JAMB SYLLABUS

CHEMISTRY

GENERAL OBJECTIVES

The aim of the Unified Tertiary Matriculation Examination (UTME) syllabus in Chemistry is to prepare the candidates for the Board's examination. It is designed to test their achievement of the course objectives, which are to:

(i) understand the basic principles and concepts in chemistry;

(ii) interpret scientific data relating to chemistry;

(iii) deduce the relationships between chemistry and other sciences;

(iv) apply the knowledge of chemistry to industry and everyday life.

DETAILED SYLLABUS

TOPICS/CONTENTS/NOTES	OBJECTIVES
1. Separation of mixtures	Candidates should be able to:
and purification of chemical	
substances	(i) distinguish between pure
	and impure substances;
(a) Pure and impure	(ii) use boiling and melting
substances	points as criteria for purity of
(b) Boiling and melting points	chemical substances;
(c) Elements, compounds and	(iii) distinguish between
mixtures	elements, compounds and
(d) Chemical and physical	mixtures;
changes	(iv) differentiate between
(e) Separation processes:	chemical and physical
Evaporation, simple and	changes;
fractional distillation,	(v) identify the properties of
sublimation, filtration,	the components of a mixture;
crystallization, paper and	(vi) specify the principle
column chromatography,	involved in each separation
simple and fractional	method;
crystallization, magnetization,	(vii) apply the basic principle
decantation.	of separation processes in
	everyday life.
2. Chemical combination	Candidates should be able to:

www.examministry.com

Stoichiometry, laws of definite	(i) perform simple calculations
and multiple proportions, law	involving formulae,
of conservation of matter, Gay	equations/chemical
Lussac's law of combining	composition and the mole
volumes, Avogadro's law;	concept;
chemical symbols, formulae,	(ii) deduce the chemical laws
equations and their uses,	from given
relative atomic mass based on	expressions/statements/data;
12C=12, the mole concept and	(iii) interpret graphical
Avogadro's number.	representations related to
	these laws;
	(iv) deduce the stoichiometry
	of chemical reactions.
3. Kinetic theory of matter	Candidates should be able to:
and Gas Laws	
	(i) apply the theory to
(a) An outline of the kinetic	distinguish between solids,
theory of matter;	liquids and gases;
	(ii) deduce reasons for change
(i) melting,	of state;
(ii) vapourization	(iii) draw inferences based on
(iii) boiling	molecular motion;
(iv) freezing	(iv) deduce gas laws from
(v) condensation	given expressions/
	statements;

in terms of molecular motion	(v) interpret graphical
and Brownian movement.	representations related to
	these laws;
(b)(i) The laws of Boyle,	(vi) perform simple
Charles, Graham and Dalton	calculations based on these
(law of partial pressure);	laws, equations and
combined gas law, molar	relationships.
volume and atomicity of	
gases.	
(ii) The ideal gas equation (PV	
= nRT).	
(iii) The relationship between	
vapour density of gases and	
the relative molecular mass.	
4. Atomic structure and	Candidates should be able to:
bonding	
	(i) distinguish between atoms,
(a) (i)The concept of atoms,	molecules and ions;
molecules and ions, the works	(ii) identify the contributions of
of Dalton, Millikan, Rutherford,	these scientists to the
Moseley, Thompson and Bohr.	development of the atomic
(ii) Atomic structure, electron	structure;
configuration, atomic number,	(iii) deduce the number of
mass number and isotopes;	protons, neutrons and
specific examples should be	electrons from atomic and
drawn from elements of	mass numbers of an atom;

