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Introduction 

About this book 
In this textbook analytical methods are developed for the response and failure of the primary structural compo-
nents of aircraft. Newton's laws of motion, Hooke s law, and the first law of thermodynamics are the basis to 
model the thermoelastic response of thin-walled, straight bars and coplanar curved bars. Analytical methods 
include energy principles to develop Castigliano's theorems and to develop the cross-sectional material law for 
transverse shear and torsion. Stiffened shells typical of aircraft structures are analyzed with the thin-walled bar 
theory. Externally prescribed loads are due to accelerated flight and the thermal environment. Velocity-load fac-
tor (V-n) diagrams for maneuvers and gusts are described to evaluate flight loads. 

Initiation of failure is predicted by one of the following criteria: von Mises yield criterion for ductile 
metals; the critical load to cause buckling (failure by excessive displacements); fracture criteria for the critical 
stress to cause crack propagation; and Puck’s criterion for the brittle failure modes in fiber-reinforced polymer 
composites (FRP). 

The subject of structural stability of discrete conservative systems introduces the methods of stability 
analysis, classification of bifurcation buckling problems, the concept of imperfection sensitivity, and snap-
through at a limit point. Static instability of an elastic column from pre-buckling equilibrium, buckling, and 
through initial post-buckling is presented in detail. Buckling of flat rectangular plates subject to compression and 
shear is presented in a qualitative way using the classic charts from the National  Advisory Committee for Aero-
nautics (NACA). The analysis for the static instability of a wing in steady incompressible flow, or divergence, is 
part of the discussion of aeroelastic phenomena. 
• Results from linear elastic fracture mechanics (LEFM) are introduced to illustrate the relation between crack

size and the stress to cause crack propagation. Airplane damage-tolerant design is based on LEFM such that
subcritical length cracks do not grow to critical length between inspection intervals.

• The incentive to study optimal design is illustrated by the example of an aluminum wing spar. The objective
is to achieve minimum weight by a search for two design variables. Constraints on yielding, buckling, and
fracture are evaluated with the thin-walled bar theory.

• The analyses are developed for closed and open section bars made from fiber-reinforced polymer compos-
ites. The cross-sectional compliance matrix for bars with a closed cross-sectional contour and an open cross-
sectional contour include shear-extension coupling. The first ply failure envelope for a graphite epoxy circu-
lar tube subject to an axial force and torque is determined by Puck’s intralaminar criterion. Interlaminar fail-
ure, or delamination, is modeled with fracture mechanics, and the method is illustrated by analyses of
standard fracture test specimens.

• Numerical methods for static analysis begin with the direct stiffness method, which originated to model skel-
etal structures consisting of bars connected by joints. Applications include coplanar trusses, beams, and co-
planar frames. The finite element method is developed from the integral formulation of the ordinary
differential equations of an axial bar and a beam.

• Analyses for the linear elastic, dynamic response of axial bars, coplanar trusses, beams, and coplanar frames
are presented using the finite element method and the mode-separation method. Hamilton’s principle and
Lagrange’s equations are developed for discrete mechanical systems.

• Numerous examples to illustrate the application of the structural analysis are presented in each chapter us-
ing either U.S. customary units. or SI units.

I acknowledge the technical discussions with Professors William Hallauer, Raphael Haftka, Rakesh 
Kapania, Raymond Plaut, and Mayuresh Patil whose contributions to the subject matter of this course have been 
used in the preparation of the text. I accept responsibility for any errors in the text, and would appreciate if the 
reader would inform me of comments and corrections via email (erjohns4@vt.edu). Thanks to Professor Anita 
Walz, open education librarian at Virginia Tech, and her staff for all the work necessary to publish this text as 
an open educational resource. Also, thanks to Mr. Joseph Brooks and Ms. Varakini Sanmugadas who assisted 
in the preparation of the text. 

Eric R. Johnson 
Warm Springs, Virginia 
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Audience 
This text is evolved from lecture notes by the author for junior and senior students in the aerospace engineering 
curriculum at Virginia Tech. The subjects covered in the book presume some knowledge of statics, dynamics of 
rigid bodies, mechanics of deformable bodies, and mechanical vibrations. Several practice exercises in the text 
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CHAPTER 1

 

Function of flight vehicle 
structural members

 

The purpose of this chapter is to present a brief description of aircraft structural members and their function.

A structure may be defined as any assemblage of materials that is intended to sustain loads. It is important to 
recognize that structures are made from materials, and that the history of structures follows the development of 
materials and the development of tools to fabricate the materials. Ashby (1992) details a systematic approach to 
material selection in mechanical design, and the manufacturing processes required produce the functional shape 
of a design. The evolution of the airframe, for example, is tied closely to the introduction of materials and cost-
effective means for their fabrication. Early aircraft were constructed of wire-braced wood frames with fabric cov-
ers. Currently, advanced composite materials are very attractive for weight-sensitive structures, like aircraft, 
because of their high stiffness-to-weight and strength-to-weight ratios. There is an interesting and rich history of 
the evolution of aircraft structures, but for the sake of brevity it is not presented here. Instead, the interested 
reader is referred to the textbook by Curtis (1997). Curtis details the history of fixed–wing aircraft structures 
from 1903 to modern aircraft. 

In this text analytical methods are developed for the response and failure of the primary structural compo-
nents of aircraft. The primary structure of a flight vehicle consists of the components that are necessary to sustain 
design ultimate flight and ground loads. Failure of the primary structure causes catastrophic collapse and loss of 
control. For aircraft the primary structure consists of the wings, fuselage, tail, and landing gear. Forms of con-
struction are space trusses/frames, monocoque and semimonocoque.

 

1.1 Space truss/frame

 

A truss structure fuselage is often used in lightweight aircraft. See figure 1.1. It consists of wood or steel tubes 
with a fabric covering providing aerodynamic shape. Members in a space truss are subject to axial forces, and 
members of a space frame are subject to axial forces, shear forces, and bending moments. The fabric covering 
does not add much to the overall stiffness of the structure. 
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1.2 Monocoque and semimonocoque constructions

 

Most flight vehicle structures are thin shells with the cover skin providing the aerodynamic shape. Monocoque 
refers to a shell without supporting stiffening members, whose origin is from the twentieth-century Greek word 
“mono” meaning alone, plus the French “coque” meaning shell. See figure 1.2 The wall of a monocoque struc-
ture has to be strong enough to resist bending and compressive and torsional loads without buckling. The chal-
lenge in monocoque design is maintaining strength within allowable weight limits. Another difficulty with 
monocoque structure is how to design it to accommodate concentrated loads such as engine mountings and wing-
fuselage interface, which may require the incorporation of formers (frames) and bulkheads. For large cross-sec-
tional dimensions the skin of a monocoque structure must be relatively thick. A more efficient type of construc-

tion is one which contains stiffening members that permit a thinner skin. Also, stiffening members can be used to 

Fig. 1.1 A fuselage 
space frame structure.

Fig. 1.2 Monocoque fuselage 
structure with transverse 
stiffeners.
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Monocoque and semimonocoque constructions

 

diffuse concentrated loads into the skin. A stiffened thin-walled shell is called semimonocoque. A semimono-
coque body structure and wing structure are shown in figure 1.3. Both the body structure figure 1.3(a) and the 
wing structure in figure 1.3(b) have longitudinal stiffening members and transverse stiffening members support-
ing thin skins. 

Longitudinal members are called longitudinals, stringers, or stiffeners. Longerons are longitudinal members 
having a large cross section. Longitudinal members act with the skin to resist applied bending and axial loads. 
Transverse members in a body structure are known as frames, rings, and if they cover most of the cross section 
they are called bulkheads. Pressure bulkheads cover the entire cross section. Frame members maintain cross-sec-
tional shape and are used to distribute concentrated loads to the skin.

 In a wing the longitudinal member is called a spar, and it consists of the spar web and spar cap. The spar cap 
act with the skin to resists axial and bending loads applied to the wing. The skin and the spar web develop shear-
ing stresses to resist torsion and transverse shear due to bending. Transverse members in a wing are called ribs, 
and they act to maintain the airfoil shape. Ribs act with the skin and longitudinals in resisting circumferential 
loads due to pressurization.

Longitudinal and transverse members also function to divide the skin into smaller panels to increase the 
buckling strength. (See Example 11.5 on page 354.) 

Additional components of a wing are shown in figure 1.4. The internal wing structure consists of spars, ribs, 
and stringers. The external wing structure is the skin. Ribs are also used in ailerons, elevators (flaps), fins, and 
stabilizers. In a fixed-wing aircraft, the spar is the main structural member connected to the fuselage at its root 
and running spanwise to the tip of the wing. It bends in transmitting the lift due to flight loads acting on the wing. 
The flight loads acting on a wing not only cause bending, but a significant amount of torsion/ twisting of the wing 
as well. The skin and shear webs form closed cells in a wing, and torsion is resisted by shear stresses developed 
in the wall of these cells.

 A semimonocoque fuselage structure for a transport aircraft is shown in figure 1.5. The skin is stiffened by 
longitudinal stringers, spaced six to ten inches apart, which function to increase the buckling strength of the skin 
and resist fuselage bending loads. Transverse frames maintain the shape of the fuselage and are typically spaced 
twenty inches apart (Young, 2011).

Fig. 1.3 (a) Semimonocoque body structure. (b) Semimonocoque wing structure.
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1.3  Rocket structure

 

A full-scale rocket consists of a launch vehicle and payload. There are four major systems in a full-scale rocket: 
the structural system, the payload system, the guidance system, and the propulsion system. The structural system 
includes the cylindrical body, the fairings, and any control fins. The payload is the entire spacecraft such as a sat-
ellite, experiment, or whatever else is being lifted into space. When a spacecraft is to be launched by an expend-
able booster, a booster adapter, or a launch-vehicle adapter, structurally links the spacecraft to the launch vehicle. 
The payload and its structure is protected by a fairing. Also, refer to the configuration of the Atlas I launch vehi-
cle shown in figure 18.1 on page 534. Atlas I consists of an expendable booster and an expendable second stage.

