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Preface

This book arises from a series of hand-written notes I am continually revising in support of
two courses I teach, each a three-credit (42 hour) junior-level course, NERS311 and NERS
312: Elements of Nuclear Engineering and Radiological Sciences I and II at the Department
of Nuclear Engineering and Radiological Sciences at the University of Michigan.

More apt titles for these courses would be NERS311: Modern Physics and Quantum Me-
chanics and NERS312: Nuclear Physics because there is very little engineering in the course
content. Rather, we shall dwell on the sciences that underpin Nuclear Engineering and Ra-
diological Sciences, for it is essential that we understand, in some detail, the nature of the
stuff we are engineering. Nuclear materials and the resultant radiation are really some of the
most dangerous (and interesting) things in the world, and, in my view at least, understanding
them, at least in some depth, is essential.

These two courses assume, and make great use of, the earlier background courses in math-
ematics and physics. So, if you get stuck on some mathematics or physics concept, please
dive into your old notes and texts, or ask questions. These things may have seemed tired
and dry when you learned them initially, but these courses will bring them to back to life,
with some vigor, and a great deal of power. By their very nature, the consequences of
Special Relativity and Quantum Mechanics are counterintuitive. Our understanding of very
fast and/or very small objects is not reinforced by our everyday experiences. Consequently,
the understanding of these phenomena falls to mathematical interpretation, that must be
refined, to enable deeper understanding. Much like a blind person, whose other senses are
sharpened to enable him or her to experience the world, so it is that mathematics becomes
more important. Equations really do speak, if you listen the right way.

I would like to thank the students who took my first versions of there courses in the Fall of
2005, and Winter of 2006. Your feedback convinced me that I should undertake this writing.
Your support was deeply appreciated. To you taking NERS 311 or 312 now, this is very
much a work-in-progress. There will be spelling and grammatical errors, sloppy English,
missing figures, the occasional bad equation, and, once in a while, a logical argument that
does not make complete sense. If you find an error or can suggest an improvement, please
bring it to me. I am most grateful for these. These notes may seem to be under constant
revision. They are, and it is a natural part of their development. Please bear with this. On
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the plus side, they’re free!

About Krane’s book, Modern Physics, Second edition

This is a decent text, good value for the money, but not perfect. If it were, these notes would
not exist! I hope these notes bring some added value to the material. In several cases, I
disagree with Krane’s approach, and will offer a little more rigor. In a few cases, I’ll disagree
with Krane’s interpretation of, in particular, Quantum Mechanics. This is not to say Krane’s
approach is wrong, because these topics are still being debated by theoretical physicists and
natural philosophers. However, I will try to justify my view of things.

Two of the greatest things about Krane’s book are the collection of Questions and Problems
at the back of each Chapter. Good students should make use of these sections to the extent
that your interest, energy and time permit. I will provide more encouragement throughout
the text.

AFB, October 2, 2006

2008 update

In 2008, the 311 course was reduced to 3 credits from 4, at the expense of eliminating most
of the Special Relativity material from the lectures. Most of that material is not essential
to obtaining a thorough understanding of Quantum Mechanics and Nuclear Physics. What
is essential, and what will continue to be taught are the relativistic kinematical relations, as
we shall be learning about photons, that travel at the speed of light, and energetic electrons
from β-decay, that have velocities close to the speed of light. I’ve elected to leave the Modern
Physics material intact. It’s good science culture, and perhaps an interested student or two
will be motivated to study this topic deeper.

2009 update

Extensive revisions to most chapters have been undertaken. I’d like to thank Ms. Linda
Park for her excellent and erudite proofreading of the technical and non-technical material.
Linda, I am in awe of your attention-to-detail.

A brief note on chapter headings

Chapter and subchapter headings preceded by a dagger† do not exist in Krane’s book, and
are here for supplementary, prerequisite, or co-requisite study. They will be covered on a
need-to basis. Chapter and subchapter headings preceded by an asterisk∗ are generally not
covered in teaching the NERS 311/312 editions of the class.

AFB, July 16, 2009
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Chapter 1

Introduction

1.1 About this book

This book arises from a series of hand-written notes I am continually revising in support of
two courses I teach, each a three-credit (42 hour) junior-level course, NERS311 and NERS
312: Elements of Nuclear Engineering and Radiological Sciences I and II at the Department
of Nuclear Engineering and Radiological Sciences at the University of Michigan.

More apt titles for these courses would be NERS311: Modern Physics and Quantum Me-
chanics and NERS312: Nuclear Physics because there is very little engineering in the course
content. Rather, we shall dwell on the sciences that underpin Nuclear Engineering and Ra-
diological Sciences, for it is essential that we understand, in some detail, the nature of the
stuff we are engineering. Nuclear materials and the resultant radiation are really some of the
most dangerous (and interesting) things in the world, and, in my view at least, understanding
them, at least in some depth, is essential.

These two courses assume, and make great use of, the earlier background courses in math-
ematics and physics. So, if you get stuck on some mathematics or physics concept, please
dive into your old notes and texts, or ask questions. These things may have seemed tired
and dry when you learned them initially, but these courses will bring them to back to life,
with some vigor, and a great deal of power. By their very nature, the consequences of
Special Relativity and Quantum Mechanics are counterintuitive. Our understanding of very
fast and/or very small objects is not reinforced by our everyday experiences. Consequently,
the understanding of these phenomena falls to mathematical interpretation, that must be
refined, to enable deeper understanding. Much like a blind person, whose other senses are
sharpened to enable him or her to experience the world, so it is that mathematics becomes
more important. Equations really do speak, if you listen the right way.

1



2 CHAPTER 1. INTRODUCTION

1.2 Modern Physics, Quantum Mechanics and Nuclear

Physics

This book covers the essential components of Modern Physics, Quantum Mechanics and Nu-
clear Physics, suitable for Junior College-level engineers, and, perhaps, Engineering Physics
majors and Physicists. Most of the applications that are discussed relate to the subject
matter of Nuclear Engineering and the Radiological Sciences.

What is Modern Physics?

Modern Physics is, broadly speaking, inlcudes are the “new’ Physics discovered starting at
about 1900. Generally, one thinks of Relativity, both “Special” and “General”, as well as
Quantum Mechanics. In this course, to support the later topics, we study a few aspects of
Special Relativity, and delve into Quantum Mechanics, and then Nuclear Physics.

In Special Relativity, we focus on particle and photon kinematics, photons that travel at
the speed of light, c, and energetic particles, that may travel at velocities approaching c.
There are numerous applications that require this knowledge, in Nuclear Engineering and
Radiological Sciences. To name a few:

• Nuclear disintegrations from fission, radiate copious quantities of photons.

Figure 1.1: Radiation from nuclear fission



1.2. MODERN PHYSICS, QUANTUM MECHANICS AND NUCLEAR PHYSICS 3

• Unstable isotopes often decay via photon emission, and energetic β decay.

Figure 1.2: Decay Scheme of 60Co

Indeed, 60Co is one of the most commonly-used isotopes in the Medicine and Industry.

Figure 1.3: The first 60Co machine, and two of its developers: R→L: Dr. Harold Johns,
Univerity of Saskatchewan, the inventor, Mr. John MacKay, ACME Machine and Electroic
Company, and ”instrument maker who could make anything”, who built it, and Dr. Sandy
Watson, Director of the Saskatchewan Cancer Commission. (ca. 1950)
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• Energetic electrons for medical treatments.

Figure 1.4: Gordon Isaacs, pictured here in 1957, receive the first electron-beam treatment
for cancer of the retina. Gordon’s right eye was lost to cancer but his left eye was spared.

• Energetic electrons for physics experiments.

Figure 1.5: The two-mile long Stanford Linear Accelerator
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Figure 1.6: A Monte Carlo simulation of ten 1 GeV photons on a lead slab (in the center)
encased in a bubble chamber. The color code is (yellow,green,red) for (photons, e−, e+).
A magnetic field caused the electron tracks to spiral. The initiating photons are incident
from the left (very narrow, yellow beam). e± pairs are created in the lead. These give off
bremsstrahling photons, the narrow conical “spray” of photons to the right. Energetic e±

spiral back, striking the lead slab again, causing more bremssrtahlung photons. Look for
tight spirals of smaller energy electrons in the bubble chamber. These were set in mottion
through the Compton interaction process.
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• Electrons slowing down in materials emit bremsstrahlung photons. These photons are
used to perform photon radiotherapy:

Figure 1.7: Medical linear accelrators (LINACs) accelerated eletrons to relativistic energies,
and produce beams of photons through the bresstrahlung process. These are used for cancer
radiotherapy treatment.
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A more common name for bremsstahlung photons is “X-rays”. X-rays are used for
imaging the human body. This machine is a computed tomorograph (CT) scanner,
sued to form 3-dimensional images of the inside of the body.

Figure 1.8: A CT scanner.
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• Glow Blue! That’s really C̆erenkov radiation.
See http://en.wikipedia.org/wiki/Cherenkov radiation

C̆erenkov radiation, visible blue light, arises from fast electrons, close to the speed of
light in vacuum, traveling faster than the speed of light in a dielectic medium with a
refractive index greater than 1 (meaning the light travels slower than c). The electrons
polarize the molecules of that medium, which then turn back rapidly to their ground
state, emitting visible radiation. The lights waves then concentrate on wavefronts,
much like sound waves in a sonic boom.

Figure 1.9: C̆erenkov radiation, in the Advanced Test Reactor, part of the Idaho National
Laboratory.
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Pavel Alekseyevich Cherenkov (1904–1990) was the first to characterize this phe-
nomenon completely, earning him the Nobel Prize in 1958.

Figure 1.10: Pavel Cherenkov
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A brief note on chapter headings

Chapter and subchapter headings preceded by a dagger† exist for supplementary, prerequi-
site, or co-requisite study. They will be covered on a need-to basis. Chapter and subchapter
headings preceded by an asterisk∗ are generally not covered in teaching the NERS 311/312
editions of the class, but are there for generality and completeness.

1.3 Some History

Around about the turn of the last century, at the dawn of the 1900s, physics was in a very
smug and arrogant phase of its development. It was opined by some very famous physicists,
that all the interesting physics had been discovered. Classical Mechanics1 had been refined
to such an advanced state, that it was thought that prediction of the future was tantamount
to measuring enough inputs at some time, plugging these into the equations of motion,
and letting the future unfold in a predictable fashion. This is quite depressing, eh? How

Figure 1.11: The three “giants” of Classical Mechanics(L→R): Isaac Newton (1642–1727),
Joseph-Louis de Lagrange (1736–1813), and William Rowen Hamilton (1805-1865)

uninteresting life would be if all it was an enormous equation, with many variables, where,
in principle, if never practically possible, the future is completely determined. In practical
terms though, the motion of the planets, moons and suns are completely predictable, and
every test (almost every test, to be completely honest) was proven beyond a doubt.

Compounding this arrogance was the unification of the phenomena of magnetism and elec-
tricity by Clerk Maxwell, in the theory of Classical Electrodynamics. Radio waves, electric

1Classical Mechanics is the study of the forces that act on particles with mass and objects, and the
motions that result. At that time in history, it was thought to be the “Theory of Everything”. See also:
http://en.wikipedia.org/wiki/Classical mechanics
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motors, and all sorts of phenomena were completely explained. Electromagnetic waves were
understood in terms of the theory of waves, with certain special laws, that govern their
behavior. The development of Maxwell’s equations was considered to be one of the greatest
triumphs of the human intellect.

Figure 1.12: The four “giants” of Classical Electrodynamics (L→R): Michael Faraday
(1791–1867), André-Marie Ampère (1775–1836), James Clerk Maxwell (1831–1879) and Carl
Friedrich Gauss (1777-1855)

~∇ · ~D = 4πρ Gauss’s Law of Electricity
~∇ · ~B = 0 Gauss’s Law of Magnetism

~∇× ~E = −1

c

∂ ~B

t
Faraday’s Law

~∇× ~H =
4π

c
~J +

1

c

∂ ~D

∂t
Ampère-Maxwell Law

Then, it all started to unravel, and it became very much more interesting.

Astronomers began to turn their increasingly powerful telescopes to view more and more
distant galaxies, ones that were moving very, very fast with respect to the earth, close to the
speed of light. It appeared that the Laws of Physics were different for these distant objects.
Physicists have this compelling idea: that the Laws of Physics should be everywhere the
same, no matter where in the universe one is, or how fast one is moving. This is called the
Principle of Relativity. In Physics, the Principle of Relativity is a hypothesis, never proven
wrong, that the Loaw of Physics are the same, no matter where in teh uUniverse one is. It
is a prejudice, or an expectation of how the Universe ought to be organized, but one that
has never steered us wrong, once we listened carefully to what Nature was really telling
us. Careful analysis of Maxwell’s Equations also revealed the same sort of discrepancy.
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This was first realized by Lorenz, but the point was really driven home by Einstein’s first
paper on Special Relativity. Einstein recognized that the distant fast-moving galaxies and
Maxwell’s Equations did satisfy the Principle of Relativity, as long as you also insisted that
the measured speed of light is the same for all observers, irrespective of how quickly they are
moving with respect to a light source. This has the most interesting and counterintuitive
consequences: like the length of an object measured by two different observers is different,
or a clock seen by two different observers, moving with respect to each other, appears to
run at different rates. These notions confuse us to this day, although they have been proven
beyond doubt. If the speed of light were much slower, say, 200 km/h, this would be common,
practical knowledge we would comprehend intuitively.

Consequently, the first thing we shall study is Special Relativity. The reason is, not only
because it is interesting in and of itself, but, because we shall be studying particles and
objects that move at a significant fraction of the speed of light, like β-particles in nuclear
disintegration, and photons that do travel at the speed of light as a nucleus changes from state
to state. We study “Special” Relativity, that restricts the observers to moving at constant
velocity with respect to each other, in “inertial frames”. This is a great simplification over
the more complicated “General” Relativity, where forces may act upon the observers and
objects. Special Relativity is complicated enough, as we shall see, and understanding it is
sufficient for this course. General Relativity is a vast and wonderful subject that is discussed
in specialist graduate courses in Physics Departments, to prepare future researchers for work
in cosmology. The results of General Relativity are also exploited in science fiction. Black
holes really do exist, there is a huge one at the center of our galaxy. Worm holes are possible
too, but need very special conditions for their existence, as does time travel and moving
instantaneously, beyond light speeds, to other areas of the galaxy. These latter phenomena
have not been observed ... yet.

The other unraveling of our traditional understanding of Classical Physics, related to our
investigations of energetic photons, and of electrons, as more powerful microscopes probed
the fundamental particles of nature. Maxwell taught us that light is a wave, and the wave
equations that describe the behavior of light and other electromagnetic waves, were well
validated for a very vast range of phenomena. However, when the light became more energetic
in certain ways, newly discovered phenomena, like the photoelectric effect, could only be
explained, if high energy photons could be considered to be “particles”2. As a physical
phenomenon, the acceptance of light as a collection of particles, does not seem to be very
hard to accept. The counter to this was, however, that particles, like electrons, participated
in phenomena (like fluorescence) in ways that could only be explained by considering all
particles, and all objects, as waves3! This ushered in the new physics, Quantum Mechanics,
that is able to describe the interference pattern that a single particle makes, going through

2This idea, put forward by Einstein in 1905, won him the Nobel Prize in 1921. Einstein proposed the
Theory of Special Relativity in 1905 as well. 1905 was a great year for Albert!

3This was proposed by Louis de Broglie in 1925 in his Doctoral Thesis! He was rewarded with a Nobel
Prize only 4 years later.
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two places, at, more or less, the same time. This notion is so confounding, that it can
befuddle even the deepest thinkers. Yet, it revolutionized physics in a fundamental way, and
has been proven beyond the shadow of a doubt.

Thus, Quantum Mechanics, the physics that must be used to describe the really smallest
things in the universe, was born, and verified by every experiment thrown at it for expla-
nation. Classical Mechanics is still true, for heavier objects, but it is understood to be the
“heavy” limit of Quantum Mechanics. The evidence for the veracity of Quantum Mechanics
is the strongest for the lightest particles. So, we study Quantum Mechanics, and eventually
end up, in the first course, with a tour de force example of the power of Quantum Mechan-
ics, namely the decay scheme of the hydrogen atom, and hydrogenic atoms. We shall even
explain, albeit only semi-quantitatively, all of chemistry!

Then, with the power and insights from Special Relativity and Quantum Mechanics, in the
second term we tackle the most knotty problem of Nuclear Physics. Here the particles are
thousands of times heavier than electrons, quantum and classical intuition are both essential
in understanding these complicated objects.

Once we complete the second term’s material on Nuclear Physics, you will have under your
belts, a solid theoretical understanding of the background of Nuclear Engineering and the
Radiological Sciences, that should serve you well in the upper division courses. I trust
you will find it more than an exercise to get through the prerequisite material. The new
knowledge, and intuition that arise as a result of its study, are essential skills for a modern
scientist and engineer.

1.4 Review of Classical Physics

1.4.1 Mechanics

The kinetic energy (a scalar) of a mass of mass m moving with velocity ~v in some direction
is:

K =
1

2
mv2 . (1.1)

Its momentum4 (a vector), is:

~p = m~v . (1.2)

(1.1) → (1.2) ⇒:

4In this book I’ll denote a vector with an arrow over it. Some authors prefer to use bold font for vectors.
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~p · ~p = p2 = ~m~v · ~m~v = m2~v · ~v = m2v2 . (1.3)

(1.1) & (1.3)/(2m) ⇒:

p2

2m
=
m2v2

2m
=

1

2
mv2 = K .

Thus, we have another way of writing the kinetic energy:

K =
p2

2m
. (1.4)

The kinetic energy change across a potential difference of 1 volt is:

∆K = 1eV ≈ 1.602 × 10−19 J (1.5)

for a singly charged particle (one unit of charge e).

Collision Kinematics

Consider the following collision:

Here, objects with mass m1 and m2 collide, exchange some mass (no mass is lost or gained in
classical mechanics) to produce ma and mb, with velocities as shown. The symbol Q stands
for the activation energy. If it is negative, the reaction is “endothermic”, that is, energy is
required to make the reaction proceed. This energy must be supplied by the kinetic energy of
the incoming particles, before the reaction can proceed, and is not available to the resultant
particles. If Q is positive, the reaction is ‘exothermic”, that is, energy is released after the
reaction takes place, and is available to be taken up by the resultant particles as kinetic
energy.

If we know ~v1, ~v2, m1, m2, ma, mb, and Q, and measure two of the components of ~va or ~vb,
then the other components of ~va and ~vb may be determined.

We do this by invoking the most powerful conservation laws in physics:

1. The conservation of energy,

2. the conservation of momentum (all components),

3. the conservation of mass (classical physics only).
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Figure 1.13: Collision between two particles
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Conservation of Energy implies (Shorthand: CoE⇒)

1

2
m1(v

2
1,x+v

2
1,y+v

2
1,z)+

1

2
m2(v

2
2,x+v

2
2,y+v

2
2,z)+Q =

1

2
ma(v

2
a,x+v

2
a,y+v

2
a,z)+

1

2
mb(v

2
b,x+v

2
b,y+v

2
b,z) .

(1.6)

Conservation of Momentum in the x-direction implies (Shorthand: CoMx ⇒):

m1v1,x +m2v2,x = mava,x +mbvb,x . (1.7)

Conservation of Momentum in the other 2 spatial coordinates implies:
CoMy ⇒:

m1v1,y +m2v2,y = mava,y +mbvb,y . (1.8)

CoMz ⇒:
m1v1,z +m2v2,z = mava,z +mbvb,z . (1.9)

Finally, Conservation of Mass implies (Shorthand: CoM⇒):

m1 +m2 = ma +mb . (1.10)

Thus, these 5 equations, (1.6)–(1.10), have, in principle, 17 unknowns: m1, v1,x, v1,y, v1,z,
m2, v2,x, v2,y, v2,z, ma, va,x, va,y, va,z, mb, vb,x, vb,y, vb,z, and Q5. This means that, if we know
(through measurement, perhaps) 13 of them, we may find the other 4 by manipulating the
above equations. Or, if we know 12 of them, we may relate any kinematic variable to any
other, through the process of elimination. It always works, without fail. Sometimes, it’s just
a little more difficult to extract the information arithmetically, but it is always possible.

In more condensed vector notation,

CoE⇒
m1v

2
1

2
+
m2v

2
2

2
+Q =

mav
2
a

2
+
mbv

2
b

2
, (1.11)

while Co ~M ⇒
m1~v1 +m2~v2 = ma~va +mb~vb . (1.12)

Solution Strategies

These kinematic equations, while they represent something clear, are fraught with mathe-
matical pitfalls, partly because what they are describing, is full of physical richness. It helps

5Later on, when we discuss relativistic kinematics, we shall see that Q = (m1 + m2 −ma −mb)c
2, where

c is the speed of light. The mass differences are usually so small that Conservation of Mass is employed
without loss of accuracy in a non-relativistic analysis.
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to know exactly what one is after, and proceed with care. Here is an example. Let’s say
that one wants to eliminate ~vb. Here is a procedure that eliminates it with a minimum of
effort. First, isolate the terms with ~vb, or v2

b on the right hand side (RHS) of (1.12) and
(1.11). Then,

(1.12)2 - 2mb× (1.11) ⇒

(m1~v1 +m2~v2 −ma~va)
2 −mb(m1v

2
1 +m2v

2
2 −mav

2
a) − 2mbQ = 0 , (1.13)

and vb has vanished.

An equivalent way of writing (1.13) is:

~ξ2 − 2mb(κ+Q) = 0 , (1.14)

where ~ξ ≡ m1~v1 + m2~v2 −ma~va, and κ ≡ (m1v
2
1 + m2v

2
2 −mav

2
a)/2. This alternative form

will be useful to us later when we discuss relativistic collisions.

Similarly, if you want to eliminate other kinematic quantities, similar isolation and subtrac-
tion will work. The examples and problems will serve to illustrate this.

Illustration: 1D elastic collision, equal masses

Question: Imagine an object of mass m (the projectile), strikes another object (the target),
that is identical in all respects. The struck object is initially at rest, the collision is elastic,
and the whole event takes place in 1 dimension. (The velocity of any resultant object is
colinear with the initial direction of motion.) The collision is elastic, that is, Q = 0, and
there is no exchange of mass, that is, there are two objects of mass m after the collisions as
well. What happens after the collision?

Answer: The details will be worked out in class, however, let us discuss the result. Those
among us who have played billiards know the answer intuitively. However, the kinematics of
billiard balls6 is identical to that of sub-relativistic neutrons. After the collision, an object
of mass m is going in the same direction as the projectile, and one object remains behind,
at rest.

Discussion: A billiards player knows that the projectile (the cue ball) will strike the target
ball, and, in the absence of any spin, come to a complete stop. The target ball, on the other
hand, will acquire the speed and direction (assuming a straight-on hit) of the cue ball. Let
us imagine, however, that we do not see or hear the collision occur, that the projectile and
the target are the same color, and only observe the resultant trajectories. The mathematics
does not reveal which object acquires the final momentum. Is it the target or projectile?
The projectile could have simply passed through the target ball without setting it in motion.

6Anyone studying the behavior of particle collisions would be well served, by engaging in recreational
billiards. You can quote me on that!
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We can not tell. Conservation of energy and momentum does not concern itself with the
details of the “collision”. The conservation laws simple relate the initial and final conditions,
at a level of abstraction and power beyond the dynamics of the collision. For all we know,
the projectile and target could have exchanged some equal part of their masses. We’d have
no way of knowing. Although we know this not to be the case for billiard balls, for neutrons
we have no way of knowing.

Application: Newton’s cradle

Explain how the Newton’s Cradle works.
See http://en.wikipedia.org/wiki/Newton%27s_cradle for some interesting discussion
and history.

Related problems

Problem: Imagine an object of mass m (the projectile), strikes another object (the target),
that is identical in all respects. The struck object is initially at rest, the collision is inelastic,
and both balls fuse together. What happens after the collision? What is the Q-value of this
reaction?

This example will also be worked out in class.

2D elastic collision, equal masses

Problem: Show, when two balls collide elastically, with one of them being initially at rest,
that the angle between the two resultant directions is always always 90◦. How does this result
include the result of the previously discussed 1D elastic scattering?

Solution:

1. Set up the CoE and Co ~M equations assuming “2” is at rest:

1

2
mv2

1 =
1

2
mv2

a +
1

2
mv2

b (1.15)

m~v1 = m~va +m~vb (1.16)

2. We require the angle between the resultant trajectories. The cosine of this angle is
obtained by ~va · ~vb. To isolate this: (1.16)2/(2m2) - (1.15)/m⇒

~va · ~vb = 0 . (1.17)

Interpretation: If va and vb are both non-zero, we see that the angle between the outgoing
billiard balls is π/2, a right angle — the well-know result (at least to billiard players7). If

7This analysis neglects the spin on the billiard balls, a very simplifying assumption. In billiards, the
ability to control the spin and recoil trajectory of the cue ball, is what separates the “sharks” from the
“marks”.
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either va or vb is zero, (1.17) yields the result of the opening angle as “undefined”. We can
interpret this as π/2 in the limit as either the grazing blow, or the near-perfect direct shot.
In both cases, one of the balls will have a trajectory with infinitesimally small velocity, at
right angles to the speedier ball.

Zero-Momentum Frame

Sometimes, it is advantageous to work in an inertial frame where there is no net momentum.
The velocity of this frame is determined as follows:

We seek a velocity ~V that, when subtracted from the velocities of the initial particles, has
zero resultant momentum. Thus, appealing to the left hand side (LHS) of (1.11) we want:

m1(~v1 − ~V ) +m2(~v2 − ~V ) = 0 , (1.18)

for which the solution is:
~V =

m1~v1 +m2~v2

m1 +m2
. (1.19)

Perform the calculation extracting the kinematic relations, in this frame. That is, ~v1 →
~v1 − ~V , and so on. And then, once the desired result is obtained, transform the velocity
vectors in the opposite direction.

2D elastic collision, equal masses

Problem: repeat this problem in the zero-momentum frame, transform back to the rest frame
of the target particle, and show the same result.

Particle-at-Rest Frame

At other times, it is advantageous to work in a frame where one of the particles in the
initial state is at rest (the stationary target), since in fact, this is usually the case. But,
had we started from the situation described in (1.10) and (1.11) we may transform to a
reference frame where the target (m2, say) is at rest by subtracting ~v2 from all velocities in
the problem, then rotating the new ~v1 into the z-direction, and the new ~va and ~vb into the
xz-plane, so it can be visualized on the blackboard, or paper. After the required kinematical
quantities are obtained, reverse the rotations8, and reverse the velocity transformation and
you’re done.

This situation (target-at-rest) is very important since it often represents the starting physical
condition. Let us illustrate what happens to (1.13) in this circumstance. Setting ~v2 = 0 in
(1.13) gives us:

8Rotations do not commute, so be careful of the order!
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m2
av

2
a − 2m1mav1va cos θa +m2

1v
2
1 −mb(m1v

2
1 −mav

2
a) − 2mbQ = 0 , (1.20)

where θa is the angle of ma with respect to (wrt) the z-axis, in spherical-polar coordinates.

Or, more suggestively,

[ma(ma +mb)]v
2
a + [−2m1mav1 cos θa]va + [m1(m1 −mb)v

2
1 − 2mbQ] = 0 . (1.21)

This can be regarded as a solution of θa in terms of va, or a quadratic formula of the form

Ax2 +Bx+ C = 0 ,

for which the solution of va in terms of θa is well known. (A, B, C are constants, and we
seek the values of x for which the above is true.) We shall leave further exploration of this
quadratic solution to the examples and problems. However, the quadratic equation has a
rich variety of solutions. Sometimes, there are no solutions (kinematically restricted) or one
or two solutions. We shall revisit this topic later in the course.

Illustration

Consider the following collision between two identical masses, travelling with equal but
opposite velocities along the x-direction, that produce two masses, ma and mb. (Yes! The
figure is missing!)

By applying the conservation laws we just discussed, we can show that the resultant velocities
are:

vb = ±
√

ma

mb

v ; va = ∓
√

mb

ma

v ,

where the final velocities are oriented in directions opposite. (Demonstration to be given in
class.)

This makes sense! There is no net momentum before the collision and so you expect the
lighter particle to be moving faster and in the opposite direction to the heavier particle. It
is also easy to verify that the initial and final kinetic energies are the same.

Potential, Kinetic, Total Energy, Angular Momentum

A particle (Let’s think of this as a small object.) moving in one dimension can be subjected
to a force F (x) that causes it to move. Associated with this force is a potential, U(x).
External forces and potentials are related by:
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Figure 1.14: An illustration of the use of conservation laws

F (x) = −dU(x)

dx
. (1.22)

In three dimensions, we have F (~x) and U(~x), that are similarly related:

F (~x) = −~∇U(~x) . (1.23)

The total energy, E, of a particle subjected to an external force is, in one dimension, a
constant:

E = K(x) + U(x) . (1.24)

In three dimensions, a system of N particles has its total energy conserved as well, and may
be written:
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E =

N
∑

i=1

[K(~xi) + U(~xi)] . (1.25)

Angular momentum ~L for a single particle is also conserved. It is expressed in terms of the
cross product of the position and momentum as:

~L = ~x× ~p . (1.26)

In three dimensions, a system of N particles has its total angular momentum conserved as
well, and may be written:

~L =
N
∑

i=1

~xi × ~pi . (1.27)

1.5 Units and Dimensions

1.6 Significant Figures

Physical things are measured two ways. There are integral quantities, e.g. 3 electrons, 4
photons, etc. It doesn’t make sense to say “A tritium nucleus is made up of 1.0 protons and
2.0 neutrons.”, because 1.0 and 2.0 are not integers, and there should be no ambiguity in the
number of discrete particles. The correct statement would be, “A tritium nucleus is made
up of 1 proton and 2 neutrons.”

Other quantities are not discrete. There is ambiguity in the statement, ”The α-particle has
an energy of 5 MeV.”, because there is no statement as to how good the “5” is. The best
we can do, is to give to a precision, of that participant, with the least. That’s not the best
situation, but it is what we have to live with, without more information.

For example, consider:

r = a � b ,

where � represents one of the operators, ×, ÷, +, or −. Define a “precision operator”, P(),
that returns the precision of its argument. For example, P(1.37) = P(0.000137) = 3. Then,

P(r) = minP(a),P(b) .

If you come across a statement like, ”The α-particle has an energy of 5 MeV.”, it is likely an
error, because no educator wishes to be ambiguous. If he or she does, and it’s on purpose,
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then the question was designed to make you think. It is valid to say, ”The α-particle has an
energy of 5 MeV (exactly).”, in which case, you are expected to treat the “5” as an exact
real number, with infinite precision.

In some situations, you will be told, ”The α-particle has an energy of 5.02±0.13 MeV.”, in
which case you will be expected to estimate what the error is, on the final quantity, if you
use it in a computation. That is discussed later in this chapter.

1.7 Theory, Experiment, Law

1.8 †Basic Error Estimation

1.8.1 Accounting for Estimated Error for Independent Quantities

SupposeM is a measured quantity, the result of some calculation or experiment, that depends
on two other quantities, a and b, that have their own estimated uncertainties σa and σb.
Assuming that the relative errors in a and b are small (i.e. we propagate first-order errors
only), and a and b are independent (the result of two independent measurements), then the
estimated error in M , namely σM , is determined as follows:

σM =

√

(

∂M(a, b)

∂a

)2

σ2
a +

(

∂M(a, b)

∂b

)2

σ2
b , (1.28)

and the fractional error is:

σM

M
=

1

M(a, b)

√

(

∂M(a, b)

∂a

)2

σ2
a +

(

∂M(a, b)

∂b

)2

σ2
b . (1.29)

The extension to measurements that have three or more independent inputs, is straightfor-
ward.

Some examples:

1. Q: After a collision reaction involving two protons, the two protons have kinetic ener-
gies 2.8± 0.6 and 10.0± 1.0 MeV. What is the total combined resultant kinetic energy
and its estimated error?

A: The total energy is

K = K1 +K2 .
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Therefore, by the rule stated above,

σK =
√

σ2
K1

+ σ2
K2

.

Therefore,
K = 12.8 ± 1.2 MeV .

Food for thought: How should you state the result if the energy of the second proton
was 10±1 MeV?

2. Q: M(a, b, c) = ab2c3. What is the relative estimated error in M?

A: You can show that

σM

M
=

√

(σa

a

)2

+ 4
(σb

b

)2

+ 9
(σc

c

)2

.

Note: Don’t expect this very neat expression for all calculations of relative error. It is
really a fortuitous result of the given form of M .

1.9 Questions

Answer those questions (on paper or in your head). If you can’t find a good answer, re-read
the relevant sections of Chapter 1. If you still can’t find a good answer, ask a colleague, a
TA, or a Prof. A question asked in class is worth 100 asked silently.

Some of these questions may appear on assignments or exams.

1.10 Problems

If you find some of these problems interesting, attempt them on paper. If you can’t find a
good answer, re-read the relevant sections of Chapter 1. If you still can’t find a good answer,
try working it out with a colleague, ask a TA, or a Prof.

Some of these problems may appear on assignments or exams.

1.11 Supplementary Problems

1. After a collision reaction involving two individual protons and one neutron, the neutron
has kinetic energy 2.8±0.6 MeV while the two protons each have kinetic energy 10.0±1.0
MeV. What is the total combined resultant kinetic energy and its estimated error?
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2. Prove that a sliding (not rolling) billiard ball striking a stationary billiard ball (both
with the same mass), scatters such that the angle between them is always π/2.

3. A stationary (at rest, no velocity) nucleus of mass M splits into two nuclei with unequal
masses (m1 and m2) accompanied by the release of energy Q. (You may assume that
M = m1 + m2.) The direction of motion of the lighter daughter particle is (θ, φ), in
polar coordinates, measured from the z-axis. Find expressions for the kinetic energy,
speed, momentum, and directions of the resultant nuclei.

4. The event described in problem 3 is seen by an observer moving along the z-axis in
the negative direction with speed v0. Find expressions for the kinetic energy, speed,
momentum, and directions of the resultant nuclei, as seen by this observer.

5. Suppose that the initial nucleus in problem 3 was not at rest, but moving with kinetic
energy K0 in 16 positive x-direction. After the split, one of the daughter nuclei moves
in the x-direction. Find expressions for the direction of the second nucleus, and the
speeds of both. Solve this in 2 ways: a) By direct application of conservation laws in the
frame where the original nucleus is moving with kinetic energy K0. b) By applying the
result of the previous problem (rest frame of the original nucleus) and then switching
to a reference frame where the initial nucleus has kinetic energy K0.

6. With reference to problem 5, now consider that Q = 92.0 ± 0.05 MeV and K0 =
40.0 ± 0.1 MeV. Q and K0 are assumed to be uncorrelated. The original nucleus has
a mass of 8u (exact), while the masses of the daughter nuclei are 5u (exact) and 3u
(exact). Obtain numerical results for both cases, but this time, estimate the expected
error.
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Chapter 2

The Special Theory of Relativity

Read Chapter 2 of the hand-written notes

2.1 ∗Classical Relativity

Consider an observer, named O, who measures the position of an object in his coordinate
system as ~x = (x, y, z), at time t. A second observer, named O′, is in an inertial frame (no
forces acting on the observer), but moving at linear velocity ~u with respect to O. This second
observer measures the position of the object in his coordinate system to be ~x′ = (x′, y′, z′),
at time t′. Now, we impose some constraints on our two observers to simplify the discussion.
(It’s not necessary to impose these constraints, it just makes the discussion much simpler.)

1. Both O and O′ measure time in the same way, with a clock of identical design and
function. Thus, any time interval between two events measured by O to be ∆t is
identical to the time interval ∆t′ observed by O′ for the same two events. In other
words, the time difference between two events measured by both is the same. That is,
∆t = ∆t′.

2. At t = 0 and t′ = 0, the coordinate systems of the two observers are perfectly aligned,
with ~x = ~x′, or equivalently, (x, y, z) = (x′, y′, z′) at t = 0 and t′ = 0. That is, the axes
are all perfectly aligned, and the coordinate systems coincident.

3. Both O and O′ measure distance (displacements) in the same way, with an instrument
of identical design and function.

4. Both O and O′ measure mass in the same way, with an instrument of identical design
and function. The mass of the object seen by O and O′ are identical.

Consequences:

27
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1. Observer O sees observer O′ moving with velocity ~u, while observer O′ sees observer
O moving with velocity −~u.

2. Simultaneous events seen by observer O at time t are also seen by observer O′ as
simultaneous.

3. A displacement between two simultaneous events measured by O to be ∆~x is identical
to the displacement ∆~x′ observed by O′ for the same two simultaneous events. This is
illustrated in Figure 2.1.

’

’y−axis

’z−axis

u t

x−axis

z−axis

y−axis
O

O’

x−axis

(x ,t)1’
(x ,t)1

(x ,t)2

(x ,t)2’

Figure 2.1: Galilean transformation of a displacement.

4. The coordinates of an event in one coordinate system may be related to the other by
means of the Galilean Transformation:

~x′(t) = ~x(t) − ~ut
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5. If ~x(t) represents the trajectory of a particle observed by observer O, then it is easily
shown that the velocities are connected by:

~v′(t) = ~v(t) − ~u ,

since ~u is a vector that is constant in time. This shows that Newton’s First Law of
Motion holds in both frames. If ~v(t) is constant in time, then so is ~v′(t), and the motion
(velocity) of the object persists in both frames unless acted on by another force.

6. The accelerations observed by the two observers, is easily shown to be constant,

~a′(t) = ~a(t) .

Since ~F = ma, the force on the object measured by both observers is the same, and
Newton’s Second Law of Motion applies equally in both frames.

If there are equal and opposing forces on the object in one frame, they are measured
to be the same in the moving frame. Newton’s Third Law of Motion is preserved.

Hence, the Classical Laws of Physics are the same in both frames.

2.2 ∗The Michelson-Morley Experiment

Oddly enough, the speed of light is not measured anymore, it has been assigned, via definition
in 1983, that of an exact constant:

c = 299 792 458 m/s .

You would only be wrong by about 0.1% if you said it was 3×108 m/s, and this approximation
is often used in quick numerical calculations.

It is truly remarkable how slow the speed of light is! It takes light about 1/7th of a second
to circumnavigate the earth at the equator, and goes about a foot in a nanosecond.

So, if light really has a finite speed, and Galilean transformations are true, we should be able
to measure how fast we are moving relative to it. That was the purpose of the Michelson-
Morley experiment, the most famous failed experiment in physics1.

Their experiment showed conclusively, that the speed of light is constant, no matter what
direction the earth was moving. Albert Einstein’s leap of imagination was to say that it is
a fundamental property of light.

1That failed experiment got Albert Michelson a Nobel Prize in 1907.
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∗How the Michelson-Morley Experiment Works

Referring to the figure (it’s missing!), let’s imagine that the speed of the earth through the
ether is u, directed from right to left, along the length AC. A pulse of radiation leaves S, the
source, and travels upstream against the ether, and is split into two pulses by a “half-mirror”
at A. One of the pulses goes along the length AC, gets reflected by a mirror at C, back again
to the “half-mirror” at A and up to the detection apparatus, that is labeled by D. The half
of the pulse that gets split off at A, goes along the length AB, gets reflected by the mirror
at B, back again to the “half-mirror” at A and up to the detection apparatus at D.

The first pulse, once it leaves the splitter, takes total time

t|| =
2AC

c

1

1 − u2/c2
+

AD

c

1
√

1 − u2/c2
, (2.1)

to complete the journey. Here c is the speed of light (assuming the ether is at rest!).

Since we expect that u ≪ c, we can do a series expansion of (2.1) in u2/c2 and find that, to
lowest surviving order in u2/c2, that

t|| ≈
2AC

c
(1 + u2/c2) +

AD

c
(1 +

u2/c2

2
) , (2.2)

which is an excellent approximation, when u is very small compared to c.

Using the same method, the second pulse takes time,

t⊥ =
2AB

c

1
√

1 − u2/c2
+

AD

c

1
√

1 − u2/c2
, (2.3)

which, in the u≪ c approximation is

t⊥ ≈ 2AB

c
(1 +

u2/c2

2
) +

AD

c
(1 +

u2/c2

2
) . (2.4)

The difference between them is

∆t0 = t|| − t⊥ = 2
AC − AB

c
+

AC

c

2u2

c2
− AB

c

u2

c2
. (2.5)

That difference eliminates the contribution from AD. If AC were exactly equal to AB, then
the experiment would give a direct measurement of the speed of the earth through the ether.
But that is impossible to do, because the difference would have to be immeasurably small.
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So, they flipped the apparatus by π/2, so that S and D were in the same place, but B and
C changed positions. This results in a time difference of,

∆tπ/2 = t|| − t⊥ = 2
AC − AB

c
+

AC

c

u2

c2
− AB

c

2u2

c2
, (2.6)

and the difference between these two, is

∆t = ∆t0 − ∆tπ/2 =
AC + AB

2c

u2

c2
, (2.7)

thus ridding the experiment of the differences in distances between the half-mirror and the
mirrors, and yielding a direct measure of the speed of the earth through the ether.

As the story unfolded, u was measured to be zero, no matter where the earth was in its
yearly revolution around the sun, and the only conclusion that made sense was that light
could propagate through a vacuum. That begged the question, “If there is no ether, then
what can we say about the speed of light in different inertial frames?” That’s exactly what
Einstein had something to say about ...

2.3 ∗Einstein’s Postulates

Einstein formulated his Special Theory of Relativity on two postulates, one of them a gen-
uinely new idea:

1. The principle of relativity: The laws of physics are the same in all inertial reference
frames.

2. Constant speed of light: The speed of light has the same value in all inertial reference
frames.

The consequences of this idea are remarkable. All three of the constraints we applied to
Galilean transformations: time, length and mass equivalence, must be undone. We will
investigate these in the next section.

2.4 ∗The Lorentz Transformation

The Lorentz transformation relating two observers, O and O′, where O′ is moving along the
positive x-axis with respect to O at speed u is:
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x′ =
x− ut

√

1 − u2/c2

y′ = y

z′ = z

t′ =
t− (u/c2)x
√

1 − u2/c2
. (2.8)

I’d like to introduce a more compact notation. Factors like u/c and
√

1 − u2/c2 occur so
frequently that the following convenient shorthand notation is often used:

βu = u/c

γu =
1

√

1 − β2
. (2.9)

Frequently, when there is only one velocity in the discussion, the subscript u is dropped. β
is the ratio of the velocity in question to the speed of light, while γ is related (as we shall
see shortly) to the energy and momentum of a particle with mass.

The following property, a consequence of (2.8) is often employed to simplify expressions:

γ2 − β2γ2 = 1 . (2.10)

With this shorthand, the Lorentz transformation may be written:

x′ = γ(x− βct)

y′ = y

z′ = z

ct′ = γ(ct− βx) . (2.11)

∗Lorentz Transformation of Position and Time with Arbitrary Velocity

O′(x′, y′, z′, t′) → O(x, y, z, t), where the relative motion of O′ with respect to O is along the
positive ~u-axis with speed u and direction n̂u:

ct′ = γu(ct− ~βu · ~x)
~x′ = ~x− γu

~βuct+ (γu − 1)(n̂u · ~x)n̂u . (2.12)
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∗Length Contraction

With the Lorentz transformation, we are now in a position to obtain the formulae for length
contraction and time dilation more simply.

Suppose that O measures a space and temporal displacement with coordinates at (x1, t1)
and (x2, t2). In O′’s frame, these coordinates correspond to (x′1, t

′
1) and (x′2, t

′
2). Thus,

∆x′ = x′2 − x′1 and ∆x = x2 − x1 are related by (2.11) and found to be:

∆x′ = γ(∆x− u∆t) , (2.13)

where ∆t = t2 − t1. Now, both O and O′ make simultaneous measurements of the length of
an object aligned along the direction of motion. O′ measures the “proper” length, since the
object is at rest in his frame. (By definition, the “proper” length is the length of an object
as measured in its rest frame. It is always measured to be shorter if in motion relative to
the frame in which the measurement is made.) However, O measures a different length L,
given from (2.13) as:

L0 = γL, or L = L0/γ . (2.14)

Thus, O measures the object as being “shorter”.

∗Length Contraction with Arbitrary Velocity

~L = ~L0 − (γu − 1)n̂u(n̂u · ~L0)/γu

n̂u · ~L = (n̂u · ~L0)/γu

n̂u × ~L = n̂u × ~L0 (2.15)

∗Time Dilation

Now, consider the same situation in terms of time. According to (2.13),

c∆t′ = γ(c∆t− β∆x) . (2.16)

From (2.13),

∆x′ = γ(∆x− βc∆t) , (2.17)

or,
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From (2.13),

∆x =
∆x′

γ
+ βc∆t . (2.18)

(2.18) → (2.16) ⇒

c∆t′ = γ(c∆t− β[∆x′/γ + βc∆t]) . (2.19)

Observer O′’s clock is stationary, so that ∆x′ = 0 and he measures the “proper” time ∆t0.
(By definition, the “proper” time is the time as measured in the rest frame of the clock
taking the measurement. If the clock is in motion, a stationary observer, comparing a time
interval with an identical clock in his time frame, observes the moving clock to run slower.)
After a little rearrangement, we obtain:

∆t0 = ∆t/γ, or ∆t = γ∆t0 . (2.20)

That it, a moving clock is always observed to run at a slower rate than that measured in a
frame where the clock is stationary.