atomic number 1 to 20.	(iv) apply the rules guiding the
(iii) Shapes of s and p orbitals.	arrangement of electrons in an
	atom;
(b) The periodic table and	(v) identify common elements
periodicity of elements,	exhibiting isotopy;
presentation of the periodic	(vi) relate isotopy to mass
table with a view to	number;
recognizing families of	(vii) perform simple
elements e.g. alkali metals,	calculations relating to
halogens, the noble gases and	isotopy;
transition metals. The	(viii) differentiate between the
variation of the following	shapes of the orbitals;
properties: ionization energy,	(ix) determine the number of
ionic radii, electron affinity and	electrons in s and p atomic
electronegativity.	orbitals;
	(x) relate atomic number to
(c) Chemical bonding.	the position of an element on
	the periodic table;
Electrovalency and covalency,	(xi) relate properties of groups
the electron configuration of	of elements on the periodic
elements and their tendency	table;
to attain the noble gas	(xii) identify reasons for
structure. Hydrogen bonding	variation in properties across
and metallic bonding as special	the period and down the
types of electrovalency and	groups.
covalency respectively;	(xiii) differentiate between the
coordinate bond as a type of	different types of bonding.

covalent bond as illustrated by	(xiv) deduce bond types based
complexes like $[Fe(CN)_6]^{3-}$,	on electron configurations;
$[Fe(CN)_6]^{4-}$, $[Cu(NH_3)_4]^{2+}$ and	(xv) relate the nature of
$[Ag(NH_3)_2]^+$; van der Waals'	bonding to properties of
forces should be mentioned as	compounds;
a special type of bonding	(xvi) differentiate between the
forces.	various shapes of molecules;
	(xvii) distinguish between
(d) Shapes of simple	ordinary chemical
molecules: linear ((H_2 , O_2 ,	reaction and nuclear reaction;
C_{12} ,HCl and CO_2), non-linear	(xviii) differentiate between
(H_2O) and tetrahedral; (CH4)	natural and artificial
and pyramidal (NH3).	radioactivity;
	(xix) compare the properties
(e) Nuclear Chemistry:	of the different types of
	nuclear radiations;
(i) Radioactivity – Types and	(xx) compute simple
properties of radiations	calculations on the half-life of
(ii) Nuclear reactions. Simple	a radioactive material;
equations, uses and	(xxi) balance simple nuclear
applications of natural and	equation;
artificial radioactivity.	(xxii) identify the various
	applications of radioactivity.
5. Air	Candidates should be able to:
(a) The natural gaseous	(i) deduce reason (s) for the

constituents and their	existence of air as a mixture;
proportion in the air.	(ii) identify the principle
– nitrogen, oxygen, water	involved in the separation of
vapour, carbon (IV) oxide and	air components;
the noble gases (argon and	(iii) deduce reasons for the
neon).	variation in the composition of
	air in the environment;
(b) Air as a mixture and some	(iv) specify the uses of some
uses of the noble gas.	of the constituents of air.
6. Water	Candidates should be able to:
(a) Water as a product of the	(i) identify the various uses of
combustion of hydrogen and	water;
its composition by volume.	(ii) identify the effects of
	dissolved atmospheric gases in
(b) Water as a solvent,	water;
atmospheric gases dissolved in	(iii) distinguish between the
water and their biological	properties of hard and soft
significance.	water;
	(iv) determine the causes of
(c) Hard and soft water:	hardness;
Temporary and permanent	(v) identify methods of
hardness and methods of	removal of hardness;
softening hard water.	(vi) describe the processes
	involved in the treatment of
(d) Treatment of water for	water for town supply;

town supply.	(vii) distinguish between these
	phenomena;
(e) Water of crystallization,	(viii) identify the various
efflorescence, deliquescence	compounds that exhibit these
and hygroscopy. Examples of	phenomena.
the substances exhibiting	
these properties and their	
uses.	
7. Solubility	Candidates should be able to:
	(i) distinguish between the
supersaturated solutions.	
Solubility curves and simple	
	(iii) calculate the amount of
(solubility defined in terms of	
	given amount of solvent at a
calculations.	given temperature;
	(iv) deduce that solubility is
(b) Solvents for fats, oil and	
	(v) relate nature of solvents to
solvents for the removal of	,
stains.	(vi) differentiate among true
	solution, suspension and
(c) False solution (Suspensions	colloids;
and colloids):	(vii) compare the properties of
	a true solution and a 'false'