Fig. 1.4 Nomenclature for a typical wing structure.

Fig. 1.5 Semi monocoque
 fuselage structure. 



 

Aerospace Structures

 

5

 

References

 

The cylindrical body of the launch vehicle, or frame, has a thin skin to reduce weight. Engine thrust is the 
dominate load that causes compression in the rocket parts. The buckling resistance of the thin skins is increased 
under compression loading by a grid of internal stiffening members attached to the skins similar to those shown 
in figure 1.3(a). The buckling loads for axially compressed cylindrical shells in experiments are significantly less 
than the buckling load determined from an analysis of the perfect structure. Imperfection in the shell geometry is 
main the reason for the discrepancy between theory and experiment Refer to the discussion at the end of article 
10.2.1 on page 298. The buckling knockdown factor (KDF) has been introduced to reduce the buckling load pre-
dicted by the analysis of the prefect structure to aid in the structural design (Hilburger, 2018). 

 

1.4  References

 

Ashby, M. F., 

 

Materials Selection in Mechanical Design

 

. Oxford: Pergamon Press, 1992.

Curtis, Howard D., 

 

Fundamentals of Aircraft Structural Analysis

 

. Jefferson City, MO: Richard D. Irwin, a 
Times Mirror Higher Education Group, Inc. Company, 1997, pp. 1-34.

Hilburger, M. W., “

 

On the Development of Shell Buckling Knockdown Factors for Stiffened Metallic Launch 
Vehicle Cylinders

 

.” Presented at the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, Kissimmee FL, AIAA 2018-1990. Washington, DC: American Institute of Aeronau-
tics and Astronautics, 2018. 

Fig. 1.6 Rocket systems and components.



 

Article 1.4

 

6

 

Aerospace Structures

 

Young, Richard, “

 

Fuselage Design 101: Basic Terms and Concepts

 

.” Presented at the NTSB Airplane Structural 
Integrity Forum, Washington, D. C., September 21, 2011.



 

Aerospace Structures (c) 

 

Eric Raymond Johnson. CC BY NC SA

 

 

 

https://doi.org/10.21061/AerospaceStructures

 

7

 

CHAPTER 2

 

Aircraft loads

 

Consider an airplane moving through calm air. Particles of air affected by the airplane are accelerated and the 
reaction of the accelerated particles is felt over the surfaces of the airplane as a distribution of pressures. The 
pressure distribution acting on the surfaces of the airplane can be resolved into the total lift and drag forces. In 
addition to the aerodynamic forces of lift and drag, there are so-called inertia loads resulting from the accelera-
tion of the airplane. Other loading conditions such as landing loads, ground-handling loads, horizontal and verti-
cal tail loads, and monocoque body loads are discussed in detail by Lomax (1996). 

 Load analysis is important in aircraft design, and a design cannot proceed without information on loads. The 
aircraft loads analysis presented in this chapter is used in preliminary design, which is defined in the next section. 
In this chapter we define load factors, discuss the aerodynamic data required for structural analysis, develop the 
basic maneuver V-n diagram, and discuss gust load factors used in design.

 

 

 

2.1 Aircraft design process

 

Phases of the aircraft design may be divided into a concept formulation, a concept design, a preliminary design, 
and a detail design. Concept formulation is where the basic requirements for new aircraft are developed. Require-
ments are developed by a combination of market and customer surveys, and statistical analyses. Concept design 
begins with the basic requirements and sizes the aircraft. Only the most simple analysis methods and historical 
data are used. In preliminary design the sized conceptual baseline aircraft is further developed. Increased level of 
analysis is used to define the aerodynamics, performance, weight, propulsion, acoustic and cost parameters of the 
design. Detailed design is where the various parts of the aircraft are designed for fabrication. Part and assembly 
drawings are developed for manufacturing. 

 

2.2 Inertia loads

 

The maximum load on any part of the airplane structure occurs when it accelerates. In preliminary design, inertia 
force calculations are usually based on rigid body dynamics of the airplane. Once these loads are determined they 
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are imposed on the airplane, and the structural design proceeds by assuming the airplane is flexible (i.e., a 
deformable body). Determining inertia loads for a deformable body is more complex, and may be warranted later 
in the structural design process.

 

2.2.1 Coordinate systems and Newton’s laws of motion

 

The right-handed Cartesian coordinate system O

 

XYZ

 

 is fixed to the Earth, origin at point O, and it is assumed that 
this is an inertial system. That is, Newton’s laws of motion are valid in the Earth axis system. The unit base vec-

tors in the O

 

XYZ

 

 system are denoted by . The right-handed Cartesian coordinate system 

 

Gxyz

 

 is fixed in 

the body of the aircraft, with its origin at the center of gravity, which is labeled 

 

G. 

 

The unit base vectors in the 

 

Gxyz

 

 system are denoted by . Consider planar motion of the aircraft – that is, symmetrical maneuvers of 

the aircraft, and where the aircraft is symmetrical about its vertical fore and aft plane. Body axis 

 

Gx

 

 is directed 
forward, axis 

 

Gy

 

 is directed toward the starboard wing, and body axis 

 

Gz

 

 is in the normal direction. For symmet-

rical maneuvers there is no roll or yaw of the airplane, so symmetrical maneuvers imply  for all time 

 

t

 

. Let 

 denote the position vector of the center of gravity 

 

G

 

 with respect to fixed point O

 

. 

 

The flight path is a plane 
curve in the 

 

X-Z

 

 plane with the arc-length along the curve denoted by 

 

s

 

. The unit tangent vector to the flight path 

at 

 

s

 

 is denoted by , the unit normal vector at 

 

s

 

 by , and the angle between the flight path and the unit tangent 

vector, or the x-axis, by 

 

θ

 

. Note that . Angle 

 

θ

 

 represents the clockwise rotation of the aircraft in pitch. See 
figure 2.1. 

The unit tangent vector and its derivative along the path are 

, and .

 

(2.1)

 

Let . The change in slope of the flight path with respect to arc-length  defines the curvature of the 

path, and the radius of curvature is . The velocity of the center of gravity 

 

G

 

 along the flight path is

,

 

(2.2)

 

where the speed of the center of gravity of the aircraft along the flight path is . The acceleration of 

Î Ĵ K̂, ,( )

î ĵ k̂, ,( )

ĵ Ĵ=

RG

t̂ n̂

t̂ î=

X Î,
Z K̂,

O

RG

v̇Gt̂
s

vG
2 θ′n̂

θ
t̂

n̂

Î

flight path

x

z

G

Fig. 2.1 Acceleration of the center of gravity tangent and normal to the flight path.
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the center of gravity is

.

 

(2.3)

 

where  is the acceleration component tangent to the path. The acceleration component normal to 

the path , or centripetal acceleration, is directed toward the concave side of the path.

A free body diagram of the aircraft at time 

 

t

 

 and its time rate of change of momenta are shown in figure 2.2. 

Derivatives with respect to time of the pitch angle are written as

, and .

 

(2.4)

 

The mass of the aircraft is denoted by 

 

m

 

, the moment of inertia about the center of gravity by , the local accel-

eration due to gravity by , and the weight of the aircraft by 

 

W

 

 where . Equations for Newton’s second 
law at time 

 

t

 

 are

,

 

(2.5)

 

where the resultant force is denoted by , the moment about the center of gravity by , and the moment about 

the fixed point by . These force and moment vectors are determined from

,

 

(2.6)

aG
dvG

dt
--------- d

dt
----- vGt̂( ) vG

˙ t̂ vG
dt̂
ds
-----ds

dt
-----+ vG

˙ t̂ vG
2 θ′n̂+= = = =

vG
˙ dvG dt⁄=

vG
2 θ′ vG

2 R⁄=

X Î,
Z K̂,

v̇Gt̂

O

RG

Iy θ̇̇ ĵ

FBD at time tTime rate of change of momentum

vG
2 θ′n̂

X Î,
Z K̂,

x t̂,
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O

RG
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F1 F2

Fn
…

Fig. 2.2 Free body and rate of momenta diagrams for symmetrical motion of 
an aircraft at time t.
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where  is the position vector of the point of application of force  with respect to the center of gravity.

2.2.2 Principle of D’Alembert

D’Alembert in 1743 proposed a principle that would reduce a problem in dynamics to an equivalent one in statics 
by introducing so-called inertial forces. The inertial force acting at the airplane’s center of gravity is defined as 

, and the inertial moment about the center of gravity is defined as . These inertial forces are drawn on 

the free body diagram of the airplane in addition to all the applied forces. D’Alembert’s principle states that the 
applied forces together with the inertial forces form a system in equilibrium. Thus we write Newton’s second law 
as

. (2.7)

The free body diagram is modified accordingly as shown in figure 2.3. In the free body diagram the inertial 
forces and moment are indicated by dashed lines. From the free body diagram we proceed as in statics to write 
the conditions of (dynamic) equilibrium. 

The curvature of the flight path  can change sign. As shown in figure 2.4, the curvature is positive for a 
pull-up maneuver from a dive, and the curvature is negative for a push-down maneuver from a climb. Conse-
quently, the inertia force normal to the flight path is directed toward the convex side of the path. 

rm G⁄ Fm

maG– Iy θ̇̇ ĵ–

F mvG
˙– t̂ mvG

2 θ′n̂–( )+ 0= MG Iy θ̇̇ ĵ–( )+ 0=

G

WK̂

mvG
˙ t̂–( )

mvG
2 θ′ n–( )ˆ

Iy θ̇̇ ĵ–( )

MG

F

Fig. 2.3 Aircraft free body diagram at time t including the inertial forces and the inertial moment. 