∗Velocity Transformation

Just as distance and time differences vary according to the frame of reference, so do the
velocities, as measured by two observers in different frames. We’ll start with (2.11), and
differentiate both sides with respect to t′.

dx′

dt′
= γu

(

dx

dt′
− u

dt

dt′

)

dy′

dt′
=

dy

dt′

dz′

dt′
=

dz

dt′

c = γu(c
dt

dt′
− βu

dx

dt′
) . (2.21)

Extracting 3 common factors results in:
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v′x = γu

(

dt

dt′

)

(vx − u)

v′y =

(

dt

dt′

)

vy

v′z =

(

dt

dt′

)

vz

dt

dt′
=

1

γu(1 − βuvx/c)
. (2.22)

Using the last of the above equations to replace for dt/dt′ in the previous 3, we obtain:

v′x =
vx − u

1 − βuvx/c

v′y =
vy

γu(1 − βuvx/c)

v′z =
vz

γu(1 − βuvx/c)
. (2.23)

∗Lorentz Transformation of Velocity with Arbitrary Direction

~v′ related to ~v, where the relative motion of the inertial frame measuring ~v′ with respect to
the inertial frame measuring ~v, is along the positive ~u-axis with speed u:

~v′ =
~v − ~uγu + (γu − 1)(~u · ~v)~u/u2

γu(1 − ~u · ~v/c2) (2.24)

∗Lorentz Transformation of Dilation Factor

γv′ = γuγv(1 − ~u · ~v/c2) (2.25)

∗Lorentz Transformation of Velocity and Dilation Factor

~v′γv′ = γv(~v − ~uγu + (γu − 1)(~u · ~v)~u/u2) (2.26)
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Relativistic Energy and Momentum

The relativistic energy and momentum of an object with mass m and velocity ~v:

E = mc2γv

~p = mγv~v

(mc2)2 = E2 − (c~p)2 (2.27)

∗Lorentz Transformation Energy and Momentum

The Lorentz transformation energy and momentum of an object with mass m and velocity
~v to an inertial frame that is moving along the positive x-axis with speed u:

E ′ = γu(E − upx)

~p′x = γu(px − uE/c2)

~p′y = py

~p′z = pz (2.28)

∗Lorentz Transformation Energy and Momentum with Arbitrary Direction

The Lorentz transformation energy and momentum of an object with mass m and velocity
~v to an inertial frame that is moving along the positive ~u-axis with speed u:

E ′ = γu(E − ~u · ~p)
~p′ = ~p− ~uγuE/c

2 + (γu − 1)(~u · ~p)~u/u2

(mc2)2 = E ′2 − (c~p′)2 (2.29)

∗The Relativistic Doppler Effect

The relativistic Doppler effect, measured along the relative velocity vector between two
objects, is given by:

ν

ν0
=

√

1 ± β

1 ∓ β
, (2.30)

where ν0 is the frequency of the light source in the rest frame of the source. The top signs in
the numerator and denominator of (2.30) signify that the source and observer are approaching
each other, while the bottom signs signify that the source and observer are receding from
each other. (Here, β is the relative speed of the source as seen by the observer.)
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If the relative line of motion is different from the direction of observation, one can show that:

ν

ν0
= γ(1 − n̂ · ~β) , (2.31)

where ~β = ~u/c, and n̂ is a unit vector along the line from the observer to the source.

2.5 Relativistic Dynamics

In this section we concern ourselves, primarily, with two-body scattering of relativistic par-
ticles, including photons. We start with some review of kinematic variables.

Symbol = Expression Interpretation
v speed of a particle with mass
c speed of light, speed of massless particles
β, or βv v/c speed (in units of c) of a particle with mass 0 ≤ β < 1
γ or γv (1 − β2)−1/2 “energy factor”, “dilation factor”, “contraction factor”

γ is often used as a symbol to represent a photon
mc2 rest mass energy of a particle with mass

E mc2γ total energy of a particle with mass (rest + kinetic energy)
Eγ total (or kinetic) energy of a photon (or massless particle)
K mc2(γ − 1) kinetic energy of a particle with mass

~p mc~βγ, m~vγ momentum of a particle with mass
~pγ Eγ/c magnitude of momentum of a photon, or particle without mass
(mc2)2 E2 − (pc)2 fundamental relation linking m, E, and |~p|2
1 γ2(1 − β2) useful property of γ and β

Table 2.1: Relativistic kinematic variables

Non-relativistic limit

When performing relativistic calculations, one technique for verifying your result is to deter-
mine the non-relativistic limit. Generally, this is done by making a Taylor expansion in β,
(See Chapter 18.) and keep leading order expressions that express the non-relativistic limit.
Factors of β should be replaced by cv, and the final result should resemble:

lim
β→0

(Relativistic expression) = (Non − relativistic expression) +O(1/cn) , (2.32)

where n ≥ 1. Finally the non-relativistic limit is obtained by setting the O(1/cn) expressions
to zero. Note that some expressions are intrinsically relativistic and not reducible to non-
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relativistic limits. For example, rest mass energy, and photon kinematic variables are some
that we have encountered to far.

For example, the kinetic energy of a particle of mass m, in the limit that β → 0 is:

lim
β→0

K = lim
β→0

mc2(γ − 1) =
1

2
mv2 +O(1/c2) , (2.33)

while its momentum is
lim
β→0

mc~βγ = m~v +O(1/c2) , (2.34)

Relativistic Collision Kinematics

We now repeat the discussion of Section 1.4.1 but include the effect of relativistic speeds.

Consider the collision of two moving particles with masses m1 and m2, producing particles
ma and mb following the collision. We conserve total energy and momentum, to obtain the
following equations:

CoE⇒
m1c

2γ1 +m2c
2γ2 = mac

2γa +mbc
2γb , (2.35)

We note that Q is the zero-speed limit of (2.35) and is included automatically in the subse-
quent analysis.

Co ~M ⇒
m1c ~β1γ1 +m2c ~β2γ2 = mac ~βaγa +mbc~βbγb . (2.36)

Solution Strategies

How we manipulate (2.35) and (2.36) depends on what information we know, and what
information we wish to extract. We shall discuss the most common situation now, and leave
some of the special cases to the examples and problems.

The most common situation involves the scattering of a known projectile from a known
target, where initial masses and velocities are known, to a set of final particles whose masses
are known, but only the lighter product particle leaves the collision area. (For example, a
proton scattering from a stationary nucleus, with a transformed nucleus and a neutron in the
final state.) Since the heavier product particle stays in the collision area, it is unobserved,
hence its velocity is not measurable, and we strive to eliminate it. We proceed as follows.

Reorganize (2.35) and (2.36) as follows, to put the kinematics of the “b” particle on the right
hand side (RHS) of the equations:

From the CoE equation:

m1c
2γ1 +m2c

2γ2 −mac
2γa = mbc

2γb , (2.37)
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and the Co ~M equation:

m1c ~β1γ1 +m2c ~β2γ2 −mac ~βaγa = mbc~βbγb . (2.38)

Dividing the square of (2.37) by c4 and subtracting the square of (2.38) divided by c2 gives
us:

(2.37)2/c4 - (2.38)2/c2 ⇒

(m1γ1 +m2γ2 −maγa)
2 − (m1

~β1γ1 +m2
~β2γ2 −ma

~βaγa)
2 = m2

bγ
2
b (1 − β2

b ) . (2.39)

The motivation for this arithmetical manipulation is now evident: no factors of c appear,
and most importantly, we may exploit the βγ relation, γ2(1 − β2) to great effect. Doing so
results in:

m2
1+m

2
2−m2

a−m2
b +2m1m2γ1γ2(1− ~β1 · ~β2) = 2m1maγ1γa(1− ~β1 · ~βa)+2m2maγ2γa(1− ~β2 · ~βa) .

(2.40)

We see that we have isolated the only unknown quantity, ~βa, and by inference γa on the RHS
of (2.40). We may further reduce this equation by noting that the mass term on the LHS
may be rewritten as follows:

m2
1 +m2

2 −m2
a −m2

b = (m1 +m2 −ma −mb)(m1 +m2 +ma +mb) = (∆M)M , (2.41)

where M = Mi + Mf = m1 + m2 − ma − mb is the sum of the masses of the initial and
final particles, while ∆M = Mi −Mf = m1 + m2 − ma − mb is the difference of the sum
of the initial masses and the sum of the final masses of the particles participating in the
reaction. We also note that ∆Mc2 is the reaction Q-value discussed previously. Note how it
appears naturally in the analysis, while it has to be “tacked on” in an ad hoc fashion in the
non-relativistic analysis.

So, finally we write:

(∆M)M+2m1m2γ1γ2(1− ~β1 · ~β2) = 2m1maγ1γa(1− ~β1 · ~βa)+2m2maγ2γa(1− ~β2 · ~βa). (2.42)

Having derived a relativistic result, we should check that it gives the correct non-relativistic
limit. To do this, we note that we can rewrite

(2.39) as:
~P 2 − 2mb(K +Q) = (Q+K)2/c2 , (2.43)

where
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~P ≡ m1c ~β1γ1 +m2c ~β2γ2 −mac ~βaγa ,

and

K ≡ m1c
2(γ1 − 1) +m2c

2(γ2 − 1) −mac
2(γa − 1) .

(2.43) is fully relativistic. Obtaining the non-relativistic form is tantamount to replacing ~P
and K with their non-relativistic counterparts (given below (1.14) and setting the 1/c2 on
the RHS of (2.43) to zero. This agrees with the non-relativistic form given in (1.14), and
we have verified the non-relativistic limit of our relativistic expression. It is not absolutely
foolproof, however, verifying non-relativistic limits is a very important verification tool.

2D relativistic elastic collision, equal masses

Problem: Find the opening angle of the resultant particles, when a relativistic particle of mass
m, collides with an equal mass, at rest. Show explicitly the transition to the well-known non-
relativistic limit?

Solution:

1. Set up the CoE and Co ~M equations assuming “2” is at rest:

mc2γ0 +mc2 = mc2γ1 +mc2γ2 (2.44)

mc~β0γ0 = mc~β1γ1 +mc~β2γ2 (2.45)

2. We require the angle between the resultant trajectories. The cosine of this angle is
obtained by ~β1 · ~β2. To isolate this: (2.44)2/(mc2)2 - (2.45)2/(mc)2 ⇒

γ1γ2
~β1 · ~β2 = γ1γ2 − γ0 .

If we let Θ represent the opening angle of the outgoing particles, we may manipulate
the above (Show this!) equation to be:

cos Θ =

√

K1K2

(K1 + 2mc2)(K2 + 2mc2)
, (2.46)

explicitly showing the dependence on the outgoing kinetic energies.

This relationship is plotted in Figure 2.2 for a logarithmic spacing of K1/K0 between
0.01 and 1000.

Taking c → ∞ yields the expected result, that the opening angle is π/2, in a non-
relativistic analysis. This is tantamount to saying that Ka << mc2 and Kb << mc2.
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Figure 2.2: cos θ vs. K1/K0

However, (2.46) contains even more information. It says that if either outgoing particle
is non-relativistic, that is, K1 << mc2 or K2 << mc2, the opening angle tends to π/2.
Finally, if either outgoing particle is at rest, the opening angle is π/2, exactly as in
the non-relativistic case, and also true for the relativistic case. It is a consequence
of the conservation of energy and momentum in both non-relativistic and relativistic
formalisms.

Interpretation: In the case that both outgoing particles are relativistic, (2.46) demonstrates
that the opening angle is less than π/2. Since K1 = K0 −K2, it also follows that there must
be a particular sharing of the initial kinetic energy, K0, with that of the outgoing particles,
that minimizes the opening angle. Since (2.46) is symmetric under the interchange 1 ↔ 2,
the sharing of kinetic energy can not be asymmetric. Therefore the only symmetric way of
sharing the energy is to give each outgoing particle half. You can prove this mathematically2,

2The mathematician within me is prone to say that a mathematical proof is always more general and
powerful than a physical one. Historically, though, it is well known that physicists, even theoretical ones,
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but making the argument this way is more fun. Therefore at the midpoint, K1 = K2 = K0/2,
and the minimum opening angle can be shown to be given by:

cosαmin =
K0

K0 + 4mc2
. (2.47)

This relationship is plotted in Figure 2.3 for a logarithmic spacing of K1/K0 between 0.01
and 1000.
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Figure 2.3: cos θmin vs. K1/K0

We note from (2.47) that the expected non-relativistic limit is obtained again. However,
as the incoming kinetic energy is extended upwards into the relativistic range, the energy

are better socially-adjusted than mathematicians. Then again, mathematicians ... (I digress). Here’s the
proof. Consider a function, f(x), that is symmetric about the origin. (Any different point of symmetry
may be used, but it can be translated back to the origin.) It follows that the function’s first derivative is
antisymmetric, and must pass through the origin. Hence, the origin is the location of an extremum of f(x).
Q.E.D.
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is increasingly carried into the forward direction. This is the principle upon which particle
ray-guns operate. It is also responsible for spectacular accidents when charged high energy
particle beams are mistakenly steered into beam pipes and magnets.

Zero-Momentum Frame

We can also perform ant calculation in the zero-momentum frame. in these set of notes,
we don’t exploit the zero-momentum frame extensively, since the laboratory frame makes
more sense for nuclear engineering and radiological applications (fixed targets, β- and γ-
decay). High-energy physics exploit the zero-momentum frame extensively, since particle-
antiparticle colliders operate in the zero-momentum frame. We shall exploit it, however, for
two important illustrations:

1. Particle/antiparticle creation with mass

Consider a collision of two photons, going in exact opposite directions, each with energy E0.
E0 is arranged so that after the collision, a particle and antiparticle, each with mass m, is
at rest. Thus, by CoE, E0 = 2mc2.

Now consider that a different observer, moving along the direction of one of the photons,
observes the event. In his frame of motion, the pair of particles is moving in the direction
opposite to him. In his frame of motion, his expressions for CoE and Co ~M are:

2mc2γ = E+ + E− (2.48)

2mcβγ = (E+ + E−)/c , (2.49)

where β is the observer’s velocity with respect to the zero-momentum frame, E+ is the
higher energy photon he observes, with E− is the lesser energy photon in his frame. By
manipulating the equations in the now familiar way, we may relate the energy of the photon
in the moving frame, relative to the rest frame. The result is:

E± = E0

√

1 ± β

1 ∓ β
, (2.50)

where we consistently use only the upper or lower signs in the expressions involving ± or ∓.

Thus, we have derived the Doppler effect stated in (2.30), whereby motion toward a photon
increases its energy, and motion away decreases its energy.

2. Particle/antiparticle decay into photons

Here we consider a particle with mass m, β0, γ0 on a collision course with its antiparticle,
moving in the exact opposite direction. They annihilate, producing two photons, each with
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energy E0, moving in exact opposite directions, along the original direction of motion. An
observer, moving with parameters β and γ, along the original direction of motion, observes
the same annihilation, and his CoE and Co ~M equations take the forms:

mc2γ+ +mc2γ− = E+ + E− (2.51)

mcγ+ +mcγ− = (E+ + E−)/c . (2.52)

Here, the “+” refers to the more energetic particle and photon in the frame of the observer.
The arithmetic is a little more involved than in the previous example, but, after some work,
we can conclude that:

γ± = γ0γ(1 ± ββ0) , (2.53)

which expresses a “Doppler shift”, but for particles with mass.

Applying (2.53), imagine that the observer is traveling at exactly β0, putting one of the
charged particles in the rest frame. The higher energy electron will have a “γ-shift” of
approximately 2γ2

0 . For example, the Stanford Linear Accelerator produces electrons and
electrons with energies of about 50 GeV, a γ-shift of about 105. The collision of these
particles in the zero-momentum frame, is equivalent to a fixed target γ-shift of 2× 105. It is
no wonder that particle-antiparticle colliders are such an important research tool.

Sticky collisions/exploding masses

Finally, we end this section with a discussion on inelastic collisions.

In the last chapter, we inferred the Q-value of a sticky collision. Let’s reformulate the
problem in a relativistic framework. Imagine that a particle of mass m0, with speed v0,
strikes an identical particle at rest, and they fuse. You can not balance the CoE and Co ~M
equations if the masses are allowed to remain unchanged. One finds, in this case that the
fused mass is

m = 2m0

√

1 + γ0

2
.

The increase in mass is due to the increase in internal energy of the mass m.

Similarly, if a mass m explodes into two equal masses, m0, you may show that

m = 2mγ0 .

In other words, internal energy is converted into kinetic energy of the resultant particles.
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2.6 Questions

Answer these questions (on paper or in your head). If you can’t find a good answer, re-read
the relevant sections of Chapter 2. If you still can’t find a good answer, ask a colleague, a
TA, or a Prof.

Some of these questions may appear on assignments or exams.

2.7 Problems

If you find some of these problems interesting, attempt them on paper. If you can’t find a
good answer, re-read the relevant sections of Chapter 2. If you still can’t find a good answer,
try working it out with a colleague, ask a TA, or a Prof.

Some of these problems may appear on assignments or exams.
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Chapter 3

The Particlelike Properties of
Electromagnetic Radiation

Reach Chapter 3 of the and-written notes. Most of this chapter is just a stub.

3.1 Review of Electromagnetic Waves

3.2 The Photoelectric Effect

Planck’s Constant

h = 6.626 069 96(33) × 10−34 J · s
= 4.135 667 33(10) × 10−15 eV · s

~ = h/2π

= 1.054 571 628(53)× 10−34 J · s
= 6.582 118 99(16) × 10−16 eV · s (3.1)

Energy of a Photon

E = hν

= ~ω (3.2)

47
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Momentum of a Photon

c~p = hνn̂

= ~~k

= hcn̂/λ

= ~cn̂/−λ (3.3)

where n̂ is a unit vector in the direction of the photon.

3.3 Blackbody Radiation

3.4 The Compton Effect

Compton’s Formula

for the difference in primary, E, and scattered photon energy, E ′ related to the scattering
angle, θ, of the scattered photon, with respect to the incoming photon’s direction, when
scattered from an electron with mass me in the rest frame of the electron.

1

E ′ −
1

E
=

1

mec2
(1 − cos θ) . (3.4)

3.5 Other Photon Processes

3.6 What is a Photon?



Chapter 4

The Wavelike Properties of Particles

Read Chapter 4 of the hand-written notes.

4.1 De Broglie’s Hypothesis

De Broglie’s Wavelength

The wavelength of any particle, with or without mass, is related to the magnitude of its
momentum. p, by the relation:

λ =
h

p
. (4.1)

Energy of a Particle in Terms of its Frequency

E = hν

= ~ω (4.2)

Momentum of a Particle in Terms of its Wavenumber

c~p = hνn̂

= ~~k

= ~cn̂/λ (4.3)

where n̂ is a unit vector in the direction of the particle.
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4.2 Uncertainty Relationships for Classical Waves

4.3 Heisenberg Uncertainty Relationships

Heisenberg’s Uncertainty Relationships

∆px∆x ≥ ~/2

∆py∆y ≥ ~/2

∆pz∆z ≥ ~/2

∆E∆t ≥ ~/2 (4.4)

4.4 Wave Packets

The general form for a wavepacket moving along the x-axis is given by:

f(x, t) =
1√
2π

∫ ∞

−∞
dk A(k) ei[kx−ω(k)t] , (4.5)

where A(k) represents the “strength” of the contribution of wave number k to the formation
of the packet. In complete generality, the frequency ω can be a function of the wavenumber,
so we write its dependence on k explicitly as ω(k).

The expression (4.5) is a “Fourier” transform. If we know the wavenumber spectrum, A(k),
we can form its wavepacket, f(x, t). Conversely, if we know the shape of the wavepacket at
t = 0, we can determine the wavenumber spectrum by using the inverse property of Fourier
transforms. and computing:

A(k) =
1√
2π

∫ ∞

−∞
dx f(x, 0) e−ikx . (4.6)

If we set t = 0 in (4.5) and substitute for A(k) from (4.6), we get, after some rearranging:

f(x, 0) =

∫ ∞

−∞
dx′ f(x′, 0)

(

1

2π

)
∫ ∞

−∞
dk eik(x−x′) . (4.7)

We must get the same function back, so this identifies one form of the Dirac “δ-function”
commonly seen when doing Fourier transforms, namely:

δ(x− x′) =
1

2π

∫ ∞

−∞
dk eik(x−x′) . (4.8)
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There are many forms of Dirac’s δ-function. It has the peculiar property that:

f(x) =

∫ x2

x1

dx′ δ(x′ − x)f(x′) , (4.9)

as long as x1 < x < x2, and zero otherwise.

Another form of the δ-function commonly seen in Fourier transform analysis is

δ(k − k′) =
1

2π

∫ ∞

−∞
dx ei(k−k′)x . (4.10)

Uncertainty Relationship

It can be shown from the general properties of Fourier transforms that:

∆x∆k ≥ 1

2
. (4.11)

(Note to self: Proof to follow at some later date.)

Multiplying by ~ gives Heisenberg’s uncertainty relationship:

∆x∆p ≥ ~

2
. (4.12)

Group Velocity

Consider now, (4.5), and imagine that the frequencies are strongly centered on some principle
frequency k0, and that it is weakly dispersive, so that we may write in a Taylor expansion:

ω(k) = ω(k0) +

(

dω

dk

)

k=k0

(k − k0) · · · , (4.13)

and substitute this back into (4.5) and obtain:

f(x, t) ≈ 1√
2π

∫ ∞

−∞
dk A(k) ei[kx−ω0t−vg(k−k0)t] , (4.14)

where ω0 = ω(k0) and vg =
(

dω
dk

)

k=k0
. The above can be rearranged to give:

f(x, t) ≈ ei(k0vg−ω0)t

√
2π

∫ ∞

−∞
dk A(k) eik(x−vgt) , (4.15)
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or,

f(x, t) ≈ f(x− vgt, 0)ei(k0vg−ω0)t , (4.16)

which, apart from the overall phase term in the exponential, looks like the original shape of
f(x, t) at t = 0 moving with velocity vg. This is the “group” velocity for a general, weakly
dispersive wavepacket.

Does it make sense? If we identify the energy of a wave as E = ~ω and the magnitude of its
momentum as p = ~k, we can identify the group velocity as

vg =
dω

dk
=

~dω

~dk
=

dE

dp
. (4.17)

The group velocity of a photon (E = cp) is c, for a non-relativistic particle with mass m
[E = p2/(2m)] it is p/m (or what we have called v), and for a relativistic particle with mass
m [E2 − (cp)2 = (mc2)2] it is pc2/E, also what we have been calling v. So, it does make
sense!

4.5 Probability and Randomness

4.6 The Probability Amplitude



Chapter 5

The Schrödinger Equation in 1D

Before introducing the Schrödinger equation, justifying it, solving it, and delving into 1D
applications and solutions, let us start with the Newtonian physics of a single particle with
massm, under the influence of some potential, and build upon that, to justify the Schrödinger
equation.

Classical 1D motion in a potential

The energy balance equation, in this case, is:

E(t) =
1

2
mẋ2 + V (x, t) , (5.1)

where the total energy, E(t), is shared between the kinetic energy of the particle1, K = 1
2
mẋ2,

and its potential, V (x, t) at the point x in space, at time t. This equation describes the
position, momentum, and total energy, of a particle at position x, in space, at time t.

If the potential is independent of time, that is, V (x, t) = V (x), then the total energy, E(t),
is a constant in time, E0. Explicitly,

E0 =
1

2
mẋ2 + V (x) . (5.2)

Consequently, a first derivative of (5.2) with respect to t gives:

ẋ[mẍ− F (x)] = 0, (5.3)

for which, mathematically speaking, there are two solutions:

1The dot notation indicates a derivative with respect to time. For example, ẋ = v, ẍ = v̇ = a

53
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ẋ = 0 , (5.4)

and

mẍ− F (x) = 0, (5.5)

also known as Newton’s Second Law of Motion, where F (x) = −dV (x)/dx.

The first solution, ẋ = 0 , is the static solution, i.e. no motion at all. This equation is
fundamental to the area of Statics2.

The second solution, gives rise to Kinematics3. (5.5) may, in principle, be solved exactly,
albeit, maybe only using computers. It is a second-order differential equation, requiring
two boundary conditions to be specified, the position and/or momentum of the particle at
two locations in time and space. The large body of knowledge encompassed by Classical
Mechanics is based on this equation.

We shall do just one example, as a segue into Quantum Mechanics.

The Harmonic Oscillator

The harmonic oscillator, in Classical Mechanics, refers to the potential,

V (x) =
1

2
kx2; with F (x) = −kx; and mẍ+ kx = 0 . (5.6)

In (5.6), k is the “spring” constant. A pysical realisation

5.1 Justifying the Schrödinger Equation

The 1-dimensional time-dependent Schrödinger equation] is the governing equation for de-
termining the wavefunction, ψ(x, t) of a single non-relativistic particle with mass m. It’s
most general form, including time and an arbitrary potential V (x, t), is:

−~
2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t) = i~

∂ψ(x, t)

∂t
. (5.7)

2Quoting from: http://en.wikipedia.org/wiki/Statics: Statics is the branch of mechanics that is
concerned with the analysis of loads (force and torque, or “moment”) on physical systems in static equilibrium,
that is, in a state where the relative positions of subsystems do not vary over time, or where components and
structures are at a constant velocity. When in static equilibrium, the system is either at rest, or its center
of mass moves at constant velocity.

3Quoting from: http://en.wikipedia.org/wiki/Kinematics: Kinematics is the branch of classical
mechanics that describes the motion of points, bodies (objects) and systems of bodies (groups of objects)
without consideration of the causes of motion.
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5.2 The Schrödinger Recipe

5.3 Probability Densities and Normalization

A Schrödinger wavefunction and it’s first derivatives are continuous everywhere, and nor-
malized by integrating over all space as follows:

∫ ∞

−∞
dx [ψ(x, t)]∗ψ(x, t) = 1 . (5.8)

The probability density is defined as follows:

p(x, t) = ψ∗(x, t)ψ(x, t) . (5.9)

The expectation value of a function or operator F of x, and/or t is calculated as follows:

〈F 〉 =

∫

dxψ∗(x, t)F (x, t)ψ(x, t) . (5.10)

When F is an operator, it is understood that it operates on the wavefunction to the right.

The probability current is defined as follows:

S(x, t) =
−~

m
Im

{

ψ(x, t)

[

∂ψ∗(x, t)

∂x

]}

. (5.11)

The continuity relation governs the flow of probability:

∂p(x, t)

∂t
+
∂S(x, t)

∂x
= 0 . (5.12)

Important expectation values:

〈p〉 = −i~
〈

∂

∂x

〉

〈p2〉 = −~
2

〈

∂2

∂x2

〉

〈T 〉 =
−~

2

2m

〈

∂2

∂x2

〉

〈E〉 = i~

〈

∂

∂t

〉

∆x =
√

〈x2〉 − 〈x〉2
∆px =

√

〈p2
x〉 − 〈px〉2 (5.13)
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The time-independent 1-dimensional Schrödinger equation is the governing equation for de-
termining the wavefunction, u(x, t) exp(−iEt/~) of a single non-relativistic monoenergetic
particle with mass m, when the potential is independent of time. It’s most general form,
including an arbitrary time-independent potential V (x), is:

−~
2

2m
u′′(x) + V (x)u(x) = Eu(x) , (5.14)

where u′(x) = du(x)/dx, and u′′(x) = d2u(x)/dx2 .

Some common abbreviations (the Dirac bra-ket notation)

|n〉 = ψn(x)

〈m| = ψ∗
m(x)

〈m|n〉 =

∫ ∞

−∞
dxψ∗

m(x)ψn(x)

〈m|f(x)|n〉 =

∫ ∞

−∞
dxψ∗

m(x)f(x)ψn(x) (5.15)

5.4 Applications of Scattering in 1D

Note to self: Discussion of “free particles”. Discussion of the difference between scattering
problems and bound-state problems.

5.4.1 Time-Independent Scattering Applications

Barrier, Step and Trough Potentials (One-Boundary Problems)

Name Characteristics of potential Boundary conditions

Barrier V (x) = V0θ(x), E0 < V0 <∞ uI(0) = uII(0), u′I(0) = u′II(0)
Step V (x) = V0θ(x), 0 < V0 < E0 uI(0) = uII(0), u′I(0) = u′II(0)
Trough −∞ < V0 < 0, E0 > 0 uI(0) = uII(0), u′I(0) = u′II(0)

Table 5.1: Some characteristics of barrier, step, and trough potentials we have encountered
in the course.

Solution strategy:

1. From (??), the form of the one-dimensional time independent Schrödinger equation is
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−~
2

2m
u′′(x) + V (x)u(x) = Eu(x) . (5.16)

When the potential is a constant, this may be rewritten as:

u′′(x) ± k2u(x) = 0 , (5.17)

where

k2 =
2m|E − V0|

~2
.

The plus sign is taken in regions where E > V0, and the negative sign in regions where
E < V0.

2. Solve (??) to obtain two candidate solutions, uI(x) and uII(x). You must have two
solutions for each region, since (??) is a second order differential equation.

3. In regions where E > V0, the candidate solutions are of the form e±ikx. The plus
sign in the exponential is for a wave traveling to the right, and the negative sign for a
wave traveling to the left. You can incorporate this interpretation into the boundary
condition to eliminate one of them in certain regions. (Example, no wave traveling to
the left in region II.)

4. In regions where E < V0, the candidate solutions are of the form e±kx. The plus sign
in the exponential is for a wave traveling to the right, and the negative sign for a
wave traveling to the left. You can incorporate this interpretation into the boundary
condition to eliminate one of them in certain regions. (Example, wave must diminish
at |x| increases.)

5. If the potential is not infinite in magnitude, apply the boundary condition that the
wavefunctions and their slopes must be continuous at the boundaries.

6. If the potential is infinite in magnitude, apply the boundary condition that the wave-
functions must go to zero, where the magnitude of the potential is infinite. The slope
need not go to zero.

7. Assume that the incoming wave is normalized, and obtain the amplitudes of all other
waves with respect to that.

8. Calculate the probability current, S0, for the incoming wave from (??). Similarly,
calculate the probability currents for the reflected, Sr, and transmitted, St, waves.

9. Calculate the reflection and transmission coefficients, R = |Sr/S0|, T = |St/S0|.

Solution for the one-boundary problems:
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Characteristic Barrier Step Trough

wavefunctions, region I Aeik0x +Be−ik0x Aeik0x +Be−ik0x Aeik0x +Be−ik0x

wavefunctions, region II Ce−Kx Ceikx Ceikx

K =
√

2m(V0 − E0)/~ k =
√

2m(E0 − V0)/~ k =
√

2m(E0 − V0)/~
R 1 (k0 − k)2/(k0 + k)2 (k0 − k)2/(k0 + k)2

T 0 4k0k/(k0 + k)2 4k0k/(k0 + k)2

Table 5.2: The solution to the three one-boundary potentials

Two-Boundary Barriers, Steps and Wells

These are the three important solvable problems with two boundaries and three regions.
The solution strategy is similar to the one-boundary case.

Name Characteristics of the potential Boundary conditions

Barrier V (x) = +|V0|θ(x)θ(L − x), 0 < E0 < V0 uI(0) = uII(0),u
′

I
(0) = u′

II
(0),uII(0) = uIII(0),u

′

II
(0) = u′

III
(0)

Step V (x) = +|V0|θ(x)θ(L − x), V0 < E0 < ∞ uI(0) = uII(0),u
′

I
(0) = u′

II
(0),uII(0) = uIII(0),u

′

II
(0) = u′

III
(0)

Well V (x) = −|V0|θ(x)θ(L − x), E0 > 0 uI(0) = uII(0),u
′

I
(0) = u′

II
(0),uII(0) = uIII(0),u

′

II
(0) = u′

III
(0)

Table 5.3: Some characteristics of barrier, step, and trough potentials we have encountered
in the course.

5.5 Applications of Time-Independent Bound States

Here we summarize the results for the important 1-D potentials.

Name Nickname Characteristics of potential Boundary conditions

Box potential Box V = 0 for 0 ≤ x ≤ L and ∞ elsewhere u(0) = 0, u(L) = 0

Symmetric box potential Symbox V = 0 for −D ≤ x ≤ D and ∞ elsewhere u(−D) = 0, u(D) = 0

Harmonic potential Spring V = 1
2kx2 for −∞ ≤ x ≤ ∞ (k > 0) limx→±∞ u(x) → 0

Table 5.4: Some characteristics of the three binding potentials we have encountered in the
course so far.
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Characteristic Box Symbox Spring

energy levels ~2π2n2

2mL2

~2π2(n+1)2

8MD2 ~ω0(n + 1/2) , ω0 =
√

k/m
n = 1, 2, 3 · · ·∞ n = 0, 1, 2 · · ·∞ n = 0, 1, 2 · · ·∞

eigenfunctions
√

2
L

sin nπx
L

√

1
D

cos (n+1)πx
2D

(n even)
√

α
2nn!

√
π

exp[−1
2
(αx)2]Hn(αx)

√

1
D

sin (n+1)πx
2D

(n odd) α =
(

~
2

mk

)(1/4)

=
√

~

mω0

H0(z) = 1; H1(z) = 2z
Hn(z) = 2zHn−1(z) − 2(n− 1)Hn−2(z)

Table 5.5: The solution to the three potentials

5.6 Transitions

5.7 †Time-Dependent Perturbations

5.7.1 Fermi’s Golden Rule #2

Fermi’s Golden Rule #2 is one of the central equations in radiation physics, as it is employed
to obtain decay rates and cross sections. Thus, a clear derivation is called for.

Consider the Schrödinger equation for a single particle in a static binding potential:

H0Ψ(x, t) =
i

~
Ψ(x, t) , (5.18)

where

H0 = T + V (x) ,

T = − ~
2

2m

d2

dx2
. (5.19)

We know that such a potential has a set of orthonormal eigenstates:

|j〉 = Ψj(x, t) = uj(x)e
−Ejt/~ , (5.20)

with eigenenergies, Ej . These eigenstates are orthonormal, that is,

〈i|j〉 = δij . (5.21)
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We know that the Ej ’s are constants, and fixed. By Heisenberg’s Uncertainly Principle, we
also know that all eigenstates are stable, as there is no mechanism for decay. In Nature,
we know that excited states eventually decay to the ground state, and the purpose of this
derivation is to obtain an expression for that decay rate.

We start by assuming that there is a perturbation potential that is time dependent, Vp(x, t).

Now we solve:

(H0 + Vp)Ψ =
i

~

∂Ψ

∂t
, (5.22)

where Ψ is the general solution to the entire problem, with both static and perturbation
potentials included.

To start, we write Ψ(x, t) as a superposition of the eigenstates of the H0 operator, that is:

Ψ(x, t) =
∑

j

aj(t)Ψj(x, t) . (5.23)

Taking the partial derivative (13.31) with respect to t gives: (Henceforth, for brevity, obvious
functional dependencies on space and time will usually be suppressed.)

∂Ψ

∂t
=
∑

j

(

ȧj − i
Ej

~

)

Ψj . (5.24)

(13.32) + (13.31) −→ (13.30) ⇒

∑

j

aj(H0 − Ej)Ψj +
∑

j

(ajVp − i~ȧj)Ψj = 0 . (5.25)

The first summation is zero, because each Ψj is a eigenfunction of the unperturbed H0 with
eigenenergy Ej . Thus,

∑

j

(ajVp − i~ȧj)Ψj = 0 , (5.26)

or,

∑

j

(ajVp − i~ȧj)|j〉 = 0 . (5.27)

Let |f〉 be the state that the excited states |j〉 transitions to. You can think of |f〉 as the
ground state, or at least a lower excited state.
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〈f |⊗ (13.35) ⇒

∑

j

(aj〈f |Vp|j〉ei(Ej−Ef )/~ − i~ȧj)δjf = 0 . (5.28)

Using the shorthand notation Vjf ≡ 〈f |Vp|j〉 and ωjf ≡ (Ej − Ef)/~, we have:

i~ȧf =
∑

j

ajVjfe
i(Ej−Ef )/~ . (5.29)

(13.37) represents, at least in principle, an exact solution to the problem. All one needs to
do is to set an initial condition, say, an(0) = 1 (the excited state) and then all the other a’s,
potentially an infinite number if them (!) to zero, and then let the solution evolve. Note that
every single eigenstate can be involved in the eventual de-excitation of |n〉. This approach
is more amenable to numerical solution. So, to proceed with the analysis, we make the

Small perturbation approximation

In this approximation, we only have two states, the initial excited and final states, |i〉 and
|f〉. None of the other states are assumed to be involved. In the spirit of this approximation,
we treat the a’s on the right hand side of (13.37) as constants. (This is how the system
would evolve for small t for any perturbation, large or small.)

Hence, we set ai(t) = 1 ∀ t, af (0) = 0, we allow these to change with time, and all the other
a’s are set to zero for all time. This allows us to integrate the equation, resulting in:

af = Vif
1 − eiωif

~ωif

. (5.30)

Now, we evaluate the occupation probability of the state to which the transition is made,

P = |af |2 = |Vif |2
(1 − eiωif )(1 − e−iωif )

(~ωif)2
. (5.31)

Using some trigonometric identities, this can be recast into the following form:

P = |af |2 =
|Vif |2

~2

sin2(ωif t/2)

(ωif/2)2
. (5.32)

The derivation of (13.40) assumed that the energy of the initial state |i〉 is precisely known.
However, we know from the Heisenberg’s Uncertainly Principle, ∆E∆t ≥ ~/2, that the
energy of an excited state can not be known precisely, but distributed in some way. So,
assume that the energy of the excited state is distributed according to some distribution
ρ(ω). We must integrate over all of these to obtain the occupation probability:
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P =

∫ ∞

−∞
dω

|Vif |2
~2

ρ(ω)
sin2((ωif − ω)t/2)

((ωif − ω)/2)2
. (5.33)

The
sin2((ωif − ω)t/2)

((ωif − ω)/2)2

term in the above equation acts as a delta function for large t, narrowing as t increases. We
eventually want to consider the decay of the excited state to the final state, so we take the
large t limit to obtain, after a change of variables:

P =
|Vif |2

~2
ρ(ωif)2t

∫ ∞

−∞
dx

sin2 x

x2
. (5.34)

The integral evaluates numerically to π, thus

P =
2π

~2
|Vif |2ρ(ωif)t . (5.35)

We can also rewrite ρ(ωif) in terms of Eif . Since Eif = ~ωif ,

P =
2π

~
|Vif |2ρ(Eif )t . (5.36)

Finally, the rate of decay, λ = dP/dt. Hence,

λ =
2π

~
|Vif |2ρ(Eif ) , (5.37)

and we have derived Fermi’s Golden Rule #2.

A few comments are in order.

The “blurring” function ρ(Eif ) is sometimes referred to as the “density of final states”. We
had to introduce it, in a somewhat ad hoc fashion to recognize that excited states are, indeed,
“blurred”. However, it is fascinating to note, that this blurring is directly connected to the
existence of final states for the system to accept the decay. For example, a typical nuclear
decay involves the release of a γ. Unless this γ has a quantum state to occupy it, there can
be no quantum mechanical transition. Hence, our interpretation of the ‘blurring” of excited
states depends on our ability to measure its decay. If there is no decay mode, then this
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density of states function drops to zero, the decay does not occur, and hence, the energy of
the excited state is precise! (But not measurable!)

What is the nature of this “blurring”?

5.7.2 The Lorentz Distribution

If an excited state can decay, we may write its wavefunction in the following form:

Ψ(x, t) = u(x)eiEit/~
e−t/(2τ)

√
τ

, (5.38)

where τ is its mean life. This interpretation follows directly from the probability density of
the excited state:

|Ψ(x, t)|2 = |u(x)|2 e
−t/τ

τ
, (5.39)

giving the well-known exponential decay law, properly normalized over the domain 0 ≤ t <
∞. Here we are adopting the normalization convention that

∫ ∞

0

dt |Ψ(x, t)|2 = |u(x)|2 .

Just as the dynamic variables k and x are related by Fourier transforms in the operational
sense, this is true as well for ω and t. Hence the above distribution in time, namely e−t/τ , is
converted to a distribution in frequency by its Fourier transform, namely,

Ψi(x, ω) = ui(x)
1√
2πτ

∫ ∞

0

dt ei(ωi−ω)te−t/(2τ) , (5.40)

where ωi = Ei and ω = E.

After performing the integral

Ψi(x, ω) = ui(x)
1√
2πτ

1

i(ωi − ω) + 1/(2τ)
. (5.41)

Therefore,

|Ψi(x, ω)|2 = |ui(x)|2
1

2πτ

(

1

(ωi − ω)2 + (1/(2τ))2

)

. (5.42)
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In terms of E rather than ω,

|Ψi(x,E)|2 = |ui(x)|2
Γ

2π

(

1

(Ei − E)2 + (Γ/2)2

)

, (5.43)

where Γ ≡ ~/τ .

Thus we have found the form of the Lorentz distribution:

|Ψi(x,E)|2 = |ui(x)|2
Γ

2π

(

1

(Ei − E)2 + (Γ/2)2

)

. (5.44)

One may easily verify that:

∫ ∞

−∞
dE |Ψi(x,E)|2 = |u(x)|2 . (5.45)
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Chapter 7

The Hydrogen Atom

Before discussing the H-atom solutions to the Schrödinger equation, however, we start with
a general discussion of the dynamic of 2-body systems in both Classical and Quantum Me-
chanics.

7.0.1 Central force, two-body systems in Classical Mechanics

Consider two non-notating bodies, m1, and m2 in the presence of a potential, V (~x). The
total energy of this system is:

E =
1

2
m1|~̇ 1x|2 +

1

2
m2|~̇ 2x|2 + V (~x1, ~x2) , (7.1)

that shows the contributions of the kinetic energies of each body and the potential, that acts
on each body at their point in space.

Now consider the special case that each body exerts an equal and opposite force on the
other, and that the potential, in the absence of any additional external force, takes the form,
V (~x1, ~x2) = V (|~x1 −~x2|). This is a special, but important subset of general two-body forces,
called the central force1.

Nature abounds with two-body central forces, viz. the gravitational force, and the electro-
static force, to cite two important examples.

The existence of a central force permits us to recast (7.1) in a much simpler fashion. If we
make the following change of variables:

1Not all two-body forces are central. Most importantly for us, the strong forces between two nucleons
contains a large spin-dependent non-central component.
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~r = ~x1 − ~x2

~R =
m1~x1 +m2~x2

m1 +m2
, (7.2)

we will find that (7.1) becomes:

E =
1

2
M | ~̇R|2 +

1

2
µ|~̇r|2 + V (r) , (7.3)

where

M = m1 +m2

µ =
m1m2

m1 +m2
. (7.4)

We see that the energy divides into two components, the kinetic energy of the aggregate,
at the center-of-mass coordinate ~R, and a dynamic component of the relative component ~r,
but with a reduced mass, µ.. There is no force on the aggregate, and thus its kinetic energy
is a constant, that we shall call KM . Thus,

Eµ ≡ E − EM =
1

2
µ|~̇r|2 + V (r) . (7.5)

7.0.2 Central force, two-body systems in Quantum Mechanics

7.1 The Schrödinger Equation in 3D

The 3-dimensional Schrödinger equation is the governing equation for determining the
wavefunction, ψ(~x, t)) of a single non-relativistic particle with mass m. It’s most
general form, including time and an arbitrary potential V (~x, t), is:

i~
∂ψ(~x, t)

∂t
=

−~
2

2m
∇2ψ(~x, t) + V (~x, t)ψ(~x, t)) . (7.6)

A Schrödinger wavefunction and it’s first derivatives are continuous everywhere, and
normalized by integrating over all space as follows:

∫

d~x [ψ(~x, t)]∗ψ(~x, t) = 1 . (7.7)
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The probability density is defined as follows:

p(~x, t) = ψ∗(~x, t)ψ(~x, t) . (7.8)

The expectation value of a function or operator F of ~x, and/or t is calculated as follows:

〈F 〉 =

∫

d~x ψ∗(~x, t)F (~x, t)ψ(~x, t) . (7.9)

When F is an operator it is understood that it operates on the wavefunction to the
right.