Properties and examples.	solution.
Harmattan haze and water	(viii) provide typical examples
paints as examples of	of suspensions and colloids.
suspensions and fog, milk,	
aerosol spray, emulsion paints	
and rubber solution as	
examples of colloids.	
8. Environmental Pollution	Candidates should be able to:
(a) Sources and effects of	(i) identify the different types
pollutants.	of pollution and pollutants;
	(ii) specify different sources of
(b) Air pollution:	pollutants
Examples of air pollutants	(iii) classify pollutants as
such as H_2S , CO, SO ₂ , oxides	biodegradable and non-
of nitrogen,	biodegradable;
chlorofluorocarbons and dust.	(iv) specify the effects of
	pollution on the environment;
(c) Water pollution	(v) identify measures for
Sewage and oil pollution	control of environmental
should be known.	pollution.
(d) Soil pollution:	
Oil spillage, biodegradable and	
non-biodegradable pollutants.	

9. Acids, bases and salts	Candidates should be able to:
(a) General characteristics and	(i) distinguish between the
properties of acids, bases and	properties of acids and bases;
salts. Acids/base indicators,	(ii) identify the different types
basicity of acids; normal,	of acids and bases;
acidic, basic and double salts.	(iii) determine the basicity of
An acid defined as a substance	acids;
whose aqueous solution	(iv) differentiate between
furnishes H_3O^+ ions or as a	acidity and alkalinity using
proton donor. Ethanoic, citric	acid/base indicators;
and tartaric acids as examples	(v) identify the various
of naturally occurring organic	methods of preparation of
acids, alums as examples of	salts;
double salts, preparation of	(vi) classify different types of
salts by neutralization,	salts;
precipitation and action of	(vii) relate degree of
acids on metals. Oxides and	dissociation to strength of
trioxocarbonate (IV) salts	acids and bases;
	(viii) relate degree of
(b) Qualitative comparison of	dissociation to conductance;
the conductance of molar	(ix) perform simple
solutions of strong and weak	calculations on pH and pOH;
acids and bases, relationship	(x) identify the appropriate
between conductance and	acid-base indicator;
amount of ions present.	(xi) interpret graphical

	representation of titration
(c) pH and pOH scale; Simple	curves;
calculations	(xii) perform simple
	calculations based on the mole
(d) Acid/base titrations.	concept;
	(xiii) balance equations for the
(e) Hydrolysis of salts:	hydrolysis of salts;
Principle	(xiv) deduce the properties
Simple examples such as	(acidic, basic, neutral) of the
$NH_4CI,AlCI_3,Na_2CO_3\text{and}$	resultant solution.
CH ₃ COONa	
10. Oxidation and reduction	Candidates should be able to:
(a) Oxidation in terms of the	(i) identify the various forms
addition of oxygen or removal	of expressing oxidation and
of hydrogen.	reduction;
	(ii) classify chemical reactions
(b) Reduction as removal of	in terms of oxidation or
oxygen or addition of	reduction;
hydrogen.	(iii) balance redox reaction
	equations;
(c) Oxidation and reduction in	(iv) deduce the oxidation
terms of electron transfer.	number of chemical species;
	(v) compute the number of
(d) Use of oxidation numbers.	electron transfer in redox
Oxidation and reduction	reactions;

