (20.105)

Equation (20.105) implies that the proper mass-energy “m of the shell evolves as

∂0 “m+ 8πr“p⊥β0 = 0 , (20.106)

which looks like the �rst law of thermodynamics in the form ∂0 “m+ “p⊥∂0A = 0 where A ≡ 4πr2 is the proper
area of the shell. The interior masses M± evolve according to the Einstein equation (20.44a),

∂0M
± + 4πr2p±β0 = 0 . (20.107)

The two equations (20.107) may be recast as evolution equations for the total mass “M ≡ [M ]+− of the shell
and for the average interior mass M̄ ,

∂0
“M + 4πr2[p]+−β0 = 0 , (20.108a)

∂0M̄ + 4πr2p̄ β0 = 0 , (20.108b)

where [p]+− and p̄ ≡ 1
2 (p− + p+) are respectively the di�erence and average of the external radial pressures

p± on the shell. The evolution (20.106) of the proper mass-energy “m of the shell depends on its equation
of state “p⊥/“ρ, while the evolution (20.108) of the total mass-energies “M and M̄ depends on the external
pressures p±.
Usually it is most straightforward to solve the evolution equations (20.106) and (20.108) for the various

masses “m, “M , and M̄ , and then to infer the energies per unit mass β±1 and their average β̄1 from equa-
tion (20.102), and the velocity β0 from any of the three equivalent equations (20.104). However, evolution
equations for β0, β

±
1 , and β̄1 can be deduced directly, either from the evolution equations for the masses, or

from the Einstein equations (20.62),

∂0β0 = β±1 h
±
0 −

M±

r2
− 4πrp± (20.109a)

= β̄1h̄0 −
M̄

r2
− “m2

4r3
− 4πrp̄− 2π “m“p⊥

r
, (20.109b)

∂0β
±
1 = β0h

±
0 , (20.109c)

∂0β̄1 = ∂0

“M

“m
= β0h̄0 , (20.109d)

where h±0 are proper accelerations experienced by observers in the tetrad frame on each side of the shell,
and h̄0 is their average,

h±0 = h̄0 ± 2π(“ρ+ 2“p⊥) , h̄0 = −
[p]+−

“ρ
+

2β̄1 “p⊥
r“ρ

. (20.110)
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Exercise 20.6. Free fall of a thin, pressureless, spherical shell in vacuo. Solve for the evolution of
a thin, pressureless, spherical shell that free falls in vacuo from rest at in�nity.
Solution. In the particular case of a pressureless shell, “p⊥ = 0, freely falling in vacuo, p− = p+ = 0, the
evolution equations (20.106) and (20.106) imply that the proper, total, and mean interior masses “m, “M , and
M̄ are all constants. The constancy of “m and “M implies the constancy of β̄1, equation (20.101) (but not
of β±1 , equation (20.102)). The infall velocity β0 is given by equation (20.104b). If the shell free falls from
rest at in�nity, then β̄1 = 1, and the total mass-energy of the shell equals its proper mass-energy, “M = “m,
equation (20.101). The infall velocity is

β0 = −

√
2M̄

r
+

“M2

4r2
. (20.111)

If the spherical shell is falling towards an object of mass M• (a black hole, say), then the mean interior mass
is M̄ = 1

2 (M• + “M).

20.17.1 A bubble of vacuum

Blau, Guendelman, and Guth (1987) explored the scenario of a spherically symmetric bubble of positive
vacuum energy density ρΛ that evolves in otherwise empty space. As chronicled by Merali (2017), Blau et al.
were motivated at least in part by the question of what might happen to a mote of vacuum energy that
was somehow created in empty space. Could such a mote develop into an in�ating universe? If so, would
the new universe expand out and destroy the surrounding space? Or would the new universe create its own
spacetime?
The geometry is de Sitter inside the bubble, Schwarzschild outside. The interface between the de Sitter

and empty spaces cannot itself be empty, because the �nite pressure of the vacuum and the zero pressure
of empty space do not balance. For simplicity, Blau et al. modelled the interface as a thin spherical shell,
which they assumed itself had a vacuum equation of state, “p⊥ = −“ρ, a so-called domain wall. The interior
masses M± inside (−) and outside (+) the shell, and the proper mass “m of the shell, are then

M− = 4
3πr

3ρΛ , “m = 4πr2 “ρ , M+ = M , (20.112)

where the vacuum density ρΛ, shell density “ρ, and the mass M are all constants. The mass M is the mass
of the bubble perceived by an observer in the empty space outside the bubble. Equations (20.102) for the
energy per unit mass β±1 inside (−) and outside (+) the shell, and their average β̄1, become

β±1 =
M − 4

3πr
3(ρΛ ± 6π“ρ2)

4πr2 “ρ
, β̄1 =

M − 4
3πr

3ρΛ

4πr2 “ρ
. (20.113)

The velocity β0, equation (20.104), is

β0 =

√
(β±1 )2 −∆± , (20.114)
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Figure 20.2 E�ective potential V , equation (20.119a), of a spherical shell sandwiched between a bubble of vacuum

and empty space, as a function of the dimensionless radius z ≡ r/r+
1 , for the case zmax = 1.092. A more realistic

case would have zmax closer to 1, but the larger choice of zmax brings out the behaviour more clearly. The arrowed

horizontal line is an illustrative unbound trajectory of a shell that expands from zero radius to in�nity. Unbound

trajectories occur for M > Mcrit. The radii where the trajectory passes through the de Sitter horizon ∆− = 0, the

Schwarzschild horizon ∆+ = 0, and the places where the energies per unit mass β±1 pass through zero, are marked.

The choice zmax =
(
1 −
√

5/2 +
p

17/4−
√

5
)1/3

= 1.092 is a special value for which there happens to be a special

trajectory, the one shown, where the locations ∆− = 0 and β+
1 = 0 coincide, and also the locations ∆+ = 0 and

β−1 = 0 coincide. This is similar to Figure 6 of Blau, Guendelman, and Guth (1987).

where ∆± ≡ 1− 2M±/r is the horizon function either side of the shell. The energies per unit mass β±1 and
β̄1 are respectively zero at radii r±1 and r1 given by

r±1 =

(
M

4
3π(ρΛ ± 6π“ρ2)

)1/3

, r1 =

(
M

4
3πρΛ

)1/3

. (20.115)

For positive mass M and vacuum density ρΛ, the radii r+
1 and r1 are always positive. The radius r−1 is

positive or negative as ρΛ is larger or smaller than 6π“ρ2. Blau et al. argue that if the vacuum is GUT scale,
then it might be expected that ρΛ ∼ m4

GUT and “ρ ∼ m3
GUT in Planck units, in which case “ρ2/ρΛ ∼ m2

GUT,
which is small compared to 1 if the GUT scale is signi�cantly smaller than the Planck scale, mGUT � 1. In
that case all of r±1 and r1 are positive, and they are ordered

0 < r+
1 . r1 . r

−
1 . (20.116)

Blau et al. introduce a dimensionless variable z ≡ r/r+
1 , in terms of which the energy per unit mass β+

1 ,
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equation (20.113), is

β+
1 =

1√
−E

(
1− z3

z2

)
, (20.117)

and the velocity β0, equation (20.114), satis�es

− Eβ2
0 + V = E , (20.118)

where V (z) is a dimensionless e�ective potential and the constant E is an e�ective dimensionless energy,

V ≡ −
(

1− z3

z2

)2

− µ

z
, (20.119a)

E ≡ −
(

µ2

16π“ρM

)2/3

, (20.119b)

µ ≡ 24π“ρ2

ρΛ + 6π“ρ2
. (20.119c)

If M , ρΛ, and “ρ are positive, then the constant µ is positive, while V and E are negative. Equation (20.118)
agrees with equation (5.9) of Blau et al. with the translations (there → here)

βD → β−1 , βS → β+
1 , ρ0 → ρΛ , χ2 → 8

3πρΛ , γ2 → µ , σ → “ρ . (20.120)

The e�ective potential V de�ned by equation (20.119a) is a hill that goes through a maximum at a value
z = zmax that depends on µ. Equivalently, µ depends on zmax. Figure 20.2 illustrates the e�ective potential V
for the case zmax = 1.092. The value of the constant µ, and of the potential Vmax ≡ V (zmax) at its maximum,
are

µ =
2(z3

max − 1)(z3
max + 2)

z3
max

, Vmax = −3(z6
max − 1)

z4
max

. (20.121)

As 6π“ρ2/ρΛ varies from 0 to 1 to∞, the constant µ varies from 0 to 2 to 4, and the apex zmax of the potential
varies from 1 to 21/6 to 21/3. The motion of the shell is bounded if E < Vmax, unbounded if E > Vmax. The
critical case E = Vmax occurs at a mass M = Mcrit,

Mcrit =

√
(2− z3

max)(z3
max + 2)3

72πρΛ(z3
max + 1)2

. (20.122)

If M < Mcrit, then the motion is bounded, while for M > Mcrit the motion is unbounded. For vacuum
densities su�ciently below the Planck scale, where “ρ2/ρΛ � 1 and hence zmax ≈ 1, the critical mass is
Mcrit ≈

√
3/(32πρΛ), or about 6 grams for MGUT ≈ 1016 GeV.

Blau et al. were interested in the fate of a mote of vacuum that materializes at small radius and initially
expands. If the mass of the mote is less than the critical mass Mcrit, then the mote momentarily expands,
but then turns around and collapses. No new universe.
If on the other hand the mass of the mote exceeds the critical mass Mcrit, then the mote expands from

zero radius to in�nity. A new universe is created.
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From the perspective of an observer in the pre-existing empty space, the shell materializes at zero radius,
r = 0, with zero proper mass, “m = 0, but with �nite total mass “M = M , hence in�nite energy per unit
mass. The outside observer sees a white hole of mass M and horizon size 2M suddenly come into being. The
shell is inside the White Hole part of the Schwarzschild geometry, Figure 7.17. The outside observer, in the
Universe part of the Schwarzschild geometry, sees the shell born at the white hole singularity, possibly with
attending �reworks, and watches the shell expand into the empty space inside the white hole (the contents
of a white hole are, unlike a black hole, visible to an outside observer). The shell switches from ingoing
(β+

1 > 0) to outgoing (β+
1 < 0) inside the white hole, and, now having negative energy per unit mass β+

1 ,
exits into the Parallel Universe part of the Schwarzschild geometry. The observer in the Universe sees the
exiting shell redshift and dim to obscurity.
The more interesting perspective is that of an observer who rides with the shell. The shell does not

expand into a pre-existing spacetime, but rather creates its own new spacetime, with both empty and de
Sitter components. The shell can be conceptualized in one lower dimension as the leading circular edge
of an expanding two-sided disk, on the one side of which is empty space, and on the other is de Sitter
space. Looking backwards, the shell observer sees empty space at smaller radii, going back to the white hole.
Looking forwards, the shell observer sees de Sitter space also at smaller radii. The forward looking observer
is looking in the direction where the radius should be larger, but because the spherical shell is expanding
faster than light (∆− < 0) away from the origin of de Sitter space at r = 0, any light that the shell observer
sees necessarily comes from behind them, at smaller radius.
An observer at the origin r = 0 of de Sitter space sees the shell expand away from them. Either before or

shortly after passing through the White Hole horizon into the Parallel Universe, the shell expands beyond
the de Sitter horizon of the observer at the origin r = 0. The origin observer truly �nds themself in an
in�ating universe.
Key to this remarkable behaviour is the transition of the shell's total mass “M = M− 4

3πr
3ρΛ from positive

to negative, which happens between the times that the shell passes through the White Hole and de Sitter
horizons. Does a large negative total shell mass “M make sense? Recall that the total mass “M includes not
only rest mass but also kinetic and gravitational contributions, and the gravitational contribution can be
negative. The proper mass “m = 4πr2 “ρ of the shell is always positive (and increasing). The mass 4

3πr
3ρΛ of

vacuum energy grows huge as the bubble expands, a mass balanced by the negative gravitational total mass
of the shell.
Is the creation of a bubble of vacuum from a white hole singularity realistic? Nope.

20.17.2 A bubble of vacuum from a magnetic monopole

Sakai et al. (2006) argue that a more realistic origin for an in�ating universe is a Grand Uni�ed Theory
(GUT) magnetic monopole ('t Hooft, 1974; Polyakov, 1974). Magnetic monopoles are predicted by GUTs,
where the electromagnetic �eld gets knotted up in spacetime. GUT monopoles are predicted to have masses
approximately α−1 = 137 times the GUT mass, or about 1018 GeV, close to the Planck mass. No monopole
has been observed in Nature, but that is not too surprising given their large mass.
Sakai et al. model the scenario using the thin shell formalism, with Reissner-Nordström geometry outside
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Figure 20.3 E�ective potential V , equation (20.125), of a magnetically charged shell enclosing a bubble of positive

energy vacuum. The parameters are given by equation (20.126). Both con�gurations have an extremal RN geometry

Q = M . On the left, the shell (dot) is in a classically stable con�guration. On the right, the vacuum density is

somewhat larger, and the con�guration has marginal stability. Thick horizontal bands show the radial ranges where

β+
1 (pinkish) and β−1 (greenish) are positive. Vertical dashed lines mark RN (red) and de Sitter (green) horizons r+

and r−.

the shell, de Sitter inside. The parameters of the RN geometry are the mass M and magnetic charge Q of
the magnetic monopole. The de Sitter geometry has positive vacuum density ρΛ. The shell carries all the
magnetic charge of the monopole, so the monopole looks charged from the RN side, uncharged from the de
Sitter side. Sakai et al. model the shell as having a constant mass “mQ attributable to the rest mass of its
magnetic charge, plus a constant vacuum shell density “ρλ. The interior masses M± inside (−) and outside
(+) the shell, and the proper mass “m of the shell, are then

M− = 4
3πr

3ρΛ , “m = “mQ + 4πr2 “ρλ , M+ = M − Q
2

2r
, (20.123)

whereM , Q, ρΛ, “mQ, and “ρλ are all constants. The translation from Sakai et al.'s notation is (there→ here)

β± → β±1 , ρ→ ρΛ , σ0 → “ρλ , σ1 → “ρQ =
“mQ

4πr2
. (20.124)

An e�ective potential V for the shell may be de�ned by

V ≡ −β2
0 = − (β±1 )2 + 1− M±

r
, (20.125)

with energies per unit mass β±1 given by equation (20.102).
The interesting parameter regime is where the RN geometry is near extremal, Q ≈ M . Parameters may
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be chosen such that the e�ective potential V , equation (20.125), has a stable or marginally stable point at
zero velocity β0, as illustrated in Figure 20.3. The left panel of Figure 20.3 shows a stable point; the right
panel a marginally stable point. The parameters of the two cases illustrated are

Q = M , H ≡
√

8
3πρΛ =


√

1
2√
3
4

M−1 , “mQ =

{ √
1
2
1
2

M , “ρλ = 0 . (20.126)

Both examples are for an extremal RN geometry, Q = M , and in both cases the point of (marginal) stability
is at the RN horizon. The �rst, stable, choice (left panel of Figure 20.3) is special in that not only β0 but
also β+

1 vanishes at the point of stability. The second, marginally stable, choice (right panel of Figure 20.3)
is special by virtue of its marginal stability.

The initial con�guration illustrated in the left panel of Figure 20.3 is classically stable. An outside observer
sees a magnetic monopole with magnetic charge Q equal to its mass M . The shell is located at the horizon
of the extremal RN geometry. Inside the shell is vacuum with positive energy ρΛ.

The shell could potentially quantum tunnel out of the stable con�guration, or alternatively the monopole
could perhaps be perturbed out of its stable state by a collision of some kind. Or, the parameters might
perhaps be tuned so that the con�guration is close to or at marginal stability, a illustrated in the right panel
of Figure 20.3.

Once out of the stable or marginally stable con�guration, the shell starts expanding. In both cases shown
in Figure 20.3, the RN energy per unit mass β+

1 starts at zero in the initial (marginally) stable con�guration.
More generally, β+

1 can be initially positive or negative. But regardless of the initial sign, β+
1 becomes negative

as the shell expands, indicating that the shell has made its way to a Parallel Universe or Parallel Antiverse
part of the RN geometry, Figure 8.6. As the shell expands, it exits the de Sitter horizon of an observer at
r = 0.

As in the situation of a bubble of vacuum in empty space considered by Blau, Guendelman, and Guth
(1987), the shell does not expand into a pre-existing spacetime, but rather creates its own new spacetime,
with both RN and de Sitter components. Looking backward, an observer riding the shell sees RN spacetime
at smaller radii. Looking forward, an observer riding the shell sees de Sitter spacetime, also at smaller radii.
Even though the forward-looking observer is looking in the direction of larger radii, they see only smaller
radii because the shell is moving superluminally outward outside the de Sitter horizon of the origin at r = 0.

How realistic is the scenario of the creation of an in�ating universe from a GUT magnetic monopole? An
object moving outwards in radius with negative RN energy per unit mass β+

1 is necessarily in a Parallel
part of the RN geometry, and must have negotiated an inner horizon where the outside universe appeared
in�nitely blueshifted. In the extremal cases illustrated in Figure 20.3, the inner and outer horizons coincide,
and an object at rest at the horizon sees the outside universe in�nitely blueshifted. In realistic situations,
the diverging concentration of energy at the inner horizon drives an instability that is the principal topic of
Chapter 21. Bottom line: the model is not realistic as it stands.



586 General spherically symmetric spacetimes

20.18 Self-similar spherically symmetric spacetime

A fourth way to simplify the system of spherically symmetric equations, transforming them into ordinary
di�erential equations, is to consider self-similar solutions. The system is more complicated than that of a
static system, or of freely-falling dust, or of thin shells, but still straightforward.
Self-similar solutions are �exible enough to admit multiple components of energy-momentum, which may

interact with each other. Self-similar solutions are especially useful for exploring the in�ationary instability
in the vicinity of the inner horizon of a charged spherical black hole, considered in the next Chapter 21.
Charged spherical black holes are not realistic as models of real astronomical black holes, but they have
inner horizons like realistic rotating black holes, so admit in�ation.

20.18.1 Self-similarity

The assumption of self-similarity (also known as homothety, if you can pronounce it) is the assumption
that the system possesses conformal time translation invariance. This implies that there exists a conformal
time coordinate t such that the geometry at any one time is conformally related to the geometry at any other
time, gµν = e2vtg̃µν , where the conformal metric coe�cients g̃µν(r) are functions only of conformal radius r,
not of conformal time t. In terms of conformal coordinates xµ = {t, r, θ, φ}, the self-similar line-element is

ds2 = e2vt
[
g̃tt(r) dt

2 + 2 g̃tr(r) dt dr + g̃rr(r) dr
2 + e2rdo2

]
. (20.127)

The choice e2r of coe�cient of do2 is a gauge choice of the conformal radius r, chosen here so as to bring
the self-similar line-element into a form (20.131) below that resembles as far as possible the spherical line-
element (20.1). The proper circumferential radius R is

R ≡ evt+r (20.128)

which is to be considered as a function R(t, r) of the conformal coordinates t and r. The circumferential
radius R has a gauge-invariant meaning, whereas neither t nor r are independently gauge-invariant. The
conformal factor R has the dimensions of length. In self-similar solutions, all quantities are proportional to
some power of R, and that power can be determined by dimensional analysis. Quantities that depend only
on the conformal radial coordinate r, independent of the circumferential radius R, are called dimensionless.
The fact that dimensionless quantities such as the conformal metric coe�cients g̃µν(r) are independent of

conformal time t implies that the tangent vector et, which by de�nition satis�es

∂

∂t
= et · ∂ , (20.129)

is a conformal Killing vector, �7.32.4, also known as the homothetic vector. The tetrad-frame components of
the conformal Killing vector et de�nes the tetrad-frame conformal Killing 4-vector ξm,

∂

∂t
≡ Rξm∂m , (20.130)

in which the factor R is introduced so as to make ξm dimensionless. The conformal Killing vector et is
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the generator of the conformal time translation symmetry, and as such it is gauge-invariant (up to a global
rescaling of conformal time, t → at for some constant a). It follows that its dimensionless tetrad-frame
components ξm constitute a tetrad 4-vector (again, up to global rescaling of conformal time).

20.18.2 Self-similar line-element

The self-similar line-element can be taken to have the same form as the spherical line-element (20.1), but
with the dependence on the dimensionless conformal Killing vector ξm made manifest:

ds2 = R2

[
− (ξ0 dt)2 +

1

β2
1

(
dr + β1 ξ

1dt
)2

+ do2

]
. (20.131)

The vierbein emµ and inverse vierbein emµ corresponding to the self-similar line-element (20.131) are

emµ = R


ξ0 0 0 0

ξ1 1/β1 0 0

0 0 1 0

0 0 0 sin θ

 , em
µ =

1

R


1/ξ0 −β1 ξ

1/ξ0 0 0

0 β1 0 0

0 0 1 0

0 0 0 1/ sin θ

 . (20.132)

It is straightforward to see that the coordinate time components of the vierbein must be emt = Rξm, since
∂/∂t = emt ∂m equals Rξm∂m, equation (20.130).

20.18.3 Tetrad-frame scalars and vectors

Since the conformal factor R is gauge-invariant, the directed gradient ∂mR constitutes a tetrad-frame 4-vector
βm (which unlike ξm is independent of any global rescaling of conformal time),

βm ≡ ∂mR . (20.133)

It is straightforward to check that β1 de�ned by equation (20.133) is consistent with its appearance in the
vierbein (20.132) provided that R ∝ er as earlier assumed, equation (20.128).
With two distinct dimensionless tetrad 4-vectors in hand, βm and the conformal Killing vector ξm, three

gauge-invariant dimensionless scalars can be constructed, βmβm, ξmβm, and ξmξm,

1− 2M

R
= βmβm = −β2

0 + β2
1 , (20.134a)

v ≡ ξmβm = ξ0β0 + ξ1β1 =
1

R

∂R

∂t
, (20.134b)

∆ ≡ − ξmξm = (ξ0)2 − (ξ1)2 . (20.134c)

The M in equation (20.134a), which is essentially the same as equation (20.11), is the interior mass. Equa-
tion (20.134a) is dimensionless, which implies that the interior mass at �xed conformal radius r increases
in proportion to the conformal factor, M ∝ R. The dimensionless constant v in equation (20.134b) may be
interpreted as a measure of the expansion velocity of the self-similar spacetime. Because of the freedom of
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a global rescaling of conformal time, it is possible to set v = 1 without loss of generality; but that scaling
obscures the physical signi�cance of v as an expansion rate. The choice adopted in the next Chapter, equa-
tion (21.7), is to set v equal to the rate Ṁ• of increase of the interior massM evaluated at a speci�c conformal
radius, taken to be the sonic point outside the horizon where the boundary conditions are established; the
rate is with respect to the proper time τd of collisionless �dark matter� that free-falls radially from zero
velocity far from the black hole,

v ≡ Ṁ• ≡
dMsonic

dτd
. (20.135)

The proper time τd is essentially the free-fall time tff of the Gullstrand-Painlevé line-element (19.10), or
equivalently T in the line-element (20.138) with α = 1 and β1 = 1. The dimensionless quantity ∆ in
equation (20.134c) is the dimensionless horizon function: horizons occur where the horizon function vanishes,

∆ = 0 at horizons . (20.136)

Note that if v is rescaled, then ∆ ∝ v
2.

Exercise 20.7. Self-similar line-element. Let T and R denote time and radius coordinates

T ≡ evt , R ≡ evt+r . (20.137)

Show that the self-similar line-element (20.131) in terms of T and R is

ds2 = −α2dT 2 +
1

β2
1

(dR− β0 dT )
2

+R2do2 , (20.138)

with lapse

α =
ξ0R

vT
. (20.139)

The line-element (20.138) is the same as the spherical line-element (20.1) with t and r in the latter relabelled
T and R.

20.18.4 Self-similar diagonal line-element

The self-similar line-element (20.131) can be brought to diagonal form by a coordinate transformation to
diagonal conformal coordinates t×, r× (subscripted × for diagonal),

t→ t× = t+ f(r) , r → r× = r − vf(r) , (20.140)

which leaves unchanged the conformal factor R, equation (20.128). The resulting diagonal metric is (compare
equation (20.19))

ds2 = R2

(
−∆ dt2× +

dr2
×

1− 2M/R+ v
2/∆

+ do2

)
. (20.141)
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The diagonal line-element (20.141) corresponds physically to the case where the tetrad frame is at rest in
the similarity frame, ξ1 = 0, as can be seen by comparing it to the line-element (20.131). The frame can be
called the similarity frame. The form of the metric coe�cients in the line-element (20.141) follows from
the line-element (20.131) and the gauge-invariant scalars (20.134).
The conformal Killing vector in the similarity frame is ξm = {

√
∆, 0, 0, 0}, and the 4-velocity of the

similarity frame in its own frame is um = {1, 0, 0, 0}. Since both are tetrad 4-vectors, it follows that with
respect to a general tetrad frame (20.131),

ξm = um
√

∆ (20.142)

where um is the 4-velocity of the similarity frame with respect to the general tetrad frame. This shows that
the conformal Killing vector ξm in a general tetrad frame is proportional to the 4-velocity of the similarity
frame through the tetrad frame. In particular, the proper 3-velocity of the similarity frame through the
tetrad frame is

proper 3-velocity of similarity frame through tetrad frame =
ξ1

ξ0
. (20.143)

In the models considered in Chapter 21, �uids generically fall inward into the black hole. The velocity of the
tetrad rest frame of an infalling �uid is negative relative to the similarity frame, so the velocity ξ1/ξ0 of the
similarity frame through the tetrad frame is positive.
In the rest frame of any �uid, the Killing vector ξm remains �nite and continuous across horizons, where

∆ = 0, whereas the related 4-velocity um, equation (20.142), diverges at horizons. The infall velocity hits the
speed of light at the outer horizon, ξ1/ξ0 = 1, both ξ1 and ξ0 remaining positive there (while um diverges).
Inside the horizon, the conformal Killing vector ξm becomes timelike, with positive ξ1 exceeding ξ0. In some
models, the �uid later drops through an outgoing inner horizon, where ξ1/ξ0 = −1 with ξ1 positive and ξ0

negative. In general, ξm is lightlike at horizons,∣∣∣∣ξ1

ξ0

∣∣∣∣ = 1 at a horizon . (20.144)

20.18.5 Ray-tracing line-element

It proves useful to introduce a �ray-tracing� conformal radial coordinate x related to the coordinate r× of
the diagonal line-element (20.141) by

dx ≡
∆ dr×

[(1− 2M/R)∆ + v
2]

1/2
. (20.145)

In terms of the ray-tracing coordinate x, the diagonal metric (20.141) is

ds2 = R2

(
−∆ dt2× +

dx2

∆
+ do2

)
. (20.146)

The line-element (20.146) de�nes the same similarity tetrad frame as (20.141).



590 General spherically symmetric spacetimes

20.18.6 Geodesics

Spherical symmetry and conformal time translation symmetry imply that geodesic motion in spherically
symmetric self-similar spacetimes is described by a complete set of integrals of motion.
The integral of motion associated with conformal time translation symmetry can be obtained from La-

grange's equations of motion,

d

dτ

∂L

∂ut
=
∂L

∂t
, (20.147)

with e�ective Lagrangian L = 1
2gµνu

µuν for a particle with coordinate 4-velocity uµ. The self-similar metric
depends on the conformal time t only through the overall conformal factor gµν ∝ R2. The derivative of the
conformal factor is given by ∂ lnR/∂t = v, equation (20.134b), so it follows that ∂L/∂t = 2vL. For a massive
particle, for which conservation of rest mass implies gµνuµuν = −1, Lagrange's equations (20.147) thus yield

dut
dτ

= −v . (20.148)

In the limit of zero accretion rate, v → 0, equation (20.148) would integrate to give ut as a constant, the
energy per unit mass of the geodesic. But here there is conformal time translation symmetry in place of time
translation symmetry, and equation (20.148) integrates to

ut = −vτ , (20.149)

in which an arbitrary constant of integration has been absorbed into a shift in the zero point of the proper
time τ . Although the above derivation was for a massive particle, it holds also for a massless particle, with the
understanding that the proper time τ is constant along a null geodesic. The quantity ut in equation (20.149)
is the covariant time component of the coordinate-frame 4-velocity uµ of the particle; it is related to the
covariant components um of the tetrad-frame 4-velocity of the particle by

ut = emt um = Rξmum . (20.150)

Without loss of generality, geodesic motion can be taken to lie in the equatorial plane θ = π/2 of the
spherical spacetime. The integrals of motion associated with conformal time translation symmetry, rotational
symmetry about the polar axis, and conservation of rest mass, are, for a massive particle,

ut = −vτ , uφ = L , uµu
µ = −1 , (20.151)

where L is the orbital angular momentum per unit rest mass of the particle. The coordinate 4-velocity
uµ ≡ dxµ/dτ that follows from equations (20.151) takes its simplest form in the conformal coordinates
{t×, x, θ, φ} of the ray-tracing metric (20.146),

ut× =
vτ

R2∆
, ux = ± 1

R2

[
v

2τ2 − (R2 + L2)∆
]1/2

, uφ =
L

R2
. (20.152)
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20.18.7 Null geodesics

The important case of a massless particle follows from taking the limit of a massive particle with in�nite
energy and angular momentum, vτ → ∞ and L → ∞ (note that τ is constant along a null geodesic, and
vτ can be treated as constant in the limit of a massive particle of in�nite energy). To obtain �nite results,
de�ne an a�ne parameter λ by dλ ≡ vτ dτ , and a 4-velocity in terms of it by vµ ≡ dxµ/dλ. The integrals of
motion (20.151) then become, for a null geodesic,

vt× = −1 , vφ = J , vµv
µ = 0 , (20.153)

where J ≡ L/(vτ) is the (dimensionless) conformal angular momentum of the particle. The 4-velocity vµ

along the null geodesic is then, in terms of the coordinates of the ray-tracing metric (20.146),

vt =
1

R2∆
, vx = ± 1

R2

(
1− J2∆

)1/2
, vφ =

J

R2
. (20.154)

Equations (20.154) yield the shape of a null geodesic by quadrature,

φ =

∫
J dx

(1− J2∆)1/2
. (20.155)

Equation (20.155) shows that the shape of null geodesics in spherically symmetric self-similar spacetimes
hinges on the behaviour of the dimensionless horizon function ∆(x) as a function of the dimensionless
ray-tracing variable x. Null geodesics go through periapsis or apoapsis in the self-similar frame where the
denominator of the integrand of (20.155) is zero, corresponding to vx = 0.
In the Reissner-Nordström geometry there is a radius, the photon sphere, where photons can orbit in circles

for ever. In non-stationary self-similar solutions there is no conformal radius where photons can orbit for ever
(to remain at �xed conformal radius r, the photon angular momentum would have to increase in proportion
to the conformal factor R). There is however a separatrix between null geodesics that do or do not fall
into the black hole, and the conformal radius where this occurs can be called the photon sphere equivalent.
The photon sphere equivalent occurs where the denominator of the integrand of equation (20.155) not only
vanishes, vx = 0, but is an extremum, which happens where the horizon function ∆ is an extremum,

d∆

dx
= 0 at photon sphere equivalent . (20.156)

20.18.8 Dimensional analysis

The spatial conformal coordinates {r, θ, φ} are by de�nition dimensionless. The tetrad metric γmn is dimen-
sionless, while the coordinate metric gµν scales as R2,

γmn ∝ R0 , gµν ∝ R2 . (20.157)

The vierbein emµ, and inverse vierbein emµ equations (20.132), scale as

emµ ∝ R , em
µ ∝ R−1 . (20.158)
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The tetrad connections Γkmn and the tetrad-frame Riemann tensor Rklmn scale as

Γkmn ∝ R−1 , Rklmn ∝ R−2 . (20.159)

20.18.9 Variety of self-similar solutions

Self-similar solutions exist provided that the properties of the energy-momentum introduce no additional
dimensional parameters. Dimensional analysis shows that the proper density ρ and radial and transverse
pressure p and p⊥ of any species must scale with conformal factor R as

ρ ∝ p ∝ p⊥ ∝ R−2 . (20.160)

The pressure-to-density ratio w ≡ p/ρ of any species is dimensionless, and since the ratio can depend only
on the nature of the species itself, not for example on where it happens to be located in the spacetime, it
follows that the ratio w must be a constant. It is legitimate for the pressure-to-density ratio to be di�erent in
the radial and transverse directions (as it is for a radial electric �eld), but otherwise self-similarity requires
that

w ≡ p/ρ , w⊥ ≡ p⊥/ρ , (20.161)

be constants for each species. For example, w = 1 for an ultrahard �uid (which can mimic the behaviour of
a massless scalar �eld (Babichev et al., 2008)), w = 1/3 for a relativistic �uid, w = 0 for pressureless cold
dark matter, w = −1 for vacuum energy, and w = −1 with w⊥ = 1 for a radial electric �eld.
Self-similarity allows that the energy-momentum may consist of several distinct components, such as a rel-

ativistic �uid, plus dark matter, plus an electric �eld. The components may interact with each other provided
that the properties of the interaction introduce no additional dimensional parameters. Dimensional analysis
shows that the �ux Fn of energy and momentum transferred between any two species, equation (20.57),
must scale as

Fn ∝ R−3 . (20.162)

20.18.10 Electrical conductivity

The principal reason to consider charged black holes is that stationary charged black holes have inner horizons
like rotating black holes, and it is easier to model spherical charged black holes than rotating black holes.
The big question, explored using spherical charged black holes in the next Chapter 21, is what happens near
their inner horizons? In exploring this question one should bear in mind that charge is really a surrogate for
rotation.
In self-similar models, a charged black hole acquires its electrical charge from accretion of charged �uid. A

charged �uid will experience a Lorentz force from the electric �eld, and will therefore exchange momentum
with the electric �eld. If the �uid is non-conducting, then there is no dissipation, and the interaction between
the charged �uid and electric �eld automatically introduces no additional dimensional parameters. However,
if the charged �uid is electrically conducting, then the electrical conductivity of the �uid could potentially
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introduce an additional dimensional parameter, and this must not be allowed if self-similarity is to be
maintained. Dimensional analysis shows that the electric charge density q ≡ j0, the radial electric current
j ≡ j1, and the radial electric �eld E ≡ Q/R2 scale as

q ∝ j ∝ R−2 , E ∝ R−1 , (20.163)

consistent with the requirement that the �ux of energy and momentum on the right hand sides of equa-
tions (20.70) scale as Fn ∝ R−3. In di�usive electrical conduction in a �uid of conductivity σ, an electric
�eld E gives rise to a current in the �uid rest frame,

j = σE , (20.164)

which is just Ohm's law. Dimensional analysis then requires that the conductivity must scale as σ ∝ R−1.
The conductivity can depend only on the intrinsic properties of the conducting �uid, and the only intrinsic
property available is its density, which scales as ρ ∝ R−2. It follows that the conductivity must be proportional
to the square root of the density ρ of the conducting �uid,

σ = κ ρ1/2 , (20.165)

where κ is a dimensionless conductivity constant. The form (20.165) is required by self-similarity, and is
not necessarily realistic (although it is realistic that the conductivity increases with density). However, the
conductivity (20.165) is adequate for the purpose of exploring the consequences of dissipation in simple
models of black holes.
A realistic value of the electrical conductivity of a baryonic plasma at a relativistic temperature T is

(Arnold, Moore, and Ya�e, 2000)

σ =
C

e2 ln e−1

kT

~
(20.166)

where e is the dimensionless charge of the electron, the square root of the �ne-structure constant, and the
factor C ≈ 15 depends on the mix of particle species. This electrical conductivity is huge. A dimensionless
measure of the conductivity (which has units 1/time) is the conductivity σ times the characteristic timescale
tBH ≡ GM/c3 of the black hole, which is of order

σtBH ∼
T

TBH
(20.167)

where kTBH ≡ ~/tBH is the characteristic temperature of the black hole (for a Schwarzschild black hole,
this characteristic temperature TBH is 8π times the Hawking temperature). In the astronomical situation
considered here the temperature T of the plasma is huge compared to the characteristic temperature TBH of
the black hole. Indeed if this were not so, then mass loss by Hawking radiation would tend to compete with
mass gain by accretion, an entirely di�erent situation from the one envisaged here.
Charge is being envisaged here as a surrogate for rotation, and electrical conduction should be interpreted

as a substitute for angular momentum transport. Angular momentum transport is a much weaker process
than electrical conduction (if angular momentum transport were as strong as electrical conduction, then
accretion disks would shed angular momentum as quickly as they shed charge, and accretion disks would not
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rotate). In the next Chapter 21, the conductivity is treated as a phenomenological free parameter, greatly
suppressed compared to any realistic conductivity, but nevertheless possibly consistent with what might be
a reasonable rate for the analogous angular momentum transport in a rotating black hole.

20.18.11 Tetrad connections

The expressions for the tetrad connections for the self-similar spacetime (20.131) are the same as those (20.23)
for a general spherically symmetric spacetime. Expressions (20.24) and (20.25) for the proper radial acceler-
ation h0 and the radial Hubble parameter h1 translate in the self-similar spacetime to

h0 ≡ ∂1 ln(Rξ0) , h1 ≡ ∂0 ln(Rξ1) . (20.168)

Comparing equations (20.168) to equations (20.24) and (20.29) shows that the lapse α and scale factor λ
translate in the self-similar spacetime to

α = Rξ0 , λ = Rξ1 . (20.169)

20.18.12 Spherical equations carry over to the self-similar case

The tetrad-frame Riemann, Weyl, and Einstein tensors in the self-similar spacetime take the same form as
in the general spherical case, equations (20.30)�(20.35).
Likewise, the equations for the interior mass in �20.9, for energy-momentum conservation in �20.10, for

the �rst law in �20.10.1, and the various equations for the electromagnetic �eld in �20.13, all carry through
unchanged.

20.18.13 From partial to ordinary di�erential equations

The central simplifying feature of self-similar solutions is that they turn a system of partial di�erential
equations into a system of ordinary di�erential equations.
By de�nition, a dimensionless quantity A(r) is independent of conformal time t. It follows that the partial

derivative of any dimensionless quantity A(r) with respect to conformal time t vanishes,

0 =
∂A(r)

∂t
= ξm∂mA(r) =

(
ξ0∂0 + ξ1∂1

)
A(r) . (20.170)

Consequently the directed radial derivative ∂1F of a dimensionless quantity A(r) is related to its directed
time derivative ∂0F by

∂1A(r) = −ξ
0

ξ1
∂0A(r) . (20.171)

Equation (20.171) allows radial derivatives to be converted to time derivatives.
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20.18.14 Integration variable

It is desirable to choose an integration variable that varies monotonically. A natural choice is the proper
time τ in some tetrad frame, since this is guaranteed to increase monotonically. The 4-velocity at rest in
the tetrad frame is by de�nition um = {1, 0, 0, 0}, so the proper time derivative is related to the directed
conformal time derivative in the tetrad frame by d/dτ = um∂m = ∂0.
However, there is another choice of integration variable, the ray-tracing variable x de�ned by equa-

tion (20.145), that is not speci�cally tied to any tetrad frame, and that has a desirable (tetrad and coordinate)
gauge-invariant meaning. The proper time derivative of any dimensionless function A(r) in the tetrad frame
is related to its derivative dA/dx with respect to the ray-tracing variable x by

∂0A = um∂mA = (u1∂1)simA = −ξ
1

R

dA

dx
. (20.172)

In the third expression, (u1∂1)simA is um∂mA expressed in the similarity frame (20.146), where the di-
rected time and radial derivatives are (∂0)sim = (1/(R

√
∆)) ∂/∂t× and (∂x)sim = (

√
∆/R) ∂/∂x. The partial

time derivative ∂/∂t×|x = ∂/∂t|r vanishes acting on any dimensionless quantity A(r). The last expression
of (20.172) comes from u1

sim = −ξ1/
√

∆ in view of equation (20.142), the minus sign coming from the fact
that u1

sim is tetrad relative to similarity frame, while u1 in equation (20.142) is similarity relative to tetrad
frame.
In summary, the chosen integration variable is the dimensionless ray-tracing variable −x (with a minus

because −x increases monotonically with proper time), the derivative with respect to which, acting on any
dimensionless function, is related to the proper time derivative ∂0 in any tetrad frame by

− d

dx
=
R

ξ1
∂0 . (20.173)

Equation (20.173) involves ξ1, which is proportional to the proper velocity of the tetrad frame through the
similarity frame, equation (20.144), and which therefore, being initially positive, must always remain positive
in any tetrad frame attached to a �uid, as long as the �uid does not turn back on itself, as must be true for
the self-similar solution to be consistent.

20.18.15 Integrals of motion

As remarked above, equation (20.170), in self-similar solutions ξm∂mA(r) = 0 holds for any dimensionless
function A(r). If both the directed derivatives ∂0A(r) and ∂1A(r) are known from the Einstein equations or
elsewhere, then the result will be an integral of motion.
The spherically symmetric, self-similar Einstein equations admit two integrals of motion,

0 = Rξm∂mβ0 = Rβ1(ξ0h0 + ξ1h1)− ξ0

(
M

R
+ 4πR2p

)
+ ξ14πR2f , (20.174a)

0 = Rξm∂mβ1 = Rβ0(ξ0h0 + ξ1h1) + ξ1

(
M

R
− 4πR2ρ

)
+ ξ04πR2f . (20.174b)
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Taking ξ1 times (20.174a) plus ξ0 times (20.174b), and then β0 times (20.174a) minus β1 times (20.174b),
gives

0 = vR(ξ0h0 + ξ1h1)− 4πR2
[
ξ0ξ1(ρ+ p)−

(
(ξ0)2 + (ξ1)2

)
f
]
, (20.175a)

0 = Rξm∂m
M

R
= − v

M

R
+ 4πR2

[
β1ξ

1ρ− β0ξ
0p+ (β0ξ

1 − β1ξ
0)f
]
. (20.175b)

The quantities in square brackets on the right hand sides of equations (20.175) are scalars for each species x,
so equations (20.175) can also be written

vR(ξ0h0 + ξ1h1) = 4πR2
∑

species x

ξ0
xξ

1
x(ρx + px) , (20.176a)

v

M

R
= 4πR2

∑
species x

(βx,1ξ
1
xρx − βx,0ξ0

xpx) , (20.176b)

where the sum is over all species x, and βx,m and ξmx are the 4-vectors βm and ξm expressed in the rest
frame of species x. Equations (20.176) are scalar equations, valid in any frame of reference.
For any �uid with equation of state p/ρ = w = constant, a further integral comes from considering

0 = Rξm∂m(R2p) = R
[
w ξ0∂0(R2ρ) + ξ1∂1(R2p)

]
, (20.177)

and simplifying using the energy conservation equation for ∂0ρ and the momentum conservation equation
for ∂1p.
In the particular case of the electromagnetic �eld, equation (20.177) reduces to

0 = Rξm∂m
Q

R
= − v

Q

R
+ 4πR2

(
ξ1q − ξ0j

)
, (20.178)

which is valid in any radial tetrad frame.
The energy-momentum conservation equations (20.55) with �uxes (20.57) are

∂0ρ+
2β0

R
(ρ+ p⊥) + h1 (ρ+ p) = F 0 , (20.179a)

∂1p+
2β1

R
(p− p⊥) + h0 (ρ+ p) = F 1 . (20.179b)

If a species is charged, then the energy �ux into the charged species from the electromagnetic �eld is,
equations (20.70),

F 0 = jE , F 1 = qE . (20.180)

There may be other contributions to the energy-momentum �uxes Fm if the species exchanges energy-
momentum with another species, for example through collisions. Inserting equations (20.179) into equa-
tion (20.177) yields, in the centre-of-mass frame of a species,

(1 + w)R(ξ1h0 + wξ0h1)− 2w⊥(ξ1β1 − wξ0β0) =
R

ρ
(ξ1F 1 + wξ0F 0) . (20.181)
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Equation (20.181) rearranges to

Rh0 =
2w⊥ξ

1(ξ1β1 − wξ0β0)− w(1 + w)ξ0(ε/v) + (R/ρ)ξ1(ξ1F 1 + wξ0F 0)

(1 + w) [(ξ1)2 − w(ξ0)2]
, (20.182)

where

ε ≡ 4πR2
∑

species x

ξ0
xξ

1
x(1 + wx)ρx (20.183)

summed over all species x (including the one under consideration), where ξmx is in the rest frame of species x.

20.18.16 Entropy

Substituting the self-similar expression (20.169) for the scale factor λ into the energy conservation equa-
tion (20.59) for a species in its own centre-of-mass frame gives

∂0 ln
[
ρR2(1+w⊥)(Rξ1)1+w

]
=
F 0

ρ
. (20.184)

For a �uid with isotropic equation of state w = w⊥, equation (20.184) becomes

∂0 lnS =
F 0

(1 + w)ρ
, (20.185)

where S is (up to an arbitrary constant) the entropy of a comoving volume element V ∝ R3ξ1 of the �uid,

S ≡ R3ξ1ρ1/(1+w) . (20.186)

20.18.17 Summary of equations for accreting, self-similar, spherical, charged black

holes

This section summarizes the equations used in Chapter 21 to compute the evolution of self-similar, spherical,
charged black holes accreting a variety of �uids. For brevity, the index x labelling a �uid species is omitted.
Equations (20.189)�(20.194) and (20.198) are valid in any tetrad frame governed by the self-similar line-
element (20.131). Equations (20.187), (20.188), and (20.195)�(20.197) hold in the rest frame of the �uid
in question, the frame where the energy �ux f of the �uid is zero. For equations holding in the �uid rest
frame, the quantities ξm, βm, and hm should be interpreted as evaluated in the �uid rest frame. Some
quantities, notably v, M/R, Q/R, and ∆ are (dimensionless) scalars, taking the same value in any tetrad
frame. Equations (20.190)�(20.198) are dimensionless, factors of R appearing so as to make them so; for
example Rhm, R2ρ, Rσ are dimensionless.
Self-similarity requires that each �uid have an equation of state with constant w and w⊥, equations (20.161),

w ≡ p/ρ , w⊥ ≡ p⊥/ρ . (20.187)
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If the �uid is charged, then self-similarity requires that its conductivity σ be proportional to the square root
of the proper energy density, equation (20.165),

σ = κ ρ1/2 , (20.188)

with constant dimensionless conductivity coe�cient κ.
The proper time τ in any tetrad frame evolves as

− dτ

dx
=
R

ξ1
, (20.189)

which follows from dx/dτ = ∂0x and equation (20.173). The circumferential radius R in any tetrad frame
evolves as

− d lnR

dx
=
β0

ξ1
, (20.190)

which follows from dR/dτ = ∂0R = β0 and equation (20.189).
The de�ning equations (20.168) for the proper acceleration h0 and Hubble parameter h1 yield equations

for the evolution of the time and radial components of the conformal Killing vector ξm in any tetrad frame,

−dξ
0

dx
= β1 −Rh0 , (20.191a)

−dξ
1

dx
= −β0 +Rh1 . (20.191b)

In the evolution equation (20.191a) for ξ0, equation (20.171) has been used to convert the conformal radial
derivative ∂1 to the conformal time derivative ∂0, and thence to −d/dx by equation (20.173).
The Einstein equations (20.38) applied to the two expressions (20.35c) for G01 yield evolution equations

for the time and radial components of the vierbein coe�cients βm in any tetrad frame,

−dβ0

dx
= − 1

ξ0

(
β1Rh1 + 4πR2T 01

)
, (20.192a)

−dβ1

dx
=

1

ξ1

(
β0Rh0 + 4πR2T 01

)
. (20.192b)

Again, in the evolution equation (20.192a) for β0, equation (20.171) has been used to convert the conformal
radial derivative ∂1 to the conformal time derivative ∂0. The energy �ux T 01 in equations (20.192) is the
total energy �ux summed over all species. The 4 evolution equations (20.191) and (20.192) for ξm and βm
are not independent: they are related by ξmβm = v, a constant, equation (20.134b). To maintain numerical
precision, it is important to avoid expressing small quantities as di�erences of large quantities. In practice,
a suitable choice of variables to integrate proves to be ξ0 + ξ1, β0 − β1, and β1, each of which can be tiny
in some circumstances. Starting from these variables, the following equations yield ξ0 − ξ1, along with the
interior mass M and the horizon function ∆, equations (20.134a) and (20.134c), in a fashion that ensures
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numerical stability:

ξ0 − ξ1 =
2v− (ξ0 + ξ1)(β0 + β1)

β0 − β1
, (20.193a)

2M

R
= 1 + (β0 + β1)(β0 − β1) , (20.193b)

∆ = (ξ0 + ξ1)(ξ0 − ξ1) . (20.193c)

Equation (20.193b) is numerically preferable to equation (20.176b), which can su�er loss of precision from
cancellation of large quantities; equation (20.176b) can be used as a check.
The evolution equations (20.191) and (20.192) involve h0 and h1. The integrals of motion considered in

�20.18.15 yield explicit expressions for h0 and h1 not involving any derivatives. For the Hubble parameter
h1, equation (20.176a) gives

Rh1 = − ξ0

ξ1
Rh0 +

ε

v

, (20.194)

where ε is given by equation (20.183). For the proper acceleration h0, a simple case is that of non-interacting
(collisionless), pressureless, neutral �dark matter,� for which the acceleration vanishes,

h0 = 0 dark matter . (20.195)

For a more general �uid, the integral of motion (20.182) yields an expression for h0. If the �uid exchanges
energy-momentum only with the electromagnetic �eld, so that the �uxes Fm are given by equations (20.180),
then the integral of motion (20.182), simpli�ed using the integral of motion (20.178) for Q and the conduc-
tivity (20.188) in Ohm's law (20.164), reduces to

Rh0 =
ξ1
{

8πw⊥(β1ξ
1 − wβ0ξ

0)R2ρ+
[
v + (1 + w)4πRσξ0

]
Q2/R2 − w(4πξ0ε)2/v

}
4πε [(ξ1)2 − w(ξ0)2]

. (20.196)

Finally, equations are needed governing the evolution of the energy densities ρ of the �uids. If a �uid has
isotropic equation of state, w = w⊥, then the energy conservation equation translates into a conservation
equation (20.185) for entropy (20.186). If the �uid exchanges energy-momentum only with the electromag-
netic �eld, so that the �ux F 0 is given by equations (20.180), then the entropy conservation equation (20.185)
is

− d lnS

dx
=

σQ2

ξ1R3(1 + w)ρ
. (20.197)

The right hand side of equation (20.197) vanishes if the �uid is uncharged or non-conducting.
For the electromagnetic �eld, the energy conservation equation (20.70a) becomes

− d lnQ

dx
= −4πRσ

ξ1
. (20.198)

If there is more than one charged conducting �uid, then the right hand side of equation (20.198) should
be summed over the charged conducting �uids. Equation (20.198) says that (free) energy coming out of the
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electromagnetic �eld is going into (heat) energy of dissipation of charged conducting �uids. Equation (20.198)
is numerically preferable to equation (20.178), which can su�er loss of precision from cancellation of large
quantities; equation (20.178) can be used as a check.

20.19 In�nite thin planes

The �nal problem considered in this chapter is that of an in�nite thin plane in vacuo, not because the
problem is soluble, but rather because such a thing cannot exist in general relativity.

20.19.1 Plane symmetric spacetimes

The next section 20.19.2 considers the situation of a putative in�nite thin wall. The assumed planar symmetry
of the wall implies that the line-element must take the form

ds2 = −α2dt2 +
1

b21
(dz − αb0 dt)2

+ r2(dx2 + x2dφ2) , (20.199)

in which the metric coe�cients are functions of time t and vertical position z. The planar line-element (20.199)
is similar but not identical to the spherical line-element (20.1). The radius r(t, z) in the line-element (20.199)
is an arbitrary function of t and z. The radius r(t, z) can be thought of as a cylindrical cosmic scale factor,
and the coordinate x as a comoving cylindrical coordinate. The coe�cients b0(t, z) and b1(t, z) are likewise
arbitrary function of t and z; unlike the spherical case, they are not equal to βm ≡ ∂mr. Quantities βm are
de�ned to be directed derivatives of the radius r, the same as in the spherical line-element, equation (20.9),

βm ≡ ∂mr =

{
1

α

∂r

∂t
+ b0

∂r

∂z
, b1

∂r

∂z
, 0, 0

}
. (20.200)

As in the spherical case, βm is a tetrad 4-vector, and its scalar product with itself is a scalar, which de�nes
the interior mass M ,

2M

r
≡ β2

0 − β2
1 . (20.201)

The expression (20.201) for the mass M interior to z di�ers from the spherical case 2M/r = 1 + β2
0 − β2

1 ,
equation (20.11), because the �at line-element dx2 + x2dφ2 in (20.199) replaces the spherical line-element
do2 ≡ dθ2 + sin2θ dφ2 in (20.1).
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The tetrad connections are

Γ100 = h0 ≡ ∂1 lnα = b1
∂ lnα

∂z
, (20.202a)

Γ101 = h1 ≡ b0
∂ lnαb0
∂z

− ∂0 ln b1 , (20.202b)

Γ202 = Γ303 =
β0

r
, (20.202c)

Γ212 = Γ313 =
β1

r
, (20.202d)

Γ323 =
1

rx
, (20.202e)

which di�er from the spherical connections (20.23) in h0, h1, and Γ323.
With the changes to the interior mass M from equation (20.201), and to the connections h0, h1, and Γ323

from equations (20.202), all the equations in �20.6 for the Riemann, Ricci, Einstein, and Weyl tensors in the
spherical case hold unchanged.

20.19.2 An in�nite thin wall?

In Newtonian gravity, an in�nite uniform wall produces a uniform gravitational force towards the wall. If the
wall has mass per unit area of “ρ, then solving Laplace's equation ∇2φ = 4πρ with a delta-function source
ρ = “ρ δ(z) implies that the gravitational force is the constant g ≡ −∂φ/∂z = −4π“ρ at any distance z from
the wall. This is not what happens in general relativity (Jones, 2008).
Consider an in�nite uniform thin wall in otherwise empty space. The symmetries of the situation imply

that the line-element must take the form (20.199), with z the vertical coordinate. As remarked at the end
of �20.19.1, all the equations in �20.6 in the spherical case hold also for the planar line-element (20.199),
provided that βm, M , and hm are interpreted as being given by equations (20.200), (20.201), and (20.202).
For the planar line-element (20.199), the mass equations (20.44) in the centre-of-mass frame become

∂0M

∂0r
= −4πr2p , (20.203a)

∂M/∂z

∂r/∂z
= 4πr2ρ . (20.203b)

In the vacuum region outside the wall, the mass equations (20.203) imply that all derivatives of M vanish,
so the interior mass M is constant everywhere outside the wall.
The vacuum region outside the wall de�nes no preferred frame, so there is freedom to Lorentz boost

the spacelike 4-vector βm in the γγ0�γγ1 plane (the t�z plane), such that β1 = 0. In accordance with the
de�nition (20.200) of β1, the vanishing of β1 requires ∂r/∂z = 0, that is, r is a function only of t, independent
of z. Solving Einstein's equations in vacuo leads to the result that not only r but all the metric coe�cients
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in the line-element (20.199) are functions only of t, independent of z. The resulting vacuum line-element is

ds2 = − t

2M
dt2 +

dz2

t
+ t2(dy2 + y2 dφ2) . (20.204)

The spacetime described by the line-element (20.204) has vanishing energy-momentum tensor, but a Weyl
scalar C of

C = −M
t3

. (20.205)

The line-element (20.204) is the Kasner (1921) spacetime (Exercise 17.4) with qa = {− 1
3 ,

2
3 ,

2
3}. Which in

turn looks like the Schwarzschild geometry near its singular surface (Exercise 17.5).
It is now apparent why there are di�culties in general relativity in �nding a thin wall solution analogous to

that in Newtonian gravity. The putative thin wall solution is actually the superluminally infalling region near
the singular surface of the Schwarzschild geometry. Singularity theorems, Chapter 18, imply that, as long as
the energy-momentum satis�es a positive energy condition, there are geodesics whose future terminates in
such a geometry.
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The interiors of accreting, spherical black
holes

As discussed in Chapter 8, the Reissner-Nordström geometry for an ideal charged spherical black hole contains
mathematical wormhole and white hole extensions to other universes. In reality, these extensions are not
expected to occur, thanks to the mass in�ation instability discovered by Poisson and Israel (1990). This
chapter explores how accretion modi�es the internal structure of a spherical black hole. A charged black hole
is not astronomically realistic, but it has an inner horizon like a rotating black hole, but may be considered
a surrogate for a rotating black hole.
Two important lessons emerge from the investigations in this chapter. The �rst is that the inner horizon of

an accreting black hole is subject to the in�ationary instability discovered by Poisson and Israel (1990). The
instability is called in�ation because it grows exponentially. The in�ationary instability destroys the inner
horizon, preventing the wormhole and white hole extensions to other universes that occur in the Reissner-
Nordström geometry for an ideal charged spherical black hole. Poisson & Israel dubbed the instability �mass
in�ation,� but I tend to prefer the term �in�ationary instability� since although the interior mass indeed
increases exponentially during in�ation, it is relativistic counter-streaming, not mass, that drives in�ation
(Hamilton and Avelino, 2010).
The second important lesson of this chapter is that dissipation inside a black hole can create a lot of entropy

inside a black hole, causing a problem with the second law of thermodynamics. Normally, the quantum �eld
theory postulate of locality � the statement that spacelike-separated quantum operators commute � justi�es
adding entropy along spacelike surfaces. Locality implies that all �eld operators can be set independently
along any spacelike surface. Locality is what justi�es calculating the entropy of for example the air in the
room you are sitting in by chopping up the volume of the room into small pieces and adding up the entropies
of each piece. But inside a (conformally) stationary black hole, surfaces of constant (conformal) stationary
time are spacelike, and the volume of a spacelike 3-surface over the age T of a black hole since it �rst collapsed
is of order TR2

+, which for black holes that collapsed long ago is vastly larger than a naive estimate R3
+ of the

volume of a sphere of horizon radius R+. As shown in �21.10, if entropy is accumulated over this vast volume
TR2

+, the cumulative entropy can vastly exceed the Bekenstein-Hawking (Bekenstein, 1973; Hawking, 1974)
entropy, which is 1/4 the area of the horizon in Planck units. Which would imply a gross violation of the
second law of thermodynamics if the black hole subsequently evaporated radiating only a Hawking amount
of entropy. Where did all that accumulated entropy generated inside the black hole disappear to?

603
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The problem, and its solution (Polhemus, Hamilton, and Wallace, 2009), are intimately related to the
Information Paradox introduced in a seminal paper by Hawking (1976). The Information Paradox is that
black hole evaporation must violate one of two fundamental postulates of quantum �eld theory, which are
1. Locality: the proposition that spacelike-separated operators commute;
2. Unitarity: the proposition that quantum mechanical evolution is deterministic.

Locality is what enforces causality in quantum �eld theory. Locality ensures that, although quantum mechan-
ics allows what appears to be instantaneous communication between spacelike-separated points in Einstein-
Podolsky-Rosen (EPR) experiments (Einstein, Podolsky, and Rosen, 1935), no actual information can be
transmitted in such an experiment. The classic EPR experiment is to prepare a pair of particles of non-
zero spin such that their combined spin is 0, then observe the particles at two spacelike-separated receivers.
Quantum mechanics predicts, and experiment con�rms (Yin et al., 2017), that the particles will always be
observed to have spin opposite to each other regardless of the direction along which the particles are observed,
even when that direction is changed at the last moment. It is as if there were some kind of instantaneous
communication between the pair. Yet no actual information is transmitted in the experiment, because each
observation leads to spin up or down with equal probability, and neither side can in�uence which of those
two choices actually occurs.
Applied to black hole interiors, the problem with locality is that information inside a black hole must

exceed the speed of light to escape, which locality prohibits. Hawking (1976) originally argued that this
would cause a breakdown of unitarity, since the Hawking radiation emitted by the black hole would be
causally disconnected from the interior states of the black hole. Hawking argued that Hawking radiation,
being precisely thermal, carries no information. The response to Hawking's conclusion was not immediate,
but in due course a growing number of physicists, including Gerard t'Hooft, Leonard Susskind, Don Page,
John Preskill, and others started arguing that it was more likely that locality, not unitarity, broke down. After
all, when a black hole radiates Hawking radiation, its mass and area decrease, and the amount of entropy
in the Hawking radiation is approximately equal to (actually slightly larger than) the Bekenstein-Hawking
entropy lost by the black hole. How could the two not be causally related, as unitarity insists? This led to
conjectures that the black hole horizon is a �hologram� that somehow encodes the interior quantum degrees
of freedom of a black hole. The idea of holography was boosted greatly by Maldacena's (1998) discovery of
AdS-CFT, a string-theory duality between an anti deSitter spacetime and a conformal �eld theory living on
the boundary of that spacetime. Proponents of holography declared victory (Susskind, 2008). However, it is
fair to say that holography remains incompletely understood, especially in application to real astronomical
black holes.
Anyway, the relevance to the present chapter is that a breakdown of locality would also save the second

law of thermodynamics from excessive entropy production inside black holes. When two observers fall into
a black hole at two di�erent times or angular positions, they lose causal contact with each other, Concept
Question 7.4, and classically they observe distinct volumes of space. But if locality breaks down, then the
observers can be seeing the same quantum degrees of freedom even though the volumes are distinct. In e�ect,
there is only one quantum black hole interior, not many. It is not legitimate to accumulate entropy across
many black hole interiors, even though they are spacelike separated from each other.
All the models presented in this chapter are spherical and self-similar. See Hamilton and Pollack (2005),
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Hamilton and Pollack (2005), Wallace, Hamilton, and Polhemus (2008), and Hamilton and Avelino (2010)
for more detail.

21.1 Boundary conditions and equation of state

The previous Chapter 20 set forward the equations governing spherical spacetimes. This section sets out
the boundary conditions and equation of state adopted for the accreting spherical black hole models in the
remainder of the chapter.

21.1.1 Boundary conditions at an outer sonic point

Because information can propagate only inward inside the horizon of a black hole, it is natural to set
boundary conditions outside the horizon of an accreting black hole. The policy adopted here is to set boundary
conditions at a sonic point, where the infalling baryonic (subscripted b) �uid accelerates from subsonic to
supersonic. The proper 3-velocity of the baryons through the self-similar frame is ξ1

b/ξ
0
b , equation (20.144)

(the velocity ξ1
b/ξ

0
b is positive falling inward), and the sound speed is

sound speed =

√
pb
ρb

=
√
wb , (21.1)

and sonic points occur where the velocity equals the sound speed

ξ1
b

ξ0
b

= ±
√
wb at sonic points . (21.2)

The denominator of the expression (20.196) for the proper acceleration hb,0 of the baryonic �uid is zero at
sonic points, indicating that the acceleration will diverge unless the numerator is also zero. Generically, what
happens at a sonic point depends on whether the �uid transitions from subsonic upstream to supersonic
downstream (as here) or vice versa. If (as here) the �uid transitions from subsonic to supersonic, then sound
waves generated by discontinuities near the sonic point can propagate upstream, plausibly modifying the
�ow so as to ensure a smooth transition through the sonic point, e�ectively forcing the numerator, like the
denominator, of the expression (20.196) to pass through zero at the sonic point. Conversely, if the �uid
transitions from supersonic to subsonic, then sound waves cannot propagate upstream to warn the incoming
�uid that a divergent acceleration is coming, and the result is a shock wave, where the �uid accelerates
discontinuously, is heated, and thereby passes from supersonic to subsonic.
The solutions considered here assume that the acceleration hb,0 at the sonic point is not only continuous

(so the numerator of (20.196) is zero) but also di�erentiable. Such a sonic point is said to be regular, and
the assumption imposes two boundary conditions at the sonic point.
The accretion in real black holes is likely to be much more complicated, but the assumption of a regular

sonic point is the simplest physically reasonable one.
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21.1.2 Mass and charge of the black hole

The mass M• and charge Q• of the black hole at any instant are de�ned here to be those that would be
measured by a distant observer if there were no mass or charge outside the sonic point,

M• = M +
Q2

2r
, Q• = Q at the sonic point . (21.3)

The mass M• in equation (21.3) includes the mass-energy Q2/2r that would be in the electric �eld outside
the sonic point if there were no charge outside the sonic point, but it does not include mass-energy from any
additional mass or charge that might be outside the sonic point.
In self-similar evolution, the black hole mass M• increases linearly with proper time at rest far from the

black hole. The proper time is recorded on dark matter clocks that free-fall radially from rest far away.
In the approximation that there is vanishing energy-momentum outside the sonic point other than that
in the electric �eld, the solution outside the sonic point is Gullstrand-Painlevé. The Gullstrand-Painlevé
line-element for dark matter that free falls radially from rest at in�nity is equation (20.138) with

β1,d = 1 (21.4)

and unit lapse, the latter implying, from equation (20.139) with time T replaced by the dark matter time
τd,

1 = αd =
ξ0
dRd
v τd

. (21.5)

The sonic point is at �xed conformal radius, and equation (21.5) shows that the dark matter time τd =

Rd ξ
0
d/v at that point increases in proportion to the conformal factor Rd. The mass accretion rate Ṁ• is

Ṁ• ≡
dM•
dτd

=
M•
τd

=
vM•
Rdξ0

d

at the sonic point . (21.6)

As remarked following equation (20.134), the residual gauge freedom in the global rescaling of conformal
time allows the expansion rate v to be adjusted at will. One choice suggested by equation (21.6) is to set

Ṁ• = v , (21.7)

which is equivalent to scaling v such that

ξ0
d =

M•
Rd

at the sonic point . (21.8)

Equation (21.8) and the boundary condition (21.4) coupled with the scalar relations (20.134a) and (20.134b)
fully determine the dark matter 4-vectors βd,m and ξmd at the sonic point.



21.2 Black hole accreting a neutral relativistic plasma 607

21.1.3 Equation of state

The density ρb and temperature Tb of an ideal relativistic baryonic �uid in thermodynamic equilibrium are
related by

ρb =
π2gb
30

T 4
b , (21.9)

where

gb = gB +
7

8
gF (21.10)

is the e�ective number of relativistic particle species, with gB and gF being the number of bosonic and
fermionic species. If the expected increase in g with temperature T is modelled (so as not to spoil self-
similarity) as a weak power law gb/gP = T εb , with gP the e�ective number of relativistic species at the Planck
temperature, then the relation between density ρb and temperature Tb is

ρb =
π2gP

30
T

(1+w)/w
b , (21.11)

with equation of state parameter wb = 1/(3 + ε) slightly less than the standard relativistic value w = 1/3.
In the models considered here, the baryonic equation of state is taken to be

wb = 0.32 . (21.12)

The e�ective number gP is �xed by setting the number of relativistic particles species to gb = 5.5 at Tb =

10 MeV, corresponding to a plasma of relativistic photons, electrons, and positrons. This corresponds to
choosing the e�ective number of relativistic species at the Planck temperature to be gP ≈ 2,400, which is
perhaps not unreasonable. The precise choices of gb and wb are not crucial.
The chemical potential of the relativistic baryonic �uid is likely to be close to zero, corresponding to equal

numbers of particles and anti-particles. The entropy Sb of a proper Lagrangian volume element V of the
�uid is then

Sb =
(ρb + pb)V

Tb
, (21.13)

which agrees with the earlier expression (20.186), but now has the correct normalization.

21.2 Black hole accreting a neutral relativistic plasma

Perhaps the simplest model of an accreting black hole that one could think of is that of a spherical black
hole accreting a neutral relativistic �baryonic� plasma. In self-similar solutions, the charge of the black hole
is produced self-consistently by the accreted charge of the baryonic �uid, so a neutral �uid produces an
uncharged black hole.



608 The interiors of accreting, spherical black holes

1010 1020 1030 1040 1050
10−120

10−110

10−100

10−90

10−80

10−70

10−60

10−50

10−40

10−30

10−20

10−10

100

1010

1020

Radius R (Planck units)

(P
la

n
c
k

u
n
it

s)

h
o

ri
z
o
n

P
la

n
c
k

sc
a
le

ρ
b

|C|

dS
b/dSBH

S
o

n
ic

p
o

in
t

R = 0

O
ut

er
ho

ri
zo

n

R
=

∞

R
=
∞

R
=

0

R
=

0

Figure 21.1 An uncharged baryonic plasma falls into an uncharged spherical black hole. The left panel shows in Planck

units, as a function of circumferential radius, the plasma density ρb, the Weyl curvature scalar C (which is negative),

and the rate dSb/dSBH of increase of the plasma entropy per unit increase in the Bekenstein-Hawking entropy of the

black hole, equation (21.44). The mass is M• = 4 × 106 M�, the accretion rate is Ṁ• = 10−16, and the equation of

state is wb = 0.32. The right panel shows a Penrose diagram of the model.

Figure 21.1 shows the baryonic density ρb and Weyl curvature C inside the uncharged black hole. The
mass and accretion rate have been taken to be

M• = 4× 106 M� , Ṁ• = 10−16 , (21.14)

which are motivated by the fact that the mass of the supermassive black hole at the centre of the Milky Way
is 4× 106 M�, and its accretion rate is of order (Planck units are c = G = ~ = 1)

Mass of MW black hole
age of Universe

≈ 4× 106 M�
1010 yr

≈ 6× 1060 Planck units
4× 1044 Planck units

≈ 10−16 . (21.15)

Figure 21.1 shows that the baryonic plasma plunges uneventfully to a central singularity, just as in the
Schwarzschild solution. The Weyl curvature scalar hits the Planck scale, |C| = 1, while the baryonic proper
density ρb is still well below the Planck density, so this singularity is curvature-dominated.
Figure 21.1 also shows the rate dSb/dSBH of increase of the plasma entropy per unit increase in the

Bekenstein-Hawking entropy of the black hole, equation (21.44). The relevance of this quantity is discussed
in �21.10. The constancy of dSb/dSBH in Figure 21.1 re�ects the fact that there is no dissipation in this
model, so no additional entropy is created inside the black hole.
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Figure 21.2 A charged, non-conducting, baryonic plasma falls into a charged black hole. The black hole has an inner

horizon like the Reissner-Nordström geometry. The self-similar solution terminates at an irregular sonic point just

beneath the inner horizon. The mass is M• = 4 × 106 M�, accretion rate Ṁ• = 10−16, equation of state wb = 0.32,

and black hole charge-to-mass Q•/M• = 10−5. The right panel shows a Penrose diagram. The inner horizon is a

Cauchy horizon: what happens in the spacetime to the future of the Cauchy horizon is unpredictable.

21.3 Black hole accreting a charged relativistic plasma

The next simplest model one can think of is that of a black hole accreting a charged relativistic plasma.
Because the plasma is charged, the resulting black hole is also charged.

Figure 21.2 shows a black hole with charge-to-mass Q•/M• = 10−5, but otherwise the same parameters
as in the uncharged black hole of �21.2: M• = 4 × 106 M�, Ṁ• = 10−16, and wb = 0.32. Inside the outer
horizon, the baryonic plasma, repelled by the electric charge of the black hole self-consistently generated by
the accretion of the charged baryons, becomes outgoing. Like the Reissner-Nordström geometry, the black
hole has an (outgoing) inner horizon. The baryons drop through the inner horizon, shortly after which the
self-similar solution terminates at an irregular sonic point, where the proper acceleration diverges. Normally
this is a signal that a shock must form, but even if a shock is introduced, the plasma still terminates at an
irregular sonic point shortly downstream of the shock. The failure of the self-similar solution to continue
does not invalidate the solution to the past of the inner horizon, because the failure is hidden beneath the
inner horizon, and cannot be communicated to infalling matter above it.

The inner horizon is a Cauchy horizon, meaning that the spacetime to the future of the inner horizon
cannot be predicted uniquely from the past. The ambiguity in the possible presence and location of a shock
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the other side of the Cauchy horizon is a symptom of this unpredictability. Hamilton and Pollack (2005) give
further details.
This solution, in which baryonic matter falls through an outgoing inner horizon, is nevertheless not realistic,

because it assumes that there is no ingoing matter whatsoever, whereas even the tiniest amount of ingoing
energy-momentum, in gravitational waves if nothing else, would su�ce to trigger the in�ationary instability.
Such ingoing energy-momentum would appear in�nitely blueshifted to the outgoing baryons falling through
the inner horizon, which would produce in�ation, as in �21.4.

21.4 Black hole accreting charged baryons and dark matter

One way to allow mass in�ation in simple models is to admit not one but two �uids that can counter-stream
relativistically through each other. A natural possibility is to feed the black hole not only with a charged
relativistic �uid of baryons but also with neutral pressureless dark matter that streams freely through the
baryons. The charged baryons, being repelled by the electric charge of the black hole, become outgoing, while
the neutral dark matter remains ingoing.
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Figure 21.3 Not only charged baryonic plasma but also neutral pressureless dark matter fall into a black hole. The

dark matter streams freely through the baryonic plasma. The relativistic counter-streaming produces mass in�ation

just above the erstwhile inner horizon, where the centre-of-mass density ρ (thick black line) and curvature C in�ate

rapidly to the Planck scale and beyond. The mass is M• = 4× 106 M�, the accretion rate Ṁ• = 10−16, the baryonic

equation of state wb = 0.32, the charge-to-mass Q•/M• = 10−5, the conductivity is zero, and the ratio of dark matter

to baryonic density at the outer sonic point is ρd/ρb = 0.1.
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Figure 21.4 (Left panel) The centre-of-mass density ρ and Weyl curvature |C|, and (right panel) interior mass M ,

inside three black holes accreting baryons and dark matter at three di�erent rates Ṁ• = 0.03, 0.01, and 0.003. In all

three cases the dark-matter-to-baryon ratio at the sonic point is ρd/ρb = 0.1. The smaller the accretion rate, the faster

the centre-of-mass density ρ, curvature C, and interior mass M in�ate; note that the centre-of-mass energy ρ (thick

black line) and the curvature |C| almost coincide here. For the middle accretion rate Ṁ• = 0.01 (to avoid confusion,

only this case is plotted), the graph also shows the individual proper densities ρb of baryons, ρd of dark matter, and

ρe of electromagnetic energy. During mass in�ation, almost all the centre-of-mass energy ρ is in the streaming energy:

the proper densities of individual components remain small. The black hole mass is M• = 4 × 106 M�, the baryonic

equation of state is wb = 0.32, the charge-to-mass is Q•/M• = 0.8, and the conductivity is zero. The position where

the inner horizon would be for a Reissner-Nordström black hole of Q•/M• = 0.8 is marked, but in fact the inner

horizon is destroyed by the in�ationary instability.

Figure 21.3 shows that relativistic counter-streaming between the baryons and the dark matter causes
the centre-of-mass density ρ and the Weyl curvature scalar C to in�ate quickly up to the Planck scale and
beyond. The ratio of dark matter to baryonic density at the sonic point is ρd/ρb = 0.1, but otherwise the
parameters are the generic parameters of the previous two sections:M• = 4×106 M�, Ṁ• = 10−16, wb = 0.32,
Q•/M• = 10−5, and zero conductivity. Almost all the centre-of-mass energy ρ is in the counter-streaming
energy between the outgoing baryonic and ingoing dark matter. The individual densities ρb of baryons and
ρd of dark matter (and ρe of electromagnetic energy) increase only modestly.

A striking feature of mass in�ation is that the smaller the accretion rate, the shorter the length scale
of in�ation. Not only that, but the smaller one of the outgoing or ingoing streams is relative to the other,
the shorter the length scale of in�ation. Figure 21.4 shows black holes with three di�erent accretion rates
Ṁ• = 0.03, 0.01, and 0.003, all with the same ratio ρd/ρb = 0.1 of the dark-matter-to-baryon density ratio
at the sonic point. The smaller the accretion rate, the faster is in�ation. The accretion rates Ṁ• have been



612 The interiors of accreting, spherical black holes

chosen to be relatively large so that the in�ationary growth rate is discernible easily on the graph. The
centre-of-mass density ρ and Weyl scalar C exponentiate along with, and in proportion to, the interior mass
M , which increases as the radius r decreases approximately as (see Hamilton and Avelino (2010) for more
precise estimates)

ρ ∝∼ C ∝∼M ∝∼ exp(− ln r/Ṁ•) . (21.16)

Physically, the scale of length of in�ation is set by how close to the inner horizon infalling material approaches
before mass in�ation begins. The smaller the accretion rate Ṁ•, the closer the approach, and consequently
the shorter the length scale of in�ation.
Figure 21.4 shows that, as in Figure 21.3, almost all the centre-of-mass energy density ρ is in the streaming

energy between the baryons and the dark matter. For one case, Ṁ• = 0.01, Figure 21.4 shows the individual
densities ρb of baryons and ρd of dark matter in their own frames, and ρe of electromagnetic energy, all of
which remain tiny compared to the streaming energy.
Figure 21.4 also shows that in�ation in due course comes to an end, whereupon the spacetime collapses to

a spacelike singularity at zero radius. Hamilton and Avelino (2010) shows that the maximum interior mass
attained is approximately the exponential of the reciprocal of the mass accretion rate,

Mmax ∼ exp(1/Ṁ•) . (21.17)

For small accretion rates, this interior mass is absurdly huge. For example, for the �realistic� accretion rate
of Ṁ• = 10−16 adopted in the model of Figure 21.3, the maximum interior mass attained is Mmax ∼ e1016

,
and the maximum proper streaming density ρ and curvature C are similarly ridiculously vast. The density
and curvature vastly exceed the Planck scale.
Curvature is synonymous with tidal force. It seems entirely likely that the tidal force will result in pair

creation once the curvature exceeds the Planck scale. Frolov, Kristjansson, and Thorlacius (2006) show that
in the case a charged black hole in 2 spacetime dimensions, such pair creation does in fact occur. However,
there have been no studies of what happens in the realistic case of 4 spacetime dimensions.

21.5 The black hole collider

The previous section, �21.4, showed that almost all the centre-of-mass energy during mass in�ation is in
the energy of counter-streaming. Thus the black hole acts like an extravagantly powerful particle accelerator
(Hamilton and Avelino, 2010).
Each baryon in the black hole collider sees a �ux ndu1 of dark matter particles per unit area per unit

time, where nd = ρd/md is the proper number density of dark matter particles in their own frame, and u1 is
the radial component of the proper 4-velocity, the γv, of the dark matter through the baryons. The γ factor
in u1 is the relativistic beaming factor: all frequencies, including the collision frequency, are speeded up by
the relativistic beaming factor γ. As the baryons accelerate through the collider, they spend a proper time
interval dτ/d lnu1 in each e-fold of Lorentz factor u1. The number of collisions per baryon per e-fold of u1 is
the dark matter �ux (ρd/md)u

1, multiplied by the time dτ/d lnu1, multiplied by the collision cross-section
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Figure 21.5 Collision rate of the black hole collider per e-fold of velocity u (meaning γv), expressed in units of the

inverse black hole accretion time Ṁ•/M•. The curves are labelled with their mass accretion rates: Ṁ• = 0.03, 0.01,

0.003, and 10−16 (the three models with the larger accretion rates are the same as those in Figure 21.4). Stars mark

where the centre-of-mass energy of colliding baryons and dark matter particles exceeds the Planck energy, while disks

show where the Weyl curvature scalar C exceeds the Planck scale.

σ. The total cumulative number of collisions that have happened in the black hole particle collider equals
this multiplied by the total number of baryons that have fallen into the black hole, which is approximately
equal to the black hole mass M• divided by the mass mb per baryon. Thus the total cumulative number of
collisions in the black hole collider is

number of collisions
e-fold of u1 =

M•
mb

ρd
md

σu1 dτ

d lnu1
. (21.18)

Figure 21.5 shows, for several di�erent accretion rates Ṁ•, the collision rate M•ρdu1dτ/d lnu1 of the black
hole collider, expressed in units of the black hole accretion rate Ṁ•. This collision rate, multiplied by
Ṁ•σ/(mdmb), gives the number of collisions (21.18) in the black hole. In the units c = G = 1 being
used here, the mass of a baryon (proton) is 1 GeV ≈ 10−54 m. If the cross-section σ is expressed in canonical
accelerator units of femtobarns (1 fb = 10−43 m2) then the number of collisions (21.18) is

number of collisions
e-fold of u1 = 1045

( σ

1 fb

)(300 GeV2

mbmd

)(
Ṁ•

10−16

)(
ρdu

1dτ/d lnu1

0.03 Ṁ•/M•

)
. (21.19)

Particle accelerators measure their cumulative luminosities in inverse femtobarns. Equation (21.19) shows
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that the black hole accelerator delivers about 1045 femtobarns−1 (= 100 m2), and it does so in each e-fold of
collision energy up to the Planck energy and beyond.
To quote the �nal sentences of Hamilton (2011): �It appears inescapable that Nature is conducting vast

numbers of collision experiments over a broad range of peri- and super-Planckian energies in large numbers
of black holes throughout our Universe. Does Nature do anything interesting with this extravagance � such
as create baby universes � or is it merely a �nal hurrah en route to nothingness?�

21.6 The mechanism of mass in�ation

This section explains why mass in�ation occurs, and why it is inevitable as long as even the tiniest streams
of outgoing and ingoing energy-momentum impinge on the inner horizon. The arguments are from Hamilton
and Avelino (2010), which gives more detail. For a taste of how this works out mathematically, Exercise 21.1
takes you through the case of equal pressureless streams.

21.6.1 Reissner-Nordström phase

Figure 21.6 illustrates how the two Einstein equations (20.62) produce the three phases of mass in�ation
inside a charged spherical black hole.
During the initial phase, illustrated in the top panel of Figure 21.6, the spacetime geometry is well-

approximated by the vacuum, Reissner-Nordström geometry. During this phase the radial energy �ux f is
e�ectively zero, so β1 remains constant, according to equation (20.62b). The change in the radial velocity β0,
equation (20.62a), depends on the competition between the Newtonian gravitational force −M/r2, which is
always attractive (tending to make the radial velocity β0 more negative), and the gravitational force −4πrp

sourced by the radial pressure p. In the Reissner-Nordström geometry, the static electric �eld produces a
negative radial pressure, or tension, p = −Q2/(8πr4), which produces a gravitational repulsion −4πrp =

Q2/(2r3). At some point (depending on the charge-to-mass ratio) inside the outer horizon, the gravitational
repulsion produced by the tension of the electric �eld exceeds the attraction produced by the interior mass
M , so that the radial velocity β0 slows down. This regime, where the (negative) radial velocity β0 is slowing
down (becoming less negative), while β1 remains constant, is illustrated in the top panel of Figure 21.6.
If the initial Reissner-Nordström phase were to continue, then the radial 4-gradient βm would become

lightlike. In the Reissner-Nordström geometry this does in fact happen, and where it happens de�nes the
inner horizon. The problem with this is that the lightlike 4-vector βm points in one direction for outgoing
frames, and in the opposite direction for ingoing frames. If βm becomes lightlike, then outgoing and ingoing
frames are streaming through each other at the speed of light. This is the in�nite blueshift at the inner
horizon �rst pointed out by Penrose (1968).
If there were no matter present, or if there were only one stream of matter, either outgoing or ingoing but

not both, then βm could indeed become lightlike. But if both outgoing and ingoing matter are present, even
in the tiniest amount, then it is physically impossible for the outgoing and ingoing frames to stream through
each other at the speed of light.
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Figure 21.6 Spacetime diagrams of the tetrad-frame 4-vector βm, equation (20.9), illustrating qualitatively the three

successive phases of mass in�ation: 1. (top) the Reissner-Nordström phase, where in�ation ignites; 2. (middle) the

in�ationary phase itself; and 3. (bottom) the collapse phase, where in�ation comes to an end. In each diagram, the

arrowed lines labelled outgoing and ingoing illustrate two representative examples of the 4-vector {β0, β1}, while the
double-arrowed lines illustrate the rate of change of these 4-vectors implied by Einstein's equations (20.62). Inside

the horizon of a black hole, all locally inertial frames necessarily fall inward, so the radial velocity β0 ≡ ∂0r is always

negative. A locally inertial frame is outgoing or ingoing depending on whether the proper radial gradient β1 ≡ ∂1r

measured in that frame is negative or positive.

If both outgoing and ingoing streams are present, then as they race through each other ever faster, they
generate a radial pressure p, and an energy �ux f , which begin to take over as the main source on the right
hand side of the Einstein equations (20.62). This is how mass in�ation is ignited.
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21.6.2 In�ationary phase

The infalling matter now enters the second, mass in�ationary phase, illustrated in the middle panel of
Figure 21.6.
During this phase, the gravitational force on the right hand side of the Einstein equation (20.62a) is

dominated by the pressure p produced by the counter-streaming outgoing and ingoing matter. The mass M
is completely sub-dominant during this phase (in this respect, the designation �mass in�ation� is misleading,
since although the mass in�ates, it does not drive in�ation). The counter-streaming pressure p is positive,
and so accelerates the radial velocity β0 (makes it more negative). At the same time, the radial gradient
β1 is being driven by the energy �ux f , equation (20.62b). For typically low accretion rates, the streams
are cold, in the sense that the streaming energy density greatly exceeds the thermal energy density, even
if the accreted material is at relativistic temperatures. This follows from the fact that for mass in�ation to
begin, the gravitational force produced by the counter-streaming pressure p must become comparable to that
produced by the mass M , which for streams of low proper density requires a hyper-relativistic streaming
velocity. For a cold stream of proper density ρ moving at 4-velocity um ≡ {u0, u1, 0, 0}, the streaming energy
�ux would be f ∼ ρu0u1, while the streaming pressure would be p ∼ ρ(u1)2. Thus their ratio f/p ∼ u0/u1

is slightly greater than one. It follows that, as illustrated in the middle panel of Figure 21.6, the change in
β1 slightly exceeds the change in β0, which drives the 4-vector βm, already nearly lightlike, to be even more
nearly lightlike. This is mass in�ation.
In�ation feeds on itself. The radial pressure p and energy �ux f generated by the counter-streaming

outgoing and ingoing streams increase the gravitational force. But, as illustrated in the middle panel of
Figure 21.6, the gravitational force acts in opposite directions for outgoing and ingoing streams, tending to
accelerate the streams faster through each other. An intuitive way to understand this is that the gravitational
force is always inwards, meaning in the direction of smaller radius, but the inward direction is towards the
black hole for ingoing streams, and away from the black hole for outgoing streams.
The feedback loop in which the streaming pressure and �ux increase the gravitational force, which ac-

celerates the streams faster through each other, which increases the streaming pressure and �ux, is what
drives mass in�ation. In�ation produces an exponential growth in the streaming energy, and along with it
the interior mass, and the Weyl curvature.

21.6.3 Collapse phase

It might seem that in�ation is locked into an exponential growth from which there is no exit. But the Einstein
equations (20.62) have one more trick up their sleave.
For the counter-streaming velocity to continue to increase requires that the change in β1 from equa-

tion (20.62b) continues to exceed the change in β0 from equation (20.62a). This remains true as long as the
counter-streaming pressure p and energy �ux f continue to dominate the source on the right hand side of
the equations. But the mass term −M/r2 also makes a contribution to the change in β0, equation (20.62a).
It turns out (Hamilton and Avelino, 2010) that, at least in the case of collisionless streams, the mass term
exponentiates slightly faster than the pressure term (in Exercise 21.1, for example, this occurs because in
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equation (21.28) there is a +β2 term in the numerator and a −β2 term in the denominator). At a cer-
tain point, the additional acceleration produced by the mass means that the combined gravitational force
M/r2 + 4πrp exceeds 4πrf . Once this happens, the 4-vector βm, instead of being driven to becoming more
lightlike, starts to become less lightlike. That is, the counter-streaming velocity starts to slow. At that point
in�ation ceases, and the streams quickly collapse to zero radius.
It is ironic that it is the increase of mass that brings mass in�ation to an end. Not only does mass not

drive mass in�ation, but as soon as mass begins to contribute signi�cantly to the gravitational force, it brings
mass in�ation to an end.

21.7 The far future?

The Penrose diagram of a Reissner-Nordström, Figure 8.7, or Kerr-Newman black hole indicates that an
observer who passes through the outgoing inner horizon sees the entire future of the outside universe go by.
In a sense, this is �why� the outside universe appears in�nitely blueshifted.
This raises the question of whether what happens at the outgoing inner horizon of a real black hole indeed

depends on what happens in the far future. If it did, then the conclusions of �21.6, which are based in part
on the proposition that the accretion rate is approximately constant, would be suspect. A lot can happen
in the far future, such as black hole mergers, the Universe ending in a big crunch, Hawking evaporation, or
something else beyond our current ken.
Outgoing and ingoing observers both see each other highly blueshifted near the inner horizon. An outgoing

observer sees ingoing observers from the future, while an ingoing observer sees outgoing observers from the
past. Each stream sees approximately one black hole crossing time elapse on the opposing stream for each
e-fold increase in blueshift (Hamilton and Avelino, 2010).
For astronomically realistic black holes, exponentiating the Weyl curvature up to the Planck scale will take

typically a few hundred e-folds of blueshift, as illustrated for example in Figure 21.4. Thus what happens at
the inner horizon of a realistic black hole before quantum gravity intervenes depends only on the immediate
past and future of the black hole � a few hundred black hole crossing times � not on the distant future
or past. This conclusion holds even if the accretion rate of one of the outgoing or ingoing streams is tiny
compared to the other.
From a stream's own point of view on the other hand, the entire in�ationary episode goes by in a �ash.

21.8 Weak null singularity on the Cauchy horizon?

It is commonly stated in the literature that the generic outcome of in�ation is a �weak null singularity on the
Cauchy horizon.� Weak means that the tidal force, the Weyl curvature, exponentiates to in�nity in a �nite
amount of proper time. Null refers to the fact that the streaming velocity between outgoing and ingoing
streams reaches the speed of light.
In my view this conclusion is incorrect. The conclusion is an artefact of assuming that after collapsing,
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a black hole remains isolated for ever, whereas real astronomical black holes accrete, cosmic microwave
background photons if nothing else. Moreover the conclusion of a weak null singularity ignores the fact that
the diverging tidal force is likely to result in diverging pair creation, and such pairs would surely act as an
e�ective source of accretion, again precipitating collapse.

The fact that a volume element remains little distorted during in�ation even though the tidal force, as
measured by the Weyl curvature scalar, exponentiates to huge values was �rst pointed out by Ori (1991).
The physical reason for the small tidal distortion despite the huge tidal force is that the proper time over
which the force operates is tiny.

Dafermos (2005) has proved a number of mathematical theorems that establish that a null singularity
forms on the Cauchy horizon of a charged spherical black hole accreting a massless scalar �eld. The situation
envisaged by the theorems is that of a black hole that collapses and thereafter remains isolated. The collapse
generates an outgoing Price tail of radiation. The theorems assume that the outgoing Price radiation falls o�
su�ciently rapidly along outgoing null geodesics, and Dafermos and Rodnianski (2005) have proved that the
required condition on the Price radiation holds for an isolated spherical black hole accreting a massless scalar
�eld. The theorems con�rm the several analytic and numerical studies that have found a null singularity on
the Cauchy horizon (Ori, 1991; Bonanno et al., 1994b; Brady and Smith, 1995; Burko, 1997; Burko and Ori,
1998; Hod and Piran, 1998a; Hod and Piran, 1998b; Ori, 1999; Hansen, Khokhlov, and Novikov, 2005).

Burko (2002; 2003) �nds numerically that a null singularity forms only if the scalar �eld set up outside
the horizon falls o� su�ciently rapidly, the required degree of rapidity depending on the parameters of the
problem, such as the charge-to-mass ratio of the black hole. If too much scalar �eld continues to be accreted,
then no null singularity forms, and the �eld collapses to a central singularity.

All the results are consistent with the estimate (21.16) that the interior mass in�ates exponentially with
an exponent inversely proportional to the mass accretion rate Ṁ•. If the accretion rate goes to zero, Ṁ• → 0,
then the exponential growth rate becomes in�nite, leading to a weak null singularity.

Frolov, Kristjansson, and Thorlacius (2006) have shown that in the simpli�ed case of a 1+1-dimensional
charged black hole, if the e�ects of pair creation of charged particles are taken into account, then the result
is collapse to a spacelike singularity rather than a null singularity on the Cauchy horizon. The result is
consistent with the argument of the present paper that as long as there is any source that continues to
replenish outgoing and ingoing streams near the inner horizon, the ultimate result will be collapse to a
spacelike singularity. The results of Frolov, Kristjansson, and Thorlacius (2006) suggest that even without
any direct accretion, pair creation provides a su�cient source of outgoing and ingoing streams.
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Exercise 21.1. A collisionless two-stream model of in�ation. This problem is from Hamilton and
Avelino (2010). Some of the equations below repeat equations elsewhere in this book, but they are left as is
so that the problem remains self-contained.
Einstein's equations in a spherically symmetric spacetime imply that the covariant rate of change of the

radial 4-gradient βm ≡ ∂mr = {∂0r, ∂1r, 0, 0} in the frame of any radially moving orthonormal tetrad is
(these are equations (20.62))

D0β0 = −M

r2
− 4πrp , (21.20a)

D0β1 = 4πrf , (21.20b)

where D0 is the tetrad-frame covariant time derivative, p is the radial pressure, f is the radial energy �ux,
and M is the interior mass de�ned by (this is equation (20.11))

2M

r
− 1 ≡ β2 ≡ −βmβm = β2

0 − β1
2 . (21.21)

1. Freely-falling stream. Consider a stream of matter that is freely falling radially inside the horizon of
a spherically symmetric black hole. Let u be the radial component of the tetrad-frame 4-velocity um of
the stream relative to the �no-going� frame where β1 = 0 (the frame of reference that divides outgoing
frames β1 < 0 from ingoing frames β1 > 0):

um ≡ {−β0/β,−β1/β, 0, 0} = {
√

1 + u2, u, 0, 0} . (21.22)

Note that β0 is negative inside the horizon for both outgoing and ingoing frames. The time component
u0 ≡ −β0/β =

√
1 + u2 of the tetrad-frame 4-velocity is positive (as it should be for a proper 4-velocity),

while the radial component u ≡ u1 ≡ −β1/β of the tetrad-frame 4-velocity is positive outgoing, negative
ingoing. Show that along the worldline of the stream

d lnβ

d ln r
=

1

β2

[
−M

r
− 4πr2

(
p+

β1

β0
f

)]
, (21.23a)

d lnu

d ln r
=

1

β2

[
M

r
+ 4πr2

(
p+

β0

β1
f

)]
. (21.23b)

[Hint: If the stream is freely falling, then the proper time derivative ∂0 in the tetrad frame of the stream
equals the covariant time derivative D0. Thus the proper rates of change of lnβ and lnu with respect
to ln r along the worldline of the stream are

d lnβ

d ln r
=
∂0 lnβ

∂0 ln r
,

d lnu

d ln r
=
∂0 lnu

∂0 ln r
. (21.24)
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These can be evaluated through

∂0 lnβ = D0 lnβ =
1

2β2
D0β

2 =
1

2β2
D0(β2

0 − β2
1)

=
1

β2
(β0D0β0 − β1D0β1) , (21.25a)

∂0 lnu = D0 lnu = D0 lnβ1 −D0 lnβ

=
1

β1
D0β1 −D0 lnβ , (21.25b)

∂0 ln r =
1

r
∂0r =

β0

r
, (21.25c)

with Einstein's equations (21.20) substituted into equations (21.25a) and (21.25b).]
2. Equal outgoing and ingoing streams. Consider the symmetrical case of two equal streams of radially

outgoing (β1 < 0) and ingoing (β1 > 0) neutral, pressureless, non-interacting matter (�dust�), each of
proper density ρ in their own frames, freely-falling into a charged black hole. Show that

d lnβ

d ln r
= − 1

2β2

(
−λ+ β2 + µu2

)
, (21.26a)

d lnu

d ln r
= − 1

2β2

(
λ− β2 + µ+ µu2

)
, (21.26b)

where

λ ≡ Q2/r2 − 1 , µ ≡ 16πr2ρ . (21.27)

Hence conclude that
d lnβ

d lnu
=
−λ+ β2 + µu2

λ− β2 + µ+ µu2
. (21.28)

[Hint: The assumption that the streams are neutral, pressureless, and non-interacting is needed to make
the streams freely-falling, so that equations (21.23) are valid. The pressure p in the tetrad frame of each
stream is the sum of the electromagnetic pressure pe and the streaming pressure ps

p = pe + ps . (21.29)

The electromagnetic pressure pe is

pe = − Q2

8πr4
, (21.30)

with Q the charge of the black hole, which is constant because the infalling streams are neutral. The
streaming pressure ps that each stream sees is

ps = ρ(u1
s)

2 , (21.31)

where the streaming 4-velocity ums between the two streams is the 4-velocity of the observed stream
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Lorentz-boosted by the 4-velocity of the observing stream (the radial velocities u1 of the observed and
observing streams have opposite signs)

u0
s = (u0)2 + (u1)2 = 1 + 2u2 , (21.32a)

u1
s = −2u0u1 = −2u

√
1 + u2 . (21.32b)

The energy �ux f in the tetrad frame of each stream is the streaming �ux fs

f = fs = ρu0
su

1
s . (21.33)

You should �nd that the combinations of streaming pressure and �ux that go into equations (21.23) are

ps +
β1

β0
fs = 2ρu2 , (21.34a)

ps +
β0

β1
fs = −2ρ(1 + u2) . (21.34b)

]

3. Reissner-Nordström phase. If the accretion rate is small, then initially the stream density ρ is small,
and consequently µ is small. Argue that in this regime equation (21.28) simpli�es to

d lnβ

d lnu
=
−λ+ β2

λ− β2
. (21.35)

Hence conclude that

β =
C

u
, (21.36)

where C is some constant set by initial conditions (generically, C will be of order unity).

4. Transition to mass in�ation. Argue that in the Reissner-Nordström phase, β becomes small, and u
grows large, as the streams fall to smaller radius r. Argue that in due course equation (21.28) becomes
well-approximated by

d lnβ

d lnu
=
−λ+ µu2

λ+ µu2
. (21.37)

Treating λ and µ as constants (which is a good approximation), show that the solution to equation (21.37)
subject to the initial condition set by equation (21.36) is

β =
C(λ+ µu2)

λu
. (21.38)

[Hint: λ is positive. In the Reissner-Nordström solution, β would go to zero at the inner horizon.]

5. Sketch. Sketch the solution (21.38), plotting u against β on logarithmic axes. Mark the regime where
mass in�ation is occurring.
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6. In�ationary growth rate. Argue that during mass in�ation the in�ationary growth rate d lnβ/d ln r

is
d lnβ

d ln r
= − λ2

2C2µ
. (21.39)

Comment on how the in�ationary growth rate depends on accretion rate (on ρ).

21.9 Black hole accreting a �uid with an ultrahard equation of state

Poisson & Israel's (1990) original proposal was that mass in�ation would be driven by a �Price tail� (Price,
1972) of gravitational radiation generated during the initial collapse of a black hole. But gravitational radia-
tion is spin 2, which cannot be accommodated by a spherically symmetric spacetime. There are no spherical
gravitational waves; the lowest order harmonic of gravitational waves is quadrupole (` = 2).
This has motivated the most common approach in the literature to modeling in�ation in spherical space-

times, which is to allow the black hole to accrete a massless scalar (spin 0) �eld, which does admit spherical
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Figure 21.7 Similar to Figure 21.2, but instead of a relativistic �uid, the black hole accretes a charged �uid φ with

an ultrahard equation of state w = 1, which means that the speed of sound equals the speed of light. The �uid

therefore supports relativistic counter-streaming, as a result of which mass in�ation occurs just above the erstwhile

inner horizon. The mass is M• = 4 × 106 M�, the accretion rate Ṁ• = 10−16, the charge-to-mass Q•/M• = 10−5,

and the conductivity is zero.
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(` = 0) waves moving at the speed of light (Christodoulou, 1986; Goldwirth and Tsvi, 1987; Gnedin and
Gnedin, 1993; Bonanno et al., 1994a; Brady, 1995; Brady and Smith, 1995; Burko, 1997; Burko and Ori,
1998; Burko, 1999; Husain and Olivier, 2001; Burko, 2002; Burko, 2003; Martín-Garcia and Gundlach, 2003;
Dafermos, 2005; Hansen, Khokhlov, and Novikov, 2005; Hod and Piran, 1997; Hod and Piran, 1998a; Hod
and Piran, 1998b; Sorkin and Piran, 2001; Oren and Piran, 2003; Dafermos, 2005; Dafermos and Rodnianski,
2005).
No massless scalar �eld has been observed in nature, although a massive scalar �eld, the Higgs boson, has

been observed by the Large Hadron Collider with a mass of ≈ 125 GeV (ATLAS Collaboration, 2012), and
it is likely that cosmological in�ation was driven by a massive scalar �eld possibly with a mass around a
GUT mass.
An alternative way to model in�ation with a single �uid is with a perfect �uid with sound speed equal

to the speed of light,
√
w = 1. This kind of �uid is called ultrahard. An ultrahard �uid is not the same as

a scalar �eld, but shares some of its properties (Babichev et al., 2008), notably that it supports spherical
waves moving at the speed of light.
Figure 21.7 shows a black hole that accretes a charged, non-conducting �uid with this ultrahard equation

of state. The parameters are otherwise the same as as in Figure 21.2: a mass ofM• = 4×106 M�, an accretion
rate of Ṁ• = 10−16, and a black hole charge-to-mass of Q•/M• = 10−5. As the Figure shows, mass in�ation
takes place just above the place where the inner horizon would be. During mass in�ation, the density ρφ and
the Weyl scalar C exponentiate rapidly up to the Planck scale and beyond. The outcome is quite similar to
that of the two-�uid accretion model of Figure 21.3.

21.10 Black hole accreting a conducting charged plasma

As discussed in the introduction to this chapter, the question of how much entropy might be created inside
the horizon of a black hole has fundamental implications for the Black Hole Information Paradox. This
section illustrates the problem with a toy model in which a spherical black hole accretes a plasma that not
only is charged but also has a �nite conductivity, so that dissipation can occur, creating entropy inside the
horizon. The model is not realistic, but the problem it illustrates is a real one.

21.10.1 Entropy creation

Bekenstein (1973) �rst argued that a black hole should have a quantum entropy proportional to its horizon
area A, and Hawking (1974) supplied the constant of proportionality 1/4 in Planck units. The Bekenstein-
Hawking entropy SBH is, in Planck units c = G = ~ = 1,

SBH =
A

4
. (21.40)
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For a spherical black hole of horizon radius R+, the area is A = 4πR2
+. Hawking showed that a black hole

has a temperature TH equal to 1/(2π) times the surface gravity κ+ at its horizon, again in Planck units,

TH =
κ+

2π
. (21.41)

For a spherical black hole, the surface gravity is κ+ = −D0β0 = M/r2 + 4πrp evaluated at the horizon,
equation (20.62a).
The proper velocity of the baryonic �uid through the similarity frame equals ξ1

b/ξ
0
b , equation (20.144).

Thus the entropy Sb, equation (21.13), accreted through the horizon, at conformal radius r+, per unit proper
time of the �uid is

dSb
dτb

=
4πR2

bξ
1
b

ξ0
b

(1 + wb)ρb
Tb

∣∣∣∣
rb=r+

. (21.42)

Meanwhile the horizon radius R+ expands in proportion to the conformal factor, R+ ∝ evtb , and dtb/dτb =

∂0tb = 1/(Rbξ
0
b ), so the Bekenstein-Hawking entropy SBH = πR2

+ increases as

dSBH
dτb

=
2πR2

+v

Rbξ0
b

. (21.43)

Putting (21.42) and (21.43) together implies that the entropy Sb accreted through the horizon per unit
increase of the Bekenstein-Hawking entropy SBH is

dSb
dSBH

=
2R3

bξ
1(1 + wb)ρb
R2

+vTb

∣∣∣∣
r=r+

. (21.44)

Inside the sonic point, dissipation increases the entropy according to equation (20.197). The entropy varies
as Sb ∝ R3

bξ
1
b (1 + wb)ρb/Tb, equation (21.13) with volume V ∝ R3

bξ
1
b , so the rate of increase of the entropy

of the black hole, evaluated down to any radius, per unit increase of its Bekenstein-Hawking entropy, is

dSb
dSBH

=
2R3

bξ
1
b (1 + wb)ρb
R2

+vTb
, (21.45)

which looks the same as equation (21.44) but now evaluated at any radius.

21.10.2 Black hole accreting a conducting relativistic plasma

If the electrical conductivity of the plasma is small, then the solutions resemble the non-conducting solutions
of �21.3. But if the conductivity is large enough e�ectively to neutralize the plasma as it approaches the
centre, then the plasma can plunge all the way to the central singularity, as in the uncharged case in �21.2.
The most entropy is created inside the black hole when the conductivity is tuned to equal, within numerical
accuracy, the critical conductivity above which the plasma collapses to a central singularity.
Figure 21.8 shows the case where the conductivity equals the critical conductivity, here κb = 1.24. The

parameters are otherwise the same as in �21.3, a mass ofM• = 4×106 M�, an accretion rate Ṁ• = 10−16, an
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Figure 21.8 Here the baryonic plasma falling into the black hole is charged, and electrically conducting. The conduc-

tivity is set equal (within numerical accuracy) to the critical conductivity above which the plasma plunges to a central

singularity, since this leads to maximum entropy production inside the horizon. The mass is M• = 4 × 106 M�, the

accretion rate Ṁ• = 10−16, the equation of state wb = 0.32, the charge-to-mass Q•/M• = 10−5, and the conductivity

parameter κb = 1.24. Arrows show how quantities vary a factor of 10 into the past and future.

equation of state wb = 0.32, and a black hole charge-to-mass of Q•/M• = 10−5. The model is from Wallace,
Hamilton, and Polhemus (2008).
The solution at the critical conductivity exhibits the periodic self-similar behaviour �rst discovered in

numerical simulations by Choptuik (1993), and known as �critical collapse� because it happens at the bor-
derline between solutions that do and do not collapse to a black hole. The ringing of curves in Figure 21.8
is a manifestation of the self-similar periodicity, not a numerical error.
These solutions are not subject to the mass in�ation instability, and they could potentially be prototypical

of the behaviour inside realistic rotating black holes. For this to work, the outward transport of angular
momentum inside a rotating black hole must be large enough e�ectively to produce zero angular momentum
at the centre. Given that angular momentum transport is a rather weak process (Balbus and Hawley, 1998),
it seems likely that real rotating black holes do not dissipate all their spin, and that in�ation does occur in
reality.
Figure 21.8 shows that the entropy produced by Ohmic dissipation inside the black hole can potentially

exceed the Bekenstein-Hawking entropy of the black hole by a large factor. The Figure shows the rate
dSb/dSBH of increase of entropy per unit increase in its Bekenstein-Hawking entropy. The rate include
entropy generated down to radius R; the entropy increases inward because of dissipation. The rate hits
unity, dSb/dSBH ≈ 1, at a radius of about 10−10 of the horizon radius. If the increase of entropy is followed
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Figure 21.9 This black hole creates a lot of entropy by having a large charge-to-mass Q•/M• = 0.8 and a low accretion

rate Ṁ• = 10−28, but otherwise the same parameters as in Figure 21.8. The conductivity parameter κb = 1.24 is

again at the critical value above which the plasma plunges to a central singularity.

to where the curvature hits the Planck scale, |C| ≈ 1, then the entropy relative to Bekenstein-Hawking is
dSb/dSBH ≈ 1010.
Since the model is self-similar, the shape of the curves in Figure 21.8 is �xed with respect to conformal

units, but the conversion to proper (in this case Planck) units varies; the arrows show how the curves vary a
factor of 10 into the past and future. If the entropy accumulates additively, then instantaneous rate dSb/dSBH
shown in the Figure can be interpreted as approximately the cumulative entropy created inside the black
hole relative to the Bekenstein-Hawking entropy.
If the entropy created inside a black hole exceeds the Bekenstein-Hawking entropy � here by a factor of

∼ 1010 � and the black hole later evaporates radiating only the Bekenstein-Hawking entropy, then entropy
is destroyed, violating the second law of thermodynamics.
This startling conclusion is premised on the assumption that entropy created inside a black hole accumu-

lates additively, which in turn derives from the assumption that the Hilbert space of states is multiplicative
over spacelike-separated regions. This assumption, called locality, derives from the fundamental proposition
of quantum �eld theory in �at space that �eld operators at spacelike-separated points commute. This rea-
soning is essentially the same as originally led Hawking (1976) to conclude that black holes must destroy
information.
Generally, the smaller the accretion rate Ṁ•, the more entropy is produced. If moreover the charge-to-

mass Q•/M• is large, then the entropy can be produced closer to the outer horizon. Figure 21.9 shows a
model with a relatively large charge-to-mass Q•/M• = 0.8, and a low accretion rate Ṁ• = 10−28. The large
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Figure 21.10 Penrose diagram of the accreting, dissipating black hole of Figures 21.8 or 21.9. The entropy passing

through the spacelike slice before the black hole evaporates (S � SBH) exceeds that passing through the spacelike

slice after the black hole evaporates (S ≈ SBH), apparently violating the second law of thermodynamics. However, the

entropy passing through any null slice respects the second law (S < SBH), consistent with Bousso's (2002) covariant

entropy bound. Near the singularity there is a proliferation of spacelike-separated patches of spacetime that cease to

be in causal contact because their future lightcones cease to intersect. To preserve the second law of thermodynamics,

locality must break down across these spacelike-separated patches.

charge-to-mass ratio in spite of the relatively high conductivity requires force-feeding the black hole: the
sonic point must be pushed to just above the horizon. The large charge and high conductivity lead to a burst
of entropy production just beneath the horizon.

21.10.3 Holography

The idea that the entropy of a black hole cannot exceed its Bekenstein-Hawking entropy has motivated
holographic conjectures that the degrees of freedom of a volume are somehow encoded on its boundary, and
consequently that the entropy of a volume is bounded by those degrees of freedom. Various counter-examples
dispose of most simple-minded versions of holographic entropy bounds. The most successful entropy bound,
with no known counter-examples, is Bousso's (2002) covariant entropy bound. The covariant entropy
bound concerns not just any old 3-dimensional volume, but rather the 3-dimensional volume formed by a
null hypersurface, a lightsheet. For example, the horizon of a black hole is a null hypersurface, a lightsheet.
The covariant entropy bound asserts that the entropy that passes (inward or outward) through a lightsheet
that is everywhere converging cannot exceed 1/4 of the 2-dimensional area of the boundary of the lightsheet.
In the self-similar black holes under consideration, the horizon is expanding, and outgoing lightrays that
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sit on the horizon do not constitute a converging lightsheet. However, a spherical shell of ingoing lightrays
that starts on the horizon falls inwards and therefore does form a converging lightsheet, and a spherical shell
of outgoing lightrays that starts just slightly inside the horizon also falls inward and forms a converging
lightsheet. The rate at which entropy Sb passes through such outgoing or ingoing spherical lightsheets per
unit decrease in the area Scov ≡ πR2

b of the lightsheet is∣∣∣∣ dSbdScov

∣∣∣∣ =
dSb
dSBH

R2
+

R2
b

v

ξ1
b |βb,0 ± βb,1|

=
2Rb(1 + wb)ρb
|βb,0 ± βb,1|Tb

, (21.46)

in which the ± sign is + for outgoing, − for ingoing lightsheets. A su�cient condition for Bousso's covariant
entropy bound to be satis�ed is

|dSb/dScov| ≤ 1 . (21.47)

The same ideas that motivate holography also rescue the second law. If the future lightcones of spacelike-
separated points do not intersect, then the points are permanently out of communication, and can behave
like alternate quantum realities, like Schrödinger's dead-and-alive quantum cat. Just as it is not legitimate
to the add the entropies of the dead cat and the live cat, so also it is apparently not legitimate to add the
entropies of regions inside a black hole whose future lightcones do not intersect. The states of such separated
regions, instead of being distinct, are quantum entangled with each other.
Figures 21.8 and 21.9 show that the rate |dSb/dScov| at which entropy passes through outgoing or ingoing

spherical lightsheets is less than one at all scales below the Planck scale. This shows not only that the black
holes obey Bousso's covariant entropy bound, but also that no individual observer inside the black hole sees
more than the Bekenstein-Hawking entropy on their lightcone. No observer actually witnesses a violation of
the second law.
The Penrose diagram 21.10 illustrates the proliferation of spacetime patches near the singularity that

become causally disconnected because their future lightcones cease to intersect. Holography requires that
patches are quantum entangled with each other so that the quantum degrees of freedom of volumes inside
the black hole are the same Bekenstein-Hawking degrees of freedom regardless of who is observing them.

21.11 Weird stu� at the outer horizon?

A number of papers have suggested that a magical phase transition at, or just outside, the outer horizon
prevents any horizon from forming. Is it true?
For example, could there be there a mass in�ation instability at the outer horizon? If there were a White

Hole on the other side of the outer horizon, then indeed an object entering the outer horizon would encounter
an in�ationary instability. But in real astronomical black holes formed from the collapse of matter, there is
no White Hole, and no in�ationary instability at the outer horizon.
Some have argued that quantum �eld theory may somehow blow up at the horizon. Invariably these

arguments confuse the true (event) horizon with the illusory horizon, �7.27. General relativity is unambiguous
about what happens at horizons. At least in the macroscopic black holes that exist in our Universe, free-fall
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frames at the horizon of a black hole are locally inertial, and quantum �eld theory should remain well-behaved
there.
Others have argued that it takes an in�nite time for an infalling observer to reach the horizon, and the

black hole evaporates before the observer reaches the horizon, so in e�ect no horizon ever forms. Again this
is incorrect. The reason an outsider sees an infaller take an in�nite time to reach the horizon is a light-travel-
time e�ect: light emitted at the horizon remains at the horizon for ever, so it takes an in�nite time for light
to lift o� the horizon, �7.27. In their own frame, an infaller falls through the horizon and reaches the singular
surface in a �nite proper time. If a second infaller falls in some time after the �rst infaller, the second infaller
does not catch up with the �rst infaller at the horizon. Rather the second infaller sees the �rst infaller frozen
on the illusory horizon still ahead, still dimming and redshifting away.
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Ideal rotating black holes

Among the remarkable mathematical properties of the Kerr-Newman line-element is the fact that, as �rst
shown by Carter (1968), the equations of motion of test particles, massive or massless, neutral or charged,
are Hamilton-Jacobi separable. The trajectories of test particles are thus described by a complete set of
four integrals of motion. Line-elements with this property are called separable. The physically interesting
separable spacetimes are Λ-Kerr-Newman black holes, which are ideal charged rotating black holes in a
background with a cosmological constant Λ.
The proposition of separability imposes certain conditions on the line-element, �22.3, that would be di�cult

to guess a priori. In this chapter, the Kerr solution and its electrovac cousins are derived by separating
systematically the Einstein and Maxwell equations. Although conceptually simple, separating the Einstein
and Maxwell equations is laborious.
Mathematically, the properties of the Kerr-Newman geometry can be traced to symmetries expressed by

the existence of two Killing vectors, associated with stationarity and axisymmetry, and a Killing tensor,
associated with separability, �23.3. It is extraordinary that so simple a set of propositions should lead to so
intricate a web of implications.
There are other ingenious mathematical ways to arrive at the Kerr solution (Stephani et al., 2003). I like

the separable approach not only because of its conceptual simplicity, but also because a generalization of
separability to conformal separability yields solutions for rotating black holes that undergo in�ation at their
inner horizon, Chapter 24, as astronomically realistic black holes must.

22.1 Separable geometries

22.1.1 Separable line-element

The Kerr geometry is stationary, axisymmetric, and separable. Choose coordinates xµ ≡ {t, x, y, φ} in which
t is the time with respect to which the spacetime is stationary, φ is the azimuthal angle with respect to which
the spacetime is axisymmetric, and x and y are radial and angular coordinates. In �22.3 it is shown that the

630
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line-element may be taken to be

ds2 = ρ2

[
− ∆x

(1− ωxωy)2
(dt− ωy dφ)

2
+
dx2

∆x
+
dy2

∆y
+

∆y

(1− ωxωy)2
(dφ− ωx dt)2

]
, (22.1)

where the conditions of stationarity, axisymmetry, and separability imply that the conformal factor ρ is
separable

ρ =
√
ρ2
x + ρ2

y , (22.2)

and that
ρx, ωx, ∆x are functions of x only ,
ρy, ωy, ∆y are functions of y only .

(22.3)

Thanks to the invariant character of the coordinates t and φ, the metric coe�cients gtt, gtφ, and gφφ all
have a gauge-invariant signi�cance,

gtt =
ρ2

(1− ωxωy)2
(−∆x + ω2

x∆y) , (22.4a)

gtφ =
ρ2

(1− ωxωy)2
(ωy∆x − ωx∆y) , (22.4b)

gφφ =
ρ2

(1− ωxωy)2
(−ω2

y∆x + ∆y) . (22.4c)

The condition gtt = 0 de�nes the boundary of ergospheres, gtφ = 0 de�nes the turnaround radius, and
gφφ = 0 de�nes the boundary of the sisytube. The determinant of the 2× 2 submatrix of t�φ coe�cients is

gttgφφ − g2
tφ = − ρ4

(1− ωxωy)2
∆x∆y . (22.5)

The quantity ∆x is the horizon function. Horizons occur where the horizon function vanishes ∆x vanishes.
The quantity ∆y is the polar function, whose vanishing de�nes not a horizon, but rather the location of the
(north and south) poles of the geometry. As shown in �23.4, whereas trajectories can pass through a horizon
into a region where ∆x has opposite sign, trajectories cannot pass through ∆y = 0 into a region where ∆y

has opposite sign. Without loss of generality, the polar function ∆y can be taken to be positive, since the
line-element (22.1) with both ∆x and ∆y �ipped in sign describes the same geometry with �ipped signature.

22.1.2 Λ-Kerr-Newman

As shown in �22.6, the Λ-Kerr-Newman line-element is obtained by imposing boundary conditions that, at
least for vanishing cosmological constant, are asymptotically �at far from the black hole, and are non-singular
at the north and south poles, θ = 0 and π. For Λ-Kerr-Newman, the radial and angular parts ρx and ρy of
the separable conformal factor are

ρx ≡ r = a cot(ax) , ρy ≡ a cos θ = −ay , (22.6)
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where r is the ellipsoidal radial coordinate and θ the polar angle, as conventionally de�ned, and a is the
spin parameter of the black hole. Why use coordinates x and y in place of r and θ? Because the coordinate
derivatives that arise when separating the Einstein and Maxwell equations, �22.4 and �22.5, are simplest
when expressed with respect to x and y. The derivative of x is related to that of r by

∂

∂x
= −R2 ∂

∂r
, R ≡

√
r2 + a2 . (22.7)

For Λ-Kerr-Newman, the coe�cients ωx and ωy in the line-element (22.1) are

ωx =
a

R2
, ωy = a sin2θ , (22.8)

and the horizon and polar functions ∆x and ∆y are (the horizon function ∆x here is related to the earlier
horizon function ∆, equation (9.3), by ∆x = R−2∆)

∆x =
1

R2

(
1− 2M•r

R2
+
Q2
• +Q2

•
R2

− Λr2

3

)
, (22.9a)

∆y = sin2θ

(
1 +

Λa2 cos2θ

3

)
, (22.9b)

whereM• is the black hole's mass, Q• and Q• are its electric and magnetic charge, and Λ is the cosmological
constant. By themselves, Maxwell's equations preclude magnetic charge, in which case Q• = 0. However, any
grand uni�ed theory large enough to predict the quantization of charge (as observed) necessarily contains
magnetic charges (magnetic monopoles) as topological defects. In any case, magnetic charge is retained here
to bring out the symmetry between electric and magnetic charge. The electromagnetic �eld is purely radial.
The covariant tetrad-frame electromagnetic potential Ak is

Ak =
1

ρ

{
− Q•r

R2
√

∆x

, 0 , 0 , −Q• cos θ√
∆y

}
, (22.10)

and the radial electric and magnetic �elds E and B are given by

E + IB ≡ F10 + IF23 =
Q• + IQ•

(ρx − Iρy)2
, (22.11)

where I is the pseudoscalar of the spacetime algebra, satisfying I2 = −1. The Weyl tensor (??) has only a
spin 0 component, and is

C = − 1

(ρx − Iρy)3

(
M• + IN• −

Q2
• +Q2

•
ρx + Iρy

)
. (22.12)

22.2 Horizons

Horizons occur where the horizon function ∆x vanishes,

∆x = 0 . (22.13)
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For Kerr-Newman with vanishing cosmological constant, there are outer and inner horizons r± at

r± = M• ±
√
M2
• − a2 −Q2

• −Q2
• . (22.14)

If there is a non-zero cosmological constant Λ, then the horizon condition (22.13) is a quartic in r, and there
may be as many as 4 horizons. If there is a small positive cosmological constant, then in addition to the usual
outer and inner black hole horizons, there are cosmological horizons at large positive and negative radii. If
the cosmological constant is larger and positive, then there are cosmological horizons with no black hole. If
the cosmological constant is zero or negative, then there are no cosmological horizons. If the cosmological
constant is su�ciently negative, then there is no black hole.

22.3 Conditions from Hamilton-Jacobi separability

This section derives the form (22.1) of the separable line-element from the condition of the separability of the
Hamilton-Jacobi equation, coupled with the assumptions of stationarity and axisymmetry. The Hamilton-
Jacobi equation is solved in Chapter 23 to obtain the trajectories of neutral or charged particles in rotating
charged black holes.
With respect to an orthonormal tetrad, the Hamilton-Jacobi equation for a test particle of massm and elec-

tric charge q moving in a spacetime with vierbein emµ and electromagnetic potential Am is, equation (4.110)
or (4.111),

ηmn
(
em

µ ∂S

∂xµ
− qAm

)(
en
ν ∂S

∂xν
− qAn

)
= −m2 . (22.15)

The Hamilton-Jacobi equation (22.15) is a partial di�erential equation in the particle action S, equa-
tion (4.36). Let êmµ and Âm denote the vierbein coe�cients and tetrad-frame electromagnetic potential
with an overall conformal factor ρ factored out:

êm
µ ≡ ρemµ , Âm ≡ ρAm . (22.16)

With respect to the scaled vierbein êm
µ and electromagnetic potential Âm, the Hamilton-Jacobi equa-

tion (22.15) can be rewritten

ηmn
(
êm

µ ∂S

∂xµ
− qÂm

)(
ên
ν ∂S

∂xν
− qÂn

)
= −m2ρ2 . (22.17)

To separate the Hamilton-Jacobi equation (22.17), one demands that the left and right hand sides of the
equation be sums of terms each of which depends only on a single coordinate. The �simplest possible way�
(Carter, 1968b) to separate the left hand side of the Hamilton-Jacobi equation (22.17) is to impose that
each of the individual factors, comprising the scaled vierbein coe�cients êmµ, the derivatives ∂S/∂xµ of the
action, and the scaled potentials Âm, is a function of a single coordinate, and that products of factors are
non-vanishing only when all factors are functions of the same coordinate. The derivatives ∂S/∂xµ of the
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action are each functions of a single coordinate provided that the action S is itself a sum of terms Sµ each
depending on a single coordinate xµ,

S =
∑
µ

Sµ(xµ) . (22.18)

Canonical momenta are equal to derivatives of the action, equation (4.105), so the condition (22.18) imposes
that each canonical momentum πµ be a function only of the corresponding coordinate xµ,

πµ =
∂Sµ
∂xµ

= function of xµ . (22.19)

A special case of the condition (22.19) occurs when a canonical momentum πµ is a constant, which occurs
when the metric is independent of the coordinate xµ, equation (4.50). In the case of the Kerr geometry and its
cousins, the spacetime is stationary and axisymmetric. Stationary means that the geometry is invariant with
respect to some time coordinate t, while axisymmetry means that the geometry is invariant with respect
to some azimuthal angular coordinate φ. The corresponding canonical momenta πt and πφ are constants
of motion, de�ning respectively the constant energy E and the azimuthal angular momentum L of the
trajectory,

πt =
∂S

∂t
= −E , πφ =

∂S

∂φ
= L . (22.20)

If the two remaining coordinates are denoted x and y, then the particle action S, equation (22.18), is the
sum

S = −Et+ Lφ+ Sx(x) + Sy(y) , (22.21)

where Sx(x) and Sy(y) are respectively functions only of x and y.
Given that πt and πφ are constants, while πx and πy are respectively functions of x and y, the left hand

side of the Hamilton-Jacobi equation (22.17) separates as a sum of terms each of which depends only on x
or only on y provided that

for each m,

{
either êm

µ for all µ, and Âm, are functions of x only, and êmy = 0 ,
or êm

µ for all µ, and Âm, are functions of y only, and êmx = 0 .
(22.22)

The case that matches the Kerr and related geometries is the 2+2 choice

the

{
top
bottom

}
condition of (22.22) holds for

{
m = 0 and 1

m = 2 and 3

}
. (22.23)

Thus separability consistent with Kerr requires that

ê0
y = ê1

y = ê2
x = ê3

x = 0 . (22.24)

Given the separability conditions (22.24), the vierbein coe�cients ê0
x and ê3

y can be transformed to zero
by a tetrad gauge transformation consisting of a Lorentz boost by velocity ê0

x/ê1
x between tetrad axes γγ0
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and γγ1, and a (commuting) spatial rotation by angle atan(ê3
y/ê2

y) between tetrad axes γγ2 and γγ3. Thus
without loss of generality,

ê0
x = ê3

y = 0 . (22.25)

The gauge conditions (22.25) having been e�ected, the vierbein coe�cients ê1
t, ê2

t, ê1
φ, and ê2

φ can be
eliminated by coordinate gauge transformations t→ t′ and φ→ φ′ de�ned by

dt = dt′ +
ê1
t

ê1
x
dx+

ê2
t

ê2
y
dy , dφ = dφ′ +

ê1
φ

ê1
x
dx+

ê2
φ

ê2
y
dy . (22.26)

Equations (22.26) are integrable because ê1
µ and ê2

µ are respectively functions of x and y only. The trans-
formations (22.26) of t and φ are admissible because they preserve the Killing vectors ∂/∂t and ∂/∂φ,

∂

∂t

∣∣∣∣
x,y,φ

=
∂

∂t′

∣∣∣∣
x,y,φ

,
∂

∂φ

∣∣∣∣
t,x,y

=
∂

∂φ′

∣∣∣∣
t,x,y

. (22.27)

Thus without loss of generality

ê1
t = ê2

t = ê1
φ = ê2

φ = 0 . (22.28)

Finally, coordinate transformations of the x and y coordinates

x→ x′ , y → y′ , (22.29)

can be chosen such that ê1
x is any function of x, and ê2

y is any function of y. A choice that proves advan-
tageous in separating the Einstein and Maxwell equations is

ê1
xê0

t = ê2
y ê3

φ = ±1 . (22.30)

The separability conditions (22.22) with the 2+2 choice (22.23), which imply conditions (22.24), coupled
with the gauge conditions (22.25), (22.28), and (22.30), bring the inverse vierbein emµ to the form

em
µ =

1

ρ



1√
∆x

0 0
ωx√
∆x

0 −
√

∆x 0 0

0 0
√

∆y 0

ωy√
∆y

0 0
1√
∆y


, (22.31)

where ωx and ∆x are some functions of x, and ωy and ∆y are some functions of y. The minus sign in e1
x

is chosen so that, for Λ-Kerr-Newman, the radial tetrad basis vector γγ1 points outward, the direction of
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increasing radius r but decreasing x. The corresponding vierbein emµ is

emµ = ρ



√
∆x

1− ωxωy
0 0 − ωy

√
∆x

1− ωxωy

0 − 1√
∆x

0 0

0 0
1√
∆y

0

−
ωx
√

∆y

1− ωxωy
0 0

√
∆y

1− ωxωy


, (22.32)

which implies the line-element (22.1).
The above form (22.31) of the vierbein was derived from the condition that the left hand side of the

Hamilton-Jacobi equation (22.17) be separable. Given stationarity and axisymmetry, the left hand side is a
sum of two terms, one depending on the radial coordinate x, the other on the angular coordinate y. If the
mass m is non-zero, then the squared conformal factor ρ2 on the right hand side of the Hamilton-Jacobi
equation (22.17) must also separate as a sum of terms depending on x and y. This is the condition (22.2).
If Hamilton-Jacobi separability is demanded only for massless particles, m = 0, then a more general class

of conformally separable solutions can be found, which are explored in Chapter 24.

Exercise 22.1. Explore other separable solutions. The above derivation of the form of the line-element
assumed not only separability, but also stationarity and axisymmetry, and the 2+2 choice (22.23) that
matches Kerr. Explore other possible choices (Carter, 1968b).

Exercise 22.2. Explore separable solutions in an arbitrary number N of spacetime dimensions.

22.4 Electrovac solutions from separation of Einstein's equations

As shown in �22.3, the assumptions of stationarity, axisymmetry, and separability, coupled with some
other auxiliary assumptions (separability �in the simplest possible way� (Carter, 1968b)), and the 2+2
choice (22.23)), imposes the form (22.1) of the line-element and the conditions (22.2) and (22.3). Given
this form of the line-element, the Kerr solution and its electrovac cousins can be derived by separating the
Einstein equations systematically.

22.4.1 Electrovac energy-momenta

The energy-momentum of a static radial electromagnetic �eld is

8πT emn =
Q2
• +Q2

•
ρ4

diag(1,−1, 1, 1) . (22.33)
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The energy-momentum of a cosmological constant Λ is

8πTΛ
mn = −Ληmn . (22.34)

22.4.2 Separation of 8 Einstein equations with zero source

Given the form (22.1) of the line-element and the conditions (22.2) and (22.3), 4 of the 10 tetrad-frame
Einstein components Gmn vanish identically:

G01 = G02 = G13 = G23 = 0 . (22.35)

Of the remaining 6 Einstein components Gmn, the following 4 have zero electrovac source:

ρ2G12 = −2
√

∆x∆y

[
ρ
∂2(1/ρ)

∂x∂y
− 3

4(1− ωxωy)2

dωx
dx

dωy
dy

]
, (22.36a)

ρ2G03 =

√
∆x∆y

2ρ2

[
∂

∂x

(
ρ2

1− ωxωy
dωx
dx

)
− ∂

∂y

(
ρ2

1− ωxωy
dωy
dy

)]
, (22.36b)

ρ2 (G00 +G11) =
2∆x

1− ωxωy

[
ρ
∂

∂x

(
(1− ωxωy)

∂(1/ρ)

∂x

)
+

1

4(1− ωxωy)

(
dωy
dy

)2
]
, (22.36c)

ρ2 (G22 −G33) =
2∆y

1− ωxωy

[
ρ
∂

∂y

(
(1− ωxωy)

∂(1/ρ)

∂y

)
+

1

4(1− ωxωy)

(
dωx
dx

)2
]
. (22.36d)

If the conformal factor ρ2 is supposed to separate as a sum of radial and angular parts, equation (22.2), then
the homogeneous version of equation (22.36a) reduces to

d(ρ2
x)

dωx

d(ρ2
y)

dωy
−

(ρ2
x + ρ2

y)2

(1− ωxωy)2
= 0 . (22.37)

Series expansion of (22.37) leads to the result that

ρ2 ≡ ρ2
x + ρ2

y =
1− ωxωy

(f0 + f1ωx)(f1 + f0ωy)
, (22.38a)

ρx =

√
g0 − g1ωx

(f0g1 + f1g0)(f0 + f1ωx)
, ρy =

√
g1 − g0ωy

(f0g1 + f1g0)(f1 + f0ωy)
, (22.38b)

where f0, f1, g0, and g1 are constants. At this point the constants g0 and g1 can be adjusted arbitrarily without
a�ecting ρ: the overall normalization of g0 and g1 is cancelled by the normalizing factor of 1/

√
f0g1+f1g0 in

ρx and ρy, and the relative sizes of g0 and g1 can be changed by adjusting an arbitrary constant in the split
between ρ2

x and ρ2
y. Given the expression (22.38) for the conformal factor ρ, the Einstein component G03,

equation (22.36b), reduces to

ρ2G03 =

√
∆x∆y

2(1− ωxωy)

[
dωx
dx

d

dx
ln

(
dωx/dx

f0 + f1ωx

)
− dωy

dy

d

dy
ln

(
dωy/dy

f1 + f0ωy

)]
. (22.39)
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Homogeneous solution of this equation can be accomplished by separation of variables, setting each of the
two terms inside square brackets, the �rst of which is a function only of x, while the second is a function
only of y, to the same separation constant 2f2. The result is

dωx
dx

= 2

√
(f0 + f1ωx)

[
g0 +

1

f0
(f1g0 + f2)ωx

]
, (22.40a)

dωy
dy

= 2

√
(f1 + f0ωy)

[
g1 +

1

f1
(f0g1 + f2)ωy

]
, (22.40b)

for some constants g0 and g1, which can be taken without loss of generality to equal those in the conformal
factor (22.38). With the conformal factor ρ given by equation (22.38) and dωx/dx and dωy/dy given by
equations (22.40), the Einstein components G00 +G11 and G22 −G33 reduce to

ρ2 (G00 +G11) = 2∆x
(f2 + f0g1 + f1g0)(f1 + f0ωy)2

f0f1(1− ωxωy)2
, (22.41a)

ρ2 (G22 −G33) = 2∆y
(f2 + f0g1 + f1g0)(f0 + f1ωx)2

f0f1(1− ωxωy)2
. (22.41b)

These vanish provided that the constant f2 satis�es

f2 = −(f0g1 + f1g0) . (22.42)

Inserting this value into equations (22.40) implies

dωx
dx

= 2
√

(f0 + f1ωx) (g0 − g1ωx) , (22.43a)

dωy
dy

= 2
√

(f1 + f0ωy) (g1 − g0ωy) . (22.43b)

The sign of the square root for dωx/dx is the same as that for ρx, while the sign of the square root for dωy/dy
is the same as that for ρy.

22.4.3 Separation of the remaining 2 Einstein equations

De�ne Yx and Yy by

Yx ≡
d∆x

dx
−∆x

d

dx
ln

[
(f0+f1ωx)

dωx
dx

]
, (22.44a)

Yy ≡
d∆y

dy
−∆y

d

dy
ln

[
(f1+f0ωy)

dωy
dy

]
. (22.44b)
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In terms of Yx and Yy, the Einstein components G00 −G11 and G22 +G33 are

ρ2 (G00 −G11) (22.45a)

=
1

1− ωxωy

(
Yx
d lnωx
dx

− Yy
d lnωy
dy

)
+ Yx

d

dx
ln

(
f0+f1ωx

ωx

)
− ∂Yy

∂y
+ Yy

d

dy
ln

[
ωy(f1+f0ωy)

dωy/dy

]
,

ρ2 (G22 +G33) (22.45b)

=
1

1− ωxωy

(
Yx
d lnωx
dx

− Yy
d lnωy
dy

)
− Yy

d

dy
ln

(
f1+f0ωy

ωy

)
+
∂Yx
∂x
− Yx

d

dx
ln

[
ωx(f0+f1ωx)

dωx/dx

]
.

Homogeneous solutions of these equations can be found by supposing that Yx is a function only of the radial
coordinate radius x, while Yy is a function only of the angular coordinate y, and by separating each of the
equations as

1

(1− ωxωy)

(
f0h0+h2ωx+f1h1ω

2
x

ωx
−
f1h1+h2ωy+f0h0ω

2
y

ωy

)
− f0h0+h3ωx

ωx
+
f1h1+h3ωy

ωy
= 0 , (22.46)

for some constants h0, h1, h2, and h3. Separating each of equations (22.45) according to the pattern of
equation (22.46) leads to the homogeneous solutions

Yx =
(f0 + f1ωx)(h0 + h1ωx)

dωx/dx
, Yy =

(f1 + f0ωy)(h1 + h0ωy)

dωy/dy
. (22.47)

Solutions including the energy-momentum of a static electromagnetic �eld fall out with little extra work.
With appropriate boundary conditions, this is the Kerr-Newman solution. Solutions with G00 = −G11 =

G22 = G33, as is true for a static radial electromagnetic �eld, are found by taking the di�erence of equa-
tions (22.45) and separating that di�erence in the pattern of equation (22.46). The solution is a sum of a
homogeneous solution (22.47) and a particular solution

Yx =
2(Q2

• +Q2
•)(f0 + f1ωx)2

dωx/dx
, Yy = 0 . (22.48)

Inserting equations (22.48) into the Einstein expressions (22.45) yields Einstein components that have pre-
cisely the form (22.33) of the tetrad-frame energy-momentum tensor of a static radial electromagnetic �eld.
Similarly, solutions including vacuum energy, which has G00 = −G11 = −G22 = −G33, can be found by

separating the sum of equations (22.45) in the pattern of equation (22.46). A particular solution is

Yx =
2Λ

f2
1 dωx/dx

, Yy =
2Λω2

y

f2
1 dωy/dy

. (22.49)

Inserting equations (22.49) into the Einstein expressions (22.45) yields Einstein components that have pre-
cisely the form of a cosmological constant, Gmn = −Ληmn.
Solving equations (22.44a) and (22.44b) with Yx and Yy given by a sum of the homogeneous, electro-

magnetic, and vacuum contributions, equations (22.47), (22.48), and (22.49), yields the general electrovac
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solution for the horizon and polar functions ∆x and ∆y,

∆x = (f0 + f1ωx)

[
(k0 + k1ωx)−

2M•
√

(f0 + f1ωx)(g0 − g1ωx)

(f0g1 + f1g0)3/2
+

(Q2
• +Q2

•)(f0 + f1ωx)

f0g1 + f1g0

]

− Λ(g0 − g1ωx)

3f1(f0g1 + f1g0)2
, (22.50a)

∆y = (f1 + f0ωy)

[
(k1 + k0ωy)−

2N•
√

(f1 + f0ωy)(g1 − g0ωy)

(f0g1 + f1g0)3/2

]
+

Λωy(g1 − g0ωy)

3f1(f0g1 + f1g0)2
, (22.50b)

where k0 and k1 are arbitrarily adjustable constants arising from the freedom of choice in the constants h0

and h1 of the homogeneous solution. The constant M• in the expression (22.50a) for ∆x is the black hole's
mass. The constant N• in the expression (22.50b) for ∆y is the NUT parameter (Taub, 1951; Newman,
Tamburino, and Unti, 1963; Stephani et al., 2003; Kagramanova et al., 2010), which is to the mass M• as
magnetic charge Q• is to electric charge Q•.