The probability current (aka vector current) is defined as follows:

~S(~x, t) =
−~

m
Im{ψ(~x, t)[~∇ψ∗(~x, t)]} (7.10)

The continuity relation governs the flow of probability:

∂p(~x, t)

∂t
+ ~∇ · ~S(~x, t) = 0 . (7.11)

Important expectation values

〈~x〉 = 〈xx̂+ yŷ + zẑ〉
〈~x · ~x〉 = 〈x2 + y2 + z2〉

〈~p〉 = −i~〈~∇〉
〈~p · ~p〉 = −~

2〈~∇ · ~∇〉

〈T 〉 =
−~

2

2m
〈∇2〉

〈E〉 = i~

〈

∂

∂t

〉

∆x =
√

〈x2〉 − 〈x〉2
∆px =

√

〈p2
x〉 − 〈px〉2 (7.12)

The time independent 3-dimensional Schrödinger equation is the governing equa-
tion for determining the wavefunction, u(~x, t)) exp(−iEt/~) of a single monoenergetic
non-relativistic particle with mass m, when the potential is independent of time. It’s
most general form, including an arbitrary time-independent potential V (~x), is:

−~
2

2m
∇2u(~x) + V (~x)u(~x) = Eu(~x) (7.13)
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7.2 The Hydrogenic Atom Wave Functions

7.3 Radial Probability Densities

7.4 Angular Momentum and Probability Densities
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7.7 The Zeeman Effect

7.8 Fine Structure
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Review of Classical Physics Relevant
to Nuclear Physics
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Chapter 10

Nuclear Properties

Note to students and other readers: This Chapter is intended to supplement Chapter 3 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

A nucleus, discovered by Ernest Rutherford in 1911, is made up of nucleons, a collective
name encompassing both neutrons (n) and protons (p).

Name symbol mass (MeV/c2 charge lifetime magnetic moment

neutron n 939.565378(21) 0 e 881.5(15) s -1.91304272(45) µN

proton p 938.272046(21) 1 e stable 2.792847356(23) µN

The neutron was theorized by Rutherford in 1920, and discovered by James Chadwick in
1932, while the proton was theorized by William Prout in 1815, and was discovered by
Rutherford between 1917 and 1919m and named by him, in 1920.

Neutrons and protons are subject to all the four forces in nature, (strong, electromagnetic,
weak, and gravity), but the strong force that binds nucleons is an intermediate-range force
that extends for a range of about the nucleon diameter (about 1 fm) and then dies off very
quickly, in the form of a decaying exponential. The force that keeps the nucleons in a nucleus
from collapsing, is a short-range repulsive force that begins to get very large and repulsive
for separations less than a nucleon radius, about 1

2
fm. See Fig. 10.1 (yet to be created).
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Figure 10.1: A sketch of the nucleon-nucleon potential.
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The n-n, n-p, and p-p nuclear forces are all almost identical. (There are some important
differences.) Of course, there is an additional p-p Coulombic repulsive potential, but that is
separate from the nuclear force.

Owing to these nuclear forces between individual nucleons, a nucleus is tightly bound. The
consequence is, from the attractive/repulsive form of the nuclear force, that the nucleons are
in very close proximity. One can almost imagine a nucleus being made up of incompressible
nucleonic spheres, sticking to one other, with a “contact” potential, like ping-pong balls
smeared with petroleum jelly. A further consequence of the nuclear force is that nucleons in
the nuclear core move, in what seems to be, a constant potential formed by the attraction
of its nearby neighbors, only those that are in contact with it. A nucleon at the surface of a
nucleus has fewer neighbors, and thus, is less tightly bound.

Nucleons are spin-1
2

particles (i.e. fermions). Hence the Pauli Exclusion Principle applies.
That is, no two identical nucleons may possess the same set of quantum numbers. Conse-
quently, we can “build” a nucleus, much as we built up an atom (in NERS311), by placing
individual electrons into different quantum “orbitals”, with orbitals being filled according to
energy hierarchy, with a maximum of two electrons (spin up and spin down) to an orbital.
Nucleons are formed in much the same way, except that all the force is provided by the other
constituent nucleons, and there are two different “flavors” of nucleon, the neutron and the
proton.

So, it seems that we could build a nucleus of almost any size, were it not for two physical
facts that prevent this. The Pauli Exclusion Principle prevents the di-nucleon from being
bound. Thus, uniform neutron matter does not exist in nature, except in neutron stars,
where gravity, a long-range force, provides the additional binding energy to enable neutron
matter to be formed. Thus, to build nuclei, we need to add in approximately an equal
proportion of protons. However, this also breaks down because of Coulomb repulsion, for A
(the total number of nucleons) greater than about 200 or so.

Moderate to large size nuclei also have more neutrons in the mix, thereby pushing the protons
farther apart. It is all a matter of balance, between the Pauli Exclusion Principle and the
Coulomb repulsion. And, that balance is remarkably delicate. The di-neutron is not bound,
but just not bound. The deuteron is bound, but only just so. The alpha particle is tightly
bound, but there are no stable A = 5 nuclei. 5He (2p + 3n) has a half-life of only 7.9×10−22

seconds, while 5Li (3p + 2n) has a half-life of only ≈ 3 × 10−22 seconds. Those lifetimes are
so short, that the unbalanced nucleon can only make a few orbits of the nucleus before it
breaks away. Nature is delicately balanced, indeed.

Since we have argued that nuclei are held together by a “contact” potential, it follows that
nuclei would tend to be spherical in “shape”, and hence1 it is reasonable to make mention
of ...

1Admittedly, these are classical concepts. However, classical concepts tend to be very useful when dis-
cussing nuclei as these objects seem to straddle both the classical and quantum descriptions of its nature,
with one foot set solidly in both.
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10.1 The Nuclear Radius

Like the atom, the radius of a quantum object is not a precisely defined quantity; it depends
on how that characteristic is measured. We can, with the proper tools, ask some very
interesting things about the nucleus. Let us assume that the charge-independence of the
nucleus means that the proton charge density and the neutron charge density are the same.
Thus, a measure of the proton charge distribution yields direct knowledge of the neutron
charge distribution. (In actual fact, the proton charge density distribution is forced to greater
radius by Coulomb repulsion, but this effect is almost negligible.)

How may we measure the proton charge distribution?

In Nuclear and Particle Physics, the answer to this question usually takes some form of “Bang
things together and see what happens!” In this case, we’ll use electrons as the projectile and
the nucleus as the target. The scattering amplitude is given by a proportionality (describing
the constants necessary to convert the ∝ to an = would be an unnecessary distraction):

F (~ki, ~kf) ∝ 〈ei~kf ·~x|V (~x)|ei~ki·~x〉 , (10.1)

where ei~ki·~x is the initial unscattered electron wavefunction, ei~kf ·~x is the final scattered elec-
tron wavefunction, and ~ki/~kf are the initial/final wavenumbers.

Evaluating ...

F (~ki, ~kf) ∝
∫

d~x e−i~kf ·~xV (~x)ei~ki·~x

∝
∫

d~x V (~x)ei(~ki−~kf )·~x

∝
∫

d~x V (~x)ei~q·~x ,

where ~q ≡ ~ki − ~kf is called the momentum transfer.

Thus, we see that scattering amplitude is proportional to the 3D Fourier Transform of the
potential.

F (~ki, ~kf) ≡ F (~q) ∝
∫

d~x V (~x)ei~q·~x , (10.2)

For the present case, we apply the scattering amplitude to the case where the incident
electron scatters from a much heavier nucleus that provides a scattering potential of the
form:
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V (~x) = − Ze2

4πǫ0

∫

d~x′
ρp(~x

′)

|~x− ~x′| , (10.3)

where ρp(~x
′) is the number density of protons in the nucleus, normalized so that:

∫

d~x′ ρp(~x
′) ≡ 1 . (10.4)

That is, the potential at ~x arises from the electrostatic attraction of the elemental charges
in d~x, integrated over all space. In order to probe the shape of the charge distribution,
the reduced wavelength of the electron, λ/2π, must be less than the radius of the nucleus.
Evaluating ...

λ

2π
=

~

pe

=
~c

pec
≈ ~c

Ee

=
197 [MeV.fm]

Ee

< RN ,

where RN is the radius of the nucleus. The above is a relativistic approximation. (That is
why the ≈ appears; pec ≈ Ee.) The calculation is justified, however, since the inequality
implies that the energy of the electron-projectile must be many 10s or 100s of MeV for the
condition to hold. As we raise the electron energy even more, and it approaches 1 GeV or
more, we can even begin to detect the individual charges of the constituent particles of the
protons (and neutrons), the constituent quarks.

Proceeding with the calculation, taking the potential in (10.3) and putting it in (10.2), results
in:

F (~q) ∝
(

− Ze2

4πǫ0

)
∫

d~x

∫

d~x′
ρp(~x

′)

|~x− ~x′|e
i~q·~x . (10.5)

We choose the constant of proportionality in F (~q), to require that F (0) ≡ 1. The motivation
for this choice is that, when ~q = 0, the charge distribution is known to have no effect on the
projectile. If a potential has no effect on the projectile, then we can rewrite (10.5) as

F (0) = 1 ∝
(

− Ze2

4πǫ0

)
∫

d~x

∫

d~x′
ρp(~x

′)

|~x− ~x′| , (10.6)

thereby determining the constant of proportionality. The details of this calculation will be
left to enthusiastic students to discover for themselves. The final result is:

F (~q) =

∫

d~x ρp(~x)e
i~q·~x . (10.7)
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Thus, we have determined, at least for charge distributions scattering other charges, that
the scattering amplitude is the Fourier Transform of the charge distribution.

This realization is one of the most important discoveries of nuclear structure physics: namely,
that a measurement of the scattering of electrons (or other charged particles) from charge
distributions, yields a direct measure of the shape of that charge distribution. One merely
has to invert the Fourier Transform.

We also note, from (10.4) that F (0) = 1.

10.1.1 Application to spherical charge distributions

Most nuclei are spherical in shape, so it behooves us to examine closely, the special case of
spherical charge distributions. In this case, ρp(~x) = ρp(r), and we write (10.7) more explicitly
in spherical polar coordinates:

F (~q) =

∫ 2π

0

dφ

∫ ∞

0

r2dr ρp(r)

∫ π

0

sin θdθ eiqr cos θ . (10.8)

The only “trick” we have used is to align our coordinate system so that ~q = qẑ. This is
permissible since the charge distribution is spherically symmetric and there is no preferred
direction. Hence, we choose a direction that makes the arithmetic easy. The remaining
integrals are elementary, and one can easily show that:

F (q) =
4π

q

∫ ∞

0

rdr ρp(r) sin qr . (10.9)
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Figure 10.2: From “Introductory Nuclear Physics”, by Kenneth Krane
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Figure 10.3: From “Introductory Nuclear Physics”, by Kenneth Krane
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Figure 10.4: From “Introductory Nuclear Physics”, by Kenneth Krane
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Conclusions from the data shown?

1. The central density, is (roughly) constant, almost independent of atomic number, and
has a value about 0.13/fm3. This is very close to the density nuclear in the infinite
radius approximation,

ρ0 = 3/(4πR3
0) .

2. The “skin depth”, s, is (roughly) constant as well, almost independent of atomic num-
ber, with a value of about 2.9 fm, typically. The skin depth is usually defined as the
difference in radii of the nuclear densities at 90% and 10% of maximum value.

3. Measurements suggest a best fit to the radius of nuclei:

RN = R0A
1/3 ; R0 ≈ 1.22 [fm], 1.20 −→ 1.25 is common. (10.10)

however, values from 1.20−→1.25 are commonly found

A convenient parametric form of the nuclear density was proposed by Woods and Saxon
(ca. 1954).

ρN(r) =
ρ0

1 + exp
(

r−RN

t

)

where t is a surface thickness parameter, related to s, by s = 4t log(3).

An example of this distribution is shown in Figure 10.5
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Figure 10.5: The Woods-Saxon model of the nucleon number density. In this figure, A = 208,
R0 = 1.22 (fm), and t = 0.65 (fm). The skin depth is shown, delimited by vertical dotted
lines.
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Let’s work out a specific, but important realization of a charge distribution, namely, a
uniform proton distribution, up to some radius RN , the radius of the nucleus.

Example: Uniform nucleon charge density

In this case, the normalized proton density takes the form:

ρp(r) =
3

4πR3
N

Θ(R− r) . (10.11)

Thus, combining (10.9) and (10.11), gives, after some reorganization:

F (q) =
3

(qRN)3

∫ (qRN )

0

dz z sin z , (10.12)

which is easily evaluated to be,

F (q) =
3[sin(qRN) − qRN cos(qRN )]

(qRN)3
, (10.13)

for which F (0) = 1, as expected.

Technical side note:
The following Mathematica code was useful in deriving the above relations.

(* Here Z == q*R_N: *)

(3/Z^3)*Integrate[z Sin[z], {z,0,Z}]

Series[3*(Sin[Z] - Z*Cos[Z])/Z^3,{Z,0,2}]

Graphical output of (10.13) is given in Figure 10.6. We note, in particular, the zero minima
when tan(qRN) = qRN . The shape of the lobes is determined by the nuclear shape, while the
minima are characteristic of the sharp edge. Measurements do not have such deep minima,
since the nuclear edge is blurred, and the projectile energies are not exact, but slightly
distributed, and the detectors have imperfect resolution. However, the measurements do,
unambiguously, reveal important details of the nuclear shape.
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Figure 10.6: Graphical output corresponding to (10.13).

Technical side note:
The following Matlab code was useful in producing the above graph.

N = 1000; fMin = 1e-6; zMax = 20; % Graph data

z = linspace(0,zMax,N); f = 3*(sin(z) - z.*cos(z))./z.^3;

f(1) = 1; % Overcome the singularity at 0

f2 = f.*f;

for i = 1:N

f2(i) = max(fMin,f2(i));

end

plot(z,log10(f2),’-k’)

xlabel(’\fontsize{20}q*R_N’)

ylabel(’\fontsize{20}log_{10}|f(q*R_N)|^2’)
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10.1.2 Nuclear shape data from electron scattering experiments

Technical side note:
The mathematical details can be found in the supplemental notes.

Most of the mathematical detail is given in the supplementary notes to this lecture. Those
notes obtain the following, very significant result.

What is measured in a scattering experiment is the relative intensity of deflected projectiles
(e), scattered into different angles, by the nucleus (N). This is also known as the scattering
cross section, differential in scattering angle. The result is that:

dσeN

dΩ
=

dσRuth
eN

dΩ
|F (q)|2 , (10.14)

where dσRuth
eN /dΩ is the classical Rutherford cross section discussed in NERS311 (but re-

derived in the supplemental notes to include relativistic kinematics, and F (q) is the scattering
amplitude we have been discussing so far. |F (q)|2 is the scattering amplitude, modulus
squared. (It can, in general, be complex.)

Hence, we have a direct experimental determination of the form factor, as a ratio of mea-
surement data (the measured cross section), and a theoretical function, the Rutherford cross
section.

|F (q)|2 =

(

dσmeas
eN

dΩ

)

/

(

dσRuth
eN

dΩ

)

. (10.15)

All that remains is to take the square root, and invert the Fourier Transform, to get ρ(r).
This is always done via a relatively simple numerical process.

Although the form factor |F (q)|2 is given in terms of q, we may cast it into more recognizable
kinematic quantities as follows. Recall,

q =
√

q2 =

√

|~ki − ~kf |2 =
√

2k2(1 − cos θ) , (10.16)

the final step above being obtained since this is an elastic scattering process, where k =
|~ki| = |~kf | and ~ki · ~kf = k2 cos θ.
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Thus, electron scattering experiments yield exquisitely detailed data on the shape of nuclei.
Figure 3.11 in Krane depicts some very detailed data that shows the departure from the
classical Rutherford scattering cross section, as the projectile’s energy, α-particles in this
case, is increased. The classical interpretation is that the projectile is penetrating the nucleus.
The Quantum Mechanical picture is that the projectile’s wave function has a wave number
small enough to start resolving the finite size of the nucleus. We now examine another way
that experiments can yield information about the nuclear shape.

10.1.3 Nuclear size from spectroscopy measurements

Nuclear and atomic spectroscopy, the technique of measuring the energies of nuclear and
atomic transitions, is one of the most precise measurements in nuclear science. If that is the
case, then spectroscopy ought to be able to measure differences in transition energies that
arise from the finite nuclear size.

Assume, for the sake of argument, that the nucleus is a sphere of radius RN . An ideal
probe of the effect of a finite-sized nucleus vs. a point-nucleus (as in the Schrödinger atomic
model), would be a 1s atomic state, since, of all the atomic electron wavefunctions, the 1s
state has the most probability density in the vicinity of the nucleus.

The shift of energy of the 1s can be estimated as follows:

∆E1s = 〈ψ1s|V◦(r) − V.(r)|ψ1s〉 , (10.17)

where the ψ1s is the 1s wavefunction for the point-like nucleus, V◦(r) is the Coulomb potential
for the finite nucleus, and V.(r) is the point-like Coulomb potential. This way of estimating
energy shifts comes formally from “1st-order perturbation theory”, where it is assumed that
the difference in potential has only a small effect on the wavefunctions. For a uniform sphere
of charge, we know from Classical Electrostatics, that V◦(r) = V.(r) for r ≥ RN .

V◦(r ≤ RN ) = − Ze2

4πǫ0RN

[

3

2
− 1

2

(

r

RN

)2
]

V◦(r ≥ RN ) ≡ V.(r) = − Ze2

4πǫ0r
(10.18)

We evaluate this by combining (10.18) with (10.17) and using the hydrogenic wavefunctions
given in NERS311 and also in Krane II (Tables 2.2 and 2.5), and obtain:

∆E1s =
Ze2

4πǫ0RN

4Z3

a3
0

∫ RN

0

drr2e−2Zr/a0

[

RN

r
− 3

2
+

1

2

(

r

RN

)2
]

. (10.19)
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In unitless quantities, we may rewrite the above as:

∆E1s = Z2α2(mec
2)

(

2ZRN

a0

)2 ∫ 1

0

dze−(2ZRN /a0)z

[

z − 3

2
z2 +

z4

2

]

. (10.20)

Across all the elements, the dimensionless parameter (2ZRN/a0) spans the range 2×10−5 −→≈
10−2. Hence, the contribution to the exponential, in the integral, is inconsequential. The
remaining integral is a pure number and evaluates to 1/10. Thus, we may write:

∆E1s ≈
1

10
Z2α2(mec

2)

(

2ZRN

a0

)2

. (10.21)

This correction is about 1 eV for Z = 100 and much smaller for lighter nuclei.

Nuclear size determination from an isotope shift measurement

Let us imagine how we are to determine the nuclear size, by measuring the energy of the
photon that is given off, from a 2p→ 1s transition.

The Schrödinger equation predicts that the energy of the photon will be given by:

(E2p→1s)◦ = (E2p→1s). + 〈ψ2p|V◦(r) − V.(r)|ψ2p〉 − 〈ψ1s|V◦(r) − V.(r)|ψ1s〉 , (10.22)

or,

(∆E2p→1s)◦ = 〈ψ2p|V◦(r) − V.(r)|ψ2p〉 − 〈ψ1s|V◦(r) − V.(r)|ψ1s〉 , (10.23)

expressing the change in the energy of the photon, due to the effect of finite nuclear size.

The latter term, 〈ψ1s|V◦(r) − V.(r)|ψ1s〉, has been calculated in (10.21). We now consider
the former term, 〈ψ2p|V◦(r) − V.(r)|ψ2p〉. Figure 10.7 shows the 1s and 2p hydrogenic radial
probabilities for the 1s and 2p states, each divided by their respective maxima. (This corre-
sponds to having divided the 2p function by a factor of about 89.) The vertical line near the
origin is the radius of an A = 208 nucleus, assuming RN = 1.22A1/3. That radius has been
multiplied by a factor of 10 for display purposes. The actual value is ZRN/a0 = 0.0112,
assuming further, that Z = 82.

As can be seen from this figure, the overlap of the 2p state is many orders of magnitude
smaller than that of the 1s state. Hence, the term 〈ψ2p|V◦(r) − V.(r)|ψ2p〉 may be safely
ignored in (10.23). Therefore, we can conclude, from (10.21), that the photon’s energy is
reduced by,
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Figure 10.7: Overlap of 1s and 2p electronic orbitals with the nuclear radius. The nuclear
radius depicted is for A = 208 and has been scaled upward by 10 for display purposes.

∆E2p→1s ≈ − 1

10
Z2α2(mec

2)A2/3

(

2ZR0

a0

)2

, (10.24)

for a uniformly charged nucleus with radius RN = R0A
1/3.

However, we have yet to make the connection to a measurement, because the measurement
of a photon’s energy from a realistically shaped nucleus can not be compared with that of
an identical atom with a point nucleus. That does not exist in nature. Instead, consider
the following: the transition energy for two isotopes of the same element, A and A′. The
difference in this transition energy may be determined experimentally, and we obtain:

∆E2p→1s(A) − ∆E2p→1s(A
′) =

1

10
Z2α2(mec

2)

(

2ZR0

a0

)2

(A′2/3 − A2/3) . (10.25)
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The measured quantity is called the K X-ray isotope shift. The following few pages show
measurements of isotope shifts, for K X-Rays and optical photon isotope shifts.

Figure 10.8: Fig 3.6 from Krane, K X-ray shifts for Hg.

Figure 10.9: Fig 3.7 from Krane, optical shifts for Hg.

A better probe of nuclear shape can be done by forming muonic atoms, formed from muons
(usually from cosmic rays), that replace an inner K-shell electron, and has significant overlap
of its wavefunction with the nucleus.

Figure 10.10: Fig 3.8 from Krane, K X-ray shifts for muonic Fe.

All these data are consistent with a nuclear size with a radius, RN = R0A
/3, and a value for

R0 ≈ 1.2 fm.

Charge radius from Coulomb energy in mirror nuclei

A mirror-pair of nuclei are two nuclei that have the same atomic mass, but the number
of protons in one, is the number of neutrons in the other, and the number of protons and
neutrons in one of the nuclei differs by only 1. So, if Z is the atomic number of the higher
atomic number mirror nucleus, it has Z − 1 neutrons. Its mirror pair has Z − 1 protons and
Z neutrons. The atomic mass of both is 2Z − 1. Examples of mirror pairs are: 3H/3He, and
39Ca/39K.

These mirror-pairs are excellent laboratories for investigating nuclear radius since the nuclear
component of the binding energy of these nuclei ought to be the same, if the strong force does
not distinguish between nucleons. The only remaining difference is the Coulomb self-energy.
For a charge distribution with Z protons, the Coulomb self-energy is:

EC =
1

2

Z2e2

4πǫ0

∫

d~x1ρp(~x1)

∫

d~x2ρp(~x2)
1

|~x1 − ~x2|
. (10.26)

The factor of 1/2 in front of (10.26) accounts for the double counting of repulsion that takes
place when one integrates over the nucleus twice, as implied in (10.26).

For a uniform, spherical charge distribution of the form,

ρp(~x) =
3

4πR3
N

Θ(RN − r) . (10.27)
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Figure 10.11: Fig 3.9 from Krane, composite K X-ray shift data.

As shown below:

EC =
3

5

Z2e2

4πǫ0RN
. (10.28)

For a uniform, spherical charge distribution, given by (10.27):

EC =
1

2

Z2e2

4πǫ0

(

3

4πR3
N

)2 ∫

|~x1|≤RN

d~x1

∫

|~x2|≤RN

d~x2
1

|~x1 − ~x2|

=
1

2

Z2e2

4πǫ0RN

(

3

4π

)2 ∫

|~u1|≤1

d~u1

∫

|~u2|≤1

d~u2
1

|~u1 − ~u2|

=
1

2

Z2e2

4πǫ0RN
I , (10.29)

where

I =

(

3

4π

)2 ∫

|~u1|≤1

d~u1

∫

|~u2|≤1

d~u2
1

|~u1 − ~u2|
. (10.30)

From (10.30), one sees that I has the interpretation as a pure number representing the
average of |~u1 − ~u2|−1, for two vectors, ~u1 and ~u2, integrated uniformly over the interior of a
unit sphere. So, now it just remains, to calculate I. We’ll work this out explicitly because the
calculation is quite delicate. Features of this derivation are seen in several areas of Nuclear
and Radiological Science.

Expanding the 3-dimensional integrals in (10.30) results in:

I =

(

3

4π

)2 ∫ 2π

0

dφ1

∫ π

0

dθ1 sin θ1

∫ 1

0

du1u
2
1

∫ 2π

0

dφ2

∫ π

0

dθ2 sin θ2

∫ 1

0

du2u
2
2

1

|~u1 − ~u2|
.

The following expression results from having done both azimuthal integrals, once having
aligned the z-axis of the coordinate system with ~u1, when performing the 3 inner integrals.
Then with the transformation cos θ1 → µ1 and cos θ2 → µ2, we obtain:
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I =

(

9

2

)
∫ 1

0

du1u
2
1

∫ 1

0

du2u
2
2

∫ 1

−1

dµ2
1

√

u2
1 + u2

2 − 2u1u2µ2

=

(

9

2

)
∫ 1

0

du1u1

∫ 1

0

du2u2[(u1 + u2) − |u1 − u2|]

= 9

∫ 1

0

du1u1

[
∫ u1

0

du2u
2
2 + u1

∫ 1

u1

du2u2

]

= 9

∫ 1

0

du1

[

u2
1

2
− u4

1

6

]

= 9

[

1

6
− 1

30

]

=
6

5
. (10.31)

A common error in performing the above integral results from ignoring the absolute value
in the 2nd step. Recall that

√
a2 = |a|, not a.

Finally, combining (10.29) and (10.31) gives us the final result expressed in (10.28).

The Coulomb energy differences are measured through β-decay endpoint energies (more on
this later in the course), which yield very good information on the nuclear radius. The
difference in Coulomb energies is given by:

∆EC =
3

5

e2

4πǫ0RN
[Z2 − (Z − 1)2]

=
3

5

e2

4πǫ0RN
(2Z − 1)

=
3

5

e2

4πǫ0R0

A2/3 , (10.32)

where, in the last step, we let RN = R0A
1/3. (Recall, A = 2Z − 1 for mirror nuclei.)

Figure 10.12: Fig 3.10 from Krane, Coulomb energy differences.

10.2 Mass and Abundance of Nuclei

Note to students: Read 3.2 in Krane on your own. You are responsible for this material, but
it will not be covered in class.
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10.3 Nuclear Binding Energy

In this section , we discuss several ways that the binding energy of the nucleus is tabulated in
nuclear data tables. Nuclear binding energy is always related to the atomic mass, an exper-
imentally derived quantity, one that is obtained with great precision through spectroscopy
measurements, at least for nuclei that are stable enough. We start by discussing the binding
energy of an atom, and then draw the analogy with the binding energy of the nucleus.

The rest mass energy of a neutral atom, m
A
c2, and the rest mass energy of its nucleus, m

N
c2,

are related by:

m
A
c2 = m

N
c2 + Zmec

2 −Be(Z,A) , (10.33)

where Be(Z,A) is the electronic binding, the sum of the binding energies of all the electrons
in the atomic cloud. The total electronic binding energy can be as large as 1 MeV in the
heavier atoms in the periodic table. However, this energy is swamped by factors of 105–106

by the rest mass energy of the nucleus, approximately A×1000 MeV. Hence, the contribution
of the electronic binding is often ignored, particularly when mass differences are discussed, as
the electronic binding component largely cancels out. We shall keep this in mind, however.

One may estimate the total electronic binding as done in the following example.

Technical aside: Estimating the electronic binding in Pb:
Lead has the following electronic configuration:
1s22s22p63s23p63d104s24p64d105s25p64f 145d106s26p2 ,
or, occupancies of 2, 8, 18, 32, 18, 4 in the n = 1, 2, 3, 4, 5, 6 atomic shells. Thus,

Be(82, 208) ≈ (82)2(13.6 eV)

(

2 +
8

22
+

18

32
+

32

42
+

18

52
+

4

62

)

= 0.8076 MeV .

This is certainly an overestimate, since electron repulsion in the atomic shells has not been
accounted for. However, the above calculation gives us some idea of the magnitude of the
total electronic binding. (A more refined calculation gives 0.2074 MeV, indicating that the
overestimate is as much as a factor of 4.) So, for the time being, we shall ignore the total
electronic binding but keep it in mind, should the need arise.

By analogy, and more apropos for our purposes, we state the formula for the nuclear binding
energy, BN (Z,A), for atom X, with atomic mass m(AX):

BN (Z,A) =
{

Zmp +Nmn −
[

m(AX) − Zme

]}

c2 . (10.34)
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Since

mp +me ≈ m(1H) ,

we may rewrite (10.34) as

BN(Z,A) = [Zm(1H) +Nmn −m(AX)]c2 . (10.35)

We emphasize, however, that electron binding energy is being ignored, henceforth2.

Thus, we have obtained the binding energy of the nucleus in terms of the atomic mass of
its neutral atom, m(AX). Conventionally, atomic masses are quoted in terms of the atomic
mass unit, u. The conversion factor is uc2 = 931.494028(23) MeV.

Occasionally, it is the nuclear binding energy that is tabulated (it may be listed as mass
defect or mass excess), in which case that data may be used to infer the atomic mass. A
word of warning, however. Don’t assume that the uses of mass defect or mass excess are
consistent in the literature. One must always consult with the detailed descriptions of the
data tables, to see the exact definition employed in that document.

Separation energies

Other measured data of interest that shine some light on the binding energy, as well as the
nuclear structure of a given nucleus, is the neutron separation energy, Sn. That is the energy
required to liberate a neutron from the nucleus, overcoming the strong attractive force. From
the binding energy expressed in (10.35), we see that Sn takes the form:

Sn = BN

(

A
ZXN

)

− BN

(

A−1
Z XN−1

)

=
[

m
(

A−1
Z XN−1

)

−m
(

A
ZXN

)

+mn

]

c2 . (10.36)

The proton separation energy is a similar quantity, except that it also accounts for the
repulsion by the other protons in the nucleus.

Sp = BN

(

A
ZXN

)

− BN

(

A−1
Z−1XN

)

=
[

m
(

A−1
Z−1XN

)

−m
(

A
ZXN

)

+m
(

1H
)]

c2 . (10.37)

2To adapt these equations to account for electronic binding, (10.34) would take the form:

BN (Z, A) = [Z(mp + me) + Nm
N
− m(AX)]c2 − Be(Z, A) .
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Thus we see from (10.35), that measurement of atomic mass yields direct information on
the binding energy. We also see from (10.36) and (10.37), that measurements of neutron
and proton separation energies yield direct information on the difference in nuclear binding
energy between two nuclei that differ in A by one neutron or proton.

There are 82 stable3 elements. 209
83 Bi, the most stable isotope of Bi, has a measured half-life of

(19± 2)× 1018 years (α-decay). Those 82 stable elements have 256 stable isotopes. Tin4 has
10 stable isotopes ranging from 112Sn–126Sn. These stable isotopes, plus the more than 1000
unstable but usable nuclei (from the standpoint of living long enough to provide a direct
measurement of mass), can have their binding energy characterized by a universal fitting
function, the semiempirical formula for B(Z,A) ≡ BN(Z,A), a five-parameter empirical fit
to the 1000+ set of data points. (The subscript N is dropped to distinguish B as the formula
derived from data fitting.

Semiempirical Mass Formula – Binding Energy per Nucleon

The formula for B(Z,A) is given conventionally as:

B(Z,A) = a
V
A− a

S
A2/3 − a

C
Z(Z − 1)A−1/3 − asym

(A− 2Z)2

A
+ a

p

(−1)Z [1 + (−1)A]

2
A−3/4 .

(10.38)

The numerical values of the fitting constants and the meaning of each term are given in the
following table:

ai [MeV] Description Source
a

V
15.5 Volume attraction Liquid Drop Model

a
S

16.8 Surface repulsion Liquid Drop Model
a

C
0.72 Coulomb repulsion Liquid Drop Model + Electrostatics

a
sym

23 n/p symmetry Shell model
a

p
34 n/n, p/p pairing Shell model

Table 10.1: Fitting parameters for the nuclear binding energy

The explanation of each term follows:

3Let us use, as a working definition, that “stability” means “no measurable decay rate”.
4Tin’s remarkable properties arise from the fact that it has a “magic” number of protons (50). This

“magic” number represents a major closed proton shell, in the “shell model” of the nucleus, that we shall
study soon. Tin’s remarkable properties don’t stop there! Tin has 28 known additional unstable isotopes,
ranging from 99Sn–137Sn! It even has a “doubly-magic” isotope, 100Sn, with a half-life of about 1 s, discovered
in 1994. Tin is the superstar of the “Chart of the Nuclides”. And you thought tin was just for canning soup!



98 CHAPTER 10. NUCLEAR PROPERTIES

Volume attraction: This term represents the attraction of a core nucleon to its surround-
ing neighbors. The nuclear force is short-medium range, therefore, beyond the immediate
neighbors, there is no further attraction. Thus we expect this term to be attractive, and
proportional to the number of nucleons. Add one nucleon to the core, and the binding energy
goes up by the same amount, regardless of what A is. Another way to see this is: the “bulk
term” is proportional to the volume of material, thus it is proportional to R3

N , or A, since
RN ∝ A1/3. This comes from considering the nucleus to be formed of an incompressible fluid
of mutually-attracting nucleons, i.e. the Liquid Drop Model of the nucleus.

Surface attraction: The volume term overestimates the attraction, because the nucleons at
the surface lack some of the neighbors that attract the core nucleons. Since the surface is
proportional to R2

N , this term is proportional to A2/3, and is repulsive.

Coulomb repulsion: The Coulomb repulsion is estimated from (10.28). This term is propor-
tional to 1/RN , or A−1/3. The Z2 is replaced by Z(Z − 1) since a proton does not repulse
itself. As discussed previously, this term is derived from Electrostatics, but within the Liq-
uid Drop Model, in which the electrostatic charge is considered to be spread continuously
through the drop.

n/p symmetry: The Nuclear Shell Model predicts that nuclei like to form with equal numbers
of protons and neutrons. This is reflected by the per nucleon factor of [(A− 2Z)/A]2. This
“repulsion” minimizes (vanishes) when Z = N . This is a “Fermi pressure” term, meaning
that the nucleus wants to maximize the difference of particle types in the nucleus.

n/n, p/p pairing: The Nuclear Shell Model also predicts that nuclei prefer when protons
or neutrons are paired up in n − n, p − p pairs. This factor is attractive, for an even-even
nucleus (both Z and N are even), repulsive for an odd-odd nucleus, and zero otherwise. The
A−3/4 term is not easy to explain, and different factors are seen in the literature. This term
comes from the spin-spin interaction. Like magnets (which is sort of, what nucleons are),
want to anti-align their magnetic poles.

For a graphical representation of B/A, see figure 3.17 in Krane.

Using the expression (10.38) and adapting (10.35), we obtain the semiempirical mass for-
mula:

m(AX) = Zm(1H) +Nmn − B(Z,A)/c2 , (10.39)

that one may use to estimate m(AX) from measured values of the binding energy, or vice-
versa.

Application to β-decay

β-decay occurs when a proton or a neutron in a nucleus converts to the other form of
nucleon, n → p, or p → n. (An unbound neutron will also β-decay.) This process preserves
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A. Therefore, one may characterize β-decay as an isobaric (i.e. same A) transition. For
fixed A, (10.39) represents a parabola in Z, with the minimum occurring at (Note: There is
a small error in Krane’s formula below.):

Zmin =
[mn −m(1H)]c2 + a

C
A−1/3 + 4a

sym

2a
C
A−1/3 + 8a

sym
A−1

. (10.40)

We have to use some caution when using this formula. When A is odd, there is no ambiguity.
However, when the decaying nucleus is odd-odd, the transition picks up an additional loss in
mass of 2a

p
A−3/4, because an odd-odd nucleus becomes an even-even one. Similarly, when

an even-even nucleus decays to an odd-odd nucleus, it picks up a gain of 2a
p
A−3/4 in mass,

that must be more than compensated for, by the energetics of the β-decay.

Figure 3.18 in Krane illustrates this for two different decays chains.

(10.40) can very nearly be approximated by:

Zmin ≈ A

2

1

1 + (1/4)(a
C
/a

sym
)A2/3

. (10.41)

This shows clearly the tendency for Z ≈ N for lighter nuclei. For heavier nuclei, A ≈ 0.41.

Binding Energy per Nucleon

The binding energy per nucleon data is shown in Krane’s Figure 3.16 and the parametric fit
shown in Krane’s Figure 3.17. There are interesting things to note. B(Z,A)/A ...

• peaks at about A = 56 (Fe). Iron and nickel (the iron core of the earth) are natural
endpoints of the fusion process.

• is about 8 MeV ± 10 % for A > 10.

10.4 Angular Momentum and Parity

The total angular momentum of a nucleus is formed from the sum of the individual con-
stituents angular momentum, ~l, and spin, ~s, angular momentum. The symbol given to the
nuclear angular momentum is I. Thus,

~I =
A
∑

i=1

(~li + ~si) . (10.42)
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These angular momenta add in the Quantum Mechanical sense. That is:

〈~I2〉 = ~
2I(I + 1)

I = 0,
1

2
, 1,

3

2
· · ·

〈Iz〉 = ~m
I

m
I

: −I ≤ m
I
≤ I

∆m
I

: integral (10.43)

Since neutron and proton spins are half-integral, and orbital angular momentum is integral,
it follows that I is half-integral for odd-A nuclei, and integral for even-A nuclei.

Recall that parity is associated with a quantum number of ±1, that is associated with the
inversion of space. That is, if Π is the parity operator, acting on the composite nuclear wave
function, Ψ(~x;A,Z),

ΠΨ(~x;A,Z) = ±Ψ(−~x;A,Z) . (10.44)

The plus sign is associated with “even parity” and the minus sign with “odd parity”.

Total spin and parity are measurable, and a nucleus is said to be in an Iπ configuration. For
example, 235U has Iπ = 7

2

−
, while 238U has Iπ = 0+.

10.5 Nuclear Magnetic and Electric Moments

10.5.1 Magnetic Dipole Moments of Nucleons

We have learned from atomic physics, that the magnetic fields generated by moving charges,
has a small but measurable effect on the energy levels of bound electrons in an atom. For
example, the apparent motion of the nucleus about the electron (in the frame where the
electron is at rest), leads to “fine structure” changes in atomic spectra. This arises because
the nucleus can be thought of as a closed current loop, generating its own magnetic field,
and that magnetic field exerts a torque on the spinning electron. Although the electron is a
“point particle”, that point charge is spinning, generating its own magnetic field. We know
that two magnets exert torques on each other, attempting to anti-align the magnetic poles.

The nucleus itself, is made up of protons and neutrons that have intrinsic spin as well,
generating their own “spin” magnetic fields, in addition to the orbital one. That provides
an additional torque on the electron spins, resulting in the “hyperfine structure” of atomic
energy levels.
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“Superhyperfine structure” results from additional torques on the electron resulting from
neighboring atoms in condensed materials, yet another set of forces on the electron.

These energy differences are small, but, nonetheless important, for interpreting atomic spec-
tra. However, we are now concerned with nucleons, in a tightly-bound nucleus, all in close
proximity to each other, all moving with velocities of about 0.001 → 0.1c. This is a radical
departure from the leisurely orbit of an electron about a nucleus. This is a “mosh pit” of
thrashing, slamming nucleons. The forces between them are considerable, and play a vital
role in the determination of nuclear structure.

The orbital angular momentum can be characterized in classical electrodynamics in terms
of a magnetic moment, ~µ:

~µ =
1

2

∫

d~x ~x× J(~x) , (10.45)

where J(~x) is the current density. For the purpose of determining the orbital angular momen-
tum’s contribution to the magnetic moment, the nucleons can be considered to be point-like
particles. For point-like particles,

µ = |~µ| = gllµN , (10.46)

where l is the orbital angular momentum quantum number, gl is the g-factor or gyromagnetic
ratio (gl = 1 for protons, gl = 0 for neutrons, since the neutrons are neutral), and the nuclear
magnetron, µN is:

µN =
e~

2mp
, (10.47)

defined in terms of the single charge of the proton, e, and its mass, mp. Its current measured
value is µN = 5.05078324(13)× 10−27 J/T.

Intrinsic spins of the nucleons also result in magnetic moments. These are given by:

µ = gssµN , (10.48)

where the spin g factors are known to be, for the electron, proton, neutron and muon:

Type gs (measured) gs (theory)
e -2.002319043622(15) agree!
p 5.585694713(90) ?
n -3.82608545(46) ?
µ -2.0023318414(12) 2.0023318361(10)
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A simple(!) application of Dirac’s Relativistic Quantum Mechanics and Quantum Electrody-
namics (aka QED) leads to the prediction, gs = 2 for the electron. The extra part comes
from the zitterbewegung of the electron5. The fantastic agreement of gs for the electron, be-
tween measurement and theory, 12 decimal places, is considered to be the most remarkable
achievement of theoretical physics, and makes QED the most verified theory in existence.

I’m not aware of any theory for the determination of the nucleon g-factors. However, the
measured values allow us to reach an important conclusion: The proton must be something
very different from a point charge (else its gs would be close to 2), and the neutron must be
made up of internal charged constituents (else its gs would be 0). These observations laid the
groundwork for further investigation that ultimately led to the discovery (albeit indirectly),
that neutrons and protons are made up of quarks. (Free quarks have never been observed.)
This led to the development of Quantum Chromodynamics (aka QCD), that describes the
the strong force in fundamental, theoretical terms. The unification of QCD, QED, and the
weak force (responsible for β-decay) is called The Standard Model of particle physics.

Measurement and Theory differ, however, for the muon’s gs. It has been suggested that
there is physics beyond The Standard Model that accounts for this.

Measurements of magnetic moments of nuclei abound in the literature. These magnetic
moments are composites of intrinsic spin as well as the orbital component of the protons.
Nuclear models provide estimates of these moments, and measured moments yield important
information on nuclear structure. Table 3.2 in Krane provides some examples. Further
exploration awaits our later discussions on nuclear models.

10.5.2 Quadrupole Moments of Nuclei

The electric quadrupole moment is derived from the following considerations.

The electrostatic potential of the nucleus is given by:

V (~x) =
Ze

4πǫ0

∫

d~x′
ρp(~x

′)

|~x− ~x′| . (10.49)

Now, imagine that we are probing the nucleus from a considerable distance, so far away from
it, that we can only just discern the merest details of its shape. Given that ρp(~x

′) is highly
localized in the vicinity of the nucleus and our probe is far removed from it, we may expand
(10.49) in a Taylor expansion in |~x′|/|~x|. Thus we obtain:

5According to Wikipedia, the term zitterbewegung is derived from German, meaning “trembling motion”.
According to Zack Ford (NERS312-W10 student), the word is derived from “cittern movements”, a “cittern”
(or “citter”) being an old (Renaissance-era) instrument very similar to a guitar. I like Zack’s definition better.
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V (~x) =
Ze

4πǫ0

[

1

|~x|

∫

d~x′ ρp(~x
′) +

~x

|~x|3 ·
∫

d~x′ ~x′ρp(~x
′) +

1

2|~x|5
∫

d~x′
(

3(~x · ~x′)2 − |~x|2|~x′|2
)

ρp(~x
′) · · ·

]

.

(10.50)

This simplifies to:

V (~x) =
Ze

4πǫ0

[

1

|~x| +
Q

2|~x|3 · · ·
]

, (10.51)

where

Q =

∫

d~x
(

3z2 − r2
)

ρp(~x) . (10.52)

We have used
∫

d~x ρp(~x) ≡ 1 for the first integral in (10.50). This is simply a statement
of our conventional normalization of ρp(~x). We also used

∫

d~x ~xρp(~x) ≡ 0 in the second
integral in (10.50). This is made possible by choosing the “center of charge” as the origin of
the coordinate system for the integral. Finally, the third integral resulting in (10.52), arises
from the conventional choice, when there is no preferred direction in a problem, and set the
direction of ~x′ to align with the z′-axis, for mathematical convenience.

Technical note: The second integral can be made to vanish through the choice of a center
of charge. This definition is made possible because the charge is of one sign. Generally,
when charges of both signs are involved in an electrostatic configuration, and their respective
centers of charge are different, the result is a non-vanishing term known as the electric dipole
moment. In this case, the dipole moment is given by:

~d =

∫

d~x ~xρ(~x) .

Finally, when it is not possible to choose the z-axis to be defined by the direction of ~x, but
instead, by other considerations, the quadrupole becomes a tensor, with the form:

Qij =

∫

d~x
(

3xixj − |~x|2
)

ρp(~x) .

The quantum mechanics analog to (10.52) is:

Q =

∫

d~x ψ∗
N(~x)(3z2 − r2)ψN(~x) , (10.53)
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where ψN (~x) is the composite nuclear wave function. The electric quadrupole moment of the
nucleus is also a physical quantity that can be measured, and predicted by nuclear model
theories. See Krane’s Table 3.3.
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Closed book “pop quiz” problems

Review: Basic math Need some questions here.

Review: Basic kinematics For a particle of mass m with velocity ~v, what is its i) mo-
mentum, ii) total energy, iii) kinetic energy in both non-relativistic and relativistic
formalisms.

Review: Basic kinematics For a massless particle with momentum ~p, what is its i) total
energy, ii) kinetic energy.