treated as change in oxidation	(vi) identify the name of redox
number and use of oxidation	species in a reaction
numbers in balancing simple	(vii) distinguish between
equations.	oxidizing and reducing agents
	in redox reactions.
(e) IUPAC nomenclature of	(viii) apply oxidation number
inorganic compounds using	in naming inorganic
oxidation number.	compounds
	(ix) relate reagents to their
(f) Tests for oxidizing and	oxidizing and reducing
reducing agents.	abilities.
11. Electrolysis	Candidates should be able to:
(a) Electrolytes and non-	(i) distinguish between
electrolytes. Faraday's laws of	electrolytes and non-
electrolytes. Faraday's laws of electrolysis.	electrolytes and non- electrolytes;
electrolysis.	electrolytes;
electrolysis.	electrolytes; (ii) perform calculations based on faraday as a mole of
electrolysis. (b) (i) Electrolysis of dilute H ₂ SO ₄ , aqueous CuSO ₄ , CuC1 ₂	electrolytes; (ii) perform calculations based on faraday as a mole of
electrolysis. (b) (i) Electrolysis of dilute H ₂ SO ₄ , aqueous CuSO ₄ , CuC1 ₂	electrolytes; (ii) perform calculations based on faraday as a mole of electrons. (iii) identify suitable electrodes
electrolysis. (b) (i) Electrolysis of dilute H ₂ SO ₄ , aqueous CuSO ₄ , CuC1 ₂ solution, dilute and	electrolytes; (ii) perform calculations based on faraday as a mole of electrons. (iii) identify suitable electrodes
electrolysis. (b) (i) Electrolysis of dilute H ₂ SO ₄ , aqueous CuSO ₄ , CuC1 ₂ solution, dilute and concentrated NaC1 solutions	electrolytes; (ii) perform calculations based on faraday as a mole of electrons. (iii) identify suitable electrodes for different electrolytes.
electrolysis. (b) (i) Electrolysis of dilute H_2SO_4 , aqueous CuSO ₄ , CuC1 ₂ solution, dilute and concentrated NaC1 solutions and fused NaC1	electrolytes; (ii) perform calculations based on faraday as a mole of electrons. (iii) identify suitable electrodes for different electrolytes. (iv) specify the chemical
electrolysis. (b) (i) Electrolysis of dilute H ₂ SO ₄ , aqueous CuSO ₄ , CuC1 ₂ solution, dilute and concentrated NaC1 solutions and fused NaC1 (ii) Factors affecting discharge	electrolytes; (ii) perform calculations based on faraday as a mole of electrons. (iii) identify suitable electrodes for different electrolytes. (iv) specify the chemical reactions at the electrodes;

Purification of metals	affect the products of
e.g.copper and production of	electrolysis;
elements and compounds (Al,	(vii) specify the different areas
Na, O_2 , CI_2 and NaOH).	of application of electrolysis;
	(viii) identify the various
(d) Electrochemical cells:	electrochemical cells;
Redox series (K, Ca,Na, Mg,	(ix) calculate electrode
Al, Zn, Fe, Sn, Pb, H, Cu, Hg,	potentials using halfcell
Ag, Au,) half-cell reactions and	reaction equations;
electrode potentials.	(x) determine the different
(Simple calculations only).	areas of application of
	electrolytic processes;
(e) Corrosion as an electrolytic	(xi) identify methods used in
process, cathodic protection of	protecting metals.
metals, painting, electroplating	
and coating with grease or oil	
as ways of preventing iron	
from corrosion.	
12. Energy changes	Candidates should be able to:
(a) Energy changes(Δ H)	(i) determine the types of heat
accompanying physical and	changes (ΔH) in physical and
chemical changes: dissolution	chemical processes;
of substances in/or reaction	(ii) interpret graphical
with water e.g. Na, NaOH, K,	representations of heat
NH4Cl. Endothermic $(+\Delta H)$	changes;

and exothermic (-	(iii) relate the physical state of
Δ H)reactions.	a substance to the degree of
	orderliness;
(b) Entropy as an order-	(iv) determine the conditions
disorder phenomenon: simple	for spontaneity of a reaction ;
illustrations like mixing of	(v) relate ΔH^0 , ΔS^0 and ΔG^0 as
gases and dissolution of salts.	the driving forces for chemical
	reactions;
(c) Spontaneity of reactions:	(vi) solve simple problems
$\Delta G^0=0$ as a criterion for	based on the relationships
equilibrium, ΔG greater or less	$\Delta G^0 = \Delta H^0 - T\Delta S^0$
than zero as a criterion for	
non-spontaneity or	
spontaneity respectively.	
13. Rates of Chemical	Candidates should be able to:
Reaction	
	(i) identify the factors that
(a) Elementary treatment of	affect the rates of a chemical
the following factors which can	reaction;
change the rate of a chemical	(ii) determine the effects of
reaction:	temperature on the rate of
(i) Temperature e.g. the	reactions;
reaction between HCl and	
reaction between HCl and	(iii) examine the effect of concentration/pressure on the