22.5 Electrovac solutions of Maxwell's equations

22.5.1 Solution of Maxwell's equations

Write the electromagnetic potential Ak in terms of a scaled electromagnetic potential Ak, equation (23.2).
Separability of the Hamilton-Jacobi equations requires, equations (22.22) and (22.23), that

At , Ax are functions of x only ,
Ay , Aφ are functions of y only .

(22.51)

For the line-element (22.1), and with the conditions (22.51), the non-vanishing components of the tetrad-
frame electromagnetic �eld Fmn are the radial electric E and magnetic B �elds

E ≡ F10 = − 1

ρ2

(
dAt
dx

+
ωyAt −Aφ
1− ωxωy

dωx
dx

)
, (22.52a)

B ≡ F23 =
1

ρ2

(
dAφ
dy

+
ωxAφ −At
1− ωxωy

dωy
dy

)
. (22.52b)

The remaining components of the electromagnetic �eld vanish identically,

F02 = F03 = F12 = F13 = 0 . (22.53)

Since the electromagnetic �eld Fmn does not depend on either Ax or Ay, these components are pure gauge,
and can be set to zero,

Ax = Ay = 0 . (22.54)

Since the electromagnetic �eld given by equations (22.52) and (22.53) is the curl of the potential, the �eld
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automatically satis�es the source-free Maxwell's equations, The sourced Maxwell's equations are

DmFmn = 4πjn . (22.55)

Stationary solutions require vanishing current, jn = 0. Two of the sourced Maxwell equations vanish identi-
cally, and the corresponding currents vanish automatically:

j1 = j2 = 0 . (22.56)

Given the expressions (22.43) for dωx/dx and dωy/dy, the remaining two sourced Maxwell's equations can
be written

−
√

∆x

ρ3

[
∂Zt
∂x

+ Zt
∂

∂x
ln

(
1

1− ωxωy
dωx
dx

)
− Zφ

1

1− ωxωy
dωy
dy

]
= 4πj0 , (22.57a)

−
√

∆y

ρ3

[
∂Zφ
∂y

+ Zφ
∂

∂y
ln

(
1

1− ωxωy
dωy
dy

)
− Zt

1

1− ωxωy
dωx
dx

]
= 4πj3 , (22.57b)

where Zt and Zφ are de�ned to be

Zt ≡
dωx
dx

∂

∂x

(
At

dωx/dx

)
, (22.58a)

Zφ ≡
dωy
dy

∂

∂y

(
Aφ

dωy/dy

)
. (22.58b)

The homogeneous solutions of equations (22.57) are

Zt = Zφ = 0 . (22.59)

Homogeneous solution of equations (22.58) yields

At
dωx/dx

≡ − Q•
2(f0g1 + f1g0)

, (22.60a)

Aφ
dωy/dy

= − Q•
2(f0g1 + f1g0)

, (22.60b)

where Q• and Q• are constants of integration, which can be interpreted as respectively the enclosed electric
charge within radius x, and the enclosed magnetic charge above latitude y. Inserting the solutions (22.60)
for Ak into the expressions (22.52) yields the electric and magnetic �elds (22.11).

22.5.2 Separation of Maxwell's equations

The form (22.57) of the Maxwell equations for j0 and j3 assumed that dωx/dx and dωy/dy satisfy the
equations (22.43) obtained by separating Einstein's equations. However, the Maxwell equations can also be
separated directly, and the conditions (22.65) that result are consistent with the Einstein conditions (22.43).
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If one provisionally supposes that Aφ = 0, then the Maxwell equation for the angular current j3 is

At
√

∆y

ρ3(1− ωxωy)2

{
dωx
dx

[
(1− ωxωy)

d ln(At/ωx)

dx
+
d lnωx
dx

]
+
dωy
dy

[
(1− ωxωy)

d

dy
ln

(
d lnωy
dy

)
+
d lnωy
dy

]}
= 4πj3 . (22.61)

Conversely, if one provisionally supposes that At = 0, then the Maxwell equation for the radial current j0 is

Aφ
√

∆x

ρ3(1− ωxωy)2

{
dωy
dy

[
(1− ωxωy)

d ln(Aφ/ωy)

dy
+
d lnωy
dy

]
+
dωx
dx

[
(1− ωxωy)

d

dx
ln

(
d lnωx
dx

)
+
d lnωx
dx

]}
= 4πj0 . (22.62)

The homogeneous solutions of equations (22.61) and (22.62) prove to be the homogeneous solutions of the
full equations without any restriction on At or Aφ. Equation (22.61) separates with 4 separation constants
qi as

(1− ωxωy)

(
− q0 + q3ωx

ωx

)
+
q0 − 2q1ωx − q2ω

2
x

ωx
+ (1− ωxωy)

(
− q2 − q3ωy

ωy

)
+
q2 + 2q1ωy − q0ω

2
y

ωy
= 0 ,

(22.63)
and equation (22.61) separates in a similar fashion, the vanishing of the second term inside braces in either
of equations (22.61) or (22.62) requiring that

q3 = q1 . (22.64)

The separated solutions for ωx and ωy are

dωx
dx

= 2
√
q0 − 2q1ωx − q2ω2

x , (22.65a)

dωy
dy

= 2
√
q2 + 2q1ωy − q0ω2

y . (22.65b)

These are consistent with the separated solution (22.43) found for Einstein's equations provided that

q0 = f0g0 , 2q1 = f0g1 − f1g0 , q2 = f1g1 . (22.66)

22.6 Λ-Kerr-Newman boundary conditions

The electrovac solutions of physical interest are those that go over to asymptotically �at space far from the
black hole, at least in the absence of a cosmological constant. The condition of being far from the black
hole can be interpreted as meaning where the in�uence of the mass and charge of the black hole becomes
negligible. Inspection of expression (22.50a) for the radial horizon function ∆x shows that the e�ect of mass
and charge becomes negligible where f0 + f1ωx → 0. Expression (22.38) for the separable conformal factor
ρ shows that the conformal factor diverges where f0 + f1ωx → 0, con�rming that this location is indeed �at
in�nity.�



22.6 Λ-Kerr-Newman boundary conditions 643

The quantity ωx is the angular velocity at which the tetrad frame (which has been chosen to align with the
principal frame) moves through the coordinates. This follows from the fact that the tetrad-frame 4-velocity
relative to itself is by de�nition um = {1, 0, 0, 0}, so the coordinate frame velocity of the tetrad frame is
uµ = em

µum = e0
µ, so the angular velocity of the tetrad frame is dφ/dt = e0

φ/e0
t = ωx. If the tetrad

frame is not rotating through the coordinates at in�nity, then the angular velocity ωx vanishes at in�nity.
Since in�nity is where f0 + f1ωx vanishes, a tetrad frame that is corotating with the coordinates at in�nity
corresponds to f0 = 0. Below, equations (22.75), it is shown that the situation where f0 is non-zero di�ers
by a coordinate transformation from the case where f0 is zero. Thus f0 may be set equal to zero without
loss of generality.
Further conditions follow from requiring that the metric coe�cients gtφ and gφφ, equations (22.4), vanish

at the poles of the rotation axis, θ = 0 and π, to avoid singular behaviour at the poles. The vanishing of gtφ
and gφφ at the poles requires that both ωy and ∆y must vanish at the poles.
Connection with familiar polar coordinates {r, θ, φ} may be established by requiring that the metric

coe�cients (22.4) go over to their asymptotic expressions in the absence of a cosmological constant or NUT
parameter,

gtt → −1 , gtφ → 0 , gφφ → r2 sin2θ as r →∞ . (22.67)

The expressions (22.50) for the horizon functions ∆x and ∆y then imply that, in the absence of a cosmological
constant or NUT parameter,

∆y =
ωy
a

= sin2θ , ∆x →
ωx
a
→ 1

r2
as r →∞ , (22.68)

where a = 1/(f1k0) is some constant, which proves to be the familiar spin parameter, and an overall
normalization has been �xed by scaling the conformal factor to ρ → r at in�nity, a natural choice. The
normalization of ρ �xes f1 = a−1/2.
Integrating the relation (22.43b) between ωy and y with f0 = 0 establishes that ωy is quadratic in y.

Requiring that the polar part of the metric gyy dy2 ≡ ρ2dy2/∆y be non-singular at the poles implies that y
is proportional to cos θ plus a constant that can be set to zero without loss of generality. Requiring that the
polar metric go over to its asymptotic expression gyy dy2 → r2dθ2 as r →∞ �xes the normalization

y = − cos θ , (22.69)

where the sign has been chosen so that y increases as θ increases. Expression (22.69) can be imposed also in
the presence of a cosmological constant and a NUT parameter. For Λ-Kerr-Newman with no NUT parameter,

ωy = a sin2θ . (22.70)

Equation (22.70) is not true if the NUT parameter is non-vanishing, a case deferred to �22.7. The expres-
sions (22.69) and (22.70) are consistent with the relation (22.43b) between them provided that g1 = ag0 and
g0 = a/f1. The complete set of constants in equations (22.50) is

f0 = 0 , f1 = a−1/2 , g0 = a3/2 , g1 = a5/2 , k0 = a−1/2 , k1 = 0 . (22.71)



644 Ideal rotating black holes

The radial variable x analogous to the angular variable y of equation (22.69) comes from solving equa-
tion (22.43a), dωx/dx = 2

√
aωx(1− aωx), which gives

x =
1

a
asin
√
aωx . (22.72)

A pair of radial and angular variables that emerged naturally from the analysis, besides x and y, are
ρx and ρy de�ned by equation (22.38b). In terms of ωx, the radial variable is ρx =

√
a(1− aωx)/ωx. It is

conventional to de�ne the radial coordinate r to be equal to ρx, which is consistent with the asymptotic
behaviour ρ→ r as r →∞, in which case

ωx =
a

R2
, R =

√
r2 + a2 . (22.73)

The radial and angular variables ρx and ρy are

ρx = r , ρy = a cos θ . (22.74)

This completes the derivation of the Λ-Kerr-Newman solutions.

22.6.1 There are no separable electrovac solutions that rotate at in�nity

The Λ-Kerr-Newman boundary conditions in �22.6 took f0 = 0, corresponding to the situation where the
tetrad-frame is corotating with the coordinates at in�nity, ωx → 0 as r →∞. What happens if f0 is non-zero?
If f0 is non-zero, then the tetrad rotates through the coordinates with some constant �nite angular velocity
ω∞ at in�nity. As argued at the beginning of �22.6, in�nity is where f0 + f1ωx = 0. Thus a �nite angular
velocity at in�nity corresponds to f0 = −f1ω∞. However, the apparent rotation at in�nity can be removed
by transforming the azimuthal coordinate φ so that it corotates at in�nity. The line-element can then be
brought to standard electrovac form with f0 = 0 by a coordinate transformation of the angular coordinate
y. Speci�cally, the coordinate transformations

φ′ = φ+ ω∞t , dy′ = (1− ω∞ωy) dy , (22.75)

bring the line-element with ω∞ 6= 0 to the standard separable electrovac form with ω∞ = 0,

ds2 = ρ2

[
− ∆x

(1− ω′xω′y)2

(
dt− ω′y dφ

)2
+
dx2

∆x
+
dy′2

∆′y
+

∆′y
(1− ω′xω′y)2

(dφ′ − ω′x dt)
2
]
, (22.76)

with primed quantities

ω′x ≡ ωx − ω∞ , ω′y ≡
ωy

1− ω∞ωy
, ∆′y ≡

∆y

(1− ω∞ωy)2
. (22.77)

Notice that the physical location of north and south poles, at ωy = ∆y = 0, is unchanged by the choice of
coordinates.
Thus, among separable electrovac solutions, there are no solutions that physically rotate at in�nity.
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22.7 Taub-NUT geometry

Spacetimes with a �nite NUT parameter N• (Taub, 1951; Newman, Tamburino, and Unti, 1963; Stephani
et al., 2003; Kagramanova et al., 2010) have closed timelike curves circulating around one or both polar axes,
so they are fun, but not physically realistic.

22.7.1 Taub-NUT line-element

When the NUT parameter N• is �nite, and with the boundary conditions that there are (north and south)
poles at ∆y = 0, the conditions (22.71) generalize to

f0 = 0 , f1 = a−1/2 , g0 = a3/2 , g1 = a1/2b2 , (22.78)

k0 = a−1/2
[
1− 1

3Λ(a2 − 2c•N• +N2
• )
]
, k1 = −2a−3/2N•

[
N• + ac• + 2

3a
2ΛN•(c

2
• − 1)

]
,

where

b ≡
√
a2 + 2ac•N• +N2

• . (22.79)

Besides the NUT parameter N•, there is an additional constant, the auxiliary NUT parameter c•.
The resulting Taub-NUT line-element takes the separable form (22.1), in which the radial and angular

parts ρx and ρy of the conformal factor are

ρx ≡ r = b cot(bx) , ρy ≡ N• + a cos θ = N• − ay , (22.80)

the coe�cients ωx and ωy are

ωx =
a

R2
, R ≡

√
r2 + b2 , ωy = a sin2θ + 2N•(c• − cos θ) , (22.81)

and the horizon and polar functions ∆x and ∆y are

∆x =
1

R4

[
r2 − 2Mr + a2 +Q2

• +Q2
• −N2

• − 1
3Λ
(
r2 + (a−N•)2

) (
r2 + (a+N•)

2
)]
, (22.82a)

∆y = sin2θ
[
1− 1

3a
2Λ sin2θ + 4

3ΛN•(N• + a cos θ)
]
. (22.82b)

Poles occur where ∆y = 0, that is, at θ = 0 or π. Horizons occur where ∆x = 0. For vanishing Λ, there are
outer and inner horizons at

r± = M• ±
√
M2
• +N2

• −Q2
• −Q2

• − a2 . (22.83)

The horizon and polar functions ∆x and ∆y given by equations (22.82) do not agree with the earlier ex-
pressions (22.9) for non-zero Λ and vanishing N•, but this is not a misprint. The di�erence arises from an
arbitrariness in the choice of homogeneous solution (the choice of k0) when a cosmological constant Λ is
present, equations (22.50). The tetrad-frame electromagnetic potential Ak is

Ak =
1

ρ

{
− Q•r

R2
√

∆x

, 0 , 0 , −Q•(a cos θ +N•)

a
√

∆y

}
. (22.84)
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Figure 22.1 Geometry of a Kerr-NUT black hole, with NUT parameters N• = 0.75M and c• = −1, and spin parameter

a = 1.2M . The outer sisytube encircles the northern polar axis outside the outer ergosphere, while the inner sisytube

encircles the extension of the northern axis into the Antiverse inside the inner ergosphere. The choice c• = −1

means that there is no sisytube around the southern polar axis. Dashed purple lines mark the boundaries gtt = 0 of

ergospheres, while green (between the ergospheres) and cyan (outside the ergospheres) lines mark gφφ = 0.

22.7.2 Sisytubes in Taub-NUT

Sisytubes, containing closed timelike curves, occur in regions where gtt ≤ 0 and gφφ ≤ 0, Exercise 23.3. A
sisytube encircles any pole where ωy fails to vanish, since along poles, from equations (22.4) with ∆y = 0,

gtt = − ρ2∆x

(1− ωxωy)2
, (22.85a)

gφφ = −
ρ2ω2

y∆x

(1− ωxωy)2
, (22.85b)

which are both negative outside the horizon, ∆x > 0, unless ωy vanishes. If the NUT parameter N• is non-
zero, then generically sisytubes encircle both poles, but for the special cases c• = ±1, a sisytube encircles
only one of the two poles. The conclusion holds even when the black hole spin is zero, a = 0. For Λ = 0, the
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Figure 22.2 Similar to Figure 22.1, but with c• = 0 instead of c• = −1. Sisytubes encircle both the north (solid cyan

lines) and south (dashed cyan lines) polar axes.

sisytube tends to a cylinder of constant width at large distances from the black hole,

|r| sin θ → |ωy| → |2N•(c• ± 1)| as r → ±∞ , (22.86)

in which the sign of ±1 is the sign of y, namely + at the south pole, − at the north pole.
Figure 22.1 illustrates the geometry for an uncharged Kerr-NUT black hole with N• = 0.75M•, c• = −1,

and spin a = 1.2M•. Since c• = −1, a sisytube encircles the north pole but not the south pole. Figure 22.2
is a Kerr-NUT black hole with the same parameters, except that c• = 0 in place of c• = −1. Here sisytubes
enclose both north and south poles. The shapes of the sisytubes di�er between north and south poles despite
c• = 0. The north versus south asymmetry comes from the sign of the NUT parameter N•, which a�ects the
polar function ∆y, equation (22.82b).
Notwithstanding the presence of sisytubes, geodesics remain well-behaved through and along the polar

axis. For example, the principal null congruences, �23.6, which lie along geodesics at constant latitude y,
are everywhere well-behaved. The angular momentum along the principal null congruences is L/E = ωy,
equation (23.26). The angular momentum along the principal null congruence at a pole vanishes for the
Λ-Kerr-Newman geometry, but is �nite for the Taub-NUT geometry.
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22.7.3 Can the auxiliary NUT parameter c• be adjusted by a coordinate

transformation?

In �22.6.1 it was seen that, in the separable electrovac spacetimes being considered, any apparent rotation (of
the tetrad frame through the coordinates) at in�nity can be eliminated by a coordinate transformation (22.75)
of the angular coordinates φ and y.
It might seem that a similar coordinate transformation of the t and x coordinates by

t′ = t+ ω0φ , dx′ = (1− ωxω0) dx , (22.87)

would bring the line-element to the standard separable electrovac form (22.76) with primed quantities

ω′y ≡ ωy − ω0 , ω′x ≡
ωx

1− ωxω0
, ∆′x ≡

∆x

(1− ωxω0)2
. (22.88)

The coordinate transformation (22.87) would then allow the auxiliary NUT parameter c• to be adjusted
arbitrarily. For example, c• could be set to ±1, or 0, or whatever other value one might prefer.
Ordinarily the choice of c• would be dictated by physical reasons, which in the present cause would mean

the absence of sisytubes. Indeed, a sisytube at the north pole can be eliminated by setting c• = 1; but then
there is a sisytube at the south pole. Likewise, a sisytube at the south pole can be eliminated by setting
c• = −1; but then there is a sisytube at the north pole. One might perhaps choose c• = 0 as the most
symmetric choice, but this still leaves the north-south asymmetry coming from the sign of N•, as illustrated
in Figure 22.2. Evidently the problems of the Taub-NUT spacetime are fundamentally topological, and
unavoidable.
Actually, the coordinate transformation (22.87) cannot be made freely, since it already encodes topological

information. That is, axisymmetric identi�cation φ ≡ φ + 2π at �xed time t di�ers from axisymmetric
identi�cation at transformed time t′ = t+ ω0φ. Ordinarily the preferred time coordinate would be dictated
by physical reasons, but again all choices are unphysical.
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Trajectories in ideal rotating black holes

a = 0 a = 0.8 a = 0.96 a = 1

Figure 23.1 Silhouettes (black curves) of Kerr black holes with various spin parameters a, from left to right a = 0,

0.8, 0.96, and 1 (units M = 1), as observed in the equatorial plane from a far distance. The (red) ellipses show the

horizons of the black holes as an indication of what the black holes would look like without any gravitational lensing.

The silhouette is compressed on the approaching side and expanded on the receding side. See �23.14.

In the previous Chapter 22, the form of the Kerr-Newman line-element and its cousins was derived from the
condition that geodesics are Hamilton-Jacobi separable. In this chapter, the Hamilton-Jacobi equations are
separated, and the trajectories of neutral and charged particles in the Kerr-Newman geometry are explored.

23.1 Hamilton-Jacobi equation

The Hamilton-Jacobi equation for a particle of massm and electric charge q in the Λ-Kerr-Newman geometry
can be brought to a simple form (23.8) by writing the covariant tetrad-frame momentum pk of a particle in
terms of a set of Hamilton-Jacobi parameters Pk,

pk ≡
1

ρ

{
Pt√
∆x

,
Px√
∆x

,
Py√
∆y

,
Pφ√
∆y

}
, (23.1)

649
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and the covariant tetrad-frame electromagnetic potential Ak in terms of a set of Hamilton-Jacobi potentials
Ak,

Ak ≡
1

ρ

{
At√
∆x

,
Ax√
∆x

,
Ay√
∆y

,
Aφ√
∆y

}
, (23.2)

given by equation (22.10), which in turn follow from equations (22.54) and (22.60),

Ak =

{
−Q•r
R2

, 0, 0,−Q• cos θ

}
. (23.3)

The contravariant coordinate momenta dxκ/dλ = ek
κpk are related to the Hamilton-Jacobi parameters Pk

by

dxκ

dλ
=

1

ρ2

{
− Pt

∆x
+
ωyPφ
∆y

, −Px , Py , −
ωxPt
∆x

+
Pφ
∆y

}
. (23.4)

The tetrad-frame momenta pk are related to the generalized momenta πκ by pk = ek
κπκ−qAk, which implies

that the Hamilton-Jacobi parameters Pk are related to the canonical momenta πκ by

Pt ≡ πt + πφωx − qAt , (23.5a)

Px ≡ −∆xπx − qAx , (23.5b)

Py ≡ ∆yπy − qAy , (23.5c)

Pφ ≡ πφ + πtωy − qAφ . (23.5d)

Time translation symmetry and axisymmetry imply that πt and πφ are constants of motion, equation (22.20),

πt = −E , πφ = L . (23.6)

The separability conditions derived in �22.3 imply that

Pt , Px are functions of x only ,
Py , Pφ are functions of y only .

(23.7)

In terms of the Hamilton-Jacobi parameters Pk, the Hamilton-Jacobi equation (22.17) is

−P 2
t + P 2

x

∆x
+
P 2
y + P 2

φ

∆y
= −m2ρ2 . (23.8)

Separability for massive particles, m 6= 0, requires that the conformal factor ρ separate as equation (22.2).
The Hamilton-Jacobi equation (23.8) then separates as

−
(
−P 2

t + P 2
x

∆x
+m2ρ2

x

)
=
P 2
y + P 2

φ

∆y
+m2ρ2

y = K , (23.9)
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with K a separation constant, the Carter constant. The separated Hamilton-Jacobi equations (23.9) imply
that

Px = ±
√
P 2
t − (K +m2ρ2

x) ∆x , (23.10a)

Py = ±
√
−P 2

φ +
(
K −m2ρ2

y

)
∆y . (23.10b)

From the expression (23.4) for the coordinate momenta dxκ/dλ, the trajectory of a freely-falling particle
follows from integrating dy/dx = −Py/Px, equivalent to the implicit equation

− dx

Px
=
dy

Py
. (23.11)

Again from expression (23.4), the time and azimuthal coordinates t and φ along the trajectory are then
obtained by quadratures,

dt =
Pt dx

Px∆x
+
ωyPφ dy

Py∆y
, dφ =

ωxPt dx

Px∆x
+
Pφ dy

Py∆y
. (23.12)

Again from expression (23.4), the a�ne parameter λ along the trajectory satis�es dλ/ρ2 = −dx/Px = dy/Py,
so similarly reduces to quadratures,

dλ = − ρ2
x dx

Px
+
ρ2
y dy

Py
. (23.13)

In the limiting case of trajectories at constant latitude y, where dy/Py is zero divided by zero, expressions
for t, φ, and λ along the trajectory are obtained by replacing dy/Py → −dx/Px in equations (23.12) and
(23.13). Similarly for circular trajectories, where dx/Px is zero divided by zero, expressions for t, φ, and λ
along the trajectory are obtained by replacing dx/Px → −dy/Py.

23.2 Particle with magnetic charge

The above Hamilton-Jacobi equations were for a test particle of massm and electric charge q, but no magnetic
charge. Whereas electric charge is a scalar, magnetic charge is a pseudoscalar. Equations of motion for a
magnetic charge are obtained by taking the Hodge dual of those for an electric charge, e�ectively swapping
the roles of the electric and magnetic �elds. The Hodge dual of the electromagnetic �eld (22.11), obtained
by multiplying by the pseudoscalar I, equation (13.24), is the same expression with the electric Q• and
magnetic Q• charges of the black hole exchanged according to

Q• → −Q• , Q• → Q• . (23.14)

Coupling the pseudoscalar magnetic charge to the dual electromagnetic �eld gives an extra minus sign,
I2 = −1. Thus the Hamilton-Jacobi equations generalize to a particle with both electric charge qe and
magnetic charge qm by replacing

qQ• → qeQ• + qmQ• , qQ• → qeQ• − qmQ• , (23.15)
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in the expressions (23.5a) and (23.5d) for Pt and Pφ. The particle magnetic charge qm is set to zero hereafter;
it can be reincorporated by making the transformation (23.15) of constants.

23.3 Killing vectors and Killing tensor

The Kerr-Newman geometry is stationary and axisymmetric. As such it has two Killing vectors et and eφ,
�7.32. The symmetries imply conservation of energy E = −πt and azimuthal angular momentum L = πφ of
freely-falling particles, equations (22.20).
The separability of the Kerr-Newman geometry means that it also has a Killing tensorKmn. The Hamilton-

Jacobi equation (23.9) can be written in terms of the tetrad-frame momenta pk, equation (23.1), as

Kmnpmpn = K , (23.16)

where Kmn is

Kmn = diag
(
−ρ2

y , ρ
2
y , ρ

2
x , ρ

2
x

)
. (23.17)

The Killing tensor Kmn satis�es Killing's equation

D(kKmn) = 0 . (23.18)

23.4 Turnaround

The squared Hamilton-Jacobi parameters P 2
x and P 2

y can be regarded as e�ective radial and angular poten-
tials. The coordinates x and y of a freely-falling particle are constrained to move within the regions where
the potentials P 2

x and P 2
y are positive. The trajectory of a freely-falling particle turns around in x where

Px = 0, and turns around in y where Py = 0. That trajectories turn around at these points can be seen from
equation (23.11), which with the expressions (23.10) for Px and Py can be written

dλ

ρ2
= − dx√

P 2
t − (K +m2ρ2

x) ∆x

=
dy√

−P 2
φ +

(
K −m2ρ2

y

)
∆y

. (23.19)

At points where the polar function vanishes, ∆y = 0, the Hamilton-Jacobi equation (23.9) implies that

Py = Pφ = 0 at ∆y = 0 . (23.20)

Consequently trajectories must turn around in y if they hit ∆y = 0. Since the Weyl curvature is �nite at
∆y = 0, there is no singularity at ∆y = 0. Rather, the points where ∆y vanishes de�ne the (north and south)
poles of the geometry. Trajectories can pass through the poles, but they must turn around in latitude y when
they do so.
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Table 23.1: Signs of Pt and Px in various regions of the Kerr-Newman geometry

Region Sign
Universe, Wormhole, Antiverse Pt < 0

Parallel Universe, Parallel Wormhole, Parallel Antiverse Pt > 0

Black Hole Px < 0

White Hole Px > 0

Horizon, Inner Horizon Pt = Px < 0

Parallel Horizon, Parallel Inner Horizon −Pt = Px < 0

Antihorizon, Inner Antihorizon −Pt = Px > 0

Parallel Antihorizon, Parallel Inner Antihorizon Pt = Px > 0

23.5 Constraints on the Hamilton-Jacobi parameters Pt and Px

Horizons divide the spacetime into regions where the Hamilton-Jacobi parameters Pt and Px satisfy certain
conditions. The Hamilton-Jacobi equation (23.8) rearranges to

P 2
t − P 2

x =

(
P 2
y + P 2

φ

∆y
+m2ρ2

)
∆x . (23.21)

This shows that the Hamilton-Jacobi parameters Pt and Px must satisfy

|Pt| > |Px| if ∆x > 0 ,

|Pt| = |Px| if ∆x = 0 ,

|Pt| < |Px| if ∆x < 0 .

(23.22)

The Hamilton-Jacobi parameters must be continuous, including across horizons. Thus Pt must have the same
sign everywhere throughout any connected region where ∆x is positive, which in the Kerr-Newman geometry
means either outside the outer horizon or inside the inner horizon. Similarly Px must have the same sign
everywhere throughout any connected region where ∆x is negative, which in the Kerr-Newman geometry
means between the outer and inner horizons.
Outside the outer horizon, in the Universe region of the Kerr-Newman geometry, Figure 9.6, the time

parameter Pt must be negative, re�ecting the fact that the time coordinate t must be timelike and increasing
with the proper time of any particle. The radial parameter Px can be either positive (outfalling) or negative
(infalling).
Inside the outer horizon, in the Black Hole region of the geometry, the radial parameter Px must be

negative, re�ecting the fact that the radius is timelike and decreasing with the proper time of any particle.
The time parameter Pt can be either positive (outgoing) or negative (ingoing).
Particles that cross the outer horizon are necessarily infalling and ingoing at the horizon, with Pt = Px

negative. The Hamilton-Jacobi parameters are �nite and continuous across the horizon. The expression (23.1)
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shows that the tetrad-frame momenta p0 and p1 are proportional to 1/
√

∆x, and therefore diverge at the
horizon, where ∆x = 0. The divergence is the origin of the in�ationary instability at the inner horizon
discussed in Chapter 24.
Table 23.1 lists the constraints on the Hamilton-Jacobi parameters Pt and Px in each of the regions of the

Penrose diagram of Figure 9.6.

23.6 Principal null congruences

The middle expression of equation (23.9) shows that the Carter constant K is necessarily positive. The
vanishing of the Carter constant,

K = 0 , (23.23)

de�nes a special set of geodesics, called the principal outgoing and ingoing null congruences. A con-
gruence is a space-�lling, non-overlapping set of geodesics. The geodesics on the principal congruences are
null, m = 0, and satisfy

Py = Pφ = 0 . (23.24)

They further satisfy P 2
t = P 2

x . Outgoing and ingoing geodesics are distinguished by the relative signs of Pt
and Px,

Pt = −Px outgoing
Pt = Px ingoing .

(23.25)

Photons that hold steady on the horizon are members of the outgoing principal null congruence.
The condition Pφ = 0 implies that the ratio of angular momentum L = πφ to energy E = −πt on the

principal null congruences is

L

E
= ωy . (23.26)

The a�ne parameter λ along a principal null congruence satis�es

dλ ∝ ρ2 dx

Pt/E
=

ρ2 dx

1− ωxωy
=

dr√
f0g1 + f1g0(f1 + f0ωy)

, (23.27)

where fi and gi are the constants of the general electrovac solution, �22.4. As argued in �22.6.1, a coordinate
transformation allows the constant f0 to be set to zero without loss of generality. Thus the a�ne parameter,
which is de�ned only up to a normalization and a shift, along the principal null congruences can be taken
to be

λ = ±r . (23.28)

The line-element (22.1) de�nes a tetrad (the Boyer-Lindquist tetrad) that is aligned with the principal null
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congruences. By de�nition, an object at rest in the tetrad frame has tetrad-frame 4-velocity um = {1, 0, 0, 0}.
The coordinate 4-velocity uµ of the tetrad frame through the coordinates is

uµ = e0
µ =

1

ρ
√

∆x

{1, 0, 0, ωx} . (23.29)

Thus the principal tetrad frame is at rest in x and y, but rotates through the coordinates at angular velocity
dφ/dt = ωx about the black hole.

23.7 Carter integral Q

It is common to replace the Carter constant K by the Carter integral Q de�ned by

K = Q+
P 2
φ

∆y

∣∣∣∣∣
ρy=0

, (23.30)

which has the property that Q = 0 for orbits in the equatorial plane, ρy = 0. For Λ-Kerr-Newman, the
Carter integral is

Q = K − (L− aE)2 . (23.31)

Exercise 23.1. Near the Kerr-Newman singularity. This exercise reveals that among ideal black holes,
the Schwarzschild geometry is exceptional, not typical, in having a gravitationally attractive singularity.
Explore the behaviour of trajectories of test particles in the vicinity of the Kerr-Newman singularity, where
ρ→ 0 (that is, where r = 0 and ay = 0). Under what conditions does a test particle reach the singularity?
1. Argue that for a particle to reach the singularity at y = 0, positivity of P 2

y requires that

Q ≥ 0 , (23.32)

where Q is the Carter integral de�ned by equation (23.31).
2. Argue that for a particle to reach the singularity at r = 0, positivity of P 2

x requires that

Q2
•(L− aE)2 + (Q2

• + a2)Q ≤ 0 . (23.33)

3. Schwarzschild case: show that if Q• = 0 and a = 0, then a particle reaches the singularity provided that
the mass of the black hole is positive, M• > 0.

4. Reissner-Nordström case: show that if Q2
• > 0 and a = 0, then a particle can reach the singularity only

if it has zero angular momentum, Q = L = 0, and if the particle's charge exceeds its mass,

|q| ≥ |m| . (23.34)

In particular, a neutral particle reaches the singularity only if it has zero angular momentum and is
massless.
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5. Kerr case: show that if Q• = 0 but a2 > 0, then a particle can reach the singularity only if it is moving
in the equatorial plane (y = 0 and Q = 0), and provided that the mass of the black hole is positive,
M• > 0. [Hint: Show that if the particle is not already in the equatorial plane at y = 0, then the equation
of motion for dy/dx shows that the particle never reaches y = 0.]

6. Kerr-Newman case: show that if Q2
• > 0 and a2 > 0, then a particle can reach the singularity only if

L = aE and it is moving in the equatorial plane, and if the particle's charge-to-mass is large enough,

|q| ≥ |m|

√
Q2
• + a2

Q2
•

, (23.35)

which generalizes the Reissner-Nordström condition (23.34).
Solution. Equation (23.32) comes from

K =
P 2
y + P 2

φ

∆y
+m2ρ2

y ≥
P 2
φ

∆y
, (23.36)

and taking the limit y → 0. Equation (23.33) comes from

R4
{
−P 2

t +
[
Q+ (L− aE)2 +m2ρ2

x

]
∆x

}
= −R4P 2

x ≤ 0 , (23.37)

and taking the limit r → 0.

Exercise 23.2. When must t and φ progress forwards on a geodesic? Under what circumstances
must the time coordinate t or azimuthal angle φ progress forwards along a geodesic?
1. Show that, in regions where ∆x ≥ 0,

P 2
φ

∆y
≤ K ≤ P 2

t

∆x
. (23.38)

Hence show that in the Universe, Wormhole, and Antiverse regions outside the horizons, where Pt < 0,

dt

dλ
≥ (1− ωxωy)2

√
K

ρ4
√

∆x∆y

(
ωy
√

∆x +
√

∆y

)gφφ = −
√
K∆x∆y

ωy
√

∆x +
√

∆y

gtt , (23.39)

and

dφ

dλ
≥ (1− ωxωy)2

√
K

ρ4
√

∆x∆y

(√
∆x + ωx

√
∆y

)gtt = −
√
K∆x∆y√

∆x + ωx
√

∆y

gφφ . (23.40)

Conclude that, in the Pt < 0 regions outside the outer and inner horizons, the time coordinate t must
progress forwards if gφφ ≥ 0, which is true outside the sisytube, while the azimuthal angle φ must
progress forwards if gtt ≥ 0, which is true between the outer and inner ergospheres.

2. Argue that in the Parallel Universe, Parallel Wormhole, and Parallel Antiverse regions outside the
horizons, where Pt > 0, the inequalities (23.39) and (23.40) hold with the left hand sides replaced by
d(−t)/dλ and d(−φ)/dλ. Hence conclude that the time coordinate t must progress backwards outside
the sisytube, while the azimuthal coordinate φ must progress backwards between the ergospheres.



23.8 Penrose process 657

Exercise 23.3. Inside the sisytube. The sisytube, �9.10, is the region where gtt ≤ 0 and gφφ ≤ 0. Show
that, for null geodesics at a turnaround point in both radius and latitude inside the sisytube, dx = dy = 0,

dt

dφ
=
ωy
√

∆x ±
√

∆y√
∆x ± ωx

√
∆y

=
ωy
√

∆x +
√

∆y√
∆x + ωx

√
∆y

{
1 or

gφφ
gtt

}
. (23.41)

Sketch the lightcone structure in the t�φ plane inside the sisytube. When does the time t progress forwards,
backwards, or not at all? To go backwards in time, must a particle go prograde or retrograde?
Solution. Retrograde.

Exercise 23.4. Gödel's Universe. Gödel's Universe has a separable line-element of the form (22.1) with
ρ = 1, ωx = 0, and ∆x = 1, thus

ds2 = − (dt− ωy dφ)
2

+ dx2 +
dy2

∆y
+ ∆y dφ

2 . (23.42)

Show that the tetrad-frame energy-momentum tensor is diagonal provided that ωy is linear in y. Show that
the energy-momentum is constant everywhere provided that ∆y is quadratic in y. Show that the energy-
momentum takes perfect �uid form with an ultrahard equation of state, Tmn = ρ{1, 1, 1, 1}, if

ωy = 2
√
ρ y , ∆y = 2y(1 + ρy) , (23.43)

in which the constant (0) and linear (2y) terms in ∆y are chosen so that for y � 1/ρ the angular part of the
metric looks like the Minkowski metric in cylindrical coordinates, with y ≈ 1

2r
2,

ds2 ≈ − dt2 + dx2 + dr2 + r2dφ2 for y � 1/ρ . (23.44)

Show that there is a sisytube (gtt ≤ 0 and gφφ ≤ 0) for y ≥ 1/ρ. Is Gödel's Universe self-consistent in the
sense that the rest frame of the �uid is everywhere geodesic? Explore Gödel's Universe.
Solution. Yes, the solution is self-consistent. The rest frame of the �uid is the same as the rest frame of
the tetrad, since the energy-momentum is diagonal in the tetrad rest frame. The split between ρx and ρy in
ρ2
x + ρ2

y = ρ2 = 1 can be taken to be ρx = 1 and ρy = 0. Rest geodesics satisfy πt = −m, πφ = mωy, and
K = 0, yielding Px = Py = Pφ = 0 and Pt = −m, whence pk = {m, 0, 0, 0}.

23.8 Penrose process

As �rst pointed out by Penrose, trajectories in the Kerr-Newman geometry can have negative energy E

outside the horizon. In Newtonian gravity, gravitational energy is negative. If the gravitational binding
energy of a particle more than cancels the kinetic energy of the particle, then the particle is in a bound orbit.
In general relativity, the binding energy of a particle can be so great that in e�ect it cancels not only the
kinetic energy, but also the rest mass energy of the particle. Such particles have negative energy.
It is possible to reduce the mass M• of the black hole by dropping negative energy particles into the black

hole. This process of extracting mass-energy from the black hole is called the Penrose process.
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Exercise 23.5. Negative energy trajectories outside the horizon. Under what conditions can a test
particle have negative energy, E < 0, outside the outer horizon of a Kerr-Newman black hole?
1. Argue that the negativity of Pt outside the outer horizon implies that aL + qQr must be negative for

the energy E to be negative. Show that, more stringently, negative E requires that

aL+ qQr ≤ −R2

√(
L2

∆y
+m2ρ2

)
∆x . (23.45)

2. Argue that for an uncharged particle, q = 0, negative energy trajectories exist only inside the ergosphere.

3. Do negative energy trajectories exist outside the ergosphere for a charged particle?

4. For the Penrose process to work, the negative energy particle must fall through the outer horizon, where
∆x = 0. Can this happen? Must it happen?

Solution. See the end of �23.17.

23.9 Constant latitude trajectories in the Kerr-Newman geometry

For simplicity, the next several sections, up to and including �23.20, are restricted to Kerr-Newman black
holes with zero magnetic charge, Q• = 0, and zero cosmological constant, Λ = 0.
A trajectory is at constant latitude if it is at constant polar angle θ, or equivalently at constant y ≡ − cos θ,

y = constant . (23.46)

Constant latitude orbits occur where the angular potential P 2
y , equation (23.10b), not only vanishes, but is

an extremum,

P 2
y =

dP 2
y

dy
= 0 , (23.47)

the derivative being taken with the constants of motion E, L, and K of the orbit being held �xed. The
condition P 2

y = 0 sets the value of the Carter integral K. Solving dP 2
y /dy = 0 yields the condition between

energy E and angular momentum L

E = ±
√

1 +
L2

a2 sin4θ
. (23.48)

Solutions at any polar angle θ and any angular momentum L exist, ranging from E = ±1 at L = 0, to
E = ±L/(a sin2θ) at L → ±∞. The solutions with L = 0 are those of the freely-falling observers that
de�ne the Doran coordinate system, �9.18. The solutions with L→∞ de�ne the principal null congruences
discussed in �23.6.
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23.10 Circular orbits in the Kerr-Newman geometry

For simplicity, this section 23.10 is restricted to Kerr-Newman black holes with zero magnetic charge and
cosmological constant,

Q• = Λ = 0 . (23.49)

For brevity, the black hole subscripts will be dropped from the black hole mass and electric charge M• and
Q•,

M• = M , Q• = Q . (23.50)

23.10.1 Condition for a circular orbit

An orbit can be termed circular if it is at constant radius r,

r = constant . (23.51)

It is convenient to call such an orbit circular even if the orbit is at �nite inclination (not con�ned to the
equatorial plane) about a rotating black hole, and therefore follows the surface of a spheroid (in Boyer-
Lindquist coordinates).
Orbits turn around in r, reaching periapsis or apoapsis, where the radial potential P 2

x , equation (23.10a),
vanishes. Circular orbits occur where the radial potential P 2

x not only vanishes, but is an extremum,

P 2
x =

dP 2
x

dr
= 0 , (23.52)

the derivative being taken with the constants of motion E, L, and Q of the orbit being held �xed. Circular
orbits may be either stable or unstable. The stability of a circular orbit is determined by the sign of the
second derivative of the potential

d2P 2
x

dr2
, (23.53)

with − for stable, + for unstable circular orbits. Marginally stable orbits occur where d2P 2
x/dr

2 = 0.
Circular orbits occur not only in the equatorial plane, but at general inclinations. The inclination of an

orbit can be characterized by the maximum latitude ymax, or equivalently the minimum polar angle θmin,
that the orbit reaches. An astronomer would call arcsin(ymax) = π/2−θmin the inclination angle of the orbit.
It is convenient to de�ne an inclination parameter α by

α ≡ y2
max = cos2θmin , (23.54)

which lies in the interval [0, 1]. Equatorial orbits, at y = 0, correspond to α = 0, while polar orbits, those
that go over the poles at y = ±1, correspond to α = 1.
The maximum latitude ymax reached by an orbit occurs at the turnaround point Py = 0. Inserting this
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condition into equation (23.10b) allows the Carter constant K, or equivalently the Carter integral Q, equa-
tion (23.31), to be eliminated in favour of the inclination parameter α, equation (23.54)

Q = K − (L− aE)2 = α

[
a2(m2 − E2) +

L2

1− α

]
. (23.55)

Equation (23.55) is a quadratic equation in α, so has two roots for α at �xed E, L, and Q. The quadratic
is Q(1− α) + α(1− α)a2(E2 −m2)− αL2, which equals Q at α = 0, and −L2 at α = 1. Therefore there is
one root in α ∈ [0, 1] if Q > 0, and two roots if Q < 0 (given that, for an orbit to exist, at least one root
must lie in α ∈ [0, 1]),

Q > 0 1 root in α ∈ [0, 1] ,

Q < 0 2 roots in α ∈ [0, 1] .
(23.56)

For one root in α ∈ [0, 1], the orbit has only a maximum latitude; for two roots, the orbit has a minimum as
well as a maximum latitude. All the equations in what follows hold true for α the inclination parameter at
an extremum, whether maximum or minimum.
The energy per unit mass of a particle at in�nity must exceed its rest mass, |E/m| ≥ 1 (E is positive in

the Universe, negative in the Parallel Universe). A particle with energy less than its rest mass, |E/m| < 1,
cannot go to in�nity, and is said to be bound. Equation (23.55) implies that the Carter integral Q is positive
for bound orbits, Q ≥ 0 (with Q = 0 for equatorial orbits, α = 0). Therefore all bound orbits have only a
maximum latitude; they all pass through the equator.

23.11 General solution for circular orbits

The general solution for circular orbits of a test particle of arbitrary electric charge q in the Kerr-Newman
geometry is as follows. For vanishing electric charge, see �23.12.
The rest mass m of the test particle can be set equal to unity, m = 1, without loss of generality. Circular

orbits of particles with zero rest mass, m = 0, discussed in �23.13 below, occur in cases where the circular
orbits for massive particles attain in�nite energy and angular momentum.
In the radial potential P 2

x , equation (23.10a), eliminate the Carter integral K in favour of the inclination
parameter α using equation (23.55). Furthermore, eliminate the energy E ≡ −πt in favour of Pt, equa-
tion (23.5a). The radial derivatives dnP 2

x/dr
n must be taken before E is replaced by Pt, since E is a constant

of motion, whereas Pt varies with r. For Kerr-Newman, the expression (23.5a) for Pt is

Pt = −E +
aL

R2
+
qQr

R2
. (23.57)

In accordance with Table 23.1, solutions with negative Pt correspond to orbits in the Universe, Wormhole,
or Antiverse parts of the Kerr-Newman geometry in the Penrose diagram of Figure 9.6, while solutions with
positive Pt correspond to orbits in their Parallel counterparts. If only the Universe region is considered, then
Pt is necessarily negative. By contrast, the energy E can be either positive or negative in the same region
of the Kerr-Newman geometry (the energy E is negative for orbits of su�ciently large negative angular
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momentum L inside the ergosphere of the Universe). Circular orbits cannot occur between the outer and
inner horizons (why not?).
The condition P 2

x = 0, equation (23.52), is a quadratic equation in the azimuthal angular momentum
L ≡ πφ, whose solutions are

L√
1− α

=
R2

r2 + a2α

a√1− α
(
−Pt +

qQr

R2

)
±

√
P 2
t

∆x
− (r2 + a2α)

 . (23.58)

Numerically, it is better to characterize an orbit by L/
√

1− α rather than by L itself, since the former
remains �nite as α → 1, whereas L and 1 − α both tend to zero at α → 1. Substituting the two (±)
expressions (23.58) for L into dP 2

x/dr, and setting the product of the resulting two expressions for dP 2
x/dr

equal to zero, equation (23.52), yields a quartic equation

p0 + p1P + p2P
2 + p3P

3 + p4P
4 = 0 , (23.59)

for the dimensionless quantity P (not to be confused with Pt or Px) de�ned by

P ≡ − Pt
R2∆x

. (23.60)

The minus sign is introduced so as to make P positive in the region of usual interest, which is the Universe
region of the Kerr-Newman geometry, where Pt is negative (see Table 23.1). The sign of P is always opposite
to that of Pt, since circular orbits exist only where ∆x ≥ 0, outside horizons. The coe�cients pi of the
quartic (23.59) are

p0 ≡ r2(r2 + a2α)2 , (23.61a)

p1 ≡ −2qQr(r2 − a2α)(r2 + a2α) , (23.61b)

p2 ≡ − 2r2(r2 + a2α)(r2 − 3Mr + 2Q2 + a2α+ a2αM/r) + q2Q2(r2 − a2α)2 , (23.61c)

p3 ≡ 2qQr(r2 − a2α)(r2 − 3Mr + 2Q2 + 2a2 − a2α+ a2αM/r) , (23.61d)

p4 ≡
[
r6 − 6Mr5 + (9M2+4Q2+2a2α)r4 − 4M(3Q2+a2)r3

+ (4Q4−6a2αM+4a2Q2+a4α2)r2 + 2a2α(2Q2+2a2−a2α)Mr + a4α2M2
]
. (23.61e)

The quartic (23.59) is the condition for an orbit at radius r to be circular. Physical solutions P must be real.
Barring degenerate cases, the quartic (23.59) has either zero, two, or four real solutions at any one radius r.
Numerically, it is better to solve the quartic (23.59) for the reciprocal 1/P rather than P , since the vanishing
of 1/P de�nes the location of circular orbits of massless particles, �23.13. Roots of the quartic (23.59) as
a function of radius are illustrated in Figure 23.2 for a charged particle in Kerr-Newman black hole, with
illustrative values of black hole and particle parameters.
The azimuthal angular momentum L/

√
1− α, energy E, and stability d2P 2

x/dr
2 of a circular orbit are, in
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Figure 23.2 Values of 1/P , equation (23.60), angular momentum L, and energy E, for circular orbits at radius r of a

charged particle about a Kerr-Newman black hole. The parameters are illustrative: the black hole has spin parameter

a/M = 0.5 and charge Q/M = 0.5, and the particle has charge-to-mass q/m = 2.4 (so qQ/(mM) = 1.2) on an orbit

of inclination parameter α = 0.5. The values 1/P are real roots of the quartic (23.59); generically there are either

zero, two, or four real roots at any one radius. Solid (green) lines indicate stable orbits; dashed (brown) lines indicate

unstable orbits. Positive 1/P orbits occur in Universe, Wormhole, and Antiverse regions; negative 1/P orbits occur

in their Parallel counterparts; zero 1/P orbits are null. The fact that the particle is charged breaks the symmetry

between positive and negative 1/P . If the charge of the particle were �ipped, q/m = −2.4, then the diagrams would

be re�ected about the horizontal axes (the signs of 1/P , E, and L would �ip). Orbits are marked p for prograde, r for

retrograde. In the Universe (r > r+), a positive charge q is repelled by the positive charge Q of the black hole; with

qQ ≥ mM , as here, the electrical repulsion exceeds the gravitational attraction, and there are no circular orbits at

large r. Conversely, a negative charge q is attracted by the positive charge Q of the black hole, and there are circular

orbits at large r. In the Antiverse (r < 0), the situation is symmetrically equivalent to one in which the radius is

positive and the mass and charge are �ipped, transformation (23.69); the positive charge q e�ectively sees a black

hole with negative mass −M and negative charge −Q, and is therefore attracted by the charged black hole. Thus in

the Antiverse, there are circular orbits at large negative r for qQ ≥ mM , as here, but not for qQ < mM .
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terms of a solution P of the quartic (23.59),

L√
1− α

=
1

2a
√

1− α
[
R2P−1 − qQ(r2 − a2)/r − (R2 − 3Mr + 2Q2 + a2M/r)P

]
= ± 1

r2 + a2α

√
l−1P−1 + l0 + l1P + l2P 2 , (23.62a)

E = 1
2

[
P−1 + qQ/r + (1−M/r)P

]
= ± 1

r2 + a2α

√
e−1P−1 + e0 + e1P + e2P 2 , (23.62b)

d2P 2
x

dr2
=

2

(r2 + a2α)2

(
q−1P

−1 + q0 + q1P + q2P
2
)
, (23.62c)

where the coe�cients li, ei, and qi are

l−1 ≡ qQrR2(r2 + a2α) , (23.63a)

l0 ≡ −R2(r2 + a2α)(2Mr −Q2)− q2Q2(r4 − a4α) , (23.63b)

l1 ≡ −
qQ

r

[
2r6 − 5Mr5 + 3(Q2+a2)r4 − a2(1+α)Mr3 + a2(Q2+αQ2+a2−a2α)r2

+ 3a4αMr − a4α(Q2+a2)
]
, (23.63c)

l2 ≡
[
3Mr3 − 2Q2r2 + a2(1+α)Mr − a2(1+α)Q2 − a4αM/r

]
R4∆x , (23.63d)

e−1 ≡ qQr(r2 + a2α) , (23.64a)

e0 ≡ (r2 + a2α)(r2 − 2Mr +Q2 + a2α) + q2Q2a2α , (23.64b)

e1 ≡
qQ

r

[
Mr3 − (Q2 + a2 − 2a2α)r2 − 3a2αMr + a2α(Q2+a2)

]
, (23.64c)

e2 ≡ (Mr −Q2 − a2αM/r)R4∆x , (23.64d)

and

q−1 ≡ 2qQr(r2 − a2α)(r2 + a2α) , (23.65a)

q0 ≡ − 4(r2 + a2α)(Mr3 −Q2r2 − a2αMr)− q2Q2(r2 − a2α)2 , (23.65b)

q1 ≡ −
qQ

r

[
r6 − 4Mr5 + 3(Q2+a2−2a2α)r4 + 12a2αMr3 − a2α(6Q2+6a2−a2α)r2 − a4α2(Q2+a2)

]
,

(23.65c)

q2 ≡
(
3Mr3 − 4Q2r2 − 6a2αMr − a4α2M/r

)
R4∆x . (23.65d)

Equations (23.62) determine the values of L, E, and d2P 2
x/dr

2 uniquely for any given root P of the quar-
tic (23.59). The expressions on the second lines of equations (23.62a) for L and equations (23.62b) for E are
equivalent to the expressions on the �rst lines, the sign of the second expressions being chosen to agree with
those of the �rst expressions. For L, the �rst expression has the virtue of being unambiguous in sign, while
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the second expression has the virtue of remaining well-behaved in the limit a → 0 or 1 − α → 0. The two
expressions (23.62a) for L are moreover equivalent to the expression (23.58) with one of the two choices of
sign in the latter.
For non-zero a, the reality of a solution P of the quartic (23.59) is a necessary and su�cient condition for a

corresponding circular orbit to exist. In particular, the argument of the square root in the expression (23.62a)
for L is guaranteed to be positive. For zero a, however, the quartic (23.59), which reduces in this case to
the square of a quadratic, �23.20, admits real solutions that do not correspond to a circular orbit. For these
invalid solutions, the argument of the square root in the second-line expression (23.62a) for L is negative.
Thus for zero a, a necessary and su�cient condition for a circular orbit to exist is that the solutions for both
P and L be real.
Equation (23.62b) shows immediately that circular orbits of neutral (q = 0) particles necessarily have

positive energy E in the Universe region outside the horizon, where P ≥ 0 and r ≥M . It is true, but not so
obvious, that circular orbits of charged particles (q 6= 0) must also have positive energy E in the Universe
region outside the horizon. As discussed in �23.17, equation (23.92), the circular orbits with the smallest
possible energy are equatorial orbits at the horizon of an extremal uncharged black hole.
Also of interest is the derivative dP 2

y /dα of the angular potential at turnaround, where Py = 0. Orbits at
constant latitude occur where dP 2

y /dα vanishes at turnaround. In terms of a solution P of the quartic (23.59),
the derivative dP 2

y /dα is

dP 2
y

dα
=

1

r2 + a2α

(
k−1P

−1 + k0 + k1P + k2P
2
)
, (23.66)

where the coe�cients ki are

k−1 ≡ −qQr(r2 + a2α) , (23.67a)

k0 ≡ (r2 + a2α)(2Mr −Q2) + q2Q2(r2 − a2α) , (23.67b)

k1 ≡
qQ

r

[
(2r4 − 5Mr3 + 3(Q2 + a2 − 2a2α)r2 + a2α(3Mr −Q2 − a2)

]
, (23.67c)

k2 ≡ − (3Mr − 2Q2 − a2αM/r)R4∆x , (23.67d)

23.11.1 Discrete symmetries of the orbital structure

The orbital structure in the Kerr-Newman geometry has two discrete symmetry transformations, parallel
and radial �ips. The parallel �ip, which arises from time reversal symmetry t ↔ −t of the Kerr-Newman
geometry, exchanges Universes, Wormholes, and Antiverses with their Parallel counterparts,

P ↔ −P , Q↔ −Q , L↔ −L , E ↔ −E . (23.68)

The radial �ip exchanges Universes and Antiverses,

r ↔ −r , M ↔ −M , Q↔ −Q . (23.69)
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23.11.2 Prograde and retrograde orbits

At zero spin, a = 0, the quartic (23.59) reduces to the square of a quadratic (this is the Reissner-Nordström
case considered in �23.20). Each real root P in this case is doubly degenerate. The two roots have opposite
signs of the angular momentum L/

√
1− α. As the spin a is increased away from zero, the two roots for P

are rotationally split. The root with the more positive angular momentum L (the direction of the axis of the
black hole being taken so that a is positive) is called prograde, while the root with the more negative angular
momentum is called retrograde (this is in the Universe, Wormhole, and Antiverse parts of the geometry,
where P is positive; in their parallel counterparts, the prograde orbit has more negative L, consistent with the
symmetry transformation (23.68); in all, the prograde orbit is the one with the more positive PaL/

√
1− α).

Every transition between prograde and retrograde occurs at a double root P of the quartic; but not every
double root has such a transition. For example, in the charged particle case illustrated in Figure 23.2, in the
Universe part of the geometry (P > 0, r > r+), there are two prograde orbits at the same radius at and
just inside the prograde null circular orbit (1/P → +0); and similarly there are two retrograde orbits at the
same radius at and just inside the retrograde null circular orbit.

23.12 Circular geodesics (orbits for particles with zero electric charge)

Geodesics are trajectories for freely-falling neutral particles, whose motion is in�uenced only by gravity. For
a particle with zero electric charge, q = 0, the odd coe�cients pi vanish in the quartic condition (23.59) for a
circular orbit vanish, and the quartic reduces to a quadratic in P 2. Solving the quadratic yields two possible
solutions

1/P 2 =
F±

r2 + a2α
, (23.70)

where F± are

F± ≡ r2 − 3Mr + 2Q2 + a2α(1 +M/r) ± 2a
√

(1− α)(Mr −Q2 − a2αM/r) . (23.71)

with + and − de�ning respectively prograde and retrograde orbits. By �ipping the direction of the rotation
axis, the spin parameter a can always be chosen to be positive, a ≥ 0. For non-zero spin a 6= 0, the necessary
and su�cient condition for the existence of a circular orbit is that P be real, which requires that F± be real
and positive, that is,

Mr −Q2 − a2αM/r ≥ 0 and F± ≥ 0 . (23.72)

The conditions (23.72) remain necessary and su�cient in the limit a = 0 of zero spin (where P is real even
without the �rst of the two conditions (23.72)). For zero electric charge q, the expressions (23.62) for the
angular momentum L, energy E, and stability d2P 2

x/dr
2 of a circular orbit, and the expression (23.66) for
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Figure 23.3 Location of stable (shaded green) and unstable (shaded amber) circular orbits in a Kerr black hole with

spin (top) slightly sub-extremal (a = 0.999M), and (bottom) extremal (a = M). The plotted latitude of each circular

orbit is its inclination, the maximum latitude reached by the orbit. Null (violet), marginally stable (green), and

constant-latitude (grey; inside the Antiverse, at r < 0) circular orbits are marked. Regions where circular orbits exist

are bounded by the two conditions (23.72) (brown and violet). Prograde orbits are drawn to the left of the vertical

axis, retrograde orbits to the right. Outer and inner ergospheres (dashed, purple), outer and inner horizons (red),

sisytubes (cyan), and singularities (black) are shown as in Figures 9.1 and 9.3.
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Figure 23.4 As Figure 23.3, but for a Kerr black hole with spin (top) slightly super-extremal (a = 1.001M), and

(bottom) super-extremal (a = 1.25M). Ergospheres, sisytubes, and singularities are shown as in Figure 9.4.

the angular derivative dP 2
y /dα of the angular potential, simplify to

L√
1− α

=
1

2a
√

1− α
[
R2P−1 − (R2 − 3Mr + 2Q2 + a2M/r)P

]
= ± 1

r2 + a2α

√
l0 + l2P 2 , (23.73a)

E = 1
2

[
P−1 + (1−M/r)P

]
= ± 1

r2 + a2α

√
e0 + e2P 2 , (23.73b)

d2P 2
x

dr2
=

2

(r2 + a2α)2

(
q0 + q2P

2
)
, (23.73c)

dP 2
y

dα
=

1

r2 + a2α

(
k0 + k2P

2
)
. (23.73d)
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The coe�cients li, ei, and qi from equations (23.63), (23.64), and (23.65) reduce to

l0 ≡ −R2(r2 + a2α)(2Mr −Q2) , (23.74a)

l2 ≡
[
3Mr3 − 2Q2r2 + a2(1+α)Mr − a2(1+α)Q2 − a4αM/r

]
R4∆x , (23.74b)

e0 ≡ (r2 + a2α)(r2 − 2Mr +Q2 + a2α) , (23.75a)

e2 ≡ (Mr −Q2 − a2αM/r)R4∆x , (23.75b)

and

q0 ≡ − 4(r2 + a2α)(Mr3 −Q2r2 − a2αMr) , (23.76a)

q2 ≡
(
3Mr3 − 4Q2r2 − 6a2αMr − a4α2M/r

)
R4∆x , (23.76b)

while the coe�cients ki from equations (23.67) reduce to

k0 ≡ (r2 + a2α)(2Mr −Q2) , (23.77a)

k2 ≡ − (3Mr − 2Q2 − a2αM/r)R4∆x . (23.77b)

Figures 23.3 and 23.4 illustrate the location of stable and unstable circular orbits in the Kerr geometry
(Q = 0) with sub-extremal and extremal spins (Figure 23.3), and super-extremal spin (Figure 23.4). The
four spins shown, a/M = 0.999, 1, 1.001, and 1.25, are chosen to bring out how the orbital structure changes
from sub- to super-extremal.
The locations of circular orbits are bounded by the two conditions (23.72). The boundaries corresponding

to the two conditions (23.72) are marked respectively by solid amber and violet lines in Figures 23.3 and 23.4.
As discussed further in �23.13, the boundary of the second of the two conditions (23.72), F± = 0, corresponds
to null circular orbits.
All circular orbits at r > 0 have positive Carter integral, Q ≥ 0 (with Q = 0 for equatorial orbits), and

therefore pass through the equator according to condition (23.56). Conversely, all circular orbits at r < 0

have strictly negative Carter integral Q < 0, and therefore do not pass through the equator: they have both
a maximum and minimum latitude.

23.13 Null circular orbits

Null circular orbits de�ne the photon sphere, marked by solid violet lines in Figures 23.3 and 23.4. Circular
orbits for massless particles, m = 0, or null circular orbits, follow from the solutions for massive particles
in the case where the energy and angular momentum on the circular orbit become in�nite, which occurs
when Pt → ±∞. Except at horizons, where ∆x = 0, this occurs when a solution P ≡ −Pt/(R2∆x) of
the quartic (23.59) diverges, which happens when the ratio p4/p0 of the highest to lowest order coe�cients
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Figure 23.5 Radii of null circular orbits (generalization of the photon sphere) for a Kerr black hole with various

spin parameters a, including super-extremal spin parameters, |a/M | > 1. Positive and negative a/M signify prograde

(F+ = 0) and retrograde (F− = 0) orbits respectively. Lines are labelled with values of the inclination parameter

α, varying from equatorial orbits (α = 0) to polar orbits (α = 1). Solid lines indicate unstable orbits; dashed lines

indicate stable orbits; long dashed lines mark the transition between unstable and stable orbits. The radii r− and r+
of the inner and outer horizons are shown for reference.

vanishes. The ratio p4/p0, equations (23.61), factors as

p4

p0
=

F+F−
(r2 + a2α)2

, (23.78)

where F± are de�ned by equation (23.71). A null circular orbit thus occurs at a radius r such that

F+ = 0 or F− = 0 , (23.79)

with + for prograde (aL > 0) orbits, − for retrograde (aL < 0) orbits. The location of null circular orbits
are independent of the charge q of the particle, since F± are independent of charge q.
The condition (23.79) for a photon sphere is a quadratic equation for the inclination parameter α, yielding√
1− αp =

1

a(rp −M)

[
± rp

√
R2
p − 2Mrp +Q2 ±

√
2Mr3

p − (3M2 +Q2)r2
p + 2MQ2rp + a2M2

]
. (23.80)

The photon sphere radius rp ranges over values such that αp ∈ [0, 1]. The azimuthal angular momentum
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Jp ≡ L/E per unit energy on the photon sphere is, from equation (23.62a) in the limit Pt → ±∞,

Jp =
R2
p − 3Mrp + 2Q2 + a2M/rp

a(M/rp − 1)
. (23.81)

The Carter constant Kp ≡ K/E on the photon sphere is, equation (23.55),

Kp =
4r2
p(R

2
p − 2Mrp +Q2)

(rp −M)2
. (23.82)

In the limit of an extremal Kerr-Newman black hole, the angular momentum (23.81) and Carter con-
stant (23.82) on the photon sphere reduce to

Jp =
− r2

p + 2Mrp + a2

a
, Kp = 4r2

p . (23.83)

In this case of an extremal Kerr-Newman black hole, there is an additional range of Carter constants Kp for
the part of the photon sphere that is on the horizon, rp = M ,

J2
p ≤ Kp ≤ 4r2

p . (23.84)

See �23.17 for more on orbits at the horizon of an extremal black hole.
Figure 23.5 illustrates the radii of null circular orbits for a Kerr (uncharged) black hole, for various spin

and inclination parameters a and α, including super-extremal (|a/M | > 1) spins. At zero spin, a = 0, a
Schwarzschild black hole, there is just a single null circular orbit, at r = 3M . For a spinning black hole with
given positive a/M (a negative a/M can be made positive by �ipping the direction of the north pole), there
are, barring degenerate cases, 2, 4, or 6 distinct null circular orbits at each inclination. At any inclination
there are always 2 null circular orbits at negative radius, one prograde and one retrograde (in Figure 23.5,
prograde and retrograde orbits are plotted with a/M respectively positive and negative). In the usual case
of a sub-extremal (|a/M | < 1) Kerr black hole, there are generally 2 null circular orbits at positive radius,
one prograde and one retrograde. If the black hole is su�ciently near extremal, then there are a further 2
null circular orbits at positive radius. If the black hole is sub-extremal (|a/M | < 1), then the additional 2
orbits exist at small inclinations, α < −3+2

√
3 ≈ 0.464; the 2 orbits lie between r = 0 and the inner horizon

r = r−, and are both prograde. If the black hole is super-extremal (|a/M | > 1), then the additional 2 orbits
exist at large inclinations, α > −3 + 2

√
3 ≈ 0.464; one orbit is prograde, the other retrograde.

23.14 The silhouette of a black hole

An isolated (non-accreting) black hole should appear as a black disk silhouetted against the starry back-
ground. The edge of the black disk is de�ned by null circular orbits, the photon sphere, discussed in the
previous section 23.13. Figure 23.1 illustrates the silhouette of a Kerr black hole for various spin parameters,
as seen by a distant observer in the equatorial plane.
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Figure 23.6 Radii of marginally stable circular orbits for a Kerr black hole with various spin parameters a, including

super-extremal spin parameters, |a/M | > 1. As in Figure 23.5, positive and negative a/M signify prograde and

retrograde orbits respectively. Lines are labelled with values of the inclination parameter α, varying from equatorial

orbits (α = 0) to polar orbits (α = 1). Long dashed lines, which are the same as in Figure 23.5, mark where marginally

stable orbits become null and terminate, examples of which are illustrated in Figures 23.3 and 23.4. The marginally

stable equatorial circular orbit (thick black line) is commonly called the ISCO (innermost stable circular orbit) when

the black hole is sub-extremal and the orbit is prograde, 0 ≤ a/M ≤ 1. The radii r− and r+ of the inner and outer

horizons are shown for reference.

23.15 Marginally stable circular orbits

Figure 23.6 illustrates the radii of marginally stable orbits, those satisfying d2P 2
x/dr

2 = 0, for a Kerr
(uncharged) black hole for various spin and inclination parameters a and α. Marginally stable circular orbits
are marked by solid green lines in Figures 23.3 and 23.4.

23.16 Circular orbits at constant latitude in the Antiverse

In the Antiverse (r < 0), there are orbits that are not only circular but also at constant latitude, satisfying
dP 2

y /dα = 0. These orbits are marked by solid grey lines in Figures 23.3 and 23.4. None of these orbits lies
inside the retrograde sisytube, so all of them progress forwards, not backwards, in Boyer-Lindquist time t.
As Figures 23.3 and 23.4 show, there are circular orbits that pass through the retrograde sisytube; but
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their back-and-forth motion in latitude takes them in and out of the sisytube. These orbits spend a part of
their orbit going backwards, and a part going forwards, in Boyer-Lindquist time t.
In the more general situation of charged particles in spinning charged black holes, do there exist any

constant-latitude circular orbits that go backwards in Boyer-Lindquist time t? I have not been able to �nd
any. Do there exist circular orbits of any kind (not necessarily constant latitude) that go backwards in time
t? I have not been able to �nd any. Nevertheless, if a particle is allowed to accelerate arbitrarily, there
are trajectories inside the retrograde sisytube that go backwards in Boyer-Lindquist time t, and others on
which Boyer-Lindquist time t does not change. The latter trajectories, when the azimuthal coordinate φ has
incremented by −2π, constitute Closed Timelike Curves.

23.17 Circular orbits at the horizon of an extremal black hole

Away from horizons, the vanishing of F± de�nes the location of null circular orbits, �23.13. The case where
F+ vanishes at a horizon (F− never vanishes at a horizon) is special. This occurs when the black hole is
extremal, M2 = Q2 + a2. A circular orbit on the horizon, always prograde, is non-null: if ∆x = 0, as is true
on the horizon, then the vanishing of 1/P ≡ −R2∆x/Pt no longer implies that Pt diverges.
A careful analysis shows that the limiting value of Pt/

√
∆x is �nite for a circular orbit at the horizon of

an extremal black hole, so in fact Pt = 0 for such an orbit. Speci�cally, let P̃ be the dimensionless quantity

P̃ ≡ − Pt

M
√

∆x

. (23.85)

For circular orbits on the horizon of an extremal black hole, where r = M and M2 = Q2 + a2, the quartic
condition (23.59) reduces to a quadratic

p̃2 + p̃3P̃ + p̃4P̃
2 = 0 , (23.86)

where the coe�cients p̃i are

p̃2 ≡ 4a2(1− α)(M2 + a2α) + (qQ/M)2(M2 − a2α)2 , (23.87a)

p̃3 ≡ −2(qQ/M)(M2 − a2α)(M2 + a2α) , (23.87b)

p̃4 ≡ (M2 + a2)2 − a2(1− α)(6M2 + a2 + a2α) . (23.87c)

The azimuthal angular momentum L, energy E, and stability d2P 2
x/dr

2 of circular orbits on the horizon are

L√
1− α

=
1

2a

[
(a2 −M2)(qQ/M) + (M2 + a2)P̃

]
= ± 1

M2 + a2α

√
l̃0 + l̃1P̃ + l̃2P̃ 2 , (23.88a)

E = 1
2

(
P̃ + qQ/M

)
, (23.88b)

d2P 2
x

dr2
= 0 , (23.88c)
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where the coe�cients l̃i are

l̃0 ≡ − (M2 + a2)2(M2 + a2α)− q2Q2(M4 − a4α) , (23.89a)

l̃1 ≡ qQM(M2 + a2)(M2 + a2α) , (23.89b)

l̃2 ≡M2(M2 + a2)2 . (23.89c)

Circular orbits on the horizon are always marginally stable, equation (23.88c). Any small perturbation to a
marginally stable orbit starts it plunging into the unstable side of the orbit.
Circular orbits on the horizon occur only for small enough inclinations α. For neutral particles, qQ = 0,

the coe�cient p̃3 vanishes, and p̃2 is positive, so the quadratic (23.86) has a real root P̃ only as long as p̃4

is negative. This imposes the condition that

α ≤ M(4a2 −M2)

a2
(
3M + 2

√
2M2 + a2

) . (23.90)

For a Kerr (uncharged) black hole, where a = M , the inclination must be less than

α ≤ − 3 + 2
√

3 = 0.464 , (23.91)

as illustrated in the bottom panel of Figure 23.3.
The orbital energy E remains �nite for a circular orbit at the horizon of an extremal black hole. An

interesting case is the circular orbit in the equatorial plane at the horizon of an uncharged extremal (Q = 0,
a = M) black hole, since this orbit has the smallest possible energy per unit mass among all circular orbits
in the Universe region (i.e. outside or at the outer horizon) of a Kerr-Newman black hole,

E =
qQ

3M
+

√
1

3
+

(
qQ

3M

)2

. (23.92)

Won't qQ vanish if Q = 0? In reality, not necessarily. Real astronomical black holes are almost neutral in part
because of the enormous charge-to-mass ratio of a proton, e/mp ≈ 1018 in Planck units. (Concept question:
Why?) But the same large charge-to-mass ratio means that qQ could be appreciable in spite of the smallness
of the black hole charge Q. The smallest possible energy E of a circular orbit occurs as qQ diverges to −∞,

E → 0 as qQ→ −∞ . (23.93)

The smallest possible energy for a circular orbit for a neutral particle, q = 0, is

E =
1√
3
. (23.94)

Of course, there are trajectories with negative energy E in the outer ergosphere, but these trajectories are
not circular. The absence of circular orbits with negative energies outside or at the outer horizon implies
that all trajectories with negative energy must fall inside the horizon.
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Concept question 23.6. Are principal null geodesics circular orbits?Outgoing principal null geodesics
hold steady on the outer horizon, remaining at constant r = r+ as time t goes by. Are outgoing principal
null geodesics therefore null circular orbits on the horizon? Answer. No. The resolution of the conundrum is
that whereas no Boyer-Lindquist time t passes on a geodesic at the horizon, proper time does pass. An orbit
is circular if it is so for a massive particle; and a circular orbit is null in the limit of a relativistic massive
particle. If a massive particle is put on the outer horizon on a relativistic geodesic, then the massive particle
necessarily falls o� the horizon into the black hole in a �nite proper time: it is impossible for the geodesic to
hold steady on the horizon. The exception to circular orbits on the horizon is that, as discussed �23.17, an
extremal black hole may have circular orbits at its horizon; but these orbits have Pt = 0, and are not null.

23.18 Equatorial circular orbits in the Kerr geometry

The case of greatest practical interest to astrophysicists is that of circular orbits in the equatorial plane of
an uncharged black hole, the Kerr geometry.
For circular orbits in the equatorial plane, α = 0, of an uncharged black hole, Q = 0, the solution (23.70)

for P simpli�es to

1/P 2 =
F±
r2

(23.95)
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Figure 23.7 Values of the Hamilton-Jacobi parameter Pt for circular orbits at radius r in the equatorial plane of a

near-extremal Kerr black hole, with black hole spin parameter a = 0.999M . The diagram illustrates that as the orbital

radius r approaches the horizon, Pt �rst approaches zero, but then increases sharply to in�nity, corresponding to null

circular orbits. In the case of an exactly extremal black hole, Pt goes as to zero at the horizon, there is no increase

of Pt to in�nity, and no null circular orbit. Solid (green) lines indicate stable orbits; dashed (brown) lines indicate

unstable orbits.
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where F±, equation (23.71), reduce to

F± ≡ r2 − 3Mr ± 2a
√
Mr , (23.96)

with + for prograde (aL > 0) orbits, − for retrograde (aL < 0) orbits.
As discussed in �23.13, null circular orbits occur where F± = 0, except in the special case that the circular

orbit is at the horizon, which occurs when the black hole is extremal. In the limit where the Kerr black hole
is near but not exactly extremal, a → |M |, null circular orbits occur at r → M (prograde) and r → 4M

(retrograde). For an exactly extremal Kerr black hole, a = |M |, the (prograde) circular orbit at the horizon
is no longer null. The situation of a near-extremal Kerr black hole is illustrated by Figure 23.7.

23.18.1 Innermost stable circular orbit (ISCO)

Astronomers generally argue that the inner edge of an accretion disk is likely to occur at the innermost stable
equatorial circular orbit, commonly called the ISCO in the literature. An orbit at this point has marginal
stability, d2P 2

x/dr
2 = 0. Simplifying the stability d2P 2

x/dr
2 from equation (23.73c) to the case of equatorial

orbits, α = 0, and zero black hole charge, Q = 0, yields the condition of marginal stability

r2 − 6Mr − 3a2 ± 8a
√
Mr = 0 . (23.97)
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Figure 23.8 Energy E and azimuthal angular momentum |L/M | of circular orbits on the ISCO of a Kerr black hole as

a function of the spin parameter a/M . The angular momentum L is positive for a > 0 (prograde), negative for a < 0

(retrograde).
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The + (prograde) orbit has the smaller radius, and so de�nes the innermost stable circular orbit. For an
extremal Kerr black hole, a = |M |, marginally stable circular equatorial orbits are at r = M (prograde) and
r = 9M (retrograde).
The energy E and angular momentum L of a particle on a marginally stable circular equatorial orbit are

E =

√
1− 2M

3r
, (23.98a)

L = ± 2M

3
√

3

√
12r

M
− 7 + 4

√
3r

M
− 2 , (23.98b)

which are illustrated in Figure 23.8.

23.19 Thin disk accretion

There is a vast observational and theoretical literature on astrophysical accretion �ows on to black holes,
which is beyond the intended scope of this book (see Abramowicz and Fragile (2013) for a review).
The simplest model of accretion on to a spinning astronomical black hole consists of a thin pressureless

disk with particles moving on nearly circular orbits in the equatorial plane (Bardeen, 1970). Viscous forces
cause the particles to spiral slowly inward. Observed accretion rates are orders of magnitude larger than can
be accounted for by particle viscosity. It is considered likely that the required viscosity arises from turbulence
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Figure 23.9 E�ciency of accretion on to a Kerr black hole, equation (23.99). The e�ciency varies from η = 0.06 at

a = 0 to η = 0.42 at a = M .
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driven by the magneto-rotation instability (Balbus and Hawley, 1998; Balbus, 2003). In the simple model,
upon reaching the ISCO (innermost stable circular orbit), particles fall dynamically on to the black hole
without further dissipation.
To spiral inward from large radius, where its energy equals its rest mass, E∞ = 1, down to the ISCO,

where EISCO =
√

1− 2M/(3r), equation (23.98a), a particle must lose fractional energy

η ≡ E∞ − EISCO

E∞
= 1−

√
1− 2M

3r
. (23.99)

In the simple thin-disk model, particles in the disk lose energy by emitting radiation, which astronomers
can detect. The fractional energy η represents the e�ciency with which rest mass energy is converted to
radiation. The e�ciency η, illustrated in Figure 23.9, varies from η = 1 −

√
8/9 = 0.06 for a non-spinning

black hole (a = 0) to η = 1 −
√

1/3 = 0.42 for a maximally spinning black hole (a = M). By comparison,
nuclear fusion of hydrogen to helium-4 releases 0.007 of the rest mass, while fusion of hydrogen all the way
to iron-56, the most tightly bound of all nuclei, releases 0.009 of the rest mass. Thus gravitational accretion
on to a black hole releases energy more e�ciently than fusion, by a factor of 10 or more. This explains
why gravitational accretion on to black holes can power some of the most luminous objects observed in the
Universe, such as quasars and gamma-ray bursts.

23.19.1 Thorne limit

Accretion from the ISCO increases the angular momentum a of the black hole by the angular-momentum to
energy ratio L/E of particles on the ISCO. As seen in Figure 23.8, on the ISCO the angular momentum L

is always greater than M , and the energy E is always less than 1, so the angular momentum L/E per unit
energy on the ISCO always exceeds M . Therefore accretion from the ISCO tends to spin up a sub-extremal
black hole towards extremality (Bardeen, 1970). As Thorne (1974) points out, this is problematic because
an extremal black hole has zero Hawking temperature. Cooling a thermodynamic object to zero temperature
should be di�cult if not impossible.
For particles to reach the ISCO from far away, they must lose energy. Thorne (1974) remarked that if

the lost energy is emitted as radiation from a thin equatorial disk, then some of that radiation will be
absorbed by the black hole, and that radiation will tend to spin down the black hole. Thorne calculated
that the maximum spin that a black hole accreting from a thin, radiating disk could achieve is a = 0.998M ,
the precise number depending slightly on the directionality of the radiation emitted from the disk (Thorne
considered isotropic radiation, and electron-scattering dipole radiation).
Most of the processes that one can think of serve to reduce the angular momentum even further below

extremality. For example, the gas that accretes on to a supermassive black hole may originate from various
directions and therefore carry various amounts of azimuthal angular momentum. Although not a rigorous
limit, the limit of a = 0.998 is often taken by astronomers as a plausible upper bound to the spin of an
astronomical black hole, the Thorne limit.
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Exercise 23.7. Icarus. In Brian Greene's story �Icarus,� the boy Icarus goes on a space journey, arrives
at a black hole, and goes into orbit around it. When he leaves the black hole, he �nds that a large time has
passed in the outside world. Is the story realistic?
Solution. Equation (23.4) with m = 1 and q = 0 implies that the rate dt/dτ at which time t elapses at
in�nity relative to the proper time τ experienced by Icarus is

dt

dτ
=

1

ρ2

(
− Pt

∆x
+
ωyPφ
∆y

)
=

1

r2 + a2 cos2θ

[
R2P + a(L− aE sin2θ)

]
. (23.100)

The �rst term on the right hand side can become large, with large P , for a circular orbit near the horizon
of a near-extremal black hole. For such an orbit, the �rst term in equation (23.100) dominates. For large P ,
equation (23.73b) shows that

P ≈ 2E

1−M/r
. (23.101)

A natural strategy is for Icarus to sail in on to the unstable circular orbit with E = 1, since he can manoeuver
into this orbit, and then out of it, without using much rocket energy. For E = 1,

P ≈ 2

1−M/r
. (23.102)

Equation (23.102) shows that the closer Icarus can get to r = M , the more rapidly time passes in the outside
world. Any black hole will not do. Icarus must �nd himself a rotating black hole that is very close to extremal.
For a circular orbit in the equatorial plane (α = 0, θ = π/2) of a Kerr black hole (Q = 0), the time dilation
factor (23.100) simpli�es to

dt

dτ
=
r ± a

√
M/r√

F±
. (23.103)

For E = 1, equation (23.103) becomes

dt

dτ
= 1 +

2√
1− a/M(1 +

√
1− a/M)

≈ 2√
1− a/M

. (23.104)

At the Thorne limit a = 0.998M , the time dilation factor is

dt

dτ
= 44 . (23.105)

Exercise 23.8. Interstellar. In the Hollywood movie �Interstellar,� for which Kip Thorne was an Executive
Producer, the intrepid band of astronauts lands their spacecraft on planet Miller in orbit around the black
hole Gargantua. For each hour the team spends on planet Miller, seven years pass on the outside. That's a
time dilation factor of 60,000. Is it plausible?
Solution. The situation di�ers from that in the �Icarus� story in that whereas Icarus can manoeuver his
rocket into an unstable circular orbit, a planet must be in a stable orbit. The largest time dilation occurs on
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the prograde innermost stable circular orbit in the equatorial plane. For a Kerr black hole (Q = 0), the time
dilation factor (23.100) on the prograde equatorial ISCO is, to lowest order in 1− a/M ,

dt

dτ
≈ 24/3

√
3(1− a/M)1/3

. (23.106)

To achieve the required time dilation factor requires, to lowest order,

1− a/M ≈ 16

3
√

3 (dt/dτ)3
, (23.107)

which for dt/dτ ≈ 60,000 is

1− a/M ≈ 10−14 , (23.108)

or a ≈ 0.99999999999999M . This is much closer to extremality than the Thorne limit. At the Thorne limit
a = 0.998M , the time dilation factor is

dt

dτ
= 11 . (23.109)

23.20 Circular orbits in the Reissner-Nordström geometry

Circular orbits of particles in the Reissner-Nordström geometry follow from those in the Kerr-Newman
geometry in the limit of a non-rotating black hole, a = 0. For a non-rotating black hole, an orbit can be
taken without loss of generality to circulate right-handedly in the equatorial plane, θ = π/2, so that α = 0 and
the azimuthal angular momentum L equals the positive total angular momentum Ltot. For non-equatorial
orbits, the relation between azimuthal and total angular momentum is L = ±

√
1− αLtot.

For a non-rotating black hole, a = 0, the quartic condition (23.59) for a circular orbit of a particle of rest
mass m = 1 and electric charge q reduces to the square of a quadratic,

r2 − qQrP −
(
r2 − 3Mr + 2Q2

)
P 2 = 0 . (23.110)

Solving the quadratic (23.110) yields two solutions

1/P =
qQ

2r
±
√

1− 3M

r
+

2Q2

r2
+
q2Q2

4r2
. (23.111)

The sign of P , equation (23.60), is positive in the Universe, Wormhole, and Antiverse regions of the Reissner-
Nordström geometry in the Penrose diagram of Figure 8.6, negative in their Parallel counterparts. The
angular momentum L, energy E, and stability d2P 2

x/dr
2 of a circular orbit are, in terms of a solution (23.111)
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P of the quadratic,

L =
√
P 2R4∆x − r2 , (23.112a)

E =
PR4∆x

r2
+
qQ

r
, (23.112b)

d2P 2
x

dr2
= 2

(
r2 − 6Mr + 5Q2 + q2Q2

)
− 2

(
1− 6M

r
+

6Q2

r2

)
P 2R2∆x . (23.112c)

For massless particles, circular orbits occur where the solution (23.111) for 1/P vanishes, which occurs
when

r2 − 3Mr + 2Q2 = 0 , (23.113)

independent of the charge q of the particle. The condition (23.113) is consistent with the Kerr-Newman
condition for a null circular orbit, the vanishing of F± given by equation (23.71). However, for Kerr-Newman,
the argument of the square root on the right hand side of equation (23.71) for F± must be positive, even
in the limit of in�nitesimal a. In the limit of small a, this requires that Mr − Q2 ≥ 0. If the charge Q of
the Reissner-Nordström black hole lies in the standard range 0 ≤ Q2 ≤M2, then one of the solutions of the
quadratic (23.113) lies outside the outer horizon, while the other lies between the outer and inner horizons.
As one might hope, the additional condition Mr −Q2 ≥ 0 eliminates the undesirable solution between the
horizons, leaving only the solution outside the horizon, which is

r =
3M

2

(
1 +

√
1− 8Q2

9

)
for 0 ≤ Q2 ≤M2 . (23.114)

In (unphysical) cases Q2 < 0 or M2 < Q2 ≤ (9/8)M2, both solutions of equation (23.113) are valid.

23.21 Hypersurface-orthogonal congruences

The Hamilton-Jacobi separated solution makes it possible to construct congruences (�18.1) of timelike or
null geodesics in the Λ-Kerr-Newman geometry, or more generally in any stationary, axisymmetric, separable
geometry. Of particular interest are hypersurface-orthogonal congruences, which were discussed in the context
of singularity theorems in ��18.6 and 18.7.
It should be remarked from the outset that the principal null congruences of the Λ-Kerr-Newman geometry

are not hypersurface-orthogonal, Exercise 23.9, except in the special case of spherical symmetry.

23.21.1 Hypersurface-orthogonality condition

As discussed in �18.6, a timelike hypersurface-orthogonal congruence is constructed by picking an arbitrary
spacelike 3-dimensional hypersurface on which the action is taken to be constant, and projecting geodesics
along the direction orthogonal to the hypersurface at each point. The timelike congruence is orthogonal to
hypersurfaces of constant action. Similarly, as discussed in �18.7, a null hypersurface-orthogonal congruence is
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constructed by foliating an initial 3-dimensional hypersurface into 2-dimensional spatial surfaces of constant
action, and projecting pairs of outgoing and ingoing null geodesics orthogonally from the 2-surfaces.
The starting point for constructing timelike or null congruences of geodesics in the Λ-Kerr-Newman ge-

ometry is the separated expression (22.21) for the action S of a single particle, with generalized momenta
πx and πy coming from equations (23.5b) and (23.5c),

S =

∫ (
−E dt+ Ldφ− Px

∆x
dx+

Py
∆y

dy

)
. (23.115)

The Hamilton-Jacobi parameters Px and Py, equations (23.10), depend on the particle mass m and on the
constants of motion Cα ≡ {E,L,K}. The mass m may be either positive or zero. The integrand on the right
hand side of equation (23.115) is manifestly integrable, being a sum of 4 terms each depending on only one of
each of the 4 coordinates t, φ, x, y. The action (23.115), which is that of a single particle with �xed constants
of motion Cα, can be extended to a congruence of geodesics as long as the integral is understood to be taken
along geodesics. The constants of motion Cα are by de�nition constant along each geodesic, but may vary
(smoothly) from one geodesic to another. The particle mass m can be scaled to a global constant without
loss of generality, positive for a timelike congruence, zero for a null congruence. Since the integral (23.115)
is along geodesics, and the constants of motion are constant along geodesics, the action integrates to the
separated expression

S − Si = −E (t− ti) + L (φ− φi)−
∫
xi

Px
∆x

dx+

∫
yi

Py
∆y

dy , (23.116)

in which the constants of motion Cα are held constant in the integrals over x and y even when those
constants vary across geodesics. The constants xµi ≡ {ti, xi, yi, φi} are the values of the coordinates xµ on
some arbitrarily chosen initial 3-dimensional hypersurface from which the geodesics are projected. For a
timelike congruence the value Si of the action on the initial hypersurface is constant and can be set to zero,
Si = 0, but for a null congruence the initial action Si must vary over the hypersurface.
Derivatives of the action S (23.116) with respect to the constants of motion Cα yield comoving spatial

coordinates Xα ≡ {XE , XK, XL} de�ned by

XE −XE
i ≡

∂S

∂E
=

∫ (
− dt+

Pt dx

Px∆x
+
ωyPφ dy

Py∆y

)
= − (t− ti) +

∫
xi

Pt dx

Px∆x
+

∫
yi

ωyPφ dy

Py∆y
, (23.117a)

XK −XKi ≡
∂S

∂K
=

∫ (
dx

2Px
+

dy

2Py

)
=

∫
xi

dx

2Px
+

∫
yi

dy

2Py
, (23.117b)

XL −XL
i ≡

∂S

∂L
=

∫ (
dφ− ωxPt dx

Px∆x
− Pφ dy

Py∆y

)
= φ− φi −

∫
xi

ωxPt dx

Px∆x
−
∫
yi

Pφ dy

Py∆y
, (23.117c)

whereXα
i are the (arbitrary) values of the comoving coordinates on the arbitrarily chosen initial 3-dimensional

hypersurface. As in the action (23.116), the integrals in the de�nitions (23.117) are to be understood as be-
ing taken along geodesics. And as in the action (23.116), because the constants of motion are constant
along geodesics, the coordinates Xα integrate to the separated expressions on the rightmost sides of equa-
tions (23.117) with the constants of motion held constant even when those constants vary across geodesics.
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As is evident from equations (23.11) and (23.12), the comoving coordinates Xα are constant along geodesics,

dXα = 0 . (23.118)

The total derivative of the action (23.116) is

dS = −E dt+ Ldφ− Px
∆x

dx+
Py
∆y

dy + dSi + (Xα −Xα
i ) dCα , (23.119)

in which the penultimate term dSi vanishes for a timelike congruence (where Si is constant), but is non-
vanishing for a null congruence, and the last term (Xα −Xα

i ) dCα takes into account the possible variation
of the constants of motion Cα across geodesics.
Timelike geodesics are orthogonal to hypersurfaces of constant action if, equation (18.36),

pµ =
∂S

∂xµ
. (23.120)

Equation (23.120) is equivalent to the condition that the total derivative (23.119) of the action is

dS = −E dt+ Ldφ− Px
∆x

dx+
Py
∆y

dy . (23.121)

Comparing equations (23.119) and (23.121) shows that a timelike congruence is hypersurface-orthogonal if
and only if

(Xα −Xα
i ) dCα = 0 . (23.122)

The comoving coordinates de�ned by equations (23.117) are constant along geodesics, Xα = Xα
i . The

hypersurface-orthogonal condition (23.122) is then satis�ed regardless of whether the constants of motion
Cα vary across geodesics.
The condition (23.121) for hypersurface-orthogonality can continue to be imposed in the massless limit,

where the congruence becomes null. However, for a null congruence the condition (23.121) need not be
equivalent to the condition (23.120). As discussed in �18.7, in the massless limit the momentum is not
only orthogonal but also tangent to the limiting null hypersurface, and equation (23.120) need be imposed
only over each 3-dimensional null hypersurface projected from 2-dimensional surfaces of constant action Si

on the initial 3-dimensional hypersurface, not over the entire 4-dimensional spacetime. By de�nition, the
initial action Si is constant for each null hypersurface, so dSi = 0 over each null hypersurface. Comparing
equations (23.119) and (23.121) shows that a null congruence is hypersurface-orthogonal if and only if once
again the condition (23.122) holds, the same condition as for a timelike congruence.
For a timelike congruence, the action S and 3 comoving coordinates Xα can be used, if desired, as

the 4 coordinates along the congruence. But for a null congruence the action S does not progress along
worldlines, and the action degenerates to a linear combination of the comoving coordinates Xα. Thus for a
null congruence S and Xα are not 4 independent coordinates. But the di�erence between the action and the
linear combination of comoving coordinates, divided by m2, remains �nite in the limit m→ 0 of zero mass,
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and de�nes the coordinate XS ,

XS ≡ − 1

m2

[
S − Si − E(XE −XE

i )− 2K(XK −XKi )− L(XL −XL
i )
]

= −
∫
xi

ρ2
x dx

Px
+

∫
yi

ρ2
y dy

Py
. (23.123)

As in the action (23.116) and comoving coordinates (23.117), the integrals on the rightmost side of equa-
tion (23.123) are to be understood as being taken along geodesics. The variation dXS of the coordinate XS

equals the variation dλ of the a�ne parameter along geodesics, equation (23.13),

dXS
∣∣
XE ,XK,XL

= − dS
m2

∣∣∣∣
XE ,XK,XL

= dλ . (23.124)

If desired, the coordinate XS can be used (in place of S) for timelike as well as null congruences.

23.21.2 Stationary and axisymmetric congruences

In principle the constants of motion Cα can be chosen arbitrarily across geodesics. But it is natural to consider
congruences that are stationary and axisymmetric, which requires that the constants Cα be independent of
time t and azimuthal angle φ (but Cα may depend on the radial and latitude coordinates x and y). A
stationary and axisymmetric congruence can be constructed by starting on an arbitrary 1-dimensional line
in the x-y plane, and projecting geodesics orthogonally from that 1-dimensional line. The initial action Si on
the 1-dimensional line is constant for a timelike congruence, but varies for a null congruence. The congruence
is extended to a full congruence in 4 dimensions by translating and rotating it symmetrically in time t and
azimuth φ.
For a stationary and axisymmetric congruence, the comoving coordinates XE and XL are Killing coordi-

nates at �xed x, and y, as follows from

dXE
∣∣
x,y,XL

= − dt|x,y,φ , dXL
∣∣
x,y,XE

= dφ|t,x,y . (23.125)

If XE and XL are to be preserved as Killing coordinates, then in place of x and y it is possible to choose
any other pair of independent coordinates that depend only on x and y. A possible choice is XK and XS ,
equations (23.117b) and (23.123).

23.21.3 Hypersurface-orthogonal line-element

One way to construct a hypersurface-orthogonal line-element is to use coordinates consisting of the action S
and its partial derivatives with respect to the constants of motion, the comoving coordinates Xα ≡ ∂S/∂Cα,
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equations (23.117). The inverse vierbein in terms of these action coordinates {S, ∂S/∂E, ∂S/∂K, ∂S/∂L} is

em
µ =

1

ρ



Pt√
∆x

− 1√
∆x

0
ωx√
∆x

Px√
∆x

− Pt

Px
√

∆x

−
√

∆x

2Px

ωxPt

Px
√

∆x

Py√
∆y

ωyPφ

Py
√

∆y

√
∆y

2Py

Pφ

Py
√

∆y

Pφ√
∆y

− ωy√
∆y

0
1√
∆y


. (23.126)

The vierbein is

emµ =
1

m2ρ



Pt√
∆x

πtPt√
∆x

− m2ρ2
√

∆x

1− ωxωy
−

2(K −m2ρ2
y)Pt√

∆x

− πφPt√
∆x

− m2ρ2ωy
√

∆x

1− ωxωy

− Px√
∆x

− πtPx√
∆x

2(K −m2ρ2
y)Px√

∆x

πφPx√
∆x

− Py√
∆y

− πtPy√
∆y

2(K +m2ρ2
x)Py√

∆y

πφPy√
∆y

− Pφ√
∆y

− πtPφ√
∆y

+
m2ρ2ωx

√
∆y

1− ωxωy
2(K +m2ρ2

x)Pφ√
∆y

πφPφ√
∆y

+
m2ρ2

√
∆y

1− ωxωy


.

(23.127)

23.21.4 Hypersurface-orthogonal timelike outgoing and ingoing congruences

Given the symmetries of the Λ-Kerr-Newman geometry, it is possible to choose timelike or null congruences
in symmetrically related outgoing (+) and ingoing (−) partners, the actions S± for which provide coordinates
for a line-element (23.133) that describes hypersurface-orthogonal outgoing and ingoing congruences. If the
action (23.116) describes an outgoing congruence, which is true if the Hamilton-Jacobi parameter Px is
positive (in the Universe part of the geometry), then a corresponding ingoing congruence can be de�ned by
�ipping the signs of both Px and Py.
De�ne a time coordinate T and a spatial coordinate Z by

T ≡ E (t− ti)− L (φ− φi) , (23.128a)

Z ≡ −
∫
xi

Px
∆x

dx+

∫
yi

Py
∆y

dy , (23.128b)

which are constructed so that the actions S± for the outgoing and ingoing congruences are

S± = −T ± Z . (23.129)

The quantities xµi are the same for both outgoing and ingoing actions. The spatial coordinate Z increases
outwards if Px is positive (recall that the radial coordinate x increases inwards).
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The �ip in the signs of Px and Py implies that the comoving coordinate XK de�ned by equation (23.117b)
di�ers by a sign �ip along outgoing and ingoing geodesics. Consequently the coordinate XK is simultaneously
constant along both outgoing and ingoing congruences, allowing the condition XK = 0 to be imposed
simultaneously on both outgoing and ingoing congruences. By contrast, as long as xµi are the same for both
outgoing and ingoing actions, as required by the de�nitions (23.128) of the coordinates T and Z, neither
XE nor XL can be set simultaneously to zero along both outgoing and ingoing congruences. Therefore the
hypersurface-orthogonality condition (23.122) can be satis�ed simultaneously by both outgoing and ingoing
timelike congruences only if E and L are constant across geodesics.
As long as both outgoing and ingoing congruences are hypersurface-orthogonal, which requires that E and

L be constant, the outgoing and ingoing actions S±, or equivalently T and Z, can be used as coordinates of
a line-element. For hypersurface-orthogonal congruences, the total derivatives of both outgoing and ingoing
actions take the form (23.121), and the total derivatives of T and Z are

dT ≡ E dt− Ldφ , (23.130a)

dZ ≡ − Px
∆x

dx+
Py
∆y

dy . (23.130b)

The other two coordinates in the line-element of the hypersurface-orthogonal congruences can be taken to
be φ and either XK if K is constant, or K if K varies. Speci�cally,

dx

2Px
+

dy

2Py
= dXK − ∂XK

∂K
dK , (23.131)

where

− ∂XK

∂K
=

∫
xi

∆x dx

4P 3
x

+

∫
yi

∆y dy

4P 3
y

. (23.132)

The right hand side of equation (23.131) reduces to dXK if K is constant, or to −(∂XK/∂K)dK if K varies.
The line-element of the hypersurface-orthogonal timelike congruences in terms of coordinates T,Z, φ, and
either XK or K, is

ds2 =
ρ2

P 2
x∆y + P 2

y∆x

{
∆x∆y (−C2dT 2 + dZ2) + 4P 2

xP
2
y

 dXK if K constant

−∂X
K

∂K
dK if K varies


2

+
C2

E2(1− ωxωy)2

[
(P 2
t ∆y − P 2

φ∆x)dφ+ (ωxPt∆y − Pφ∆x)dT
]2}

, (23.133)

where the coe�cient C is

C ≡

(
P 2
x∆y + P 2

y∆x

P 2
t ∆y − P 2

φ∆x

)1/2

=

(
1− m2ρ2∆x∆y

P 2
t ∆y − P 2

φ∆x

)1/2

=

(
1 +

m2ρ2∆x∆y

P 2
x∆y + P 2

y∆x

)−1/2

, (23.134)

which is always positive. For m 6= 0, the coe�cient C is less than 1 outside the horizon (∆x > 0), equal to 1

at the horizon (∆x = 0), and greater than 1 inside the horizon (∆x < 0).
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The line-element (23.133) is in ADM form (17.8). The comoving coordinate XK, the constant of motion K,
and the one-form in brackets on the second line of the line-element (23.133) all vanish along both outgoing
and ingoing geodesics. Thus the only part of the line-element (23.133) that varies along geodesics is the part
proportional to −C2dT 2 +dZ2. The proper times τ along the timelike geodesics of the outgoing and ingoing
congruences satisfy mτ = T ∓ Z.

23.21.5 Double-null hypersurface-orthogonal congruences

The line-element (23.133) for hypersurface-orthogonal congruences remains well-de�ned in the limit of zero
particle mass, m = 0. In the massless limit, the coe�cient C, equation (23.134), is unity,

C = 1 . (23.135)

Moreover, for massless particles the energy E can be scaled to ±1 without loss of generality,

|E| = 1 . (23.136)

De�ne outgoing (+) and ingoing (−) null coordinates V± by

V± ≡ T ± Z = −S∓ , (23.137)

which equal minus the action along the opposing null geodesic direction. The V± null coordinates transform
into each other under a �ip of the signs of the Hamilton-Jacobi parameters Px and Py. If Px is positive,
then V+ is an outgoing null coordinate that increases along the outgoing null congruence, while V− is an
ingoing null coordinate that increases along the ingoing null congruence. Since the action vanishes along a

Z

TV
−

V
+

Figure 23.10 Null coordinates V±, equation (23.137), on a spacetime diagram in T and Z. The diagonal grid of

outgoing null lines, which increase in the outgoing null V+ direction and are lines of constant ingoing null coordinate

V−, are lines of constant phase for an outgoing null wave in the geometric optics (high frequency) limit.
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null geodesic, the outgoing null coordinate is constant along the ingoing congruence, while the ingoing null
coordinate is constant along the outgoing congruence, as illustrated in Figure 23.10.
For massless particles, the line-element (23.133) in terms of the coordinates V+, V−, φ, and either XK or

K, takes the double-null form

ds2 =
ρ2

P 2
x∆y + P 2

y∆x

{
−∆x∆y dV−dV+ + 4P 2

xP
2
y

 dXK if K constant

−∂X
K

∂K
dK if K varies


2

+
1

(1− ωxωy)2

[
(P 2
t ∆y − P 2

φ∆x)dφ+ 1
2 (Pt∆y − Pφ∆x)(dV+ + dV−)

]2}
. (23.138)

As in the massive case, dXK, dK, and the 1-form in brackets on the second line of the line-element (23.138)
all vanish along both outgoing and ingoing null geodesics. The a�ne parameter λ± along outgoing (+) or
ingoing (−) geodesics satis�es

dλ± =
ρ2∆x∆y

2(P 2
x∆y + P 2

y∆x)
dV± . (23.139)

Taking the massless limit of the line-element (23.133) does not preserve the condition (23.120) that the
momenta along geodesics are orthogonal to hypersurfaces of constant action throughout the 4-dimensional
spacetime. Rather, the massless limit of the condition (23.120) imposes the weaker condition that the mo-
menta are orthogonal to hypersurfaces of constant action only within those 3-dimensional hypersurface. This
is precisely the de�nition of hypersurface-orthogonality for null congruences discussed in �18.7.

23.22 The Doran congruence

Congruences in which geodesics follow lines of constant latitude y are of special interest. Constant latitude
geodesics must satisfy the two conditions P 2

y = dP 2
y /dy = 0, equations (23.47). These conditions translate

into two relations between the three constants E, L, and K of motion, which may be expressed for example
as

E =
∂
√

(K −m2ρ2
y)∆y /∂y

∂ωy/∂y
, L = −

∂
[√

(K −m2ρ2
y)∆y/ωy

]
/∂y

∂(1/ωy)/∂y
, (23.140)

the partial derivatives being taken with K held �xed. For Kerr-Newman without a cosmological constant,
the conditions (23.140) imply the relation (23.48) between E and L. Generically, the two conditions allow
at most one combination of E, L, or K to be held constant over spacetime.
However, as discussed in �23.21.4, congruences that are hypersurface-orthogonal simultaneously in both

outgoing and ingoing directions can be constructed only if E and L are both constant. For Kerr-Newman
without a cosmological constant, the relation (23.48) between E and L for constant latitude geodesics admits
just one solution with both E and L constant, the Doran conditions

|E| = m , L = 0 , K = m2a2 . (23.141)



688 Trajectories in ideal rotating black holes

For congruences of constant latitude geodesics, where Py vanishes identically, the comoving coordinates (23.117)
can be evaluated by replacing dy/Py → −dx/Px in the expressions for XE and XL,

XE = − (t− ti) +

∫
xi

(
Pt
∆x
− ωyPφ

∆y

)
dx

Px
, (23.142a)

XK =

∫
yi

dy

2Py
, (23.142b)

XL = φ− φi −
∫
xi

(
ωxPt
∆x

− Pφ
∆y

)
dx

Px
. (23.142c)

With a suitable choice of boundary conditions, the comoving L coordinate with Px taken negative (ingoing
congruence) coincides with the angular coordinate φff of the usual Doran metric, equation (9.33), XL =

φff . The expression (23.142b) for the comoving coordinate XK appears to diverge, but it appears in the
hypersurface-orthogonal line-element (23.133) as 2Py dX

K → dy, so the end result is well behaved.
For the Doran congruence, the time and spatial coordinates T and Z de�ned by equation (23.128) are

T ≡ mt , (23.143a)

Z ≡ −
∫
xi

Px
∆x

dx . (23.143b)

The outgoing and ingoing actions S± are

S± = −T ± Z = −m
(
t±
∫

β dr

1− β2

)
, (23.144)

where β = Px/m is given by equation (9.35) (with a + sign). As expected, the actions S± equal −m times
the proper times along the outgoing and ingoing congruences.
The line-element (23.133) of the Doran congruences in hypersurface-orthogonal form is

ds2 = ρ2

[
∆x

m2β2
(−C2dT 2 + dZ2) +

dy2

∆y
+

∆y − ω2
y∆x

(1− ωxωy)2

(
dφ− ωx∆y − ωy∆x

∆y − ω2
y∆x

dT

m

)2
]
, (23.145)

where the coe�cient C is

C ≡
(

β2∆y

∆y − ω2
y∆x

)1/2

=

(
1− ρ2∆x∆y

∆y − ω2
y∆x

)1/2

=

(
1 +

ρ2∆x

β2

)−1/2

. (23.146)

23.23 Principal null congruences

The principal null congruences are de�ned by the Carter constant taking its smallest possible value, zero,
K = 0, which requires the mass m, and the angular Hamilton-Jacobi parameters Py and Pφ, all to vanish
identically. For massless particles the energy E can be scaled to ±1 without loss of generality. The condition
Pφ = 0 requires that L = Eωy, so L cannot be constant. The hypersurface-orthogonality condition (23.122)
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then holds provided that the comoving coordinate XL is arranged to vanish everywhere. The coordinate XL

on the principal null congruences is, equation (23.117c),

XL = φ− φi ±
∫
xi

ωx dx

∆x
, (23.147)

where the± sign is + for the outgoing congruence,− for the ingoing congruence. WhileXL can be arranged to
vanish on one or other of the outgoing or ingoing null congruences, it cannot be made to vanish simultaneously
on both. Thus although the principal null congruences are geodesic, they cannot be described by a line-
element that is hypersurface-orthogonal simultaneously on both outgoing and ingoing congruences. According
to the theorem proved in �18.1, this implies that there is no vorticity-free tetrad that aligns with the principal
null congruences. Exercise 23.9 explores the vorticity$ and other components of the extrinsic curvature along
the principal null congruences of the Λ-Kerr-Newman geometry.

Exercise 23.9. Expansion, vorticity, and shear along the principal null congruences of the Λ-

Kerr-Newman geometry. The separable line-element (22.1) de�nes a tetrad aligned with the principal
null frame, that is, the tetrad-frame Weyl tensor has only a spin 0 part. The outgoing (v) and ingoing
(u) null directions lie along the basis elements γγv and γγu of the corresponding Newman-Penrose tetrad,
equations (39.1).
1. Show that the expansion ϑ, vorticity $, and shear σ along the outgoing (upper sign) and ingoing (lower

sign) principal null congruences are

ϑ+ i$ = s
R2
√
|∆x|(± ρx + iρy)√

2 ρ3
, σ = 0 , (23.148)

where the overall sign s is +, except that s is − along the outgoing congruence inside the horizon
(∆x < 0).

2. De�ne

λ± ≡ (ρy ± iρx)
√

∆y
∂ ln ρ2/∂y

dωy/dy
, ν ≡ ln

(
ρ
√

∆x

1− ωxωy

)
, µ ≡ atan

(
ρy
ρx

)
. (23.149)

Show that the following Lorentz transformation of the tetrad
γv
γu
γ+

γ−

→


1 0 0 0

λ2 1 λ− λ+

λ+ 0 1 0

λ− 0 0 1




e−ν 0 0 0

0 eν 0 0

0 0 e−iµ 0

0 0 0 eiµ




γv
γu
γ+

γ−

 (23.150)

brings the tetrad to a form parallel-transported along the outgoing principal null direction γγv, with
vanishing acceleration and precession

Γkmv = 0 for all km , (23.151)
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and similarly that the Lorentz transformation
γv
γu
γ+

γ−

→


1 λ2 −λ+ −λ−
0 1 0 0

0 −λ− 1 0

0 −λ+ 0 1




eν 0 0 0

0 e−ν 0 0

0 0 eiµ 0

0 0 0 e−iµ




γv
γu
γ+

γ−

 (23.152)

brings the tetrad to a form parallel-transported along the ingoing principal null direction γγu, with
vanishing acceleration and precession

Γkmu = 0 for all km . (23.153)

The rightmost of the two Lorentz transformations in equations (23.150) and (23.152) boosts and rotates
about the radial direction, leaving the directions of all the null tetrad axes {γγv,γγu,γγ+,γγ−} unchanged,
while the leftmost of the two Lorentz transformations boost-rotates in such a fashion as to leave just the
outgoing γγv (respectively ingoing γγu) axis unchanged, transforming the remaining axes. The Lorentz-
transformed frames are no longer principal null. In the outgoing (respectively ingoing) transformed
frame, the non-vanishing components of the Weyl tensor are its spin 0, −1, and −2 (respectively 0, +1,
and +2) components.

23.24 Pretorius-Israel double-null congruence

Generically, congruences cover only part of the spacetime, and geodesics in the congruence cross. The best
congruences are those that cover the maximum amount of spacetime, and nowhere cross. The Doran con-
gruence covers all of spacetime down to the inner horizon and beyond, and crosses nowhere, so provides a
satisfactory example for massive particles. For massless particles, Pretorius and Israel (1998) pointed out
a double-null hypersurface-orthogonal congruence whose geodesics �ll all of Kerr spacetime down to the
Antiverse (r = 0) without crossing.
As found in �23.22, there is no double-null hypersurface-orthogonal congruence with Py = 0. As discussed in

�23.21.4, the hypersurface-orthogonality condition (23.122) can be accomplished simultaneously for outgoing
and ingoing congruences only if the angular momentum L is constant across geodesics, while the Carter
constant K may vary across geodesics. For massless particles, the energy E can be scaled without loss of
generality to ±1, with E = +1 in the Universe part of the geometry.
In the Λ-Kerr-Newman geometry, motion in latitude extends to the south and north poles only if

L = 0 . (23.154)

In addition, in order to avoid the geodesics turning around in latitude and therefore crossing, the Carter
constant must satisfy

K ≥
ω2
y

∆y
(23.155)



23.24 Pretorius-Israel double-null congruence 691

−2 −1 0 1 2
−1

0

1

2

Figure 23.11 Null geodesics (blue lines) and surfaces of constant outgoing and ingoing action (or phase) (purple

lines) in the Pretorius and Israel (1998) double-null hypersurface-orthogonal congruence, for a Kerr black hole with

a = 0.96M . The coordinates are Boyer-Lindquist, and the units are geometric (c = G = M = 1). The congruence

covers the entire spacetime at r > 0 without crossing. The �rst geodesic crossing occurs on the polar axis at r = 0.

High latitude geodesics cross when they pass through the pole, turning around in latitude; the continuation of these

geodesics through the pole is shown here to illustrate their future progression. Geodesics at low latitude turn around

in radius at r < 0. The locus of turnaround points is marked by a thick (green) line, where the geodesics shown here

are terminated. Mid-latitude geodesics, after passing through the pole, turn around in latitude for a second time. The

locus of turnaround points is marked by a continuation of the thick (green) line, where the geodesics shown here are

terminated. Thick (reddish) lines mark the outer and inner horizons, and �lled circles mark the ring singularity.

at all latitudes y on a geodesic. To �ll all of the polar region of spacetime, a geodesic that starts at a pole
must remain on the pole, so it must be that K = 0 at the poles (where ωy = 0). Therefore K must vary
across geodesics in order to satisfy the condition (23.155). Requiring that radial geodesics fall through the
outer horizon, and consequently also the inner horizon, places an upper limit on K. The deepest penetration
inside the black hole is attained when K is as small as possible. This leads to the Pretorius and Israel (1998)
proposal to set K to the smallest value consistent with the condition (23.155). This is achieved by choosing
K such that Py vanishes at in�nite radius, which imposes

K =
ω2
y

∆y

∣∣∣∣∣
∞

. (23.156)

For Kerr-Newman without a cosmological constant, this is

K = a2 sin2θ∞ , (23.157)

where θ∞ is the polar angle of the geodesic at in�nite radius. Null geodesics with L = 0 and K given by
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equation (23.156) vary in latitude from a minimum latitude that exhausts the condition (23.155) at in�nite
radius. The Pretorius-Israel double null line-element is equation (23.138) with L = 0 and non-constant K
given by equation (23.156). For E = 1 and L = 0, the time and azimuth Hamilton-Jacobi parameters are
Pt = −1 and Pφ = −ωy.
Figure 23.11 illustrates the Pretorius-Israel congruence in a Kerr black hole of spin parameter a = 0.96M .

The outgoing and ingoing congruences lie in, and are orthogonal to, 3-dimensional null hypersurfaces of
constant action S± = −T ± Z, where the coordinates T and Z are given by equations (23.128). The initial
3-dimensional hypersurface from which the null hypersurfaces project is a spheroid of constant radius r at
in�nity for the ingoing congruence, and a spheroid of constant radius r at the outer horizon for the outgoing
congruence. As discussed at the end of �23.21.1, the parameters xi, yi, and φi are their values on the initial
3-dimensional hypersurface, and the time parameter ti is zero. For E = 1 and L = 0, the time coordinate
T is just the Boyer-Lindquist time coordinate, T = t, and the action on the initial hypersurface is Si = −t.
The hypersurfaces of constant action, or phase, shown in Figure 23.11 are lines of constant Z at �xed t.

23.24.1 Application of the null singularity theorem to a Λ-Kerr-Newman black hole

Penrose's (1965) original singularity theorem considered hypersurface-orthogonal null congruences. The Pre-
torius and Israel (1998) double-null congruence provides an example of such a congruence in the Λ-Kerr-
Newman geometry.
The surfaces of constant action in Figure 23.11 mark the positions of 2-surfaces from which outgoing and

ingoing geodesics project orthogonally. These 2-surfaces are trapped inside the outer horizon, with negative
expansion ϑ along both outgoing and ingoing congruences. If the dog-leg proposition (�18.9.1) held, then
the future would terminate at the caustic surface of �rst crossing marked in Figure 23.11 by the upper thick
(green) line inside the Antiverse (r < 0). However, as discussed in Concept question 18.3, the Kerr-Newman
geometry does not satisfy the dog-leg proposition (the same holds if Λ 6= 0), so the future extends past the
caustic crossing.
The failure of the dog-leg proposition in the Λ-Kerr-Newman geometry is associated with the fact that

geodesics can emerge without causal precedent from the ring singularity, leading to a breakdown of pre-
dictability inside the inner horizon. One should not be surprised that the inner horizon of a real astronomical
black hole is subject to an instability, the Poisson and Israel (1990) in�ationary instability, that inevitably
and profoundly changes the geometry from just above the inner horizon inward.



24

The interiors of rotating black holes

THIS CHAPTER IS SCARCELY BEGUN

When a black hole �rst forms by stellar collapse, or when two black holes merge, the resulting object wob-
bles about, radiating gravitational waves, settling asymptotically to the Kerr geometry, which cannot radiate
gravitational waves. After several black hole crossing times, the black hole is already well-approximated by
the Kerr geometry.

This picture holds outside the outer horizon, and down to the inner horizon, but it fails dramatically at
(just above) the inner horizon of the black hole. The inner horizon is subject to the in�ationary instability
discovered by Poisson and Israel (1990). Extended to rotating black holes Barrabès, Israel, and Poisson
(1990)

There are also spacetimes in which geodesics of massless particles, but not massive particles, are Hamilton-
Jacobi separable. Such line-elements are called conformally separable.

24.1 Nonlinear evolution

Choose tetrad frame such that the null directions are the geodesic continuations of the outgoing and ingoing
principal null geodesics, that the blueshift and the rotation of the outgoing and ingoing principal null geodesics
appears the same in the tetrad frame,

K+vv = K−vv = K+uu = K−uu = Γuvx = Γ+−x = 0 . (24.1)

693
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24.2 Focussing along principal null directions

24.3 Conformally separable geometries

24.3.1 Conformally separable line-element

As remarked in �rotbh-chap, the Kerr-Newman line-element has the remarkable mathematical property that
the equations of motion of test particles in it, massive or massless, neutral or charged, are Hamilton-Jacobi
separable. A weaker condition on the spacetime is that the equations of motion of massless particles are
Hamilton-Jacobi separable.
Among the remarkable mathematical properties of is the fact that, as �rst shown by Carter (1968), the

equations of motion of test particles, massive or massless, neutral or charged, are Hamilton-Jacobi separable.
The Kerr geometry is stationary, axisymmetric, and separable.
Choose coordinates xµ ≡ {t, x, y, φ} in which t is the time with respect to which the spacetime is stationary,

φ is the azimuthal angle with respect to which the spacetime is axisymmetric, and x and y are radial and
angular coordinates. In �22.3 it is shown that the line-element may be taken to be

ds2 = ρ2

[
− ∆x

(1− ωxωy)2
(dt− ωy dφ)

2
+
dx2

∆x
+
dy2

∆y
+

∆y

(1− ωxωy)2
(dφ− ωx dt)2

]
, (24.2)

24.4 Conditions from conformal Hamilton-Jacobi separability

24.5 Tetrad-frame connections

Extrinsic curvatures Γazb along the radial directions z = t and x, and Γyaz along the angular directions a = y

and φ. Expansions

Γ202 = Γ303 = ϑ0 = 0 , (24.3a)

Γ212 = Γ313 = ϑ1 = ∂1 ln ρ , (24.3b)

−Γ020 = Γ121 = ϑ2 = ∂2 ln ρ , (24.3c)

−Γ030 = Γ131 = ϑ3 = 0 , (24.3d)

Twists

Γ320 = −Γ203 = Γ302 = $0 =

√
∆x

2ρ(1− ωxωy)

dωy
dy

, (24.4a)

Γ321 = −Γ213 = Γ312 = $x = 0 , (24.4b)

Γ012 = −Γ120 = Γ021 = $2 = 0 , (24.4c)

Γtxφ = −Γxφt = Γtφx = $φ =

√
∆y

2ρ(1− ωxωy)

dωx
dx

. (24.4d)
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Shear vanishes

Γ202 = Γ303 = Γ212 = Γ313 = 0 , (24.5a)

Γ020 = Γ121 = Γ030 = Γ131 = 0 . (24.5b)

Γazz = 0 , (24.6a)

Γzaa = 0 , (24.6b)

Γ100 = ∂0 ln ν , (24.6c)

Γtrr = ∂1 ln ν , (24.6d)

Γ100 = ∂1 ln ν , (24.6e)

Γtrr = ∂0 ln ν , (24.6f)

ν ≡ ln

(
1− ωxωy

ρ

)
, µ ≡ ln

(
1− ωxωy

ρ

)
(24.7)

24.6 Inevitability of mass in�ation

Mass in�ation requires the simultaneous presence of both outgoing and ingoing streams near the inner
horizon. Will that happen in real black holes? Any real black hole will of course accrete matter from its
surroundings, so certainly there will be a stream of one kind or another (outgoing or ingoing) inside the
black hole. But is it guaranteed that there will also be a stream of the other kind? The answer is probably.
One of the remarkable features of the mass in�ation instability is that, as long as outgoing and ingoing

streams are both present, the smaller the perturbation the more violent the instability. That is, if say the
outgoing stream is reduced to a tiny trickle compared to the ingoing stream (or vice versa), then the length
scale (and time scale) over which mass in�ation occurs gets shorter. During mass in�ation, as the counter-
streaming streams drop through an interval ∆r of circumferential radius, the interior mass M(r) increases
exponentially with length scale l

M(r) ∝ e∆r/l . (24.8)

It turns out that the in�ationary length scale l is proportional to the accretion rate

l ∝ Ṁ , (24.9)

so that smaller accretion rates produce more violent in�ation. Physically, the smaller accretion rate, the
closer the streams must approach the inner horizon before the pressure of their counter-streaming begins to
dominate the gravitational force. The distance between the inner horizon and where mass in�ation begins
e�ectively sets the length scale l of in�ation.
Given this feature of mass in�ation, that the tinier the perturbation the more rapid the growth, it seems
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almost inevitable that mass in�ation must occur inside real black holes. Even the tiniest piece of stu� going
the wrong way is apparently enough to trigger the mass in�ation instability.
One way to avoid mass in�ation inside a real black hole is to have a large level of dissipation inside the

black hole, su�cient to reduce the charge (or spin) to zero near the singularity. In that case the central
singularity reverts to being spacelike, like the Schwarzschild singularity. While the electrical conductivity of
a realistic plasma is more than adequate to neutralize a charged black hole, angular momentum transport
is intrinsically a much weaker process, and it is not clear whether the dissipation of angular momentum
might be large enough to eliminate the spin near the singularity of a rotating black hole. There has been no
research on the latter subject.

24.7 The black hole collider

A good way to think conceptually about mass in�ation is that it acts like a particle accelerator. The counter-
streaming pressure accelerates outgoing and ingoing streams through each other at an exponential rate, so
that a Lagrangian gas element spends equal amounts of proper time accelerating through equal decades of
counter-streaming velocity. The centre of mass energy easily exceeds the Planck energy.
Mass in�ation is expected to occur just above the inner horizon of a black hole. In a realistic rotating

astronomical black hole, the inner horizon is likely to be at a considerable fraction of the radius of the
outer horizon. Thus the black hole accelerator operates not near a central singularity, but rather at a
macroscopically huge scale. This machine is truly monstrous.
Undoubtedly much fascinating physics occurs in the black hole collider. The situation is far more extreme

than anywhere else in our Universe today. Who knows what Nature does there? To my knowledge, there has
been no research on the subject.

Concept question 24.1. Which Einstein equations are redundant? RE-ASK THIS IN CONTEXT
OF SPHERICAL MODEL. If 4 of the 10 Einstein equations are redundant (after consistent initial conditions
are imposed) because of energy-momentum conservation, can any 4 be dropped, or just the 4 with one
component the time component?

Exercise 24.2. Can accretion fuel outgoing and ingoing streams at the inner horizon? The
in�ationary instability is driven by outgoing and ingoing streams at the inner horizon.
1. What are the conditions for collisionless particles accreting from outside the outer horizon to be outgoing

or ingoing at the inner horizon of a Kerr black hole?
2. Of particular relevance in astrophysics are collisionless particles that start at e�ectively in�nite radius r,

whether massless (Cosmic Microwave Background photons) or massive (non-baryonic cold dark matter
particles). Calculate the maximum latitude to which particles falling from in�nite radius can reach and
be either outgoing or ingoing at the inner horizon.
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Figure 24.1 Massless (solid) or massive (dashed) collisionless particles that fall from in�nite radius can reach the

inner horizon and be either outgoing or ingoing only up to a certain maximum latitude on the inner horizon, shown

here. At higher latitudes on the inner horizon, particles that free fall from in�nity are necessarily ingoing at the inner

horizon. The maximum accessible latitude depends on the spin of the black hole. The maximum latitude varies from

90◦ (all latitudes are accessible) for a Schwarzschild (non-spinning) black hole, to asin
p
− 3 + 2

√
3 = 42.◦9 (m = 0)

or asin
p

1/3 = 35.◦3 (m = E), arrowed, for an extremal Kerr black hole.

3. What happens at the poles on the inner horizon?
Solution.

1. Particles between the outer and inner horizons are outgoing or ingoing as the Hamilton-Jacobi time
parameter Pt, equation (23.5a), is positive or negative, �23.5. Particles that fall through the outer
horizon are necessarily ingoing at the outer horizon, requiring Pt < 0 at the outer horizon. However,
particles with su�ciently positive angular momentum L can turn around and become outgoing at the
inner horizon. The division between outgoing and ingoing at the inner horizon r = r− occurs when Pt is
zero at the inner horizon. For a Kerr black hole, where Pt = −E+Lωx, particles accreted from outside
the outer horizon are outgoing or ingoing at the inner horizon as (note that ω−x > ω+

x > 0)

{
Lω−x > E > Lω+

x outgoing ,

E > max (Lω+
x , Lω

−
x ) ingoing .

(24.10)

2. To reach a given latitude θ at the inner horizon, Py must be positive, which imposes a lower limit on
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the Carter constant K,

K ≥
P 2
φ

∆y
+m2ρ2

y . (24.11)

Particles cannot turn around in radius between the outer and inner horizons. Outside the outer horizon,
a particle can reach a radius r as long as Px is positive, which imposes an upper limit on the Carter
constant K,

K ≤ P 2
t

∆x
−m2ρ2

x . (24.12)

A necessary condition for a trajectory to extend to in�nite radius is that the particle energy exceed its
rest mass, E ≥ m. Given that condition, the right hand side of equation (24.12) tends to ∞ at r → r+

and at r →∞, and is a minimum at some radius in between. The condition that a trajectory can start
at in�nite radius and reach a given latitude inside the outer horizon is

min

(
P 2
t

∆x
−m2ρ2

x

)
≥
P 2
φ

∆y
+m2ρ2

y , (24.13)

where the minimum on the left hand side is over radius r from r+ to ∞. The condition (24.13) along
with the condition that Pt = 0 at the inner horizon translates into a condition on the maximum latitude
at any given spin parameter a, illustrated in Figure 24.1.

3. Poles occur where ∆y = 0. A particle can reach a pole only if Py = Pφ = 0 there, equation (23.20). This
requires that L = 0 and

K ≥ m2ρ2
y . (24.14)

Since L = 0, the time Hamilton-Jacobi parameter Pt de�ned by equation (23.5a) is a constant, Pt =

πt = −E. Since the sign of Pt between the horizons determines whether the particle is outgoing (Pt > 0)
or ingoing (Pt < 0), and since a particle falling through the outer horizon is necessarily ingoing, it
follows that a particle that falls from outside the outer horizon to a pole on the inner horizon must
remain ingoing. The limiting case is for a massless particle, m = 0, falling along the principal ingoing
null direction along the polar axis. This polar null geodesic has K = Pt = E = L = 0. However,
L/E = ωy → 0 on the polar ingoing null geodesic, equation (23.26), which is on the ingoing side of the
outgoing/ingoing divide (24.10). Thus there are no geodesics that fall from outside the outer horizon
and are outgoing when they reach a pole on the inner horizon. On the other hand it is possible for
ingoing photons to scatter o� gas or dust inside the outer horizon and thereby become outgoing when
they reach the inner horizon, at any latitude.

Exercise 24.3. In�ationary Kasner solution. The in�ationary and collapse stages of in�ation can be
approximated by a Kasner line-element (17.133) with two scale factors equal, a2 = a3,

ds2 = − dt2 + a2
1dx

2
1 + a2

2(dx2
2 + dx2

3) . (24.15)

All scale factors are functions aα(t) only of time t. The tetrad-frame in�ationary energy-momentum is
diagonal with T00 = T11 and T22 = T33 = 0. The goal is to �nd scale factors a1 and a2 that yield such.
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1. Show that the tetrad-frame Einstein tensor that follows from the Kasner line-element (24.15) is diagonal
with G22 = G33.

2. De�ne the time T (t) (not to be confused with energy-momenta Tmn) by

dt = −a3d ln |T | . (24.16)

In the in�ationary context, T is negative, varying from −∞ in the distant past to −0 at the singularity.
The minus sign in equation (24.16) ensures that t increases as T increases. Show that the condition
G00 = G11 requires that a2 be proportional to some power of |T |,

a2 ∝ |T |b , (24.17)

with b some arbitrary constant.
3. Show that the condition G22 = 0 implies that

a1 ∝
eca

2
2

√
a2

, (24.18)

with c some arbitrary constant.
4. Without loss of generality scale the time T so that b = 1

2 and c = 1. With a convenient scaling of the
coordinates xα, the scale factors aα are

a1 =
e|T |

|T |1/4
, a2 = |T |1/2 , a3 ≡ a1a

2
2 = |T |3/4e|T | . (24.19)

There is a BKL bounce where a1 goes through its minimum value at T = − 1
4 . Show that

G00 = G11 =
1

a2
1a

2
2

=
e−2|T |

|T |1/2
. (24.20)

Show that the only non-vanishing component of the tetrad-frame Weyl tensor is its spin 0 part,

C = − 1

8a6
= − e−2|T |

8|T |3/2
. (24.21)

5. De�ne the Kasner coe�cients qα by

qα ≡
d ln aα
d ln a

, (24.22)

which is de�ned so that
∑
α qα = 1. Show that

q1 =
|T | − 1

4

|T |+ 3
4

, q2 = q3 =
1
2

|T |+ 3
4

, (24.23)

with asymptotic behaviour

{q1, q2} →
{
{1, 0} T → −∞ ,

{− 1
3 ,

2
3} T → −0 .

(24.24)
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Conclude that ∑
α

q2
α = 1− 2|T |

(|T |+ 3
4 )2

. (24.25)

6. Geodesics follow from the 3 integrals of motion pα associated with spatial homogeneity, and 1 integral of
motion pµpµ = −m2 associated with conservation of rest mass m. Show that the tetrad-frame Einstein
tensor can be realised by the sum of energy-momenta of two collisionless streams of massless particles,
one outgoing (+) and the other ingoing (−)

Gmn = 8πT+
mn + T−mn , T±mn = Np±mp

±
n , (24.26)

with tetrad-frame momenta

pm± =
1

a1
{1,±1, 0, 0} , (24.27)

and tetrad-frame number densities nm± = Npm± where N is the scalar density

N =
1

16πa2
2

. (24.28)

The momenta satisfy the geodesic equation pm±Dmp
n
± = 0, and the number densities satisfy number

conservation Dmn
m
± = 0.

7. The tetrad-frame 4-momentum along a geodesic of a particle of mass m is

pm = {p0, pa} =

{√∑
α

p2
α

a2
α

+m2 ,
pα
aα

}
. (24.29)

With respect to coordinates xµ ≡ {T, xα}, the coordinate 4-momentum along a geodesic is

dxµ

dλ
≡
{
dT

dλ
,
dxα
dλ

}
≡ pµ = em

µpm =

{
|T |
a3

√∑
α

p2
α

a2
α

+m2 ,
pα
a2
α

}
. (24.30)

Draw null geodesics to see what the scene looks like to an observer at rest in the tetrad frame.
8. Show that the ratio of emitted to observed tetrad-frame frequencies ω ≡ p0 for an observer at rest at

time T watching a distant emitter at rest at time T = T∞ → −∞ in a direction angled θ away from the
1-axis (x-axis) is

ωem

ωobs
=
ω(T∞)

ω(T )
→
√
T/T∞ sin θ . (24.31)

The proper time experienced by the rest observer is τ = t. Conclude that the acceleration of the distant
emitter perceived by the rest observer is

κ ≡ d ln(ωem/ωobs)

dτ
= − 1

2a3
= − 1

2 |T |
−3/4e−|T | . (24.32)

Conclude that the acceleration diverges at the singularity as

κ ∝ −|T |−3/4 ∝ −|τ |−1 as τ → −0 . (24.33)
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Black hole thermodynamics

For an ideal Λ-Kerr-Newman black hole, variations of the black hole's mass M , electric charge Q, angular
momentum J ≡ aM , and of the cosmological constant Λ ≡ 8πGρλ are related to variations of the area
A = 4πR2 = 4π(r2 + a2) of the horizon by

dM =
κ

8π
dA+ Φ dQ+ ω dJ − V dρΛ , (25.1)

where κ is the acceleration, Φ the electric potential, ω the angular velocity, and V the enclosed volume at
the horizon,

κ =
r −M
R2

− 2Λr

3
, (25.2a)

Φ =
Qr

R2
, (25.2b)

ω =
a

R2
, (25.2c)

V =
4

3
πrR2 . (25.2d)

Equations (25.1) and (25.2) hold at any horizon, wherever the horizon function ∆x vanishes, including at a
cosmological horizon, which exists if the vacuum energy ρΛ is positive. The acceleration κ satis�es

κ = −1

2

d∆x

dx
. (25.3)

The acceleration κ vanishes when the horizon is extremal, that is, where two horizons merge into one, which
happens when the horizon function ∆x is not only zero but also an extremum.
Equation (25.1) can be recast as

d(M + ρΛV ) =
1

8πκ
dA+ Φ dQ+ ω dJ − pΛ dV , (25.4)

in which the energy within the horizon is taken to be the energy M + ρΛV including the contribution from
vacuum energy.
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702 Black hole thermodynamics

Exercise 25.1. Area of the horizon. What is the area of the horizon of a stationary black hole?
Solution. The 2-dimensional angular line-element of the separable line-element (22.1) is

dl2 = ρ2

[
dy2

∆y
+

(∆y − ω2
y∆x)dφ2

(1− ωxωy)2

]
. (25.5)

The angular line-element is diagonal, with proper distances in the two orthogonal y and φ directions

ρ dy√
∆y

,
ρ
√

∆y − ω2
y∆x dφ

1− ωxωy
. (25.6)

The area of the angular y�φ surface at �xed radius x and time t is obtained by integrating the product of
the proper distances over the surface,

A =

∫ ρ2
√

(1− ω2
y∆x/∆y)

(1− ωxωy)
dydφ . (25.7)

Horizons occur where the horizon function vanishes, ∆x = 0, in which case the area simpli�es to

A =

∫
ρ2

(1− ωxωy)
dydφ

= 2π

∫
1

(f0 + f1ωx)(f1 + f0ωy)
dy

=
2π

f0 + f1ωx

∫
dωy

2
√

(f1 + f0ωy)3(g1 − g0ωy)

=
2π

(f0g1 + f1g0)(f0 + f1ωx)

[√
g1 − g0ωy
f1 + f0ωy

]
. (25.8)

The second line of equations invokes equation (22.38a), while the third line uses equation (22.43b) to trans-
form the integral over y to an integral over ωy. The constants are given by equation (22.71) for Λ-Kerr-
Newman, or equation (22.78) for Taub-NUT. The integration over y is from −1 to 1, north to south pole. For
Λ-Kerr-Newman, ωy = 0 at both poles, but for Taub-NUT, ωy = 2N•(c•± 1) at the poles, equation (22.81).
In either case, for both Λ-Kerr-Newman and Taub-NUT, the area of the horizon is

A = 4πR2 , (25.9)

where R is given by equation (22.7) for Λ-Kerr-Newman, and equations (22.81) for Taub-NUT.



Concept Questions

1. Why do general relativistic perturbation theory using the tetrad formalism as opposed to the coordinate
approach?

2. Why is the tetrad metric γmn assumed �xed in the presence of perturbations?
3. Are the tetrad axes γγm �xed under a perturbation?
4. Is it true that the tetrad components ϕmn of a perturbation are (anti-)symmetric in m↔ n if and only

if its coordinate components ϕµν are (anti-)symmetric in µ↔ ν?
5. Does an unperturbed quantity, such as the unperturbed metric

0
gµν , change under an in�nitesimal

coordinate gauge transformation?
6. How can the vierbein perturbation ϕmn be considered a tetrad tensor �eld if it changes under an

in�nitesimal coordinate gauge transformation?
7. What properties of the unperturbed spacetime allow decomposition of perturbations into independently

evolving Fourier modes?
8. What properties of the unperturbed spacetime allow decomposition of perturbations into independently

evolving scalar, vector, and tensor modes?
9. In what sense do scalar, vector, and tensor modes have spin 0, 1, and 2 respectively?
10. Tensor modes represent gravitational waves that, in vacuo, propagate at the speed of light. Do scalar

and vector modes also propagate at the speed of light in vacuo? If so, do scalar and vector modes also
constitute gravitational waves?

11. If scalar, vector, and tensor modes evolve independently, does that mean that scalar modes can exist
and evolve in the complete absence of tensor modes? If so, does it mean that scalar modes can propagate
causally, in vacuo at the speed of light, without any tensor modes being present?

12. Equation (27.77) de�nes the mass M of a body as what a distant observer would measure from its
gravitational potential. Similarly equation (27.85) de�nes the angular momentum L of a body as what a
distant observer would measure from the dragging of inertial frames. In what sense are these de�nitions
legitimate?

13. Can an observer far from a body detect the di�erence between the scalar potentials Ψ and Φ produced
by the body?
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14. If a gravitational wave is a wave of spacetime itself, distorting the very rulers and clocks that measure
spacetime, how is it possible to measure gravitational waves at all?

15. If gravitational waves carry energy-momentum, then can gravitational waves be present in a region of
spacetime with vanishing energy-momentum tensor, Tmn = 0?

16. Have gravitational waves been detected?



What's important?

1. Getting your brain around coordinate and tetrad gauge transformations.
2. A central aim of general relativistic perturbation theory is to identify the coordinate and tetrad gauge-

invariant perturbations, since only these have physical meaning.
3. A second central aim is to classify perturbations into independently evolving modes, to the extent that

this is possible.
4. In background spacetimes with spatial translation and rotation symmetry, which includes Minkowski

space and the Friedmann-Lemaître-Robertson-Walker metric of cosmology, modes decompose into inde-
pendently evolving scalar (spin 0), vector (spin 1), and tensor (spin 2) modes. In background spacetimes
without spatial translation and rotation symmetry, such as black holes, scalar, vector, and tensor modes
scatter o� the curvature of space, and therefore mix with each other.

5. In background spacetimes with spatial translation and rotation symmetry, there are 6 algebraic com-
binations of metric coe�cients that are coordinate and tetrad gauge-invariant, and therefore represent
physical perturbations. There are 2 scalar modes, 2 vector modes, and 2 tensor modes. A spin m mode
varies as e−imχ where χ is the rotational angle about the spatial wavevector k of the mode.