Review: Conservation laws, and two-body kinematics State the Conservation of En-
ergy and the Conservation of Momentum equations for a 2-body interaction involving
two masses, m1 and m2 with initial velocities ~v1 and ~v2. Perform this in both non-
relativistic and relativistic formalisms.

Review: Electrostatics Need several questions here

Review: Error analysis Need several questions here

Compton interaction: description In words, describe “The Compton interaction”.

Compton interaction: kinematics derivation Derive the relationship between the scat-
tered γ energy and its scattering angle in the Compton interaction.

Schrödinger equation: basics What is the time dependent Schrödinger equation in 1D?
3D? What is the time independent Schrödinger equation in 1D? 3D? What is the main
application of solutions to the time independent Schrödinger equation?

Schrödinger equation: basics Describe and state the expressions (1D and 3D) for the i)
probability density, and ii) the probability current density.

Heisenberg Uncertainty Principle What is the Heisenberg Uncertainty Principle and
what does it mean?

Pauli Exclusion Principle What is the Pauli Exclusion Principle and what does it mean?

The scattering amplitude for electron-nucleus scattering was given. Including the normal-
ization factor, it is given by:

F (~q) =
q2

4π

∫

d~x

∫

d~x′
ρp(~x

′)

|~x− ~x′|e
i~q·~x , where

∫

d~x′ ρp(~x
′) ≡ 1 .

1. Through re-arrangement and symmetry, show that:

F (~q) =

∫

d~xρp(~x
′)ei~q·~x′

(

q2

4π

)
∫

d~x
ei~q·~x

|~x| .
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2. Then, show that Show:

F (~q) =

∫

d~x′ ρp(~x
′)ei~q·~x′

.

Nuclear form factor One calculation that is used in the determination of the shape of the
nucleus is:

〈 ~kf |ρp(~x)|~ki〉

1. What is the integral implied by the above expression?

2. Evaluate this integral in the approximation that the proton charge density dis-
tribution is spherically symmetric, that is, ρp(~x) = ρp(r). Express your result in

terms of q, where q = |~ki − ~kf |.

1. 〈 ~kf |ρp(~x)|~ki〉 =

∫

~x∈R3

d~x e−i ~kf ·~xρp(~x)e
i ~ki·~x

Note: “~x ∈ R” is standard math shorthand for, “(x, y, z) each span all the real
numbers”

2. If ρp(~x) = ρp(r), and q = |~ki − ~kf |, then 〈 ~kf |ρp(~x)|~ki〉 =

∫

~x∈R3

d~x ρp(r)e
i~q·~x

=

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

0

r2drρp(~x)e
iqr cos θ

= 2π

∫ 1

−1

dµ

∫ ∞

0

r2dr ρp(r)e
iqrµ

=
2π

q

∫ ∞

0

rdr ρp(r) sin qr

Answer this precocious child An 11-year old asks you: “I learned in school about the
nucleus and how the electrons go around around it and make atoms. But, I also know
that unlike charges attract and like charges repel, so I understand why the electrons like
to be close to the nucleus. But, I’m still confused...
Why doesn’t an atom collapse?
If a nucleus is made up of positive charge, why doesn’t it fly apart?
The electron is made up of negative charge. Why doesn’t IT fly apart?
What makes positive charge? What makes negative charge?”

You have probably seen the earth’s moon, and know from your classes or readings, that
it revolves around the earth. It does not crash into the earth, for the same reason that
the negatively charged electrons do not collapse in on the positively charged nucleus.
The electron is in motion, but there is a force keeping it there, called “ centripetal
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force”, arising from the motion of the electron, that keeps it there. Maybe, when you
were very young, one of your parents swung you around in a circle. Your body wanted
to fly off, but your parent’s arms kept you there. When my kids were young, I used to
do this at the beach, in knee-deep water. I’d swing them in circles, and then let them
go, and they’d fly off. Happily, most of them survived!

A nucleus is made up of protons, positively charged, and neutrons, that have no electric
charge. For example, there is a single proton at the center of a hydrogen atom. There
are two protons and two neutrons at the center of a helium atom. The protons and
neutrons are attracted to each other by a “strong force”, that is much stronger (about
100 times stronger) than the repulsive force due to the positive charge.

As far as we know, the electron is a fundamental, “point-like” particle. It does not fly
apart, because there is nothing to tear apart!

All particles in nature are either positive, negative, or neutral. However, the protons
and neutrons in a nucleus are not point-particles. Instead they are made up of other
point-like (or so we think) particles called quarks, of which there are different kinds,
either positive or negative (no neutral ones). These quarks are held together by the
strong force too, and so, protons and neutrons are stable.

White lies, and other things to think about
- Look up, on Wikipedia (the Source of All Knowledge [SOAK], “centrifugal” and cen-
tripetal”
- Why do we only see one face of the moon. SOAK: “Libration”
- If you’re going to experiment with a smaller sibling, spin them by holding their legs,
not their arms.

Shoulders can separate a lot easier then legs. (It’s sad that I know this.) SOAK:
“Separated shoulder”.
- Look up on SOAK: “Strong nuclear force”, “quark”
- “String theory” is an effort to understand the point-like particles, in terms of some-
thing even more

fundamental: “string”. You guessed it! SOAK: “string theory”.
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Closed book “exam” problems

1. Nuclear Form Factor

The nuclear form factor, F (~q), is defined as follows:

F (~q) =

∫

d~x ρp(~x)e
i~q·~x .

If ρp(~x) is the proton density, normalized so that:

∫

d~x ρp(~x) ≡ 1 ,

show:

(a)

F (0) = 1

(b)

F (~q) = F (q) =
4π

q

∫

rdr ρp(r) sin(qr) ,

for spherically symmetric nuclei (ρp(~x) = ρp(r)).

(c) Given that:

ρp(~x) = NΘ(RN − r) ,

where RN is the radius of the nucleus, find an expression for the normalization
constant, N above, in terms of RN .

(d) For the proton distribution implied by (c), show:

F (q) =
3

(qRN)3
[sin(qRN) − qRN cos(qRN)] .

Hint:
∫

dxx sin x = sin x− x cos x.

(e) From the expression for F (q) in part (d) above, show that,

lim
q→0

F (q) = 1 ,

using either a Taylor expansion, or l’Hôpital’s Rule.

2. Nuclear Coulomb Repulsion Energy
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(a) The potential felt by a proton due to a charge distribution made up of the Z − 1
other protons in the nucleus, is given by

V (~x) =
(Z − 1)e2

4πǫ0

∫

d~x′
ρp(~x

′)

|~x− ~x′| ,

where
∫

d~x′ ρ(~x′) ≡ 1 .

With the assumption that the protons are uniformly distributed through the nu-
cleus up to radius RN , that is, ρ(~x′) = ρ0, for 0 ≤ |~x′| ≤ RN , show,

V (r) =
(Z − 1)e2

4πǫ0RN

[

3

2
− 1

2

(

r

RN

)2
]

.

From this expression, what can you tell about the force on a proton inside the
nucleus?

(b) The Coulomb self-energy of a charge distribution is given by

Ec =
e

4πǫ0

(

1

2

)
∫

d~x

∫

d~x′
ρ(~x)ρ(~x′)

|~x− ~x′| ,

where

Ze =

∫

d~x′ ρ(~x′) .

Justify the factor of (1/2) in the above expression?

(c) Starting with the result of part a) or part b) of this problem, show, for a uniform
charge distribution ρ(~x′) = ρ0, for 0 ≤ |~x′| ≤ RN , that,

Ec =
3

5

Z(Z − 1)e2

4πǫ0

1

RN

.

3. Nuclear Binding Energy

The semi-empirical formula for the total binding energy of the nucleus is:

B(Z,A) = avA− asA
2/3 − acZ(Z − 1)A−1/3 − asym

(A− 2Z)2

A
+ p(N,Z)apA

−3/4 ,

where p(N,Z) is 1 for even-N/even-Z, -1 for odd-N/odd-Z, and zero otherwise.

(a) Identify the physical meaning of the 5 terms in B(A,Z). Explain which terms
would go up, or go down with the addition of one additional neutron or one
additional proton.
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(b) With A fixed, B(Z,A) is a quadratic expression in Z. Find its minimum, and
discuss.

(c) Show that pN,Z can be written:

p(Z,N) =
1

2
[(−1)Z + (−1)N ] ,

or equivalently,

p(Z,A) =
1

2
(−1)Z [(−1)A + 1] .

(d) The neutron separation energy is defined by:

Sn = B(Z,A) −B(Z,A− 1) ,

and the proton separation energy is defined by:

Sp = B(Z,A) −B(Z − 1, A− 1) .

Using the large A approximation, namely:

(A− 1)n ≈ An − nAn−1 ,

develop approximate expressions for Sn and Sp.

4. Quadrupole Moment

The quadrupole moment, Q, in the liquid drop model of the nucleus is defined by:

Q =

∫

d~xρp(~x)(3z
2 − r2) ,

where ρp(~x) is the charge density per unit volume, normalized in the following way:

∫

d~xρ(~x) ≡ 1 .

We consider an ellipsoidal nucleus with a sharp nuclear edge, with its surface being
given by:

x2 + y2

a2
+
z2

b2
= 1 ,

where the larger of a or b is the semimajor axis, and the smaller of the two, the
semiminor axis.

(a) Sketch the shape of this nucleus, for both the prolate and oblate cases.
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(b) Show that the volume of this nucleus is V = (4π/3)a2b.

(c) Find an expression for Q, that involves only Z, a, and b.

(d) Discuss the cases a > b, a < b, a = b. Even if you have not found an expression
for Q, you should be able to discuss this effectively, given its integral form above,
and say something about the sign of Q depending on the relative size of a and b.

5. Nuclear Structure and Binding Energy

(a) Theoretical foundations

i. What is the liquid drop model of the nucleus?

ii. What is the shell model of the nucleus?

iii. How is Classical Electrostatics employed in describing the structure of the
nucleus? Cite two examples.

(b) Binding energy of the nucleus

The semi-empirical formula for the total binding energy of the nucleus is:

B(Z,A) = a
V
A−a

S
A2/3−a

C
Z(Z−1)A−1/3−asym

(A− 2Z)2

A
+a

p

(−1)Z [1 + (−1)A]

2
A−3/4 .

i. In the table below...

A. In the 3rd column, identify the nuclear model that gives rise to this term.
The answer is started for you, in the 2nd row. Complete the remaining
rows.

B. In the 4th column, identify how this term arises (qualitative explanation)
from the nuclear model identified in the 3rd column. The answer is started
for you, in the 2nd row. Complete the remaining rows.

C. In the 5thth column, indicate with a “yes”, “no”, or “maybe”, if this term
would cause B(Z,A) to go up with the addition of one more proton. If
the answer is “maybe”, explain.

D. In the 6thth column, indicate with a “yes”, “no”, or “maybe”, if this term
would cause B(Z,A) to go up with the addition of one more neutron. If
the answer is “maybe”, explain.

ii. Justify the exact dependence on Z and A for the a
V
, a

S
and a

C
terms. Qual-

itatively explain the dependence on Z and A for the asym term.
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ai [MeV] Theoretical origin Description +p? +n?

a
V
... 15.5 The theoretical model that The term involving a

V
comes

suggests the term starting from the idea that...
with a

V
is the

model of the nucleus.

a
S
... 16.8

a
C
... 0.72

asym ... 23

ap ... 34

iii. With A fixed, B(Z,A) is a quadratic expression in Z. Find its extremum,
and discuss the relationship between the quadratic expression and β-decay.

6. The Modeling of Protons in the Nucleus

One approach to accounting for the effect of the electric charge of the protons, on
the structure of the nucleus, is to combine the classical ideas of electrostatics with
the liquid drop model of the nucleus. The approach starts with a calculation of the
electrostatic potential of the nucleus, Ves(~x), due to a distribution of protons, ρp(~x

′).

Ves(~x) =
Ze

4πǫ0

∫

d~x′
ρp(~x

′)

|~x− ~x′| ;

∫

d ~x′ρp(~x
′) ≡ 1 .

~x is a vector that can be positioned anywhere. ~x′, the vector over which we integrate, is
positioned only within the confines of the nucleus. The origin of the coordinate system
for ~x′, is located at the center of charge. In the following, n̂ is a unit vector pointing
in the direction of ~x.
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(a) Show, for |~x| >> |~x′|, that;

Ves(~x) =
Ze

4πǫ0|~x|

[

1 +
n̂ · ~P
|~x| +

Q

2|~x|2 + O
(

1

|~x′|3
)

]

where

~P ≡ n̂ ·
∫

d~x′ ~x′ρp(~x
′)

Q ≡
∫

d~x′
[

3(n̂ · ~x′)2 − |~x′|2
]

ρp(~x
′) .

(b) Whether or not you derived the above expression, interpret the meaning of the 3

terms, (1, ~P ,Q) in
[

1 +
n̂ · ~P
|~x| +

Q

2|~x|2

]

.

(c) Why does ~P = 0 for the nucleus.

(d) If n̂ is aligned with ẑ, show that:

Q =

∫

d~x ρp(~x)(3z
2 − r2) .

(e) Show that Q = 0 if ρp(~x) is spherically symmetric, but otherwise arbitrary. That
is, show:

Q =

∫

d~x ρp(r)(3z
2 − r2) = 0 .

(f) The connection between the nuclear wavefunction, ψN(~x) and the proton density,
in the liquid drop model of the nucleus is given by:

|ψN(~x)|2 = ρp(~x) .

Justify this assumption.

(g) If the nucleus is a uniformly charged ellipsoid of the form:

x2 + y2

a2
+
z2

b2
= 1 ,

Show that

Q =
2

5
(b2 − a2) .
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Assignment-type problems

1. If all the matter on earth collapsed to a sphere with the same density as the interior
of a nucleus, what would the radius of the earth be? Cite all sources of data you used.

2. The effect of the nuclear edge on F (~q)

(a) Find F (~q) for a uniformly charged sphere. For a uniform sphere, ρp(r) = ρ0Θ(R−
r), where R is the radius of the nucleus.6

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
Uniform density, sharp edge

ρ(
r)

/ρ
0

qR

Plot7 log(|F (~q)|2) vs. qR.

6Mathematical note:

Θ(z) = 1 ; z > 0

= 0 ; z < 0

7Technical note: |F (~q)|)2 can be zero, so its logarithm would be −∞, causing the plots to look strange.
We need the logarithm to see the full structure of |F (~q)|2. So, in order to make the plots look reasonable,
you will probably have to adjust the scale on the y-axis in an appropriate fashion.
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(b) Do the same as in (a) but include a linear edge in the model of the nucleus. That
is,

ρp(r) = ρ0Θ([R− t/2] − r)

= ρ0[1/2 − (r − R)/t] ; R− t/2 ≤ r ≤ R + t/2 ,

where t is the nuclear “skin depth”, and, mathematically, can take any value
between 0 and 2R. Note that ρp(R − t/2) = ρ0 and ρp(R + t/2) = 0. Note also,
that when t = 0, the nuclear shape is the same as in part (a).
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Plot log(|F (~q)|2) vs. qR as in part (a) showing several values of t over the entire
domain of t, 0 ≤ t ≤ 2R. Compare with the result of part (a).

(c) Compare and discuss your results. Does the elimination of the sharp edge elim-
inate the sharp minima in log(|F (~q)|2)? What else could be contributing to the
reduction of the sharpness of these minima?
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(d) Do the same as in (b) and (c) but include a cubic edge in the model of the nucleus.
That is,

ρp(r) = ρ0Θ([R− t/2] − r)

= ρ0(A+Br + Cr2 +Dr3) ; R− t/2 ≤ r ≤ R + t/2 .

Arrange the four constants A,B,C,D such that:

ρp(R− t/2) = ρ0

ρ′p(R− t/2) = 0

ρp(R + t/2) = 0

ρ′p(R + t/2) = 0

.
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Plot log(|F (~q)|2) vs. qR as in part (b) showing several values of t over the entire
domain of t, 0 ≤ t ≤ 2R. Compare with the result of parts (a) and (b).
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3. Perturbation of atomic energy levels

(a) Read carefully and understand the text on pages 49–55 in Krane on this topic.
Krane makes the assertion that ∆E2p can be ignored for atomic electron transi-
tions. Verify this assertion by repeating the calculation for ∆E2p and obtain a
relationship for ∆E2p/∆E1s for atomic electrons and muons. Evaluate numerically
for 12C and 208Pb.

(b) The results in (a), for muons, is suspect, because the muon’s wavefunctions have
significant overlap with the physical location of the nucleus, and the shape of the
edge of the nucleus may play a significant role. Repeat the analysis of part (a),
but introduce a skin depth using one of the models in Question 2) or some other
model of your choosing. What do you conclude?

4. Show:
6

5
=

(

3

4π

)2 ∫

|~u|≤1

d~u

∫

|~u′|≤1

d~u′
(

1

|~u− ~u′|

)

,

which is used to find the energy of assembly of the protons in a nucleus.

Then, consider:

I(n) =

(

3

4π

)2 ∫

|~u|≤1

d~u

∫

|~u′|≤1

d~u′
(

1

|~u− ~u′|n
)

,

where n ≥ 0, and is an integer. From this, make conclusions as to the fundamental
forces in nature, and their forms as applied to classical and quantum physics.

5. We have seen that the calculation of the scattering rate due to electron scattering from
a bare nucleus approaches the Rutherford scattering law in the limit of small q. Discuss
the onset of the departure of this change, via the nuclear form factor, as q gets larger.
Adopt a more realistic model for the distribution of charge in the nucleus and see if
you can match the data for the experiments shown in Figures 3.1 and 3.2 in Krane.

6. For low q, the electrons impinging on a nucleus have the positive charge of the nucleus
screened by the orbital electrons. Develop an approximate model for the screening
of the nuclei by the orbital electrons and demonstrate the effect on the Rutherford
scattering law. Show that the forward scattering amplitude is finite and calculate its
numerical value using sensible numbers for the parameters of your model.

7. The numerical data of the average shift given in Figure 3.8 of Krane can be matched
very closely by introducing a realistic positive charge distribution in the nucleus. In-
troduce such a model and demonstrate that you obtain the correct numerical answer.

8. Calculate the muonic K X-ray shift for Fe using one of the following nuclear shapes:
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ρ(r)

ρ0

= 1 for r ≤ R− tmin/2

=
R + tmin/2 − r)

tmin

for R − tmin/2 ≤ r ≤ R + tmin/2

= 0 for r ≥ R + tmin/2

or, the Fermi distribution,

ρ(r)

ρ0
=

1

1 + exp[(r − R)/a]
.

Compare with data. You may use R = R0A
1/3 with any value between 1.20 and 1.25

fm to got the K X-rays in the right place. Use tmin = 2.3 fm, and make sure to interpret
a in the right way with respect to tmin, if you use the Fermi distribution.



Chapter 11

The Force Between Nucleons

Note to students and other readers: This Chapter is intended to supplement Chapter 4 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

Imagine trying to understand chemistry before knowing Quantum Mechanics...

The understanding of the physical world was accomplished through many observations, mea-
surements, and then trying to abstract them in a phenomenological theory, a “theory” that
develops empirical relationships that “fit” the data, but do not explain why nature should
behave this way. For example, Chemistry had organized the periodic table of the elements
long before Quantum Mechanics was discovered.

Then, the Schrödinger equationwas discovered. Now we had a well-defined theory on which
to base the basic understanding of atomic structure. With a solid fundamental theory, we
now have a well-defined systematic approach:

• Solve the Schrödinger equationfor the H atom, treating p, e− as fundamental point-
charge particles, a good approximation since the electron wavefunctions overlap mini-
mally with the very small, but finite-sized proton.

• Build up more complex atoms using the rules of Quantum Mechanics. Everything is
treated theoretically, as a perturbation, since the Coulomb force is relatively weak.
This is expressed by the smallness of the fine-structure constant:

α =
e2

4πǫ0~c
= 7.297 352 5376(50)× 10−3 =

1

137.035 999 679(94)
(11.1)

• The interaction between atoms is studied theoretically by Molecular Theory. Molecular
Theory treats the force between atoms as a derivative force, a remnant of the more basic

119
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Coulomb force that binds the atom. Covalent bonds, ionic bonds, hydrogen bonds, Van
der Wall forces are quasi-theoretic, quasi-phenomenological derivatives of the desire
of Quantum Mechanics to close shells by sharing electrons (covalent bonding, stealing
electrons (ionic bonds, simple electrostatic attraction (hydrogen bonds), or dipole-dipole
and higher multipole arrangements (generalized Van der Wall forces).

It is tempting to attempt the same procedure in nuclear physics. In this case, the simplest
bound system is the deuteron. In atomic physics, the H-atom was the ideal theoretical
laboratory for our studies. In nuclear physics, the simplest bound system is the deuteron,
a neutron and a proton bound by the strong force. However, some physical reality imposes
severe restrictions on the development of an analysis as elegant as in atomic or molecular
physics:

• n and p are tightly bound, practically “in contact” with each other. In other words,
their wavefunctions overlap strongly.

• n and p are not point-like particles. They have internal structure. Because their
wavefunctions overlap so strongly, the internal structure of one, has an important
effect on the other.

• The forces binding the nucleons is strong. The strong-coupling constants are of the
order unity, whereas the fine-structure constant (for Coulomb forces) is small, about
1/137. Hence, perturbation methods, so successful for atomic and molecular theory,
are almost completely ineffective.

The internal structure of a nucleon

The proton is comprised of 2 “up” (u) quarks, and one “down (d) quark, in shorthand,
p(uud). The neutron is n(ddu). Here is a table of the known properties of n, p, u, d.

mass [MeV]/c2 charge (e) total angular momentum (~)
p 938.272013(23) +1 1/2
n 939.565560(81) 0 1/2
u 1.5–3.3 +2/3 1/2
d 3.5–6.0 −1/3 1/2

The above table explains the observed charge of the n and p. One can also argue that
the spins of the similar quarks in each nucleon “anti-align” (Invoke the Pauli Exclusion
Principle.) to result in an overall spin-1/2 for the n and p. However, the mass discrepancy
is phenomenal! It is explained as follows:
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Quarks are so tightly bound to one another; so tightly bound, in fact, that if one injects
enough energy to liberate a quark, the energy is used up in creating quark-antiquark pairs
that bind, and prevent the observation of a “free quark”. The “exchange particle” that binds
the quarks is called the gluon. (The exchange particle for the Coulomb force is the photon.)
Most of the mass of the nucleons come from the “cloud” of gluons that are present in the
frenetic environment that is the inside of a nucleon. Recall that a nucleus was likened to
a “mosh pit”, in the previous chapter. The mayhem inside a nucleon defies description or
analogy.

Since quarks are very tightly bound, covalent or ionic bonds between nucleons do not ex-
ist. All the forces are derivative forces, analogs to dipole-dipole (and higher multipolarity)
interactions.

The “derivative” nucleon-nucleon force

This “derivative” nucleon-nucleon force is also called the Meson Exchange Model. The ex-
change particle, in this case, is thought of as being two mesons. A “vector” meson, mass m

V
,

so named because it has spin-1, provides the short-ranged repulsive force that keep nucleons
from collapsing together. A “scalar” spin-0 meson, mass m

S
, provides the slightly longer

ranged attractive force. Both mesons are 100’s of MeV, but m
S
< m

V
, with the result that

a potential well is formed. This is apparent in the form of the potential given in (11.2), as
well as in the sketch in Fig. 11.1.

Vnn =
~c

r
{α

V
exp[−(m

V
c/~)r] − α

S
exp[−(m

S
c/~)r]} (11.2)

The vector and scalar coupling constants, α
V

and α
S

are order unity. Note the similarity of
this potential with the attractive or repulsive Coulomb potential, that may be written:

VC = ±~cα

r
,

where α is the fine-structure constant expressed in (11.1). We immediately draw the con-
clusion that it is the mass of the exchange particle which determines the range of the force.
The photon is massless, hence the Coulomb force is long.
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Figure 11.1: A sketch of the central part Vnn(r) of the nucleon-nucleon potential.
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A few noteworthy mentions for the strong force:

• The particles that feel the strong force are called “hadrons”. Hadrons are bound states
of quarks. The hadrons divide into 2 different types:

– “Baryons” are 3-quark combinations, e.g. p(uud), n(ddu) ...

– “Mesons” are combinations of two quarks, a quark-antiquark pair. e.g. the π-
mesons, π+(ud), π−(du), and the π0([dd+uu]/

√
2) mesons, being the most “com-

mon”. Note that the µ particle has been called the µ-meson. However, this usage
has been deprecated since the discovery of quarks. The µ is a lepton, in the same
class as electrons and neutrinos.

• The nuclear force is “almost” independent of nucleon “flavor”, that is, Vnn, Vnp, Vpp

are almost the same. The p-p system also has a separate Coulomb repulsive force.

• The nuclear force depends strongly on the alignment of nucleon spins.

• As a consequence of the above, the nucleon-nucleon force is non-central, that is, V (~x) 6=
Vnn(r). The impact of this is that the orbital angular momentum is not a conserved

quantity, although the total angular momentum, ~I = ~L+ ~S is conserved.

• Including the non-central and Coulomb components, the complete nucleon-nucleon
potential may be written:

VN(~x) = Vnn(r) + VC(r) + Vso(~x) + Vss(~x) , (11.3)

where Vnn(r) is the central part of the strong force, VC(r) is the Coulomb repulsive
potential that is switched on if both nucleons are protons, Vso(~x) is the “spin-orbit”

part that involves the coupling of ~l’s and ~s’s, and Vss(~x) is the “spin-spin” part that
involves the coupling of intrinsic spins.

11.1 The Deuteron

The deuteron, 2H, also known as D, is made up of one neutron and one proton. It is
relatively weakly bound (2.22452(20) MeV), but stable, and has a relative 0.015% natural
isotopic abundance. Properties of the isotopes of hydrogen are given below:

AX abundance or t1/2 Iπ

1H 0.99985% 1
2

+

2H, or D 0.00015% 1+

3H, or T 12.3 y (β−-decay) 1
2

+
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The deuteron is the only bound dinucleon. It can be easily understood that the diproton
would be rendered unstable by Coulomb repulsion. Dineutrons do not exist in nature, not
even as a short-lived unstable state. This is most likely due to the Pauli Exclusion Principle
applied at the quark level — 3 up quarks and 3 down quarks (all the quarks in a deuteron)
are more likely to bind than 4 downs and 2 ups (the quark content of a dineutron). The
spin-1 nature of the deuteron is explained by the spin-spin interaction of the neutron and
proton. Their magnetic moments have opposite signs to one another, hence the alignment
of spins tends to antialign the magnetic dipoles, a more energetically stable configuration.

Cultural aside:
Deuterium is a form of water. It is extracted from natural water using electrolysis or cen-
trifugal techniques, producing DOH or D2O, also called “heavy water”. Although heavy water
is very similar to H2O, there are small differences, and these can impact biological systems.
It is estimated that drinking nothing but heavy water for 10–14 days is lethal. Reactor-grade
heavy water costs about $600–$700 per kilogram!

The deuteron is the most ideal “laboratory” to study the nucleon-nucleon force. There are
no bound states of the deuteron.

Binding energy of the deuteron

Using the mass-binding energy relation, (10.35), that is

BN(Z,A) = [Zm(1H) +Nmn −m(AX)]c2 ,

we can evaluate the binding energy of the deuteron,

BN (1, 2) = [m(1H) +mn −m(D)]c2 .

Krane gives 2.2463(4) MeV. Modern data gives the binding energy as 0.002388169(9) u,
or 2.224565(9) MeV. The binding energy inferred from H(n, γ)D scattering experiments is
2.224569(2) MeV, and from D(γ, n)H experiments, 2.224(2) MeV. (Neutron spectroscopy is
much less accurate than γ-spectroscopy.)

Why does the deuteron have only one bound state?

In NERS311 we discussed the s-state solutions to the 3D-Schrödinger equation. We discov-
ered that, unlike the 1D-square well, which always has a bound state no matter the depth



11.1. THE DEUTERON 125

of the well, the 3D requires the potential depth to to satisfy the following:

|V0| >
π2

~
2

8MR2
.

In this case, M is the reduced mass, and R is the radius of the deuteron.
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Figure 11.2: square-well potential model for the deuteron. The single bound level is shown
at E = −2.224 MeV. The loose binding of the deuteron is indicated by the long exponential
tail outside of the radius of the deuteron.

The spin and parity of the deuteron

The observed Iπ of the deuteron is 1+. We recall that the total spin is given by ~I = ~sn+~sp+~l.
Therefore, with I = 1, applying the quantum mechanical rules for adding spins, we can only
have 4 possible ways obtaining I = 1, namely:
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S l I π ?
↑↑ 0 1 +1 yes
↑↑ 1 1 -1 no
↓↑ 1 1 -1 no
↑↑ 2 1 +1 yes

We can rule out the l = 1 states due to the parity relation, π = (−1)l. Without further
knowledge, we can not rule out the l = 2 state. We can use experiments to determine which
l-state contributes.

This can be done in two ways:

The magnetic dipole of the deuteron

If l = 0, only S can contribute to the magnetic moment. Following the discussion in Chapter
10, the magnetic moment would be given by:

µ
D

=
µN

2
(gsn + gsp) . (11.4)

Using the data gsn = −3.82608545(46) and gsp = 5.585694713(90), we evaluate (gsn +
gsp) = 1.75960926(10), while experiment gives 1.714876(2), a difference of 0.044733(2). The
difference is small but significant, indicating that the deuteron can not be a pure s state!

Since part of the nucleon-nucleon potential is non-central, bound states that do not have a
unique 〈~l〉 are permissible. Hence if we consider that the deuteron is a mixture of s and d
states, we can write:

ψD = asψs + adψd , (11.5)

where |as|2 + |ad|2 = 1. Taking expectation values:

µ = |as|2µ(l = 0) + |ad|2µ(l = 2) , (11.6)

with µ(l = 0) as given in (11.4) and µ(l = 2) = (3 − gsn − gsp)µN/4 leads us to conclude1

that the deuteron is 96% s and 4% d. It is a small correction but it is an interesting one,
and a clear example of the non-conservation of orbital angular momentum when non-central
forces and spins are involved.

1This calculation of µ(l = 2) would take several hours to explain. For more information see:
www.physics.thetangentbundle.net/wiki/Quantum mechanics/magnetic moment of the deuteron
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The quadrupole moment of the deuteron

Another demonstration that isolates the d component of the deuteron wave function, is the
measurement of the quadrupole moment. An s state is spherical, and hence its quadrupole
moment (Q) vanishes. The Q of the deuteron is measured to be Q = 0.00288(2) b. A “b”
is a “barn”. A barn is defined as 1028 m2, about the cross sectional area of a typical heavy
nucleus. This unit of measure is a favorite among nuclear physicists.

Using (11.5) in the definition of the quadrupole moment given by (10.52), that is,

Q =

∫

d~x ψ∗
N(~x)(3z2 − r2)ψN(~x) ,

results in

Q =

√
2

10
a∗sad〈Rs|r2|Rd〉 −

1

20
|ad|2〈Rd|r2|Rd〉 , (11.7)

where Rs and Rd are the radial components of the deuteron’s s and d wavefunctions. For
consistency, as appears in (11.7) as its complex conjugate. However, the as and ad constants
may be chose to be real for the application, and thus we can replace a∗s = as and |ad|2 =
a2

d.The deuteron’s radial wavefunctions are unknown and unmeasured. However, reasonable
theoretical approximations to these can be formulated2, and yield results consistent with the
96%/4% s/d mixture concluded from the deuteron’s magnetic moment measurements.

11.2 Nucleon-nucleon scattering

This material will not be covered in NERS312. The section heading is included here as a
“stub” to keep the subsection numbering in Krane and these notes aligned.

11.3 Proton-proton and neutron-neutron interactions

Ditto the italicized stuff above.

The NERS Department played an important role in the development of neutron spectroscopy
and scattering. Please visit:

http://www.ur.umich.edu/0708/Sep24_07/obits.shtml

2Extra credit to any student who comes up with a decent approximation to the deuteron’s wavefunctions,
and calculates consistent results!
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That link is an obituary of Professor John King, who was a pioneer in this area. His
contributions to this research are outlined there.

11.4 Properties of the nuclear force

Described in the beginning of this chapter

11.5 The exchange force model

Also described elsewhere throughout this chapter
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Closed book “pop quiz” problems

1.

2.

3.

4.
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Chapter 12

Nuclear Models

Note to students and other readers: This Chapter is intended to supplement Chapter 5 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

Many of the ideas and methods we learned in studying atoms and their quantum behavior,
carry over to nuclear physics. However, in some important ways, they are quite different:

1. We don’t really know what the nucleon-nucleon potential is, but we do know that it
has a central, V (r), and non-central part, V (~x). That is the first complication.

2. The force on one nucleon not only depends on the position of the other nucleons, but
also on the distances between the other nucleons! These are called many-body forces.
That is the second complication.

Let us illustrate this in Figure 12.1, where we show the internal forces governing a 3He
nucleus.

Figure 12.1: Theoretical sketch of a 3He nucleus. This sketch has not been created yet, so
feel free to draw it in!

131
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The potential on the proton at ~x1 is given by:

Vnn(~x2 − ~x1) + Vnn(~x3 − ~x1) + VC(|~x2 − ~x1|) + V3(~x1 − ~x2, ~x1 − ~x3, ~x2 − ~x3) , (12.1)

where:

Potential term Explanation
Vnn(~x2 − ~x1) 2-body strong nuclear force between p at ~x1 and p at ~x2

Vnn(~x3 − ~x1) 2-body strong nuclear force between p at ~x1 and n at ~x3

VC(|~x2 − ~x1|) 2-body Coulomb force between p at ~x1 and p at ~x2

V3(· · · ) 3-body force strong nuclear force (more explanation below)

The 2-body forces above follow from our discussion of the strong and Coulomb 2-body
forces. However, the 3-body term is a fundamentally different thing. You can think of V3 as
a “polarization” term—the presence of several influences, how 2 acts on 1 in the presence of
3, how 3 acts on 1 in the presence of 2, and how this is also affected by the distance between
2 and 3. It may seem complicated, but it is familiar. People act this way! Person 1 may
interact with person 2 in a different way if person 3 is present! These many-body forces are
hard to get a grip on, in nuclear physics and in human social interaction. Nuclear theory is
basically a phenomenological one based on measurement, and 3-body forces or higher order
forces are hard to measure.

Polarization effects are common in atomic physics as well.

Figure 12.2, shows how an electron passing by, in the vicinity of two neutral atoms, polarizes
the proximal atom, as well as more distance atoms.

Returning to nuclear physics, despite the complication of many-body forces, we shall persist
with the development of simple models for nuclei. These models organize the way we think
about nuclei, based upon some intuitive guesses. Should one of these guesses have predictive
power, that is, it predicts some behavior we can measure, we have learned something—not
the entire picture, but at least some aspect of it. With no fundamental theory, this form of
guesswork, phenomenology, is the best we can do.
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Figure 12.2: A depiction of polarization for an electron in condensed matter. This sketch
has not been created yet, so feel free to draw it in!
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12.1 The Shell Model

Atomic systems show a very pronounced shell structure. See Figures 12.3 and 12.4.

Figure 12.3: For now, substitute the top figure from Figure 5.1 in Krane’s book, p. 118.
This figure shows shell-induced regularities of the atomic radii of the elements.
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Figure 12.4: For now, substitute the bottom figure from Figure 5.1 in Krane’s book, p. 118.
This figure shows shell-induced regularities of the ionization energies of the elements.
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Nuclei, as well, show a “shell-like” structure, as seen in Figure 12.5.

Figure 12.5: For now, substitute Figure 5.2 in Krane’s book, p. 119. This figure shows
shell-induced regularities of the 2p separation energies for sequences of isotones same N , and
2n separation energies for sequences of isotopes.

The peaks of the separation energies (hardest to separate) occur when the Z or N correspond
to major closed shells. The “magic” numbers, the closed major shells, occur at Z or N : 2,
8, 20, 28, 50, 82, & 126.
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The stable magic nuclei

Isotopes Explanation Natural abundance (%)
3
2He1 magic Z 1.38 × 10−4

4
2He2 doubly magic 99.99986
15
7 N8 magic N 0.366
16
8 O8 doubly magic 99.76
40
20Ca20 doubly magic 96.94
42−48
20 Ca20 magic Z
50
22Ti28 magic N 5.2
52
24Cr28 magic N 83.79
54
26Fe28 magic N 5.8
86Kr, 87Rb, 88Sr, 89Y, 90Zr, 92Mo magic N = 50
...

...
...

208
82 Pb126 doubly magic 52.3
209
83 Bi126 magic N 100, t1/2 = 19 ± 2 × 1018 y

The Shell-Model idea

A nucleus is composed of a “core” that produces a potential that determines the properties
of the “valence” nucleons. These properties determine the behavior of the nucleus much in
the same way that the valance electrons in an atom determine its chemical properties.

The excitation levels of nuclei appears to be chaotic and inscrutable. However, there is
order to the mess! Figure 12.6 shows the energy levels predicted by the shell model using
ever-increasing sophistication in the model of the “core” potential. The harmonic oscillator
potential as well as the infinite well potential predict the first few magic numbers. However,
one must also include details of the profile of the nuclear skin, as well as introduce a spin-
orbit coupling term, before the shells fall into place. In the next section we discuss the
various components of the modern nuclear potential.

Details of the modern nuclear potential

A valence nucleon (p or n) feels the following central strong force from the core:

Vn(r) =
−V0

1 + exp
(

r−RN

t

) (12.2)

It is no coincidence that the form of this potential closely resembles the shape of the nucleus
as determined by electron scattering experiments. The presence of the nucleons in the core,
provides the force, and thus, the force is derived directly from the shape of the core.
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Figure 12.6: The shell model energy levels. See Figures 5.4 (p. 121) and 5.6 p. 123 in Krane.

In addition to the “bulk” attraction in (12.2), there is a symmetry term when there is an
imbalance of neutrons and protons. This symmetry term is given by:

VS =
a

sym

A(A + 1)

[

±2(N − Z)A+ A− (N − Z)2
]

, (12.3)

with the plus sign is for a valence neutron and the negative sign for a valence proton. The
form of this potential can be derived from the parametric fit to the total binding energy of
a nucleus given by (10.38).

The parameters of the potential described above, are conventionally given as:

Parameter Value Interpretation
V0 57 MeV Potential depth of the core
RN 1.25A1/3 Nuclear radius
t 0.65 fm Related to the nuclear skin depth
a

sym
16.8 MeV Symmetry energy

aso 1 fm Spin-orbit coupling (discussed below)

If the valence nucleon is a proton, an addition central Coulomb repulsion must be applied:

VC(r) =
Ze2

4πǫ0

∫

d~x′ρp(r
′)

1

|~x− ~x′| =
Ze2

4πǫ0

2π

r

∫

dr′r′ρp(r
′) [(r + r′) − |r − r′|] . (12.4)
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Recall that the proton density is normalized to unity by

1 ≡
∫

d~x′ρp(r
′) = 4π

∫

dr′r′2ρp(r
′) .

Simple approximations to (12.4) treat the charge distribution as a uniform sphere with radius
RN . That is:

ρp(r) ≈
3

4πR3
N

Θ(R− r) .

However, a more sophisticated approach would be to use the nuclear shape suggested by
(12.2), that is:

ρp(r) =
ρ0

1 + exp
(

r−RN

t

) ,

determining ρ0 from the normalization condition above.

The spin-orbit potential

The spin-orbit potential has the form:

Vso(~x) = −a
2
so

r

dVn(r)

dr
〈~l · ~s〉 . (12.5)

The radial derivative in the above equation is only meant to be applied where the nuclear
density is changing rapidly.

Evaluating the spin-orbit term

Recall, ~ = ~l + ~s. Hence, ~2 = ~l2 + 2~l · ~s + ~s2. Thus, ~l · ~s = (1/2)(~2 − ~l2 − ~s2), and

〈~l · ~s〉 = (1/2)[j(j + 1) − l(l + 1) − s(s+ 1)].

The valence nucleon has spin-1/2. To determine the splitting of a given l into j = l ± 1
2

levels, we calculate, therefore:
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〈~l · ~s〉j=l+ 1
2

= [(l + 1/2)(l + 3/2) − l(l + 1) − 3/4]/2

= l/2

〈~l · ~s〉j=l− 1
2

= [(l − 1/2)(l + 1/2) − l(l + 1) − 3/4]/2

= −(l + 1)/2

〈~l · ~s〉j=l+ 1
2
− 〈~l · ~s〉j=l− 1

2
= (2l + 1)/2 (12.6)

Vso(r) is negative, and so, the higher j = l+ 1
2

(orbit and spin angular momenta are aligned)
is more tightly bound.

The shape of this potential is shown, for a valence neutron in Figure 12.7, and for a valence
proton in Figure 12.8. For this demonstration, the core nucleus was 208Pb. The l in the
figures, to highlight the spin-orbit coupling, was chosen to be l = 10.
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Figure 12.7: The potential of a 208Pb nucleus as seen by a single valence neutron.
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Figure 12.8: The potential of a 208Pb nucleus as seen by a single valence proton. Note the
effect of the Coulomb potential on the the potential near the origin (parabolic shape there),
as well as the presence of the Coulomb barrier.
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Determining the ground state Iπ in the shell model

The spin and parity assignment may be determined by considering the nuclear potential de-
scribed so far, plus one additional idea, the “Extreme Independent Particle Model” (EIPM).
The EIPM is an addendum to the shell model idea, and it is expressed as follows. All the
characteristics of a given nucleus are determined by the unpaired valence nucleons. All pairs
of like nucleons cancel one another’s spins and parities.

Applying EIPM for the example of two closely related nuclei is demonstrated in Figure 12.9.

Figure 12.9: A demonstration of the spin and parity assignment for 15O and 17O. Iπ(15O) =
1
2

−
, while Iπ(17O) = 5

2

+
. This sketch has not been created yet, so feel free to draw it in!

Another demonstration of the success of the EIPM model is to consider the isotopes of O.
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Isotope of O Iπ, measured Iπ, EIPM prediction decay mode t1/2/abundance
12O 0+ (est) 0+ 2p ≈ 10−21 s
13O 3

2

− 3
2

−
β+, p 8.6 ms

14O 0+ 0+ γ, β+ 70.60 s
15O 1

2

− 1
2

−
ε, β+ 2.037 m

16O 0+ 0+ 99.757%
17O 5

2

+ 5
2

+
0.038%

18O 0+ 0+ 0.205%
19O 5

2

+ 5
2

+
β−, γ 26.9 s

20O 0+ 0+ β−, γ 13.5 s
21O ? 5

2

+
β−, γ 3.4 s

22O 0+ (est) 0+ β−, γ 2.2 s
23O ? 1

2

+
β−, n 0.08 s

24O 0+ (est) 0+ β−, γ, n 65 ms

Other successes ...

Isotope Iπ

13
5 Be8

3
2

−

14
6 C8 0+

15
7 N8

1
2

−

16
8 O8 0+

17
8 F8

5
2

+

18
10Ne8 0+

EIPM prediction of the magnetic moment of the nucleus

The shell model, and its EIPM interpretation, can be tested by measuring and calculating
the magnetic moment of a nucleus. Thus, the last unpaired nucleon determines the magnetic
moment of the entire nucleus. Recall from Chapter 10, the definition of magnetic moment,
µ, of a nucleus:

µ = µN(gllz + gssz) , (12.7)

where
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Symbol Meaning Value
µN Nuclear magnetron 5.05078324(13)× 10−27 J/T
gl Orbital gyromagnetic ratio 0 (neutron), 1 (proton)
gs Spin gyromagnetic ratio −3.82608545(46) (neutron) 5.585694713(90) (proton)
lz Maximum value of ml jz = max(ml)
sz Maximum value of ms sz = max(ms) = 1/2

However, neither ~l nor ~s is precisely defined for nuclei (recall the Deuteron) due to the
strong spin-orbit coupling. Consequently, lz and sz can not be known precisely. However,
total angular momentum, ~ and its maximum z-projection, jz are precisely defined, and thus
measurable.

Since jz = lz + sz, we may rewrite (12.7) as:

µ = µN(gljz + (gs − gl)sz) . (12.8)

Computing the expectation value (i.e. the measured value) of µ gives:

〈µ〉 = µN(glj + (gs − gl)〈sz〉) . (12.9)

Since ~ is the only measurable vector in the nucleus, we can determine 〈sz〉 from its projection
along ~.