$Na_2S_2O_3$, HCl and marble and	chemical reaction is affected
the iodine clock reaction, for	by surface area;
gaseous systems, pressure	(v) determine the types of
may be used as concentration	catalysts suitable for different
term.	reactions and their effects;
(iii) Surface area e.g. the	(vi) determine ways of
reaction between marble and	moderating these effects in
HCl with marble in	chemical reactions.
(i) powdered form	(vii) interpret reaction rate
(ii) lumps of the same mass.	curves;
(iv) Catalyst e.g. the	(viii) solve simple problems on
decomposition of H_2O_2 or	the rate of reactions;
$KCIO_3$ in the presence or	(ix) relate the rate of reaction
absence of MnO ₂	to the kinetic theory of matter.
	(x) examine the significance of
(b) Reaction rate curves.	activation energy to chemical
	reactions.
(c)Activation energy	(xi) deduce the value of
Qualitative treatment of	activation energy(Ea) from
Arrhenius' law and the collision	reaction rate curves.
theory, effect of light on some	
reactions. e.g. halogenation of	
alkanes	
14. Chemical equilibra	Candidates should be able to:
Reversible reactions and	(i) identify the factors that

factors governing the	affect the position of
equilibrium position. Dynamic	equilibrium of a chemical
equilibrium. Le Chatelier's	reaction;
principle and equilibrium	(ii) predict the effects of each
constant. Simple examples to	factor on the position of
include action of steam on iron	equilibrium;
and N_2O_4 2NO ₂ .	(iii) determine the effects of
No calculation will be required.	these factors on equilibrium
	constant.
15. Non-metals and their	Candidates should be able to:
compounds	
	(i) predict reagents for the
(a) Hydrogen: commercial	laboratory and industrial
production from water gas and	preparation of these gases and
cracking of petroleum	their compounds.
fractions, laboratory	(ii) identify the properties of
preparation, properties, uses	the gases and their
and test for hydrogen.	compounds.
	(iii) compare the properties of
(b) Halogens: Chlorine as a	these gases and their
representative element of the	compounds.
halogen. Laboratory	(iv) specify the uses of each
preparation, industrial	gas and its compounds;
preparation by electrolysis,	(v) determine the specific test
properties and uses, e.g.	for each gas and its
water sterilization, bleaching,	compounds.

manufacture of HCI, plastics	(vi) determine specific tests
and insecticides.	for CI-, SO4 ²⁻ , SO3 ²⁻ , S ²⁻ ,NH4
Hydrogen chloride and	⁺ , NO ₃ ⁻ , CO ₃ ²⁻ , HCO ⁻ ₃
Hydrochloric acid:	(vii) predict the reagents for
Preparation and properties.	preparation, properties and
Chlorides and test for	uses of HCl(g) and HCl(aq);
chlorides.	(viii) identify the allotropes of
	oxygen;
(c) Oxygen and Sulphur	(ix) determine the significance
	of ozone to our environment.
(i) Oxygen:	(x) classify the oxides of
Laboratory preparation,	oxygen and their properties
properties and uses.	(xi) identify the allotropes of
Commercial production from	sulphur and their uses;
liquid air. Oxides: Acidic,basic,	(xii) predict the reagents for
amphoteric and neutral,	preparation, properties and
trioxygen (ozone) as an	uses of SO ₂ and H_2S ;
allotrope and the importance	(xiii) specify the preparations
of ozone in the atmosphere.	of H_2SO_4 and H_2SO_3 , their
(ii) Sulphur:	properties and uses.
Uses and allotropes:	(xiv) specify the laboratory
preparation of allotropes is not	and industrial preparation of
expected. Preparation,	NH ₃ ;
properties and uses of	(xv) identify the properties
sulphur(IV) oxide, the reaction	and uses of NH_3 ;
of SO_2 with alkalis.	(xvi) identify reagents for the
Trioxosulphate (IV) acid and	laboratory preparation of