6. In background spacetimes without spatial translation and rotation symmetry, the coordinate and tetrad
gauge-invariant perturbations are not algebraic combinations of the metric coe�cients, but rather com-
binations that involve �rst and second derivatives of the metric coe�cients. Gravitational waves are
described by the Weyl tensor, which can be decomposed into 5 complex components, with spin 0, ±1,
and ±2. The spin ±2 components describe propagating gravitational waves, while the spin 0 and spin ±1

components describe the non-propagating gravitational �eld near a source.
7. The preeminent application of general relativistic perturbation theory is to cosmology. Coupled with

physics that is either well understood (such as photon-electron scattering) or straightforward to model
even without a deep understanding (such as the dynamical behaviour of non-baryonic dark matter and
dark energy), the theory has yielded predictions that are in spectacular agreement with observations
of �uctuations in the CMB and in the large scale distribution of galaxies and other tracers of the
distribution of matter in the Universe.
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26

Perturbations and gauge transformations

This chapter sets up the basic equations that de�ne perturbations to an arbitrary spacetime in the tetrad
formalism of general relativity, and it examines the e�ect of tetrad and coordinate gauge transformations
on those perturbations. The perturbations are supposed to be small, in the sense that quantities quadratic
in the perturbations can be neglected. The formalism set up in this chapter provides a foundation used in
subsequent chapters.

26.1 Notation for perturbations

A 0 (zero) overscript signi�es an unperturbed quantity, while a 1 (one) overscript signi�es a perturbation.
No overscript means the full quantity, including both unperturbed and perturbed parts. An overscript is
attached only where necessary. Thus if the unperturbed part of a quantity is zero, then no overscript is
needed, and none is attached.

26.2 Vierbein perturbation

Let the vierbein perturbation ϕmn be de�ned so that the perturbed inverse vierbein is

em
µ = (δnm + ϕm

n)
0
en
µ , (26.1)

with corresponding perturbed vierbein

emµ = (δmn − ϕnm)
0
enµ . (26.2)

Since the perturbation ϕmn is already of linear order, to linear order its indices can be raised and lowered
with the unperturbed metric, and transformed between tetrad and coordinate frames with the unperturbed
vierbein. In practice it proves convenient to work with the covariant tetrad-frame components ϕmn of the
vierbein perturbation

ϕmn = γnlϕm
l . (26.3)
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In terms of the covariant perturbation ϕmn, the perturbed inverse vierbein (26.1) is

em
µ = (γmn + ϕmn)

0
enµ , (26.4)

The perturbation ϕmn can be regarded as a tetrad tensor �eld de�ned on the unperturbed background.

26.3 Gauge transformations

The vierbein perturbation ϕmn has 16 degrees of freedom, but only 6 of these degrees of freedom correspond
to real physical perturbations, since 6 degrees of freedom are associated with arbitrary in�nitesimal changes
in the choice of tetrad, which is to say arbitrary in�nitesimal Lorentz transformations, and a further 4 degrees
of freedom are associated with arbitrary in�nitesimal changes in the coordinates.
In the context of perturbation theory, these in�nitesimal tetrad and coordinate transformations are called

gauge transformations. Real physical perturbations are perturbations that are gauge-invariant under
both tetrad and coordinate gauge transformations.

26.4 Tetrad metric assumed constant

In the tetrad formalism, tetrad axes γγm are introduced as locally inertial (or other physically motivated)
axes attached to an observer. The axes enable quantities to be projected into the frame of the observer.
In a spacetime bu�eted by perturbations, it is natural for an observer to cling to the rock provided by the
locally inertial (or other) axes, as opposed to allowing the axes to bend with the wind. For example, when
a gravitational wave goes by, the tidal compression and rarefaction causes the proper distance between two
freely falling test masses to oscillate. It is natural to choose the tetrad so that it continues to measure proper
times and distances in the perturbed spacetime.
In the treatment of general relativistic perturbation theory in this book, the tetrad metric is taken to be

constant everywhere, and unchanged by a perturbation

γmn =
0
γmn = constant . (26.5)

For example, if the tetrad is orthonormal, then the tetrad metric is constant, the Minkowski metric ηmn.
However, the tetrad could also be some other tetrad for which the tetrad metric is constant, such as a spin
tetrad (�38.1), or a Newman-Penrose tetrad (�39.1.1).
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26.5 Perturbed coordinate metric

The perturbed coordinate metric is

gµν = γmn e
m
µe
n
ν

= γkl(δ
k
m − ϕmk)

0
emµ(δln − ϕnl)

0
enν

=
0
gµν − (ϕµν + ϕνµ) . (26.6)

Thus the perturbation of the coordinate metric depends only on the symmetric part of the vierbein pertur-
bation ϕmn, not the antisymmetric part

1
gµν = − (ϕµν + ϕνµ) . (26.7)

26.6 Tetrad gauge transformations

Under an in�nitesimal tetrad (Lorentz) transformation, the covariant vierbein perturbations ϕmn transform
as

ϕmn → ϕmn + εmn , (26.8)

where εmn is the generator of a Lorentz transformation, which is to say an arbitrary antisymmetric tensor
(Exercise 11.2). Thus the antisymmetric part ϕmn − ϕnm of the covariant perturbation ϕmn is arbitrarily
adjustable through an in�nitesimal tetrad transformation, while the symmetric part ϕmn + ϕnm is tetrad
gauge-invariant.
It is easy to see when a quantity is tetrad gauge-invariant: it is tetrad gauge-invariant if and only if it

depends only on the symmetric part of the vierbein perturbation, not on the antisymmetric part. Evidently
the perturbation (26.7) to the coordinate metric gµν is tetrad gauge-invariant. This is as it should be, since
the coordinate metric gµν is a coordinate-frame quantity, independent of the choice of tetrad frame.
If only tetrad gauge-invariant perturbations are physical, why not just discard tetrad perturbations (the

antisymmetric part of ϕmn) altogether, and work only with the tetrad gauge-invariant part (the symmetric
part of ϕmn)? The answer is that tetrad-frame quantities such as the tetrad-frame Einstein tensor do change
under tetrad gauge transformations (in�nitesimal Lorentz transformations of the tetrad). It is true that
the only physical perturbations of the Einstein tensor are those combinations of it that are tetrad gauge-
invariant. But in order to identify these tetrad gauge-invariant combinations, it is necessary to carry through
the dependence on the non-tetrad-gauge-invariant part, the antisymmetric part of ϕmn.
Much of the professional literature on general relativistic perturbation theory works with the traditional

coordinate formalism, as opposed to the tetrad formalism. The term �gauge-invariant� then means coordinate
gauge-invariant, as opposed to both coordinate and tetrad gauge-invariant. This is �ne as far as it goes: the
coordinate approach is perfectly able to identify physical perturbations versus gauge perturbations. However,
there still remains the problem of projecting the perturbations into the frame of an observer, so ultimately
the issue of perturbations of the observer's frame, tetrad perturbations, must be faced.
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Concept question 26.1. Non-in�nitesimal tetrad transformations in perturbation theory? In
perturbation theory, can tetrad gauge transformations be non-in�nitesimal?

26.7 Coordinate gauge transformations

A coordinate gauge transformation is a transformation of the coordinates xµ by an in�nitesimal shift εµ

xµ → x′µ = xµ + εµ . (26.9)

You should not think of this as shifting the underlying spacetime around; rather, it is just a change of the
coordinate system, which leaves the underlying spacetime unchanged. Because the shift εµ is, like the vierbein
perturbations ϕmn, already of linear order, its indices can be raised and lowered with the unperturbed metric,
and transformed between coordinate and tetrad frames with the unperturbed vierbein. Thus the shift εµ can
be regarded as a vector �eld de�ned on the unperturbed background. The tetrad components εm of the shift
εµ are

εm =
0
emµ ε

µ . (26.10)

Physically, the tetrad-frame shift εm is the shift measured in locally inertial coordinates ξm,

ξm → ξ′m = ξm + εm . (26.11)

26.7.1 The change in any tensor under a coordinate transformation is minus its Lie

derivative

As discussed in �7.34, the change in any coordinate tensor Aκλ...µν...(x) under a coordinate gauge transforma-
tion (26.9) is minus its Lie derivative Lε with respect to the in�nitesimal shift ε,

Aκλ...µν...(x)→ A′κλ...µν...(x) = Aκλ...µν...(x)− LεAκλ...µν... . (26.12)

The Lie derivative LεAκλ...µν... is given by formula (7.148). Under a coordinate gauge transformation (26.9), the
coordinate of a �xed physical position transforms from x to x′. But in perturbation theory, quantities are
considered to be functions of coordinate position x, which does not remain at a �xed physical position under
a coordinate transformation. As discussed in �7.34, the Lie derivative is de�ned such that the transformed
tensor A′κλ...µν...(x) is evaluated at �xed coordinate position x, not at �xed physical position.

26.7.2 Coordinate gauge transformation of a tetrad tensor

A tetrad-frame 4-vector Am is a coordinate-invariant quantity, and therefore acts like a coordinate scalar
under a coordinate gauge transformation (26.9). Thus a tetrad frame 4-vector Am must be treated as a
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coordinate scalar when its Lie derivative is taken. Under a coordinate gauge transformation (26.9), a tetrad-
frame 4-vector Am transforms as

Am(x)→ A′m(x) = Am(x)− LεAm , (26.13)

where the Lie derivative is, equation (7.130),

LεAm = εκ
∂Am

∂xκ
not a tetrad tensor . (26.14)

The change εκ∂κAm is a coordinate tensor (speci�cally, a coordinate scalar), but not a tetrad tensor.
More generally, a tetrad-frame tensor Akl...mn... transforms under a coordinate gauge transformation (26.9)

as

Akl...mn...(x)→ A′kl...mn...(x) = Akl...mn...(x)− LεAkl...mn... , (26.15)

where the Lie derivative is

LεAkl...mn... = επ∂πA
kl...
mn... not a tensor . (26.16)

Again, the change −επ∂πAkl...mn... is a coordinate tensor (a coordinate scalar), but not a tetrad tensor.

Concept question 26.2. Should not the Lie derivative of a tetrad tensor be a tetrad tensor?

The Lie derivative of a tetrad tensor, as de�ned in this book, is a coordinate tensor but not a tetrad tensor.
Would it not be better to de�ne the Lie derivative so it is a tetrad tensor as well as a coordinate tensor?
Answer. In this book, the Lie derivative of any quantity is de�ned to be minus the variation of the quantity
under a coordinate transformation. This de�nition is unambiguous; and it implies that the Lie derivative of
a tetrad tensor is not a tetrad tensor.

26.7.3 Coordinate gauge transformation of the vierbein

The inverse vierbein emµ is a coordinate vector and a tetrad vector. It transforms under a coordinate gauge
transformation (26.9) as

em
µ(x)→ e′m

µ(x)− Lεemµ , (26.17)

where the Lie derivative of the inverse vierbein is, equation (7.134),

Lεemµ = − emκ
∂εµ

∂xκ
+ εκ

∂em
µ

∂xκ

= − ∂m(enµεn) + εk∂kem
µ

= −enµ
(
∂mεn − εkdnkm + εkdnmk

)
= −enµ

[
∂mεn + εk

(
Γ̊nkm − Γ̊nmk

)]
. (26.18)

On the third line the vierbein derivatives have been replaced by dnkm de�ned by equation (11.32), while on
the fourth line Γ̊nkm is the torsion-free tetrad-frame connection, de�ned in terms of the vierbein derivatives
by equation (11.54).
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26.7.4 Coordinate transformation of the vierbein perturbation

According to equation (26.1), the perturbation 1
em

µ of the inverse vierbein may be expressed in terms of a
covariant vierbein perturbation �eld ϕmn,

1
em

µ = ϕmn
0
enµ . (26.19)

The perturbation induced by a coordinate gauge transformation (26.9) equals the Lie derivative given by
equation (26.18), 1

em
µ = Lεemµ. Consequently the vierbein perturbation ϕmn transforms under a coordinate

gauge transformation (26.9) as

ϕmn → ϕ′mn = ϕmn + ∂mεn +
(
Γ̊nkm − Γ̊nmk

)
εk , (26.20)

with Γ̊nkm the torsion-free tetrad-frame connection. This is the fundamental formula that gives the e�ect of
coordinate transformations on the vierbein perturbations in any background spacetime.

Concept question 26.3. Variation of unperturbed quantities under coordinate gauge transfor-

mations? How does an unperturbed quantity, such as the unperturbed coordinate metric
0
gµν , vary under

an in�nitesimal coordinate gauge transformation? Answer. It doesn't. The variation is considered to be
part of the perturbation.

26.8 Scalar, vector, tensor decomposition of perturbations

In the particular case that the unperturbed spacetime is spatially homogeneous and isotropic, which includes
not only Minkowski space but also the important case of the cosmological Friedmann-Lemaître-Robertson-
Walker metric, perturbations decompose into independently evolving scalar (spin 0), vector (spin 1), and
tensor (spin 2) modes.
Similarly to Fourier decomposition, decomposition into scalar, vector, and tensor modes is non-local, in

principle requiring knowledge of perturbation amplitudes simultaneously throughout all of space. In practical
problems however, an adequate decomposition is possible as long as the scales probed are su�ciently larger
than the wavelengths of the modes probed. Ultimately, the fact that an adequate decomposition is possible
is a consequence of the fact that gravitational �uctuations in the real Universe appear to converge at the
cosmological horizon, so that what happens locally is largely independent of what is happening far away.

26.8.1 Decomposition of a vector in �at 3D space

Theorem: In �at 3-dimensional space, a 3-vector �eld w(x) can be decomposed uniquely (subject to the
boundary condition that w vanishes su�ciently rapidly at in�nity) into a sum of scalar and vector parts

w = ∇w‖
scalar

+ w⊥
vector

. (26.21)



712 Perturbations and gauge transformations

In this context, the term vector signi�es a 3-vector w⊥ that is transverse, that is to say, it has vanishing
divergence,

∇ ·w⊥ = 0 . (26.22)

Here ∇ ≡ ∂/∂x ≡ ∇a ≡ ∂/∂xa is the gradient in �at 3D space. The scalar and vector parts are also known
as spin 0 and spin 1, or gradient and curl, or longitudinal and transverse. The scalar part ∇w‖ contains 1
degree of freedom, while the vector part w⊥ contains 2 degrees of freedom. Together they account for the 3
degrees of freedom of the vector w.
Proof: Take the divergence of equation (26.21)

∇ ·w = ∇2w‖ . (26.23)

The operator ∇2 on the right hand side of equation (26.23) is the 3D Laplacian. The solution of equa-
tion (26.23) is

w‖(x) = −
∫ ∇′ ·w(x′)

|x′ − x|
d3x′

4π
. (26.24)

The solution (26.24) is valid subject to boundary conditions that the vector w vanish su�ciently rapidly
at in�nity. In cosmology, the required boundary conditions, which are set at the Big Bang, are apparently
satis�ed because �uctuations at the Big Bang were small. Equation (26.21) then immediately implies that
the vector part is w⊥ = w −∇w‖.
It is sometimes convenient to abbreviate ∇w‖ = w‖ (distinguished by bold face w‖ instead of normal face

w‖), so that the decomposition (26.21) is

w = w‖
scalar

+ w⊥
vector

. (26.25)

26.8.2 Fourier version of the decomposition of a vector in �at 3D space

When the background has some symmetry, it is natural to expand perturbations in eigenmodes of the
symmetry. If the background space is �at, then it is translation symmetric. Eigenmodes of the translation
operator ∇ are Fourier modes.
A function a(x) in �at 3D space and its Fourier transform a(k) are related by (the signs and disposition

of factors of 2π in the following de�nition follows the convention most commonly adopted by cosmologists;
beware that, with the −+++ signature adopted in this book, the convention is opposite to the quantum
mechanics convention p = ~k = −i~∇ for spatial momentum)

a(k) =

∫
a(x)eik·x d3x , a(x) =

∫
a(k)e−ik·x

d3k

(2π)3
. (26.26)

You may not be familiar with the practice of using the same symbol a in both real and Fourier space; but
a is the same vector in Hilbert space, with components ax = a(x) in real space, and ak = a(k) in Fourier
space.
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Taking the gradient ∇ in real space is equivalent to multiplying by −ik in Fourier space

∇→ −ik . (26.27)

Thus the decomposition (26.21) of the 3D vector w translates into Fourier space as

w = −ikw‖
scalar

+ w⊥
vector

, (26.28)

where the vector part w⊥ satis�es

k ·w⊥ = 0 . (26.29)

In other words, in Fourier space the scalar part ∇w‖ of the vector w is the part parallel (longitudinal) to
the wavevector k, while the vector part w⊥ is the part perpendicular (transverse) to the wavevector k.

26.8.3 Decomposition of a tensor in �at 3D space

Similarly, the 9 components of a 3× 3 spatial matrix hab can be decomposed into 3 scalars, 2 vectors, and 1
tensor:

hab = δab φ
scalar

+∇a∇bh
scalar

+ εabc∇ch̃
scalar

+∇ahb
vector

+∇bh̃a
vector

+ hTab
tensor

. (26.30)

In this context, the term tensor signi�es a 3× 3 matrix hTab that is traceless, symmetric, and transverse:

hT aa = 0 , hTab = hTba , ∇ahTab = 0 . (26.31)

The transverse-traceless-symmetric matrix hTab has two degrees of freedom. The vector components ha and
h̃a are by de�nition transverse,

∇aha = ∇ah̃a = 0 . (26.32)

The tildes on h̃ and h̃a simply distinguish those symbols (from h and ha); the tildes have no other signi�cance.
The trace of the 3× 3 matrix hab is

haa = 3φ+∇2h . (26.33)
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Perturbations in a �at space background

General relativistic perturbation theory is simplest in the case that the unperturbed background space is
Minkowski space. In Cartesian coordinates xµ ≡ {x0, x1, x2, x3} ≡ {t, x, y, z}, the unperturbed coordinate
metric is the Minkowski metric

0
gµν = ηµν . (27.1)

In this chapter the tetrad γγm is taken to be orthonormal, and aligned with the unperturbed coordinate axes
0
eµ, so that the unperturbed inverse vierbein is the unit matrix

0
em

µ = δµm . (27.2)

Let overdot denote partial di�erentiation with respect to time t,

overdot ≡ ∂

∂t
, (27.3)

and let ∇ denote the spatial gradient

∇ ≡ ∂

∂x
≡ ∇a ≡

∂

∂xa
. (27.4)

Sometimes it will also be convenient to use ∇m to denote the 4-dimensional spacetime derivative

∇m ≡
{ ∂
∂t
,∇
}
. (27.5)

27.1 Classi�cation of vierbein perturbations

The aims of this section are two-fold. First, decompose perturbations into scalar, vector, and tensor parts.
Second, identify the coordinate and tetrad gauge-invariant perturbations. It will be found, equations (27.13),
that there are 6 coordinate and tetrad gauge-invariant perturbations, comprising 2 scalars Ψ and Φ, 1 vector
Wa containing 2 degrees of freedom, and 1 tensor hab containing 2 degrees of freedom.
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The vierbein perturbations ϕmn de�ned by equation (26.1) decompose, �26.8, into 6 scalars, 4 vectors,
and 1 tensor, a total of 6 + 4× 2 + 1× 2 = 16 degrees of freedom,

ϕ00 = ψ
scalar

, (27.6a)

ϕ0a = ∇aw
scalar

+ wa
vector

, (27.6b)

ϕa0 = ∇aw̃
scalar

+ w̃a
vector

, (27.6c)

ϕab = δab Φ
scalar

+∇a∇bh
scalar

+ εabc∇ch̃
scalar

+∇ahb
vector

+∇bh̃a
vector

+ hab
tensor

. (27.6d)

The tildes on w̃ and h̃ simply distinguish those symbols (from w and h); the tildes have no other signi�cance.
The vector components are by de�nition transverse (have vanishing divergence), while the tensor component
hab is by de�nition traceless, symmetric, and transverse. For a single Fourier mode whose wavevector k is
taken without loss of generality to lie in the z-direction, so that ∇x = ∇y = 0, equations (27.6) are

ϕmn =


ψ wx wy ∇zw
w̃x Φ + hxx hxy +∇zh̃ ∇zh̃x
w̃y hxy −∇zh̃ Φ− hxx ∇zh̃y
∇zw̃ ∇zhx ∇zhy Φ +∇2

zh

 . (27.7)

To identify coordinate gauge-invariant quantities, it is necessary to consider in�nitesimal coordinate gauge
transformations (26.9). The 4 tetrad-frame components εm of the coordinate shift of the coordinate gauge
transformation decompose into 2 scalars and 1 vector

εm = { ε0
scalar

, ∇aε
scalar

+ εa
vector

} . (27.8)

In the �at space background space being considered, the coordinate gauge transformation (26.20) of the
vierbein perturbation simpli�es to

ϕmn → ϕ′mn = ϕmn +∇mεn . (27.9)

In terms of the scalar, vector, and tensor potentials introduced in equations (27.6), the gauge transforma-
tions (27.9) are

ϕ00 → ψ + ε̇0
scalar

, (27.10a)

ϕ0a → ∇a(w + ε̇)
scalar

+ (wa + ε̇a)
vector

, (27.10b)

ϕa0 → ∇a(w̃ + ε0)
scalar

+ w̃a
vector

, (27.10c)

ϕab → δab Φ
scalar

+∇a∇b(h+ ε)
scalar

+ εabc∇ch̃
scalar

+∇a(hb + εb)
vector

+∇bh̃a
vector

+ hab
tensor

. (27.10d)

Equations (27.10a) imply that under an in�nitesimal coordinate gauge transformation the potentials trans-
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form as

ψ → ψ + ε̇0 , (27.11a)

w → w + ε̇ , wa → wa + ε̇a , (27.11b)

w̃ → w̃ + ε0 , w̃a → w̃a , (27.11c)

Φ→ Φ , h→ h+ ε , h̃→ h̃ , ha → ha + εa , h̃a → h̃a , hab → hab . (27.11d)

Eliminating the coordinate shift εm from the transformations (27.11) yields 12 coordinate gauge-invariant
combinations of the potentials

ψ − ˙̃w
scalar

, w − ḣ
scalar

, wa − ḣa
vector

, w̃a
vector

, Φ
scalar

, h̃
scalar

, h̃a
vector

, hab
tensor

. (27.12)

Physical perturbations are not only coordinate but also tetrad gauge-invariant. A quantity is tetrad gauge-
invariant if and only if it depends only on the symmetric part of the vierbein perturbations, not on the
antisymmetric part, �26.6. There are 6 combinations of the coordinate gauge-invariant perturbations (27.12)
that are symmetric, and therefore not only coordinate but also tetrad gauge-invariant. These 6 coordinate
and tetrad gauge-invariant perturbations comprise 2 scalars, 1 vector, and 1 tensor

Ψ
scalar

≡ ψ − ẇ − ˙̃w + ḧ , (27.13a)

Φ
scalar

, (27.13b)

Wa
vector

≡ wa + w̃a − ḣa − ˙̃
ha , (27.13c)

hab
tensor

. (27.13d)

Since only the 6 tetrad and coordinate gauge-invariant potentials Ψ, Φ, Wa, and hab have physical signi�-
cance, it is legitimate to choose a particular gauge, a set of conditions on the non-gauge-invariant potentials,
arranged to simplify the equations, or to bring out some physical aspect. Three gauges considered later are
harmonic gauge (�27.7), Newtonian gauge (�27.8), and synchronous gauge (�27.9). However, for the next
several sections, no gauge will be chosen: the exposition will continue to be completely general.

Exercise 27.1. Classi�cation of perturbations in N spacetime dimensions. Classify and enumerate
general relativistic perturbations in N spacetime dimensions.
Solution. The vierbein perturbations ϕmn, equations (27.6), decompose into: 5 scalars ψ, w, w̃, Φ, h;
4 vectors wa, w̃a, hb, h̃a; 1 antisymmetric tensor h̃ab (which for N = 4 reduces to a scalar εabc∇ch̃);
and 1 traceless symmetric tensor hab; for a total of 5 + 4(N−2) + (N−2)(N−3)/2 + N(N−3)/2 = N2

degrees of freedom. Coordinate transformations, equation (27.8), decompose into 2 scalars ε0, ε, and 1
vector εa, a total of 2 + (N−2) = N degrees of freedom, leaving 3 scalars, 3 vectors, 1 antisymmetric
tensor, and 1 symmetric tensor. Tetrad (Lorentz) transformations remove a further 1 scalar, 2 vectors, and
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1 antisymmetric tensor, a total of 1 + 2(N−2) + (N−2)(N−3)/2 = (N−1)(N−2)/2 degrees of freedom,
leaving as physical degrees of freedom 2 scalars Ψ and Φ, 1 vector Wa, and 1 symmetric tensor hab, a total of
2 + (N−2) + N(N−3)/2 = (N−1)(N−2)/2 degrees of freedom. The traceless symmetric tensor hab carries
propagating gravitational waves, �27.13. Gravitational waves have N(N−3)/2 degrees of freedom, and exist
only in spacetime dimensions N ≥ 4.

27.2 Metric, tetrad connections, and Einstein and Weyl tensors

This section gives expressions in a completely general gauge for perturbed quantities in �at background
Minkowski space.

27.2.1 Metric

The unperturbed metric
0
gµν is the Minkowski metric, equation (27.1). The perturbation

1
gµν of the coordinate

metric is, from equation (26.6),
1
gtt = − 2ψ

scalar

, (27.14a)

1
gta = −∇a(w + w̃)

scalar

− (wa + w̃a)
vector

, (27.14b)

1
gab = − δab 2 Φ

scalar

− 2∇a∇bh
scalar

−∇a(hb + h̃b)
vector

−∇b(ha + h̃a)
vector

− 2hab
tensor

. (27.14c)

The coordinate metric is tetrad gauge-invariant, but not coordinate gauge-invariant.

27.2.2 Tetrad-frame connections

The tetrad-frame connections Γkmn can be calculated from the usual formula (11.54). The unperturbed
tetrad connections

0

Γkmn all vanish in the �at background. The perturbations
1

Γkmn of the tetrad connections
are

1

Γ0a0 = −∇a(ψ − ˙̃w)
scalar

+ ˙̃wa
vector

, (27.15a)

1

Γ0ab = δab Φ̇
scalar

−∇a∇b(w − ḣ)
scalar

− 1
2 (∇aWb +∇bWa)

vector

+∇bw̃a
vector

+ ḣab
tensor

, (27.15b)

1

Γab0 = 1
2 (∇aWb −∇bWa)

vector

− ∂

∂t
(εabd∇dh̃

scalar

−∇ah̃b +∇bh̃a
vector

) , (27.15c)

1

Γabc = (δbc∇a − δac∇b)Φ
scalar

−∇k(εabd∇dh̃
scalar

−∇ah̃b +∇bh̃a
vector

) +∇ahbc −∇bhac
tensor

. (27.15d)

The perturbations of the tetrad connections are all coordinate gauge-invariant, as is evident from the fact that
they depend only on, and on all 12 of, the coordinate gauge-invariant combinations (27.12). The coordinate
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gauge-invariance of the tetrad connections follows more fundamentally from the fact that any quantity that
vanishes in the unperturbed background is coordinate gauge-invariant. According to the rule established in
�26.7, the change in a quantity under an in�nitesimal coordinate gauge transformation equals its Lie deriva-
tive Lε with respect to the in�nitesimal coordinate shift ε. Any quantity that vanishes in the unperturbed
background has, to linear order, vanishing Lie derivative, therefore is coordinate gauge-invariant.
However, the perturbations

1

Γkmn of the tetrad connections are not tetrad gauge-invariant, as is evident
from the fact that they (all) depend on antisymmetric parts of the vierbein perturbations ϕmn.

27.2.3 Tetrad-frame Einstein tensor

The tetrad-frame Einstein tensor Gmn in perturbed Minkowski space follows from the usual formulae (11.61),
(11.79), and (11.81). The unperturbed Einstein tensor

0

Gmn vanishes identically. The perturbations
1

Gmn of
the tetrad-frame Einstein tensor are

1

G00 = 2∇2Φ
scalar

, (27.16a)

1

G0a = 2∇aΦ̇
scalar

+ 1
2 ∇

2Wa
vector

, (27.16b)

1

Gab = 2 δab Φ̈
scalar

− (∇a∇b − δab∇2)(Ψ− Φ)
scalar

+ 1
2 (∇aẆb +∇bẆa)

vector

+�hab
tensor

, (27.16c)

where � is the d'Alembertian, the 4-dimensional wave operator

� ≡ ∇m∇m = − ∂2

∂t2
+∇2 . (27.17)

All the perturbations
1

Gmn of the Einstein tensor are both coordinate and tetrad gauge-invariant, as follows
from the fact that the expressions (27.16) depend only on the coordinate and tetrad gauge-invariant potentials
Ψ, Φ, Wa, and hab. The property that the perturbations of the Einstein tensor are coordinate and tetrad
gauge-invariant is a feature of �at (Minkowski) background spacetime, and does not persist to more general
spacetimes, such as the Friedmann-Lemaître-Robertson-Walker spacetime.
In a frame with the wavevector k taken along the z-axis, so that ∇x = ∇y = 0, the perturbations of the

Einstein tensor are

1

Gmn =


2∇2

zΦ
1
2 ∇

2
zWx

1
2 ∇

2
zWy 2∇zΦ̇

1
2 ∇

2
zWx 2 Φ̈ +∇2

z(Ψ− Φ) +�h+ �h× 1
2 ∇zẆx

1
2 ∇

2
zWy �h× 2 Φ̈ +∇2

z(Ψ− Φ)−�h+
1
2 ∇zẆy

2∇zΦ̇ 1
2 ∇zẆx

1
2 ∇zẆy 2 Φ̈

 , (27.18)

where h+ and h× are the two linear polarizations of gravitational waves, discussed further in �27.13,

h+ ≡ hxx = −hyy , h× ≡ hxy = hyx . (27.19)
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The tetrad-frame complexi�ed Weyl tensor is

C̃0a0b = 1
4 (∇a∇b − 1

3 δab∇
2)(Ψ + Φ)

scalar

+ 1
8

[
− (∇aẆb +∇bẆa) + i(εacd∇b + εbcd∇a)∇cWd

]
vector

+ 1
4

[
ḧab − εacdεbef∇c∇ehdf − i(εacd∇cḣbd + εbcd∇cḣad)

]
tensor

. (27.20)

Like the tetrad-frame Einstein tensor, the tetrad-frame Weyl tensor is both coordinate and tetrad gauge-
invariant, depending only on the coordinate and tetrad gauge-invariant potentials Ψ, Φ, Wa, and hab.

27.3 Spin components of the Einstein tensor

Scalar, vector, and tensor perturbations correspond respectively to perturbations of spin 0, 1, and 2. An object
has spin s if it is unchanged by a rotation of 2π/s about a prescribed direction. In perturbed Minkowski
space, the prescribed direction is the direction of the wavevector k in the Fourier decomposition of the modes.
The spin components may be projected out by working in a spin tetrad, �38.1.
In a frame where the wavevector k is taken along the z-axis, the spin components of the perturbations

1

Gmn of the Einstein tensor are (compare equations (27.16))

1

G00 = 2∇2
zΦ

spin-0

,
1

G0z = 2∇zΦ̇
spin-0

,
1

Gzz = 2 Φ̈
spin-0

, (27.21a)

1

G+− −
1

Gzz = ∇2
z(Ψ− Φ)
spin-0

, (27.21b)

1

G0± = 1
2 ∇

2
zW±

spin-±1

,
1

Gz± = 1
2 ∇zẆ±
spin-±1

, (27.21c)

1

G±± = �h±±
spin-±2

, (27.21d)

where W± are the spin ±1 components of the vector perturbation Wa,

W± = 1√
2
(Wx ± iWy) , (27.22)

and h±± are the spin ±2 components of the tensor perturbation hab,

h±± = hxx ± i hxy = h+ ± i h× . (27.23)

The spin +2 and −2 components h++ and h−− of the tensor perturbation are called the right- and left-
handed circular polarizations. The spin +2 and −2 circular polarizations h++ and h−− transform as e−i2χ

and ei2χ under a right-handed rotation by angle χ about the z-axis, while the linear polarizations h+ and
h× transform as cos 2χ and − sin 2χ.
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27.4 Too many Einstein equations?

The Einstein equations are as usual (units c = G = 1; in the remainder of this chapter, perturbation
overscripts 1 on the Einstein and energy-momentum tensors are dropped for brevity, which is �ne because
the unperturbed tensors vanish identically in the Minkowski background)

Gmn = 8πTmn . (27.24)

There are 10 Einstein equations, but the Einstein tensor (27.16) depends on only 6 independent potentials: the
two scalars Ψ and Φ, the vectorWa, and the tensor hab. The system of Einstein equations is thus overcomplete.
Why? The answer is that 4 of the Einstein equations enforce conservation of energy-momentum, and can
therefore be considered as governing the evolution of the energy-momentum as opposed to being equations
for the gravitational potentials. For example, the form of equations (27.16a) and (27.16b) for G00 and G0a

enforces conservation of energy

DmGm0 = 0 , (27.25)

while the form of equations (27.16b) and (27.16c) for G0a and Gab enforces conservation of momentum

DmGma = 0 . (27.26)

Normally, the equations governing the evolution of the energy-momentum TmnX of each species X of mass-
energy would be set up so as to ensure overall conservation of energy-momentum. If this is done, then
the conservation equations (27.25) and (27.26) can be regarded as redundant. Since equations (27.25) and
(27.26) are equations for the time evolution of G00 and G0a, one might think that the Einstein equations
for G00 and G0a would become redundant, but this is not quite true. In fact the Einstein equations for
G00 and G0a impose constraints that must be satis�ed on the initial spatial hypersurface. Conservation
of energy-momentum guarantees that those constraints will continue to be satis�ed on subsequent spatial
hypersurfaces, but still the initial conditions must be arranged to satisfy the constraints. Because the Einstein
equations for G00 and G0a must be satis�ed as constraints on the initial conditions, but thereafter can be
ignored, the equations are called constraint equations. The Einstein equation for G00 is called the energy
constraint, or Hamiltonian constraint. The Einstein equations for G0a are called the momentum constraints.

27.5 Action at a distance?

The tensor component of the Einstein equations shows that, in a vacuum Tmn = 0, the tensor perturbations
hab propagate at the speed of light, satisfying the wave equation

�hab = 0 . (27.27)

The tensor perturbations represent propagating gravitational waves.
It is to be expected that scalar and vector perturbations would also propagate at the speed of light, yet

this is not obvious from the form of the Einstein tensor (27.16). Speci�cally, there are 4 components of the
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Einstein tensor (27.16) that apparently depend only on spatial derivatives, not on time derivatives. The 4
corresponding Einstein equations are

∇2Φ = 4πT00
scalar

, (27.28a)

∇2Wa = 16πT0a
vector

, (27.28b)

∇2(Ψ− Φ) = − 8πQabTab
scalar

, (27.28c)

where Qab in equation (27.28c) is the quadrupole operator de�ned below, equation (27.102). These conditions
must be satis�ed everywhere at every instant of time, giving the impression that signals are travelling
instantaneously from place to place.

27.6 Comparison to electromagnetism

The previous two sections �27.4 and �27.5 brought up two issues:
1. There are 10 Einstein equations, but only 6 independent gauge-invariant potentials Ψ, Φ, Wa, and hab.

The additional 4 Einstein equations serve to enforce conservation of energy-momentum.
2. Only 2 of the gauge-invariant potentials, the tensor potentials hab, satisfy causal wave equations. The

remaining 4 gauge-invariant potentials Ψ, Φ, and Wa satisfy equations (27.28) that depend on the
instantaneous distribution of energy-momentum throughout space, on the face of it violating causality.

These facts may seem surprising, but in fact the equations of electromagnetism have a similar structure, as
will now be shown. In this section, the spacetime is assumed for simplicity to be �at Minkowski space. The
discussion in this section is based in part on the exposition by Bertschinger (1993).
In accordance with the usual procedure, the electromagnetic �eld may be de�ned in terms of an elec-

tromagnetic 4-potential Am, whose time and spatial parts constitute the scalar potential φ and the vector
potential A:

Am ≡ {φ,A} . (27.29)

In �at (Minkowski) space, the electric and magnetic �elds E and B are de�ned in terms of the potentials φ
and A by

E ≡ −∇φ− ∂A

∂t
, (27.30a)

B ≡∇×A . (27.30b)

Given their de�nition (27.30), the electric and magnetic �elds automatically satisfy the two source-free
Maxwell's equations

∇ ·B = 0 , (27.31a)

∇×E +
∂B

∂t
= 0 . (27.31b)
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The remaining two Maxwell's equations, the sourced ones, are

∇ ·E = 4πq , (27.32a)

∇×B − ∂E

∂t
= 4πj , (27.32b)

where q and j are the electric charge and current density, the time and space components of the electric
4-current density jm

jm ≡ {q, j} . (27.33)

The electromagnetic potentials φ and A are not unique, but rather are de�ned only up to a gauge transfor-
mation by some arbitrary gauge �eld θ

φ→ φ− ∂θ

∂t
, A→ A+ ∇θ . (27.34)

The gauge transformation (27.34) evidently leaves the electric and magnetic �eldsE andB, equations (27.30),
invariant.
Following the path of previous sections, �27.1 and thereafter, decompose the vector potential A into its

scalar and vector parts

A = ∇A‖
scalar

+ A⊥
vector

, (27.35)

in which the vector part by de�nition satis�es the transversality condition ∇ · A⊥ = 0. Under a gauge
transformation (27.34), the potentials transform as

φ→ φ− ∂θ

∂t
, (27.36a)

A‖ → A‖ + θ , (27.36b)

A⊥ → A⊥ . (27.36c)

Eliminating the gauge �eld θ yields 3 gauge-invariant potentials, comprising 1 scalar Φ, and 1 vector A⊥
containing 2 degrees of freedom:

Φ
scalar

≡ φ+
∂A‖

∂t
, (27.37a)

A⊥
vector

. (27.37b)

This shows that the electromagnetic �eld contains 3 independent degrees of freedom, consisting of 1 scalar
and 1 vector.

Concept question 27.2. Are gauge-invariant potentials Lorentz-invariant? The potentials Φ and
A⊥, equations (27.37), are by construction gauge-invariant, but is this construction Lorentz-invariant? Do
Φ and A⊥ constitute the components of a 4-vector? Answer. No.
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In terms of the gauge-invariant potentials Φ and A⊥, equations (27.37), the electric and magnetic �elds
are

E = −∇Φ− ∂A⊥
∂t

, (27.38a)

B = ∇×A⊥ . (27.38b)

The sourced Maxwell's equations (27.32) thus become, in terms of Φ and A⊥,

−∇2Φ
scalar

= 4πq
scalar

, (27.39a)

∇Φ̇
scalar

−�A⊥
vector

= 4π∇j‖
scalar

+ 4πj⊥
vector

, (27.39b)

where ∇j‖ and j⊥ are the scalar and vector parts of the current density j. Equations (27.39) bear a striking
similarity to the Einstein equations (27.16). Only the vector part A⊥ satis�es a wave equation,

�A⊥ = −4πj⊥ , (27.40)

while the scalar part Φ satis�es an instantaneous equation (27.39a), ∇Φ̇ = 4π∇j‖, that seemingly vio-
lates causality. And just as Einstein's equations (27.16) enforce conservation of energy-momentum, so also
Maxwell's equations (27.39) enforce conservation of electric charge,

∂q

∂t
+ ∇ · j = 0 , (27.41)

or in 4-dimensional form

∇mjm = 0 . (27.42)

The fact that only the vector part A⊥ satis�es a wave equation (27.40) re�ects physically the fact that
electromagnetic waves are transverse, and they contain only two propagating degrees of freedom, the vector,
or spin ±1, components.
Why do Maxwell's equations (27.39) have this structure? Although equation (27.40) appears to be a local

wave equation for the vector part A⊥ of the potential sourced by the vector part j⊥ of the current, in fact the
wave equation is non-local because the decomposition of the potential and current into scalar and vector parts
is non-local (it involves the solution of a Laplacian equation, eq. (26.23)). It is only the sum j = ∇j‖+ j⊥ of
the scalar and vector parts of the current density that is local. Therefore, the Maxwell's equation (27.39b)
must have a scalar part to go along with the vector part, such that the source on the right hand side, the
current density j, is local. Given this Maxwell equation (27.39b), the Maxwell equation (27.39a) then serves
precisely to enforce conservation of electric charge, equation (27.41).
Just as it is possible to regard the Einstein equations (27.16a) and (27.16b) as constraint equations

whose continued satisfaction is guaranteed by conservation of energy-momentum, so also the Maxwell equa-
tion (27.39a) for Φ can be regarded as a constraint equation whose continued satisfaction is guaranteed
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by conservation of electric charge. For charge conservation (27.41) coupled with the spatial Maxwell equa-
tion (27.39b) ensures that

∂

∂t

(
4πq +∇2Φ

)
= 0 , (27.43)

the solution of which, subject to the condition that 4πq +∇2Φ = 0 initially, is 4πq +∇2Φ = 0 at all times,
which is precisely the Maxwell equation (27.39a).
In a system of charges and electromagnetic �elds, equations of motion for the charges in the electro-

magnetic �eld must be adjoined to the (Maxwell) equations of motion for the electromagnetic �eld. If the
equations of motion for the charges are arranged to conserve charge, as they should, then the scalar Maxwell
equation (27.39a) determines the scalar potential Φ on the initial hypersurface of constant time, but can be
discarded thereafter as redundant.

Concept question 27.3. What parts of Maxwell's equations can be discarded? Is it possible to
discard the scalar part of the spatial Maxwell equation (27.39b), rather than the scalar equation (27.39a) for
Φ? Project out the scalar part of equation (27.39b) by taking its divergence,

∇2
(

4πj‖ − Φ̇
)

= 0 . (27.44)

Argue that the Maxwell equation (27.39a), coupled with charge conservation (27.41), ensures that equa-
tion (27.44) is true, subject to boundary condition that the current j vanish su�ciently rapidly at spatial
in�nity, in accordance with the decomposition theorem of �26.8.1.

Since only gauge-invariant quantities have physical signi�cance, it is legitimate to impose any condition
on the gauge �eld θ. A gauge in which the potentials φ and A individually satisfy wave equations is Lorenz
(not Lorentz!) gauge, which consists of the Lorentz-invariant condition

∇mAm = 0 . (27.45)

Under a gauge transformation (27.34), the left hand side of equation (27.45) transforms as

∇mAm → ∇mAm +�θ , (27.46)

and the Lorenz gauge condition (27.45) can be accomplished as a particular solution of the wave equation
for the gauge �eld θ. In terms of the potentials φ and A‖, the Lorenz gauge condition (27.45) is

∂φ

∂t
+∇2A‖ = 0 . (27.47)

In Lorenz gauge, Maxwell's equations (27.39) become

�φ = −4πq , (27.48a)

�A = −4πj , (27.48b)

which are manifestly wave equations for the potentials φ and A.
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Does the fact that the potentials φ and A in one particular gauge, Lorenz gauge, satisfy wave equations
necessarily guarantee that the electric and magnetic �elds E and B satisfy wave equations? Yes, because it
follows from the de�nitions (27.30) of E and B that if the potentials φ and A satisfy wave equations, then
so also must the �elds E and B themselves; but the �elds E and B are gauge-invariant, so if they satisfy
wave equations in one gauge, then they must satisfy the same wave equations in any gauge.
In electromagnetism, the most physical choice of gauge is one in which the potentials φ and A coincide

with the gauge-invariant potentials Φ and A⊥, equations (27.37). This gauge, known as Coulomb gauge,
is accomplished by setting

A‖ = 0 , (27.49)

or equivalently

∇ ·A = 0 . (27.50)

The gravitational analogue of this gauge is the Newtonian gauge discussed in the next section but one, �27.8.
Does the fact that in Lorenz gauge the potentials φ and A propagate at the speed of light (in the absence

of sources, jm = 0) imply that the gauge-invariant potentials Φ and A⊥ propagate at the speed of light?
No. The gauge-invariant potentials Φ and A⊥, equations (27.37), are related to the Lorenz gauge potentials
φ and A by a non-local decomposition.

27.7 Harmonic gauge

The fact that all locally measurable gravitational perturbations do propagate causally, at the speed of light
in the absence of sources, can be demonstrated by choosing a particular gauge, harmonic gauge, equa-
tion (27.51), which can be considered an analogue of the Lorenz gauge of electromagnetism, equation (27.45).
In harmonic gauge, all 10 of the tetrad gauge-variant (i.e. symmetric) combinations ϕmn+ϕnm of the vierbein
perturbations satisfy wave equations (27.56), and therefore propagate causally. This does not imply that the
scalar, vector, and tensor components of the vierbein perturbations individually propagate causally, because
the decomposition into scalar, vector, and tensor modes is non-local. In particular, of the coordinate and
tetrad-gauge invariant potentials Ψ, Φ, Wa, and hab de�ned by equations (27.13), only the tensor poten-
tial hab propagates causally. The situation is entirely analogous to that of electromagnetism, �27.6, where
in Lorenz gauge the potentials φ and A propagate causally, equations (27.48), yet of the gauge-invariant
potentials Φ and A⊥ de�ned by equations (27.37), only the vector potential A⊥ propagates causally.
Harmonic gauge is the set of 4 coordinate conditions

∇m(ϕmn + ϕnm)−∇nϕmm = 0 . (27.51)

The conditions (27.51) are arranged in a form that is tetrad gauge-invariant (the conditions depend only on
the symmetric part of ϕmn). The quantities on the left hand side of equations (27.51) transform under a
coordinate gauge transformation, in accordance with (27.9), as

∇m(ϕmn + ϕnm)−∇nϕmm → ∇m(ϕmn + ϕnm)−∇nϕmm −�εn . (27.52)
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The change �εn resulting from the coordinate gauge transformation is the 4-dimensional wave operator �
acting on the coordinate shift εn. Indeed, the harmonic gauge conditions (27.51) follow uniquely from the
requirements (a) that the change produced by a coordinate gauge transformation be �εn, as suggested by
the analogous electromagnetic transformation (27.46), and (b) that the conditions be tetrad gauge-invariant.
The harmonic gauge conditions (27.51) can be accomplished as a particular solution of the wave equation for
the coordinate shift εn. In terms of the potentials de�ned by equations (27.6) and (27.13), the 4 harmonic
gauge conditions (27.51) are

Ψ̇ + 3Φ̇−�(w + w̃ − ḣ) = 0 , (27.53a)

Ẇa −�(ha + h̃a) = 0 , (27.53b)

−Ψ + Φ−�h = 0 , (27.53c)

or equivalently

�(w + w̃) = 4 Φ̇ , (27.54a)

�(ha + h̃a) = Ẇa , (27.54b)

�h = −Ψ + Φ . (27.54c)

Substituting equations (27.54) into the Einstein tensor Gmn leads, after some calculation, to the result that
in harmonic gauge,

1
2 � (ϕmn + ϕnm − ηmnϕ) = Gmn , (27.55)

or equivalently

1
2 � (ϕmn + ϕnm) = Rmn , (27.56)

where Rmn is the Ricci tensor. Equation (27.56) shows that in harmonic gauge, all tetrad gauge-invariant
(i.e. symmetric) combinations ϕmn+ϕnm of the vierbein potentials propagate causally, at the speed of light
in vacuo, Rmn = 0. Although the result (27.56) is true only in a particular gauge, harmonic gauge, it follows
that all quantities that are (coordinate and tetrad) gauge-invariant, and that can be constructed from the
vierbein potentials ϕmn and their derivatives (and are therefore local), must also propagate at the speed of
light.
The 4 coordinate gauge conditions (27.51) still leave 6 tetrad gauge conditions to be chosen at will. A

natural choice, in the sense that it leads to the greatest simpli�cation of the tetrad connections Γkmn,
equations (27.15), is the 6 tetrad gauge conditions

w̃ = w̃a = h̃ = h̃a = 0 . (27.57)

Exercise 27.4. Einstein tensor in harmonic gauge. Con�rm equation (27.56).
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27.8 Newtonian (Copernican) gauge

If the unperturbed background is Minkowski space, then the most physical gauge is one in which the 6
perturbations retained coincide with the 6 coordinate and tetrad gauge-invariant perturbations (27.13). This
gauge is called Newtonian gauge. Because in Newtonian gauge the perturbations are precisely the physical
perturbations, if the perturbations are physically weak (small), then the perturbations in Newtonian gauge
will necessarily be small.
I think Newtonian gauge should be called Copernican gauge. Even though the solar system is a highly

non-linear system, from the perspective of general relativity it is a weakly perturbed gravitating system.
Applied to the solar system, Newtonian gauge e�ectively keeps the coordinates aligned with the classical
Sun-centred Copernican coordinate frame. By contrast, the coordinates of synchronous gauge (�27.9), which
are chosen to follow freely-falling bodies, would quickly collapse or get wound up by orbital motions if applied
to the solar system, and would cease to provide a useful description.
Newtonian (Copernican) gauge sets

w = w̃ = w̃a = h = h̃ = ha = h̃a = 0 , (27.58)

so that the retained perturbations are the 6 coordinate and tetrad gauge-invariant perturbations (27.13)

Ψ
scalar

= ψ , (27.59a)

Φ
scalar

, (27.59b)

Wa
vector

= wa , (27.59c)

hab
tensor

. (27.59d)

In matrix form, the vierbein perturbation in Newtonian gauge, in a frame where the wavevector k is along
the z-direction, are, from equation (27.7),

ϕmn =


Ψ Wx Wy 0

0 Φ + hxx hxy 0

0 hxy Φ− hxx 0

0 0 0 Φ

 . (27.60)

The Newtonian line-element is, in a form that keeps the Newtonian tetrad manifest,

ds2 = −
[
(1 + Ψ) dt

]2
+ δab

[
(1− Φ)dxa − hacdxc −W adt

][
(1− Φ)dxb − hbddxd −W bdt

]
, (27.61)

which reduces to the Newtonian metric

ds2 = − (1 + 2 Ψ) dt2 − 2Wa dt dx
a +

[
δab(1− 2 Φ)− 2hab

]
dxadxb . (27.62)

Since scalar, vector, and tensor perturbations evolve independently, it is legitimate to consider each in
isolation. For example, if one is interested only in scalar perturbations, then it is �ne to keep only the
scalar potentials Ψ and Φ non-zero. Furthermore, as discussed in �27.12, since the di�erence Ψ − Φ in
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scalar potentials is sourced by anisotropic relativistic pressure, which is typically small, it is often a good
approximation to set Ψ = Φ.
The tetrad-frame 4-velocity of a person at rest in the tetrad frame is by de�nition um ≡ dxm/dτ =

{1, 0, 0, 0}, and the corresponding coordinate 4-velocity uµ is, in Newtonian gauge,

uµ = e0
µ = {1−Ψ,Wa} . (27.63)

This shows that Wa can be interpreted as a 3-velocity at which the tetrad frame is moving through the
coordinates. This is the �dragging of inertial frames� discussed in �27.11. The proper acceleration experienced
by a person at rest in the tetrad frame, with tetrad 4-velocity um = {1, 0, 0, 0}, is

Dua

Dτ
= u0D0u

a = u0
(
∂0u

a + Γa00u
0
)

= Γa00 = ∇aΨ . (27.64)

This shows that the �gravity,� or minus the proper acceleration, experienced by a person at rest in the tetrad
frame is minus the gradient of the potential Ψ.

Concept question 27.5. Independent evolution of scalar, vector, and tensor modes. If the decom-
position into scalar, vector, and tensor modes is non-local, how can it be legitimate to consider the evolution
of the modes in isolation from each other?

27.9 Synchronous gauge

One of the earliest gauges used in general relativistic perturbation theory, and still (in its conformal version)
widely used in cosmology, is synchronous gauge. As will be seen below, equations (27.71) and (27.72),
synchronous gauge e�ectively chooses a coordinate system and tetrad that is attached to the locally inertial
frames of freely falling observers. This is �ne as long as the observers move only slightly from their initial
positions, but the coordinate system will fail when the system evolves too far, even if, as in the solar system,
the gravitational perturbations remain weak and therefore treatable in principle with perturbation theory.
Synchronous gauge sets the time components ϕmn with m = 0 or n = 0 of the vierbein perturbations to

zero

ψ = w = w̃ = wa = w̃a = 0 , (27.65)

and makes the additional tetrad gauge choices

h̃ = h̃a = 0 , (27.66)

with the result that the retained perturbations are the spatial perturbations

Φ
scalar

, h
scalar

, ha
vector

, hab
tensor

. (27.67)
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In terms of these spatial perturbations, the gauge-invariant perturbations (27.13) are

Ψ
scalar

= ḧ , (27.68a)

Φ
scalar

, (27.68b)

Wa
vector

= − ḣa , (27.68c)

hab
tensor

. (27.68d)

The synchronous line-element is, in a form that keeps the synchronous tetrad manifest,

ds2 = − dt2 + δab
[
(1−Φ)dxa− (∇c∇ah+∇cha +hac )dxc

][
(1−Φ)dxb− (∇d∇bh+∇dhb +hbd)dx

d
]
, (27.69)

which reduces to the synchronous metric

ds2 = − dt2 + [(1− 2 Φ)δab − 2∇a∇bh−∇ahb −∇bha − 2hab] dx
adxb . (27.70)

In synchronous gauge, a person at rest in the tetrad frame has coordinate 4-velocity

uµ = e0
µ = {1, 0, 0, 0} , (27.71)

so that the tetrad rest frame coincides with the coordinate rest frame, and proper time in the rest frame
coincides with coordinate time, τ = t. Moreover a person at rest in the tetrad frame is freely falling, which
follows from the fact that the acceleration experienced by a person at rest in the tetrad frame is zero,

Dua

Dτ
= u0

(
∂0u

a + Γa00u
0
)

= Γa00 = 0 , (27.72)

in which ∂0u
a = 0 because the 4-velocity at rest in the tetrad frame is constant, ua = {1, 0, 0, 0}, and

Γa00 = 0 from equations (27.15a) with the synchronous gauge choices (27.65) and (27.66). However, the
freely falling person's locally inertial frame is rotated relative to the tetrad frame. The cumulative rotation
is described by a rotor R = e−θ/2 generated by a bivector θ ≡ 1

2θabγγ
a ∧γγb (the factor of 1

2 would disappear
if the sum were over distinct pairs ab of antisymmetric indices) that is the integral of the tetrad connection
Γ0 ≡ 1

2Γab0γγ
a ∧γγb over time, as follows from ∂0a = − 1

2 [Γ0,a] for any multivector a, equation (15.15). From
equations (27.15c) and (27.68c) for Γab0, the bivector θab is

θab =

∫
Γab0 dτ = 1

2 (∇ahb −∇bha) , (27.73)

which is the curl of the vector potential ha.

27.10 Newtonian potential

The next few sections examine the physical meaning of each of the gauge-invariant potentials Ψ, Φ, Wa, and
hab by looking at the potentials at large distances produced by a �nite body containing energy-momentum,
such as the Sun.
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Einstein's equations Gmn = 8πTmn applied to the time-time component G00 of the Einstein tensor,
equation (27.16a), imply Poisson's equation

∇2Φ = 4πρ , (27.74)

where ρ is the mass-energy density

ρ ≡ T00 . (27.75)

The solution of Poisson's equation (27.74) is

Φ(x) = −
∫
ρ(x′) d3x′

|x′ − x|
. (27.76)

Consider a �nite body, for example the Sun, whose energy-momentum is con�ned within a certain region.
De�ne the mass M of the body to be the integral of the mass-energy density ρ,

M ≡
∫
ρ(x′) d3x′ . (27.77)

Equation (27.77) agrees with what the de�nition of the mass M would be in the non-relativistic limit, and
as seen below, equation (27.80), it is what a distant observer would infer the mass of the body to be based
on its gravitational potential Φ far away. Thus equation (27.77) can be taken as the de�nition of the mass
of the body even when the energy-momentum is relativistic. Choose the origin of the coordinates to be at
the centre of mass, meaning that ∫

x′ ρ(x′) d3x′ = 0 . (27.78)

Consider the potential Φ at a point x far outside the body. Expand the denominator of the integral on the
right hand side of equation (27.76) as a Taylor series in 1/x where x ≡ |x|

1

|x′ − x|
=

1

x

∞∑
`=0

(
x′

x

)`
P`(x̂ · x̂′) =

1

x
+
x̂ · x′

x2
+ ... (27.79)

where P`(µ) are Legendre polynomials. Then

Φ(x) = − 1

x

∫
ρ(x′) d3x′ − 1

x2
x̂ ·
∫
x′ ρ(x′) d3x′ −O(x−3)

= −M

x
−O(x−3) . (27.80)

Equation (27.80) shows that the potential far from a body goes as Φ = −M/x, reproducing the usual
Newtonian formula.
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27.11 Dragging of inertial frames

In Newtonian gauge, the vector potential W ≡Wa is the velocity at which the locally inertial tetrad frame
moves through the coordinates, equation (27.63). This is called the dragging of inertial frames. As shown
below, a body of angular momentum L drags frames around it with an angular velocity that goes to 2L/x3

at large distances x.
Einstein's equations applied to the vector part of the time-space component G0a of the Einstein tensor,

equation (27.16b), imply

∇2W = − 16πf , (27.81)

where W ≡Wa is the gauge-invariant vector potential, and f is the vector part of the energy �ux T 0a

f ≡ fa = fa ≡ T 0a

vector
= −T0a

vector
. (27.82)

The solution of equation (27.81) is

W (x) = 4

∫
f(x′) d3x′

|x′ − x|
. (27.83)

As in the previous section, �27.10, consider a �nite body, such as the Sun, whose energy-momentum is
con�ned within a certain region. Work in the rest frame of the body, de�ned to be the frame where the
energy �ux f integrated over the body is zero,∫

f(x′) d3x′ = 0 . (27.84)

De�ne the angular momentum L of the body to be

L ≡
∫
x′ × f(x′) d3x′ . (27.85)

Equation (27.85) agrees with what the de�nition of angular momentum would be in the non-relativistic limit,
where the mass-energy �ux of a mass density ρ moving at velocity v is f = ρv. As will be seen below, the
angular momentum (27.85) is what a distant observer would infer the angular momentum of the body to be
based on the potential W far away, and equation (27.85) can be taken to be the de�nition of the angular
momentum of the body even when the energy-momentum is relativistic. As will be proven momentarily,
equation (27.86), the integral

∫
x′afb(x

′) d3x′ is antisymmetric in ab. To show this, write fb = εbcd∇cφd for
some potential φd, which is valid because fb is the vector (curl) part of the energy �ux. Then∫

x′afb(x
′) d3x′ =

∫
x′aεbcd∇′cφd(x′) d3x′ = −

∫
εbcdφd(x

′)∇′cx′a d3x′ =

∫
εabdφd(x

′) d3x′ , (27.86)

where the third expression follows from the second by integration by parts, the surface term vanishing
because of the assumption that the energy-momentum of the body is con�ned within a certain region.
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Taylor expanding equation (27.83) using equation (27.79) gives

W (x) =
4

x

∫
f(x′) d3x′ +

4

x2

∫
(x̂ · x′)f(x′) d3x+O(x−3)

=
2

x2

∫
[(x̂ · x′)f(x′)− (x̂ · f(x′))x′] d3x+O(x−3)

=
2

x2
L× x̂+O(x−3) , (27.87)

where the �rst integral on the right hand side of the �rst line of equation (27.87) vanishes because the frame
is the rest frame of the body, equation (27.84), and the second integral on the right hand side of the �rst line
equals the �rst integral on the second line thanks to the antisymmetry of

∫
x′f(x′) d3x, equation (27.86).

The vector potential W ≡ Wa points in the direction of rotation, right-handedly about the axis of angular
momentum L. Equation (27.87) says that a body of angular momentum L drags frames around it at angular
velocity Ω at large distances x

W = Ω× x , Ω =
2L

x3
. (27.88)

Exercise 27.6. Gravity Probe B and the geodetic and frame-dragging precession of gyroscopes.

The purpose of Gravity Probe B was to measure the predicted general relativistic precession of a gyroscope
in the gravitational �eld of the Earth. Consider a gyroscope that is in free fall in a spacecraft in orbit around
the Earth. In the gyro rest frame, the spin 4-vector σm of the gyro has only spatial components

σm = {0, σa} . (27.89)

If the gyroscope is moving at 4-velocity um relative to the tetrad (Earth) frame, then the components sm of
the spin vector in the tetrad frame are related to those σm in the gyro frame by a Lorentz boost at 4-velocity
−um (early alphabet indices a, b, ... signify spatial components):

{s0, sa} =

{
σbu

b, σa +
σbu

bua

1 + u0

}
. (27.90)

Conversely, the components σm of the spin vector in the gyro frame are related to those sm in the tetrad
frame by

σa = sa − s0ua

1 + u0
. (27.91)

The gyro is in free-fall in orbit about the earth, so its 4-velocity um and 4-spin sm satisfy the geodesic
equations of motion

duk

dτ
+ Γkmnu

mun = 0 ,
dsk

dτ
+ Γkmns

mun = 0 . (27.92)



27.11 Dragging of inertial frames 733

1. Spin equation. Show that

dσa

dτ
= σb

[
−Γabcu

c − Γab0u
0 +

uc

1 + u0

(
Γ0acu

b − Γ0bcu
a
)

+
u0

1 + u0

(
Γ0a0u

b − Γ0b0u
a
)]

. (27.93)

[Hint: The �rst step is to convert σa to sk and uk, using equation (27.91). Then apply the geodesic
equations (27.92). Then convert sk back to σa using equation (27.90).]

2. Spin precession. Gravitational �elds in the solar system are weak, so perturbation theory in Minkowski
space is valid. The tetrad connections Γkmn in Newtonian gauge are, from equations (27.15),

Γ0a0 = −∇aΨ , (27.94a)

Γ0ab = δabΦ̇− 1
2 (∇aWb +∇bWa) , (27.94b)

Γab0 = 1
2 (∇aWb −∇bWa) , (27.94c)

Γabc = (δbc∇a − δac∇b) Φ +∇ahbc −∇bhac . (27.94d)

Show from equation (27.93) that the spin σ ≡ σa of a freely-falling gyroscope moving at 3-velocity
v ≡ u/u0 in a weak gravitational �eld evolves as (the proper time derivative d/dτ in equation (27.93)
can be converted to the coordinate time derivative d/dt by dividing by u0 = dt/dτ)

dσ

dt
= σ×

[
v×∇Φ +

u0

1 + u0
v×∇Ψ− 1

2
∇×W +

vc

2(1 + u0)
(∇Wc +∇cW )− vc∇×hc

]
. (27.95)

where the vector of vectors hc is shorthand for the tensor potential, hc ≡ hac. Conclude that at non-
relativistic velocities, |u| � u0 ≈ 1, and for Ψ = Φ and hab = 0, equation (27.95) reduces to

dσ

dt
= σ ×

(
3

2
v ×∇Φ− 1

2
∇×W

)
. (27.96)

By comparing your equation (27.96) to the equation of motion of a 3-vector rotating at angular velocity
ω,

dσ

dt
= ω × σ , (27.97)

deduce the angular velocity ω with which the spin s precesses. The term depending on Φ is the geodetic,
or de Sitter (de Sitter, 1916), precession, while the term depending on W is the frame-dragging, or
Lense-Thirring (Thirring, 1918; Lense and Thirring, 1918), precession. [Hint: Recall the 3-vector formula
a× (b× c) = (a · c)b− (a · b)c. If the object is non-relativistic, then |u| � u0 ≈ 1.]

3. Angular velocities. A body of mass M and angular momentum L produces scalar and vector pertur-
bations Φ and W at spatial position x of, equations (27.80) and (27.87),

Φ(x) = −M
x
, W (x) =

2

x2
L× x̂ . (27.98)

Show that for a circular orbit right-handed about direction n, so that v = v(n × x̂), the geodetic/de
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Sitter precession is, with units restored,

ωdS =
3(GM)3/2

2c2x5/2
n , (27.99)

while the frame-dragging/Lense-Thirring precession is

ωLT =
G

c2x3
[−L+ 3x̂(x̂ ·L)] . (27.100)

[Hint: You will need to use the relation between velocity v and potential Φ in a circular orbit.]
4. Orbit. What is the orbit-averaged angular velocity for frame-dragging precession in the cases of (i) an

equatorial circular orbit, (ii) a polar circular orbit? Compare the directions of the geodetic and frame-
dragging precessions in the two cases. Gravity Probe B occupied a polar orbit. Why was that a good
strategy?

5. Gravity Probe B. Estimate the angular velocity of the geodetic and frame-dragging precessions for
Gravity Probe B. Express your answer in arcseconds per year. [Hint: The GPB fact sheet at https://
einstein.stanford.edu/content/fact_sheet/GPB_FactSheet-0405.pdf gives the semi-major axis of GPB's
orbit as 7027.4 km. The IAU 2009 system of astronomical constants (Luzum et al., 2009) gives GM =

3.9860044 × 1014 m3 s−2 for the Earth. The Earth fact sheet at https://nssdc.gsfc.nasa.gov/planetary/
factsheet/earthfact.html gives needed information about the Earth, including its moment of inertia.]

6. Quadrupole precession. There is also a purely Newtonian precession that is produced by plain old
Newtonian gravity on an object with a quadrupole moment. If you wanted to test the geodetic and frame-
dragging e�ects with a gyroscope in orbit around the Earth, what would you do to avoid contamination
by Newtonian quadrupole precession?

27.12 Quadrupole pressure

Einstein's equations applied to the part of the Einstein tensor (27.16c) involving Ψ− Φ imply

∇2(Ψ− Φ) = − 8πQabTab , (27.101)

where Qab is the quadrupole operator (an integro-di�erential operator) de�ned by

Qab ≡ 3
2 ∇a∇b∇

−2 − 1
2 δab , (27.102)

with ∇−2 the inverse spatial Laplacian operator. In Fourier space, the quadrupole operator is

Qab = 3
2 k̂ak̂b −

1
2 δab . (27.103)

The quadrupole operator Qab yields zero when acting on δab (that is, Qab is traceless), and the Laplacian
operator ∇2 when acting on ∇a∇b

Qabδab = 0 , Qab∇a∇b = ∇2 . (27.104)

https://einstein.stanford.edu/content/fact_sheet/GPB_FactSheet-0405.pdf
https://einstein.stanford.edu/content/fact_sheet/GPB_FactSheet-0405.pdf
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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The solution of equation (27.101) is

Ψ− Φ = −
∫ [

3

2

(xa − x′a)(xb − x′b)
|x− x′|2

− 1

2
δab

]
Tab(x

′) d3x′

|x− x′|
. (27.105)

Taylor expanding equation (27.105) using equation (27.79) yields Ψ−Φ at large distance in the x-direction
from a �nite body,

Ψ− Φ = − 1

x

∫ [
Txx − 1

2 (Tyy + Tzz)
]
d3x′ +O(x−2) . (27.106)

Equation (27.101) shows that the source of the di�erence Ψ− Φ between the two scalar potentials is the
quadrupole pressure. Since the quadrupole pressure is small if either there are no relativistic sources, or any
relativistic sources are isotropic, it is often a good approximation to set Ψ = Φ. An exception is where there
is a signi�cant anisotropic relativistic component. For example, the energy-momentum tensor of a static
electric �eld is relativistic and anisotropic.
One situation where the di�erence between Ψ and Φ is appreciable is the case of freely-streaming photons

(and neutrinos) at around the time of recombination in cosmology. The 2008 analysis of the CMB by the
WMAP team claims to detect a non-zero value of Ψ− Φ from a slight shift in the third acoustic peak.

Exercise 27.7. Scalar potentials outside a spherical body. Argue that the traceless part of the spatial
energy-momentum tensor of a spherically symmetric distribution must take the form

Tab(r) =
(
r̂ar̂b − 1

3 δab
)(
p(r)− p⊥(r)

)
, (27.107)

where p(r) and p⊥(r) are the radial and transverse pressures at radius r. From equation (27.105), show that
Ψ− Φ at radial distance x from the centre of a spherically symmetric distribution is

Ψ(x)− Φ(x) = −
∫ ∞
x

(r2 − x2)
(
p(r)− p⊥(r)

) 4πdr

r
. (27.108)

Notice that the integral is over r > x, that is, only energy-momentum outside radius x produces non-vanishing
Ψ−Φ. Show that if the only source of energy-momentum outside the body is an electric charge Q, for which
−p = p⊥ = Q2/r4, then

Ψ(x)− Φ(x) =
2πQ2

x2
. (27.109)

27.13 Gravitational waves

The tensor perturbations hab describe propagating gravitational waves. The two independent components of
the tensor perturbations describe two polarizations. The two components are commonly designated h+ and
h×, equations (27.19). Gravitational waves induce a quadrupole tidal oscillation transverse to the direction
of propagation, and the subscripts + and × represent the shape of the quadrupole oscillation, as illustrated
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Figure 27.1 The two polarizations of gravitational waves. The (top) polarization h+ varies as cos 2χ under a right-

handed rotation by angle χ about the direction of propagation (into the paper), while the (bottom) polarization h×
varies as − sin 2χ. A gravitational wave causes a system of freely falling test masses to oscillate relative to a grid of

points a �xed proper distance apart.

by Figure 27.1. The h+ polarization varies as cos 2χ under a right-handed rotation by angle χ about the
direction of propagation (the z-direction), while the h× polarization varies as − sin 2χ.
Einstein's equations applied to the tensor component of the spatial Einstein tensor (27.16c) imply that

gravitational waves are sourced by the tensor component of the energy-momentum

�hab = 8π Tab
tensor

. (27.110)

The solution of the wave equation (27.110) can be obtained from the Green's function of the d'Alembertian
wave operator � de�ned by equation (27.17). The Green's function is by de�nition the solution of the wave
equation with a delta-function source. There are retarded solutions, which propagate into the future along
the future light cone, and advanced solutions, which propagate into the past along the past light cone.
In the present case, the solutions of interest are the retarded solutions, since these represent gravitational
waves emitted by a source. Because of the time and space translation symmetry of the d'Alembertian in �at
(Minkowski) space, the delta-function source of the Green's function can without loss of generality be taken
at the origin t = x = 0. Thus the Green's function F is the solution of

�F = δ4(x) , (27.111)
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where δ4(x) ≡ δ(t)δ3(x) is the 4-dimensional Dirac delta-function. The solution of equation (27.111) subject
to retarded boundary conditions is (a standard exercise in mathematics) the retarded Green's function

F =
δ(t− |x|)Θ(t)

4π|x|
, (27.112)

where and Θ(t) is the Heaviside function, Θ(t) = 0 for t < 0 and Θ(t) = 1 for t ≥ 0. The solution of the
sourced gravitational wave equation (27.110) is thus

hab(t,x) = − 2

∫ Tab(t
′,x′)

tensor

d3x′

|x′ − x|
, (27.113)

where t′ is the retarded time

t′ ≡ t− |x′ − x| , (27.114)

which lies on the past light cone of the observer, and is the time at which the source emitted the signal. The
solution (27.113) resembles the solution of Poisson's equation, except that the source is evaluated along the
past light cone of the observer.
As in ��27.10 and 27.11, consider a �nite body, whose energy-momentum is con�ned within a certain

region, and which is a source of gravitational waves. The Hulse-Taylor binary pulsar, Exercise 27.9, is a �ne
example. Far from the body, the leading order contribution to the tensor potential hab is, from the multipole
expansion (27.79),

hab(t,x) = − 2

x

∫
Tab(t

′,x′)
tensor

d3x′ . (27.115)

The integral (27.115) is hard to solve in general, but there is a simple solution for gravitational waves
whose wavelengths are large compared to the size of the body. To obtain this solution, �rst consider that
conservation of energy-momentum implies that

∂2T 00

∂t2
−∇a∇bT ba =

∂

∂t

(
∂T 00

∂t
+∇aT 0a

)
−∇a

(
∂T 0a

∂t
+∇bT ba

)
= 0 . (27.116)

Multiply by xaxb and integrate∫
xaxb

∂2T 00

∂t2
d3x =

∫
xaxb∇c∇dT cd d3x =

∫
T cd∇c∇d(xaxb) d3x = 2

∫
T ab d3x , (27.117)

where the third expression follows from the second by a double integration by parts. For wavelengths that
are long compared to the size of the body, the �rst expression of equations (27.117) is∫

xaxb
∂2T 00

∂t2
d3x ≈ ∂2

∂t2

∫
xaxb T

00 d3x =
∂2Iab
∂t2

, (27.118)

where Iab is the second moment of the mass

Iab ≡
∫
xaxb T

00 d3x . (27.119)
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The tensor (spin 2) part of the energy-momentum is trace-free. The trace-free part �Iab of the second moment
Iab is the quadrupole moment of the mass distribution (this de�nition is conventional, but di�ers by a factor
of 2/3 from what is called the quadrupole moment in spherical harmonics)

�Iab ≡ Iab − 1
3 δab I

c
c =

∫
(xaxb − 1

3 δab x
2)T 00 d3x . (27.120)

Substituting the last expression of equations (27.117) into equation (27.115) gives the quadrupole formula
for gravitational radiation at wavelengths long compared to the size of the emitting body

hab(t,x) = − 1

x
�̈Iab(t− x)

tensor

. (27.121)

Equation (27.121) is valid for long wavelength modes observed at distances x far from the source of grav-
itational radiation. The right hand side is evaluated at retarded time t − x: the observer is looking at the
source as it used to be at time t− x.
If the gravitational wave is moving in the z-direction, then the tensor components of the quadrupole

moment �Iab are

�I+ = 1
2 (Ixx − Iyy) , �I× = 1

2 (Ixy + Iyx) . (27.122)

Concept question 27.8. Units of the gravitational quadrupole radiation formula. Restore units
to the quadrupole formula (27.121) for gravitational radiation. Answer:

hab(t,x) = − G

c4x
�̈Iab(t− x)

tensor

. (27.123)

27.14 Energy-momentum carried by gravitational waves

The gravitational wave equation (27.27) in empty space appears to describe gravitational waves propagat-
ing in a region where the energy-momentum tensor Tmn is zero. However, gravitational waves do carry
energy-momentum, just as do other kinds of waves, such as electromagnetic waves. The energy-momentum
is quadratic in the tensor perturbation hab, and so vanishes to linear order.
To determine the energy-momentum in gravitational waves, calculate the Einstein tensor Gmn to second

order, imposing the vacuum conditions that the unperturbed and linear parts of the Einstein tensor vanish

0

Gmn =
1

Gmn = 0 . (27.124)

The parts of the second-order perturbation that depend on the tensor perturbation hab are, in a frame where
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the wavevector k is along the z-axis,

2

G00 = − (ḣab)(ḣ
ab) +

1

4

( ∂2

∂t2
+∇2

z

)
h2 , (27.125a)

2

G0z = − (ḣab)(∇zhab) +
1

2

∂

∂t
∇zh2 , (27.125b)

2

Gzz = − (∇zhab)(∇zhab) +
1

4

( ∂2

∂t2
+∇2

z

)
h2 , (27.125c)

where

h2 ≡ habhab = 2(h2
+ + h2

×) = 2h++h−− . (27.126)

Since the Einstein tensor vanishes to linear order, equations (27.124), the Lie derivative of the linear order
Einstein tensor is zero, and consequently the quadratic order expressions (27.125) are coordinate gauge-
invariant. They are also tetrad gauge-invariant since they depend only on the (coordinate and) tetrad gauge-
invariant perturbation hab. The rightmost set of terms on the right hand side of each of equations (27.125) are
total derivatives (with respect to either time t or space z). These terms yield surface terms when integrated
over a region, and tend to average to zero when integrated over a region much larger than a wavelength. On
the other hand, the leftmost set of terms on the right hand side of each of equations (27.125) do not average
to zero; for example, the terms for G00 and Gzz are negative everywhere, being minus a sum of squares. A
negative energy density? The interpretation is that these terms are to be taken over to the right hand side
of the Einstein equations, and re-interpreted as the energy-momentum T gw

mn in gravitational waves

T gw
00 ≡

1

8π

[
(ḣab)(ḣ

ab)− 1

4

( ∂2

∂t2
+∇2

z

)
h2

]
, (27.127a)

T gw
0z ≡

1

8π

[
(ḣab)(∇zhab)−

1

2

∂

∂t
∇zh2

]
, (27.127b)

T gw
zz ≡

1

8π

[
(∇zhab)(∇zhab)−

1

4

( ∂2

∂t2
+∇2

z

)
h2

]
. (27.127c)

The terms involving total derivatives, although they vanish when averaged over a region larger than many
wavelengths, ensure that the energy-momentum T gw

mn in gravitational waves satis�es conservation of energy-
momentum in the �at background space

∇mT gw
mn = 0 . (27.128)

Averaged over a region larger than many wavelengths, the energy-momentum in gravitational waves is

〈T gw
mn〉 =

1

8π
(∇mhab)(∇nhab) . (27.129)
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Equation (27.129) may also be written explicitly as a sum over the two linear or circular polarizations

〈T gw
mn〉 =

1

4π

[
(∇mh+)(∇nh+) + (∇mh×)(∇nh×)

]
=

1

8π

[
(∇mh++)(∇nh−−) + (∇nh++)(∇mh−−)

]
. (27.130)

Exercise 27.9. Hulse-Taylor binary.

1. Quadrupole moment. Consider a pair of massesM1 andM2 in circular orbit, with position vectors r1

and r2 relative to their center of mass. Argue that the quadrupole moment �Iab of the mass distribution
de�ned by

�Iab ≡
∑

masses X

MX(rX,a rX,b − 1
3 δab r

2
X) (27.131)

is

�Iab = mr2(r̂ar̂b − 1
3δab) , (27.132)

where r ≡ rx̂ ≡ r2 − r1 is the orbital separation, and m is the reduced mass

m ≡ M1M2

M
, M ≡M1 +M2 . (27.133)

[Hint: Assume for simplicity that the orbit is described by classical Newtonian mechanics.]

2. Tensor components. Suppose that the orbital plane is inclined at inclination angle ι to the line-of-
sight. Choose the observer's locally inertial frame so that the z-axis ẑ is the line-of-sight direction from
the center of mass of the binary to the observer, and the x-axis x̂ points in the plane of the orbit. Argue
that the orbital separation r is

r = r
[
(ẑ cos ι− ŷ sin ι) cosωt+ x̂ sinωt

]
(27.134)

where ω is the orbital frequency. Deduce that the tensor components of the quadrupole moment are

�I+ ≡ 1
2 (�Ixx − �Iyy) = 1

4mr
2
[
cos2ι− (1 + sin2ι) cos 2ωt

]
, (27.135a)

�I× ≡ �Ixy = − 1
2mr

2 sin ι sin 2ωt . (27.135b)

[Hint: Recall the trigonometric formulae cos2φ = 1
2 (1 + cos 2φ) and sin2φ = 1

2 (1− cos 2φ).]

3. Tensor perturbation. Deduce the tensor perturbations h+ and h× at large distance z from the orbiting
masses from the quadrupole formula

hab = − 1

z
�̈Iab(t− z) . (27.136)

Notice that t−z is the retarded time: an observer at distance z is looking at the orbiting masses as they
used to be at time t− z.
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4. Energy momentum in gravitational waves. The energy-momentum T gw
mn in gravitational waves is

given by the quadrupole formula

4π T gw
mn = (∇mh+)(∇nh+) + (∇mh×)(∇nh×) , (27.137)

where ∇m = {∂/∂t, ∂/∂xa}. Show that the non-vanishing components of the gravitational wave energy-
momentum tensor are

T gw
00 = −T gw

0z = T gw
zz =

m2r4ω6

2πz2

(
1 + 6 sin2ι+ sin4ι− cos4ι cos 4ω(t− z)

)
. (27.138)

[Hint: The quadrupole formula is valid for large z, so you need keep only the leading term in powers of
z.]

5. Energy �ux in gravitational waves The energy loss Ė by gravitational waves is given by the integral
of the energy �ux over all directions (note that energy �ux is T 0z with raised indices, and there is a
minus sign from T 0z = −T0z),

Ė = −
∫ π/2

−π/2
T gw

0z 2πz2 cos ι dι . (27.139)

Show that (with units of c and G restored)

Ė =
32Gm2r4ω6

5c5
. (27.140)

6. Rate of change of orbital frequency. If the orbit of the binary is described adequately by a Keplerian
orbit, then the orbital energy E is

E = −GmM
2r

, (27.141)

and the radius r and angular frequency ω are related by Kepler's third law

r3 =
GM

ω2
. (27.142)

The orbital period P is related to the angular frequency ω by

P ≡ 2π

ω
. (27.143)

Conclude that
Ṗ

P
= − ω̇

ω
=

3

2

Ė

E
= −96(Gm)(GM)2/3ω8/3

5c5
, (27.144)

the minus sign in the third expression coming from the fact that the orbit is losing energy.
7. Hulse-Taylor binary. The so-called binary pulsar PSR B1913+16 discovered by Hulse and Taylor

(1975) consists of two neutron stars, one a pulsar, in orbit. The masses of the pulsar and its companion
are measured from the orbital motion to be (Weisberg and Taylor, 2005)

M1 = 1.4414 M� , M2 = 1.3867 M� . (27.145)
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The orbital period is

P = 0.322997448930 day . (27.146)

What is the predicted general relativistic rate of change Ṗ of the period, in dimensionless units (or
s/ s, if you prefer)? [Hint: The heliocentric gravitational constant is GM� = 1.3271244 × 1020 m3 s−2

according to the IAU 2009 system of astronomical constants at https://link.springer.com/article/10.
1007%2Fs10569-011-9352-4.]

8. Eccentricity correction. Actually PSR B1913+16 has a substantial eccentricity,

e = 0.6171338 . (27.147)

The correct general relativistic formula including the e�ects of eccentricity is equation (27.144) multiplied
by a function f(e) of the eccentricity

Ṗ

P
= −96(Gm)(GM)2/3ω8/3

5c5
f(e) , (27.148)

with

f(e) =

(
1 +

73

24
e2 +

37

96
e4

)
(1− e2)−7/2 . (27.149)

Compare the eccentricity-corrected predicted numerical result for Ṗ with the measured value

Ṗ = −2.4184× 10−12 . (27.150)

Exercise 27.10. Will you be torn apart when two black holes merge? The book �Death from the
Skies!� by Phil Plait (the Bad Astronomer) contains a chapter �Seven ways a black hole can kill you.� One
of the ways, says Phil, is to stand near a pair of merging black holes, and be torn apart by the tidal forces
from the gravitational waves. Is it true?
1. Tidal forces. For a gravitational wave propagating in the z-direction in empty space, the non-zero

components of the Riemann tensor of the perturbed Minkowski space are

R0x0x = −R0y0y = −R0xzx = R0yzy = Rzxzx = −Rzyzy = ḧ+ , (27.151a)

R0x0y = −R0xzy = −R0yzx = Rzxzy = ḧ× . (27.151b)

From the expression (27.136) for hab that you derived in Exercise 27.9, and from the equation of geodesic
deviation

D2δξm
Dτ2

+Rklmnδξ
kulun = 0 (27.152)

deduce the tidal forces on a person moving non-relativistically. [Hint: If a person is moving non-
relativistically, it is legitimate to take the person's 4-velocity to be um = {1, 0, 0, 0}. Why?]

2. Comment. What is your advice to Phil Plait? [Hint: What you need here is rough estimates. Consider
both supermassive and stellar-sized black holes. To make things sensible, you should require that you,
the observer, be (a) outside the horizon, and (b) outside the point at which the static tidal force of the

https://link.springer.com/article/10.1007%2Fs10569-011-9352-4
https://link.springer.com/article/10.1007%2Fs10569-011-9352-4
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black hole would tear you apart even without gravitational waves. You may �nd it convenient to de�ne
the mass Mg of a black hole whose tidal force at the horizon is 1 gee per metre

g =
1

M2
g

(27.153)

which you �gured out in Exercise 11.10.]



Concept Questions

1. Why do the wavelengths of perturbations in cosmology expand with the Universe, whereas perturbations
in Minkowski space do not expand?

2. What does power spectrum mean?
3. Why is the power spectrum a good way to characterize the amplitude of �uctuations?
4. Why is the power spectrum of �uctuations of the Cosmic Microwave Background (CMB) plotted as a

function of harmonic number?
5. What causes the acoustic peaks in the power spectrum of �uctuations of the CMB?
6. Are there acoustic peaks in the power spectrum of matter (galaxies) today?
7. What sets the scale of the �rst peak in the power spectrum of the CMB? [What sets the physical scale?

Then what sets the angular scale?]
8. The odd peaks (including the �rst peak) in the CMB power spectrum are compression peaks, while the

even peaks are rarefaction peaks. Why does a rarefaction produce a peak, not a trough?
9. Why is the �rst peak the most prominent? Why do higher peaks generally get progressively weaker?
10. The third peak is about as strong as the second peak? Why?
11. The matter power spectrum reaches a maximum at a scale that is slightly larger than the scale of the

�rst baryonic acoustic peak. Why?
12. The physical density of species x at the time of recombination is proportional to Ωxh

2 where Ωx is the
ratio of the actual to critical density of species x at the present time, and h ≡ H0/100 km s−1 Mpc−1 is
the present-day Hubble constant. Explain.

13. How does changing the baryon density Ωbh
2 a�ect the CMB power spectrum?

14. How does changing the non-baryonic cold dark matter density Ωch
2, without changing the baryon

density Ωbh
2, a�ect the CMB power spectrum?

15. What e�ects do neutrinos have on perturbations?
16. How does changing the curvature Ωk a�ect the CMB power spectrum?
17. How does changing the dark energy ΩΛ a�ect the CMB power spectrum?

744



28

An overview of cosmological perturbations

Undoubtedly the preeminent application of general relativistic perturbation theory is to cosmology. Fluctu-
ations in the temperature and polarization of the Cosmic Microwave Background (CMB) provide an obser-
vational window on the Universe at 400,000 years old that, coupled with other astronomical observations,
has yielded impressively precise measurements of cosmological parameters.
The theory of cosmological perturbations is based principally on general relativistic perturbation theory

coupled to the physics of 5 species of energy-momentum: photons, baryons, non-baryonic cold dark matter,
neutrinos, and dark energy.
Dark energy was not important at the time of recombination, where the CMB that we see comes from,

but it is important today. If dark energy has a vacuum equation of state, p = −ρ, then dark energy does
not cluster (vacuum energy density is a constant), but it a�ects the evolution of the cosmic scale factor,
and thereby does a�ect the clustering of baryons and dark matter today. Moreover the evolution of the
gravitational potential along the line of sight to the CMB does a�ect the observed power spectrum of the
CMB, the so-called integrated Sachs-Wolfe e�ect.
1. In�ationary initial conditions. The theory of in�ation has been remarkably successful in accounting

for many aspects of observational cosmology, even though a fundamental understanding of the in�aton
scalar �eld that supposedly drove in�ation is missing. The current paradigm holds that primordial �uc-
tuations were generated by vacuum quantum �uctuations in the in�aton �eld at the time of in�ation.
The theory makes the generic predictions that the gravitational potentials generated by vacuum �uctu-
ations were (a) Gaussian, (b) adiabatic (meaning that all species of mass-energy �uctuated together,
as opposed to in opposition to each other), and (c) scale-free, or rather almost scale-free (the fact that
in�ation came to an end modi�es slightly the scale-free character). The three predictions �t the observed
power spectrum of the CMB astonishingly well.

2. Comoving Fourier modes. The spatial homogeneity of the Friedmann-Lemaître-Robertson-Walker
background spacetime means that its perturbations are characterized by Fourier modes of constant co-
moving wavevector. Each Fourier mode generated by in�ation evolved independently, and its wavelength
expanded with the Universe.

3. Scalar, vector, tensor modes. Spatial isotropy on top of spatial homogeneity means that the pertur-

745
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bations comprised independently evolving scalar, vector, and tensor modes. Scalar modes dominate the
�uctuations of the CMB, and caused the clustering of matter today. Vector modes are usually assumed
to vanish, because there is no mechanism to generate the rotation that sources vector modes, and the ex-
pansion of the Universe tends to redshift away any vector modes that might have been present. In�ation
generates gravitational waves, which then propagate essentially freely to the present time. Gravitational
waves leave an observational imprint in the �B� (magnetic (−)`+1 parity) mode of polarization of the
CMB, whereas scalar modes produce only an �E� (electric (−)` parity) mode of polarization.

4. Power spectrum. The primary quantity measurable from observations is the power spectrum, which
is the variance of �uctuations of the CMB or of matter (as traced by galaxies, galaxy clusters, the
Lyman alpha forest, peculiar velocities, weak lensing, or 21 centimetre observations at high redshift).
The statistics of a Gaussian �eld are completely characterized by its mean and variance. The mean
characterizes the unperturbed background, while the variance characterizes the �uctuations. For a 3-
dimensional statistically homogeneous and isotropic �eld, the variance of Fourier modes δk de�nes the
power spectrum P (k),

〈δkδk′〉 = 1kk′P (k) , (28.1)

where 1kk′ is the unit matrix in the Hilbert space of Fourier modes,

1kk′ ≡ (2π)3δ3
D(k + k′) . (28.2)

The �momentum-conserving� Dirac delta-function in equation (28.2) is a consequence of statistical spa-
tial translation symmetry. Isotropy implies that the power spectrum P (k) is a function only of the
magnitude k ≡ |k| of the wavevector. For a statistically rotation-invariant �eld projected on the sky,
such as the CMB, the variance of spherical harmonic modes Θ`m ≡ δT`m/T de�nes the power spectrum
C`,

〈Θ`mΘ`′m′〉 = 1`m,`′m′C` (28.3)

where 1`m,`′m′ is the unit matrix in the Hilbert space of spherical harmonics (distinguish the three
usages of δ in this paragraph: δ meaning �uctuation, δD meaning Dirac delta-function, and δ meaning
Kronecker delta, as in the following equation),

1`m,`′m′ ≡ δ``′δm,−m′ . (28.4)

Again, the �angular momentum-preserving� condition (28.4) that ` = `′ and m+m′ = 0 is a consequence
of rotational symmetry. The same rotational symmetry implies that the power spectrum C` is a function
only of the harmonic number `, not of the directional harmonic number m.

5. Reheating. Early Universe in�ation evidently came to an end. It is presumed that the vacuum energy
released by the decay of the in�aton �eld, an event called reheating, somehow e�ciently produced the
matter and radiation �elds that we see today. After reheating, the Universe was dominated by relativistic
�elds, collectively called �radiation.� Reheating changed the evolution of the cosmic scale factor from
acceleration to deceleration, but is presumed not to have generated additional �uctuations.
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6. Photon-baryon �uid and the sound horizon. Photon-electron (Thomson) scattering kept photons
and baryons tightly coupled to each other, so that they behaved like a relativistic �uid. As long as the ra-
diation density exceeded the baryon density, which remained true up to near the time of recombination,

the speed of sound in the photon-baryon �uid was
√
p/ρ ≈

√
1
3 of the speed of light. Fluctuations with

wavelengths outside the sound horizon grew by gravity. As time went by, the sound horizon expanded
in comoving radius, and �uctuations thereby came inside the sound horizon. Once inside the sound
horizon, sound waves could propagate, which tended to decrease the gravitational potential. However,
each individual sound wave itself continued to oscillate, its oscillation amplitude δT/T relative to the
background temperature T remaining approximately constant. The relativistic suppression of the poten-
tial at small scales is responsible for the turnover in the observed power spectrum of matter �uctuations
today from large to small scales.

7. Acoustic peaks in the power spectrum. The oscillations of the photon-baryon �uid produced the
characteristic pattern of peaks and troughs in the CMB power spectrum observed today. The same
peaks and troughs occur in the matter power spectrum, but are much less prominent, at a level of about
10% as opposed to the order unity oscillations observed in the CMB power spectrum. For adiabatic
�uctuations, the amplitude of the temperature �uctuations follows a pattern ∼ − cos(kηs) where ηs is
the comoving sound horizon. The n'th peak occurs at a wavenumber k where kηs ≈ nπ. In the observed
CMB power spectrum, the relevant value of the sound horizon ηs is its value ηs,rec at recombination.
Thus the wavenumber k of the �rst peak of the observed CMB power spectrum occurs where kηs,rec ≈ π.
Two competing forces cause a mode to evolve: a gravitational force that ampli�es compression, and a
restoring pressure force that counteracts compression. When a mode enters the sound horizon for the
�rst time, the compressing gravitational force beats the restoring pressure force, so the �rst thing that
happens is that the mode compresses further. Consequently the �rst peak is a compression peak. This
sets the subsequent pattern: odd peaks are compression peaks, while even peaks are rarefaction peaks.
The observed temperature �uctuations of the CMB are produced by a combination of intrinsic temper-
ature �uctuations, Doppler shifts, and gravitational redshifting out of potential wells. The Doppler shift
produced by the velocity of a perturbation is 90◦ out of phase with the temperature �uctuation, and
so tends to �ll in the troughs in the power spectrum of the temperature �uctuation. This is the main
reason that the observed CMB power spectrum remains above zero at all scales.

8. Logarithmic growth of matter �uctuations. Non-baryonic cold dark matter interacts weakly except
by gravity, and is needed to explain the observed clustering of matter in the Universe today in spite of the
small amplitude of temperature �uctuations in the CMB. The adjective �cold� refers to the requirement
that the dark matter became non-relativistic (p = 0) at some early time. If the dark matter is both
non-baryonic and cold, then it did not participate in the oscillations of the photon-baryon �uid. During
the radiation-dominated phase prior to matter-radiation equality, dark matter matter �uctuations inside
the sound horizon grow logarithmically. The logarithmic growth translates into a logarithmic increase
in the amplitude of matter �uctuations at small scales, and is a characteristic signature of non-baryonic
cold dark matter. Unfortunately this signature is not readily discernible in the power spectrum of matter
today, because of nonlinear clustering.
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9. Epoch of matter-radiation equality. The density of non-relativistic matter decreases more slowly
than the density of relativistic radiation. There came a point where the matter density equaled the
radiation density, an epoch called matter-radiation equality, after which the matter density exceeded
the radiation density. The observed ratio of the density of matter and radiation (CMB) today require
that matter-radiation equality occurred at a redshift of zeq ≈ 3400, a factor of 3 higher in redshift
than recombination at zrec ≈ 1100. After matter-radiation equality, dark matter perturbations grew
more rapidly, linearly instead of just logarithmically with cosmic scale factor. A larger dark matter
density causes matter-radiation equality to occur earlier. The sound horizon at matter-radiation equality
corresponds to a scale roughly around the 2.5'th peak in the CMB power spectrum. For adiabatic
�uctuations, the way that the temperature and gravitational perturbations interact when a mode �rst
enters the sound horizon means that the temperature oscillation is 5 times larger for modes that enter
the horizon well into the radiation-dominated epoch versus well into the matter-dominated epoch. The
e�ect enhances the amplitude of observed CMB peaks higher than 2.5 relative to those lower than 2.5.
The observed relative strengths of the 3rd versus the 2nd peak of the CMB power spectrum provides
a measurement of the redshift of matter-radiation equality, and direct evidence for the presence of
non-baryonic cold dark matter.

10. Sound speed. The density of baryons decreased more slowly than the density of radiation, so that at
around recombination the baryon density was becoming comparable to the radiation density. The sound
speed

√
p/ρ depends on the ratio of pressure p, which was essentially entirely that of the photons, to the

density ρ, which was produced by both photons and baryons. The sound speed consequently decreased

below
√

1
3 . Increasing the baryon-to-photon ratio at recombination has several observational e�ects on

the acoustic peaks of the CMB power spectrum, making it a prime measurable parameter from the CMB.
First, an increased baryon fraction increases the gravitational forcing (baryon loading), which enhances
the compression (odd) peaks while reducing the rarefaction (even) peaks. Second, increasing the baryon
fraction reduces the sound speed, which: (a) decreases the amplitude of the radiation velocity relative
to the radiation density, so increasing the prominence of the peaks; and (b) reduces the oscillation
frequency of the photon-baryon �uid, which shifts the peaks to larger scales. The reduced sound speed
also causes an adiabatic reduction of the amplitudes of all modes by the square root of the sound speed,
but this e�ect is degenerate with an overall reduction in the initial amplitudes of modes produced by
in�ation.

11. Electron-photon scattering.

Prior to recombination, photons are coupled to the baryonic plasma mainly by nonrelativistic electron-
photon (Thomson) scattering. The �nite mean free path to scattering damps oscillations of the photon-
baryon �uid. As recombination approaches, the mean free path grows longer, and the damping becomes
greater. Damping by Thomson scattering is responsible for the decline in the CMB power spectrum at
smaller scales.

12. Recombination. As the temperature cooled below about 3,000 K, electrons combined with hydrogen
and helium nuclei into neutral atoms. This drastically reduced the amount of photon-electron scattering,
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releasing the CMB to propagate almost freely. At the same time, the baryons were released from the
photons. Without radiation pressure to support them, �uctuations in the baryons began to grow like
the dark matter �uctuations.

13. Neutrinos. Probably all three species of neutrino have mass less than 0.2 eV and were therefore rel-
ativistic up to and at the time of recombination, equation (10.110). Each of the 3 species of neutrino
had an abundance comparable to that of photons, and therefore made an important contribution to the
relativistic background and its �uctuations. Unlike photons, neutrinos streamed freely, without scatter-
ing. The relativistic free-streaming of neutrinos provided the main source of the quadrupole pressure
that produces a non-vanishing di�erence Ψ − Φ between the scalar potentials. However, the neutrino
quadrupole pressure was still only ∼ 10% of the neutrino monopole pressure. To the extent that the
neutrino quadrupole pressure can be approximated as negligible, the neutrinos and their �uctuations
can be treated the same as photons.

14. CMB �uctuations. The CMB �uctuations seen on the sky today represent a projection of �uctuations
on a thin but �nite shell at a redshift of about 1100, corresponding to an age of the Universe of
about 400,000 yr. The temperature, and the degrees of polarization in two di�erent directions, provide
3 independent observables at each point on the sky. The isotropy of the unperturbed radiation means
that it is most natural to measure the �uctuations in spherical harmonics, which are the eigenmodes of
the rotation operator. Similarly, it is natural to measure the CMB polarization in spin harmonics.

15. Matter �uctuations. After recombination, perturbations in the non-baryonic and baryonic matter
grew by gravity, essentially una�ected any longer by photon pressure. If one or more of the neutrino
types had a mass small enough to be relativistic but large enough to contribute appreciable density,
then its relativistic streaming could have suppressed power in matter �uctuations at small scales, but
observations show no evidence of such suppression, which places an upper limit of about an eV on the
mass of the most massive neutrino. The matter power spectrum measured from the clustering of galaxies
contains acoustic oscillations like the CMB power spectrum, but because the non-baryonic dark matter
dominates the baryons, the oscillations are much smaller.

16. Integrated Sachs-Wolfe e�ect. Variations in the gravitational potential along the line of sight to the
CMB a�ect the CMB power spectrum at large scales. This is called the integrated Sachs-Wolfe (ISW)
e�ect. If matter dominates the background, then the gravitational potential Φ has the property that it
remains constant in time for linear �uctuations, and there is no ISW e�ect. In practice, ISW e�ects are
produced by at least three distinct causes. First, an early-time ISW e�ect is produced by the fact that
the Universe at recombination still has an appreciable component of radiation, and is not yet wholly
matter-dominated. Second, a late-time ISW e�ect is produced either by curvature or by a cosmological
constant. Third, a non-linear ISW e�ect is produced by non-linear evolution of the potential.



29

Cosmological perturbations in a �at FLRW
background

For simplicity, this book considers only a �at (not closed or open) Friedmann-Lemaître-Robertson-Walker
(FLRW) background. The comoving Hubble distance at recombination was much smaller than today, and
consequently the cosmological density Ω was much closer to 1 at recombination than it is today. Since
observations indicate that the Universe today is within 1% of being spatially �at (Aghanim et al., 2018), it
is an excellent approximation to treat the Universe at the time of recombination as being spatially �at.
With some modi�cations arising from cosmological expansion, perturbation theory on a �at FLRW back-

ground is quite similar to perturbation theory in �at (Minkowski) space, Chapter 27.
The strategy is to start in a completely general gauge, and to discover how the conformal Newtonian

(Copernican) gauge, which is used in subsequent chapters, emerges naturally as that gauge in which the
perturbations are precisely the physical perturbations.

29.1 Unperturbed line-element

It is convenient to choose the coordinate system xµ ≡ {x0, x1, x2, x3} ≡ {η, x, y, z} to consist of conformal
time η together with comoving Cartesian coordinates x ≡ xα ≡ {x, y, z}. The coordinate metric of the
unperturbed background �at FLRW geometry is then

ds2 = a(η)2
(
− dη2 + dx2 + dy2 + dz2

)
, (29.1)

where a(η) is the cosmic scale factor. The unperturbed coordinate metric is thus the conformal Minkowski
metric

0
gµν = a(η)2ηµν . (29.2)

The tetrad is taken to be orthonormal, with the unperturbed tetrad axes γγm ≡ {γγ0,γγ1,γγ2,γγ3} being aligned
with the unperturbed coordinate axes 0

eµ ≡ {
0
e0,

0
e1,

0
e2,

0
e3} so that the unperturbed vierbein and inverse

vierbein are respectively a and 1/a times the unit matrix,

0
emµ = a δmµ ,

0
em

µ =
1

a
δµm . (29.3)
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Let ∇a denote spatial derivatives with respect to comoving spatial coordinates,

∇a ≡ δαa
∂

∂xα
=

∂

∂xa
, (29.4)

which should be distinguished from the directed derivatives ∂a ≡ ea
µ ∂/∂xµ ≈ (1/a) ∂/∂xa. Because the

background FLRW geometry is spatially homogeneous, comoving spatial gradients ∇a are of �rst order,
and can be treated as spatial vectors whose tetrad-frame components can be raised and lowered with the
Euclidean metric. Further, let overdot denote partial di�erentiation with respect to conformal time η,

overdot ≡ ∂

∂η
, (29.5)

so that for example ȧ ≡ da/dη. The Hubble parameter H in the unperturbed background is

H ≡ ȧ

a2
. (29.6)

29.2 Comoving Fourier modes

Since the unperturbed Friedmann-Lemaître-Robertson-Walker spacetime is spatially homogeneous and iso-
tropic, it is natural to work in comoving Fourier modes. Comoving Fourier modes have the key property that
they evolve independently of each other, as long as perturbations remain linear. Equations in Fourier space
are obtained by replacing the comoving spatial gradient ∇a by −i times the comoving wavevector ka (the
choice of sign is the standard convention in cosmology)

∇a → −ika . (29.7)

By this means, the spatial derivatives become algebraic, so that the partial di�erential equations governing
the evolution of perturbations become ordinary di�erential equations.
In what follows, the comoving spatial gradient ∇a will be used interchangeably with −ika, whichever is

most convenient.

29.3 Classi�cation of vierbein perturbations

The de�nition (26.1) of the vierbein perturbations ϕmn implies that the perturbed inverse vierbein in the
perturbed FLRW spacetime is

em
µ =

1

a
(δnm + ϕm

n)δµn = (ηmn + ϕmn)
0
enµ , (29.8)

while the perturbed vierbein is

emµ = a(δmn − ϕnm)δnµ = (ηmn − ϕnm)
0
enµ . (29.9)
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The covariant tetrad-frame components ϕmn of the vierbein perturbation of the FLRW geometry decom-
pose in much the same way as in �at Minkowski case into 6 scalars, 4 vectors, and 1 tensor, a total of
6 + 4 × 2 + 1 × 2 = 16 degrees of freedom (the following equations are essentially the same as those (27.6)
for the �at Minkowski background),

ϕ00 = ψ
scalar

, (29.10a)

ϕ0a = ∇aw
scalar

+ wa
vector

, (29.10b)

ϕa0 = ∇aw̃
scalar

+ w̃a
vector

, (29.10c)

ϕab = δab φ
scalar

+∇a∇bh
scalar

+ εabc∇ch̃
scalar

+∇ahb
vector

+∇bh̃a
vector

+ hab
tensor

. (29.10d)

The 4 covariant tetrad-frame components εm of the coordinate shift of the coordinate gauge transforma-
tion (26.9) similarly decompose into 2 scalars and 1 vector (2 degrees of freedom) (the following equation is
essentially the same as that (27.8) for the �at Minkowski background),

εm = { ε0
scalar

, ∇aε
scalar

+ εa
vector

} . (29.11)

The vierbein perturbations ϕmn transform under a coordinate gauge transformation (26.9) as, equa-
tion (26.20),

ϕmn → ϕ′mn = ϕmn + ∂mεn = ϕmn +
1

a
∇mεn , (29.12)

with vanishing contribution from the unperturbed tetrad-frame connection, equation (29.23), since the lat-
ter is symmetric whereas equation (26.20) depends on an antisymmetric combination of connections. The
individual components of the vierbein perturbations transform under a coordinate gauge transformation as

ϕ00 → ψ +
1

a

∂ε0
∂η

scalar

, (29.13a)

ϕ0a → ∇a
(
w +

1

a

( ∂
∂η
− ȧ

a

)
ε

)
scalar

+

(
wa +

1

a

( ∂
∂η
− ȧ

a

)
εa

)
vector

, (29.13b)

ϕa0 → ∇a
(
w̃ +

1

a
ε0

)
scalar

+ w̃a
vector

, (29.13c)

ϕab → δab

(
φ− ȧ

a2
ε0

)
scalar

+∇a∇b
(
h+

1

a
ε

)
scalar

+ εabc∇ch̃
scalar

+∇a
(
hb +

1

a
εb

)
vector

+∇bh̃a
vector

+ hab
tensor

, (29.13d)
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or equivalently

ψ → ψ +
1

a

∂ε0
∂η

, (29.14a)

w → w +
1

a

( ∂
∂η
− ȧ

a

)
ε , wa → wa +

1

a

( ∂
∂η
− ȧ

a

)
εa , (29.14b)

w̃ → w̃ +
1

a
ε0 , w̃a → w̃a , (29.14c)

φ→ φ− ȧ

a2
ε0 , h→ h+

1

a
ε , h̃→ h̃ , ha → ha +

1

a
εa , h̃a → h̃a , hab → hab . (29.14d)

Eliminating the coordinate shift εm from the transformations (29.14) yields 12 coordinate gauge-invariant
combinations of the perturbations,

ψ −
( ∂
∂η

+
ȧ

a

)
w̃

scalar

, w − ḣ
scalar

, wa − ḣa
vector

, w̃a
vector

, φ+
ȧ

a
w̃

scalar

, h̃
scalar

, h̃a
vector

, hab
tensor

. (29.15)

Six combinations of these coordinate gauge-invariant perturbations depend only on the symmetric part
ϕmn + ϕnm of the vierbein perturbations, and are therefore tetrad gauge-invariant as well as coordinate
gauge-invariant. These 6 coordinate and tetrad gauge-invariant perturbations comprise 2 scalars, 1 vector,
and 1 tensor

Ψ
scalar

≡ ψ −
( ∂
∂η

+
ȧ

a

)
(w + w̃ − ḣ) , (29.16a)

Φ
scalar

≡ φ+
ȧ

a
(w + w̃ − ḣ) , (29.16b)

Wa
vector

≡ wa + w̃a − ḣa − ˙̃
ha , (29.16c)

hab
tensor

. (29.16d)

The coordinate and tetrad gauge-invariant perturbations (29.16) reduce to those (27.13) in Minkowski space
when the cosmic scale factor does not change, ȧ = 0.

29.4 Residual global gauge freedoms

There are residual global gauge freedoms associated with (a) uncertainty in the cosmic scale factor a(η) in
the background FLRW geometry, and (b) addition of spatially uniform but time-dependent contributions
to vierbein components that are spatial gradients in equations (29.13), namely w, w̃, h, h̃, ha, and h̃a.
The freedoms are global in the sense that they are spatially uniform functions of time η. The global gauge
freedoms mean that the scalar and vector perturbations Ψ, Φ, and Wa are gauge-invariant only up to the
addition of spatially uniform functions of time. The tensor perturbation hab remains fully gauge-invariant.
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To illustrate the global gauge freedoms, consider the line-element

ds2 = a(η)2
{
− [1 + Ψ(η)]

2
dη2 + [1− Φ(η)]

2
δab dx

adxb
}
, (29.17)

in which Ψ(η) and Φ(η) are functions only of conformal time η. A rescaling of the cosmic scale factor a,
together with a coordinate transformation of conformal time η,

a→ a′ = a(1− Φ) , (29.18a)

dη → dη′ =

(
1 + Ψ

1− Φ

)
dη , (29.18b)

brings the line-element (29.17) to FLRW form,

ds2 = a′(η′)2
(
− dη′2 + δab dx

adxb
)
. (29.19)

The rescaling (29.18a) of the cosmic scale factor a is distinct from any coordinate transformation, and consti-
tutes an additional global gauge freedom over and above the coordinate and tetrad gauge freedoms discussed
in �29.3. The transformation (29.18b) of the time coordinate is allowed because Ψ and Φ are functions only
of time. The argument in �29.3 that Ψ and Φ are gauge-invariant is spoiled because in the particular case
that the time coordinate shift ε0 is a function only of time η, the change in the perturbation w̃ is decoupled
from the change in ε0, because w̃ and ε0 appear only inside a spatial gradient in the transformation (29.13c).
The freedom to adjust w̃ by an amount depending only on time propagates into a freedom to adjust Ψ and
Φ, equations (29.16a) and (29.16b). More generally, the combination w + w̃ − ḣ upon which both Ψ and Φ

depend can be adjusted by adjusting any of w, w̃, or h by an amount depending only on time, since all these
perturbations appear inside spatial gradients in equations (29.13). Similarly, the vector perturbation Wa,
equation (29.16c), can be adjusted by an amount depending only on time by adjusting either of ha or h̃a.
Physically, the residual global gauge freedom in the scalar perturbations Ψ and Φ re�ects the impossibility

of distinguishing a perturbation of the mean from the mean. Any perturbation of the mean can be absorbed
into an adjustment of the parameters of the unperturbed background.
To what does the residual global gauge freedom in the vector perturbation Wa correspond? Physically,

Wa represents the velocity of dragging of the tetrad frame through the coordinates. A spatially uniform Wa

corresponds to a uniform velocity of the entire Universe, which is observationally undetectable.
Modes whose wavelengths are larger than the horizon size of an observer look spatially uniform to the

observer. The observer cannot distinguish such modes from a change in the parameters of the background
FLRW geometry. Thus an observer cannot measure the amplitudes Ψ, Φ, Wa, or hab of modes outside their
horizon.
Of course, an observer can measure modes that were outside the horizon of an earlier observer. For example,

astronomers on Earth today can and do measure in both the CMB and in galaxy clustering �superhorizon�
modes that were outside the horizon of an observer at the time of recombination.
The residual global gauge freedoms mean that the intrinsic monopole mode of the observed CMB is un-

measurable, being indistinguishable from a rescaling of the temperature of the FLRW background. Moreover
the intrinsic CMB dipole is unmeasurable, being indistinguishable from an adjustment of the rest frame of
the FLRW background.
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In the remainder of this book, the perturbations Ψ, Φ, Wa, and hab will be referred to as gauge-invariant
on the understanding that this refers to modes that are measurable by (within the horizon of) the observer.

Concept question 29.1. Global curvature as a perturbation? The usual FLRW metric contains a
curvature constant κ in addition to a cosmic scale factor a. Can curvature κ, if small, be treated as a
perturbation to a �at FLRW geometry, and if so, how? Does the curvature perturbation represent a residual
global gauge freedom? Answer. Yes, κ, if small, can be treated as a perturbation. The isotropic (Poincaré)
form of the FLRW line-element, equation (10.26), takes the form

ds2 = a(η)2

(
− dη2 +

1

1 + 1
4κx

2
δab dx

adxb
)
, (29.20)

where x2 ≡
∑
a x

2
a is the square of the comoving radial distance from the origin. If the curvature scale is much

smaller that the horizon distance, 1
2

√
|κ| η � 1, then the curvature looks like a perturbation proportional to

the square of the comoving distance,

Φ(x) = 1
8κx

2 . (29.21)

Is this a residual global gauge freedom? Equation (29.21) states that only the sum 1
8κx

2 − Φ is gauge-
invariant, so yes there is a residual global gauge freedom associated with the ambiguity between κ and Φ.
In pre-1998 days when astronomers were measuring Ωm ≈ 0.3 and only the reckless contemplated non-zero
ΩΛ, it was necessary to consider that Nature might have chosen a substantial curvature Ωk ≈ 0.7, in which
case κ was decidedly non-zero (and negative), certainly not a perturbation. Post dark-energy, observations
are stubbornly consistent with zero curvature. Occam's razor would then prefer the simpler of two models
that �t the data, a �at background geometry κ = 0.

Concept question 29.2. Can the Universe at large rotate? Is it possible for a Universe to rotate
globally? What would be the observable signature, if any? Answer. Yes, the Universe could rotate globally.
Gauge-invariant rotational modes are described by the gauge-invariant vector gravitational potential W±.
A non-vanishing vector gravitational potential would drive non-vanishing unpolarized and polarized vector
photon �uctuations Θ`,±1 with ` ≥ 1 and 2Θ`,±1 with ` ≥ 2. Unfortunately there is no clean observational
signal of such modes, because the observed CMB on the sky mixes scalar, vector, and tensor modes with
the same ` (this is the sum over m in equation (36.31)). Vector modes are expected to be overwhelmed by
scalar modes in the unpolarized and E-mode polarized CMB, and by tensor modes in the B-mode polarized
CMB. The reason for the dominance of scalar and tensor over vector modes is that whereas scalar and
tensor gravitational potentials remain approximately constant for modes outside the horizon, the vector
gravitational potentials W± tend to redshift to zero as the Universe expands, equation (29.51). Thus vector
perturbations are usually negligible in standard cosmological models, �35.12.
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29.5 Metric, tetrad connections, and Einstein tensor

This section gives expressions in a completely general gauge for perturbed quantities in the �at Friedmann-
Lemaître-Robertson-Walker background geometry.

29.5.1 Metric

The unperturbed metric is the FLRW metric (29.2). The perturbation
1
gµν to the coordinate metric is,

equation (26.6),
1
gηη = −a2 2ψ

scalar

, (29.22a)

1
gηa = −a2

[
∇a(w + w̃)

scalar

+ (wa + w̃a)
vector

]
, (29.22b)

1
gab = −a2

[
2φ δab
scalar

+ 2∇a∇bh
scalar

+∇a(hb + h̃b)
vector

+∇b(ha + h̃a)
vector

+ 2hab
tensor

]
. (29.22c)

The coordinate metric is tetrad gauge-invariant, but not coordinate gauge-invariant.

29.5.2 Tetrad-frame connections

The tetrad-frame connections Γkmn are obtained from the usual formula (11.54). The non-vanishing unper-
turbed tetrad-frame connections are

0

Γ0ab = − ȧ

a2
δab . (29.23)

The perturbations
1

Γkmn to the tetrad-frame connections are

1

Γ0a0 =
1

a

[
−∇a

(
ψ −

( ∂
∂η

+
ȧ

a

)
w̃

)
scalar

+
( ∂
∂η

+
ȧ

a

)
w̃a

vector

]
, (29.24a)

1

Γ0ab =
1

a

[
F δab
scalar

−∇a∇b(w − ḣ)
scalar

− 1
2 (∇aWb +∇bWa)

vector

+∇bw̃a
vector

+ ḣab
tensor

]
, (29.24b)

1

Γab0 =
1

a

[
1
2 (∇aWb −∇bWa)

vector

− ∂

∂η
(εabd∇dh̃

scalar

−∇ah̃b +∇bh̃a
vector

)

]
, (29.24c)

1

Γabc =
1

a

[
(δbc∇a − δac∇b)

(
φ+

ȧ

a
w̃
)

scalar

− ȧ

a
(δacδbd − δbcδad)w̃d

vector

− ∇c(εabd∇dh̃
scalar

−∇ah̃b +∇bh̃a
vector

) +∇ahbc −∇bhac
tensor

]
, (29.24d)

where F is de�ned by

F ≡ ȧ

a
ψ + φ̇ . (29.25)
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Equations (29.24) show that the perturbations
1

Γklm of the tetrad-frame connections depend on all 12 of the
coordinate gauge-invariant potentials (29.15). The only non-coordinate-gauge-invariant dependence of the
tetrad-frame connections is on F de�ned by equation (29.25). The quantity F transforms under a coordinate
gauge transformation (26.9) as, from equations (29.14),

F → F − ε0
d

dη

ȧ

a2
. (29.26)

Thus perturbations
1

Γ0a0,
1

Γ0ab with a 6= b,
1

Γab0, and
1

Γabc are coordinate gauge-invariant, while the transfor-
mation (29.26) of F implies that Γ0ab with a = b transforms under an in�nitesimal coordinate transforma-
tion (26.9) as

1

Γ0ab →
1

Γ0ab −
ε0
a

d

dη

ȧ

a2
δab . (29.27)

The transformation of the tetrad-frame connections under coordinate transformations can be checked
another way. According to the rule established in �26.7, the change in a quantity under an in�nitesimal
coordinate gauge transformation equals minus its Lie derivative Lε with respect to the in�nitesimal coor-
dinate shift ε. Any quantity that vanishes in the unperturbed background has, to linear order, vanishing
Lie derivative, so is coordinate gauge-invariant. Thus the perturbations

1

Γ0a0,
1

Γab0, and
1

Γabc are coordinate
gauge-invariant, con�rming the previous conclusion. The only tetrad-frame connections that are �nite in the
unperturbed background, and are therefore not coordinate gauge-invariant, are Γ0ab. Although tetrad-frame
connections are generically not tetrad-frame tensors, the unperturbed connection

0

Γ0ab ≡ − (ȧ/a2)δab, equa-
tion (29.23), is a tetrad-frame tensor, because the spatial unit matrix δab can be expressed as the tensor
umun+ηmn, where um is the tetrad-frame 4-velocity of the Lorentz-transformed tetrad frame relative to the
rest tetrad frame. The tetrad-frame connections Γ0ab transform as

1

Γ0ab →
1

Γ0ab − LεΓ0ab , LεΓ0ab = εk∂kΓ0ab =
ε0
a

d

dη

ȧ

a2
δab , (29.28)

in agreement with the transformation (29.27).

29.5.3 Tetrad-frame Einstein tensor

The tetrad-frame Einstein tensor Gmn follows from the usual formulae (11.61), (11.79), and (11.81). The
unperturbed tetrad-frame Einstein tensor

0

Gmn is (equations (29.29) di�er from equations (10.29) because
the time coordinate here is the conformal time η, not the cosmic time t)

0

G00 = 3
ȧ2

a4
, (29.29a)

0

G0a = 0 , (29.29b)

0

Gab =

(
− 2

ä

a3
+
ȧ2

a4

)
δab . (29.29c)
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The perturbation
1

Gmn of the tetrad-frame Einstein tensor is

1

G00 =
1

a2

[
− 6

ȧ

a
F + 2∇2Φ

scalar

]
, (29.30a)

1

G0a =
1

a2

[
2∇a

(
F +

( ä
a
− 2

ȧ2

a2

)
w̃
)

scalar

+
1

2
∇2Wa + 2

( ä
a
− 2

ȧ2

a2

)
w̃a

vector

]
, (29.30b)

1

Gab =
1

a2

[(
2
( ∂
∂η

+ 2
ȧ

a

)
F + 2

( ä
a
− 2

ȧ2

a2

)
ψ
)
δab

scalar

− (∇a∇b − δab∇2)(Ψ− Φ)
scalar

+
1

2

( ∂
∂η

+ 2
ȧ

a

)
(∇aWb +∇bWa)

vector

−
( ∂2

∂η2
+ 2

ȧ

a

∂

∂η
−∇2

)
hab

tensor

]
. (29.30c)

According to the rule established in �26.7, the variation of the Einstein tensor under a coordinate transfor-
mation equals minus its Lie derivative,

1

Gmn →
1

Gmn − LεGmn . (29.31)

Consequently, as with the tetrad-frame connections, the tetrad-frame Einstein components that vanish in
the background, namely the o�-diagonal components Gmn with m 6= n, are coordinate gauge-invariant, while
the components that are �nite in the background, namely the diagonal components Gmn with m = n, are
not coordinate gauge-invariant. The variations of the non-coordinate-gauge-invariant Einstein components
under an in�nitesimal coordinate transformation (26.9) are

LεG00 = εk∂kG00 = −ε0
a

d

dη

3ȧ2

a4
, (29.32a)

LεGab = εk∂kGab =
ε0
a

d

dη

(
2ä

a3
− ȧ2

a4

)
δab . (29.32b)

It can be checked that the same transformations of the tetrad-frame Einstein components under a coordinate
transformation follow from the expressions (29.30) for the perturbed Einstein components and the coordinate
transformations (29.14) of the potentials.
The time-time and space-space perturbations

1

G00 and
1

Gab are tetrad gauge-invariant, as follows from the
fact that these components depend only on symmetric combinations of the vierbein potentials. However, the
time-space perturbations

1

G0a are not tetrad gauge-invariant, as is evident from the fact that equation (29.30b)
involves the non-tetrad-gauge-invariant perturbations w̃ and w̃a. Physically, under a tetrad boost by a velocity
v of linear order, the time-space components G0a change by �rst order v, but G00 and Gab change only to
second order v2. Thus to linear order, only G0a changes under a tetrad boost. Note that G0a changes under
a tetrad boost (w̃ and w̃a), but not under a tetrad rotation (h̃ and h̃a).
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29.6 Gauge choices

Since only the 6 tetrad and coordinate gauge-invariant potentials Ψ, Φ,Wa, and hab have physical signi�cance,
it is legitimate to choose a particular gauge, a set of conditions on the non-gauge-invariant potentials,
arranged to simplify the equations, or to bring out some physical aspect.
This book for the most part uses the conformal Newtonian gauge, �29.8, which is constructed so as to

retain only physical perturbations.

29.7 ADM gauge choices

The ADM (3+1) formalism, Chapter 17, chooses the tetrad time axis γγ0 to be orthogonal to hypersurfaces
of constant time, η = constant, equivalent to requiring that the tetrad time axis be orthogonal to each of
the spatial coordinate axes, γγ0 · ea = 0, equation (17.2). The ADM choice is equivalent to setting

w̃ = w̃a = 0 . (29.33)

The ADM choice simpli�es the tetrad-frame connections (29.24) and the time-space component G0a of the
tetrad-frame frame Einstein tensor, equation (29.30b). The ADM lapse α and shift βα are

α = a(1 + ψ) , βα = ∇αw + wα . (29.34)

Another gauge choice that signi�cantly simpli�es the tetrad connections (29.24), though does not a�ect
the Einstein tensor (29.30), is

h̃ = h̃a = 0 . (29.35)

If the wavevector k is taken along the coordinate z-direction, then the gauge choice h̃a = 0 is equivalent to
choosing the tetrad 3-axis (z-axis) γγ3 to be orthogonal to the coordinate x and y-axes, γγ3·ex = γγ3·ey = 0. The
gauge choice h̃ = 0 is equivalent to rotating the tetrad axes about the 3-axis (z-axis) so that γγ1 ·ey = γγ2 ·ex.

29.8 Conformal Newtonian (Copernican) gauge

The most physical gauge is one in which the 6 perturbations retained coincide with the 6 coordinate and tetrad
gauge-invariant perturbations (29.16). This gauge is called conformal Newtonian gauge, analogously to
the Newtonian gauge of Minkowski space, �27.8. Because in conformal Newtonian gauge the perturbations are
precisely the physical perturbations, if the perturbations are physically weak (small), then the perturbations
in conformal Newtonian gauge will necessarily be small.
I think conformal Newtonian gauge should be called conformal Copernican gauge, for the same reason

that Newtonian gauge should be called Copernican gauge, �27.8. Dynamically, collapsed systems such as
galaxies or solar systems are highly nonlinear systems, but gravitationally they are weakly perturbed sys-
tems. Conformal Newtonian (Copernican) gauge keeps the coordinates aligned with the unperturbed FLRW
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comoving coordinates even in highly nonlinear systems. Conformal Newtonian gauge breaks down only in
gravitationally nonlinear systems such as black holes.
Conformal Newtonian (Copernican) gauge in an FLRW background makes the same gauge choices as

Newtonian gauge in a Minkowski background, equation (27.58),

w = w̃ = w̃a = h = h̃ = ha = h̃a = 0 , (29.36)

so that the retained perturbations are the 6 coordinate and tetrad gauge-invariant perturbations (29.16),

Ψ
scalar

= ψ , (29.37a)

Φ
scalar

= φ , (29.37b)

Wa
vector

= wa , (29.37c)

hab
tensor

. (29.37d)

In conformal Newtonian gauge, the quantity F de�ned by equation (29.25) becomes the coordinate and
tetrad gauge-invariant quantity

F ≡ ȧ

a
Ψ + Φ̇ . (29.38)

The conformal Newtonian metric is

ds2 = a2
{
− (1 + 2 Ψ) dη2 − 2Wa dη dx

a +
[
δab(1− 2 Φ)− 2hab

]
dxadxb

}
. (29.39)

Various tetrad-frame connections Γkmn, equations (29.24), de�ne the accelation acceleration Ka ≡ Γa00

and extrinsic curvature Kab ≡ Γa0b = −Γ0ab. The trace, antisymmetric, and traceless symmetric parts of the
extrinsic curvature de�ne the expansion, vorticity, and shear, equations (18.16), which play a key role in the
Raychaudhuri equations, �18.2. Also relevant is the precession Γab0 = −Γba0 (not to be confused with the
vorticity). In conformal Newtonian gauge, the acceleration, expansion, vorticity, shear, and precession are

acceleration κa ≡ Γa00 =
1

a
∇aΨ
scalar

, (29.40a)

expansion ϑ ≡ −Γa0a =
1

a

( ȧ
a
− F

scalar

)
, (29.40b)

vorticity $ab ≡ −Γ0[ab] = 0 , (29.40c)

shear σab ≡ −Γ0(ab) =
1

2a

(
∇aWb +∇bWa

vector

)
, (29.40d)

precession ≡ Γab0 =
1

2a

(
∇aWb −∇bWa

vector

)
. (29.40e)
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29.8.1 Conformal Newtonian gauge: energy-momentum conservation

The unperturbed components
0

Tmn of the tetrad-frame energy-momentum comprise the energy density ρ̄(η)

and isotropic pressure p̄(η) of the FLRW background,
0

T
00 ≡ ρ̄ , (29.41a)

0

T
0a ≡ 0 , (29.41b)

0

T
ab ≡ p̄ δab . (29.41c)

The perturbed components Tmn of the tetrad-frame energy-momentum are the energy density ρ, the energy
�ux fa, and the pressure pab,

T 00 ≡ ρ = ρ̄+ δρ , (29.42a)

T 0a ≡ fa , (29.42b)

T ab ≡ pab = p̄ δab + δpab . (29.42c)

In perturbation theory, the perturbations δρ, fa, and δpab are treated as of linear order. The trace of the
spatial energy-momentum de�nes the isotropic pressure p,

1
3T

a
a = p = p̄+ δp . (29.43)

In conformal Newtonian gauge, the equations of conservation of energy and momentum are to linear order

DmT
m0 =

1−Ψ

a

[
∂ρ

∂η
+∇afa + 3(ρ+ p)

( ȧ
a
− Φ̇

)]
= 0 , (29.44a)

DmT
ma =

1

a

[
∂fa
∂η

+ 4
ȧ

a
fa +∇bpab + (ρ+ p)∇aΨ

]
= 0 . (29.44b)

Notice that the energy-momentum conservation equations (29.44) involve only the scalar potentials Ψ and
Φ, not the vector or tensor potentials Wa or hab. The energy equation (29.44a) has only a scalar component,
while the momentum equation (29.44b) has both scalar and vector components, Exercise 29.3. The energy
conservation equation (29.44a) has an unperturbed part,

Dm
0

T
m0 =

1

a

[
∂ρ̄

∂η
+ 3(ρ̄+ p̄)

ȧ

a

]
= 0 . (29.45)

Any �uid component that conserves energy-momentum satis�es equations similar to (29.44). For a �uid
component with equation of state p/ρ = w = constant, the unperturbed energy conservation equation (29.45)
recovers the usual result that ρ̄ ∝ a−3(1+w).

Concept question 29.3. Scalar, vector, tensor components of energy-momentum conservation.

What are the scalar, vector, and tensor components of the energy-momentum conservation equations (29.44)?
Answer. The energy conservation equation (29.44a) contains only scalar components. The momentum con-
servation equation (29.44b) contains scalar and vector components, but no tensor component. The scalar
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component of the pressure is the sum of an isotropic part p δab, and a traceless quadrupole part which is
discussed in �32.6. The vector component of the pressure takes the form

pab
vector

= ∇ap⊥,b +∇bp⊥,a , (29.46)

where p⊥,a is transverse, ∇ap⊥,a = 0. The vector part of the momentum conservation equation (29.44b) is

DmT
ma

vector
=

1

a

(
∂f⊥,a
∂η

+ 4
ȧ

a
f⊥,a +∇2p⊥,a

)
= 0 . (29.47)

If the vector pressure is negligible, p⊥,a = 0, then the vector momentum conservation equation (29.47) implies
that

f⊥,a ∝ a−4 . (29.48)

The tensor component pTab of the pressure is traceless and transverse. Being traceless, pTab makes no contri-
bution to the isotropic pressure p, and being transverse, it satis�es ∇bpTab = 0. Consequently the energy-
momentum conservation equations (29.44) contain no tensor component.

29.8.2 Conformal Newtonian gauge: scalar Einstein equations

In conformal Newtonian gauge, the scalar perturbations of the Einstein equations are, from the expres-
sions (29.30) for the Einstein tensor, the energy density, energy �ux, monopole pressure, and quadrupole
pressure equations,

− 3
ȧ

a
F − k2Φ = 4πGa2 1

T
00 , (29.49a)

ikF = 4πGa2 k̂a T
0a , (29.49b)

Ḟ + 2
ȧ

a
F +

( ä
a
− 2

ȧ2

a2

)
Ψ− k2

3
(Ψ− Φ) =

4

3
Gπa2 δab

1

T
ab , (29.49c)

k2(Ψ− Φ) = 8πGa2
(

3
2 k̂ak̂b −

1
2 δab

)
T ab . (29.49d)

The perturbation overscript 1 has been omitted from the right hand sides of equations (29.49b) and (29.49d)
since the unperturbed energy-momentum vanishes for these components. All 4 of the scalar Einstein equa-
tions (29.49) are expressed in terms of gauge-invariant variables, and are therefore fully gauge-invariant.
If the energy-momentum tensors of the various matter components are arranged so as to conserve overall

energy-momentum, as they should, then 2 of the 4 equations (29.49a)�(29.49d) are redundant, since they
serve simply to enforce conservation of energy and scalar momentum. Usually the 1st equation, the energy
equation (29.49a), and the 4th equation, the quadrupole pressure equation (29.49d), are most convenient
to retain. But sometimes the 2nd equation, the scalar momentum equation (29.49b), is more convenient in
place of the energy equation (29.49a).
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29.8.3 Conformal Newtonian gauge: vector Einstein equations

The vector (spin-1) Einstein equations in conformal Newtonian gauge are, from the expressions (29.30) for
the Einstein tensor,

∇2Wa = −16πGa2 T 0a

vector
, (29.50a)( ∂

∂η
+ 2

ȧ

a

)
(∇aWb +∇bWa) = 16πGa2 T ab

vector
. (29.50b)

If the overall matter energy-momentum is conserved, as it must be, then either equation (29.50a) or equa-
tion (29.50b) can be discarded as redundant, since the two equations together serve to enforce conservation
of (the vector components of) overall energy-momentum.
In the absence of a vector source of pressure, Tab

vector
= pab

vector
= 0, the Einstein equation (29.50b) ensures

that the vector perturbation redshifts as a−2,

Wa ∝ a−2 if T ab
vector

= 0 . (29.51)

The same conclusion follows from the other vector Einstein equation (29.50a). If the vector pressure vanishes,
then the vector momentum conservation equation (29.47) ensures that the vector energy �ux T 0a

vector
= f⊥,a

redshifts as f⊥,a ∝ a−4, which when plugged into the Einstein equation (29.50a) implies Wa ∝ a−2.
In practice, collisions in the early post-in�ation Universe tend to isotropize particle distributions, driving

not only the pressure but also the bulk velocity to zero, as discussed in more detail in �35.12. If the bulk
velocity vanishes, so fa = 0, then the Einstein equation (29.50a) forces the vector potential to vanish,Wa = 0.
The tendency of vector perturbations to redshift away has the consequence that vector perturbations are

usually negligible in standard cosmological models.

29.8.4 Conformal Newtonian gauge: tensor Einstein equations

The tensor (spin-2) Einstein equations in conformal Newtonian gauge are, from the expressions (29.30) for
the Einstein tensor, ( ∂2

∂η2
+ 2

ȧ

a

∂

∂η
−∇2

)
hab = −8πGa2 T ab

tensor
. (29.52)

Whereas vector perturbations necessarily redshift as Wa ∝ a−2 in the absence of a source, tensor pertur-
bations hab at superhorizon wavelengths kη � 1 have a solution where they are constant,

hab = constant for kη � 1 if T ab
tensor

= 0 . (29.53)

In�ation generates tensor modes, which describe gravitational waves. In contrast to vector modes, long
wavelength gravitational waves generated during in�ation can survive to the present time. Gravitational
waves leave an observable imprint in the B-mode polarization of the cosmic microwave background. A
detection of B-mode polarization was claimed by by the BICEP2 collaboration (Ade et al., 2014), but the
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signal may have been from aligned galactic dust rather primordial (Ade et al., 2015). The cosmic gravitational
wave background could potentially be observed directly in the future.

Exercise 29.4. Evolution of tensor perturbations (gravitational waves) in FLRW spacetimes.

Show that equation (29.52) can be rewritten in Fourier space( ∂2

∂η2
− ä

a
+ k2

)
(a hab) = −8πGa3 T ab

tensor
. (29.54)

What is the solution of equation (29.54) if there is no tensor source, T ab
tensor

= 0, and the background energy-

momentum is dominated by a species with equation of state p/ρ = w = constant? Plot the solution in the
radiation-dominated regime, subject to the condition that hab is initially �nite.
Solution. From equation (10.82) it follows that, for background energy-momentum dominated by a single
species with p/ρ = w = constant,

ȧ

a
=

2

(1 + 3w)η
,

ä

a
=

2(1− 3w)

(1 + 3w)2η2
. (29.55)

The tensor evolution equation (29.54) in the absence of sources becomes[
∂2

∂η2
− 2(1− 3w)

(1 + 3w)2η2
+ k2

]
(a hab) = 0 . (29.56)

The solution of equation (29.56) is a linear combination of Bessel functions J±n (for w < −1/3, replace η
with its magnitude |η|),

hab = (kη)−n [A+Jn(kη) +A−J−n(kη)] (29.57)

of argument

n =
3(1− w)

2(1 + 3w)
. (29.58)

Special cases are

n =


1
2 w = 1

3 ,
3
2 w = 0 ,

− 3
2 w = −1 ,

(29.59)

in which case the solution reduces to spherical Bessel functions. The solution that is �nite at η → 0 is, for
n > 0, the A+ component. Normalized to 1 at η = 0, the �nite solution is

hab = Γ(1 + n)

(
kη

2

)−n
Jn(kη)→


1 kη � 1 ,

Γ(1 + n)√
π

(
kη

2

)−(n+1/2)

cos
[
kη − (n+ 1

2 )π/2
]

kη � 1 .
(29.60)

Since

ηn+1/2 ∝ a , (29.61)
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Figure 29.1 Evolution of the tensor potential hab in the radiation-dominated regime, where w = 1/3, n = 1/2, and

hab ∝ sin(kη)/(kη).

the solution goes as hab ∼ a−1 cos(kη + constant) at large kη. Physically, the gravitational wave amplitude
hab is constant well outside the horizon, kη � 1, while it redshifts as 1/a well inside the horizon, kη � 1.
Figure 29.1 illustrates the evolution of the tensor potential hab in the radiation-dominated regime.

29.9 Conformal synchronous gauge

One gauge that remains in common use in cosmology, but is not used here, is conformal synchronous gauge,
discussed in the case of Minkowski background space in �27.9. The cosmological synchronous gauge choices
are the same as for the Minkowski background, equations (27.65) and (27.66):

ψ = w = w̃ = wa = w̃a = h̃ = h̃a = 0 . (29.62)

The gauge-invariant perturbations (29.16) in synchronous gauge are

Ψ
scalar

=
( ∂
∂η

+
ȧ

a

)
ḣ , (29.63a)

Φ
scalar

= φ− ȧ

a
ḣ , (29.63b)

Wa
vector

= −ḣa , (29.63c)

hab
tensor

. (29.63d)

Like synchronous gauge, �27.9, conformal synchronous gauge chooses a coordinate system and tetrad that
is attached to the locally inertial frames of freely falling observers. Thus synchronous gauge follows the
frame of cold collisionless matter (�dust�). To the extent that non-baryonic cold dark matter has always been
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cold and collisionless (not quite true, but an excellent approximation), synchronous frame is the frame of
non-baryonic cold dark matter.
Conformal synchronous gauge fails at non-linear scales where collisionless matter has turned around and

collapsed into galaxies and galaxy clusters. This contrasts with conformal Newtonian gauge, which holds as
long as gravitational perturbations remain weak, including in highly non-linear collapsed systems such as
galaxies and solar systems.

Concept question 29.5. What frame does the CMB de�ne? Answer. The CMB frame is the frame
where the CMB temperature is constant, and CMB photons have zero bulk velocity. That statement de-
pends on the scale (in Fourier space, the wavenumber k) over which the CMB temperature or velocity is
averaged. For adiabatic �uctuations at superhorizon scales, all particle species start with essentially the same
overdensity and velocity. The initial frame that comoves with particles is, by construction, the synchronous
frame. Once a scale comes inside the horizon, di�erent components that are not kept coupled by collisions
(non-baryonic dark matter, photons, neutrinos) evolve di�erently, as illustrated for example by Figure 33.1.
At scales well inside the horizon, the bulk velocity of free-streaming relativistic particles in conformal New-
tonian gauge tends to zero in oscillatory fashion, again as illustrated by Figure 33.1. Thus at subhorizon
scales conformal Newtonian gauge provides a good approximation to the frame of CMB photons.