Thus, using projection vector language:

~sj = ~
(~s · ~)
~ · ~ ,

sz = ẑ · ~sj = jz
~s · ~
~ · ~ ,

〈sz〉 = j
〈~s · ~〉
j(j + 1)

,

〈sz〉 =
〈~s · ~〉
(j + 1)

,

〈sz〉 =
〈~ · ~〉 − 〈~l ·~l〉 + 〈~s · ~s〉

2(j + 1)
,

〈sz〉 =
j(j + 1) − l(l + 1) + s(s+ 1)

2(j + 1)
,

〈sz〉j=l+1/2 = 1/2 ,

〈sz〉j=l−1/2 = − j

2(j + 1)
. (12.10)
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Substituting the results of (12.10) into (12.9) gives:

〈µ〉j=l+1/2 = µN [gl(j − 1
2
) + 1

2
gs]

〈µ〉j=l−1/2 = µN

[

gl
j(j + 3

2
)

(j + 1)
− gs

2

j

(j + 1)

]

(12.11)

Comparisons of measurements with theory are given in Figure 12.10, for odd-neutron and
odd-proton nuclei. These nuclei are expected to give the best agreement with the EIPM.
The theoretical lines are know as Schmidt lines, honoring the first person who developed
the theory. Generally, the trends in the data are followed by the Schmidt lines, though the
measured data is significantly lower. The reason for this is probably a “polarization effect”,
where the intrinsic spin of the odd nucleon is shielded by the other nucleons in the nucleus
as well as the virtual exchange mesons. This is very similar to a charged particle entering
a condensed medium and polarizing the surrounding atoms, thereby reducing the effect of
its charge. This can be interpreted as a reduction in charge by the surrounding medium.
(The typical size of this reduction is only about 1–2%. However, in a nucleus, the forces are
much stronger, and hence, so is the polarization. The typical reduction factor applied to the
nucleons are gs (in nucleus) ≈ 0.6gs (free).

Figure 12.10: See Krane’s Figure 5.9, p. 127

Shell model and EIPM prediction of the quadrupole moment of the nucleus

Recall the definition of the quadrupole moment of a nucleus, given in (10.53) namely:

Q =

∫

d~x ψ∗
N(~x)(3z2 − r2)ψN(~x) .

A quantum-mechanical calculation of the quadrupole moment for a single odd proton, by
itself in a subshell, is given by:
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〈Qsp〉 = − 2j − 1

2(j + 1)
〈r2〉 . (12.12)

When a subshell contains more than one particle, all the particles in that subshell can,
in principle, contribute to the quadrupole moment. The consequence of this is that the
quadrupole moment is given by:

〈Q〉 = 〈Qsp〉
[

1 − 2
n− 1

2j − 1

]

, (12.13)

where n is the occupancy of that level. We can rewrite (12.13) in to related ways:

〈Q〉(n) = 〈Qsp〉
[

2(j − n) + 1

2j − 1

]

,

〈Q〉(n0) = 〈Qsp〉
[−2(j − n0) − 1

2j − 1

]

, (12.14)

where n0 = 2j + 1 − n is the number of “holes” in the subshell. Thus we see that (12.14)
predicts 〈Q〉(n0 = n) = −〈Q〉(n). The interpretation is that “holes” have the same magni-
tude quadrupole moment as if there were the equivalent number of particles in the shell, but
with a difference in sign. Krane’s Table 5.1 (p. 129) bears this out, despite the generally
poor agreement in the absolute value of the quadrupole moment as predicted by theory.

Even more astonishing is the measured quadrupole moment for single neutron, single-neutron
hole data. There is no theory for this! Neutrons are not charged, and therefore, if Q were
determined by the “last unpaired nucleon in” idea, Q would be zero for these states. It might
be lesser in magnitude, but it is definitely not zero!

There is much more going on than the EIPM or shell models can predict. These are collec-
tive effects, whereby the odd neutron perturb the shape of the nuclear core, resulting in a
measurable quadrupole moment. EIPM and the shell model can not address this physics. It
is also known that the shell model prediction of quadrupole moments fails catastrophically
for 60 < Z < 80, Z > 90 90 < N < 120 and N > 140, where the measured moments are an
order of magnitude greater. This is due to collective effects, either multiple particle behavior
or a collective effect involving the entire core. We shall investigate these in due course.

Shell model predictions of excited states

If the EIPM were true, we could measure the shell model energy levels by observing the
decays of excited states. Recall the shell model energy diagram, and let us focus on the
lighter nuclei.
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Figure 12.11: The low-lying states in the shell model

Let us see if we can predict and compare the excited states of two related light nuclei:
17
8 O9 = [168 O8] + 1n, and 19

9 F8 = [168 O8] + 1p.

Figure 12.12: The low-lying excited states of 17
8O9 and 19

9F8. Krane’s Figure 5.11, p. 131

The first excited state of 17
8O9 and 19

9F8 has Iπ = 1/2+. This is explained by the EIPM
interpretation. The “last in” unpaired nucleon at the 1d5/2 level is promoted to the 2s1/2

level, vacating the 1d shell. The second excited state with Iπ = 1/2− does not follow the
EIPM model. Instead, it appears that a core nucleon is raised from the 1p1/2 level to the 1d5/2

level, joining another nucleon there and canceling spins. The Iπ = 1/2− is determined by the
unpaired nucleon left behind. Nor do the third and fourth excited states follow the EIPM
prescription. The third and fourth excited states seem to be formed by a core nucleon raised
from the 1p1/2 level to the 2s1/2 level, leaving three unpaired nucleons. Since I is formed from
the coupling of j’s of 1/2, 1/2 and 5/2, we expect 3/2 ≤ I ≤ 7/2. 3/2 is the lowest followed by
5/2. Not shown, but expected to appear higher up would be the 7/2. The parity is negative,
because parity is multiplicative. Symbolically, (−1)p × (−1)d × (−1)s = −1. Finally, the
fifth excited state does follow the EIPM prescription, raising the “last in” unbound nucleon
to d3/2 resulting in an Iπ = 3/2+.

Hints of collective structure

Krane’s discussion on this topic is quite good.
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Figure 12.13: The low-lying excited states of 41
20Ca21,

41
21Sc20,

43
20Ca23,

43
21Sc22,

43
22Ti21. Krane’s

figure 5.12, p. 132

Verification of the shell model

Krane has a very interesting discussion on a demonstration of the validity of the shell model
by investigating the behavior of s states in heavy nuclei. In this demonstration, the difference
in the proton charge distribution (measured by electrons), is compared for 205

81Tl124 and
206
82Pb124.

ρ
205
81Tl124

p (r) − ρ
206
82Pb124

p (r)

206Pb has a magic number of protons and 124 neutrons while 205Tl has the same number of
neutrons and 1 less proton. That proton is in an s1/2 orbital. So, the measurement of the
charge density is a direct investigation of the effect of an unpaired proton coursing though
the tight nuclear core, whilst on its s-state meanderings.

12.2 Even-Z, even-N Nuclei and Collective Structure

All even/even nuclei are Iπ = 0+, a clear demonstration of the effect of the pairing force.

All even/even nuclei have an anomalously small 1st excited state at 2+ that can not be
explained by the shell model (EIPM or not). Read Krane pp. 134–138.

Consult Krane’s Figure 5.15a, and observe that, except near closed shells, there is a smooth
downward trend in E(2+), the binding energy of the lowest 2+ states. Regions 150 < A < 190
and A > 220 seem very small and consistent.

Quadrupole moment systematics

Q2 is small for A < 150. Q2 is large and negative for 150 < A < 190 suggesting an oblate
deformation
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Consult Krane’s Figure 5.16b: The regions between 150 < A < 190 and A > 220 are
markedly different. Now, consult Krane’s Figure 5.15b that shows the ratio of E(4+)/E(2+).
One also notes something “special about the regions:150 < A < 190 and A > 220.

All this evidence suggests a form of “collective behavior” that is described by the Liquid
Drop Model (LDM) of the nucleus.

12.2.1 The Liquid Drop Model of the Nucleus

In the the Liquid Drop Model is familiar to us from the semi-empirical mass formula (SEMF).
When we justified the first few terms in the SEMF, we argued that the bulk term and the
surface term were characteristics of a cohesive, attractive mass of nucleons, all in contact
with each other, all in motion, much like that of a fluid, like water. Adding a nucleon
liberates a certain amount of energy, identical for each added nucleon. The gives rise to the
bulk term. The bulk binding is offset somewhat by the deficit of attraction of a nucleon at
or near the surface. That nucleon has fewer neighbors to provide full attraction. Even the
Coulomb repulsion term can be considered to be a consequence of this model, adding in the
extra physics of electrostatic repulsion. Now we consider that this “liquid drop” may have
collective (many or all nucleons participating) excited states, in the quantum mechanical
sense1.

These excitations are known to have two distinct forms:

• Vibrational excitations, about a spherical or ellipsoidal shape. All nucleons participate
in this behavior. (This is also known as photon excitation.)

• Rotational excitation, associated with rotations of the entire nucleus, or possibly only
the valence nucleons participating, with perhaps some “drag” on a non-rotating spher-
ical core. (This is also known as roton excitation.)

Nuclear Vibrations (Phonons)

Here we characterize the nuclear radius as have a temporal variation in polar angles in the
form:

R(θ, φ, t) = Ravg +

Λ
∑

λ=1

λ
∑

µ=−λ

αλµ(t)Yλµ(θ, φ) , (12.15)

1A classical liquid drop could be excited as well, but those energies would appears not to be quantized.
(Actually, they are, but the quantum numbers are so large that the excitations appear to fall on a continuum.
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Here, Ravg is the “average” radius of the nucleus, and αλµ(t) are temporal deformation param-
eters. Reflection symmetry requires that αλ,−µ(t) = αλµ(t). Equation (12.15) describes the

surface in terms of sums total angular momentum components ~λ~ and their z-components,
µ~. The upper bound on λ is some upper bound Λ. Beyond that, presumably, the nucleus
can not longer be bound, and flies apart. If we insist that the nucleus is an incompressible
fluid, we have the further constraints:

VN =
4π

3
R3

avg

0 =

Λ
∑

λ=1

|αλ,0(t)|2 + 2

Λ
∑

λ=1

λ
∑

µ=1

|αλµ(t)|2 (12.16)

The λ deformations are shown in Figure 12.14 for λ = 1, 2, 3.

Figure 12.14: In this figure, nuclear surface deformations are shown for λ = 1, 2, 3
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Dipole phonon excitation

The λ = 1 formation is a dipole excitation. Nuclear deformation dipole states are not
observed in nature, because a dipole excitation is tantamount to a oscillation of the center
of mass.

Quadrupole phonon excitation

The λ = 2 excitation is called a quadrupole excitation or a quadrupole phonon excitation, the
latter being more common. Since π = (−1)λ, the parity of the quadrupole phonon excitation
is always positive, and it’s Iπ = 2+.

Octopole phonon excitation

The λ = 3 excitation is called an octopole excitation or a octopole phonon excitation, the
latter being more common. Since π = (−1)λ, the parity of the octopole phonon excitation
is always negative, and it’s Iπ = 3−.

Two-quadrupole phonon excitation

Now is gets interesting! These quadrupole spins add in the quantum mechanical way. Let
us enumerate all the apparently possible combinations of |µ1〉 and |µ2〉 for a two photon
excitation:

µ = µ1 + µ2 Combinations d µλ=4 µλ=3 µλ=2 µλ=1 µλ=0

4 |2〉|2〉 1 y
3 |2〉|1〉, |1〉|2〉 2 y y
2 |2〉|0〉, |1〉|1〉, |0〉|2〉 3 y y y
1 |2〉|-1〉, |1〉|0〉, |0〉|1〉, |-1〉|2〉 4 y y y y
0 |2〉|-2〉, |1〉|-1〉, |0〉|0〉, |-1〉|1〉, |-2〉|2〉 5 y y y y y
-1 |1〉|-2〉, |0〉|-1〉, |-1〉|0〉, |-2〉|1〉 4 y y y y
-2 |0〉|-2〉, |-1〉|-1〉, |-2〉|0〉 3 y y y
-3 |-1〉|-2〉, |-2〉|-1〉 2 y y
-4 |-2〉|-2〉 1 y

∑

d = 25 9 7 5 3 1

It would appear that we could make two-quadrupole phonon states with Iπ = 4+, 3−, 2+, 1−, 0+.
However, phonons are unit spin excitations, and follow Bose-Einstein statistics, Therefore,
only symmetric combinations can occur. Accounting for this, as we have done following,
leads us to conclude that the only possibilities are: Iπ = 4+, 2+, 0+.
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µ = µ1 + µ2 Symmetric combinations d µλ=4 µλ=2 µλ=0

4 |2〉|2〉 1 y
3 (|2〉|1〉+|1〉|2〉) 1 y
2 (|2〉|0〉+|0〉|2〉), |1〉|1〉 2 y y
1 (|2〉|-1〉+|-1〉|2〉), (|1〉|0〉+|0〉|1〉) 2 y y
0 (|2〉|-2〉+|-2〉|2〉), (|1〉|-1〉+|-1〉|1〉), |0〉|0〉 3 y y y
-1 (|1〉|-2〉+|-2〉|1〉), (|0〉| 1〉+|-1〉|0〉) 2 y y
-2 (|0〉|-2〉+|-2〉|0〉), |-1〉|-1〉 2 y y
-3 (|-1〉|-2〉+|-2〉|-1〉) 1 y
-4 |-2〉|-2〉 1 y

∑

d = 15 9 5 1

Three-quadrulpole phonon excitations

Applying the same methods, one can easily (hah!) show, that the combinations give Iπ =
6+, 4+, 3+, 2+, 0+.

She Krane’s Figure 5.19, p. 141, for evidence of phonon excitation.

Nuclear Rotations (Rotons)

Nuclei in the mass range 150 < A < 190 and A > 200 have permanent non-spherical
deformations. The quadrupole moments of these nuclei are larger by about an order of
magnitude over their non-deformed counterparts.

This permanent deformation is usually modeled as follows:

RN(θ) = Ravg[1 + βY20(θ)] . (12.17)

β is called the deformation parameter. β is called the deformation parameter, (12.17) de-
scribes (approximately) an ellipse. (This is truly only valid if β is small. β is related to the
eccentricity of an ellipse as follows,

β =
4

3

√

π

5

∆R

Ravg
, (12.18)

where ∆R is the difference between the semimajor and semiminor axes of the ellipse. When
β > 0, the nucleus is a prolate ellipsoid (cigar shaped). When β < 0, the nucleus is an oblate
ellipsoid (shaped like a curling stone). Or, if you like, if you start with a spherical blob of
putty and roll it between your hands, it becomes prolate. If instead, you press it between
your hands, it becomes oblate.
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The relationship between β and the quadrupole moment2 of the nucleus is:

Q =
3√
5π
R2

avgZβ

[

1 +
2

7

(

5

π

)1/2

β +
9

28π
β2

]

. (12.19)

Energy of rotation

Classically, the energy of rotation, Erot is given by:

Erot =
1

2
Iω2 , (12.20)

where I is the moment of inertia and ω is the rotational frequency. The transition to
Quantum Mechanics is done as follows:

EQM
rot =

1

2

~I · ~I
I ω2 =

1

2

(~Iω) · (~Iω)

I =
1

2

〈(~I~) · (~I~)〉
I =

~
2

2I 〈
~I · ~I〉 =

~
2

2I I(I + 1) (12.21)

Technical aside:

Moment of Inertia?

Imagine that an object is spinning around the z-axis, which cuts through its center of mass,
as shown in Figure 12.15. We place the origin of our coordinate system at the object’s center
of mass. The angular frequency of rotation is ω.

The element of mass, dm at ~x is ρ(~x)d~x, where ρ(~x) is the mass density. [M =
∫

d~x ρ(~x)].
The speed of that mass element, |v(~x)| is ωr sin θ. Hence, the energy of rotation, of that
element of mass is:

dErot =
1

2
dm |v(~x)|2 =

1

2
d~x [ρ(~x)r2 sin2 θ]ω2 . (12.22)

Integrating over the entire body gives:

2Krane’s (5.16) is incorrect. The β-term has a coefficient of 0.16, rather than 0.36 as implied by (12.19).
Typically, this correction is about 10%. The additional term provided in (12.19) provides about another 1%
correction.
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Figure 12.15: A rigid body in rotation. (Figure needs to be created.)

Erot =
1

2
Iω2 , (12.23)

which defines the moment of inertia to be:

I =

∫

d~x ρ(~x)r2 sin2 θ . (12.24)

The moment of inertia is an intrinsic property of the object in question.

Example 1: Moment of inertia for a spherical nucleus

Here,
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ρ(~x) = M
3

4πR3
N

Θ(RN − r) .

Hence,

Isph = M
3

4πR3
N

∫

|~x|≤RN

d~x r2 sin2 θ

=
3M

2R3
N

∫ RN

0

dr r4

∫ π

0

sin θdθ sin2 θ

=
3MR2

N

10

∫ 1

−1

dµ (1 − µ2)

Isph =
2

5
MR2

N (12.25)

Example 2: Moment of inertia for an elliptical nucleus

Here, the mass density is a constant, but within a varying radius given by (12.17), namely

RN (θ) = Ravg[1 + βY20(θ)] .

The volume of this nucleus is given by:

V =

∫

|~x|≤Ravg[1+βY20(µ)]

d~x

= 2π

∫ 1

−1

dµ

∫ Ravg[1+βY20(µ)]

0

r2dr

=
2πR3

avg

3

∫ 1

−1

dµ [1 + βY20(µ)]3

(12.26)
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Iℓ =

∫

d~x ρ(~x)r2 sin2 θ

=
M

V
(2π)

∫ 1

−1

dµ (1 − µ2)

∫ Ravg [1+βY20(µ)]

0

dr r4

=
MR5

avg

V

2π

5

∫ 1

−1

dµ (1 − µ2)[1 + βY20(µ)]5

Iℓ = MR2
avg

(

3

5

)[
∫ 1

−1

dµ (1 − µ2)[1 + βY20(µ)]5
]

/

[
∫ 1

−1

dµ [1 + βY20(µ)]3
]

.(12.27)

(12.27) is a ratio a 5th-order polynomial in β, to a 3rd-order polynomial in β. However, it
can be shown that it is sufficient to keep only O(β2). With,

Y20(µ) =

√

5

16π
(3µ2 − 1)

(12.27) becomes:

Iℓ =

(

2

5

)

MR2
avg

[

1 − 1

2

√

5

π
β +

71

28π
β2 +O(β3)

]

=

(

2

5

)

MR2
avg

[

1 − 0.63β + 0.81β2 + (< 1%)
]

. (12.28)
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Rotational bands

Erot(I
π) Value Interpretation

E(0+) 0 ground state
E(2+) 6(~2/2I) 1st rotational state
E(4+) 20(~2/2I) 2nd rotational state
E(6+) 42(~2/2I) 3rd rotational state
E(8+) 72(~2/2I) 4th rotational state
...

...
...

Using Irigid, assuming a rigid body, gives a spacing that is low by a factor of about off by
about 2–3. Using

Ifluid =
9

8π
MNR

2
avgβ

for a fluid body in rotation3, gives a spacing that is high by a factor of about off by about
2–3. Thus the truth for a nucleus, is somewhere in between:

Ifluid < IN < Irigid

3Actually, the moment of inertia of a fluid body is an ill-defined concept. There are two ways I can think
of, whereby the moment of inertia may be reduced. One model could be that of a “static non-rotating core”.
From (12.29), this would imply that:

Iℓ = −
(

2

5

)

MR2
avg

[

1

2

√

5

π
β − 71

28π
β2

]

≈ −
(

2

5

)

MR2
avg

[

β − 0.81β2
]

.

Another model would be that of viscous drag, whereby the angular frequency becomes a function of r
and θ. For example, ω = ω0(r sin θ/Ravg)

n. One can show that the reduction, Rn in I is of the form

Rn+1 = 2(n+2)
7+2n

Rn, where R0 ≡ 1. A “parabolic value”, n = 2, gives the correct amount of reduction, about
a factor of 3. This also makes some sense, since rotating liquids obtain a parabolic shape.



Chapter 13

Radioactive Decay

Note to students and other readers: This Chapter is intended to supplement Chapter 6 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

13.1 The Radioactive Decay Law

Exponential decay law

Consider a system of particles, N0 in number at time, t = 0. Each of these particles has
an independent, but equal probability of decay per unit time, λ. How many particles are
observed at a later time? The traditional way of answering this question is to assume that
N is large enough, that we may use calculus. Since particles are integral quantities, we
recognize that this is, somewhat, a leap of faith!

Thus, the change in N us given by:

dN = −λNdt; N(0) = N0

dN

N
= −λdt

d[logN ] = −λdt

logN − logN0 = −λt
logN = logN0 − λt

N = N0 exp(−λt) (13.1)

Thus we have derived the well-known exponential decay law, N(t) = N0e
−λt.

159
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Half-life

The half-life, t1/2, is defined as follows:

N(t+ t1/2)

N(t)
≡ 1

2
=
N0 exp(−λt− λt1/2)

N0 exp(−λt) = exp(−λt1/2) ,

or,

t1/2 =
log 2

λ
≈ 0.693

λ
. (13.2)

Thus we see, a population of N radioactive particles at t would be reduced by half (on
average) at time t+ t1/2.

Lifetime, or mean lifetime

The exponential law can also be interpreted as the decay probability for a single radioactive
particle to decay in the interval dt, about t.. This probability, p(t), properly normalized, is
given by:

p(t)dt = λe−λtdt ;

∫ ∞

0

p(t)dt = 1 . (13.3)

The we see that the probability a particle decays within time t, P (t) is given by,

P (t) =

∫ t

0

p(t′)dt′ = 1 − e−λt. (13.4)

The mean lifetime or lifetime of a particle, τ , is evaluated by calculating 〈t〉, using the
probability distribution (13.3):

τ = λ

∫ ∞

0

te−λtdt =
1

λ
. (13.5)

Activity

The number of decays, ∆N , observed from t and t+ ∆t, obtained from (13.1) is:

∆N = N(t) −N(t+ ∆t) = N0e
−λt(1 − e−λ∆t) .

If ∆t≪ τ , then, in the limit as ∆t→ 0, we may rewrite the above as:
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∣

∣

∣

∣

dN

dt

∣

∣

∣

∣

= λN0e
−λt = λN(t) ≡ A(t) = A0e

−λt , (13.6)

defining the activity, A(t), and its initial value, A0. Activity is usually what is measured,
since N0 and N(t) are usually unknown, nor of particular interest in many applications.
What is generally of real interest is the activity of a source, and, consequently, the ability of
the radiation from a source, to interact.

It must be emphasized that (13.6) is an approximate relationship, based on ∆t ≪ τ . Con-
sequently, using (13.6) in any other expression, is subject to the same constraint.

The previous considerations only apply to the decay of a single isotope, N1, to another
(presumably stable) nucleus, N2.

The differential equations describing the decline of N1 and the growth of N2 are given as
follows:

dN1 = −N1λdt

dN2 = N1λdt

d(N1 +N2) = 0 , (13.7)

with solutions:

N1 = N1(0)e−λt

N2 = N2(0) +N1(0)(1 − e−λt)

N1 +N2 = N1(0) +N2(0) (13.8)

One isotope, two decay channels

Now imagine that N can decay, with λa into Na, or into Nb with λb. The total decay rate is
λt = λa + λb.

The differential equations are:

dN = −Nλtdt

dNa = Nλadt

dNb = Nλbdt

d(N +Na +Nb) = 0 , (13.9)
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with solutions:

N = N(0)e−λtt

Na = Na(0) + (λa/λt)N(0)(1 − e−λt)

Nb = Nb(0) + (λb/λt)N(0)(1 − e−λt)

N +Na +Nb = N(0) +Na(0) +Nb(0) . (13.10)

One parent, many stable daughters

The results of the one parent (nuclear isotope −→ 2 stable daughters), can easily be gener-
alized to many daughters. The differential equations are:

dN = −Nλtdt

dN1 = Nλ1dt

dN2 = Nλ2dt
... =

...

dNn = Nλndt

d

(

N +
n
∑

i=1

Ni

)

= 0 , (13.11)

where λt =
∑n

i=1 λi. The solutions are given by:

N = N(0)e−λtt

Ni = Ni(0) + (λi/λt)N0(1 − e−λt)

N +
n
∑

i=1

Ni = N(0) +
n
∑

i=1

Ni(0) . (13.12)

The quantity λi/λt is called the branching ratio for decay into channel i.

Two isotopes, independent decay channels

In this case, the total activity measured is:

A(t) = Aa
0e

−λat + Ab
0e

−λbt , (13.13)
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where a and b label the two different isotopes.

The question arises: How to determine Aa
0, Ab

0, λa and λb? Krane outlines a strategy
portrayed in his Figure 6.2. If, for example, isotope a has a considerably longer half-life, the
linear tail of the log-linear plot of A can be extrapolated backward to isolate Aa

0. The slope
of this line also yields λa. The one plots log(A(t)−Aa

0e
−λat) that should give a straight line

log-linear plot. The values of Ab
0 and λb can then be determined.

13.2 Quantum Theory of Radioactive Decay

The Quantum Theory of Radioactive Decay starts with a statement of Fermi’s Golden Rule1

#2, the equation from which decays rates, and cross sections are obtained. It is one of the
central equations in Quantum Mechanics. Fermi’s Golden Rule #2 for the transition rate
(probability of transition per unit time), λ, is given by:

λ =
2π

~
|〈ψf |Vp|ψi〉|2

dnf

dEf
, (13.14)

where ψi is the initial quantum state, operated on by a perturbation (transition) potential,
Vp, resulting in the final quantum state, ψf . The factor dnf/dEf is called the density of final
states [sometimes given the notation ρ(Ef )]. The density of final states factor enumerates
the number of possible final states (degeneracy) that can acquire the final energy Ef . It is
not possible to express a less generic form of this factor, without a specific application in
mind. It must be derived on a case-by-case basis, for a given application. We shall have
opportunity to do this several times before the conclusion of this course.

Application to nuclear γ decay

In this case, we have the following situation:

N∗
i −→ Nf + γ

ψN∗

i −→ ψNfψγ

Ei = Ef + Eγ + ER . (13.15)

That is, a nucleus in an initial excited state, N∗
i , has a γ-transition to a final state Nf . The

final state may be an intermediate (but lower in energy) excited state. (It is conventional to
use an asterisk to represent an excited state.) Without loss of generality, we can assume, for

1A derivation of Fermi’s Golden Rule #2 is given at the end of this section.
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the remaining discussion, that Nf represents the ground state. In (13.15) we see that the
energy of the γ is given by the difference in energies of the two nuclear states, less the recoil
energy, Ef imparted to the daughter (resultant) nucleus.

If the energy of the excited state is uncertain, we know that its lifetime and its energy are
connected through the Heisenberg Uncertainly relationship:

∆E∆t ≥ ~/2 .

This is a consequence of the wave description of matter. So, ∆E ↑⇒ ∆t ↓, if the uncertainty
in energy increases, the uncertainty in the lifetime decreases. Conversely, ∆E ↓⇒ ∆t ↑, if
the uncertainty in energy decreases, the uncertainty in the lifetime increases.

It remains to discover, therefore, what is the exact relationship between a state’s lifetime,
and the distribution of energies that are observed? The derivation is sketched below and the
results presented. The details of the derivation are left to the optional section at the end of
this section.

We start by assuming that the final nuclear state is given by:

ψNf (~x, t) = ψNf (~x)eiEf t/~e−t/(2τ)

|ψNf (~x, t)|2 = |ψNf (~x)|2e−t/τ , (13.16)

to agree with our discussion, in the last section, of the probability of decay of a single particle.
Recall that τ is the “lifetime”.

The derivation in the next section reveals that the probability of observing decay energy E,
p(E), is given by:

p(E) =
Γ

2π

1

(E −Ef )2 + (Γ/2)2
, (13.17)

where Γ ≡ ~/τ . This probability distribution is normalized:

∫ ∞

−∞
dE p(E) = 1 .

The peak of this distribution is p(Ef) and Γ width of the distribution at half-maximum.
That is, p(Ef ± Γ/2) = 1

2
p(Ef ). Also, 〈E〉 = Ef .

This distribution is called the Lorentz distribution, or simply, the Lorentzian function. It
is also known as Cauchy-Lorentz distribution, the Cauchy distribution, or the Breit-Wigner
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distribution. Seems that everyone wants to crash this party! Wikipedia has a useful page on
this topic.

The unnormalized Lorentzian is plotted in Figure 13.1, while the normalized Lorentzian is
plotted in Figure 13.2.
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Figure 13.1: The unnormalized Lorentzian.

We note that this spread of energies is intrinsic; it has nothing to do with measurement un-
certainties. Even with a perfect detector, we would observe this spread of detected energies.

Finally, we investigate, for typical γ-transition lifetimes, what is the expected range of energy-
spreads that is likely to be observed? For 10−12 s < τ <∞, typical for γ decays, we find that
0.00066 eV > Γ > 0. That is, γ spectroscopy can exquisitely isolate the individual energy
levels. The situation is drastically difference for high-energy physics, where intrinsic widths
can be of the order of 1 GeV or so. Nearby excitation can overlap with each other, and the
identification of excited states (of hadrons) can be very difficult.
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Figure 13.2: The normalized Lorentzian.

Density of final states

Given a final energy of a quantum system, how many states, dnf fall in the range, Ef −→
Ef + dEf? If we can calculate this, then we can form the ratio dnf/Ef , the density of final
states. We proceed with the derivation, assuming that there is just one free particle in the
final state. This will cover most situations of interest in this course.

We start by expressing the free particle wave function, as it would exist in a cubical box
(V = 0 inside, V → ∞ outside, one corner at the origin of the coordinate system)) with side
L, and take the limit L → ∞ at the end. As we discovered in NERS311, the wavefunction
is given by:

ψnx,ny,nz(x, y, z) =

(

2

L

)3/2

sin
(nxπx

L

)

sin
(nyπy

L

)

sin
(nzπz

L

)

, (13.18)

where 1 ≤ ni < ∞ are the 3 quantum numbers (i = 1, 2, 3) in the 3D system. The 3
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momentum components are given by:

pi =
niπ~

L
. (13.19)

We can imagine a 3D lattice of (nx, ny, nz) points occupying the (+,+,+) octant in space
(since the ni’s are positive). L is very big, and so, we can treat the ni as continuous. Let
~n ≡ nxx̂ + nyŷ + nz ẑ and n2 = ~n · ~n. The number of states, dnf in a shell of thickness dn
(all with the same momentum and energy) is given by:

dnf =
1

8

4π

3
[(n+ dn)3 − n3]

=
π

6
[n3 + 3n2dn + 3n(dn)2 + (dn)3 − n3]

=
π

6
[3n2dn + 3n(dn)2 + (dn)3]

→ π

2
n2dn . (13.20)

Thus

dnf

dEf
=
π

2
n2 dn

dEf
. (13.21)

Now, it is a simple matter of relating Ef to the magnitude of the quantum number vector n
and we are done!

γ-decay

For one photon in the final state, from (13.19)

Eγ = cpγ = nπ~c/L . (13.22)

Thus,

n =
EγL

π~c
dn

dEγ

=
L

π~c
. (13.23)

Recognizing that Ef = Eγ , the results of (13.23) used in (13.21) gives:
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dnf

dEγ
=

1

2π2

L3

(~c)3
E2

γ . (13.24)

Specializing to γ decay, we adapt (13.14) using the notation of (13.15) along with result of
(13.24):

λγ =
1

π~(~c)3

∣

∣〈ψNf [L3/2ψγ]|Vp|ψN i〉
∣

∣

2
E2

γ . (13.25)

Note that the L3/2 denormalizes the photon wavefunction. Let us call this denormalized
wavefunction L3/2ψγ ≡ ψ̃γ. It has no units associated with it. Hence the expression,
|〈ψNf ψ̃γ |Vp|ψN i〉|2 has units (energy)2(length)3, and has a scale proportional to the volume
of the nucleus. Hence, λγ has units s−1, and is correctly dimensioned.
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Derivation of Fermi’s Golden Rule #2

Here is the theoretical background for the earlier parts of this section. It’s optional material,
but may be of interest to some readers.

Fermi’s Golden Rule #2 is one of the central equations in radiation physics, as it is employed
to obtain decay rates and cross sections. Thus, a clear derivation is called for.

Consider the Schrödinger equation for a single particle in a static binding potential:

H0Ψ(~x, t) =
i

~
Ψ(~x, t) (13.26)

where

H0 = T + V (~x)

T = − ~
2

2m
∇2 (13.27)

We know that such a potential has a set of orthonormal eigenstates:

|j〉 = Ψj(~x, t) = Ψj(~x)e
−Ejt/~ , (13.28)

with eigenenergies, Ej. These eigenstates are orthonormal, that is,

〈i|j〉 = δij . (13.29)

We know that the Ej’s are constants, and fixed. By Heisenberg’s Uncertainly Principle, we
also know that all eigenstates are stable, as there is no mechanism for decay. In Nature,
we know that excited states eventually decay to the ground state, and the purpose of this
derivation is to obtain an expression for that decay rate.

We start by assuming that there is a perturbation potential that is time dependent, Vp(~x, t).

Now we solve:

(H0 + Vp)Ψ =
i

~

∂Ψ

∂t
, (13.30)

where Ψ is the general solution to the entire problem, with both static and perturbation
potentials included.

To start, we write Ψ(~x, t) as a superposition of the eigenstates of the H0 operator, that is:
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Ψ(~x, t) =
∑

j

aj(t)Ψj(~x, t) (13.31)

Taking the partial derivative (13.31) with respect to t gives: (Henceforth, for brevity, obvious
functional dependences on space and time will usually be suppressed.)

∂Ψ

∂t
=
∑

j

(

ȧj − i
Ej

~

)

Ψj . (13.32)

(13.32) + (13.31) −→ (13.30) ⇒

∑

j

aj(H0 − Ej)Ψj +
∑

j

(ajVp − i~ȧj)Ψj = 0 . (13.33)

The first summation is zero, because each Ψj is a eigenfunction of the unperturbed H0 with
eigenenergy Ej. Thus,

∑

j

(ajVp − i~ȧj)Ψj = 0 , (13.34)

or,

∑

j

(ajVp − i~ȧj)|j〉 = 0 . (13.35)

Let |f〉 be the state that the excited states |j〉 transitions to. You can think of |f〉 as the
ground state, or at least a lower excited state.

〈f |
⊗

(13.35) ⇒

∑

j

(aj〈f |Vp|j〉ei(Ej−Ef )/~ − i~ȧj)δjf = 0 . (13.36)

Using the shorthand notation Vjf ≡ 〈f |Vp|j〉 and ωjf ≡ (Ej −Ef )/~, we have:

i~ȧf =
∑

j

ajVjfe
i(Ej−Ef )/~ . (13.37)

(13.37) represents, at least in principle, an exact solution the problem. All one needs to do
is to set an initial condition, say, an(0) = 1 (the excited state) and then al the other a’s,
potentially an infinite number (!) to zero, and then let the solution evolve. Note that every
single eigenstate can be involved in the eventual de-excitation of |n〉. This approach is more
amenable to numerical solution. So, to proceed with the analysis, we make the ...
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Small perturbation approximation

In this approximation, we only have two states, the initial excited and final states, |i〉 and |f〉.
None of the other states are are assumed to be involved. In the spirit of this approximation,
we treat the a’s on the right hand side of (13.37) as constants. (This is how the system would
evolve for small t for any perturbation, large or small.)

Hence we set ai(t) = 1 ∀ t, af (0) = 0, we allow these to change with time, and all the other
a’s are set to zero for all time. This allows us to integrate the equation, resulting in:

af = Vif
1 − eiωif

~ωif
. (13.38)

Now, we evaluate the occupation probability of the state to which the transition is made,

P = |af |2 = |Vif |2
(1 − eiωif )(1 − e−iωif )

(~ωif)2
. (13.39)

Using some trigonometric identities, this can be recast into the following form:

P = |af |2 =
|Vif |2

~2

sin2(ωif t/2)

(ωif/2)2
. (13.40)

The derivation of (13.40) assumed that the energy of the initial state |i〉 is precisely known.
However, we know from the Heisenberg’s Uncertainly Principle, ∆E∆t ≥ ~/2, that the
energy of an excited state can not be known precisely, but distributed in some way. So,
assume that the energy of the excited state is distributed according to some distribution ρ(ω).
We must integrate over all of these to obtain the occupation probability:

P =

∫ ∞

−∞
dω

|Vif |2
~2

ρ(ω)
sin2((ωif − ω)t/2)

((ωif − ω)/2)2
. (13.41)

The
sin2((ωif − ω)t/2)

((ωif − ω)/2)2

term in the above equation acts as a delta function for large t, narrowing as t increases. We
eventually want to consider the decay of the excited state to the final state, so we take the
large t limit to obtain, after a change of variables:

P =
|Vif |2

~2
ρ(ωif )2t

∫ ∞

−∞
dx

sin2 x

x2
. (13.42)
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The integral evaluates numerically to π, thus

P =
2π

~2
|Vif |2ρ(ωif )t (13.43)

We can also rewrite ρ(ωif ) in terms of Eif . Since Eif = ~ωif ,

P =
2π

~
|Vif |2ρ(Eif )t . (13.44)

Finally, the rate of decay, λ = dP/dt. Hence,

λ =
2π

~
|Vif |2ρ(Eif) , (13.45)

and we have derived Fermi’s Golden Rule #2.

A few comments are in order.

The “blurring” function ρ(Eif ) is sometimes referred to as the “density of final states”. We
had to introduce it, in a somewhat ad hoc fashion to recognize that excited states are, indeed,
“blurred”. However, it is fascinating to note, that this blurring is directly connected to the
existence of final states for the system to accept the decay. For example, a typical nuclear
decay involves the release of a γ. Unless this γ has a quantum state to occupy it, there can
be no quantum mechanical transition. Hence, our interpretation of the ‘blurring” of excited
states depends on our ability to measure its decay. If there is no decay mode, then this
density of states function drops to zero, the decay does not occur, and hence, the energy of
the excited state is precise! (But not measurable!)

What is the nature of this “blurring”?

The Lorentz distribution

If an excited state can decay, we may write its wavefunction in the following form:

Ψ(~x, t) = Ψ(~x)eiEit/~
e−t/(2τ)

√
τ

, (13.46)

where τ is its mean life. This interpretation follows directly from the probability density of
the excited state:
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|Ψ(~x, t)|2 = |Ψ(~x)|2 e
−t/τ

τ
, (13.47)

giving the well-known exponential decay law, properly normalized over the domain 0 ≤ t <∞.
Here we are adopting the normalization convention that

∫ ∞

0

dt |Ψ(~x, t)|2 = |Ψ(~x)|2 .

Just as the dynamic variables k and x are related by Fourier transforms in the operational
sense, this is true as well for ω and t. Hence the above distribution in time, namely e−t/τ ,
is converted to a distribution in frequency by its Fourier transform, namely,

Ψi(~x, ω) = Ψi(~x)
1√
2πτ

∫ ∞

0

dt ei(ωi−ω)te−t/(2τ) , (13.48)

where ωi = Ei and ω = E.

After performing the integral

Ψi(~x, ω) = Ψi(~x)
1√
2πτ

1

i(ωi − ω) + 1/(2τ)
, (13.49)

Therefore,

|Ψi(~x, ω)|2 = |Ψi(~x)|2
1

2πτ

(

1

(ωi − ω)2 + (1/(2τ))2

)

. (13.50)

In terms of E rather than ω,

|Ψi(~x, E)|2 = |Ψi(~x)|2
Γ

2π

(

1

(Ei − E)2 + (Γ/2)2

)

, (13.51)

where Γ ≡ ~/τ .

Thus we have found the form of the Lorentz distribution:

|Ψi(~x, E)|2 = |Ψi(~x)|2
Γ

2π

(

1

(Ei − E)2 + (Γ/2)2

)

. (13.52)
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One may easily verify that:

∫ ∞

−∞
dE |Ψi(~x, E)|2 = |Ψ(~x)|2 . (13.53)

13.3 Production and Decay of Radioactivity

Secular equilibrium

Consider a beam of radiation, with intensity I, that impinges upon a block of material
containing nuclei of type “0”. There are N0 nuclei in the target to start, and the external
radiation activates the material, producing nuclear species “1”. We make two assumptions:

1. The target is “thin enough”, so that the external radiation is not attenuated.

2. The irradiation is weak enough so that N0 does not decline.

With these assumptions, R, the rate of production of N1 is given by:

R = IσN0 , (13.54)

where σ is the radioactivity production cross section.

The differential equation describing the production of N1 is given by:

dN1 = Rdt− λ1N1dt , (13.55)

where λ1 is the decay rate of nucleus “1”. Solving (13.55):

Ṅ1 + λ1N1 = R

(Ṅ1 + λ1N1)e
λ1t = Reλ1t

d

dt
(N1e

λ1t) = Reλ1t

N1e
λ1t −N1(0) =

R

λ1

(eλ1t − 1)

N1 −N1(0)e−λ1t =
R

λ1

(1 − e−λ1t)

N1 = N1(0)e−λ1t +
R

λ1
(1 − e−λ1t) . (13.56)
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Usually the target contains no activity at t = 0. If N1(0) = 0:

N1 =
R

λ1
(1 − e−λ1t)

A1 = R(1 − e−λ1t) . (13.57)

Condition Beam A1(t) Description
λ1t≪ 1 i.e. t≪ τ ON Rλ1t initial production
λ1t≫ 1 i.e. t≫ τ ON R secular equilibrium
t ≥ t0, t0 is arbitrary OFF (at t = t0) N1(t0)λ1e

−λ1(t−t0) decay of activity
t ≥ t0 ≫ τ OFF (at t = t0) Re−λ1(t−t0) decay of activity

(from secular equilibrium)

During the condition of secular equilibrium, the rate of production is the same as the rate of
decay, producing an unchanging number of radioactive daughter nuclei. (There will be some
statistic fluctuation of this number.)

A depiction of a nuclide reaching secular equilibrium is shown in Figure 13.3.

A real-life engineering application

A typical engineering challenge, in the area of creating radioactive sources, is to minimize
the cost of producing a given amount of activity. We model this as follows:

The cost, C, per unit activity, factoring start-up costs, S0, (manufacture of the inactive
source, delivery costs, operator start-up and take-down), and the cost of running the accel-
erator or reactor, per unit meanlife, R0, is given as follows:

C =
S0 +R0x0

1 − e−x0
, (13.58)

where x0 is the number of meanlifes that the target is irradiated.

The optimization condition is given by:

S0/R0 = ex0 − (1 + x0) . (13.59)

For small S0/R0, the optimum x0 ≈
√

2S0/R0. For large S0/R0, the optimum x0 ≈
log(S0/R0).

The solutions for the optimum value of x0 can be obtained from Figure 13.4.

The figure has been split into two parts, x0 < 1 for which S0/R0 is shown, and x0 > 1 for
which log(S0/R0) is shown. The approximations discussed above, are plotted as dotted lines.
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Figure 13.3: A nuclide reaching secular equilibrium is depicted. Also depicted are the decays
of the source once the beam is shot off at t/τ = 1, 2, 3, 4, 5.
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13.4 Growth of Daughter Activities

Parent ⇒ Daughter ⇒ Granddaughter (stable)

We now describe the simplest decay chain, whereby a parent decays to an unstable daughter,
that decay to a stable granddaughter. We’ll use Krane’s notation:

Differential equation At t = 0 Description

Ṅ1 = −λ1N1 N1(0) = N0 N1: Parent–rate constant λ1 (decay only)

Ṅ2 = λ1N1 − λ2N2 N2(0) = 0 N2: Daughter–growth, decay rate constant λ2

Ṅ3 = λ2N2 N3(0) = 0 N3: Granddaughter–growth only

Ṅ1 + Ṅ1 + Ṅ3 = 0 “Conservation of particles”

The integrals are elementary, giving, for the Ni’s:

N1 = N0e
−λ1t

N2 = N0
λ1

λ2 − λ1
(e−λ1t − e−λ2t)

N3 = N0 −N1 −N2 (13.60)

In this discussion, we concern ourselves mostly with the activity of the daughter, in relation
to the parent, namely:

A2 = A1
λ2

λ2 − λ1
(1 − e−(λ2−λ1)t) , (13.61)

and consider some special cases.

Very long-lived parent: λ1 ≪ λ2

In this case, the parent’s meanlife is considered to be much longer than that of the daughter,
essentially infinite within the time span of any measurement of interest. In other words, the
activity of the parent is constant. In this case, (13.61) becomes:

A2 = A1(0)(1 − e−λ2t) . (13.62)

Comparing with (13.57), we see that (13.62) describes A2’s rise to secular equilibrium, with
effective rate constant, A1(0).
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Long-lived parent: λ1 ≪ λ2

In this case, the parent lives much longer than the daughter, but the parent does have a
measurable decline, within the time span of the measurement.

We rewrite (13.61) slightly as:

A2(t) = A1(t)

(

λ2

λ2 − λ1
(1 − e−(λ2−λ1)t)

)

. (13.63)

(13.63) describes A2(t) a modulation of A1(t). An example is shown in figure 13.5.
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Figure 13.5: The relative activity of the daughter, A2 and the parent, A2, for λ2 = 10λ1.