θ′

θ 0= θ′ 0>

θ 0= θ′ 0<

gflight path

(a)

(b)

Fig. 2.4  Sign of the curvature for (a) pull-up 
from a dive, and (b) push-down from a climb.
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2.2.3 Relative velocity and acceleration

Often it is necessary to determine the inertial forces at locations within the airplane not coincident with the center 
of gravity. For these computations we need the relative velocity and acceleration formulas from rigid body 

dynamics. Consider two points A and G fixed in the body. The position of point A relative to G is taken as , 

as shown in figure 2.5.    

The position vectors of points A and G are related by

. (2.8)

The velocity vectors of points A and G are then

. (2.9)

Since vector  is embedded in the rigid body for all time, its rate of change is determined from its cross 

product with the vector of the time rate of change of pitch rotation. That is,

. (2.10)

Hence,

. (2.11)

The time rate of change of this velocity expression (2.11) relates the acceleration of A relative to G by

. (2.12)

Perform the vector cross product in eq. (2.12) to find

. (2.13)

xA G⁄ î

G

xA G⁄ t̂
A

O

RG
RA

Fig. 2.5 Relative position of two points fixed in a rigid body.
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td
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td
d xA G⁄ t̂( ) θ̇ ĵ xA G⁄ t̂× xA G⁄ θ̇n̂= =

vA vG xA G⁄ θ̇n̂+=

aA aG
td

d xA G⁄ θ̇n̂[ ]+ aA xA G⁄ θ̇̇n̂ θ̇
td

d xA G⁄ n̂[ ]+ + aG xA G⁄ θ̇̇n̂ θ̇ θ̇ ĵ xA G⁄ n̂×[ ]+ += = =

aA aG xA G⁄+ θ̇̇n̂ θ̇2xA G⁄ t̂–=
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2.2.4 Uniform linear and angular accelerations

In some inertial load problems it is reasonable to assume that the acceleration of a particle and/or the angular 
acceleration of a rigid body are constant over a time interval. Let s denote the distance of a particle along a 
straight line, v its speed along the line, and a its constant acceleration. Then, we have the following formulas

, (2.14)

where  and  at time . Similarly if the angular acceleration  is constant over some time 

interval, then

, (2.15)

where  and  at time .

2.3 Load factors

It is convenient to combine the inertial forces and gravity forces in the analysis of aircraft structural components. 
Consider an airplane in general plane motion as depicted in figure 2.6. 

The actions shown in figure 2.6 represent:  = lift force (wing and tail),  = drag force,  = thrust force, 

 = inertia force, and  = acceleration of the center of gravity given by eq. (2.3). We are not considering 

the moment of momentum equation for now. However,  in general. For the configuration shown in figure 
2.6 dynamic equilibrium is

. (2.16)

Let the total applied force on the airplane excluding weight be noted by . The total applied force, in general, 

may include other effects than those shown in the sketch above (e.g., wheel reactions on landing.) Then dynamic 
equilibrium is written as

v at v0+= s 1
2
---at2 v0t s0+ += 2a s s0–( ) v2 v0

2–=

s s0= v v0= t 0= θ̇̇

θ̇ θ̇̇t θ̇0+= θ 1
2
--- θ̇̇t2 θ̇0t θ0+ += 2 θ̇̇ θ θ0–( ) θ̇2 θ̇0

2–=

θ̇ θ̇0= θ θ0= t 0=

G

WK̂

L

D

Teng

W
g
-----aG 
 –

Fig. 2.6 Inertial force, weight, and other forces acting on an airplane in general plane motion.
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The V-n diagram

. (2.17)

As shown in figure 2.7, the projection of the gravity unit vector on the tangent and normal 

directions is . Similarly, we define the projections of the resultant 

forces in the tangent and normal directions as

. (2.18)

Dynamic equilibrium (2.17) separated into tangent and normal directions is

. (2.19)

Rewrite dynamic equilibrium (2.19) in the form

, (2.20)

where the load factors in the tangent and normal directions are defined by

. (2.21)

Also, eq. (2.20) shows that the load factors can be determined from

. (2.22)

Note that the load factor is a dimensionless number, and it can be negative, zero, or positive. The free body dia-
gram for dynamic equilibrium of the airplane employing load factors is shown in figure 2.8.

2.4 The V-n diagram   

First, some definitions:

Limit load – the maximum load that an aircraft may be expected to encounter at any time in service
Limit load factor – n associated with limit load 
Ultimate load – force necessary to rupture
Ultimate load factor – n associated with ultimate load 
 Factor of safety – ultimate load/limit load > 1; usually 1.5

F∑ W– K̂ W
g
-----aG+– 0=

      

combined weight and inertia force
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Fig. 2.7.
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Fig. 2.8 Inertial forces and gravity forces 
represented by load factors for dynamic 
equilibrium of the airplane.
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2.4.1 Airplane design requirements     

2.4.2 Regulations

Limit load factors are specified by regulations, which depend on the type of aircraft (e.g., transport, aerobatic, 
etc.). Criteria for civil aerospace vehicles in the United States. 

Code of Federal Regulations
   Title 14, Aeronautics and Space
   Parts 1 – 59
Federal Aviation Administration (Department of Transportation is the regulatory agency.)
Military requirements in the United States. issued in MIL–Specs covering specific topics of structural 
design of US Air Force, Navy, and Marine aircraft.

2.4.3 Specified data

Specified maximum positive load factor; .

Specified maximum negative load factor; .

Specified design airspeeds:

2.4.4 Basic maneuver V-n diagram

This is predicated on pilot-controlled, symmetrical maneuvers in flight through calm air (i.e., no gust). Assump-
tions made for analytical purposes are that the pitching acceleration is assumed zero or negligible, the airspeed is 
constant during the maneuver, and there is no rolling or yawing of the aircraft, although rolling or yawing 

maneuvers may be considered in design as well. For no pitching acceleration the pitch rate  is constant with 
respect to time. Use the chain rule to write the pitch rate as

. (2.23)

Hence, in a steady state maneuver  is constant with respect to time. The load factors (2.21) for a steady state 

maneuver are

. (2.24)

A pull-up from a dive, and a push-down from a climb are examples of steady state symmetrical maneuvers and 

1. All parts of the airplane are designed so they are not stressed beyond the yield point at the limit load 
factor.

2. The airplane structure must carry the ultimate loads for at least 3 seconds without collapsing, even 
though the members may acquire permanent deformation.

nmax 1>

nmin 0<

VC maximum level flight cruise speed=

VD maximum dive speed 1.2 to 1.5VC∼=

θ̇

θ̇ dθ
dt
------ dθ

ds
------ds

dt
----- θ′vG= = =

θ′vG

nx θsin= nz θcos
vG

2 θ′

g
-----------+ 

 =
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The V-n diagram

are depicted in figure 2.4. Also, a level flight, coordinated turn is considered a symmetrical maneuver even 
though the airplane does have a lateral acceleration in the turn. (Refer to practice exercise 2.) In general, the 
steady state symmetrical maneuvers will produce the maximum design wing loads. See figure 2.9.

2.4.5 Aerodynamic data

When a two-dimensional airfoil is subject to a relative wind there is a net pressure distribution over the airfoil 
that depends on the angle of attack, which is denoted by α. The angle of attack is the angle between the relative 
wind and the chord of the airfoil.The chord is the width of the airfoil and its length is denoted by c. The resultant 
action of the pressure distribution is a force R and no moment at the center of pressure, which is labeled C.P. in 
figure 2.10(a). The center of pressure location varies with the angle of attack. The resultant action of the pressure 
distribution is a force and a moment at any other location. The standard reference point for aerodynamic data is 
the aerodynamic center, which is labeled A.C. in figure 2.10(b). The aerodynamic center is the point where the 
pitching moment is independent of the angle of attack. For most subsonic wing sections the A.C. is around 25 
percent of the chord.The net force of the pressure distribution is resolved at the aerodynamic center into a lift 
force perpendicular to the relative wind and a drag force parallel to the relative wind and the pitching moment.

The lift increases as the angle of attack increases. At some point, however, the flow can no longer stay attached to 
the upper surface and detaches. This results in a decrease in lift, which is called aerodynamic stall as shown in 
figure 2.10(c). The sharpness of the decrease in lift is dependent on the type of airfoil.

Airplanes are three-dimensional vehicles with three-dimensional aerodynamic surfaces, so the aerodynamic 
loads are spread over these surfaces. This distribution in the spanwise direction of the wing results in a force and 
moment at the root of the wing. The spanwise distribution of the airload is a function of the wing planform shape, 
the airfoil sections, and the geometric twist. The basic aerodynamic reference for three-dimensional wings is the 

n

V

nmax

nmin

Vc
VD

1–

0

1

maneuvering within this 
envelope is acceptable on 
the basis of structural con-
siderations only

Fig. 2.9 Maneuver V-n diagram based on 
structural considerations only.

C.P.

R

V

α

c

L

D

M0.25c

c

A.C.

α

V

Fig. 2.10 Characteristics of a two-dimensional airfoil: (a) center of pressure, (b) aerodynamic 
center, (c) stall.

α

L
stall

(a) (b) (c)
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mean aerodynamic chord (MAC). The thickness, chord length, and angle of attack of the MAC airfoil section is 
used as a reference for all aerodynamic data. For a rectangular wing planform, the MAC is equal to the wing 
chord, and for a trapezoidal planform of the semiwing the MAC is equal to the chord at the centroid of the trape-
zoid.

Methods of data acquisition.  Basic methods to calculate aerodynamic data for aircraft design and analysis are 
preliminary design estimates, wind tunnel testing, numerical fluid analysis, and aircraft flight test. The wind tun-
nel test is the major source for aerodynamic data in the preliminary design phase, and it involves construction of 
a scale model of the aircraft. The model is instrumented with pressure and force transducers. Data required for 
the structural analysis are the lift, drag, and pitching moment curves for the complete airplane with the horizontal 
tail removed through the range of angles of attack from the negative stalling angle to the positive angle. Data for 
the combination of the wing and fuselage, or the wing, fuselage, and nacelles, are more difficult to calculate 
accurately from the published data, because of the uncertain effects of the aerodynamic interference of the vari-
ous components.