Concept question 29.6. Are congruences of comoving observers in cosmology hypersurface-

orthogonal? Comoving observers are de�ned to be those at rest in the tetrad frame, um = {1, 0, 0, 0}.
The worldlines of comoving observers de�ne a timelike congruence. Are congruences of comoving observers
hypersurface-orthogonal, �18.6? Answer. Common cosmological gauges, including conformal Newtonian or
conformal synchronous, impose the ADM gauge condition that the time axis γγ0 is orthogonal to hypersurfaces
of constant time t, �29.7. This ADM condition (coupled with the general relativistic assumption of vanishing
torsion) implies that vorticity vanishes, which is one of the two conditions for a timelike congruence to be
hypersurface-orthogonal, �18.6. The other condition for a timelike congruence to be hypersurface-orthogonal
is that the congruence be geodesic; this is true in the speci�c case of conformal synchronous gauge, but not
for other gauges, such as conformal Newtonian gauge.
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Cosmological perturbations: a simplest set
of assumptions

The purpose of this chapter is to set forward the simplest approximate model of the development of pertur-
bations to matter and radiation in our Universe.

The model consists of two non-interacting perfect �uids, non-baryonic cold dark matter with a pressureless
equation of state p/ρ = 0, and radiation with a relativistic equation of state p/ρ = 1/3. The model neglects
baryons, since their energy density is sub-dominant, being Ωb/Ωc ≈ 1/5 of the dark matter density. The
model lumps neutrinos with photons, neutrinos being relativistic with energy density about two thirds that

of photons, ρν/ργ = 6 7
8

(
4
11

)4/3
/2 ≈ 0.68. It would be wrong to lump baryonic perturbations with those of

non-baryonic dark matter, since prior to recombination electron-photon scattering keeps the baryonic �uid
tightly coupled to photons, preventing the baryons from clustering gravitationally like the non-baryonic cold
dark matter. In the simple approximation, recombination occurs abruptly at a redshift 1+zrec ≈ 1100. After
recombination, baryons can cluster gravitationally, forming galaxies, stars, and eventually people.

Well after recombination, a third energy component, dark energy, becomes important. It too can be treated
as a perfect �uid, with equation of state p/ρ = −1.

The perfect �uid approximation keeps only the lowest momentum moments of the particle distributions,
the energy density and the bulk velocity, along with an isotropic pressure p that is a given function of density ρ
in the rest frame of the �uid. The evolution of a perfect �uid is determined entirely by the energy-momentum
conservation equations that the �uid satis�es.

The model includes only scalar modes. The quadrupole pressure vanishes for perfect �uids, so the two
scalar potentials are equal, Ψ = Φ, equation (29.49d). However, the two scalar potentials will often be kept
separate in this chapter, to facilitate later reference. Tensor modes (gravitational waves) are neglected, since
their energy-momentum is sub-dominant. Tensor modes leave a distinctive imprint on the polarization of the
CMB, which is addressed in Chapter 36.

767
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30.1 Perturbed FLRW line-element

The perturbed FLRW line-element in conformal Newtonian gauge, equation (29.39), including only scalar
perturbations, is

ds2 = a2
[
−(1 + 2Ψ)dη2 + δab(1− 2Φ)dxadxb

]
, (30.1)

where a(η) is the cosmic scale factor, a function only of conformal time η.

30.2 Energy-momenta of perfect �uids

In the simplest approximation, each component of the cosmological energy-momentum, including matter,
radiation, and dark energy, can be treated as a perfect �uid, that is, a �uid whose pressure is isotropic in
the rest frame of the �uid. The tetrad-frame energy-momentum tensor of a perfect �uid with proper density
ρ and isotropic pressure p in its own rest frame, moving with bulk 4-velocity um ≡ dxm/dτ relative to the
conformal Newtonian tetrad frame, is

Tmn = (ρ+ p)umun + p ηmn . (30.2)

It is a good approximation to assume further that the equation of state of the �uid is such that its proper
pressure p is some prescribed function of its proper density ρ (such a �uid is called barotropic),

p = p(ρ) . (30.3)

De�ne w to be the derivative

w ≡ dp

dρ
, (30.4)

which proves to be (at least for w ≥ 0) the square of the sound speed of the �uid in units of the speed of
light. In the simple model considered in this chapter, each of the �uids considered, matter, radiation, and
dark energy, has constant w, with w = 0, 1

3 , and −1 respectively. Chapter 32 considers the more realistic
situation of a photon-baryon �uid with non-constant w.
Each �uid moves with non-relativistic bulk velocity, including radiation, which is almost isotropic, and

therefore has a small bulk velocity even though individual particles of radiation move at the speed of light.
The bulk tetrad-frame 4-velocity um of the �uid is thus, to linear order

um = {1, va} , (30.5)

where va is its non-relativistic spatial bulk 3-velocity (the spatial tetrad metric is Euclidean, so v
a = va).

The bulk velocity va is to be considered as of linear order, so its square vanishes to linear order.
The proper �uid density ρ can be written as a sum of an unperturbed density ρ̄ and a linear order

�uctuation δρ,

ρ = ρ̄+ δρ . (30.6)
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It proves advantageous, because it simpli�es the resulting perturbation equations (30.13), to characterize the
density �uctuation δρ in terms of a �uctuation δ

δρ = (ρ̄+ p̄)δ , (30.7)

where p̄ = p(ρ̄) in the unperturbed pressure. As you will discover in Exercise 30.1, the �uctuation δ can be
interpreted physically as the entropy �uctuation,

δ ≡ δρ

ρ̄+ p̄
=
δs

s̄
. (30.8)

For matter, where p = 0, the entropy �uctuation coincides with the density �uctuation, δ = δρ/ρ̄. For
dark energy, where p = −ρ, the density �uctuation is necessarily zero, δρ = 0, re�ecting the fact that
vacuum energy cannot cluster. To linear order in the bulk velocity va, the tetrad-frame energy-momentum
tensor (30.2) of the perfect �uid is then

T 00 ≡ ρ = ρ̄+ δρ , (30.9a)

T 0a ≡ fa = (ρ̄+ p̄)va , (30.9b)

T ab ≡ p δab = (p̄+ δp) δab , (30.9c)

where the pressure �uctuation δp is, from equation (30.4),

δp = w δρ . (30.10)

If a species does not exchange energy or momentum with other species, then it satis�es the energy-
momentum conservation equations (29.44) in conformal Newtonian gauge. Subtracting appropriate amounts
of the unperturbed energy conservation equation (29.45) from the perturbed energy-momentum conservation
equations (29.44) yields equations for the entropy �uctuation δ and bulk velocity va of the �uid (recall that
overdot denotes partial di�erentiation with respect to conformal time η, equation (29.5), so for example
δ̇ = ∂δ/∂η),

δ̇ +∇ava = 3Φ̇ , (30.11a)

v̇a + (1− 3w)
ȧ

a
va + w∇aδ = −∇aΨ . (30.11b)

Physically, equation (30.11a) represents conservation of entropy, while equation (30.11b) represents conser-
vation of momentum.
Now decompose the bulk 3-velocity va into its scalar v and vector v⊥,a parts. Up to this point, the scalar

part of a vector has been taken to be the gradient of a potential. But here it is advantageous to absorb a
factor of k into the de�nition of the scalar part v of the velocity, so that instead of va = −ikav + v⊥,a in
Fourier space, the velocity is given in Fourier space by

va = −ik̂av + v⊥,a . (30.12)

The advantage of this choice is that v is dimensionless, as are δ and Ψ and Φ. Note that the comoving
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wavenumber k (a constant for any given mode) has units of η−1. The scalar parts of the perturbation
equations (30.11) are then

δ̇ − kv = 3Φ̇ , (30.13a)

v̇ + (1− 3w)
ȧ

a
v + wkδ = −kΨ . (30.13b)

The vector part of equations (30.11) is considered in Exercise 30.3.
Combining the two equations (30.13) for the scalar �uctuation δ and scalar bulk velocity v yields a second-

order di�erential equation for δ − 3Φ,[
d2

dη2
+ (1− 3w)

ȧ

a

d

dη
+ wk2

]
(δ − 3Φ) = −k2(Ψ + 3wΦ) . (30.14)

Equation (30.14) holds for any perfect �uid that conserves energy-momentum and that has equation of
state (30.4), with w not necessarily constant. For positive w, equation (30.14) is a wave equation for a
damped, forced oscillator with sound speed

√
w. The resulting generic behaviour for the particular cases of

matter (w = 0) and radiation (w = 1
3 ) is considered in �30.5 and �30.6 below.

A more careful treatment, deferred to Chapter 33, accounts for the complete momentum distribution of
radiation by expanding the temperature perturbation Θ ≡ δT/T̄ in multipole moments, equation (33.47).
The radiation �uctuation δr and scalar bulk velocity vr are related to the �rst two multipole moments of the
temperature perturbation, the monopole Θ0 and the dipole Θ1, by

δr = 3Θ0 , (30.15a)

vr = 3Θ1 . (30.15b)

The factor of 3 arises because the unperturbed radiation distribution is in thermodynamic equilibrium, for
which the entropy density is s ∝ T 3, so δr = 3 δT/T̄ .

Exercise 30.1. Entropy perturbation. The purpose of this exercise is to discover that the �uctuation
δ de�ned by equation (30.6) can be interpreted as the entropy �uctuation. According to the �rst law of
thermodynamics, the entropy density s of a �uid of energy density ρ, pressure p, and temperature T in a
volume V satis�es

d(ρV ) + pdV = Td(sV ) . (30.16)

If the �uid is ideal, so that ρ, p, T , and s are independent of volume V , then integrating the �rst law (30.16)
implies that

ρV + pV = TsV . (30.17)

This implies that the entropy density s is related to the other variables by

s =
ρ+ p

T
. (30.18)
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Show that, for a perfect, barotropic �uid (one in which pressure is a prescribed function p(ρ) of density ρ),
small variations of the density and entropy are related by

δρ

ρ+ p
=
δs

s
, (30.19)

con�rming equation (30.8). [Hint: Do not confuse what is being asked here with adiabatic expansion. The
result (30.19) is a property of the �uid, independent of whether the �uid is changing adiabatically. For
adiabatic expansion, the �uid satis�es the additional condition sV = constant.]
Solution. Use equation (30.18) to eliminate the temperature T from the �rst law (30.16), obtaining

dρ

ρ+ p
=
ds

s
. (30.20)

In the situation being considered, where pressure is a prescribed function p(ρ) of density, equation (30.20)
implies equation (30.19).

Concept question 30.2. Entropy perturbation when number is conserved. The derivation of the
entropy perturbation (30.19) in Exercise 30.1 was based on the �rst law of thermodynamics (30.16) without
any term µdN representing number conservation. Should not such a term be included? Answer. This
question was addressed in Exercise 10.14. Each chemical potential µ is associated with a conserved species.
Terms associated with number conservation can be dropped provided that the �uid contains all particles
belonging to a conserved species. For example, electrons and positrons can annihilate with each other, so
the numbers Ne and Nē of electrons e and positrons ē in a comoving volume are not conserved, but their
sum Ne +Nē is conserved. Electrons and positrons in thermodynamic equilibrium satisfy µē = −µe, so the
terms representing number conservation in the combined electron-positron �uid vanish,

µe dNe + µē dNē = µe d(Ne −Nē) = 0 . (30.21)

Thus the entropy perturbation equation (30.19) does not hold individually for electrons and positrons, but
it does hold for the combined electron-positron �uid.

Exercise 30.3. Vector �uctuation. What is the vector part of the perturbation equations (30.11)? Solve
it.
Solution. The vector part of equations (30.11) is

v̇⊥,a + (1− 3w)
ȧ

a
v⊥,a = 0 . (30.22)

If w is constant, the solution is

v⊥,a ∝ a−(1−3w) . (30.23)

Together with ρ̄ ∝ a−3(1+w), equation (30.23) implies

f⊥,a ≡ (ρ̄+ p̄)v⊥,a ∝ a−4 , (30.24)
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which agrees with the vector component of the momentum conservation equation (29.44b) for any combina-
tion of perfect �uids (which have vanishing vector component p⊥,ab of pressure).

30.3 Entropy conservation at superhorizon scales

At superhorizon scales, where kη � 1, the bulk velocity term in equation (30.13a) for the entropy �uctuation
δ is negligible, and the equation reduces to

δ̇ = 3Φ̇ . (30.25)

It is conventional to de�ne a quantity ζ by

ζ ≡ 1
3δ − Φ , (30.26)

which has the property that it is constant at large scales in any �uid component that does not exchange
energy with other components,

ζ = constant if kη � 1 . (30.27)

Since both δ and Φ are gauge-invariant (all quantities in Newtonian gauge being gauge-invariant), so also
is ζ.
Physically, the constancy of ζ at superhorizon scales is associated with a conservation law that has the

appearance of a law of conservation of entropy. Recall that in a FLRW universe, the Einstein equations
enforce a conservation law (10.33) that looks like the �rst law of thermodynamics with conserved entropy.
The constancy of ζ is a generalization of this law to superhorizon perturbations of a FLRW universe. An
observer cannot distinguish a superhorizon perturbation from a strictly FLRW universe (such perturbations
can be measured only by later observers after the superhorizon perturbation has entered their horizon).
Speci�cally, an observer inside a horizon patch can perform a global transformation (29.18) of the cosmic
scale factor a (and time coordinate η) so as to set the large-scale Φ (and Ψ) to zero in their patch. Then
equation (30.25) becomes δ̇ = 0, expressing the �rst law of thermodynamics (10.33) in the FLRW background
of the patch.
The −3Φ part of the conserved �uctuation δ−3Φ is associated with the transformation between comoving

and proper volumes, and the fact that the proper spatial volume element is a3(1−3Φ)d3x123 (which remains
true when not only scalar but also vector and tensor �uctuations are included).

Exercise 30.4. Relation between entropy and ζ. Assume that the proper pressure p(ρ) is a de�nite
function of proper density ρ. De�ne entropy s per unit volume by (see Exercise 30.1)

ln s ≡
∫

dρ

ρ+ p
. (30.28)

Con�rm that, if the bulk peculiar velocity can be neglected so that the energy �ux is zero, fa = 0, as is true
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at superhorizon scales, then the energy conservation equation (29.44) in Newtonian gauge reduces to

d ln s+ 3 d ln
[
a(1− Φ)

]
= 0 , (30.29)

whose unperturbed part is

d ln s̄+ 3 d ln a = 0 . (30.30)

Conclude that energy conservation implies the conservation of ζ de�ned by

ζ = 1
3 ln(s/s̄)− Φ . (30.31)

Concept question 30.5. If the Friedmann equations enforce conservation of entropy, where

does the entropy of the Universe come from? Friedmann's equations enforce conservation of entropy,
equation (10.33). The constancy of ζ is a generalization of this law to evolution at superhorizon scales,
Exercise 30.4. But the entropy of the vacuum as a mode exits the horizon is tiny, and the entropy of the
matter-radiation �uid when a mode re-enters the horizon is large, yet no entropy has been created because ζ
is constant. How can these viewpoints be reconciled? Answer. The �rst law (10.33) can be construed as an
equation representing conservation of entropy only if the system is evolving through states of thermodynamic
equilibrium. The expanding Universe is not a system in thermodynamic equilibrium, even when its geometry
is precisely FLRW. For systems not in thermodynamic equilibrium, the �rst law of thermodynamics (10.33)
enforced by the Friedmann equations simply represents conservation of energy in a general relativistic context.
The proof in Exercise 30.4 that ζ represents a �uctuation in entropy depended on the proposition that the
proper pressure p(ρ) is a de�nite function of proper density ρ. But in a system that is not in thermodynamic
equilibrium and that evolves irreversibly from one state to another, the pressure is not a de�nite function
of density. Reheating, the transition between vacuum and particle energy that marks the end of in�ation,
represents an irreversible (explosive!) increase in entropy. If the expansion of the Universe were reversed,
the collapsing Universe would not revert from particle energy to vacuum energy, since that would require
a reduction of entropy, in violation of the second law of thermodynamics. Reheating is analogous to the
situation of a �uid that passes through a shock front. The shock converts kinetic into heat energy, increasing
the entropy of the �uid, while conserving its energy.

30.3.1 Primordial curvature �uctuation

It was remarked above, �30.3, that an observer inside a horizon patch can perform a global gauge transfor-
mation (29.18) so as to set the large-scale Φ to zero in their patch. Alternatively, the observer has the gauge
freedom to set the large scale �uctuation δ in their patch to zero, in which case ζ = −Φ. For this reason, the
total conserved �uctuation ζ is commonly called the primordial curvature �uctuation.
The constancy of the primordial curvature �uctuation ζ at superhorizon scales makes it useful for charac-

terizing �uctuations during in�ation. At the end of in�ation, the �vacuum� energy-momentum of the in�aton
�eld converts to the energy-momentum of matter and radiation. The details of this event, called reheating,
are not well understood. However, since ζ is constant, its value when a �uctuation �rst exits the horizon
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during in�ation equals its value when the �uctuation reenters the horizon some time later. The constancy of
ζ makes the details of reheating largely inconsequential to the evolution of perturbations.

30.3.2 Adiabatic and isocurvature initial conditions

The conserved �uctuation in any particular species x that does not exchange energy with other species is
denoted ζx with a subscript x. The conserved �uctuation over all species is denoted ζ with no subscript. A
generic prediction of in�ation is that the conserved �uctuation ζx is the same for all species x,

ζx = ζ . (30.32)

Fluctuations in which the �uctuation is the same for all species are said to be adiabatic.
There are also isocurvature �uctuations, in which the entropy �uctuations δx of di�erent species oppose

each other so as to make zero contribution to the curvature potential Φ. Among N species, there are 1
adiabatic and N − 1 isocurvature modes subject to the condition that the initial �uctuations are �nite.

30.4 Unperturbed background

The evolution of the cosmic scale factor a as a function of conformal time η depends on the energy-momentum
content of the unperturbed background FLRW geometry. Much of this chapter is concerned with an epoch
starting somewhat after electron-positron annihilation at a redshift 1 + z ∼ 109, and ending somewhat after
recombination at 1 + zrec ≈ 1100. During this time the Universe was dominated by matter (w = 0) and
radiation (w = 1/3), transitioning from radiation- to matter-dominated at a redshift of 1 + zeq ≈ 3400.
In the unperturbed background, the unperturbed dark matter density ρ̄c and radiation density ρ̄r evolve

with cosmic scale factor as

ρ̄c ∝ a−3 , ρ̄r ∝ a−4 . (30.33)

The Hubble parameter H is de�ned in the usual way to be

H ≡ 1

a

da

dt
=

ȧ

a2
, (30.34)

in which overdot represents di�erentiation with respect to conformal time, ȧ ≡ da/dη. The Friedmann
equations for the background imply that the Hubble parameter for a universe dominated by dark matter
and radiation is

H2 =
8πG

3
(ρ̄c + ρ̄r) =

H2
eq

2

(
a3

eq

a3
+
a4

eq

a4

)
, (30.35)

where aeq and Heq are the cosmic scale factor and the Hubble parameter at the time of matter-radiation
equality, ρ̄c = ρ̄r.
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The comoving horizon distance η is de�ned to be the comoving distance that light travels starting from
zero expansion. This is

η =

∫ a

0

da

a2H
=

2
√

2

aeqHeq

(√
1 +

a

aeq
− 1

)
=

2
√

2

aeqHeq

(
a/aeq

1 +
√

1 + a/aeq

)
. (30.36)

The horizon distance ηeq at matter-radiation equality a = aeq is

ηeq =
2
√

2

(1 +
√

2)aeqHeq

. (30.37)

Equation (30.36) inverts to give the cosmic factor a as a function of the horizon distance η,

a

aeq
=

η

8ηeq

(
η

ηeq
+ 4
√

2

)
. (30.38)

In the radiation- and matter-dominated epochs respectively, the comoving horizon distance η is

η =


√

2

aeqHeq

(
a

aeq

)
=

(1 +
√

2)ηeq

2

(
a

aeq

)
∝ a radiation-dominated ,

2
√

2

aeqHeq

(
a

aeq

)1/2

= (1 +
√

2)ηeq

(
a

aeq

)1/2

∝ a1/2 matter-dominated .

(30.39)

The ratio of the comoving horizon distance η to the comoving Hubble distance 1/(aH) is

ηaH =
2
√

1 + a/aeq

1 +
√

1 + a/aeq

, (30.40)

which is evidently a number of order unity, varying between 1 in the radiation-dominated epoch a � aeq,
and 2 in the matter-dominated epoch a� aeq.

Concept question 30.6. What is meant by the horizon in cosmology? See �10.21.

Exercise 30.7. Redshift of matter-radiation equality.

1. Argue that the redshift zeq of matter-radiation equality is given by

1 + zeq =
a0

aeq
= ? Ωmh

2 , (30.41)

where Ωm is the matter density today relative to critical. What is the factor, and what is its nu-
merical value? The factor depends on the energy-weighted e�ective number of relativistic species gρ,
equation (10.151b). Should this gρ be that now, or that at matter-radiation equality?

2. Show that the ratio Heq/H0 of the Hubble parameter at matter-radiation equality to that today is

Heq

H0
=
√

2Ωm (1 + zeq)3/2 . (30.42)
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Solution. The redshift zeq of matter-radiation equality is given by

1 + zeq =
Ωm

Ωr
=

45c5~3ΩmH
2
0

4π3Ggρ(kT0)4
= 8.093× 104 Ωmh

2

gρ
= 3400

( gρ
3.36

)−1
(

Ωmh
2

0.143

)
, (30.43)

where T0 = 2.725 K is the present-day CMB temperature, and gρ = 2 + 6 7
8

(
4
11

)4/3
= 3.36 is the energy-

weighted e�ective number of relativistic species at matter-radiation equality, equation (10.151b). The value
Ωmh

2 = 0.143± 0.001 is from Aghanim et al. (2018).

30.5 Generic behaviour of non-baryonic cold dark matter

Non-baryonic cold dark matter is pressureless, w = 0, and it conserves energy-momentum because it does
not scatter o� radiation or baryons. Equation (30.14), which expresses energy-momentum conservation of a
�uid, reduces for w = 0 to (

d2

dη2
+
ȧ

a

d

dη

)
(δc − 3Φ) = −k2Ψ . (30.44)

If Ψ = Φ, then the source on the right hand side is −k2Φ.
In the absence of a driving potential, Ψ = 0, the dark matter velocity would redshift as vc ∝ 1/a,

equation (30.13b), and the dark matter density would then evolve as δ̇c = kvc ∝ a−1, equation (30.13a).
In the radiation-dominated epoch, where η ∝ a, this leads to a logarithmic growth in the overdensity δc,
even though there is no driving potential, and the velocity is redshifting to a halt. In the matter-dominated
epoch, where η ∝ a1/2, the dark matter overdensity δc would freeze out at a constant value, in the absence
of a driving potential.
More generally, equation (30.44) is a linear di�erential equation for δc − 3Φ driven by a potential Ψ. You

will �nd the solution to this equation for a prescribed potential Ψ in Exercise 30.8.

Exercise 30.8. Generic behaviour of dark matter. Find the homogeneous solutions of equation (30.44)
for δc−3Φ with horizon distance η related to cosmic scale factor a by equation (30.36). Hence �nd the retarded
Green's function of the equation. Write down the general solution of equation (30.44) as an integral over the
Green's function. Solve for the case of constant potential Ψ.
Solution. The general solution of equation (30.44) is, in units aeq = 1,

δc(a)− 3Φ(a) = A0 +A1 lnx+ 2k2

∫ x

0

Ψ(a′) ln

(
x′

x

)
a′2

dx′

x′
, (30.45)

where A0 and A1 are constants, and

x ≡ exp

(
1√
2

∫
dη

a

)
=

a

(1 +
√

1 + a)2
=

η

η + 4
√

2
, (30.46)
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which simpli�es to x → a/4 as a → 0 and x → 1 − 2/
√
a as a → ∞. In the radiation-dominated and

matter-dominated regimes, equation (30.45) reduces to

δc(a)− 3Φ(a)→


A0 +A1 ln(a/4) + 2k2

∫ a

0

Ψ(a′) ln

(
a′

a

)
a′ da′ (a� 1) ,

B0 − 2B1a
−1/2 + 4k2

∫ a

0

Ψ(a′)

(
1−

√
a′

a

)
da′ (a� 1) ,

(30.47)

where the constants B0 and B1 in the a � 1 expression will usually di�er from A0 and A1 thanks to
contributions to the integral at a′ . 1 that are not given correctly by the a′ � 1 approximation.

30.6 Generic behaviour of radiation

Before recombination, photons are tightly coupled to baryons through non-relativistic electron-photon (Thom-
son) scattering. The photon-baryon �uid thus behaves as a single energy-momentum conserving �uid. In the
simple limit of negligible baryon density, the photon-baryon �uid can be treated as a relativistic �uid with
w = 1/3. Equation (30.14) then reduces to(

3
d2

dη2
+ k2

)
(Θ0 − Φ) = − k2 (Ψ + Φ) . (30.48)

If Ψ = Φ, then the source on the right hand side is just −2k2Φ.
In the absence of a driving potential, Ψ + Φ = 0, the radiation oscillates as Θ0 ∝ e±iωη with frequency

ω = k/
√

3. In other words, the solutions are sound waves, moving at the sound speed

cs =
ω

k
=

√
1

3
. (30.49)

De�ne the sound horizon distance ηs by

ηs ≡ csη =
η√
3
. (30.50)

In terms of the sound horizon distance ηs, the di�erential equation (30.48) becomes(
d2

dη2
s

+ k2

)
(Θ0 − Φ) = − k2(Ψ + Φ) . (30.51)

Equation (30.51) is a linear di�erential equation for Θ0 − Φ driven by a potential Ψ + Φ. You will �nd the
solution to this equation for a prescribed potential Ψ + Φ in Exercise 30.9.
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Exercise 30.9. Generic behaviour of radiation. Find the homogeneous solutions of equation (30.51).
Hence �nd the retarded Green's function of the equation. Write down the general solution of equation (30.51)
as an integral over the Green's function. Convince yourself that Θ0 − Φ oscillates about −(Ψ + Φ).
Solution. The general solution of equation (30.51) is, with y ≡ kηs,

Θ0(y)− Φ(y) = A0 cos y +A1 sin y −
∫ y

0

[
Ψ(y′ + Φ(y′)

]
sin(y − y′) dy′ , (30.52)

where A0 and A1 are constants.

Concept question 30.10. Can neutrinos be treated as a �uid? Since neutrinos stream collisionlessly,
how can it be legitimate to treat neutrinos as a �uid? Answer. The complete momentum distribution of
neutrinos is characterized by a full set of multipole moments, which can be solved using the hierarchy (33.91)
of Boltzmann equations. A �uid approximation amounts to keeping the �rst three momentum moments, the
energy, bulk velocity, and pressure, in the multipole expansion of the momentum distribution. The Einstein
equations depend only on these moments. If an adequate approximation to the pressure can be made, then
the Boltzmann hierarchy can be truncated. The perfect �uid approximation amounts to approximating
the pressure as isotropic, and given as a prescribed function of energy. The perfect �uid approximation
is adequate for photons, which are isotropized by collisions, but is poor for neutrinos. As a result of free
streaming, neutrinos develop a quadrupole (anisotropic pressure), as well as higher multipoles. You will
discover in Exercise 32.7 that, in contrast to photons which behave as a �uid with sound speed

√
1/3 times

the speed of light, neutrinos more closely approximate a �uid with sound speed equal to the speed of light.
Thus the simple approximation of the present chapter is not really adequate for neutrinos.

30.7 Equations for the simplest set of assumptions

The equations for two perfect �uids consisting of matter (w = 0) and radiation (w = 1/3) in a perturbed
FLRW universe comprise 5 equations as follows. The �rst two equations express conservation of energy and
momentum for non-baryonic cold dark matter (subscript c):

δ̇c − k vc = 3 Φ̇ , (30.53a)

v̇c +
ȧ

a
vc = − kΨ . (30.53b)

The next two equations express conservation of energy and momentum for radiation (subscript r), which
includes both photons and neutrinos:

Θ̇0 − kΘ1 = Φ̇ , (30.54a)

Θ̇1 +
k

3
Θ0 = − k

3
Ψ . (30.54b)
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The �nal equation is the Einstein energy equation (29.49a):

− 3
ȧ

a
F − k2Φ = 4πGa2(ρ̄cδc + 4ρ̄rΘ0) , (30.55)

where

F ≡ ȧ

a
Ψ + Φ̇ . (30.56)

In place of one of the equations (30.53)�(30.55) it is sometimes convenient to use the Einstein momentum
equation (29.49b)

− kF = 4πGa2(ρ̄cvc + 4ρ̄rΘ1) , (30.57)

which, because the matter and radiation equations (30.53) and (30.54) already satisfy covariant energy-
momentum conservation, is not an independent equation. In the simple approximation of perfect �uids con-
sidered here, the radiation quadrupole vanishes, and then the Einstein quadrupole pressure equation (29.49d)
implies that the scalar potentials Ψ and Φ are equal,

Ψ = Φ . (30.58)

Concept question 30.11. Dimensional analysis. Perform a dimensional analysis of equations (30.53)�
(30.58) with respect to the cosmic scale factor a and Hubble parameter H. Answer. The density �uctuations
δ, velocities v, and gravitational potentials Φ and Ψ are all dimensionless. The Hubble parameter H has units
of 1/t, where t is cosmic (proper) time. Conformal time η has units of t/a, or 1/(aH). Comoving wavenumber
times conformal time kη is dimensionless, so comoving wavenumber k has units of 1/η, or equivalently aH.
Gρ̄ has units H2, so the product Ga2ρ̄ that appears on the right hand sides of the Einstein equations has
units (aH)2.

Exercise 30.12. Program the equations for the simplest set of cosmological assumptions. Write
computer code that integrates numerically the evolution equations (30.53)�(30.55). You will be generalizing
this code later to include more components and more processes, so you should write the code in a well-
structured fashion that allows you to update it easily. It is theoretically and numerically advantageous to
treat δc − 3Φ and Θ0 − Φ as dependent variables, rather than δc and Θ0. I found it convenient to use
ln a as the integration variable, and to work in units aeq = Heq = 1. Assume adiabatic initial conditions,
ζc = ζr (see �30.10), and without loss of generality normalize to unit initial amplitudes, ζc = ζr = 1. Do the
computation for a selection of wavenumbers k. Plot Θ0−Φ and −2Φ together to bring out the fact that the
former oscillates about the latter, as expected from Exercise 30.9. A numerical issue you may encounter is
that your integration routine may get stuck trying to integrate the oscillating radiation monopole and dipole
once the mode is well inside the horizon, kη � 1. One strategy is to stop following the photon moments
after a certain time. Another convenient strategy is to introduce an arti�cial damping term, by changing the
radiation dipole equation (30.54b) to

Θ̇1 +
k

3
(Θ0 + Ψ) = −2k κΘ1 , (30.59)
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Figure 30.1 (Top) dark matter overdensity δc − 3Φ, (bottom left) radiation monopole Θ0 − Φ, and (bottom right)

radiation monopole Θ0 − Φ with arti�cial damping, as a function of cosmic scale factor a in units a0 = 1, in the

simple approximation, for several wavenumbers k. The cosmological model is a �at ΛCDM model with concordance

parameters ΩΛ = 0.69 and Ωm = 0.31, and adiabatic initial conditions (see �32.3). The radiation monopole Θ0 − Φ

(blue) is plotted along with minus twice the gravitational potential, −2Φ (black), to bring out the fact that the former

oscillates about the latter, as expected from equation (30.48). Curves are labelled with the comoving wavenumber

k/(aeqHeq) in units of the Hubble distance at matter-radiation equality. For the larger wavenumbers, k/(aeqHeq) = 10

and 102, the radiation monopole without damping is truncated (bottom left, dotted lines) to avoid confusing the plot.

The radiation monopole shown here in the simple approximation may be compared to results in the hydrodynamic

approximation, Figure 32.3, and using a Boltzmann computation, Figure 33.3.
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Figure 30.2 (Left) Overdensities δ − 3Φ, and (right) bulk velocities v in the simple approximation with arti�cial

damping, as a function of cosmic scale factor a/aeq, at wavenumber k/(aeqHeq) = 10, for non-baryonic dark matter

(c) and radiation (γ). The radiation overdensity and bulk velocity are related to their monopole and dipole moments by

δγ −3Φ = 3(Θ0−Φ) and vγ = 3Θ1, equations (30.15). The results may be compared to those from the hydrodynamic

approximation, Figure 32.1, and a Boltzmann computation, Figure 33.1.

where κ is a dimensionless damping coe�cient that becomes large when the �uctuation is well inside the
horizon, kη � 1,

κ = εkη , (30.60)

with ε some suitably small number (I chose ε = 10−3). To see why the damping term works as claimed,
combine the radiation monopole and dipole equations into a second order di�erential equation, and read
�32.5. The introduction of damping anticipates, but is not an adequate substitute for, the physical processes
of damping addressed in Chapter 32.

Solution. Figure 30.1 shows the dark matter overdensity, radiation monopole, and potential for a �at
ΛCDM model with ΩΛ = 0.69 and Ωc = 0.31, consistent with Planck parameters (Aghanim et al., 2018).
and adiabatic initial conditions. The radiation monopole is shown both without (bottom left panel) and with
(bottom right panel) arti�cial damping. Figure 30.2 illustrates the overdensity and bulk velocity of each of
matter and radiation for the same model at an illustrative wavenumber k/(aeqHeq) = 10.
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30.8 On the numerical computation of cosmological power spectra

See Seljak and Zaldarriaga (1996) for a discussion of the numerical computation of the CMB power spectrum.
Modern codes that compute cosmological power spectra from linear perturbation theory, such as CAMB
(google it), are impressively fast. With default settings, CAMB takes a few cpu seconds to compute a
complete CMB power spectrum. CAMB is written in parallelized fortran 90.
To accomplish its task, CAMB:
1. reads cosmological parameters from an input �le edited by the user;
2. calls RecFast (or other code) to compute recombination (Chapter 31);
3. uses a Boltzmann code (Chapter 33) to calculate the evolution of non-baryonic cold dark matter, baryonic

matter, photons, and neutrinos at each of ∼ 200 wavenumbers k;
4. pre-calculates tables of spherical Bessel functions j`;
5. computes CMB transfer functions T`(η0, k), equation (34.20), by integrating source functions over Bessel

functions at each of ∼ 2000 wavenumbers k and ∼ 100 harmonics ` (Chapter 34);
6. computes the CMB power spectrum C`(η0) today by integrating the squared transfer functions over an

almost scale-free primordial curvature spectrum, equation (34.35).
That is a lot of computation. The two most time-consuming steps are step 3, the Boltzmann computation,
and step 5, the computation of CMB transfer functions. For step 3, CAMB uses the open-source ordinary
di�erential equation solver dverk (Hull, Enright & Jackson 1976). Step 5 involves integration over highly
oscillatory integrands. One could contemplate using some clever mathematical approach to integrate the
highly oscillatory integrands, but CAMB simply uses a brute-force sum, interpolating pre-computed source
functions in k-space, and splining over pre-computed spherical Bessel functions.
Most of the calculations of cosmological perturbations and power spectra reported in this book used Math-

ematica, a program that I use and value a lot. Sadly, high speed numerical calculations are not Mathematica's
forte. One elementary issue is that Mathematica's inbuilt spherical Bessel functions j` are inexplicably slow
for large `, which is unacceptable given that many thousands of Bessel functions must be evaluated (on
my 2015 laptop, a single evaluation of j`(`) takes approximately (`/20,000)2 cpu seconds). Mathematica's
biggest challenge is integrating the highly oscillatory functions in step 5. Mathematica's numerical integra-
tion routine NDSolve (or worse, NIntegrate, which treats each integrand in a list separately) evaluates its
integrands far too often to be e�cient. If you choose to program in Mathematica, good luck; but be warned
that Mathematica assumes control over many details that basic languages like c and fortran leave up to you.
Working with Mathematica is like trying to persuade a recalcitrant child to perform what seems to be a
simple task; there is no guarantee who will win the contest of wills.

30.9 Analytic solutions in various regimes

Much of the remainder of this chapter is concerned with obtaining approximate analytic solutions that
describe the evolution of perturbations of the matter and radiation in various regimes. The aim is to gain
some intuitive understanding of the solutions to the system of equations (30.53)�(30.58).
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Figure 30.3 illustrates key features in the evolution of perturbations. Evolution is punctuated by the transi-
tion from radiation- to matter-dominated at 1+zeq ≈ 3400, and by the transition from opaque to transparent
at recombination, at 1 + zrec ≈ 1100. Meanwhile the comoving horizon distance η increases monotonically.
Small wavelength perturbations enter the horizon early, during the radiation-dominated regime, while long
wavelength perturbations enter the horizon late, during the matter-dominated regime.

One regime not covered by the analytic approximations is perturbations that enter the horizon near the
epoch of matter-radiation equality. The regime is important because the �rst few peaks, the most prominent
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Figure 30.3 Various regimes in the evolution of �uctuations. The line increasing diagonally from bottom left to top

right is the comoving horizon distance η. Above this line are superhorizon �uctuations, whose comoving wavelengths

exceed the horizon distance, while below the line are subhorizon �uctuations, whose comoving wavelengths are less

than the horizon distance. The dashed vertical line at cosmic scale factor aeq ≈ a0/3400 marks the moment of matter-

radiation equality. Before matter-radiation equality (to the left), the background mass-energy was dominated by

radiation, while after matter-radiation equality (to the right), the background mass-energy was dominated by matter.

Once a �uctuation enters the horizon, the non-baryonic matter �uctuation tends to grow, whereas the radiation

�uctuation tend to decay, so there is an epoch prior to matter-radiation equality where gravitational perturbations

are dominated by matter rather than radiation �uctuations, even though radiation dominates the background energy

density. The dashed vertical line at arec ≈ a0/1100 marks recombination, where the temperature cooled to the point

that baryons changed from being mostly ionized to mostly neutral, and the Universe changed from being opaque to

transparent. The observed CMB comes from the time of recombination.
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peaks, in the CMB entered the horizon around or shortly after matter-radiation equality. Covering this
regime satisfactorily requires solving numerically the full set of equations (30.53)�(30.55).
The regimes covered below are:
1. Superhorizon scales, �30.10.
2. Radiation-dominated:

a. adiabatic initial conditions, �30.11;
b. isocurvature initial conditions, �30.12.

3. Subhorizon scales, �30.13.
4. Fluctuations that enter the horizon in the matter-dominated epoch, �30.14.
5. Matter-dominated regime, �30.15.
6. Baryons post-recombination, �30.16.
7. Matter with dark energy, �30.17.
8. Matter with dark energy and curvature, �30.18.

30.10 Superhorizon scales
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Figure 30.4 Superhorizon scales.

At su�ciently early times, any mode is outside the horizon, kη < 1. In the superhorizon limit kη � 1, the
evolution equations (30.53a)�(30.55) reduce to

δ̇c = 3Φ̇ , (30.61a)

Θ̇0 = Φ̇ , (30.61b)

− 3
ȧ

a
F = 4πGa2(ρ̄cδc + 4ρ̄rΘ0) . (30.61c)
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In e�ect, the dark matter velocity vc and radiation dipole Θ1 can be treated as negligibly small at super-
horizon scales,

vc = Θ1 = 0 . (30.62)

The �rst two of equations (30.61) imply that the dark matter overdensity δc and radiation monopole Θ0 are
related to the potential Φ by

1
3δc − Φ = ζc , (30.63a)

Θ0 − Φ = ζr , (30.63b)

where ζc and ζr are constants set by initial conditions. Plugging the solutions (30.63) into the Einstein energy
equation (30.61c), and replacing derivatives with respect to horizon distance η with derivatives with respect
to cosmic scale factor a,

∂

∂η
= ȧ

∂

∂a
= a2H

∂

∂a
, (30.64)

with the Hubble parameter H from equation (30.35) gives the �rst order di�erential equation, in units
aeq = 1,

2a(1 + a)Φ′ + (6 + 5a)Φ + 4ζr + 3ζca = 0 , (30.65)

where prime ′ denotes di�erentiation with respect to cosmic scale factor, d/da. The solution to equa-
tion (30.65) that is �nite at a = 0 is

Φ = − 2
3ζr + ( 2

3ζr −
3
5ζc)f , (30.66)

where f(a) is the function

f ≡ 1− 2

a
+

8

a2
+

16

a3
− 16

√
1 + a

a3
=
a
(
6 + a+ 4

√
1 + a

)(
1 +
√

1 + a
)4 , (30.67)

in which the rightmost expression is written in a form that is numerically well-behaved for all a. The function
f varies from 0 at a = 0 to 1 at a→∞. The initial and �nal values of the potential Φ(a) are

Φ(0) = − 2
3ζr , Φ(late) = − 3

5ζc . (30.68)

The potential Φ(late) is designated �late� because it holds in the matter-dominated regime well after recom-
bination, but fails when dark energy (or possibly curvature) become important.
There are adiabatic and isocurvature initial conditions. In�ation generically produces adiabatic �uctua-

tions, in which matter and radiation �uctuate together,

ζc = ζr adiabiatic , (30.69)

so that

δc(0) = 3Θ0(0) = − 3
2Φ(0) = ζc adiabiatic . (30.70)

Notice that a positive energy �uctuation corresponds to a negative potential, consistent with Newtonian
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Figure 30.5 Evolution of the scalar potential Φ at superhorizon scales, equations (30.72), from radiation-dominated

to matter-dominated. The scale for the potential is normalized to its value Φ(late) at late times a� aeq.

intuition. Isocurvature initial conditions are de�ned by the vanishing of the initial potential, Φ(0) = 0,
requiring

ζr = 0 isocurvature . (30.71)

The adiabatic and isocurvature solutions for the superhorizon potential Φ, equation (30.66), are

Φad = ζc
(
− 2

3 + 1
15f
)
, (30.72a)

Φiso = − 3
5ζcf , (30.72b)

with f given by equation (30.67). Figure 30.5 shows the evolution of the potential Φ from equations (30.72),
normalized to the value Φ(late) at late times a � aeq. For adiabatic �uctuations, the potential changes by
a factor of 9/10 from initial to �nal value.

30.11 Radiation-dominated, adiabatic initial conditions

For adiabatic initial conditions, �uctuations that enter the horizon before matter-radiation equality, kηeq � 1,
are dominated by radiation. In the regime where radiation dominates both the unperturbed energy and its
�uctuations, the relevant equations are, from equations (30.54), (30.55), and (30.57),

Θ̇0 − kΘ1 = Φ̇ , (30.73a)

− 3
ȧ

a
F − k2Φ = 16πGa2ρ̄rΘ0 , (30.73b)

−kF = 16πGa2ρ̄rΘ1 , (30.73c)
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Figure 30.6 Radiation-dominated regime.

in which, because it simpli�es the mathematics, the Einstein momentum equation is used as a substitute
for the radiation dipole equation. In the radiation-dominated epoch, the horizon distance is proportional
to the cosmic scale factor, η ∝ a, equation (30.39). Inserting Θ0 and Θ1 from the Einstein energy and
momentum equations (30.73b) and (30.73c) into the radiation monopole equation (30.73a) gives a second
order di�erential equation for the potential Φ,

Φ̈ +
4

η
Φ̇ +

k2

3
Φ = 0 . (30.74)

Equation (30.74) describes damped sound waves moving at sound speed 1/
√

3 times the speed of light. The
sound horizon, the comoving distance that sound can travel, is ηs = η/

√
3, the horizon distance η multiplied

by the sound speed. The growing and decaying solutions to equation (30.74) are

Φgrow =
3j1(y)

y
=

3(sin y − y cos y)

y3
, (30.75a)

Φdecay = − j−2(y)

y
=

cos y + y sin y

y3
, (30.75b)

where the dimensionless parameter y is the wavenumber k multiplied by the sound horizon distance ηs,

y ≡ kηs =
kη√

3
=

√
2

3

k

aeqHeq

a

aeq
, (30.76)

and j`(y) ≡
√
π/(2y)J

`+
1
2

(y) are spherical Bessel functions. The physically relevant solution that satis�es

adiabatic initial conditions, remaining �nite as y → 0, is the growing solution

Φ = Φ(0) Φgrow . (30.77)
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Figure 30.7 The potential Φ and radiation monopole Θ0 for modes that enter the sound horizon kηs = 1 during

the radiation-dominated regime well before matter-radiation equality, for (top) adiabatic initial conditions, equa-

tions (30.77) and (30.78), and (bottom) isocurvature initial conditions, equations (30.84) and (30.85). The quantities

shown are (blue) Θ0 − Φ and (black) −2Φ, to illustrate that the former oscillates about the latter as expected from

equation (30.48). The di�erence, (Θ0−Φ)− (−2Φ) = Θ0 +Φ, which is the temperature Θ0 redshifted by the potential

Φ, is (for Ψ = Φ) the monopole contribution to the temperature �uctuation of the CMB, equation (34.17). The units

of Φ and Θ0 are such that ζr = 1 for adiabatic �uctuations, and ζc = 1 for isocurvature �uctuations.

The growing solution (30.75a) shows that, after a mode enters the sound horizon the scalar potential Φ

oscillates with an envelope that decays as y−2. Physically, relativistically propagating sound waves tend to
suppress the gravitational potential Φ. The suppression of the potential is responsible for the turnover in the
observed power spectrum of matter �uctuations today from large to small scales evident in Figure 30.15.

The radiation monopole Θ0 can be inferred either from the Einstein equation (30.73b) with the solu-
tions (30.75) for the potential Φ, or from the Green's function solution (30.52) in the radiation-dominated
regime. Either way, the di�erence Θ0 − Φ between the radiation monopole and the potential corresponding
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Figure 30.8 Evolution of the dark matter overdensity δc−3Φ for a mode that enters the horizon during the radiation-

dominated regime, for adiabatic initial conditions. Like the radiation �uctuation Θ0 illustrated in the top panel of

Figure 30.7, the matter �uctuation δc is constant outside the sound horizon, kηs � 1, and gets a boost as the

�uctuation enters the sound horizon. But whereas the radiation �uctuation subsequently oscillates, the dark matter

�uctuation grows monotonically, with logarithmic growth well inside the sound horizon, kηs � 1. The units are such

that ζr = 1.

to the growing mode potential (30.77) is

Θ0 − Φ = ζr
(2 sin y − y cos y)

y
. (30.78)

The top panel of Figure 30.7 shows the growing mode potential Φ, equation (30.77), and the radiation
monopole Θ0, equation (30.78). The Figure plots these two quantities in the form −2Φ and Θ0 −Φ in order
to bring out the fact that Θ0 − Φ oscillates about −2Φ, in accordance with equation (30.48). After a mode
is well inside the sound horizon, y � 1, the radiation monopole oscillates with constant amplitude,

Θ0 = −ζr cos y for y � 1 . (30.79)

Fluctuations in the dark matter are driven by the gravitational potential of the radiation. The radiation-
dominated Green's function solution (30.47) for the dark matter �uctuation δc driven by the growing mode
potential (30.77) and satisfying adiabatic initial conditions (30.70) is

δc − 3Φ = 6ζr

(
sin y

y
− 1

2
+ Cin y

)
, (30.80)

where Cin y ≡
∫ y

0
(1 − cosx) dx/x is the cosine integral. Figure 30.8 shows the density �uctuation (30.80).

Once the mode is well inside the sound horizon, y � 1, the dark matter density δc, equation (30.80), evolves
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as, from the asymptotic behaviour Cin y ∼ ln y + γ with γ ≡ 0.5772... Euler's constant,

δc − 3Φ = 6ζr

(
ln y + γ − 1

2

)
for y � 1 , (30.81)

which grows logarithmically. This logarithmic growth translates into a logarithmic increase in the amplitude
of matter �uctuations at small scales, and is a characteristic signature of non-baryonic cold dark matter.

Exercise 30.13. Radiation-dominated �uctuations.

1. Con�rm equation (30.74). You might like to start by seeking a solution using the monopole and dipole
radiation equations (30.54) along with the Einstein energy equation (30.55) including only radiation,
namely equation (30.73b). Then try the solution advocated in the text, namely use the Einstein mo-
mentum equation (30.73c) in place of the radiation dipole equation. This is an example of a situation
where, even though two sets of equations are equivalent, it is easier to �nd solutions from one set than
the other.

2. Con�rm that the homogeneous solutions of equation (30.74) are as given in the text, equations (30.75).

3. The initial condition for the temperature monopole is determined by equation (30.63b), Θ0(0)−Φ(0) =

ζr, where ζr is some constant, the initial radiation entropy �uctuation set up during in�ation. Find the
initial conditions for the scalar potentials Ψ and Φ from the Einstein energy and quadrupole pressure
equations at η → 0 (in the present simple model, the Einstein quadrupole pressure equation simply sets
Ψ = Φ).

4. Con�rm that the Green's function solution (30.52) for Θ0−Φ satisfying the requisite boundary conditions
is equation (30.78). Plot the solution for Θ0−Φ, along with −2Φ. Con�rm that Θ0−Φ oscillates around
−2Φ.

5. Comment on the behaviour. How do the gravitational potential and temperature monopole evolve once
a mode is inside the horizon? Can you come up with a physical explanation of what is going on?

30.12 Radiation-dominated, isocurvature initial conditions

For isocurvature initial conditions, the matter �uctuation contributes from the outset, |ρ̄cδc| > |4ρ̄rΘ0| even
while radiation dominates the background density, ρ̄c � ρ̄r.
To develop an approximation adequate for isocurvature �uctuations entering the horizon well before

matter-radiation equality, kηeq � 1, regard the Einstein energy equation (30.55) as giving the radiation
monopole Θ0, and the Einstein momentum equation (30.57) as giving the radiation dipole Θ1. Insert these
into the radiation monopole equation (30.54a), and eliminate the δ̇c terms using the dark matter density
equation (30.53a). The result is, in units aeq = 1,

2a(1 + a)Φ′′ + (8 + 9a)Φ′ + 2
(

1 +
2k2a

3

)
Φ + δc = 0 , (30.82)
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where prime ′ denotes di�erentiation with respect to cosmic scale factor a. Equation (30.82) is valid in all
regimes, for any combination of matter and radiation.
For isocurvature initial conditions, the radiation monopole and potential vanish initially, Θ0(0) = Φ(0) = 0,

whereas the dark matter overdensity is �nite, δc(0) = 3ζc 6= 0. For small scales that enter the horizon well
before matter-radiation equality, kηeq � 1, the potential Φ is small compared to δc, while δc has some
approximately constant non-zero value up to and through the time when the mode enters the sound horizon,
kηs =

√
2/3 ka ≈ 1. In the radiation-dominated epoch, a � 1, but k large and ka ∼ 1 so k2a � 1,

equation (30.82) simpli�es to

2aΦ′′ + 8Φ′ +
4k2a

3
Φ + δc = 0 . (30.83)

For constant δc = δc(0) = 3ζc, the solution of equation (30.83) vanishing at a = 0 is, with y given by
equation (30.76),

Φ = − 3
√

3 ζc√
2 k

1− cos y − y sin y + 1
2y

2

y3
. (30.84)

With units restored, k is k/(aeqHeq). The Green's function solution (30.52) for the di�erence Θ0−Φ between
the radiation monopole and potential driven by the potential (30.84) is

Θ0 − Φ =
3
√

3 ζc√
2 k

(1− cos y − 1
2y sin y)

y
. (30.85)

Equations (30.84) and (30.85) are the solution for small scale modes with isocurvature initial conditions that
enter the horizon well before matter-radiation equality. After a mode is well inside the sound horizon, y � 1,
the radiation monopole (30.85) oscillates with constant amplitude,

Θ0 = − 3
√

3 ζc

2
√

2 k
sin y y � 1 . (30.86)

The lower panel of Figure 30.7 shows the potential Φ, equation (30.84), and the radiation monopole Θ0

from equation (30.85), again plotted as Θ0 − Φ and −2Φ to bring out the fact that Θ0 − Φ oscillates about
−2Φ. Whereas for adiabatic initial conditions the radiation monopole oscillated as cos y well inside the sound
horizon, equation (30.79), for isocurvature initial conditions it oscillates as sin y well inside the sound horizon,
equation (30.86).
The solution (30.84) for the potential Φ was derived from equation (30.83) on the assumption of constant

δc. The accuracy of the approximation may be checked by calculating the radiation-dominated Green's
function solution (30.47) for δc driven by this potential, which is

δc − 3Φ = 3ζc

(
1 + a

3− 3 cos y − 3y Si y + 3
2y

2

y2

)
, (30.87)

where Si y ≡
∫ y

0
sinx dx/x is the sine integral. Equation (30.87) shows that δc − 3Φ is approximately equal

to δc(0) ≡ 3ζc in the radiation-dominated regime a � 1 for all y. The dark matter overdensity δc itself is
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not constant, because Φ varies. However, Φ from equation (30.84) is of order aδc(0) for any y, and the small
order a correction to δc leads to corrections of next order a2 to Φ, Θ0−Φ, and δc−3Φ, and can be neglected.

30.13 Subhorizon scales
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Figure 30.9 Subhorizon scales.

After a mode enters the horizon, the radiation �uctuation Θ0 oscillates, but the non-baryonic cold dark
matter �uctuation δc grows monotonically. In due course, the dark matter density �uctuation ρ̄cδc dominates
the radiation density �uctuation ρ̄rΘ0, and this necessarily occurs before matter-radiation equality; that is,
|ρ̄cδc| > |4ρ̄rΘ0| even though ρ̄c < ρ̄r. This is true for both adiabatic and isocurvature initial conditions; as
noted in �30.12, for isocurvature initial conditions, the dark matter density �uctuation dominates from the
outset. Even before the dark matter density �uctuation dominates, the cumulative contribution of the dark
matter to the potential Φ begins to be more important than that of the radiation, because the potential
sourced by the radiation oscillates, with an e�ect that tends to cancel when averaged over an oscillation.
Regard the Einstein energy equation (30.55) as giving the dark matter overdensity δc, and the Einstein

momentum equation (30.57) as giving the dark matter velocity vc. Insert these into the dark matter density
equation (30.53a) and eliminate the Θ̇0 terms using the radiation monopole equation (30.54a). The result is,
in units aeq = 1,

2a2(1 + a)Φ′′ + a(6 + 7a)Φ′ − 2Φ− 4Θ0 = 0 , (30.88)

where prime ′ denotes di�erentiation with respect to cosmic scale factor a. Equation (30.88) is valid in all
regimes, for any combination of matter and radiation.
Once the mode is well inside the horizon, kη � 1, the radiation monopole Θ0 oscillates about an average
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value of −Φ (since Θ0 − Φ oscillates about −2Φ, as noted in �30.6):

〈Θ0〉 = −Φ . (30.89)

Inserting this cycle-averaged value of Θ0 into equation (30.88) gives the Meszaros di�erential equation

2(1 + a)a2Φ′′ + (6 + 7a)aΦ′ + 2Φ = 0 . (30.90)

The solutions of Meszaros' di�erential equation (30.90) are a linear combination of growing and decaying
solutions

Φgrow = − 3

4k2a

(
1 +

3a

2

)
, (30.91a)

Φdecay = − 3

4k2a

{(
1 +

3a

2

)
ln

[
(
√

1 + a+ 1)2

a

]
− 3
√

1 + a

}
. (30.91b)

A constant factor of −3/(4k2) has been included in the potential, arbitrarily, to simplify the overall factor
in the resulting solution for the dark matter overdensity δc, equations (30.93). The solutions for δc driven by
the growing and decaying potentials (30.91) are, from the Green's function solution (30.45), in units aeq = 1,

δc − 3Φ = −4k2a

3
Φ , (30.92)

which holds for both growing and decaying modes. The solutions (30.92) omit possible additional contribu-
tions from the homogeneous solutions in equation (30.45), but the regime of interest is modes well inside the
horizon, ka � 1, and the omitted contributions become dominated by the solutions (30.92) as the cosmic
scale factor a increases. Explicitly, the growing and decaying modes for δc − 3Φ are

(δc − 3Φ)grow = 1 +
3

2
a , (30.93a)

(δc − 3Φ)decay =

(
1 +

3

2
a

)
ln

[
(
√

1 + a+ 1)2

a

]
− 3
√

1 + a . (30.93b)

The desired solution for the dark matter overdensity δc is a linear combination of growing and decaying
modes,

δc − 3Φ = Cgrow(δc − 3Φ)grow + Cdecay(δc − 3Φ)decay . (30.94)

The coe�cients Cgrow and Cdecay follow from matching to the earlier solutions for δc − 3Φ obtained in the
radiation-dominated regime. For modes that enter the horizon well before matter-radiation equality, a� 1,
the growing and decaying modes (30.93) simplify to

(δc − 3Φ)grow = 1 , (δc − 3Φ)decay = − ln(a/4)− 3 for a� 1 . (30.95)

It was found in �30.11 that the potential Φ in the radiation-dominated regime oscillated with an envelope
that decayed as ∼ a−2, equation (30.75a), driving a dark matter overdensity that grew as a combination of
linear and logarithmic parts, equation (30.81). The result (30.95) demonstrates that a potential that is a
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Figure 30.10 After an initial boost on entering the sound horizon, the dark matter overdensity δc grows logarithmically

with cosmic scale factor a during the radiation-dominated regime, but then linearly with a after matter-radiation

equality a = aeq. The curves are labelled with the comoving wavenumber k/(aeqHeq) in units of the Hubble distance

at matter-radiation equality. The evolution is approximated by the radiation-dominated solution (30.80) at small a,

and by the Meszaros solution (30.94) at larger a, with crosses marking the transition between the two approximations,

at the geometric mean of the horizon distance at horizon crossing and matter-radiation equality η ≈ √ηhorηeq.

sum of parts proportional to 1/a and ln a/a, albeit reduced in amplitude by a factor of 1/k2, leads to the
same behaviour of the dark matter overdensity.
For adiabatic initial conditions, the solution for the dark matter overdensity δc is the one that matches

smoothly on to the logarithmically growing solution given by equation (30.81). Matching to the adiabatic
solution (30.81) for δc − 3Φ well inside the horizon determines the constants

Cgrow = 6ζr

[
γ − 7

2 + ln

(
4
√

2
3 k

)]
, Cdecay = −6ζr adiabatic . (30.96)

For isocurvature initial conditions, δc − 3Φ is sensibly constant in the radiation-dominated regime a � 1,
equation (30.87), and only the growing mode is present,

Cgrow = 3ζc , Cdecay = 0 isocurvature . (30.97)

At late times well into the matter-dominated epoch, a � 1, the growing mode of the Meszaros solution
dominates,

(δc − 3Φ)grow = 3
2a , (δc − 3Φ)decay = 4

15a
−3/2 for a� 1 , (30.98)
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so that the dark matter overdensity δc at late times is

δc − 3Φ = 3
2 Cgrow a for a� 1 . (30.99)

The potential Φ, equation (30.91a), at late times is constant,

Φ = − 9

8k2
Cgrow for a� 1 . (30.100)

The constancy of the potential Φ, and the linear growth of the dark matter density δc, is characteristic of
the matter-dominated regime.
Figure 30.10 shows the dark matter overdensity δc calculated for adiabatic conditions from the radiation-

dominated solution (30.80) at small a, and the Meszaros solution (30.94) at larger a. The overdensity δc is
constant before horizon crossing, receives a boost of growth during horizon-crossing, grows logarithmically
with cosmic scale factor a during before matter-radiation equality, then grows linearly with a after matter-
radiation equality.
For modes that enter the horizon well before matter-radiation equality, the radiation monopole Θ0 at late

times a� 1 is, with y ≡ kη/
√

3,

Θ0 = −Φ− ζr cos y adiabatic , (30.101a)

Θ0 = −Φ− 3
√

3 ζc

2
√

2 k
sin y isocurvature . (30.101b)
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Figure 30.11 Fluctuations that enter the horizon in the matter-dominated regime.

For �uctuations that enter the horizon well after matter-radiation equality, kηeq � 1, the potential Φ before
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entering the horizon is given by the superhorizon solution (30.66), while after entering the horizon the
evolution of the potential is dominated by the dark matter density �uctuation. A satisfactory solution for
the potential Φ valid both before and after entering the horizon is obtained by setting the radiation monopole
equal to its superhorizon solution, Θ0 = Φ+ζr, equation (30.63b), and inserting this value into the di�erential
equation (30.88). This solution remains an adequate approximation inside the horizon because after horizon
crossing the radiation �uctuation Θ0 makes a subdominant contribution to the Einstein energy equation, so
its behaviour ceases to in�uence the evolution of the potential. Mathematically, once a� aeq, the derivative
terms Φ′′ and Φ′ dominate the Φ and Θ0 terms in equation (30.88).
Inserting the superhorizon solution Θ0 = Φ + ζr into the di�erential equation (30.88) recovers the super-

horizon solution (30.66) for Φ, which therefore remains a satisfactory approximation not only outside but
also inside the horizon. But inside the horizon, the dark matter overdensity δc and radiation monopole Θ0

driven by this potential are no longer their superhorizon solutions (30.63). Rather, the solution for the dark
matter overdensity δc driven by the superhorizon potential, subject to the initial condition 1

3δc − Φ = ζc is,
from the Green's function solution (30.45),

δc − 3Φ = 3ζc + k2

{
−2a2( 3

5ζc + Φ) + ( 8
3ζr −

16
5 ζc)

[
4 ln

(
1 +
√

1 + a

2

)
− a
]}

. (30.102)

Well after matter-radiation equality, a� 1, the dark matter overdensity (30.102) is (note that for large scale
modes k2a can be small even when a� 1)

δc − 3Φ = 3ζc
(
1 + 4

15k
2a
)

= 3ζc
(
1 + 1

30 (kη)2
)

for a� 1 . (30.103)

Since Φsuper(late) = − 3
5ζc for both adiabatic and isocurvature modes, equation (30.68), the overdensity δc

from equation (30.103) is

δc = 6
5ζc
(
1 + 2

3k
2a
)

= 6
5ζc
(
1 + 1

12 (kη)2
)

for a� 1 . (30.104)

The solution for Θ0 −Φ driven by the superhorizon potential is, from the Green's function solution (30.52),

Θ0 − Φ = 1
3ζr(4− cos y) + ( 1

3ζr −
3
10ζc)

{
− 4 + (4− y2

k) cos y + 3yk sin y + y2
k

[ yk
y + yk

− ykf(yk+y) + 2g(yk+y) + (yk cos y − 2 sin y)f(yk)− (2 cos y + yk sin y)g(yk)
]}

, (30.105)

where y ≡ kηs is the wavenumber times the sound horizon distance, yk ≡ 4
√

2/3 k is a constant proportional
to the wavenumber k, and f(y) and g(y) are the auxiliary sin/cosine integrals, related to the sin and cosine
integrals Si y ≡

∫ y
0

sinx dx/x and Ci y ≡
∫ y
∞ cosx dx/x by

f(y) ≡ (π/2− Si y) cos y + Ci y sin y , (30.106a)

g(y) ≡ (π/2− Si y) sin y − Ci y cos y . (30.106b)

The mode enters the horizon y = 1 at a cosmic scale factor of a/aeq = 4(1 + yk)/y2
k. Figure 30.13 shows

Θ0 − Φ and −2Φ from equations (30.105) and (30.66), for a mode with k =
√

3/8 = 0.61, corresponding to
yk = 2. This mode enters the horizon at a/aeq = 3, at approximately the epoch of recombination.



30.15 Matter-dominated regime 797

Concept question 30.14. Does the radiation monopole oscillate after recombination? Before
recombination, photons and baryons are tightly coupled by electron scattering, and behave as a single �uid.
After recombination, photons stream freely. Does the radiation monopole Θ0 − Φ keep oscillating after
recombination, as in Figure 30.13, or does it stop oscillating, or does it do something else? Answer. The
radiation monopole keeps oscillating, but di�erently. Two key di�erences in the free-streaming regime are,
�rstly, that the e�ective sound speed increases to the speed of light, and secondly, that the oscillations
damp adiabatically. See Exercise 32.7 for an approximate treatment of a relativistic �uid � neutrinos � in
the free-streaming regime. A full treatment of radiation in the free-streaming regime requires the radiative
transfer equation, �34.1.

30.15 Matter-dominated regime
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Figure 30.12 Matter-dominated regime.

After matter-radiation equality, but before curvature or dark energy become important, non-relativistic
matter dominates the mass-energy density of the Universe.
In the matter-dominated epoch, the relevant equations are, from equations (30.53), (30.55), and (30.57),

δ̇c − k vc = 3 Φ̇ , (30.107a)

− 3
ȧ

a
F − k2Φ = 4πGa2ρ̄cδc , (30.107b)

−kF = 4πGa2ρ̄cvc , (30.107c)

in which, because it simpli�es the mathematics, the Einstein momentum equation is used as a substitute
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Figure 30.13 Similar to Figure 30.7, but for a mode that enters the sound horizon kηs = 1 during the matter-dominated

regime, for adiabatic initial conditions. The mode shown has k =
p

3/8 = 0.61, which enters the horizon at a = 3,

approximately the time of recombination, marked by a star.

for the matter velocity equation. In the matter-dominated epoch, the horizon is proportional to the square
root of the cosmic scale factor, η ∝ a1/2, equation (30.39). Inserting δc and vc from the Einstein energy and
momentum equations (30.107b) and (30.107c) into the matter density equation (30.107a) yields a second
order di�erential equation for the potential Φ

Φ̈ +
6

η
Φ̇ = 0 . (30.108)

The general solution of equation (30.108) is a linear combination

Φ = Cgrow Φgrow + Cdecay Φdecay (30.109)

of growing and decaying solutions

Φgrow = 1 , Φdecay = y−5 , (30.110)

where the dimensionless parameter y is, as previously, the wavenumber k multiplied by the sound horizon
distance η/

√
3. In the matter-dominated regime y is, in units aeq = Heq = 1,

y ≡ kη√
3

= 2
√

2
3 ka

1/2 . (30.111)

The constants Cgrow and Cdecay in the solution (30.109) depend on conditions established before the matter-
dominated epoch. The corresponding growing and decaying modes for the dark matter overdensity δc are,
from the Einstein energy equation (30.107b),

(δc − 3Φ)grow = −
(
5 + 1

2y
2
)

Φgrow = −
(
5 + 4

3k
2a
)

Φgrow , (30.112a)

(δc − 3Φ)decay = − 1
2y

2 Φdecay = − 4
3k

2aΦdecay . (30.112b)
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The behaviour of the growing and decaying modes (30.112) agrees with both the subhorizon Meszaros
solution (30.98) and the superhorizon solution (30.103) well after matter-radiation equality a � 1, as they
should. Any admixture of the decaying solution tends quickly to decay away, leaving the growing solution.

30.16 Baryons post-recombination

Recombination frees baryons and photons from each other's grasp. Starting at recombination, the freed
baryons behaved as pressureless matter, like non-baryonic dark matter. In Exercise 30.15 you will �gure out
the behaviour of baryons and non-baryonic cold matter in the approximation that the Universe is matter-
dominated.

Exercise 30.15. Growth of baryon �uctuations after recombination.

1. Growing and decaying modes. Assume that the Universe was matter-dominated at and after re-
combination. What are the growing and decaying solutions for the matter �uctuations δm?

2. Green's function for matter �uctuations. Find the Green's function for any matter component
subject to the initial conditions that the overdensity and its derivative with respect to cosmic scale
factor a are δm(rec) and δ′m(rec) at recombination.

3. Initial conditions for dark matter and baryon �uctuations at recombination. What are ap-
propriate initial conditions at recombination for �uctuations in each of the two matter components,
non-baryonic dark matter and baryons? Consider separately small-scale modes that entered the hori-
zon well before matter-radiation equality, and large-scale modes that entered the horizon well after
matter-radiation equality,

4. Growth of dark matter and baryon �uctuations. The matter density �uctuation is a sum of
non-baryonic dark matter and baryonic contributions,

δm = fcδc + fbδb , (30.113)

where the constants fc and fb are the dark matter and baryon fractions

fc ≡
ρc

ρm
= 1− fb , fb ≡

ρb

ρm
. (30.114)

Use the Green's function with the chosen initial conditions to derive solutions for the dark matter and
baryon overdensities δc and δb after recombination. Sketch the solutions for the matter, dark matter,
and baryon overdensities through recombination.

5. Comment. A common statement is �Following recombination, baryons fall into the dark matter poten-
tial wells.� Comment, in the light of your solutions.
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30.17 Matter with dark energy

Some time after recombination, dark energy becomes important. Observational evidence suggests that the
dominant energy-momentum component of the Universe today is dark energy, with an equation of state
consistent with that of a cosmological constant, pΛ = −ρΛ. In what follows, dark energy is taken to have
constant density, and therefore to be synonymous with a cosmological constant. Since dark energy has a
constant energy density whereas matter density declines as a−3, dark energy becomes important only well
after recombination.
Dark energy does not cluster gravitationally, so the Einstein equations for the perturbed energy-momentum

depend only on the matter �uctuation. However, dark energy does a�ect the evolution of the cosmic scale
factor a. In fact, if matter is taken to be the only source of perturbation, then covariant energy-momentum
conservation, as enforced by the Einstein equations, implies that the only addition that can be made to the un-
perturbed background is dark energy, with constant energy density. To see this, consider the equations (30.53)
governing the matter overdensity δm and scalar velocity vm (now subscripted m, since post-recombination
matter includes baryons as well as non-baryonic cold dark matter), together with the Einstein energy and
momentum equations (30.55) and (30.57) sourced only by matter,

δ̇m − k vm = 3 Φ̇ , (30.115a)

v̇m +
ȧ

a
vm = −kΦ , (30.115b)

− 3
ȧ

a
F − k2Φ = 4πGa2ρ̄mδm , (30.115c)

−kF = 4πGa2ρ̄mvm . (30.115d)

The factor 4πGa2ρ̄m on the right hand side of the two Einstein equations can be written

4πGa2ρ̄m =
3a3

0H
2
0 Ωm

2a
, (30.116)

where a0 and H0 are the present-day cosmic scale factor and Hubble parameter, and Ωm is the present-
day matter density (a constant). Allow the Hubble parameter H(a) ≡ ȧ/a2 to be an arbitrary function
of cosmic scale factor a. Inserting δm and velocity vm from the Einstein energy and momentum equa-
tions (30.115c) and (30.115d) into the matter equations (30.115a) and (30.115b), and taking the overdensity
equation (30.115a) minus 3ȧ/a times the velocity equation (30.115b), yields the condition

a4 dH
2

da
+ 3a3

0H
2
0 Ωm = 0 , (30.117)

whose solution is
H2

H2
0

=
Ωm

(a/a0)3
+ ΩΛ (30.118)

for some constant ΩΛ. This shows that, as claimed, if only matter perturbations are present, then the unper-
turbed background can contain, besides matter, only dark energy with constant density ρ̄Λ = H2

0 ΩΛ/(
8
3πG).
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The result is a consequence of the fact that the Einstein equations enforce covariant conservation of energy-
momentum.
With the Hubble parameter given by equation (30.118), the matter and Einstein equations (30.115) yield

a second order di�erential equation for the potential Φ, in units a0 = 1:

2a(Ωm + a3ΩΛ)Φ′′ + (7Ωm + 10a3ΩΛ)Φ′ + 6a2ΩΛΦ = 0 . (30.119)

The growing and decaying solutions to equation (30.119) are, in units a0 = 1,

Φgrow =
5ΩmH

2
0

2

H(a)

a

∫ a

0

da′

a′3H(a′)3
, (30.120a)

Φdecay =
H

a
. (30.120b)

The factor 5
2ΩmH

2
0 in the growing solution is chosen so that Φgrow → 1 as a→ 0. The growing solution Φgrow

can be expressed as an elliptic integral. The corresponding growing and decaying solutions for the matter
overdensity δm are, again in units a0 = 1,

(δm − 3Φ)grow = − 2k2a

3ΩmH2
0

Φgrow − 5 , (δm − 3Φ)decay = − 2k2a

3ΩmH2
0

Φdecay . (30.121)

For modes well inside the horizon, kη ∼ ka1/2/H0 � 1, the relation (30.121) agrees with that (30.127) below.

30.18 Matter with dark energy and curvature

Curvature may also play a role after recombination. Observational evidence as of 2014 is consistent with the
Universe having zero curvature, but it is possible that there may be some small curvature. If the curvature is
signi�cantly non-zero today (larger than treatable in perturbation theory), then by de�nition the curvature
scale is less than the horizon size today. Scales larger than the curvature scale should strictly be treated
using an unperturbed FLRW metric with curvature. However, a �at background FLRW metric remains a
good approximation for modes whose scales are small compared to the curvature.

Concept question 30.16. Curvature scale.What is meant by the curvature scale? Is the curvature scale
constant in comoving coordinates?

For modes much smaller than the horizon distance today, the time derivative of the potential can be
neglected compared to its spatial gradient, |Φ̇| � |kΦ|. If only matter, curvature, and dark energy are
present, then only matter �uctuations contribute to the energy-momentum. At scales much less than the
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Figure 30.14 Contour plot of the growth factor g(a) in a universe containing matter, curvature, and a cosmological

constant. If the Universe is �at, Ωk = 0, then the Universe evolves from matter-dominated (Ωm = 1, ΩΛ = 0) to

Λ-dominated (Ωm = 0, ΩΛ = 1) along the (blue) dashed line.

curvature scale, equations (30.115) then go over to the Newtonian limit,

δ̇m − k vm = 0 , (30.122a)

v̇m +
ȧ

a
vm = −kΦ , (30.122b)

− k2Φ = 4πGa2ρ̄mδm . (30.122c)

The factor 4πGa2ρ̄m in the Einstein equation can be written as equation (30.116). The matter and Einstein
equations (30.122) yield a second order equation for the matter overdensity δm, in units a0 = 1:

δ̈m +
ȧ

a
δ̇m −

3ΩmH
2
0

2

δm
a

= 0 . (30.123)

Equation (30.123) can be recast as a di�erential equation with respect to cosmic scale factor a:

δ′′m +

(
H ′

H
+

3

a

)
δ′m −

3ΩmH
2
0

2

δm
a5H2

= 0 , (30.124)

where H ≡ ȧ/a2 is the Hubble parameter, and prime ′ denotes di�erentiation with respect to a. In the case
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of matter plus curvature plus dark energy, the Hubble parameter H satis�es, again in units a0 = 1,

H2

H2
0

= Ωma
−3 + Ωka

−2 + ΩΛ , (30.125)

where Ωm, Ωk, and ΩΛ are the (constant) present-day values of the matter, curvature, and dark energy
densities. The growing and decaying solutions to equation (30.124) are

δm,grow ≡ a g(a) =
5ΩmH

2
0

2
H(a)

∫ a

0

da′

a′3H(a′)3
, δm,decay =

H

H0
. (30.126)

The potential Φ is related to the matter overdensity δm by, again in units a0 = 1, equation (30.122c),

Φ = −3ΩmH
2
0

2k2

δm
a
. (30.127)

The observationally relevant solution is the growing mode. The growing mode is conventionally given a
special notation, the growth factor g(a), because of its importance to relating the amplitude of clustering at
various times, from recombination up to the present. For the growing mode,

δ ∝ a g(a) , Φ ∝ g(a) . (30.128)

The normalization factor 5
2ΩmH

2
0 in equation (30.126) is chosen so that in the matter-dominated phase after

recombination but before dark energy or curvature become important, the growth factor g(a) is unity,

g(a) = 1 (arec � a� 1) . (30.129)

Thus as long as the Universe remains matter-dominated, the potential Φ remains constant. Curvature or
dark energy causes the potential Φ to decrease. Figure 30.14 illustrates the growth factor g(a) as a function
of Ωm and ΩΛ.
It should be emphasized that the growing and decaying solutions (30.126) are valid only for the case of

matter plus curvature plus constant density dark energy, where the Hubble parameter takes the form (30.125).
If another kind of mass-energy is considered, such as dark energy with non-constant density, then equations
governing perturbations of the other kind must be adjoined, and the Einstein equations modi�ed accordingly.
The growth factor g(a) may expressed analytically as an elliptic function. A good analytic approximation

is (Carroll, Press, and Turner, 1992)

g ≈ 5Ωm

2
[
Ω

4/7
m − ΩΛ +

(
1 + 1

2Ωm

) (
1 + 1

70ΩΛ

)] , (30.130)

where Ωx are densities at the epoch being considered (such as the present, a = a0).

30.19 Primordial power spectrum

Initial conditions from in�ation are conveniently characterized in terms of the gauge-invariant �uctuation
ζ de�ned by equation (30.26), which has the property that it remains constant during evolution at super-
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horizon scales. The �uctuation ζ is commonly called the primordial curvature �uctuation. According to the
in�ationary paradigm, �uctuations in ζ are generated by quantum �uctuations in the in�aton �eld that drives
in�ation. The amplitude ζ of a mode freezes as the mode exits the horizon during in�ation, and remains
constant until the mode subsequently re-enters the horizon after in�ation has ended.
Generically, in�ation predicts that primordial curvature �uctuations ζ generated by vacuum �uctuations

during in�ation have a spectrum that is (1) Gaussian, and (2) scale-free. In�ation also predicts generically
that the �uctuations are adiabatic, meaning that the curvature �uctuation is the same for all species, ζx = ζ

for all species x.
Gaussian distributions, �30.22.6, are ubiquitous in statistics as a consequence of the Central Limit Theorem

(CLT), �30.22.5. The CLT states that the distribution of a random variable that is a sum of independent
random increments is asymptotically Gaussian in the limit of a large number of increments. A Gaussian
distribution is characterized entirely by its mean and variance, all higher irreducible moments vanishing.
A scale-free spectrum of �uctuations is one in which the spatial variance ξζ of the dimensionless �uctuation

ζ is the same on all scales,

〈ζ(x′)ζ(x)〉 ≡ ξζ(|x′ − x|) = constant , (30.131)

independent of spatial separation |x′ − x|. A scale-free primordial spectrum of �uctuations was originally
proposed as a natural initial condition by Harrison (1970) and Zeldovich (1972) before the idea of in�ation
was conceived. In�ation predicts a scale-free spectrum because the vacuum energy that drives in�ation is
constant in time, and quantum �uctuations in the vacuum remain statistically the same as time goes by.
Thus the characteristic amplitude of �uctuations ζ �ying over the horizon remains the same as time goes by.
The power spectrum Pζ(k) of �uctuations in ζ is de�ned by

〈ζ(k′)ζ(k)〉 ≡ (2π)3δD(k′ + k)Pζ(k) . (30.132)

The �momentum-conserving� Dirac delta-function (2π)3δD(k′ + k) in equation (30.132) is a consequence of
the assumed statistical spatial translation symmetry of �uctuations in the spatially homogeneous FLRW
background. The power spectrum Pζ(k) is related to the correlation function ξζ(x) by (with the standard
convention in cosmology for the choice of signs and factors of 2π)

Pζ(k) =

∫
eik·xξζ(x) d3x , ξζ(x) =

∫
e−ik·xPζ(k)

d3k

(2π)3
. (30.133)

Whereas the correlation function ξζ(x) is dimensionless, the power spectrum P (k) has units of comoving
length cubed. The scale-free character means that the dimensionless power spectrum ∆2

ζ(k) de�ned by

∆2
ζ(k) ≡ Pζ(k)

4πk3

(2π)3
(30.134)

is constant.
Actually, the power spectrum generated by in�ation is not precisely scale-free, because in�ation comes to

an end, which breaks scale-invariance. The departure from scale-invariance is conventionally characterized
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by a scalar spectral index, the tilt n, such that

∆2
ζ(k) ∝ kn−1 . (30.135)

Thus a scale-invariant power spectrum has

n = 1 (scale-invariant) . (30.136)

Di�erent in�ationary models predict di�erent tilts, mostly close to but slightly less than 1.
A common practice is to report the value of the dimensionless primordial power spectrum ∆2

ζ(k) at some
pivot scale kp,

∆2
ζ(k) = ∆2

ζ(kp)

(
k

kp

)n−1

. (30.137)

The Planck collaboration (Aghanim et al., 2018) report

∆2
ζ(kp = 0.05 Mpc−1) = (2.14± 0.05)× 10−9 , n = 0.965± 0.004 . (30.138)

The pivot scale kp was chosen in this case so that the error in the amplitude ∆2
ζ(kp) was uncorrelated with

the error in the tilt n.

30.20 Matter power spectrum

The matter power spectrum Pm(η, k) at time η is de�ned by

〈δm(η,k′)δm(η,k)〉 ≡ (2π)3δD(k′ + k)Pm(η, k) , (30.139)

the Dirac delta-function being as before a consequence of the assumption of statistical spatial homogeneity.
The assumption of statistical isotropy implies that the power spectrum Pm(η, k) is a function only of the
magnitude k of the wavevector k. The matter power spectrum Pm(η, k) is related to the primordial power
spectrum Pζ(k) by

Pm(η, k) = Tm(η, k)2 Pζ(k) = Tm(η, k)2 (2π)3

4πk3
∆2
ζ(k) , (30.140)

where Tm(η, k) is the matter transfer function de�ned by

Tm(η, k) ≡ δm(η,k)

ζ(k)
. (30.141)

The transfer function Tm(η, k) for any given cosmological model may be calculated by the methods expounded
in the bulk of this chapter, Exercise 30.17.
The predictions of cosmological models of the matter power spectrum may be compared to measurements of

the power spectrum of objects, such as galaxies, that may trace the matter distribution. Galaxy surveys probe
the matter distribution well after recombination, and at scales much less than the horizon distance today.
Under those circumstances, the matter transfer function Tm(η, k) factors into a product of three factors: (1)
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a factor relating the matter overdensity δm to the potential Φ, which in the Newtonian regime at subhorizon
scales well after recombination is given in units a0 = 1 by equation (30.127); (2) a growth factor g(a),
equation (30.126), relating the potential Φ(η) at recent times η to the post-recombination matter-dominated
potential Φ(late); (3) a transfer function TΦ(late)(k) relating the matter-dominated potential Φ(late) to the
primordial �uctuation ζ:

Tm(η, k) =
δm(η,k)

Φ(η,k)
× Φ(η,k)

Φ(late,k)
× Φ(late,k)

ζ(k)

= −
(

2ak2

3ΩmH2
0

)
× g(a)× TΦ(late)(k) , (30.142)

where

TΦ(late)(k) ≡ Φ(late,k)

ζ(k)
. (30.143)

The potential transfer function TΦ(late)(k) is independent of time η because the potential Φ(late) is con-
stant in the matter-dominated regime before dark energy (or curvature) becomes important. The factoriza-
tion (30.142) of the matter transfer function Tm(η, k) separates the dependence on time η (or equivalently
cosmic scale factor a) and wavenumber k. The �rst factor δm/Φ is proportional to ak2; the second is a
function g(a) only of cosmic scale factor a; and the third is a function TΦ(late)(k) only of wavenumber k.
The factorization (30.142) of the matter transfer function Tm(η, k) implies that the matter power spectrum

Pm(η, k), equation (30.140), is related to the primordial power spectrum Pζ(η, k) by

Pm(η, k) =

(
2ag(a)

3ΩmH2
0

)2

k4 TΦ(late)(k)2 Pζ(k) =

(
2ag(a)

3ΩmH2
0

)2

k TΦ(late)(k)2 (2π)3

4π
∆2
ζ(k) . (30.144)

For a power-law primordial spectrum (30.135), the matter power spectrum at the largest scales, where the
potential transfer function TΦ(late)(k) is a constant independent of k, goes as

Pm(η, k) ∝ kn . (30.145)

The proportionality (30.145) explains the origin of the scalar index n.

Exercise 30.17. Power spectrum of matter �uctuations: simple approximation. Use the code you
wrote in Exercise 30.12 to compute the transfer function Tm(η, k), equation (30.141). Deduce the matter
power spectrum Pm(η0, k), equation (30.140), at the present time, η = η0. Use the normalization and tilt
of primordial power measured from Planck, equation (30.138). Compute power spectra for a concordance
ΛCDM model, Ωm = 0.3, ΩΛ = 0.7, and a �at matter-dominated Universe, Ωm = 1. Compare your matter
power spectrum to data from Anderson et al. (2014), downloadable from https://www.sdss3.org/science/
boss_publications.php. The best data set is the �post-reconstruction� DR11 set (Data Release 11). The
�reconstruction� involves undoing at least some of the e�ects of nonlinear evolution by moving galaxies
around. Note the units of the data: wavenumber k in hMpc−1 and power P (k) in (h−1 Mpc)3, with h ≡
H0/(100 km s−1 Mpc−1). Anderson give a covariance matrix for logarithmic powers log10 P (k); for simplicity,
take the error in log10 P (k) to be the square root of the diagonal of that matrix.

https://www.sdss3.org/science/boss_publications.php
https://www.sdss3.org/science/boss_publications.php
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As in Exercise 30.12, you may �nd that your integration routine gets stuck trying to integrate the oscillating
radiation monopole and dipole once the mode is well inside the horizon, kη � 1. The strategy suggested
in Exercise 30.12 was to modify the radiation dipole equation (30.54b) by introducing an arti�cial damping
term, equation (30.59), that damps radiation once it is well inside the horizon. Since the radiation �uctuation
ceases to in�uence the gravitational potential or the matter �uctuation once the radiation has oscillated many
times, the arti�cial damping has little e�ect on the model power spectrum.
A second problem you will encounter is that of power at superhorizon scales. Astronomers on Earth cannot

measure power at scales larger than our horizon because they cannot distinguish a superhorizon �uctuation
from a change in the mean density of the background FLRW geometry. To eliminate the unmeasurable
superhorizon power, calculate power from the overdensity δk − δ0 with a large-scale constant δ0 subtracted.
A third problem is that galaxies do not necessarily trace the distribution of matter. A simple model is to

suppose a linear relation between galaxy overdensity δg and matter overdensity δm (in Fourier space),

δg = bδm , (30.146)

where b is the bias parameter. Linear bias was introduced by Kaiser (1984), who showed that regions of a
Gaussian �eld (�30.22.3) above a high threshold density are linearly biassed.
Solution. See Figure 30.15. One of the trickier issues is getting the units right. The BOSS data are given
in units where the length scale is such that the comoving Hubble distance at the present time is

c

a0H0
=

299,792.458 km s−1

100h km s−1 Mpc
= 2,997.92458h−1 Mpc−1 . (30.147)

My code worked in units where c = aeq = Heq = 1. With Ωx representing values at the present time, the
Hubble parameter now H0 and at matter-radiation equality Heq are related by

Heq

H0
=
√

Ωr(aeq/a0)−4 + Ωm(aeq/a0)−3 + Ωk(aeq/a0)−2 + ΩΛ . (30.148)

I chose a0/aeq = 3400, and present-day densities of Ωm = 0.29, Ωr = Ωm/3400, Ωk = 0, ΩΛ = 1−Ωr−Ωm−Ωk.
The code gave H0/Heq = 6.4× 10−6, and so

c

a0H0
=

1

3400× (6.4× 10−6)
= 46.0 program units . (30.149)

The conversion factor between h−1 Mpc and program length units was therefore

1 program length unit =
2,997.92458h−1 Mpc

46.0
= 65.1h−1 Mpc . (30.150)

For the wavenumber, this meant that the conversion between hMpc−1 and program units was

khMpc−1 =
kprog

65.1h−1 Mpc
. (30.151)

The model power spectrum in Figure 30.15 has been multiplied, arbitrarily, by a squared bias factor of
b2 = 1.12, to give a better �t to the observed power spectrum. The residual di�erence between observed and
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Figure 30.15 Model matter power spectra computed in the simple approximation, compared to observations from the

BOSS galaxy survey (Anderson et al., 2014). Two models are shown, a �at ΛCDM model with concordance parameters

ΩΛ = 0.69 and Ωm = 0.31, and a �at matter-only CDM model, Ωm = 1. The dashed lines on the models show power

calculated from |δ2
k|, which includes unmeasurable superhorizon power; the solid lines are calculated from |(δk− δ0)2|,

which excludes the unmeasurable superhorizon power by subtracting a constant δ0 from the overdensity. The ΛCDM

model is normalized to the amplitude (30.138) measured by Planck (Aghanim et al., 2018), multiplied by a bias

squared factor of b2 = 1.12. The vertical error bars are correlated, being the square root of the diagonal of the full

covariance matrix of estimates provided by (Anderson et al., 2014). The ΛCDM power spectrum calculated here in

the simple approximation may be compared to the corresponding power spectra in the hydrodynamic approximation,

Figure 32.4, and from a Boltzmann computation, Figure 33.5.

model power shows wiggles. These are baryon acoustic oscillations (BAO), the presence of which is predicted
when baryons are included, Figure 32.4.

30.21 Nonlinear evolution of the matter power spectrum

This chapter has assumed throughout that linear perturbation theory holds, which requires that �uctuations
be small, δ � 1. This assumption fails for matter �uctuations at small scales, which in due course collapse into
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galaxies, with matter densities much greater than the mean, δm � 1. Evolution in this regime is nonlinear,
and must usually be followed with large computer simulations.
Since gravity remains weak, Φ � 1 and matter moves non-relativistically even in the nonlinear regime,

gravity remains well described by the Newtonian limit, equation (30.122c). The equations of conservation
of mass and momentum still hold for the matter, but these equations are no longer linear. To the extent
that the matter streams collisionlessly, as is the case for nonbaryonic dark matter, its nonlinear evolution is
straightforward, if computationally intensive, to follow. However, the collisional dynamics of baryons leads
to interesting and complicated phenomena, including stars, planets, and black holes, and people to worry
about them.

30.22 Statistics of random �elds

30.22.1 Random �eld

A basic proposition of modern cosmology, so far well-supported by observational evidence, is that �uctuations
in the Universe originated from some random process that operated in the same fashion from place to place.
In the in�ationary paradigm, �uctuations originated as quantum �uctuations in the in�aton �eld that drove
in�ation. According to this proposition, the �uctuating density ρ(x) of any measurable quantity (such as
matter density, or radiation temperature) in our Universe constitutes a random �eld. The density ρ(x) at
a randomly chosen position x constitutes a random variable with some probability distribution P (ρ) of
�nding the density to lie in an interval dρ. By de�nition, the probability distribution P (ρ) is positive, and
normalized to unit total probability, ∫

P (ρ) dρ = 1 . (30.152)

In a random �eld, the densities ρ(x1) and ρ(x2) at two di�erent points are in general not independent,
so the 1-point probability (30.152) is not su�cient to determine completely the statistical properties of the
�eld. For example, since gravity causes matter to cluster, the densities at two nearby points are correlated,
not independent. For brevity, denote the density at spatial position xi by ρi,

ρi ≡ ρ(xi) . (30.153)

The properties of the random �eld ρ(x) are determined by an in�nite set of N-point probability distribu-
tions P (ρ1, ..., ρN ) of �nding the densities ρi at N positions xi to lie in an interval dρ1...dρN . By de�nition,
the joint N -point probability distribution is positive, and normalized to unit total probability,∫

P (ρ1, ..., ρN ) dρ1...dρN = 1 . (30.154)

By homogeneity, the N -point probability is a function only of the relative spatial positions xi, not of their
absolute positions.
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The limitations of observational accessibility and accuracy mean that the true N -point probability distri-
butions P (ρ1, ..., ρN ) are not known exactly. It is then necessary to make hypotheses about the form of the
probability, and to test those hypotheses against the available sampling of data.

30.22.2 Random �elds in Fourier space

Any linear combination ρ̃i of random �elds ρj is a random �eld,

ρ̃i =
∑
j

aijρj , (30.155)

where aij are constants, and the sum over j could represent an integral over a continuum. In particular, the
Fourier transform ρ(k) of a random �eld ρ(x),

ρ(k) ≡
∫
ρ(x)eik·x d3x , ρ(x) ≡

∫
ρ(k)e−ik·x

d3k

(2π)3
, (30.156)

is a random �eld.
The Fourier modes ρ(k) of a random �eld are of special importance when the �eld is statistically homo-

geneous, because Fourier modes are eigenmodes of the translation operator ∇, and the statistical properties
of a statistically homogeneous random �eld commute with the translation operator.

30.22.3 Gaussian random �elds

A generic prediction of in�ation is that the primordial distribution of �uctuations was Gaussian, as a result
of their origin as quantum �uctuations. Whenever the values ρ(x) at each point x of a random �eld are
generated as a sum of a large number of independent random increments, then the resulting �eld will be
Gaussian, as a consequence of the Central Limit Theorem. The CLT is proved for the simple case of a single
random variable ρ in �30.22.5.
A Gaussian random �eld ρ(x) is de�ned by the vanishing of all irreducible moments other than the �rst

two, the mean ρ̄, and the variance Cij ,

Cij ≡ 〈∆ρi ∆ρj〉 , (30.157)

where ∆ρi ≡ ρi − ρ̄ is the deviation of ρi from the mean. The mean ρ̄ is a single number. The assumption
of statistical homogeneity and isotropy implies that the variance is a function Cij = C(xij) only of the
separation xij ≡ |xi − xj | of the points. The covariance Cij de�ned by equation (30.157) has dimensions of
ρ̄2. Commonly, a dimensionless version ξij of the covariance is de�ned by dividing by ρ̄2.
The N -point probability distribution of a Gaussian random �eld is, generalizing the 1-point probabil-

ity (30.176) derived below,

P (ρ1, ..., ρN ) dρ1...dρN =
1√

(2π)N |Cij |
exp

(
− 1

2C
−1
ij ∆ρi ∆ρj

)
dρ1...dρN , (30.158)

where |Cij | is the determinant of the covariance matrix.
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Any linear combination
∑
j aijρj of Gaussian random �elds ρj is also a Gaussian random �eld. In partic-

ular, the Fourier transform ρ(k) of a Gaussian random �eld ρ(x) is a Gaussian random �eld.

30.22.4 Moment-generating functions

The proof of the Central Limit Theorem, �30.22.5, goes via moment-generating functions. For simplicity,
moment-generating functions are de�ned in this section for a single random variable ρ, but the results
generalize straightforwardly to a random �eld ρ(x). The validity of the steps below requires that various
integrals over the probability distribution P (ρ) converge; any required convergence properties are tacitly
assumed.
The random variable ρ has a positive probability distribution P (ρ) normalized to unit total probability.

The moment-generating function of the probability distribution P (ρ) is de�ned to be

M(µ) ≡
∫
eµρP (ρ) dρ . (30.159)

Expanding the exponential in the integrand as a power series in µ implies that the moment-generating
function is

M(µ) = 1 + 〈ρ〉µ+ 〈ρ2〉µ
2

2
+ 〈ρ3〉µ

3

3!
+ ... , (30.160)

where 〈ρn〉 is the n'th moment of the probability distribution,

〈ρn〉 ≡
∫
ρnP (ρ) dρ . (30.161)

Equation (30.160) accounts for the name moment-generating function.
Suppose that the measurement of ρ is repeatedN times, and suppose that each measurement is independent

of the others, meaning that the probability of measuring successive values ρ(1), ..., ρ(N) is the product of
probabilities (the subscripts are parenthesized to distinguish the i'th observation ρ(i) from the i'th position
ρi)

P (ρ(1), ..., ρ(N)) = P (ρ(1))...P (ρ(N)) . (30.162)

The moment-generating function MN (µ) of the sum
∑N
i=1 ρ(i) of N independent measurements ρ(i) is then

the N 'th power of the moment-generating function M(µ),

MN (µ) ≡
∫
eµ(ρ(1)+...+ρ(N))P (ρ(1), ..., ρ(N)) dρ(1)...dρ(N)

=

∫
eµρ(1)P (ρ(1)) dρ(1)...

∫
eµρ(N)P (ρ(N)) dρ(N)

= M(µ)N . (30.163)

Thus the moment-generating function of a sum of independent measurements is multiplicative. The irreducible-
moment-generating function Z(µ) is de�ned to be the logarithm of the moment-generating function,

Z(µ) ≡ ln [M(µ)] . (30.164)
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In statistical mechanics, the irreducible-moment-generating function Z(µ) is called the partition function.
Since the moment-generating function is multiplicative, the irreducible-moment-generating function ZN (µ)

of a sum
∑N
i=1 ρ(i) of N independent measurements ρ(i) is additive,

ZN (µ) = NZ(µ) . (30.165)

The coe�cients of the series expansion of Z(µ) in µ de�ne the irreducible moments κn,

Z(µ) = µκ1 +
µ2

2
κ2 +

µ3

3!
κ3 + ... . (30.166)

Unlike the moments 〈ρn〉, the irreducible moments κn have the important property of being additive over
sums

∑N
i=1 ρ(i) of independent variables. The de�ning relation (30.164) between the irreducible Z(µ) and

standard M(µ) moment-generating functions yields the relation between the irreducible moments κn and
moments 〈ρn〉. The relations for the �rst few moments are, with ∆ρ ≡ ρ− ρ̄,

κ1 = ρ̄ , (30.167a)

κ2 = 〈∆ρ2〉 , (30.167b)

κ3 = 〈∆ρ3〉 , (30.167c)

κ4 = 〈∆ρ4〉 − 3〈∆ρ2〉2 . (30.167d)

The low order irreducible moments have names: the �rst, second, third, and fourth irreducible moments are
called respectively the mean, variance, skewness, and kurtosis. Some works de�ne skewness and kurtosis as
the dimensionless combinations κ3/κ

3/2
2 and κ4/κ

2
2.

More generally, the irreducible-moment-generating function Z(µi) of a random �eld ρ(x) is

Z(µi) = µ1κ1 +
µ1µ2

2
κ12 +

µ1µ2µ3

3!
κ123 + ... , (30.168)

where κ1...n ≡ κ(x1, ...,xn) is the n-point irreducible moment, also called the n-point correlation function.
The �rst few correlation functions κ1...n are related to the moments 〈∆ρ1...∆ρn〉 of the distribution by

κ1 = ρ̄ , (30.169a)

κ12 = 〈∆ρ1 ∆ρ2〉 , (30.169b)

κ123 = 〈∆ρ1 ∆ρ2 ∆ρ3〉 , (30.169c)

κ1234 = 〈∆ρ1 ∆ρ2 ∆ρ3 ∆ρ4〉 − 〈∆ρ1 ∆ρ2〉〈∆ρ3 ∆ρ4〉 − 〈∆ρ1 ∆ρ3〉〈∆ρ2 ∆ρ4〉 − 〈∆ρ1 ∆ρ4〉〈∆ρ2 ∆ρ3〉 .
(30.169d)

30.22.5 Central Limit Theorem

The Central Limit Theorem (CLT) states that the distribution of averages of N independent measurements
of a random variable is Gaussian in the limit of large N . The CLT generalizes to a random �eld, but for
simplicity this section con�nes itself to the case of a single random variable ρ.
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As shown in �30.22.4, irreducible moments are additive over sums of independent random variables. Thus
the irreducible moment κn of a sum

∑N
i=1 ρ(i) of N independent variables ρ(i) goes as

κn ∝ N . (30.170)

The n'th irreducible moment κn has units of ρ̄n. The shape of the probability distribution P (ρ) can be
characterized by dimensionless combinations of the irreducible moments. For example, the standard deviation
σ, de�ned to be the square root of the variance, σ ≡ √κ2 =

√
〈∆ρ2〉, has the dimension of the ρ̄. The standard

deviation increases with the number N of independent measurements as
√
N , but the dimensionless ratio

σ/ρ̄ of the standard deviation to the mean decreases as 1/
√
N ,

σ ≡
√
κ2 ∝

√
N ,

σ

ρ̄
≡
√
κ2

κ1
∝ 1√

N
. (30.171)

This recovers the familiar result that the di�erence between the average N−1
∑
i ρ(i) of a set of independent

measurements and the true mean ρ̄ decreases as 1/
√
N as the number N of measurements increases.

The shape of the probability distribution beyond its �rst and second irreducible moments can be char-
acterized by the dimensionless ratio κ1/n

n /κ
1/2
2 of the n'th to 2nd irreducible moments. This ratio becomes

small as the number N of independent measurements increases,

κ
1/n
n

κ
1/2
2

∝ N1/n−1/2 → 0 as N →∞ for n ≥ 3 . (30.172)

The asymptotic behaviour (30.172) is the CLT: it says that higher order irreducible moments become negli-
gible in the limit of large N .

30.22.6 Gaussian distribution

A Gaussian distribution is de�ned by the property that its only non-vanishing irreducible moments are the
�rst two, the mean κ1 and variance κ2. The third and higher irreducible moments of a Gaussian distribution
vanish,

κn = 0 (n ≥ 3) Gaussian distribution . (30.173)

The irreducible-moment-generating function Z(µ) of a Gaussian distribution is, from equation (30.166),

Z(µ) = µρ̄+
µ2

2
〈∆ρ2〉 . (30.174)

Accordingly, the moment-generating function M(µ) of a Gaussian is

M(µ) = exp

(
µρ̄+

µ2

2
〈∆ρ2〉

)
. (30.175)
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The probability distribution P (ρ) that, when integrated in accordance with the de�nition (30.159), yields
the Gaussian moment-generating function (30.175), is

P (ρ) dρ =
1√

2π〈∆ρ2〉
exp

[
− (ρ− ρ̄)2

2〈∆ρ2〉

]
dρ . (30.176)

The 1-point Gaussian probability distribution (30.176) generalizes to the N -point Gaussian probability dis-
tribution (30.158).
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Non-equilibrium processes in the FLRW
background

The subject of cosmological perturbations will be resumed in the next Chapter 32. The present chapter is
concerned principally with an essential ingredient in the calculation of the power spectrum of CMB �uctua-
tions, namely recombination in the unperturbed FLRW background. Recombination presents an opportunity
to introduce the collisional Boltzmann equation, �31.5, which allows to follow the evolution of number den-
sities of species out of thermodynamic equilibrium, and which will be invoked again in Chapter 33 to follow
the evolution of the photon distribution of the CMB.
In the early Universe, density and temperature were high enough that collisional processes were fast

enough to drive particles into mutual thermodynamic equilibrium. But as the Universe expanded, density and
temperature decreased to the point that some processes fell out of equilibrium and froze out. Recombination,
and its inverse photoionization, constitute one example of such a process. At times well before the epoch
of recombination, the two-body process of recombination and its inverse process photoionization drove the
ionization state of the gas into thermodynamic equilibrium. But as recombination approached, recombination
rates could no longer keep up, slightly delaying the epoch of recombination, and leaving a residual level of
ionization. The residual ionization later catalyzed the formation of molecular hydrogen, leading to the �rst
generation of stars.
Besides recombination, there are some other processes of freeze-out in the expanding Universe that are

associated with well-understood physics. (1) The weak interactions froze out after electron-positron anni-
hilation, so that protons and neutrons could no longer interconvert, causing the neutron-to-proton ratio to
freeze out. The frozen neutron-to-proton ratio subsequently determined the primordial abundance of helium
to hydrogen. (2) Nuclear reactions froze out, causing primordial nucleosynthesis to cease at the light elements
H, D (≡ 2H), 3He, 4He, and Li, rather than proceeding all the way to the most tightly bound nucleus, iron.
This is well and good, since if nucleosynthesis had proceeded to completion, there would be no stars, and no
people.
Yet other processes of freeze-out probably occurred, but their physics is poorly understood, so only guesses

and estimates can be made. (1) Our Universe shows an excess of matter (protons, neutrons, electrons) over
antimatter (antiprotons, antineutrons, positrons). For this asymmetry to occur, there must have been some
T -violating process that preferred the creation of matter over antimatter, and that process must have frozen
out. (2) A leading candidate for the non-baryonic cold dark matter is a weakly-interacting massive particle

815
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(WIMP). In order that the mass density of WIMPs be as observed today, their number density must be
much less than that of relativistic particles (photons). If WIMPs were initially in thermodynamic equilibrium
at some relativistic temperature, then the WIMPs must have annihilated with their antiparticles as they
became non-relativistic; moreover that annihilation must have frozen-out so as to leave the remnant density
observed today. To achieve this outcome, the WIMP annihilation cross-section must be comparable to a
weak-interaction cross-section, which explains the popularity of the WIMP proposal. As of writing (2015),
laboratory attempts to detect WIMPs experimentally have led only to upper limits.

31.1 Conditions around the epoch of recombination

Two key quantities around the time of recombination were the photon temperature T and the baryon number
density nb. Because the baryon-to-photon ratio nb/nγ ∼ 10−9, equation (10.102), was so small, the photon
distribution was essentially una�ected by the baryons. Photons remained in thermodynamic equilibrium at
a temperature T that evolved with cosmic scale factor a (normalized to a0 = 1) as

T =
T0

a
, (31.1)

where T0 = 2.725 K is the CMB temperature today. Equation (31.1) held from after electron-positron anni-
hilation at T ∼ 1 MeV down to the present time. The baryon number density nb was (again normalized to
a0 = 1)

nb =
3ΩbH

2
0

8πGmba3
, (31.2)

where mb = 939 MeV was the approximate mean mass per baryon.
The electron fraction Xe may be de�ned to be the ratio of the electron density ne to the nuclear proton

density n+, including all protons in all nuclei,

Xe ≡
ne
n+

. (31.3)

The de�nition (31.3) is chosen so that Xe = 1 when the plasma is fully ionized. The nuclear proton density
n+ is

n+ = f+nb , (31.4)

where f+ ≡ n+/nb is the proton fraction. To a good approximation, baryons comprised H and 4He nuclei,
and f+ = 0.875, Exercise 31.1.

Exercise 31.1. Proton and neutron fractions. De�ne the proton and neutron fractions f+ and fn by
the proton- and neutron-to-baryon ratios

f+ ≡
n+

nb
= 1− fn , fn ≡

nn
nb

. (31.5)
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Here n+ and nn are the number densities of protons and neutrons in all nuclei. The baryon number density
is their sum nb = n+ + nn. For a H plus 4He composition, the nuclear proton and neutron number densities
are

n+ = nH + 2n4He , nn = 2n4He . (31.6)

Show that the primordial 4He mass fraction de�ned by Y4He ≡ ρ4He/(ρH + ρ4He) satis�es

Y4He = 2fn . (31.7)

The observed primordial 4He abundance is Y4He = 0.245± 0.004 (Cyburt et al., 2016), implying

fn = 0.1225 , f+ = 1− fn = 0.8775 . (31.8)

31.2 Overview of recombination

The classic paper on cosmological recombination is Peebles (1968).
The ionization state of the Universe around the time of recombination was determined largely by hy-

drogen, the most abundant element. Recombination of hydrogen is a two-body process whose inverse is
photoionization,

p+ e
recombination
−−−−−→←−−−−−

photoionization

H + γ . (31.9)

Helium, the next most abundant element, was largely neutral by the time of recombination; its e�ect on
recombination was quite small.
At times well before recombination, the ionization state of the baryonic gas was close to thermodynamic

equilibrium. At the temperatures of relevance, electrons and nuclei were non-relativistic, and their occupa-
tion numbers f , given in thermodynamic equilibrium by equations (10.123), were much less than 1. The
occupation numbers were small in part because the asymmetry between matter (protons, neutrons, elec-
trons) and antimatter (antiprotons, antineutrons, positrons) is quite small, about 10−9 baryons per CMB
photon, equation (10.102). Early in the Universe when the temperature exceeded their rest-mass energy,
particles and antiparticles in thermodynamic equilibrium had number densities comparable to photons (with
a factor of 3

4 in the number density of fermions relative to bosons, equation (10.139)). Because of the small
matter-antimatter asymmetry, the number density of particles and antiparticles were almost equal, so their
chemical potentials were almost zero, Exercise 10.17. Relativistic fermions in thermodynamic equilibrium
had occupation numbers of order unity for energies less than of order the temperature, f = 1/(eE/T +1) ∼ 1

for E . T . As matter particles annihilated with their antiparticles, their occupation number fell to ∼ 10−9.
As the Universe continued to expand, the occupation number of the now non-relativistic particles, still in
thermodynamic equilibrium with photons, fell further as f ∼ nT−3/2 ∝ T 3/2, equation (31.15). Thus the
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occupation numbers of non-relativistic electrons and nuclei was

f ∼ 10−9

(
T

m

)3/2

� 1 (31.10)

for particle kinetic energies p2/(2m) less than of order the temperature T .
Because of the low occupation number, hydrogen remained ionized down to a much lower temperature,

T ∼ 0.3 eV ∼ 3,000 K, than the ionization energy 13.6 eV of hydrogen.
The temperature T ∼ 0.3 eV of recombination was much lower than the di�erence E1 − E2 ∼ 10.2 eV

between the ground n = 1 and �rst excited n = 2 energy levels of hydrogen. Consequently the Boltzmann
factor strongly favoured the ground state, so that near recombination almost all the hydrogen atoms were
in their ground states, equation (31.20). The recombination temperature T ∼ 0.3 eV was also signi�cantly
lower than the di�erence E2 − E3 ∼ 1.9 eV between �rst n = 2 and second n = 3 excited energy levels of
hydrogen, so the population of n = 2 substantially outnumbered higher excited states, equation (31.20). To
a good approximation, recombination involved only the �rst two energy levels n = 1 and 2 of hydrogen.
As the density and temperature decreased because of adiabatic expansion, recombination could no longer

keep up. The large density of hydrogen atoms in the ground state meant that Lyman transitions, transi-
tions between the ground state and other states, were optically thick. Any radiative decay to the ground
state produced a Lyman line or continuum photon that was quickly absorbed by a nearby hydrogen atom.
Recombination to the ground state was inhibited. The bottleneck caused the n = 2 energy level to become
overpopulated relative to the ground state, compared to thermodynamic equilibrium.
Recombination nevertheless proceeded via two slow processes, one from the 2p level, the other from the 2s

level of hydrogen. The �rst process is that, as the Universe expands, the Lymanα 2p−1s transition redshifts,
and there is a �nite probability for the photon to redshift out of the line without being absorbed. The second
process is that the 2s level can decay by a forbidden 2-photon transition. A possible third process, collisional
deexcitation of excited levels to the ground state, was slower than either of the �rst two.

31.3 Energy levels and ionization state in thermodynamic equilibrium

Electrons and nuclei near recombination were non-relativistic, and their occupation numbers were small, and
therefore well described by Boltzmann statistics, with occupation number f given by equation (10.124).

31.3.1 Number density of non-relativistic Boltzmann species in thermodynamic

equilibrium

The energy E of a non-relativistic particle of mass m is related to its momentum p by E = m + p2/(2m).
For a hydrogen atom in energy level n, the rest mass m is less than the rest mass mp of a proton by the
binding energy En of the atom, m = mp − En. In thermodynamic equilibrium, the number density n of a
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non-relativistic Boltzmann species is

n =

∫
f
g 4πp2dp

(2π~)3
= e(µ−m)/T

∫
e−p

2/(2mT ) g 4πp2dp

(2π~)3
. (31.11)

The integral on the right hand side of equation (31.11) is∫
e−p

2/(2mT ) g 4πp2dp

(2π~)3
= g

(
mT

2π~2

)3/2

, (31.12)

so the number density in thermodynamic equilibrium is

n = g

(
mT

2π~2

)3/2

e(µ−m)/T . (31.13)

The factor
(
mT/(2π~2)

)3/2
de�nes a length scale λT which is a characteristic thermal Compton wavelength

of the particles,

λT ≡
(
mT

2π~2

)−1/2

. (31.14)

In terms of their number density n, the occupation number f = e(µ−E)/T of a Boltzmann species is

f =
n

g

(
mT

2π~2

)−3/2

e−p
2/(2mT ) =

nλ3
T

g
e−p

2/(2mT ) . (31.15)

The condition for the validity of the Boltzmann approximation of small occupation numbers is that there be
few particles per Compton volume, nλ3

T � 1.

31.3.2 Level populations of hydrogen in thermodynamic equilibrium

Bound eigenstates of hydrogen are characterized by quantum numbers n, l, and m associated with their
energy, total angular momentum, and projection of the angular momentum along an arbitrary direction.
Ignoring the small corrections to energy levels arising from relativistic and spin e�ects, the energies of the
bound eigenstates of hydrogen are

− En = −13.6 eV/n2 , (31.16)

with n = 1, ...,∞ an integer running from the ground state 1 to the continuum ∞. Within each energy level
n, the total angular momentum l runs over n integers l = 0, ..., n− 1. Within each angular momentum level
l the �magnetic� quantum number m runs over 2l + 1 integers m = −l, ..., l. Altogether, each hydrogenic
energy level n contains 4n2 individual states, comprising 2 spin states of the nuclear proton, 2 spin states of
the electron, and

∑n−1
l=0 (2l + 1) = n2 states of orbital angular momentum.

In thermodynamic equilibrium, the number density nnl in level nl of hydrogen relative to the number
density n1s in the ground level 1s is, from equation (31.13),

nnl
n1s

= (2l + 1)e(En−E1)/T . (31.17)
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Figure 31.1 Hydrogen and helium ion fractions in thermodynamic equilibrium as a function of cosmic scale factor a

scaled to a0 = 1. The total hydrogen and helium fractions are XH = 1 − fn/f+ = 0.86 and X4He = 1
2
fn/f+ = 0.07

where fp ≡ 1 − fn = 0.875 and fn ≡ nn/nb = 0.125 are the neutron- and proton-to-baryon ratios, Exercise 31.1.

The dashed vertical line indicates where recombination actually occurs (where the Thomson scattering optical depth

is unity), somewhat later than predicted by equilibrium.

31.3.3 Ionization state in thermodynamic equilibrium

In thermodynamic equilibrium, the chemical potentials of protons, electrons, and neutral hydrogen atoms
are related by µp + µe = µH, equation (10.126). Inserting this equilibrium condition into equation (31.13),
valid for non-relativistic Boltzmann species, implies the relation between the number densities np, ne, and
nnl of protons, electrons, and hydrogen atoms in level nl,

npne
nnl

=
gpge
gnl

(
meT

2π~2

)3/2

e−En/T . (31.18)

Equation (31.18) is the Saha equation for hydrogen. The me on the right hand side of equation (31.18)
is strictly mpme/mnl where mnl is the mass of the hydrogen atom in level nl, but mp ≈ mnl to a good
approximation.
More generally, the Saha equation relating the number densities of an ion X to the next-ionized ion X+ is

nX+ne
nX

=
gX+ge
gX

(
meT

2π~2

)3/2

e−EX/T . (31.19)

Figure 31.1 illustrates the ionization fractions of H and 4He in thermodynamic equilibrium at the photon
temperature T and baryon density nb given by equations (31.1) and (31.2).
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Exercise 31.2. Level populations of hydrogen near recombination. Use the approximation of ther-
modynamic equilibrium to estimate the relative number densities of states of hydrogen near recombination,
where T ∼ 0.3 eV.
Solution. From equation (31.17), the ratio of excited n = 2 to ground n = 1 levels in thermodynamic
equilibrium is

n2p = 3n2s ∼ 3 e

(
1
4−1

)
13.6 eV/0.3 eV

n1s ∼ 10−14 n1s , (31.20)

which is tiny. The equilibrium ratio depends steeply on the temperature, which is one reason why recombi-
nation cannot keep up as the temperature falls. Similarly, the ratio of the population of the second n = 3 to
�rst n = 2 excited states is

n3 ∼ 9
4 e

(
1
9−

1
4

)
13.6 eV/0.3 eV

n2 ∼ 4× 10−3 n2 , (31.21)

which is also small. Thus the ground state n = 1 dominates the level population, followed by the �rst excited
states n = 2,

n1 � n2 � nn≥3 . (31.22)

Exercise 31.3. Ionization state of hydrogen near recombination. Use the approximation of thermo-
dynamic equilibrium to estimate the temperature at which hydrogen recombines.
Solution. Almost all the hydrogen atoms are in their ground states. In the approximation that all hydrogen
atoms are in their ground state 1s, the Saha equation (31.18) implies

npne
n1s

=

(
meT

2π~2

)3/2

e−E1/T , (31.23)

the statistical weight factor cancelling, g1s = gpge = 4. In the approximation of a pure hydrogen gas, in
which case the nuclear proton density equals the baryon density, n+ = nb, the Saha equation (31.23) is

X2
e

1−Xe
=

1

n+

(
meT

2π~2

)3/2

e−E1/T =
23/2GmbT

3
0

3π1/2ΩbH2
0

(me

T

)3/2

e−E1/T , (31.24)

where Xe is the electron fraction, equation (31.3), and nb the baryon density, equation (31.2). Recombination
occurs at Xe ≈ 1

2 . Equation (31.24) is then an implicit equation for the temperature T . It can be solved
iteratively by guessing an initial T , and calculating an improved value from

E1

T
= ln

[
23/2GmbT

3
0

3π1/2ΩbH2
0

(me

T

)3/2
]
. (31.25)

Guessing T = 104 K yields
E1

T
≈ 40 , (31.26)

which gives the estimated recombination temperature of T ≈ 4,000 K. Iterating a second time gives

T ≈ 3,800 K . (31.27)
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Concept question 31.4. Atomic structure notation. An eigenstate with l = 0 is denoted s, while one
with l = 0 is denoted p. Why? Answer. For historical reasons. In atomic spectroscopy, angular momen-
tum levels l = 0, 1, 2, 3, 4, ... are conventionally denoted s, p, d, f, g, ..., the �rst 4 letters standing for sharp,
principal, di�use, and fundamental. After fundamental f , the labelling is alphabetical.

31.4 Occupation numbers

Occupation number was discussed previously in �10.26.
Each species of energy-momentum is described by a dimensionless occupation number, or phase-space

probability distribution, a function f(t,x,p) of time t, comoving position x, and tetrad-frame momentum
p, which describes the number dN of particles in a tetrad-frame element d3r d3p/(2π~)3 of phase-space,

dN(t,x,p) = f(t,x,p)
g d3r d3p

(2π~)3
, (31.28)

with g being the number of spin states of the particle. The tetrad-frame phase-space element d3r d3p/(2π~)3

is dimensionless and Lorentz-invariant, and the occupation number f is likewise dimensionless and Lorentz-
invariant. The tetrad-frame energy-momentum 4-vector pm of a particle is

pm ≡ emµ
dxµ

dλ
= {E,p} = {E, pa} , (31.29)

where λ is the a�ne parameter, related to proper time τ along the worldline of the particle by dλ ≡
dτ/m, which remains well-de�ned in the limit of massless particles, m = 0. The tetrad-frame energy E and
momentum p ≡ |p| for a particle of rest mass m are related by

E2 − p2 = m2 . (31.30)

31.5 Boltzmann equation

The detailed evolution of the abundance of any species can be followed using the Boltzmann equation.
The Boltzmann equation splits the evolution of the occupation number f of a species into a collisionless part
in which each particle evolves as a test particle in the background geometry, and a collisional part in which
particles are destroyed or created as a result of collisions with other particles.
Collisionless evolution is described by the single-particle distribution function, the occupation number f .

Because phase-space volume is conserved as the system evolves, �4.22.1, conservation of particle number
along the paths of particles, dN/dλ = 0, is equivalent to conservation of the occupation number f de�ned
by equation (31.28),

df

dλ
= 0 . (31.31)

Equation (31.31) is the collisionless Boltzmann equation. The derivative with respect to a�ne parameter
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λ on the left hand side of the Boltzmann equation (31.31) is a Lagrangian derivative along the (timelike or
lightlike) worldline of a particle in the �uid.
The collisionless Boltzmann equation holds without modi�cation for particles that do not collide, such as

neutrinos or non-baryonic dark matter particles, but it fails for particles whose trajectories are substantially
modi�ed by collisions with other particles, such as photons or baryons. Collisions are both a sink and a source
of particles, destroying particles of momentum p and creating others of momentum p′ in the single-particle
distribution f . The e�ect of collisions is modelled by introducing a collision term, schematically written
C[f ], containing both sinks and sources,

df

dλ
= C[f ] . (31.32)

Equation (31.32) is the collisional Boltzmann equation. Since f is dimensionless while the a�ne param-
eter dλ ≡ dτ/m has units of time/mass, the units of the collision term C[f ] are mass/time.

31.5.1 Boltzmann equation in the FLRW geometry

In the FLRW geometry, homogeneity and isotropy imply that the occupation number is a function f(t, p) only
of cosmic time t and of the magnitude p of the proper momentum. The collisional Boltzmann equation (31.32)
is then

df

dλ
=
dt

dλ

∂f

∂t
+
dp

dλ

∂f

∂p
= C[f ] . (31.33)

To follow lots of particles simultaneously, switch the integration variable from the a�ne parameter λ, which
is particle-dependent, to cosmic time t, which is the same for all. With cosmic time t as the integration
variable, the only non-vanishing vierbein coe�cient that depends on t in the background FLRW geometry
is e0

t = 1. The relation between cosmic time t and a�ne parameter λ is

dt

dλ
= pt = e0

tp0 = E , (31.34)

where E = p0 is the proper energy of the particle in the tetrad rest-frame. It would be equally possible to
use conformal time η as the integration variable, as will be done later in �33.2, in which case e0

η = 1/a

and dη/dλ = E/a; for the present purpose however, cosmic time t is slightly more convenient. As found in
Exercise 10.5, the proper momentum of a particle, massless or massive, redshifts as p ∝ 1/a, so d ln p/dt =

−d ln a/dt. Thus the Boltzmann equation (31.33) is

df

dt
=
∂f

∂t
− d ln a

dt

∂f

∂ ln p
=

1

E
C[f ] . (31.35)
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The proper number density n is an integral (10.119) of the occupation number f over momenta. Integrating
the left hand side of the Boltzmann equation (31.35) gives∫

df

dt

g 4πp2dp

(2π~)3
=

∫
∂f

∂t

g 4πp2dp

(2π~)3
− d ln a

dt

∫
∂f

∂ ln p

g 4πp2dp

(2π~)3

=
∂

∂t

∫
f
g 4πp2dp

(2π~)3
− d ln a

dt

{[
f
g 4πp3

(2π~)3

]
−
∫

3f
g 4πp2dp

(2π~)3

}
=
dn

dt
+ 3

d ln a

dt
n =

1

a3

dna3

dt
. (31.36)

Integrated over momenta, the collisional Boltzmann equation (31.35) is thus

1

a3

dna3

dt
=

∫
C[f ]

g 4πp2dp

E(2π~)3
. (31.37)

Equation (31.37) holds for both massive and massless particles. In the absence of collisions, C[f ] = 0, the
integrated Boltzmann equation (31.37) shows that proper number density n decreases as a−3,

n ∝ a−3 . (31.38)

Equation (31.38) says that the number na3 of particles in a comoving volume remains constant in the absence
of collisions that destroy or create particles.

31.6 Collisions

For a 2-body collision of the form

1 + 2 ↔ 3 + 4 , (31.39)

the rate per unit time and volume at which particles of type 1 leave and enter an interval d3p1 of momentum
space is, in units c = ~ = 1,

C[f1]
g1 d

3p1

E1(2π)3
=

∫
|M|2

[
− f1f2(1∓ f3)(1∓ f4) + f3f4(1∓ f1)(1∓ f2)

]
(2π)4δ4

D(p1 + p2 − p3 − p4)
g1 d

3p1

2E1(2π)3

g2 d
3p2

2E2(2π)3

d3p3

2E3(2π)3

d3p4

2E4(2π)3
. (31.40)

All factors in equation (31.40) are Lorentz scalars. On the left hand side, the collision term C[f1] and
the momentum 3-volume element d3p1/E1 are both Lorentz scalars. On the right hand side, the squared
amplitude |M|2, the various occupation numbers fi, the energy-momentum conserving 4-dimensional Dirac
delta-function δ4

D(p1 + p2 − p3 − p4), and each of the four momentum 3-volume elements d3pi/(2Ei), are all
Lorentz scalars. The factor of 1/2 in each momentum element d3pi/(2Ei) on the right hand side is associated
with the way that the invariant amplitudeM is conventionally de�ned in quantum �eld theory, and arises
from integrating dEi d3pi over a Dirac delta-function that enforces the �on-shell� relation between energy,
momentum and rest mass, equation (10.115), for the incoming and outgoing particles.
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The �rst ingredient in the integrand on the right hand side of the expression (31.40) is the Lorentz-invariant
scattering amplitude squared |M|2, calculated using quantum �eld theory (e.g. Peskin and Schroeder, 1995).
For a process involving 4 particles such as (31.39), the invariant amplitude squared |M|2 is dimensionless
(in units c = ~ = 1). See Concept question 31.5 for a dimensional analysis of equation (31.40).
The invariant amplitude squared |M|2 represents a rate averaged over initial spin states and summed

over �nal spin states. To convert the invariant amplitude squared to a rate per unit time and volume, it is
necessary to sum over particles in the initial states. This explains why equation (31.40) includes spin factors
g1 and g2 for the initial states but not for the �nal states.
The second ingredient in the integrand on the right hand side of expression (31.40) is the combination of

rate factors

rate(1 + 2 → 3 + 4) ∝ f1f2(1∓ f3)(1∓ f4) , (31.41a)

rate(1 + 2 ← 3 + 4) ∝ f3f4(1∓ f1)(1∓ f1) , (31.41b)

where the 1 ∓ f factors are blocking or stimulation factors, the choice of ∓ sign depending on whether the
species in question is fermionic or bosonic:

1− f = Fermi-Dirac blocking factor , (31.42a)

1 + f = Bose-Einstein stimulation factor . (31.42b)

The �rst rate factor (31.41a) expresses the fact that the rate to lose particles from 1 + 2 → 3 + 4 collisions
is proportional to the occupancy f1f2 of the initial states, modulated by the blocking/stimulation factors
(1 ∓ f3)(1 ∓ f4) of the �nal states. Likewise the second rate factor (31.41b) expresses the fact that the
rate to gain particles from 1 + 2 ← 3 + 4 collisions is proportional to the occupancy f3f4 of the initial
states, modulated by the blocking/stimulation factors (1∓ f1)(1∓ f2) of the �nal states. In thermodynamic
equilibrium, the rates (31.41) balance, Exercise 31.6, a property that is called detailed balance, or microscopic
reversibility. Microscopic reversibility is a consequence of time reversal symmetry.
The �nal ingredient in the integrand on the right hand side of expression (31.40) is the 4-dimensional

Dirac delta-function, which imposes energy-momentum conservation on the process 1 + 2 ↔ 3 + 4. The
4-dimensional delta-function is a product of a 1-dimensional delta-function expressing energy conservation,
and a 3-dimensional delta-function expressing momentum conservation:

(2π)4δ4
D(p1 + p2 − p3 − p4) = 2π δD(E1 + E2 − E3 − E4) (2π)3δ3

D(p1 + p2 − p3 − p4) . (31.43)

Concept question 31.5. Dimensional analysis of the collision rate. Carry out a dimensional analysis
of equation (31.40). Restore factors of c and ~. //FIX. Answer. All potential factors of c are accounted for
by interpreting factors of energy E on both left hand and right hand sides of equation (31.40) as being in
units of momentum (that is, replace E by p0 = E/c). After that replacement is done, then the dimensions of
both left and right hand sides are 1/length4 in units ~ = 1. On the left hand side, the units of C[f ] = df/dλ

are 1/λ, which is mass/time, or equivalently momentum/length, or equivalently ~/length2. The phase space
factor on the left hand side has units momentum2 (with E replaced by p0) or equivalently ~2/length2. Thus
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the units of the left hand side are ~3/length4. On the right hand side, the units of the delta-function are
1/momentum4, while the units of each phase space factor are momentum2 (again with each E interpreted
as p0). The units of the combined delta-function and phase space factors are momentum4, or equivalently
~4/length4. The length dimensions of the left and right hand sides match (both 1/length4) provided that
|M|2 is dimensionless in units c = ~ = 1. If |M|2 is treated as dimensionless even in dimensionful units, then
the left times ~3 and the right times ~4 have the same dimensionful unit 1/length4. To make equation (31.40)
yield a rate in units of particles per unit time per unit volume, both sides should be multiplied further by c.

Exercise 31.6. Detailed balance.

1. Show that the rates balance in thermodynamic equilibrium,

f1f2(1∓ f3)(1∓ f4) = f3f4(1∓ f1)(1∓ f2) . (31.44)

2. Conclude that, if each particle type i has a thermodynamic distribution with its own temperature Ti
and chemical potential µi, then

− f1f2(1∓ f3)(1∓ f4) + f3f4(1∓ f1)(1∓ f2)

= f1f2(1∓ f3)(1∓ f4)

[
− 1 + exp

(
E1 − µ1

T1
+
E2 − µ2

T2
+
−E3 + µ3

T3
+
−E4 + µ4

T4

)]
. (31.45)

Solution.

1. Equation (31.44) is true if and only if

f1

1∓ f1

f2

1∓ f2
=

f3

1∓ f3

f4

1∓ f4
. (31.46)

But
f

1∓ f
= e(−E+µ)/T , (31.47)

so (31.46) is true if and only if

−E1 + µ1

T
+
−E2 + µ2

T
=
−E3 + µ3

T
+
−E4 + µ4

T
, (31.48)

which is true in thermodynamic equilibrium because

E1 + E2 = E3 + E4 , µ1 + µ2 = µ3 + µ4 . (31.49)

31.7 Non-equilibrium recombination

At times well before recombination, the ionization state of the baryonic gas was well described by ther-
modynamic equilibrium. However, as recombination approached, the recombination rate could not keep up
with the adiabatic decrease in density and temperature. Consequently recombination was delayed slightly
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compared to what would be expected in thermodynamic equilibrium. To model the CMB precisely, it is
necessary to worry about the details of non-equilibrium recombination.
Although the ionization state was out of equilibrium, elastic collisions between electrons, ions, and neutrals

kept the velocity distributions of electrons and baryons in mutual thermodynamic equilibrium at a common
kinetic temperature Te = Tb.
Recombination to and photoionization out of bound state i of hydrogen destroys and creates a free electron.

The electron collision integral Ci[fe] corresponding to this process is given by, from equation (31.40) with
stimulated processes from protons, electrons, and hydrogen atoms neglected because of their small occupation
numbers,

Ci[fe]
gp d

3pp
mp(2π)3

=

∫
|M|2i

[
− fpfe(1 + fγ) + fifγ

]
(2π)4δ4

D(pp + pe − pi − pγ)
gp d

3pp
2mp(2π)3

ge d
3pe

2me(2π)3

d3pi
2mp(2π)3

d3pγ
2pγ(2π)3

. (31.50)

The −fpfe term in the integrand corresponds to direct recombination, the −fpfefγ term to stimulated
recombination, and the fifγ term to photoionization. Because the proton and hydrogen atom are so massive,
they remain essentially at rest during a recombination or photoionization, so the invariant squared amplitude
|M|2i is essentially independent of the proton and hydrogen momenta. Integrating the collision integral (31.50)
over the proton and hydrogen momenta yields

Ci[fe] =
1

8m2
p

∫
M|2i 2πδD(Ep + Ee − Ei − Eγ)

[
−npfe(1 + fγ) + ni(gp/gi)fγ

] d3pγ
2pγ(2π)3

, (31.51)

one of the integrations over momenta being swallowed by the momentum-conserving Dirac delta-function
(2π)3δ3

D(pp+pe−pi−pγ). Again because the proton and hydrogen atom are so massive, the photon is emitted
and absorbed isotropically. Integrating over directions p̂γ of the photon momentum yields 4π. Integrating
over the photon energy pγ swallows the energy-conserving delta-function, yielding

Ci[fe] =
pγ

16πm2
p

|M|2i
[
−npfe(1 + fγ) + ni(gp/gi)fγ

]
. (31.52)

If the hydrogenic state i is in energy level n, then energy conservation requires that the energy Eγ ≡ pγ of
the photon be the sum of the electron kinetic energy and the binding energy (ionization energy) of the level,

p2
e

2me
+ En = pγ . (31.53)

In the situation of cosmological recombination under consideration, the photons, whose numbers overwhelm
those of electrons, have a thermal (Planckian) momentum distribution at temperature Tγ . Elastic collisions
between electrons keep their distribution close to thermal (Maxwellian). Since electron energies redshift
faster than photon energies, p2

e/(2m) ∝ a−2 versus pγ ∝ a−1, the electron temperature is slightly below
that of photons. However, electron-photon collisions keep the electron temperature closely equal to the
photon temperature, Te = Tγ , up to and through recombination. After recombination, electron-photon
collisions become rare enough that the electron kinetic temperature drops below the photon temperature
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(Scott and Moss, 2009). For completeness, the treatment in this section allows di�erent electron and photon
temperatures, although the two temperatures will be set equal in subsequent sections.
Substituting the Boltzmann distribution (31.15) at temperature Te for the electron occupation number fe,

and the Planckian distribution (10.128) at temperature Tγ for the photon occupation number fγ , brings the
electron collision integral (31.52) to

Ci[fe] =
pγ

16πm2
p

|M|2i

[
−npne(1/ge)(meTe/2π)−3/2e−p

2
e/(2meTe) + ni(gp/gi)e

−pγ/Tγ

1− e−pγ/Tγ

]
. (31.54)

Finally, integrating the collision integral (31.54) over electron momenta gives∫
Ci[fe]

ge d
3pe

mp(2π)3
= −npne

[
αi(Te) + αstim

i (Te, Tγ)
]

+ niβi(Tγ) , (31.55)

where αi(Te) and αstim
i (Te, Tγ) are thermally averaged direct and stimulated recombination rate coe�cients

to state i, and βi(Tγ) is the photoionization rate coe�cient out of bound state i. The direct recombination rate
αi(Te) depends only on the electron temperature Te, while the photoionization rate βi(Tγ) depends only on
the photon temperature Tγ . The stimulated recombination rate αstim

i (Te, Tγ) depends on both temperatures.
In cosmological recombination, stimulated recombination is a small correction of order e−En/T , which can
be neglected. If stimulated recombination is neglected, then detailed balance imposes

βi(T ) = αi(T )

(
npne
ni

)
TE

= αi(T )
gpge
gi

(
meT

2π~2

)3/2

e−En/T . (31.56)

The Boltzmann equation for electrons, equation (31.37), is a sum over recombinations to and photoion-
izations out of bound states i,

1

a3

dnea
3

dt
= −npne

∑
i

[
αi(Te) + αstim

i (Te, Tγ)
]

+
∑
i

niβi(Tγ) . (31.57)

Let Xi denote the ratio of the number density of species i to the nuclear proton density n+,

Xi ≡
ni
n+

. (31.58)

The ratio is de�ned so that the electron fraction is unity, Xe = 1, when the plasma is fully ionized. Since
n+a

3 is constant as the Universe expands, the Boltzmann equation (31.57) can be written as an equation
for the evolution of the electron fraction,

dXe

dt
= −XpXen+

∑
i

[
αi(Te) + αstim

i (Te, Tγ)
]

+
∑
i

Xiβi(Tγ) . (31.59)

Equation (31.59) gives the rate of change of the electron fraction for a pure hydrogen gas. If other elements
are included, notably helium, additional processes of recombination to and ionization out of bound states of
those elements should be adjoined.
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31.8 Recombination: Peebles approximation

Recombination is dominated by hydrogen, the dominant chemical element. The second most abundant ele-
ment is helium, which is largely neutral by the time of recombination. Peebles (1968) argued that the overall
hydrogen density and the predominance of hydrogen atoms in the ground state, equation (31.22), would have
the consequence that the gas would be optically thick to Lyman transitions, that is, to transitions to the
ground state, but optically thin in transitions to excited states. Consequently any continuum or line Lyman
photon emitted as a result of a recombination or transition to the ground state would be quickly absorbed.
On the other hand radiative transitions between excited levels n ≥ 2 would proceed rapidly without hin-
drance, leading to a thermal distribution among the excited levels. Since the dominant excited level would
be n = 2, equation (31.22), Peebles (1968) argued that recombination could be approximated by a 3-level
system consisting of protons and of n = 2 and n = 1 levels of hydrogen.
Since transitions from the continuum to n = 1 were ine�ective, the rate of change of the proton fraction

Xp ≡ np/n+ was dominated by recombinations to and photoionizations out of the n = 2 level,

dXp

dt
= −XpXen+α2 +X2β2 . (31.60)

Equation (31.60) ignores stimulated recombination, which is a e−E2/T � 1 correction to the rate.
Peebles (1968) argued that successful recombination to the n = 1 ground state would be dominated by

slow leakage out of the n = 2 level, which occurred by two processes. The �rst process is 2-photon decay out
of the 2s state, which occurs at a rate A2s = 8.22458 s−1. The second process is that, although most decays
out of the 2p state produced a Lymanα photon that was immediately absorbed by a nearby hydrogen atom,
the expansion of the Universe redshifted the emitted photon, and a small fraction PS of the emitted Lymanα
photons succeeded in redshifting out of the line without being reabsorbed. The fraction PS of emitted photons
that escape in an expanding medium can be approximated using the Sobolev formalism, �31.10. Thus the
rate of change of the fraction X1 ≡ n1/n+ of hydrogen atoms in the ground n = 1 level is

dX1

dt
= X2A21 −X1B12 , (31.61)

where the e�ective spontaneous decay rate A21 from the n = 2 levels to the ground n = 1 level is

A21 =
g2s

g2
A2s−1s +

g2p

g2
A2p−1sPS , (31.62)

with PS the Sobolev escape probability given by equation (31.100). Equation (31.62) assumes that 2s and
2p are populated in the ratio (g2s/g2) : (g2p/g2) = 1

4 : 3
4 of their statistical weights. The value of the spon-

taneous decay coe�cient A2p−1s itself is not actually needed since it cancels in the Sobolev approximation,
equation (31.101),

g2p

g2
A2p−1sPS =

1

X1n+

g1

g2

8πH

λ3
2p−1s

, (31.63)

where H is the Hubble parameter. The statistical weight factor is g1/g2 = 1
4 .
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Detailed balance requires that dXp/dt, equation (31.60), must vanish in thermodynamic equilibrium (TE),
so the ratio of photoionization to recombination rate coe�cients must be

β2

α2
=

(
npne
n2

)
TE

=
gpge
g2

(
meT

2π~2

)3/2

e−E2/T , (31.64)

the statistical weight factor being gpge/g2 = 1
4 . Hence equation (31.60) may be written

dXp

dt
= XpXen+α2

(
− 1 +

1

bp2

)
, (31.65)

where the departure coe�cient bp2 is the value of npne/n2 relative to its value in thermodynamic equilibrium,

bp2 ≡
npne
n2

/(
npne
n2

)
TE

=
XpXen+

X2

g2

gpge

(
meT

2π~2

)−3/2

eE2/T . (31.66)

Similarly, detailed balance requires that dX1/dt, equation (31.61), must vanish in thermodynamic equilib-
rium, so the ratio of radiative excitation to decay rate coe�cients must be

B12

A21
=

(
X2

X1

)
TE

=
g2

g1
e−E12/T , (31.67)

with E12 ≡ E1 − E2 and g2/g1 = 4. Thus equation (31.61) may be written

dX1

dt
= X1B12(b21 − 1) , (31.68)

where the departure coe�cient b21 is the value of n2/n1 relative to its value in thermodynamic equilibrium,

b21 ≡
n2

n1

/(
n2

n1

)
TE

=
X2

X1

g1

g2
eE12/T . (31.69)

Since the population of the n = 2 level was so much smaller than the populations either of protons or of
the ground n = 1 level of hydrogen, Peebles (1968) argued that the rate of change of X2 must be negligible
relative to the rates of change of Xp and X1,

dX2

dt
= − dXp

dt
− dX1

dt
= XpXen+α2 −X2β2 −X2A21 +X1B12 ≈ 0 . (31.70)

The approximation (31.70) of vanishing dX2/dt allows X2 to be eliminated in favour of X1,

X2

X1
=

(XpXe/X1)n+α2 +B12

β2 +A21
. (31.71)

Given the detailed balance relations (31.64) between β2 and α2, and (31.67) between B12 and A21, the
relation (31.71) may also be written as an expression for the departure coe�cient b21,

b21 =
bp1β2 +A21

β2 +A21
, (31.72)
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Figure 31.2 Non-equilibrium hydrogen ion fractions as a function of cosmic scale factor a scaled to a0 = 1. The total

hydrogen fraction, XH = fH = 0.86, is the fraction of nuclear protons that are hydrogen nuclei, equation (31.82).

in terms of the departure coe�cient bp1, the value of npne/n1 relative to its value in thermodynamic equi-
librium,

bp1 ≡
npne
n1

/(
npne
n1

)
TE

=
XpXen+

X1

g1

gpge

(
meT

2π~2

)−3/2

eE1/T . (31.73)

The statistical weight factor is g1/(gpge) = 1. Equation (31.72) allows the departure coe�cients b21 and
bp2 ≡ bp1/b21 in the recombination equations (31.65) and (31.68) to be eliminated in favour of bp1, yielding

d lnXp

dt
= Xen+α2

A21

β2 +A21

(
1

bp1
− 1

)
, (31.74a)

d lnX1

dt
= B12

β2

β2 +A21
(bp1 − 1) . (31.74b)

Equations (31.74a) and (31.74b) combine to give d(Xp+X1)/dt = 0 in accordance with the condition (31.70),
but each of equations (31.74) is written in a form that remains �nite as respectively Xp → 0 and X1 → 0.
Equations (31.74) combine to give the rate of change of the logarithmic departure coe�cient ln bp1,

d ln bp1
dt

=
d lnXp

dt
+
d lnXe

dt
− d lnX1

dt
+
d

dt
ln
(
n+T

−3/2eE1/T
)
. (31.75)

Given that helium is largely neutral by the time of recombination, charge conservation in the pure hydrogen
gas implies that

Xe = Xp , (31.76)

so the time derivative of lnXe in equation (31.75) is the same as that for lnXp. The time derivatives of the
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Figure 31.3 Logarithmic ionized-to-bound level departure coe�cients ln bp1 and ln bp2, equations (31.73) and (31.66).