its salts, the effect of acids on	HNO3, its properties and uses;
salts of trioxosulphate (IV),	(xvii) specify the properties of
Tetraoxosulphate (VI) acid:	N ₂ O, NO, NO ₂ gases.
Commercial preparation	(xviii) examine the relevance
(contact process only),	of nitrogen cycle
properties as a dilute acid, an	to the environment.
oxidizing and a dehydrating	(xix) identify allotropes of
agents and uses. Test for SO_4	carbon;
²⁻ .	(xx) predict reagents for the
Hydrogen sulphide:	laboratory preparation of CO_2 ;
Preparation and properties as	(xxi) specify the properties of
a weak acid, reducing and	CO ₂ and its uses;
precipitating agents. Test for	(xxii) determine the reagents
S ²⁻	for the laboratory preparation
	of CO;
(d) Nitrogen:	(xxiii) predict the effects of CO
	on human;
(i) Laboratory preparation	(xxiv) identify the different
(ii) Production from liquid air	forms of coal:
(iii) Ammonia:	(xxv) determine their uses;
Laboratory and industrial	(xxvi) specify the products of
preparations (Haber Process	the destructive distillation of
only), properties and uses,	wood and coal;
ammonium salts and their	(xxvii) specify the uses of coke
uses, oxidation of ammonia to	and synthesis gas.
nitrogen (IV) oxide and	
trioxonitrate (V) acid.	

Test for NH ₄ ⁺
(iv) Trioxonitrate (V) acid:
Laboratory preparation from
ammonia; properties and
uses. Trioxonitrate (V)
saltaction of heat and uses.
Test for NO ₃ -
(v) Oxides of nitrogen:
Properties.
The nitrogen cycle.
(e) Carbon:
(i) Allotropes: Uses and
properties
(ii) Carbon(IV) oxide,
Laboratory preparation,
properties and uses. Action of
heat on trioxocarbonate (IV)
salts and test for CO_3^{2-}
(iii) Carbon(II) oxide:
Laboratory preparation,
properties including its effect
on blood; sources of carbon
(II) oxide to include charcoal,
fire and exhaust fumes.
(iv) Coal: Different types,

products obtained from	
destructive distillation of wood	
and coal.	
(v) Coke: Gasification and	
uses. Manufacture of synthesis	
gas and uses.	
16. Metals and their	Candidates should be able to:
compounds	
	(i) specify the general
(a) General properties of	properties of metals;
metals	(ii) determine the method of
	extraction suitable for each
(b) Alkali metals e.g. sodium	metal;
(i) Sodium hydroxide:-	(iii) relate the methods of
Production by electrolysis of	extraction to the properties of
brine, its action on aluminium,	the metals;
zinc and lead ions.	(iv) compare the chemical
Uses including precipitation of	reactivities of the metals;
metallic hydroxides.	(v) specify the uses of the
(ii) Sodium trioxocarbonate	metals;
(IV) and sodium hydrogen	(vi) determine specific test for
trioxocarbonate (IV):	metallic ions;
Production by Solvay process,	(vii) determine the process for
properties and uses, e.g.	the production of the
Na_2CO_3 in the manufacture of	compounds of these metals;
glass.	(viii) compare the chemical