The lift force L is normal to the relative velocity (flight path), the drag force D is parallel to the relative 
velocity, and the pitching moment  is nose-up positive at the mean aerodynamic chord as shown in figure 

2.11(a). The angle θ is measured from the flight path to the x-axis and is equal to the difference between to the 
angle of attack  and the angle of wing incidence i.

The lift force, drag force, and pitching moment for the tail-off are expressed in terms of the dynamic pressure q, 
wing reference area S, and dimensionless aerodynamic coefficients , , and . The dynamic pressure 

is

, (2.25)

where the air density at altitude is denoted by . The aerodynamic actions are expressed as

, (2.26)

where the mean aerodynamic chord is denoted by .

M0.25

α

α θ

i

G

chord line

relative velocity V
x

z

L

M0.25

D

(a)

C: 0.25 MAC
G

x

z

M0.25

fn

fx

C

zC G⁄

xC G⁄

(b)

θ

Fig. 2.11 (a) Lift force, drag force, and pitching moment at the MAC. 
(b) Lift and drag resolved along the body x- and z-axes at MAC.

CL CD CM0.25

q 1
2
---ρV2=

ρ

L CLqS= D CDqS= M0.25 CM0.25qSc=

c
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The aerodynamic actions L, D, and  at the mean aerodynamic chord are statically equivalent to the 

aerodynamic actions , , and  at the center of gravity. The lift and drag forces are resolved into compo-

nents normal  and parallel  to the flight path by

, and . (2.27)

The moment at the center of gravity is determined from figure 2.11(b):

. (2.28)

The forces acting on the airplane are shown in figure 2.12, in which the tail force  acts perpendicular to the 

flight path at the center of pressure of the horizontal tail.

The dynamic equilibrium equations for no acceleration in pitch are

, (2.29)

, and (2.30)

. (2.31)

Substitute the moment at the center of gravity (2.28) into eq. (2.31) to get

. (2.32)

Introduce aerodynamic coefficients ,  and  by the relations

, , and . (2.33)

Substituting  and  from the definitions (2.33) into eq. (2.27) determines the coefficients  and  as

, and . (2.34)

The balancing tail force coefficient  is to be determined from the equations of dynamic equilibrium. From the 

relations (2.33) and (2.34), the equilibrium equations (2.29) and (2.30) are written as

, and (2.35)

. (2.36)

M0.25

fn fx My

fn fx

fn L θcos D θsin+= fx L θsin D θcos–=

My M0.25 xC G⁄ fn zC G⁄ fx–+=

Lt

My

nzW

Teng

Lt
nxW

relative velocity V

z

x

Lt

ze

fx

fn

G

θ

xT G⁄

Fig. 2.12 Forces acting on the airplane during steady state symmetrical maneuvers. No pitching 
acceleration.

fx Teng nxW– Lt θsin+ + 0=

fn nzW– Lt θcos+ 0=

My zeTeng xT G⁄ Lt θcos–+ 0=

M0.25 xC G⁄ fn zC G⁄ fx– zeTeng xT G⁄ Lt θcos–+ + 0=

Cn Cx Ct

fn CnqS= fx CxqS= Lt CtqS=

fn fx Cn Cx

Cn CL θcos CD θsin+= Cx CL θsin CD θcos–=

Ct

nxW Cx Ct θsin+( )qS Teng+=

nzW Cn Ct θcos+( )qS=



Article 2.4

18 Aerospace Structures

Let , where the airplane normal coefficient is denoted by . From eq. (2.36) the normal coeffi-

cient is

. (2.37)

In terms of the aerodynamic relations introduced, the moment about the center of gravity (2.32) is

. (2.38)

Rearrange eq. (2.38) to

. (2.39)

Consider the case of power-off so that , and solve for  to get

. (2.40)

If the term on the right side containing longitudinal coefficient  is assumed small with respect to the other 

terms and neglected, then the resulting expression for coefficient  is consistent with the traditional equation for 

the balancing tail load (Lomax, p. 9). Substitute  from eq. (2.40) into eq. (2.37) to get the expression for 

the normal coefficient determined from the aerodynamic coefficients with the tail off:

. (2.41)

The total normal force is denoted by . From eq. (2.30) , and . Hence,

. (2.42)

From wind tunnel data for complete airplane the aerodynamic coefficient of lift along the z axis is plotted against 
the angle of attack as depicted in figure 2.13. Generally, the magnitudes of the maximum and minimum values of 
the normal aerodynamic coefficient corresponding to stall and inverted stall, respectively, satisfy 

.

Substitute  from eq. (2.34) into eq. (2.35) to find the longitudinal load factor as

. (2.43)

At a given airspeed

nzW CNqS= CN

CN Cn Ct θcos+=

CM0.25qSc xC G⁄ CnqS zC G⁄ CxqS– zeTeng xT G⁄ CtqS θcos–+ + 0=

CM0.25c xC G⁄ Cn zC G⁄ Cx– xT G⁄ Ct θcos–+( )qS zeTeng+ 0=

Teng 0= Ct θcos

Ct θcos c xT G⁄⁄( )CM0.25 xC G⁄ xT G⁄⁄( )Cn zC G⁄ xT G⁄⁄( )Cx–+=

Cx

Ct

Ct θcos

CN c xT G⁄⁄( )CM0.25 xC G⁄ xT G⁄⁄( )Cn zC G⁄ xT G⁄⁄( )Cx–+=

Lz Lz fn Lt θcos+ nzW= = nzW CNqS=

Lz nzW CNqS 1
2
---ρV2
 
  SCN= = =

CN( )min CN( )max<

α

CN

CN( )max

0

CN( )min

Fig. 2.13 Normal force coefficient as a 
function of the angle of attack.

Cx

nxW CL Ct+( ) θsin CD θcos–[ ]qS Teng+=
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. (2.44)

Hence,

, (2.45)

which are quadratic functions of .

2.4.6  Maneuver V-n diagram including aerodynamic stall 

The maneuver V-n diagram including aerodynamic stall is shown in figure 2.14.

Note:

1.  varies with compressibility, and varies with the C.G. location as shown in eq. (2.41). Generally we must 

consider different altitudes and weight configurations.

2. For flight in incompressible air, the dynamic pressure , where  is the airspeed and  is the air 

density, both at altitude. Define equivalent airspeed  at sea level by

. (2.46)

Then the equivalent airspeed is given by . Use  on V-n diagram to cover all altitudes. Some 

Lz( )max
1
2
---ρV2
 
  S CN( )max nzmaxW= = pull-up from dive

Lz( )min
1
2
---ρV2
 
  S CN( )min nzminW= = push-down from climb.

nzmax CN( )max
ρV2 2⁄( )
W S⁄( )

---------------------= nzmin CN( )min
ρV2 2⁄( )
W S⁄( )

---------------------=

V

nz

V

nmaxstructural limit

nminstructural limit

Vc VD

1–

0

1

stall
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CN( )
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ρ 2⁄( )
W S⁄( )

----------------V2
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CN( )
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ρ 2⁄( )
W S⁄( )

----------------V2

stall

Fig. 2.14 Maneuver V-n diagram including aerodynamic stall and specified data.
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typical values of the load factors are shown in table 2.1 

Transport category airplanes.  The airworthiness standards for transport category airplanes are specified in 
Part 25 of the Federal Aviation Regulations (FAR). Flight maneuver and gust conditions are specified in subsec-
tions 25.331-25.351. The maneuver V-n diagram is shown in figure 2.15. The strength requirements must be met 
at each combination of airspeed and load factor on and within the boundaries of the representative maneuvering 
envelope (V-n diagram). The stalling speed with the flaps retracted at  is denoted by .

Table 2.1  Structural limit load factors

Category

Structural limits

nmax nmin

U.S. civil transports (Boeing) 2.5

U.S. military heavy bomber 3.0

U.S. military subsonic attack 8.0

U.K. civil aerobatic 6.0

U.K. sailplane, aerobatic 7.0

1.0–

1.0–

3.0–

3.0–

5.0–

nz 1= Vs1

VFVs1 VC VD

-1

0

1

2

3
CN( )max

Flaps up

CN( )max

Flaps down

CN( )min

Flaps up

nz

Equivalent air speed

Fig. 2.15 Flight maneuvering envelope per FAR 25.333.

A D

FH

I
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Design gust load factors

2.5 Design gust load factors

Turbulent conditions of varying intensity occur in air through which an airplane flies. For example, atmospheric 
phenomena that create turbulence are thermals (convection), mountain waves (terrain effects), wind shears, and 
jet streams. Assume steady level flight from still air, n = 1, into an ideal sharp-edged gust as shown in figure 2.16.

The change in the angle of attack due to the idealized sharp-edged gust is depicted in figure 2.17.

The lift curve slope between stall points is . Therefore, the change in the aerodynamic coeffi-

cient is

, (2.47)

and the change in lift is

. (2.48)

Now the change in the load factor due to the gust is

, (2.49)

V
U

U V usually« U O 50 ft./s( )∼ V O 300 ft./s( )∼

Fig. 2.16  Steady level fight into a sharp-edged gust.

∆α

∆α

V

U

α

∆α U V⁄atan U V⁄≈=

Fig. 2.17 Equivalent relative wind.

m dCN( ) dα( )⁄=

∆CN m ∆α( )=

∆Lift 1
2
---ρV2
 
  Sm ∆α( ) 1

2
---ρVSmU= =

∆n ∆Lift
W

------------- ρm( ) 2⁄
W S⁄( )

------------------- UV= =
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where  is the wing loading in lb./ft.2 The change in 

the load factor  varies linearly with airspeed V as 
depicted in figure 2.18. 