Logarithmic departure coe�cients are zero in thermodynamic equilibrium (the departure coe�cients themselves are

unity). The increasingly positive values of ln bp1 and ln bp2 mean that protons become over-abundant compared to

thermodynamic equilibrium, that is, recombination is not keeping pace with the cosmological decrease in tempera-

ture. The n = 1 ground level is further from thermodynamic equilibrium with protons than the n = 2 and other

excited levels. When �rst coming out of thermodynamic equilibrium, the logarithmic departure coe�cient ln bp1 is

approximated by its steady state value λ/κ, equation (31.80), indicated by the dotted line.

temperature and density follow from T ∝ a−1 and n+ ∝ a−3, equations (31.1) and (31.4). The di�erential
equation (31.75) is sti�. Near thermodynamic equilibrium, the logarithmic departure coe�cient ln bp1 is near
zero, and then the factors involving bp1 on the right hand sides of equations (31.74) become small,

1

bp1
− 1 = e− ln bp1 − 1 ≈ − ln bp1 , bp1 − 1 = eln bp1 − 1 ≈ ln bp1 . (31.77)

The d lnXi/dt derivatives in equation (31.75) are then proportional to ln bp1 with a negative coe�cient −κ,

d lnXp

dt
+
d lnXe

dt
− d lnX1

dt
≈ −κ ln bp1 . (31.78)

Thus the di�erential equation (31.75) takes the form

d ln bp1
dt

≈ −κ ln bp1 + λ , (31.79)

where the forcing term λ is the remaining, last, term on the right hand side of the di�erential equation (31.75).
The κ term tends to drive ln bp1 exponentially to zero, that is, into thermodynamic equilibrium, while the
forcing term λ drives ln bp1 away from zero. The di�erential equation (31.79) is sti� when κ is much larger
than the absolute value of λ.
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A solution to the sti�ness problem is to evaluate the thermodynamic equilibrium value of κ/|λ|, and if it
exceeds some threshold (say 102), then set ln bp1 to the steady state solution of equation (31.79), which is

ln bp1 ≈
λ

κ
. (31.80)

A di�erential equation solver that can cope with sti� equations will in e�ect impose the solution (31.80).
Given the logarithmic departure coe�cient ln bp1, the neutral X1 and ionized Xp hydrogen fractions follow,
in a form that remains numerically well-behaved even when X1 or Xp is tiny, as

X1 =
4f2

He
q(

1 +
√

1 + 4fHeq
)2 , Xp =

2fH

1 +
√

1 + 4fHeq
, (31.81)

where fH,

fH ≡ nH/n+ = 1− fn/f+ , (31.82)

is the fraction of nuclear protons that are hydrogen nuclei, and q is

q ≡ ln

(
X1

XpXe

)
= ln

[
n+

g1

gpge

(
meT

2π~2

)−3/2
]

+
χH

T
− ln bp1 . (31.83)

The statistical weight factor is g1/(gpge) = 1.
Only when κ/|λ| falls below the threshold is it necessary to start solving the di�erential equation numeri-

cally. It is better to solve directly for the proton fraction Xp rather than the departure coe�cient bp1, since
as recombination freezes out, Xp changes slowly, whereas bp1 continues to evolve, and solving for Xp from
bp1 becomes numerically unstable. The di�erential equation governing Xp is, from equation (31.74a),

dXp

dt
=

(
X1

g2

g1
β2e

(E2−E1)/T −XeXpn+α2

)
A21

β2 +A21
. (31.84)

The statistical weight factor is g2/g1 = 4. Figure 31.2 shows the resulting non-equilibrium H ion fractions,
and Figure 31.3 shows the logarithmic departure coe�cients ln bp1 and ln bp2. Exercise 31.7 asks you to write
code to solve equation (31.84).

Exercise 31.7. Recombination. Write code that implements the recombination of hydrogen.
1. Well before recombination, the ionization state is near ionization equilibrium. As suggested in the text,

calculate the coe�cients κ and λ that go into equation (31.79) in thermodynamic equilibrium. If κ/|λ|
exceeds some threshold, then set the logarithmic departure coe�cient to ln bp1 = λ/κ, equation (31.80).
Thence deduce the ionization fractions X1 and Xp, equation (31.81).

2. Once κ/|λ| falls below the threshold, solve the evolution equation (31.84) for the proton fraction Xp

numerically.
Solution. See Figures 31.2 and 31.3.
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31.9 Recombination: Seager et al. approximation

Seager, Sasselov, and Scott (1999) provide an improved approximation for recombination based on the Peebles
(1968) approximation, but with the inclusion of helium, and with the n = 2 recombination coe�cients
adjusted to �t the results of a detailed calculation of recombination by Seager, Sasselov, and Scott (2000)
that includes explicit treatment of up to 300 levels of H, 200 levels of He, and 100 levels of He+, plus one
each of e, p, H−, and He++, plus the ground levels of molecular hydrogen species H2 and H+

2 .
Seager et al.'s approximation has been re�ned by Wong, Moss, and Scott (2008) to include the semi-

forbidden decay He 2p 3P1 → 1s 1S0 from the triplet 2p state of helium, and the scattering of He 2p → 1s

photons by neutral hydrogen. Chluba and Thomas (2011) have developed an even more comprehensive
approach to recombination. The various re�nements a�ect the electron fraction Xe at the percent level. The
present section follows the simpler work of Seager, Sasselov, and Scott (1999).
Seager, Sasselov, and Scott (1999) adjoin to the hydrogenic recombination equation (31.84) an equivalent

equation for helium, protons p being replaced by singly-ionized helium He+ in its ground state. The e�ective
spontaneous decay AHe21 from the singlet n = 2 levels to the ground n = 1 level of neutral He is, analogous
to the hydrogenic equation (31.62),

AHe21 =
gHe2s

gHe2
AHe2s−1s +

gHe2p

gHe2
AHe2p−1sPS e

(EHe2s−EHe2p)/T . (31.85)

The extra factor of e(EHe2s−EHe2p)/T takes into account that the 2p state lies slightly but appreciably above the
2s state in energy, so its population in thermodynamic equilibrium is reduced by a corresponding Boltzmann
factor. The statistical weight factors are gHe2s/gHe2 = 1

4 and gHe2p/gHe2 = 3
4 . As in the hydrogenic case,

equation (31.63), the value of AHe2p−1s cancels against the Sobolev probability PS, equation (31.101),

gHe2p

gHe2
AHe2p−1sPS =

1

XHe1n+

gHe1

gHe2

8πH

λ3
He2p−1s

, (31.86)

the statistical weight factor being gHe1/gHe2 = 1
4 .

In thermodynamic equilibrium, He++ combines to He+ at a redshift of z ∼ 6,000, a factor of 6 higher
than recombination, Figure 31.1. By the time recombination approaches, little He++ remains. He++ is well-
approximated throughout as being in thermodynamic equilibrium with He+.
Charge conservation implies that the electron fraction density Xe is

Xe = Xp +XHe+ + 2XHe++ . (31.87)

The relevant atomic physics is as follows. The wavelengths of the 2→ 1 transitions of hydrogen and helium
are

λH2p−1s = 121.5682 nm , λHe2p−1s = 58.4334 nm , λHe2s−1s = 60.1404 nm . (31.88)

Ionization energies of hydrogen and helium, commonly quoted in units of cm−1, are

χH = 10,967,877.17 cm−1 , χHe = 19,831,066.9 cm−1 , χHe+ = 43,890,887.89 cm−1 . (31.89)
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Figure 31.4 Non-equilibrium hydrogen and helium ion fractions as a function of cosmic scale factor a scaled to

a0 = 1. Dotted lines show Xp and XHe+ in thermodynamic equilibrium. The total hydrogen and helium fractions are

XH = 1− fn/f+ = 0.86 and X4He = 1
2
fn/f+ = 0.07.

The spontaneous 2-photon 2s→ 1s transition rates of hydrogen and neutral helium are

AH2s−1s = 8.22458 s−1 , AHe2s−1s = 51.3 s−1 . (31.90)

The e�ective recombination rates to n = 2 levels of hydrogen and neutral helium are

αH2(T ) = 1.14× 10−19 4.309 (T/104 K)−0.6166

1 + 0.6703 (T/104 K)0.5300
m3 s−1 , (31.91a)

αHe2(T ) = 10−16.744

[√
T/3 K

(
1 +

√
T/3 K

)1−p (
1 +

√
T/105.114 K

)1+p
]−1

m3 s−1 , (31.91b)

with p = 0.711. The factor of 1.14 in the hydrogenic recombination rate (31.91a) is a fudge factor introduced
by Seager, Sasselov, and Scott (1999) that adjusts the Hummer's (1994) calculated rate coe�cient to achieve
agreement with the multi-level numerical computation of Seager, Sasselov, and Scott (2000). The helium
recombination rate (31.91b) is from Hummer and Storey (1998). The statistical weight factor that goes
into the ratio βHe2/αHe2 of photoionization to recombination rates for He, analogous to the hydrogenic
ratio (31.64), is gHe+ge/gHe2 = 2×2/4 = 1.
Figure 31.4 shows the recombination of hydrogen and helium in the Seager, Sasselov, and Scott (1999)

approximation. The Figure shows that the recombination of singly-ionized helium is, like the recombination
of protons, delayed compared to thermodynamic equilibrium. Even so, helium is almost entirely neutral by
the time of recombination, so in practice helium has little e�ect on recombination.
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31.10 Sobolev escape probability

The Sobolev escape probability formalism applies to a uniformly expanding medium such as a FLRW uni-
verse. Suppose that a photon is emitted in a transition 2 → 1 between two atomic levels 2 and 1. The
line is narrow, but not in�nitely narrow. As a result of natural and Doppler broadening (the speci�cs are
unimportant here), the line is emitted with some line pro�le φλ, which can be taken to be normalized to∫ ∞

λ=0

φλ d lnλ = 1 . (31.92)

The emitted photon travels through the medium, and has some probability of being absorbed by other atoms
in level 1 before the photon is redshifted out of the line. Since the line is narrow, the photon is either absorbed
nearby, or else it escapes the line completely. In the approximation that the properties of the medium change
little over the small distance between emission and absorption, detailed balance implies that the line pro�le
for absorption is the same as that for emission. The cross-section σλ for absorption at wavelength λ is

σλ = σφλ , (31.93)

where σ ≡
∫∞

0
σλ d lnλ is the cross-section integrated over the line pro�le. By detailed balance, the integrated

cross-section is related to the Einstein coe�cient A21 for spontaneous emission by

σ =
1

8πc

g2

g1
λ3

21A21 . (31.94)

The optical depth dτλ, the di�erential probability for the photon to be absorbed, as the photon passes
through a distance dl = c dt is

dτλ = n1σλ dl = n1cσ φλ dt . (31.95)

The medium is expanding with Hubble parameter H, and the photon wavelength λ redshifts by d lnλ = Hdt

in time dt. Therefore the optical depth to absorption as the photon redshifts through an interval d lnλ of
wavelength is

dτλ = τS φλ d lnλ , (31.96)

where τS is the Sobolev optical depth

τS ≡
n1cσ

H
= n1

g2

g1

λ3
21A21

8πH
. (31.97)

The optical depth τλ for the photon to redshift from an emitted wavelength λ to in�nite wavelength is

τλ ≡ τS
∫ ∞
λ

φλ′ d lnλ′ . (31.98)

The probability for a photon emitted at wavelength λ to escape from the line without being reabsorbed is the
exponential e−τλ of the optical depth. The escape probability averaged over the emitted line pro�le de�nes
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the Sobolev escape probability PS,

PS ≡
∫ ∞

0

e−τλφλ d lnλ =

∫ ∞
0

exp

(
−τS

∫ ∞
λ

φλ′ d lnλ′
)
φλ d lnλ

=
1− e−τS

τS
, (31.99)

which is evidently independent of the shape of the line pro�le (just so long as the line is narrow). The Sobolev
escape probability PS varies from 0 as τS →∞ to 1 as τS → 0.
For large Sobolev optical depth τS, the Sobolev escape probability approximates the reciprocal of the

Sobolev optical depth (31.97),

PS =
1

τS
(τS � 1) . (31.100)

The rate per unit time and volume at which photons are emitted and escape is then

n2A21PS =
n2

n1

g1

g2

8πH

λ3
21

. (31.101)



32

Cosmological perturbations: the
hydrodynamic approximation

The simple model in Chapter 30 of the evolution of cosmological perturbations misses some processes that
a�ect in observationally distinctive ways the power spectra of �uctuations both of the CMB and of the
distribution of matter.
The most important missing element is baryons, which were neglected in Chapter 30 on the grounds

that baryons are gravitationally sub-dominant, having a density Ωb/Ωc ≈ 1/5 of the non-baryonic dark
matter density. Photons and baryons are coupled by electron-photon scattering, which causes the photons
and baryons to behave e�ectively as a single photon-baryon �uid prior to recombination. Baryons add mass
density but no pressure to the photon-baryon �uid, reducing the sound speed of the photon-baryon �uid
below its relativistic limit of

√
1/3, �32.4. The reduction in sound speed becomes greater as the ratio of

matter to radiation density increases after matter-radiation equality. The baryon mass loading enhances
compression (odd) peaks and weakens rarefaction (even) peaks in the power spectrum of the CMB, �32.10.
The change in sound speed modi�es the relation between the sound horizon and physical distance, resulting
in observationally distinctive shifts in the locations of peaks as a function of harmonic number in the power
spectrum of the CMB, Figure 34.7. After recombination, baryons decouple from the photons and behave
like matter. Oscillations in the photon-baryon �uid at recombination produce an imprint, called baryon

acoustic oscillations, in the matter power spectrum, Figure 32.4, analogous to the acoustic oscillations in
the CMB power spectrum.
A second important e�ect missing from the simple model of Chapter 30 is dissipation that results from the

�nite mean free path of electron-photon scattering, which causes photons and baryons not to be perfectly
coupled, �32.7. Dissipation damps oscillations of the baryon-photon �uid at smaller scales, reducing power
in higher order peaks in the CMB.
A third modi�cation is to treat neutrinos separately from photons, �32.11. Like photons, neutrinos are

relativistic, but unlike photons, neutrinos stream freely.
A varying sound speed, dissipation, and freely-streaming neutrinos, can all be modelled in a hydrodynamic

approximation that treats the photon-baryon �uid, and the neutrinos, as imperfect �uids. An imperfect
�uid is characterized by the �rst three moments of its momentum distribution, the monopole, dipole, and
quadrupole, or equivalently the density, bulk velocity, and pressure, but unlike a perfect �uid the pressure is
allowed to be anisotropic. Equations governing the anisotropy can be derived by appealing to a Boltzmann

838
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Figure 32.1 (Left) Overdensities δ−3Φ, and (right) bulk velocities v in the hydrodynamic approximation as a function

of cosmic scale factor a/aeq, at wavenumber k/(aeqHeq) = 10, for non-baryonic dark matter (c), baryons (b), photons

(γ), and neutrinos (ν). The cosmological model is the standard model adopted in this book, a �at ΛCDM model

with concordance parameters ΩΛ = 0.69 and Ωm = 0.31, and adiabiatic initial conditions, �32.3. The overdensities

and velocities of relativistic species are related to their monopole and dipole moments by δγ − 3Φ = 3(Θ0 − Φ),

δν − 3Φ = 3(N0 − Φ), vγ = 3Θ1, vν = 3N1. The results may be compared to those in the simple approximation,

Figure 30.2, and from a Boltzmann computation, Figure 33.1.

treatment, Chapter 33. Given the anisotropy, the evolution of the density and bulk velocity of an imperfect
�uid is governed by the equations of conservation of its energy and momentum.

The approximate anisotropic pressure in the hydrodynamic approximation is not su�ciently accurate to
provide a reliable source for the di�erence Ψ−Φ in scalar gravitational potentials. Thus in the hydrodynamic
approximation, as in the simple approximation, the two scalar potentials are set equal, Ψ = Φ.

Figure 32.1 shows the overdensity and bulk velocity of the 4 species, non-baryonic dark matter, baryons,
photons, and neutrinos, calculated in the hydrodynamic treatment of this chapter, as a function of cosmic
scale factor, in a �at ΛCDM cosmological model at an illustrative wavenumber k/(aeqHeq) = 10. Figure 32.2
shows photon and neutrino multipoles up to the quadrupole ` = 2, the largest multipole computed in the
hydrodynamic approximation. The hydrodynamic approach yields a fair approximation to more accurate
calculations that follow higher order multipole moments of the photon and neutrino distributions using the
Boltzmann equation, Chapter 33.

This chapter starts, �32.2, with a summary of the equations in the hydrodynamic approximation. The
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Figure 32.2 (Left) Photon and (right) neutrino multipoles in the hydrodynamic approximation as a function of cosmic

scale factor a/aeq, at wavenumber k/(aeqHeq) = 10. The cosmological model is the same as in Figures 32.1�33.1,

�32.3. The multipoles may be compared to those from a Boltzmann computation, Figure 33.2.

remainder of the chapter is concerned with �nding approximations to the hydrodynamic system of equa-
tions (32.6)�(32.13), so as to gain a physical understanding of their solutions.
Section 32.4 presents the tight-coupling approximation, which e�ectively treats photons and baryons as a

single �uid with a common bulk velocity. The tight-coupling approximation, valid well before recombination,
treats the photon-baryon �uid as a perfect �uid, as in the simple approximation of Chapter 30, but the mass
density contributed by baryons reduces the sound speed of the �uid.
Sections 32.6�32.10 examine the consequences of allowing quadrupole anisotropy in the photon distribution

(shear viscosity), and a small velocity di�erence between photons and baryons (heat conduction), both of
which lead to dissipation.
Section 32.11 considers neutrinos, which stream freely. After recombination, photons also stream freely, as

do baryons.

32.1 Electron-photon (Thomson) scattering

For some time before and after recombination, photons and baryons were coupled principally by nonrelativis-
tic electron-photon (Thomson) scattering. The inverse comoving mean free path l−1

T to Thomson scattering
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is

l−1
T ≡ n̄eσTa , (32.1)

where σT is the Thomson cross-section. The Thomson cross-section is proportional to the square of the
classical electron radius re,

σT =
8π

3
r2
e , re =

e2

mec2
. (32.2)

The inverse comoving mean free path l−1
T is evaluated in Exercise 32.1. In calculating �uctuations in the

CMB, Chapter 34, it is convenient to introduce the (dimensionless) Thomson scattering optical depth τ ,
which starts from zero, τ0 = 0, at the present time, and increases going backwards in time η to higher
redshift,

τ ≡
∫ η0

η

n̄eσTa dη . (32.3)

The conformal time derivative of the Thomson optical depth τ equals minus the inverse comoving mean free
path,

τ̇ ≡ dτ

dη
≡ −n̄eσTa . (32.4)

Exercise 32.1. Thomson scattering rate. Let f+ be the proton fraction (31.5), and Xe be the ionization
fraction (31.3). Show that the (dimensionless) ratio of the inverse comoving electron-photon (Thomson) mean
free path l−1

T = n̄eσTa to the inverse comoving Hubble distance aeqHeq/c at matter-radiation equality is

cn̄eσTa

aeqHeq
=

3cσTf+XeHeq

16πGmb

Ωb

Ωm

(
a

aeq

)−2

= 0.033h f+Xe
Heq

H0

Ωb

Ωm

(
a

aeq

)−2

= 500Xe

(
a

aeq

)−2

, (32.5)

the Hubble parameter Heq at matter-radiation equality being related to the present-day Hubble parameter
H0 by equation (30.42).

32.2 Summary of equations in the hydrodynamic approximation

The hydrodynamic approximation is derived by suitably truncating the full set of Boltzmann equations,
�33.1, at the quadrupole moment. The equations governing the evolution of scalar �uctuations in non-
baryonic cold dark matter, baryons, photons, and neutrinos at comoving wavenumber k in the hydrodynamic
approximation are as follows (compare to the equations in the simple approximation, �30.7, and in a full
Boltzmann treatment, �33.1). The equations for non-baryonic cold dark matter (c) follow from conservation
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of energy-momentum, and are the same as those (30.53) in the simple approximation (recall that overdot
signi�es the derivative d/dη with respect to conformal time),

δ̇c − k vc − 3 Φ̇ = 0 , (32.6a)

v̇c +
ȧ

a
vc + kΨ = 0 . (32.6b)

Equations for baryons (b) are similar to those (32.6) for the non-baryonic dark matter, except that photon-
electron scattering causes a transfer of momentum between photons and baryons when their bulk velocities
are not equal,

δ̇b − k vb − 3 Φ̇ = 0 , (32.7a)

v̇b +
ȧ

a
vb + kΨ = − |τ̇ |

R
(vb − 3Θ1) , (32.7b)

were R is 3
4 the baryon-to-photon density ratio, equation (32.46). The equations of conservation of energy

and momentum of photons (γ) are

Θ̇0 − kΘ1 − Φ̇ = 0 , (32.8a)

Θ̇1 +
k

3
(Θ0 − 2Θ2) +

k

3
Ψ =

1

3
|τ̇ | (vb − 3Θ1) . (32.8b)

The photon quadrupole moment Θ2 can be approximated by an expression that interpolates between the
tight-coupling limit |τ̇ | � ks, equation (33.83), and the free-streaming limit |τ̇ | � ks, equation (33.84),
where ks is an interpolation constant, which numerical comparison to full Boltzmann computations indicates
is adequately approximated by twice the inverse Hubble distance at recombination, ks ≈ 2arecHrec (or
ks ≈ aeqHeq, for standard ΛCDM cosmological parameters),

Θ2 =
1

1 + (|τ̇ |/ks)2

(
|τ̇ |2

k2
s

Θtight
2 + Θfree

2

)
, (32.9a)

Θtight
2 = − 8k

15|τ̇ |
Θ1 , Θfree

2 = − (Θ0 + Ψ)− 3

kη
Θ1 . (32.9b)

As commented after equation (32.67), the factor 8
15 in equation (32.9b) includes the e�ect of polarization;

without polarization, the factor is 4
9 . Energy-momentum conservation of neutrinos (ν) implies

Ṅ0 − kN1 − Φ̇ = 0 , (32.10a)

Ṅ1 +
k

3
(N0 − 2N2) +

k

3
Ψ = 0 . (32.10b)

The neutrino quadrupole N2 may approximated by, equation (34.50),

N2 = − (N0 + Ψ)− 3

kη
N1 . (32.11)



32.2 Summary of equations in the hydrodynamic approximation 843

The Einstein energy equation is

− k2Φ− 3
ȧ

a
F = 4πGa2(ρ̄cδc + ρ̄bδb + 4ρ̄γΘ0 + 4ρ̄νN0) , (32.12)

where F is de�ned by equation (30.56). The non-vanishing photon and neutrino quadrupoles Θ2 and N2

are a source for the di�erence Ψ − Φ in scalar gravitational potentials, equation (29.49d). However, the
hydrodynamic approximations (32.9) and (32.11) are not su�ciently accurate to serve as a reliable source
for Ψ− Φ. Therefore in the hydrodynamic approximation the two potentials are set equal, as in the simple
approximation (30.58),

Ψ = Φ . (32.13)

Exercise 32.2. Program the equations in the hydrodynamic approximation. Upgrade the code you
wrote in Exercise 30.12 to implement the hydrodynamic approximation, equations (32.6)�(32.13). Explore
the evolution of the gravitational potential Φ, and of the 4 species of mass-energy, non-baryonic dark matter,
baryons, photons, and neutrinos.
Solution. See Figures 32.1, 32.2, and 32.3.
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Figure 32.3 (Left) Overdensities δc−3Φ and δb−3Φ of non-baryonic dark matter (brown) and baryonic matter (green),

and (right) radiation monopole Θ0 − 3Φ (blue), and minus twice the scalar potential, −2Ψ (black), as a function

of cosmic scale factor a in the hydrodynamic approximation. Curves are labelled with the comoving wavenumber

k/(aeqHeq) in units of the Hubble distance at matter-radiation equality. The results may be compared to those in the

simple approximation, Figure 30.1, and using a Boltzmann computation, Figure 33.3.
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Figure 32.4 Model matter power spectrum computed in the hydrodynamic approximation, compared to observations

from the BOSS galaxy survey (Anderson et al., 2014). The predicted power spectrum has been multiplied, arbitrar-

ily, by a bias factor of b2 = 1.42. The model power spectrum may be compared to those computed in the simple

approximation, Figure 30.15, and from a Boltzmann computation, Figure 33.5.

Exercise 32.3. Power spectrum of matter �uctuations: hydrodynamic approximation. Upgrade
the code you wrote in Exercise 30.17 to compute the power spectrum of matter �uctuations in the hydrody-
namic approximation. Comment on how the power spectrum di�ers from that in the simple approximation.
Solution. See Figure 32.4. The cosmological model is the standard �at ΛCDM model described in �32.3.
The model power spectrum di�ers from that in the simple approximation, Figure 30.15, �rstly in that power
is slightly reduced at smaller scales (larger wavenumbers k), and secondly in that the power spectrum shows
wiggles, commonly called baryon acoustic oscillations, or BAO. Both e�ects arise from the �nite contribution
of baryons to the matter power spectrum.
The possibility of scale-dependent bias between galaxies and matter, coupled with the e�ects of nonlinear

growth of power, complicates the relation between the observed galaxy power spectrum and the linear matter
power spectrum. BAO persist in the presence of scale-dependent bias, providing a cosmic ruler that links the
comoving scale of distance in galaxy clustering to that in the CMB. Anderson et al. (2014) were interested
primarily in the scale of the BAO. In Figure 10.4 they allowed for possible scale-dependent bias and incipient
non-linearity by applying a more or less arbitrary polynomial correction to the model power spectrum.
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Exercise 32.4. E�ect of massive neutrinos on the matter power spectrum.

1. Incorporate 1 or more species of massive neutrino into the Friedmann equations describing the evolution
of the background FLRW geometry.

2. Compute the e�ect of 1 or more species of massive neutrino on the matter power spectrum. For simplicity,
assume an abrupt transition of the neutrino evolution equations from relativistic to non-relativistic.

Solution

1. Neutrinos decouple while relativistic, at around eē-annihilation, and inherit a relativistic thermodynamic
distribution from that time. Since decoupling, neutrinos free-streamed, with particle momenta p and
temperature T redshifting as p ∝ T ∝ a−1. The energy density ρ(m,T ) of a single species of neutrino
of mass m at temperature T is (units c = 1)

ρ(m,T ) =

∫ ∞
0

√
p2 +m2

1

ep/T + 1

4πp2dp

(2π~)3
=

7π2T 4

240 ~3
R(m/T ) , (32.14)

where R(µ) is the integral

R(µ) ≡ 120

7π4

∫ ∞
0

√
x2 + µ2

ex + 1
x2dx →

{
1 µ→ 0 ,

αµ µ→∞ ,
(32.15)

with

α =
180 ζ(3)

7π4
= 0.3173 . (32.16)

The neutrino pressure p(m,T ) (not to be confused with neutrino particle momentum p) is

p(m,T ) =
1

3

∫ ∞
0

p2√
p2 +m2

1

ep/T + 1

4πp2dp

(2π~)3
, (32.17)

which can be expressed in terms of the neutrino density ρ(m,T ) as

p(m,T ) =
1

3

[
ρ(m,T )− ∂ρ(m,T )

∂ lnm

]
. (32.18)

An approximation good to 1% for the density ρ(m,T ), and which yields an approximation good to 4%
for the pressure p(m,T ) given in terms of ρ(m,T ) by formula (32.18), is

R(µ) ≈

√
1 + βµ2 + γα2µ4

1 + γµ2
, (32.19)

where the constants α (equation (32.16)), β, γ are chosen such that both density ρ and pressure p have
the correct asymptotic behaviour at both µ→ 0 and µ→∞,

β =
10

7π2
+ γ = 0.2902 , γ =

10
[
− 7π2 + 3240 ζ(3)2

]
49π8 − 486000 ζ(3)ζ(5)

= 0.1454 . (32.20)

A simple approximation that reproduces the correct asymptotic behaviour of the density ρ(m,T ) at large
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and small temperature is to adopt an abrupt change from relativistic to non-relativistic at T = αm,

ρ(m,T ) ≈ 7π2T 3

240 ~3

{
T T ≥ αm ,

αm T ≤ αm .
(32.21)

2. The approximation (32.21) for the neutrino density suggests adopting an abrupt transition of the neu-
trino evolution equations from relativistic, equations (32.10) and (32.11), to non-relativistic at T = αm,
with α from equation (32.16). The non-relativistic equations are as for non-baryonic cold dark matter,
equations (32.6). Conservation of energy and momentum at the transition requires that the neutrino
overdensity δν and bulk velocity vν are

δν = 3N0 , (32.22a)

vν = 3N1 . (32.22b)

32.3 Standard cosmological parameters

Unless otherwise stated, all computations of cosmological perturbations carried out in this book are for
a standard �at ΛCDM cosmological model with parameters consistent with those reported by the Planck
collaboration (Aghanim et al., 2018). This section gives the standard parameters adopted in this book.
The CMB power spectrum constrains the physical density Ωh2 of dark matter and baryonic components

more precisely than the density Ω relative to the critical density. The physical matter densities Ωch
2 of

non-baryonic cold dark matter and Ωbh
2 of baryonic matter today are taken to be, in the standard model,

Ωch
2 = 0.12 , Ωbh

2 = 0.022 . (32.23)

The conversion factor between Ωh2 and mass density ρ today is

ρ =
3ΩH2

8πGc2
= 6.44932× 10−26 Ωh2 kg m−3 . (32.24)

The matter density Ωm in non-baryonic cold dark matter and baryonic components today is taken to be, in
the standard model,

Ωm = 0.31 . (32.25)

The individual non-baryonic cold dark matter and baryonic densities are then

Ωc = 0.262 , Ωb = 0.048 . (32.26)

Together, equations (32.23) and (32.25) yield a Hubble parameter H0 today of

H0 ≡ 100h km s−1 Mpc−1 = 67.7 km s−1 Mpc−1 . (32.27)

The CMB temperature T0 today is (Fixsen, 2009)

T0 = 2.7255 K , (32.28)
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implying a physical photon density of, Exercise 10.2,

Ωγh
2 = 2.4728× 10−5 . (32.29)

The standard model adopted here assumes Neff = 3 species of massless neutrino that decouple just be-
fore electron-positron annihilation, implying that the neutrino temperature after eē-annihilation is Tν/Tγ =

(4/11)1/3, Exercise 10.20. The energy-weighted e�ective number of relativistic particle species at recombina-
tion is then, equation (10.151b),

gρ = 2

[
1 +

(
4

11

)4/3
7

8
Neff

]
= 3.36 . (32.30)

In reality, neutrinos are not quite decoupled by eē-annihilation. In a more accurate treatment, the neutrino
temperature after eē-annihilation is slightly larger than Tν/Tγ = (4/11)1/3, and the e�ective number gρ of
relativistic species at recombination is correspondingly slightly larger. It is conventional to quote the increase
in gρ as if it were an increase in the e�ective number of neutrino types in equation (32.30), Neff = 3.04

(Mangano et al., 2002). In the approximation of Neff = 3 massless neutrinos adopted here, the physical
density of neutrinos today is

Ωνh
2 = 1.68× 10−5 . (32.31)

The ratio of the physical matter density from equations (32.23) to the physical radiation density implied by
equations (32.29) and (32.31) implies a redshift of matter-radiation equality of

1 + zeq = 3415 . (32.32)

If neutrinos have masses as indicated by neutrino oscillation data, �10.25, then at least 2 of the 3 neutrino
species are non-relativistic today, even though they were relativistic at recombination. If the third species is
taken to be massless, then the neutrino masses are

mν1 = 0 eV , mν2 = 0.01 eV , mν3 = 0.05 eV . (32.33)

The corresponding physical neutrino mass density today is, in place of equation (32.31),

Ωνh
2 = 1.3× 10−3 . (32.34)

The assumption of spatial �atness implies vanishing spatial curvature,

Ωk = 0 . (32.35)

In the standard ΛCDM model, the remaining density is taken to be vacuum energy, equivalent to a cosmo-
logical constant, with density

ΩΛ = 1− Ωk − Ωm − Ωr = 0.69 . (32.36)

Recombination is a�ected by the helium mass fraction Y4He ≡ ρ4He/(ρH +ρ4He), taken to be (Cyburt et al.,
2016)

Y4He = 0.25 . (32.37)
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Given the helium fraction (32.37) and the Peebles approximation to recombination, �31.8, along with the
standard parameters adopted here, the redshift of recombination, where the Thomson optical depth is unity,
is

1 + zrec = 1092 . (32.38)

In integrating the simple or hydrodynamic or Boltzmann equations, �30.7 or �32.2 or �33.1, I �nd it
convenient to work in units where the scale factor and Hubble parameter are one at matter-radiation equality,
aeq = Heq = 1. With the standard parameters adopted here, the scale factor and Hubble parameter today
are related to those at matter-radiation equality by

a0

aeq
= 3415 ,

H0

Heq
= 6.363× 10−6 . (32.39)

The scale factor and Hubble parameter at recombination, where the Thomson optical depth τ is one, are
related to those at matter-radiation equality by

arec

aeq
= 3.13 ,

Hrec

Heq
= 0.147 . (32.40)

The Hubble distance today relative to those at matter-radiation equality and at recombination are

c

a0H0
= 46.0

c

aeqHeq
= 21.1

c

arecHrec
. (32.41)

In cosmology, distances are commonly reported in units of h−1 Mpc, or, if the Hubble parameter h today
is considered to be known, in Mpc. The Hubble distance today is

c

a0H0
= 2997.92458h−1 Mpc = 4.43 Gpc . (32.42)

The horizon distance today is

η0 = 147
c

aeqHeq
= 3.20

c

a0H0
= 9600h−1 Mpc = 14.2 Gpc . (32.43)

The age of the Universe today is, equation (10.15),

t0 = 0.955H−1
0 = 13.8 Gyr . (32.44)

32.4 The photon-baryon �uid in the tight-coupling approximation

Prior to recombination, non-relativistic electron-photon (Thomson) scattering kept photons tightly coupled
to electrons, and Coulomb scattering kept electrons tightly coupled to baryons (nuclei, mostly protons and
helium ions). Thus photons and baryons/electrons behaved as a single tightly-coupled �uid. The baryonic
�uid contributed negligible pressure to the combined baryon-photon �uid, but it contributed a �nite energy
density that became increasingly important as recombination approached. The density loading decreased
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the sound speed of the photon-baryon �uid, equation (32.50), to the point that at recombination the sound
speed was about 80% of the negligible-baryon sound speed of

√
1/3.

Electron-photon scattering transfers momentum between the baryonic �uid and photons, but it does
not transfer energy, since the baryons and electrons, being non-relativistic, have negligible pressure, so their
energy is just that of their rest mass. Consequently the energy conservation equation (30.13a) holds separately
for each of the photon and baryon �uids. However, the exchange of momentum means that the momentum
equation (30.13b) does not hold separately for each �uid. Rather, electron-photon scattering couples the
�uids so that their bulk velocities are the same to a good approximation,

vb = vγ , (32.45)

the photon bulk velocity being related to the photon dipole by vγ = 3Θ1, equation (30.15). The approxima-
tion (32.45) is called the tight-coupling approximation. The right panel of Figure 32.1 illustrates that the
equality (32.45) of baryon and photon bulk velocities holds up to recombination, but then breaks down as
the scattering mean free path becomes large, and baryons and photons are released from each other's grasp.
De�ne R to be 3

4 the baryon-to-photon density ratio,

R ≡ 3ρ̄b

4ρ̄γ
= Ra

a

aeq
, Ra =

3gρΩb

8Ωm
≈ 0.2 , (32.46)

with gρ = 3.36 being the energy-weighted e�ective number of relativistic particle species at around the
time of recombination, equation (10.151b). The energy �ux of the combined photon-baryon �uid is, from
equation (30.9b),

fγ + fb = (ρ̄γ + p̄γ)vγ + ρ̄bvb = 4
3 ρ̄γv(1 +R) , (32.47)

where v is the common bulk velocity of the photon-baryon �uid. The equation of momentum conservation of
the combined baryon-photon �uid is then a sum of the photon-velocity equation (30.13b) with w = 1/3, and
R times the baryon-velocity equation (30.13b) with w = 0. The resulting momentum conservation equation
is

(1 +R)v̇ +R
ȧ

a
v +

k

3
δγ = −k(1 +R)Ψ . (32.48)

Combining the photon energy conservation equation (30.13a) with the momentum conservation equation (32.48),
and substituting δγ = 3Θ0, equation (30.15), yields[

d2

dη2
+

R

1 +R

ȧ

a

d

dη
+

k2

3(1 +R)

]
(Θ0 − Φ) = − k2

3(1 +R)
[(1 +R)Ψ + Φ] , (32.49)

which coincides with equation (30.14) for w = 1/[3(1 + R)], and which goes over to the earlier radiation
equation (30.48) in the limit R→ 0 of negligible baryons. The term proportional to the �rst derivative d/dη
on the left hand side of equation (32.49) is an adiabatic damping term. In the absence of this term, and in
the absence of a driving potential, equation (32.49) would reduce to a wave equation with sound speed

cs =

√
1

3(1 +R)
. (32.50)
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The coe�cient of the adiabatic damping term in equation (32.49) is, given that R ∝ a, equation (32.46),

R

1 +R

ȧ

a
= −2

ċs
cs

. (32.51)

The sound horizon distance ηs is de�ned to be the distance travelled by a sound wave since the initial
time η = 0,

ηs ≡
∫

0

cs dη . (32.52)

Recast in terms of the sound horizon distance ηs, the di�erential equation (32.49) is(
d2

dη2
s

− c′s
cs

d

dηs
+ k2

)
(Θ0 − Φ) = −k2 [(1 +R)Ψ + Φ] , (32.53)

where prime ′ denotes derivatives with respect to the sound horizon distance, c′s = dcs/dηs.

32.5 WKB approximation

Equation (32.53) is an equation for a forced, damped harmonic oscillator. The forcing terms are those on
the right hand side of the equation, while the damping term is the �rst derivative term on the left hand
side. There is a general method, called the WKB approximation (Wentzel, 1926; Kramers, 1926; Brillouin,
1926), to obtain the homogeneous solutions for a damped harmonic oscillator when the damping rate is small
compared to the frequency.
Denote the coe�cient of the damping term by 2κ. The homogeneous version of equation (32.53) is then(

d2

dη2
s

+ 2κ
d

dηs
+ k2

)
(Θ0 − Φ) = 0 . (32.54)

In case being considered, the damping rate κ is the adiabatic rate

κ = −1

2

c′s
cs

, (32.55)

but the WKB method works for more general κ, provided that κ is small compared to the wavenumber of
the sound wave, κ� k. If the damping rate κ is treated as approximately constant, then the homogeneous
wave equation (32.54) can be solved by introducing a frequency ω de�ned by

Θ0 − Φ ∝ e
∫
ω dηs . (32.56)

The homogeneous wave equation (32.54) is then equivalent to

ω′ + ω2 + 2κω + k2 = 0 . (32.57)

To the extent that the damping parameter is much smaller than the frequency, κ� k ∼ ω, the frequency ω
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is approximately constant, so that ω′ can be neglected in equation (32.57). With ω′ neglected, the solution
of equation (32.57) is

ω = −κ ± i
√
k2 − κ2 ≈ −κ ± ik , (32.58)

where the last approximation holds because κ� k. Equation (32.58) is called the WKB approximation.
Thus the homogeneous solutions of the wave equation (32.54) are approximately

Θ0 − Φ ∝ e−
∫
κ dηs± ikηs . (32.59)

32.5.1 Radiation in the tight-coupling approximation

In the tight-coupling approximation, the damping rate κ in the di�erential equation (32.54) is the adiabatic
damping rate (32.55). The integral of the adiabatic damping term is

∫
κa dηs = − 1

2 ln cs, whose exponential
is

e−
∫
κa dηs =

√
cs . (32.60)

In the WKB approximation, the homogeneous solutions to the wave equation (32.54) are

Θ0 − Φ ∝
√
cs e
±ikηs . (32.61)

This shows that, as the sound speed decreased thanks to the increasing baryon-to-photon density in the
expanding Universe, the amplitude of a sound wave decreased as the square root of the sound speed.

32.6 Including quadrupole pressure in the momentum conservation equation

The tight-coupling approximation treats the photon-baryon �uid as a perfect �uid, that is, the pressure is
taken to be isotropic in the �uid frame. A better approximation is to allow the photons a small quadrupole
anisotropy, which allows di�usive dissipation, �32.7.
The scalar part of the momentum conservation equation (29.44b) in general depends not only on the

isotropic pressure p, but also on a traceless quadrupole pressure. Let the dimensionless scalar quadrupole q
be de�ned by its relation to the trace-free quadrupole component of the energy-momentum tensor,

T ab
quad

= (ρ̄+ p̄)q
(

3
2 k̂ak̂b −

1
2 δab

)
, (ρ̄+ p̄)q ≡

(
k̂ak̂b − 1

3 δab

)
T ab . (32.62)

For relativistic species such as photons, the dimensionless quadrupole q is related to the quadrupole moment
Θ2 by, equation (33.53d),

q = − 2Θ2 . (32.63)

In the presence of a quadrupole pressure, the momentum conservation equation (29.44b) includes a term

DmT
ma

quad

=
1

a
(ρ̄+ p̄)∇aq . (32.64)
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The net e�ect is to modify all momentum conservation equations by replacing Ψ→ Ψ + q. The scalar bulk
velocity equation (30.13b) is thus modi�ed to

v̇ + (1− 3w)
ȧ

a
v + wkδ = −k(Ψ + q) . (32.65)

32.7 Photon di�usion (Silk damping)

The tight coupling between photons and baryons is not perfect, because the mean free path for electron-
photon scattering is �nite, not zero. The imperfect coupling causes sound waves to damp at scales comparable
to and below the mean free path. The damping is greater at smaller scales, leading to a systematic reduction in
CMB power at smaller scales by an approximately Gaussian factor, equation (32.84). The damping reduces
power, but it does not smooth out the acoustic oscillation structure of the CMB power spectrum, which
remains intact.
For photon multipoles ` ≥ 2, the electron-photon scattering term on the right hand side of the photon

Boltzmann hierarchy (33.81) acts as a damping term that tends to drive the multipoles exponentially into
equilibrium (the solution to the homogeneous equation Θ̇` + |τ̇ |Θ` = 0 is a decaying exponential). As seen
in �32.4, in the tight-coupling approximation the monopole and dipole oscillate with a natural frequency of
ω = csk, where cs is the sound speed. These oscillations provide a source that propagates upward to higher
harmonic numbers `. For scales much larger than a mean free path, k/|τ̇ | � 1, the time derivative is small
compared to the scattering term, |Θ̇| ∼ csk|Θ| � |τ̇Θ|, re�ecting the near-equilibrium response of the higher
harmonics. For multipoles ` ≥ 2, the dominant term on the left hand side of the Boltzmann hierarchy (33.81)
is the lowest order multipole, which acts as a driver. Solution of the Boltzmann equations (33.81) then requires
that

Θ`+1 ∼
k

|τ̇ |
Θ` for ` ≥ 2 . (32.66)

The relation (32.66) implies that higher order photon multipoles are successively smaller than lower orders,
|Θ`+1| � |Θ`|, for scales much larger than a mean free path, k/|τ̇ | � 1. This accords with the physical
expectation that electron-photon scattering tends to drive the photon distribution to near isotropy.
To lowest order, dissipation can be taken into account by including the photon quadrupole Θ2 in the

Boltzmann hierarchy (33.81) of photon multipole equations, but still neglecting the higher multipoles, Θ` = 0

for ` ≥ 3. According to the estimate (32.66), this approximation is valid for scales much larger than a
mean free path, k/|τ̇ | � 1. The approximation of truncating at the quadrupole is equivalent to a di�usion
approximation. In the di�usion approximation, the photon quadrupole equation (33.81c) reduces to

Θ2 = − 4k

9|τ̇ |
Θ1 . (32.67)

Substituted into the photon momentum equation (32.8b), the photon quadrupole Θ2 (32.67) acts as a source
of friction on the photon dipole Θ1. In hydrodynamics of near-equilibrium �uids, such a quadrupole moment
is called shear viscosity. When polarization is included, which modi�es the factor on the right hand side
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of the photon quadrupole equation (33.81c), the factor 4
9 in equation (32.67) is increased by a factor of 6

5 to
8
15 , equation (35.65), as already adopted in equations (32.9).
The di�usive damping resulting from a small photon quadrupole Θ2 conserves the energy and momentum

of the photon �uid (by itself, irrespective of baryons), so that covariant momentum conservation DmT
mn = 0

continues to hold true within the photon �uid. The contribution of a quadrupole pressure to the momentum
conservation equation was discussed in �32.6.

32.8 Viscous baryon drag damping

A second source of damping of sound waves, distinct from the photon di�usion of �32.7, arises from the
viscous drag on photons that results from a small di�erence vb − 3Θ1 between the baryon and photon bulk
velocities. In contrast to photon di�usion, viscous baryon drag transfers momentum between photons and
baryons. In hydrodynamics of near-equilibrium �uids, this e�ect is called heat conduction.
An expression for the bulk velocity di�erence vb− 3Θ1 follows from either of the momentum conservation

equations (32.8b) or (32.7b) for photons or baryons,

vb − 3Θ1 =
3

|τ̇ |

(
Θ̇1 +

k

3
Θ0 +

k

3
Ψ

)
= − R

|τ̇ |

(
v̇b +

ȧ

a
vb + kΨ

)
≈ −3R

|τ̇ |

(
Θ̇1 +

ȧ

a
Θ1 +

k

3
Ψ

)
. (32.68)

The bulk velocity di�erence vb−3Θ1 is small because the scattering factor |τ̇ | is large. The �nal approximation
of equations (32.68) follows from replacing vb with 3Θ1 to lowest order, which is valid because the expression is
already of linear order. Taking a linear combination of the second and fourth expressions in equations (32.68)
so as to eliminate Θ̇1 gives

vb − 3Θ1 ≈
3R

(1 +R)|τ̇ |

(
k

3
Θ0 −

ȧ

a
Θ1

)
. (32.69)

On the right hand side of equation (32.69), the wavenumber k is large compared to ȧ/a at the subhorizon
scales where dissipation is important, so the bulk velocity di�erence reduces to

vb − 3Θ1 ≈
Rk

(1 +R)|τ̇ |
Θ0 . (32.70)

It is tempting to insert the approximation (32.70) directly into the right hand sides of the photon and
baryon momentum conservation equations (32.8b) and (32.7b), but the result is not of the desired precision,
since the right hand sides of the momentum equations are multiplied by the large factor |τ̇ |, amplifying
imprecision in the approximation (32.70). A precise approach is to start with the equation of conservation of
total momentum of the photon-baryon �uid, which is a sum of the momentum conservation equations (32.8b)
and (32.7b) for photons and baryons,

Θ̇1 +
k

3
(Θ0 − 2Θ2) +

k

3
Ψ +

R

3

(
v̇b +

ȧ

a
vb + kΨ

)
= 0 . (32.71)
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Rewriting the baryon velocity as the photon velocity plus a small di�erence, vb = 3Θ1 + (vb − 3Θ1), brings
the momentum conservation equation (32.71) to

Θ̇1 +
k

3
(Θ0 − 2Θ2) +

k

3
Ψ +R

(
Θ̇1 +

ȧ

a
Θ1 +

k

3
Ψ

)
+
R

3

(
d

dη
+
ȧ

a

)
(vb − 3Θ1) = 0 . (32.72)

The term in equation (32.72) involving the velocity di�erence vb − 3Θ1 is proportional to(
d

dη
+
ȧ

a

)
(vb − 3Θ1) =

(
d

dη
+
ȧ

a

)
Rk

(1 +R)|τ̇ |
Θ0 ≈

Rk

(1 +R)|τ̇ |
Θ̇0 ≈

Rk2

(1 +R)|τ̇ |
Θ1 , (32.73)

the second step of which invokes the approximation (32.70), and the last two steps of which retain only the
dominant term at the subhorizon scales kη � 1 where dissipation is important.
Substituting the approximation (32.73), and the di�usive approximation (32.67) for the radiation quad-

rupole Θ2, brings the photon-baryon momentum conservation equation (32.72) to

(1 +R)Θ̇1 +R
ȧ

a
Θ1 +

k

3
[Θ0 + (1 +R)Ψ] +

k2

3|τ̇ |

(
8

9
+

R2

1 +R

)
Θ1 = 0 . (32.74)

The �nal terms proportional to the comoving Thomson mean free path 1/|τ̇ | on the left hand side of equa-
tion (32.74) are the dissipative terms. The 8/9 term is from photon di�usion, while the R2/(1 +R) term is
from baryon drag.

32.9 Photon-baryon wave equation with dissipation

Eliminating the dipole Θ1 in equation (32.74) in favour of the monopole Θ0 using the photon monopole
equation (32.8) yields a second order di�erential equation for Θ0 − Φ,{

d2

dη2
+

[
R

(1+R)

ȧ

a
+

k2

3(1+R)|τ̇ |

(
8

9
+

R2

1+R

)]
d

dη
+

k2

3(1+R)

}
(Θ0 − Φ) = − k2

3(1+R)
[(1+R)Ψ + Φ] .

(32.75)
Recast in terms of the sound horizon distance ηs de�ned by equation (32.52), the wave equation (32.75)
becomes {

d2

dη2
s

+

[
− c′s
cs

+
k2cs
|τ̇ |

(
8

9
+

R2

1 +R

)]
d

dηs
+ k2

}
(Θ0 − Φ) = − k2 [(1 +R)Ψ + Φ] , (32.76)

where prime ′ denotes derivative with respect to sound horizon distance, c′s = dcs/dηs. Equations (32.75)
and (32.76) di�er from the earlier dissipation-free equations (32.49) and (32.53) by the inclusion of dissipation
terms proportional to the Thomson scattering mean free path lT = 1/|τ̇ |. WKB solution of equations such
as (32.76) was discussed in �32.5.
In Exercise 35.7 it is found that polarization increases the photon di�usion contribution in equation (32.76)

by a factor of 6
5 from 8

9 to 16
15 ,

8

9
→ 16

15
. (32.77)
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The terms proportional to the linear derivative d/dηs in equation (32.76) are damping terms, which may
be collected into an overall damping coe�cient κ,(

d2

dη2
s

+ 2κ
d

dηs
+ k2

)
(Θ0 − Φ) = − k2

[
(1 +R)Ψ + Φ

]
. (32.78)

The damping coe�cient κ is a sum of adiabatic κa and dissipative κd parts,

κ ≡ κa + κd , κa = −1

2

d ln cs
dηs

, κd =
k2cs
2|τ̇ |

(
16

15
+

R2

1 +R

)
. (32.79)

In the dissipative damping coe�cient κd, the 16/15 term arises from photon di�usion, while the R2/(1 +R)

term arises from baryon drag. At recombination, where R ≈ 0.6, dissipation by photon di�usion and baryon
drag are in the ratio (16/15)/[R2(1 +R)] ≈ 5. Thus photon di�usion dominates the dissipation, but baryon
drag contributes non-negligibly.
In the WKB approximation, �32.5, the homogeneous solutions of equation (32.78) are

Θ0 − Φ ∝
√
cs e
−

∫
κd dηse±ikηs . (32.80)

The dissipative factor e−
∫
κd dηs involves an integral of the dissipative damping coe�cient over the sound

horizon distance, which may be written ∫
κd dηs =

k2

k2
d

, (32.81)

where k−1
d is the damping scale de�ned by, from equation (32.79) along with the de�nition (32.52) of ηs and

the relation (32.50) between cs and R,

1

k2
d

≡
∫

cs
2|τ̇ |

(
16

15
+

R2

1 +R

)
dηs =

∫
1

6|τ̇ |(1 +R)

(
16

15
+

R2

1 +R

)
dη . (32.82)

The damping scale k−1
d is roughly the geometric mean of the scattering mean free path lT and the horizon

distance η, as might be expected for a random walk by increments lT over a time η,

k−1
d ∼

√
lTη . (32.83)

The resulting dissipative damping factor is

e−
∫
κd dηs = e−k

2/k2d . (32.84)

Thus the e�ect of dissipation is to damp temperature �uctuations exponentially at scales smaller than the
di�usion scale kd. The di�usion scale kd is evaluated in Exercise 32.6.

32.10 Baryon loading

The driving potential on the right hand side of the wave equation (32.78) causes Θ0 − Φ to oscillate not
around zero, but rather around the o�set −

[
(1+R)Ψ+Φ

]
. At scales well inside the sound horizon, kηs � 1,
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this driving potential also varies slowly compared to the wave frequency. To the extent that the driving
potential is slowly varying, the complete solution of the inhomogeneous wave equation (32.78) well inside
the horizon is

Θ0 + (1 +R)Ψ ∝
√
cs e
−k2/k2d e±ikηs . (32.85)

As will be seen in Chapter 34, equation (34.17), the monopole contribution to CMB �uctuations is not the
photon monopole Θ0 by itself, but rather Θ0 + Ψ, which is the monopole redshifted by the potential Ψ. This
redshifted monopole is

Θ0 + Ψ = −RΨ +A
√
cs e
−k2/k2d e±ikηs , (32.86)

with some constant amplitude A. Thus the redshifted monopole Θ0 + Ψ oscillates about the o�set −RΨ.
Physically, the gravity of baryons enhances sound wave compressions while weakening rarefactions. The o�set
of the redshifted temperature monopole translates into an ampli�cation of compression (odd) peaks in the
CMB, and a weakening of rarefaction (even) peaks in the CMB, as is observed in the CMB.

Exercise 32.5. Behaviour of radiation in the presence of damping. Con�rm that, for κ � k, the
homogeneous solutions of equation (32.78) are approximately Θ0 − Φ ∝ e−

∫
κ dηs± ikηs . Hence �nd the

retarded Green's function, and write down the general solution to equation (32.78). Convince yourself that
Θ0 − Φ is a decaying wave that oscillates around −

[
(1 +R)Ψ + Φ

]
.

Solution. The general solution of equation (32.78) is, with y ≡ kηs and β ≡
∫
κ dηs,

Θ0(y)− Φ(y) = e−β (A0 cos y +A1 sin y)−
∫ y

0

{
[1 +R(y′)] Ψ(y′) + Φ(y′)

}
e−(β−β′) sin(y − y′) dy′ , (32.87)

where A0 and A1 are constants.

Exercise 32.6. Di�usion scale. Show that the dimensionless ratio of the damping scale kd de�ned
by (32.82) to the comoving Hubble distance c/(aeqHeq) at matter-radiation equality is given by

a2
eqH

2
eq

c2k2
d

=
8
√

2πGmb

9cσTf+Heq

Ωm

Ωb

∫ a/aeq

0

(a/aeq)2

Xe

√
1 + (a/aeq)(1 +R)

(
16

15
+

R2

1 +R

)
d(a/aeq) . (32.88)

If hydrogen is taken to be fully ionized and helium neutral, which is a reasonable approximation in the run-up
to recombination, then Xe = fH. For constant Xe, the integral on the right hand side of equation (32.88)
can be done analytically. With a normalized to aeq = 1,

f(a) ≡
∫ a

0

a2

√
1 + a

16
15 (1 +R) +R2

(1 +R)2
da ≈

∫ a

0

a2 da√
1 + a

. (32.89)

The last approximation is correct to order unity for any a. Conclude that, neglecting the e�ect of recombi-
nation on the electron fraction Xe,

a2
eqH

2
eq

c2k2
d

=
6.83h−1

f+fH

H0

Heq

Ωm

Ωb
f(a/aeq) = 6× 10−4f(a/aeq) ≈ 0.0035 , (32.90)
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the �nal value being the approximate value at recombination.

32.11 Neutrinos

Before electron-positron annihilation at temperature T ≈ 1 MeV, weak interactions were fast enough that
scattering between neutrinos, antineutrinos, electrons, and positrons kept neutrinos and antineutrinos in
thermodynamic equilibrium with baryons. After eē annihilation, neutrinos and antineutrinos decoupled,
rather like photons decoupled at recombination. After decoupling, neutrinos streamed freely. In Exercise 32.7
you will show that, in an approximation developed in �34.6.2, the e�ective sound speed in neutrinos was
about the speed of light, in contrast to photons where collisional isotropization leads to a sound speed about
1/
√

3 the speed of light.

Exercise 32.7. Generic behaviour of neutrinos. Insert the approximate value (34.50) of the neutrino
quadrupole N2 into the neutrino energy and momentum conservation equations (32.10) to obtain the di�er-
ential equation (

d2

dη2
+

2

η

d

dη
+ k2

)
(N0 − Φ) = −k2(Ψ + Φ) . (32.91)

What kind of equation is this? What are the its solutions? Find the Green's function solution driven by a
prescribed potential Ψ + Φ, subject to the initial condition that N0−Φ = ζν . Convince yourself that N0−Φ

is a decaying wave that oscillates around −(Ψ + Φ). Exercise 35.8 generalizes this exercise to the case of
vector and tensor �uctuations.
Solution. The Green's function solution of equation (32.91) is with y ≡ kη,

N0 − Φ = ζν
sin y

y
−
∫ y

0

[Ψ(y′) + Φ(y′)] sin(y − y′)y
′

y
dy′ . (32.92)



33

Cosmological perturbations: Boltzmann
treatment

Chapters 30 and 32 treated cosmological perturbations in the approximations that matter and radiation
behaved as respectively perfect and imperfect �uids. The �uid approximation truncates the momentum dis-
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Figure 33.1 (Left) Overdensities δ − 3Φ, and (right) bulk velocities v in a Boltzmann treatment as a function of

cosmic scale factor a/aeq, at wavenumber k/(aeqHeq) = 10, for non-baryonic dark matter (c), baryons (b), photons

(γ), and neutrinos (ν). The cosmological model is the standard model adopted in this book, a �at ΛCDM model

with concordance parameters ΩΛ = 0.69 and Ωm = 0.31 and adiabiatic initial conditions, �32.3. The overdensities

and velocities of relativistic species are related to their monopole and dipole moments by δγ − 3Φ = 3(Θ0 − Φ),

δν − 3Φ = 3(N0 − Φ), vγ = 3Θ1, vν = 3N1. The computation shown here includes photon and neutrino multipoles

up to `max = 32. Compare these results to the simple and hydrodynamic computations, Figures 30.2 and 32.1.
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Figure 33.2 (Left) Photon multipoles up to ` = 6, and (right) neutrino multipoles up to ` = 32, as a function of cosmic

scale factor a/aeq, at wavenumber k/(aeqHeq) = 10. The cosmological model is the same as in Figure 33.1, �32.3. The

thick (black) line shows −Ψ−Φ, about which the photon and neutrino monopoles Θ0−Φ and N0−Φ mostly oscillate

(except near recombination, where the photon monopole Θ0 −Φ oscillates about − (1 +R)Ψ−Φ). The computation

includes photon and neutrino multipoles up to `max = 32. The unphysical jitter in the modes for a/aeq & 10 is a

symptom of the computation ceasing to be reliable once multipoles higher than those computed become signi�cant.

The multipoles may be compared to those in the hydrodynamic approximation, Figure 32.2.

tribution at the quadrupole momentum moment. However, higher order multipole moments of the photon
distribution become important near recombination, and a fully satisfactory treatment of the CMB requires
following these moments. The evolution of the complete set of multipole moments is governed by the colli-
sional Boltzmann equation.

A Boltzmann treatment is needed in any case to determine how the Boltzmann equations should best be
truncated to give the hydrodynamic treatment of Chapter 32. The purpose of the present chapter is to give
an account of the Boltzmann equation as it applies to cosmological perturbation theory.

Figure 33.1 shows the overdensity and bulk velocity of the 4 species, non-baryonic dark matter, baryons,
photons, and neutrinos, calculated in the Boltzmann treatment of this chapter, as a function of cosmic scale
factor, at an illustrative wavenumber k/(aeqHeq) = 10. Figure 33.2 shows photon multipoles up to ` = 6 and
neutrino multipoles up to ` = 32 in a Boltzmann computation that include multipoles up to `max = 32 for
both photons and neutrinos.
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33.1 Summary of equations in the Boltzmann treatment

The Boltzmann treatment uses the Boltzmann hierarchy of equations to follow the evolution of multipole
moments of relativistic species, photons and neutrinos, up to some maximum harmonic `max−1. The hierarchy
is truncated by invoking a suitable approximation for the `max'th harmonic. The Boltzmann treatment yields
the hydrodynamic approximation, �32.2, when `max = 2.
In the Boltzmann treatment, the equations for non-baryonic cold dark matter (c) and baryons (b) are the

same as those in the hydrodynamic approximation, equations (32.6) and (32.7),

δ̇c − k vc − 3 Φ̇ = 0 , (33.1a)

v̇c +
ȧ

a
vc + kΨ = 0 , (33.1b)

and

δ̇b − k vb − 3 Φ̇ = 0 , (33.2a)

v̇b +
ȧ

a
vb + kΨ = − |τ̇ |

R
(vb − 3Θ1) . (33.2b)

The equations for photons (γ) are given by the Boltzmann hierarchy (33.81),

Θ̇0 − kΘ1 − Φ̇ = 0 , (33.3a)

Θ̇1 +
k

3
(Θ0 − 2Θ2) +

k

3
Ψ =

1

3
|τ̇ | (vb − 3Θ1) , (33.3b)

Θ̇2 +
k

5
(2Θ1 − 3Θ3) = −3

4
|τ̇ |Θ2 , (33.3c)

Θ̇` +
k

2`+ 1
[`Θ`−1 − (`+ 1)Θ`+1] = −|τ̇ |Θ` (` ≥ 3) . (33.3d)

As commented after equations (33.81), the factor 3
4 in equation (33.3c) includes the e�ect of polarization;

without polarization, the factor is 9
10 . The `max'th harmonic Θ`max

may be approximated by an expression
that interpolates between the tight-coupling limit |τ̇ | � ks, equation (33.83), and the free-streaming limit
|τ̇ | � ks, equation (33.84),

Θ`max =
1

1 + (|τ̇ |/ks)2

(
|τ̇ |2

k2
s

Θtight
`max

+ Θfree
`max

)
, (33.4a)

Θtight
`max

= −
(
1 + 1

3δ`max2

)
`maxk

(2`max + 1)|τ̇ |
Θ`max−1 , Θfree

`max
= − (Θ`max−2 + δ`max2Ψ)− 2`max − 1

kη
Θ`max−1 . (33.4b)

Equations (33.4) reduces to the hydrodynamic approximation (32.9) when `max = 2. As in the hydrodynamic
case, numerical experiment indicates that the interpolation constant ks is adequately approximated by ks ≈
2arecHrec (or ks ≈ aeqHeq, for standard ΛCDM cosmological parameters). The equations for neutrinos (ν)
are given by a Boltzmann hierarchy (33.91) which looks like that for photons, but without the scattering
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terms,

Ṅ0 − kN1 − Φ̇ = 0 , (33.5a)

Ṅ1 +
k

3
(N0 − 2N2) +

k

3
Ψ = 0 , (33.5b)

Ṅ` +
k

2`+ 1
[`N`−1 − (`+ 1)N`+1] = 0 (` ≥ 2) . (33.5c)

The `max'th harmonic N`max
may be approximated by, equation (33.92),

N`max
= − (N`max−2 + δ`max2Ψ)− 2`max − 1

kη
N`max−1 . (33.6)

The Einstein energy and quadrupole pressure equations are

− k2Φ− 3
ȧ

a
F = 4πGa2(ρ̄cδc + ρ̄bδb + 4ρ̄γΘ0 + 4ρ̄νN0) , (33.7a)

k2(Ψ− Φ) = − 32πGa2(ρ̄γΘ2 + ρ̄νN2) , (33.7b)

where F is de�ned by equation (30.56).
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Figure 33.3 (Left) Overdensities δc − 3Φ and δb − 3Φ of non-baryonic dark matter (brown) and baryonic matter

(green), and (right) radiation monopole Θ0−3Φ (blue), and minus the sum of the scalar potentials, −(Ψ+Φ) (black),

as a function of cosmic scale factor a. Curves are labelled with the comoving wavenumber k/(aeqHeq) in units of the

Hubble distance at matter-radiation equality. The cosmological model is as in �32.3. Compare these results to the

simple and hydrodynamic computations, Figures 30.1 and 32.3.
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Exercise 33.1. Program the Boltzmann equations. Upgrade the code you wrote in Exercise 32.2 to
implement the system of Boltzmann equations (32.6)�(32.13). Initial conditions for neutrinos, and for the
two scalar potentials Ψ and Φ, are derived in Exercise 33.5. Explore the evolution of the 2 scalar potentials
and of the 4 species of mass-energy, non-baryonic dark matter, baryons, photons, and neutrinos.

Solution. See Figures 33.1, 33.2, 33.3 and 33.4. The computations here included photon and neutrino
multipoles up to `max = 32.

10−6 10−5 10−4 10−3 10−2 10−1 1

.00

.05

.10

cosmic scale factor a

Ψ − Φ

aeq arec

100 10 1 .1 .01

Figure 33.4 Di�erence Ψ−Φ in scalar potentials as a function of cosmic scale factor a. The cosmological model is the

same as in Figure 33.1, �32.3. Curves are labelled with the wavenumber k/(aeqHeq) in units of the Hubble distance at

matter-radiation equality. The di�erence Ψ−Φ is sourced principally by neutrino anisotropy before recombination, and

by photon and neutrino anisotropy after recombination. The computation includes photon and neutrino multipoles

up to `max = 32.

Exercise 33.2. Power spectrum of matter �uctuations: Boltzmann treatment. Upgrade the code
you wrote in Exercise 32.3 to compute the power spectrum of matter �uctuations in a Boltzmann computa-
tion.

Solution. See Figure 33.5.
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Figure 33.5 Model matter power spectrum computed from a Boltzmann computation, compared to observations

from the BOSS galaxy survey (Anderson et al., 2014). The cosmological model is the same as in Figure 33.1, �32.3.

The model power spectrum may be compared to those computed in the simple and hydrodynamic approximations,

Figure 30.15 and Figure 32.4. The thin (pink) line is the model power spectrum in the hydrodynamic approximation.

33.2 Boltzmann equation in a perturbed FLRW geometry

The Boltzmann equation was introduced in �31.5. The left hand side of the Boltzmann equation (31.32) is,
for either massless or massive particles,

df

dλ
= pm∂mf +

dpa

dλ

∂f

∂pa
= E∂0f + pa∂af +

dp̂

dλ
· ∂f
∂p̂

+
dp

dλ

∂f

∂p
. (33.8)

Here λ is an a�ne parameter along the worldline of a particle, and pm ≡ {E,p} is the tetrad-frame momentum
of the particle. Both dp̂/dλ and ∂f/∂p̂ vanish in the unperturbed background, so dp̂/dλ ·∂f/∂p̂ is of second
order, and can be neglected to linear order, so that

df

dλ
= E∂0f + pa∂af +

dp

dλ

∂f

∂p
. (33.9)
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The expression (33.9) for the left hand side df/dλ of the Boltzmann equation involves dp/dλ, which in
free-fall is determined by the usual geodesic equation

dpk

dλ
+ Γkmn p

mpn = 0 . (33.10)

Since E2−p2 = m2, it follows that the equation of motion for the magnitude p of the tetrad-frame momentum
is related to the equation of motion for the tetrad-frame energy E by

p
dp

dλ
= E

dE

dλ
. (33.11)

The equation of motion for the tetrad-frame energy E ≡ p0 is

dE

dλ
= −Γ0

mn p
mpn = Γ0a0 p

aE + Γ0ab p
apb . (33.12)

From this it follows that

d ln p

dλ
=
E

p2

dE

dλ
= E

(
Ep̂a

p
Γ0a0 + p̂ap̂bΓ0ab

)
= E

(
− ȧ

a2
+
Ep̂a

p
Γ0a0 + p̂ap̂b

1

Γ0ab

)
, (33.13)

where in the last expression the tetrad connection Γ0ab, equation (29.24b), has been separated into its
unperturbed and perturbed parts −(ȧ/a2)δab and

1

Γ0ab.
In practice, the integration variable used to evolve equations is the conformal time η, not the a�ne

parameter λ. The relation between conformal time η and a�ne parameter λ is

dη

dλ
= pη = em

ηpm = (δnm + ϕm
n)

0
en
ηpm =

1

a
[E(1− ϕ00)− paϕa0] , (33.14)

whose reciprocal is to linear order

dλ

dη
=

a

E

(
1 + ϕ00 +

pa

E
ϕa0

)
. (33.15)

With conformal time η as the integration variable, the equation of motion (33.13) for the magnitude p of
the tetrad-frame momentum becomes, to linear order,

d ln p

dη
= − ȧ

a

(
1 + ϕ00 +

pa

E
ϕa0

)
+
Ep̂a

p
aΓ0a0 + p̂ap̂ba

1

Γ0ab . (33.16)

With the collision term restored, the Boltzmann equation (31.32) expressed with respect to conformal
time η is

df

dη
=
∂f

∂η
+ va∇af +

d ln p

dη

∂f

∂ ln p
=
dλ

dη
C[f ] , (33.17)

where va ≡ pa/E is the tetrad-frame particle velocity, and dλ/dη and d ln p/dη are given by equations (33.15)
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and (33.16). Expressions for dλ/dη and d ln p/dη in terms of the vierbein perturbations in a general gauge
are left as Exercise 33.3. In conformal Newtonian gauge, the factor dλ/dη, equation (33.15), is

dλ

dη
=

a

E
(1 + Ψ) . (33.18)

In conformal Newtonian gauge, and including only scalar �uctuations, the factor d ln p/dη, equation (33.16),
is

d ln p

dη
= − ȧ

a
+ Φ̇− Ep̂a

p
∇aΨ . (33.19)

To unperturbed order, the Boltzmann equation (33.17) is

d
0

f

dη
=
∂

0

f

∂η
− ȧ

a

∂
0

f

∂ ln p
=

a

E
C[

0

f ] , (33.20)

where C[
0

f ] is the unperturbed collision term, the factor a/E coming from dλ/dη = a/E to unperturbed
order, equation (33.15). The second term in the middle expression of equation (33.20) re�ects the fact that
the tetrad-frame momentum p redshifts as p ∝ 1/a as the Universe expands, a statement that is true for
both massive and massless particles, equation (10.67).
Subtracting o� the unperturbed part (33.20) of the Boltzmann equation (33.17) gives the perturbation of

the Boltzmann equation

d
1

f

dη
=
∂

1

f

∂η
+ va∇a

1

f − ȧ

a

∂
1

f

∂ ln p
+G

∂
0

f

∂ ln p
=

a

E
C[

1

f ] +

1

dλ

dη
C[

0

f ] , (33.21)

where d ln p/dη multiplying ∂
1

f/∂ ln p has been replaced by −ȧ/a to linear order, equation (33.16), and G
(not to be confused with the Einstein tensor) de�ned by

G ≡ d ln(ap)

dη
(33.22)

expresses the peculiar gravitational redshifting of particles. In conformal Newtonian gauge, and including
only scalar �uctuations, the gravitational redshift term G is

G = Φ̇− Ep̂a

p
∇aΨ . (33.23)

In conformal Newtonian gauge, the perturbed part of dλ/dη which appears on the right hand side of the
Boltzmann equation (33.21) is

1

dλ

dη
=

a

E
Ψ . (33.24)
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Exercise 33.3. Boltzmann equation factors in a general gauge. Show that in a general gauge, and
including not just scalar but also vector and tensor �uctuations, equation (33.15) is

dλ

dη
=

a

E

[
1 + ψ +

pa

E
(∇aw̃ + w̃a)

]
, (33.25)

while equation (33.16) yields the gravitational redshift term

G ≡ d ln(ap)

dη
= φ̇+

Ep̂a

p

[
−∇aψ +

(
∂

∂η
+
ȧ

a

m2

E2

)
(∇aw̃ + w̃a)

]
+ p̂ap̂b

[
−∇a∇b(w − ḣ)− 1

2 (∇aWb +∇bWa) +∇bw̃a + ḣab

]
. (33.26)

33.3 Non-baryonic cold dark matter

Non-baryonic cold dark matter is by assumption non-relativistic and collisionless. The unperturbed mean
density is ρ̄c, which evolves with cosmic scale factor a as

ρ̄c ∝ a−3 . (33.27)

Since dark matter particles are non-relativistic, the energy of a dark matter particle is its rest-mass energy,
Ec = mc, and its momentum is the non-relativistic momentum pac = mcv

a
c .

The energy-momentum tensor Tmnc of the dark matter is obtained from integrals over the dark matter
phase-space distribution fc, equation (10.120). The energy and momentum moments of the distribution
de�ne the dark matter overdensity δc and bulk velocity vvvc, while the pressure is of order v

2
c , and can be

neglected to linear order (note the di�erent fonts for particle velocity v and bulk velocity v),

T 00
c ≡

∫
fcmc

gc d
3pc

(2π~)3
≡ ρ̄c(1 + δc) , (33.28a)

T 0a
c ≡

∫
fcmc v

a
c

gc d
3pc

(2π~)3
≡ ρ̄cv

a
c , (33.28b)

T abc ≡
∫
fcmc v

a
c v

b
c

gc d
3pc

(2π~)3
= 0 . (33.28c)

Non-baryonic cold dark matter is collisionless, so the collision term in the Boltzmann equation is zero,
C[fc] = 0, and the dark matter satis�es the collisionless Boltzmann equation

dfc

dη
= 0 . (33.29)

The energy and momentum moments of the Boltzmann equation (33.17) yield equations for the overdensity
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δc and bulk velocity vc, which in the conformal Newtonian gauge are

0 =

∫
dfc

dη
mc

gc d
3pc

(2π~)3
=

∂

∂η

∫
fcmc

gc d
3pc

(2π~)3
+∇a

∫
fcmcv

a
c

gc d
3pc

(2π~)3
−
∫ (

ȧ

a
− Φ̇

)
∂f

∂ ln p
mc

gc d
3pc

(2π~)3

=
∂ρ̄c(1 + δc)

∂η
+∇a(ρ̄cv

a
c ) + 3

(
ȧ

a
− Φ̇

)
ρ̄c , (33.30a)

0 =

∫
dfc

dη
mcv

a
c

gc d
3pc

(2π~)3
=

∂

∂η

∫
fcmcv

a
c

gc d
3pc

(2π~)3
+∇b

∫
fcmcv

a
c v
b
c

gc d
3pc

(2π~)3

−
∫ (

ȧ

a
− Φ̇ +

Ep̂b

p
∇bΨ

)
∂f

∂ ln p
mcv

a gc d
3pc

(2π~)3

=
∂ρ̄cv

a
c

∂η
+ 4

(
ȧ

a
− Φ̇

)
ρ̄cv

a
c + ρ̄c∇aΨ . (33.30b)

The Φ̇ρ̄cv
a
c term on the last line of equation (33.30b) can be dropped, since the potential Φ and the bulk

velocity v
a
c are both of �rst order, so their product is of second order. Subtracting the unperturbed part

from equations (33.30a) and (33.30b) gives equations for the dark matter overdensity δc and bulk velocity
vvvc,

δ̇c + ∇ · vvvc − 3Φ̇ = 0 , (33.31a)

v̇vvc +
ȧ

a
vvvc + ∇Ψ = 0 . (33.31b)

Transformed into Fourier space, and decomposed into scalar vc and vector vvvc,⊥ parts, the velocity 3-vector
vvvc is

vvvc = −ik̂vc + vvvc,⊥ . (33.32)

For the scalar modes under consideration, only the scalar part of the dark matter equations (33.31) is relevant:

δ̇c − kvc − 3Φ̇ = 0 , (33.33a)

v̇c +
ȧ

a
vc + kΨ = 0 . (33.33b)

Equations (33.33) reproduce the equations (30.53) derived previously from conservation of energy and mo-
mentum.

Exercise 33.4. Moments of the non-baryonic cold dark matter Boltzmann equation. Con�rm
equations (33.30).
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33.4 Boltzmann equation for the temperature �uctuation

The full hierarchy of Boltzmann equations is needed only to describe relativistic species (photons and neu-
trinos); non-relativistic species (non-baryonic dark matter and baryons) are described adequately by the
equations of conservation of energy and momentum. Cosmological �uctuations in relativistic species are
commonly characterized in terms of a temperature �uctuation Θ,

Θ(η,x,p) ≡ δT (η,x,p)

T (η)
. (33.34)

In most of this book Θ refers to photons, but in this section the temperature �uctuation Θ refers to any
species, bosonic or fermionic, massless or massive (neutrinos have small masses, �10.25). At early times,
collisions drove the occupation number f into thermodynamic equilibrium at each comoving position x, so
that initially the temperature �uctuation was a function Θ(η,x) only of time and position, not of particle
momentum p. This explains why the preferred �uctuation variable is the temperature �uctuation Θ, and not
the perturbation

1

f of the occupation number; the latter depends on momentum p even in thermodynamic
equilibrium. As collisions peter out, around recombination in the case of photons, and around eē-annihilation
in the case of neutrinos, free-streaming allows the temperature �uctuation Θ to become anisotropic.
For a relativistic species, the unperturbed occupation number in thermodynamic equilibrium is

0

f =
1

ep/T ∓ 1
, (33.35)

where the sign is − for bosons (photons) and + for fermions (neutrinos). The unperturbed Boltzmann
equation (33.20) can be recast as an equation for the background temperature T (η),

d ln(aT )

dη
=

a

E
C[

0

f ]
/ ∂

0

f

∂ lnT
, (33.36)

where it follows from equation (33.35) that (the partial derivative with respect to temperature ∂/∂ lnT is
at constant momentum p)

∂
0

f

∂ lnT
=

0

f(1±
0

f)
p

T
, (33.37)

with + and − for bosons and fermions respectively. Equation (33.36) shows that if the collision term C[
0

f ]

vanishes, then the background temperature redshifts as T ∝ a−1. In practice, the collision term C[
0

f ] was
negligible for both photons and neutrinos since the end of eē-annihilation. Photons continued to exchange
energy with electrons and baryons, but the e�ect on the photons was negligible because they overwhelmingly
outnumbered electrons and baryons, equation (10.102). Although the heating term d ln(aT )/dη is negligible
in the situation at hand, it is retained temporarily for completeness in the next paragraph.
The de�nition (33.34) of the temperature �uctuation Θ is to be interpreted as meaning that the pertur-

bation to the occupation number is

1

f =
∂

0

f

∂ lnT
δ lnT =

∂
0

f

∂ lnT
Θ . (33.38)
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Two of the terms on the left hand side of the perturbed Boltzmann equation (33.21) rearrange to

∂
1

f

∂η
+
d ln p

dη

∂
1

f

∂ ln p
=

∂
0

f

∂ lnT
Θ̇ +

[(
d lnT

dη

∂

∂ lnT
− ȧ

a

∂

∂ ln p

)
∂

0

f

∂ lnT

]
Θ

=
∂

0

f

∂ lnT

[
Θ̇ +

d ln(aT )

dη

∂ ln(∂
0

f/∂ lnT )

∂ lnT
Θ

]
. (33.39)

The collision terms on the right hand side of the perturbed Boltzmann equation (33.21) are

a

E
C[

1

f ] +

1

dλ

dη
C[

0

f ] =
∂

0

f

∂ lnT

[
C[Θ] +

d ln(aT )

dη

E

a

1

dλ

dη

]
, (33.40)

where C[
0

f ] has been eliminated in favour of d ln(aT )/dη using equation (33.36), and C[Θ] is the scaled
collision term de�ned by

C[Θ] ≡ a

E
C[

1

f ]
/ ∂

0

f

∂ lnT
. (33.41)

The perturbed Boltzmann equation (33.21) thus becomes

dΘ

dη
=
∂Θ

∂η
+ va∇aΘ−G+

d ln(aT )

dη

∂ ln(∂
0

f/∂ lnT )

∂ lnT
Θ = C[Θ] +

d ln(aT )

dη

E

a

1

dλ

dη
, (33.42)

where the gravitational redshift term G gets a minus sign from ∂
0

f/∂ ln p = −∂
0

f/∂ lnT .
In practice the heating terms proportional to d ln(aT )/dη, though important during for example electron-

positron annihilation, are negligible for both photons and neutrinos during the time before and through
recombination when anisotropies in the CMB are developing. The Boltzmann equation (33.42) then reduces
to

dΘ

dη
=
∂Θ

∂η
+ va∇aΘ−G = C[Θ] . (33.43)

As long as the particles are relativistic, the particle velocity is one, v = 1; but equation (33.43) allows for a
general non-unit velocity v to accommodate neutrinos, which have small masses.
Fourier transforming the Boltzmann equation (33.43) over spatial position x yields the Boltzmann equation

for the Fourier components Θ(η,k,p) of the temperature �uctuation,

dΘ

dη
=
∂Θ

∂η
− ivkµΘ−G = C[Θ] , (33.44)

where µ is the cosine of the angle between the wavevector k and the photon momentum p,

µ ≡ k̂ · p̂ . (33.45)

In Fourier space, the gravitational redshift term G, in conformal Newtonian gauge and including only scalar
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�uctuations, is, equation (33.23),

G = Φ̇ +
ikµ

v
Ψ . (33.46)

33.5 Spherical harmonics of the temperature �uctuation

It is natural to expand the (photon or neutrino) temperature �uctuation Θ in spherical harmonics. The
various components of the energy-momentum tensor Tmn are determined by the monopole, dipole, and
quadrupole harmonics of the particle distribution. Scalar �uctuations are those that are rotationally sym-
metric about the wavevector direction k̂, which correspond to spherical harmonics with zero azimuthal
quantum number, m = 0. Expanded in spherical harmonics Y`m(p̂), and with only scalar terms retained, the
temperature �uctuation Θ can be written

Θ(η,k,p) =

∞∑
`=0

(−i)`
√

4π(2`+ 1) Θ`(η,k, p)Y`0(p̂)

=

∞∑
`=0

(−i)`(2`+ 1)Θ`(η,k, p)P`(k̂ · p̂) , (33.47)

where P` are Legendre polynomials, �33.14. The choice of normalization of the scalar harmonics Θ` is not
the same as the traditional normalization Θ =

∑∞
`=0 Θ`0Y`0, but is conventional in studies of the CMB. The

factor of (−i)` makes Θ` real, and the normalization factor removes square root factors in the Boltzmann
hierarchy. The harmonics in the traditional and CMB conventions are related by Θ`0 = (−i)`

√
4π(2`+ 1) Θ`.

The scalar harmonics Θ` are angular integrals of the temperature �uctuation Θ over momentum directions
p̂,

Θ`(η,k, p) = i`
∫

Θ(η,k,p)P`(k̂ · p̂)
dop
4π

. (33.48)

Expanded into the scalar harmonics Θ`(η,k, p), equation (33.47), the left hand side of the Boltzmann
equation (33.44) in conformal Newtonian gauge is

dΘ0

dη
= Θ̇0 − vkΘ1 − Φ̇ , (33.49a)

dΘ1

dη
= Θ̇1 +

vk

3
(Θ0 − 2Θ2) +

k

3v
Ψ , (33.49b)

dΘ`

dη
= Θ̇` +

vk

2`+ 1
[`Θ`−1 − (`+ 1)Θ`+1] (` ≥ 2) . (33.49c)
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33.6 The Boltzmann equation for massless particles

The Boltzmann equation (33.44) and its harmonic expansion (33.49) are valid for massive as well as massless
particles, to allow for neutrino masses. The case of massive neutrinos will be resumed in �33.13; but for the
next several sections, particles (photons and neutrinos) will be taken to be massless.
Photons are massless, and neutrinos (probably) have small enough masses that they can be treated as

massless through recombination. The velocities of massless particles are always one, v = 1. For massless
particles, the Boltzmann equation for the temperature �uctuation Θ is equation (33.43) with v = 1. The left
hand side of the Boltzmann equation expands in scalar harmonics Θ` as equations (33.49) again with v = 1.
As remarked at the beginning of �33.4, at early times photons and neutrinos have distributions in ther-

modynamic equilibrium, as a result of which their initial temperature �uctuations Θ are independent of
particle momentum p. For massless particles (v = 1) the left hand side of the Boltzmann equation (33.43)
is independent of the magnitude p of the particle momentum. As will be seen in �33.8, equation (33.68),
Thomson scattering leaves the magnitude pγ of the photon momentum essentially unchanged. Consequently
the temperature �uctuations Θ(η,k, p̂) of photons, and of neutrinos as long as they are relativistic, depend
on the direction p̂ but not magnitude p of the particle momentum,

Θ(η,k,p) = Θ(η,k, p̂) for photons and relativistic neutrinos . (33.50)

33.7 Energy-momentum tensor for massless particles

Perturbations
1

T kl to the energy-momentum tensor of particles involve integrals (10.120) over the perturbed
occupation number

1

f . For massless particles, these integrals take the form, where F (p̂) is some arbitrary
function of the momentum direction p̂,∫

1

f p2 F (p̂)
g d3p

p(2π~)3
=

∫
∂

0

f

∂ lnT
p2 g 4πp2dp

p(2π~)3

∫
ΘF (p̂)

dop
4π

= 4ρ̄

∫
ΘF (p̂)

dop
4π

, (33.51)

in which the last expression is true because∫
∂

0

f

∂ lnT
p2 g 4πp2dp

p(2π~)3
= 4

∫
0

f p
g 4πp2dp

(2π~)3
= 4ρ̄ , (33.52)

which follows from ∂
0

f/∂ lnT = − ∂
0

f/∂ ln p and an integration by parts. The perturbation of the energy
density, energy �ux, monopole pressure, and quadrupole pressure of massless particles are then, with integrals
over Θ converted to harmonics Θ` using equations (33.48),

1

T
00 = 4 ρ̄Θ0 , (33.53a)

k̂a T
0a = − i 4 ρ̄Θ1 , (33.53b)

1
3 δab

1

T
ab = 4

3 ρ̄Θ0 , (33.53c)(
3
2 k̂ak̂b −

1
2 δab

)
T ab = − 4 ρ̄Θ2 . (33.53d)
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33.8 Nonrelativistic electron-photon (Thomson) scattering

The dominant process that couples photons and baryons is electron-photon scattering

e+ γ ↔ e′ + γ′ . (33.54)

The Lorentz-invariant amplitude squared for unpolarized non-relativistic electron-photon (Thomson) scat-
tering from initial photon momentum pγ to �nal momentum pγ′ of the same magnitude, pγ′ = pγ , is, in
units c = ~ = 1 (Peskin and Schroeder, 1995, p. 162)

|M|2 = (8πα)2
1 + (p̂γ · p̂γ′)2

2
, (33.55)

where α ≡ e2/(~c) is the �ne-structure constant. The unpolarized invariant amplitude squared (33.55) is the
polarized amplitude squared (35.48) averaged over polarization states of the incoming photon, and summed
over polarization states of the scattered photon. The di�erential cross-section dσT/do

′ for unpolarized Thom-
son scattering into an interval do′ of solid angle about scattered photon direction p̂′ is related to the squared
invariant amplitude |M|2 by

dσT

do′
=
|M|2

(8πme)2
=
α2

m2
e

1 + (p̂γ · p̂γ′)2

2
. (33.56)

The coe�cient of the di�erential cross-section is, with units c and ~ restored,(
α~
mec

)2

= r2
e =

(
e2

mec2

)2

, (33.57)

where re ≡ e2/mec
2 is the classical electron radius. The total Thomson cross-section σT is

σT ≡
∫
dσT

do′
do′ =

8π

3
r2
e . (33.58)

33.9 The photon collision term for electron-photon scattering

Electron-photon scattering keeps electrons and photons close to mutual thermodynamic equilibrium, and
their unperturbed distributions can be taken to be in thermodynamic equilibrium. The unperturbed photon
collision term for electron-photon scattering therefore vanishes, because of detailed balance, Exercise 31.6,

C[
0

fγ ] = 0 . (33.59)

Thanks to detailed balance, the combination of rates in the collision integral (31.40) almost cancels, so can
be treated as being of linear order in perturbation theory. This allows other factors in the collision integral
to be approximated by their unperturbed values.
The photon collision term for electron-photon scattering follows from the general expression (31.40). To

unperturbed order, the energies of the electrons, which are non-relativistic, may be set equal to their rest
masses, Ee = me. Since photons are massless, their energies are just equal to their momenta, Eγ = pγ . The
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electron occupation number is small, fe � 1, so the Fermi blocking factors for electrons may be neglected,
1− fe = 1. These considerations bring the photon collision term for electron-photon scattering to, from the
general expression (31.40),

C[
1

fγ ] =
1

16

∫
|M|2

[
− fefγ(1 + fγ′) + fe′fγ′(1 + fγ)

]
(2π)4δ4

D(pe + pγ − pe′ − pγ′)
2 d3pe
me(2π)3

d3pe′

me(2π)3

d3pγ′

pγ′(2π)3
.

(33.60)
The various integrations over momenta are most conveniently carried out as follows. The energy-conserving

integral is best done over the energy of the scattered photon γ′, which is scattered into an interval doγ′ of
solid angle: ∫

2π δD(Ee + Eγ − Ee′ − Eγ′)
d3pγ′

Eγ′(2π)3
= pγ′

doγ′

(2π)2
≈ pγ

doγ′

(2π)2
. (33.61)

The approximation in the last step of equation (33.61), replacing the energy pγ′ of the scattered photon by
the energy pγ of the incoming photon, is valid because, thanks to the smallness of the combination of rates
in the collision integral (33.60), it su�ces to treat the photon energy to unperturbed order. As seen below,
equation (33.66), the energy di�erence pγ−pγ′ between the incoming and scattered photons is of linear order
in electron velocities.
The momentum-conserving integral is best done over the momentum of the scattered electron, which is e′

for outgoing scatterings e+ γ → e′ + γ′, and e for incoming scatterings e+ γ ← e′ + γ′. In the former case
(e+ γ → e′ + γ′), ∫

(2π)3δ3
D(pe + pγ − pe′ − pγ′)

d3pe′

me(2π)3
=

1

me
, (33.62)

and the result is the same, 1/me, in the latter case (e+γ ← e′+γ′). The energy- and momentum-conserving
integrals having been done, the electron e′ in the latter case may be relabelled e. So relabelled, the combi-
nation of rate factors in the collision integral (33.60) becomes

− fefγ(1 + fγ′) + fefγ′(1 + fγ) = fe(− fγ + fγ′) . (33.63)

Notice that the stimulated (fefγfγ′) terms cancel. The energy- and momentum-conserving integrations (33.61)
and (33.62) bring the photon collision term (33.60) to

C[
1

fγ ] =
pγ

16πm2
e

∫
|M|2fe(− fγ + fγ′)

2 d3pe
(2π)3

doγ′

4π
. (33.64)

The collision integral (33.64) involves the di�erence − fγ + fγ′ between the occupancy of the initial and
�nal photon states. To linear order, the di�erence is

− fγ + fγ′ = −
0

f(pγ) +
0

f(pγ′)−
1

f(pγ) +
1

f(pγ′) =
∂

0

fγ
∂ lnT

[
pγ − pγ′
pγ

−Θ(pγ) + Θ(pγ′)

]
. (33.65)

The �rst term (pγ − pγ′)/pγ arises because the incoming and scattered photon energies di�er slightly. The
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di�erence in photon energies is given by energy conservation:

pγ − pγ′ = Ee′ − Ee

=

(
me +

p′2e
2me

)
−
(
me +

p2
e

2me

)
=

(pe + pγ − pγ′)2 − p2
e

2me

=
(pγ − pγ′) · (2pe + pγ − pγ′)

2me

≈ (pγ − pγ′) ·
pe
me

, (33.66)

the last line of which follows because the photon momentum is small compared to the electron momentum,

pγ ∼ T ∼
p2
e

me
� pe . (33.67)

Because the photon energy di�erence is of �rst order, and the temperature �uctuation is already of �rst
order, it su�ces to regard the temperature �uctuation Θ as being a function only of the direction p̂γ of the
photon momentum, not of its energy:

Θ(pγ) ≈ Θ(p̂γ) . (33.68)

The linear approximations (33.66) and (33.68) bring the di�erence (33.65) between the initial and �nal
photon occupancies to

− fγ + fγ′ =
∂

0

fγ
∂ lnT

[
(p̂γ − p̂γ′) ·

pe
me
−Θ(p̂γ) + Θ(p̂γ′)

]
. (33.69)

Inserting this di�erence in occupancies into the collision integral (33.64) yields

C[
1

fγ ] =
pγ

16πm2
e

∂
0

fγ
∂ lnT

∫
|M|2fe

[
(p̂γ − p̂γ′) ·

pe
me
−Θ(p̂γ) + Θ(p̂γ′)

]
2 d3pe
(2π)3

doγ′

4π
, (33.70)

or, switching to C[Θ] de�ned by equation (33.41),

C[Θ] =
a

16πm2
e

∫
|M|2fe

[
(p̂γ − p̂γ′) ·

pe
me
−Θ(p̂γ) + Θ(p̂γ′)

]
2 d3pe
(2π)3

doγ′

4π
. (33.71)

The invariant amplitude squared |M|2, equation (33.55), is independent of electron momenta, so the
integration over electron momentum in the collision integral (33.71) is straightforward. The unperturbed
electron density n̄e and the electron bulk velocity vvve are de�ned by

n̄e ≡
∫

0

fe
2 d3pe
(2π)3

, n̄evvve ≡
∫

0

fe
pe
me

2 d3pe
(2π)3

. (33.72)
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Coulomb scattering keeps electrons and ions tightly coupled, so the electron bulk velocity vvve equals the
baryon bulk velocity vvvb,

vvve = vvvb . (33.73)

Integration over the electron momentum brings the collision integral (33.71) to

C[Θ] =
n̄ea

16πm2
e

∫
|M|2

[
(p̂γ − p̂γ′) · vvvb −Θ(p̂γ) + Θ(p̂γ′)

] doγ′
4π

. (33.74)

Finally, the collision integral (33.74) must be integrated over the direction p̂γ′ of the scattered photon.
The integration is facilitated if the angular dependence of the invariant amplitude squared |M|2 given by
equation (33.55) is expanded in Legendre polynomials, 1

2 (1 + µ2) = 2
3

[
1 + 1

2P2(µ)
]
. Inserting the invariant

amplitude squared |M|2 into the collision integral (33.74) brings it to

C[Θ] = |τ̇ |
∫ [

1 + 1
2P2(p̂γ · p̂γ′)

] [
(p̂γ − p̂γ′) · vvvb −Θ(p̂γ) + Θ(p̂γ′)

] doγ′
4π

, (33.75)

where τ̇ ≡ −n̄eσTa is the scattering rate (32.4). Equation (33.75) (unlike equation (33.74)) remains dimen-
sionally correct even when units of c and ~ are restored (both sides have units 1/η). The p̂γ′ · vvvb term in the
integrand of (33.75) is odd, and vanishes on angular integration:∫ [

1 + 1
2P2(p̂γ · p̂γ′)

]
p̂γ′

doγ′

4π
= 0 . (33.76)

Similarly, the angular integral over the quadrupole of quantities independent of p̂γ′ vanishes:∫
P2(p̂γ · p̂γ′)

[
p̂γ · vvvb −Θ(p̂γ)

] doγ′
4π

= 0 . (33.77)

The collision integral (33.75) thus reduces to

C[Θ(x, p̂γ)] = |τ̇ |
{
p̂γ · vvvb(x)−Θ(x, p̂γ) +

∫ [
1 + 1

2P2(p̂γ · p̂γ′)
]

Θ(x, p̂γ′)
doγ′

4π

}
, (33.78)

where the dependence of various quantities on comoving position x has been made explicit. Now transform
to Fourier space (in e�ect, replace comoving position x by comoving wavevector k). Replace the baryon bulk
velocity by its scalar part, vvvb = ik̂vb. To perform the remaining angular integral over the photon direction
p̂γ′ , expand the Legendre polynomial P2(p̂γ · p̂γ′) in the integrand in spherical harmonics using the addition
theorem (33.103), expand the temperature �uctuation Θ(k, p̂γ′) in scalar multipole moments according to

equation (33.47), and invoke orthogonality of the spherical harmonics. With µ ≡ k̂ · p̂γ , these manipulations
bring the photon collision integral (33.78) at last to

C[Θ(k, p̂γ)] = |τ̇ |
[
− iµvb(k)−Θ(k, µ) + Θ0(k)− 1

2Θ2(k)P2(µ)
]
. (33.79)
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33.10 Boltzmann equation for photons

Inserting the collision term (33.79) into equation (33.44) with unit velocity, v = 1, yields the Boltzmann
equation for the photon temperature �uctuation Θ(η,k, p̂γ), for scalar �uctuations in conformal Newtonian
gauge,

dΘ

dη
=
∂Θ

∂η
− ikµΘ− Φ̇− ikµΨ = |τ̇ |

[
− iµvb −Θ + Θ0 − 1

2Θ2P2(µ)
]
. (33.80)

Expanded into the scalar harmonics Θ`(η,k), the photon Boltzmann equation (33.80) yields the hierarchy
of photon multipole equations

Θ̇0 − kΘ1 − Φ̇ = 0 , (33.81a)

Θ̇1 +
k

3
(Θ0 − 2Θ2) +

k

3
Ψ =

1

3
|τ̇ | (vb − 3Θ1) , (33.81b)

Θ̇2 +
k

5
(2Θ1 − 3Θ3) = − 9

10
|τ̇ |Θ2 , (33.81c)

Θ̇` +
k

2`+ 1

[
`Θ`−1 − (`+ 1)Θ`+1

]
= −|τ̇ |Θ` (` ≥ 3) . (33.81d)

When polarization is included, the factor 9
10 on the right hand side of equation (33.81c) is decreased by a

factor 5
6 to 3

4 , Exercise 35.7,

9

10
→ 3

4
. (33.82)

The Boltzmann hierarchy (33.81) shows that all the photon multipoles except the photon monopole Θ0 are
a�ected by electron-photon scattering, but only the photon dipole Θ1 depends directly on one of the baryon
variables, the baryon bulk velocity vb. The dependence on the baryon velocity vb re�ects the fact that, to
linear order, there is a transfer of momentum between photons and baryons, but no transfer of number or
of energy.

33.10.1 Truncating the photon Boltzmann hierarchy

Photons are tightly coupled to baryons by scattering well before recombination, and stream freely well after
recombination. The two regimes are su�ciently di�erent to require di�erent truncations of the Boltzmann
hierarchy.
As argued in �32.7, prior to recombination, when |τ̇ | is large, scattering keeps successive multipoles smaller

by factors of k/|τ̇ |, equation (32.66). Keeping only the dominant Θ`−1 term on the left hand side of the
Boltzmann hierarchy (33.81) for ` ≥ 2 implies

Θ` ≈ −
(1 + 1

9δ`2)`k

(2`+ 1)|τ̇ |
Θ`−1 for ` ≥ 2 . (33.83)

When polarization is included, the factor 1 + 1
9δ`2 = 10

9 for ` = 2 on the right hand side of equation (33.83)
is changed to 1 + 1

3δ`2 = 4
3 for ` = 2, Exercise 35.7.
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After recombination, photons stream freely, allowing the photon distribution to develop higher order
multipoles comparable to lower orders. A better approximation in the free-streaming regime is the same as
that for neutrinos, equation (33.92),

Θ` ≈ − (Θ`−2 + δ`2Ψ)− 2`− 1

kη
Θ`−1 for ` ≥ 2 . (33.84)

The truncation of the photon Boltzmann hierarchy adopted in equations (33.4) is an interpolation between
the scattering and free-streaming regimes (33.83) and (33.84).

33.11 Baryons

The equations governing baryonic matter are similar to those governing non-baryonic cold dark matter,
�33.3, except that baryons are collisional. Coulomb scattering between electrons and ions keep baryons
tightly coupled to each other. Electron-photon scattering then couples baryons to photons.
Since the unperturbed distribution of baryons is in thermodynamic equilibrium, the unperturbed collision

term vanishes for each species of baryonic matter, as it did for photons, equation (33.59),

C[
0

fb] = 0 . (33.85)

For the perturbed baryon distribution, only the �rst and second moments of the phase-space distribution
are important, since these govern the baryon overdensity δb and bulk velocity vvvb. The relevant collision term
is the electron collision term associated with electron-photon scattering. Since electron-photon scattering
neither creates nor destroys electrons, the zeroth moment of the electron collision term vanishes,∫

C[
1

fe]
2d3pe

me(2π)3
= 0 . (33.86)

The �rst moment of the electron collision term is most easily determined from the fact that electron-photon
collisions must conserve the total momentum of electron and photons:∫

C[
1

fe]mevvve
2 d3pe
me(2π)3

+

∫
C[

1

fγ ]pγ
2 d3pγ
pγ(2π)3

= 0 . (33.87)

Substituting the expression (33.78) for the photon collision integral into equation (33.87), separating out
factors depending on the magnitude pγ and direction p̂γ of the photon momentum, and taking into consider-
ation that the integral terms in equation (33.78), when multiplied by p̂γ , are odd in p̂γ , and therefore vanish
on integration over directions p̂γ , gives∫

C[
1

fe]mevvve
2 d3pe
me(2π)3

= n̄eσTa

∫
∂

0

fγ
∂ lnT

p2
γ

2 4πp2
γdpγ

pγ(2π)3

∫ [
− p̂γ · vvvb + Θ(p̂γ)

]
p̂γ

doγ
4π

. (33.88)

The integral over the magnitude pγ of the photon momentum in equation (33.88) yields 4ρ̄, in accordance
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with equation (33.52). Transformed into Fourier space, and with only scalar terms retained, the collision
integral (33.88) becomes, with µ ≡ k̂ · p̂γ ,

k̂ ·
∫
C[

1

fe]mevvve
2 d3pe
me(2π)3

= 4ρ̄γ n̄eσTa

∫
[iµvb + Θ] µ

doγ
4π

=
4

3
iρ̄γ n̄eσTa (vb − 3Θ1) . (33.89)

The result is that the equations governing the baryon overdensity δb and scalar bulk velocity vb look like
those (33.33) governing non-baryonic cold dark matter, except that the velocity equation has an additional
source (33.89) arising from momentum transfer with photons through electron-photon scattering:

δ̇b − kvb − 3Φ̇ = 0 , (33.90a)

v̇b +
ȧ

a
vb + kΨ = − |τ̇ |

R
(vb − 3Θ1) , (33.90b)

where R ≡ 3
4 ρ̄b/ρ̄γ is 3

4 the baryon-to-photon density ratio, equation (32.46).

33.12 Boltzmann equation for relativistic neutrinos

Neutrinos oscillations indicate that at least two of the three neutrino types have mass, �10.25; but the
masses are (probably) small enough that all three neutrinos types were relativistic until some time after
recombination, equation (10.110). As long as neutrinos are relativistic, the hierarchy of Boltzmann equations
is the same as that for photons, equations (33.81), but without the scattering terms,

Ṅ0 − kN1 − Φ̇ = 0 , (33.91a)

Ṅ1 +
k

3
(N0 − 2N2) +

k

3
Ψ = 0 , (33.91b)

Ṅ` +
k

2`+ 1
[`N`−1 − (`+ 1)N`+1] = 0 (` ≥ 2) . (33.91c)

The radiative transfer equation for neutrinos can be solved explicitly, equation (34.46). That solution,
which involves an integral over the line of sight, provides one way to calculate the multipoles needed in
the Einstein equations. However, computer codes that model the CMB commonly calculate the neutrino
multipoles N` from the Boltzmann hierarchy (33.91) suitably truncated at some high harmonic `max. Since
free streaming allows high neutrino multipoles to become comparable to the monopole and dipole well
inside the horizon, it is not a good approximation simply to set neutrino multipoles to zero above some
maximum harmonic. A better approximation, which emerges from the radiative transfer solution (34.46), is
the approximation (34.49),

N`max
≈ − (N`max−2 + δ`max2Ψ)− 2`max − 1

kη
N`max−1 , (33.92)

At superhorizon scales, the neutrino distribution was isotropic like any other species. But free-streaming
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allowed neutrinos to develop signi�cant anisotropy once the scale entered the horizon. Prior to recombination,
neutrinos provided the principal quadrupole pressure that sourced the di�erence Ψ−Φ of scalar potentials,
Figure 33.4. In Exercise 33.5 you will �nd that, surprisingly, neutrino anisotropy sourced a �nite di�erence
Ψ− Φ even in the initial superhorizon conditions where the neutrino monopole dominated.

Exercise 33.5. Initial conditions in the presence of neutrinos. Prior to recombination, the neutrino
quadrupole pressure is the dominant source for the di�erence Ψ − Φ in scalar potentials, Figure 33.4. In
this problem you will �nd that the neutrino quadrupole leads to a �nite di�erence Ψ − Φ even in the
initial conditions at superhorizon scales. Exercise 35.10 considers initial conditions for tensor �uctuations of
neutrinos.
1. Initially, only the neutrino monopole N0 is �nite. In the Boltzmann hierarchy (33.91) of equations, the

lower order multipoles drive the higher multipoles, so that the equations reduce to the form Ṅ` ∝ N`−1.
Speci�cally, the Boltzmann hierarchy (33.91) reduces to, with y ≡ kη,

d(N0 − Φ)

dy
= 0 , (33.93a)

dN1

dy
= −1

3
(N0 + Ψ) , (33.93b)

dN`
dy

= − `

2`+ 1
N`−1 (` ≥ 2) . (33.93c)

Show that the initial (y � 1) behaviour of the neutrino multipoles is

N` =
(−y)`

(2`+ 1)!!
(N0 + Ψ) (` ≥ 1) . (33.94)

2. Let fγ and fν be the photon and neutrino fraction of the total radiation density,

fγ ≡
ρ̄γ

ρ̄γ + ρ̄ν
= 1− fν , fν ≡

ρ̄ν
ρ̄γ + ρ̄ν

=
6 7

8

(
4
11

)4/3
2 + 6 7

8

(
4
11

)4/3 ≈ 0.405 . (33.95)

Show that the Einstein energy equation (33.7a) implies, initially,

−Ψ = 2(Φ + ζr) , (33.96)

where ζr ≡ fγζγ+fνζν . Assume that the photon quadrupole is negligible (why?). Show that the Einstein
quadrupole pressure equation (33.7b) implies, initially,

Ψ− Φ = − 4
5fν(Ψ + Φ + ζν) . (33.97)

3. Conclude that, for adiabatic initial conditions ζν = ζγ ,

Ψ = − 10ζν
15 + 4fν

, Φ = (1 + 2
5fν)Ψ . (33.98)
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33.13 Massive neutrinos

Once neutrinos become non-relativistic, they start to behave like matter, clustering gravitationally like non-
baryonic cold dark matter and baryons. Each massive neutrino type de�nes a free-streaming scale, equal to
the characteristic comoving distance that the neutrinos can travel before redshifting to a halt. This free-
streaming scale equals approximately the comoving horizon size at the redshift when the neutrino type
became non-relativistic, equation (10.110). Massive neutrinos tend to depress the matter power spectrum at
scales smaller than the neutrino free-streaming scale.
The suppression of matter power below the free-streaming scale is substantial (exponential) if massive

neutrinos are a dominant component of matter, a scenario termed hot dark matter, or HDM. White, Frenk,
and Davis (1983) used the absence of such suppression in the observed galaxy power spectrum to rule out
HDM models 30 years ago.

33.13.1 Simpli�ed treatment of massive neutrinos

A full treatment of massive neutrinos, �33.13.2, requires integrating a Boltzmann hierarchy of multipole
equations for each of a spectrum of neutrino momenta pν . This is more complicated than the massless case,
where the fact that massless neutrinos follow the same null worldline regardless of the magnitude of their
momentum implies that a single Boltzmann hierarchy covers all momenta.
A simple approximate solution to the additional complexity introduced by mass is to assume an abrupt

transition from relativistic to non-relativistic neutrinos at some time. This was the strategy suggested in
Exercise 32.4.
Another possible simpli�ed strategy is to follow the Boltzmann hierarchy (33.100) for just a single repre-

sentative neutrino momentum pν near the peak of the distribution, pν/Tν = 1.

33.13.2 Full treatment of massive neutrinos

The Boltzmann equation for collisionless neutrinos with mass is equation (33.43) with zero collision term. For
massive neutrinos, the neutrino velocity vν depends on momentum, so the neutrino temperature �uctuation
N ≡ δTν(η,k,pν)/Tν(η) depends not only on the direction p̂ν of the neutrino momentum, as in the massless
case, but also on its magnitude pν . Since the temperature �uctuation N is already of �rst order, it su�ces
to treat the particle velocity vν in the Boltzmann equation (33.43) to unperturbed order. To unperturbed
order, the momentum of a freely streaming neutrino redshifts as pν ∝ a−1, and the temperature of the
unperturbed distribution redshifts in the same way, Tν ∝ a−1. Thus it is convenient to characterize the
neutrino temperature �uctuation as a function of the time-independent ratio pν/Tν ,

N (η,k,pν) = N (η,k, pν/Tν , p̂ν) . (33.99)

The harmonics N`(η,k, pν/Tν) of the temperature �uctuation are functions of the ratio pν/Tν .
At the risk of being repetitious, the Boltzmann hierarchy of equations for a species of massive neutrino is,
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equations (33.49),

Ṅ0 − vνkN1 − Φ̇ = 0 , (33.100a)

Ṅ1 +
vνk

3
(N0 − 2N2) +

k

3vν
Ψ = 0 , (33.100b)

Ṅ` +
vνk

2`+ 1
[`N`−1 − (`+ 1)N`+1] = 0 (` ≥ 2) , (33.100c)

which di�ers from the massless neutrino hierarchy (33.91) in that it depends on the velocity vν ≡ pν/Eν of
the neutrino. As long as neutrinos are relativistic, it su�ces to follow a single hierarchy with vν = 1. But
as neutrinos become non-relativistic, a full treatment requires following neutrino with di�erent momenta
pν separately. In due course the neutrinos become non-relativistic, and the equations re-simplify to the
non-relativistic limit.
Because the massive neutrino multipoles N`(pν/Tν) depend on neutrino momentum pν , the perturbed

neutrino energy-momentum tensor
1

T klν is more complicated than the massless case, equations (33.53). The
perturbed energy density, energy �ux, monopole pressure, and quadrupole pressure of massive neutrinos are

1

T
00
ν =

∫
∂

0

fν
∂ lnTν

N0(pν/Tν)Eν
4πp2

νdpν
(2π~)3

, (33.101a)

k̂a T
0a
ν = − i

∫
∂

0

fν
∂ lnTν

N1(pν/Tν) paν
4πp2

νdpν
(2π~)3

, (33.101b)

1
3 δab

1

T
ab
ν = 1

3

∫
∂

0

fν
∂ lnTν

N0(pν/Tν)
p2
ν

Eν

4πp2
νdpν

(2π~)3
, (33.101c)

(
3
2 k̂ak̂b −

1
2 δab

)
T abν = −

∫
∂

0

fν
∂ lnTν

N2(pν/Tν)
p2
ν

Eν

4πp2
νdpν

(2π~)3
. (33.101d)

33.14 Appendix: Legendre polynomials

The Legendre polynomials P`(µ) satisfy the orthogonality relations∫ 1

−1

P`(µ)P`′(µ) dµ =
2

2`+ 1
δ``′ , (33.102)

the addition theorem ∑̀
m=−`

Y ∗`m(â)Y`m(b̂) =
2`+ 1

4π
P`(â · b̂) , (33.103)

the recurrence relation

µP`(µ) =
1

2`+ 1
[`P`−1(µ) + (`+ 1)P`+1(µ)] , (33.104)
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and the derivative relation
dP`(µ)

dµ
=

`+ 1

1− µ2
[µP`−1(µ)− P`+1(µ)] . (33.105)

The �rst few Legendre polynomials are

P0(µ) = 1 , P1(µ) = µ , P2(µ) = − 1
2 + 3

2µ
2 . (33.106)



34

Fluctuations in the Cosmic Microwave
Background

Since the �rst de�nitive observation of the amplitude of the �rst peak of the power spectrum of temperature
�uctuations in the CMB by the Boomerang balloon-based experiment (Bernardis et al., 2000), the observed
power spectrum of the CMB has allowed cosmological parameters to be measured with ever-increasing
precision, and has provided the primary basis for the Standard Model of Cosmology. It should be emphasized
that the CMB power spectrum is by no means the only evidence supporting the Standard Model. What
gives con�dence in the Standard Model is the fact that a broad range of other astronomical observations
are consistent with it, including the Hubble diagram of Type I supernovae, the clustering of matter and of
galaxies, Big Bang nucleosynthesis, and the age of the oldest stars.
The power spectrum of the CMB depends on the harmonics Θ`(η0,k) of the CMB photon distribution at

the present time. A fast and elegant approach to calculating these harmonics was pointed out by Seljak and
Zaldarriaga (1996).

34.1 Radiative transfer of CMB photons

To determine the harmonics Θ`(η0,k) of the CMB photon distribution today, return to the Boltzmann
equation (33.80) for the temperature �uctuation Θ(η,k, µ), where µ ≡ k̂ · p̂γ is the cosine of the angle
between the wavevector k and the photon direction pγ . It proves advantageous to rearrange the photon
Boltzmann equation as (

∂

∂η
− ikµ+ |τ̇ |

)
(Θ + Ψ) = I + |τ̇ |S , (34.1)

which in this context is called the radiative transfer equation. The terms on the right hand side are
source terms. The term I on the right hand side of the radiative transfer equation (34.1) is the Integrated
Sachs-Wolfe (ISW) term,

I(η,k) ≡ Ψ̇(η,k) + Φ̇(η,k) , (34.2)

so-called because, as will be seen in equation (34.17), it contributes a temperature �uctuation that is an
integral along the line of sight to the CMB. The term S on the right hand side of equation (34.1) embodies

883
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source terms arising from Thomson scattering, a sum of monopole, dipole, and quadrupole harmonics,

S(η,k, µ) ≡ Θ0(η,k) + Ψ(η,k)− iµvb(η,k)− 1
2Θ2(η,k)P2(µ)

=

2∑
n=0

(−i)nSn(η,k)Pn(µ) , (34.3)

with harmonic coe�cients Sn(η,k),

S0 ≡ Θ0 + Ψ , (34.4a)

S1 ≡ vb , (34.4b)

S2 ≡ 1
2Θ2 . (34.4c)

The electron-photon (Thomson) scattering optical depth τ is de�ned by equation (32.3). The optical depth
is zero, τ0 = 0, at zero redshift, and increases going backwards in time η to higher redshift. The radiative
transfer equation (34.1) can be written (note that τ̇ is negative)

eikµη+τ d

dη

[
e−ikµη−τ (Θ + Ψ)

]
= I − τ̇S . (34.5)

The solution for the photon distribution Θ(η0,k, µ) today is obtained by integrating the radiative transfer
equation (34.5) over the line of sight from the Big Bang (η = 0) to the present time (η = η0),

Θ(η0,k, µ) + Ψ(η0,k) =

∫ η0

0

[I(η,k)− τ̇S(η,k, µ)] e−ikµ(η−η0)−τ dη . (34.6)

Notice that the left hand side of the solution (34.6) of the radiative transfer equation is not the temper-
ature �uctuation Θ(η0,k, µ) by itself, but rather the temperature �uctuation redshifted by the potential,
Θ(η0,k, µ) + Ψ(η0,k). The potential Ψ(η0,k) is independent of the photon direction p̂γ , so contributes only
to the monopole moment of the photon distribution.

34.1.1 Visibility function

Introduce the visibility function g(η) de�ned by

g(η) ≡ −τ̇ e−τ . (34.7)

The visibility function g(η), illustrated in Figure 34.1, acts like a smoothing window over recombination.
The visibility function is fairly narrowly peaked around recombination at η = ηrec, and its integral is one,∫ η0

0

g(η) dη =

∫ 0

∞
−e−τ dτ =

[
e−τ

]0
∞ = 1 . (34.8)

The visibility function g(η) has an approximately Gaussian core, and a long tail extending past recombination.
The long tail arises because recombination leaves a �nite residual electron density.
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Figure 34.1 Visibility function g(η) as a function of conformal time η in units of the conformal time today, η0 = 1.

The visibility function here is calculated from the Peebles approximation to recombination, Exercise 31.7. The dashed

vertical line marks the time ηrec of recombination, where the optical depth is one. The width σrec of recombination is

the standard deviation of a Gaussian �t to the core of the visibility function.

The solution (34.6) of the radiative transfer equation can be written in terms of the visibility function
g(η) as

Θ(η0,k, µ) + Ψ(η0,k) =

∫ η0

0

[
e−τI(η,k) + g(η)S(η,k, µ)

]
e−ikµ(η−η0) dη . (34.9)

34.2 Harmonics of the CMB photon distribution

If the temperature �uctuations on the CMB sky are statistically isotropic, then the statistical properties of
the CMB commute with the rotation operator (the angular momentum operator), which implies that the
power spectrum of CMB �uctuations is diagonal in a basis of eigenfunctions of the rotation operator. The
eigenfunctions are spherical harmonics. Thus it is natural to expand the temperature �uctuation Θ(η0,k, µ)+

Ψ(η0,k) in harmonics, equation (33.47).
The e−ikµ(η−η0) factor in the integrand on the right hand side of equation (34.9) can be expanded in

harmonics through the general formula

e−iyµ =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)j`(y) , (34.10)

where j`(y) ≡
√
π/(2y)J`+1/2(y) are spherical Bessel functions, and here y ≡ k(η − η0). The source func-

tion S that premultiplies the factor e−ikµ(η−η0) in the integrand of equation (34.9) is a sum of harmonics,
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equation (34.3). It is useful to introduce modi�ed spherical Bessel functions j`n(y) de�ned by an expansion
analogous to (34.10),

(−i)nPn(µ)e−iyµ =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)j`n(y) . (34.11)

The orthogonality relations of the Legendre polynomials, equation (33.102), imply that

j`n(y) = i`−n
∫ 1

−1

e−iyµP`(µ)Pn(µ)
dµ

2
, (34.12)

which implies that j`n is symmetric or antisymmetric in its indices `n as their di�erence `−n is even or odd,

j`n(y) = (−)`−njn`(y) . (34.13)

The Legendre functions Pn(µ) are polynomials in µ, �33.14. Acting on e−iyµ, these polynomials can be
replaced by derivatives with respect to y through

µn e−iyµ =

(
i
∂

∂y

)n
e−iyµ . (34.14)

The resulting modi�ed spherical Bessel functions j`n(y) with n = 0, 1, 2 relevant here are

j`0 = j` , j`1 = j′` , j`2 = 1
2j` + 3

2j
′′
` , (34.15)

where ′ denotes the total derivative, j′` ≡ dj`(y)/dy. The modi�ed spherical Bessel functions are even or odd
as jln(−y) = (−)l+njln(y). The harmonic expansion of equation (34.9) is thus

Θ`(η0,k) + δ`0Ψ(η0,k) =

∫ η0

0

{
e−τI(η,k)j` [k(η0 − η)] + g(η)

2∑
n=0

Sn(η,k)j`n [k(η − η0)]

}
dη , (34.16)

where g(η) is the visibility function de�ned by equation (34.7). With the ISW and scattering source terms I
and Sn written out explicitly, equation (34.16) is an integral from the Big Bang (η = 0) to the present time
(η = η0),

Θ`(η0,k) + δ`0Ψ(η0,k) =

∫ η0

0

e−τ
[
Ψ̇(η,k) + Φ̇(η,k)

]
j` [k(η − η0)] ISW

+ g(η)
{[

Θ0(η,k) + Ψ(η,k)
]
j` [k(η − η0)] monopole

+ vb(η,k)j`1 [k(η − η0)] dipole

+ 1
2Θ2(η,k)j`2 [k(η − η0)]

}
dη quadrupole .

(34.17)

The term in the �rst line on the right hand side of equation (34.17) is an integral of the time derivative of
the gravitational potential Ψ + Φ over the line of sight, and is called the Integrated Sachs-Wolfe (ISW)
e�ect. The remaining terms are linear combinations of the monopole, dipole, and quadrupole scattering
source terms Sn, equations (34.4). Note that the monopole term (on both sides of equation (34.17)) is not
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Figure 34.2 Illustrative example of the factors that go into the (left) monopole (n = 0) and (right) dipole (n = 1)

contributions to the integrand of the solution (34.17) of the radiative transfer equation, as a function of conformal time

η, in units η0 = 1. The example is for a representative wavenumber k/(aeqHeq) = 2, and harmonic number ` = 200.

The factors are the visibility function g(η), equation (34.7), scattering source terms Sn(η,k), equations (34.4), and

modi�ed spherical Bessel functions j`n [k(η0 − η)], equations (34.15). The visibility function g(η) has been scaled to

1 at its peak, and the monopole and dipole spherical Bessel functions j` and j
′
` have been scaled so j` equals 1 at its

(�rst) peak. The cosmological model is as given in �32.3. The dashed vertical line marks the time ηrec of recombination,

where the Thomson optical depth is one.

the temperature �uctuation Θ0 by itself, but rather Θ0 + Ψ, which is the temperature �uctuation redshifted
by the potential Ψ. In the tight-coupling approximation, the baryon velocity on the third line approximates
the photon velocity, vb ≈ 3Θ1.
Figure 34.2 shows an illustrative example of the factors that go into the monopole and dipole contributions

to the integrand of the solution (34.17) of the radiative transfer equation.

34.2.1 Harmonics of the CMB with respect to observed photon directions

A �nal consideration is that the observed direction n̂ of a photon from the CMB is opposite to the photon's
direction of motion, n̂ = −p̂γ . Photon multipoles Θobs

` expanded with respect to the direction n̂ of observation
are obtained from Θ` by �ipping the sign of the photon direction, Θobs(η,k, µ) = Θ(η,k,−µ). Flipping the
sign of p̂γ is equivalent to �ipping the sign of odd parity �uctuations,

Θobs
` (η0,k) ≡ (−)`Θ`(η0,k) . (34.18)
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Another way to achieve the sign �ip is to �ip the sign of the argument k(η− η0)→ k(η0− η) of the modi�ed
Bessel functions j`n in equation (34.17) and simultaneously to �ip the sign of the odd source functions S`,
namely S1 = vb → −vb. The CMB power spectrum involves products of pairs of Θobs

` with the same `, and
is una�ected by the sign �ip n̂ = −p̂γ in the solution (34.17) of the radiative transfer equation.

34.2.2 Integrated Sachs-Wolfe (ISW) e�ect

The �rst line of the solution (34.17) of the radiative transfer equation is an integral of the time derivative
of the potential Ψ + Φ along the line of sight to recombination. The contribution is called the Integrated
Sachs-Wolfe (ISW) e�ect. If matter dominates the background, then the potential Ψ + Φ is constant in time
for linear �uctuations, and there is no ISW e�ect. In practice, there are �early� and �late� ISW e�ects that
arise respectively from the contributions of radiation to the background density shortly after recombination,
and of dark energy (and possibly curvature) near the present time. The late time scalar potentials Ψ and

.001 .01 .1 1

cosmic scale factor a

.01 .1 1

10−4

10−3

10−2

10−1

1

10

conformal time η

e
−τ (Ψ̇ + Φ̇)

ηrec

0.1

1

10

100

early late

Figure 34.3 ISW integrand e−τ (Ψ̇ + Φ̇) in equation (34.17) as a function of conformal time η, in units η0 = 1, for

the standard �at ΛCDM model of �32.3. Curves are labelled with the wavenumber k/(aeqHeq) in units of the Hubble

distance at matter-radiation equality. In a matter-dominated cosmology, the gravitational potentials are constant, and

the curves would all be zero. The high early values following recombination result from the contribution of radiation to

the mean mass-energy density; this is the �early� ISW e�ect. The turn-up at later times results from the contribution

of a cosmological constant to the mean mass-energy density; this is the �late� ISW e�ect, indicated by the dashed

lines.
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Φ (which are equal at late times) evolve in proportion to the growth factor g(a), equation (30.128) (not
to be confused with the visibility function g(η)). The ISW integrand splits accordingly into early and late
contributions,

e−τ
d(Ψ + Φ)

dη
ISW

= e−τg
d

dη

(
Ψ + Φ

g

)
early ISW

+ e−τ
(

Ψ + Φ

g

)
dg

dη
late ISW

. (34.19)

The early and late time contributions to the ISW term are illustrated in Figure 34.3.
In addition to the early and late ISW e�ects, there is a �nonlinear� ISW e�ect. Nonlinear gravitational

clustering causes the potential Φ to change in time, becoming deeper (more negative) in more highly clustered
regions. Photons that travel through a cluster see a slightly deeper potential when they exit the cluster than
when they entered it, causing the photon to be slightly redshifted. Figure 34.3 does not include the nonlinear
ISW e�ect.

34.2.3 CMB transfer function in Fourier space

As seen in Chapters 30�33, during linear evolution, scalar modes of given comoving wavevector k evolve
with amplitude proportional to the initial curvature �uctuation ζ(k). The evolution of the amplitude may
be encapsulated in a CMB transfer function T`(η, k) de�ned by

T`(η, k) ≡ Θ`(η,k) + δ`0Ψ(η,k)

ζ(k)
. (34.20)

By isotropy, the CMB transfer function T`(η, k) is a function only of the magnitude k of the wavevector k.
Figure 34.4 shows CMB transfer functions T`(η0, k) at the present time, η = η0, for a selection of harmonics,

` = 2, 20, 200, and 2000. The CMB transfer functions are calculated by integrating numerically, for each of
many wavenumbers k, the solution (34.17) of the radiative transfer equation. The CMB transfer functions
shown in Figure 34.4 are from a Boltzmann computation including photon and neutrino multipoles up to
`max = 16.
Spherical Bessel functions j`(y) are small for y � `, rise to their �rst peak at y ≈ ` + `1/3, and are then

oscillating and declining at y � `. This behaviour translates into a similar behaviour in the CMB transfer
functions T`(η0,k), Figure 34.4. The transfer functions are small for k(η0 − ηrec)� `, peak at

k(η0 − ηrec) ∼ `+ `1/3 , (34.21)

and then oscillate at k(η0 − ηrec) � ` with an exponentially declining envelope, as illustrated in the right
panels of Figure 34.4,

T`(η0,k)|envelope
∝∼ exp (−kη0/600) . (34.22)

The exponential decline is caused in part by dissipative processes around the time of recombination, �32.7
and �32.8, and in part by the �nite width of recombination, which tends to smooth over oscillating source
functions S` at large wavenumber k, �34.2.4.
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Figure 34.4 (Continued on the next page.) CMB transfer functions T`(η0, k) for a selection of harmonics `, plotted

(left) linearly, showing the oscillating functions and their envelopes, and (right) logarithmically over a broader range

of wavenumber k, showing only the envelopes of the underlying oscillating functions. The total (black) is a sum of

the various contributions in equation (34.17): monopole (dark blue), dipole (light blue), quadrupole (cyan), early ISW

(purple), and late ISW (red). The total envelope (black) omits the late ISW contribution, since the late ISW is non-

oscillatory where it is important (at small ` and small k). The cosmological model is the �at ΛCDM concordance model

of �32.3. The computation is a Boltzmann computation including photon and neutrino multipoles up to `max = 16.
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Figure 34.4 continued.

Besides the total, Figure 34.4 shows the monopole, dipole, quadrupole, and early and late ISW contribu-
tions to the CMB transfer functions. The contributions are, excepting late ISW, highly oscillatory, thanks
to the Bessel factors j`n [k(η − η0)] in the integrand of equation (34.17). The Figure therefore shows also the
envelope of the oscillatory contributions. The envelope is computed as an integral in which the Bessel factor
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jln(y) in the integrand is replaced by the non-oscillatory absolute value of the complex Hankel factor hln(y),

hln(y) ≡ jln(y) +

{
0 |y| < l + 1

2 + (l + 1
2 )1/3

i yln(y) |y| ≥ l + 1
2 + (l + 1

2 )1/3
, (34.23)

with yln(y) the modi�ed spherical Bessel function of the second kind (whereas jln(y) is the modi�ed spherical
Bessel function of the �rst kind). The cut at y = l + 1

2 + (l + 1
2 )1/3, which is roughly the location of the

�rst zero of yln(y), is introduced to prevent the diverging behaviour of yln(y) as y → 0 from dominating the
integral.

34.2.4 Instantaneous and rapid recombination approximations

At wavelengths much larger than the width of recombination, kσrec � 1, recombination can be approximated
as instantaneous. In the instantaneous recombination approximation, the visibility function g(η) is a
delta-function at η = ηrec, and, without the ISW term, the multipoles Θ`(η0,k) of the temperature �uctuation
today are

Θ`(η0,k) + δ`0Ψ(η0,k) ≈
2∑

n=0

Sn(ηrec,k)j`n [k(ηrec − η0)] . (34.24)

A better approximation that works also at larger k is the rapid recombination approximation, which
replaces the source functions S by their averages S̄ over recombination. In the rapid approximation, the
temperature multipoles Θ`(η0,k) today are, including the early ISW, monopole, dipole, and quadrupole
contributions,

Θ`(η0,k) + δ`0Ψ(η0,k) ≈ S̄early(k)j` [k(ηearly − η0)] +

2∑
n=0

S̄n(k)j`n [k(ηrec − η0)] , (34.25a)

S̄early(k) ≡
∫ η0

0

e−τg
d

dη

(
Ψ(η,k) + Φ(η,k)

g

)
dη , S̄n(k) ≡

∫ η0

0

g(η)Sn(η,k) dη , (34.25b)

where in the early ISW term g denotes the growth factor (30.128) rather than the visibility function g(η).
The early ISW e�ect peaks at a redshift zearly ≈ 900 slightly after the redshift zrec ≈ 1100 of recombination,
Figure 34.3, but because the conformal time η0 today is so much larger than ηrec, the di�erence between
ηearly − η0 and ηrec − η0 is slight enough that it is fair to approximate ηearly ≈ ηrec.
Figure 34.5 shows the early ISW, monopole, dipole, and quadrupole source terms that go into the instan-

taneous approximation (dashed lines) and the rapid recombination approximation (solid lines). The instan-
taneous and rapid approximations Sn(ηrec,k) and S̄n(k) to the Thomson scattering source functions agree
at small wavenumbers k, where the source terms are slowly varying over the visibility function. The rapid
approximation works also at larger wavenumbers, where the source functions Sn(η,k) change signi�cantly
over the course of recombination. Averaging over recombination tends to reduce the Thomson scattering
source functions compared to their instantaneous values at recombination.
The baryon velocity decouples from the photon velocity during recombination, and grows large as baryons
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Figure 34.5 Rapid and instantaneous approximations to the Thomson scattering and early ISW source functions at

recombination, equations (34.25), as a function of wavenumber k/(aeqHeq). The solid (bluish) lines are the values S̄n(k)

averaged over the visibility function g(η), while the dashed (greenish) lines are the instantaneous values Sn(ηrec,k)

at recombination, where the Thomson optical depth is one. The purple line is the averaged early ISW source function

S̄early(k). The source functions are normalized to unit primordial curvature, ζ(k) = 1 (in other words, the plotted

source functions are transfer functions). The computation is the hydrodynamic approximation (Boltzmann with `max =

2), since this turns out to yield a better rapid recombination approximation to the CMB power spectrum than a full

Boltzmann treatment, Figure 34.7. The dipole source term is taken to be 3Θ1 (the tight-coupling limit), not vb, since

this yields a better rapid recombination approximation. The cosmological model is the standard �at ΛCDM model

described in �32.3.

fall into the dark matter potential wells, as illustrated in Figures 32.1 or 33.1. As a result, the rapid ap-
proximation tends to overestimate the true dipole contribution if the baryon bulk velocity vb is used for the
dipole source term S1. A simple empirical �x is to use the bulk photon velocity vγ ≡ 3Θ1 in place of the
baryon velocity to compute S1. This �x is adopted in Figures 34.5 and 34.6.
Figure 34.6 compares (envelopes of the rapidly oscillating) CMB transfer functions T`(η, k) computed

from a Boltzmann treatment to their values in the rapid recombination approximation, equation (34.25),
with source functions computed in the hydrodynamic approximation, for a selection of harmonics `. Whereas
the envelopes computed in the Boltzmann treatment are rather smooth at large wavenumber k (and exponen-
tially declining, equation (34.22)), the envelopes computed in the rapid recombination approximation remain
somewhat oscillatory at large wavenumber k. However, what is important is that the approximation yields
approximately the correct overall amplitude of the transfer functions; the CMB power spectrum (34.35)
involves integrating over transfer functions, which washes out the residual oscillatory structure. The hy-



894 Fluctuations in the Cosmic Microwave Background

0 1000 2000 3000 4000 5000 6000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

wavenumber kη0

Tl (η
0
, k)

2

20
200

500

1000
2000

3000

4000

5000

10 102 103 104
10−7

10−6

10−5

10−4

10−3

10−2

10−1

wavenumber kη0

Tl (η
0
, k)

2
20

200

500

1000
2000

4000

5000

Figure 34.6 CMB transfer functions computed from a Boltzmann treatment (solid lines) including photon and neutrino

multipoles up to `max = 16, compared to their values in the rapid recombination approximation (dotted lines) with

the source functions taken from the hydrodynamic approximation, for a selection of harmonics `, as marked. All lines

are the envelopes of the underlying rapidly oscillating transfer functions. The left and right panels are the same,

but with wavenumber k plotted linearly on the left, logarithmically on the right. The transfer functions plotted here

include monopole, dipole, quadrupole, and early ISW contributions, but exclude the late ISW contribution. The dipole

contribution to the rapid recombination approximation is computed from the photon velocity 3Θ1 (the tight-coupling

limit), not the baryon velocity vb. The cosmological model is the standard �at ΛCDM model described in �32.3.

drodynamic approximation (rather than a Boltzmann treatment) is used for the source functions because
it (hydro + rapid) turns out to give a yield better approximation (than Boltzmann + rapid) to the CMB
power spectrum, as illustrated in the right panel of Figure 34.7.