We see, from the figure, that the activity of the daughter, A2, rises quickly to match the
parent, and then follows the parent activity closely. This latter condition, beyond a few
meanlifes of the daughter, is called the region of transient secular equilibrium, or more
commonly, transient equilibrium. In the region of transient equilibrium, the activity of the
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daughter is always slightly greater than that of the parent, with a temporal offset of about
τ2.

Special case: λ = λ1 = λ2

In this case, parent and daughter decay with the same meanlife. This is more of a mathe-
matical curiosity, but should it occur, the result can be derived from (13.63) by assuming
λ1 = λ, λ1 = λ+ ǫ, performing a series expansion in ǫ, and taking the ǫ→ 0 at the end. The
result is:

A2(t) = A1(t)λt . (13.64)

Series of Decays

In this case, we consider a series of descendents, N1 ⇒ N2 ⇒ N2 · · · ⇒ Nn, with rate
constants, λ1, λ2 · · ·λn. That is, there are n generations, starting with the parent, N1, and
ending with a final stable (grand)n−2daughter, for n ≥ 2.

The result of the solution of the differential equations:

Differential equation At t = 0 Description

Ṅ1 = −λ1N1 N1(0) = N0 N1: Parent–rate constant λ1 (decay only)

Ṅi = λi−1Ni−1 − λiNi Ni(0) = 0 Ni: (grand)n−2, decay rate constant λi

Ṅn = λnNn Nn(0) = 0 Nn: Stable end of chain (growth only)
∑n

i=1 Ṅi = 0 “Conservation of particles”

The result is given by the Bateman equations:

N1 = N0e
−λit

N1<i<n = N0

i
∑

j=1

(

∏i
k=1;k 6=i λk

∏i
k=1;k 6=j(λk − λj)

)

e−λjt

Nn = N0 −
n−1
∑

i=2

Ni . (13.65)

Note the exclusions in the product terms.
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13.5 Types of Decays

Details are covered elsewhere in this course. Here we just give a list.

α decay

This is the form employed when an accurate mass calculation is to be performed. Electron
masses cancel, and the small differences in electron binding energy are ignored.

A
ZXN −→A−4

Z−2X
′
N−2 +4

2He2 .

Usually the following shorthand is employed:

AX −→A−4X ′ + α .

To come, more details on ...
Applications of α-emitters:

• “Gadget” initiators (α-decay followed by n-emission.)

• Search for superheavy elements. See

http://t2.lanl.gov/tour/shn.html

• Smoke detectors.

• Power generation in space probes and artificial hearts.

• Unsealed source radiotherapy.

• Can be used to reduce static cling. (Really! I’m not kidding! The real question is
“How?”)

β decay

n −→ p+ e− + νe β− decay
A
ZXN −→ A

Z+1X
′
N−1 + e− + νe

p −→ n+ e+ + νe β+ decay
A
ZXN −→ A

Z−1X
′
N+1 + e+ + νe

p+ e− −→ n+ νe electron capture (ε)
A
ZXN −→ A

Z−1X
′
N+1 + νe
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A free neutron will β− decay with a meanlife of 886.7(8) s. A neutron in a nucleus will β−

decay, but only when that process is favorable energetically.

Free protons do not decay, that is, it has never been observed. Proton decay is predicted by
Grand Unified Theories (GUTs). However, the predicted probability of decay is exceedingly
small. A lower bound for proton decay has been established experimentally, setting the
half-life at greater than 6.6 × 1033 years. This is interesting, but of little consequence for
Nuclear Engineering. Protons in a nucleus, if favored energetically, do β+ decay.

Finally, there is a process called electron capture, (ε), or K-capture, whereby a proton in a
nucleus captures an orbital electron (usually from a 1s atomic orbital, and converts itself to
a neutron.

All these process result in a electron neutrino, νe, or an electron antineutrino, νe. By con-
vention, antiparticles, like the antiproton, p, and the antineutron, n, are written with an
overline or an “overtilde” ˜. There are exceptions to this rule. The positron, e+ is the e−’s
antiparticle. However, it is never written as e−.

To come, more details on ...
Applications of β-emitters:

• Betavoltaics (non-thermal) (long-life, low-power batteries).

• Radiotherapy (brachytherapy).

• PET (Positron Emission Tomography.)

• Radiopharmaceuticals.

• Quality assurance in large-scale paper production.

• Irradiation of domestic ruminant (cattle, goats, sheep, bison, deer, camels, alpacas,
llamas) behinds to cure the effects of “fly strike”. (I’m not kidding about this one
either.) (And I’d really rather not delve into the details of “fly strike”. Kindly google
this one on your own.)

γ decay

AX∗ −→ AX + γ

Here, a nucleus in an excited state, denoted by the asterisk, decays via the γ process, to a
lower excited state, or the ground state. All nuclei that are observed to have excited states,
(A > 5), have γ transitions.
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To come, more details on ...
Applications of γ-emitters:

• Basic physics: Nuclear structure, astrophysics.

• Radiotherapy, 60Co, 137Cs, brachytherapy..

• Sterilization of pharmaceutical products, food.

• Imaging vehicles for National Security Administration purposes.

• Industrial quality assurance.

• Discovery of oil. (Oil-well logging.)

Internal conversion

A
ZX

∗
N −→ A

ZXN + e−

Here, a nucleus in an excited state, de-excites by exchanging a virtual photon with a K-shell
electron in a “close encounter” with the nucleus. The electron acquires the de-excitation
energy and exits the nucleus.

Nucleon emission

A
ZXN −→ A−1

Z−1XN + p
A
ZXN −→ A−1

Z XN−1 + n

To come, more details on ...
Applications of nucleon emitters:

• Fission.
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Spontaneous fission

A
ZXN −→

∑

i,j

ci,j[
i+j
i Xj +A−i−j

Z−i XN−j ]

Here a nucleus fractures into 2 (equation shown) or more (equation not shown) nuclei. This
is similar to “normal” fission, except that it occurs spontaneously. Generally a spectrum of
nuclei result, with the probabilities given by the c coefficients.

Cluster decay

A
ZXN −→ i+j

i Xj +A−i−j
Z−i XN−j

where i, j > 2.

From:

http://en.wikipedia.org/wiki/Cluster_decay!...

Cluster decay is a type of nuclear decay in which a radioactive atom emits a cluster of
neutrons and protons heavier than an alpha particle. This type of decay happens only in
nuclides which decay predominantly by alpha decay, and occurs only a small percentage of
the time in all cases. Cluster decay is limited to heavy atoms which have enough nuclear
energy to expel a portion of its nucleus.

13.6 Natural Radioactivity

Not covered in 312

13.7 Radioactive Dating

Not covered in 312
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13.8 Units for Measuring Radiation

Some useful radiometric quantities are listed in Table 13.1, along their traditional (outdated
but still in some use), along with their new, almost universally adopted, SI2.

Quantity Measures... Old Units New (SI) Units
Activity (A) decay rate curie (Ci) bequerel (Bq)
Exposure (X) ionization in air röntgen (R) C/kg
Absorbed Dose (D) Energy absorption rad gray (Gy = J/kg)
Dose Equivalent (DE) Radiological effectiveness rem sievert (Sv = J/kg)

Table 13.1: Units for the measurement of radiation

SI units Definition Notes:
Bq 1 “decay”/s derived
Gy 1 J/kg derived
Sv 1 J/kg derived

Traditional units Conversion Notes:
Ci 3.7 × 1010 Bq (exactly)
R 1 esu/(0.001293 g) = 2.58 × 10−4 C/kg Charge/(1g) of dry, STP air
rad 1 ergs/g = 10−2 Gy
rem 1 rem = 10−2 Sv

Table 13.2: Conversion factors

A derived unit is one that is based upon the sever base units in SI, namely: m, kg, s, A, K,
mol (mole), cd (candela, luminosity).

Activity

Activity (A) has been covered already. However, the units of measurement were not dis-
cussed. The traditional unit, the curie, (Ci),was named in honor of Marie Curie, and the
modern unit in honor of Henri Bequerel.

2SI stands for le Système International d’unitś, that was adopted universally (almost) in 1960. For more
information, see: http://en.wikipedia.org/wiki/SI units. SI is an abbreviation of a French-language
phrase. France also houses the international metrology, the BIPM (le Bureau International des Poids et
Mesures.) See, as well, http://en.wikipedia.org/wiki/BIPM .
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Exposure

Exposure, given the symbol X, is defined as

X = lim
∆m→0

∆Q

∆m
, (13.66)

where ∆Q is the amount of charge of one sign produced in, dry, STP air. (NIST definition:
STP at STP: 20◦C (293.15 K, 68◦F, and an absolute pressure of 101.325 kPa (14.696 psi,
1 atm).) There are no accepted derived SI unit for exposure. Exposure measurements are
probably the most accurately measured radiometric quantity.

Absorbed Dose

Absorbed dose measures the energy absorbed in matter, due to radiation. The traditional
unit, the rad, has been supplanted by the Gy.

Dose Equivalent

The tradition unit, the rem (for röntgen equivalent man) and its modern counterpart, the
Sv, attempts to accounts for the radiological damage from different “qualities” (species of
particle imparting the dose) of radiation. Quality factors dependent on the energy of the
radiation and are given in Table 13.2. The conversion from D to DE is given by:

DE =
∑

i

∫

dEDi(E) × QFi(E) , (13.67)

where we sum over radiation types, and integrate over the energy of the radiation that
imparts dose.
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Radiation Energy QF

X-rays, γ, e±, µ± all 1
p (non-recoil) > 1 MeV 5
n < 10 keV 5

10–100 keV 10
10 keV – 2 MeV 20
2–20 MeV 10
>20 MeV 5

α, fission fragments, heavy nuclei all 20

Table 13.3: Units for the measurement of radiation
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Chapter 14

α Decay

Note to students and other readers: This Chapter is intended to supplement Chapter 8 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

14.1 Why α Decay Occurs

See Krane’s 8.1.

14.2 Basic α Decay Processes

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an
α-particle.

A
ZXN −→A−4

Z−2X
′
N−2 +4

2He2 ,

or, more compactly :
AX −→ X ′ + α .

The resultant nucleus, X ′ is usually left in an excited state, followed, possibly, by another
α decay, or by any other form of radiation, eventually returning the system to the ground
state.

189
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The energetics of α decay

The α-decay process is “fueled” by the rest mass energy difference of the initial state and
final state. That is, using a relativistic formalism:

Ei = Ef

m
X
c2 = m

X′
c2 + TX′ +mαc

2 + Tα

Q = TX′ + Tα where

Q ≡ m
X
c2 −m

X′
c2 −mαc

2

Q/c2 ≈ m(AX) −m(A−4X ′) −m(4He) , (14.1)

where TX′ and Tα are the kinetic energies of the nucleus and the α-particle following the
decay. Note that atomic masses may be substituted for the nuclear masses, as shown in the
last line above. The electron masses balance in the equations, and there is negligible error
in ignoring the small differences in electron binding energies.

The line of flight of the decay products are in equal and opposite directions, assuming that X
was at rest. Conservation of energy and momentum apply. Thus we may solve for Tα in terms
of Q (usually known). X ′ is usually not observed directly. Solving for Tα by eliminating X ′:

Q = Tα + TX′ (14.2)

|~pα| = |~p
X′
|

p2
α = p2

X′

2mαTα = 2m
X′
TX′

(mα/mX′
)Tα = TX′ . (14.3)

Using (14.3) and (14.2) to eliminate TX′ results in:

Q = Tα(1 +mα/mX′
) or (14.4)

Tα =
Q

(1 +mα/mX′
)

(14.5)

Tα ≈ Q

(1 + 4/A′)
or (14.6)

Tα ≈ Q

(1 + 4/A)
or (14.7)

Tα ≈ Q(1 − 4/A) (14.8)



14.3. α DECAY SYSTEMATICS 191

Equations (14.4) and (14.5) are exact within a non-relativistic formalism. Equation (14.6)
is an approximation, but a good one that is suitable for all α-decay’s, including 8Be→ 2α.
Equation (14.7) is suitable for all the other α-emitters, while (14.8) is only suitable for the
heavy emitters, since it assumes A≫ 4.

We see from (14.8) that the typical recoil energy, for heavy emitters is:

TX′ = Q− Tα ≈ (4/A)Q . (14.9)

For a typical α-emitter, this recoil energy (Q = 5 MeV, A = 200) is 100 keV. This is not
insignificant. α-emitters are usually found in crystalline form, and that recoil energy is more
than sufficient to break atomic bonds, and cause a microfracture along the track of the recoil
nucleus.

Relativistic effects?

One may do a fully relativistic calculation, from which it is found that:

Tα =
Q
(

1 + 1
2

Q
m

X′
c2

)

(

1 + mα

m
X′

+ Q
m

X′
c2

) , (14.10)

TX′ =

(

mα

m
X′

)

Q
(

1 + 1
2

Q
mαc2

)

(

1 + mα

m
X′

+ Q
m

X′
c2

) . (14.11)

Even in the worst-case scenario (low-A) this relativistic correction is about 2.5×10−4. Thus
the non-relativistic approximation is adequate for determining Tα or TX′ .

14.3 α Decay Systematics

As Q increases, t1/2 decreases

This is, more or less, self-evident. More “fuel” implies faster decay.

The “smoothest” example of this “law” is seen in the α decay of the even-even nuclei.
Shell model variation is minimized in this case, since no pair bonds are being broken. See
Figure 14.1, where log10(t1/2) is plotted vs. Q. Geiger and Nuttal proposed the following
phenomenological fit for log10(t1/2(Q)):
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log10 λ = C −DQ−1/2 or (14.12)

log10 t1/2 = −C ′ +DQ−1/2 , (14.13)

where C and D are fitting constants, and C ′ = C− log10(ln 2). Odd-odd, even-odd and odd-
even nuclei follow the same general systematic trend, but the data are much more scattered,
and their half-lives are 2–1000 times that of their even-even counterparts.

Figure 14.1: Paste in Krane’s Figure 8.1.

Prediction of Q from the semiempirical mass formula

The semiempirical mass formula can be employed to estimate Qα, as a function of Z and A.

Q = B(Z − 2, A− 4) +B(eHe) − B(Z,A)

≈ 28.3 − 4a
V

+
8

3
a

S
A−1/3 + 4a

C
ZA−1/3(1 − Z/3A) − 4asym(1 − 2Z/A)2 + 3apA

−7/4 .

(14.14)

A plot of Q(Z,A) using (14.14) is given in Figure 14.2.

These trends, from experimental data, are seen in Figure 14.3. However, there is also evidence
of the impact of the shell closing at N = 126, that is not seen in Figure 14.3.

14.4 Theory of α Emission

Figure 14.4 shows 3 potentials that are used in the estimation of barrier penetration probabil-
ities, for determining the halflife of an α-emitter. The simplest potential, the rectilinear box
potential, shown by the dashed line, although crude, maybe used to explain the phenomenon
of α decay.

The simplest theory of α emission

In this section we solve for the decay probability using the simplest rectilinear box potential.

This potential is characterized by:
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Figure 14.2: Q(Z,A) using (14.14). The dashed line is for Pb (Z = 82), while the lower
dotted is for Os (Z = 76). The upper dotted line is for Lr (Z = 103). Each separate Z has
its own line with higher Z’s oriented to the right.

V1(r < RN) = −V0

V2(RN < r < b) = VC

V3(r > b) = 0 , (14.15)

where V0 and VC are constants.

The 3-D radial wavefunctions (assuming that the α is in an s-state), are of the form, Ri(r) =
ui(r)/r take the form:

Figure 14.3: Paste in Krane’s Figure 8.2.
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Figure 14.4: Potentials for α decay.

u1(r) = Aeik1r +Be−ik1r

u2(r) = Cek2r +De−k2r

u3(r) = Feik3r , (14.16)

where

k1 =
√

2m(V0 +Q)/~

k2 =
√

2m(VC −Q)/~

k3 =
√

2mQ/~ . (14.17)

Turning the mathematical crank, we arrive at the transmission coefficient:
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T =

[

1

4

(

2 +
k1

k3
+
k3

k1

)

+
sinh2[2k2(b−RN)]

4

(

k1k3

k2
2

+
k2

2

k1k3
+
k1

k3
+
k3

k1

)]−1

(14.18)

Note: We solved a similar problem in NERS 311, but with V0 = 0, that is, k1 = k3.

The factor k2(b− RN) ≈ 35 for typical α emitters. Thus, we can simplify to:

T =
16e−2k2(b−RN)

(

k1k3

k2
2

+
k2
2

k1k3
+ k1

k3
+ k3

k1

) (14.19)

Recall that the transmission coefficient is the probability of escape by a single α-particle. To
calculate the transmission rate, we estimate a “frequency factor”, f , that counts the number
of instances, per unit time, that a α, with velocity vα presents itself at the barrier as an
escape candidate. There are several estimates for f :

f Source Estimate (s−1) Remarks
vα/RN Krane ≈ 1021 Too low, by 101–102

vα/(2RN) Others ≈ 5 × 1020 Too low, by 101–102

Fermi’s Golden Rule # 2 ≈ 1024 Too high, by 101–102

The correct answer, determined by experiment, lies in between these two extremes. However
approximate our result it, it does show an extreme sensitivity to the shape of the Coulomb
barrier, through the exponential factor in (14.19).

Gamow’s theory of α decay

Gamow’s theory of α decayis based on an approximate solution1 to the Schrödinger equation.
Gamow’s theory gives:

T = exp

[

−2

(

2m

~2

)1/2 ∫ b

RN

dr
√

V (r) −Q

]

, (14.20)

where b is that value of that defines the r where V (r) = Q, on the far side of the barrier.

If we apply Gamow’s theory to the potential of the previous section, we obtain:

1The approximation Gamow used, is a semi-classical approximation to the Schrödinger equation, called
the WKB (Wentzel-Kramers-Brillouin) method. The WKB method works best when the potential changes
slowly with position, and hence the frequency of the wavefunction, k(x), also changes slowly. This is not the
case for the nucleus, due to its sharp nuclear edge. Consequently, it it thought that Gamow’s solution can
only get to within a factor or 2 or 3 of the truth. In nuclear physics, a factor of 2 or 3 is often thought of as
“good agreement”!
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Texact =
16

(

k1k3

k2
2

+
k2
2

k1k3
+ k1

k3
+ k3

k1

)TGamow . (14.21)

That factor in front is about 2–3 for most α emitters. This discrepancy is usually ignored,
considering the large uncertainly in the f factor.

Krane’s treatment of α-decay

Krane starts out with (14.20), namely:

T = exp

[

−2

(

2m

~2

)1/2 ∫ b

a

dr
√

V (r) −Q

]

,

where

V (x) =
2(Z − 2)e2

4πǫ0x

V (a) ≡ B =
2(Z − 2)e2

4πǫ0a

a = R0(A− 4)1/3

V (b) ≡ Q =
2(Z − 2)e2

4πǫ0b
. (14.22)

That is, the α moves in the potential of the daughter nucleus, B is the height of the potential
at the radius of the daughter nucleus, and b is the radius where that potential is equal to Q.
(See Krane’s Figure 8.3 on page 251.)

We note that a/b = Q/B.

Substituting the potential in (14.22) into (14.20) results in:

T = exp

{

−2

(

2m′
αc

2

Q(~c)2

)1/2
zZ ′e2

4πǫ0

[

arccos(
√
x) −

√

x(1 − x)
]

}

, (14.23)

where x ≡ a/b = Q/B. Note that the reduced mass has been used:

m′
α =

mαmX′

mα +mX′

≈ mα(1 − 4/A) . (14.24)

This “small” difference can result in a change in T by a factor of 2–3, even for heavy nuclei!
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Krane also discusses the approximation to (14.23) that results in his equation (8.18). This
comes from the Taylor expansion:

arccos(
√
x) −

√

x(1 − x) −→ π

2
− 2

√
x+ O(x3/2) .

This is only valid for small x. Typically x ≈ 0.3, and use of Krane’s (8.18) involves too much
error. So, stick with the equation given below.

Factoring in the frequency factor, one can show that:

t1/2 = ln(2)
a

c

√

mαc2

2(V0 +Q)
×

exp

{

2

(

2m′
αc

2

Q(~c)2

)1/2
zZ ′e2

4πǫ0

[

arccos(
√
x) −

√

x(1 − x)
]

}

. (14.25)

14.4.1 Comparison with Measurements

In this section we employ the simplest form of f and compute the half-life for α-decay as
follows:

t1/2 = ln(2)
a

c

√

mαc2

2(V0 +Q)
exp

{

2

(

2m′
αc

2

Q(~c)2

)1/2
zZ ′e2

4πǫ0

[

arccos(
√
x) −

√

x(1 − x)
]

}

(14.26)

The data are shown in the following table, where the half-lives of the even-even isotopes
of Th (Z = 90) are shown. The calculations were performed using a nuclear radius of
a = 1.25A1/3 (fm), and V0 = 35 (MeV). The absolute comparison exhibits the same trends
for both experiment and calculations, with the calculations being overestimated by 2–3 orders
of magnitude. This is most likely due to a gross underestimate of f . the relative comparisons
are in much better shape, showing discrepancies of about a factor of 2–3, quite a success
for such a crude theory. We note that small changes in Q result in enormous differences
in the results. In this table Q changes by about a factor of 2, while the half-lives span
about 23 orders of magnitude. The probability of escape is greatly influenced by the height
and width of the Coulomb barrier. Besides this dependence, the only other variation in the
comparison relates to the nuclear radius. This also affects the barrier since the nuclear radius
is proportional to A1/3. This hints that the remaining discrepancy, at least for the relative
comparison, is related to the fine details of the shape of the barrier, perhaps mostly in the
vicinity of the inner turning point. A more refined shape of the Coulomb barrier would likely
yield better results, as well would a higher-order WKB analysis that would account more
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precisely, for that shape variation. Additionally, the α-particle was treated as if it were
a point charge in this analysis. A refined calculation should certainly take this effect into
account.

A Q (MeV) t1/2 (s) t1/2 (s) t1/2 (s) t1/2 (s)
abs. meas. abs. calc. rel. meas. rel. calc.

220 8.95 10−5 10−3 5.4 × 10−9 3.6 × 10−9

222 8.13 2.8 × 10−3 2.1 × 10−1 1.5 × 10−6 7.3 × 10−7

224 7.31 1.04 1.1 × 102 5.6 × 10−4 3.8 × 10−4

226 6.45 1854 2.9 × 105 ≡ 1 ≡ 1
228 5.52 6.0 × 107 1.2 × 1010 3.2 × 104 4.2 × 104

230 4.77 2.5 × 1012 6.0 × 1014 1.3 × 109 2.1 × 109

232 4.08 4.4 × 1017 1.8 × 1020 2.4 × 1014 6.2 × 1014

Table 14.1: Half-lives of Th isotopes, absolute and relative comparisons of measurement and
theory.

Cluster decay probabilities

If α decay can occur, surely 8Be and 12C decay can occur as well. It is just a matter of
relative probability. For these decays, the escape probabilities are given approximately by:

T8Be = T 2
α

T12C = T 3
α

Tax = T z/2
α . (14.27)

The last estimate is for a ax cluster, with z protons and an atomic mass of a.

14.5 Angular momentum and parity in α decay

Angular momentum

If the α-particle carries off angular momentum, we must add the repulsive potential associ-
ated with the centrifugal barrier to the Coulomb potential, VC(r):

V (r) = VC(r) +
l(l + 1)~2

2m′
αr

2
, (14.28)
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represented by the second term on the right-hand side of (14.28).

The effect on 90Th, with Q = 4.5 MeV is:

l 0 1 2 3 4 5 6
Tl/T0 1 0.84 0.60 0.36 0.18 0.078 0.028

So, as l ↑, T ↓.

Conservation of angular momentum and parity

α decay’s must satisfy the constraints given by the conservation of total angular momentum:

~Ii = ~If + ~Iα

Πi = Πf × Πα , (14.29)

where i represents the parent nucleus, and f represents the daughter nucleus. Since the
α-particle is a 0+ nucleus, (14.29) simplifies to:

~Ii = ~If +~lα

Πi = Πf × (−1)lα , (14.30)

where lα is the orbital angular momentum carried off by the α-particle. If Ii is non-zero, the
α decay is able to populate any excited state of the daughter, or go directly to the ground
state.

If the initial state has total spin 0, with few exceptions it is a 0+. In this case, (14.30)
becomes.

~0 = ~If +~lα

+1 = Πf × (−1)lα , (14.31)

or.

~If = ~lα

Πf+ = (−1)lα , (14.32)
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Thus the only allowed daughter configurations are: 0+, 1−, 2+, 3−, 4+, 5−, 6+, 7−, 8+, 9− · · ·
All other combinations are absolutely disallowed.

The α decay can show these allowed transitions quite nicely. A particularly nice example is
the case where the transition is 0+ −→ 0+, where the low-lying rotational band, and higher
energy phonon structure are explicitly revealed through α decay. (See Figure 8.7 in Krane.)

Angular intensity of α decays for elliptic nuclei

This is well described in Krane, pages 260–261.

14.6 α-decay spectroscopy

Not covered in NERS312.



Chapter 15

β Decay

Note to students and other readers: This Chapter is intended to supplement Chapter 9 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

β-particle’s are either electrons1 or positrons that are emitted through a certain class of
nuclear decay associated with the “weak interaction”. The discoverer of electrons was Henri
Becquerel, who noticed that photographic plates, covered in black paper, stored near ra-
dioactive sources, became fogged. The black paper (meant to keep the plates unexposed)
was thick enough to stop α-particles, and Becquerel concluded that fogging was caused by
a new form of radiation, one more penetrating than α-particles. The name “β”, followed
naturally as the next letter in the Greek alphabet after α, α-particles having already been
discovered and named by Rutherford.

Since that discovery, we have learned that β-particles are about 100 times more penetrating
than α-particles, and are spin-1

2
fermions. Associated with the electrons is a conserved

quantity, expressed as the quantum number known as the lepton number. The lepton number
of the negatron is, by convention +1. The lepton number of the positron, also the anti-
particle of the negatron, is -1. Thus, in a negatron-positron annihilation event, the next
lepton number is zero. Only leptons can carry lepton number. (More on this soon.) Recall,
from Chapter 13 (Chapter 6 in Krane), our discussion of the various decay modes that are
associated with β decay:

1Technically, the word “electron” can represent either a negatron (a fancy word for e−) or a positron
(e+). I’ll use “electron” interchangeably with this meaning, and also e−. Usually the context determines the
meaning.

201
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A
ZXN −→ A

Z+1X
′
N−1 + e− + νe β− decay

A
ZXN −→ A

Z−1X
′
N+1 + e+ + νe β+ decay

A
ZXN −→ A

Z−1X
′
N+1 + νe electron capture (ε) (15.1)

We see from the above processes that there are other particles called neutrinos. Neutrinos
are also spin-1

2
leptons (part of the larger fermion family). They are very nearly massless

(but proven to have mass2). The electron neutrino is given the symbol νe, and has lepton
number +1. The antineutrino, the νe, has lepton number -1. A sketch of the organization
of fundamental particles is given in Figure 15.1.

Figure 15.1: The particle physics classification of bosons and fermions, with the sub-
classifications of baryons and fermions shown.

Three views of β decay

There are three ways of viewing β decay. The first is the “radiological physics view” expressed
by (15.1). The next is the “nuclear physics view”, where we recognize that the decays of
the nuclei are actually caused by transformations of the nucleon constituents, as expressed
in (15.2).

n −→ p+ e− + νe β− decay

p −→ n+ e+ + νe β+ decay

p+ e− −→ n+ νe electron capture (ε) (15.2)

A free neutron will decay with a meanlife, τ = 885.7(8)s, about 11 minutes. A free proton
is basically stable. Once these nucleons are bound in a nucleus, however, conservation of
energy, with the availability of lower energy states, dictates whether or not these processes
are free to proceed.

Then, there is the more microscopic view, the “particle physics view” expressed in (15.3),

d −→ u+ e− + νe β− decay

u −→ d+ e+ + νe β+ decay

u+ e− −→ d+ νe electron capture (ε) (15.3)

2A direct measurement of neutrino mass suggests that its upper limit is mνe
< 2.2eV. Indirect measure-

ment of the neutrino mass suggest that 0.04eV < mνe
< 0.3eV. For the more massive lepton family groups,

mνµ
< 180keV, and mντ

< 15.5MeV.
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that represents the transitions of nucleons, as really transitions between the up (u) and down
(d) quarks. A particle physics picture of β−-decay is given in Figure 15.2.

Figure 15.2: The particle physics view of β−-decay. In this case, the weak force is carried by
the intermediate vector boson, the W−. In the case of β−-decay, the weak force is carried by
the intermediate vector boson, the W+, the antiparticle to the W−. There is also a neutral
intermediate vector boson, Z0, that is responsible for such things as νν scattering.

Consequences of β-decay’s 3-body final state

β±-decay has 3 “bodies” in the final state: the recoil daughter nucleus, the e±, and a
neutrino. Typically, the daughter nucleus (even in the case of free neutron decay, is much
more massive than the leptons, therefore, the leptons carry off most of the energy. (Even
in the worst possible case, that of free neutron decay, the recoil proton can at most about
0.4 keV, or about 0.05% of the reaction Q-value.) Consequently, if one measures the kinetic
energy of the resultant electron, one measures a distribution of energies, that (generally)
peaks at small energies, and reaches an “end-point” energy, the so-called β-endpoint. This
β-endpoint represents the case where the ν’s energy approaches zero. See Figure 15.3.

Figure 15.3: A typical electron energy spectrum that is measured in a β decay. The endpoint
energy is the maximum energy that can be given to the electron, and that is closely related
to the reaction Q-value (small recoil correction). At lesser energies, the ν carries off some of
the available kinetic energy that Q provides.

This leads naturally to a discussion of ...

15.1 Energy release in β decay

Neutron decay

n −→ p+ e− + νe

mnc
2 = mpc

2 +me−c
2 +mνec

2 +Qn

Qn = mnc
2 −mpc

2 −me−c
2 −mνec

2

Qn = (939.565580(81)− 938.272013(23)− 0.5110999(0))[MeV] −mνec
2

Qn = 0.782568(84)[MeV] −mνec
2 (15.4)

Since 4 × 10−8 < mνec
2 < 2.2 × 10−6[MeV], we can safely ignore the neutrino rest mass

energy, within the experimental uncertain of the reaction Q,
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Qn = 0.782568(84)[MeV] (15.5)

Accounting for proton recoil, the exact relationship between the electron endpoint energy
and Q, is given by:

Tmax
e = (mp +me)c

2

[

−1 +

√

1 +
2Qnmpc2

[(mp +me)c2]2

]

Tmax
e ≈ Qn

1 +me/mp
. (15.6)

Putting in numerical values, was calculate Tmax
e = 0.782142(84)[MeV], which agrees with

the direct measurement of Tmax
e = 0.782(13)[MeV].

We can calculate the proton’s recoil energy by using Conservation of Energy:

Tmax
p = Qn − Tmax

e

Tmax
e ≈ Qn

(

1 − 1

1 +me/mp

)

Tmax
e ≈ Qn(me/mp) . (15.7)

This evaluates numerically to Tmax
p ≈ 0.426(84)[keV].

Q for β−-decay

For β−-decay

A
ZXN −→ A

Z+1X
′
N−1 + e− + νe (15.8)

Going back to the definition of Q in terms of nuclear masses, and ignoring, henceforth, the
mass of the neutrino:

Qβ− =
[

m
N
(A
ZXN) −m

N
( A
Z+1X

′
N−1) −me

]

c2 , (15.9)

where the subscript “N” connotes nuclear (not atomic) masses.

The relationship between the nuclear (no subscript “N”) and atomic mass is:
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m(A
ZXN )c2 = m

N
(A
ZXN)c2 + Zmec

2 −
Z
∑

i=1

Bi , (15.10)

where Bi is the binding energy of the i’th atomic electron.

Substituting (15.10) in (15.9), to eliminate the (less well known) nuclear masses results in:

Qβ− =
[

m(A
ZXN ) − Zme

]

c2 −
[

m( A
Z+1X

′
N−1) − (Z + 1)me

]

c2 −mec
2 +

[

Z
∑

i=1

Bi −
Z+1
∑

i=1

B′
i

]

=
[

m(A
ZXN ) −m( A

Z+1X
′
N−1)

]

c2 +

[

Z
∑

i=1

Bi −
Z+1
∑

i=1

B′
i

]

,

=
[

m(A
ZXN ) −m( A

Z+1X
′
N−1)

]

c2 +

[

Z
∑

i=1

(Bi − B′
i) − B′

Z+1

]

, (15.11)

noting that the electron masses have canceled in this case. The factor

Z
∑

i=1

Bi −
Z+1
∑

i=1

B′
i =

Z
∑

i=1

(Bi − B′
i) − B′

Z+1

is the difference in the energy of the electronic orbital configuration of the parent and daugh-
ter nuclei. Generally, this difference can be ignored. However, in the case of large Z nuclei,
it can amount to about 10 keV. For accurate determinations of Q, the difference in atomic
electron binding energy must be accounted for.

Q for β+-decay

Similar considerations for β+ decay lead to:

Qβ+ =
[

m(A
ZXN) −m( A

Z−1X
′
N+1) − 2me

]

c2 +

[

Z
∑

i=1

Bi −
Z−1
∑

i=1

B′
i

]

. (15.12)

Here we note that the electron rest-mass energies do not completely cancel. However, the
discussion regarding the electron binding energy remains the same.

Q for electron capture

For electron capture:
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Qε =
[

m(A
ZXN) −m( A

Z−1X
′
N+1)

]

c2 −Bn +

[

Z
∑

i=1

Bi −
Z−1
∑

i=1

B′
i

]

. (15.13)

The latter term related to electron binding energy,

Z
∑

i=1

Bi −
Z−1
∑

i=1

B′
i

is generally ignored, for the reasons cited above. However, the the binding energy of the
captured electron, Bn can approach 100 keV for large-Z nuclei, and can not be ignored.

Discussion point: Free neutron decay, revisited

From our current understanding of the weak interaction, the electron is created when a down
quark changes into an up quark. The Q value for this reaction is 0.782 MeV. Let us see if
we can apply some reasoning from classical physics to say something about the observation
of such a decay.

If the electron were a “point” particle, and it was created somewhere inside the neutron at
radius r, is would feel an attraction:

V (r) = − e2

4πǫ0

{

Θ(Rp − r)

Rp

[

3

2
− 1

2

(

r

Rp

)2
]

+
Θ(r − Rp)

r

}

,

where Rp is the radius of the proton. We are assuming that the quarks are moving so fast
inside the proton, that all the electron sees is a continuous blur of charge adding up to one
unit of charge. So, if Rp ≈ 1.2fm (from RN = 1.22− 1.25[fm]A1/3), we can conclude that the
kinetic energy that the electron is required to have to escaped the nucleus falls in the range:

e2

4πǫ0Rp

≤ Te ≤
3

2

e2

4πǫ0Rp

1.2[MeV] ≤ Te ≤ 1.8[MeV]

in other words, it can not happen. This is in contradiction with the observation that it does
decay, with a meanlife of about 11 minutes.

Class discussion: Can you explain this?
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15.2 Fermi’s theory of β decay

Fermi’s theory of β decay starts with a statement of Fermi’s Golden Rule #2 for transition
rate, λ:

λ =
2π

~
|Vif |2ρ(Eif ) , (15.14)

where V is a potential that causes the transition from an initial quantum state Ψi (the parent
nucleus in the this case) to a final one, Ψf , that includes wavefunctions of the daughter
nucleus, the electron and its neutrino. Vif ≡ 〈Ψf |V |Ψi〉 is the transition amplitude.

The derivation of Fermi’s Golden Rule #2 is generally reserved for graduate courses in
Quantum Mechanics, but a version of the derivation is available in Chapter 13, for your
interest.

What concerns us now, is to calculate the density of final states, ρ(Eif ), for the β-transition.
This derivation figures so prominently in the β-spectrum, and the endpoint energy.

Starting in Chapter 13, the density of states is derived for non-relativistic particles with
mass, relativistic particles with mass (the electron in this case), and massless particles (the
neutrino in this case).

We start with (13.21). The number of states, N , of a particle in the final state with energy
E is given by:

dN =
π

2
n2dn . (15.15)

where n =
√

n2
x + n2

y + n2
z, and (nx, ny, nz) are the quantum numbers of a free particle in n

infinite box potential, with side L. the momentum and the n’s are related by:

pi = niπ~/L . (15.16)

Putting (15.16) into (15.15) gives:

dN =
1

2π2

L3

~3
p2dp . (15.17)

Or, dividing by dE,

dN

dE
=

1

2π2

L3

~3
p2 dp

dE
. (15.18)
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We should point out that (15.18) is valid for all particles, massless, relativistic and non-
relativistic, since (15.16) is universal.

All we need do now is relate momentum to energy to compute the density factors. For the
neutrino, which we are now treating as massless,

pν = Eν/c

dpν = dEν/c

dNν

dEν
=

1

2π2

L3

~3c3
E2

ν (15.19)

For the electron, that must be treated relativistically,

pe =
√

E2
e − (mec2)2/c

dpe = [Ee/(c
√

E2
e − (mec2)2)]dEe

dNe

dEe
=

1

2π2

L3

~3c3

√

E2
e − (mec2)2Ee

dNe

dTe
=

1

2π2

L3

~3c3

√

Te(Te + 2mec2)(Te +mec
2) (15.20)

For β decay we have two particles in the final state, so we can express the rate of decay to
produce an electron with momentum p as:

dλβ

dp
=

2π

~
|Vif |2

dNe

dp

dNν

dEif

, (15.21)

If q is the momentum of the neutrino,

Eif = Te + cq

dEif = c(dq) (Te fixed) . (15.22)

Thus,

dλβ

dp
=

2π

~c
|Vif |2

1

2π2

L3

~3
p2 1

2π2

L3

~3
q2δ(Eif − [Te + Tν ]) . (15.23)

Where the δ-function accounts specifically for the conservation of energy.
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Recall that the free electron and neutrino wavefunctions have the form L−3/2 exp(i~p · x/~)
and L−3/2 exp(i~q · x/~), respectively. Thus, the L for the side of the box disappears from
the calculation. We also replace q = (Q− Te)/c, ignoring the recoil of the daughter nucleus.
Finally, integrating over all possible neutrino energies, we obtain:

dλβ

dp
=

|Mif |2
2π3~7c3

p2(Q− Te)
2 or

dλβ

dp
=

|Mif |2
2π3~7c

p2q2 (15.24)

where Mif = L3Vif .

Thus we have derived Fermi’s celebrated equation.

Just a brief note on dimensions: |Vif |2 has units [E2] because all the wavefunctions inside
are normalized. Getting rid of all the L’s results in Mif having units [length3× energy].
(15.24) is correct dimensionally.

Allowed transitions

Now we examine the form of the “matrix element” Mif . This has changed form several
times during the derivation, and will again, to conform with Krane’s book.

We now rewrite

Mif = gMif

Mif = 〈(ei~p·x/~)(ei~q·x/~)ψ
X′
|Oβ|ψX

〉 , (15.25)

where g is the “strength” of the β transition. This is a scalar quantity that plays the role of e,
the electric charge, for electromagnetic transitions. The unnormalized electron wavefunction
is exp(i~p · x/~), and the unnormalized neutrino wavefunction is exp(i~q · x/~). ψ

X′
is the

wavefunction of the daughter nucleus, while ψ
X

is the wavefunction of the parent nucleus.
Finally, Oβ is the weak interaction operator, the cause of the transition.

We recall from the class discussions, that the electron and neutrino wavefunctions have
wavelengths that are many times the size of the nucleus. So, it seems reasonable to expand
these wavefunctions in a Taylor series expansion, to see how far we get. Namely,
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exp(i~p · x/~) = 1 +
i~p · x

~
−
(

~p · x
~

)2

+ · · ·

exp(i~q · x/~) = 1 +
i~q · x

~
−
(

~q · x
~

)2

+ · · · (15.26)

Thus the leading-order term of (15.25) is:

M0
if = 〈ψ

X′
|Oβ|ψX

〉 . (15.27)

If M0
if 6= 0, the β decay is called an “allowed” transition, and the rate is relatively prompt.

If M0
if = 0, then we must go to higher order terms in (15.26). These are called “forbidden”

transitions, and occur, but at much slower rates. (More on this topic later.)

Krane likes to adopt the following shorthand. For allowed transitions, we see that:

dλ0
β

dp
= g2

|M0
if |2

2π3~7c
p2q2 . (15.28)

If we have N(t) β-emitters in a sample, the momentum spectrum of electrons that may be
measured is:

N0(p)dp = N(t)dλ0
β =

(

g2N(t)
|M0

if |2
2π3~7c5

)

p2q2dp . (15.29)

If N(t) changes little over the course of the measurement of the spectrum (the usual case):

N0(p)dp = C(0)p2q2dp , (15.30)

where we have gathered all constants with inside the large parentheses in (15.29) into a
global constant C(0), that is determined experimentally. It can be determined through the
a normalization condition,

∫

dpN0(p) ≡ 1 .

Conventional forms: N0(p), N0(Te)

N0(p) expressed in (15.30) contains p and q, that are related by conservation of energy. In
terms of single momentum variable,
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N0(p)dp =
C(0)

c2
p2
[

Q−
√

(cp)2 + (mec2)2 +mec
2
]2

dp , (15.31)

using relativistic kinematic relationships. The maximum possible p occurs when the neutrino
component drops to zero. This is easily found to be:

pmax =
1

c

√

Q2 + 2Qmcc2 . (15.32)

An even more common expression is to show N0 in terms of Te.

We find this by saying:

N0(Te)dTe = N0(p)dp = N0(p)

(

dp

dTe

)

dTe , (15.33)

Applying relativistic kinematic relationships, we find:

N0(Te)dTe =
C(0)

c5

√

T 2
e + 2Temec2(Te +mec

2)(Q− Te)
2dTe . (15.34)

Here the β-endpoint at Q = Te is evident.

Accounting of ”forbiddeness” and nuclear Coulomb effect.

There are two other attributes of β-spectra we must take account of, before we start using
the theoretical spectral shape to assist in analyzing data.

The first of these has to do with the interaction of the daughter’s Coulomb charge with the
resultant electron or positron in the final state. This nuclear charge has no effect, of course,
on the neutral neutrino. Going back to (15.25), we wrote the electron wavefunction as a
free plane wave. In actual fact, that was a fairly crude approximation. These plane waves
are distorted significantly by the attraction the β− would feel, and the repulsion that the
positron would feel. Incidentally, there is no effect on our conclusions regarding “allowed”
or “forbidden”.

Accounting for this is quite involved, but not beyond our capabilities. We would have to go
back to (15.25) and write the electron wave functions in terms of free particle solutions to
the Coulomb potential. (In NERS 311 we learn a lot about bound states of the Coulomb
potential.) I have never seen detailed discussion of this in even graduate-level texts, and
interested students are usually told to seek out the papers in the literature. The result is,
however, that the β-spectra are multiplied by a correction factor, the Fermi function, that
depends on the charge of the daughter nucleus, Z ′, and the electron momentum and sign,
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F±(Z ′, p). The effect it has could have been anticipated from classical considerations. The
electron spectra is dragged back toward lesser values, while the positron spectra are pushed
toward higher values. See Figure (9.3) in Krane.

The “forbiddeness” of the decay also affects the shape of the spectrum. This is also a
multiplicative correction to the β-spectrum. There are difference shapes depending on the
level of “forbiddeness”, and that is determined by the amount of orbital angular momentum,
L, carried away by the electron-neutrino pair, as well as their momenta. Examples of these
shape factors are given in Table 15.2, for the “unique forbidden transitions”3.

L SL(p, q)
0 1 Allowed

1 (p2 + q2)/(mec)
2 Unique first forbidden

2 (p4 + 10
3
p2q2 + q4)/(mec)

4 Unique second forbidden

3 (p6 + 7p4q2 + 7p2q4 + q6)/(mec)
6 Unique third forbidden

...
...

...

Table 15.1: Shape factors for the first three unique forbidden transitions.

The β-spectrum revealed

With all these various factors affecting the spectral shape and decay rates for β decay, we
write down the final form that is employed for data analysis:

N(p) ∝ |ML
if |2p2(Q− Te)

2SL(p, q)F±(Z ′, p) , (15.35)

where,

1. ML
if is the nuclear matrix element associate with the transition. It can depend on p

and q, as well as the alignment of spin and angular momentum vectors. It exhibits a
very strong dependence on the angular momentum, L, carried off by the lepton pair.
ML

if also depends strongly on the “closeness” of the initial and final nuclear quantum
wavefunctions. The closer the initial and final nuclear quantum states are, the larger
their overlap, resulting in a larger ML

if .

2. p2(Q− Te)
2 is the “statistical factor” associated with the density of final states.

3Relativistic quantum mechanics allows us to calculate these in the special case of unique transitions.
These transitions are ones in which the angular momentum vector and the two lepton spins are all aligned.
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3. F±(Z ′, p), the Fermi function. It accounts for the distortion of the spectral shape due
to attraction/repulsion of the electron/positron.