2.5.1Gust alleviation factor

A more realistic, semiempirical treatment of gust effects, 
based on experience and analysis, is to replace the sharp-

edge gust speed  by , where  is the gust alleviation factor. In reality there is no such thing as a sharp-

edged gust so we account empirically for gust build-up and airplane response. For transport airplanes, NACA 
specified

, (2.50)

where  is the airplane mass ratio defined by

, (2.51)

and where  is the mean aerodynamic chord; , and  is the wing span. See figure 2.19.

2.5.2 Gust load factor

For steady level flight, the gust load factor is

. (2.52)

Note that a lightly loaded airplane is more susceptible than when heavily loaded. This is because the increment in 
lift is independent of the weight. A heavily loaded airplane has more inertia with which to smooth out gusts than 
a lightly loaded airplane, all other things being equal.

2.5.3 NACA discrete gust conditions

Discrete gusts refer to sudden changes, or alleviated sharp-edged gusts, as opposed to continuous turbulence air-
craft gust analysis. In continuous turbulence gusts are represented as a stationary Gaussian random process lead-

n

V
1

slope ρm 2⁄
W S⁄
--------------- 
 U=





Fig. 2.18 The linear change in the load factor

W S⁄

∆n

U KgU Kg

Kg
0.88µg

5.3 µg+
------------------- 0.88<=

µg

µg
W S⁄

ρcgm( ) 2⁄
--------------------------≡

c c S b⁄= b

S

c 2⁄

µg
W

ρgS c 2⁄( )( )m
---------------------------------------=

    

weight of a chunk of air

Fig. 2.19 Depiction of the airplane mass ratio.

n 1 ρm 2⁄
W S⁄
--------------- 
 KgUV+=
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ing to specification of a power spectral density (Hoblit, 1988). For civil transport airplanes 0–20,000 ft., three 
discrete gusts are specified:

1. Rough air gust:  at  a speed related to the stall speed.

2. High speed gust:  at cruise speed .

3. Dive speed gust:  at dive speed .

The gust V-n diagram is shown in figure 2.20, and it is almost symmetrical with n = 1 line since gusts are as 
likely to act down as up.

2.5.4 Design V-n diagram

The extreme load factors of both maneuver and gust diagrams must be met. Superimpose the two and take the 
outer boundaries as shown in figure 2.21. Generally, large airplanes are designed primarily by gust load factors. 
Small military and aerobatic airplanes are designed by maneuver load factors.

U 66 ft/s= V VB=

U 50 ft/s= VC

U 25 ft/s= VD

n

VE.A.S.

VC VD

1–

0

1

U 66 ft/s=

U 50 ft/s= U 25 ft/s=

U 25 ft/s=U 50 ft/s=

U 66 ft/s=
VB

Fig. 2.20 Gust V-n diagram.

n

VC VD

1–

0

1

VE.A.S

1( )

1( )

2( )

2( )

3( )

3( )

Fig. 2.21 Design V-n diagram.
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2.6 Design V-n diagram example

This example is typical of a small aerobatic or perhaps military airplane, with specified data given figure 2.22.

Problem statement:   Determine the design V-n diagram at sea level using the NACA formulas for gust loads.

First, draw the maneuver V-n diagram. The stall boundary is given by

. (a)

The density of air at sea level is

, where . (b)

The wing loading is

. (c)

Substitute eqs. (b) and (c) into eq. (a) to get

, or (d)

. (e)

The inverted stall boundary is

, or (f)

W 10 000 lb.,=

S 100 ft2=

b 25 ft.=

b

c S b⁄ 4 ft.= =
S

VC 500 mph= VD 650 mph= CN( )max 2.07=

CN( )miin 1.2–= m dCN dα⁄ 4.37 per radian= =

str. limit load factors nmax 7.5= nmin 3–=

Fig. 2.22 Data for the small aerobatic or military airplane.

nstall CN( )max

ρs.l. 2⁄
W S⁄

---------------V2=

ρs.l. 0.002378 slugs
ft.3

-------------= 1 lb. 1slug( ) 1ft./s2( )=

W S⁄ 10 000,  lb.( ) 100 ft.2( )⁄ 100 lb./ft.2= =

nstall 2.07( )
0.002378 lb.s2

ft.4
------------ 2⁄ 

 

100 lb./ft.2
------------------------------------------------V2=

nstall 2.46 5–×10 V2= V in ft./s

nistall CN( )min

ρs.l. 2⁄
W S⁄

---------------V2 1.2 0.002378 2⁄( )–
100

---------------------------------------------V2= =
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. (g)

The airspeeds at stall and structural limit factors are

 , and (h)

. (i)

The maneuver V-n diagram is shown in figure 2.23.

Second, draw the gust V-n diagram using NACA formulas. Find the value of the gust alleviation factor as 
given in eq. (2.50). The airplane mass ratio is

, where (j)

.

Hence, the gust alleviation factor is . The change in the load factor due to the gust is

, or (k)

. (l)

For gust (1)  at . To find the airplane speed  on the stall boundary we set the load factor 

in eq. (2.52) equal to its relationship to the airplane speed on the stall boundary; i.e.,

. (m)

Solve eq. (m) for speed  as follows:

, (n)

. (o)

Hence, , and the change in load factor for gust (1) is

. (p)

For gust (2)  at . Hence, the change in load factor is

. (q)

nistall 1.43 5–×10– V2= V in ft./s

2.46 5–×10 VT
2 7.5= VT 552 ft./s 60 mph

88 ft./s
------------------ 
  376 mph= =

1.43 5–×10– V′T( )2 3.0–= V′T 459 ft./s 313  mph= =

µg
W S⁄

ρcgm( ) 2⁄
--------------------------≡ 100 lb./ft2

0.002378 lb s2/ft4( ) 4 ft.( ) 32.2 ft/s2( ) 4.37( ) 2⁄
------------------------------------------------------------------------------------------------------------------=

µg 149= dimensionless

Kg 0.85=

∆ngust
ρm 2⁄
W S⁄
--------------- 
 KgUV 0.002378 4.37( ) 2⁄

100
--------------------------------------------- 0.85( )UV= =

∆ngust 4.42 5–×10 UV= U V,  in ft./s

U 66 ft/s= V VB= VB

2.46 5–×10 VB
2 1 4.42 5–×10 66( ) VB+=

             

stall 2.91 3–×10

VB

VB
2.91 3–×10 2.91 3–×10( )2 4 2.46 5–×10( ) 1( )+±

2 2.46 5–×10( )
------------------------------------------------------------------------------------------------------------------=

VB
2.91 3–×10 1.03 2–×10±

2 2.46 5–×10( )
-------------------------------------------------------= choose +

VB 269 ft/s 184 mph= =

∆n1 4.42 5–×10 66( ) 269( ) 0.78= =

U 50 ft/s= VC 500 mph=

∆n2 4.42 5–×10 50( ) 500 mph 88 ft/s
60 mph
------------------ 
  1.62= =
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For gust (3)  at 650 mph, and the change in load factor is

. (r)

Thus, the six points on the gust V-n diagram are

. (s)

A sketch of the gust V-n diagram is shown in figure 2.23. Here the design V-n diagram is the maneuver V-n dia-
gram since the gust V-n diagram is contained inside the maneuver V-n diagram. 
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U 25 ft/s=

∆n3 4.42 5–×10 25( ) 650 mph 88 ft/s
60 mph
------------------ 
  1.05= =

1 ∆n1± 1.78 0.22,= VB 184 mph=

1 ∆n2± 2.62 0.62–,= VC 500 mph=

1 ∆n3± 2.05 0.05–,= VD 650 mph=

Fig. 2.23 Maneuver and gust V-n diagrams for the example of a small aerobatic or military airplane.
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don: Arnold, a member of the Hodder Headline Group, 1999.

Peery, D. J., 2011, Aircraft Structures. Dover Publications, Inc., 2011. (Unabridged republication of the work 
originally published in 1950 by the McGraw-Hill Book Company, New York.) Chapter 3.

2.8 Practice exercises

1. An airplane weighting 8,000 lb. has an upward acceleration of 3g when landing. If the dimensions are as 
shown in figure 2.24, what are the wheel reactions  and ? What is the time required to decelerate the air-

plane from a vertical velocity of 12 ft./s? What is the shear and bending moment on a vertical section A–A, if the 
weight forward of this section is 2,000 lb. and has a center of gravity 40 in. from this cross section. (Peery, 2011, 
p. 54). 

2. An 8,000 lb. airplane is making a horizontal turn with a radius of 1,000 ft. and with no change in altitude. 
See figure 2.25. Find the angle of bank and the load factor for a speed of (a) 200 mph., (b) 300 mph, and (c) 400 
mph. Find the loads on the wing and tail if the dimensions are as shown (Peery, 2011, p. 72).

3. The airplane shown in figure 2.26 is making an arrested landing on a carrier deck. At the position shown, the 
angular velocity is 0.5 rad/s counterclockwise and the vertical velocity of the center of gravity is 12 ft./s. The 
radius of gyration for the mass of the airplane about the center of gravity is 60 in. Find the load factors  and 

, parallel and perpendicular to the deck, for a point at the center of gravity, a point 200 in. aft of the center of 

gravity, and a point 100 in. forward of the center of gravity. Find the vertical velocity with which the nose wheel 
strikes the deck. Assume no change in the dimensions or loads, and the downward acceleration of the nose wheel 
is constant in the 10 in. of vertical travel (Peery, 2011, p. 72).

R1 R2

24 kips

8 kips

R1 R2240 in.
40 in.

A

A

40 in.

c.g.
Fig. 2.24 Exercise 1.

Lw

PnW

c.g.

10in. 200 in.

L

W

φ

φW
g
-----V2

R
------

R

Fig. 2.25 Exercise 2. Level flight coordinated turn.
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ny
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4.  The aircraft shown below weighs 135 kN and has landed such that at the instant of impact the ground reac-
tion on each main undercarriage wheel is 200 kN and its vertical velocity is 3.5 m/s. (Adapted from Megson, 

1999, P.8.1, p. 272.)