34.2.5 CMB power spectrum in Fourier space

The power spectrum C`(η, k) in Fourier space is de�ned to be the expectation value of the variance of
temperature multipoles Θ`(η,k),

δ`′`
4π

(2π)3δD(k′ + k)C`(η, k) ≡
〈
[Θ`′(η,k

′) + δ`0Ψ(η,k′)] [Θ`(η,k) + δ`0Ψ(η,k)]
〉
. (34.26)

The power spectrum C`(η, k) is real-valued. The momentum conserving delta-function (2π)3δD(k′ + k) is a
consequence of the assumed statistical homogeneity of space, while the angular-momentum conserving delta-
function δ`′` is a consequence of the assumed statistical isotropy of space. By isotropy, the power spectrum
C`(η, k) is a function only of the magnitude k of the wavevector k. The monopole power C0(η, k) is de�ned



34.3 CMB in real space 895

to be the variance of the redshifted monopole Θ0 + Ψ because that is what appears in the solution (34.17)
of the radiative transfer equation.
In terms of the CMB transfer function (34.20) and the primordial power spectrum Pζ(k) de�ned by

equation (30.132), the CMB power spectrum C`(η, k) is

C`(η, k) = 4π |T`(η, k)|2 Pζ(k) . (34.27)

34.3 CMB in real space

34.3.1 CMB harmonics in real space

The solution (34.17) of the radiative transfer equation is in terms of photon multipoles Θ`(η,k) in Fourier
space, but astronomers observe the CMB in real space. The real-space temperature �uctuation Θ(η,x, n̂) at
time η and comoving position x in observed direction n̂ on the sky is related to the Fourier-space temperature
�uctuation by

Θ(η,x, n̂) =

∫
e−ik·xΘ(η,k, n̂)

d3k

(2π)3
. (34.28)

Astronomers observe the temperature �uctuation Θ(η0,x0, n̂) now, at time η0, and here, at position x0.
Without loss of generality, our position can be taken to be at the origin, x0 = 0, in which case the phase
factor is unity, e−ik·x0 = 1, and can be omitted,

Θ(η0,x0, n̂) =

∫
Θ(η0,k, n̂)

d3k

(2π)3
. (34.29)

The spherical harmonic expansion of the observed real-space temperature �uctuation today is, with a
conventional choice of normalization of harmonics Θ`m,

Θ(η0,x0, n̂) =

∞∑
`=0

∑̀
m=−`

Θ`m(η0,x0)Y ∗`m(n̂) . (34.30)

The sum includes the monopole ` = 0 harmonic because the mean temperature of the observable Universe
may di�er from the �true� mean temperature of the Universe. From the perspective of statistics, such a
di�erence between the observed and true mean temperature can exist even though it is unobservable to an
astronomer con�ned to position x0. An astronomer in a cosmologically distant future when the horizon is
much larger than today would be able to measure the di�erence. The spherical harmonic expansion (33.47) of
the Fourier-space temperature �uctuation may be written, in view of the relation (33.103) between Legendre
polynomials and spherical harmonics

Θ(η0,k, n̂) =

∞∑
`=0

∑̀
m=−`

(−i)`4πΘ`(η,k)Y`m(k̂)Y ∗`m(n̂) . (34.31)
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From equations (34.29)�(34.31) it follows that the real-space photon harmonics are

Θ`m(η0,x0) = 4π(−i)`
∫

Θ`(η0,k)Y`m(k̂)
d3k

(2π)3
. (34.32)

34.3.2 CMB power spectrum in real space

The CMB power spectrum C`(η0) on the sky today is de�ned to be the expectation value of the variance of
temperature multipoles Θ`m(η0,x0),

δ`′`δm′mC`(η0) ≡
〈
[Θ∗`′m′(η0,x0) + δ`0Ψ(η0,x0)] [Θ`m(η0,x0) + δ`0Ψ(η0,x0)]

〉
. (34.33)

The power spectrum C`(η0) is real-valued. By homogeneity, the power spectrum C`(η0) is independent of
observer position x0. The real-space monopole harmonic Θ00(η0,x0) + Ψ(η0,x0) is the temperature �uctu-
ation gravitationally redshifted by the potential Ψ(η0,x0) at our position today. From the perspective of an
observer at �xed position x0, the redshifted monopole is observationally indistinguishable from a rescaling
of the mean temperature.
From the expression (34.32) for the real-space harmonics in terms of Fourier-space harmonics, together

with the power spectrum (34.26) of the Fourier-space harmonics, it follows that the power spectrum C`(η0)

of real-space harmonics of the CMB today is

C`(η0) =

∫
C`(η0, k)

4πk2dk

(2π)3
. (34.34)

In terms of the CMB transfer function T` and primordial curvature power spectrum Pζ or its dimensionless
equivalent ∆2

ζ , equation (30.134), the power spectrum C`(η0) is, from equation (34.27),

C`(η0) = 4π

∫
|T`(η0, k)|2 Pζ(k)

4πk2dk

(2π)3
= 4π

∫
|T`(η0, k)|2 ∆2

ζ(k)
dk

k
. (34.35)

If the primordial power spectrum ∆2
ζ is a power-law with tilt n, equation (30.137), then the CMB power

spectrum today is

C`(η0) = 4π∆2
ζ(kp)

∫ ∞
0

|T`(η0, k)|2
(
k

kp

)n−1
dk

k
. (34.36)

As discussed in �34.2.3, the CMB transfer functions T`(η0, k) are small for k(η0 − ηrec) � `, peak near
k(η0 − ηrec) ∼ ` (or more precisely, at harmonics slightly larger than `, equation (34.21)), and then oscillate
with an exponentially declining envelope, equation (34.22). Thus the power spectrum C`(η0) (34.35) at
harmonic ` principally probes comoving scales 1/k that are 1/` times the comoving distance η0 − ηrec to
recombination today,

1

k
∼ η0 − ηrec

`
. (34.37)

Physically, harmonic number ` probes angular scale θ ∼ π/` on the sky, and the power spectrum at harmonic
number ` probes comoving scale π/k ∼ (η0 − ηrec)θ on the CMB sky.
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Figure 34.7 Model CMB power spectra computed in the rapid recombination approximation, equation (34.25), with

source functions computed in: (left) the simple approximation, �30.7, without (short dashed line) and with (long dashed

line) arti�cial damping, equations (30.59) and (30.60) with ε = 10−3; and (right) the hydrodynamic approximation

(�32.2, short dashed line), and in a full Boltzmann treatment (�33.1, long dashed line) including photon and neutrino

multipoles up to `max = 16. The solid (black) lines are a reference model power spectrum computed with CAMB.

The CAMB spectrum is similar to that shown in Figure 10.3, but without re�nements from reionization and lensing.

34.3.3 Rapid recombination approximation to the CMB power spectrum

Modern, publicly available codes such as CAMB compute an entire model CMB power spectrum C`(η0) in
just a few seconds, which is amazingly fast. CAMB is tuned for speed, doing only enough calculations as are
needed to achieve a desired accuracy. CAMB is written in a fast language, parallelized fortran 90. If you'd
like to write a code that competes with CAMB in speed, expect to invest a substantial time developing it.
It's more than just an exercise.
Meanwhile, the rapid recombination approximation, �34.2.4, o�ers a short-cut to computing the CMB

power spectrum that at least captures qualitative features. The rapid recombination approximation e�ectively
sidesteps step 5 of the numerical computation outlined in �30.8.

Exercise 34.1. CMB power spectrum in the instantaneous and rapid recombination approxi-

mations. Compute the CMB power spectrum C`(η0) today in your choice of the instantaneous and rapid
recombination approximations, equations (34.24) or (34.25), with source functions calculated in your choice
of level of detail, simple, �30.7, hydrodynamic, �32.2, or full Boltzmann, �33.1). Discuss.
Solution. See Figures 34.7 and 34.8. I used the standard �at ΛCDM cosmological parameters given in �32.3,
and the normalization of the power spectrum measured from Planck, equation (30.138). I used Mathemat-
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Figure 34.8 Monopole + early ISW (0), dipole (1), quadrupole (2), and late ISW contributions to the CMB power

spectrum in the rapid recombination approximation with source functions computed in the hydrodynamic approxi-

mation (top model in the right panel of Figure 34.7). The monopole and early ISW are combined into a single curve,

labelled 0, since they are highly correlated. To a good approximation, the total power spectrum is an incoherent sum

of the monopole and dipole power spectra, the quadrupole contribution being quite small. There are sub-dominant

cross-correlations between the various contributions, which are not plotted separately here, but which are included in

the total (black line). The late ISW contribution is computed from integration of the derivative of the growth function

over the line of sight, equations (34.17) and (34.19).

ica to solve the evolutionary equations in the simple, hydrodynamic, Boltzmann approaches. But for the
integral (34.35), I abandoned �ghting Mathematica, and resorted to a publicly available implementation of
Bessel functions (Amos, 1986), and a cubic spline integration implemented in fortran. In Figure 34.8 (but
not Figure 34.7) I added the late ISW contribution. The late ISW transfer function is not oscillatory, so its
computation from integration of the derivative of the growth function over the line of sight, equations (34.17)
and (34.19), is numerically straightforward. Comments:

1. The hydrodynamic and Boltzmann computations get the phasing of peaks more or less right. The
phasing of peaks depends on the sound speed in the photon-baryon �uid, which depends on the baryon-
to-photon density ratio. The agreement with the hydrodynamic and Boltzmann computations supports
the standard model, where the baryonic density begins to become comparable to the photon density near
recombination, equation (32.46). The simple approximation gets the phasing slightly wrong because it
neglects baryons.

2. The overall angular location of the peaks is correctly reproduced. The overall angular location of peaks
depends on geometry, that is, on the apparent angular size of comoving distances at recombination
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observed by astronomers on Earth today. The geometry depends on various cosmological parameters,
notably the curvature Ωk and the Hubble parameter H0 today.

3. The power spectrum is roughly constant and dominated by the monopole at the largest scales, ` . 40.
This is the Sachs-Wolfe plateau, �34.5, a signature of a near-scale-invariant primordial power spectrum.
The weak minimum at ` ≈ 20 results mainly from a cancellation between the monopole Θ0 + Ψ and
early ISW contributions, as might be expected from Figure 34.5. The late ISW e�ect contributes a small
enhancement in power in the �rst several harmonics.

4. The even peaks are stronger than the odd peaks in the hydrodynamic and Boltzmann computations.
The di�erence in strengths between even and odd peaks is caused by baryon loading, �32.10, in which the
extra gravity generated by baryons in the oscillating photon-baryon �uid enhances even (compression)
peaks and weakens odd (rarefaction) peaks. The simple approximation does not show the even-odd
variation because it treats baryons as having negligible density.

5. The power spectrum C`(η0) declines approximately exponentially with harmonic number `. The decline
arises partly from dissipative processes around the time of recombination, �32.7 and �32.8, and in part
from the �nite width of recombination, �34.2.4.

Exercise 34.2. CMB power spectra from CAMB. Compute model CMB power spectra from a pub-
licly available code such as CAMB (google it). Vary the cosmological parameters. Compare to published
measurements from Planck or other sources (google it). Formulate a question, and attempt to answer it. For
example, what does the observed power spectrum say about:
1. non-baryonic cold dark matter;
2. baryons;
3. photons;
4. neutrinos;
5. dark energy;
6. curvature;
7. the origin of �uctuations?

34.4 Observing CMB power

The power spectrum C`(η0), equation (34.34), gives an expectation value for the variance (34.33) of CMB tem-
perature �uctuations on the sky, which can be compared to observation. Isotropy predicts that Θ`m(η0,x0)

with di�erent ` or m should be uncorrelated, a prediction that can be tested by observation.
In�ation, which predicts that �uctuations are generated by quantum �uctuations of the scalar in�aton �eld

that supposedly drove in�ation, generically predicts a Gaussian distribution of �uctuations in the primordial
curvature ζ. This in turn implies a Gaussian distribution of temperature �uctuations Θ as long as the
�uctuations remain in the linear regime. The Gaussian distribution of temperature �uctuations Θ ≡ δT/T

is characterized entirely by its variance, the power spectrum C`.
For each harmonic number `, there are 2` + 1 harmonics Θ`m with the same ` but di�erent m. Isotropy
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predicts that the expected variance is the same, C`, for each m. Thus one way to estimate the variance C`
is to take

C`(est) =
1

2`+ 1

∑̀
m=−`

|Θ`m|2 . (34.38)

The �nite number 2`+ 1 of modes at each ` places a fundamental fractional uncertainty of ≈ 1/
√

2`+ 1 on
the accuracy with which C` can be determined observationally. This fundamental limit, which arises from
the �nite size of the observable Universe, is called cosmic variance.
In practice there are numerous issues that complicate the measurement of the CMB power spectrum C`,

including incomplete sky coverage, contamination by Earth glow, microwave foregrounds arising from galactic
and extragalactic synchrotron radiation, dust, and free-free emission, and observational and detector noise
and systematics of one sort or another.

34.5 Large-scale CMB �uctuations (Sachs-Wolfe e�ect)

The behaviour of the CMB power spectrum at the largest angular scales was �rst predicted by Sachs and
Wolfe (1967), and is therefore called the Sachs-Wolfe e�ect, though why it should be called an e�ect is
mysterious. The Sachs-Wolfe (SW) e�ect is distinct from the Integrated Sachs-Wolfe (ISW) e�ect. The ISW
e�ect, ignored in this section, was considered in �34.2.2.
At scales much larger than the sound horizon at recombination, kηs,rec � 1, the redshifted monopole

�uctuation Θ0(ηrec,k)+Ψ(ηrec,k) at recombination is much larger than the dipole Θ1(ηrec,k) or quadrupole
Θ2(ηrec,k), so only the monopole contributes materially to the temperature multipoles Θ`(η0,k) today. The
redshifted monopole contribution to the temperature multipoles Θ`(η0,k) today is, from equation (34.17),

Θ`(η0,k) + δ`0Ψ(η0,k) =
[
Θ0(ηrec,k) + Ψ(ηrec,k)

]
j` [k(η0 − ηrec)] . (34.39)

At superhorizon scales kηrec � 1, the radiation monopole at the time ηrec of recombination is given by the
superhorizon solution Θ0 − Φ = ζγ , equation (30.26), so

Θ0(ηrec,k) + Ψ(ηrec,k) = Ψsuper(ηrec,k) + Φsuper(ηrec,k) + ζγ(k) . (34.40)

The CMB transfer function T`(η, k) is conventionally normalized to the primordial curvature �uctuation ζ(k),
equation (34.20). For adiabatic �uctuations ζ is the same for all species; more generally, ζ could be di�erent for
di�erent species. For de�niteness, take the simple two-component matter plus radiation model of Chapter 30,
where the superhorizon potential in the late matter-dominated regime is Φ(late) = − 3

5ζc, equation (30.68),
for both adiabatic and isocurvature initial conditions. In the approximation that recombination is in the
matter-dominated regime (which is not quite true), and the scalar potentials are equal (which is again
not quite true), so Ψ(ηrec) + Φ(ηrec) ≈ 2Φsuper(late) = − 6

5ζc, the CMB transfer function for the radiation
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monopole at superhorizon scales, normalized to ζc, is

T0(ηrec, k) =
Ψsuper(ηrec,k) + Φsuper(ηrec,k) + ζγ(k)

ζc(k)
≈ −6

5
+
ζγ(k)

ζc(k)
=

{
− 1

5 adiabatic ,

− 6
5 isocurvature .

(34.41)

The monopole transfer function T0(ηrec, k) at recombination is thus approximately constant at superhorizon
scales, although the value of the constant depends on the initial conditions.
At superhorizon scales, the CMB transfer function T`(η0, k) in the `'th harmonic today is, from equa-

tion (34.39),

T`(η0, k) = T0(ηrec, k)j` [k(η0 − ηrec)] . (34.42)

The resulting CMB angular power spectrum at superhorizon scales kηs,rec � 1 is

C`(η0) = 4πT0(ηrec, k)2

∫ ∞
0

j` [k(η0 − ηrec)]
2

∆2
ζ(k)

dk

k
, (34.43)

where T0(ηrec, k), being approximately constant, equation (34.41), has been taken outside the integral. If the
primordial curvature power spectrum ∆2

ζ(k) is a power law with tilt n, equation (30.137), then the integral
over the squared Bessel function can be done analytically, equation (34.56b), yielding

C`(η0) = 4πT0(ηrec, k)2∆2
ζ

[
1/(η0 − ηrec)

]
U`;`(n− 1) . (34.44)

For the particular case of a scale-invariant primordial power spectrum, n = 1, the CMB power spectrum C`
at large scales today is given by

`(`+ 1)C`(η0)

2π
= T0(ηrec, k)2∆2

ζ

[
1/(η0 − ηrec)

]
if n = 1 . (34.45)

Thus the characteristic feature of a scale-invariant primordial power spectrum, n = 1, is that `(` + 1)C`
should be approximately constant at the largest angular scales, ` � η0/ηrec. The normalization factor
1/(2π) converts to the power of large scale �uctuations in the potential at recombination. This is the reason
that CMB folk routinely plot `(`+ 1)C`/(2π) rather than C`.

34.6 Radiative transfer of neutrinos

Neutrinos decouple not at recombination, but rather after electron-positron annihilation at a redshift 1+z ∼
109. From that point neutrinos streamed freely. The horizon distance ην at neutrino decoupling relative to
that at matter-radiation equality was ην/ηeq ∼ 10−5. As with radiation, in�ation predicts that initially the
neutrino distribution was isotropic at superhorizon scales, with only a monopole mode present. But once
a mode entered the horizon, without collisions to isotropize their distribution, freely streaming neutrinos
could develop appreciable higher multipole moments, Figure 33.2. Prior to recombination, the neutrino
quadrupole provided the dominant source for the di�erence Ψ−Φ between the scalar potentials, Figure 33.4.
In Exercise 33.5 you discovered that the neutrino quadrupole causes a �nite di�erence Ψ − Φ even in the
superhorizon initial conditions, equation (33.97).
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Observationally accessible scales in the CMB or in the clustering of matter are large compared to the
horizon distance ην at neutrino decoupling. At such large scales, kην � 1, only the neutrino monopole N0

was present at neutrino decoupling. The neutrino analogue to the solution (34.17) of the radiative transfer
equation is then

N`(η,k) + δ`0Ψ(η,k) =

∫ η

0

[
Ψ̇(η′,k) + Φ̇(η′,k)

]
j` [k(η′ − η)] dη′ ISW

+
[
N0(0,k) + Ψ(0,k)

]
j`(−kη) monopole ,

(34.46)

which contains only Integrated Sachs-Wolfe and dipole terms. In equation (34.46), the time ην of neutrino
decoupling has been replaced by zero, and the optical depth factor e−τ omitted, since the neutrino decoupling
scale is so much smaller than cosmological scales.
Equation (34.46) holds at any time η after neutrino decoupling, as long as the neutrinos remain relativistic.

Neutrino oscillation data suggest that at least 2 of the 3 neutrino types are massive, with masses at least
0.01 eV and 0.05 eV (see �10.25). Such neutrinos would have become non-relativistic at a redshift of 1+z ≈ 60

and 300 respectively. However, all 3 neutrino types were relativistic prior to and at recombination, when the
physics of dark matter and the photon-baryon �uid was imposing its imprint on the CMB.

34.6.1 Truncating the neutrino Boltzmann hierarchy

The integral solution (34.46) provides one way to compute neutrino multipoles of arbitrary order. The solution
is equivalent to solving the entire collisionless Boltzmann hierarchy of di�erential equations for neutrinos.
However, it is more common for computer codes to solve for neutrino multipoles using the Boltzmann
hierarchy truncated in a suitable fashion. The strategy of setting multipoles above some maximum harmonic
to zero does not work well for neutrinos, because free-streaming allows neutrinos to develop higher order
multipoles comparable to the monopole and dipole. An alternative strategy for truncating the neutrino
hierarchy, described immediately following, was proposed by Ma and Bertschinger (1995).
Spherical Bessel functions are related by

j`(y)− 2`+ 3

y
j`+1(y) + j`+2(y) = 0 . (34.47)

This motivates considering the combination (N` + Ψδ`0) + (2`+ 3)N`+1/y +N`+2, with y = kη, of neutrino
multipoles, which has the property that the monopole term from the second line of equation (34.46) vanishes.
The ISW term on the �rst line of equation (34.46) gives a non-vanishing contribution to the combination,
which is, with the identity 1/y = y′/[y(y′ − y)]− 1/(y′ − y),

N` + δ`0Ψ +
2`+ 3

y
N`+1 +N`+2 = (2`+ 3)

∫ y

0

∂
[
Ψ(y′) + Φ(y′)

]
∂y′

y′

y

j`+1(y′ − y)

(y′ − y)
dy′ . (34.48)

The integrand on the right hand side of equation (34.48) is everywhere �nite, and for y � y′ is of order
y′/y2 times the integrand of the ISW integral in equation (34.46). In the actual case, Ψ + Φ varies rapidly
at horizon-crossing, y′ ∼ 1, but subsequently varies slowly, Figure 33.2. In this case the integral on the right
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hand side of equation (34.50) is small compared to N`+2 for y � 1. The integral is also small for y � `+ 1,
since j`+1(y′− y)/(y′− y) ≈ (y′− y)`/(2`+ 1)!! for 0 ≤ y′ ≤ y � `+ 1. The approximation that the integral
is small is better for larger harmonic number `.
If the integral on the right hand side of equation (34.48) is neglected, which becomes an increasingly good

approximation at higher `, then

N`+2 ≈ − (N` + δ`0Ψ)− 2`+ 3

kη
N`+1 . (34.49)

Ma and Bertschinger (1995) proposed truncating the neutrino Boltzmann hierarchy by using the approxi-
mation (34.49) at some suitably high harmonic number `. The approximation is worst around epochs where
Ψ + Φ varies rapidly, such as around horizon-crossing, kη ∼ 1.

34.6.2 Approximate neutrino quadrupole

The neutrino quadrupole N2 is of special interest because it is a principal source for the di�erence Ψ−Φ in
scalar potentials. For the quadrupole, the approximation (34.49) is

N2 ≈ − (N0 + Ψ)− 3N1

kη
. (34.50)

The approximation (34.50) is not adequate for precision modelling, but it provides the basis for the ap-
proximation of neutrinos as an imperfect �uid, equation (32.11). It is a better approximation than simply
setting the neutrino quadrupole to zero, N2 = 0. The approximation (34.50) leads to a second order di�er-
ential equation for the neutrino monopole, equation (32.91), which allows the behaviour of neutrinos to be
explored qualitatively, Exercise 32.7.

Exercise 34.3. Cosmic Neutrino Background.

1. Is there a Cosmic Neutrino Background? Think about whether neutrinos are relativistic or non-relativistic
today.

2. Suppose that one neutrino is relativistic. Calculate the power spectrum of the Cosmic Neutrino Back-
ground for that neutrino in the approximation that the ISW contribution is negligible.

3. What is the e�ect of the ISW contribution resulting from the change in the potential when neutrinos
entered the horizon in the radiation-dominated regime?

Solution.

1. Neutrinos with the masses of (at least) 0.01 eV and 0.05 eV suggested by neutrino oscillation data (see
�10.25) would have become non-relativistic at a redshift of 1 + z ≈ 60 and 300 respectively, whereupon
they would start to cluster like dark matter and baryons, rather than continuing to stream like cos-
mic background photons in more or less straight lines into astronomers' telescopes. There remains the
possibility that one of the neutrino types may be light enough, mν . 10−4 eV, to be relativistic today.
Such a relativistic neutrino would produce a background today that is an imprint of �uctuations in the
Universe at the time of neutrino decoupling.
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2. For a light, relativistic neutrino, the multipole moments of the cosmic background today are given by
equation (34.46) with η = η0. Without the ISW term, only the monopole term remains,

N`(η0,k) + δ`0Ψ(η0,k) = [N0(0,k) + Ψ(0,k)] j`(kη0) . (34.51)

The initial value is the superhorizon result

N0(0,k) + Ψ(0,k) = Ψ(0) + Φ(0) + ζν . (34.52)

The neutrino power spectrum is proportional to the photon Sachs-Wolfe power spectrum (34.43), with
constant of proportionality

C
(ν)
`

CSW
`

=

(
Ψ(0) + Φ(0) + ζν

Ψsuper(ηrec) + Φsuper(ηrec) + ζγ

)2

. (34.53)

In the approximation that recombination is in the matter-dominated regime (which is not quite true),
and the scalar potentials are equal (which is not quite true thanks to neutrinos), the potentials at
recombination are approximately the late time potentials given by equations (30.68), so

C
(ν)
`

CSW
`

≈
(− 3

5ζr + ζν

− 6
5ζc + ζγ

)2

. (34.54)

In�ation generically predicts adiabatic �uctuations with ζ's of all species the same, in which case

C
(ν)
`

CSW
`

≈
(

5

3

)2

. (34.55)

3. An ISW e�ect results from the change in the potential at horizon-crossing for modes that entered the
horizon during the radiation-dominated era. The potential Ψ(y) + Φ(y) is a universal function of y ≡ kη
during horizon-crossing in the radiation-dominated era, independent of k. The ISW integral yields a
result that looks like the spherical Bessel function of the monopole contribution on the second line of
equation (34.46), but with a di�erent amplitude and phase. The net result is a power spectrum that
again looks like the Sachs-Wolfe power spectrum, but with a (somewhat) di�erent amplitude than the
large-scale power spectrum, whose modes entered the horizon in the matter-dominated regime.

34.7 Appendix: Integrals over spherical Bessel functions

Two useful integrals over spherical Bessel functions are

U`(z) ≡
∫ ∞

0

j`(y)yz
dy

y
=

2z−2
√
π Γ
[

1
2 (`+ z)

]
Γ
[

1
2 (`+ 3− z)

] , (34.56a)

U`;`′(z) ≡
∫ ∞

0

j`(y)j`′(y)yz
dy

y
=

2z−3πΓ(2− z)Γ
[

1
2 (`+ `′ + z)

]
Γ
[

1
2 (`+ `′ + 4− z)

]
Γ
[

1
2 (`− `′ + 3− z)

]
Γ
[

1
2 (`′ − `+ 3− z)

] ,
(34.56b)
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where Γ(z) is the Gamma function. The integrals satisfy the recurrence relations

U`(z) = (`− 2 + z)U`−1(z − 1)

=
`− 2 + z

`+ 1− z
U`−2(z) , (34.57a)

U`;`′(z) =
`+ `′ − 2 + z

`+ `′ + 2− z
U`−1;`′−1(z)

=
(`+ `′ − 2 + z)(`− `′ − 3 + z)

2(z − 2)
U`−1;`′(z − 1)

=
(`+ `′ − 2 + z)(`− `′ − 3 + z)

(`+ `′ + 2− z)(`′ − `− 1 + z)
U`−2;`′(z) . (34.57b)
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Cosmological perturbations including
polarization

Well before recombination, frequent collisions drive photons into thermodynamic equilibrium. In thermody-
namic equilibrium, the photon distribution is unpolarized. But, as will be seen in �35.11, photons scattering
o� electrons become linearly polarized. The CMB bears the imprint of polarization generated near the surface
of last scattering.
Polarization produces distinct E-mode (electric parity) andB-mode (magnetic parity) �uctuations, �35.7.2.

The B-mode �uctuation can be generated only by vector or tensor, not scalar, gravitational potential �uc-
tuations. The B-mode polarization has opposite parity to, and can thereby be observationally distinguished
from, the much stronger unpolarized and polarized scalar �uctuations. Thus the B-mode polarization pro-
vides a clean window to gravitational waves generated during in�ation in the very early Universe. A detection
of B-mode polarization was initially claimed by the BICEP2 collaboration (Ade et al., 2014), but subsequent
cross-comparison between BICEP2 and Planck data suggests that the detected polarization may have been
a galactic foreground from dust aligned by the galactic magnetic �eld (Ade et al., 2015). If a cosmological
signal of B-mode polarization is detected in the future, it would present a remarkable observation of physics
at near-Planck energies far exceeding those accessible in earthly particle accelerators.

35.1 Photon polarization

Photons have spin one. They have two distinct spin eigenstates, right- and left-handed, in which the spin is
respectively aligned and anti-aligned with the photon's direction of motion, the direction p̂ of the photon's
momentum p. The general eigenstate of a photon is a complex linear combination of right- and left-handed
eigenstates. In a Newman-Penrose tetrad with the 3-axis (z-axis) taken along the direction p̂ of motion of
the photon, the spin eigenstate of a photon is described by a complex polarization vector a,

a = aaγγa = a+γγ+ + a−γγ− . (35.1)

Photons are quanta of the electromagnetic �eld, and a proper description of them requires quantum �eld
theory. However, as described in Concept Question 35.1, from a classical perspective, the polarization vector

906
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a equals the transverse component A⊥ of an electromagnetic wave, normalized to unit magnitude, equa-
tion (35.7). According to the usual rules of quantum mechanics, the squared amplitude is the probability of
the photon, which for a single photon is one,

|a+|2 + |a−|2 = 1 . (35.2)

The polarization vector a is transverse, that is, it is orthogonal to the photon's direction of motion,

p̂ · a = 0 . (35.3)

The squared individual amplitudes |a+|2 and |a−|2 of the polarization vector (35.1) represent the probabilities
of observing the photon to have polarization γγ+ or γγ−. For example, if a photon with polarization a is sent
through a right circularly polarized �lter, then the photon will be transmitted with probability |a+|2, and the
transmitted photon will then be 100% right circularly polarized. The total probability of the spin states of
the photon is one, equation (35.2). The complex conjugate of the polarization vector is a∗ = a+∗γγ−+a−∗γγ+

(note that complex conjugation �ips γγ+ ↔ γγ−), and the normalization condition (35.2) can be written

a∗ · a = 1 . (35.4)

More generally, if a photon has polarization a, then the probability Pa′ of observing it to have polarization
a′ is, by the usual rules of quantum mechanics,

Pa′ = |a′∗ · a|2 . (35.5)

A photon in a pure γγ+ eigenstate (i.e. with polarization vector e−iφγγ+ where e−iφ is some arbitrary phase
factor) is right circularly polarized, while a photon in a pure γγ− eigenstate is left circularly polarized. A
photon that is a superposition of equal magnitudes of right and left circular polarizations is said to be linearly
polarized. For example a photon with polarization vector a1 = e−iφ(γγ+ + γγ−)/

√
2 is linearly polarized in

the 1-direction (x-direction), while a photon with polarization vector

aχ = e−iφ
e−iχγγ+ + eiχγγ−√

2
(35.6)

is linearly polarized along a direction rotated right-handedly by angle χ from the 1-axis. A polarization angle
of χ = π �ips the sign of aχ, equivalent to changing its phase φ, so the polarization angle χ is determined only
modulo π. A photon that is a superposition of unequal non-zero magnitudes of right and left polarizations
is said to be elliptically polarized.

Concept question 35.1. Relation of the polarization vector to the electromagnetic potential.

How is the polarization vector a related to the electromagnetic potentialA?Answer. Brie�y, the polarization
vector a of a propagating electromagnetic wave is the gauge-invariant transverse component A⊥ of the
electromagnetic potential, normalized to unit magnitude,

a =
A⊥
|A⊥|

. (35.7)
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As discussed in �27.6, the gauge freedom of electromagnetism means that only 3 of the 4 components of the
electromagnetic potential A are gauge-invariant, equations (27.37), and only the 2 vector (i.e. transverse)
components A⊥ of the electromagnetic potential describe propagating waves, equation (27.40). Plane-wave
solutions propagating in the ẑ direction are functions of A(t− z) with A transverse. The associated electric
and magnetic �elds are, equations (27.38),

E = −Ȧ , B = ẑ ∧E . (35.8)

The electric and magnetic �elds of a propagating wave are transverse and orthogonal to each other. Monochro-
matic waves of angular frequency ω can be characterized in terms of a complex potential

A = A0e
−iω(t−z) , (35.9)

where A0 is a constant complex transverse vector. Classically, the electromagnetic potential is real. For
example, electromagnetic potentials of circularly polarized waves of frequency ω are

A± = A [x̂ cosω(t− z)± ŷ sinω(t− z)] , (35.10)

while a wave linearly polarized in the x̂ direction is

Ax =
A+ +A−√

2
=
√

2A x̂ cosω(t− z) . (35.11)

For each of the circularly polarized waves (35.10) or linearly polarized waves (35.11), the mean-squared
potential is

〈A2
±〉 = A2 , 〈A2

x〉 = 2A2〈cos2ωt〉 = A2 . (35.12)

Since the polarization vector a has unit magnitude, equation (35.2), the electromagnetic potential is

A = Aa . (35.13)

35.2 Spin sign convention

The standard physics convention is that a particle is said to have spin s if it changes by e−isχ under a right-
handed rotation by angle χ about a preferred direction (cf. �13.8). In quantum mechanics, the preferred
direction is set by an observer who measures spin along a certain direction. In the photon-baryon �uid under
consideration, photons are �observed� by successive electrons o� which they scatter.
The polarization vector a of a photon is always transverse to its direction of motion p̂, equation (35.3).

In a Newman-Penrose tetrad with the 3-axis (z-axis) along the direction p̂ of motion, the vectors γγ± have
spin-weights ±1, because they change by a phase e∓iχ under a right-handed rotation by angle χ about the
3-axis. The contravariant coe�cients a± (raised indices) change as e±iχ, oppositely to γγ± (lowered indices),
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ensuring that the abstract polarization vector a is a tetrad scalar, invariant under rotations. The covariant
coe�cients a± (lowered indices) are

a± = γγ± · a = a∓ , (35.14)

which have spin-weight ±1 opposite to that of the contravariant coe�cients a±. It is convenient to work with
the covariant components a± of the polarization vector, because then the sign of the index ± agrees with
the sign of the spin.

35.3 Photon density matrix

It is necessary to distinguish between photons in mixed states and mixtures of photons in di�erent states. For
example, a system consisting of photons all in a linearly polarized state (35.6) is not the same as a mixture
of purely right-handed and purely left-handed photons. The systems can be distinguished experimentally by
passing the photons through polarizers.
To deal with these distinctions, a statistical ensemble of photons in various polarization states must be

described by a density matrix. Suppose that the system consists of photons in pure polarization states a
with occupation numbers f(a). Then the density matrix f may be de�ned by the tensor

f ≡
∑
a

f(a)a⊗ a∗ . (35.15)

In Newman-Penrose components, the density matrix fab is the 2× 2 complex matrix

fab ≡
∑
a

f(a) aaa
∗
b̄ , (35.16)

where the bar on the index b̄ indicates that the complex conjugate index is to be taken (that is, +̄ = − and
−̄ = +), because complex conjugation �ips spin indices, γγ∗± = γγ∓. In terms of its components, the density
matrix is f = fabγγ

a ⊗ γγb = fabγγā ⊗ γγb̄. The density matrix is Hermitian,

f∗ab = fb̄ā . (35.17)

If the system of photons is measured along the polarization direction a, then the occupation number of
photons with that polarization will be found to be, in accordance with equation (35.5),

f(a) = aā∗abfab . (35.18)

35.3.1 Physical interpretation of the photon density matrix

Since the complex 2× 2 photon density matrix fab is Hermitian, equation (35.17), it is diagonalizable with
2 real eigenvalues. The form (35.15) of the density matrix ensures that the matrix is positive de�nite, that
is, its eigenvalues are both non-negative. If only one eigenvalue is positive, and the other is zero, then the
density matrix represents a pure state. The most general pure state consists of photons all in the same (in
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general elliptically polarized) state. The most general impure state is equivalent to a mixture of photons in
two orthogonal (in general elliptically polarized) states. In thermodynamic equilibrium, the two eigenvalues
are equal, and the density matrix describes a mixture of equal numbers of photons in any pair of orthogonal
states.
The Newman-Penrose components of the 2× 2 density matrix fab comprise a complex scalar (spin 0) f+−

and a complex tensor (spin 2) f++. Complex conjugation �ips the indices +↔ −,

f∗+− = f−+ , f∗++ = f−− . (35.19)

Since a∗ ·a = 1 for each photon, the trace of the density matrix (35.16) counts the total number of photons.
The unpolarized scalar occupation number f de�ned earlier, equation (31.28), equals one when there is one
photon in either of the two polarization states, so the trace equals twice the unpolarized occupation number
f ,

faa =
∑
γ

f(aγ) = 2f . (35.20)

The complex spin-0 component f+− (= f−+, the coe�cient of γγ− ⊗ γγ+) of the density matrix measures
the intensity of left circularly polarized light, while its complex conjugate f−+ (= f+−, the coe�cient of
γγ+ ⊗ γγ−) measures the intensity of right circularly polarized light. The sum 2f = f+− + f−+, which is
twice the real part of f+−, measures the total intensity of light in both polarizations, while the di�erence
f+− − f−+, which is twice the imaginary part of f+−, measures the net circularly polarized intensity, the
excess of left over right circular polarized intensities.
The complex spin-2 component f++ measures the degree of linear polarization of the light. A photon

linearly polarized in the direction χ, equation (35.6), contributes a density matrix

aχ ⊗ a∗χ = 1
2 (γγ+ ⊗ γγ− + γγ− ⊗ γγ+) + 1

2e
−2iχγγ+ ⊗ γγ+ + 1

2e
2iχγγ− ⊗ γγ− . (35.21)

The �rst terms on the right hand side of equation (35.21) contribute a trace of one, which is as it should
be for a single photon. The remaining terms imply f++ = 1

2e
2iχ (= f−−, the coe�cient of γγ− ⊗ γγ−), with

complex conjugate f−− = 1
2e
−2iχ (= f++, the coe�cient of γγ+⊗γγ+). Twice the amplitude of f++ gives the

degree of linear polarization, which here is one (100% linearly polarized), while the phase 2χ of f++ measures
the angle χ by which the direction of polarization is rotated right-handedly from the 1-axis (x-axis).

Concept question 35.2. Elliptically polarized light. Can a beam of elliptically polarized light be
distinguished from a sum of beams of linearly polarized and circularly polarized light? Answer. Yes. A
beam containing photons all in the same elliptically polarized state is in a pure state, which is not equivalent
to any sum of beams of di�erent polarizations. In a beam in a pure state, 100% of the photons will pass
through a matched �lter, whereas in a beam in a mixed state some photons will be passed through and some
will be absorbed by the matched �lter.
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35.3.2 Relation to Stokes parameters

The 4 components of the polarization density matrix fab are related to the 4 conventional real Stokes
parameters I, Q, U , and V by

2f+− = I + iV , (35.22a)

2f++ = Q+ iU . (35.22b)

The Stokes parameter I is the total intensity, the trace of the density matrix,

I = f+− + f−+ = 2 Re f+− = 2f . (35.23)

The Stokes parameters here are normalized so that the total intensity I measures the total occupation
number 2f . Stokes parameters can be normalized other ways, whatever may be convenient. Some of the
ways that astronomers normalize intensity are described in the paragraph containing equation (1.80).

35.4 Temperature �uctuation for polarized photons

Previously, the perturbation to the unpolarized scalar occupation number f = Re f+− was expressed in terms
of the temperature �uctuation, Θ ≡ δT/T , equation (33.38). The temperature �uctuation Θ ≡ Θabγγ

a ⊗ γγb
including polarization can be de�ned similarly in terms of the density matrix fab, equation (35.16), which is
the generalization of the occupation number to include polarization,

1

fab ≡
∂

0

fγ
∂ lnT

Θab . (35.24)

The trace of Θab is twice the scalar temperature �uctuation, Θa
a = 2Θ. The trace-free part of Θab describes

the polarized temperature �uctuation.
Often it is convenient to abbreviate the ab indices to a single spin index s running over 0, 2,

0Θ ≡ Θ+− , 2Θ ≡ Θ++ . (35.25)

The spin subscript s is positioned on the left to distinguish it from harmonic indices `m. The spin components

sΘ are complex. Their complex conjugates can be denoted with a negative index,

−0Θ ≡ 0Θ∗ = Θ−+ , −2Θ ≡ 2Θ∗ = Θ−− . (35.26)

It will be seen in �35.11 that Thomson scattering generates linear polarization but not circular polarization.
In this case the circularly polarized component vanishes, Im Θ+− = 0 (Stokes parameter V = 0), and the
spin-0 component 0Θ is real and equal to the unpolarized temperature �uctuation Θ,

0Θ = Θ . (35.27)

The polarized temperature �uctuation sΘ(η,x, p̂, χ) depends not only on conformal time η, comoving
position x, and photon direction p̂, but also on the angle χ of rotation about the photon direction p̂.
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The spin-s component of the temperature �uctuation varies as sΘ(η,x, p̂, χ) ∝ e−isχ under a right-handed
rotation by angle χ about p̂.

35.5 Summary of equations including polarization

This section summarizes the coupled Boltzmann and Einstein equations needed to compute linear cosmo-
logical �uctuations including photon polarization.
Polarization involves not only scalar (m = 0) but also vector (m = ±1) and tensor (m = ±2) �uctuations

sΘ`m. The hierarchy of Boltzmann and Einstein equations for di�erent m are decoupled from each other, so
scalar, vector, and tensor equations may be calculated separately. Symmetry between positive and negative
m means that in practice equations need be solved only for positive m = 0, 1, and 2. Vector (m = 1) modes
are commonly treated as being negligible, for the reasons given at the end of this section. Thomson scattering
couples unpolarized Θ`m and electric polarized E`m photon multipoles, equations (35.61c) and (35.61d). The
polarized photon Boltzmann equations (35.39b) and (35.39c) couple the electric E`m and magnetic B`m
parts of the polarized multipoles.
The Boltzmann equations for nonbaryonic dark matter and for baryons are equations (35.43) and (35.42),

generalizing the scalar matter equations (33.1) and (33.2).
The Boltzmann equations for polarized photons are given by equations (35.39), with gravitational redshift

source terms G`m (not to be confused with the Einstein tensor) given by equations (35.35), and Thomson-
scattering collision terms C[Θ`m], C[E`m], and C[B`m] given by equations (35.61). These generalize the
scalar Boltzmann equations (33.81) for unpolarized photons.
The Boltzmann equations for neutrinos are equations (35.41), generalizing the scalar neutrino equa-

tions (33.91).
The Boltzmann hierarchies for photons and neutrinos may be truncated as described in �35.11.1.
Scalar, vector, and tensor Einstein equations are equations (33.7), (35.46) and (35.47).
Vector and tensor gravitational potentials W± and h±± are in general complex (with W− = W ∗+ and

h−− = h∗++). Linear vector and tensor �uctuations (of all species) are proportional to the initial amplitudes
W±(0) and h±±(0). Therefore in numerical calculations the initial amplitudesW±(0) and h±±(0) can be taken
to be real, any phase factor being absorbed into a normalization factor. The phase factor cancels in power
spectra, equation (36.25). If the initial amplitudes W±(0) and h±±(0) are real, then the coupled Boltzmann
and Einstein equations ensure thatW± and h±± and the photon multipoles Θ`m, E`m, and B`m remain real,
as do matter and neutrino multipoles. Since the polarized photon multipoles E`m and B`m are real, it can
be convenient numerically to combine them into the complex polarized multipoles 2Θ`m = E`m + iB`m, and
to solve a complex polarized Boltzmann equation whose left hand side is the complex expression (35.33).
Thomson scattering couples the unpolarized �uctuation Θ`m only to the electric part, that is, the real part,
of the polarized �uctuation 2Θ`m = E`m + iB`m.
Collisions (before neutrino decoupling in the case of neutrinos, and before recombination in the case

of photons) tend to drive initial vector (|m| = 1) and tensor (|m| = 2) multipoles of all particle species
to zero, �35.12. Vector gravitational �uctuations W± tend to redshift to zero, equation (29.51), so vector
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�uctuations of all species are expected to be negligible. On the other hand, tensor gravitational �uctuations
h±± (gravitational waves) generated during in�ation survive to low redshift, equation 29.53, and drive tensor
�uctuations in collisionless relativistic species, �rst neutrinos, and then photons near and after recombination.

Exercise 35.3. Boltzmann code including polarization. Upgrade the code you wrote in Exercise 33.1
to implement polarization. Read the summary section 35.5 above for guidance.

35.6 Boltzmann equations for polarized photons

Whereas the unpolarized occupation number f is a scalar, the polarized occupation number fab is a tensor.
The directed derivative ∂m on the left hand side of the Boltzmann equation (33.8) should therefore be
replaced by the covariant derivative Dmfab,

Dmfab = ∂mfab − Γcamfcb − Γcbmfac . (35.28)

However, the polarized (trace-free) part of fab is of linear order, and the tetrad-frame connections Γabm with
a, b both spatial are all of linear order, equation (29.23) (in any gauge), so the connection terms on the right
hand side of equation (35.28) are of quadratic order and can be neglected. Consequently no additional terms
depending on connections arise on the left hand side of the Boltzmann equation for the polarized photon
distribution.
The Boltzmann equation for the unpolarized photon distribution was given previously by equation (33.44)

in conformal Newtonian gauge. The gravitational G term in this equation arises, equation (33.21), from the
redshifting of photons in the unperturbed photon distribution

0

f . Since the unperturbed photon distribution
is unpolarized, the gravitational redshift terms contribute only to the unpolarized Boltzmann equation, not
to the polarized Boltzmann equation. The unpolarized (spin-0) and polarized (spin-2) photon Boltzmann
equations are thus

Θ̇− ikµΘ−G = C[Θ] , (35.29a)

2Θ̇− ikµ 2Θ = C[2Θ] . (35.29b)

The collision terms C[sΘ] that arise from non-relativistic electron-photon (Thomson) scattering are calculated
in �35.11. In conformal Newtonian gauge, and including not only scalar (m = 0) but also vector (|m| = 1)
and tensor (|m| = 2) potentials from Exercise 33.3, equation (33.26), the gravitational redshift term G in
the unpolarized Boltzmann equation (35.29a) is

G(η,k, p̂) = Φ̇ + ikµΨ + ikµ p̂ ·W + p̂ap̂bḣab . (35.30)
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35.7 Spherical harmonics of the polarized photon distribution

The spin-s component sΘ of the temperature �uctuation is naturally expanded in spin-s spherical harmonics

sY`m, �35.13 (Seljak and Zaldarriaga, 1997; Zaldarriaga and Seljak, 1997; Hu and White, 1997). With the
normalization conventional in CMB studies, the harmonic expansion of the polarized temperature �uctuation

sΘ is, consistent with the expansion (33.47) of the scalar (m = 0) �uctuation Θ, with k̂ taken along the
3-direction (z-direction),

sΘ(η,k, p̂, χ) =

∞∑
`=|s|

min(`,2)∑
m=−min(`,2)

(−i)`+m−s
√

4π(2`+ 1) sΘ`m(η,k)−sY
∗
`m(p̂, χ)

=

∞∑
`=|s|

min(`,2)∑
m=−min(`,2)

(−i)`+m−s(2`+ 1) sΘ`m(η,k)D`ms(φ, θ, χ) , (35.31)

where sY`m(p̂, χ) are the spin-weighted spherical harmonics de�ned by equation (35.77), andD`ms(φ, θ, χ) are
the Wigner rotation matrices discussed in �35.13.1. The angles θ and φ are the polar coordinates of the photon
direction p̂. Modes sΘ`m with |m| = 0, 1, 2 correspond respectively to scalar, vector, and tensor �uctuations.
The index on the scalar (m = 0) �uctuation is often omitted for brevity, sΘ`0 = sΘ`. The orthogonality
relation (35.100) implies that the spin harmonics sΘ`m are angular integrals of the temperature �uctuation

sΘ over momentum directions p̂, generalizing equation (33.48),

sΘ`m(η,k) = i`+m−s
∫

sΘ(η,k, p̂, 0)D∗`ms(φ, θ, 0)
dop
4π

. (35.32)

The expansion (35.31) di�ers from the convention of Hu and White (1997) in that (a) the expansion is
with respect to −sY ∗`m as opposed to sY`m, (b) there is an extra factor of (−i)m−s, (c) the spin harmonics

−sY
∗
`m(p̂, χ) include a factor of e−isχ. The point of expanding with respect to −sY ∗`m is that sΘ`m is then the

coe�cient of the spin-weight s and m (rather than s and −m) term under rotations about respectively the p̂
and k̂ directions, consistent with the convention in this book that the spin-weight of an object can be read o�
from its covariant indices. The factor of (−i)m−s is introduced to cancel the factor of (−)m−s between D`ms

and its complex conjugate, equation (35.88), ensuring reality conditions (35.40) on the harmonic coe�cients
that match those on the Newman-Penrose components of the gravitational potentials. The factor of e−isχ

makes explicit the spin factor that Hu and White (1997) absorb into basis vectors γγa⊗γγb of the polarization
matrix.

35.7.1 Boltzmann equations for spherical harmonics of the polarized photon

distribution

The action of µ ≡ cos θ ≡ k̂ · p̂ on the spin harmonics follows from from the recursion formula (35.103) for the
rotation matricesD`mn. The resulting expression for the terms sΘ̇−ikµ sΘ of the Boltzmann equation (35.29),
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common to all spins s and all harmonics `m, is(
sΘ̇− ikµ sΘ

)
`m

= sΘ̇`m + k

[
κ`ms

2`+ 1
sΘ`−1,m +

ism

`(`+ 1)
sΘ`m −

κ`+1,ms

2`+ 1
sΘ`+1,m

]
, (35.33)

where the coe�cients κ`mn are given by equation (35.104). The harmonic expansion of the gravitational
term G, equation (35.30), in the unpolarized Boltzmann equation is

G(η,k, p̂) =

2∑
`=0

∑̀
m=−`

(−i)`+m(2`+ 1)G`m(η,k)D`m0(φ, θ) , (35.34)

with non-vanishing harmonics (do not confuse G`m here with the Einstein tensor)

G00 = Φ̇ , (35.35a)

G10 = −k
3

Ψ , (35.35b)

G2,±1 = − k

5
√

3
W± , (35.35c)

G2,±2 =

√
2

5
√

3
ḣ±± , (35.35d)

where W± ≡ 1√
2
(Wx ± iWy) are the spin-weight ±1 components of the vector perturbation Wa, equa-

tion (27.22), and h±± ≡ hxx ± i hxy are the spin-weight ±2 components of the tensor perturbation hab,
equation (27.23).

35.7.2 Electric and magnetic parts of the polarized photon distribution

The Wigner rotation matrices D`ms transform under a variety of discrete transformations. Of particular
relevance here is one that �ips the spin index s, which is accomplished by a parity transformation (35.89).
Parity eigenstates of the rotation matrices are

(1± P )D`ms(φ, θ, χ) = D`ms(φ, θ, χ)±D`ms(φ+ π, π − θ,−χ)

= D`ms(φ, θ, χ)± (−)`D`m,−s(φ, θ, χ) . (35.36)

The harmonics ±sΘ`m of the spin ±s �uctuation thus split into an �electric� part sE`m of parity (−)` and a
�magnetic� part sB`m of opposite parity (−)`+1,

±sΘ`m = sE`m ± i sB`m . (35.37)

The names electric and magnetic come from the fact that the parity is the same as that of electric and
magnetic multipole radiation; E and B here are unrelated to the electric and magnetic �elds of the underlying
electromagnetic radiation. There being no ambiguity, the spin index s is dropped on sE and sB for the spin
±2 �uctuation,

±2Θ`m = E`m ± iB`m , (35.38)
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that is, E`m ≡ 2E`m and B`m ≡ 2B`m. The resolution of the polarized �uctuation into parity eigenstates is
motivated by the fact that the gravitational redshift term G and Thomson scattering collision terms C[sΘ]

are invariant under a parity transformation, so parity is an eigenstate of evolution of the polarized photon
distribution. As a consequence, the parity components of the temperature �uctuation satisfy the reality
conditions (35.40).
Resolved into parity eigenstates, the Boltzmann equations (35.29) for the unpolarized and polarized tem-

perature �uctuations are(
Θ̇− ikµΘ

)
`m

= Θ̇`m + k

(
κ`m0

2`+ 1
Θ`−1,m −

κ`+1,m0

2`+ 1
Θ`+1,m

)
= G`m + C[Θ`m] , (35.39a)

(
Ė − ikµE

)
`m

= Ė`m + k

(
κ`m2

2`+ 1
E`−1,m −

2m

`(`+ 1)
B`m −

κ`+1,m2

2`+ 1
E`+1,m

)
= C[E`m] , (35.39b)

(
Ḃ − ikµB

)
`m

= Ḃ`m + k

(
κ`m2

2`+ 1
B`−1,m +

2m

`(`+ 1)
E`m −

κ`+1,m2

2`+ 1
B`+1,m

)
= C[B`m] , (35.39c)

with coe�cients κ`mn given by equation (35.104). The azimuthal index m runs over scalar (m = 0), vector
(m = ±1), and tensor (m = ±2) modes. Do not confuse the azimuthal index m with spin s: the unpolarized
temperature �uctuation Θ`m ≡ 0Θ`m is spin 0, while the polarized temperature �uctuations E`m ≡ 2E`m
and B`m ≡ 2B`m are spin 2. The harmonic number ` must be greater than or equal to both m and s,
so ` runs from |m| to ∞ for Θ`m, and from 2 to ∞ for E`m and B`m. When combined with the Einstein
equations, �35.10, the Boltzmann equations (35.39) imply the reality conditions (35.40), which among other
things imply that scalar B-modes vanish identically, B`0 = 0.

Concept question 35.4. E and B modes versus Stokes parameters. Since 2Θ = E+ iB, aren't E and
B (up to a factor) the same as the Stokes parameters Q and U in 2Θ ∝ f++ ∝ Q+ iU , equation (35.22a)?
Answer. No. In sΘ = sE + i sB it is necessary to distinguish the two spins s = 2 and s = −2. The two sets
of opposite spin s = ±2 are expansions in eigenfunctions D`ms of opposite spin s. In other words, 2E is not
the same as −2E because the eigenfunctions D`m2 and D`m,−2 are not the same, even though the coe�cients

sE`m are the same for s = ±2.

35.7.3 Reality conditions on the polarized photon distribution

The initial photon distribution well before recombination is in thermodynamic equilibrium and therefore
unpolarized. The Einstein scalar (33.7), vector (35.46), and tensor (35.47) equations show that the scalar Ψ

and Φ, vector W±, and tensor h±± gravitational potentials are sourced by unpolarized (s = 0) temperature
multipoles Θ`m with respectively |m| = 0, 1, and 2 (and |m| ≤ ` ≤ 2). The unpolarized temperature multi-
poles Θ`m with |m| = 0, 1, and 2 are in turn sourced by gravitational redshift terms G`m, equations (35.35).
Modes with di�erent m (= −2,−1, 0, 1, 2) are decoupled: gravitational modes of given m can generate only
temperature �uctuations of the same m, and vice versa.
Thomson scattering generates spin 2 electric quadrupole polarization E2m from unpolarized quadrupole
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multipoles Θ2m, equation (35.61d). The polarized Boltzmann hierarchy (35.39) then feeds ` ≥ 3 electric E`m
and, for m 6= 0, magnetic B`m multipoles with the same m.
The scalar potentials Ψ and Φ are real, while the Newman-Penrose components W± and h±± components

of the vector and tensor potentials are complex, satisfying W ∗+ = W− and h∗++ = h−−. The Einstein and
Boltzmann equations then imply the reality conditions

Θ∗`m = Θ`,−m , E∗`m = E`,−m , B∗`m = −B`,−m . (35.40)

In particular, all scalar (m = 0) �uctuations are real. The scalar magnetic �uctuation vanishes, B`0 = 0.
The multipoles Θ`m, E`m, and B`m are complex for m 6= 0.
As remarked in �35.5, without loss of generality the initial gravitational potentials W±(0) and h±±(0)

can be taken to be real by absorbing a complex phase factor into their normalization (the phase factor for
negative m is the complex conjugate of the phase factor for positive m; and the phase factor is di�erent
for di�erent m and/or wavevector k). All linear �uctuations are proportional to the same phase factor. The
phase factor cancels in power spectra, equation (36.25). If the initial gravitational potentials are real, then
the Einstein and Boltzmann equations preserve that reality, so that all multipoles, including the gravitational
potentials, the photon multipoles Θ`m, E`m, and B`m, and matter and neutrino multipoles, are real.

Concept question 35.5. Fluctuations with |m| ≥ 3? Are there �uctuations with |m| ≥ 3? Answer.
No, because there are no gravitational potentials with |m| ≥ 3. Well before recombination in the case of
photons, or well before electron-positron annihilation in the case of neutrinos, collisions drive the distribution
into thermodynamic equilibrium, characterized only by its �rst two moments, the monopole and dipole, or
equivalently the density and bulk velocity. The monopole (` = 0) admits m = 0, while the dipole (` = 1)
admits m = 0 or m = ±1. Later, free streaming allows higher multipoles (` ≥ 2) to develop, but symmetry
about the wavevector direction k̂ ensures that the azimuthal mode m remains unchanged. Gravity supports
scalar (m = 0), vector (m = ±1), and tensor (m = ±2) modes, and these source photon or neutrino
multipoles of the same m, equations (35.35). Thomson scattering sources polarized �uctuations, but leaves
the azimuthal mode m remains unchanged.

35.8 Neutrino Boltzmann equations

Vector and tensor Einstein equations (35.46) and (35.47) are sourced by neutrinos as well as photons.
Relativistic neutrinos satisfy a set of Boltzmann equations similar to the unpolarized photon Boltzmann
equations (35.39a) but without scattering terms,(

Ṅ − ikµΘ
)
`m

= Ṅ`m + k

(
κ`m0

2`+ 1
N`−1,m −

κ`+1,m0

2`+ 1
N`+1,m

)
= G`m , (35.41)

where µ ≡ k̂ · p̂ is the cosine of the angle between the wavevector k and the neutrino momentum p. Here G`m
are the harmonics (35.35) of the gravitational term G in the Boltzmann equation, the same as for photons.
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Equations (35.41) include not only scalar (m = 0) but also vector (m = ±1) and tensor (m = ±2) equations.
The scalar equations are the same as before, equations (33.91).

Concept question 35.6. Are neutrinos polarized? Relativistic neutrinos are purely left-handed, spin
antialigned with their direction of motion. If neutrinos are pure left-polarized, should they not be treated
using a polarized density matrix? Answer. A pure circularly polarized distribution is in a pure state, not
a mixed state, and is described by the spin-weight s = 0 (not s = ±2) component f+− of the polarization
density matrix, �35.3.1. Gravity (in the present case, the gravitational redshift term G) is invariant under
a parity transformation, and a�ects left- and right-handed spin states the same. The collisionless neutrino
Boltzmann equation is a spin 0 equation.

35.9 Matter Boltzmann equations

Matter Boltzmann equations contain vector (m = ±1) as well as scalar (m = 0) parts. Matter sources con-
tribute to the vector Einstein equations (35.46). The scalar equations are the same as before, equations (33.1)
and (33.2). The Boltzmann equations for nonbaryonic cold dark matter including scalar and vector parts are

δ̇c − k vc = 3 Φ̇ (m = 0) , (35.42a)

v̇c,m +
ȧ

a
vc,m = 0 (m = 0,±1) . (35.42b)

The Boltzmann equations for baryonic matter including scalar and vector parts are

δ̇b − k vb = 3 Φ̇ (m = 0) , (35.43a)

v̇b,m +
ȧ

a
vb,m = − |τ̇ |

R
(vb,m − 3Θ1m) (m = 0,±1) . (35.43b)

35.10 Vector and tensor Einstein equations

The photon and neutrino energy-momenta T kl depends only on the unpolarized photon and neutrino dis-
tributions Θ and N . The scalar components of the photon energy-momenta were given previously by equa-
tions (33.53). The vector components of the photon energy-momenta are given in terms of unpolarized
multipole moments Θ`m by, from equation (33.51) with integrals over Θ being converted to harmonics Θ`m

using equations (35.32),

T 0∓ = −T0± = 4 ρ̄Θ1,±1 , (35.44a)

T 3∓ = T3± = −i 4√
3
ρ̄Θ2,±1 , (35.44b)
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while the tensor components are

T∓∓ = T±± =
4
√

2√
3
ρ̄Θ2,±2 . (35.45)

Massless neutrinos satisfy a similar set of equations.
The scalar Einstein equations were given previously by equations (33.7). The vector Einstein equations

are, from equations (29.50),

−k2W± = −16πGa2 (ρ̄cvc,± + ρ̄bvb,± + 4ρ̄γΘ1,±1 + 4ρ̄νN1,±1) , (35.46a)

k
( ∂
∂η

+ 2
ȧ

a

)
W± =

64√
3
πGa2 (ρ̄γ Θ2,±1 + ρ̄ν N2,±1) , (35.46b)

where v± ≡ 1√
2
(vx ± i vy) are the spin-weight ±1 components of the bulk velocity of a species. Only one of

the two equations (35.46) is needed; the other is satis�ed automatically as long as total energy-momentum
is conserved. The tensor Einstein equations are, from equation (29.52),( ∂2

∂η2
+ 2

ȧ

a

∂

∂η
+ k2

)
h±± = −32

√
2√

3
πGa2 (ρ̄γΘ2,±2 + ρ̄νN2,±2) . (35.47)

35.11 Polarized Thomson scattering

The squared invariant amplitude |M|2 for electron-photon scattering by non-relativistic electrons with ran-
dom spins, in which the initial photon polarization state is a (not to be confused with cosmic scale factor a)
and the �nal polarization state a′, is, generalizing the unpolarized expression (33.55),

|M|2 = (8πα)2|a′ · a|2 , (35.48)

where α ≡ e2/(~c) is the �ne-structure constant. The di�erential cross-section dσT/do
′ for polarized Thomson

scattering is related to the squared invariant amplitude |M|2 by, in units c = ~ = 1,

dσT

do′
=
|M|2

(8πme)2
=
α2

m2
e

|a′ · a|2 = r2
e |a′ · a|2 =

3

8π
σT |a′ · a|2 , (35.49)

where re = e2/mec
2 is the classical electron radius, and σT = (8π/3)r2

e is the total Thomson cross-section.
The collision integral C[Θ] for unpolarized Thomson scattering was given previously by equation (33.74).

The same equation holds for polarized scattering, except that the scalar temperature �uctuation Θ is replaced
by the set of 4 quantities Θab, and |M|2 becomes a 4× 4 matrix (which reduces to a 3× 3 matrix if there is
no circular polarization, as will be found to be the case below). The collision integral (33.74) generalizes to

C[Θab(p̂, χ)] =
n̄ea

16πm2
e

∫ [
|M|2

]a′b′
ab

[
(p̂− p̂′) · vvvb −Θa′b′(p̂, χ) + Θa′b′(p̂

′, χ′)
] do′

4π

dχ′

2π
, (35.50)

the integration over dχ′/2π enforcing orthogonality of spin states. The baryon bulk velocity vvvb term in the
integrand comes from a di�erence in the unperturbed, unpolarized photon distribution, the �rst terms on
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Figure 35.1 Polarized light incident in the z direction (wiggly blue line) on an electron causes the electron to oscillate

in the direction a of polarization (red arrow). The oscillating electron emits scattered light at the same frequency

(wiggly blue line). For incident light with polarization vector ax in the scattering plane (left), the polarization vector

ax′ of the scattered light is rotated by the scattering angle α, and reduced in amplitude by a factor cosα, so that

ax · ax′ = cosα. On the other hand, for incident light with polarization vector ay orthogonal to the scattering plane

(right), the polarization vector ay′ of the scattered light is the same as that of the incident light, so that ay ·ay′ = 1.

the right hand side of equation (33.65), so the integral over the baryon velocity term yields the same result
as in the unpolarized case. The term Θa′b′(p̂) is independent of p̂′, and can be taken outside the integral.
The collision integral (35.50) thus reduces by the same manipulations (33.75)�(33.78) as in the unpolarized
case to

C[Θab(p̂, χ)] = |τ̇ |
{
p̂ · vvvb δab,0 −Θab(p̂, χ) +

∫
3

2

[
|a′ · a|2

]a′b′
ab

Θa′b′(p̂
′, χ′)

do′

4π

dχ′

2π

}
, (35.51)

generalizing the unpolarized collision integral (33.78). The Kronecker delta δab,0 is to be interpreted as equal
to 1 for the unpolarized collision term C[Θ], and zero otherwise.
Choose axes such that the momentum p of the incoming photon is along the z-direction, and the momentum

p′ of the scattered photon is in the x�z plane, as illustrated in Figure 35.1. If the scattering angle is α, then
the scalar products of polarization vectors in the x and y directions are a′x ·ax = cosα, a′x ·ay = 0, a′y ·ay = 1.
In this special frame aligned with the scattering plane, the integrand on the right hand side of the collision
integral (35.51) is

3

2

[
|a′ · a|2

]a′b′
ab

Θa′b′(p̂
′) =

3

2

 cos2α 0 0

0 cosα 0

0 0 1

 Θxx

Θxy

Θyy

 . (35.52)

Since Θab is Hermitian, Θxx and Θyy are real, but Θxy may be complex, with Θ∗xy = Θyx. Well before
recombination, frequent collisions drive the photons into thermodynamic equilibrium, so the photon distri-
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bution is initially unpolarized, with Θxx = Θyy and Θxy = 0. Equation (35.52) shows that if light incident
in a given direction is initially unpolarized (Θab isotropic), then the scattered light will be polarized (Θab

anisotropic). But if Θxy is initially real, it remains real after a scattering event. Since the imaginary part
of Θxy is associated with circular polarization, Thomson scattering generates linear polarization, but not
circular polarization.
In Newman-Penrose components, the absence of circularly polarized light implies that Θ+− = Θ−+ = Θ,

where Θ is the unpolarized temperature �uctuation. In Newman-Penrose components, equation (35.52)
becomes

3

2

[
|a′ · a|2

]a′b′
ab

Θa′b′(p̂
′) =

3

4

 1 + cos2α − 1
2 sin2α − 1

2 sin2α

− sin2α 1
2 (1 + cosα) 1

2 (1− cosα)

− sin2α 1
2 (1− cosα) 1

2 (1 + cosα)

 Θ

Θ++

Θ−−



=
3

2


2
3 d000 + 1

3 d200 −
√

1
6 d202 −

√
1
6 d20−2

−
√

2
3 d220 d222 d22−2

−
√

2
3 d2−20 d2−22 d2−2−2


 Θ

Θ++

Θ−−

 , (35.53)

where the functions dlmn(α) are the polar part of the Wigner rotation matrix, equation (35.84). Equa-
tion (35.53) can be written

3

2

[
|a′ · a|2

]s′
s s′Θ = Θ δs0 +

∑
s′

(−i)s
′−scss′d2ss′(α) s′Θ , (35.54)

with s′ summed over 0, 2,−2. The �rst term on the right hand side of equation (35.54) is the unpolarized con-
tribution, while the remainder is the polarized contribution. The coe�cients css′ encapsulate the polarization
structure of Thomson scattering,

css′ =


1
2

√
3
8

√
3
8√

3
2

3
2

3
2√

3
2

3
2

3
2

 . (35.55)

The coe�cients depend only on the absolute value of the spins, css′ = c|s||s′|.
The addition theorem (35.109) allows the rotation matrix d2ss′(α) from the p̂′ frame into the p̂ frame to

be written as a product of rotation matrices from the p̂′ frame into the k̂ frame into the p̂ frame,

3

2

[
|a′ · a|2

]s′
s s′Θ(p̂′, χ′) = Θ(p̂′) δs0 +

∑
s′

(−i)s
′−scss′ s′Θ(p̂′, χ′)

2∑
m=−2

D2ms(φ, θ, χ)D∗2ms′(φ
′, θ′, χ′) .

(35.56)
Figure 35.2 illustrates the various angles involved in transforming from the scattering frame to a frame where
the wavevector k̂ is along the z-axis.
When s′Θ(p̂′, χ′) in equation (35.56) is expanded in rotation matrices, equation (35.31), the orthogonality
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α

k̂

φ′ − φθ

p̂

π − χ
p̂′χ′

θ′

Figure 35.2 Angles between photon momentum p̂, scattered photon momentum p̂′, and wavevector k̂.

of the rotation matrices, equation (35.100), makes the integration over directions p̂′ and χ′ straightforward,
yielding

∫
3

2

[
|a′ · a|2

]s′
s s′Θ(p̂′, χ′)

do′

4π

dχ′

2π
= Θ00 δs0 +

2∑
m=−2

(−i)2+m−sD2ms(φ, θ, χ)
∑
s′

css′ s′Θ2m . (35.57)

The sum over css′ in equation (35.57) is

∑
s′

css′ s′Θ2m = cs0Θ2m + 2cs2E2m = cs0

(
Θ2m +

√
6E2m

)
. (35.58)

The collision integral (35.51) is then

C[sΘ(p̂, χ)] = |τ̇ |

[
p̂ · vvvb δs0 − sΘ(p̂) + Θ00 δs0 + cs0

2∑
m=−2

(−i)2+m−sD2ms(φ, θ, χ)(Θ2m +
√

6E2m)

]
.

(35.59)
Expanded in harmonics, the collision integral is

C[sΘ] =

∞∑
`=|s|

∑̀
m=−`

(−i)`+m−s(2`+ 1)C[sΘ`m]D`ms(φ, θ, χ) , (35.60)
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with collision terms for the individual harmonics being

C[Θ00] = 0 , (35.61a)

C[Θ1m] = −|τ̇ |
[
Θ1m −

1

3
vb,m

]
, (35.61b)

C[Θ2m] = −|τ̇ |
[
Θ2m −

1

10
(Θ2m +

√
6E2m)

]
, (35.61c)

C[E2m] = −|τ̇ |
[
E2m −

√
6

10
(Θ2m +

√
6E2m)

]
, (35.61d)

C[B2m] = −|τ̇ |B2m , (35.61e)

C[sΘ`m] = −|τ̇ | sΘ`m (` ≥ 3) . (35.61f)

Scalar, vector, and tensor modes correspond to those with respectively m = 0, ±1, and ±2.

Exercise 35.7. Photon di�usion including polarization. A di�usion approximation for the photon
quadrupole �uctuation Θ2 is obtained by neglecting time derivatives, Θ̇2 = 0, and higher order multipoles,
Θ3 = 0, in the Boltzmann equation for Θ2. Without polarization, this led to the quadrupole (32.67) in the
unpolarized Boltzmann equation (33.81c). Derive the di�usion approximation for the photon quadrupole Θ2

taking into account polarization.
Solution. With polarization, the Boltzmann equations for the quadrupole scalar (`m = 20) unpolarized
and polarized �uctuations Θ2 and E2 are coupled to each other by Thomson-scattering collision terms,
equations (35.61c) and (35.61d). The Boltzmann equations are (the m = 0 subscript on Θ`m and E`m is
dropped in accordance with the standard convention)

Θ̇2 +
k

5
(2Θ1 − 3Θ3) = −|τ̇ |

[
Θ2 −

1

10
(Θ2 +

√
6E2)

]
, (35.62a)

Ė2 −
k√
5
E3 = −|τ̇ |

[
E2 −

√
6

10
(Θ2 +

√
6E2)

]
. (35.62b)

The di�usion approximation amounts to setting time derivatives to zero, Θ̇2 = Ė2 = 0, and higher order
multipoles to zero, Θ3 = E3 = 0, which reduces equations (35.62) to

2k

5
Θ1 = −|τ̇ |

[
Θ2 −

1

10
(Θ2 +

√
6E2)

]
, (35.63a)

0 = −|τ̇ |
[
E2 −

√
6

10
(Θ2 +

√
6E2)

]
. (35.63b)

The equation (35.63b) for E2 implies that

E2 =

√
3

8
Θ2 . (35.64)
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Inserting this into the equation (35.63a) for Θ2 implies

Θ2 = − 8k

15|τ̇ |
Θ1 . (35.65)

This looks like the earlier unpolarized estimate (32.67), except that the earlier factor 4
9 is replaced by the

factor 8
15 . The revised di�usion coe�cient changes the factor 8

9 to 16
15 in the photon-baryon momentum

conservation equations (32.74)�(32.76).

35.11.1 Truncating the polarized Boltzmann hierarchy

As in the unpolarized case, �33.10.1, photons are tightly coupled to baryons by scattering well before recom-
bination, and stream freely well after recombination.
Prior to recombination, when |τ̇ | is large, keeping only the dominant sΘ`m term in the Boltzmann hierar-

chy (35.39) implies the tight-couipling approximation, generalizing the unpolarized equation (33.83),

sΘ`m ≈ −
kκ`ms

(2`+ 1)|τ̇ | s
Θ`−1,m (` ≥ 3) , (35.66)

which holds for both unpolarized (s = 0) and polarized (s = 2) multipoles.
Conversely, multipoles sΘ`m in the free-streaming limit are obtained, similarly to the unpolarized case

�34.6.1, from solution of the polarized radiative transfer equations (36.14). The radiative transfer equa-
tions (36.14) involve unpolarized and polarized spin spherical Bessel functions j`mm and ε`2m + i β`2m =

j`2m2 = j`22m. The recurrence (35.117) implies that the unpolarized and polarized spin spherical Bessel
functions satisfy, generalizing equation (34.47),

κ`+1,m0

`+m+ 1
j`+1,mm =

2`+ 1

y
j`mm −

κ`m0

`−m
j`−1,mm (` > m ≥ 0) , (35.67a)

κ`+1,m2

`+ 3
j`+1,22m = (2`+ 1)

[
1

y
− im

`(`+ 1)

]
j`22m −

κ`m2

`− 2
j`−1,22m (` ≥ 3) . (35.67b)

Corresponding linear combinations of multipoles in the radiative transfer equations (36.14) yield an inte-
gral similar to that on the right hand side of the neutrino equation (34.48); the integral is small in the
free-streaming limit. The result is the free-streaming approximation for unpolarized and polarized photon
multipoles (note y → −kη), generalizing equation (33.84),

κ`+1,m0

`+ |m|+ 1
Θ`+1,m(η,k) ≈ − 2`+ 1

kη
Θ`m(η,k)− κ`m0

`− |m|
Θ`−1,m(η,k) , (35.68a)

κ`+1,m2

`+ 3
2Θ`+1,m(η,k) ≈ − (2`+ 1)

[
1

kη
+

im

`(`+ 1)

]
2Θ`m(η,k)− κ`m2

`− 2
2Θ`−1,m(η,k) . (35.68b)

Normally the Boltzmann equations would be truncated at a suitably large harmonic number `, but if the
equations are truncated at small ` (for example, ` = 1 for unpolarized scalar �uctuations, m = s = 0, yields
the hydrodynamic approximation, �32.2), then unpolarized multipoles Θ`m with ` = |m| and m = 0 or ±1

in equations (35.68a) should be replaced by Θ00 → Θ00 + Ψ and Θ1,±1 → Θ1,±1 + 1
3W±.
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Approximations similar to the unpolarized free-streaming approximation (35.68a) hold also for neutrino
multipoles N`m, generalizing the scalar (m = 0) free-streaming approximation (33.92).

35.12 Initial conditions for vector and tensor �uctuations

Collisions tend to isotropize particle distributions, leaving only the monopole moment `m = 00 �nite. In the
particular case of the dipole, ` = 1, the Boltzmann equation (30.11b) contains a redshift term proportional to
(1− 3w)ȧ/a that drives the velocity to decay as v ∝ a3w−1. The redshift term drives the velocity of massive
species, w = 0, to decay as v ∝ a−1. The redshift term vanishes for relativistic species, w = 1

3 , but drag from
collisions with massive species still causes the velocity of relativistic species to decay. Thanks to collisions,
the vector and tensor �uctuations of all particle species were initially close to zero. Although neutrinos are
presently collisionless, they were collisional prior to neutrino decoupling, and were isotropized at that time.
In the absence of a vector source, the vector Einstein equation (29.50a) forces the vector potential Wa to

vanish,

Wa = 0 . (35.69)

With no vector gravitational potential, there is no potential to drive vector multipoles of particle species
away from their initial zero values. Thus all vector components of all species should remain essentially zero.
This conclusion applies only to scales where �uctuations are linear: at nonlinear scales, stream-crossing and
collapse generate non-zero vector components (rotations) (Hahn, Angulo, and Abel, 2015). See Exercise 35.9
for more.
In contrast to the vector potential, the tensor gravitational potential h±± in the absence of sources has

a mode that remains constant outside the horizon, equation (29.53). This tensor gravitational potential
drives tensor multipoles of collisionless species such as neutrinos, and also photons after recombination.
Exercise 35.10 explores the initial evolution of tensor multipoles of neutrinos.

Exercise 35.8. Generic behaviour of scalar, vector, and tensor �uctuations of neutrinos. This
exercise generalizes Exercise 32.7 to the case of vector (m = ±1) and tensor (m = ±2) �uctuations of massless
neutrinos. Start with the two lowest non-vanishing Boltzmann equations (35.41), those forN`,±m with ` = |m|
and |m|+1, and eliminate the multipole with ` = |m|+2 using the free-streaming approximation (35.68a).
Conclude that, generalizing equation (32.91),(

d2

dη2
+

2

η

d

dη
+ k2

)
(N0 − Φ) = −k2(Ψ + Φ) , (35.70a)(

∂2

∂η2
+

4

η

∂

∂η
+ k2

)
N1,±1 = −k

2

3
W± , (35.70b)(

∂2

∂η2
+

6

η

∂

∂η
+ k2

)(
N2,±2 −

√
2

5
√

3
h±±

)
= −
√

2 k2

5
√

3
h±± . (35.70c)
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Equations (35.70) are forced, damped wave equations with e�ective sound speed equal to the speed of light.
Generically, neutrinos are decaying waves in which:
1. Scalar: N0 − Φ oscillates about −(Ψ + Φ);

2. Vector: N1,±1 oscillates about − 1
3W±;

3. Tensor: N2,±2 −
√

2
5
√

3
h±± oscillates about −

√
2

5
√

3
h±±.

These conclusions hold for any relativistic, freely streaming particles, so apply also to photons after recom-
bination.

Exercise 35.9. Initial evolution of vector �uctuations of neutrinos. Show that neutrinos do not
naturally develop vector �uctuations.
Solution. Vector potentials W± are di�erent from scalar or tensor potentials. Scalar and tensor potentials
Ψ + Φ and h±± can and generically do have non-zero constant initial values well outside the horizon,
kη � 1. Scalar potentials can have non-zero initial values because they are sourced by non-zero initial scalar
overdensities Θ0 and N0, equations (33.98). Tensor potentials can have non-zero initial values even if there
are zero initial tensor sources Θ2,±2 and N2,±2, Exercise 35.10. But vector potentials W± are constrained by
the Einstein equation (35.46a), which in standard cosmology precludes the development of a non-zero vector
potential from an initally vanishing vector source. In the radiation-dominated regime following neutrino
decoupling, Thomson scattering tends to isotropize radiation, so neutrinos are expected to be the dominant
vector source on the right hand side of the Einstein equation (35.46a). With only neutrinos sourcing W± in
the Einstein equation (35.46a), the approximate neutrino Boltzmann equation (35.70b) becomes

(
∂2

∂η2
+

4

η

∂

∂η
+ k2

)
N1,±1 = −64πGa2ρ̄ν

3
N1,±1 = −8fν

η2
N1,±1 , (35.71)

in which the �nal expression holds in the radiation-dominated regime, where a ∝ η. The k2 term is negligible
well outside the horizon, kη � 1. Equation (35.71) then has solutions that are power laws N1,±1 ∝ ηq, but
for positive neutrino fraction, fν > 0, there are no solutions for which the index q has a non-negative real
part. So there are no solutions in which N1,±1 is initially zero or �nite (as opposed to divergent).

Exercise 35.10. Initial evolution of tensor �uctuations of neutrinos. Derive how tensor (m = ±2)
neutrino multipoles evolve initially in response to gravitational waves from the early Universe, that is, to
a tensor gravitational potential h±±. This is a generalization of Exercise 33.5, which addressed the initial
evolution of scalar �uctuations of neutrinos.
Solution. The Boltzmann equations for neutrinos are equations (35.41). Prior to neutrino decoupling, col-
lisions drive all tensor multipoles to zero, N`,±2 = 0. After decoupling, neutrinos stream freely, and the
gravitational tensor potential h±± drives the lowest order tensor multipole, ` = 2, away from zero. Lower
order multipoles then drive the higher multipoles, so that the equations reduce to the form Ṅ`,±2 ∝ N`−1,±2.
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The Boltzmann hierarchy (35.41) reduces to, with y ≡ kη,

dN2,±2

dy
=

√
2

5
√

3

dh±±
dy

, (35.72a)

dN`,±2

dy
= −κ`,±2,0

2`+ 1
N`−1,±2 (` ≥ 3) . (35.72b)

Well outside the horizon, y � 1, the gravitational potential h±± is constant, equation (29.53), while all
neutrino multipoles, including the lowest multipole N2,±2, are zero. With the initial condition N2,±2(0) = 0,
equation (35.72a) solves to

N2,±2 =

√
2

5
√

3

[
h±±(y)− h±±(0)

]
. (35.73)

The initial (y � 1) evolution of the gravitational tensor potential depends on the equation of state w of the
background energy-momentum, equation (29.57), and is

h±± ∝ ynJn(y) ∝ 1− y2

4(1 + n)
, (35.74)

with n given in terms of w by equation (29.58). Therefore the ` = 2 neutrino moment evolves initially as
N2,±2 ∝ y2, from equation (35.73),

N2,±2 ≈ −N (0)y2 , N (0) ≡ h±±(0)

10
√

6 (1 + n)
. (35.75)

The Boltzmann equations (35.72b) then imply that the initial (y � 1) behaviour of the neutrino tensor
multipoles in general is

N`±2 = −
√

(`− 2)!(`+ 2)!

4!

2!5!!

`!(2`+ 1)!!
(−y)`N (0) (` ≥ 2) . (35.76)

35.13 Appendix: Spin-weighted spherical harmonics

Spherical harmonics Y`m(θ, φ) are simultaneous eigenfunctions of the squared total angular momentum op-
erator L2 and its component Lz along some direction ẑ. They arise as eigenfunctions of the wave operator
when separated in spherical coordinates.
Spin contributes to angular momentum. When wave equations for �elds of non-zero spin are separated

in a spherically symmetric space, the resulting angular eigenfunctions are the spin-weighted spherical

harmonics, denoted sY`m(θ, φ, χ). The spin-weighted spherical harmonics sY`m(θ, φ, χ) are de�ned in terms
of the Wigner rotation matrix D`mn(φ, θ, χ) discussed in �35.13.1 by

sY`m(θ, φ, χ) ≡
√

2`+ 1

4π
D∗`,m,−s(φ, θ, χ) . (35.77)



928 Cosmological perturbations including polarization

The usual spherical harmonics equal the spin-weighted harmonics with zero spin, Y`m = 0Y`m. The reason
for complex conjugation and the sign �ip of the spin index s on the right hand side of equation (35.77) is
that conventionally sY`m ∝ eimφ−isχ whereas D`ms ∝ e−imφ−isχ. The convention for the Wigner matrix,
which treats the angles φ and χ symmetrically, is more natural than the convention for the spin-weighted
spherical harmonics. In this book the temperature �uctuations sΘ`m are coe�cients of an expansion in
Wigner functions D`ms, equation (35.31), rather than in spin-weighted spherical harmonics.
In the cosmological literature, the spin factor e−isχ in the spin harmonics is often omitted, being absorbed

in the case of photons into the behaviour of the polarization density matrix. The spin harmonics with spin
factor suppressed are abbreviated

sY`m(θ, φ) ≡ sY`m(θ, φ, 0) . (35.78)

35.13.1 Wigner rotation matrix

The full 3-dimensional rotation group is the orthogonal group O(3), or, when extended to objects of half-
integral spin, its covering group SU(2). The eigenfunctions of O(3) or SU(2) are the elements D`m′m of the
Wigner rotation matrix.
The Wigner rotation matrix D`m′m(χ′, α, χ) is de�ned to be the matrix element between harmonics

Y`m(n) in one frame and harmonics Y ∗`m′(n
′) in a frame rotated by Euler angles χ′, α, χ,

δ`′`D`m′m(χ′, α, χ) ≡
∫
Y ∗`′m′(n

′)Y`m(n) do . (35.79)

The quantum numbers `, m′, and m must be either all integral or all half-integral, and ` must exceed both
|m′| and |m|,

` ≥ |m′|, |m| . (35.80)

Equivalently, the spherical harmonics in the unrotated and rotated frames are related by

Y`m(n) =
∑̀

m′=−`

D`m′m(χ′, α, χ)Y`m′(n
′) . (35.81)

Notice that spherical harmonics rotate into linear combinations of harmonics of the same harmonic number
`, which is true because rotation leaves the total angular momentum L2 unchanged. The Euler angles χ′,
α, χ in equation (35.81) correspond to a right-handed rotation of the unit vector n′ by angle χ′ about the
z-axis, followed by a right-handed rotation by angle α about the y-axis, followed by a right-handed rotation
by angle χ about the z-axis, nx

ny
nz

 =

 cosχ sinχ 0

− sinχ cosχ 0

0 0 1

 cosα 0 − sinα

0 1 0

sinα 0 cosα

 cosχ′ sinχ′ 0

− sinχ′ cosχ′ 0

0 0 1

 n′x
n′y
n′z

 . (35.82)

The generator of an in�nitesimal rotation about an axis n is −in · L, and the operator corresponding to a
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�nite rotation by angle χ about direction n is exp(−iχn ·L). Thus the operator D(χ′, α, χ) that generates
a rotation by the 3 Euler angles is

D(χ′, α, χ) = e−iχLze−iαLye−iχ
′Lz . (35.83)

The spherical harmonic components of the rotation operator are correspondingly (no sum over m′, m)

D`m′m(χ′, α, χ) = e−imχd`m′m(α)e−im
′χ′ . (35.84)

The matrix d`m′m(α) is the polar part of the full rotation matrix D`m′m(χ′, α, χ). The polar rotation matrix
d`m′m(α) is a real matrix, orthogonal with respect to m′m, with matrix inverse

d`m′m(α)−1 = d`m′m(−α) = d`mm′(α) = d`,−m′,−m(α) = (−)m
′−md`m′m(α) . (35.85)

A parity transformation α→ π − α �ips the sign of one of the indices m′ or m and multiplies by (−)`−m or
(−)`+m

′
,

d`m′m(π − α) = (−)`−md`,−m′,m(α) = (−)`+m
′
d`,m′,−m(α) . (35.86)

The matrix inverse of the Wigner rotation matrix is its Hermitian conjugate, its complex conjugate transpose,

D`m′m(χ′, α, χ)−1 = D`m′m(−χ,−α,−χ′) = D∗`mm′(χ
′, α, χ) . (35.87)

Complex conjugation �ips the signs of m′ and m, and multiplies by (−)m
′−m,

D∗`m′m(χ′, α, χ) = (−)m
′−mD`,−m′,−m(χ′, α, χ) . (35.88)

A parity transformation α→ π − α, χ′ → χ′ + π, χ→ −χ �ips the sign of m and multiplies by (−)`,

D`m′m(χ′ + π, π − α,−χ) = (−)`D`,m′,−m(χ′, α, χ) . (35.89)

Particular examples of equation (35.81), illustrating how the signs work out, are

Y`m(θ, φ) =
∑̀

m′=−`

D`m′m(χ′, 0, χ)Y`m′(θ, φ+ χ′ + χ) , (35.90a)

Y`m(θ, φ) =
∑̀

m′=−`

D`m′m(φ′, α,−φ)Y`m′(θ + α, φ′) . (35.90b)

Since Y`m(0, 0) =
√

(2`+ 1)/(4π) δm0, the spherical harmonics Y`m(θ, φ) themselves can be expressed in
terms of Wigner rotation matrices,

Y`m(θ, φ) =

√
2`+ 1

4π
D`0m(0,−θ,−φ) =

√
2`+ 1

4π
D∗`m0(φ, θ, 0) , (35.91)

consistent with equation (35.77).
The explicit form of the Wigner rotation matrix elements D`m′m(χ′, α, χ) is derived most elegantly from
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the Newman-Penrose components Lz, L± of the total angular momentum operator L, which are (Newman
and Penrose, 1962; Goldberg et al., 1967; Geroch, Held, and Penrose, 1973)

Lz = −i ∂
∂χ

, L± ≡
e±iχ√

2

(
± ∂

∂α
+ i

1

sinα

∂

∂χ′
+ i

cosα

sinα

∂

∂χ

)
. (35.92)

A similar set of equations holds for the total angular momentum operator L′ in the rotated (primed) frame,
with χ′ ↔ χ. The Newman-Penrose components L± are Hermitian conjugates with respect to integration
over Euler angles,

L†+ = L− , (35.93)

meaning that for any di�erentiable functions f(χ′, α, χ) and g(χ′, α, χ),∫ 2π

0

∫ 2π

0

∫ π

0

f (L+g) sinαdαdχ′dχ =

∫ 2π

0

∫ 2π

0

∫ π

0

(L−f) g sinαdαdχ′dχ , (35.94)

which follows from an integration by parts, the surface term vanishing when the integration is taken over
the full ranges of the Euler angles. The Newman-Penrose components of the angular momentum operator
form a Lie algebra, with commutators

[L+, L−] = Lz , [Lz, L±] = ±L± . (35.95)

The squared total angular momentum operator is

L2 = L+L− + L−L+ + L2
z . (35.96)

The explicit form of the squared total angular momentum operator is

L2 = − 1

sinα

∂

∂α
sinα

∂

∂α
+

1

sin2 α

(
L2
z′ − 2 cosαLz′Lz + L2

z

)
. (35.97)

The Wigner rotation matrix elements D`m′m(χ′, α, χ) are simultaneous eigenfunctions of the total squared
angular momentum operator L2 and of the operators Lz′ ≡ −i ∂/∂χ′, and Lz ≡ −i ∂/∂χ with eigenvalues
respectively `(`+ 1), −m′, and −m,

L2D`m′m(χ′, α, χ) = `(`+ 1)D`m′m(χ′, α, χ) , (35.98a)

Lz′D`m′m(χ′, α, χ) = −m′D`m′m(χ′, α, χ) , (35.98b)

LzD`m′m(χ′, α, χ) = −mD`m′m(χ′, α, χ) . (35.98c)

The polar part d`m′m(α) satis�es

L2d`m′m(α) = − 1

sinα

∂

∂α
sinα

∂

∂α
+

1

sin2 α

(
m′2 − 2m′m cosα+m2

)
d`m′m(α) = `(`+1)d`m′m(α) . (35.99)

The Wigner rotation matrices are orthogonal with respect to integration over Euler angles,∫ 2π

0

∫ 2π

0

∫ π

0

D∗`′m′n′(χ
′, α, χ)D`mn(χ′, α, χ) sinαdαdχ′dχ =

8π2

2`+ 1
δ`′`δm′mδn′n . (35.100)
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It follows from the commutation rules (35.95) that the angular momentum operators L± raise and lower
by one unit the z-component Lz of the angular momentum,

L±D`,m′,−m(χ′, α, χ) =

√
(`±m)(`∓m+ 1)

2
D`,m′,−(m±1)(χ

′, α, χ) . (35.101)

The functions D`mn(χ′, α, χ) and d`mn(α) satisfy many recurrence relations. A set of 4 building-block
recurrences connecting D`mn to D

`± 1
2 ,m±

1
2 ,n±

1
2
is

D 1
2 ,
p
2 ,
q
2
D`mn = (35.102)

1

2`+ 1

(
pq
√

(`− pm)(`− qn)D
`− 1

2 ,m+
p
2 ,n+

q
2

+
√

(`+ 1 + pm)(`+ 1 + qn)D
`+

1
2 ,m+

p
2 ,n+

q
2

)
,

with p = ±1 and q = ±1. Equation (35.102) remains true with D replaced by d everywhere. Numerically the
most useful recurrence relation, stable for increasing `, is, a consequence of equation (35.102),

κ`+1,mnD`+1,mn = (2`+ 1)

[
cosα− mn

`(`+ 1)

]
D`mn − κ`mnD`−1,mn , (35.103)

with

κ`mn ≡
√

(`2 −m2)(`2 − n2)

`2
, (35.104)

starting from D`mn(χ′, α, χ) ≡ e−inχd`mn(α)e−imχ
′
with m or n equal to `, and

(−)`−md``m = d`m` =

√
(2`)!

(`+m)!(`−m)!
cos`+m

(α
2

)
sin`−m

(α
2

)
. (35.105)

Another useful recurrence is

`κ`+1,mnD`+1,mn = (2`+ 1)

[
sinα

∂

∂α
+

mn

`(`+ 1)

]
D`mn + (`+ 1)κ`mnD`−1,mn . (35.106)

Again, equations (35.103) and (35.106) remain true with D replaced by d everywhere. The rotation matrices
D`mn for m = n = 0 reduce to Legendre polynomials,

D`00(χ′, α, χ) = d`00(α) = P`(cosα) , (35.107)

and those for n = 0 are proportional to associated Legendre polynomials,

D`m0(χ′, α, χ) = d`m0(α)e−imχ
′

=

√
(`−m)!

(`+m)!
Pm` (cosα)e−imχ

′
. (35.108)

The analysis of polarization in �35.11 involves resolving a rotation from p̂′ to p̂ into the product of a pair
of rotations with respect to a frame in which the z-axis lies along k̂. A rotation by angle α in the p̂′�p̂ plane
is equivalent to a rotation by Euler angles −χ′, −θ′, −φ′ from the p̂′ frame into the k̂ frame, followed by



932 Cosmological perturbations including polarization

a rotation by Euler angles φ, θ, χ from the k̂ frame into the p̂ frame. The various angles are illustrated in
Figure 35.2. The equivalence implies the addition theorem

d`m′m(α) =
∑̀
n=−`

D`nm(φ, θ, χ)D`m′n(−χ′,−θ′,−φ′)

=
∑̀
n=−`

D`nm(φ, θ, χ)D∗`nm′(φ
′, θ′, χ′) . (35.109)

35.13.2 Spin-weighted spherical Bessel functions

Spin-weighted spherical Bessel functions j`nms(y), with `, n ≥ max(|m|, |s|), are de�ned by equation (36.8).
The de�ning equation (36.8) along with the orthogonality relations of the Wigner matrices equation (35.100),
imply that

j`nms(y) = i`−n
∫ π

0

e−iy cos θd`ms(θ)dnms(θ)
sin θ dθ

2
. (35.110)

Equation (35.110) implies that the spin spherical Bessel functions j`nms are symmetric or antisymmetric in
their �rst two indices `n as their di�erence `− n is even or odd,

j`nms(y) = (−)`−njn`ms(y) . (35.111)

Equation (35.110) also implies that j`nms are symmetric in their last two indices ms, because d`ms(θ) =

d`sm(−θ), equation (35.85),

j`nms = j`nsm . (35.112)

Equation (35.89) implies that a parity �ip transforms d`ms(π − θ) = (−)`d`m,−s(θ); since a parity �ip also
�ips the sign of cos θ, the net result is that complex conjugation of j`nms given by equation (35.110) �ips the
sign of m or s,

j∗`nms = j`n,−m,s = j`n,m,−s . (35.113)

Application of the operator (−i)
1
2 (1+p−q)D 1

2 ,
p
2 ,
q
2
with p = ±1 and q = ±1 to both sides of the de�ning

equation (36.8) for j`nms implies, from the recurrence (35.102),

1

2n+ 1

[√
(n+ 1 + pm)(n+ 1 + qs) j

`+
1
2 ,n+

1
2 ,m+

p
2 ,s+

q
2
− ipq

√
(n− pm)(n− qs) j

`+
1
2 ,n−

1
2 ,m+

p
2 ,s+

q
2

]
=

1

2l + 2

[√
(`+ 1 + pm)(`+ 1 + qs) j`nms − ipq

√
(`+ 1− pm)(`+ 1− qs) j`+1,nms

]
. (35.114)
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For m = n and p = 1, the recurrence (35.114) simpli�es to√
n+ 1 + qs

2n+ 1
j
`+

1
2 ,n+

1
2 ,n+ 1

2 ,s+
q
2

=
1

2`+ 2

[√
(`+ 1 + n)(`+ 1 + qs) j`nns − iq

√
(`+ 1− n)(`+ 1− qs) j`+1,nns

]
. (35.115)

From the recurrence (35.115) it can be shown by induction that j`nm,±s(y) with m = n and integral ` ≥ n ≥
s ≥ 0 is

j`nn,±s(y) =

√
(2n)!

(n+ s)!(n− s)!

√
(`+ n)!(`− s)!
(`− n)!(`+ s)!

1

(2y)n

(
∂

∂y
∓ i
)s [

ysj`(y)
]
. (35.116)

The j`nms(y) with m = n satisfy the recurrence

κ`+1,ns

`+ n+ 1
j`+1,nns = (2`+ 1)

[
1

y
− is

`(`+ 1)

]
j`nns −

κ`ns
`− n

j`−1,nns , (35.117)

with κ`ns de�ned by equation (35.104). Applying ∂/∂y to either side of the de�ning relation (36.8), and
using the recurrence relation (35.103), implies the recurrence

κn+1,ms j`,n+1,ms = (2n+ 1)

[
∂

∂y
+

ims

n(n+ 1)

]
j`nms + κnms j`,n−1,ms , (35.118)

which yields j`nms(y) in general. The recurrence (35.118) of j`nms with respect to n, along with the symme-
try (35.111) of j`nms in `n, implies a similar recurrence of j`nms with respect to `,

κ`+1,ms j`+1,nms = − (2`+ 1)

[
∂

∂y
+

ims

`(`+ 1)

]
j`nms + κ`ms j`−1,nms . (35.119)



36

Polarization of the Cosmic Microwave
Background

36.1 Radiative transfer of the polarized CMB

The Boltzmann, or radiative transfer, equation for unpolarized photons was given previously by equa-
tion (34.1). For the polarized photon distribution, the radiative transfer equations are(

∂

∂η
− ikµ− τ̇

)
(Θ + Ψ + p̂ ·W ) = I − τ̇ S , (36.1a)(
∂

∂η
− ikµ− τ̇

)
2Θ = −τ̇ 2S . (36.1b)

The I in the unpolarized radiative transfer equation (36.1a) is the ISW contribution, a sum of harmonics

I(η,k, p̂) ≡ Ψ̇ + Φ̇ + p̂ · Ẇ + p̂ap̂bḣab =

2∑
n=0

n∑
m=−n

(−)n−mInm(η,k)Dnm0(φ, θ) , (36.2)

with

I00 ≡ Ψ̇ + Φ̇ , (36.3a)

I1,±1 ≡ Ẇ± , (36.3b)

I2,±2 ≡
√

2
3 ḣ±± . (36.3c)

The sS in equations (36.1) are Thomson-scattering source terms,

S(η,k, p̂) = Ψ + p̂ ·W + p̂ · vvvb + Θ00 +
1

2

2∑
m=−2

(−i)2+m
(

Θ2m +
√

6E2m

)
D2m0 , (36.4a)

2S(η,k, p̂, χ) =

√
3

2

2∑
m=−2

(−i)2+m−2
(

Θ2m +
√

6E2m

)
D2m2 . (36.4b)
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The harmonic components sSnm of sS de�ned by

sS(η,k, p̂, χ) =

2∑
n=|s|

n∑
m=−n

(−i)n+m−s
sSnm(η,k)Dnms(φ, θ, χ) (36.5)

are, generalizing equations (34.4),

S00 ≡ Θ00 + Ψ , (36.6a)

S10 ≡ vb , (36.6b)

S1,±1 ≡ vb,± +W± , (36.6c)

S2m ≡
1

2

(
Θ2m +

√
6E2m

)
(−2 ≤ m ≤ 2) , (36.6d)

2S2m ≡
√

3

2

(
Θ2m +

√
6E2m

)
(−2 ≤ m ≤ 2) . (36.6e)

The solution of the radiative transfer equations (36.1) is, generalizing the unpolarized solution (34.6),

Θ(η0,k, p̂) + Ψ(η0,k) + p̂ ·W (η0,k) =

∫ η0

0

[
e−τI(η,k) + g(η)S(η,k)

]
e−ikµ(η−η0) dη , (36.7a)

2Θ(η0,k, p̂, χ) =

∫ η0

0

g(η) 2S(η,k) e−ikµ(η−η0) dη , (36.7b)

where g(η) is the visibility function, equation (34.7).

36.2 Harmonics of the polarized CMB photon distribution

The spherical harmonics of the solution (36.7) can be found, as previously, by expanding the exponential
e−iyµ in spherical Bessel functions, equation (34.10). Spin-weighted spherical Bessel functions j`nms(y) with
`, n ≥ max(|m|, |s|) can be de�ned by a generalization of equation (34.11),

(−i)n+m−sDnms(φ, θ, χ)e−iy cos θ =

∞∑
`=max(|m|,|s|)

(−i)`+m−s(2`+ 1)D`ms(φ, θ, χ) j`nms(y) . (36.8)

The spin index is dropped for brevity from the spin 0 modi�ed Bessel functions, j`nm0(y) = j`nm(y). Prop-
erties of the spin-weighted spherical Bessel functions are addressed in Appendix 35.13.2. The spin-weighted
spherical Bessel functions are symmetric or antisymmetric in their �rst two indices `n, equation (35.111), and
symmetric in their last two indices ms, equation (35.112), and �ipping the sign of either m or s tranforms
them to their complex conjugates, equation (35.113),

j`nms = (−)`−njn`ms , j`nms = j`nsm , j∗`nms = j`n,−m,s = j`n,m,−s . (36.9)

In particular, the spin zero functions j`nm are real, and all scalar (m = 0) components j`n0s are real. The
real (electric) and imaginary (magnetic) parts of j`nms are conveniently denoted by the real functions sε`nm
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and sβ`nm de�ned by

j`nm,±s = sε`nm ± i sβ`nm . (36.10)

The spin zero magnetic part vanishes, 0β`nm = 0. The only other spin relevant is s = ±2, so the spin index
is dropped for brevity on the spin two electric and magnetic components,

j`nm,±2 = ε`nm ± i β`nm . (36.11)

Under m→ −m, the electric components are unchanged, while the magnetic components change sign,

j`n,−m = j`nm , ε`n,−m = ε`nm , β`n,−m = −β`nm . (36.12)

In all, the spin spherical Bessel functions of relevance are, from equation (35.116) for j`nms with n = m,
and the recurrence (35.118) for n > m,

j`00 = j` , j`10 =
dj`
dy

, j`20 =
1

2

(
1 + 3

d2

dy2

)
j` , (36.13a)

j`11 =

√
`(`+ 1)

2

j`
y
, j`21 =

√
3`(`+ 1)

2

d(j`/y)

dy
, (36.13b)

j`22 =

√
3(`+ 2)!

8(`− 2)!

j`
y2

, (36.13c)

ε`20 =

√
3(`+ 2)!

8(`− 2)!

j`
y2

, ε`21 =

√
(`− 1)(`+ 2)

2

1

y2

d(y j`)

dy
, ε`22 =

1

4y2

(
d2

dy2
− 1

)
(y2j`) , (36.13d)

β`20 = 0 , β`21 = −
√

(`− 1)(`+ 2)

2

j`
y
, β`22 = − 1

2y2

d(y2j`)

dy
. (36.13e)

Expanding the solution (36.7) in spherical harmonics using equation (36.8) yields the harmonics of the
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CMB photon distribution today including polarization, generalizing equation (34.17),

Θ`0(η0,k) + δ`0Ψ(η0,k) =

∫ η0

0

e−τ
[
Ψ̇(η0,k) + Φ̇(η0,k)

]
j`00 [k(η − η0)]

+ g(η)

2∑
n=0

Sn0(η,k) j`n0 [k(η − η0)] dη , (36.14a)

Θ`,±1(η0,k) + 1
3δ`1W±(η0,k) =

∫ η0

0

e−τẆ±(η0,k) j`11 [k(η − η0)]

+ g(η)

2∑
n=1

Sn,±1(η,k) j`n1 [k(η − η0)] dη , (36.14b)

Θ`,±2(η0,k) =

∫ η0

0

e−τ
√

2
3 ḣ±±(η0,k) j`22 [k(η − η0)]

+ g(η)S2,±2(η,k) j`22 [k(η − η0)] dη , (36.14c)

E`m(η0,k) =

∫ η0

0

g(η) 2S2m(η,k) ε`2m [k(η − η0)] dη (−2 ≤ m ≤ 2) , (36.14d)

B`m(η0,k) =

∫ η0

0

g(η) 2S2m(η,k)β`2m [k(η − η0)] dη (−2 ≤ m ≤ 2) . (36.14e)

The Thomson-scattering source terms sSnm are given by equations (36.6), and the spin spherical Bessel
functions by equations (36.13a).

Exercise 36.1. Neutrino harmonics including vectors and tensors. Equation (34.46) gave the solution
to the radiative transfer equation for scalar (m = 0) �uctuations of (massless) neutrinos. Generalize this to
include vector (m = ±1) and tensor (m = ±2) neutrino �uctuations.
Solution. The solution is similar to that (36.14a)�(36.14c) for unpolarized photons, but without the Thom-
son scattering terms:

N`(η,k) + δ`0Ψ(η,k) =

∫ η

0

[
Ψ̇(η′,k) + Φ̇(η′,k)

]
j` [k(η′ − η)] dη′

+
[
N0(0,k) + Ψ(0,k)

]
j`(−kη) , (36.15a)

N`,±1(η,k) + 1
3δ`1W±(η,k) =

∫ η

0

Ẇ±(η′,k)j`11 [k(η′ − η)] dη′

+ W±(0,k)j`11(−kη) , (36.15b)

N`,±2(η,k) =

∫ η

0

√
2
3 ḣ±±(η′,k) j`22 [k(η′ − η)] dη′ . (36.15c)
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As in equation (34.46), the time ην of neutrino decoupling has been replaced by zero, and the optical depth
factor omitted, since the neutrino decoupling scale is so much smaller than cosmological scales.

36.2.1 Harmonics of the polarized CMB with respect to observed photon directions

As with the unpolarized power spectrum, �34.2.1, the observed direction of n̂ of a photon from the CMB
is opposite to the photon's direction of motion, n̂ = −p̂. Moreover the right-handed direction around p̂
becomes a left-handed direction about n̂, so the spin angle χ also �ips in sign. Thus harmonics with respect
to the observed direction n̂ are related to those relative to the photon direction p̂ by sΘ

obs(η,k, p̂, χ) =

sΘ(η,k,−p̂,−χ). The reversal of p̂ and χ is equivalent to a parity �ip, which changes the spin s temperature
multipoles by sΘ

obs
`m (η0,k) = (−)`+s−sΘ`m(η0,k). Equivalently, generalizing equation (34.18),

Θobs
`m (η0,k) ≡ (−)`Θ`m(η0,k) , Eobs

`m (η0,k) ≡ (−)`E`m(η0,k) , Bobs
`m (η0,k) ≡ (−)`+1B`m(η0,k) .

(36.16)
Equivalently, as in the unpolarized equation (34.17), multipoles with respect to the observed direction n̂ to
the CMB are obtained from equations (36.14) by �ipping the sign of the arguments of the spin spherical
Bessel functions j`nms and simultaneously �ipping the sign of source terms sSnm with odd n, namely S1m,

k(η − η0)→ k(η0 − η) , S1m → −S1m . (36.17)

The sign �ips do not a�ect power spectra, which involve products of �uctuations with the same ` and parity.

36.3 Harmonics of the polarized CMB in real space

The real-space polarized temperature �uctuation sΘ(η,x, n̂, χ) at time η and comoving position x in observed
direction n̂ on the sky is related to the Fourier-space polarized temperature �uctuation sΘ(η,k, n̂, χ) by,
generalizing the unpolarized expression (34.28),

sΘ(η,x, n̂, χ) =

∫
e−ik·x sΘ(η,k, n̂, χ)

d3k

(2π)3
. (36.18)

Astronomers observe the temperature �uctuation sΘ(η0,x0, n̂, χ) now, at time η0, and here, at position x0.
Without loss of generality, our position can be taken to be at the origin, x0 = 0, in which case the phase
factor is unity, e−ik·x0 = 1, and can be omitted,

sΘ(η0,x0, n̂, χ) =

∫
Θ(η0,k, n̂, χ)

d3k

(2π)3
, (36.19)

which generalizes the unpolarized expression (34.29).
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The spherical harmonic expansion of the observed real-space temperature �uctuation today is, with con-
ventional normalization of harmonics sΘ`m,

sΘ(η0,x0, n̂, χ) =

∞∑
`=|s|

∑̀
m=−`

sΘ`m(η0,x0)−sY
∗
`m(n̂, χ) , (36.20)

which generalizes equation (34.30). The reason for the expansion with respect to −sY ∗`m as opposed to sY`m
is that, as already remarked after equation (35.31), the coe�cient sΘ`m then has spin weight s and m as
opposed to s and −m. The spherical harmonic expansion (35.31) of the Fourier-space temperature �uctuation
may be written

sΘ(η0,k, n̂, χ) =

∞∑
`=|s|

min(`,2)∑
m=−min(`,2)

∑̀
n=−`

(−i)`+m−s
√

4π(2`+ 1) sΘ`m(η,k)−sD
∗
`nm(ẑ, k̂)−sY

∗
`n(n̂, χ) ,

(36.21)
where sD`m′m(n̂′, n̂) is the matrix that rotates spin harmonics sY`m, de�ned by, analogously to the de�ni-
tion (35.79) of Wigner rotation matrices D`m′m(n̂′, n̂),

δ`′` sD`m′m(n̂′, n̂) ≡
∫

sY
∗
`′m′(n̂

′) sY`m(n̂) do . (36.22)

It is not necessary to know an explicit form for the spin rotation matrices sD`m′m, because observable power
spectra are rotation invariant, and do not depend on the form of sD`m′m. Whereas the original harmonics

sΘ`m(k) are with respect to a frame in which the z-axis is along the wavevector k, the rotated harmonics∑
m sΘ`m(k)−sD

∗
`nm(ẑ, k̂) in equation (36.21) are with respect to a frame in which the z-axis is along a

direction ẑ �xed in space.

From equations (36.19)�(36.21) it follows that the real-space harmonics are

sΘ`n(η0,x0) =
√

4π(2`+ 1)

min(`,2)∑
m=−min(`,2)

(−i)`+m−s
∫

sΘ`m(η,k)−sD
∗
`nm(ẑ, k̂)

d3k

(2π)3
. (36.23)

The factors of
√

4π(2`+ 1)(−i)`+m−s arise because of the di�erent choices of normalization of the har-
monics (as is the standard cosmological convention) in the harmonic expansions (35.31) and (36.20) of the
temperature �uctuation in Fourier and real space.

Rotating the Fourier-space harmonics sΘ`m(η,k) from the k̂ frame into the ẑ frame leaves their parity un-
changed, so the real-space harmonics inherit their parity from Fourier space. Resolved into parity eigenstates,
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the real-space harmonics (36.23) are

Θ`n(η0,x0) =
√

4π(2`+ 1)

min(`,2)∑
m=−min(`,2)

(−i)`+m
∫

Θ`m(η,k)D∗`nm(ẑ, k̂)
d3k

(2π)3
, (36.24a)

E`n(η0,x0) =
√

4π(2`+ 1)

2∑
m=−2

(−i)`+m−2

∫
E`m(η,k)−sD

∗
`nm(ẑ, k̂)

d3k

(2π)3
, (36.24b)

B`n(η0,x0) =
√

4π(2`+ 1)

2∑
m=−2

(−i)`+m−2

∫
B`m(η,k)−sD

∗
`nm(ẑ, k̂)

d3k

(2π)3
. (36.24c)

36.4 Polarized CMB power spectra

36.4.1 Polarized CMB power spectra in Fourier space

Power spectra CX
′X

` (η, k) with X ′ and X running over any of Θ, E, and B are de�ned by, analogously to
the power spectrum C`(η, k) of unpolarized temperature multipoles, equation (34.26),

δ`′`
4π

(2π)3δD(k′ + k)CX
′X

` (η, k) ≡
min(`,2)∑

m=−min(`,2)

〈
X ′∗`′m(η,k′)X`m(η,k)

〉
. (36.25)

The reality conditions (35.40) imply that the power spectra are real-valued, and symmetric in X ′X, CX
′X

` =

CXX
′

` . Strictly, on the right hand side of equation (36.25) the unpolarized monopole Θ00 should be replaced
by the redshifted monopole Θ00 + Ψ, and the unpolarized dipole Θ1,±1 should be replaced by the Doppler-
shifted dipole Θ1,±1 + 1

3W±, in accordance with equations (36.14), but these re�nements are omitted here
to avoid cluttering the equation.
Polarized CMB transfer functions TX`m(η, k) for any of X = Θ, E, or B are de�ned by, generalizing

equation (34.20) (the contributions Ψ and 1
3W± to the unpolarized monopole and dipole are again omitted

for brevity),

TX`m(η, k) ≡ X`m(η,k)

ζ(k)
, (36.26)

where ζ(k) is the primordial curvature �uctuation. In terms of the transfer functions (36.26) and the pri-
mordial curvature power spectrum Pζ , equation (30.132), the power spectrum CX

′X
` (η,k) is

CX
′X

` (η,k) = 4π

2∑
m=−2

TX
′∗

`m (η, k)TX`m(η, k)Pζ(k) . (36.27)
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36.4.2 Conditions on polarized CMB power spectra from parity symmetry

The Universe at large is consistent with being statistically homogeneous and isotropic, and it is reasonable to
expect that the statistical properties would similarly be parity symmetric, unchanged under spatial inversion.
The prediction of parity symmetry is, like homogeneity and isotropy, testable observationally. The temper-
ature and electric �uctuations Θ`m and E`m have the same (−)` parity under spatial inversion, while the
magnetic �uctuation B`m has the opposite (−)`+1 parity. The assumption of parity symmetry then implies
that cross power spectra between �uctuations of opposite parity should vanish, CΘB

` = CEB` = 0, since these
power spectra change sign under parity inversion. Parity symmetry predicts that the non-vanishing power
spectra are

CΘΘ
` , CΘE

` , CEE` , CBB` . (36.28)

36.4.3 Polarized CMB power spectra in real space

CMB power spectra CX
′X

` (η0) on the sky today with X ′ and X any of Θ, E, and B are de�ned such that,
generalizing equation (34.33),

δ`′`δm′mC
X′X
` (η0) ≡

〈
X ′∗`′m′(η0,x0)X`m(η0,x0)

〉
. (36.29)

Once again, the redshift contribution Ψ to the unpolarized monopole Θ00, and the Doppler-shift contribution
1
3Wm to the dipole Θ1m on the right hand side of equation (36.29) have been omitted for brevity. The
monopole and dipole are indistinguishable from a rescaling of the mean temperature and from a change in
the motion of the observer, so cannot be measured by an observer con�ned to position x0.
From the expressions (36.24) for the real-space harmonics in terms of Fourier-space harmonics, together

with the power spectra (36.25) of the Fourier-space harmonics, it follows that the power spectra CX
′X

` (η0)

of real-space harmonics of the CMB today are, generalizing equation (34.34),

CX
′X

` (η0) =

∫
CX

′X
` (η0, k)

4πk2dk

(2π)3
. (36.30)

The CMB power spectra CX
′X

` (η0) inherit from CX
′X

` (η0, k) the properties of being real-valued and sym-
metric in X ′X.
In terms of the polarized CMB transfer functions TX`m de�ned by equation (36.26) and the primordial

curvature power spectrum Pζ , the power spectra CX
′X

` (η0) are, from equation (36.27),

CX
′X

` (η0) = 4π

min(`,2)∑
m=−min(`,2)

∫
TX

′∗
`m (η0, k)TX`m(η0, k)Pζ(k)

4πk2dk

(2π)3
. (36.31)

Concept question 36.2. Scalar, vector, tensor power spectra? Can power spectra of scalar, vector,
and tensor modes be distinguished observationally? Answer. No, with an exception. Scalar, vector, and
tensor modes are characterized by their transformation properties under rotation about the wavevector k of
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the perturbation. An observed temperature �uctuation in real space is a superposition of �uctuations with
many wavevectors k, and thereby becomes a mixture of scalar, vector, and tensor modes. The exception is that
the scalar magnetic �uctuation B`0 vanishes identically, so the magnetic power spectrum CBB` measures only
vector and tensor modes. Mathematically, the real-space harmonics (36.24) of the temperature �uctuation
are sums over scalar, vector, and tensor modes, |m| = 0, 1, 2. In Fourier space, power spectra C`m(η0, k) with
de�nite m can be de�ned by equation (36.25) without summing over m. But in real space, the CMB power
spectrum C`(η0), equation (36.31), is a sum over the scalar, vector, and tensor Fourier-space power spectra,

CX
′X

` (η0) =

min(`,2)∑
m=−min(`,2)

∫
CX

′X
`m (η0, k)

4πk2dk

(2π)3
. (36.32)

Exercise 36.3. CMB polarized power spectrum. Generalize the CMB code you wrote in Exercise 34.1
to include polarization.
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Gravitational lensing of the Cosmic
Microwave Background

Galaxies along the line of sight slightly perturb the trajectories of photons emitted at the surface of last
scattering (Zaldarriaga and Seljak, 1998, and references therein). The qualitative e�ect of this gravitational
lensing e�ect is to tend to blur CMB �uctations at small scales. The gravitational lensing e�ect has been
neglected in this book up to now on the grounds that its magnitude is proportional to a product

dp̂

dλ
· ∂f
∂p̂

(37.1)

of terms that were both linear in the photon Boltzmann equation (33.8), and therefore of the second order
of smallness. The reason the gravitational lensing e�ect is important despite being of second order is that it
feeds B-mode polarization from E-mode polarization. At small angular scales, gravitational lensing proves
to dominate the primordial B-mode signal expected from gravitational waves generated at in�ation. Fortu-
nately the lensing e�ect is small at large angular scales, leaving a window where a signal from primordial
gravitational waves might be seen in the future. An upside of gravitational lensing is that, because it depends
on the clustering of matter well after recombination, it resolves degeneracies in cosmological parameters that
would be inferred from the unlensed CMB power spectrum at the surface of last scattering.
The product of terms that was neglected in the photon Boltzmann equation (33.8) is dp̂/dλ · ∂f/∂p̂, and

these must now be restored.
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The super geometric algebra

The super geometric algebra generalizes the geometric algebra to include spinors, which are spin- 1
2

objects.
For simplicity, this chapter focuses on the super geometric algebra in 3 spatial dimensions. The gener-

alization to arbitrarily many spatial dimensions is given as Exercise 38.3 at the end of the chapter. The
generalization of the super geometric algebra to Minkowski space, with a time dimension in addition to spa-
tial dimensions, is presented in Chapter 39. The generalization to arbitrarily many space and time dimensions
is given as Exercise 39.6.

38.1 Spin basis vectors in 3D

A systematic way to project tensors into spin components is to work in a spin basis. Start with an orthonor-
mal triad {γγ1,γγ2,γγ3} (or {γγx,γγy,γγz} if you prefer). Choose a pair of basis vectors, in three dimensions
conventionally taken to be the pair {γγ1,γγ2}, and from them form the spin basis vectors {γγ+,γγ−}, the
complex combinations

γγ+ ≡ 1√
2
(γγ1 + iγγ2) , (38.1a)

γγ− ≡ 1√
2
(γγ1 − iγγ2) . (38.1b)

This is the same trick used to de�ne the spin components L± of the angular momentum operator L in
quantum mechanics. The metric of the spin triad {γγ+,γγ−,γγ3} is

γab ≡ γγa · γγb =

 0 1 0

1 0 0

0 0 1

 . (38.2)

Notice that the spin basis vectors {γγ+,γγ−} are themselves null, γγ+ · γγ+ = γγ− · γγ− = 0, whereas their scalar
product with each other is non-zero γγ+ · γγ− = 1.

947
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38.2 Spin weight

An object is de�ned to have spin weight s if it varies by

e−isθ (38.3)

under a right-handed rotation by angle θ in the γγ1�γγ2 plane. In 3D, a right-handed rotation in the γγ1�γγ2

plane is the same as a right-handed rotation about the 3-axis, and the spin weight is the projection of the
spin along the 3-axis, the spin analogue of the projection L3 (or Lz) of the angular momentum along the
3-axis (or z-axis). Sometimes the term spin weight is abbreviated to spin, when there is no ambiguity. An
object of spin weight s is unchanged by a rotation of 2π/s in the γγ1�γγ2 plane. An object of spin weight 0 is
rotationally symmetric, unchanged by a rotation by any angle in the γγ1�γγ2 plane.
Under a right-handed rotation by angle θ in the γγ1�γγ2 plane, the basis vectors γγa transform as (13.54)

γγ1 → cos θ γγ1 + sin θ γγ2 ,

γγ2 → sin θ γγ1 − cos θ γγ2 ,

γγ3 → γγ3 . (38.4)

It follows that the spin basis vectors γγ+ and γγ− transform under a right-handed rotation by angle θ in the
γγ1�γγ2 plane

γγ± → e∓iθ γγ± . (38.5)

The transformation (38.5) identi�es the spin vectors γγ+ and γγ− as having spin weight +1 and −1 respectively.
The γγ3 vector has spin weight 0, since it is unchanged by a rotation in the γγ1�γγ2 plane.
The components of a tensor in a spin basis inherit their spin properties from that of the spin basis. The

general rule is that the spin weight s of any tensor component is equal to the number of + covariant indices
minus the number of − covariant indices:

spin weight s = number of + minus − covariant indices . (38.6)

The spin properties of the components of a tensor are thus manifest when expressed in a spin basis.

38.3 Pauli representation of spin basis vectors

In the Pauli representation (13.115), the spin basis vectors γγ± are represented by the real 2×2 Pauli matrices

γγ+ = σ+ ≡
1√
2

(σ1 + iσ2) =
√

2

(
0 1

0 0

)
, γγ− = σ− ≡

1√
2

(σ1 − iσ2) =
√

2

(
0 0

1 0

)
. (38.7)

The basis vector γγ3 is represented as usual by the real Pauli matrix σ3,

γγ3 = σ3 =

(
1 0

0 −1

)
. (38.8)
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38.4 Basis spinors

Introduce a dyad of basis spinors εa with the index a running over spin up ↑ and spin down ↓ (the braces in
equation (38.9) signify a set of spinors, not anticommutation),

εa ≡ {ε↑, ε↓} . (38.9)

The basis spinors ε↑ and ε↓ physically signify spin up and spin down eigenstates. A more conventional (Dirac)
notation is

ε↑ = |↑〉 , ε↓ = |↓〉 . (38.10)

It will be seen in �38.11 that the basis spinors εa are related to the 3D basis vectors γγa through a super
geometric algebra that is essentially the square root of the geometric algebra. Elements of the geometric
algebra act by pre-multiplication on the basis spinors εa. Under a rotation by rotor R, the basis spinors εa
are de�ned to transform in the same way as rotors,

R : εa → Rεa . (38.11)

In the Pauli representation (13.115) the basis spinors εa are the column vectors

ε↑ =

(
1

0

)
, ε↓ =

(
0

1

)
, (38.12)

that are rotated by pre-multiplying by elements of the special unitary group SU(2). Rotations transform the
basis spinors εa into linear combinations of each other.
The rotor R corresponding to a right-handed rotation by angle θ in the γγ1�γγ2 plane is e−ı3θ/2, equa-

tion (13.109). In the Pauli representation (38.9), the action of ı3 = I3σ3 on the basis spinors is ı3ε↑ = iε↑
and ı3ε↓ = −iε↓. Under a right-handed rotation by angle θ in the γγ1�γγ2 plane, the basis spinors εa therefore
transform as

ε↑ → e−iθ/2ε↑ , ε↓ → eiθ/2ε↓ . (38.13)

The behaviour (38.13), along with the de�nition (38.3) of spin, shows that the basis spinors ε↑ and ε↓ have
respective spin weights + 1

2 and − 1
2 . A rotation by θ = 2π changes the sign of the basis spinors εa. A rotation

by 4π is required to rotate the basis spinors back to their original values.
Spinor tensors inherit their spin properties from those of the basis spinors. The rule (38.6) generalizes to

the statement that the spin weight of a spinor tensor is

spin weight s = 1
2 (number of ↑ minus ↓ covariant indices) . (38.14)

In any equality between vector and spinor tensors, the spin weights of the left and right hand sides must be
equal. The rule (38.14) hold not only for column spinors εa, but also for row spinors εa ·, �38.7, and for inner
and outer products of spinors, ��38.8 and 38.10.
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38.5 Pauli spinor

A Pauli spinor ϕ is a complex (with respect to i) linear combination of the basis spinors εa,

ϕ = ϕaεa . (38.15)

Just as a multivector aaγγa is a vector in the geometric algebra, so also ϕaεa is a spinor in the super geometric
algebra.
By construction, a Pauli spinor transforms under a spatial rotation by rotor R like the basis spinors,

equation (38.11),

R : ϕ→ Rϕ . (38.16)

A Pauli spinor ϕ is a spin- 1
2 object, in the sense that a rotation by 2π changes the sign of the spinor, and a

rotation by 4π is required to return the spinor to its original value.

38.6 Spinor metric

In a matrix representation, the tensor product of basis spinors εa and εb can be represented as the 2 × 2

matrix εaε>b , a matrix product of the column spinor εa with the row spinor ε>b . In accordance with the
transformation rule (38.11), the tensor product of basis spinors rotates as

R : εaε
>
b → Rεaε

>
b R
> . (38.17)

Consider the spinor tensor ε with the de�ning property that for any rotor R

εR> = Rε . (38.18)

The condition (38.18) implies that the spinor tensor ε is invariant under rotations,

R : ε→ RεR> = RRε = ε . (38.19)

The spinor tensor ε is the spinor metric. Like the Euclidean metric, it is that tensor which remains invariant
under rotations.
Since a rotor is a linear combination of even elements 1 and I3γγa of the geometric algebra, and bivectors

I3γγa change sign under reversal, a necessary and su�cient condition for (38.18) is

ε(I3γγa)> = −I3γγaε for a = 1, 2, 3 . (38.20)

In the Pauli representation (13.115), where γγa = σa and I3 equals i times the unit matrix, the condi-
tion (38.20) requires that ε commutes with γγ2, and anticommutes with γγ1 and γγ3. The only basis element
of the spacetime algebra with the required (anti)commutation properties is γγ2, so the spinor metric ε must
equal γγ2 up to a possible scalar normalization,

ε ≡ iγγ2 . (38.21)
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In the Pauli representation (13.115), the spinor metric (38.21) is the antisymmetric matrix

ε =

(
0 1

−1 0

)
. (38.22)

The chosen normalization is such that ε is real (with respect to i). The spinor metric ε is then orthogonal,
and its square is minus the unit matrix,

ε−1 = ε> , ε2 = −1 . (38.23)

Despite the equality of ε and iγγ2 in the Pauli representation, ε is de�ned to transform as a spinor tensor
under spatial rotations, not as an element of the geometric algebra. The components of the spinor metric
matrix ε constitute the spinor metric εab,

ε>a εεb = εab . (38.24)

Commuting the spinor metric ε through the orthonormal basis vectors γγa converts them to minus their
transposes,

γγ>a ε = −εγγa . (38.25)

38.7 Row basis spinors

It is convenient to use the symbol εa · with a trailing dot, symbolic of the trailing ε, to denote the row spinor
ε>a ε,

εa · ≡ ε>a ε . (38.26)

The motivation for the trailing dot notation is equation (38.30) below. The two row spinors (the braces in
equation (38.27) signify a set of spinors, not anticommutation)

εa · = {ε↑ ·, ε↓ ·} (38.27)

provide a basis for row spinors. The spin weights of the row basis spinors are in accord with their covariant
indices: ε↑ · has spin weight + 1

2 , while ε↓ · has spin weight − 1
2 . The row spinors εa · rotate as

R : εa · ≡ ε>a ε→ ε>a R
>ε = ε>a εR = εa ·R . (38.28)

Thus row spinors εa · transform like reverse rotors, just as column spinors εa transform like rotors. In the
Pauli representation (13.115) the row basis spinors εa · are the row spinors

ε↑ · = ( 0 1 ) , ε↓ · = ( − 1 0 ) . (38.29)
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38.8 Inner products of basis spinors

The product of the row spinor εa · with the column spinor εb de�nes their inner product, or scalar product,
which equals the spinor metric εab in accordance with equation (38.24),

εa · εb = εab . (38.30)

Equation (38.30) motivates the trailing dot notation for the row spinor. The scalar product is antisymmetric,

εa · εb = −εb · εa . (38.31)

In the Pauli representation, the non-zero components of the scalar product are explicitly, equation (38.22),

ε↑ · ε↓ = −ε↓ · ε↑ = 1 . (38.32)

The antisymmetry of the spinor scalar product contrasts with the symmetry of the usual vector scalar
product. The scalar product (38.30) is a scalar,

R : εa · εb → εa ·RR εb = εa · εb . (38.33)

Thus the spinor metric εab is invariant under rotations, just like the Euclidean metric δab.

38.9 Lowering and raising spinor indices

The antisymmetric spinor metric εab is given in the Pauli representation by equation (38.24). The inverse
metric εab is de�ned by εabεbc = δac . The spinor metric and its inverse satisfy

εab = −εba = −εab = εba . (38.34)

Indices on a spinor tensor are lowered and raised by pre-multiplying by the metric εab and its inverse εab.
The contravariant components εa of the column basis spinors, satisfying εa = εabεb, are

ε↑ = −ε↓ , ε↓ = ε↑ . (38.35)

For example, ε↑ = ε↑↓ε↓ = −ε↓. A spinor index is lowered or raised by pre-multiplying by the metric or its
inverse: post-multiplying by the metric or its inverse yields a result of opposite sign, εa = εabεb = −εbεba.
The contravariant components εa · of the row basis spinors satisfy the same relations (38.35) with a trailing
dot appended on left and right hand sides. The scalar products of contravariant row with covariant column
basis spinors form the unit matrix,

εa · εb = −εb · εa = δab . (38.36)
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38.9.1 Scalar products of Pauli spinors

A general row spinor ϕ · is a complex (with respect to i) linear combination of the row basis spinors

ϕ · ≡ ϕ>ε = ϕaεa · . (38.37)

It rotates as

R : ϕ · → ϕ ·R . (38.38)

A row spinor ϕ · transforms like a reverse rotor.
The product of a row Pauli spinor ϕ · = ϕaεa · with a column Pauli spinor χ = χaεa forms a scalar, which

may be written variously

ϕ · χ = ϕ>εχ = ϕaεa · χbεb = εabϕ
aχb = ϕaχa = −ϕaχa = −εabϕaχb . (38.39)

Notice that when the scalar product ϕ · χ is written in the contracted form ϕaχa, the �rst index is raised
and the second is lowered. An additional minus sign appears if the �rst index is lowered and the second is
raised.
The components ϕa of a column spinor ϕ can be projected out by pre-multiplying by the row basis spinor

εa ·,

εa · ϕ = εa · ϕbεb = δabϕ
b = ϕa . (38.40)

The components ϕa of a row spinor ϕ · can be projected out by post-multiplying by minus the column basis
spinor εa,

− ϕ · εa = −ϕbεb · εa = δabϕ
b = ϕa . (38.41)

If the coe�cients ϕa and χb of Pauli spinors ϕ = ϕaεa and χ = χbεb are taken to be ordinary commuting
complex numbers, then the Pauli scalar product is anticommuting

ϕ · χ = −χ · ϕ . (38.42)

In quantum �eld theory spinor coe�cients are sometimes taken to be anticommuting, in which case the
scalar product would be commuting. A proof that Pauli spinors anticommute (so their coe�cients must be
ordinary commuting complex numbers) is given later, equation (38.74).

38.10 Outer products of basis spinors

A row spinor εa · multiplied by a column spinor εb yields their scalar product. In the opposite order, a column
spinor εa multiplied by a row spinor εb · yields their outer product. The outer product εaεb · rotates like a
multivector in the geometric algebra,

R : εaεb · ≡ εaε>b ε→ Rεaε
>
b R
>ε = Rεaε

>
b εR = Rεaεb ·R . (38.43)
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The trailing dot on the outer product εaεb · is symbolic of the trailing ε, necessary to convert the spinor
tensor εaε>b into an object that transforms like a multivector.
The products of the 2 column basis spinors εa with the 2 row basis spinors εb · form 4 outer products. The

3D geometric algebra has 8 basis elements, but the pseudoscalar I3 is a commuting imaginary which in the
Pauli representation is just i times the unit matrix, so the 3D geometric algebra is equivalent to a complex
algebra with 4 basis elements. The 4 outer products of basis spinors thus su�ce to generate the complete
complex 3D geometric algebra. In the Pauli representation (13.115), the 4 outer products of basis spinors
map to elements of the 3D geometric algebra as follows.
The antisymmetric outer products of spinors form a scalar singlet,

[ε↓, ε↑] · = 1 , (38.44)

where the 1 on the right hand side denotes the unit element of the 3D geometric algebra, the 2× 2 identity
matrix. The trailing dot on the commutator indicates that the right partner of each product is a row
spinor, [ε↑, ε↓] · = ε↑ε

>
↓ ε−ε↓ε>↑ ε. The combination (38.44) is familiar from quantum mechanics as, modulo a

normalization factor, the spin-0 singlet formed from a combination of two spin- 1
2 particles, commonly written

in Dirac notation

[ε↓, ε↑] = |↓〉|↑〉 − |↑〉|↓〉 . (38.45)

The spin weight of the singlet (38.44) is zero according to the rule (38.14), as it should be for a scalar.
The symmetric outer products of spinors form a triplet,

{ε↑, ε↑}· =
√

2γγ+ , {ε↑, ε↓}· = −γγ3 , {ε↓, ε↓}· = −
√

2γγ− . (38.46)

The combinations (38.46) of basis spinors are, modulo normalization factors, familiar from quantum me-
chanics as the three components of the spin-1 triplet formed from a combination of two spin- 1

2 particles,

{ε↑, ε↑} = 2 |↑〉|↑〉 , {ε↑, ε↓} = |↑〉|↓〉+ |↓〉|↑〉 , {ε↓, ε↓} = 2 |↓〉|↓〉 . (38.47)

The spin weights of the triplet (38.46) are respectively +1, 0, −1 according to the rules (38.6) and (38.14).
The spin weights of left and right hand sides match, as they should.
The trace of the outer product of a pair of basis spinors gives their scalar product (note that the 1 on the

right hand side of equation (38.44) is the unit matrix, whose trace is 2),

Tr εa εb · = εb · εa = εba . (38.48)

The expansion of the 4 outer products εaεb · of spinors in terms of the basis elements γγA of the geometric
algebra, and vice versa, de�ne the matrix of coe�cients γAab and its inverse γabA ,

εaεb · = γAabγγA , γγA = γabA εaεb · . (38.49)

The coe�cients γAab and γ
ab
A in the chiral representation are

γAab = 1
2 εb · γγ

Aεa , γabA = − εa · γγAεb . (38.50)
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Exercise 38.1. Consistency of spinor and multivector scalar products. Con�rm that the spinor and
multivector scalar products are consistent.
Solution. Multivector vectors are equivalent to outer products of Pauli spinors in accordance with equa-
tions (38.46). For example, the scalar product of the multivectors γγ+ and γγ− is

γγ+ · γγ− = 1
2 (γγ+γγ− + γγ−γγ+)

= − 1
4

(
{ε↑, ε↑} · {ε↓, ε↓}·+ {ε↓, ε↓} · {ε↑, ε↑}·

)
= −

(
ε↑(ε↑ · ε↓)ε↓ ·+ ε↓(ε↓ · ε↑)ε↑ ·

)
= − ε↑ε↓ ·+ ε↓ε↑ ·
= [ε↓, ε↑] ·
= 1 , (38.51)

the fourth step of which invokes the spinor scalar product (38.32), and the last step of which is from the
equivalence (38.44). The result agrees with the multivector scalar product (38.2).

38.11 The 3D super geometric algebra

The 3D super geometric algebra comprises 4 distinct species of objects: true scalars, column spinors, row
spinors, and multivectors. In a matrix representation, they are complex (with respect to i) matrices with
dimensions 1× 1, 1× 2, 2× 1, and 2× 2. The true scalars are just complex numbers. A column spinor ϕ is
a complex linear combination of column basis spinors εa,

ϕ = ϕaεa , (38.52)

while a row spinor ϕ · is a complex linear combination of row basis spinors εa ·,

ϕ · = ϕaεa · . (38.53)

A multivector a is a complex linear combination of outer products of the column and row basis spinors,

a = aabεaεb · . (38.54)

Linearity and the transformation law (38.43) imply that the algebra of sums and products of outer products
of spinors is isomorphic to the geometric algebra.
There are two distinct kinds of scalar in the super geometric algebra, true scalars that are just complex

numbers, and multivector scalars that are proportional to the unit matrix in a matrix representation. See
�39.6.2 for an explanation of this conundrum.
As seen in �38.8 and �38.10, a column spinor ϕ and a row spinor χ · can be multiplied in either order,

yielding an inner product which is a scalar, and an outer product which is a multivector. However, a column
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spinor cannot be multiplied by a column spinor, and likewise a row spinor cannot be multiplied by a row
spinor, as is manifestly true in a matrix representation.
In applications to quantum �eld theory, rather than prohibiting certain kinds of multiplication, it is

convenient instead to assert that prohibited multiplications simply yield a true scalar value of zero. Thus

ϕχ = 0 , ϕ · χ · = 0 , ϕa = 0 , aϕ · = 0 . (38.55)

This allows all objects in the super geometric algebra to be added and multiplied, regardless of their species.
In general, a sequence of products of spinors yields a non-zero result provided that they alternate between

column spinor and row spinor,

ϕχ · ψ or ϕ · χψ · . (38.56)

Both product sequences are associative,

ϕχ · ψ = (ϕχ ·)ψ = ϕ (χ · ψ) , (38.57)

and

ϕ · χψ · = (ϕ · χ)ψ · = ϕ ·(χψ ·) . (38.58)

A product of an even number of spinors yields a scalar or a multivector depending on whether the �rst spinor
is a row or a column spinor. A product of an odd number of spinors yields a row spinor or a column spinor
depending on whether the �rst spinor is a row or a column spinor.
The scalar product and the associative law make it straightforward to simplify long sequences of products.

Let a = aabεaεb · and b = babεaεb · be two multivectors expressed as a sum of outer products of spinors.
Their product is the multivector

ab = aabεaεb · bcdεcεd · = εaa
abεbcb

cdεd · = εaa
abbb

dεd · . (38.59)

A sequence such as ϕ · aχ simpli�es as

ϕ · aχ = ϕaεa · abcεbεc · χdεd = ϕaεaba
bcεcdχ

d = ϕaaa
cχc . (38.60)

The trace, equation (38.48), of an outer product of spinors is a true scalar

Tr χϕ · = χaϕbεba = −χ · ϕ = ϕ · χ , (38.61)

the last step of which assumes that the coe�cients χa and ϕb are ordinary commuting complex numbers,
equation (38.42).