(iii) Sodium chloride: its	reactivities of the compounds;
occurrence in sea water and	(ix) specify the uses of these
uses, the economic importance	compounds;
of sea water and the recovery	(x) specify the chemical
of sodium chloride.	composition of cement.
	(xi) describe the method of
(c) Alkaline-earth metals, e.g.	purification of bauxite;
calcium; calcium oxide,	(xii) specify the ores of tin;
calcium hydroxide and calcium	(xiii) relate the method of
trioxocarbonate (IV);	extraction to its properties;
Properties and uses.	(xiv) specify the uses of tin;
Preparation of Calcium oxide	(xv) identify the general
from sea shells, the chemical	properties of the first
composition of cement and the	transition metals;
setting of mortar. Test for	(xvi) deduce reasons for the
Ca ²⁺ .	specific properties of the
	transition metals;
(d) Aluminium	(xvii) determine the IUPAC
Purification of bauxite,	names of simple transition
electrolytic extraction,	metal complexes
properties and uses of	(xviii) determine the suitable
aluminium and its compounds.	method of extraction of iron;
Test for Al ³⁺	(xix) specify the properties
	and uses of iron;
(e) Tin	(xx) identify the different
	forms of iron, their

Properties and uses.	uses.
	(xxi) identify the appropriate
(f) Metals of the first transition	method of extraction of copper
series.	from its compounds;
	(xxii) relate the properties of
Characteristic properties:	copper and its compound to
(i) electron configuration	their uses.
(ii) oxidation states	(xxiii) specify the method for
(iii) complex ion formation	the preparation of $CuSO_4$;
(iv) formation of coloured ions	(xxiv) specify the constituents
(v) catalysis	and uses of the various alloys
	mentioned.
(g) Iron	(xxv) compare the properties
Extraction from sulphide and	and uses of alloys to pure
oxide ores, properties and	metals.
uses, different forms of iron	
and their properties and	
advantages of steel over iron.	
Test for Fe ²⁺ and Fe ³⁺	
(h) Copper	
Extraction from sulphide and	
oxide ores, properties and	
uses of copper.	
Preparation and uses of copper	
(II) Tetraoxosulphate (VI).	
Test for Cu ²⁺	

(i) Alloy	
Steel, stainless steel, brass,	
bronze, type-metal,	
duralumin, soft solder,	
permallory and alnico	
(constituents and uses only).	
17. Organic Compounds	Candidates should be able to:
An introduction to the	(i) derive the name of organic
tetravalency of carbon, the	compounds from their general
general formula, IUPAC	formulae;
nomenclature and the	(ii) relate the name of a
determination of empirical	compound to its structure;
formula of each class of the	(iii) relate the tetravalency of
organic compounds mentioned	carbon to its ability to form
below.	chains of compound
	(catenation);
(a) Aliphatic hydrocarbons	(iv) classify compounds
	according to their functional
(i) Alkanes	groups;
Homologous series in relation	(v) derive empirical formula
to physical properties,	and molecular Formula from
substitution reaction and a few	given data;
examples and uses of	(vi) relate structure/functional
halogenated products.	groups to specific properties;
Isomerism: structural	(vii) derive various isomeric

only (examples on isomerism	forms from a given formula.
should not go beyond six	(viii) distinguish between the
carbon atoms).	different types of isomerism;
Petroleum: composition,	(ix) classify the various types
fractional distillation and major	of hydrocarbons;
products; cracking and	(x) distinguish each class of
reforming, Petrochemicals -	hydrocarbons by their
starting materials of organic	properties;
syntheses, quality of petrol	(xi) specify the uses of various
and meaning of octane	hydrocarbons;
number.	(xii) identify crude oil as a
(ii) Alkenes	complex mixture of
Isomerism: structural and	hydrocarbons;
geometric isomerism,	(xiii) relate the fractions of
additional and polymerization	hydrocarbons to their
reactions, polythene and	properties and uses;
synthetic rubber as examples	(xiv) relate transformation
of products of polymerization	processes to quality
and its use in vulcanization.	improvement of the fractions;
(iii) Alkynes	(xv) distinguish between
Ethyne – production from	various polymerization
action of water on carbides,	processes;
simple reactions and	(xvi) specify the process
properties of ethyne.	involved in vulcanization;
	(xvii) specify chemical test for
(b) Aromatic hydrocarbons	terminal alkynes
e.g. benzene - structure,	(xviii) distinguish between