Each undercarriage wheel weighs 2.25 kN and is attached to an oleo strut.

a) What is an oleo strut? What is its purpose? Describe is components and how it functions.

b) Calculate the axial load N and bending moment M in the strut, assuming the strut is vertical.

c) Determine the shortening of the strut when the vertical velocity of the aircraft is zero.

d) Calculate the shear force and bending moment in the wing section A-A if the wing outboard of section 
A-A weighs 6.6 kN and has a center of gravity 3.05 m from A-A.

5. An airplane has a total weight of 40,000 lb. and total rolling moment of inertia about the C.G. of 1,000,000 

lb.-s2-in. Each wing-tip store weighs 2,000 lb. In steady level flight, each wing’s resultant lift is  

lb. (The tail carries stabilizing a negative lift of 2,000 lb.) In a sudden evasive roll maneuver from steady level 
flight, each aileron introduces a lift increment  lb. Assuming the airplane to be rigid and, neglect-

ing wing weight, calculate the total root bending moment for each wing (i.e.,  and ). Neglect the moment 

of inertia of each wing-tip store about its own C.G.

6. Use the data given in table 2.2 and the NACA gust formulas to develop the design V-n diagram for the Boe-
ing 727 aircraft at sea level. The airspeed should be in knots. One knot equals one nautical mile per hour, and 

10°

15 in.c.g.

Icα

Macy

Macx

30 kips

20 kips10 in.

80 in. 20in.

g 386 in./s2=

x

y

ω 0.50 r/s ccw=

10kips

Fig. 2.26 Exercise 3. 
Arrested landing on a 
carrier deck.
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Fig. 2.27 Exercise 4: Instant of impact upon landing.
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Practice exercises

approximate one nautical mile as 6,080 ft.1 Clearly label the plot. Also calculate the level flight stall speed .

7. Shown below is the maneuver V-n diagram at sea level for an aircraft of wing span 27.5 m, mean aerody-
namic chord 3.05 m, and total weight 196,000 N. The aerodynamic center is 0.915 m forward of the center of 
gravity and the center of lift for the tail unit is 16.7 m aft of the C.G. The pitching moment coefficient is

.

Table 2.2 Exercise 6

S 1560 ft..2

b 108 ft.

W 170,000 lb.

5.0 per radian

0.951

nmax 2.5 (structural)

nmin  (structural)

VC 350 knots

VD 440 knots

1. A nautical mile is based on the circumference of the planet Earth. If you were to cut the Earth in half at the equator, you could pick up one 
of the halves and look at the equator as a circle. You could divide that circle into 360 degrees. You could then divide a degree into 60 minutes. 
A minute of arc on the planet Earth is 1 nautical mile. This unit of measurement is used by all nations for air and sea travel. A nautical mile is 
1,852 meters, or 1.852 kilometers. In the English measurement system, a nautical mile is 1.1508 miles, or 6,076 feet. [http://www.howstuff-
works.com]
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30

100
180180

220220

1000 lb1000 lb
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Fig. 2.28 Exercise 5: 
Evasive roll maneuver 
from steady level flight.

All dimensions in 
inches.
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Both the pitching moment coefficient and the position of the aerodynamic center are specified for the complete 
aircraft less the tail unit.

For steady level flight at sea level the fuselage bending moment at the C.G. was recorded by test equipment to 
be 600,000 N m. Calculate the maximum value of this bending moment for the given flight envelope, or V-n dia-
gram. For this purpose it may be assumed that the aerodynamic loadings on the fuselage structure itself can be 
neglected; i.e., the only loads on the fuselage aft of the C.G. are those due to tail lift and the inertia of the fuse-
lage.

3.5

2.51.0

0

1.0–

61.0 91.5 152.5 183

n

V m/s

Cruise point
ρs.l. 1.223 Kg/m3=

Fig. 2.29 Exercise 7: Maneuver V-n diagram at sea level (U.K. regulations).
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CHAPTER 3

 

Elements of a thin-walled 
bar theory

 

Essential aspects of a linear elastic theory for straight, uniform, thin-walled bars is presented. It is assumed that 
the material is homogeneous and isotropic. Bars with an open cross section are presented first, followed by bars 
with a closed cross section. The thin-walled bar theory presented in this chapter allows for free warping of the 
cross section out of its plane under torsion and transverse shear. Constrained warping theory is not discussed, but 
it is presented in texts by Gjelsvik (1981), Oden and Ripperger (1981), Vasiliev (1993), and Vasiliev and Moro-
zov (2013). Bars fabricated by laminating fibrous composite materials are discussed in article 8.1.

 

3.1 Open cross section

 

A bar with an open cross section is shown in figure  3.1(a). There are two branches in the cross section. A vertical 
straight branch of length 

 

a

 

 with wall thickness 

 

t

 

, and a semicircular branch of radius 

 

a

 

 with wall thickness 

 

t

 

.

O
X

Y

x
y

Vx u,

Vy v,

Mz φz,

Mx φx,

My φy,

C

S.C.

O X

Y

a

a

t

t

θ

x
y

C: Xc Yc,( )

S.C. Xsc Ysc,( )

0 t a«<

Fig. 3.1 Thin-walled open cross section: (a) geometry and coordinate systems and (b) internal actions. 

(a) (b)
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The geometry of the bar’s cross section is defined by the locus of points along the 
center line of the wall, which is called the 

 

contour

 

, and the thickness 

 

t

 

 of the wall. 
The contour consists of piece-wise continuous lines or curves in the plane of the 
cross section whose subdivisions are called branches. Points between branches 
occur at junctions or sharp corners. Let the arc-length along the contour be 
denoted by 

 

s

 

, and the thickness can be a function of 

 

s

 

. That is , as 
long as it is small with respect to the length of a branch and to its radius of curva-
ture (e.g.,  for the section shown in figure 3.1(a)). At junctions between 
branches overlaps and gaps of cross-sectional areas can occur as shown in figure 

3.2, but its effect on the geometrical properties of the section are small under the thin-walled assumption. A step 
change in thickness along a contour is accommodated by defining a junction at the location of the step.

The bar is referenced to two, right-handed Cartesian coordinate systems labeled (

 

X,Y,Z

 

) and (

 

x,y,z

 

). The pos-
itive directions of the 

 

Z

 

-axis and the 

 

z

 

-axis are out of the plane of the cross section shown in the figure with 

 

Z

 

 = 

 

z, 

 

where

 

  

 

and 

 

L

 

 is the axial length of the bar

 

. 

 

The cross section shown figure  3.1(a) is called a positive 

 

z

 

-
face since the normal to the cross section points outward (positive 

 

z

 

-direction) from the material contained 
behind the cross section. The origin of the (

 

X,Y

 

) system in the cross section is taken at the center of the semicir-
cular branch for convenience, and is labeled point 

 

O

 

. The (

 

x,y

 

) system is parallel to the (

 

X,Y

 

) system, and the ori-
gin of the (

 

x,y

 

) system is at the centroid, which is labeled point 

 

C

 

. The shear center in the cross section is labeled 
as point

 

 S.C. 

 

 The internal resultants acting on the cross section of the bar are , and these 

resultants are functions of the axial coordinate 

 

z

 

. Refer to figure  3.1(b). The axial normal force is labeled 

 

N

 

, and 
is defined positive in tension acting at the centroid. Note that 

 

N

 

 is not shown in figure 3.1(b). The axial displace-
ment corresponding to  is denoted by . The transverse shear forces 

 

V

 

x

 

 and 

 

V

 

y

 

 are defined positive in posi-
tive 

 

x

 

- and 

 

y

 

-directions on a positive 

 

z

 

-face, respectively, and act at the shear center. The displacements 
corresponding to 

 

V

 

x

 

 and 

 

V

 

y

 

 are denoted by  and , respectively. The bending moment  and its cor-

responding rotation  are referenced to the centroid, and are defined positive in the positive 

 

x

 

-direction by 

the right-hand screw rule. (Put your right thumb along the positive 

 

x

 

-axis and your fingers curl in the direction of 
the positive moment and corresponding rotation.) The bending moment  and its corresponding rotation 

 are referenced to the centroid and are defined positive in the negative 

 

y

 

-direction by the right-hand screw 

rule. Note that positive bending moments cause tension of the axial fibers in the first quadrant of the 

 

x-y

 

 coordi-
nate system. The torque is denoted by , and its corresponding rotation  are defined at the shear center 

and are positive counterclockwise on the positive 

 

z

 

-face.

 

Centroid C.  

 

The centroid decouples the extension and bending responses of the bar in the material law. Refer to 
eq. (3.80) on page 47. The procedure to locate the centroid is presented in example 3.1 on page 47 for an open 
cross-sectional contour, and in part (a) of example 3.4 on page 71 for a closed cross-sectional contour.

 

Shear center S.C.  