38.12 Conjugate Pauli spinor

The 3D super geometric algebra possesses a discrete transformation called conjugation. The conjugate Pauli
spinor ϕ̄ is de�ned by equation (38.64). It has the de�ning properties that (a) its components are complex
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conjugates (with respect to i) of those of the parent spinor ϕ, and (b) the conjugate spinor ϕ̄ rotates in the
same way as the spinor ϕ.
The complex conjugate ϕ∗ of a Pauli spinor ϕ = ϕaεa is de�ned to be the spinor with complex conjugate

(with respect to i) coe�cients,

ϕ∗ ≡ ϕa∗εa . (38.62)

In e�ect, the basis spinors εa are taken to be real, just as the basis vectors γγ± and γγ3 in the spin basis
are real, equations (38.7). Since the spinor ϕ rotates under a rotor R as ϕ→ Rϕ, its complex conjugate ϕ∗

rotates according to the complex conjugate representation of the Pauli matrices,

R : ϕ∗ → (Rϕ)∗ = R∗ϕ∗ . (38.63)

The conjugate Pauli spinor ϕ̄ is de�ned by (despite the similar notation, the conjugate spinor ϕ̄ is not the
reverse spinor ϕ de�ned by equation (13.132); rather, the reverse spinor coincides with the row conjugate
spinor ϕ = ϕ̄ · de�ned by equation (38.69); note that the conjugate overbar ¯ is slightly smaller and thinner
than the reverse overbar ; but in any case, it should be clear from the context whether the conjugate or
reverse spinor is intended)

ϕ̄ ≡ εϕ∗ . (38.64)

The 3D spinor metric tensor ε was constructed earlier to have the property (38.25) that commutation with ε
converts orthonormal basis vectors γγa of the geometric algebra to minus their transposes. The spinor metric
tensor ε has the additional property that commutation with it converts even (but not odd) orthonormal
basis elements 1 and I3γγa of the geometric algebra to their complex conjugates (with respect to i) in the
Pauli representation (13.115). Consequently commutation with ε converts rotors R, which are real linear
combinations of the even orthonormal basis elements, to their complex conjugates,

εR∗ = Rε , (38.65)

which also implies that εR = R∗ε, since the complex conjugate R∗ of a rotor R is also a rotor, equa-
tion (13.123). It follows that the conjugate Pauli spinor ϕ̄ rotates in the same way as the spinor ϕ,

R : ϕ̄ ≡ εϕ∗ → εR∗ϕ∗ = Rεϕ∗ = Rϕ̄ . (38.66)

In components,

ϕ̄ = ϕa∗ε̄a , ε̄a ≡ εεa = ∓εā , (38.67)

where the index ā is the bit-�ip of the index a, and the ∓ sign is − for ↑ and + for ↓, that is, εε↑ = −ε↓ and
εε↓ = ε↑.
Conjugating a Pauli spinor ϕ twice changes its sign,

¯̄ϕ = −ϕ . (38.68)
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38.13 Scalar products of spinors and conjugate spinors

The row conjugate Pauli spinor ϕ̄ · corresponding to the column conjugate spinor ϕ̄ coincides with the
Hermitian conjugate spinor ϕ†, which in turn coincides with the reverse spinor ϕ, equation (13.132),

ϕ̄ · ≡ ϕ̄>ε = ϕ†ε>ε = ϕ† = ϕ . (38.69)

Note that the reverse spinor ϕ equals the row conjugate spinor ϕ̄ ·; the reverse spinor ϕ does not equal the
column conjugate spinor ϕ̄ de�ned by equation (38.64), and the two should not be confused.
The scalar product of a row conjugate Pauli spinor ϕ̄ · with a column Pauli spinor χ coincides with the

product of the Hermitian conjugate spinor ϕ† with the spinor χ,

ϕ̄ · χ = ϕ†χ =
(
ϕ↑∗ ϕ↓∗

)( χ↑

χ↓

)
= ϕ↑∗χ↑ + ϕ↓∗χ↓ . (38.70)

In particular, the scalar product ϕ̄ · ϕ of a spinor with its own conjugate is real and positive,

ϕ̄ · ϕ = ϕ†ϕ . (38.71)

The complex conjugate of the scalar product satis�es

(ϕ̄ · χ)∗ ≡
(
(εϕ∗)>εχ

)∗
= ϕ>ε>χ̄ = −ϕ>εχ̄ = −ϕ · χ̄ . (38.72)

The sign �ip in the fourth expression occurs because the spinor metric tensor ε is antisymmetric, ε> = −ε.
In particular, the complex conjugate of the product ϕ̄ · ϕ of a spinor with its own conjugate is

(ϕ̄ · ϕ)∗ = −ϕ · ϕ̄ . (38.73)

Equation (38.73), along with the condition that the scalar product be real, (ϕ̄ ·ϕ)∗ = ϕ̄ ·ϕ, equation (38.71),
requires that the scalar product ϕ̄ · ϕ be anticommuting,

ϕ̄ · ϕ = −ϕ · ϕ̄ . (38.74)

Equation (38.74) proves that the scalar product of Pauli spinors must be anticommuting, as asserted earlier,
equation (38.42).
In non-relativistic quantum mechanics, the real positive scalar (38.71) is interpreted as the probability

of the Pauli spinor ϕ. Since conjugating a Pauli spinor twice �ips its sign, equation (38.68), the scalar
product (38.71) is the same regardless of whether the spinor ϕ or its conjugate ϕ̄ is taken:

¯̄ϕ · ϕ̄ = −ϕ · ϕ̄ = ϕ̄ · ϕ . (38.75)

Concept question 38.2. Imaginary spinor metric? Would making the spinor metric ε imaginary allow
the spinor scalar product to be commuting instead of anticommuting? Answer. No. If the spinor metric ε
were multiplied by i, or more generally by some arbitrary complex phase (which is possible since the spinor
metric is de�ned only up to a scalar normalization factor), then the conjugate spinor must be de�ned by
ϕ̄ = ε∗ϕ∗ in place of the de�nition (38.64) in order that the scalar product of the spinor and its conjugate
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remain real and positive, equation (38.71). A manipulation similar to equation (38.72) carries through, with
the result that equation (38.73) continues to hold regardless of any complex phase in spinor metric ε. The
minus sign comes from ε> = −ε regardless of any complex phase. The scalar product of Pauli scalars is
necessarily anticommuting.

38.14 Conjugate multivectors

Conjugate multivectors ā in the super geometric algebra are de�ned, similarly to conjugate Pauli spinors,
such that their components are complex conjugates of the parent multivector a, and they rotate in the same
way as multivectors (the conjugate multivector ā is not the same as the reverse multivector a; note that the
conjugate overbar ¯ is slightly smaller and thinner than the reverse overbar ).
The complex conjugate multivector a∗ of a multivector a ≡ aAγγA is de�ned to be

a∗ ≡ aA∗γγ∗A , (38.76)

where γγ∗A is the complex conjugate of the basis multivector γγA in the Pauli representation. The spin basis
vectors γγ± and γγ3 are real in the Pauli representation, which is consistent with the basis spinors εa being
taken to be real, equation (38.62). Since a rotates as a→ RaR, the complex conjugate a∗ rotates as

R : a∗ → (RaR)∗ = R∗a∗R∗ . (38.77)

Complex conjugation commutes with the isomorphism between multivectors and outer products of spinors
in the super geometric algebra. That is, if the multivector is an outer product of spinors, a = ϕχ ·, then the
complex conjugate multivector is the outer product of the complex conjugate spinors, a∗ = ϕ∗χ∗ ·.
Similarly, consistent with the de�nition (38.64) of the conjugate spinor ϕ∗, the conjugate multivector ā is

de�ned by

ā ≡ εa∗ε−1 . (38.78)

If the multivector is an outer product of spinors, a = ϕχ ·, then the conjugate multivector is the outer product
of the conjugate spinors, ā = ϕ̄χ̄ ·. Like the conjugate spinor, equation (38.66), the conjugate multivector ā
rotates in the same way as a multivector,

R : ā ≡ εa∗ε−1 → εR∗a∗R∗ε−1 = Rεa∗ε−1R = RāR . (38.79)

In the Pauli representation, the conjugates of the orthonormal basis vectors γγa are minus themselves,

γ̄γa ≡ εγγ∗aε−1 = −γγa . (38.80)

The conjugate of a grade-p multivector a is, in components,

ā = aA∗γ̄γA , γ̄γA = (−)pγγA . (38.81)
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38.14.1 Real subalgebra

In the Pauli representation, the basis vectors γγ± and γγ3 in a spin basis are real, equations (38.7) and (38.8),
and the basis spinors εl are similarly real, equations (38.12). One might therefore contemplate forming a
real subalgebra of the super geometric algebra from real linear combinations of these basis spinors and their
products. This does not work however, because spatial rotations transform the basis spinors into complex
combinations of each other, equation (13.123). Any viable real subalgebra must be closed under rotations.
Orthonormal basis multivectors on the other hand do transform into real linear combinations of each other

under rotations. A real subalgebra of the geometric algebra may be obtained by restricting to multivectors
satisfying the reality condition that they are their own conjugates,

ā = a . (38.82)

Since conjugates of even and odd orthonormal basis vectors γγA are respectively plus and are minus them-
selves, equation (38.81), in the Pauli representation there is a real subalgebra consisting of linear combinations
aAγγA of odd orthonormal multivectors with pure imaginary coe�cients, and even orthonormal multivectors
with pure real coe�cients. But in the Pauli algebra the (odd) pseudoscalar I3 is identi�ed with i times the unit
matrix, so the real Pauli subalgebra reduces to real linear combinations of even orthonormal multivectors.

38.15 The super geometric algebra in arbitrarily many spatial dimensions

Exercise 38.3. Generalize the super geometric algebra to an arbitrary number of dimensions.

Generalize the super geometric algebra to an arbitrary number of spatial dimensions N . Exercise 39.6 gen-
eralizes this exercise to an arbitrary number of space and time dimensions.
Solution.

1. Basis of spin vectors γγa. Let γγa, a = 1, ..., N be an orthonormal (γγa · γγb = δab) basis of vectors
in the N -dimensional geometric algebra. Group the basis vectors into pairs. The following complex
combinations of the pairs de�ne a basis of spin vectors γγ±i ,

γγ+i ≡ 1√
2
(γγ2i−1 + iγγ2i) , γγ−i ≡ 1√

2
(γγ2i−1 − iγγ2i) , i = 1, ..., [N/2] , (38.83)

generalizing equations (38.1). If the dimension N is odd, then one basis vector, γγN , will remain unpaired.

Under a right-handed rotation by angle θ in the γγ2i−1�γγ2i plane, the i'th pair of spin basis vectors
γγ±i transform as

γγ±i → e∓iθ γγ±i . (38.84)

The transformation (38.84) identi�es the spin basis vectors γγ±i as having i'th spin weight equal to ±1.
All other spin basis vectors, γγ±j with j 6= i, together with the unpaired basis vector γγN if N is odd,
have zero i'th spin weight. There are [N/2] di�erent spin weights i. The components of a tensor in a
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spin basis inherit their spin properties from those of the spin basis. The i'th spin-weight si of any tensor
component is

spin weight si = number of +i minus −i covariant indices , (38.85)

generalizing equation (38.6).
The geometric algebra, Chapter 13, generated by inner and outer products of the N basis vectors γγa

is a vector space of dimension 2N .
2. Basis of spinors εa. Spinor axes are de�ned by 2[N/2] basis spinors εa,

εa ≡ εa1...a[N/2] (38.86)

where a1...a[N/2] denotes not a set of indices, but rather a bitcode specifying the single index a. Each
bit ai is either up ↑ or down ↓. For example, one of the basis spinors is the all-up basis spinor ε↑↑...↑.
Under a right-handed rotation by angle θ in the γγ2i−1�γγ2i plane, a basis spinor εa transforms as

ε...↑i... → e−iθ/2 ε...↑i... , ε...↓i... → eiθ/2 ε...↓i... . (38.87)

The transformation (38.87) shows that each basis spinor εa has i'th spin weight either + 1
2 or − 1

2 in each
of its [N/2] bits. The components of a spinor tensor in a spin basis inherit their spin properties from
those of the spin basis. The i'th spin-weight si of any spinor tensor component is

spin weight si = 1
2 (number of ↑i minus ↓i covariant indices) , (38.88)

generalizing equation (38.14).
A spinor ϕ,

ϕ = ϕaεa , (38.89)

is a linear combination of the 2[N/2] basis spinors εa. The spinor can be represented as a column vector
ϕa of dimension 2[N/2], the index a running over bitcodes a1...a[N/2].

3. Spinor metric tensor. A spinor metric ε can be de�ned as that spinor tensor that is invariant under
rotations, suitably normalized, �38.6. Invariance of the spinor metric ε under rotations requires that for
any rotor R,

εR> = Rε , (38.90)

the same as condition (38.18). A rotor is a real linear combination of even elements of the geometric
algebra in an orthonormal basis. Thus the condition (38.90) is determined by the commutation properties
of ε with the orthonormal bivectors of the geometric algebra. In the canonical chiral representation
de�ned by the construction (38.111), orthonormal basis bivectors γγa ∧γγb are represented by traceless,
unitary, (A−1 = A†), skew-Hermitian (A† = −A) matrices. Then condition (38.90) holds if ε commutes
with orthonormal basis bivectors whose representation is real, and anticommutes with orthonormal basis
bivectors whose representation is imaginary. In the construction (38.111), all chiral basis vectors γγ±i
are real, so orthonormal basis vectors γγ2i−1 are real while γγ2i are imaginary. The only matrix ε with the
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Table 38.1: Symmetry of spinor metric

N ε2 = (−)[(N+1)/4] ε2
alt = (−)[(N+2)/4] ε̃2 = (−)[N/4] ε̃2

alt = (−)[(N+3)/4]

1 (mod 8) + + + −
2 (mod 8) + −
3 (mod 8) − − + −
4 (mod 8) − −
5 (mod 8) − − − +

6 (mod 8) − +

7 (mod 8) + + − +

8 (mod 8) + +

required commutation properties with basis bivectors is, up to a scalar or pseudoscalar normalization
factor, the product of all the odd basis vectors γγ2i−1,

ε =

[(N+1)/2]∏
i=1

γγ2i−1 . (38.91)

An alternative version εalt of the spinor metric may be obtained by multiplying the spinor met-
ric (38.91) by the chiral factor κN , which is the pseudoscalar IN , equation (38.123), normalized by a
power of i so that κ2

N equals one, equation (38.126),

εalt ≡ κNε =

[N/2]∏
i=1

iγγ2i . (38.92)

The factors of the imaginary i are introduced so that the spinor metric ε is real.

If N is odd, and if the odd algebra is constructed, as described in part 11 of this Exercise, by
embedding the odd algebra in one extra dimension and treating either the �nal (odd) dimension γγN or
the extra (even) dimension γγN+1 as a scalar, then there are further options for the spinor metric. The
invariance condition (38.90) need hold only for rotors not involving the scalar dimension γγN or γγN+1. If
the scalar dimension is the odd dimension γγN , then γγN can be dropped from the standard spinor metric
ε, leaving ε in N−1 dimensions. If the scalar dimension is the even dimension γγN+1, then iγγN+1 can
be adjoined to the alternative spinor metric εalt, giving εalt in N+1 dimensions. The resulting spinor
metrics, distinguished with a tilde, are

ε̃ = εγγN , ε̃alt = εaltiγγN+1 (N odd) . (38.93)

The spinor metric ε, in any of the forms (38.91)�(38.93), is real and orthogonal, and its square is plus
or minus the unit matrix,

ε−1 = ε> , ε2 = ±1 , (38.94)
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where the ± sign is as tabulated in Table 38.1. The square of the spinor metric coincides with the
symmetry of the spinor metric under exchange of its indices, equation (38.99) below. The spinor metric
matrix ε is always Hermitian,

ε−1 = ε† . (38.95)

Despite the equality of ε and
∏
i γγ2i−1 (or of εalt and

∏
i iγγ2i) in the representation (38.111), ε (or εalt)

is de�ned to transform as a spinor tensor under rotations, not as an element of the geometric algebra.
In the representation (38.111), the ordering of rows or columns indexed by spinor index a = a1...a[N/2]

is that of binary numbers a[N/2]...a1 with 0 for up ↑ and 1 for down ↓. The components εba of the spinor
metric ε,

εba ≡ εb · εa ≡ ε>b εεa , (38.96)

are non-vanishing only between basis spinors εb and εa that are bit �ips of each other. The sign of εāa,
where ā denotes the bit �ip of a, follows inductively from equations (38.109), and is

εεa = sign(εāa)εā , sign(εāa) ≡ sign(εā1...ā[N/2]a1...a[N/2]) =
∏
ai= ↑

(−)i−1 . (38.97)

For the alternative spinor metric (38.92), the sign is

εaltεa = sign(εalt
āa )εā , sign(εalt

āa ) ≡ sign(εalt
ā1...ā[N/2]a1...a[N/2]

) =
∏
ai= ↑

(−)i . (38.98)

The spinor metric is symmetric or antisymmetric as its square is positive or negative,

εab = ±εba , (38.99)

where the ± sign is as tabulated in Table 38.1.
Commuting the spinor metric ε through the orthonormal basis vectors γγa converts them to plus or

minus their transposes,

γγ>a ε = ±εγγa . (38.100)

Table 38.2 tabulates the sign in equation (38.100) for the spinor metric ε and the alternative spinor
metric εalt, along with the tilde'd versions (38.93) for odd N . Equation (38.100) is proved by induction:
equations (38.112) and (38.117) imply that if (38.100) has a certain sign in N−2 dimensions, then it
has the same sign in N dimensions; the sign is then determined at the smallest dimension for which the
spinor metric ε is de�ned, N = 1 or 2.

4. Scalar product of spinors. Corresponding to any column basis spinor εa is a row basis spinor εa ·
de�ned by

εa · ≡ ε>a ε . (38.101)

(or by εa · ≡ ε>a εalt if the alternative spinor is used). The row spinor ϕ · corresponding to a column
spinor ϕ = ϕaεa is

ϕ · ≡ ϕ>ε = ϕaεa · . (38.102)



964 The super geometric algebra

Table 38.2: Sign of γγ>a ε = ±εγγa

N ε : (−)[(N+3)/2] εalt : (−)[N/2] ε̃ : (−)[(N+1)/2] ε̃alt : (−)[(N+2)/2]

1 (mod 8) + + − −
2 (mod 8) + −
3 (mod 8) − − + +

4 (mod 8) − +

5 (mod 8) + + − −
6 (mod 8) + −
7 (mod 8) − − + +

8 (mod 8) − +

The scalar product of row and column spinors is

ϕ · χ = εabϕ
aχb . (38.103)

The scalar product is symmetric or antisymmetric as the spinor metric is symmetric or antisymmetric,

ϕ · χ = ε2 χ · ϕ , (38.104)

the sign of ε2 being as given in Table 38.1.
Linear combinations of outer products εaεb · of basis spinors,

ϕχ · = ϕaχbεaεb · , (38.105)

form a vector space of dimension 22[N/2]. Multiplication of outer products satis�es the associative rule

(ϕχ ·)(ψξ ·) = ϕ(χ · ψ)ξ · , (38.106)

which since χ · ψ is a scalar is proportional to the outer product ϕξ ·.
5. Transformations that leave the spinor scalar product unchanged, and those that �ip its

sign. The spinor metric ε, hence the spinor scalar product, is by de�nition invariant under rotations,
that is, under the rotor group generated by bivectors of the geometric algebra. However, the geometric
algebra contains multivectors of other grades, that generate other Lie groups of transformations of the
algebra, that either leave the spinor scalar product invariant, or �ip its sign.
Let R = e−θγγA/2 be a transformation generated by an orthonormal basis multivector γγA of grade p,

with θ real. The generalization of equation (38.100) to orthonormal multivectors γγA of grade p is

γγ>Aε = (±)pεγγA , (38.107)

where γγA is the reverse of γγA, and the ± sign is as tabulated in Table 38.2. The scalar product of two
spinors ϕ and χ transformed by R is then

(Rϕ) · (Rχ) = ϕ>R>εRχ = (±)pϕ>εRRχ = (±)pϕ · χ . (38.108)
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If the ± sign in Table 38.2 is +, then transformations generated by orthonormal multivectors of all
grades p leave the scalar product unchanged. If the ± sign is −, then transformations generated by even
orthonormal multivectors leave the scalar product unchanged, while transformations generated by odd
orthonormal multivectors change the sign of the scalar product.

6. Chiral representation of the super geometric algebra. There is an isomorphism between the
algebra of outer products of spinors and the geometric algebra. The isomorphism may be established by
an explicit representation in terms of column and row vectors for spinors, and matrices for multivectors
in the geometric algebra. This part 6 of this Exercise takes the spinor metric to be the standard spinor
metric ε, equation (38.91). The next part 7 of this Exercise describes the modi�cations that must be
made if the spinor metric is taken to be the alternative spinor metric εalt, equation (38.92).

The construction below yields the chiral representation, generated inductively starting from N = 0.
Given a representation of column and row basis spinors εA and εA · in N−2 dimensions, a representation
of column and row basis spinors εAa and εAa · (with one extra index a = ↑ or ↓) in N dimensions are
column and row matrices of length N/2,

εA↑ =

(
εA
0

)
, εA↑ · =

(
0 εA ·

)
, (38.109a)

εA↓ =

(
0

εA

)
, εA↓ · =

(
(−)(N−2)/2εA · 0

)
, (38.109b)

where 0 represents respectively a zero column or row vector of length 2(N−2)/2, and the index N/2 on ↑
and ↓ has been dropped for brevity. The induction starts at N = 2 where A is empty and εA = εA · = 1.
The trailing dot signi�es the spinor metric tensor ε. The construction (38.109) assumes that the spinor
metric ε is a product (38.91) of factors, the last factor γγN−1 taking the form (38.115), so that the
relation between the spinor metric in N and N−2 dimensions is given by equation (38.117).

The outer products of the column basis spinors εAa and row basis spinors εBb · given by the inductive
relations (38.109) are 2N/2 × 2N/2 matrices

εA↑εB↑ · =
(

0 εAεB ·
0 0

)
, (38.110a)

εA↑εB↓ · =
(

(−)(N−2)/2εAεB · 0

0 0

)
, (38.110b)

εA↓εB↑ · =
(

0 0

0 εAεB ·

)
, (38.110c)

εA↓εB↓ · =
(

0 0

(−)(N−2)/2εAεB · 0

)
, (38.110d)

where the 0's in equations (38.110) represent zero 2(N−2)/2 × 2(N−2)/2 matrices, and the index N/2 on
↑ and ↓ has again been dropped for brevity. Again, the induction (38.110) starts at N = 2 where A and
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B are empty, and εAεB · = 1. The outer products (38.110) can be rewritten

εA↑εB↑ · =
1√
2

(
εAεB · 0

0 ±εAεB ·

)(
0
√

2

0 0

)
, (38.111a)

εA↑εB↓ · = (−)(N−2)/2 1

2

(
εAεB · 0

0 ±εAεB ·

)(
2 0

0 0

)
, (38.111b)

εA↓εB↑ · = ±
1

2

(
εAεB · 0

0 ±εAεB ·

)(
0 0

0 2

)
, (38.111c)

εA↓εB↓ · = ±(−)(N−2)/2 1√
2

(
εAεB · 0

0 ±εAεB ·

)(
0 0√
2 0

)
, (38.111d)

where the upper/lower sign is for even/odd εAεB · (that is, the total spin weight
∑
i si of εAεB · is

even/odd). The �rst matrix on the right hand sides of equations (38.111) is the matrix representation
of the multivector εAεB · in N dimensions in terms of its representation in N−2 dimensions,

εAεB · = (−)(N−2)/2εA↑εB↓ · ± εA↓εB↑ · =
(
εAεB · 0

0 ±εAεB ·

)
. (38.112)

The rightmost factors in equations (38.111) constitute the matrix representations of γγ+, γγ+γγ−, γγ−γγ+,
and γγ− in N dimensions,

γγ+ =

(
0
√

2

0 0

)
, γγ+γγ− =

(
2 0

0 0

)
, γγ−γγ+ =

(
0 0

0 2

)
, γγ− =

(
0 0√
2 0

)
, (38.113)

which have the correct normalization and commutation rules with respect to each other. The signs in
equations (38.111) are arranged so that the correct commutation rules of the geometric algebra are
respected: γγ+ and γγ−, which are odd, commute/anticommute with εAεB · according as the latter is
even/odd; and γγ+γγ− and γγ−γγ+, which are even, always commute with εAεB ·. In terms of scalar and
wedge products, the multivectors γγ+γγ− and γγ−γγ+ in equations (38.113) are

γγ±γγ∓ = γγ+ · γγ− ± γγ+ ∧γγ− , γγ+ · γγ− =

(
1 0

0 1

)
, γγ+ ∧γγ− =

(
1 0

0 −1

)
. (38.114)

Note that γγ+ ∧γγ− = −iγγN−1 ∧γγN , so that (γγ+ ∧γγ−)2 = 1 even though γγ+ and γγ− anticommute. The
orthonormal basis vectors γγN−1 and γγN at the (N/2)'th step are

γγN−1 =

(
0 1

1 0

)
, γγN =

(
0 −i
i 0

)
, (38.115)

which are traceless, unitary, and Hermitian. The orthonormal basis bivector γγN−1 ∧γγN is

γγN−1 ∧γγN =

(
i 0

0 −i

)
, (38.116)
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which is traceless, unitary, and skew-Hermitian. An iterative expression for the spinor metric εN follows
from its expression (38.91) as a product of basis vectors, and is the antidiagonal matrix

εN = εN−2 γγN−1 =

(
εN−2 0

0 (−)(N−2)/2εN−2

)(
0 1

1 0

)
=

(
0 εN−2

(−)(N−2)/2εN−2 0

)
.

(38.117)
The left factor in the third expression of equations (38.117) is the matrix representation of εN−2 in
N dimensions in terms of its representation in N−2 dimensions, in accordance with equation (38.112).
The factor of (−)(N−2)/2 comes from the fact that the spinor metric εN−2 is a product of (N−2)/2

basis vectors, equation (38.91), so is even/odd (total spin weight even/odd) as (N−2)/2 is even or
odd. Equation (38.117), which was assumed in the initial step (38.109) of the construction of the chiral
representation of the super geometric algebra, proves the consistency of the construction.
The matrix representation of the column and row basis spinors (38.109) and of their outer prod-

ucts (38.111) is entirely real (with respect to i). The expansion of the 2N outer products εaεb · of spinors
in terms of the 2N basis multivectors γγA of the spacetime algebra, and vice versa, de�ne the matrix of
coe�cients γAab and its inverse γabA ,

εaεb · = γAabγγA , γγA = γabA εaεb · . (38.118)

The coe�cients γAab and γ
ab
A in the chiral representation are

γAab =
1

2[N/2]
εb · γγAεa , γabA = sign(ε2) εa · γγAεb , (38.119)

where sign(ε2) is the symmetry of the spinor metric, Table 38.1.
For even N , the above construction establishes an isomorphism between outer products of spinors

and the geometric algebra,

outer products of spinors ∼= geometric algebra (N even) . (38.120)

Both spaces are complex 2N -dimensional vector spaces. Their representation as 2N/2 × 2N/2 dimen-
sional matrices is minimal: there is no representation of the geometric algebra with matrices of smaller
dimension.

7. Chiral representation of the super geometric algebra using the alternative spinor metric.

The chiral representation of the super geometric algebra with the alternative spinor metric (38.92) is
the same as the construction in part 6, but with the replacement

(−)(N−2)/2 → (−)N/2 (38.121)

in equations (38.109) to (38.112). Analogously to equation (38.117), an iterative equation for the al-
ternative spinor metric follows from its expression (38.92) as a product of basis vectors, and is the
antidiagonal matrix

εalt
N = εalt

N−2 iγγN =

(
εalt
N−2 0

0 (−)(N−2)/2εalt
N−2

)(
0 1

−1 0

)
=

(
0 εalt

N−2

(−)N/2εalt
N−2 0

)
. (38.122)



968 The super geometric algebra

8. Super geometric algebra in odd dimensions, version 1. The construction of the super geometric
algebra in part 6 works in even dimensions N . What about N odd? One approach, dealt with in this
part, is to project the odd-dimensional algebra into one lower dimension, which requires identifying the
chiral operator κN with 1, equation (38.127). The resulting algebra of outer products of spinors, besides
not yielding the full odd-N geometric algbra, does not include a parity operator. A richer approach, put
forward in part 11, is to embed the odd-dimensional algebra in the algebra with one higher dimension,
and to treat the extra dimension as a scalar, which proves to be a parity operator.
Consider that the pseudoscalar IN of the geometric algebra can be written

IN ≡ γγ1 ∧γγ2 ∧ ...∧γγN = i[N/2]κN , (38.123)

where the chiral operator κN (the generalization of the 4D Dirac chiral operator γ5) is de�ned by

κN ≡ γγ+1 ∧γγ−1 ∧ ...∧γγ+[N/2]
∧γγ−[N/2]

{∧γγN if N is odd} . (38.124)

In the chiral representation (38.111), the representation of the chiral operator κN in N even dimensions
in terms of its representation κN−2 in N−2 dimensions is the diagonal matrix

κN =

(
κN−2 0

0 −κN−2

)
(N even) . (38.125)

The chiral operator is diagonal in the chiral representation by construction. The square of the pseu-
doscalar is I2

N = (−)[N/2], equation (13.21), so the square of the chiral operator is the unit matrix 1,

κ2
N = 1 . (38.126)

Like the pseudoscalar IN , the chiral operator κN is invariant under rotations. For even N , the chiral
operator κN is de�ned through equation (38.124) as a prescribed member of both algebras, the algebra of
spinor outer products and the geometric algebra. But for odd N , since the de�nition (38.124) involves γγN
which (as yet) has no expression in the algebra of outer products of spinors, there is the possibility that
κN could be a distinct element not belonging to the algebra of spinor outer products. The element κN
is a rotationally invariant scalar that squares to 1, and that (for odd N) commutes with all basis vectors
γγa. The other element of the odd-N algebra of spinor outer products that possesses those properties is
(up to a possible sign) the unit element. Thus if the chiral operator κN is identi�ed with 1,

κN = 1 (N odd) , (38.127)

then there is an isomorphism between the algebra of outer products of spinors in N−1 dimensions and
the geometric algebra in N dimensions modulo the chiral operator κN ,

outer products of spinors ∼= geometric algebra (mod κN ) (N odd) . (38.128)

Given the identi�cation (38.127) of the chiral operator with 1, it then follows from the de�nition equa-
tion (38.124) of κN that the �nal element γγN of the geometric algebra is

γγN = κN−1 = γγ+1 ∧γγ−1 ∧ ...∧γγ+[N/2]
∧γγ−[N/2]

(N odd) . (38.129)
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In the case N = 3, this gives

γγ3 = γγ+ ∧γγ− =

(
1 0

0 −1

)
, (38.130)

in agreement with the Pauli matrix equation (38.8). With the identi�cation (38.127), the pseudoscalar
IN itself is, equation (38.123),

IN = i[N/2] (N odd) . (38.131)

For odd N , the chiral operator κN de�ned by equation (38.124) is (before κN is identi�ed with 1)
an odd element of the geometric algebra. Thus for odd N , the odd part of the geometric algebra is
isomorphic to κN times the even geometric algebra. Only the odd geometric algebra is a�ected by the
identi�cation (38.127) of the chiral operator with unity; the even geometric algebra is una�ected. The
square of the chiral operator is always 1, equation (38.126), so the product of two odd multivectors
yields the correct even multivector regardless of the identi�cation (38.127).

The imaginary i was introduced already in the very �rst step (38.83) of the construction of the super
geometric algebra. One might ask where that imaginary came from? An intriguing observation is that
if N is odd and [N/2] is odd (thus N = 3, 7, 11, ...), then the pseudoscalar IN squares to −1 and
commutes with all elements of the geometric algebra, just like the imaginary i. One might take the view
that maybe that's where i comes from. Taking the view that IN is indeed the imaginary is equivalent to
indentifying the chiral operator κN with unity, equation (38.127), in which case i is, up to a sign, the
pseudoscalar IN , equation (38.131).

In summary, the algebra of spinor outer products in 2[N/2] dimensions is isomorphic to the geometric
algebra for both even and odd N , modulo κN in the case of odd N . The algebra is a complex (with
respect to i) vector space of dimension 22[N/2], represented in the chiral construction (38.111) by 2[N/2]×
2[N/2] matrices. For example, the N = 2 geometric algebra is the complex vector space generated by
1,γγ+,γγ−,γγ+ ∧γγ−, while the N = 3 geometric algebra (the Pauli algebra) is the complex vector space
generated by 1,γγ+,γγ−,γγ3, the pseudoscalar I3 being identi�ed with the imaginary i.

9. Extra symmetry of the super geometric algebra in odd dimensions. Given that, if κN is
identi�ed with 1, the geometric algebra for odd N is isomorphic to the geometric algebra for even
N−1, what is the di�erence between the two algebras? Since the algebras are isomorphic, there is of
course no di�erence. However, bivectors are special in that they are the only generators that generate
transformations that preserve grade, and therefore correspond to what one usually thinks of as spatial
rotations. If one restricts only to rotations generated by bivectors, then the odd algebra has a higher
degree of symmetry. The equivalence (38.129) means that the pseudoscalar κN−1 in the even algebra
is promoted to a vector γγN in the odd algebra, and pseudovectors γγaκN−1 in the even algebra become
bivectors γγa ∧γγN in the odd algebra. Thus the odd algebra has N−1 more rotations than the even
algebra.

The �nal basis vector γγN = κN−1 of the odd algebra has the same properties as the other orthonormal
basis vectors γγ1 to γγN−1: its square is 1, it anticommutes with the other orthonormal basis vectors, it is
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represented by a traceless, unitary, Hermitian matrix, and its reverse is (by de�nition) itself, γγN = γγN .
And, like the other orthonormal basis vectors γγ2i−1 of odd index, the representation of γγN is real.
The Pauli algebra (13.118) in N = 3 dimensions o�ers a familiar example. In both 2 and 3 dimensions

there are just 2 basis spinors, ε↑ and ε↓, which one commonly conceptualizes as being up and down
along a �3-axis�. But whereas in 2 dimensions there is just one rotation, generated by the bivector γγ1 ∧γγ2

(rotation about the �3-axis�), in 3 dimensions there are 2 more rotations, generated by the bivectors
γγ2 ∧γγ3 and γγ3 ∧γγ1 (rotations about the �1-axis� and �2-axis�).

10. Parity reversal. A second approach to the odd-N algebra is put forward in the next part 11, but �rst
it is necessary to consider the issue of parity reversal. Parity reversal is the operation of re�ecting an odd
number of spatial axes γγa, corresponding to an improper rotation with determinant −1. By contrast,
re�ecting an even number of axes can be accomplished by a continuous rotation with determinant 1.
If the number N of dimensions is even, then parity reversal may be realised by picking one particular

axis, say P = γγN , and transforming spinors ψ and multivectors a by

P : ψ → Pψ , a→ PaP−1 . (38.132)

The transformation (38.132) re�ects all axes except the axis P = γγN , so re�ects an odd number of axes
provided that N is even.
If the number N of dimensions is odd, and if the geometric algebra is projected into one dimension

lower as proposed in part 8, equation (38.127), then there is no element of the geometric algebra that
accomplishes parity reversal P by the operation (38.132). The di�culty is that any anticommutation of P
with a basis vector γγa is cancelled by a corresponding anticommutation with the �nal basis vector γγN ∝
γγ1...γγN−1, for no net anticommutation. The absence of a parity operator in the geometric algebra holds
true even if the odd-dimensional chiral operator κN is not identi�ed with unity, since all vectors commute
with the odd-dimensional chiral operator. The problem of constructing an odd-N super geometric algebra
that incorporates a parity operator is solved in the next part 11.

11. Super geometric algebra in odd dimensions, version 2. The previous part 10 brought up the fact
that the geometric algebra in odd N dimensions does not contain a parity operator P , at least if the
path proposed in part 8 is followed, that is, if the odd-N algebra is projected into one lower dimension.
The problem is not that the operation of parity reversal does not exist, but rather, how to construct

such a parity operator out of products of spinors.
The solution is to embed the odd N -dimensional algebra in the even (N+1)-dimensional algebra, and

to treat either the �nal (odd) dimension γγN or the extra (even) orthonormal dimension γγN+1 as the
scalar parity operator P ,

P = γγN or γγN+1 . (38.133)

The vectors γγN or γγN+1 have the usual property that they anticommute with all orthonormal vectors
γγa other than themselves, so the parity operator P de�ned by equation (38.133) has the property that
it re�ects all axes except itself,

P : γγa → PγγaP
−1 = −γγa . (38.134)
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Since N is odd, this choice of P re�ects an odd number of axes, so indeed reverses parity. The operation
P of re�ecting all axes (other than the scalar axis γγN or γγN+1) is rotationally invariant with respect to
rotations in N dimensions (with the scalar axis γγN or γγN+1 �xed).

As usual, there is a spin bit (the [(N+1)/2]'th bit) associated with the pair γγN and γγN+1 of axes.
Normally a rotation in the γγN ∧γγN+1 plane would rotate spinors by a phase e∓iθ/2 with sign ∓ de-
pending on whether the spin bit is up ↑ or down ↓. But since P is a scalar, there is no such rotation.
Notwithstanding the absence of a rotation by a phase, the spin bit is still there, part of the bitcode
index a = a1...a[(N+1)/2] of a basis spinor εa.

12. Properties of orthonormal basis multivectors in the chiral representation. In the chiral rep-
resentation constructed in part 6, all orthonormal basis vectors γγa, and all orthonormal basis p-vectors
γγa1...ap ≡ γγa1 ∧ ...∧γγap , are traceless (except for the unit basis element 1), unitary, and either Hermitian
(if [p/2] is even, i.e. p = 0, 1, 4, 5, ...) or skew-Hermitian (if [p/2] is odd, i.e. p = 2, 3, 6, 7, ...) 2[N/2]×2[N/2]

matrices. All matrices have determinant 1, except that for N = 2 the vectors (grade p = 1) have de-
terminant −1. The unit element is represented by the unit matrix. Most of these assertions can be
proved by induction using the expression (38.112), which gives the representation of a multivector in N
dimensions in terms of its representation in N−2 dimensions.

13. Right- and left-handed chiral subalgebras in even dimensions. In even N dimensions, a spinor
is said to be right- or left-handed depending on whether its chirality is even or odd. A basis spinor εa is
right- or left-handed depending on whether the number of spin �ips of the index a = a1...a[N/2], relative
to the all-up index ↑↑ ... ↑, is even or odd,

κNεa =
( ∏
ai= ↓

(−)
)
εa . (38.135)

In other words, a basis spinor εa is right- or left-handed as the number of down ↓ indices is even or odd.
In even N dimensions, the chirality of a spinor is invariant under rotations.

In odd N dimensions, if the path proposed in part 8 is followed, where the algebra is projected into
one lower dimension, which requires identifying the chiral operator κN with unity, equation (38.127),
then rotations mix right-and left-handed spinors, and chirality is not a rotationally invariant property
of spinors.

If on the other hand N is odd and the path proposed in part 11 is followed, where the algebra is
embedded in one higher dimension, then a basis spinor εa has [(N+1)/2] bits, and chirality is that
κN+1 of the algebra in one higher dimension. In the rest of this part of this Exercise, replace N by N+1

if N is odd and part 11 is followed.

Right- and left-handed chiral multivectors are eigenvalues of the chiral operator κN (or κN+1 if N is
odd and part 11 is followed), with eigenvalues ±1,

κNaR
L

= ±aR
L
. (38.136)
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Right- and left-handed chirality projection operators PR
L
may be de�ned by

PR
L
≡ 1

2 (1± κN ) = 1
2 (1± i−[N/2]IN ) , (38.137)

which are projection operators because their squares are one, (P±N )2 = 1, and their product is zero,
P+
NP
−
N = 0. A multivector a splits into right- and left-handed chiral parts,

a = aR + aL, aR
L
≡ PR

L
a . (38.138)

Since the chiral operator κN is proportional to the pseudoscalar IN , a purely right- or left-handed
multivector is necessarily a linear combination of a multivector and its Hodge dual.
An outer product of a right-handed column spinor with any row spinor (right- or left-handed) is a

right-handed multivector. An outer product of a left-handed column spinor with any row spinor is a
left-handed multivector.
Equations (38.111) provide a matrix representation of the isomorphism between spinor outer products

and multivectors. To make the split into right- and left-handed algebras more transparent, it can be
convenient to permute the rows and columns of the matrices so that the chiral operator κN is rep-
resented by the matrix with all positive diagonal entries +1 coming �rst, and all negative diagonal
entries −1 coming last (for example, this is the ordering adopted for Dirac spinors in N = 4 dimensions,
equation (39.22)),

κN =

(
1 0

0 −1

)
. (38.139)

The 0's and 1's represent zero and unit 2[N/2]−1×2[N/2]−1 matrices. There are many ways to accomplish
the permutation. Since the chirality of a basis spinor εa is right- or left-handed as the number of down
bits in the index a is even or odd, equation (38.135), one possibility is to reorder the rows and columns
on a single bit, say the �rst bit a1 of the index a, leaving the ordering with respect to all other bits
unchanged. The ordering on the chosen single bit is such that the index with total number of down bits
even (right-handed) joins the �rst 2[N/2]−1 indices, while the index with total number of down bits odd
(left-handed) joins the last 2[N/2]−1 indices.
The result of the permutation is that the matrix representation of a multivector is block diagonal with

all right-handed chiral multivectors in the top half, all left-handed chiral multivectors in the bottom
half, and with all even multivectors on-diagonal and all odd multivectors o�-diagonal,

multivector =

(
R even R odd
L odd L even

)
. (38.140)

The splitting into even and odd multivectors follows because the chiral operator κN commutes with all
even multivectors but anticommutes with all odd multivectors.

14. Pure grade components of spinor outer products. An outer product χϕ · of spinors is a multi-
vector, and its grade p component may be denoted in the usual way, equation (13.31),

〈χϕ ·〉p . (38.141)
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The trace of the outer product is the scalar product,

Tr (χϕ ·) = ϕ · χ . (38.142)

The grade 0 component of the outer product χϕ · is the scalar product ϕ·χmultiplied by the 2[N/2]×2[N/2]

unit matrix 1 normalized by the reciprocal of its trace, Tr 1 = 2[N/2] (the 1 in equations (38.143)�(38.145)
denotes the unit matrix),

〈χϕ ·〉0 = (ϕ · χ)
1

2[N/2]
. (38.143)

If a is a multivector of grade p, then the scalar sequence ϕ · aχ, multiplied by the normalized unit
matrix, may be re-expressed as the scalar product of a with the grade p part of χϕ ·,

(ϕ · aχ)
1

2[N/2]
= 〈aχϕ ·〉0 = a · 〈χϕ ·〉p . (38.144)

The Hodge dual of the grade p multivector a is INa, and the scalar sequence ϕ · INaχ, multiplied by
the normalized unit matrix, may be re-expressed as the Hodge dual of the wedge product of a with the
grade N−p part of χϕ ·,

(ϕ · INaχ)
1

2[N/2]
= (INa) · 〈χϕ ·〉N−p = IN (a∧〈χϕ ·〉N−p) . (38.145)

15. Conjugation. The rotationally-invariant conjugation operator C is de�ned such that commutation with
it converts rotors R in the chiral representation (38.111) to their complex conjugates (with respect to
i) (compare equation (38.65)),

CR∗ = RC . (38.146)

Note that since a rotor R is a real linear combination of even orthonormal basis multivectors, the
complex conjugate R∗ of a rotor R is a rotor. The complex conjugate ϕ∗ of a spinor ϕ is de�ned to be
its complex conjugate (with respect to i) in the representation (38.111), where the basis spinors εa are
real column vectors,

ϕ∗ = ϕa∗εa . (38.147)

The conjugate spinor ϕ̄ of a spinor ϕ = ϕaεa is de�ned by, equation (38.64),

ϕ̄ ≡ Cϕ∗ = Cϕa∗εa . (38.148)

The condition (38.146) on the conjugation operator C is imposed precisely so that the conjugate spinor
ϕ̄ rotates under a rotor R in the same way as the spinor ϕ,

R : ϕ̄ ≡ Cϕ∗ → C(Rϕ)∗ = CR∗ϕ∗ = RCϕ∗ = Rϕ̄ . (38.149)

A necessary and su�cient condition for (38.146) to hold is that C commute with all real (with respect
to i) orthonormal bivectors, and anticommute with all imaginary orthonormal bivectors. This is the
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same condition that previously the spinor metric tensor ε was required to satisfy, so C must equal ε (up
to a possible normalization factor),

C = ε =

[(N+1)/2]∏
i=1

γγ2i−1 . (38.150)

If the alternative spinor metric (38.92) is used, then the conjugation operator is

Calt = εalt =

[N/2]∏
i=1

iγγ2i . (38.151)

Choosing C = ε (or Calt = εalt) without any additional normalization factor ensures that the scalar
product ϕ̄ ·ϕ of a spinor with its own conjugate is real and positive, equation (38.155). There is no loss
of generality in imposing that ε, hence C, be real. If ε were multiplied by an arbitrary complex phase,
then the conjugation operator would have to be de�ned by C = ε∗ in place of the de�nition (38.150), in
order that the scalar product of a spinor with its conjugate remain real and positive, equation (38.155).
The modi�cation by a phase leaves various key results unchanged; for example the double conjugate of
a spinor, equation (38.153), becomes ¯̄ϕ = CC∗ϕ, which is una�ected by a complex phase in C.

The conjugate of a basis spinor εa is

ε̄a ≡ Cεa = ±εā , (38.152)

where the conjugate index ā is the index a with all bits �ipped. Conjugation �ips the chirality of a spinor
if [N/2] is odd, and leaves the chirality unchanged if [N/2] is even. The ± sign in equation (38.152) is as
given by equation (38.97), or by equation (38.98) if the alternative spinor metric is used. Conjugation
�ips all the bits of a spinor; for example, the conjugate of the all-up basis spinor is the all-down basis
spinor, ε̄↑↑...↑ = ±ε↓↓...↓. The conjugate spinor ϕ̄ of a spinor ϕ is, equation (38.148), ϕ̄ = ϕa∗ε̄a. The
double conjugate of a spinor is

¯̄ϕ = C2ϕ = ε2ϕ , (38.153)

where the sign ε2 is as given in Table 38.1.

The scalar product of a conjugate spinor ϕ̄ with a spinor χ is

ϕ̄ · χ = (Cϕ∗)>εχ = ϕ†C>εχ = ϕ†χ , (38.154)

which is a complex number. The scalar product of a spinor ϕ with its own conjugate is real and positive,

ϕ̄ · ϕ = ϕ†ϕ . (38.155)

The scalar product of ϕ̄ with its conjugate is the same as the scalar product (38.155) of ϕ with its
conjugate,

¯̄ϕ · ϕ̄ = C2ϕ · ϕ̄ = ϕ̄ · ϕ . (38.156)
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The complex conjugate (with respect to i) a∗ of a multivector a = aAγγA is de�ned to be its complex
conjugate in the chiral representation (38.111) of multivectors,

a∗ = aA∗γγ∗A . (38.157)

In the representation (38.111), the spin basis vectors γγ±i (and the �nal vector γγN if N is odd) are real,
so the orthonormal basis vectors γγ2i−1 and γγ2i are respectively real and imaginary. The conjugate ā
of a multivector a = aAγγA is de�ned to be, consistent with the de�nition (38.148) of the conjugate
of a spinor (do not confuse the conjugate multivector ā with the reverse multivector a; the conjugate
overbar ¯ is slightly smaller and thinner than the reverse overbar ),

ā ≡ Ca∗C−1 . (38.158)

The conjugate multivector ā rotates under a rotor R in the same way as the multivector a,

R : ā ≡ Ca∗C−1 → C(RaR)∗C−1 = CR∗a∗R
∗
C−1 = RCa∗C−1R = RāR . (38.159)

If the outer product of two spinors ϕ and χ equals the multivector a, then the outer product of conjugate
spinors ϕ̄ and χ̄ equals the conjugate multivector ā,

ϕχ · = a , ϕ̄χ̄ · = ā . (38.160)

Equation (38.160) holds because (with C = ε)

ϕ̄χ̄ · ≡ εϕ∗(εχ∗)>ε = εϕ∗(χ∗)> = ε(ϕχ>ε)∗ε−1 = εa∗ε−1 = ā . (38.161)

The conjugate of a basis multivector γγA is de�ned to be

γ̄γA ≡ Cγγ∗AC−1 , (38.162)

so that a conjugate multivector ā is

ā = aA∗γ̄γA . (38.163)

The conjugate of an orthonormal basis vector γγa is

γ̄γa = ±γγa , (38.164)

where the ± factor depends on the choice of spinor metric, and is as given in Table 38.2. The conjugates
of spin basis vectors γγ±i de�ned by equations (38.83) have their index �ipped +i ↔ −i ,

γ̄γ±i = ±γγ∓i , (38.165)

where the ± factor is again as given in Table 38.2.
16. Real subalgebra. The chiral matrix representations (38.109) of the column and row basis spinors εa

and εa ·, and (38.111) of their outer products (which yield the full set of basis multivectors in the chiral
representation), are all real. One might therefore contemplate forming a real subalgebra consisting of
spinors ϕaεa and multivectors aAγγA with real coe�cients ϕa and aA in the chiral representation. This
does not work however, because spatial rotations transform the basis spinors (and their outer products)
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into complex combinations of each other, equations (38.87). Any viable subalgebra must be closed under
rotations.
Orthonormal basis multivectors on the other hand do transform into real linear combinations of each

other under rotations. A real subalgebra of the complex geometric algebra may be obtained by restricting
to multivectors satisfying the reality condition that they are their own conjugates,

ā = a . (38.166)

Conjugates of orthonormal basis vectors γγa are equal to either plus themselves, or minus themselves,
depending on the choice of spinor metric, equation (38.164). If the conjugates of the orthonormal basis
vectors are themselves, γ̄γa = γγa (+ in Table 38.2), then the real subalgebra consists of real linear
combinations of orthonormal basis multivectors. If the conjugates of the orthonormal basis vectors are
minus themselves, γ̄γa = −γγa (− in Table 38.2), then the real subalgebra consists of linear combinations
of odd-grade orthonormal multivectors with pure imaginary coe�cients and even-grade orthonormal
multivectors with pure real coe�cients.
A real super geometric subalgebra may similarly be obtained by restricting to spinors satisfying the

reality condition that they are their own conjugates,

ϕ̄ = ϕ . (38.167)

The spinor reality condition (38.167) is more restrictive than the multivector reality condition (38.166).
Whereas the multivector reality condition (38.166) can always be imposed, the spinor reality condi-
tion (38.167) can be imposed only if the double conjugate spinor is itself, equation (38.153), which is to
say, only if the spinor metric is symmetric, Table 38.1.
If the self-conjugate condition (38.167) holds, then the relation (38.160) implies that outer products

of self-conjugate spinors ϕ and χ are self-conjugate multivectors,

ā = ϕ̄χ̄ · = ϕχ · = a . (38.168)

Thus the multivector part of the real super geometric subalgebra is the real geometric subalgebra
corresponding to the reality condition (38.166) for a symmetric choice of spinor metric.

17. Rotor group. Unimodular elements of the (even or odd) geometric algebra generated by the N(N−1)/2

orthonormal bivectors γγa ∧γγb form a group, the rotor group, also called the spin group, or Spin(N).
The rotor group Spin(N) comprises all distinct rotations of spinors (spin- 1

2 objects) in N dimensions,
and is the double cover of the special orthogonal group SO(N), which comprises all distinct rotations
of vectors (spin-1 objects) in N dimensions.
As noted in part 12 of this Exercise, the chiral representation represents orthonormal basis bivectors

γγa ∧γγb in even N dimensions by traceless, skew-Hermitian, unitary 2[N/2] × 2[N/2] matrices. The rotor
group generated by the basis bivectors is then represented by unitary 2[N/2] × 2[N/2] matrices. Thus
the rotor group in even N dimensions is a subgroup of SU(2[N/2]), the special unitary group in 2[N/2]

dimensions,

Spin(N) ⊂ SU(2[N/2]) . (38.169)
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The embedding (38.169) holds also if N is odd, since as described in part 8, in odd N dimensions the
N -dimensional chiral operator κN can be identi�ed with unity, equation (38.127), in which case the �nal
odd vector γγN is equivalent to the (N−1)-dimensional chiral operator κN−1, and bivectors γγa ∧γγN are
again represented by traceless, skew-Hermitian, unitary 2[N/2] × 2[N/2] matrices.
The generators of the unitary group are skew-Hermitian. The orthonormal basis multivectors of the

geometric algebra are either skew-Hermitian (grades p = (2 or 3) mod 4) or Hermitian (grades p =

(0 or 1) mod 4). Multiplying a Hermitian generator by i makes it skew-Hermitian. The set of 2N

orthonormal basis multivectors in even N dimensions, with Hermitian multivectors multiplied by i,
generates the full unitary group U(2[N/2]). This is the group denoted G23i01(N) by Shirokov (2017),

G23i01(N) ∼= U(2[N/2]) . (38.170)

If the generator consisting of i times the unit matrix is excised, the result is the special unitary group
SU(2[N/2]).

18. Grade-preserving subgroup of Spin(2N). The rotor group Spin(2N) contains a subgroup that pre-
serves the spinor grade, the number of up bits, of a spinor (Atiyah, Bott, and Shapiro, 1964). The
subgroup is isomorphic to U(N), so that

SU(N) ⊂ U(N) ⊂ Spin(2N) . (38.171)

The generators of Spin(2N) that preserve spinor grade are bivectors with zero total spin. These gen-
erators must be real linear combinations of orthonormal Spin(2N) bivectors that, when expressed in
terms of spin vectors γγ±i , are (complex) linear combinations of bivectors of the form γγ+i ∧γγ−j . Such a
bivector �ips the i'th bit of a spinor from down to up, and the j'th bit from up to down, preserving the
total number of up bits of the spinor. Linearly independent generators satisfying these conditions are

γγ2i−1 ∧γγ2j−1 + γγ2i ∧γγ2j = γγ+i ∧γγ−j − γγ+j ∧γγ−i (N(N−1)/2 generators) , (38.172a)

γγ2i−1 ∧γγ2j − γγ2i ∧γγ2j−1 = i(γγ+i ∧γγ−j + γγ+j ∧γγ−i) (N(N−1)/2 generators) , (38.172b)

γγ2i−1 ∧γγ2i = iγγ+i ∧γγ−i (N generators) , (38.172c)

a total of N2 generators. The Lie algebra of commutators of the generators (38.172) coincides with the
Lie algebra of commutators in which 1

2γγ+i ∧γγ−j is represented by the N ×N matrix 1ij with 1 in the
ij'th entry and 0 elsewhere,

1
2γγ+i ∧γγ−j → 1ij . (38.173)

But that algebra is just that of the group U(N) of unitary N×N matrices. The generator i
2

∑
i γγ+i ∧γγ−i

is represented by i times the unit matrix, which generates a rotation by an overall phase. Eliminating
that generator yields the algebra of the group SU(N) of special unitary N × N matrices. Thus U(N)

and SU(N) are subgroups of Spin(2N) as claimed. The chain (38.171) of subgroups extends (trivially)
to

SU(N) ⊂ U(N) ⊂ Spin(2N) ⊂ Spin(2N+1) . (38.174)
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Super spacetime algebra

This chapter presents the super spacetime algebra, the generalization of the 4-dimensional spacetime
algebra to include spinors.

39.1 Newman-Penrose formalism

The extension of the spacetime algebra to spinors is most direct when the basis vectors of the spacetime
algebra are expressed in a Newman-Penrose basis (Newman and Penrose, 1962). Newman-Penrose adopts a
tetrad in which two of the tetrad axes are lightlike, γγv (outgoing) and γγu (ingoing), while the remaining two
axes γγ+ and γγ− are spin axes.

39.1.1 Newman-Penrose tetrad

A Newman-Penrose tetrad {γγv,γγu,γγ+,γγ−} is de�ned in terms of an orthonormal tetrad {γγ0,γγ1,γγ2,γγ3}, (or
{γγt,γγx,γγy,γγz} if you prefer), by

γγv ≡ 1√
2
(γγ0 + γγ3) , (39.1a)

γγu ≡ 1√
2
(γγ0 − γγ3) , (39.1b)

γγ+ ≡ 1√
2
(γγ1 + iγγ2) , (39.1c)

γγ− ≡ 1√
2
(γγ1 − iγγ2) , (39.1d)

or in matrix form 
γγv
γγu
γγ+

γγ−

 =
1√
2


1 0 0 1

1 0 0 −1

0 1 i 0

0 1 −i 0



γγ0

γγ1

γγ2

γγ3

 . (39.2)
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All four tetrad axes are null

γγv · γγv = γγu · γγu = γγ+ · γγ+ = γγ− · γγ− = 0 . (39.3)

The tetrad metric of the Newman-Penrose tetrad {γγv,γγu,γγ+,γγ−} is

γmn =


0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

 . (39.4)

39.1.2 Boost and spin weight

An object is de�ned to have boost weight n if it varies by

enθ (39.5)

under a boost by rapidity θ along the positive 3-direction.
Under a boost by rapidity θ in the 3-direction, the basis vectors γγm transform as (14.44)

γγ0 → γγ0 cosh θ + γγ3 sinh θ , (39.6a)

γγ3 → γγ3 cosh θ + γγ0 sinh θ , (39.6b)

γγa → γγa (a = 1, 2) . (39.6c)

It follows that a boost by rapidity θ in the 3-direction multiplies the outgoing and ingoing axes γγv and γγu
by a blueshift factor eθ and its reciprocal,

γγv → eθ γγv , γγu → e−θ γγu . (39.7)

In terms of the boost velocity v = tanh θ (not to be confused with the Newman-Penrose index v), the
blueshift factor is the special relativistic Doppler shift factor

eθ =

(
1 + v

1− v

)1/2

. (39.8)

Thus γγv has boost weight +1, and γγu has boost weight −1. The spin axes γγ± both have boost weight 0. The
Newman-Penrose components of a tensor inherit their boost weight properties from those of the Newman-
Penrose basis. The general rule is that the boost weight n of any tensor component is equal to the number
of v covariant indices minus the number of u covariant indices:

boost weight n = number of v minus u covariant indices . (39.9)

The operation of boosting along the 3-axis, which is the same as a rotation in the γγ0�γγ3 plane, commutes
with the operation of rotating in the γγ1�γγ2 plane. The concept of spin weight presented in �38.2 holds
unchanged. The outgoing and ingoing basis vectors γγv and γγu have spin weight zero, while γγ+ and γγ− have



980 Super spacetime algebra

spin weight +1 and −1. The general rule is that the spin weight s of any tensor component equals the number
of + covariant indices minus the number of − covariant indices (this repeats rule (38.14)):

spin weight s = number of + minus − covariant indices . (39.10)

The boost and spin properties of the components of a tensor are thus manifest in a Newman-Penrose
tetrad.

Concept question 39.1. Boost and spin weight. Consider the abstract vector

A = Amγγm . (39.11)

Since the contravariant components Am is the coe�cient of γγm, isn't the boost and spin weight of Am that
of γγm? Answer. No. It is the covariant components Am that have the boost and spin weight of γγm, through

Am = γγm ·A . (39.12)

The contravariant components Am in a Newman-Penrose tetrad have boost and spin weights opposite to the
covariant components Am.

39.2 Chiral representation of γ-matrices

The chiral representation of the Dirac γ-matrices provides the natural extension of the Newman-Penrose
tetrad to spin- 1

2 particles. The chiral representation may be obtained from the Dirac representation (14.102)
by the transformation (Dirac → chiral)

X : γγm → XγγmX
−1 , (39.13)

where X is the symmetric (X = X>), unitary (X−1 = X†) matrix

X ≡ 1√
2


1 0 i 0

0 1 0 i

i 0 1 0

0 i 0 1

 . (39.14)

As in the Dirac representation, all the γ-matrices in the chiral representation are traceless; the only basis
matrix of the algebra with �nite trace is the unit matrix. The γ-matrices in the chiral representation are the
unitary matrices

γγ0 =

(
0 1

−1 0

)
, γγa =

(
0 σa
σa 0

)
. (39.15)

The bivectors σa and Iσa and the pseudoscalar I are

γγ0γγa = σa =

(
σa 0

0 −σa

)
, 1

2εabcγγbγγc = Iσa = i

(
σa 0

0 σa

)
, I = i

(
1 0

0 −1

)
. (39.16)
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The Newman-Penrose basis vectors in the chiral representation are the real matrices

γγv =

(
0 σv
−σu 0

)
, γγu =

(
0 σu
−σv 0

)
, γγ+ =

(
0 σ+

σ+ 0

)
, γγ− =

(
0 σ−
σ− 0

)
, (39.17)

where σm are the Newman-Penrose Pauli matrices

σv ≡
1√
2

(1 + σ3) =
√

2

(
1 0

0 0

)
, σu ≡

1√
2

(1− σ3) =
√

2

(
0 0

0 1

)
, (39.18a)

σ+ ≡
1√
2

(σ1 + iσ2) =
√

2

(
0 1

0 0

)
, σ− ≡

1√
2

(σ1 − iσ2) =
√

2

(
0 0

1 0

)
. (39.18b)

The Newman-Penrose bivectors form 6 real matrices that group into three right-handed bivectors (notation
γγmn ≡ γγm ∧γγn),

γγv+ =
√

2

(
σ+ 0

0 0

)
, 1

2 (γγvu − γγ+−) =

(
−σ3 0

0 0

)
, γγu− =

√
2

(
σ− 0

0 0

)
, (39.19)

and three left-handed bivectors,

γγu+ =
√

2

(
0 0

0 −σ+

)
, 1

2 (γγvu + γγ+−) =

(
0 0

0 σ3

)
, γγv− =

√
2

(
0 0

0 −σ−

)
. (39.20)

The chiral matrix γ5 is

γ5 ≡ −iI = −γγv ∧γγu ∧γγ+ ∧γγ− =

(
1 0

0 −1

)
. (39.21)

By construction, the chiral matrix γ5 is diagonal in the chiral representation.

39.3 Basis spinors

Introduce a tetrad of basis spinors εa,

εa ≡ {εV ↑, εU↓, εU↑, εV ↓} . (39.22)

The indices {V ↑, U↓, U↑, V ↓} signify the transformation properties of the basis spinors: V and U signify boost
weight + 1

2 and − 1
2 , while ↑ and ↓ signify spin weight + 1

2 and − 1
2 . The index notation, while non-standard,

�ts naturally with the Newman-Penrose {v, u,+,−} index notation. Under a Lorentz transformation, the
basis spinors εa are de�ned to transform in the same way as rotors,

R : εa → Rεa . (39.23)
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In the chiral representation (39.15) the basis spinors εa are the column spinors

εV ↑ =


1

0

0

0

 , εU↓ =


0

1

0

0

 , εU↑ =


0

0

1

0

 , εV ↓ =


0

0

0

1

 , (39.24)

which are Lorentz-transformed by pre-multiplying by rotors expressed in the chiral representation. The
basis spinors εa in the chiral representation may be obtained from those in the Dirac representation by the
transformation (Dirac → chiral)

X : εa → Xεa , (39.25)

where the matrix X is de�ned by equation (39.14).
The basis spinors εa are eigenvectors of the chirality operator γ5, equation (39.21), with eigenvalues ±1.

Positive chirality spinors are called right-handed, while negative chirality spinors are called left-handed. The
�rst two basis spinors are right-handed, while the last two are left-handed,

γ5εV ↑ = εV ↑ , γ5εU↓ = εU↓ , γ5εU↑ = −εU↑ , γ5εV ↓ = −εV ↓ . (39.26)

Lorentz transformation preserves chirality, as is evident from the block-diagonal form of the even elements
of the spacetime algebra in the chiral representation, equations (39.16). The right-handed basis spinors εV ↑
and εU↓ are called right-handed because the boost axis and the spin axis point in the same direction (along
the 3-direction for εV ↑, and along the negative 3-direction for εU↓). Conversely, the left-handed basis spinors
εU↑ and εV ↓ are called left-handed because the boost axis and the spin axis point in opposite directions.
A Lorentz boost R = eσ3θ/2 = cosh(θ/2)+σ3 sinh(θ/2) by rapidity θ along the spin axis (3-axis) multiplies

the basis spinors εa by e±θ/2 according to

εV ↑ → eθ/2εV ↑ , εU↓ → e−θ/2εU↓ , εU↑ → e−θ/2εU↑ , εV ↓ → eθ/2εV ↓ . (39.27)

The transformations (39.27) con�rm that the basis spinors with a V index have boost weight + 1
2 , while

the basis spinors with a U index have boost weight − 1
2 . A right-handed spatial rotation R = e−Iσ3θ/2 =

cos(θ/2) − Iσ3 sin(θ/2) by rotation angle θ about the spin axis (3-axis) multiplies the basis spinors εa by
e±iθ/2 according to

εV ↑ → e−iθ/2εV ↑ , εU↓ → eiθ/2εU↓ , εU↑ → e−iθ/2εU↑ , εV ↓ → eiθ/2εV ↓ . (39.28)

The transformations (39.28) con�rm that the basis spinors with a ↑ index have spin weight + 1
2 , while the

basis spinors with a ↓ index have spin weight − 1
2 . This justi�es the choice of indices on the basis spinors.

Spinor tensors inherit their boost and spin weights from those of the basis spinors. The rules are

boost weight n = 1
2 (number of V minus U covariant indices) , (39.29a)

spin weight s = 1
2 (number of ↑ minus ↓ covariant indices) , (39.29b)

which generalize the rules (39.9) and (39.10). The rules (39.29) hold not only for column spinors εa, but also
for row spinors εa ·, �39.5.2, and for inner and outer products of spinors, �39.5.3 and �39.6.1.
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39.4 Dirac and Weyl spinors

A Dirac spinor ψ is a complex (with respect to i) linear combination of the 4 basis spinors εa,

ψ = ψaεa . (39.30)

A Dirac spinor has 4 complex components, making 8 degrees of freedom in all. Just as a multivector amγγm
is a vector in the spacetime algebra, so also ψaεa is a spinor in the super spacetime algebra.
A Dirac spinor ψ Lorentz transforms as

R : ψ → Rψ . (39.31)

A Dirac spinor ψ is a spin-1
2 object, in the sense that a rotation by 2π changes the sign of the spinor, and a

rotation by 4π is required to return the spinor to its original value.

Concept question 39.2. Lorentz transformation of the phase of a spinor. Should not a Lorentz
transformation also change the phase of a spinor ψ as a function of position? For example, if the phase is
ψ ∼ e−imt in the spinor rest frame, would not the phase be ψ ∼ e−iωt+ik·x in the Lorentz-transformed frame?
Answer. No. A Lorentz transformation is a tetrad transformation, not a coordinate transformation. That
being said, in �at (Minkowski) space it is possible to choose inertial coordinates {t,x} aligned everywhere
with the tetrad frame. It is true that ψ ∼ e−iωt+ik·x with respect to Lorentz-transformed inertial coordinates.

39.4.1 Weyl decomposition of a Dirac spinor

A Dirac spinor ψ can be decomposed into a sum of right- and left-handed chiral Weyl spinors ψR and ψL

ψ = ψR + ψL , (39.32)

that are right- and left-handed eigenvectors of the chiral operator γ5,

γ5ψR
L

= ±ψR
L
. (39.33)

The right- and left-handed chiral spinors can be projected out by applying the chiral projection operators
1
2 (1± γ5) (which are projection operators because their squares are themselves) to the Dirac spinor ψ,

ψR
L

= 1
2 (1± γ5)ψ . (39.34)

Since chirality is Lorentz invariant, the chiral decomposition of a Dirac spinor is unique. The right- and
left-handed components of a Dirac spinor each contain 2 complex components. The right- and left-handed
components of a Dirac spinor cannot be rotated into each other by any Lorentz transformation.
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39.5 Spinor scalar product

39.5.1 Spinor metric tensor

In a matrix representation, the tensor product of Dirac basis spinors εa and εb can be represented as the
matrix εaε>b , a matrix product of the column spinor εa with the row spinor ε>b . In accordance with the
transformation rule (39.23), the tensor product of basis spinors Lorentz transforms as

R : εaε
>
b → Rεaε

>
b R
> . (39.35)

Consider the spinor metric tensor ε with the de�ning property that for any Lorentz rotor R

R>ε = εR . (39.36)

That ε de�nes a Lorentz-invariant spinor metric will be seen in �39.5.3. A Lorentz rotor is a real (with
respect to i) linear combination of even elements 1, I, σa, and Iσa of the spacetime algebra. Consequently,
in the Dirac representation (14.103) a necessary and su�cient condition for (39.36) to hold is that ε anti-
commutes with I and σ2, and commutes with σ1 and σ3. This requires that ε be proportional to γγ2 in the
Dirac representation, with a proportionality factor that could be some arbitrary complex (with respect to
i and/or I) number. To be consistent with standard Dirac theory, the spinor metric tensor ε in the Dirac
representation (14.103) is taken to be the real unitary matrix

ε = iγγ2 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (39.37)

Despite the equality of ε and iγγ2 in the Dirac representation, ε is de�ned to transform as a spinor tensor
under Lorentz transformations, not as an element of the spacetime algebra. The spinor metric (39.37) in the
Dirac representation translates into the chiral representation (39.15) as εchiral = X−>εDiracX

−1 = −iIσ2.
However, the resulting chiral spinor metric εchiral is imaginary. The chiral spinor metric can be made real by
scaling it by a factor of i,

εchiral = iX−>εDiracX
−1 = Iσ2 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 . (39.38)

The normalization is chosen such that ε in either the Dirac or chiral representations is real and orthogonal.
Its square is minus the unit matrix,

ε−1 = ε> , ε2 = −1 . (39.39)

In both Dirac and chiral representations, commuting the spinor metric ε through the orthonormal basis
vectors γγm converts them to minus their transposes,

γγ>mε = −εγγm . (39.40)
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The condition (39.36) implies that the spinor tensor ε is invariant under Lorentz transformations,

R : ε→ R>εR = εRR = ε . (39.41)

The components of the spinor tensor ε de�ne the antisymmetric spinor metric εab,

ε>a εεb = εab . (39.42)

Notice that the spinor metric tensor εab is non-vanishing only between like-chiral indices ab.

39.5.2 Row basis spinors

It is convenient to use the symbol εa · with a trailing dot, symbolic of the trailing ε, to denote the row spinor
ε>a ε,

εa · ≡ ε>a ε . (39.43)

The motivation for the trailing dot notation is equation (39.47) below. The four row spinors

εa · = {εV ↑ ·, εU↓ ·, εU↑ ·, εV ↓ ·} (39.44)

provide a basis for row spinors. The boost and spin weights of the row basis spinors are in accord with their
covariant indices: basis spinors with a V index have boost weight + 1

2 , while basis spinors with a U index
have boost weight − 1

2 . Likewise basis spinors with a ↑ index have spin weight + 1
2 , while basis spinors with

a ↓ index have spin weight − 1
2 . The row spinors εa · Lorentz transform as

R : εa · ≡ ε>a ε→ ε>a R
>ε = ε>a εR = εa ·R . (39.45)

In the chiral representation (39.15) the row basis spinors εa · are the row spinors

εV ↑ · = ( 0 1 0 0 ) , εU↓ · = ( −1 0 0 0 ) , εU↑ · = ( 0 0 0 1 ) , εV ↓ · = ( 0 0 −1 0 ) . (39.46)

39.5.3 Inner products of basis spinors

The product of the row spinor εa · with the column spinor εb de�nes their inner product, or scalar product,
which equals the spinor metric εab in accordance with equation (39.42),

εa · εb = εab . (39.47)

Equation (39.47) motivates the trailing dot notation for the row spinor. The scalar product is antisymmetric,

εa · εb = −εb · εa . (39.48)

In the chiral representation, the non-zero components of the scalar product are explicitly, equation (39.38),

εV ↑ · εU↓ = −εU↓ · εV ↑ = 1 , εU↑ · εV ↓ = −εV ↓ · εU↑ = 1 . (39.49)

The scalar product (39.47) is a Lorentz scalar,

R : εa · εb → εa ·RR εb = εa · εb . (39.50)



986 Super spacetime algebra

Thus the spinor metric εab is Lorentz invariant, just like the Minkowski metric ηmn.

39.5.4 Lowering and raising spinor indices

The antisymmetric spinor metric εab is given in the chiral representation by equation (39.38). The inverse
metric εab is de�ned by εabεbc = δac . The spinor metric and its inverse satisfy

εab = −εba = −εab = εba . (39.51)

Indices on a spinor tensor are lowered and raised by pre-multiplying by the metric εab and its inverse εab.
The contravariant components εa of the column basis spinors. satisfying εa = εabεb, are

εV ↑ = −εU↓ , εU↓ = εV ↑ , εU↑ = εV ↓ , εV ↓ = −εU↑ . (39.52)

For example, εV ↑ = εV ↑U↓εU↓ = −εU↓. Post-multiplying by the metric or its inverse yields a result of
opposite sign, εa = εabεb = −εbεba. The contravariant components εa · of the row basis spinors satisfy the
same relations (39.52) with a trailing dot appended on left and right hand sides. The scalar products of
contravariant with covariant basis spinors form the unit matrix,

εa · εb = −εb · εa = δab . (39.53)

The scalar products of contravariant basis spinors are

εa · εb = −εb · εa = −εab . (39.54)

39.5.5 Scalar products of Dirac spinors

A general row Dirac spinor ψ · is a complex (with respect to i) linear combination of the 4 row basis spinors

ψ · ≡ ψ>ε = ψaεa · . (39.55)

It Lorentz transforms as

R : ψ · → ψ ·R . (39.56)

A row spinor ψ · transforms like a reverse rotor.
The scalar product of a row spinor ψ · = ψaεa · with a column spinor χ = χaεa may be written variously

ψ · χ = ψ>ε χ = ψaεa · χbεb = εabψ
aχb = ψaχa = −ψaχa = −εabψaχb . (39.57)

Notice that when the scalar product ψ · χ is written in the contracted form ψaχa, the �rst index is raised
and the second is lowered. An additional minus sign appears if the �rst index is lowered and the second is
raised. Flipping the indices on the expansion ψaεa of a spinor in components similarly changes the sign,

ψ = ψaεa = ψaεabε
b = −ψaεa . (39.58)
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The components ψa of a column spinor ψ can be projected out by pre-multiplying by the row basis spinor
εa ·,

εa · ψ = εa · ψbεb = δabψ
b = ψa . (39.59)

The components ψa of a row spinor ψ · can be projected out by post-multiplying by minus the column basis
spinor εa,

− ψ · εa = −ψbεb · εa = δabψ
b = ψa . (39.60)

39.6 Super spacetime algebra

39.6.1 Outer products of basis spinors

A row spinor εa · multiplied by a column spinor εb yields their scalar product. In the opposite order, a
column spinor εa multiplied by a row spinor εb · yields their outer product. The outer product εaεb · Lorentz
transforms like a multivector in the spacetime algebra,

R : εaεb · ≡ εaε>b ε→ Rεaε
>
b R
>ε = Rεaε

>
b εR = Rεaεb ·R . (39.61)

The trailing dot on the outer product εaεb · is symbolic of the trailing ε, necessary to convert the spinor
tensor εaε>b into an object that transforms like a multivector.
The products of the 4 column basis spinors εa with the 4 row basis spinors εb · form 16 outer products.

All 16 outer products are non-vanishing, and their algebra is isomorphic to the 4D spacetime algebra of
multivectors. Unlike the spacetime algebra, the outer product contains both antisymmetric and symmetric
products.
The 16 outer products divide into 8 outer products of spinors of like chirality (two right, or two left),

and 8 outer products of spinors of opposite chirality (one right, one left). The outer products of spinors of
like chirality yield the 8 even-grade elements of the spacetime algebra, while outer products of spinors of
opposite chirality yield the 8 odd-grade elements of the spacetime algebra. The 8 even elements preserve
chirality (they transform a spinor of given chirality to another of like chirality), while the 8 odd elements
�ip chirality (they transform a spinor of given chirality to another of opposite chirality).
In the chiral representation (39.15), the 8 outer products of basis spinors of like chirality map to even

multivectors of the spacetime algebra as follows. The boost and spin weights of the left and right hand
sides of each of equations (39.62)�(39.65) below match, as they should. The antisymmetric outer products
of right-handed spinors form a right-handed scalar singlet,

[εU↓, εV ↑] · = 1
2 (1 + γ5) . (39.62)

The trailing dot on the commutator indicates that the right partner of each product is a row spinor,
[εU↓, εV ↑] · = εU↓ε

>
V ↑ · − εV ↑ε>U↓ ·. Similarly the antisymmetric outer products of left-handed spinors form a

left-handed scalar singlet,

[εV ↓, εU↑] · = 1
2 (1− γ5) . (39.63)
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The symmetric outer products of right-handed spinors form a triplet of right-handed bivectors,

{εV ↑, εV ↑}· = γγv+ , {εV ↑, εU↓}· = 1
2 (γγvu − γγ+−) , {εU↓, εU↓}· = −γγu− . (39.64)

The symmetric outer products of left-handed spinors form a triplet of left-handed bivectors,

{εU↑, εU↑}· = −γγu+ , {εU↑, εV ↓}· = − 1
2 (γγvu + γγ+−) , {εV ↓, εV ↓}· = γγv− . (39.65)

In the chiral representation (39.15), the 8 outer products of basis spinors of opposite chirality map to odd
multivectors of the spacetime algebra as follows. Again, the boost and spin weights of the left and right hand
sides of each of equations (39.66)�(39.67) below match, as they should. The 4 symmetric outer products of
right- with left-handed spinors yield the 4 Newman-Penrose basis vectors,

{εV ↑, εV ↓}· = − 1√
2
γγv , {εU↓, εU↑}· = 1√

2
γγu , {εV ↑, εU↑}· = 1√

2
γγ+ , {εU↓, εV ↓}· = − 1√

2
γγ− . (39.66)

The 4 antisymmetric outer products of right- with left-handed spinors yield the 4 Newman-Penrose basis
pseudovectors,

[εV ↑, εV ↓] · = − 1√
2
γ5γγv , [εU↓, εU↑] · = 1√

2
γ5γγu , [εV ↑, εU↑] · = 1√

2
γ5γγ+ , [εU↓, εV ↓] · = − 1√

2
γ5γγ− .

(39.67)
The trace of the outer product of a pair of basis spinors gives their scalar product (note that the 1 on the

right hand sides of equations (39.62) and (39.63) is the unit matrix, whose trace is 4),

Tr εa εb · = εb · εa = εba . (39.68)

The expansion of the 16 outer products εaεb · of spinors in terms of the 16 basis elements γγM of the
spacetime algebra, and vice versa, de�ne the matrix of coe�cients γMab and its inverse γabM ,

εaεb · = γMabγγM , γγM = γabMεaεb · . (39.69)

The coe�cients γMab and γabM are

γMab = 1
4 εb · γγ

Mεa , γabM = − εa · γγMεb . (39.70)

The coe�cients in the chiral representation in terms of Newman-Penrose basis multivectors can be read o�
from equations (39.62)�(39.67), and are all real.

Exercise 39.3. Consistency of spinor and multivector scalar products. Con�rm that the spinor and
multivector scalar products are consistent. This exercise is similar to Exercise 38.1.
Solution. Multivector vectors γγm are equivalent to outer products of Dirac spinors in accordance with



39.6 Super spacetime algebra 989

equations (39.66) and (39.66). For example, the scalar product of the multivectors γγv and γγu is

−γγv · γγu = − 1
2 (γγvγγu + γγuγγv)

= {εV ↑, εV ↓} · {εU↓, εU↑}·+ {εU↓, εU↑} · {εV ↑, εV ↓}·
= εV ↑(εV ↓ · εU↑)εU↓ ·+ εV ↓(εV ↑ · εU↓)εU↑ ·+ εU↓(εU↑ · εV ↓)εV ↑ ·+ εU↑(εU↓ · εV ↑)εV ↓ ·
= − εV ↑εU↓ ·+ εV ↓εU↑ ·+ εU↓εV ↑ · − εU↑εV ↓ ·
= [εU↓, εV ↑] ·+ [εV ↓, εU↑] ·
= 1

2 (1 + γ5) + 1
2 (1− γ5)

= 1 , (39.71)

the fourth step of which invokes the spinor scalar product (39.49), and the penultimate step is from the
equivalences (39.62) and (39.63). The result agrees with the multivector scalar product (39.4).

Concept question 39.4. Chiral scalar. A scalar �eld has no spin. How then can a scalar �eld have
chirality? Answer. A chiral scalar is a sum of a scalar and a pseudoscalar. For example, a right-handed
chiral scalar is

ϕR = 1
2 (1 + γ5)ϕ , (39.72)

where ϕ is a complex scalar. The chiral operator γ5 is not a scalar, but rather a totally antisymmetric tensor
of rank 4. The Newman-Penrose expression (39.117) for γ5 shows that it has zero boost and spin weight.

39.6.2 The 4D super spacetime algebra

The super spacetime algebra comprises 4 distinct species of objects: true scalars, column spinors, row spinors,
and multivectors. In a matrix representation, they are complex (with respect to i) matrices with dimensions
1× 1, 1× 4, 4× 1, and 4× 4. The super spacetime algebra consists of arbitrary sums and products of all 4
species.
The true scalars are just complex numbers. A column spinor ψ is a complex linear combination of column

basis spinors εa,

ψ = ψaεa , (39.73)

while a row spinor ψ · is a complex linear combination of row basis spinors εa ·,

ψ · = ψaεa · . (39.74)

A multivector a is a complex linear combination of outer products of the column and row basis spinors,

a = aabεaεb · . (39.75)

Linearity and the transformation law (39.61) imply that the algebra of sums and products of outer products
of spinors is isomorphic to the spacetime algebra.
As seen in �39.5.3 and �39.6.1, a column spinor ψ and a row spinor χ · can be multiplied in either order,
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yielding an inner product which is a true scalar, and an outer product which is a multivector. However,
a column spinor cannot be multiplied by a column spinor, and likewise a row spinor cannot be multiplied
by a row spinor, as is manifestly true in a matrix representation. Rather than prohibit multiplication, it is
advantageous (because it facilitates interpretation of the column and row spinors as creation and annihilation
operators) to assert that the product of a column spinor with a column spinor is zero, and the product of a
row spinor with a row spinor is zero,

ψχ = 0 , ψ · χ · = 0 . (39.76)

Similarly, a multivector a can only pre-multiply a column spinor ψ, and can only post-multiply a row spinor
ψ ·, as is again manifestly true in a matrix representation. Thus a multivector a post-multiplying a column
spinor or pre-multiplying a row spinor yields zero,

ψa = 0 , a(ψ ·) = 0 . (39.77)

In general, a sequence of products of spinors yields a non-zero result provided that they alternate between
column spinor and row spinor,

ψ χ · ϕ or ψ · χϕ · . (39.78)

Both product sequences are associative,

ψ χ · ϕ = (ψ χ ·)ϕ = ψ (χ · ϕ) , (39.79)

and

ψ · χϕ · = (ψ · χ)ϕ · = ψ · (χϕ ·) . (39.80)

One of the advantages of the trailing dot notation is that it makes the directionality of spinor multiplication,
and the corresponding associative law, transparent. A multivector a is equivalent to an outer product of
spinors, so products such as

ψ · aχ (39.81)

are admissible, and in general non-vanishing.
The trace of an outer product of spinors is a true scalar

Tr ψχ · = ψaχbεba = −ψ · χ = χ · ψ , (39.82)

the last step of which assumes that the coe�cients ψa and χb are ordinary commuting complex numbers,
equation (39.123).

39.6.3 Fierz identities

The associative law and the scalar product make it straightforward to simplify long strings of products of
spinors and multivectors, a process known in quantum �eld theory as Fierz rearrangement.
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Let a = aabεaεb · and b = babεaεb · be two multivectors expressed as a sum of outer products of spinors.
Their product is the multivector

ab = aabεaεb · bcdεcεd · = εaa
abεbcb

cdεd · = εaa
abbb

dεd · . (39.83)

A sequence of multivectors sandwiched by spinors simpli�es as

ψ · abχ = ψaεa · abcεbεc · bdeεdεe · χfεf = ψaεab a
bcεcd b

deεef χ
f = ψaaa

cbc
eχe . (39.84)

39.7 Charge conjugation

The super spacetime algebra possesses a discrete transformation, called charge conjugation (or simply conju-
gation, when there is no ambiguity), denoted C, that transforms a particle into its antiparticle (Bjorken and
Drell, 1964, �5.2). The charge-conjugate Dirac spinor ψ̄ is de�ned by equation (39.94) below (Bjorken and
Drell (1964) denote the charge conjugate by ψc). The conjugate spinor ψ̄ has the de�ning properties that
(a) its components are complex conjugates of those of the parent spinor ψ, and (b) it Lorentz transforms in
the same way as ψ.

39.7.1 Conjugation operator C

Consider the conjugation operator C with the de�ning property that commutation with it converts any
Lorentz rotor R in the chiral or Dirac representations to its complex conjugate (with respect to i),

CR∗ = RC . (39.85)

Note that the complex conjugate R∗ of a Lorentz rotor R is also a Lorentz rotor, since a Lorentz rotor
R is a real (with respect to i) linear combination of even orthonormal basis multivectors of the spacetime
algebra. In the Dirac representation (14.103), a necessary and su�cient condition for (39.85) to hold is that C
commutes with I and σ2, and anticommutes with σ1 and σ3. This requires that in the Dirac representation
C is proportional to σ2 with a proportionality factor that could be some arbitrary complex (with respect to
i and/or I) number. To be consistent with standard Dirac theory, the conjugation operator C is taken to be
the real unitary matrix

C = −σ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 . (39.86)

Notwithstanding the equality of C and −σ2 in the Dirac representation, the conjugation operator C is de�ned
to transform not as an element of the geometric algebra, but rather as

R : C → RCR−∗ , (39.87)
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in accordance with the de�ning condition (39.85). Note that if the Lorentz rotor R were unitary, then RCR−∗

would equal RCR>; but although spatial rotations are unitary, Lorentz boosts are not. The spinor tensor that
Lorentz transforms as (39.87) and remains invariant under that transformation is precisely the conjugation
operator C.
The conjugation matrix (39.86) in the Dirac representation translates into the chiral representation (39.15)

as Cchiral = XCDiracX
−∗, which happens to be the same matrix as in the Dirac representation, Cchiral =

CDirac. However, to compensate for the extra factor of i introduced into the de�nition (39.38) of the chiral
spinor metric εchiral, it is necessary to introduce an extra factor of −i in the de�nition of the chiral conjugation
matrix Cchiral,

Cchiral = −iXCDiracX
−∗ = −iCDirac =


0 0 0 i

0 0 −i 0

0 −i 0 0

i 0 0 0

 . (39.88)

The compatibility of the normalizations of ε and C is necessary to ensure that the scalar product ψ̄ · ψ of a
spinor with its conjugate is real, equation (39.149). Note that the conjugation matrix (39.88) in the chiral
representation (39.15) is Cchiral = iIγγ2, not −σ2.
In both Dirac and chiral representations (39.86) and (39.88), the conjugation operator is symmetric and

unitary,

C> = C , CC∗ = 1 . (39.89)

In both Dirac and chiral representations, commuting the conjugation operator C through the orthonormal
basis vectors γγm converts them to their complex (with respect to i) conjugates,

Cγγm = γγ∗mC . (39.90)

In both Dirac and chiral representations, commuting C through the spinor metric ε converts the former to
minus its complex conjugate,

Cε = −εC∗ . (39.91)

39.7.2 Conjugate spinor

The complex conjugate ψ∗ of a Dirac spinor ψ = ψaεa is de�ned to be the spinor with complex-conjugated
(with respect to i) coe�cients in the Dirac or chiral matrix representation of the spinor,

ψ∗ ≡ ψa∗εa . (39.92)

In e�ect, the basis spinors εa are taken to be real in the Dirac or chiral representations. The operation (39.92)
of complex conjugation of a spinor is representation-dependent, as is evident from the fact that the unitary
matrixX, equation (39.14), that transforms between Dirac and chiral representations is complex. By contrast,
the conjugation operation (39.94) below is representation-independent. Complex conjugation leaves the boost



39.7 Charge conjugation 993

and spin of a spinor unchanged. Since a spinor ψ Lorentz transforms under a Lorentz rotor R as ψ → Rψ,
its complex conjugate ψ∗ transforms according to the complex-conjugate representation of the γ-matrices,

R : ψ∗ → (Rψ)∗ = R∗ψ∗ . (39.93)

The conjugate Dirac spinor ψ̄ is de�ned by

ψ̄ ≡ Cψ∗ , (39.94)

where C is the conjugation operator de�ned in the Dirac or chiral representations by equations (39.86)
and (39.88). The conjugation operator C is by construction Lorentz invariant, so the conjugate spinor ψ̄
Lorentz transforms as

R : ψ̄ ≡ Cψ∗ → CR∗ψ∗ = RCψ∗ = Rψ̄ , (39.95)

that is, the conjugate spinor ψ̄ Lorentz transforms in the same way as the spinor ψ. The middle expression
of equation (39.95) is CR∗ψ∗ = C(Rψ)∗ = Rψ, so

Rψ = Rψ̄ , (39.96)

that is, the operations of conjugation and Lorentz transformation commute.
The symmetry of the conjugation operator, C = C>, implies that conjugating a Dirac spinor ψ twice

recovers the original spinor,

¯̄ψ = C(Cψ∗)∗ = CC∗ψ = CC−>ψ = ψ . (39.97)

If ψ = ψaεa, then the conjugate spinor ψ̄ is

ψ̄ = ψa∗ε̄a , (39.98)

where the conjugate basis spinors ε̄a are de�ned by

ε̄a ≡ Cεa . (39.99)

In the Dirac representation the conjugate basis spinors ε̄a are, from the expression (39.86) for C,

{ε̄⇑↑, ε̄⇑↓, ε̄⇓↑, ε̄⇓↓} = {−ε⇓↓, ε⇓↑, ε⇑↓,−ε⇑↑} . (39.100)

In the chiral representation the conjugate basis spinors ε̄a are, from the expression (39.88) for C,

{ε̄V ↑, ε̄U↓, ε̄U↑, ε̄V ↓} = {iεV ↓,−iεU↑,−iεU↓, iεV ↑} . (39.101)

Equation (39.101) shows that conjugation �ips spin, but leaves boost unchanged.
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39.7.3 Row conjugate spinor

In both Dirac (14.102) and chiral (39.15) representations, the row conjugate spinor ψ̄ · corresponding to the
column conjugate spinor ψ̄ is

ψ̄ · ≡ ψ̄>ε = ψ†C>ε = −iψ†γγ0 . (39.102)

The row conjugate spinor ψ̄ · is commonly called the adjoint spinor. The row conjugate spinor ψ̄ · equals the
reverse spinor ψ de�ned by equation (14.119). Note that the column conjugate spinor ψ̄ is not the same as
the conventional adjoint spinor ψ; rather the conventional adjoint spinor ψ is the row conjugate spinor ψ̄ ·.
Equation (39.102) implies that

C>ε = −iγγ0 . (39.103)

Equation (39.103) holds in both Dirac and chiral representations, but in fact it must be true in any satisfactory
representation of Dirac spinors governed by the Dirac Lagrangian (41.29), in order that the Dirac number
current density n0 ≡ i ψ̄ · γγ0ψ, equation (41.19), equal a positive number ψ†ψ.
The spinor metric ε and conjugation operator C may be regarded as being de�ned by their actions (39.40)

and (39.90) on the Minkowski basis vectors γγm, namely γγ>m = −εγγmε−1 and γγ∗m = CγγmC
−1. If equa-

tion (39.103) holds, as it must do, and if in addition C is symmetric, C> = C, as it must be if C is unitary
and the double conjugate of a spinor is itself, as it is in Dirac representation, then the Hermitian conjugates
of the basis vectors γγm satisfy

γγ†m = (γγ>m)∗ = −Cεγγmε−1C−1 = −(C>ε)γγm(C>ε)−1 = −(γγ0)−1γγm(γγ0) = γγ0γγmγγ0 = γγm . (39.104)

Equation (39.104) shows that γγm are unitary, which is the condition (14.100) originally adopted for the Dirac
γ-matrices.

39.7.4 Conjugate multivector

.
The complex conjugate (with respect to i) a∗ of a multivector a = aMγγM is de�ned to be, in either the

Dirac or chiral representation (and in either an orthonormal or Newman-Penrose basis),

a∗ ≡ aM∗γγ∗M . (39.105)

Since a Lorentz transforms under a Lorentz rotor R as a → RaR, its complex conjugate a∗ transforms
according to the complex conjugate representation of the γ-matrices,

R : a∗ → (RaR)∗ = R∗aR∗ . (39.106)

So de�ned, complex conjugation is multiplicative over multivectors and spinors,

(aψ)∗ = a∗ψ∗ , (39.107)
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and consistent with the spacetime algebra in the sense that the complex conjugate of a multivector that is
an outer product of spinors is the outer product of the complex conjugate spinors,

(ψχ·)∗ = ψ∗χ∗ · . (39.108)

Complex conjugation leaves the boost and spin of a multivector unchanged.
The conjugate multivector ā (not to be confused with the reverse multivector a) of a multivector a is

de�ned to be

ā ≡ Ca∗C−1 . (39.109)

The conjugate multivector ā Lorentz transforms in the same way as the parent multivector a,

R : ā→ CR∗a∗R∗C−1 = RCaC−1R = RāR . (39.110)

Conjugation is multiplicative over multivectors and spinors,

aψ = āψ̄ . (39.111)

The conjugate of a multivector that is an outer product of spinors is minus the outer product of the conjugate
spinors,

ψχ · = −ψ̄χ̄ · . (39.112)

The sign comes from the anticommutation of the conjugation operator with the spinor metric tensor, equa-
tion (39.91).
If a = aMγγM , then the conjugate multivector ā is

ā = aM∗γ̄γM , (39.113)

where the conjugate basis elements γ̄γM are, in either an orthonormal or Newman-Penrose basis, and in either
the Dirac or chiral representations,

γ̄γM = Cγγ∗MC
−1 . (39.114)

The conjugates of orthonormal basis elements are equal to themselves,

γ̄γM = γγM orthonormal basis multivectors . (39.115)

But the conjugates of Newman-Penrose basis vectors are not equal to themselves. Just as conjugation �ips
the spin but not boost of a spinor ψ, so also conjugation �ips the spin but not boost of a multivector a.
Conjugation �ips the spin indices +↔ − of the Newman-Penrose basis vectors γγm, while leaving the boost
indices v and u unchanged,

γ̄γv = γγv , γ̄γu = γγu , γ̄γ+ = γγ− , γ̄γ− = γγ+ , (39.116)

as can be veri�ed by direct calculation from the matrices (39.17) and (39.88). This is true in general: the
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conjugate of any Newman-Penrose basis multivector γγM is obtained by �ipping its spin indices +↔ −. The
chiral matrix γ5 expressed in the Newman-Penrose tetrad is

γ5 ≡ −iI = − i

4!
εvu+−γγvγγuγγ+γγ− = −γγv ∧γγu ∧γγ+ ∧γγ− , (39.117)

where the imaginary factor i in the de�nition of γ5 cancels against the imaginary determinant of the trans-
formation from Minkowski to Newman-Penrose tetrad, leaving a real factor in the rightmost expression of
equations (39.117). Conjugation �ips the sign of the chiral operator γ5,

γ̄5 = −γ5 . (39.118)

39.7.5 Real multivector

Conventionally, a multivector a = aMγγM is said to be real if its conjugate is itself (the overbar here denotes
the conjugate, not the reverse),

ā = a . (39.119)

In an orthonormal basis, the conjugates of the basis elements are themselves, γ̄γM = γγM , and a multivector
a is then real if and only if the coe�cients aM of its expansion a = aMγγM in the orthonormal basis are real.
Most classical multivectors are real. For example, derivatives are real, Lorentz rotors are real, the electro-

magnetic �eld is real.

39.8 Anticommutation of Dirac spinors

The Dirac spinor Lagrangian (41.2) involves a mass term mψ̄ ·ψ. The complex conjugate (with respect to i)
of the Dirac mass term is, Exercise 39.5,

(mψ̄ · ψ)∗ = −mψ · ψ̄ . (39.120)

Requiring that the Dirac mass term be real, as required for a real Lagrangian, then imposes the condition
that the scalar product of the Dirac spinors ψ̄ and ψ be antisymmetric,

ψ̄ · ψ = −ψ · ψ̄ . (39.121)

More generally, in the traditional Dirac theory, the scalar product of any two Dirac spinors is antisymmetric,

ψ · χ = −χ · ψ . (39.122)

Since the scalar products of the basis Dirac spinors εa are already antisymmetric, the antisymmetric con-
dition (39.122) in turn imposes the condition that the coe�cients ψa and χb must be ordinary commuting
complex numbers,

ψaχb = χbψa . (39.123)

The spinor scalar product is non-vanishing only between like-chiral components. Since the conjugate of a
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right-handed chiral spinor is left-handed, and vice versa, the scalar product of a pure right- or left-handed
spinor (a Weyl spinor) with its conjugate is necessarily zero,

ψ̄ · ψ = ψ̄ · Iψ = 0 (Weyl) . (39.124)

Thus Weyl spinors are necessarily massless.
If a Dirac spinor ψ is decomposed into its right- and left-handed chiral parts ψR and ψL, equation (39.32),

then since conjugation �ips chirality, the scalar product is non-vanishing only between like-chiral spinors.
The scalar and pseudoscalar products of ψ̄ and ψ are

ψ̄ · ψ = ψL · ψR + ψR · ψL , ψ̄ · Iψ = i(ψL · ψR − ψR · ψL) . (39.125)

Note that ψL is right-handed, and ψR is left-handed.

Exercise 39.5. Complex conjugate of a product of spinors and multivectors.

1. What is the complex conjugate (with respect to i) of a product χ ·aψ of a row spinor χ ·, a multivector
a of grade p, and a column spinor ψ?

2. If a is a real multivector of grade p, is the product ψ̄ · aψ real or imaginary?
Solution.

1. The complex conjugate of χ · aψ is

(χ · aψ)
∗

= χ∗ · a∗ψ∗ = χ̄>C−>εa∗C−1ψ̄ = −χ̄>εCa∗C−1ψ̄ = −χ̄ · āψ̄ . (39.126)

The sign �ip in the penultimate expression occurs because commuting the conjugation operator C
through the spinor metric tensor ε converts C to minus its complex conjugate, equation (39.91). An
alternative, equivalent expression follows from the antisymmetry of the spinor metric,

(χ · aψ)
∗

= −χ̄ · āψ̄ = (āψ̄) · χ̄ = ψ̄ā> · χ̄ = (−)p(−)[p/2]ψ̄ · āχ̄ . (39.127)

The �rst equality is equation (39.126), while the second equality is from the anticommutation of Dirac
spinors, equation (39.122). The (−)p sign in the �nal expression comes from commuting a grade-p
multivector through the spinor metric, equation (39.40), while the (−)[p/2] sign comes from the reversion
needed to undo the transposition of a grade-p multivector. The overall (−)p+[p/2] sign is positive for
scalars, trivectors, and pseudoscalars, negative for vectors and bivectors.

2. If the multivector a is real, ā = a, then the complex conjugate of ψ̄ · aψ, is, from equation (39.127),

(ψ̄ · aψ)∗ = (−)p(−)[p/2]ψ̄ · aψ . (39.128)

Thus ψ̄ · aψ is real for scalars, trivectors, and pseudoscalars, imaginary for vectors and bivectors.

39.9 Discrete transformations P , T

Besides conjugation C, the super spacetime algebra contains two other discrete transformations, parity
inversion P , and time reversal T . Parity and time reversal are improper Lorentz transformations, which
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preserve the Minkowski metric, but which cannot be obtained by any continuous Lorentz transformation
starting from the identity. Parity and time-reversal are examples of the geometric algebra transformation of
re�ection through an axis, �13.7.

39.9.1 Parity inversion P

The parity inversion operation P reverses all the spatial axes, while keeping the time axis unchanged1,

P : γγm → PγγmP
−1 =

{
γγm m = 0 ,

−γγm m = 1, 2, 3 .
(39.129)

Parity reversal transforms a Dirac spinor ψ as

P : ψ → Pψ . (39.130)

In any representation, the transformation (39.129) requires P to commute with the time axis γγ0 and an-
ticommute with the spatial axes γγa, a = 1, 2, 3. The only basis element of the spacetime algebra with the
required (anti)commutation properties is the time vector γγ0, so P must equal γγ0 up to a possible scalar
normalization:

P = γγ0 . (39.131)

If desired, a scalar factor of i could be inserted, P = iγγ0, so that P 2 = 1, but the choice of phase factor
is not essential. Parity �ips boost V ↔ U while leaving spin unchanged. This makes some physical sense:
�ipping boost �ips the direction of the momentum of the spinor; while spin is a form of angular momentum,
which is unchanged by parity inversion. Parity �ips chirality, the projection of spin along the direction of
momentum.

39.9.2 Time reversal T

The time-reversal operation T reverses the time axis, while keeping all the spatial axes unchanged,

T : γγm → TγγmT
−1 =

{
−γγm m = 0 ,

γγm m = 1, 2, 3 .
(39.132)

Time reversal transforms a Dirac spinor ψ as

T : ψ → Tψ . (39.133)

In any representation, the transformation (39.132) requires T to anticommute with the time axis γγ0 and
commute with the spatial axes γγa, a = 1, 2, 3. The only basis element of the spacetime algebra with the

1 De�ning parity inversion as a reversal of all spatial axes is convenient when the number of spatial dimensions is odd, as
here. In general the spatial rotation group splits into two disjoint parts, a proper group connected continuously to the
identity, and an improper group obtained by a re�ection through any one spatial axis and a continuous rotation. Parity
inversion can be achieved by re�ecting through any odd number of spatial axes.
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required (anti)commutation properties is the time pseudovector Iγγ0, so T must equal that pseudovector up
to a possible scalar normalization:

T = Iγγ0 . (39.134)

If desired, a scalar factor of −i could be inserted, T = −iIγγ0, to ensure that T 2 = 1 and PT = I (with
P = iγγ0), but again the choice of phase factor is not essential.

39.9.3 PT

The product PT of the parity and time inversion operators,

PT = I , (39.135)

reverses all 4 spacetime axes γγm,

PT : γγm → IγγmI
−1 = −γγm , (39.136)

and transforms a Dirac spinor ψ as

PT : ψ → Iψ . (39.137)

The fact that the PT operator equals the pseudoscalar I makes physical sense. The operation of reversing
all axes, both space and time, is Lorentz invariant. The only Lorentz invariant basis multivectors of the
spacetime algebra are the unit matrix and the pseudoscalar. The pseudoscalar is related to the chiral matrix
by I = iγ5, so the basis spinors εa in the chiral representation are PT -eigenstates.

39.10 The super geometric algebra in arbitrarily many space and time
dimensions

Exercise 39.6. Generalize the super spacetime algebra to an arbitrary number of space and

time dimensions. Generalize the super spacetime algebra to an arbitrary number of dimensions, with K
spatial dimensions, andM timelike dimensions, and a total ofK+M = N dimensions. This is a generalization
of Exercise 38.3.
Solution. The construction described in Exercise 38.3, in which all dimensions are spatial, carries through
unchanged through parts 1�14. After the construction is completed, modify the matrix representing any
timelike orthonormal basis vector γγm by multiplying the matrix by i (or −i, if preferred),

γγm → ±iγγm for timelike orthonormal basis vectors γγm . (39.138)

Propagate that modi�cation through the basis orthonormal multivectors of the spacetime algebra. The spinor
metric ε can be left unchanged, so that it remains real.
As an example of this algorithm, the spin basis vectors γγ±i for i = 1...[N/2] continue to be de�ned in
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terms of orthonormal vectors γγm by the unchanged equations (38.83), γγ±i = 1√
2
(γγ2i−1 ± iγγ2i). The chiral

construction in part 6 of Exercise 38.3 yields unchanged real matrix representations of all spin basis vectors
γγ±i . If in fact γγ2i (say) is timelike, then replacing γγ2i → −iγγ2i (after the construction is completed) means
that γγ±i = 1√

2
(γγ2i−1 ± γγ2i) is really a sum of spacelike and timelike vectors, like the null vectors γγv and γγu

in the Newman-Penrose formalism.
A super spacetime algebra with both space and time dimensions di�ers from an algebra with only space (or

only time) dimensions in that rotations in a time-space plane are non-compact, whereas rotations in a space-
space (or time-time) plane are compact. Rotations in a time-space plane are called (Lorentz) boosts. For
example, if one of γγ2i−1 and γγ2i is timelike and the other spacelike, then a rotation by boost angle (rapidity)
θ in the γγ2i−1�γγ2i plane transforms the the i'th pair of spin basis vectors γγ±i as, in place of (38.84),

γγ±i → e±θ γγ±i , (39.139)

and a basis spinor εa transforms as, in place of (38.87),

ε...↑i... → eθ/2 ε...↑i... , ε...↓i... → e−θ/2 ε...↓i... . (39.140)

The chiral representation (39.15) of Dirac γ-matrices is equivalent to the chiral construction in part 6 of
Exercise 38.3 with the following rearrangement of indices:

{γγ1,γγ2,γγ3,γγ0}Dirac = {γγ3,γγ4,γγ1, iγγ2} . (39.141)

10. Parity and time reversal. Parity reversal is the operation of re�ecting an odd number of spatial axes.
Time reversal is the operation of re�ecting an odd number of time axes. A re�ection of an even number
of spatial axes can be accomplished by a continous rotation in spatial dimensions, while a re�ection of
an even number of time axes can be accomplished by a continuous rotation in time dimensions.
If the total number N = K+M of spacetime dimensions is even, then parity reversal may be accom-

plished by setting the parity operator P equal to one of the space dimensions if K is even, or to one of
the time dimensions if K is odd, and transforming spinors and multivectors by

P : ψ → Pψ , a→ PaP−1 . (39.142)

If desired, a phase factor can be inserted into P to ensure that P 2 = 1, but the choice of phase factor
is not essential. Again, if the total number N = K+M of spacetime dimensions is even, then the
combined operation of parity and time reversal may be accomplished by setting the PT operator equal
to the pseudoscalar IN ,

PT : ψ → INψ , a→ INaI
−1
N . (39.143)

Time reversal is accomplished by the operator T = P (PT ) = PIN .
As in part 10 of Exercise 38.3, if the total number N = K+M of spacetime dimensions is odd, then

there is no element of the geometric algebra that accomplishes parity or time reversal by operations
like (39.142) and (39.143). The implementation of parity and time reversal in odd N dimensions is
described in the next part.
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11. Super spacetime algebra in odd dimensions, version 2. As described in parts 8 and 11 of Exer-
cise 38.3, there are two ways to construct the super geometric algebra in odd N = K+M dimensions,
the �rst being to project the algebra into one dimension lower, the second to embed the algebra in one
dimension higher, and to treat either the �nal (odd) dimension γγN or the extra (even) dimension γγN+1

as a scalar. The vector γγN or γγN+1 have the usual property of anticommuting with all orthonormal
vectors γγm other than themselves. If the number K of time dimensions is odd, then the scalar axis γγN
or γγN+1 serves as a time-reversal operator T , while if the number of time dimensions is even, then the
scalar axis serves as a parity-reversal operator P . If the number of time dimensions is odd, a suitable
parity operator is P = γγaT , where γγa is any spatial vector; while if the number of time dimensions is
even, a suitable time-reversal operator is T = γγkP where γγk is any time vector.

15. Conjugation. Part 15 of Exercise 38.3 carries through, but the condition that the Lorentz-invariant
conjugation operator C commute with all real orthonormal bivectors, and anticommute with all imagi-
nary orthonormal bivectors translates into the condition that, in place of expression (38.150), C equals,
modulo a normalization factor, the product of the spinor metric tensor ε (or the alternative spinor
metric tensor εalt) with the product of all timelike orthonormal basis vectors,

C = εΓ , Γ ≡
∏
m

(−iγγm)(timelike) . (39.144)

The normalization of Γ is such that the eigenvalues of Γ are real, which ensures that ψ̄ · ψ is real,
equation (39.147). The eigenvalues of Γ are ±1, and there are equal numbers of +1 and −1 eigenvalues,
since the trace of Γ is zero. For example, if there is just one time dimension γγ0, as in the 4D spacetime
algebra considered in this chapter, Γ is, equation (39.103),

Γ = −iγγ0 . (39.145)

Notwithstanding equation (39.144), the conjugation operator C is de�ned to transform not as an element
of the geometric algebra, but rather as a spinor tensor that is invariant under Lorentz transformations.
Conjugation �ips all space-space and time-time bits of a spinor, while keeping all space-time bits

un-�ipped. The chirality of a spinor its sign under the chiral operator κN . For even K−M , conjugation
�ips the chirality of a spinor if (K−M)/2 is odd, and leaves the chirality unchanged if (K−M)/2 is
even. For odd K−M , if the path proposed in part 8 is followed, where the odd-N algebra is projected
into one lower dimension, which requires identifying κN with unity, then chirality is not a rotationally
invariant property of spinors. If on the other hand the path proposed in part 11 is followed, where the
odd-N algebra is projected into one higher dimension, then chirality is the sign under κN+1.
The scalar product of a conjugate spinor ψ̄ with a spinor χ is (compare equation (38.154))

ψ̄ · χ = ψ†C>εχ = ψ†Γ>χ , (39.146)

which is a complex (with respect to i) number. The scalar product of a spinor ψ with its conjugate is

ψ̄ · ψ = ψ†Γ>ψ , (39.147)

which is real given that the eigenvalues of Γ are real. In zero time dimensions the scalar product of a
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Table 39.1: Symmetry of the conjugation operator C

K −M C Calt C̃ C̃alt

1 (mod 8) + + + −
2 (mod 8) + −
3 (mod 8) − − + −
4 (mod 8) − −
5 (mod 8) − − − +

6 (mod 8) − +

7 (mod 8) + + − +

8 (mod 8) + +

spinor with its conjugate was always positive, equation (38.71), but with one or more time dimensions
the scalar product of a spinor with its conjugate can be either positive or negative.

The scalar product ψ̄ · Γ∗χ (note Γ−> = Γ∗) is

ψ̄ · Γ∗χ = ψ†χ . (39.148)

In particular, ψ̄ · Γ∗ψ is real and positive,

ψ̄ · Γ∗ψ = ψ†ψ . (39.149)

16. Real subalgebra. FIX As in part 16 of Exercise 38.3, a real super spacetime subalgebra may be
obtained by restricting to spinors satisfying the reality condition that they are their own conjugates,

ψ̄ = ψ . (39.150)

The spinor reality condition (39.150) can be imposed only if the double conjugate spinor is itself, which
is to say, only if the conjugation operator is symmetric, C = C> (equivalent to CC∗ = 1 in view of
the unitarity of C). Table 39.1 shows the symmetry of conjugation operator C for the standard and
alternative spinor metrics, including the tilde'd versions (38.93) for odd K−M . Table 39.1 is essentially
identical to the earlier Table 38.1, except that the number N of spatial dimensions is changed to the
di�erence K−M of numbers of space and time dimensions. For Dirac spinors in 3+1 dimensions, the
conventional choice is the alternative spinor metric (38.92), which ensures that the conjugation operator
is symmetric, hence that the double conjugate of a spinor is itself, ¯̄ψ = ψ.

The multivector part of the real super spacetime subalgebra consists of outer products of self-conjugate
spinors. The conjugate of a multivector a that is an outer product a = ψχ · of self-conjugate spinors
satis�es

ā = ±a , (39.151)

where the ± sign is positive if ε commutes with Γ, negative if ε anticommutes with Γ. For example,



39.10 The super geometric algebra in arbitrarily many space and time dimensions 1003

in the 4D super spacetime algebra considered in this chapter, the sign in equation (39.151) is negative,
equation (39.112). Explicitly, the ± sign in equation (39.151) is

± = ∓(−)M [N/2] +
∑
m , (39.152)

in which the initial ∓ sign on the right hand side is + for the standard spinor metric, − for the alternative
spinor metric, and the sum

∑
m of m ∈ {1, ..., N} is over theM indices for which γγm is timelike. Unless

the dimensions are all spacelike, or all timelike (!), the timelike indices m can be chosen so that
∑
m

in equation (39.152) is either even or odd, in such a way that the overall sign in equation (39.151) is
+. The multivector part of the real super spacetime subalgebra consists of multivectors satisfying the
reality condition (39.151) with the choice of sign (39.152).

17. Rotor group. The rotor group is generated by the basis of orthonormal bivectors. Bivectors that are
the wedge product of a timelike vector and a spacelike vector are multiplied by i, so that rotations
in a time-space plane take the exponential form eθ/2, rather than being rotations by a phase, e−iθ/2.
The orthonormal basis bivectors remain traceless and unitary, but whereas time-time and space-space
bivectors remain skew-Hermitian, the time-space bivectors become Hermitian. The rotor group in K

spatial dimensions and M time dimensions is called Spin(K,M). The construction (38.111) described
in Exercise 38.3 embeds Spin(K,M) as a subgroup of the group SL(2[N/2],C), where N ≡ K+M , of
complex 2[N/2] × 2[N/2] matrices of unit determinant,

Spin(K,M) ⊆ SL(2[N/2],C) , N ≡ K +M . (39.153)

The group is not unitary, since bivector generators that are wedge products of a timelike vector and a
spacelike vector are Hermitian, whereas unitarity requires all generators to be skew-Hermitian (compare
Exercise 14.17). Switching time and space dimensions leaves the group unchanged, so Spin(K,M) is
isomorphic to Spin(M,K).

18. Grade-preserving subgroup of Spin(K,M). As in part 18 of Exercise 38.3, there exists a subgroup of
Spin(K,M) that preserves the grade (number of up bits) of the spinor. The construction (38.172) runs
into an obstacle because mixed space-time bivectors cannot be combined in real linear combinations with
space-space or time-time bivectors to form bivectors of zero spin (complex linear combinations yes, but
not real linear combinations). The best that can be done is to minimize the number of mixed space-time
bivectors, by grouping spatial dimensions into pairs, and time dimensions into pairs, leaving at most
one pair of dimensions a mixed combination of a space and a time dimension. The mixed pair is needed
only if both space and time dimensions K and M are odd. The construction (38.172) then yields [K/2]2

skew-Hermitian space-space generators, [M/2]2 skew-Hermitian time-time generators, and 2[K/2][M/2]

Hermitian space-time generators. If there is a mixed space-time pair of dimensions, then there is 1
extra Hermitian space-time generator. Altogether the grade-preserving subgroup of Spin(K,M) has
dimension [(K+M)/2]2 if at most one of K or M is odd, or ([K/2] + [M/2])2 + 1 if K and M are both
odd. The largest unitary subgroup of Spin(K,M) is the direct product U([K/2])×U([M/2]) of unitary
groups generated by the [K/2]2 skew-Hermitian space-space generators and the [M/2]2 skew-Hermitian
time-time generators.
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Geometric Di�erentiation and Integration
of Spinors

40.1 Covariant derivative of a spinor

A Lorentz transformation of a Dirac spinor ψ by rotor R transforms the spinor by ψ → Rψ. An in�nitesimal
Lorentz transformation R = 1 + εΓ/2 generated by a bivector Γ transforms ψ → ψ + 1

2εΓψ. Consequently
the action of the connection operator Γ̂n on a spinor ψ is

Γ̂nψ = 1
2Γnψ , (40.1)

where Γn is the N -tuple of bivectors (15.9). The covariant derivative of a spinor ψ is thus

Dnψ = ∂nψ + 1
2Γnψ , (40.2)

In equation (40.2), as previously in equations (15.6) and (15.15), for a spinor ψ = εaψ
a, the directed

derivative ∂n is to be interpreted as acting only on the components ψa of the spinor, ∂nψ = εa ∂nψ
a. In the

convention (39.77) that multivectors acting to the right of a column spinor yield zero, the connection term
in equation (40.2) can be written as a commutator, in the same form as (15.15),

Dnψ = ∂nψ + 1
2 [Γn, ψ] . (40.3)

Acting on a spinor ψ, the Riemann curvature operator R̂kl, equation (15.21), yields another spinor,

R̂klψ = 1
2Rklψ . (40.4)

Again in the convention (39.77) that multivectors acting to the right of a column spinor yield zero, equa-
tion (40.4) can be written in the same form as equation (15.23),

R̂klψ = 1
2 [Rkl, ψ] . (40.5)

40.1.1 Covariant derivative of a row spinor

A row Dirac spinor ψ · Lorentz transforms as ψ · → ψ · R̄, so an in�nitesimal Lorentz transformation R̄ =

1− εΓ/2 generated by a bivector Γ transforms ψ · → ψ ·− 1
2εψ ·Γ. Consequently the action of the connection

1004
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operator Γ̂n on a row spinor ψ · is
Γ̂nψ · = − 1

2ψ · Γn , (40.6)

and the covariant derivative of a row spinor ψ · is then

Dnψ · = ∂nψ · − 1
2ψ · Γn . (40.7)

Again in the convention (39.77) that multivectors acting to the left of a row spinor yield zero, the connection
term in equation (40.7) can be written as a commutator, in the same form as (15.15),

Dnψ · = ∂nψ ·+ 1
2 [Γn, ψ ·] . (40.8)

Acting on a row spinor ψ ·, the Riemann curvature operator R̂kl, equation (15.21), yields another row
spinor,

R̂klψ · = − 1
2ψ ·Rkl . (40.9)

Again in the convention (39.77) that multivectors acting to the left of a row spinor yield zero, equation (40.9)
can be written in the same form as equation (15.23),

R̂klψ · = 1
2 [Rkl, ψ ·] . (40.10)

Equations (15.15), (40.3), and (40.8) show that if a is any element of the super geometric algebra, either
a multivector or a column or row spinor, or a true scalar, its covariant derivative Dna can be written in the
same form

Dna = ∂na+ 1
2 [Γn, a] . (40.11)

Likewise the action of the Riemann curvature operator R̂kl, equation (15.21), on any element a of the super
geometric algebra takes the same form

R̂kla = 1
2 [Rkl, a] . (40.12)

40.2 Covariant derivative in a spinor basis

The covariant derivative Dn can also be expressed in a spinor basis.
The spinor tetrad connections Γban are de�ned, analogously to the de�nition (11.37) of the tetrad connec-

tions Γkmn, to be the coe�cients of the change of the spinor axes εa parallel-transported along the direction
γγn,

Γbanεb ≡ ∂nεa . (40.13)

The same equation (40.13) with a trailing dot appended on both sides holds for row spinors. The constancy
of the spinor metric,

0 = ∂nεab = ∂n(εa · εb) = Γcbnεa · εc + Γcanεc · εb = Γcbnεac + Γcanεcb = Γabn − Γban , (40.14)
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along with the antisymmetry of the spinor metric, implies that the spinor tetrad connection Γabn is symmetric
in its �rst two indices,

Γabn = Γban . (40.15)

The symmetry of the spinor tetrad connection is analogous to the antisymmetry of the tetrad connection,
equation (11.47). The preservation of chirality under parallel transport implies that the spinor connections
Γabn are non-vanishing only when a and b have the same chirality,

Γabn = 0 for a, b of opposite chirality . (40.16)

In the 4D super spacetime algebra, the non-vanishing spinor connection coe�cients comprise 12 right-
handed spinor connections, and 12 left-handed spinor connections. The 24 spinor connection coe�cients
Γabn are related to the 24 tetrad connection coe�cients Γkmn by

Γabn = γkmab Γkmn , (40.17)

where γkmab is the matrix de�ned by equation (39.70) with km running over the 6 bivector indices, and km
are implicitly summed over distinct bivector indices. In the chiral representation, the matrix coe�cients are
given by equations (39.64) and (39.65).
The connection Γn de�ned by equation (15.9) is in terms of the spinor basis

Γn = Γabnε
aεb · , (40.18)

implicitly summed over distinct symmetric self-chiral pairs ab of spinor indices. Expressions (15.15), (40.3),
and (40.8) for the covariant derivatives of multivectors and spinors remain valid with the connection Γn
given by equation (40.18).

40.3 Covariant spacetime derivative of a spinor

Acting on a Dirac column spinor ψ, the covariant spacetime derivative D ≡ γγnDn yields another Dirac
spinor

Dψ column spinor . (40.19)

This derivative is a fundamental ingredient in the Lagrangian for a Dirac �eld, and in the resulting Dirac
equations of motion.
The covariant spacetime derivative of a row spinor ψ · is de�ned to equal the row spinor corresponding to

the covariant spacetime derivative of the column spinor ψ, that is,Dψ · ≡ (Dψ) ·. The following manipulation
shows that the spacetime derivative of the row spinor is minus the spacetime derivative acting on the row
spinor to the left:

Dψ · ≡ (Dψ) · = (Dψ)>ε = ψ>
←
D>ε = −ψ>ε

←
D = −ψ ·

←
D . (40.20)

The penultimate step is true because γγn>ε = −εγγn, equation (39.40).
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40.4 Gauss' theorem for spinors

In practical applications to spinor Lagrangians, Gauss' theorem occurs in the form∫ (
χ ·Dψ + ψ ·Dχ

)
d4x =

∫
D̊n(χ · γγnψ) d4x =

∮
χ · γγnψ d3xn , (40.21)

where ψ and χ are spinors, and D is the torsion-full covariant spacetime derivative.
Equation (40.21) is proved as follows:

χ ·Dψ + ψ ·Dχ = χ ·Dψ − (Dχ) · ψ
= χ · γγnDnψ − (γγnDnχ) · ψ
= χ · γγnDnψ + (Dnχ) · γγnψ

= χ · γγn(D̊n + 1
2Kn)ψ +

(
(D̊n + 1

2Kn)χ
)
· γγnψ

= χ · γγnD̊nψ + (D̊nχ) · γγnψ + 1
2 χ · γγ

nKnψ − 1
2 χ ·Knγγ

nψ

= D̊n(χ · γγnψ)− χ ·
(
D̊nγγ

n + 1
2 [Kn,γγ

n]
)
ψ

= D̊n(χ · γγnψ) , (40.22)

where Kn ≡ 1
2Kkln γγ

k ∧γγl is the contortion, equation (15.47). The sign �ip on the �rst line comes from
the anticommutation of Dirac spinors, equation (39.122). The sign �ip is cancelled on the third line from
commuting the basis vectors γγn through the spinor metric, equation (39.40). The last term on the penultimate
line of equation (40.22) vanishes because the torsion-full covariant derivative of the basis vectors γγn vanishes,
D̊nγγ

n + 1
2 [Kn,γγ

n] = Dnγγ
n = 0.
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Action principle for spinor �elds

As expounded in Chapter 15, d4x denotes the invariant scalar 4-volume, equation (15.103), not the pseu-
doscalar 4-volume. The units are c = ~ = 1.
The relation between energy-momenta pn and spacetime derivatives ∂n adopted here is the standard

quantum mechanics convention,

pn = −i~ ∂n . (41.1)

Beware that this convention is opposite to the standard cosmological convention, �26.8.2, adopted in Chap-
ters 26�37.

41.1 Dirac spinor �eld

41.1.1 Dirac Lagrangian

The general relativistic scalar Lagrangian L of a free Dirac spinor �eld ψ of mass m is

L = ψ̄ · (D +m)ψ . (41.2)

Here D ≡ γγnDn is the (torsion-full, in general1) covariant spacetime derivative, equation (15.31), and ψ̄

is the conjugate �eld de�ned by equation (39.94). In �at (Minkowski) space the justi�cation for the Dirac
Lagrangian (41.2) is that it leads to equations that reproduce ample experiment. Equation (41.2) is the
covariant generalization of the �at space Lagrangian of a Dirac �eld. If units are restored, then the mass is
m/(~c). The spinor �eld ψ has units of length−3/2.
As it stands, the Lagrangian (41.2) is strangely asymmetric in the �elds, as it depends only on the velocity

Dψ of the �eld, not on the velocity Dψ̄ of the conjugate �eld. Moreover the Lagrangian (41.2) is complex,
not real. Symmetry and reality can be restored by symmetrizing the Lagrangian (41.2) with its complex
conjugate. The covariant spacetime derivative D ≡ γγnDn has real coe�cients Dn in an orthonormal basis

1 Gauge �elds such as electromagnetism are necessarily de�ned in terms of torsion-free derivatives, �16.5, but spinor �elds
contribute to, and experience, torsion, Exercises 16.5 and 16.7.
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γγn. For any multivector a whose coe�cients are real in an orthonormal basis, the complex conjugate of ψ̄ ·aψ
is, equation (39.126), (

ψ̄ · aψ
)∗

= −ψ · aψ̄ . (41.3)

The symmetrized, real Lagrangian is thus

L = 1
2 ψ̄ · (D +m)ψ − 1

2ψ · (D +m) ψ̄ . (41.4)

Despite being asymmetric and complex, the original Dirac Lagrangian (41.2) does yield the correct Dirac
equations because the imaginary part of the Lagrangian integrates to a surface term, by Gauss' theo-
rem (40.21),

i

∫
Im(ψ̄ ·Dψ) d4x = 1

2

∫
(ψ̄ ·Dψ + ψ ·Dψ̄) d4x = 1

2

∮
ψ̄ · γγnψ d3xn , (41.5)

and therefore has no e�ect on the equations of motion.
The original complex Dirac Lagrangian (41.2) is in (super-)Hamiltonian form p ·Dq−H with coordinates

q = ψ, momenta p = ψ̄, and (super-)Hamiltonian

H = −mψ̄ · ψ . (41.6)

Varying the action with complex Dirac Lagrangian (41.2) with respect to the �eld ψ and its conjugate
momentum ψ̄ yields, with the help of Gauss' theorem (40.21) to integrate δ(Dψ) = D(δψ) by parts,

δS =

∮
ψ̄ · γγnδψ d3xn +

∫ [
δψ̄ · (Dψ +mψ) +

(
Dψ̄ +mψ̄

)
· δψ

]
d4x . (41.7)

The resulting Hamilton equations of motion are the Dirac equations

(D +m)ψ = 0 , (41.8a)

(D +m)ψ̄ = 0 . (41.8b)

In �at (Minkowski) space, the solutions of the free Dirac equations (41.8) are plane waves. The solutions
are most straightforward to obtain in the rest frame, where the spinor ψ is one of the Dirac basis spinors ψ⇑
or ψ⇓ (with spin either up ↑ or down ↓), equations (14.108), and the covariant derivative reduces to the time
derivative D → γγ0∂0. The conjugate of a spinor is ψ̄ ≡ Cψ∗, equation (39.94), and the expression (39.86)
for C says that conjugation �ips the ψ⇑ and ψ⇓ states. The Dirac equations (41.8) in the rest frame become

(− i∂0 +m)ψ⇑ = 0 , (i∂0 +m)ψ⇓ = 0 , (41.9a)

(− i∂0 +m)ψ∗⇓ = 0 , (i∂0 +m)ψ∗⇑ = 0 , (41.9b)

whose solutions are

ψ⇑ ∝ e−imt , ψ⇓ ∝ eimt , (41.10a)

ψ∗⇓ ∝ e−imt , ψ∗⇑ ∝ eimt . (41.10b)

While the solution for ψ⇑ has positive mass m, the solution for ψ⇓ appears to have negative mass m. This
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e ē

γ γ

Figure 41.1 Feynman diagram illustrating the Stueckelberg-Feynman interpretation of antiparticles as negative mass

particles moving backwards in time (Stueckelberg, 1941; Feynman, 1949). The diagram shows an electron e and

positron ē annihilating into two photons (conservation of energy-momentum prohibits annihilation into one photon).

is Dirac's celebrated problem of negative mass states (Bjorken and Drell, 1964). On the other hand, the
complex conjugate ψ∗⇓ of the negative mass state ψ⇓ has positive mass.
The idea that the negative mass states are antiparticles dates to Stueckelberg (1941), who proposed that

an antiparticle is a negative mass particle moving backwards in time, as illustrated in Figure 41.1.
The problem of negative mass states ultimately �nds its solution in quantum �eld theory (Feynman, 1949),

which allows particles to be created and destroyed. Positive-energy solutions are associated with operators
that destroy particles, while negative-energy solutions are associated with operators that create particles.

41.1.2 Dirac (super-)Hamiltonian

Although the Dirac Lagrangian (41.2) yields the correct equations of motion (41.8) (and the symmetrized
Lagrangian (41.4) yields the same equations), it is not altogether satisfactory. The problem is that the
Lagrangians (41.2) or (41.4) assume a priori that the momentum conjugate to ψ is its conjugate ψ̄. In
a �correct� Hamiltonian approach, the coordinates and momenta are independent �elds, and any relation
between them should emerge as an equation of motion.
The solution to the problem is to introduce a momentum π conjugate to the �eld ψ, with no a priori

relation between π and ψ, and to treat the �elds ψ and π and their conjugates ψ̄ and π̄ as 4 independent
�elds. In terms of the 4 �elds, the Dirac Lagrangian, symmetrized with its complex conjugate so as to make
it real, is

L = 1
2π ·Dψ −

1
2 π̄ ·Dψ̄ −H , (41.11)

with a (super-)Hamiltonian H that resembles the Hamiltonian of a simple harmonic oscillator,

H = − 1
2m
(
π · π̄ + ψ̄ · ψ

)
. (41.12)

The momentum conjugate to ψ is 1
2π, while the momentum conjugate to ψ̄ is − 1

2 π̄. The Dirac Hamil-
tonian (41.12) is consistent with, though does not follow uniquely from, the original Hamiltonian (41.6). The
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justi�cation for the Hamiltonian (41.12) is that it yields the correct Dirac equations of motion, along with
π = ψ̄ and π̄ = ψ as constraint equations, equations (41.14).
Varying the Dirac action with Lagrangian (41.11) with respect to the coordinates ψ and ψ̄ and their

conjugate momenta π and −π̄ yields

δS = 1
2

∮ (
π · γγnδψ − π̄ · γγnδψ̄

)
d3xn

+ 1
2

∫ [
δπ · (Dψ +mπ̄)− δπ̄ ·

(
Dψ̄ +mπ

)
+
(
Dπ +mψ̄

)
· δψ − (Dπ̄ +mψ) · δψ̄

]
d4x . (41.13)

The resulting Hamilton's equations can be written

(D +m)(π̄ + ψ) = 0 , (D +m)(π + ψ̄) = 0 , (41.14a)

(D −m)(π̄ − ψ) = 0 , (D −m)(π − ψ̄) = 0 . (41.14b)

Hamilton's equations (41.14) appear to describe solutions with both signs of mass m. If the standard choices
π = ψ̄ and π̄ = ψ are imposed initially, then the −m Dirac equations (41.14b) ensure that π = ψ̄ and
π̄ = ψ thereafter. The +m Dirac equations (41.14a) then reproduce the usual Dirac equations (41.8). The
conditions π = ψ̄ and π̄ = ψ thus emerge as constraint equations. The original Hamiltonian (41.6) can be
interpreted as an e�ective Hamiltonian, valid after the +m solution π = ψ̄ and π̄ = ψ to the equation of
motion is imposed.

41.1.3 Conserved Dirac number current

The Dirac Lagrangians (41.2), (41.4), or (41.11) are unchanged if the �eld and its conjugate are changed by
opposing complex phases, ψ → e−iεψ and ψ̄ → eiεψ̄, and likewise the conjugate momenta are changed as
π → eiεπ and π̄ → e−iεπ̄. In in�nitesimal form, this transformation is

ψ → ψ − iεψ , ψ̄ → ψ̄ + iεψ̄ , π → π + iεπ , π̄ → π̄ − iεπ̄ . (41.15)

The corresponding conserved Noether current, equation (16.17), is

nm = 1
2 i
(
π · γγmψ + π̄ · γγmψ̄

)
. (41.16)

The relative sign of the two terms on the right hand side of equation (41.16) is positive because the �elds
vary with opposite sign under the transformation (41.15), δψ̄ = −δψ. Imposing the positive mass conditions
π = ψ̄ and π̄ = ψ brings the Noether current to

nm = 1
2 i
(
ψ̄ · γγmψ + ψ · γγmψ̄

)
. (41.17)

The two terms on the right hand side of equation (41.17) are the same since

ψ · γγmψ̄ = −(γγmψ̄) · ψ = ψ̄ · γγmψ , (41.18)

so equation (41.17) simpli�es to

nm = i ψ̄ · γγmψ . (41.19)
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The Dirac current (41.19) is covariantly conserved in accordance with Noether's theorem, equation (16.18),

D̊mn
m = 0 . (41.20)

The factor i in the Dirac current (41.19) is introduced so that the time component n0 is a positive number,

n0 = ψ†ψ , (41.21)

where, in accordance with equation (39.102), ψ† ≡ ψ∗> is the Hermitian conjugate of ψ. The Dirac current
nm is interpreted as a conserved probability number current with a positive density n0.
If the current (41.19) is written

n = γγmn
m = iγγm ψ̄ · γγmψ , (41.22)

then the probability conservation equation (41.20) is

D̊ · n = 0 . (41.23)

If the Dirac spinor is null, ψ̄ · ψ = ψ̄ · Iψ = 0, then the free Dirac equations preserve chirality. In this case
the right- and left-handed components of the current n are separately conserved. It follows that, for a free
null spinor in the absence of interactions, the pseudovector current

nm5 ≡ i ψ̄ · γ5γγ
mψ (41.24)

is also conserved.

41.2 Dirac �eld with electromagnetism

Electromagnetism emerges from the hypothesis that the Lagrangian is invariant under a symmetry that
rotates the Dirac �eld ψ by a complex phase proportional to the electric charge e of the �eld. This kind
of transformation is called a gauge transformation. The three forces of the Standard Model, �42.1, the
electromagnetic, weak, and strong forces, all emerge from gauge transformations. Electromagnetism is the
simplest gauge �eld, based on the 1-dimensional unitary group Uem(1) of rotations about a circle.
Under an electromagnetic gauge transformation, a Dirac �eld ψ of charge e, and its conjugate �eld ψ̄,

which is proportional to the complex conjugate of the �eld, equation (39.94), and likewise their conjugate
momenta π and π̄, transform as

ψ → e−ieθψ , ψ̄ → eieθψ̄ , π → eieθπ , π̄ → e−ieθπ̄ , (41.25)

where the phase θ(x) is some arbitrary function of spacetime. The charge e is dimensionless, and the charge−e
of the conjugate �eld ψ̄ must be minus that of the �eld. To ensure that the Dirac Lagrangian (41.4) remains
invariant under the gauge transformation, the derivative D must be replaced by a gauge-covariant derivative
D±ieA which, when acting on the �eld and its conjugate, transforms under the gauge transformation (41.25)
as

(D + ieA)ψ → e−ieθ(D + ieA)ψ , (D − ieA)ψ̄ → eieθ(D − ieA)ψ̄ . (41.26)
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The conjugate momenta π and π̄ transform respectively as ψ̄ and ψ. The gauge-covariant derivative trans-
forms correctly provided that the gauge �eld A transforms under the electromagnetic gauge transforma-
tion (41.25) as

A→ A+Dθ . (41.27)

The gauge �eld A is the electromagnetic potential.
The general relativistic scalar Lagrangian L of a Dirac spinor �eld ψ of mass m and charge e is obtained

from the uncharged Dirac Lagrangian (41.2) by changing the (torsion-full, in general) covariant derivative
D to the gauge covariant derivative D + ieA,

L = ψ̄ · (D + ieA+m)ψ . (41.28)

Symmetrized with its complex conjugate, the charged Dirac Lagrangian (41.28) is

L = 1
2 ψ̄ · (D + ieA+m)ψ − 1

2ψ · (D − ieA+m) ψ̄ . (41.29)

If the momentum π conjugate to ψ is treated as a distinct �eld as in �41.1.2, then the charged Dirac
Lagrangian is

L = 1
2π · (D + ieA)ψ − 1

2 π̄ · (D − ieA) ψ̄ + 1
2m
(
− π̄ · π + ψ̄ · ψ

)
. (41.30)

Varying the action with Lagrangian (41.30) yields Hamilton's equations for a charged Dirac �eld,

(D + ieA+m)(π̄ + ψ) = 0 , (D − ieA+m)(π + ψ̄) = 0 , (41.31a)

(D + ieA−m)(π̄ − ψ) = 0 , (D − ieA−m)(π − ψ̄) = 0 , (41.31b)

generalizing the earlier uncharged equations (41.14). Once again, the +m conditions π = ψ̄ and π̄ = ψ

emerge as constraint equations if the conjugate momenta π and π̄ are treated as �elds independent from ψ

and ψ̄. Under the +m conditions, the Dirac equations (41.31) reduce to

(D + ieA+m)ψ = 0 , (41.32a)

(D − ieA+m)ψ̄ = 0 . (41.32b)

The Dirac equation (41.32b) for the conjugate �eld ψ̄ looks like that (41.32a) for the �eld ψ but with opposite
charge e.
The charged Dirac �eld has an electric current j given by the product of the charge e and the conserved

number current n ≡ γγmnm, equation (41.19),

j ≡ en . (41.33)

Like the number current, equation (41.20), the electric current j is covariantly conserved,

D̊ · j = 0 . (41.34)

Current conservation (41.34) is a consequence of the invariance of the Lagrangian (41.29) under an electro-
magnetic gauge transformation (41.25). The electromagnetic contribution to the Dirac Lagrangian (41.29)
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can be interpreted as describing the interaction between the electromagnetic �eld A and the Dirac electric
current j,

Lint = ie ψ̄ ·Aψ = A · j . (41.35)

Resolved into components ψ⇑ and ψ⇓ in the Dirac representation, �14.8, the Dirac equations (41.32)
become, generalizing equations (41.9),

(− iD0 + eA0 +m)ψ⇑ = −σa(Da + ieAa)ψ⇓ , (iD0 − eA0 +m)ψ⇓ = −σa(Da + ieAa)ψ⇑ , (41.36a)

(− iD0 − eA0 +m)ψ∗⇓ = −σ∗a(Da − ieAa)ψ∗⇑ , (iD0 + eA0 +m)ψ∗⇑ = −σ∗a(Da − ieAa)ψ∗⇓ . (41.36b)

The charge-conjugate Dirac equations (41.36b) are complex conjugates (with respect to i) of the parent
equations (41.36a). As discussed in �14.8, a Dirac spinor ψ contains two components, which in the rest frame
are ψ⇑ and ψ⇓, that cannot be transformed into each other by any proper Lorentz transformation. The
two components describe particles and antiparticles. Lorentz-transformed out of the rest frame, particles
and antiparticles are each linear combinations of both ψ⇑ and ψ⇓, but still those combinations cannot
be transformed into each other: for particles, ψ⇑ dominates, while for antiparticles ψ⇓ dominates. The
�rst pair (41.36a) of Dirac equations describes the evolution of particles, where ψ⇑ dominates. The pair
of equations are coupled �rst-order di�erential equations for ψ⇑ and ψ⇓, which combine to yield a second-
order equation for ψ⇑. Likewise the second pair (41.36b) describes the evolution of antiparticles, where the
negative-mass component ψ⇓, or physically its positive-mass complex conjugate ψ∗⇓, dominates. The second
pair (41.36b) combine to yield a second-order equation for ψ∗⇓. The charged Dirac equations (41.36) con�rm
the earlier inference from equations (41.32) that particles and antiparticles have opposite electric charges.
Resolved instead into chiral components ψR and ψL, �39.2, the Dirac equations(41.32) are

[−D0 − ieA0 + σa(Da + iAa)]ψL = −mψR , [−D0 − ieA0 − σa(Da + iAa)]ψR = mψL , (41.37a)

[−D0 + ieA0 − σ∗a(Da − iAa)]ψ∗R = mψ∗L , [−D0 + ieA0 + σ∗a(Da − iAa)]ψ∗L = −mψ∗R . (41.37b)

Again, the charge-conjugate Dirac equations (41.37b) are complex conjugates (with respect to i) of the parent
equations (41.37a).