4. SL(p, q) accounts for spectral shape differences. It depends on the total orbital angular

momentum carried off by the electron-neutrino pair, ~L, their total spin value, ~S, and
their orientation with respect to each other.

15.3 Experimental tests of Fermi’s theory

Kurie plots: Shape of the β spectrum

To employ (15.35) to analyze β spectra, one plots:

√

N(p)

SL(p, q)F±(Z ′, p)
vs. Te, (15.36)

using the initial assumption that L = 0, so that SL(p, q) = 1. If the data points fall an a
straight line (statistical tests may be necessary), once can easily obtain the Q-value from the
x-intercept. This type of plot is called a Kurie plot (named after Franz Kurie.) one has also
identified, from the shape, that this is an allowed transition.

If the Kurie plot is not straight, one must successively test shape factors until a straight
line match is obtained. Once the shape factor is determined, the level of forbiddeness is
determined, and the Q-value may be extrapolated from the data unambiguously.

Total decay rate: The ft1/2, log10 ft values

Putting in the Coulomb and shape factors into (15.28) allows us to determine the total decay
rate for a β-decay process,

λβ = g2
|ML

if |2
2π3~7c

∫ pmax

0

dp SL(p, q)F±(Z ′, p)p2q2

= g2
m5

ec
4|ML

if |2
2π3~7

[

1

(mec)5

∫ pmax

0

dp SL(p, q)F±(Z ′, p)p2q2

]

≡ g2
m5

ec
4|ML

if |2
2π3~7

fL(Z ′, Q) , (15.37)

where the dimensionless integral in large square brackets, is a theoretical factor that may be
pre-computed and employed in the data analysis. This is conventionally written in terms of
halflife, t1/2 = log(2)/λβ.
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Thus,

fL(Z ′, Q)t1/2 ≡ ft1/2 =
loge(2)2π3

~
7

g2m5
ec

4|ML
if |2

. (15.38)

This is known colloquially as the ft value. (Pronounced eff tee.) The ft’s can be quite large,
and sometimes the “log ft” value is quoted. (Pronounced log eff tee.) The precise definition
is log10(ft1/2).

Mass of the neutrino

Our applications of β-decay ignore the neutrino mass, but they turn out to be critically
important for cosmology.

There is one important fact: they do have mass, but it is very small.

The table below shows the current state of the mass determinations of the three generations
of leptons, e, µ, and τ .

lepton flavor neutrino symbol mass (eV)
e νe 0.04 −→ 2.2
µ νµ < 1.70 × 105

τ ντ < 1.55 × 107

15.4 Angular momentum and parity selection rules

Classification of transitions in β decay

The e and the ν in the final states of a β decay each have intrinsic spin-1
2
. Conservation of

total angular momentum requires that:

~IX = ~IX′ + ~L+ ~S , (15.39)

where ~IX , ~IX′ are the total angular momenta of the parent and daughter, respectively, and
~L, ~S are the total orbital and total spin angular momentum, respectively, of the eν pair.

Therefore, the ∆I can be ±L. or ±|L±1|. If L = 0, then ∆I = ±1. There are only two cases
for lepton spin alignment. S = 0, when the eν intrinsic spins anti-align, is called a Fermi
transition. S = 1, when the eν intrinsic spins align, is called a Gamow-Teller transition.
Generally, as L ↑, λ ↓, t1/2 ↑ , because there is much less overlap of the eν wavefunctions
with the nucleus.

The entire characterization scheme is given in Table 15.4 .
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Type of Transition Selection Rules Leν ∆π? ft
superallowed ∆I = 0,±1∗ 0 no 1 × 103–1 × 104

allowed ∆I = 0,±1 0 no 2 × 103–106

1st forbidden ∆I = 0,±1 1 yes 106–108

unique∗∗1st forbidden ∆I = ±2 1 yes 108–109

2nd forbidden ∆I = ±1∗∗∗,±2 2 no 2 × 1010–2 × 1013

unique 2nd forbidden ∆I = ±3 2 no 1012

3rd forbidden ∆I = ±2∗∗∗,±3 3 yes 1018

unique 3rd forbidden ∆I = ±4 3 yes 4 × 1015

4th forbidden ∆I = ±3∗∗∗,±4 4 no 1023

unique 4th forbidden ∆I = ±5 4 no 1019

Table 15.2: Classification of transitions in β decay. Notes: (∗) 0+ → 0+ can only occur

via Fermi decay. (∗∗) Unique transitions are Gamow-Teller transitions where ~L and ~S are
aligned. The shape factors have very simple forms in this case. (∗∗∗) For the n ≥ 2 forbidden
transitions, the ∆I = ±(n − 1) transition is often associated with the n − 2 forbidden
transition, being indistinguishable in the measurements of these processes.

Nomenclature alert!

Nomenclature Meaning
~L, L Total orbital angular momentum of the eν pair
~S, S Total spin angular momentum of the eν pair
Fermi (F) transition eν intrinsic spins anti-align, S = 0
Gamow-Teller (GT) transition eν intrinsic spins align, S = 1
Superallowed The nucleon that changed form, did not change shell-model orbital.
Allowed L = 0 transition. M0

if 6= 0. See (15.27).
nth forbidden The eν pair carry off n units of orbital angular momentum

Unique ~L and ~S are aligned.
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Examples of allowed β decays

This is straight out of Krane.

14O(0+) →14N∗(0+) must be a pure Fermi decay since it is 0+ → 0+. Other examples are
34Cl→34S, and 10C→10B∗.

6He(0+) →6Li(1+), a 0+ → 1+ transition. This must be a pure Gamow-Teller decay. Other

similar examples are 13B(3
2

−
)→13C(1

2

−
), and 230Pa(2−)→230Th∗(3−).

n(1
2

+
) → p(1

2

+
) This is a mixed transition. The F transition preserves the nucleon spin

direction, the GT transition flips the nucleon spin. (Show drawing.)

β decay can either be of the F type, the GT type or a mixture of both. We may generalize
the matrix element and coupling constant as follows, for allowed decays:

gM0 = g
F
M0

F + g
GT
M0

GT = g
F
〈ψ

X′
|1|ψ

X
〉 + g

GT
〈ψ

X′
|O↑↓|ψX

〉 , (15.40)

where O↑↓ symbolizes an operator that flips the nucleon spin for the GT transition. The
operator for the F transition is simply 1, (i.e. unity), and just measures the overlap between
the initial and final nuclear states.

The fraction of F transitions is:

f
F

=
g2

F
|M0

F|2
g2

F
|M0

F|2 + g2
GT
|M0

GT|2
=

y2

1 + y2
, (15.41)

where,

y ≡ g
F
M0

F

g
GT
M0

GT

. (15.42)

Tables of y values are given in Krane on page 290.

15.4.1 Matrix elements for certain special cases

This section is meant to explain several things given without explanation in Krane’s Chap-
ter 9.
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Mif =
√

2, for superallowed 0+ → 0+ transitions

This was stated near the top of the text on Krane’s p. 284.

We know that a 0+ → 0+ allowed transition (super or regular), must be an F transition. In
the case that it is also a superallowed transition, we can write explicitly:

Mif =

〈

ψ
X′

(0+)

(

1√
2
[e(↑)ν(↓) + e(↓)ν(↑)]

)
∣

∣

∣

∣

1

∣

∣

∣

∣

ψ
X
(0+)

〉

, (15.43)

where the intrinsic spins of the eν pair are shown explicitly. This spin wavefunction is
properly normalized with the

√
2 as shown.

Separating the spins part, and the space part,

Mif =
1√
2
〈ψ

X′
|ψ

X
〉〈(e(↑)ν(↓) + e(↓)ν(↑))|~0〉 =

√
2 , (15.44)

since 〈ψ
X′
|ψ

X
〉 = 1 for superallowed transitions, and 〈e(↑)ν(↓)|~0〉 = 〈e(↓)ν(↑))|~0〉 = 1.

Using this knowledge, one can measure directly, g
F

from 0+ → 0+ superallowed transitions.
Adapting (15.38) for superallowed transitions,

g2
F

=
loge(2)π3

~
7

m5
ec

4

(

1

ft1/2

)

meas

, (15.45)

giving a direct measurement of g
F

via measuring ft. Table 9.2 in Krane (page 285) shows
how remarkable constant ft is for 0+ → 0+ superallowed transitions. This permits us to
establish the value for g

F
to be:

g
F

= 0.88 × 10−4 MeV · fm3 . (15.46)

15.5 Comparative half-lives and forbidden decays

Not covered in NERS312.

15.6 Neutrino physics

Not covered in NERS312.
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15.7 Double-β Decay

Not covered in NERS312.

15.8 β-delayed electron emission

Not covered in NERS312.

15.9 Non-conservation of parity

Not covered in NERS312.

15.10 β spectroscopy

Not covered in NERS312.

Mif = 1, for neutron β decay, n→ p + e− + ν̃e

This was stated near the top of the text on Krane’s p. 290.

In this case, for an F transition:

Mif =

〈

ψ
X′

(0+)

(

1√
2
[e(↑)ν(↓) + e(↓)ν(↑)]

)
∣

∣

∣

∣

1

∣

∣

∣

∣

ψ
X
(0+)

〉

, (15.47)



Chapter 16

γ Decay

Note to students and other readers: This Chapter is intended to supplement Chapter 10 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

So far we have discussed α decay and β decay modes of de-excitation of a nucleus.

Figure 16.1: Generic decay schemes for α decay and β decay

As seen in Figure 16.2, we have indicated explicitly, that the daughter nucleus may be in an
excited state. This is, in fact, the usual case. The most common form of nuclear de-excitation
is via γ decay, the subject of this chapter.

A
ZXN −→ A−4

Z−2X
∗
N−2 + α [α− decay]

A
ZXN −→ A

Z±1X
∗
N∓1 + e∓ + (νe/νe) [β∓ decay] (16.1)

A comparison of α decay, β decay, and γ decay

Now that we are discussing that last decay mode process, it makes sense to compare them.
Most naturally radioactive nuclei de-excite via an α decay. The typical α-decay energy is 5
MeV, and the common range between 4 and 10 MeV. The “reduced” de Broglie wavelength
is:

λ̄ =
~

p
=

~c

pc
=

~c
√

T (T + 2mc2)
(16.2)

219
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Figure 16.2: Generic decay schemes for α decay and β decay

Thus, for the α-particle, the typical λ̄ is about 1.02 fm, with a range of about 0.72–1.14 fm.
This dimension is small in comparison, and this is why a semi-classical treatment of α
decay is successful. One can reasonably talk about α-particle formation at the edge of the
nucleus, and then apply quantum tunneling predictions to estimate theoretically, the escape
probability, and the halflife.

β decay, on the other hand, involves any energy up to the reaction Q, typically 1 MeV, but
ranging from a few keV to tens of MeV. Thus, the typical λ̄ is about 140 fm, and ranges
from 10 fm up. Thus, the typical β-particle has a large λ̄ in comparison to the nuclear size,
and a quantum mechanical approach is dictated, and the result of the previous chapter are
testament to that.

γ decay is now under our microscope. the typical γ decay is 1 MeV and ranges from about 0.1
– 10 MeV. The typical λ̄ is about 40 fm, and ranges from about 20 – 2000 fm. Clearly, only
a quantum mechanical approach has a chance of success. Fortunately, the development of
Classical Electrodynamics was very mature by the time Quantum Mechanics was discovered.
The “wave mechanics” of photons, meshed very easily with the wave mechanics of particles.
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Non-relativistic and relativistic Quantum Electrodynamics started from a very solid classical
wave-friendly basis.

The foundations of Quantum Electrodynamics

γ spectroscopy yields some of the most precise knowledge of nuclear structure, as spin, parity,
and ∆E are all measurable.

Borrowing from our knowledge of atomic physics and working within the shell-model of the
nucleus, we can write (in a formal fashion, at least) the nuclear wave function as a composite
of single-particle nucleon wavefunctions, as follows:

ΨN =
A
∏

a=1

C(la, sa, ta)ψa(la, sa, ta) , (16.3)

where the composite wavefunction, ΨN, is the product of a combinatorial factor C, that
combines the states as a collection of fermions. C combines the individual orbital (l) and
spin (s) angular momenta, and isospin (t) quantum numbers. Isospin is a quantum number
analogous to intrinsic spin. Recognizing that the strong force is almost independent of
nucleon type, the two nucleon states are “degenerate” much like spin states in atomic physics.
So, we can assign a conserved quantum number, called isospin. By convention, a proton has
tp = 1

2
, while a neutron has tn = −1

2
.

Transition rates between initial, Ψ∗
N and final, Ψ′

N, nuclear states, resulting from an electro-
magnetic decay producing a photon with energy, Eγ, can be described by Fermi’s Golden
Rule #2:

λ =
2π

~
|〈Ψ′

Nψγ|Oem|Ψ∗
N〉|

2 dnγ

dEγ
, (16.4)

where Oem is the electromagnetic transition operator, and (dnγ/dEγ) is the density of final
states factor. The photon wavefunction, ψγ and Oem are well known, therefore, measurements
of λ provide detailed knowledge of nuclear structure. Theorists attempt to model ΨN. The
degree to which their predictions agree with experiments, indicates how good the models
are, and this leads us to believe we understand something about nuclear structure.

A γ-decay lifetime is typically 10−12 seconds or so, and sometimes even as short as 10−19

seconds. However, this time span is an eternity in the life of an excited nucleon. It takes
about 4 × 10−22 seconds for a nucleon to cross the nucleus.

Why does γ decay take so long?

There are several reasons:
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1. We have already seen that the photon wavelength, from a nuclear transition, is many
times the size of the nucleus. Therefore there is little overlap between the photon’s
wavefunction and the nucleon wavefunctions, the nucleon that is responsible for the
emission of the photon. The reduction factor is approximately (λ̄/RN)3.

2. The photon carries off at least one unit of angular momentum. Therefore, the transition
involves some degree of nucleon re-orientation. That is, Ψ′

N does not closely resemble
Ψ∗

N, the disparity growing with increased jγ. (The γ has one integral unit of intrinsic
spin.)

3. The electromagnetic force is relatively weak compared to the strong force, about a
factor of 100.

16.1 Energetics of γ decay

A typical γ decay is depicted in Figure 16.3, the decay scheme and its associated energetics
are described in (16.2). X∗ represents the initial excited states, while X ′ is the final state of
the transition, though usually, it is a lower energy excited state, that also decays by one of
the known modes.

A
ZX

∗
N −→ A

ZX
′
N + γ

[m
X∗

−m
X′

]c2 = TX′ + Eγ

Q = TX′ + Eγ (16.5)

Thus we see that the reaction Q is distributed between the recoil energy of the daughter
nucleus and the energy of the photon. Note that m

X∗
and m

X′
, are nuclear masses.

It turns out to be easier to use a relativistic formalism to determine the share of kinetic
energy between the photon and the daughter nucleus, so we proceed that way. It can be
shown that:

Eγ = Q

[

1 +Q/2m
X′
c2

1 +Q/m
X′
c2

]

TX′ =
Q

2

[

Q/m
X′
c2

(1 +Q/m
X′
c2)

]

. (16.6)

Since Q ≪ m
X′
c2, or (10−4/A) < (Q/m

X′
c2) < (10−2/A), we can approximate



16.1. ENERGETICS OF γ DECAY 223

Figure 16.3: Generic decay schemes for α decay and β decay

Eγ ≈ Q− Q2

2m
X′
c2

TX′ ≈ Q2

2m
X′
c2

(16.7)

.

Although these recoil energies are small, they are in the range (5 → 50000 eV)/A. Except
in the lower range, these recoil energies are strong enough to overwhelm atomic bonds and
cause crystal structure fissures.

Finally, Krane uses a non-relativistic formalism to obtain the recoil energy. It can be shown
that

Erel
γ −Enon−rel

γ

Q
≈ 1.5 × (10−13 → 10−7)/A3 . (16.8)
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The relativistic correction can be ignored, but it is interesting that the relativistic calculation
is easier! This is one place where correct intuition at the outset, would have caused you more
work!

Obtaining Q from atomic mass tables

Finally, let us deal with a small subtlety regarding the reaction Q. The Q employed in
(16.5) is different than what one would obtain from a different of atomic masses from the
mass tables.

The two are:

Q = [m
X∗

−m
X′

]c2

Q′ = [m(A
ZX

∗
N) −m(A

ZX
′
N )]c2 . (16.9)

Going back to the definition of atomic mass, we obtain:

Q = Q′ +
Z
∑

i=1

(B∗
i − B′

i) , (16.10)

where the Bi’s are the atomic binding energies of the i’th atomic electron. About the only
difference, insofar as the atomic electrons are concerned, is the different nuclear spin that
these electrons see. This effect the hyperfine splitting energies of the atomic states, and can
probably be ignored in (16.10). (Makes one wonder, though. Someone care to attempt some
library research on this topic?)

16.2 Classical Electromagnetic Radiation

The structure (and many of the conclusions) of the Quantum Mechanical description of
electromagnetic radiation follows from the classical formulation. Most important of these
is the classical limit, through the correspondence principle. Therefore, a detailed review of
Classical Electromagnetic Radiation is well motivated.

Multipole expansions

Electric multipoles

The electric multipole expansion starts by considering the potential due to a static charge
distribution:
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V (~x) =
1

4πǫ0

∫

d~x′
ρ(~x′)

|~x− ~x′| . (16.11)

We have encountered such an object before, in Chapter 10, but now we attempt to be a little
more general than simply (!) describing the nuclear charge distribution. Generally, we shall
only consider charge conserving systems, where the time dependency may arise through a
vibration or rotation of the charges in the distribution, but not through loss or gain of charge.
Assuming the charges to be localized, we expand (16.11) in ~x. That is, we are considering ~x
to be outside of the charge distribution. The result is:

V (~x) =
1

4πǫ0

[

Q0

|~x| +
Q1

|~x|2 +
Q2

|~x|3 · · ·
]

(16.12)

Q0 =

∫

d~x′ ρ(~x′, t) (16.13)

Q1 =

∫

d~x′ z′ρ(~x′) (16.14)

Q2 =
1

2

∫

d~x′ (3z′2 − r′2)ρ(~x′) (16.15)

where Q0 is the total charge (aka the monopole term), Q1 is the dipole moment, and Q2

is the quadrupole moment. Higher moments would include the octupole moment, and the
hexadecapole moment, and more.

In general,

V (~x, t) =
1

4πǫ0

1

|~x|
∑

n

Qn

|~x|n (16.16)

Q0 could be zero, for neutral charge distributions. If the charge distribution contains charge
of only one sign, the dipole moment could be made to disappear by choosing the coordinate
system to be at the center of charge.

In classical E&M theory, the higher n’s diminish in influence as |~x| grows. In Quantum E&M
theory, the higher n’s are associated with transitions that become weaker with increased n.

Electric dipoles and quadrupoles

To illustrate some features of electric dipoles, consider the situation described in Figure 16.4.
Here, a charge q (assumed, without loss of generality, to be positive), is located on the z-axis
at z = l. A charge of the opposite sign is on the z-axis, at z = −l. This is a pure electric
dipole:
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Figure 16.4: A simple example of an electric dipole

ρ(~x) = q[δ(x)δ(y)δ(z − l) − δ(x)δ(y)δ(z + l)]

Q0 = 0

Q1 = ql + (−q)(−l) = 2ql

Qn≥2(t) = 0 (16.17)

Under a parity operation, ~x→ −~x, the configuration in Figure 16.4, is opposite to its original
configuration. Thus the parity of the electric dipole radiation is Π(E1) = −1.

A similar argument for an electric quadrupole would lead us to conclude that Π(E2) = +1.
In general, the parity of an electric multipole is:

Π(EL) = (−1)L . (16.18)
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Magnetic dipoles

Considerations for static magnetic multipole expansions are much more involved. Instead,
we focus on the magnetic dipole moment:

~B(~x) =
µ0

4π

[

3~n(~n · ~m) − ~m

|~x|3
]

, (16.19)

where ~n is a unit vector in the direction of ~x, ~m is the magnetic moment,

~m =
1

2

∫

d~x′ [~x′ × ~J(~x′)] . (16.20)

Here, ~J is the current density.

To illustrate some features of magnetic dipoles, consider the situation described in Fig-
ure 16.5.

Figure 16.5: A simple example of a magnetic dipole
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Under a parity change, the magnetic dipole is unchanged. So, in this case, Π(B1) = +1. A
magnetic quadrupole, on the other hand, changes its sign. In general,

Π(ML) = −(−1)L . (16.21)

Characteristics of multipolarity

L multipolarity Π(EL) Π(ML) angular distribution

1 dipole -1 / +1 Unique angular distribution, given later

2 quadrupole +1 / -1 ”

3 octupole -1 / +1 ”

4 hexadecapole +1 / -1 ”
...

...
...

...
...

Parity

For electric multipoles

Π(EL) = (−1)L ,

while for magnetic multipoles

Π(EL) = (−1)L+1 .

Power radiated

The power radiated is proportional to:

P (σL) =∝ 2(L+ 1)c

ε0L[(2L+ 1)!!]2

(ω

c

)2L+2

[m(σL)]2 , (16.22)

where, σ means either E or M , and m(σL) is the E or M multipole moment of the
appropriate kind.

16.2.1 A general and more sophisticated treatment of classical
multipole fields

In order to make the transition to Quantum Mechanics a little more transparent, our
jumping-off point from Classical Electrodynamics has to be a somewhat more advanced.
From advanced E&M (for example, J D Jackson’s Classical Electrodynamics)...
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If

ρ(~x, t) = ρ(~x)eiωt (16.23)

~J(~x, t) = ~J(~x)eiωt (16.24)

~m(~x, t) = ~m(~x)eiωt , (16.25)

are the time-dependent charge density (protons density), current density (protons with
orbital angular momentum), and magnetic moment density (proton and neutron intrinsic
spins), the radiation fields are characterized by the electric, Qlm, and magnetic, Mlm, mul-
tipoles:

Qlm =

∫

d~x |~x|lY ∗
lm(θ, φ)

[

ρ(~x) − iω

(l + 1)c2
~∇ · [~x× ~m(~x)]

]

, (16.26)

Mlm = −
∫

d~x |~x|lY ∗
lm(θ, φ)

[

∇ · ~m(~x) +
1

(l + 1)
~∇ · [~x× ~J(~x)]

]

. (16.27)

The power, dP , radiated into solid angle dΩ, by mode (l,m) is:

dP

dΩ

(

l,m,

[

E

M

])

=
2(l + 1)c

ε0l(2l + 1)[(2l + 1)!!]2

(ω

c

)2l+2
∣

∣

∣

∣

Qlm

Mlm

∣

∣

∣

∣

2

|Xlm(θ, φ)|2 , (16.28)

where (suppressing explicit dependence on θ and φ),

|Xlm|2 =
1
2
(l −m)(l +m+ 1)|Yl,m+1|2 + 1

2
(l +m)(l −m+ 1)|Yl,m−1|2 +m2|Yl,m|2
l(l + 1)

. (16.29)

If all the m’s contribute equally,

l
∑

m=−l

|Xlm(θ, φ)|2 =
2l + 1

4π
. (16.30)

In this case, the radiation is isotropic. You will also need (16.30) to get Krane’s (10.8).

For the non-isotropic distributions, first we recall the spherical harmonics



230 CHAPTER 16. γ DECAY

l (2l-pole) |Yl,0|2 |Yl,±1|2 |Yl,±2|2 |Yl,±3|2

1 (dipole) 3
4π

cos2 θ 3
8π

sin2 θ (n/a) (n/a)

2 (quadrupole) 5
16π

(cos2 θ − 1)2 1
8π

sin2 θ cos2 θ 15
32π

sin4 θ (n/a)

3 (octopole) 49
16π

(5 cos3 θ − 3 cos θ)2 21
64π

sin2 θ(5 cos2 θ − 1)2 105
32π

sin4 θ cos2 θ 35
64π

sin6 θ

l (2l-pole) |Xl,0|2 |Xl,±1|2 |Xl,±2|2 |Xl,±3|2

1 (dipole) 3
8π

sin2 θ 3
16π

(1 + cos2 θ) (n/a) (n/a)

2 (quadrupole) 15
8π

sin2 θ cos2 θ 5
16π

(1 − 3 cos2 θ + 4 cos4 θ) 5
16π

(1 − cos4 θ) (n/a)

3 (octopole) ? ? ? ?

These distributions are shown in Figure 16.6.

Figure 16.6: Angular distributions for X1,m and X2,m

The angular distributions indicate how a measurement of the angular distribution map of
the radiation field can identify the multipolarity of the radiation. Measurement of the parity
is accomplished by performing a secondary scattering experiment that is sensitive to the
direction of, for example, the electric field vector. The Compton interaction often used for
this purpose.

16.3 Transition to Quantum Mechanics

The transition to Quantum Mechanics is remarkably simple! Most of the hard work has
been done in the classical analysis.

In Quantum Mechanics, the transition rate is given by:

dλ

dΩ

(

l,m,

[

E

M

])

=
1

~ω

dP

dΩ

(

l,m,

[

E

M

])

. (16.31)

that is, the transition rate (per photon) is taken from the expression for the power radiated,
divided by the energy per photon, ~ω. The structure of the right hand side is identical
to the classical expression, except that the charge density, current density and intrinsic
magnetization density are replaced by the probability density, the probability current density,
and the magnetic moment density.
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Qi→f
lm = e

∫

d~x |~x|lY ∗
lm(θ, φ)

[

Z
∑

i=1

(ψ∗
i )f(ψi)i

]

, (16.32)

M i→f
lm = − 1

(l + 1)

e~

mp

∫

d~x |~x|lY ∗
lm(θ, φ)

[

~∇ · [
Z
∑

i=1

(ψ∗
i )f |~L|(ψi)i]

]

. (16.33)

The Weisskopf Estimates

A detailed investigation of (16.32) and (16.33) requires detailed knowledge of the nuclear
wavefunctions, in order to pin down the absolute decay rates of the various transition types.
he angular distributions, however, and parities have been established already.

Detailed knowledge of the wavefunctions is not known. However, it would be nice to have a
“ballpark” estimate, to get relative transition rates. Such an approximation has been done
by Weisskopf, using the following strategy.

Let the radial part of both the initial and final wavefunctions be:

R(r) = θ(RN − r)

/

√

∫ RN

0

dr r2,

where RN is the nuclear edge, given by RN = R0A
1/3. We note that these radial wavefunc-

tions are properly normalized, since,

∫ ∞

0

dr r2R(r) = 1.

The radial part of (16.32) is thus given by:

Qi→f
lm = e

∫ ∞

0

dr r2rl|R(r)|2 = eR l
N

3

l + 3
. (16.34)

Substituting (16.34) and (16.33) results in:

λ(El) =
8π(l + 1)

l[(2l + 1)!!]2

{

e2

4πε0~c

}(

EγRN

~c

)2l+1(
3

l + 3

)2
c

RN
, (16.35)

for electric l-pole transitions. All quantities enclosed in parentheses (of all kinds) are unitless.
Moreover, the quantity inside the {}’s is recognized as the fine structure constant, α =
1/137.036.... The factor c/R is 1/(the time for a photon to cross a nuclear diameter).
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Similar considerations (I’m still looking for the source of this calculation) gives:

λ(Ml) =
8π(l + 1)

l[(2l + 1)!!]2

(

µp −
1

l + 1

)2(
~c

mpc2RN

)2{
e2

4πε0~c

}(

EγRN

~c

)2l+1(
3

l + 2

)2
c

RN
,

(16.36)

where the second term in parentheses comes from the nuclear magnetron, rendered unitless
by additional factors of c and RN . Krane never defines the factor µp, but according to my
search (so far) is related to the gyromagnetic ration of the proton, divided by 2. Krane also
goes on to say that the factor [µp − 1/(l + 1)]2 is often simply replaced by 10. (!)

Evaluating (16.35) and (16.36) leads to (according to Krane):

λ(E1) = 1.0 × 1014A2/3E3
γ

λ(E2) = 7.3 × 107A4/3E5
γ

λ(E3) = 3.3 × 101A2E7
γ

λ(E4) = 1.1 × 10−5A8/3E9
γ (16.37)

λ(M1) = 5.6 × 1013E3
γ

λ(M2) = 3.5 × 107A2/3E5
γ

λ(M3) = 1.6 × 101A4/3E7
γ

λ(M4) = 4.5 × 10−6A2E9
γ (16.38)

Some conclusions about these:

Same order, different type
λ(El)

λ(Ml)
≈ 2A2/3 .

Thus, for a given l, electric transition always dominates, with the difference getting
large with increases A.

Nearby order, same parity

λ(E(l + 1))

λ(Ml)
≈ 10−6A4/3E2 .

Thus, for large A and E, E2 can compete with M1, E3 can compete with M2 and so
on.
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Same type, different order

λ(σ(l + 1))

λ(σl)
≈ 10−8A2/3E2 ,

where σ is ether E or M . The factor A2/3E2 ≤ 104, so, as l ↑, λ ↓, dramatically!

16.4 Angular momentum and parity selection rules

Conservation of total angular momentum require and parity dictates that:

~If = ~Ii +~l

πf = (−1)lπi (E−type)

πf = (−1)l+1πi (M−type) (16.39)

Recalling the rules of quantized angular momentum addition, |If − l| ≤ Ii + l, or ∆I =
|If −Ii| ≤ l ≤ If + Ii. Note that the emission of an electromagnetic decay photon can not be
associated with a 0 → 0 transition. (The can occur via internal conversion, discussed later.)
The above parity selection rules can also be stated as follows:

∆π = no ⇒ even E/odd M
∆π = yes ⇒ odd E/even M

Some examples

3
2

π → 5
2

π
,∆π = no

∆I = 1. Therefore, M1, E2, M3, E4...

3
2

π → 5
2

π
,∆π = yes

∆I = 1. Therefore, E1, M2, E3, M4...

0π → 0π,∆π = unknown

∆I = 4. Therefore, E4 if ∆π = yes, M4 otherwise.

2+ → 0+

This is an E2 transition.
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Real-life example

One of the most important, and useful γ decays is the decay of 60Co. It has been used
extensively for radiotherapy purposes, and used today for industrial radiation processes,
sterilization, food processing, material transformation, and other applications.

60Co does not occur naturally, as it has a half-life of 5.27y. it is produced by neutron
activation of stable 59Co. The entire activation and decay sequences are given as follows,
with a decay chart given in Figure 16.7. The decay chart also has information about spin
and parity assignments that are needed to decipher the following table.

59
27Co32 + n −→60

27Co33 −→60
28Ni∗32 + β− + νe (5.271y) −→60

28Ni32 + nγ (prompt)

Figure 16.7: 60Co decay scheme.

Iπ
i Iπ

f EN (keV) Eγn (keV) exp modes τ (ps) frac

4+ 2505.766 3.3
2+

1 1173.237 (γ4) E2+M3 E2,M3,E4,M5,E6 ≡ 1
2+

2 346.93 (γ5) unk E2,M3,E4,M5,E6 7.6 × 10−5

0+
1 2505.766 (γ6) E4 E4 (pure) 2.0 × 10−8

0+
2 2284.87 > 1.5

2+
2 2158.64 0.59

2+
1 826.06 (γ2) M1+E2 M1,E2,M3,E4 ≡ 1

0+
1 2158.57 (γ3) E2 E2 (pure) 0.176

2+
1 1332.518 0.77

0+
1 1332.518 (γ1) E2 E2 (pure)

Table 16.1: The decay scheme of 60Ni that is generated from the most probable β decay of
60Co.

The likely explanation of the nuclear structure of 60Ni is that the levels shown are a single
quadrupole phonon excitation at 1.333 MeV with a two quadrupole phone triplet at about
2.5 MeV. The 0+ state is not fed by this β decay.
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Comparing Details theory exp ratio Comments
γ4, γ1 E2(1173)/E2(1333) 0.53 0.23 2.3
γ4 modes M3/E2 2.6 × 10−5

E4/E2 5.1 × 10−13 Mostly E2
γ4, γ5 E2(347)/E2(1173) 2.3 × 10−3 7.6 × 10−5 30 ψi/ψf mismatch?
γ6, γ4 E4(2505)/E2(1173) 6.2 × 10−8 2.0 × 10−8 3.1
γ6, γ5 E4(2505)/E2(347) 2.7 × 10−5 2.6 × 10−4 0.10 Collective effect?
γ2 modes E2/M1 2.1 × 10−4 Mostly M1
γ2, γ3 E2(2159)/M1(826) 0.026 0.176 0.15

Table 16.2: Comparison of measurements of the decay rates for the γ transition rates for the
decay photons of 60Ni that are generated from the most probable β decay of 60Co.

Comparison with Weisskopf estimates

16.5 Angular Distribution and Polarization Measure-

ments

Not covered in NERS312. Parts were covered earlier.

16.6 Internal Conversion

We discussed previously, that 0+ → 0+ transitions can not occur via electromagnetic γ
transitions. This is because the electromagnetic operator does not have an l = 0 component,
since the photon’s intrinsic spin is s = 1. However, there is an electromagnetic process that
can cause a 0+ → 0+ transition, a process called internal conversion.

The classical visualization is that an electron (predominantly a K-shell electron) enters the
nucleus, feels the electromagnetic force from a nucleon in an excited states, or a collection
of nucleons in an excited states, and acquires enough energy to liberate the electron from
the nucleus cause the nucleus to transition to a lower energy level. The nucleus, as a whole,
recoils to conserve momentum.

The quantum mechanical picture is similar, and is depicted graphically in Figure 16.8.

We’ve learned that, whether we’re adapting classical electrodynamics to quantum electrody-
namics, or if we are starting with a more rigorous Fermi Golden Rule #2 approach, that the
most important part, and the least known part, is the calculation of the transition matrix
element, Mi→f .
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Figure 16.8: The Quantum Mechanical description of internal conversion.

For internal conversion, the matrix element is:

Mi→f
ic = 〈ψf

Nψ
free
e |Oem|ψbound

e ψi
N〉 . (16.40)

This is to be compared with the matrix element for γ transitions:

Mi→f
γ = 〈ψf

Nψ
free
γ |Oem|ψi

N 〉 . (16.41)

Note the similarity between the matrix elements. They contain many physical similarities,
that are accompanied by mathematical similarity. In fact, every γ decay is in competition
with internal conversion (more on this later). The only one that stands alone is a 0+ → 0+

internal conversion, that has no γ counterpart.
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Internal conversion, β decay and internal conversion energetics

When a nucleus in an excited state decays, it does so via α decay, β decay, or γ decay. Often
a decay can proceed via more than one decay channel, and the daughter, and her progeny,
can decay as well. A particular interesting case, from the standpoint of measurement, is
when β decay and internal conversion happen in close temporal proximity. For example:

203
80Hg123 −→203

81 Tl∗122 + e− + ν −→203
81 Tl122 + e− (IC) .

Thus, a measurement of the electrons being emitted y radioactive 203
80 Hg123, sees both β

decay electrons, as well as IC electrons. However, the signatures of both of these processes
are very distinct. The β decay electrons give a continuous energy spectrum, while the IC
electrons are seen as sharp lines on the β spectrum, at the energies of the nuclear transition
(less recoil).

Generally, the energy of the kinetic electron is given by:

Te =
Q− B

1 +me/mX′

. (16.42)

The denominator term is usually ignored. (It is about a 1/(2000 ∗ A) correction.) The B
term is the binding energy of the converted electron. This can not be ignored, and depends
upon the atomic shell from which the electron was converted.

For our specific example, Q = 279.910, and:

X-ray spectroscopic B Te

notation notation (keV) (keV)
K 1s1/2 85.529 193.661
LI 2s1/2 15.347 263.843
LII 2p1/2 14.698 264.492
LIII 2p3/2 12.657 266.533
MI 3s1/2 3.704 275.486

Internal conversion contribution to decay rate

As mentioned previously, since γ decay and internal conversion both contribute to the elec-
tromagnetic decay rate, we can write the total decay rate as a sum of the processes, in
increasing specificity:

λem = λγ + λe , (16.43)
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where λγ is the γ transition rate, and λe is the internal conversion transition rate.

In terms of the ratio, α ≡ λe/λγ ,

λem = λγ(1 + α)

λem = λγ + λeK
+ λeL

+ λeM
· · ·

or λγ(1 + α
K

+ α
L

+ α
M
· · · )

λem = λγ + λeK
+ λeLI

+ λeLII
+ λeLIII

+ λeMI
· · ·

or λγ(1 + α
K

+ α
LI

+ α
LII

+ α
LIII

+ α
MI

· · · ) (16.44)

Using hydrogenic wavefunctions, we may estimate:

α(El) ∼= Z3

n3

(

l

l + 1

)

α4

(

2mec
2

Eγ

)l+5/2

α(Ml) ∼= Z3

n3
α4

(

2mec
2

Eγ

)l+3/2

(16.45)

The trends that are predicted, all verified by experiment, are:

α(σl) ∝ Z3

Eγ ↑ α(σl) ↓
l ↑ α(σl) ↑
n ↑ α(σl) ↓

Problems and Projects

Review-type questions

1. Derive (16.6) and (16.7).

2. Show (16.8).

3. Find an expression for the classical, static quadruple moment. Using a simple example,
show that it has the expected parity.

4. Derive (16.42).
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Exam-type questions

1. Nucleus A decays to its ground state with a known Q-value.

(a) Show that, if one accounts for nuclear recoil non-relativistically, that Eγ and Q
are related by:

Eγ =
2Q

1 +
√

1 + 2Q
mAc2

. (16.46)

(b) For typical gamma decay energies, (16.46) is often approximated by:

Eγ = Q

(

1 − Q

2mAc2

)

. (16.47)

Discuss how this approximation is obtained and derive (16.47).

(c) Show that the fully relativistic expression for (16.46) is:

Eγ =
Q
(

1 + Q
2mAc2

)

1 + Q
mAc2

.
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2. The energy-level scheme drawn below, represents some of the low-lying levels of 120Te.
The number to the left of each line represents the level of the excited state, with (0)
being the ground state. The number to the right is the known Iπ for that level. For
example, the level labeled ‘(3)’ has Iπ = 4+.

(a) In the energy-level scheme below, use vertical lines to connect all the possible
electromagnetic transitions.

(5) 3−

(4) 2+

(3) 4+

(2) 0+

(1) 2+

(0) 0+

(b) Refer to the chart on the previous page. Then, in the table below, fill in all the
empty boxes. Please follow the example given for the (1) → (0) transition.

Column 1 The level transition,

Column 2 The starting Iπ
i ,

Column 3 The ending Iπ
f ,

Column 4 Whether or not a parity change occurs,

Column 5 All possible EL, ML or IC transitions. Using square brackets, [ ],
indicate which is the most probable γ-transition. If two γ-transitions can
compete for most probable, indicate so by bracketing them both.



16.6. INTERNAL CONVERSION 241

Transition Iπ
i Iπ

f ∆π? M-poles

(1) → (0) 2+ 0+ no [E2] IC
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3. (a) Explain the importance of observing and measuring γ-decay transitions with re-
spect to understanding nuclear structure. Be sure to mention multipolarity, parity,
orbital angular momentum, electric and magnetic transitions. In your discussion,
describe how the multipolarity and parity change of a γ-decay transition is deter-
mined experimentally.

(b) Sort, in order of decreasing electromagnetic decay probabilities, the electric and
magnetic multipole transitions for the ∆π = yes transitions. Then, do the same
for the ∆π = no transitions. Under what circumstances will a higher order
multiple compete with the decay rate of a lower order multipole?

(c) A 0+ −→ 0+ transition can not decay through the release of a single gamma.
Why not? If there are no intermediate states between the two 0+ levels, how can
this nucleus de-excite electromagnetically? Make a drawing that illustrates this
process.

(d) 60Co decays via the following scheme:
Figure to be supplied...

i. What is the probable nature (order of multipolarity, electric or magnetic) of
the 4+ → 2+ and the 2+ → 0+ transitions?

ii. Is the 4+ → 0+ transition possible? Why?

4. A nucleus with atomic mass MX has two excited levels, E1 and E2, where E2 > E1. It
can de-excite to the ground state via a single γ decay with energy Ea, or via a pair of
gammas, with energies Eb and Ec. You have made measurements of the 3 gammas.

(a) Draw the decay scheme.

(b) You observe that Ea 6= Eb + Ec. Why?

(c) Develop, from first principles, an expression for Eb + Ec − Ea.



Chapter 17

Nuclear Reactions

Note to students and other readers: This Chapter is intended to supplement Chapter 11 of
Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in
Krane’s book first. This reading is supplementary to that, and the subsection ordering will
mirror that of Krane’s, at least until further notice.

17.1 Types of Reactions and Conservation Laws

A typical nuclear reaction is depicted in Figure 17.1. The following two ways of describing
that reaction are equivalent:

a + X → Y + b ,

or

X(a, b)Y .

From now on, we shall usually use the latter because it is more compact (and easier to type!).

The above reaction is the kind we shall focus on because they represent most of the important
reactions in Nuclear Physics and Engineering and the Radiological Sciences. There are only
two bodies in the final state: a and Y. The particle labelled “a” is the projectile. We
will generally restrict ourselves to considering light projectiles, with A ≤ 4, and projectile
energies, Ta . 10 MeV. The particle labelled “X” is to be thought of as the “target”. The
particle labelled “b” is generally the lighter reaction product, and is often the particle that
is observed by the measurement apparatus. The remaining reaction product, is “Y”. The
is generally the heavier of the two reaction products, and is usually unobserved, as it stays
within the target “foil”.

243
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Figure 17.1: A typical nuclear reaction.

Some nomenclature

reaction name example

X(a,γ)Y radiative capture A
ZXN (n, γ)A+1

Z XN+1

X(γ,b)Y nuclear photoeffect A
ZXN (γ, p)A−1

Z−1XN

X(a,a)X nuclear scattering A
ZXN (α, α)A

ZXN , Rutherford scattering
X(a,a)X∗ inelastic scattering AX(n, n)AX∗

knock out reaction A
ZXN (n, nn)A

ZXN−1,
A
ZXN (n, np)A

Z−1XN

transfer reaction A
ZXN (n, p)A

Z−1XN+1

direct reactions “a” interacts with only one or a few nucleons in X
compound reactions a + X → Ym

t1/2≫∼10−23s → fragments

resonance reaction n or p + X → Ym → decay products
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17.1.1 Observables

Returning back to an X(a,b)Y reaction, the most comprehensive experiment one can perform
is to determine the b-particle type, and map out its angular distribution pattern, a so-called
4π experiment. At each different angle, we also measure Tb, because that can change with
direction as well. Refer to Figure 17.2.

Figure 17.2: A typical set-up for a 4π experiment.

By knowing the intensity of the beam, we can thus compute the differential cross section,
differential in Tb, θb, and φb, presented here in the 3 different forms that one encounters in
the literature.

dσ(Tb, θb, φb)

dΩbdTb

=
dσ

dΩbdTb

= σ(Tb, θb, φb) , (17.1)

where dΩb is the differential solid angle associated with the direction of the b-particle,
namely:
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dΩb = sin θbdθbdφb .

The third form is favored by some authors (not me) because of its brevity. However, its use
is common, and I wanted to familiarize you with it.

From this differential cross section, alternative, integrated forms my be found:

the cross section differential in angles only,

σ(θb, φb) =
dσ

dΩb
=

dσ(θb, φb)

dΩb
=

∫

dTb

(

dσ(Tb, θb, φb)

dΩbdTb

)

, (17.2)

the cross section differential in energy only,

σ(Tb) =
dσ

dTb
=

dσ(Tb)

dTb
=

∫

dΩb

(

dσ(Tb, θb, φb)

dΩbdTb

)

, (17.3)

and the total cross section,

σ =

∫

dTb

∫

dΩb

(

dσ(Tb, θb, φb)

dΩbdTb

)

. (17.4)

If one normalize (17.1) as follows:

p(Tb, θb, φb) =
1

σ

dσ(Tb, θb, φb)

dΩbdTb
, (17.5)

p(Tb, θb, φb) is a “joint” probability distribution, properly normalized, over the variables, Tb,
θb, and φb. From this probability distribution, we can determine quantities like, Tb, the
average energy, or 1 − cos θb, the so-called scattering power.

17.1.2 Conservation laws

The conservation laws are essential tools in scattering analysis. Conservation of energy and
linear momentum allow us to deduce the properties of X and Y. Conservation of neutron
and proton number also helps us deduce the properties of X and Y. Conservation of angular
momentum and parity, allow us to deduce spins and parities.
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17.2 Energetics of Nuclear Reactions

General Considerations in a Relativistic Formalism

For the X(a,b)Y reaction, conservation of Total Energy means:

m
a
c2 +m

X
c2 + Ta + TX = m

b
c2 +m

Y
c2 + Tb + TY , (17.6)

or,

Q+ Ta + TX = Tb + TY , (17.7)

where,

Q ≡ (m
a
+m

X
− [m

b
+m

Y
])c2 . (17.8)

Q is the reaction Q-value. When Q > 0, the reaction is exothermic (or exoergic). Energy
is released by the transformation. When Q < 0, the reaction is endothermic (or endoergic).
Energy is required, by the kinetic energies of the initial reactants, to make the transformation
“go”.