 

The shear center is a point in the cross section through which the plane of the loading must 
pass for the bar to bend and not twist in torsion. That is, the resultant of the shear forces in the cross section must 
act through the shear center to prevent torsion. Using energy methods in article 5.5.3 it is shown that the shear 
center decouples the transverse shear and torsion responses of the bar in the material law. Refer to eq. (5.76) on 
page 144. The procedure to locate the shear center is presented in example 3.3 on page 54 for an open cross-sec-
tional contour, and in part (c) of example 3.4 on page 71 for a closed cross-sectional contour.

gap

overlap
t

t

Fig. 3.2 Idealized 
junction.
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Contour geometry

 

3.2 Contour geometry

 

The contour in the cross section is defined in parametric form by its coordinates 

 

x(s

 

) and 

 

y(s)

 

 where 

 

s

 

 denotes the 
arc-length of the contour as shown in figure 3.3(a). The position vector from point 

 

C

 

 to a point 

 

s

 

 on the contour is

,

 

(3.1)

 

where the Cartesian unit vectors are denoted  along the positive 

 

x

 

-, 

 

y

 

-, and 

 

z-directions, respectively. The 

Cartesian coordinates are a right-handed system, or , and the arc-length s is taken positive counter-
clockwise along the contour. The differential arc-length on the contour is given by

. (3.2)

Unit vectors tangent and normal to the contour are denoted by  and , respectively. Let the angle between 

the positive x-direction and the unit normal  be denoted by . From the differential geometry along the con-

tour shown in figure 3.3, the trigonometric functions of the angle  are given by

. (3.3)

The unit tangent vector to the contour is

. (3.4)

The unit normal to the contour is given by the cross product , which yields

r s( ) x s( ) î y s( ) ĵ+=

î ĵ k̂, ,

î ĵ× k̂=

ds2 dr dr• dx2 dy2,+= = which implies dx
ds
------ 
  2 dy

ds
------ 
  2

+ 1=

t̂ s( ) n̂ s( )

n̂ θ s( )

θ s( )

dx
ds
------ θsin–= dy

ds
------ θcos=

xsc

ysc

n̂t̂

θ

srnc
rn

S.C.

C

θrtc

rt

xsc θcos ysc θsin+
contour

x s( )

y s( )

î

C: 0 0,( )

s

t̂
n̂ ζ,

θ

contour

rt s( )

rn s( )

ĵ
S.C. xsc ysc,( )

θ ds

dx–

dy

Fig. 3.3 (a) Analytic geometry of the contour. (b) Tangential and normal coordinates with respect 
to the shear center and centroid.

(a) (b)

n̂
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t̂ dr
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------ 
  î dy

ds
------ 
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. (3.5)

The derivatives of the unit tangent and normal vectors along the contour are obtained by differentiating eq. (3.4) 
and eq. (3.5) with respect to arc-length s. The results are expressed as

, (3.6)

where  is the curvature of the contour at s, and  is the radius of curvature at s. For subsequent computa-

tions the direction cosines between the two Cartesian and contour unit vectors are listed in table 3.1. 

The position vector  is also expressed as a function of the tangential coordinate  and normal coor-

dinate  by

, (3.7)

where the coordinates of the shear center with respect to the centroid are denoted by  and . Equating the 

two expressions (3.1) and (3.7) for the position vector and using the direction cosine table 3.1, the following rela-
tions between the contour coordinates result:

(3.8)

. (3.9)

Replace the trigonometric functions in eq. (3.8) by derivatives of the contour coordinates using eq. (3.3). Then 
expand eq. (3.8) and write it as

, (3.10)

where

. (3.11)

In eq. (3.11), the tangent and normal coordinates to a generic point on the contour relative to the centroid are 
denoted by  and , respectively. The relationship expressed by eq. (3.10) is shown in figure 3.3(b).

 Table 3.1 Direction cosines

n̂ θcos( ) î θsin( ) ĵ+ dy
ds
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Rs
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Rs

-----= 1
Rs
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dθ ds⁄ Rs
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t̂ θsin– θcos 0

k̂ 0 0 1

r s( ) rt s( )

rn s( )
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Displacements

The derivative of the position vector with respect to the arc length coordinate s is the unit tangent vector in 

eq. (3.4). Take the derivative of  with respect to s using eq. (3.7) to get

. (3.12)

Since , it follows that coordinates  and , and the radius of curvature  are related by

. (3.13)

3.3 Displacements

Consider a material point in the wall of the cross section located by coordinates (s,ζ), where ζ denotes the thick-

ness coordinate. Coordinate ζ = 0 on the contour and . Denote the position vector  to point (s,ζ) 
relative to the shear center by

. (3.14)

It is assumed that the cross section displaces, and then undergoes an infinitesimal rotation as a rigid 

disk. Let  denote the displacement vector of the shear center of the cross section, and let  denote 

the displacement vector of the particle at point (s,z,ζ). The position vector  in the cross section is displaced and 

rotated in the rigid disk to . Since  is embedded in the rigid disk, the magnitudes of vector  and vec-

tor  are the same; i.e., . As shown in figure 3.4 the displacement  related to dis-

placement  and the change in direction of vector  by

. (3.15)

Let  denote the infinitesimal rotation vector of the cross section embedded in the rigid disk. The change in 
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Fig. 3.4 (a) Displacement vectors of the shear center and a generic particle in the bar. (b) Change in 
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direction of  is denoted as  and is determined by the vector cross product (Goldstein, p.128):

. (3.16)

Substitute eq. (3.16) for  in eq. (3.15) to get

. (3.17)

The vectors , , and  are written in the Cartesian basis or contour coordinate basis as 
follows:

, (3.18)

where  is the axial displacement of the shear center. The components of the displacement vector  

in terms of the displacement vector  of the shear center and the contribution from the rotation is given by 
the following scalar products:

. (3.19)

Performing the scalar products in eq. (3.19) with the aid of (3.9) and (3.18) and table 3.1, we find that the dis-
placement components of a particle in the cross section with respect to the shear center are

, (3.20)

, (3.21)

. (3.22)

Let  denote the displacement of the centroid, with the component form given by

. (3.23)

where  and  denote the x-direction and y-direction displacements of the centroid. From figure 3.5 the 

displacement of the shear center relative to the displacement of the centroid is

. (3.24)
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Strains

where it is noted that position vector  is embedded in the rigid disk con-

taining the cross section which undergoes the infinitesimal rotation . 

Position vector , and the rotation vector is given in eq. 

(3.18). From the forgoing vector relations, the displacement components of 
the shear center relative to the centroid are 

. (3.25)

Substitute the expression for axial displacement  from eq. 

(3.25) into eq. (3.21) to get

. (3.26)

3.4 Strains

Consider three mutually perpendicular, infinitesimal line elements , dz, and dζ in the undeformed body, where 
the arc-length of the line element parallel to the contour is related to the arc-length of the contour by 

. Let  denote the normal strain for line element dS,  the normal strain for dz, and  

the normal strain for line element dζ. For infinitesimal deformations, these normal strains are related to displace-
ments us, uz, and  by 

. (3.27)

Let  denote the engineering shear strain between line elements dS and dz,  the engineering shear strain 

between dS and dζ, and  the engineering shear strain between line elements dz and dζ. For infinitesimal 

deformations, the shear strain-displacement relations are

. (3.28)

Substitute the displacements from eqs. (3.20), (3.22), and (3.26) into the strain-displacement relations for 
,  and , to find 

. (3.29)

Strains  result from the relations between the coordinates  and  given by eq. (3.13). More-
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Fig. 3.5 Displacements of the 
centroid and shear center.
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over, the vanishing of the strains in eq. (3.29) is a consequence of the assumption that the cross section is unde-
formable in its own plane. Substitute the axial displacement from eq. (3.26) into the axial normal strain-
displacement in eq. (3.27) to get

. (3.30)

Substitute the displacements from eqs. (3.20), (3.22), and (3.26) into the last two shear strain-displacement equa-
tions to find

. (3.31)

In previous expressions for the shear strains new quantities  and  are introduced. These new quantities rep-

resent shear strains averaged over the cross section of the bar and are defined by 

. (3.32)

See figure 3.6 for a graphical representation of these averaged transverse shear strains. 

3.5 Stresses, stress resultants and bar resultants

Let  denote the stress normal to the cross section,  denote the shear stress acting tangent to the contour of 

the cross section, and let  denote the shear stress normal to the contour acting on the cross section. These 

stress components act on an infinitesimal area of the cross section denoted by .These 

stress components are shown in figure 3.7(a).

εzz zd
dw y s( )

zd

dφx x s( )
zd

dφy ζ
zd

dφx θ s( )sin
zd

dφy θ s( )cos++ + +=

γ zs ψx– θsin ψy θcos rn s( ) ζ+( )
zd

dφz+ += γ zζ ψx θcos ψy θsin rt zd

dφz–+=

ψx ψy

ψx z( )
zd

du φy z( )+= ψy z( )
zd

dv φx z( )+=

π
2
--- du

dz
------ φy–– π

2
--- ψx–=

du
dz
------

φy

wsc

u

z

x

z

xsc

(a) x-z plane 

0

π
2
--- dv

dz
------– φx– π

2
--- ψy–=

dv
dz
------

φx

wsc

v

z

y

z

ysc

(b) y-z plane 

0

Fig. 3.6 Transverse shear strains of the bar with respect to the shear 
center: (a) projection in the x-z plane, (b) projection in the y-z plane.
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Stresses, stress resultants and bar resultants

Consider the work done on a cross section at a fixed value of z by the stresses acting through incremental 

displacements. The incremental displacement corresponding to  is 2, incremental displacement corre-

sponding to  is , and the incremental displacement corresponding to  is . Let  denote the 

incremental work, which is given by the integral

. (3.33)

The incremental displacements are determined from eqs. (3.20), (3.22), and (3.26), and are

, (3.34)

where , , and  denote the incremental displacements of the cross section, , , 

and  denote the incremental rotations of the cross section. Substitute the incremental displacements from 

eq. (3.34) into the expression (3.33) for the incremental work, followed by integration through the thickness of 
the wall. The result of this process is written as

2.  The notation  denotes a continuos function of infinitesimal magnitude added to the displacement function , which 

vanishes at prescribed values of . That is,  is a new displacement function. Function  is interpreted as a 

change in displacement at fixed values of independent coordinates s, z, and ζ, where the independent variables identify a 
material point. In differential calculus  is the infinitesimal change in the displacement function with respect to changes 

in the independent variables without changing the function itself. 
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y
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C

Fig. 3.7 (a) Stress components acting on differential area dA of the cross section. (b) stress 
resultants acting at the contour of length ds.
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. (3.35)

The integration through the thickness leads to the definition of stress resultants acting at the contour. The normal 
stress resultant is denoted by , shear flow resultant by q, transverse stress resultant by , bending moment 

resultant by , and twisting moment resultant by . These stress resultants are given by the following inte-

grals through the thickness:

, (3.36)

and

. (3.37)

See figure 3.7(b).