www.examministry.com

properties and uses.	aliphatic and aromatic
	hydrocarbons;
(c) Alkanols	(xix) relate the properties of
	benzene to its structure
Primary, secondary, tertiary –	(xx) compare the various
production of ethanol by	classes of alkanols;
fermentation and from	(xxi) determine the processes
petroleum by-products. Local	involved in ethanol production;
examples of fermentation and	(xxii) examine the importance
distillation, e.g. gin from palm	of ethanol as an alternative
wine and other local sources	energy provider;
and glycerol as a polyhydric	(xxiii) distinguish the various
alkanol.	classes of alkanols;
Reactions of OH group -	(xxiv) differentiate between
oxidation as a distinguishing	alkanals and alkanones;
test among primary,	(xxv) compare the various
secondary and tertiary	types of alkanoic acids;
alkanols (Lucas test).	(xxvi) identify natural sources
	of alkanoates;
(d) Alkanals and alkanones.	(xxvii) specify the methods for
	the production of soap,
Chemical test to distinguish	detergent and margarine.
between alkanals and	(xxviii) distinguish between
alkanones.	detergent and soap;
	(xxix) compare the various
(e) Alkanoic acids.	classes of alkanamine;
	(xxx) identify the natural

Chemical reactions;	sources of carbohydrates;
neutralization and	(xxxi) compare the various
esterification, ethanedioic	classes of carbohydrates;
(oxalic) acid as an example of	(xxxii) infer the products of
a dicarboxylic acid and	hydrolysis and dehydration of
benzene carboxylic acid as an	carbohydrates;
example of an aromatic acid.	(xxxiii) determine the uses of
	carbohydrates;
(f) Alkanoates	(xxxiv) specify the tests for
	simple sugars;
Formation from alkanoic acids	(xxxv) identify the basic
and alkanols – fats and oils as	structure of proteins;
alkanoates.	(xxxvi) specify the methods
Saponification:	and products of hydrolysis;
Production of soap and	(xxxvii) specify the various
margarine from alkanoates	tests for proteins;
and distinction between	(xxxviii) distinguish between
detergents and soaps.	natural and synthetic
	polymers;
(g) Amines (Alkanamines)	(xxxix) differentiate between
Primary, Secondary, and	addition and condensation
tertiary	polymerization processes;
	(xl) classify natural and
(h) Carbohydrates	commercial polymers and their
	uses;
Classification - mono-, di- and	(xli) distinguish between
polysaccharides; composition,	thermoplastics and

chemical tests for simple	thermosetting plastics.
sugars and reaction with	
concentrated tetraoxosulphate	
(VI) acid.	
Hydrolysis of complex sugars	
e.g. cellulose from cotton and	
starch from cassava, the uses	
of sugar and starch in the	
production of alcoholic	
beverages, pharmaceuticals	
and textiles.	
(i) Proteins:	
Primary structures, hydrolysis	
and tests (Ninhydrin, Biuret,	
Millon's and xanthoproteic)	
Enzymes and their functions.	
(j) Polymers:	
Natural and synthetic rubber;	
addition and condensation	
polymerization.	
Methods of preparation,	
examples and uses.	
Thermoplastic and	

thermosetting plastics.	
18. Chemistry and Industry	Candidates should be able to :
Chemical industries: Types,	(i) classify chemical industries
raw materials and relevance;	in terms of products;
Biotechnology.	(ii) identify raw materials for
	each industry;
	(iii) distinguish between fine
	and heavy chemicals;
	(iv) enumerate the relevance
	of each of these industries;
	(v) relate industrial processes
	to biotechnology.

DISCLAIMER

The above topics are where all your JAMB Chemistry questions for this year will come from but it does **NOT** say which 'topic in particular' and how many questions per topic.

You are advised to read according to this syllabus and also study **past questions** on Chemistry to be well-prepared for the exam.

Speaking of which,

Would you like to download JAMB Chemistry past questions **FREE OF CHARGE** right now?

Click on the link below...

www.examministry.com