Recall that (17.7) is a relativistic expression. Therefore, we should use relativistic expressions
for the kinetic energies. Doing so,

Trel = mc2(γ − 1) . (17.9)

Since the maximum energy projectile we deal with is about 10 MeV, we have the situation
where T ≪ mc2. Thus we can find a relationship that relates Trel, to its non-relativistic
counterpart, TNR:

Trel = TNR[1 +
3

4
β2 + O(β4)] . (17.10)

In the worst possible case (T = 10 MeV, mi = mp, the relativistic correction amounts to:

3

4
β2 ∼= 3T

2mpc2
∼= 0.015 . (17.11)

Therefore, in the worst possible Q = 0 case, there is a 1.5% correction, and up to double that
in the large Q case. This can be an important correction, depending on the accuracy of the
measurement. It represents a systematic error that may be swamped by other experimental
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errors. However, from now on we shall ignore it, but keep in mind that large T and/or large
Q analyses, with small masses, may be problematic, unless we adopt a relativistic correction.

Photons are always relativistic. So, if they are involved, we use Tγ = Eγ, and Tγ/c for its
momentum.

Laboratory frame, non-relativistic analysis

In the laboratory frame, in a non-relativistic analysis, we make the following approximations:

1) Ta < 10 MeV kinetic energy of the projectile
2) ~pa = paẑ projectile’s direction is along the positive z-axis
3) TX = 0 target is at rest
4) 1 ≤ m

a
, m

b
≤ 4u small mass projectile, observed particle

5) m
X
, m

Y
≥ 4u large mass target, unobserved particles

6) γi = 1 no relativistic corrections

With these approximations, Conservation of Energy and Conservation of Linear Momentum
can be expressed in the following equations:

Q+ Ta = Tb + TY , (17.12)

~p
a

= ~p
b
+ ~p

Y
. (17.13)

Since the Y-particle is unobserved, we choose to eliminate it from the (17.12) and (17.13),
with the result:

Tb(mY
+m

b
) − 2

√

m
a
m

b
Ta cos θb

√

Tb − [m
Y
(Q+ Ta) −m

a
Ta] = 0 . (17.14)

This is a quadratic equation in
√
Tb, in terms of the (presumably) known quantities, Ta, Q,

and the masses. Solving the quadratic equation yields:

Tb =

√

m
a
m

b
Ta cos θb ±

√

m
a
m

b
Ta cos2 θb + (m

Y
+m

b
)[m

Y
Q+ (m

Y
−m

a
)Ta]

(m
Y

+m
b
)

. (17.15)

Thus, we see through (17.14), that 2-body reactions involve a direct correlation of the scat-
tering angle, θb and the b-particle’s energy, Tb. Consequently, if one measures, Tb, and cos θb
is also determined. The relationship between the two differential cross sections is:

dσ

dΩb
=

dσ

dφbdTb

(

dTb

d(cos θb)

)

, (17.16)
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or

dσ

dφbdTb
=

dσ

dΩb

(

d(cos θb)

dTb

)

. (17.17)

The derivatives inside the large parentheses in (17.16) and (17.17) may be worked out from
(17.14) and (17.15).

(17.15) may be complicated, but is is also very rich in physical content. Several interesting
features should be noted:

1. If Q > 0, then

√

m
a
m

b
Ta cos θb <

√

m
a
m

b
Ta cos2 θb + (m

Y
+m

b
)[m

Y
Q+ (m

Y
−m

a
)Ta] ,

and, therefore, we must always choose the positive sign in (17.15).

2. If Q < 0, then there exists the possibility that, given a a certain value of Ta, at e angle
θb < π/2, there can be two possible values of Tb. There is an energy threshold on Ta

for this to occur. At threshold, θb = 0, as demonstrated in Figure 17.3.

At this threshold, the
√

() term vanishes. This implies that, at Ta = Tth, we have the
condition:

0 = m
a
m

b
Tth cos2 θb + (m

Y
+m

b
)[m

Y
Q+ (m

Y
−m

a
)Tth] .

Solving for Tth gives:

Tth =
−Q(m

Y
+m

b
)

m
Y

+m
b
−m

a

. (17.18)

3. Once Ta > Tth, there is an upper limit on Ta, called T ′
a for this double-valued behavior

on Tb. When Ta = T ′
a, the smaller Tb falls to zero. This requires that:

√

m
a
m

b
Ta cos θb =

√

m
a
m

b
Ta cos2 θb + (m

Y
+m

b
)[m

Y
Q+ (m

Y
−m

a
)Ta] ,

from which we conclude that:

T ′
a =

−Qm
Y

m
Y
−m

a

. (17.19)
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Figure 17.3: Laboratory and center of momentum pictures of the X(a,b)Y interaction process.

4. For double-valued behavior on Tb, combining the results of (17.18) (17.19), we see that
Ta must fall in the range:

m
Y

+m
b

m
Y

+m
b
−m

a

≤ Ta

|Q| ≤
m

Y

m
Y
−m

a

. (17.20)

5. If Tth < Ta < T ′
a, there are also scattering angles for which double-valued behavior can

not exist. This happens when the argument of the
√

() falls to zero. This defines a
maximum scattering angle for double-valued observation. From (17.15), we see that
this maximum angle is given by:

cos2 θmax
b =

m
Y

+m
m

m
a
m

b
Ta

[−m
Y
Q− (m

Y
−m

a
)Ta] (17.21)

These concepts are illustrated in Krane’s Figures 11.2(a) and 11.2(b) on pages 382–384,
as well (eventually) in Figure 17.4.f
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Figure 17.4: Demonstration of the double-valued nature of Tb.

Determining Q from scattering experiments

Up to now, we have assumed that Q was known. In some cases it is not, but, we can
determine it from a scattering experiment. Reorganizing (17.14) as follows,

Q = Tb

(

1 +
m

b

m
Y

)

− Ta

(

1 +
m

a

m
Y

)

− 2 cos θb

(

m
a
m

b

m2
Y

TaTb

)1/2

, (17.22)

appears that we have isolated Q. However, recalling the definition of Q,

Q ≡ (m
a
+m

X
− [m

b
+m

Y
])c2 , (17.23)

our lack of knowledge of Q is tantamount to not knowing, at least with sufficient accuracy,
one (or more) of the masses. For this type of experiment, it is usually the case, that m

Y
is

the unknown factor. “X” is usually in the ground state, and hence, well characterized. “a”
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and “b” are light particles with A ≤ 4, and therefore, extremely well known. “Y” is often
left in an excited state, and is not known. Its ground state mass may be well known, but not
its excited state. So, to recover this situation, we solve for m

Y
in terms of Q, and substitute

for m
Y

in (17.23). We also perform the analysis at θb = π/2 so simplify the arithmetic.
(This is not a necessary step, but it does save brain cells for more useful activities.)

The result is:

Q = Tb − Ta +
(Tama

c2 + Tbmb
c2)

[m
X
c2 +m

a
c2 −m

b
c2] −Q

. (17.24)

The most common approach to solving (17.24) is to form a common denominator, and then
solve the resulting quadratic equation for Q. An alternative is presented below, treating
(17.24) as an iterative or recursive equation.

It goes as follows:

1. Define a time-saving shorthand:

Q = δ +
()

[] −Q
, (17.25)

where δ ≡ Tb − Ta, and we have simply left the contents of the brackets empty. By
using different types of brackets, we keep the symbols from getting mixed up. A clash
of symbols is to be avoided.

2. Form the lowest order solution:

Q0 = δ +
()

[]
, (17.26)

3. The nth correction to Q is found from

n
∑

i=0

Qi = δ +
()

[] −
∑n−1

i=0 Qi

, (17.27)

4. The final answer is

Q =

n
∑

i=0

Qi . (17.28)

The iteration is stopped when the answer is “good enough”.
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Illustration:

Q0 = δ +
()

[]

Q0 +Q1 = δ +
()

[] −Q0

Q0 +Q1 = δ +
()

[]

(

1

1 −Q0/[]

)

Q0 +Q1 ≡ δ +
()

[]
(1 +Q0/[])

Q0 +Q1 = Q0 +Q0()/[]
2

Q1 = Q0()/[]
2 (17.29)

Thus, the fractional correction is:

Q1

Q0
=

(Tama
c2 + Tbmb

c2)

[m
X
c2 +m

a
c2 −m

b
c2]2

. (17.30)

In the worst possible case, m
X

= m
a

= m
b
∼= 4u, and Ta = Tb

∼= 10 MeV, giving Q1/Q0
∼=

5 × 10−3. Since Q-values are known typically to ≈ 1 × 10−4, this can be an important
correction, especially for small-A target nuclei.



254 CHAPTER 17. NUCLEAR REACTIONS

17.3 Isospin

We know that the strong force does not distinguish between protons and neutrons (mostly).
Therefore, one can consider this to be another kind ”of symmetry”, and symmetries have
quantum numbers associated with them. Consider neutrons and protons to be two states of
a more general particle, called the nucleon, a name we have used throughout our discussions.
However, now associate a new quantum number called “isospin”, with the symbol T3, and
the following numerical assignments.

particle T3

p +1
2

n −1
2

A
ZXN

1
2
(Z −N)

Table 17.1: Isospin assignments

The assignment of the plus sign to the proton is completely arbitrary, but now part of
convention.

Historically, isospin has been called isotopic spin, where a given Z, T3 combination identifies a
specific isotope associated with Z, or isobaric spin, where a given A, T3 combination identifies
a specific isobar associated with A. Today, “isospin” appears to be the preferred name.

As long as the strong force does not distinguish between isobars associated with a given A,
we expect to see some similarity in the excitation levels associated with nuclei with the same
A. There is evidence for this, as seen in Figure 11.5 in Krane.

Isospins combine just as regular spins do. This is seen in the following example:

The dinucleon

Let us now consider the possible ways of combining two nucleons. We form the composite
wavefunctions for two nucleons, one with spatial wavefunction ψ(~x1) and one with spatial
wavefunction ψ(~x2). We label these as nucleon “1” and “2”. We also in include there isospin
as either up. ↑, or down, ↓. Finally, since they are intrinsic spin-1

2
particles, they must obey

the Pauli Exclusion Principle, and form composite wavefunctions that are antisymmetric
under the exchange of quantum numbers. Doing so, results in:

Note that the parity is associated with the space part of the wavefunction only. Also note,
that the difference between the observed deuteron and its odd parity counterpart (unob-
served) is how the antisymmetry is achieved. In the unobserved case, it is the spatial part
that is antisymmetrized, while the observed deuteron has a positive parity spatial wavefunc-
tion and an antisymmetrized isopin wavefunction. In order to make full use of the attractive
strong force, the nucleons must come into close proximity. All of the members of the isobaric
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T T3 composite wavefunction π

1 1 2−1/2[ψ1(~x1)ψ2(~x2) − ψ1(~x2)ψ2(~x1)](↑1↑2) -1 diproton
1 0 2−1[ψ1(~x1)ψ2(~x2) − ψ1(~x2)ψ2(~x1)](↑1↓2 + ↓1↑2) -1 odd parity deuteron?
1 -1 2−1/2[ψ1(~x1)ψ2(~x2) − ψ1(~x2)ψ2(~x1)](↓1↓2) -1 dineutron
0 0 2−1[ψ1(~x1)ψ2(~x2) + ψ1(~x2)ψ2(~x1)](↑1↓2 − ↓1↑2) +1 Deuteron

Table 17.2: The dinucleon quantum states

triplet have antisymmetric spatial wavefunctions. That is why none are bound.

17.4 Reaction Cross Sections

Covered elsewhere, and partly in 311.

17.5 Experimental Techniques

Not covered in 312.

17.6 Coulomb Scattering

Covered in 311.

17.7 Nuclear Scattering

Covered in Chapter 10.

17.8 Scattering and Reaction Cross Sections

Consider a ẑ-direction plane wave incident on a nucleus, as depicted in Figure 17.5.

The wavefunction for the incident plane wave:

ψinc = Aeikz . (17.31)



256 CHAPTER 17. NUCLEAR REACTIONS

Figure 17.5: Scattering of a plane wave from a nucleus.

We have seen elsewhere, that (17.31) is a solution to the Schrödinger equation in a region
of space where there is no potential (or a constant potential). Since no potential is also a
central potential (in the sense that it does not depend on orientation), we should be able
to recast the solution in spherical-polar coordinates, and identify the angular momentum
components of the incident wave. If we did this, we could show:

ψinc = Aeikz = A

∞
∑

l=0

il(2l + 1)jl(kr)Pl(cos θ) . (17.32)

The jl’s are the “spherical Bessel functions, and the Pl’s are the regular Legendre polyno-
mials, that we have encountered before.

The properties of the jl’s are:
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j0(z) =
sin z

z

j1(z) =
sin z

z2
− cos z

z

j2(z) =
3 sin z

z3
− 3 cos z

z2
− sin z

z

jl(z) = (−z)l

(

1

z

d

dz

)l

j0(z)

lim
z→0

jl(z) =
zl

(2l + 1)!!
+ O(zl+1)

lim
z→∞

jl(z) =
sin(z − lπ/2)

z
+ O(z−2)

(17.33)

Thus, we have identified the angular momentum components of the incoming wave, with an-
gular momentum components l~. The magnetic quantum number associated with l, namely,
ml does not appear in (17.32) because (17.31) has azimuthal symmetry. This is not a re-
quirement, and is easy to account for, but is not required for our discussions. (17.33) is
called the “partial wave expansion”, and exploiting it to extract physical results is called
“partial wave analysis”.

17.8.1 Partial wave analysis

Semi-classical introduction

As an introduction to this section, first let’s estimate the cross section of a nucleus, using
semi-classical physics. We know, from classical scattering analysis, that the impact parame-
ter, b, is associated with the angular momentum of the projectile about the target, centered
at the origin. Equating the quantum mechanical angular momentum of the wave component
with its classical counterpart, we get:

pb = l~ , (17.34)

or

b =
l~

p
=

l

2π

h

p
= l

λ

2π
= lλ̄ , (17.35)

in terms of the reduced wavelength, λ̄.

So, continuing with this semiclassical train of thought:
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l = 0 → 1 covers the area πλ2

l = 1 → 2 covers the area (4 − 1)πλ2

l → l + 1 covers the area [(l + 1)2 − l2]πλ2 = (2l + 1)πλ2

Summing up all these contributions:

σ =

[R/λ̄]
∑

l=0

(2l + 1)πλ̄2 = π(R + λ̄)2 , (17.36)

where R is the nuclear radius. Thus, we see that λ̄ factors into the computation of the cross
section as an effective size of the projectile.

The quantum approach

We start by recognizing that we wish to consider the mathematic representation of the wave
at locations far from the scattering center. Thus, for kr ≫ 1, we use the asymptotic result
of (17.33),

lim
kr→∞

jl(kr) =
sin(kr − lπ/2)

kr
= i

[

e−i(kr−lπ/2) − ei(kr−lπ/2)
]

2kr
. (17.37)

Combining (17.36) with (17.32) gives,

ψinc = Aeikz =
A

2kr

∞
∑

l=0

il+1(2l + 1)
[

e−i(kr−lπ/2) − ei(kr−lπ/2)
]

Pl(cos θ) . (17.38)

This is an interesting result! The e−ikr/(kr) part represents a spherical wave converging
on the nucleus, while the eikr/(kr) part represents a spherical wave moving away from the
nucleus. The nucleus can only modify the outgoing part. One way of representing this is via
a modification of the outgoing part. Thus, the total solution, with incoming and scattered
parts, is written:

ψ = Aeikz =
A

2kr

∞
∑

l=0

il+1(2l + 1)
[

e−i(kr−lπ/2) − ηle
i(kr−lπ/2)

]

Pl(cos θ) , (17.39)

where ηl is a complex coefficient that represents the mixing the two parts of the outgoing
wave, part of which is associated with the initial plane wave, as well as the scattered part.
Thus, the total wave is a combination of both,

ψ = ψinc + ψsc , (17.40)



17.8. SCATTERING AND REACTION CROSS SECTIONS 259

allowing us to express the scattered part by itself,

ψsc =
Aieikr

2kr

∞
∑

l=0

(2l + 1)(1 − ηl)Pl(cos θ) . (17.41)

As in 1D, we use the probability current density to evaluate the effectiveness of the scatterer.
The scattered probability current is:

jsc =
~

2im

[

ψ∗
sc

(

∂ψsc

∂r

)

−
(

∂ψ∗
sc

∂r

)

ψsc

]

. (17.42)

Putting (17.41) into (17.42) results in:

jsc = |A|2
(

~

4kr2

)

∣

∣

∣

∣

∣

[ ∞
∑

l=0

(2l + 1)(1 − ηl)Pl(cos θ)

]
∣

∣

∣

∣

∣

2

. (17.43)

Since the incoming wave has probability current

jinc =
~k

m
, (17.44)

the differential cross section is expressed as follows:

dσ

dΩ
=

jsc
jinc

r2 , (17.45)

in analogy with the 1D transmission and reflection coefficients.

Then, we can show that

dσsc

dΩ
=

1

4k2

∣

∣

∣

∣

∣

∞
∑

l=0

(2l + 1)(1 − ηl)Pl(cos θ)

∣

∣

∣

∣

∣

2

, (17.46)

and

σsc =
π

k2

∞
∑

l=0

(2l + 1)|1 − ηl|2 . (17.47)

Since both the incident and outgoing waves have wavenumber k, the cross sections discussed
above model “elastic” scattering. Elastic scattering is characterized by no loss of probability
of the incoming particle. Mathematically, this expressed by,
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|ηl| = 1 ,

for all l. Thus, the only thing that the target does is to redirect the wave and shift its phase.
Hence we, define a phase shift, δl, for each l-component, using the following convention,

ηl = e2iδl ,

from which we can derive:

σelas
sc = 4πλ̄2

∞
∑

l=0

(2l + 1) sin2 δl . (17.48)

From now on, we’ll reserve the name, σsc for elastic scattering only. Note that 1/k =
λ/(2π) ≡ λ̄.

Reaction cross sections

Generally, however, |ηl| < 1, as the incoming beam can be absorbed, and part of it unab-
sorbed. We will identify:

dσr

dΩ
=
jin − jout

jinc

r2 , (17.49)

as the reaction cross section, involving the difference between the currents of the incoming
and outgoing spherical waves.

From (17.38) we see that:

ψin =
A

2kr

∞
∑

l=0

i2l+1(2l + 1)
[

e−i(kr−lπ/2)
]

Pl(cos θ)

=
Aie−ikr

2kr

∞
∑

l=0

i2l(2l + 1)Pl(cos θ) (17.50)

ψout = − A

2kr

∞
∑

l=0

i2l(2l + 1)ηl

[

ei(kr−lπ/2)
]

Pl(cos θ)

=
−Aieikr

2kr

∞
∑

l=0

(2l + 1)ηlPl(cos θ) . (17.51)

Adapting (17.42) we obtain the incoming and outgoing probability currents:
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jin = |A|2
(

~

4kr2

)

∣

∣

∣

∣

∣

[ ∞
∑

l=0

i2l(2l + 1)Pl(cos θ)

]
∣

∣

∣

∣

∣

2

(17.52)

jout = |A|2
(

~

4kr2

)

∣

∣

∣

∣

∣

[ ∞
∑

l=0

(2l + 1)ηlPl(cos θ)

]
∣

∣

∣

∣

∣

2

(17.53)

Combining (17.49) with (17.44), (17.52) and (17.53), and then integrating over all angles,
results in:

σr = πλ̄2
∞
∑

l=0

(2l + 1)(1 − |ηl|2) . (17.54)

Note that for elastic scattering, σr = 0.

Total cross section

The total cross section is the sum of the inelastic and reaction cross sections. Adding (17.47)
and (17.54) result in:

σt = σsc + σr = 2πλ̄2
∞
∑

l=0

(2l + 1)[1 − ℜ(ηl)] , (17.55)

where ℜ() is some typesetting software’s idea of “real part”.

Our results are summarized in the following table, for the contribution to the cross sections
from the l’th partial wave.

Process ηl σl
sc/(πλ̄

2(2l + 1)) σl
r/(πλ̄

2(2l + 1))
elastic only |ηl| = 1 |1 − ηl|2 0 no loss of probability
absorption only ηl = 0 1 1 equal!
Mixed ηl =? |1 − ηl|2 1 − |ηl|2 work to do!

The most interesting feature is, that even with total absorption of the l’th partial wave,
elastic scattering is predicted. This is because waves will always (eventually) fill in the
shadow region behind an absorber. A good way to demonstrate this for yourself, is to hold a
pencil near the ground, on one of those rare sunny days in Michigan. Near the ground, the
shadow is sharp, well-defined. As you raise the pencil the edges become fuzzy. Eventually,
if you hold it high enough, its shadow disappears entirely.

How are the partial wave amplitudes are computed?
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Although the foregoing analysis is elegant, we still have considerable work to do for the gen-
eral case. For the theoreticians amongst us, we have to solve the radial Schrödinger equation
for the potential that causes the scattering (assuming it’s a central potential) and guarantee
slope and value continuity everywhere. The ηl’s are then determined the asymptotic forms of
the solutions. Typically a numerical procedure is followed. For the experimentalists among
us, the differential cross sections have to be mapped out, and the ηl’s are inferred by invert-
ing equations (17.46) as well as its reaction counterpart. Fortunately, for nuclear scattering,
only the first few partial waves are important. Interested readers should consult Krane’s
book, Section 4.2 for more details.

17.9 The Optical Model

The optical model of the nucleus employs a model of the nucleus that that has a complex
part to it’s potential. Calling this generalized potential, U(r), we have the definition:

U(r) = V (r) − iW (r) , (17.56)

where V (r) is the usual attractive potential (treated as a central potential in the optical
model), and it’s imaginary part, W (r), where W (r) is real and positive. The real part
is responsible for elastic scattering, while the imaginary part is responsible for absorption.
(With a plus sign, in (17.56), this can even be employed to model probability increase
(particle creation), but I have never seen it employed in this fashion.)

The theoretical motivation for this approach comes from the continuity relationship for
Quantum Mechanics (derived in NERS311):

∂P

∂t
+ ~∇ · ~S =

2

~
Ψ∗ℑ(UΨ) , (17.57)

where P is the probability density, ~S is the probability current density, and ℑ() is some
typesetting software’s idea of “imaginary part”. When the potential is real, probability is
conserved, the left-hand side of (17.57) expressing the balance between probability and where
it’s moving. (This is really the transport equation for probability.) When the imaginary part
is negative, loss of probability is described. When the imaginary part is positive, (17.57)
describes probability growth.

The potentials that are used for optical modeling are:

V (r) =
−V0

1 + e(r−RN)/a
,

W (r) = dV/dr , (17.58)
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where RN is the nuclear radius, a is the skin depth, and −V0 is the potential at the center
of the nucleus (almost). These are plotted in Figure 17.6

Figure 17.6: The optical model potentials

This is a clever choice for the absorptive part. The absorption can only happen at the edges
of the nucleus where there are vacancies in the shells (at higher angular momentum).

See Figures 11.17 and 11.18 in Krane.

17.10 Compound-Nucleus Reactions

See Figure 17.7.

In this reaction, projectile “a” , enters the nucleus with a small impact parameter (small
value of l). It interacts many times inside the nucleus, boosting individual nucleons into
excited states, until it comes to rest inside the nucleus. This“ compound nucleus” has too
much energy to stay bound, and one method it may employ is to “boil off” nucleons, to
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Figure 17.7: Schematic of a compound nucleus reaction

reach stability. One, two, or more nucleons can be shed. The nucleons that are boiled off,
are usually neutrons, because protons are reflected back inside, by the Coulomb barrier.
Symbolically, the reaction is:

a +X → C∗ → Yi + bi

The resultant light particle bi can represent one or more particles.

In this model, the reaction products lose track of how the compound nucleus was formed.
The consequences and restrictions of this model are:

1. Different initial reactants, a + X can form the same C∗ with the same set of decays.
Once the projectile enters the nucleus it loses identity and shares its nucleons with C∗.
It should not matter how C∗ is formed. Figure 11.19 in Krane shows how different
ways of creating 64

30Zn∗ leads (mostly) to the same cross sections for each decay channel.

2. The bi are emitted isotropically (since the compound nucleus loses sense of the ini-
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tial direction of a, since it scatters many times within the compound nucleus and
“isotropises”. This is especially important when the projectile is light, and the angular
momentum not too high. See Figure 11.20 in Krane for experimental evidence of this.

3. Initial projectile energies are generally in the range 10–20 MeV, and X is usually a
medium or heavy nucleus. This is so that the projectile can not exit the nucleus with
its identity, and some of its initial kinetic energy, intact.

4. In order for the compound nucleus to form, it needs substantial time to do so, typically,
10−18–10−16 s.

As an example:

p+63
29Cu ց ր 63

30Zn + n

α+60
28Ni =⇒64

30Zn∗ =⇒ 62
29Cu + n+ p

ց 62
30Zn + 2n

Heavy projectile (such as α-particle’s) with large l exhibit compound nucleus decays that
have a completely different signature. The bi’s are generally emitted in the forward and
backward direction, as both the angular momentum and angular momentum must be con-
served. As the projectiles energy increases, once can see more neutrons being emitted in
proportion. Krane’s Figure 11.21 illustrates this very well.

17.11 Direct Reactions

A “direct reaction” involves a projectile that is energetic enough to have a reduced wave-
length, λ̄, of the order of 1 fm (a 20 MeV nucleon, for example), that interacts in the
periphery of the nucleus (where the nuclear density starts to fall off), and interacts with
single valence nucleon. That single nucleon interacts with the projectile leaving them both
in bound, but unstable orbits. This state typically lives for about 10−21 s, which is long
enough for the valence nucleon and projectile to (in classical terms) make several round trips
around the nucleus, before one of them finds a way to escape, possibly encountering the
Coulomb barrier along the way. Since angular and linear momentum must be conserved, the
ejected particle is generally ejected into the forward direction.

Krane shows some interesting data in his Figure 11.19, where both the compound nucleus
cross section and direct reaction cross section for 25Mg(p, p)Mg25 are plotted, having been ob-
tained from measurements. The compound nucleus interaction is seen to be nearly isotropic,
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while the direct reaction is peaked prominently in the forward direction. The measurement
makes use of the different lifetimes for these reactions, to sort out the different decay modes.

A (p, p) direct reaction, if the nucleus is left in its ground state, is an elastic collision.
The same may be said for (n, n) collisions. If the nucleus is left in an excited state, it
is an inelastic collision. (p, p) and (n, n) direct reactions are sometimes called “knock-out”
collisions. Other examples of inelastic direct reaction collisions are (n, p) and (p, n) knock-out
collisions. Yet other examples are “deuteron stripping” reactions, (d, p) or (d, n), and “α-
stripping” reactions, (α, n) and (α, p). The inverse reactions are also possible, (p, d), (n, d),
(n, α), (p, α), and so on. These are called “pick-up” reactions. Measurements of inelastic
direct reaction with light projectiles are very useful for determining the nuclear structure of
excited states.

17.12 Resonance Reactions

We learned most of what we need to know intuitively about resonance reactions, from our
discussion, in NERS311, regarding the scattering of waves from finite-size, finite-depth barri-
ers. Recalling those results, for a particle wave with particle mass, m, energy, E incident on
a potential well, V = −V0 between −R ≤ z ≤ R, and zero everywhere else, the transmission
coefficient turns out to be:

T =
1

1 +
V 2
0

4E(E+V0)
sin2(2KR)

, (17.59)

where K =
√

2m(E + V0)/~2. We note that the transmission coefficient is unity, when 2KR
is a multiple of π. This is called a resonance. Resonances are depicted in Figure 17.8 for
neutrons incident on a potential with depth, V = 40 MeV, and nuclear radius, R = 3.5 fm.
Note the dense population of resonant lines. Figure 17.9 isolates only one of these resonances.

In 3 dimensions the analogous thing happens. In fact, it resonances are common everyday
occurrence. All it requires is a bound state that has a given frequency, that can be matched
by an external identical, or nearby frequency. All radios work this way. Unbounded radio
waves are received by antennae that have bound-state frequencies that match. That’s a good
resonance. Good resonances are responsible for a piano’s rich tone. If you look ”underneath
the hood” of a piano, you may have wondered why some hammers hit 3 strings simultane-
ously (upper registers), two strings in the middle registers, and one in the bass registers.
These nearby strings, grouped at the same pitch, when struck together, cause sympathetic
vibrations and overtones that add to the rich sound. Strings of different pitches can interact
as well. For example, try the following (on an acoustic piano): Strike A4 (440 Hz the A
above middle C) quite hard, and then hold down the damper pedal, if your hearing acuity
is quite good, you may start to hear E5 (659.26 = 1.4983×440 Hz, a fifth above A4) start to
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ring, and then, possibly, C#6 (an octave plus a third above A4, 1108.73 = 2.5198×440 Hz).
Both are near half-integral multiples of 440, and are close enough to resonate. You may have
wondered why old-school piano technicians can tune an entire piano, with one tuning fork
(A4). A4 is tuned against the fork, then E5, and so on, in increments of fifths and octaves,
until the job is complete.

Returning now, to nuclei, it is the same effect, except that the bound-state frequencies are
defined by the quantum mechanical solutions to the Schrödinger equation. It does not matter
that a level is unoccupied. If a passing free neutron has the right energy (frequency), that
level will ring, and cause a sharp spike in the cross section.

Shape of a resonance

We can use our partial wave analysis to analyze this. Starting with (17.55):

σt = σsc + σr = 2πλ̄2

∞
∑

l=0

(2l + 1)[1 − ℜ(ηl)] . (17.60)

For illustrative purposes we shall consider the resonance

n+60Co →60Co + n

that has a known resonance in the vicinity of En = 130 keV.

In this case,

λ̄ =
~c√

2mnc2T
≈ 400fm ,

a reduced wavelength that is considerably larger than the nucleus.

Let us imagine that just one of the ηl’s is causing the resonance. From (17.60), we see that
σt maximizes when ℜ(ηl) = −1. Also, considering that this resonance we’ll model as an
elastic process, we set

ηl = −1 = e2iδl ⇒ δl = π/2 .

To determine the shape of the resonance, we shall expand the phase shift in the vicinity of
En, where δl(En = Eres) = π/2.

Doing so,

cot δl(En) → cot δl(En)
∣

∣

∣

δl(Eres)=π/2
+ (En − Eres)

∂ cot δl(En)

∂En

∣

∣

∣

En=Eres

+ · · ·
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∂ cot δl(En)

∂En
= −∂δl(En)

∂En
− cos2 δl(En)

sin δl(En)

∂δl(En)

∂En

The second term vanishes above. Defining

Γ = 2

(

∂δl(En)

∂En

)−1
∣

∣

∣

En=Eres

,

we have, from the above,

cot δl(En) = −En − Eres

Γ/2
, (17.61)

Since,

sin() =
1

√

1 + cot2() ,

we have

sin δl =
Γ/2

[(En − Eres)2 + Γ2/4]1/2
. (17.62)

Finally, combining (17.62) with (17.48)

σel
sc(En) = πλ̄2(2l + 1)

Γ2

[(En − Eres)2 + Γ2/4]
. (17.63)

At resonance,

σelas
sc (En) = 4πλ̄2(2l + 1) . (17.64)

In this example, λ̄ ≈ 200 fm, giving a resonant cross section of about 200(2l + 1) barns.
Recalling that the cross section area of a typical nucleus is about 1 b, this is enormous!

What we have calculated so far is only for the case where there is one exit mode for the

a+X −→ X + a

resonance.

Gregory Breit and Eugene Wigner generalized (17.63) as follows:
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σel
sc(En; [X(a, a)X]) = πλ̄2 2I + 1

(2sa + 1)(2s
X

+ 1)

Γ2
aX

[(En − Eres)2 + Γ2/4]
(17.65)

σin
sc(En; [X(a, bi)Yi]) = πλ̄2 2I + 1

(2sa + 1)(2s
X

+ 1)

ΓaXΓbiYi

[(En − Eres)2 + Γ2/4]
(17.66)

The I in the above equations comes from the coupling of the intrinsic spins of the reactants
with the orbital angular momentum of the outgoing wave component,

~I = ~s
X

+ ~sa +~l .

Γ in the denominator of both expressions above, pertains to the sum of all the partial widths
of all the decay modes:

Γ =
∑

i

Γi .

The factors ΓaX and ΓbiYi
in the above equations, pertain to the partial interaction probabil-

ities for resonance formation, ΓaX and decay, ΓaX , in the case of one of the elastic channels,
or ΓbiYi

.

Shape-elastic scattering

Resonant scattering rarely takes place in isolation, but in addition to other continuous elastic
scattering, such as Rutherford scattering from a potential. If we call the potential scattering
phase-shift, δP

l , one can show, from (17.47), that:

σsc = πλ̄2(2l + 1)

∣

∣

∣

∣

e−2δP
l − 1 + i

iΓ

(En − Eres) + iΓ/2

∣

∣

∣

∣

2

. (17.67)

Far from the resonance, the resonance dies out, and the cross section has the form:

σsc −→ 4πλ̄2(2l + 1) sin2 δP
l ,

while at the resonance, the resonance dominates and we have:

σsc ≈ 4πλ̄2(2l + 1) .

In the vicinity of the resonance, the Lorentzian shape is skewed, with a “dip” for E < Eres,
that arises from destructive interference between the potential and resonance phases. See
Krane’s Figures 11.27 and 11.28 for examples of these.
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Figure 17.8: Resonant structure for an incident neutron. In this case, V0 = 40 MeV, R = 3.5
fm.
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Figure 17.9: Resonant structure near one of the peaks.
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Problems

1. Derive (17.10).

2. Derive (17.11).

3. Derive (17.14) and (17.15).

4. Work out the derivatives inside the large parentheses in (17.16) and (17.17).

5. Solve the quadratic equation implied by (17.24).

6. Work out Q2 in (17.27).

7. Derive (17.47).

8. Derive (17.48).

9. The screened Rutherford cross section, differential in solid angle, is often used to de-
scribe the angular distribution of light charged particles scattering elastically from
heavy nuclei. It has the following form:

dσ

dΩ
=

A

(1 − cos θ + a)2
,

where A and a are constants for any nucleus-projectile combination. The total cross
section is known to be σ0.

(a) Show that:

A = σ0
a(2 + a)

4π
.

(b) If the forward (θ = 0) intensity is 106 times greater than that in the backward
direction (θ = π), show that:

a =
2

999
.

(c) If the forward (θ = 0) intensity is 4 times greater than that in the backward
direction (θ = π), Show that:

a = 2 .

(d) In the limit that a −→ ∞, show that the cross section is isotropic.

10. In the X(a, b)Y reaction with known Q and X at rest, it was shown that:

T
1/2
b =

(mambTa)
1/2 cos θ ± {mambTa cos2 θ + (mY +mb)[mYQ+ (mY −ma)Ta]}1/2

mY +mb
.

Show that:
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(a) When Q < 0, there is a minimum value of Ta for which the reaction is not possible.
Show that this threshold energy is given by:

Tth = (−Q)
mY +mb

mY +mb −ma
.

(b) When Q < 0, and Ta > Tth, Tb can take on two values. The maximum Ta that
this can occur is called T ′

a. Show that:

T ′
a = (−Q)

mY

mY −ma
.

11. Projectile A, that has mass MA, scatters elastically off of target nucleus X, that has
mass MX . Q = 0, and there is no exchange of matter.

(a) Find a relationship between A’s magnitude of momentum, and its angle of deflec-
tion.

(b) Show that there is a maximum scattering angle only when mA > mX .
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(c) Find the expression for this maximum angle, when mA > mX .



Chapter 18

†Mathematical Techniques and
Notation Used in this Book

18.1 Vectors and Operators in 3D

For some vector ~a, written explicitly in terms of its three components in a geometry with 3
orthonormal basis vectors (α̂, β̂, γ̂):

~a = aαα̂ + aββ̂ + aγ γ̂ ,

where α̂, β̂ and γ̂, are unit vectors along the α-, β-, and γ- directions.

Its magnitude squared is written several ways:

a2 = |~a|2 = ~a · ~a ,

and is given by:

a2 = (aαα̂ + aβ β̂ + aγ γ̂) · (aαα̂ + aβ β̂ + aγ γ̂) = (a2
α + a2

β + a2
γ)

This is often a form of confusion since, without context, a2 could stand for a times a or ~a ·~a.
It should be clear from the context in which it is used.

The magnitude of a vector is:

a = |~a| = +
√

a2
α + a2

β + a2
γ .

Note that the positive square root is taken.

275
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Some other useful identities:

~a ·~b = aαbα + aβbβ + aγbγ = |~a||~b| cos θ~a,~b

|~a+~b|2 = a2 + 2~a ·~b+ b2 (18.1)

where θ~a,~b is the angle between the vectors ~a and ~b.

18.1.1 Some common coordinate system representations

The common realizations of 3D coordinate ststems are:

coordinate system variable names domain unit vectors
rectilinear (x, y, z) −∞ < x <∞ (x̂, ŷ, ẑ), or

−∞ < y <∞ (̂ı, ̂, k̂), or
−∞ < z <∞ (n̂x, n̂y, n̂z)

cylindrical (ρ, φ, z) 0 ≤ ρ <∞ (ρ̂, φ̂, ẑ), or
−∞ < z <∞ (n̂ρ, n̂φ, n̂z)
0 ≤ φ < 2π

spherical-polar (r, θ, φ) 0 ≤ r <∞ (r̂, θ̂, φ̂), or
0 ≤ θ ≤ π (n̂r, n̂θ, n̂φ)
0 ≤ φ < 2π

The 3D rectilinear coordinate system

The vector for position in this coordinate system is:

~x = xx̂+ yŷ + zẑ (18.2)
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with the properties:

x = x̂ · ~x ; y = ŷ · ~x ; z = ẑ · ~x (18.3)

An elemental volume, dV = dx dy dz in this coordinate system is shown below.

A 3D integral in this coordinate system is represented by:

∫

d~x f(x, y, z) or

∫

dx

∫

dy

∫

dz f(x, y, z) or

∫∫∫

dx dy dz f(x, y, z) (18.4)

All forms of (18.4) are employed in this book.

The 3D cylindrical-planar coordinate system

The vector for position in this coordinate system is:

~x = ρρ̂+ ρφ̂+ zẑ (18.5)

An elemental volume, dV = rdρ dφ dz in this coordinate system is shown below.
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A 3D integral in this coordinate system is represented by:

∫

d~x f(ρ, φ, z) or

∫

dρ

∫

ρ dφ

∫

dz f(ρ, φ, z) or

∫∫∫

ρ dρ dφ dz f(ρ, φ, z) (18.6)

The 3D spherical-polar coordinate system

The vector for position in this coordinate system is:

~x = rr̂ + rθ̂ + r sin θφ̂ (18.7)

An elemental volume, dV = r2dr dθ dφ in this coordinate system is shown below.
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A 3D integral in this coordinate system is represented by:

∫

d~x f(r, θ, φ) or

∫

dr

∫

rdθ

∫

r sin θdφ f(r, θ, φ) or

∫∫∫

r2 sin θ drdθdφ f(r, θ, φ)

(18.8)

Yet another form used in this book is

∫

r2drdΩ f(r, θ, φ) (18.9)

where dΩ is the differential element of solid angle.

Transformations between coordinate systems

Here are the two most common transformations:

~x = ρ cosφx̂+ ρ sin φx̂+ zẑ

= r sin θ cos φx̂+ r sin θ sin φŷ + r cos θ (18.10)
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18.2 Common Trigonometric Relations

cos (a± b) = cos a cos b∓ sin a sin b

sin (a± b) = sin a cos b± cos a sin b

cos2 a =
1 + cos (2a)

2

sin2 a =
1 − cos (2a)

2
sin2 a+ cos2 a = 1

1 + cos a = 2 cos2 (a/2)

1 − cos a = 2 sin2 (a/2) (18.11)

18.3 Common Hyperbolic Functions

cosh a =
ea + e−a

2

sinh a =
ea − e−a

2
cosh (a± b) = cosh a cosh b± sinh a sinh b

sinh (a± b) = sinh a cosh b± cosh a sinh b

cosh2 a =
cosh (2a) + 1

2

sinh2 a =
cosh (2a) − 1

2
cosh2 a− sinh2 a = 1

cosh a + 1 = 2 cosh2 (a/2)

cosh a− 1 = 2 sinh2 (a/2) (18.12)
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18.4 Complex Numbers or Functions

i =
√
−1

z = x+ iy

z∗ = x− iy

x = Re(z)

y = Im(z)

eiy = cos y + i sin y

cosx =
eix + e−ix

2

sin x =
eix − e−ix

2i
cos ix = cosh x

sin ix = i sinh x

cosh ix = cosx

sinh ix = i sin x

cos z = cosx cosh y − i sin x sinh y

sin z = sin x cosh y + i cosx sinh y

cos2 z + sin2 z = 1

cosh z = cosh x cos y + i sinh x sin y

sinh z = sinh x cos y + i cosh x sin y

cosh2 z − sinh2 z = 1 (18.13)

where x and y are real.
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18.5 3D Differential Operators in a Cartesian Coordi-

nate System

(α̂, β̂, γ̂) = (x̂, ŷ, ẑ)

~∇ψ = x̂
∂ψ

∂x
+ ŷ

∂ψ

∂y
+ ẑ

∂ψ

∂z

~∇ · ~F =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

~∇× ~F = x̂

(

∂Fz

∂y
− ∂Fy

∂z

)

+ ŷ

(

∂Fx

∂z
− ∂Fz

∂x

)

+ ẑ

(

∂Fy

∂x
− ∂Fx

∂y

)

~∇ · ~∇ψ = ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(18.14)

where ψ is an arbitrary scalar function, and ~F is an arbitrary vector function of (x, y, z).

18.6 3D Differential Operators in a Cylindrical Coor-

dinate System

(α̂, β̂, γ̂) = (ρ̂, φ̂, ẑ)

~∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

1

ρ

∂ψ

∂φ
+ ẑ

∂ψ

∂z

~∇ · ~F =
1

ρ

∂(ρFρ)

∂ρ
+

1

ρ

∂Fφ

∂φ
+
∂Fz

∂z

~∇× ~F = ρ̂

(

1

ρ

∂Fz

∂φ
− ∂Fφ

∂z

)

+ φ̂

(

∂Fρ

∂z
− ∂Fz

∂ρ

)

+ ẑ
1

ρ

(

∂(ρFφ)

∂ρ
− ∂Fρ

∂φ

)

∇2ψ =
1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
(18.15)
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18.7 3D Differential Operators in a Spherical Coordi-

nate System

(α̂, β̂, γ̂) = (r̂, θ̂, φ̂)

~∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ

~∇ · ~F =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ

~∇× ~F = r̂
1

r sin θ

(

∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)

+ θ̂

(

1

r sin θ

∂Fr

∂φ
− 1

r

∂(rFφ)

∂r

)

+ φ̂
1

r

(

∂(rFθ)

∂r
− ∂Fr

∂θ

)

∇2ψ =
1

r2

∂

∂r

(

r2∂ψ

∂r

)

+
L2(θ, φ)ψ

r2

∇2ψ =
1

r

∂2(rψ)

∂r2
+

L2(θ, φ)ψ

r2
(alternative form)

L2(θ, φ)ψ ≡ 1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

sin2 θ

∂2ψ

∂φ2
(18.16)

18.8 Dirac, Kronecker Deltas, Heaviside Step-Function

∫ x2

x1

dx δ(x)f(x) = f(x0), if x1 ≤ x0 ≤ x2 (Dirac′s delta function)

= 0, if x0 < x1, or, x0 > x2

δmn = 1, if m = n (Kronecker′s delta)

= 0, if m 6= n

θ(x) = 1, if x ≥ 0 (Heaviside′s step function)

= 0, if x < 0 (18.17)

18.9 Taylor/MacLaurin Series

Let f(x) be a function of a single variable that is infinitely differentiable. We define f (k)(a)
to be the kth derivative of f(x), evaluated at x = a. That is,
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f (k)(a) =

(

dkf(x)

dxk

)

x=a

f (0)(a) = f(a)

f (1)(a) = f ′(a)

f (2)(a) = f ′′(a)

.

.

etc. (18.18)

The Taylor Series of f(x) in the vicinity of x = a is

f(x) =
∞
∑

k=0

f (k)(a)

k!
(x− a)k . (18.19)

When a = 0, the series is known at the MacLaurin Series:

f(x) =
∞
∑

k=0

f (k)(0)

k!
xk . (18.20)

Examples:

log(1 + x) = x− x2

2
+
x3

3
− x4

4
· · ·

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
· · ·

A+Bx+ Cx2 = A+Ba+ Ca2 + (B + 2Ca)(x− a) + C(x− a)2

(1 − β2)−1/2 = 1 +
β2

2
+

3

8
β4 · · · (18.21)