41.3 Particles and antiparticles

The question of whether a Dirac spinor ψ describes a particle or antiparticle can be decided from the sign
of the e�ective Dirac Hamiltonian, equation (41.6),

H = −mψ̄ · ψ = imψ†γγ0ψ = −m(ψ†⇑ψ⇑ − ψ
†
⇓ψ⇓) . (41.38)

Whereas the number density n0 ≡ iψ̄ · γγ0ψ = ψ†ψ of the Dirac �eld is always positive, equation (41.21),
the scalar product ψ̄ · ψ can be either positive or negative. If the spinor is a particle (ψ⇑ dominates), then
ψ̄ ·ψ is positive, and the Hamiltonian (41.38) with positive m describes a timelike �eld. If on the other hand
the spinor is an antiparticle (ψ⇓ dominates), then ψ̄ · ψ is negative, and the Hamiltonian would appear to
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describe a spacelike �eld. (As usual in this book, do not confuse the scalar super-Hamiltonian (41.38) with
the conventional Hamiltonian, which is the time component of a 4-vector.)
The antisymmetry of the Dirac spinor scalar product means that the Hamiltonian (41.38) can be rewritten

H = mψ · ψ̄ . (41.39)

This does not resolve the problem that, if the antiparticle component dominates, the Hamiltonian (41.39)
is still positive, for positive m, hence spacelike. A timelike Hamiltonian with positive mass m when the
antiparticle �eld ψ̄ dominates can be obtained by taking its PT conjugate, yielding the CPT -conjugate
�eld. Let �elds with an underbar

¯
ψ denote the PT -conjugate �elds obtained by pre-multiplying by the

pseudoscalar I, equation (39.137),

PT :
¯
ψ = Iψ , CPT :

¯
ψ̄ ≡ Iψ̄ . (41.40)

The �elds
¯
ψ and

¯
ψ̄ are charge conjugates of each other, equation (39.94), since CI∗ = IC. Since the

pseudoscalar satis�es I2 = −1 and I commutes with the spinor metric ε, the Hamiltonian of the CPT -
conjugate �eld

¯
ψ̄ is

H = −m
¯
ψ ·

¯
ψ̄ , (41.41)

which is timelike when
¯
ψ ·

¯
ψ̄ is positive, that is, when the CPT -conjugate �eld

¯
ψ̄ dominates. Note that

introducing an additional phase factor, such as i, into the de�nition of the PT -conjugate �elds makes no
di�erence to the Hamiltonian, because the opposing phase factors in

¯
ψ and

¯
ψ̄ cancel each other.

41.3.1 C, P , and T symmetries

The collection of Dirac equations for a spinor ψ, its charge conjugate ψ̄, and their PT conjugates
¯
ψ and

¯
ψ̄

are

(D + ieA+m)ψ = 0 , (41.42a)

PT : (D + ieA−m)
¯
ψ = 0 , (41.42b)

C : (D − ieA+m)ψ̄ = 0 , (41.42c)

CPT : (D − ieA−m)
¯
ψ̄ = 0 . (41.42d)

The PT -conjugate equations (41.42b) and (41.42d) are obtained by commuting the PT operator I through
their parent equations (41.42a) and (41.42c), and noting that I anticommutes with the basis vectors γγn.
The PT -conjugate Dirac equations (41.42b) and (41.42d) appear to be �ipped in mass m compared to their
parent Dirac equations (41.42a) and (41.42c), but if the equations are expanded in terms of components ψ⇑
and ψ⇓, as in equations (41.36), the PT -conjugate equations are identical to their parent counterparts.
Despite the apparently di�ering signs of charge e and mass m, the four sets of Dirac equations (41.42) are

equivalent to each other, an equivalence that is manifest when the equations are expanded in components,
equations (41.36). The equivalences express symmetry of the charged Dirac equations with respect to the
discrete operations of spacetime reversal PT and charge conjugation C. The PT symmetry says that the
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transformation γγm → −γγm and ψ → Iψ ≡
¯
ψ leaves the Dirac equation unchanged. The C symmetry says

that the transformation e→ −e and ψ → Cψ∗ ≡ ψ̄ leaves the Dirac equation unchanged.
The Dirac equations are also symmetric with respect to the parity operation P . The P symmetry says

that �ipping the spatial axes γγa → −γγa and transforming ψ → γγ0ψ leaves the Dirac equation unchanged.
Electromagnetic, colour, and gravitational interactions all respect C, P , and T symmetries, but weak in-

teractions violate them. Weak interactions act only on left-handed particles (and right-handed antiparticles),
not their opposite chiral counterparts. A parity transformation �ips chirality (it �ips momentum while leaving
spin unchanged), so weak interactions violate parity symmetry maximally. The excess of matter (baryons and
leptons) over antimatter (antibaryons and antileptons) in the Universe suggests that T -violating processes
took place during the early Universe.
Although C, P , and T may be individually violated, the combination CPT appears to be a general

symmetry of Nature. There is a CPT theorem premised on the proposition that Lorentz transformations
in (3+1)-dimensional spacetime can be analytically continued to spatial rotations in 4 spatial dimensions.
A spatial rotation by π radians in the Euclideanized t�z plane sends t → −t and z → −z, equivalent to a
combination of time reversal and parity reversal in 3+1 spacetime dimensions. A spatial rotation preserves
scalars, in particular the scalar (super-)Hamiltonian (41.38); for the Hamiltonian to remain a scalar in 3+1
dimensions, the transformation must be CPT , equation (41.41).

41.4 Quantum �eld theory of Dirac spinors

Traditional non-relativistic quantum mechanics describes a particle by a wavefunction, and multiple particles
by (anti)symmetrized products of wavefunctions. That description fails as an adequate description of reality
for the simple reason that particles can be created or destroyed in collisions. Collisions of su�cient energy
can create particle-antiparticle pairs that were not there before. A description of particles by wavefunctions
cannot handle the creation or destruction of particles.
The conventional solution to the problem is quantum �eld theory. In traditional non-relativistic quantum

mechanics, observables such as position and momentum are interpreted as operators that act on wavefunc-
tions. In quantum �eld theory, the wavefunctions themselves are re-interpreted as operators called �elds,
that act on some background state, creating and destroying particles out of that background state.
The mathematics of quantum �eld theory is encapsulated by a powerful and conceptually appealing ap-

proach invented by Feynman: Feynman diagrams, and the Feynman rules associated with them. Feynman
diagrams contain two basic building blocks: vertices where quantized interactions occur; and lines joining
vertices. The vertices represent unresolved points of spacetime where interactions occur. The lines represent
the evolution of �elds propagating between interaction points. In basic quantum �eld theory, the background
spacetime is taken to be �at Minkowski space, and the propagation of �elds between points is governed by
free wave equations, which are the free Dirac equation for spinors, and the free Maxwell equations for the
electromagnetic �eld. The Feynman diagram approach is essentially perturbative, with diagrams with more
vertices describing higher order perturbative contributions.
A common, textbook approach to quantum �eld theory is to start by quantizing a scalar (spin 0) �eld, on
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the grounds that a spinless �eld is the simplest kind of �eld. The scalar �eld is quantized by promoting the
scalar �eld and its conjugate momentum �eld to operators satisfying postulated commutation relations. The
postulated commutation relations turn out to be the same as those of a simple harmonic oscillator. After the
scalar �eld is quantized, a spinor �eld is quantized analogously, with the key di�erence that, because spinor
�elds satisfy an exclusion principle, the spinor �eld must satisfy anticommutation rather than commutation
rules. To me, the textbook logic seems back to front. Of all �elds, spinless �elds carry no quantum of spin.
By contrast, spinor (spin 1

2 ) �elds have a �nite quantum of spin, and they come already equipped with
multiplication rules that look like those postulated by quantum �eld theory. To construct quantum �eld
theory, spinor �elds o�er a more logical starting point than scalar �elds.
It is beyond the scope of this book to present a full account of quantum theory, which would �ll another

book. The goal here is rather to show how the properties of spinors lead naturally to quantum �eld theory.
The conventional aspects of the exposition below follow Bjorken and Drell (1964; 1965), Peskin and Schroeder
(1995), and Ticciati (1999).

41.4.1 Spinors as creation and destruction operators

One of the beautiful features of spinors is that they come already quantized. Row and column spinors describe
respectively creation and destruction operators in the quantum �eld theory of Dirac spinors2. The correct
fermionic behaviour is built into spinors. The prescription that a row spinor cannot be multiplied by a row
spinor prevents two spinors from being created in the same state. The prescription that a column spinor
cannot be multiplied by a column spinor prevents two spinors from being destroyed out of the same state. A
row spinor multiplying a column spinor corresponds to creation following destruction, while a column spinor
multiplying a row spinor corresponds to destruction following creation, and these are allowed.

2 As commented in the next paragraph but one, it is possible to �ip the interpretation so that column spinors describe
creation and row spinors describe destruction; the convention adopted is standard in physics.

x

ψ

ψ̄ ·

A
x

p, a

p′, a′

k, b

Figure 41.2 (Left) An incoming spinor ψ interacts with the electromagnetic �eld A at spacetime position x, producing

an outgoing spinor ψ̄ · . (Right) Same, but with energy-momenta and spins explicitly quantized. An incoming spinor

of energy-momentum p and spin a interacts with a photon of energy-momentum k and spin b at spacetime position

x, producing an outgoing spinor of energy-momentum p′ and spin a′. The diagram illustrates one of the two building

blocks of Feynman diagrams, a vertex. The other building block, illustrated in Figure 41.3, is a line joining vertices.
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Start by considering the term

ieψ̄ ·Aψ (41.43)

in the Dirac Lagrangian (41.28) that describes the interaction between a spinor ψ of charge e and the
electromagnetic �eld A ≡ γγnAn. The interaction term (41.43) has a natural interpretation as a quantized
interaction, illustrated in Figure 41.2. The interaction term is a product of three factors, a column spinor
ψ that has quantum spin 1

2 , an electromagnetic potential A that is a vector of quantized spin 1, and a row
spinor ψ̄ · that again has quantum spin 1

2 . In the quantum interaction illustrated in Figure 41.2, a column
spinor ψ is destroyed at the interaction vertex, adjusted (multiplied) by the electromagnetic interaction A,
and recreated as a row spinor ψ̄ · emerging from the interaction. The column spinor ψ apparently represents
the destruction of a spinor, while the row spinor ψ̄ · represents the creation of another spinor of the same
charge. The electromagnetic factor A could represent either the destruction (absorption) of a photon, or else
the creation (emission) of a photon, depending on whether the photon propagates backwards or forwards in
time from the interaction.
The interpretation of the previous paragraph follows the standard physics convention where the interaction

sequence ieψ̄ ·Aψ progresses forwards in time from right to left, in which case ψ is the incoming spinor that
is destroyed upon interaction with the photon A, and ψ̄ · is the outgoing spinor that is created from the ashes
of the interaction. An alternative possible convention is to read ieψ̄ ·Aψ as progressing forwards from left to
right, in which case ψ̄ · is the incoming spinor that is destroyed and ψ is the recreated outgoing spinor. This
alternative interpretation, where the column spinor ψ is a creation operator and the row conjugate spinor
ψ̄ · is a destruction operator, could be argued to be conceptually more elegant. However, this book conforms
to the standard physics convention, where a column spinor ψ destroys and a row spinor ψ̄ · creates.
The interaction illustrated in Figure 41.2 has an alternative interpretation in which the spinor is construed

as moving backwards in time from the interaction. Mathematically, the ambiguity of interpretation occurs
because the interaction term is unchanged by the exchange ψ ↔ ψ̄ of the spinor with its conjugate. That is,
the antisymmetry of the spinor metric, and the anticommutation rule (39.40) of basis vectors γγm through
the spinor metric, implies that ieψ̄ · Aψ = ieψ · Aψ̄. In that case, in the standard right to left physics
convention, the reordered interaction ieψ · Aψ̄ represents a column antispinor ψ̄ that is destroyed at the
interaction vertex, adjusted by the electromagnetic interaction A, and recreated as the row antispinor ψ ·
emerging from the interaction. This dual interpretation of the interaction as involving a spinor or antispinor
depending on the direction of time is a basic feature of quantum �eld theory.
The second key thing to notice about the spinor-electromagnetic interaction term ieψ̄(x) · A(x)ψ(x) in

the Dirac Lagrangian, besides the fact that it has a natural quantum interpretation, is that it is a product
of three �elds at the same spacetime point x ≡ {t, ~x}. In other words, interactions between spinors and the
electromagnetic �eld occur at spacetime points. If the Dirac action is recast into, for example, the momentum
representation by Fourier transforming the spinor and electromagnetic �elds, then the Lagrangian is not a
product ieψ̄(p) · A(p)ψ(p) of three �elds at the same point p in energy-momentum space (nor, if only
spatial components are Fourier transformed, is the Lagrangian a product ieψ̄(t, ~p) ·A(t, ~p)ψ(t, ~p) of three
�elds at the same point {t, ~p} in time t and spatial momentum ~p). In other words, the notion that spinors
and the electromagnetic �eld interact at spacetime points is built into the Dirac Lagrangian. One might
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well suspect that something more complicated is going on at a deeper level, similarly perhaps to the way
that thermodynamics and hydrodynamics deal with quantities de�ned at spacetime points, such as density,
pressure, and temperature, that ultimately prove to be mean properties of collections of discrete objects,
particles.
That quantum �eld theory must be doing something right is evidenced by the fact that it has proven

spectacularly successful at reproducing experimental measurements (Langacker, 2004). However, an apparent
�aw of quantum �eld theory is that, if it is supposed to hold to arbitrarily tiny scales, then interactions at
tiny scales diverge. For the three forces of the Standard Model, the divergences are logarithmic, and can be
cured by a process called renormalization. Renormalization cuts o� calculations at some tiny scale, takes
bare masses, charges, and �eld normalizations to be di�erent from observed quantities, and concludes that
observables can be arranged to be independent of the small-scale cuto�. The cuto� independence is associated
with the fact that SM couplings are dimensionless; for example, the strength of the electromagnetic coupling
is characterized by the dimensionless �ne-structure constant α ≡ e2/(~c) ≈ 1/137. The mathematics of
quantum �eld theory cannot be blamed for its divergences. The divergences indicate that some new physics
must enter at tiny scales.
It is commonly stated that gravity is not renormalizable because the coupling strength of gravity is

proportional to Newton's gravitational constant G, which is not dimensionless, but rather has dimension
length squared (in units c = ~ = 1). As a consequence, each term of the perturbative expansion of quantum
�eld theory has a di�erent dimension, each of which must be renormalized separately, requiring an in�nite
number of renormalization parameters. This contrasts with the 3 SM forces, where renormalization reduces
to the behaviour of just three parameters, mass, charge, and �eld normalization, as a function of cuto� scale.
A more modern view (Burgess, 2004; Donoghue, 2019) is that the di�culties of the non-renormalizability
of gravity are overstated. Almost all the renormalization parameters of gravity a�ect its behaviour only at
energies approaching the Planck scale (or whatever might be the uni�cation scale of gravity). The e�ects
of quantum gravity at energies much less than the Planck scale are calculable, and una�ected by the high-
energy behaviour. From this perspective the gravitational force is no di�erent from the 3 SM forces: some
new physics must enter at tiny scales. It is possible that the new physics is the same for all 4 forces.

41.4.2 Quanta

Experiment shows that quantum mechanical waves are quantized into quanta not only of de�nite spin but
also of de�nite energy and momentum. The energy E of a particle is proportional to the angular frequency ω
of the corresponding wave, and its spatial momentum ~p is proportional to the wavevector ~k , with constant
of proportionality the Planck constant ~,

E = ~ω , (41.44a)

~p = ~~k . (41.44b)

Equations (41.44) are exact, not uncertain. The left hand sides are particle properties; the right hand sides are
wave properties. Equations (41.44) could hardly be simpler; yet this particle-wave schizophrenia is profoundly
perplexing to our human intuition.
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The previous section 41.4.1 pointed out that column and row Dirac spinors have a natural interpretation
as destruction and creation operators. Speci�cally,

ψ destroys spinor , ψ̄ · creates spinor , (41.45a)

ψ̄ destroys antispinor , ψ · creates antispinor . (41.45b)

Recall that a Dirac column spinor ψ = ψaεa is a complex linear combination of 4 basis column spinors
εa with index a running over ⇑↑, ⇑↓, ⇓↑, ⇓↓, equations (14.108). Recall also that conjugation �ips Dirac
indices, equation (39.100); for example the conjugate of ε⇑↑ is ε̄⇑↑ = −ε⇓↓. It is natural to interpret Dirac
basis spinors and their conjugates as destruction and creation operators for spinors and antispinors at rest,
{E, ~p} = {m, 0}, thus

ε⇑↑ destroys spinor at rest , ε̄⇑↑ · creates spinor at rest , (41.46a)

ε̄⇑↑ destroys antispinor at rest , ε⇑↑ · creates antispinor at rest . (41.46b)

Since not only spin but also energy-momentum is quantized, spinor quanta must be labelled with a mo-
mentum index p as well as a spin index a. A spinor quantum with arbitrary non-zero spatial momentum
~p and spin a running over ↑ and ↓ along any prescribed direction can be obtained by Lorentz-boosting a
rest-frame spinor quantum by a Lorentz rotor R,

εpa ≡
√

2mRε⇑↑ , ε̄pa · ≡
√

2m ε̄⇑↑ ·R , (41.47a)

ε̄pa ≡
√

2mRε̄⇑↑ , εpa · ≡
√

2m ε⇑↑ ·R . (41.47b)

The factors of
√

2m are introduced to ensure that the boosted spinors remain �nite in the massless limit
m→ 0; see for example equations (41.61). Basis spinors εa are dimensionless, and the boosted spinors have
dimension of mass1/2, or equivalently length−1/2. Note that negative-mass (⇓) spinors have been subsumed
into the conjugate spinors ε̄pa; the spin index a runs over ↑ and ↓, but not over ⇑ and ⇓. The spinor energy
E is related to its spatial momentum ~p by the mass condition E2 = ~p 2 + m2. A Lorentz rotor R has six
degrees of freedom, of which the three boost degrees of freedom allow the spatial momentum ~p to be set
arbitrarily, while the three spatial rotation degrees of freedom allow the direction and phase of the spin a
to be set along some arbitrary direction. The spinor quanta (41.47) are eigenmodes of the free Dirac wave
equation in Minkowski space. In a more general situation, for example where the spinor is in an external
�eld (as in an atom, say), spinor eigenstates would be complex linear combinations of momentum and spin
eigenstates.
As described in �35.1, photons are described by a gauge-invariant transverse polarization vector, with

two circular polarization components γγ+ and γγ− in a frame where the photon direction is along the 3-
direction (z-direction), equation (35.1). The two components γγ± describe photons with spin 1 in a direction
respectively aligned (+, right-handed) and anti-aligned (−, left-handed) with the direction of motion. The
two components are complex conjugates of each other, γγ∗+ = γγ−, and they cannot be transformed into each
other by any Lorentz transformation. Let γγkb, with spin index b running over + and −, denote the photon
rotated by some spatial rotor R into a frame where its energy-momentum is in the direction k̂, part 3 of



41.4 Quantum �eld theory of Dirac spinors 1021

Exercise 14.10,

γγkb = RγγbR . (41.48)

Basis vectors are dimensionless, and so are their Lorentz-transformed versions. It is possible to allow R to
be a more general Lorentz rotor involving a boost as well as a spatial rotation, but the condition that the
spin is aligned or anti-aligned with the direction of motion is unchanged by any Lorentz boost, so a pure
spatial rotation R su�ces.

41.4.3 Single-vertex interaction

The interaction term (41.43) describes an interaction between a spinor ψ and the electromagnetic �eld A at
a spacetime point x, as illustrated in Figure 41.2. If the spinor and electromagnetic �elds are interpreted as
quanta of de�nite energy-momentum and spin, with ψ → εpae

ix·p, A→ γγkbe
ix·k, and ψ̄ → ε̄p′a′e

−ix·p′ , then
the interaction term (41.43) becomes

ie ε̄p′a′ · γγkbεpae−ix·(p
′−k−p) . (41.49)

The x-dependent exponential factors are necessary because the interaction is supposed to take place at a
point x in spacetime. Quantum �eld theory interprets the interaction term (41.49), a complex number, as a
factor in a quantum mechanical amplitude for the quantized interaction illustrated in Figure 41.2 to occur.
The quantized interaction term (41.49) is one of the two basic building blocks of Feynman diagrams, a vertex.
It describes a single quantized interaction at a single spacetime point x.
It might seem that the mapping ψ → εpae

ix·p, A → γγkbe
ix·k, and ψ̄ → ε̄p′a′e

−ix·p′ , has the wrong units:
ψ has dimension mass3/2 whereas εpa has dimension mass1/2, and A has dimension mass whereas γγkb is
dimensionless. As will be seen in �41.4.9, the correct units are restored in the end because each pair of
spinors ε, and each pair of vectors γγ, are integrated over d3p/

(
2Ep(2π)3

)
, which adds one factor of mass for

each spinor or vector.
Given spinors and photons of prescribed incoming and outgoing energy-momenta and spins, in the lowest

order of perturbation theory the single interaction (41.49) is all that occurs. Since the spacetime location x
of the interaction is unspeci�ed, the interaction must be integrated over all spacetime, yielding

ie

∫
ε̄p′a′ · γγkbεpae−ix·(p

′−k−p) d4x = ie ε̄p′a′ · γγkbεpa (2π)4δ4(p′ − k − p) . (41.50)

The 4-dimensional delta-function imposes conservation of total energy-momentum by the interaction. In
practice this conservation of total energy-momentum cannot be achieved in a single-vertex interaction, where
a spinor absorbs (or emits) just one photon. To see the impossibility of a single-photon interaction, without
loss of generality take the outgoing spinor to be in its rest frame, p′ = {m, 0}; then the spatial momenta of
the incoming spinor and photon must be equal and opposite, ~p = −~k ; and then the energy of the incoming
positive-energy spinor and photon must be E+ω =

√
|~p |2 +m2 + |~p |, which necessarily exceeds the outgoing

energy m unless ~p = 0, that is, the photon energy-momentum is zero. To permit conservation of total energy-
momentum in an interaction between a spinor and the electromagnetic �eld, at least two interaction vertices
are necessary, as considered in the next section 41.4.4.
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Figure 41.3 Two-vertex spinor-photon interaction. In both cases the incoming spinor and photon have energy-momenta

and spins respectively pa and kb, while the outgoing spinor and photon have energy-momenta and spins respectively

p′a′ and k′b′. The two diagrams di�er in which spinor interacts with which photon. The diagrams illustrate both of

the two basic building blocks of Feynman diagrams: spacetime vertices, here x and x′, where quantized interactions

occur; and lines joining vertices, here a spinor line joining x and x′ that represents a spinor of momentum q and spin

c propagating freely between the interaction vertices.

41.4.4 Two-vertex interaction

Consider stringing together two interactions of the form (41.49),

(ie ε̄p′a′ · γγk′b′εqc)(ie ε̄qc · γγkbεpa)e−ix
′·(p′+k′−q)e−ix·(q−k−p) , (41.51a)

(ie ε̄p′a′ · γγkbεqc)(ie ε̄qc · γγk′b′εpa)e−ix
′·(p′−k−q)e−ix·(q+k

′−p) , (41.51b)

processes illustrated in Figure 41.3. As in the single-vertex interaction (41.49), quantum �eld theory interprets
the two two-vertex interactions (41.51) as quantum mechanical amplitudes for the interactions to occur. Both
processes (41.51) involve an incoming spinor and photon with energy-momenta respectively p and k, and
an outgoing spinor and photon with energy-momenta respectively p′ and k′. In the �rst process (41.51a),
illustrated in the left panel of Figure 41.3, the incoming spinor and photon εpa and γγkb are destroyed and
recreated as the spinor ε̄qc ·, and that same spinor εqc is then destroyed and recreated as the outgoing spinor
and photon ε̄p′a′ · and γγk′b′ . The second process (41.51b), illustrated in the right panel of Figure 41.3, is
similar, with the di�erence that the incoming and outgoing photons interact with respectively the outgoing
and incoming spinors. The Wick bracket linking the creation operator ε̄qc · to the destruction operator εqc
in the expressions (41.51) emblemizes that the operators are two ends of the same spinor leg, and that they
share the same indices qc.
Despite appearances, the intermediate momentum q that joins the spacetime vertices x and x′ in Figure 41.3

is not aligned with the direction x′−x. Rather, q is the energy-momentum of a plane wave that covers all of
spacetime, and all plane waves, regardless of their energy-momentum, pass through both interaction points
x and x′.
Two important points must be made about the two-vertex interactions (41.51). Firstly, the initial and �nal

energy-momenta and spins are all speci�ed, but the energy-momentum and spin q and c of the intermediate
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spinor εqc are not. To cover all possibilities, the energy-momentum and spin of the intermediate spinor εqc
must, somehow, be summed over. The next section 41.4.5 takes up this issue.
Secondly, as in the single-vertex interaction (41.50), as long as only the energy-momenta and spins of

the incoming and outgoing spinors and photons are prescribed, the interactions must be integrated over all
interaction points x and x′. Integrating the two-vertex interactions (41.51) over x and x′ enforces conservation
of energy-momentum at each of the two vertices. The energy-momentum q of the intermediate spinor is then
related to the energy-momenta of the incoming and outgoing spinors and photons by, for the two cases,

p+ k = q = p′ + k′ , (41.52a)

p− k′ = q = p′ − k . (41.52b)

The signs in equations (41.52) assume that Figure 41.3 is drawn in the convention of spacetime diagrams,
where time goes upwards, and that the time components E, E′, ω, ω′ of the energy-momenta of each
of the incoming and outgoing spinors and photons are positive. Importantly, the energy-momentum q of
the intermediate spinor does not satisfy the mass condition q2 = −m2. Rather, in the �rst case (41.52a),
illustrated in the left panel of Figure 41.3, the intermediate energy-momentum satis�es (with θ the angle
between the spatial momenta ~p and ~k )

q2 = (p+ k)2 = p2 + k2 + 2p · k = −m2 + 2p · k = −m2 − 2ω(E − |~p | cos θ) , (41.53)

which di�ers from −m2 by a scalar amount −2ω(E−|~p | cos θ) that is strictly negative (if a photon is present,
as is being assumed, then ω > 0). The intermediate energy-momentum q is said to be o�-shell, meaning
not satisfying the (on-shell) mass condition q2 = −m2. The fact that the intermediate energy-momentum q

is o�-shell may seem disconcerting, but the situation gets even more surprising in the second case (41.52b),
where (with θ′ the angle between the spatial momenta ~p and ~k ′),

q2 = (p− k′)2 = p2 + k′2 − 2p · k′ = −m2 − 2p · k′ = −m2 + 2ω′(E − |~p | cos θ′) , (41.54)

which di�ers from −m2 by a scalar amount 2ω′(E − |~p | cos θ′) that is strictly positive. Here q2 can actually
be positive, which is to say, spacelike. In other words, the intermediate spinor εqc can apparently move
faster than light between the interaction vertices x and x′, an alarming result since it would seem to allow a
violation of causality. The intermediate energy-momentum squared q2 in the �rst and second cases (41.52a)
and (41.52b) satis�es the conditions respectively

q2 +m2 < 0 , (41.55a)

q2 +m2 > 0 . (41.55b)

41.4.5 The Dirac propagator

The two-vertex interactions illustrated in Figure 41.3 involve an intermediate spinor that propagates between
quantized interactions at spacetime positions x and x′. This is an example of the second basic ingredient of
Feynman diagrams, namely lines that join interaction vertices. The Feynman rules describe these lines with
propagators, which propagate quanta between interaction points. In the case illustrated in Figure 41.3, the
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line joining x and x′ represents a Dirac spinor, whose evolution between x and x′ is described by the Dirac
propagator S(x′ − x).
The Dirac propagator S(x′−x) is de�ned to be the (complex) amplitude for a Dirac spinor at given initial

spacetime position x to be found at a �nal spacetime position x′. If the Dirac spinor evolves between the
initial and �nal positions x and x′ according to the free Dirac equation, then the Dirac propagator S(x′−x)

is the Green's function of the free Dirac equation, satisfying the de�ning equation

(∂ ′ +m)S(x′ − x) = δ4(x′ − x) . (41.56)

Note that a Dirac spinor ψ and its conjugate ψ̄ satisfy the same free Dirac equation (41.8), so the Dirac
propagator (41.56) is the same for both. The next section 41.4.6 derives the Klein-Gordon propagator for a
scalar (spin 0) �eld, and then �41.4.8 gives expressions for the Dirac propagator in terms of the Klein-Gordon
propagator.
It is certainly plausible that lines joining vertices should be described by propagators, but it is notable that

the form of the Dirac propagator is already built in to the expressions (41.51) for the quantum mechanical
amplitudes for the two-vertex interactions illustrated in Figure 41.3. Both amplitudes (41.51) involve a factor
(εqcε̄qc ·) ei(x

′−x)·q that depends only on the energy-momentum q and spin c of the intermediate spinor, not on
any of the incoming or outgoing energy-momenta or spins. As previously remarked, the factor must somehow
be integrated over the momentum q and summed over the spin c. The correct integration and summation
proves to be precisely the Dirac propagator S(x′ − x),

S(x′ − x) = i

∫ ∑
c

(εqcε̄qc ·) e±i(x
′−x)·q

∣∣∣
q0=Eq

d3q

2Eq(2π)3
, (41.57)

where the sign of the exponential is + or − as t′− t is > or < 0. That the right hand side of equation (41.57)
is indeed a valid expression for the Dirac propagator follows from inserting equation (41.61) into equa-
tion (41.86). The ± sign in the exponential in equation (41.57) was not present in the original two-vertex
expressions (41.51); but that was because those expressions assumed that x′ was in the future of x, as re-
marked after equations (41.52) and as illustrated in Figure 41.3. If in fact x′ is to the past of x, then a
positive-energy intermediate spinor, q0 = Eq > 0, must be considered as propagating from the past x′ into
the future x.
The integration over the intermediate spinor energy-momentum q in equation (41.57) appears to be on-

shell, the energy satisfying the on-shell condition q0 = Eq =
√

(~p)2 +m2, whereas it was emphasized
around equations (41.53) and (41.54) that, when q is re-expressed in terms of incoming and outgoing energy-
momenta using conservation of energy-momentum, then the resulting intermediate energy-momentum q is
o�-shell. The resolution of this apparent contradiction is the innocent-looking ± sign in the exponential in
the integral (41.57), which means that the integral is not the same as a 4-dimensional momentum integral
over d4q with a delta-function δ(q0−Eq) in energy. Rather, the correct 4-dimensional version of the integral
is, from equations (41.61) and (41.85),

S(x′ − x) =

∫ ∑
c

εqcε̄qc ·
q2 +m2 − iε

ei(x
′−x)·q d4q

(2π)4
, (41.58)
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in which the energy-momentum q is manifestly o�-shell.
The putative expressions (41.57) or (41.58) for the Dirac propagator involves a sum

∑
c(εqcε̄qc ·) of outer

products of spinors. Outer products of basis spinors satisfy, with indices a′ and a running over ⇑↑, ⇑↓, ⇓↑,
⇓↓,

εa′ ε̄a · = −iεa′ε>a γγ0 = ±1a′a , (41.59)

where 1a′a denotes the 4× 4 Dirac matrix with 1 in the (a′a)'th entry (not the unit matrix!), and the ± sign
is + and − for states a of respectively positive (⇑) and negative (⇓) mass. It follows from equation (41.59)
that the sum over spins c (↑ and ↓) of outer products ε⇑cε̄⇑c · of positive-mass spinors at rest is, in the Dirac
representation (14.102), ∑

c=↑,↓

ε⇑cε̄⇑c · =
− iγγ0 + 1

2
. (41.60)

Boosted into a frame where the spinor energy-momentum is q = {q0, ~q} satisfying the on-shell condition
q0 = Eq =

√
|~q |2 +m2 with positive energy Eq, the sum over spins is∑

c=↑,↓

εqcε̄qc · = − iq +m , (41.61)

where q ≡ γγnqn. The expression (41.61) remains �nite in the massless limit m → 0, thanks to the factor
of
√

2m introduced in the de�nition (41.47) of boosted spinors. Substituting equation (41.61) into the ex-
pressions (41.85) or (41.86) for the Dirac propagator con�rms that the right hand side of equations (41.57)
or (41.58) are indeed valid expressions for the Dirac propagator.

41.4.6 The Klein-Gordon propagator

This section and the next section 41.4.7 derive the Klein-Gordon propagator, and then �41.4.8 gives expres-
sions for the Dirac propagator in terms of the Klein-Gordon propagator.
A free scalar �eld ϕ in Minkowski space satis�es the Klein-Gordon equation

(−�+m2)ϕ = 0 , (41.62)

where � ≡ ∂ ·∂ is the d'Alembertian operator. The Klein-Gordon propagator D(x′−x) is de�ned to be the
Green's function of the Klein-Gordon equation,

(−�′ +m2)D(x′ − x) = δ4(x′ − x) . (41.63)

Equation (41.63) solves to

D(x′ − x) =

∫
1

q2 +m2
ei(x

′−x)·q d4q

(2π)4
. (41.64)

The de�ning equation (41.63) for the Klein-Gordon propagator D(x′ − x) is Lorentz invariant, and it has
a solution D(s) that is Lorentz invariant, where

s ≡
√

(x′ − x)2 (41.65)
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is the Lorentz-invariant spacetime separation from x to x′. The spacetime separation s lies in three discon-
nected regions that cannot be rotated into each other by any continuous Lorentz transformation, namely
spacelike (x′ outside the lightcone of x), positive timelike (x′ inside the future lightcone of x), and negative
timelike (x′ inside the past lightcone of x). In the spacelike region, the spacetime separation is real and
positive, s = l > 0 where l is the proper distance between x and x′. In the timelike regions, the spacetime
separation is pure imaginary, s = iτ where τ is the proper time from x to x′. The proper time τ is positive
in the future lightcone, negative in the past lightcone.
Rewritten in terms of the Lorentz-invariant spacetime separation s, the de�ning equation (41.63) for the

Klein-Gordon propagator is (
− ∂2

∂s2
− 3

s

∂

∂s
+m2

)
D(s) = δ4(x′ − x) =

δ(s2)

π2s2
. (41.66)

The expression for the delta-function in s2 on the right hand side of equation (41.66) comes from the fact
that the Euclideanized 4-volume element d4x integrated over angles is π2s2d(s2). The homogeneous solution
of equation (41.66) that converges at spacelike in�nity is the Bessel function s−1K1(ms). The constant
comes from integrating equation (41.66) over the delta-function at the origin, yielding the Lorentz-invariant
Klein-Gordon propagator D(s),

D(s) =
m

4π2s
K1(ms)→ 1

4π2s2

 1 s→ 0 ,√
πms

2
e−ms s→∞ .

(41.67)

At spacelike separations s2 > 0, the propagator (41.67) is real. More details of the derivation of the propa-
gator (41.67) are addressed in Exercise 41.1.
At timelike separations s2 < 0, the spacetime separation s = iτ is imaginary, where the proper time τ is

positive in the future lightcone, negative in the past lightcone. The expression (41.67) for the Klein-Gordon
propagator holds also for timelike separations, but it is not obvious whether the correct continuation of the
expression across the lightcone at s2 = 0 should be D(iτ) or its complex conjugate D(−iτ). The correct
choice is Feynman's prescription, derived in the next section 41.4.7 by contour integration of the integral
expression (41.64). Feynman's prescription chooses the timelike propagator to be the same for either sign of
the proper time τ ,

D(s) =
m

4π2(i|τ |)
K1(im|τ |)→ − 1

4π2τ2

 1 τ → 0 ,√
iπm|τ |

2
e−im|τ | τ → ±∞ .

(41.68)

Note that the Bessel function of imaginary argument can also be expressed as a Hankel function of real ar-
gument, K1(im|τ |) = −π2H

(1)
1 (−m|τ |) = −π2H

(2)
1 (m|τ |). The magical feature of the Feynman-Klein-Gordon

propagator (41.68) is that, because D(x′ − x) is identical to D(x − x′), a wave propagating from x to x′ is
indistinguishable from a wave propagating in the opposite direction from x′ to x. It is precisely the equality
of forward and backward propagators, for both timelike and spacelike separations,

D(x− x′) = D(x′ − x) , (41.69)



41.4 Quantum �eld theory of Dirac spinors 1027

that ensures that quantum �eld theory respects causality.
The Klein-Gordon propagator (41.67) or (41.68) is non-vanishing for all separations x′ − x, including not

only future timelike separations, but also spacelike separations, and past timelike separations. This means
that an event that occurs at x has an e�ect on what happens not only on points x′ in the future of x,
but also on points x′ spacelike separated from x, and on points x′ in the past of x. But the propagator
is Lorentz invariant, and is furthermore invariant under re-ordering of the times t and t′ at which the
timelike- or spacelike-separated events x and x′ occur. If the time-ordering of events makes no di�erence,
then x �causing� what happens at x′ can equally well be interpreted as x′ �causing� x. This is the strange
conundrum of quantum mechanics.

41.4.7 Klein-Gordon propagator by contour integration

The correctness of the expression (41.68) for the Klein-Gordon propagator at timelike separations can be
established by carrying out the energy q0 part of the integral (41.64) over d4q by contour integration. The
integral over energy q0, which is over all energies including negative as well as positive energy, is∫ ∞

−∞

1

q2 +m2
e−i(t

′−t)q0 dq
0

2π
=

∫ ∞
−∞

(
1

q0 + Eq
− 1

q0 − Eq

)
e−i(t

′−t)q0

2Eq

dq0

2π
, (41.70)

where Eq =
√
|~q |2 +m2 is the positive energy of a particle of spatial momentum ~q and mass m. The

integrand has two poles, at q0 = ±Eq, through both of which the integral nominally passes. To obtain a
de�nite result, the contour of integration must be perturbed above or below each of the poles, and completed
in the complex plane in a way that ensures convergence. The value of the integral depends on which way the
contour is perturbed.
If t′ − t > 0, then the contour must be completed in the lower complex plane, and the integral picks up a

residue ±e∓i(t′−t)Eq for each pole q0 = ±Eq that the contour circulates. The integrals for the two poles are
complex conjugates of each other. If on the other hand t′ − t < 0, then the contour must be completed in
the upper complex plane, and the integral picks up a residue ∓e∓i(t′−t)Eq for each pole q0 = ±Eq that the
contour circulates. The integrals for t′− t < 0 have opposite sign to the integrals for t′− t > 0, for each pole
circulated. In all,

∫ ∞
−∞

1

q2 +m2
e−i(t

′−t)q0 dq
0

2π
=

1

2Eq


i e−i(t

′−t)Eq (t′ − t > 0 , + pole) ,
−i ei(t

′−t)Eq (t′ − t > 0 , − pole) ,
−i e−i(t

′−t)Eq (t′ − t < 0 , + pole) ,
i ei(t

′−t)Eq (t′ − t < 0 , − pole) .

(41.71)

It is commonly but misleadingly said (check wikipedia) that if the contour is perturbed above both poles,
then the integral will vanish for t′ − t < 0 and be �nite for t′ − t > 0, yielding the retarded propagator.
Likewise if the contour is perturbed below both poles, then the integral will vanish for t′ − t > 0 and be
�nite for t′ − t < 0, yielding the advanced propagator. The problem with this is that the so-called retarded
(or advanced) contour yields di�erent results for t′− t < 0 and t′− t > 0, whereas for spacelike separations a
Lorentz-invariant propagator should be analytic through t′ − t = 0. For example, for t′ − t > 0 the putative
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retarded contour that circulates both poles yields a propagator that is the sum of the single-pole propagator
and its complex conjugate, the top two lines of equations (41.71). This propagator is real, and it is �nite
outside the lightcone (equal to twice D(s) given by equation (41.67)), in contrast to the expectation that the
retarded (or advanced) propagator should vanish outside the lightcone. To obtain a propagator that vanishes
outside the lightcone, it would be necessary to take the di�erence between a single-pole propagator and its
complex conjugate. Such a di�erence propagator is not one of the options in equations (41.71), and it is not
a solution of the de�ning Green's function equation (41.66), and it is not viable.
A choice of contour that yields a consistent Lorentz-invariant propagator is Feynman's prescription, which

chooses the contour that goes below the negative pole q0 = −Eq and above the positive pole q0 = Eq. A
convenient way to implement the Feynman prescription is to perturb the poles of q0 to ±(Eq − iε) where ε
is a small positive quantity, yielding the Feynman-Klein-Gordon propagator

D(x′ − x) =

∫
1

q2 +m2 − iε
ei(x

′−x)·q d4q

(2π)4
. (41.72)

If t′ − t > 0, then the contour must be completed in the lower complex plane, circulating (clockwise) the
positive pole q0 = Eq, and yielding the top line of equations (41.71). If on the other hand t′ − t < 0,
then the contour must be completed in the upper complex plane, circulating (anticlockwise) the negative
pole q0 = −Eq, and yielding the bottom line of equations (41.71). Integrating the Feynman-Klein-Gordon
propagator (41.72) over q0 then yields

D(x′ − x) = i

∫
e±i(x

′−x)·q
∣∣∣
q0=Eq

d3q

2Eq(2π)3
, (41.73)

where the ± sign in the exponent is positive for t′ − t > 0, negative for t′ − t < 0. The integral on the right
hand side of equation (41.73) is Lorentz invariant, as it should be. For either timelike or spacelike separations
x′−x, the spatial separation ~x ′−~x can be �ipped in sign by a suitable Lorentz transformation while keeping
t′ − t unchanged, so the integral (41.73) is unchanged by a �ip in the sign of the spatial momentum ~q ′ − ~q .
Thanks to the ± sign in the exponential, the integral (41.73) is also unchanged by a �ip in the sign of the time
separation t′ − t. This establishes the equality of the forward and backward propagators, equation (41.69).
The Feynman propagator (41.73) propagates positive-energy waves ∼ e−imτ into the asymptotic future,

and negative energy waves ∼ eimτ into the asymptotic past, equation (41.68). If the contour had been
chosen instead to go above the negative pole and below the positive pole, then the result would have been
the complex conjugate of the Feynman propagator (41.73), which would propagate negative-energy waves
into the asymptotic future and positive-energy waves into the asymptotic past. Of course, the choice that
e−imτ represents positive energy while eimτ represents negative energy is just a matter of convention; if the
sign convention were opposite, then the �ipped contour would be correct.
It is worth emphasizing again how the paradoxical behaviour of quantum mechanics, that it achieves

instantaneous �faster-than-light� propagation without violating causality, is built in to the propagators of
quantum �eld theory. The propagators of quantum �eld theory are non-vanishing not only at future timelike
separations, but also at spacelike and past timelike separations. Yet the equality of propagators under a �ip
of the time direction, for both spacelike and timelike separations, equation (41.69), ensures that the future
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in�uencing the past is indistinguishable from the past in�uencing the future. Both these properties, that
propagators are non-vanishing at all spacetime separations, and equal under a �ip of the time direction, are
a mathematical consequence of requiring propagators to be Lorentz-invariant. They are not optional choices.

Exercise 41.1. Analytic expression for the Klein-Gordon propagator. Find an analytic expression
for the Klein-Gordon propagator (41.64).
Solution. The Klein-Gordon propagator D(s) satis�es the Green's function equation (41.66). The homo-
geneous solution of equation (41.66) is a linear combination of modi�ed Bessel functions s−1K1(ms) and
s−1I1(ms), of which only s−1K1(ms) converges at spacelike in�nity s→∞. The delta-function in s2 on the
rightmost side of equation (41.66) comes from Euclideanizing the line-element, described in more detail at
the end of this Exercise, equations (41.78) and following. Integrating the Green's function equation (41.66)
over s2 = 0 yields the change in derivative across s2 = 0,[

2
dD

d(s−2)

]+

−
=

∫ +

−

δ(s2)

π2s2

s2d(s2)

2
=

1

2π2
. (41.74)

The spacetime delta-function δ4(x′ − x) in equation (41.66) is supposed to be non-zero only at the origin
x′ − x = 0. However, the spacetime separation s vanishes not only at the origin but everywhere along
the lightcone s2 = 0. To ensure that there is no delta-function across the lightcone (except at the origin),
dD/d(s−2) must vanish across the lightcone, which requires that D ∝ s−2 as s2 → 0 for either sign of s2.
Integration over the origin, equation (41.74), yields the overall factor,

D(s)→ 1

4π2s2
as s2 → 0 . (41.75)

The Klein-Gordon propagator D(s) at spacelike separations s = l > 0 is then as given by equation (41.67).
For timelike separations s the Klein-Gordon propagator is the same but with s = i|τ | with real proper
time |τ |, equation (41.68). The proper time τ is positive inside the future lightcone, negative inside the past
lightcone. In the massless case m = 0, the Klein-Gordon propagator reduces to

D(s) =
1

4π2s2
(m = 0) . (41.76)

For timelike separations, the sum and di�erence of the Klein-Gordon propagator and its complex conjugate
are

D(iτ) +D(iτ)∗ =
m

4πτ
Y1(mτ) , (41.77a)

D(iτ)−D(iτ)∗ =
im

4πτ
J1(mτ) . (41.77b)

The Minkowski line-element is Euclideanized by replacing the rapidity η by iη and a limit on η of ∞
by π. For respectively timelike and spacelike separations −s2 = τ2 > 0 and s2 = l2 > 0, the Minkowski
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line-element can be written

− dτ2 + τ2
(
dη2 + sinh2η (dθ2 + sin2 θ dφ2)

) η→iη−−−→−
(
dτ2 + τ2

(
dη2 + sin2η (dθ2 + sin2 θ dφ2)

))
, (41.78a)

dl2 + l2
(
−dη2 + cosh2η (dθ2 + sin2 θ dφ2)

) η→iη−−−→ dl2 + l2
(
dη2 + cos2η (dθ2 + sin2 θ dφ2)

)
. (41.78b)

The invariant 4-volume element for respectively timelike and spacelike separations is then

d4x = τ3dτ sin2η dη sin θ dθ dφ , (41.79a)

d4x = l3dl cos2η dη sin θ dθ dφ . (41.79b)

For timelike separations, equation (41.79a), the range of η is 0 to π (since the η, φ direction is the same
as the −η, φ + π direction), and the integral over η, θ, φ gives 2π2, the 3-dimensional area of a unit 3-
sphere, equation (16.373). For spacelike separations, equation (41.79b), the range of η is −π to π. However,
just as the timelike regions split into past and future components, and any timelike line through the origin
passes between past and future, so also the spacelike region splits into past (t < 0) and future (t > 0)
components, and any spacelike line through the origin passes between those past and future components.
Thus for spacelike separations the integral over η, θ, φ again gives 2π2, separately for each of the future and
past parts of the spacelike region. Thus for an integrand that is, as here, a function only of s, the 4-volume
element d4x integrated over the angles η, θ, and φ, con�ned to either future or past components, is

d4x = 2π2τ3dτ = π2s2d(s2) , (41.80a)

d4x = 2π2l3dl = π2s2d(s2) , (41.80b)

the same for both timelike and spacelike separations. This justi�es the expression for the delta-function in
terms of s2 on the right hand side of equation (41.66).

41.4.8 Dirac propagator in terms of the Klein-Gordon propagator

In terms of the Klein-Gordon propagator, the Dirac propagator de�ned by equation (41.56) is

S(x′ − x) = (−∂ ′ +m)D(x′ − x) , (41.81)

which is proved by applying ∂ ′ + m to both sides. Applying equation (41.81) to the expression (41.67) for
the Klein-Gordon propagator as a Bessel function yields

S(x′ − x) =
(
−s
s

∂

∂s
+m

)
D(s) =

m2

4π2s

(s
s
K2(ms) +K1(ms)

)
, (41.82)

where

s ≡
{
γγn(x′n − xn) t′ − t > 0 ,

γγn(xn − x′n) t′ − t < 0 .
(41.83)

The Dirac propagator (41.82) is a function of s as well as s, but is still Lorentz invariant. As with the
Klein-Gordon propagator, the expression (41.82) for the Dirac propagator holds for both spacelike, s2 > 0,
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and timelike, s2 < 0, separations. For spacelike separations, s is real, and the Dirac propagator (41.82) is
a real multivector. Note that for spacelike separations, a separation x′ − x with t′ − t > 0 can be rotated
by a continuous Lorentz transformation into a separation x′ − x with t′ − t < 0, so the two versions (41.83)
of s coincide for spacelike separations. For timelike separations, the spacetime separation is s = iτ where τ
is the proper time from x to x′, but as with the Klein-Gordon propagator, equation (41.68), the consistent
Lorentz-invariant Feynman choice requires that the Dirac propagator be the same for either sign of the
proper time τ . Thus for timelike separations, the spacetime separation s in the expression (41.82) for the
Dirac propagator should be replaced by i|τ |, and s should be as given by equation (41.83). The forward and
backward propagators are then equal for both timelike and spacelike separations,

S(x− x′) = S(x′ − x) , (41.84)

which ensures that quantum �eld theory involving Dirac spinors respects causality.
From equation (41.81) applied to the Klein-Gordon propagator (41.72), the Dirac propagator is

S(x′ − x) =

∫
− iq +m

q2 +m2 − iε
ei(x

′−x)·q d4q

(2π)4
. (41.85)

Similarly, from equation (41.81) applied to the Klein-Gordon propagator (41.73), the Dirac propagator is

S(x′ − x) = i

∫
(− iq +m) e±i(x

′−x)·q
∣∣∣
q0=Eq

d3q

2Eq(2π)3
, (41.86)

where the ± sign in the exponent is positive for t′ − t > 0, negative for t′ − t < 0. Equation (41.86) along
with equation (41.61) yields the earlier claimed expression (41.57) for the Dirac propagator.

41.4.9 Dimensional analysis

Consider a general Feynman diagram. Exercise 41.2 asks you to show that in quantum �eld theories such
as QED where each vertex connects three lines, as illustrated in Figure 41.2, the number v of vertices in a
diagram is related to the numbers e of external lines and i of internal lines by

3v = e+ 2i . (41.87)

Complex amplitudeM is de�ned by

M (2π)4δ4(Pf − Pi) ≡
∫ ( ∏

vertices

ie ε̄ · γγε d4x

)( ∏
internal lines

d3p

2Ep(2π)3

)
. (41.88)

The dimension ofM is mass4−3v+2i = mass4−e. In the particular case that the number e of external lines is
4, the amplitudeM is dimensionless. The square of the energy-momentum conserving delta-function requires
interpretation.

number of events
volume . time

=

∫
|M|2(2π)4δ4(Pf −Pi)

 ∏
incoming

f
d3p

2Ep(2π)3

 ∏
outgoing

(1± f)
d3p

2Ep(2π)3

 , (41.89)
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whose dimension is mass4. The factors f are occupation numbers. The factors 1±f in the outgoing particles
are boson-stimulation (+) and fermion-blocking (−) factors.
The complex conjugate of a vertex term is, from equation (39.127),

(ie ε̄qc · γγkbεpa)∗ = (ie ε̄pa · γγkbεqc) . (41.90)

The following is dimensionless: (
(ie ε̄ · γγε)(ie ε̄ · γγε)

)(
(ie ε̄ · γγε)(ie ε̄ · γγε)

)
. (41.91)

Each vertex is integrated over spacetime d4x. Each Wick-bracketed pair is integrated over d3p/
(
2E(2π)3

)
.

Wick brackets above the expression represent internal lines; Wick brackets below represent external lines.

Exercise 41.2. Numbers of vertices and lines in a Feynman diagram. Prove the relation (41.87)
between the numbers v, e, and i of vertices, external lines, and internal lines of a Feynman diagram in which
all vertices connect three lines. The diagram may contain one or more connected parts.
Solution. Proceed by induction on the number i of internal lines. Suppose that the diagram contains v
vertices and no internal lines, i = 0. Then there are 3 external lines per vertex, e = 3v. Now introduce internal
lines, one by one, without changing the number of vertices. For each internal line introduced, i→ i+ 1, two
external lines must be joined, e→ e− 2. This proves the relation (41.87).

41.4.10 Compton scattering

The two-vertex interactions (41.51) represent quantum mechanical amplitudes for the scattering of a charged
spinor by an electromagnetic �eld, as illustrated in Figure 41.3, to lowest non-vanishing order of perturbation
theory. If the charged spinor is an electron, for example, the process represents electron-photon scattering,
also known as Compton scattering,

e+ γ → e+ γ . (41.92)

Converting the interactions (41.51) into quantum mechanical amplitudes requires integrating them over
the spacetime interaction vertices x and x′, and over the intermediate spinor momentum q and spin c. The
correct integration over q is given by equation (41.57), or equivalently by equation (41.58). These integrals
bring the �rst of the two-vertex interactions (41.51) to

(ie)2

∫
ε̄p′a′ · γγk′b′

− iq +m

q2 +m2
γγkbεpae

−ix′·(p′+k′−q)eix·(p+k−q)
d4q

(2π)4
d4x′ d4x . (41.93)

The expression (41.93) is for the �rst case (41.51a); the second case (41.51b) is similar, with γγkb ↔ γγk′b′

and k ↔ −k′ in the exponentials. The integrals of (41.93) over d4x and d4x′ are each carried over all space-
time, yielding delta-functions (2π)4δ4(p′+k′−q) and (2π)4δ4(p+k−q) that enforce the energy-momentum
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conservation conditions (41.52). Integration over d4q/(2π)4 then yields

(2π)4δ4(p′ + k′ − p− k)M , (41.94)

where the 4-dimensional delta-function enforces overall conservation of energy-momentum, and M is the
invariant matrix element for the two two-vertex interactions (41.51), a sum over both interactions,

M = (ie)2 ε̄p′a′ ·
(
γγk′b′

− i(p+ k) +m

(p+ k)2 +m2
γγkb + γγkb

− i(p− k′) +m

(p− k′)2 +m2
γγk′b′

)
εpa . (41.95)

The dimensionless matrix elementM is a complex number that is interpreted as the amplitude for the process
to occur. Its square |M|2 yields a probability for the interaction to occur. Turning the probability into a
rate per unit time and volume for collisions to occur involves integrating over initial and �nal distributions
of incoming and outgoing particles, as for example in equation (31.40).

41.5 Spinor creation and annihilation

A process closely related to Compton scattering is the annihilation of a spinor and an antispinor into photons,
or the inverse process of the creation of a spinor and antispinor from the collision of photons. Spinor-antispinor
annihilation, to lowest non-vanishing order of perturbation theory, is illustrated in Figure 41.4. The inverse
process of spinor-antispinor creation is the same with the direction of time in the diagram going downward
instead of upward. The diagrams 41.4 are the same as those for Compton scattering, Figure 41.3, with �ips
in the direction of time for one each of the spinors and photons.

41.5.1 Dirac �eld operator

In traditional quantum �eld theory, �eld operators, and the postulated (anti)commutation relations between
them, take pride of place. Field operators provide a compact and powerful way to develop Feynman rules
systematically.

x x′

p, a

q, c

p′, a′

k, b k′, b′

x x′

k, b k′, b′

p, a
q, c

p′, a′

Figure 41.4 Spinor-antispinor annihilation. The arrows on the spinor lines represent the direction of charge. The

momentum p′ of the antispinor is opposite to the direction of its charge.
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In the present exposition, �eld operators have so far been side-stepped, the aim being to explore the
extent to which the rules of quantum �eld theory can be regarded as emerging more fundamentally from
the properties of spinors, without those rules having to be postulated. For example, as described in �41.4.1,
the multiplication rules for row and column spinors already embody the properties of fermionic creation and
destruction operators. Further, as shown below (?), the anticommutation of spinor �elds is attributable to
the antisymmetry of the Dirac spinor metric in 4 spacetime dimensions.
The purpose of �eld operators is to codify the Feynman rules. The two building blocks of Feynman diagrams

and the associated rules are vertices where quantized interactions occur, and propagators that join pairs of
vertices. Field operators must encode both those building blocks.
To understand the challenge, consider once more a two-vertex spinor-photon interaction of the kind illus-

trated in Figure 41.3. Recall that the quantum-mechanical amplitude for each single-vertex interaction takes
the form (41.43) implied by the spinor-photon interaction term in the Dirac Lagrangian. A propagator joins
two vertices. The challenge is to write the amplitude for the two-vertex process in the form∫ (

ieψ̄(x′)A(x′)ψ(x′)
)(
ieψ̄(x)A(x)ψ(x)

)
d4x′d4x , (41.96)

where ψ̄(x), A(x), and ψ(x) are to be interpreted, somehow, as �eld operators. The Wick bracket joining
ψ(x′) and ψ̄(x) signi�es a propagator. Notice that in both vertex and propagator, a spinor ψ is always
partnered with its conjugate ψ̄.

41.5.2 Loops

Exercise 41.3 asks you to show that the number l of loops in a Feynman diagram is related to the numbers
i of internal lines, v of vertices, and c of connected components by

l = i− v + c . (41.97)

Feynman diagrams that contain no loops are called tree diagrams. For tree diagrams, the energy-
momenta along internal lines are determined in terms of external energy-momenta by conservation of energy-
momenta at the vertices. If on the other hand a Feynman diagram contains loops, then all but one of the
internal energy-momenta around a loop are determined by conservation of energy-momenta at the vertices
of the loop (see Exercise 41.3). If the energy-momenta around a loop are denoted pi, as in Figure 41.5, and

k1

k2 k3

p1

p2

p3

Figure 41.5 A loop in a Feynman diagram.
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If the undetermined loop energy-momentum is taken to be p1, then after energy-momentum constraints are
imposed there remains a propagator integral ∫

d4p1∏
i(p

2
i +m2)

, (41.98)

with pi = p1−
∑i
j=2 kj . This integral has logarithmic divergences at the poles of the integrand. Eliminating

the divergences requires renormalization, a problem beyond the scope of the present exposition.

Exercise 41.3. Numbers of loops in a Feynman diagram. By considering the energy-momenta of
each line, and energy-momentum conservation at each vertex, prove equation (41.97) for the number l of
loops in a Feynman diagram in terms of the numbers of vertices and lines, and the number c of connected
components.
Solution. There are e + i external plus internal lines, and an energy-momentum attached to each. These
e + i energy-momenta are subject to a conservation law at each vertex, leaving e + i − v energy-momenta
to be speci�ed. Each of the c connected components of the Feynman diagram must satisfy a conservation of
overall energy-momentum among its external energy-momenta, so e−c of the e energy-momenta on external
lines can be speci�ed. The di�erence between the number of energy-momenta to be speci�ed and the number
that can be speci�ed on external lines is (e+ i− v)− (e− c) = i− v + c. This di�erence equals the number
of loops, equation (41.97). That this is indeed the number of loops can be seen by considering a single loop,
such as illustrated in Figure 41.5. A loop with n vertices has n internal edges and n other edges connecting
to other parts of the diagram. The n vertices impose n constraints on the n internal energy-momenta. In
Figure 41.5, the n energy-momentum constraints are pi = pi−1− ki in a convention where positive energy ki
points outward. One of these constraints serves to impose overall energy-momentum conservation,

∑
i ki = 0.

so one of the n internal energy-momenta, say p1, is unspeci�ed. The remaining internal energy-momenta pi
are determined as pi = p1 −

∑i
j=2 kj .
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The Standard Model of Physics and beyond

A fundamental piece of the philosophy behind this chapter is that, at its most fundamental level, spacetime
is somehow built out of spinors. As found in Exercises 38.3 and 39.6, the algebra of outer products of spinors
is isomorphic to the geometric algebra. The geometric algebra in K+M space+time dimensions contains
not only the bivector generators of Spin(K,M), but a complete set of multivectors that together generate
the complete Lie group of transformations of spinors. The potential importance of multivectors other than
bivectors is evidenced by Dirac's (1928) discovery that vectors (multivectors of grade 1) generate spatial
translations of spinors.

42.1 Fermion content of the Standard Model of Physics

This section reviews the fermion content of the Standard Model of Physics (SM), which is based on the
gauge group UY (1)× SUL(2)× SU(3), the product of the electroweak group UY (1)× SUL(2) (which breaks
down to the electromagnetic group Uem(1) at energies below the electroweak uni�cation scale ∼ 100 GeV)
and the colour group SU(3). An excursion into Grand Uni�cation is irresistible, in part because it helps to
make sense of the seemingly bizarre pattern of fermion charges, and in part because it presents a practical
application of super geometric algebras. See Baez and Huerta (2010) for an expository review.
The SM has 4 conserved charges consisting of hypercharge Y , weak isospin IL (commonly abbreviated

isospin1), and 2 colours. Colour conservation is commonly described in terms of 3 colours, suggestively
called red, green, and blue, which satisfy the condition that the sum of the 3 colours is colourless, or white,
r + g + b = 0. The fermions of the SM have charges listed in Table 42.1. Table 42.1 omits antifermions,
which have charges opposite to their fermion partners. Antifermions are conventionally denoted with a bar;
for example, an antineutrino is ν̄ (the bar here signi�es a fermion with all opposite charges; in �42.3.3 it will
be seen that the bar also signi�es the charge conjugate). Each quark has a colour of r or g or b. Antiquarks
have opposing colours; for example antired is −r = g + b. Actually, Table 42.1 lists only the fermions of

1 Weak isospin, or isospin, is often denoted I3, the 3 signifying the 3rd of the 3 Pauli matrices that generate SUL(2); but I
prefer the designation IL, to emphasize that isospin is non-zero only for left-handed fermions (and right-handed
antifermions).

1036
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Table 42.1: Conserved charges in the Standard Model

Uem(1) UY (1) SUL(2) SU(3)

Species symbol charge Q = 1
2Y + IL hypercharge Y isospin IL colour c

Left-handed leptons

(
νL

eL

)
0

−1
−1 ± 1

2 white

Left-handed quarks

(
uL

dL

) 2
3

− 1
3

1
3 ± 1

2 r, g, b

Right-handed neutrino νR 0 0 0 white

Right-handed electron eR −1 −2 0 white

Right-handed up quark uR
2
3

4
3 0 r, g, b

Right-handed down quark dR − 1
3 − 2

3 0 r, g, b

the �rst generation, the electron generation. Altogether there are three generations, electron, muon, and
tauon, whose charges duplicate those in Table 42.1. The fermions of the three generations are distinguished
by having very di�erent masses, �42.2.
The charges in Table 42.1 show some intriguing patterns that suggest that the SM group is a broken

remnant of some larger group. The three kinds of charge � hypercharge, isospin, and colour � each add to
zero when summed over all right-handed particles (or all left-handed antiparticles), or over all left-handed
particles (or all right-handed antiparticles).
The values of the hypercharge Y in Table 42.1 seem random, but they satisfy

3Y − 6IL + 2c = 6N , (42.1)

where c is 1 for any of the three colours rgb, and N is an integer. As prettily described by Baez and Huerta
(2010), the relation (42.1) is precisely such as to allow the SM group UY (1)× SUL(2)× SU(3), modulo the
discrete group Z6, to be embedded as a subgroup of SU(5),

UY (1)× SUL(2)× SU(3) /Z6 = S
(
UL(2)×U(3)

)
⊂ SU(5) , (42.2)

suggesting that the SM could be a broken remnant of a larger Grand Uni�ed Theory (GUT) group SU(5),
a possibility �rst pointed out by Georgi and Glashow (1974). The embedding is

UY (1)× SUL(2)× SU(3) /Z6 → S
(
UL(2)×U(3)

)
⊂ SU(5)

{α, g, h} →
(
α3g 0

0 α−2h

)
,

(42.3)

in which the hypercharge phase α arises as a relative phase between elements of UL(2) and U(3). The
choice of powers of α in the mapping (42.3) to S

(
UL(2)×U(3)

)
is consistent with the requirement that the

determinant be one, (α3)2(α−2)3 = 1. The map {α, g, h} → {α−3g, α2h} from UY (1) × SUL(2) × SU(3) to
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S
(
UL(2)×U(3)

)
is into only if UY (1)×SUL(2)×SU(3) is modded by Z6, because if z is any sixth root of unity

then {z, diag z−3, diag z2} ∈ UY (1)× SUL(2)× SU(3) maps to the same element {1, 1} of S
(
UL(2)×U(3)

)
(don't forget that g and h are respectively 2×2 and 3×3 matrices, so the determinants of α3g and α−2h are
α6 det g and α−6 deth). The mapping (42.3) is viable only if the kernel Z6 acts trivially on all fermions of the
SM. But the relation (42.1) ensures precisely this. The action of the phase z on a fermion ψ of hypercharge
Y , isospin IL, and colour c is

{z, z−3, z2} : ψ → (z)3Y (z−3)2IL(z2)cψ = z3Y−6IL+2cψ = ψ . (42.4)

The factors of 3 in 3Y and 2 in 2IL in the exponents arise because hypercharge and isospin are quantized in
units of respectively 1

3 and 1
2 ; the choice of exponents ensures that a unit phase factor z = e2πi acts trivially

on all fermions for each of the UY (1)× SUL(2)× SU(3) factors individually.
But there are other patterns among SM particles that SU(5) does not explain: right-handed particles look

like they should group into SUR(2) doublets like their left-handed counterparts; and neutrinos and electrons
look like they could be another species of up and down quark with a 4th colour. As it happens, as �rst
pointed out by Pati and Salam (1974), the SM group, modulo the discrete group Z3, extends as a subgroup
along precisely these lines,

UY (1)× SUL(2)× SU(3) /Z3 ⊂ SUR(2)× SUL(2)× SU(4) . (42.5)

Consider treating the right-handed leptons and quarks as SUR(2) doublets labelled by isospin IR, similar to
their left-handed counterparts. Consider also treating white as a 4th colour w. The SM particles in table 42.1
satisfy

3Y − 6IR − c+ 3w = 0 . (42.6)

The pattern suggests an embedding

UY (1)× SU(3) /Z3 → SUR(2)× SU(4)

{α, h} → {
(
α−3 0

0 α3

)
,

(
α−3 0

0 αh

)
} . (42.7)

The map (42.7) implies that for example left-handed leptons and quarks transform under UY (1) respectively
as α−3 and α, implying hypercharges −1 and 1

3 ; similarly, right-handed up leptons and quarks transform as
α0 and α4, while right-handed down leptons and quarks transform as α−6 and α−2, implying hypercharges
0, 4

3 , −2, and − 2
3 , in agreement with Table 42.1. The map (42.7) is into only if UY (1) × SU(3) is modded

by Z3, because if z is any third root of unity then {z, diag z−1} ∈ UY (1)× SU(3) maps to the same element
{1, 1} of SUR(2)× SU(4).
Exercises 42.1 and 42.2 show that SU(2) × SU(2) is isomorphic to Spin(4), while SU(4) is isomorphic to

Spin(6). Consequently the Pati-Salam group on the right hand side of the embedding (42.5) is isomorphic
to Spin(4)× Spin(6),

SUL(2)× SUR(2)× SU(4) ∼= Spin(4)× Spin(6) . (42.8)

As discussed in Exercise 38.3, spinors in 2N dimensions are linear combinations of 2N basis spinors εa
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labelled by an N -component bitcode a = a1...aN with each of ai being up ↑ or down ↓, equation (38.86).
As discussed in part 18 of Exercise 38.3, SU(N) is a subgroup of Spin(2N), and the spinor bitcode also
encodes the indices of SU(N) multivectors. In the Pati-Salam model, the Spin(4) factor is associated with
isospin, and particles can be labelled with spinor bitcodes � (blank), d, u, and du. The same spinor bitcodes
encode the transformation of spinors under the SUL(2) subgroup: � (blank) is an SUL(2) scalar, d and u are
SUL(2) vectors, and du is an SUL(2) pseudoscalar. Similarly, under the SUR(2) subgroup, � (blank) and du
are SUR(2) vectors, while d and u are respectively an SUR(2) scalar and pseudoscalar. If each bit is assigned
the value + 1

2 or − 1
2 according to whether it is up or down, then left-handed isospin is IL = 1

2 (u− d), while
right-handed isospin is IR = 1

2 (u+d). Of the fermions listed in Table 42.1, together with their corresponding
antifermions, there are 16 that transform under the left SUL(2) isospin group (but not under SUR(2)),
namely the left-handed leptons and quarks and right-handed antileptons and antiquarks, and 16 that do
not transform under SUL(2) (but do under SUR(2)), their partners of opposite chirality. The following
chart (42.9) labels the fermions with their Spin(4) spinor d, u bitcodes:

� d, u du

ν̄L , eR , ūL , dR d : ν̄R , eL , ūR , dL νR , ēL , uR , d̄L

u : νL , ēR , uL , d̄R

(42.9)

The Spin(6) factor of the Pati-Salam group is associated with colour, and particles can be labelled with
a spinor bitcode r, g, b. Each quark dc or uc of colour c = r, g, b is labelled by a single bit r, g, or b. Each
antiquark d̄c̄ or ūc̄ is labelled by the bit-�ipped bitcode c̄ = gb, rb, rg (antired, antigreen, antiblue, or cyan,
magenta, yellow if you prefer) of the quark colour c. The leptons ν and e are labelled white rgb, and the
antileptons ν̄ and ē by black � (blank, antiwhite). Again, the same spinor bitcodes encode the transformation
of spinors under the SU(3) colour subgroup: � (blank) is an SU(3) scalar, r, g, and b are SU(3) vectors, gb,
rb, and rg are SU(3) pseudovectors, and rgb is an SU(3) pseudoscalar. The following chart (42.10) labels the
fermions with their Spin(6) r, g, b spinor bitcodes:

� c = r, g, b c̄ = gb, rb, rg rgb

ν̄L,R , ēL,R ucL,R , d
c
L,R ūc̄L,R , d̄

c̄
L,R νL,R , eL,R

(42.10)

Both the SU(5) embedding (42.3) and the Pati-Salam embedding (42.5) can be accommodated consistently
within an even grander group Spin(10). The group Spin(4)× Spin(6) embeds naturally in Spin(10):

Spin(4)× Spin(6) /Z2 → Spin(10) . (42.11)

The mapping is mod Z2 because �ipping the signs of both Spin(4) and Spin(6) rotors leaves the Spin(10)

rotor unchanged. Through the mapping (42.3), the multivector SUL(2) and SU(3) bitcodes map naturally
to a multivector SU(5) bitcode d, u, r, g, b, which through the natural mapping (42.11) encodes the particles
in Spin(10). The two charts (42.9) and (42.10) assemble into the following chart, organized by the grade p
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(number of up bits) of the Spin(10) spinor bitcode labelling the fermion:

0 1 2 3 4 5

� : ν̄L d : ν̄R c̄ : ūc̄L dc̄ : ūc̄R urgb : νL durgb : νR

u : ēR du : ēL rgb : eR drgb : eL

c : dcR dc : dcL uc̄ : d̄c̄R duc̄ : d̄c̄L
uc : ucL duc : ucR

(42.12)

Each of the 32 fermions and antifermions of the SM is described uniquely by the Spin(10) d, u, r, g, b code, so
Spin(10) provides a complete uni�cation of the SM fermions within each of the 3 generations. The i'th column
of the chart (42.12) is an SU(5) multivector of grade i, that is, an antisymmetric SU(5) tensor of rank i.
SU(5) transforms the components of each column into each other, but does not transform components across
columns. Thus SU(5) constitutes only a partial uni�cation of the fermions within a generation, in contrast
to Spin(10) which uni�es all 32 fermions within each of the 3 generations.
There is no experimental evidence for a right-handed neutrino νR or its antiparticle ν̄L. SU(5) does not

require those particles, because they transform as SU(5) scalars, and are therefore unrelated to the other
fermions. By contrast, Spin(10) requires a right-handed neutrino and its antiparticle.
It might seem that Spin(10) does not quite unify all the spinors of the SM, since rotations in the 10-

dimensional space leave the Spin(10) handedness of the spinor unchanged. From the perspective of Spin(10),
the spinor is right-handed if all its �ve bits are up, or more generally if an odd number of its bits are up. The
right-handed spinors in the bitcode chart (42.12) are those in the columns with 1, 3, and 5 bits up, while
the left-handed spinors are those in the columns with 0, 2, and 4 bits up.
But the chart (42.12) indicates that the separation of the spinors into two sets under Spin(10) is simply

the separation into particles and antiparticles. In the Stueckelberg-Feynman picture (Stueckelberg, 1941),
antiparticles should be interpreted as particles going backwards in time. Mathematically, antiparticles are
CPT conjugates of particles, and CPT appears to be an exact symmetry. In conjunction with CPT , Spin(10)

uni�es all the 32 spinors of a generation.
The presence of 3 generations of fermion � electron, muon, and tauon � suggests that perhaps there

should be an even larger Grand Uni�ed group than Spin(10). However, the fact that the 3 generations di�er
only in the masses of their particles, and that the 3 generations share the same gauge �elds (there are not
multiple generations of gauge �elds) admits the alternative hypothesis that the 3 generations are, somehow,
just di�erent excitations of the same intrinsic object, similarly, perhaps, to that way that atoms and nuclei
have excited states.

42.1.1 Spin(10) charges

Spin(10) reorganizes the charges of the Standard Model in an interestingly di�erent and elegant way. The
usual SM charges are hypercharge Y and isospin IL, and colours r, g, and b. Spin(10) reorganizes the 5
charges as a bit code durgb with each bit (charge) taking values either + 1

2 (↑) or − 1
2 (↓) for each of the
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25 = 32 fundamental fermions of a generation. The relation between SM charges and Spin(10) charges is

Y = u+ d− 2
3 (r10 + g10 + b10) , (42.13a)

IL = 1
2 (u− d) , (42.13b)

c = c10 + 1
2 . (42.13c)

The electromagnetic charge is

Q = 1
2Y + IL = u− 1

3 (r10 + g10 + b10) . (42.14)

The subscripts 10 on the colour charges c10 (with c one of r, g, b) on the right hand sides of equations (42.13)
distinguish the Spin(10) colour charge from the traditional SM colour charge c. The Spin(10) durgb charges
on the right hand sides of equations (42.13) are to be interpreted as + 1

2 if the corresponding bit is up ↑ and
− 1

2 if down ↓. For example, equations (42.13) imply that the all-bit-down and all-bit-up fermions ν̄L (↓↓↓↓↓)
and νR (↑↑↑↑↑) have SM electroweak charges Y = IL = 0, and SM colour charges respectively 0 (black) and
rgb (white).
Traditionally a quark has colour charge consisting of one unit of either r, g, or b. Spin(10) on the other

hand says that an r quark (for example) has rgb bits ↑↓↓, meaning that its r10-charge is + 1
2 while is g10-

and b10-charges are − 1
2 . In the Spin(10) picture, when an r quark turns into a g quark, its rgb bits �ip from

↑↓↓ to ↓↑↓, meaning that its r10-charge �ips from + 1
2 to − 1

2 while its g10-charge �ips from − 1
2 to + 1

2 . In so
doing, the quark loses one unit of r charge, and gains one unit of g charge, consistent with the traditional
picture.
Equations (42.13) invert to yield Spin(10) charges in terms of SM charges,

d = 1
2Y − IL + 1

3 (r + g + b)− 1
2 , (42.15a)

u = Q+ 1
3 (r + g + b)− 1

2 , (42.15b)

c10 = c− 1
2 . (42.15c)

The d-charge can also be expressed in terms of the Pati-Salam right-handed isospin IR = 1
2 (u+ d) as

d = IR − IL . (42.16)

At low energies, the SM gauge group breaks down to Uem(1)× SU(3), in which only the electromagnetic
charge Q and the colour charges r, g, b are conserved. In terms of Spin(10) charges, equations (42.15), this
means that the d charge ceases to be conserved, while u, r, g, and b charges continue to be conserved. The
u charge can be thought of as a fourth colour, but it is not the same as the fourth colour contemplated by
Pati and Salam (1974). Treating u as a fourth colour means considering an embedding of Uem(1)× SU(3) in
SU(4),

Uem(1)× SU(3) /Z3 → SU(4)

{α, h} →
(
α3 0

0 α−1h

)
,

(42.17)

which is similar to but not the same as the Pati-Salam embedding (42.7). The map (42.17) is into only if
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Uem(1)×SU(3) is modded by Z3, because if z is any third root of unity then {z, diag z−1} ∈ Uem(1)×SU(3)

maps to the same element {1} of SU(4).
In accordance with the theorem of Atiyah, Bott, and Shapiro (1964) (see part 18 of Exercise 38.3), and

similarly to the embeddings of SUL(2) in Spin(4) based on the d, u bits, chart (42.9), or of SU(3) in Spin(6)

based on the r, g, b bits, chart (42.10), or of SU(5) in Spin(10) based on the d, u, r, g, b bits, chart (42.12),
there is an embedding of SU(4) in Spin(8) based on the u, r, g, b bits. The following chart labels the fermions
with their Spin(8) u, r, g, b bitcodes:

0 1 2 3 4

� : ν̄L,R u : ēL,R c̄ : ūc̄L,R rgb : eL,R urgb : νL,R

c : dcL,R uc : ucL,R uc̄ : d̄c̄L,R

(42.18)

Compared to the Spin(10) chart (42.12), the Spin(8) chart (42.18), having lost the d-bit, lumps left- and
right-chiral species of fermions into the same box.

42.1.2 Spin(10) gauge �elds

The 10 orthonormal basis vectors γγ±a , a = d, u, r, g, b, of the geometric algebra associated with Spin(10) are,
in terms of chiral basis vectors γγa and γγā,

γγ+
a ≡

γγa + γγā√
2

and γγ−a ≡
γγa − γγā√

2 i
. (42.19)

The Spin(10) chiral basis vectors γγa and γγā are analogous to the vectors γγ+ and γγ− in the Newman-Penrose
formalism, equations (39.1).
The gauge �elds associated with any gauge group form a multiplet labelled by the generators of the group.

The generators of the Spin(10) group are its 45 orthonormal basis bivectors, comprising the 4 × 10 = 40

bivectors

γγ+
a ∧γγ+

b =
1

2
(γγa + γγā)∧(γγb + γγb̄) , (42.20a)

γγ+
a ∧γγ−b =

1

2i
(γγa + γγā)∧(γγb − γγb̄) , (42.20b)

γγ−a ∧γγ+
b =

1

2i
(γγa − γγā)∧(γγb + γγb̄) , (42.20c)

γγ−a ∧γγ−b = −1

2
(γγa − γγā)∧(γγb − γγb̄) , (42.20d)

with distinct indices a and b each running over d, u, r, g, b, together with the 5 bivectors

γγ+
a ∧γγ−a = iγγa ∧γγā , (42.21)

with indices a running over d, u, r, g, b. Each of the 40 gauge bivectors (42.20) carries two charges indicated
by the two indices ab of its bivector, and serves to �ip the two charges a and b between up and down, with
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various signs. Each of the 5 mutually commuting bivectors (42.21) generates a gauge rotation by a phase.
The SM charges a = d, u, r, g, b of a spinor are 1

2 the eigenvalue of γγa ∧γγā.
Charge conjugates of Spin(10) bivectors are themselves,

γ̄γab ≡ Cγγ∗abC−1 = γγab , (42.22)

so Spin(10) gauge �elds are their own antiparticles.
The Standard Model gauge group UY (1) × SUL(2) × SU(3) is a subgroup of the SU(5) subgroup of

Spin(10). The gauge �elds of SU(5) comprise the subset of gauge �elds of Spin(10) that leave the number of
up bits of a spinor unchanged. The gauge bivectors of SU(5) constitute 24 orthonormal bivectors (compare
equations (38.172)), comprising the 2× 10 = 20 bivectors

1√
2

(γγ+
a ∧γγ+

b + γγ−a ∧γγ−b ) =
1√
2

(γγa ∧γγb̄ + γγā ∧γγb) , (42.23a)

1√
2

(γγ+
a ∧γγ−b − γγ

−
a ∧γγ+

b ) =
i√
2

(γγa ∧γγb̄ − γγā ∧γγb) , (42.23b)

and the 5− 1 = 4 bivectors

γγ+
a ∧γγ−a = iγγa ∧γγā modulo

∑
a

γγ+
a ∧γγ−a = i

∑
a

γγa ∧γγā , (42.24)

with indices a and b running over d, u, r, g, b. The S in SU(5) restricts to U(5) matrices of unit determinant,
e�ectively removing the bivector i

∑
a γγ

+
a ∧γγ−a that rotates all spinors in an SU(5) multiplet by a common

phase.
The gauge �elds of the SM gauge group UY (1)×SUL(2)×SU(3) are labelled by 1+3+8 = 12 orthonormal

bivectors. The orthonormal bivectors of the isospin group SUL(2) comprise the 2+(2−1) = 3 bivectors (42.23)
and (42.24) with a and b running over d and u, while the orthonormal bivectors of the colour group SU(3)

comprise the 6 + (3 − 1) = 8 bivectors (42.23) and (42.24) with a and b running over r, g, and b. The 1
orthonormal hypercharge bivector is√

3

10

( ∑
a=d,u

γγ+
a ∧γγ−a − 2

3

∑
a=r,g,b

γγ+
a ∧γγ−a

)
= i

√
3

10

( ∑
a=d,u

γγa ∧γγā − 2
3

∑
a=r,g,b

γγa ∧γγā

)
. (42.25)

After electroweak symmetry breaking, The gauge �elds of the remaining unbroken gauge group Uem(1)×
SU(3) are labelled by 1 + 8 = 9 orthonormal bivectors. The 8 orthonormal bivectors of the colour group
SU(3) are the same as those in the SM. The 1 orthonormal electromagnetic charge bivector is√

3

4

(
γγ+
u ∧γγ−u − 1

3

∑
a=r,g,b

γγ+
a ∧γγ−a

)
= i

√
3

4

(
γγu ∧γγū − 1

3

∑
a=r,g,b

γγa ∧γγā

)
. (42.26)
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Exercise 42.1. Prove that the group SU(2)× SU(2) is isomorphic to Spin(4).

Solution. SU(2) is isomorphic to the group of unimodular quaternions, so SU(2)×SU(2) is isomorphic to the
group of unimodular quaternion pairs {q1, q2}. Unimodular means qiqi = 1 where qi denotes the quaternionic
conjugate of qi. Represent a spatial 4-vector a (a grade-1 multivector) by a real quaternion a = a0 + ıaaa.
The Euclidean scalar product of two spatial 4-vectors represented by quaternions a and b may be written

a · b = 1
2 (ab+ ba) = a0b0 +

3∑
a=1

aaba . (42.27)

The mapping

{q1, q2} : a→ q1aq2 (42.28)

respects the group structure: {p1, p2} followed by {q1, q2} maps

a→ q1p1ap2q2 = p1q1ap2q2 , (42.29)

which is the same as {p1q1, p2q2}, as it should be. The mapping (42.28) also preserves the scalar product

1
2 (ab+ ba)→ 1

2

(
q1aq2 q1bq2 + q1bq2 q1aq2

)
= 1

2q2(ab+ ba)q2 = 1
2 (ab+ ba) . (42.30)

Therefore the mapping (42.28) de�nes a rotation of spatial 4-vectors a. Two quaternion pairs {q1, q2} and
{p1, p2} yield the same rotation if

q1aq2 = p1ap2 for all a , (42.31)

that is if

p1q1a = ap2q2 for all a . (42.32)

Setting a = 1 implies p1q1 = p2q2. Let p1q1 = p (say). Then condition (42.32) reduces to pa = ap for all a,
that is, p commutes with all quaternions a. Therefore p must be a scalar. But since p1 = pq1 and p2 = pq2,
and pi and qi are both unimodular, the only scalar solutions are p = ±1. Therefore the mapping (42.28)
de�nes a rotation of vectors a that is unique up to a change of sign of both q1 and q2. Each pair {q1, q2} is
equivalent to some rotor R in the geometric algebra. Two di�erent rotors yield the same rotation of vectors
only if the rotors di�er by a sign. Therefore the change of sign of {q1, q2} is equivalent to a change of sign
of the rotor R. The sign ambiguity is removed when the rotation is lifted to spinors, which are rotated
by pre-multiplying by a rotor R. Therefore each pair {q1, q2} of unimodular quaternions is equivalent to a
unique rotation of spinors in 4 dimensions. This establishes the isomorphism

SU(2)× SU(2) ∼= Spin(4) . (42.33)

Exercise 42.2. Prove that the group SU(4) is isomorphic to Spin(6).

Solution. The embedding (38.169) says that Spin(4) is a subgroup of SU(4). In the chiral representation,
the 6 generators of Spin(4), its 6 bivectors, are traceless, skew-Hermitian 4× 4 matrices. The group SU(4) is
generated by 42−1 = 15 traceless, skew-Hermitian 4×4 matrices. In the chiral representation, the 15 traceless,
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skew-Hermitian generators are the 15 orthonormal basis multivectors of the 4-dimensional geometric algebra
excluding the unit element, with basis multivectors of grade p with [p/2] even multiplied by the imaginary i
(to convert them from Hermitian to skew-Hermitian matrices). The isomorphism between SU(4) and Spin(6)

is generated by the following isomorphism between the 15 generators of SU(4) and the 15 bivector generators
of Spin(6),

γγab ↔ γγab , iγγa ↔ γγa5 , I4γγa ↔ γγa6 , iI4 ↔ γγ56 , (42.34)

where the indices a and b lie in {1, 2, 3, 4}, and I4 is the Spin(4) pseudoscalar.

42.2 The nature of mass

What is mass? Mass remains one of the most mysterious ingredients of the Standard Model (Quigg, 2007).
In the conventional picture, the chiral (right- or left-handed) fundamental fermions of the SM are taken to be
natively massless, since chirality is a property only of massless spinors. A massive spinor is a superposition
of two chiral spinors of opposite chirality, a linear combination of right- and left-handed chiral spinors. A
massive spinor at rest is an equal superposition of right- and left-handed spinors. For example, in the chiral
representation (39.14), an electron at rest is FIX: WRONG SIGN. (eR + ieL)/

√
2, while a positron (an

antielectron) at rest is (ieR + eL)/
√

2.
The Spin(10) chart (42.12) of fermions shows that right- and left-handed versions of each species of fermion

(for example, eR and eL) di�er by the d-bit. The SM postulates that fermions �ip their d-bit as a result of
interaction with the Higgs �eld, giving the fermions their fundamental masses. Spinors that come in right-
and left-handed versions are called Dirac spinors, and the mass that arises from �ipping between the massless
right- and left-handed components is called Dirac mass. A Dirac mass that results from �ipping the d-bit is
possible only after electroweak symmetry breaking, where d-charge is not conserved.
Table 42.2 shows the measured rest masses of the fundamental fermions. The fundamental fermions come

in 3 generations, electron, muon, and tauon (or 1, 2, and 3), each generation repeating the same pattern
of charges, Table 42.1, but with di�erent masses. The masses follow no clear pattern, except that higher
generations are more massive. Neutrino masses, and their assignment to generation, remain as yet uncertain;

Table 42.2: Masses of fundamental fermions (NIST, 2014; Tanabashi et al., 2018)

Generation
1 2 3

e-neutrino νe ? µ-neutrino νµ 0.01 eV? τ -neutrino ντ 0.05 eV?
electron e 0.510 998 946(3) MeV muon µ 105.658 375(3) MeV tauon τ 1.776 82(16) GeV

up u 2.2(5) MeV charm c 1.275(30) GeV top t 173.0(4) GeV

down d 4.7(4) MeV strange s 95(6) MeV bottom b 4.18(4) GeV
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neutrino oscillations yield mass squared di�erences, and cosmological constraints yield only an upper limit∑
mν < 0.12 eV on the sum of the three neutrino masses, equation (10.109).
Most of the mass of objects in the familiar world comes not from the masses of fundamental fermions,

but from protons and neutrons, which are bound states of quarks. Protons and neutrons, along with other
strongly interacting particles containing an odd number of quarks, are collectively called baryons. Baryons
themselves combine into nuclei, and thence with electrons into atoms and molecules. A proton is a colourless
combination uud of two up quarks and one down quark, while a neutron is a colourless combination udd of
one up quark and two down quarks. Colourless means that the combination is a symmetric superposition of
equal contributions of r, g, and b colours. Numerical calculation of quantum chromodynamics on a lattice
(lattice QCD) reveals that protons and neutrons should be thought of not as three quarks somehow stuck
together, but rather as a seething maelstrom of strongly interacting relativistic quarks and gluons bound
together by the colour force (Yang et al., 2018). The rest masses of the three �valence� uud or udd quarks
contribute only about 1% of the ≈ 1 GeV mass of a proton or neutron.

42.2.1 Neutrino mass and the see-saw mechanism

Neutrinos cannot acquire their mass in the same way as the other fundamental fermions, since only left-
handed meutrinos (and right-handed antineutrinos) are observed. There is no experimental evidence for a
right-handed neutrino, and evidence from the CMB indicates that there are only 3 neutrino types with
masses less than about the electron mass (the observations set limits on the number of neutrino types post
electron-positron annihilation) (Aghanim et al., 2018),

Neff = 3.0± 0.5 . (42.35)

Yet neutrinos are observed to have (small) masses. How can neutrinos have mass if they are purely chiral?
A leading idea is the see-saw mechanism proposed by Gell-Mann, Ramond, and Slansky (1979). They

argued that the right-handed neutrino, alone among all the fundamental fermions, could be a superposition
of itself νR and its charge conjugate ν̄L. The mass acquired by �ipping between a massless particle and
its charge conjugate is called a Majorana mass (Majorana, 1937). The right-handed neutrino can have a
Majorana mass because it has no conserved SM charge. That is, the right-handed neutrino νR is the all-bit-
up spinor ↑↑↑↑↑ (and its charge conjugate ν̄L is the all-bit-down spinor ↓↓↓↓↓), which has zero charge because
the SM excludes the generator i

∑
a γγa ∧γγā that would give νR a charge, equation (42.24). The right-handed

neutrino is the only fundamental fermion that can acquire a Majorana mass, since it is the only fundamental
fermion with zero SM charge. The right-handed neutrino could escape observation provided that it has a
su�ciently large Majorana mass, greater than the electroweak scale ∼ 1 TeV.
Gell-Mann, Ramond, and Slansky (1979) proposed that neutrinos, alone among the fundamental fermions,

acquire both kinds of masses, a Majorana mass M that �ips the right-handed neutrino and its charge
conjugate into each other νR ↔ ν̄L, and a Dirac mass m that �ips right- and left-handed neutrinos into each
other, νR ↔ νL and ν̄R ↔ ν̄L. The result is that neutrino spinors are coupled to each other by a mass matrix
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M that, in the chiral representation (39.15), is

ν†Mν = i
(
ν†R ν†L ν̄†R ν̄†L

)
0 −m 0 −M
m 0 0 0

0 0 0 −m
M 0 m 0




νR

νL

ν̄R

ν̄L

 . (42.36)

The mass matrix M has 4 eigenvalues ±m+ and ±m− with

m± = ±M

2
+

√(
M

2

)2

+m2 , (42.37)

satisfying m+m− = m2, or equivalently
m−
m

=
m

m+
. (42.38)

The condition (42.38) is called the see-saw condition. The mass eigenstates ν± and their antiparticles ν̄± are
related to the chiral eigenstates by a unitary matrix,

m+

m−
−m−
−m+

:


ν+

ν−
ν̄−
ν̄+

 =
1√

2(1 + a2)


1 −ia a −i
ia 1 −i −a
−a −i 1 ia

−i a −ia 1




νR

νL

ν̄R

ν̄L

 , (42.39)

where

a ≡ m−
m

=
m

m+
. (42.40)

If the Majorana mass M is much larger than the Dirac mass m, then the large mass m+ approximates the
Majorana mass and is much larger than the Dirac mass,m+ ≈M � m, while the small massm− is much less
than the Dirac mass, m− ≈ m2/M � m. For example, if the muon neutrino has mass m− = mνµ ≈ 10−2 eV

and the Dirac mass of the muon neutrino approximates the mass of the muon, m ≈ mµ ≈ 100 MeV, then the
Majorana mass of the right-handed muon neutrino is m+ ≈ 109 GeV, well above the electroweak symmetry
breaking scale, and large enough to make the right-handed neutrino inaccessible to current experiment.
If the Majorana mass M is zero, which is true for fundamental fermions other than the neutrino, then

the two masses m± degenerate to the same Dirac mass, m± = m. The two degenerate mass eigenstates
correspond to spin up and down versions of the same spinor, and the negative mass eigenstates are their
antiparticles; for example the electron e⇑↑ and e⇑↓, and its antiparticle the positron e⇓↑ and e⇓↓.

42.3 The Dirac and SM algebras are commuting subalgebras of the Spin(11, 1)
geometric algebra

Grand uni�ed theories such as SU(5) or Spin(10) unify three of the four known forces of nature. The
fourth force is gravity, the gauge theory of the Poincaré group, consisting of spacetime rotations (Lorentz
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transformations) and spacetime translations. An essential feature of the Standard Model is that the SM and
Poincaré groups are distinct: the two groups act on particles (�elds) as a direct product of groups at each
point of 4-dimensional spacetime. Yet the Spin(10) chart (42.12) of fundamental fermions looks like it knows
at least about Lorentz transformations. Each species of fermion appears in the chart as four components (an
electron for example appears as eR, eL, ēR, and ēL), that are ordinarily distinguished from each other by
their behaviour under Lorentz transformations.
The intent of this section is to explore how Poincaré transformations might mesh with the Spin(10) GUT

group, or equivalently how the Lie algebras of the two groups might combine. When the Poincaré group
is extended to spinors, the resulting Lie algebra is the algebra of Dirac γ-matrices. Similarly, the algebra
associated with the SM contains more than just the bivector generators of the SM group. There are also
generators associated with the mysterious Higgs �eld, which the SM invokes to �ip the d-bit of a fermion,
thereby �ipping fermions of the same species between their right- and left-handed chiral components, for
example eR ↔ eL. Such a �ip is necessarily generated by an odd multivector in the Spin(10) geometric
algebra. And of course the SM contains spinors, and a scalar product of spinors. If Spin(10) is the GUT
group, then the associated relevant algebra is not merely the Lie algebra of the Spin(10) group, but the full
super geometric algebra associated with Spin(10).
The question then becomes, is the Dirac algebra a subalgebra of the Spin(10) geometric algebra, such that

the generators of Poincaré and SM transformations commute as required by the SM? An immediate obstacle
to embedding the Dirac algebra in the Spin(10) algebra is that the Dirac algebra contains a time dimension
whereas the 10 dimensions of Spin(10) are spacelike. This obstacle may be overcome by adjoining a pair of
extra dimensions, one of them timelike, to the 10 spacelike dimensions of Spin(10), �42.3.2, enlarging the
group to the group Spin(11, 1) of transformations in 11+1 spacetime dimensions.
A well-known no-go theorem (Coleman and Mandula, 1967; Mandula, 2015) states that, subject to some

plausible conditions, any symmetry group of the scattering matrix must be a direct product of the Poincaré
group and an internal symmetry group. The Coleman-Mandula theorem does not apply here because what
is being considered is a symmetry of the Lagrangian that is, somehow, broken, and therefore not necessarily
manifest in scattering experiments.
Percacci (1991) (see Nesti and Percacci (2008)) has previously proposed that the SM GUT group SO(10)

and the Lorentz group SO(3, 1) are uni�ed in SO(13, 1).

42.3.1 Striking and puzzling features of Spin(10) spinors

The Spin(10) chart (42.12) of fundamental fermions exhibits some striking features. The most prominent
striking feature is that the Spin(10) handedness coincides with the handedness, or chirality (R or L), of the
spinor under Lorentz transformations. The Spin(10) handedness of a spinor is the sign of the spinor under
the action of the Spin(10) chiral operator κ10, while chirality under Lorentz transformations is the sign of
the spinor under the action of the Dirac chirality operator traditionally denoted γ5. Mathematically, the

coincidence (signi�ed
?
=) is

I = iγ5 ≡ γγ0γγ1γγ2γγ3
?
= I10 = iκ10 ≡ γγ+

d γγ
−
d γγ

+
u γγ
−
u γγ

+
r γγ
−
r γγ

+
g γγ
−
g γγ

+
b γγ
−
b . (42.41)
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An essential property of the SM is that the Poincaré and SM groups commute, which implies that their Lie
algebras are distinct (combine as a commuting product). If the GUT group is Spin(10), and if the full Dirac
and Spin(10) geometric algebras are assumed to be distinct, then the Dirac and Spin(10) chiral operators
γ5 and κ10 would be distinct elements of the product algebra. But the fact that the γ5 and κ10 operators
yield the same result in all cases suggests the alternative hypothesis that γ5 and κ10 are in fact identical,
and that the spacetime γγm (m = 0, 1, 2, 3) and SM γγ±a (a = d, u, r, g, b) vectors are related, not distinct.
A second provocative feature of the Spin(10) chart (42.12) is that SM transformations are arrayed vertically,

whereas the 4 components of fermions of the same species, such as electrons eR and eL and their positron
partners ēL and ēR, are arrayed (mostly) horizontally. SM transformations are vertical because the columns
of the chart are SU(5) multiplets, and SU(5) contains the SM group UY (1)×SUL(2)×SU(3). In Dirac theory,
a Dirac spinor such as an electron has 4 complex components that are distinguished by their properties under
Lorentz transformations. The electron, for example, is a complex linear combination of 2 right-handed Weyl
spinors eV ↑ and eU↓ and 2 left-handed Weyl spinors eU↑ and eV ↓, that are distinguished by a boost bit
V or U and a spin bit ↑ or ↓. The boost and spin bits prescribe how the spinors transform under Lorentz
transformations. The juxtaposition of vertical SM and horizontal Lorentz transformations in the chart (42.12)
again signals that somehow Spin(10) incorporates both.
A third striking feature of the Spin(10) chart (42.12) is that �ipping the d-bit preserves the identity of the

spinor but �ips its chirality; for example the electron is �ipped eR ↔ eL.
In the Dirac representation, charge conjugation �ips electric charge, equations (41.36), and also �ips

chirality, equation (39.101). For example, the Dirac charge conjugate of the right-handed electron eR is its
left-handed oppositely-charged partner ēL. In the Spin(10) geometric algebra, conjugation similarly �ips
chirality and charge. Thus ēL in the Spin(10) chart (42.12) can be interpreted consistently as the conjugate
of eR in both Dirac and Spin(10) representations.
The inference that Dirac and Spin(10) conjugates are the same presents a puzzle. In the Spin(10) represen-

tation (42.12), the only non-vanishing scalar products are those of a spinor with its all-bit-�ip. For example,
the only non-vanishing Spin(10) scalar product of the right-handed electron eR is with its all-bit-�ip ēL, that
is, ēL · eR 6= 0. But in the Dirac representation, the Dirac scalar product is non-zero only for spinors of like
chirality. Thus in the Dirac representation ēL · eR = 0, in contradiction to the Spin(10) scalar product.
ISN'T IT ALSO WEIRD THAT eV ↑ ± ieU↑ HAVE OPPOSITE CHARGE?

42.3.2 An eleventh, and twelfth, dimension

The Spin(10) group acts on a vector space with 10 space dimensions but no time dimension. If indeed the
spacetime and SM algebras are united in a Spin(10) GUT algebra, then a time dimension must be adjoined
to the 10 space dimensions. Section ?? discusses whether it possible to do without extra dimensions, with
answer no.
Super geometric algebras live naturally in even dimensions. As discussed in parts 8 and 11 of Exercise 38.3,

there are two approaches to adding an extra odd, here 11th, dimension to a super geometric algebra. The �rst
is to project the 11-dimensional algebra into one lower dimension; the second is to embed the 11-dimensional
algebra in one higher dimension. The �rst approach, projecting into one lower dimension, requires identifying
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the 11-dimensional chiral operator with unity, κ11 = 1, in which case the 10-dimensional pseudoscalar I10

behaves like a timelike 11th dimension. This option is excluded because the putative time dimension γγ0 = I10

commutes with the pseudoscalar I10, in contradiction to the Dirac algebra, where the Dirac time dimension
γγ0 anticommutes with the Dirac pseudoscalar I = γγ0γγ1γγ2γγ3.
The second approach to adjoining an extra, 11th, dimension, described in part 11 of Exercise 38.3, is to

add not one but two additional dimensions γγ11 and γγ12, and to treat the extra 12th dimension as a scalar.
As described hereafter, this second approach is successful. But it raises the question, is the 12th dimension
really a scalar, or is it truly a genuine extra spatial dimension? Mathematically, the successful spinor metric
ε and conjugation operator C, equations (42.44) and (42.45), work in both 10+1 and 11+1 dimensions, so
from that perspective the 12th dimension could be either a scalar or a genuine dimension. On the other hand,
the mere fact that a 12th dimension is necessary, and that it appears ubiquitously in the algebra, suggests
that the 12th dimension is a genuine dimension. Ultimately, whatever the GUT group may be � Spin(10, 1),
or Spin(11, 1), or something else � is up to Nature. The treatment below is agnostic as to whether the 12th
dimension is a scalar or a genuine dimension. The algebra is referred to as that of Spin(11, 1), which is true
whether or not the 12th dimension is a scalar.
If the 12th dimension is a scalar, then it serves as a scalar operator that re�ects all axes. In 10+1 spacetime

dimensions, as here, the scalar dimension re�ects 10 space and 1 time dimension, so acts as a time-reversal
operator T that leaves spatial parity unchanged but �ips the direction of time.
Actually it proves advantageous to treat the 12th dimension as providing the time dimension γγ0 = iγγ12,

leaving the 11th dimension as either a scalar, or a genuine 11th spatial dimension. This follows the Dirac
pattern (39.141), where the chiral representation of the time axis γγ0 is real (with respect to i). In all, the
time dimension γγ0 and the possibly scalar time-reversal dimension T are

γγ0 = iγγ12 , T = γγ11 . (42.42)

Adding two extra dimensions adjoins an additional, 6th, T -bit to the 5 durgb bits of a Spin(10) spinor.
Like the other 5 bits, the T -bit of a Spin(11, 1) spinor takes the values ± 1

2 , equal to the spin-weight of the
spinor under rotations in the γγ11 ∧γγ12 plane, part 2 of Exercise 38.3. It should be remarked that if the
12th dimension is a scalar, then there are no actual rotations in the γγ11 ∧γγ12 plane, or indeed in any plane
that involves the scalar dimension. It is convenient to denote the 11th and 12th dimensions using the same
notation as the other SM vectors, equations (42.19),

γγ0 = iγγ12 = iγγ−T =
γγT − γγT̄√

2
, γγ11 = γγ+

T =
γγT + γγT̄√

2
. (42.43)

Enlarging the number of bits from 5 to 6 increases the number of fundamental spinor types from 25 = 32

to 26 = 64. This might seem a factor of 2 too many, since there are 2 leptons plus 6 quarks = 8 types,
times 2 for their antiparticles, times 2 handednesses, for 32 spinor types in a generation. But remember that
handedness depends on two Lorentz bits, boost and spin, so when spacetime transformations are adjoined,
the handedness factor increases from 2 to 4, increasing the number of spinor types to 64.
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42.3.3 The spinor metric and the conjugation operator

Any super geometric algebra contains two operators, the spinor metric ε, and the conjugation operator C,
that are invariant under rotations. A consistent translation between Spin(11, 1) and Dirac representations
must agree on the behaviour of these two operators.
In the Dirac representation, conjugation �ips electric charge, equations (41.25), and also �ips chirality,

�39.7. In the Spin(10) chart (42.12), conjugation does the same thing: it �ips all SM charges durgb, and it
also �ips chirality. It is consistent to identify the two operations of Dirac and Spin(11, 1) conjugation.
The Dirac spinor metric ε and conjugation operator C are respectively antisymmetric and symmetric.

Consistency requires that the Spin(11, 1) spinor metric and conjugation operator be similarly antisymmetric
and symmetric. Consultation of Tables 38.1 and 39.1 shows that in 11+1 dimensions only the standard choice
ε of spinor metric and associated conjugation operator C possess the desired antisymmetry and symmetry.
If one of the dimensions is a scalar, then in 10+1 dimensions both the standard ε and alternative εalt choices
of spinor metric, and the associated conjugation operators C and Calt, possess the desired antisymmetry and
symmetry; the tilde'd spinor metrics and conjugation operators have the wrong symmetry, and are excluded.
The choice that works in both 10+1 and 11+1 dimensions, and that permits seamless translation between

the Dirac and Spin(11, 1) algebras is, as in the standard (3+1)-dimensional Dirac algebra, the standard
spinor metric

ε = γγ+
d γγ

+
u γγ

+
r γγ

+
g γγ

+
b γγ

+
T . (42.44)

Below it will be found that the representation of the spatial rotation generator Jσ2, equation (42.53), coincides
with the representation of the spinor metric (42.44), which is similar to the coincidence (39.38) between Iσ2

and the spinor metric ε in the chiral representation of the Dirac algebra.
Given the Spin(11, 1) spinor metric (42.44), and with the time axis γγ0 = iγγ−T , the Spin(11, 1) conjugation

operator is

C = −iεγγ0 = εγγ12 = γγ+
d γγ

+
u γγ

+
r γγ

+
g γγ

+
b γγ

+
T γγ
−
T . (42.45)

Again, the choice (42.45) works in both 10+1 and 11+1 spacetime dimensions.
The Spin(11, 1) spinor metric ε and conjugation operator C are fundamental building blocks of the algebra,

and the expressions (42.44) and (42.45) for the two operators must remain unchanged through GUT and
electroweak symmetry breaking. For example, the expressions for Spin(11, 1) multivectors as outer products of
Spin(11, 1) spinors involve the same Spin(11, 1) spinor metric (42.44) regardless of any symmetry breaking.
Similarly, charge conjugation converts between particles and antiparticles, and that relation is the same
regardless of any symmetry breaking. It was remarked at the beginning of this section 42.3.3 that indeed
Dirac conjugation and Spin(11, 1) conjugation are consistent with being the same.

42.3.4 Electroweak Higgs �eld

In Dirac theory, chiral spinors are natively massless. Massive spinors are necessarily linear combinations of
right- and left-handed chiral spinors. For example, an electron in its rest frame is FIX: WRONG SIGN.
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(eR + ieL)/
√

2 (with spin either up ↑ or down ↓). The Spin(10) chart (42.12) shows that it is the d-bit that
distinguishes right- and left-handed fermions of the same species.
The Dirac equation in �at (Minkowski) space in the rest frame of a spinor ψ is (γγ0∂0 + mD)ψ = 0,

equation (41.8a). In the present case the time axis is γγ0 = iγγ−T . To have the e�ect of �ipping the d-bit, the
Dirac mass mD must be proportional to the bivector γγ−d ∧γγ0,

mD = mγγ−d ∧γγ0 . (42.46)

The d factor is γγ−d not γγ+
d because multiplying a (for example) rest-frame electron by γγ−d yields the same

electron (see eq. (??)), whereas multiplying by γγ+
d yields a positron. The SM attributes the Dirac masses

of fundamental fermions to a Higgs �eld. The expression (42.46) for the Dirac mass indicates that the
electroweak Higgs �eld is the bivector γγ−d ∧γγ0.
The identi�cation (42.46) of Dirac mass with the Higgs �eld γγ−d ∧γγ0 resolves the puzzle raised at the end

of �42.3.1, that the Spin(10) scalar product is non-vanishing only between all-bit-�ips (as is true also for the
Spin(11, 1) spinor metric (42.44)), and therefore �ips Spin(10) chirality, whereas the Dirac scalar product is
non-vanishing only between spinors of like chirality. The solution is that the Dirac mass (42.46) involves an
extra factor of γγ−d that �ips the Spin(10) chirality.
The behaviour of Higgs �elds are explored further in �??.

42.3.5 Translation from Spin(11, 1) to Dirac representation, Part 1

The Spin(10) chart (42.12) can now be translated into the Dirac representation.
The conventional interpretation of the Spin(10) chart (42.12) is that each spinor is a Weyl spinor with

2 complex components (4 components altogether). For example, the right-handed electron eR is the Weyl
spinor with complex components eV ↑ and eU↓. If indeed each spinor were a Weyl spinor, then it would be
necessary to adjoin to the generators of the Spin(11, 1) algebra an additional generator that serves to rotate
spatially the 2 complex components of the Weyl spinor into each other. The approach being followed here,
motivated by the coincidence (42.41) of Dirac and Spin(10) chiral operators, is instead to attempt to embed
the Dirac algebra in the Spin(11, 1) geometric algebra without adjoining further Lorentz generators.
After electroweak symmetry breaking, �ipping the d-bit �ips spinors between right- and left-handed chiral-

ities of the same species, for example eR ↔ eL. Massive spinors are linear combinations of the two chiralities.
Since massive spinors have de�nite spin, either ↑ or ↓, �ipping the d-bit must �ip the Dirac boost bit while
preserving the spin bit, for example, eV ↑ ↔ eU↑.
In the Dirac representation, conjugation �ips spin while preserving the boost bit, equations (39.101).
These conditions, that �ipping the d-bit �ips boost V ↔ U while conjugation �ips spin ↑↔↓, su�ce to

determine the translation between Dirac and Spin(11, 1) spinors of the same species (electrons, for exam-
ple), but they do not �x the translation across di�erent species. The translation across di�erent species is
determined by the condition that Lorentz transformations commute with SM transformations. In the Dirac
representation, after electroweak symmetry breaking, a boost by rapidity θ in the V -U boost plane boosts a
spinor by a real number e±θ/2, while a spatial rotation by angle θ in the ↑-↓ spin plane rotates a spinor by a
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phase e∓iθ/2. In the Spin(11, 1) geometric algebra there are two mutually commuting generators that trans-
form all spinors by a boost or phase and also commute with all SM transformations, namely the electroweak
pseudoscalar Idu and the colour pseudoscalar Irgb de�ned by

Idu ≡ γγ+
d γγ
−
d γγ

+
u γγ
−
u = −κdu ≡ −γγd ∧γγd̄ ∧γγu ∧γγū , (42.47a)

Irgb ≡ γγ+
r γγ
−
r γγ

+
g γγ
−
g γγ

+
b γγ
−
b = −iκrgb ≡ −iγγr ∧γγr̄ ∧γγg ∧γγḡ ∧γγb ∧γγb̄ . (42.47b)

The electroweak pseudoscalar Idu changes sign when an odd number of du bits are �ipped, while the colour
pseudoscalar Irgb changes sign when an odd number of rgb bits are �ipped. The pseudoscalars Idu and Irgb
can therefore be interpreted as generating respectively a Lorentz boost and a spatial rotation. The product
of the commuting boost and rotation operators Idu and Irgb is the Spin(10) pseudoscalar I10,

I10 = IduIrgb = iκ10 . (42.48)

In Dirac theory, the equivalent product of commuting boost and rotation operators γγ0γγ3 and γγ1γγ2 is the
Dirac pseudoscalar I = γγ0γγ1γγ2γγ3. So it would seem that the identi�cation of Idu and Irgb as boost and
rotation operators recovers the striking coincidence (42.41) between Dirac and Spin(10) pseudoscalars, an
encouraging result.
However, there is a hitch to identifying Idu as generating a boost, which is that the time axis γγ0 = iγγ−T

commutes with I10, which is incompatible with the Dirac algebra, where the time axis γγ0 anticommutes with
the pseudoscalar I = γγ0γγ1γγ2γγ3. The solution is to multiply the boost operator Idu by −iγγ+

T γγ
−
T , so that the

boost operator becomes −iIduT ≡ −iIduγγ+
T γγ
−
T ,

− iIduT ≡ −iγγ+
d γγ
−
d γγ

+
u γγ
−
u γγ

+
T γγ
−
T = −κduT ≡ −γγd ∧γγd̄ ∧γγu ∧γγū ∧γγT ∧γγT̄ . (42.49)

The reason for appending the factor −iγγ+
T γγ
−
T to the boost operator Idu rather than the rotation operator Irgb

is that spinors of opposite T -bit then have opposite boost, which allows spinors before electroweak symmetry
breaking to be linear combinations of T -up and T -down spinors and therefore be massive, �42.3.9, in much
the same way that after electroweak symmetry breaking massive spinors are linear combinations of d-up and
d-down spinors with opposite boost.
The resulting pseudoscalar is not the 10-dimensional pseudoscalar I10, but rather the 12-dimensional

pseudoscalar J = −iI12,

J ≡ −iI12 = −iIduT Irgb = −iγγ+
d γγ
−
d γγ

+
u γγ
−
u γγ

+
r γγ
−
r γγ

+
g γγ
−
g γγ

+
b γγ
−
b γγ

+
T γγ
−
T

= iκ12 ≡ iγγd ∧γγd̄ ∧γγu ∧γγū ∧γγr ∧γγr̄ ∧γγg ∧γγḡ ∧γγb ∧γγb̄ ∧γγT ∧γγT̄ . (42.50)

It is J , not I10, that should be identi�ed with the Dirac pseudoscalar I. The pseudoscalar J squares to −1,
like the Spin(10) and Dirac pseudoscalars I10 and I. The 12-dimensional chiral operator κ12 analogous to
the Dirac chiral operator γ5 = −iI is

κ12 = −iJ = −I12 . (42.51)

The sign of a spinor under κ12 can be called T -chirality.
Notice that the boost and rotation generators IduT and Irgb commute with the UY (1)× SUL(2)× SU(3)

transformations of the SM, but not with SU(5) transformations. As long as spacetime is 4-dimensional and
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IduT and Irgb generate Lorentz transformations that commute with internal transformations, SU(5) cannot
be an internal symmetry.
The Spin(10) chart (42.12) thus translates into the following chart, expressed in a form compatible with

the Dirac representation of spinors: FIX: SURELY iU → U∗ UNDER CHARGE CONJUGATION.

0 1 2 3 4 5

� : iν ∗V ↓ d : −ν ∗U↓ c̄ : iuc̄ ∗V ↓ dc̄ : −uc̄ ∗U↓ urgb : iνU↑ durgb : νV ↑

u : −e ∗U↓ du : ie ∗V ↓ rgb : eV ↑ drgb : ieU↑

c : dcV ↑ dc : idcU↑ uc̄ : −dc̄ ∗U↓ duc̄ : idc̄ ∗V ↓
uc : iucU↑ duc : ucV ↑

(42.52)

The Dirac boost bit is V or U as κduT is positive or negative, that is, as the number of duT up-bits is odd or
even. The Dirac spin bit is ↑ or ↓ as κrgb is positive or negative, that is, as the number of rgb up-bits is odd
or even. Spinors labelled with the complex conjugation sign ∗ are those identi�ed as charge conjugates in
the original Spin(10) chart (42.12). Phase factors of −1 and i are consistent with those of Dirac conjugation
in the chiral representation, equation (39.88).
The chart (42.52) is for spinors whose T -bit is up. Spinors whose T -bit is down �ll a duplicate chart in

which the Dirac boost bit is �ipped V ↔ U in all entries. The chart (42.52) must be considered provisional,
in part because the role of the T -bit is as yet hazy, and in part because the chart as it stands proves not to be
consistent with the requirement that all spacetime generators commute with all SM generators. A modi�ed,
consistent version (42.55) of the chart is presented in the next section 42.3.6.

42.3.6 Translation from Spin(11, 1) to Dirac representation, Part 2

In the Dirac representation, spinors of the same species and chirality but opposite boost and spin (other than
neutrinos�see �10.25) rotate spatially into each other; for example, right-handed electrons rotate spatially
into each other, eV ↑ ↔ eU↓. In the Dirac-Spin(11, 1) representation (42.52), a suitable choice of such a
generator is

Jσ2 = γγ+
d γγ

+
u γγ

+
r γγ

+
g γγ

+
b γγ

+
T , (42.53)

where J is the pseudoscalar (42.50). This spatial generator Jσ2 anticommutes with the spatial generator
Irgb of �42.3.5, consistent with the expected anticommutation of generators of spatial rotations. The expres-
sion (42.53) for Jσ2 coincides with that for the Spin(11, 1) spinor metric ε, but the two are not the same
because Jσ2 transforms as a multivector whereas the spinor metric ε transforms as a spinor tensor. The
coincidence of the expressions for Jσ2 and ε is similar to the coincidence (39.38) between Iσ2 and the spinor
metric ε in the chiral representation of the Dirac algebra.
Lorentz generators must commute with SM generators, to ensure that SM charges are unchanged by

Lorentz transformations. However, although the spatial rotation generator Jσ2, equation (42.53), does com-
mute with all real (in the chiral representation) bivectors (42.23a) of the SM group, it anticommutes with
all imaginary bivectors (42.23b) and (42.24) of the SM group. Thus commutation with the spatial rotation
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generator Jσ2 converts SM bivectors to their complex conjugates. Complex conjugation �ips charge. Thus
it would appear that the spatial rotation generator Jσ2 converts a spinor to another of opposite charge.
Clearly this is not admissible: a spatial rotation must leave the charge of a spinor unchanged.
The condition that Dirac and SM generators must commute is sacrosanct. The required commutation

between Dirac and SM generators can be rescued by multiplying imaginary SM bivectors by the colour
chiral operator κrgb. The operator κrgb has the properties that it commutes with all SM bivectors, and with
the boost IduT and spatial rotation Irgb generators, but anticommutes with Jσ2. Multiplying imaginary SM
bivectors by κrgb e�ectively replaces i by Irgb = iκrgb in the SM bivectors (42.23) and (42.24),

i√
2

(γγa ∧γγb̄ − γγā ∧γγb)→
Irgb√

2
(γγa ∧γγb̄ − γγā ∧γγb) , (42.54a)

iγγa ∧γγā → Irgb γγa ∧γγā . (42.54b)

Since κrgb commutes with all SM bivectors, the modi�cation (42.54) of imaginary SM bivectors leaves the
SM commutation rules of the SM algebra unchanged. The Lorentz generators IduT , Irgb, and Jσ2 commute
with all the modi�ed SM generators, as required.
The modi�cation (42.54) may seem ad hoc. But notice that the spinors that are complex-conjugated in

the Dirac-Spin(11, 1) chart (42.52) are precisely those for which the colour chiral operator κrgb is negative.
Therefore the modi�ed SM bivectors (42.54) acting on the spinors in the chart (42.52) yield in all cases the
charge of the un-conjugated spinor. The situation is similar to the original Dirac picture, where antispinors
arose not as conjugated spinors of opposite charge, but rather as negative mass spinors of the same charge.
FIX: REALLY? Similarly, quantum �eld theory interprets a spinor �eld as an operator ψ that contains both
positive and negative frequency components (Bjorken and Drell, 1964, eqs. (13.50)).
The spatial rotation Jσ2, equation (42.53), �ips all bits, including the T -bit. With such rotations included,

and with conjugate spinors relabelled as negative mass spinors, the provisional Dirac-Spin(11, 1) chart (42.52)
is modi�ed to: FIX: I'M STILL CONFUSED: CHARGE IS NOT A PROPERTY OF MASSLESS SPINORS.

0 1 2 3 4 5

� :
iν −V ↓
νU↓

d :
−ν −U↓
iνV ↓

c̄ :
iuc̄−V ↓
uc̄U↓

dc̄ :
−uc̄−U↓
iuc̄V ↓

urgb :
iνU↑
ν −V ↑

durgb :
νV ↑

−iν −U↑

u :
−e−U↓
ieV ↓

du :
ie−V ↓
eU↓

rgb :
eV ↑

−ie−U↑
drgb :

ieU↑
e−V ↑

c :
dcV ↑

−idc−U↑
dc :

idcU↑
dc−V ↑

uc̄ :
−dc̄−U↓
idc̄V ↓

duc̄ :
idc̄−V ↓
dc̄U↓

uc :
iucU↑
uc−V ↑

duc :
ucV ↑

−iuc−U↑

(42.55)

The modi�ed Dirac-Spin(11, 1) chart (42.55) di�ers from its precursor (42.52) in two respects. Firstly, spinors
labelled as conjugates ∗ in the precursor chart (42.52) are instead labelled with a minus superscript − in the
modi�ed chart (42.55), indicating negative mass solutions. Secondly, the modi�ed chart (42.55) contains two
spinors for each entry, the upper for T -bit up, the lower for T -bit down. The conventional interpretation of
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the original Spin(10) chart (42.12) was that each spinor entry is a Weyl spinor with 2 complex components. In
the modi�ed chart (42.55) the two complex components of the putative Weyl spinor appear in all-bit-�ipped
entries. For example, the components eV ↑ and eU↓ of a right-handed electron appear in the upper rgb and
lower du entries. FIX: HOW DID YOU ASSIGN PHASES?

Recall that in the Dirac representation, a massive spin-up electron at rest is identi�ed with a positive mass
solution FIX:WRONG SIGN e⇑↑ = (eV ↑ + ieU↑)/

√
2, while a massive spin-up positron at rest is identi�ed

with a negative mass solution e⇓↑ = (ieV ↑ + eU↑)/
√

2, equations (41.10). The positive- and negative-mass
spin-up electron solutions appear in the modi�ed chart (42.55) in respectively the T -bit up and T -bit down
entries of the rgb and drgb spinors.

The usual C and PT symmetries of Dirac theory are evident in the modi�ed chart (42.55). The Spin(11, 1)

charge conjugation operator C is de�ned by equation (42.45), and �ips durgb (but not T ) bits. The charge
conjugate ψ̄ ≡ Cψ∗ of a spinor involves taking the complex conjugate. SM charge operators iγγa ∧γγā are
imaginary, both before and after the modi�cation (42.54), so complex conjugation �ips the sign of SM
charge operators. Thus charge conjugation of the spinors in the chart (42.55) converts them to their antispinor
partners of opposite charge. For example, the charge conjugate of the spin-up electron at rest is FIX:WRONG
SIGN ē⇑↑ = (ie ∗V ↓ − e ∗U↓)/

√
2, precisely as in the precursor chart (42.52).

In Dirac theory, the PT operator is the Dirac pseudoscalar I. The Spin(11, 1) equivalent is the 12-
dimensional pseudoscalar J , equation (42.50). In Dirac theory, multiplying a spinor by the pseudoscalar
I converts it to its negative-mass partner, equations (41.42). Similarly in Spin(11, 1), multiplying a spinor by
the 12-dimensional pseudoscalar J converts it to its negative-mass partner. Multiplication by J is the same,
up to an unimportant phase, as multiplication by the 12-dimensional chiral operator κ12. Multiplication by
κ12 changes the sign of all spinors of left-handed T -chirality. In the chart (42.55), spinors of left-handed
T -chirality (odd number of durgbT bits up) are those whose entry includes a factor of i, so multiplying
by κ12 is the same as transforming i → −i in the chart (42.55). For example, this converts an electron
FIX:WRONG SIGN e⇑↑ = (eV ↑ + ieU↑)/

√
2 to its negative mass partner (eV ↑ − ieU↑)/

√
2 = −ie⇓↑.

42.3.7 The Dirac algebra as a subalgebra of the Spin(11, 1) geometric algebra

The previous section 42.3.6 argued that, if a translation between Spin(11, 1) and Dirac representations exists,
then it must take the form (42.55). The Dirac algebra incorporates a full suite of Poincaré transformations.
Is the Dirac-Spin(11, 1) representation (42.55) consistent with the full suite, in the sense that all Poincaré
generators commute with all SM generators? This section shows that the answer is yes.

The generators Jσ2 and Irgb, equations (42.53) and (42.47b), and their product constitute a set of 3
anticommuting generators of spatial rotations that commute with all SM generators. The pseudoscalar J is
given by equation (42.50). The full set of 6 Lorentz generators, consisting of 3 spatial generators Jσa and 3
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boost generators σa, is

Jσ1 = γγ+
d γγ

+
u γγ
−
r γγ
−
g γγ
−
b γγ

+
T , (42.56a)

Jσ2 = γγ+
d γγ

+
u γγ

+
r γγ

+
g γγ

+
b γγ

+
T , (42.56b)

Jσ3 = Irgb = γγ+
r γγ
−
r γγ

+
g γγ
−
g γγ

+
b γγ
−
b , (42.56c)

σ1 = −iγγ−d γγ
−
u γγ

+
r γγ

+
g γγ

+
b γγ
−
T , (42.56d)

σ2 = iγγ−d γγ
−
u γγ
−
r γγ
−
g γγ
−
b γγ
−
T , (42.56e)

σ3 = −iIduT = −iγγ+
d γγ
−
d γγ

+
u γγ
−
u γγ

+
T γγ
−
T . (42.56f)

The 6 Lorentz generators all have grade 6. They are not bivectors, but they nevertheless generate Lorentz
transformations. The 8 basis elements of the complete Lie algebra of Lorentz transformations comprise the
6 Lorentz generators (42.56) along with the unit element and the pseudoscalar J given by equation (42.50).
The commutation rules of the elements of the Lie algebra are those of the Lorentz algebra. With the modi-
�cation (42.54) to SM generators, all the Lorentz generators commute with all SM generators.
Given a time vector γγ0 and a set of generators σa of Lorentz boosts, spatial vectors γγa can be deduced by

Lorentz transforming γγ0 appropriately. Since the boost generators satisfy σa = γγ0γγa, spatial vectors satisfy
γγa = −γγ0σa. With the time axis γγ0 = iγγ−T and the expressions (42.56) for σa, the full set of 4 spacetime
vectors γγm is

γγ0 = iγγ−T , (42.57a)

γγ1 = γγ−d γγ
−
u γγ

+
r γγ

+
g γγ

+
b , (42.57b)

γγ2 = −γγ−d γγ
−
u γγ
−
r γγ
−
g γγ
−
b , (42.57c)

γγ3 = γγ+
d γγ
−
d γγ

+
u γγ
−
u γγ

+
T . (42.57d)

The vectors (42.57) all have grade 1 mod 4. The multiplication rules for the vectors γγm given by equa-
tions (42.57) agree with the usual multiplication rules for Dirac γ-matrices: the vectors γγm anticommute,
and their scalar products form the Minkowski metric. All the spacetime vectors γγm commute with all SM
generators modi�ed per (42.54).
Thus the Dirac and SM algebras are subalgebras of the Spin(11, 1) geometric algebra, such that all Dirac

generators commute with all SM generators.

42.3.8 Geometry

How to conceptualize spacetime vectors (42.57)? At least the time dimension is just a simple vector. The 3
spatial dimensions share a common factor of γγ−d γγ

−
u . Aside from that common factor, each of the 3 spatial di-

mensions is itself 3-dimensional: γγ+
r γγ

+
g γγ

+
b , γγ

−
r γγ
−
g γγ
−
b , and γγ

+
d γγ

+
u γγ

+
T . By construction, all SM transformations

leave all spacetime vectors unchanged.
Set of 5 multivectors that anticommute with the spacetime vectors (42.57) and with each other, and

therefore provide a set of vectors orthogonal to the spacetime vectors (42.57), are

iγγ−d γγ
−
T , iγγ−u γγ

−
T , γγ+

d γγ
+
r γγ
−
r γγ
−
T , γγ+

u γγ
+
g γγ
−
g γγ
−
T , γγ+

T γγ
+
b γγ
−
b γγ
−
T . (42.58)
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42.3.9 Massive spinors before electroweak symmetry breaking

This section argues that before electroweak symmetry breaking, massive spinors are linear combinations of
T -up and T -down spinors.

After electroweak symmetry breaking, massive spinors (aside from neutrinos, �10.25) are linear combina-
tions of d-bit up and d-bit down spinors. Before electroweak symmetry breaking, d-charge is conserved, and
massive spinors cannot be linear combinations of d-up and d-down spinors. Spinors with opposite d-bits are
distinct species, with di�erent electroweak interactions. But massive spinors can be linear combinations T -up
and T -down spinors. The chart (42.55) would seem to suggest that this is not possible because T -up and
T -down components would appear to have opposite mass. But this is deceiving: chiral (massless) components
do not by themselves carry a de�nite sign of mass. This is evident after electroweak symmetry breaking from
the fact that positive and negative mass electrons are linear combinations of the same chiral components
eV ↑ and eU↑ (or eU↓ and eV ↓).

To see that massive spinors can be linear combinations of T -up and T -down spinors before electroweak
symmetry breaking, consider that there are two ways to �ip the T -bit of a spinor: either multiply by the time
axis γγ0 ≡ iγγ−T = (γγT − γγT̄ )/

√
2, or else multiply by the time-reversal operator T ≡ γγ11 = (γγT + γγT̄ )/

√
2. In

Dirac theory, multiplying a positive mass electron by the time axis γγ0 = (γγv + γγu)/
√

2 leaves the electron's
identity unchanged, whereas multiplying the same positive mass electron by the time axis' Newman-Penrose
partner γγ3 = (γγv − γγu)/

√
2 �ips the electron to its negative mass partner, equations (14.102). In the same

way, multiplying a positive-mass Spin(11, 1) spinor by the time axis γγ0 = iγγ−T leaves its identity unchanged,
while multiplying by T = γγ11 �ips the spinor to its negative-mass partner.

At the risk of being repetitive, here is a version of the chart (42.55) in which massive spinors are linear
combinations of T -up and T -down, and all those combinations are positive mass:

0 1 2 3 4 5

� :
iνV ↓
νU↓

d :
νU↓
iνV ↓

c̄ :
iuc̄V ↓
uc̄U↓

dc̄ :
uc̄U↓
iuc̄V ↓

urgb :
iνU↑
νV ↑

durgb :
νV ↑
iνU↑

u :
eU↓
ieV ↓

du :
ieV ↓
eU↓

rgb :
eV ↑
ieU↑

drgb :
ieU↑
eV ↑

c :
dcV ↑
idcU↑

dc :
idcU↑
dcV ↑

uc̄ :
dc̄U↓
idc̄V ↓

duc̄ :
idc̄V ↓
dc̄U↓

uc :
iucU↑
ucV ↑

duc :
ucV ↑
iucU↑

(42.59)

FIX: COMMENT ON SAME LABEL SPINORS. The chart (42.59) di�ers from the previous chart (42.55)
in that all minus signs are gone. As with the previous chart (42.55), negative mass states are obtained by
multiplying by the pseudoscalar J , which �ips i → −i. Charge conjugate states are obtained by taking the
complex conjugate and multiplying by the conjugation operator C de�ned by equation (42.45).

FIX: PHYSICAL INTERPRETATION?
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42.4 Spacetime built from spinors

Section 42.3 showed that the Lie algebras of the Poincaré and Standard Model groups are commuting
subalgebras of the geometric algebra associated with the Grand Uni�ed group Spin(11, 1).
The Spin(11, 1) geometric algebra is isomorphic to the algebra of outer products of spinors in 11+1

dimensions. It is therefore natural to hypothesize that spacetime itself is built from spinors. This is di�erent
from general relativity, which builds spacetime from vectors. The basic arguments in favour of the hypothesis
that spacetime is built from spinors are: (a) Nature builds fundamental particles out of spinors, (b) spinors
are more fundamental than vectors, and (c) the Poincaré structure of spacetime is built into spinors. I do
not have a full theory of how spacetime is built from spinors. But it is interesting to explore what such a
theory might look like.
An encouraging feature of a theory of spacetime built on spinors is that spinors are quantized from

the outset, �41.4. Row spinors behave like fermionic creation operators, and column spinors behave like
annihilation operators. A row spinor can multiply a column spinor (creation following annihilation), and
a column spinor can multiply a row spinor (annihilation following creation), but a column spinor cannot
multiply a column spinor (annihilation following annihilation cannot occur), and a row spinor cannot multiply
a row spinor (creation following creation cannot occur). A theory of spacetime built on spinors should respect
that natural quantization, and not attempt to impose quantization in some other ad hoc way.

42.4.1 Multivector forms and spinor forms

The Spin(11, 1) group that contains the SM and Lorentz groups is a group of symmetries of the tangent
space at a point of (11+1)-dimensional spacetime. To build spacetime, it is necessary, somehow, to step out
of the tangent space into spacetime itself.
The classical object that links the tangent space of a spacetime (a manifold) to the spacetime itself is an

interval, or 1-form, dxµ. On the one hand an interval lives in the tangent space of the spacetime. On the
other hand an interval represents extension in the spacetime itself. For example, an interval γγ1dx

1 is a vector
in the tangent space, with direction γγ1 and in�nitesimal length dx1. At the same time, the interval γγ1dx

1

connects points in the spacetime an in�nitesimal distance dx1 apart along the direction γγ1. The length of a
line in the spacetime may be obtained by integrating over a 1-form.
The tangent space admits objects of higher dimension, up to the dimension N of the spacetime. For

example the bivector 2-form γγ1 ∧γγ2 d
2x12 represents an element of area. The area element is a 2-dimensional

element of the tangent space, but it also represents an in�nitesimal element of area, of magnitude d2x12, in
the spacetime itself. The area of a 2-dimensional surface in spacetime may be obtained by integrating over
a 2-form. More generally, a multivector p-form γγM dpxM , with antisymmetric index M = m1...mp, is both a
p-dimensional element of the tangent space and an in�nitesimal p-volume of magnitude dpxM .
If spacetime is to be built from spinors rather than vectors, then vector or multivector intervals must be

constructed from spinor intervals. Indeed, spinors have the properties needed to permit such a construction.
As seen in Exercises 38.3, and 39.6 the algebra of outer products of spinors is isomorphic to the geometric
algebra of multivectors. Outer products of εaεb · of basis spinors are related to basis multivectors γγM by an
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invertible matrix γMab ,

εaεb · = γMabγγM , γγM = γabMεaεb · , γMab = 2−[N/2] εb · γγMεa , γabM = − εa · γγMεb . (42.60)

If multivectors γγM are expressed in terms of a null (Newman-Penrose) basis, then the matrix γMab is real, but if
multivectors are expressed in terms of an orthonormal basis, then the matrix γMab is complex. Equation (42.60)
motivates introducing spinor 2-forms (εaεb ·) d2θab related to multivector p-forms γγM dpxM by the de�ning
relation

(εaεb ·) d2θab = γγM dpxM . (42.61)

Equations (42.60) and (42.61) imply that the magnitudes d2θab and dpxM of spinor 2-forms and multivector
p-forms are related by

d2θab = γabM dpxM , dpxM = γMab d
2θab . (42.62)

The indices a and b of a spinor 2-form each run over all 2[N/2] = 26 = 64 spinor indices, yielding the full set
of 22[N/2] = 642 = 4096 basis multivector p-forms.
As just seen, the hypothesis that spacetime is built from spinors requires the introduction of spinor 2-

forms. If spinor 2-forms are necessary, then presumably so also are spinor 1-forms εa dθa. A spinor basis
element εa is, like a multivector γγM , an element of the tangent space of the spacetime. The magnitude dθa

of a spinor 1-form εa dθ
a is an in general complex in�nitesimal number that gives the complex magnitude of

the geometric element signi�ed by εa. Associated with a column spinor εa is a row spinor εa·, and there is
a corresponding row spinor 1-form (εa ·) dθa.
Should the complex coe�cients dθa of a spinor interval εa dθa be interpreted as coordinates of a complex

spinor spacetime?

42.5 Appendix: A Dirac algebra that is a subalgebra of the Spin(10) algebra

After electroweak symmetry breaking, where d-charge is not conserved, there is a Dirac algebra, given by
equations (42.63) and (42.65) below, which is a subalgebra of the Spin(10) geometric algebra with no extra
dimensions. In this Dirac algebra the time axis is γγ0 = iγγ−d , and all Dirac generators commute with all
broken-SM generators. Section ?? explains why this algebra is not viable as the Dirac algebra that can sit
alongside the SM algebra in an enveloping Spin(10) algebra.
The Lorentz generators are

Iσ1 = iγγ−u γγ
+
r γγ

+
g γγ

+
b , (42.63a)

Iσ2 = iγγ−u γγ
−
r γγ
−
g γγ
−
b , (42.63b)

Iσ3 = Irgb = γγ+
r γγ
−
r γγ

+
g γγ
−
g γγ

+
b γγ
−
b , (42.63c)

σ1 = iγγ−d γγ
+
d γγ
−
u γγ

+
r γγ

+
g γγ

+
b , (42.63d)

σ2 = −iγγ−d γγ
+
d γγ

+
u γγ

+
r γγ

+
g γγ

+
b , (42.63e)

σ3 = Idu = γγ+
d γγ
−
d γγ

+
u γγ
−
u , (42.63f)
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with pseudoscalar

I = IduIrgb = I10 . (42.64)

The spatial rotation generator Iσ2, equation (42.63b), does not commute with broken-SM bivectors, but it
does commute with broken-SM generators after imaginary bivectors are modi�ed per (42.54).
Given the time axis γγ0 = iγγ−d , the spatial axes γγa = −γγ0σa follow from γγ0 and the boost generators σa

given by equations (42.63),

γγ0 = iγγ−d , (42.65a)

γγ1 = γγ+
d γγ

+
u γγ
−
r γγ
−
g γγ
−
b , (42.65b)

γγ2 = −γγ+
d γγ

+
u γγ

+
r γγ

+
g γγ

+
b , (42.65c)

γγ3 = iγγ+
d γγ

+
u γγ
−
u . (42.65d)

All spacetime generators γγm, equations (42.65), commute with all broken-SM generators modi�ed per (42.54).
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