The integral over the contour of the incremental work in (3.35) is written as

. (3.38)

Integration over the contour defines the bar resultants in terms of the stress resultants as

, and (3.39)

. (3.40)

3.6 External loads and equilibrium of an element of the bar 

The prescribed external traction components acting on the bar are denoted by functions ,  and 

, which are defined per unit area of the middle surface where . The dimensional units of these 

traction components are F/L2. See figure 3.8. At a typical cross section these tractions are resolved into distrib-
uted line loads ,  and  having dimensional units F/L. The line loads are determined from the following vec-

tor relation:

. (3.41)

Using the direction cosines in table 3.1, these line load intensities are related to the specified tractions by
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c
∫=

ynz mzz θsin+( )δφx xnz mzz θcos+( )δφy rnq mzs rtqz–+( )δφz+ + ]ds

nz qz

mz mzs

nz mz,( ) 1 ζ,( )σzz 1 ζ Rs⁄+( ) ζd

t 2⁄–

t 2⁄

∫=

q mzs,( ) 1 ζ,( )σzs 1 ζ Rs⁄+( ) ζd

t 2⁄–

t 2⁄

∫= qz σzζ 1 ζ Rs⁄+( ) ζd

t 2⁄–

t 2⁄

∫=
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N nz sd
c
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c
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c
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Vx q θsin– qz θcos+( ) sd
c
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c
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c
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. (3.42)

At a typical cross section these traction components result in an external torque per unit axial length with respect 

to the centroid denoted by , with dimensional units (F-L/)L. The external moment per unit axial length with 

respect to centroid is determined from the following vector cross product relation:

. (3.43)

Perform the cross products to find the moment per unit axial length about the centroid from the prescribed trac-
tion to get

, (3.44)

where

, (3.45)

 Equation (3.38) is applicable at each end of the bar where z = 0 and z = L. Hence, , , , 

, , and  are corresponding variables. We can prescribe a “force” variable or its corre-

sponding “displacement” variable as external “loads” acting on the end cross sections, but not both the “force” 
and the “displacement” simultaneously. 

3.6.1 Differential equilibrium equations

Let the internal forces acting on the cross section at z be denoted by the vector , and let the internal 

moments acting on the cross section resolved at the centroid be denoted by the vector . These vectors of 
internal actions are

, and (3.46)
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(a) (b)

Fig. 3.8 (a) External tractions prescribed on the reference surface. 
(b) Statically equivalent external line load intensities. 
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c
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c
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. (3.47)

Consider the forces and moments acting on a bar element defined by z and z + ∆z, ∆z > 0, as shown in figure 3.9. 

The vector equations of equilibrium are

, (3.48)

where . For a continuous force vector and moment vector with respect to coordinate z, eq. (3.48) 
can be written as

. (3.49)

Divide the latter equations by  and take the limit as  and note that  in the limit. The differential 
equations of equilibrium obtained from the limiting procedure are

. (3.50)

Expand the differential equation (3.50) in terms of components to get

, and (3.51)

. (3.52)

Axial equilibrium.     From -component of eq. (3.51) the differential equilibrium equation is

. (3.53)

At the end points z = 0 and z = L, prescribe either axial force N or the corresponding displacement w, but not 
both.

Bending in the y-z plane.  From the  component of eq. (3.51) the differential equation for the shear force is

M z( ) Mxî Myĵ– MzCk̂+=

z

z ∆z+

F z ∆z+( )

M z ∆z+( )

F z( )–

M– z( )
f z*( )∆z

mC z*( )∆z

Fig. 3.9 A free body diagram of the segment ∆z of a bar 
subject to internal actions at its end cross sections, and 
subject to prescribed external actions along its length.
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. (3.54)

At the end points z = 0 and z = L, prescribe either shear force Vy or the corresponding displacement v, but not 

both. From the -component of eq. (3.52) the differential equation for the bending moment is

. (3.55)

At the end points z = 0 and z = L, prescribe either bending moment  or the corresponding rotation , but not 

both.

Bending in the x-z plane.  From the -component of eq. (3.51) the differential equation for the shear force is

. (3.56)

At the end points z = 0 and z = L, prescribe either shear force Vx or the corresponding displacement u, but not 

both. From the -component of eq. (3.52) the differential equation for the bending moment is

. (3.57)

At the end points z = 0 and z = L, prescribe either bending moment My or the corresponding rotation , but not 

both.

Torsion.  From the -component of eq. (3.52) the differential equation for torsion about the shear center axis is

. (3.58)

The torque at the centroid is related to the torque and the shear forces acting at the shear center by static equiva-
lence. (Refer to Fig. 3.23 on page 69.) That is, 

. (3.59)

Substitute eq. (3.59) for  into eq. (3.58) to get

. (3.60)

Impose equilibrium eqs. (3.54) and (3.56) in eq. (3.60) to get

. (3.61)

At the end points z = 0 and z = L, prescribe either torque Mz or the corresponding rotation , but not both.
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3.7 Hooke’s law

For a linear elastic, isotropic material, there are two independent material constants: the modulus of elasticity E 
and Poisson’s ratio ν. (Refer to eq. (A.146) in the appendix.) Hooke’s law for the normal strains is

, (3.62)

where  denotes the normal stress acting on the s-face, and where  denotes the normal stress on the ζ-face 

acting on an infinitesimal element ds-by-dz-by-dζ. The thickness normal stress  is assumed to be very small 

with respect to the axial normal stress , and hence is neglected in Hooke’s law. From the kinematic assump-

tion, eq. (3.29), the normal strain . Setting  in the third row of eq. (3.62), leads to 

, which is a very unlikely result. Thus, we neglect this third equation in Hooke’s law. Furthermore, 

in most thin-walled beam theories (e.g., see Gjelsvik, 1981, p. 16), the normal stress  is assumed to be small 

with respect to the axial normal stress  and is neglected in Hooke’s law. Setting  leads to

. (3.63)

Consequently, the first row of matrix eq. (3.62) leads to . However, the kinematic assumption, 

eq. (3.29), resulted in . If we set  in the first row of eq. (3.62), solve it for , followed by sub-

stitution into the second row of eq. (3.62), we get

. (3.64)

It is recognized that Hooke’s law in the elasticity sense of eq. (3.62) is violated under the assumptions of the thin-
walled beam theory under consideration. In the following developments of the theory, eq. (3.63) is assumed as 
the material law governing the axial normal stress and axial normal strain, which is a common assumption in 
classical beam theory.

3.7.1 Effect of thermal expansion

Consider structures subject not only to external forces, but also subject to heating. Aerospace examples include 
high-speed flight vehicles and orbiting space structures. Aerothermal loads consisting of pressure, skin friction or 
shearing stresses, and aerodynamic heating, are exerted on the external surfaces of high-speed flight vehicles. 
Conduction and radiant heat transfer result in significant thermally induced forces acting on orbiting space struc-
tures. These aerospace examples are discussed in detail by Thornton (1996), who provides an historical account, 
and methods of analysis, of thermal structures for aerospace applications. 

It is assumed that a change in temperature (thermal state) causes a change in deformation and stress 
(mechanical state) in the structure, but a change in deformation does not cause a change in temperature. For 
example, under adiabatic conditions strain can cause a change in temperature. However, in many structural appli-
cations the change in temperature under adiabatic straining is negligible and can be ignored (Fung, 1965, p. 390). 
Thornton (1996, p.51) defines the change in thermal energy state causing a change in mechanical state, but not 
the reverse, as one-way thermal-mechanical coupling. Thus, heat conduction and thermoelasticty separate into 
two separate problems. In this text it is assumed that the heat conduction problem has been solved so that the 
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temperature distribution in the structure is known. The thermoelastic problem is to determine the mechanical 
state in an elastic structure for the specified temperature distribution and the specified external loads.

For a uniaxial stress state the generalized Hooke’s law including temperature is

, (3.65)

where , and  is the coefficient of thermal expansion. The change in temperature is denoted by 

, and  is the spatially uniform temperature in the reference state. The reference state is stress free 

when the external loads acting on the bar are removed and the spatially uniform temperature . Assume a 

linear distribution of the change in temperature in the thickness, which we write as

, (3.66)

where

. (3.67)

3.7.2 Material law for extension and bending

Substitute the expression (3.30) for the axial strain, and substitute eq. (3.66) for the change in temperature, into 
Hooke’s law (3.65) to get the following expression for normal stress.

. (3.68)

In the thin-wall bar theory we neglect the distribution of the normal stress and normal strain across the 
thickness of the wall. Therefore, the normal strain and stress is assumed uniform in the thickness coordinate, 
and are given by

, and (3.69)

. (3.70)

In other words, the local bending of the wall represented by the bending moment resultant mzz in (3.36) is 
neglected with respect to the membrane stiffness of the wall represented by the normal stress resultant nz. In 

addition, for a thin, curved wall we neglect the term  in the factor  appearing in the integrand of 

eq. (3.36)3. The definition of the normal stress resultant reduces to 

. (3.71)

Substitute eq. (3.70) for the normal stress into the normal stress resultant (3.71) to get

3. Note that . A contour that is a straight line has . A thin, curved wall is one in which 

. Hence,  for most practical contour geometries.
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. (3.72)

The constitutive equation for the axial normal force N is obtained by substituting eq. (3.72) for the normal 
stress resultant in the expression (3.39). The result is 

, (3.73)

where A denotes the cross-sectional area,  the first area moment about the x-axis,  the first area moment 

about the y-axis, and  the thermal axial force. These geometrical measures of the cross section are given by 

the formulas

. (3.74)

The first area moments  and  are equal to zero because the origin of the x-y coordinate system is located at 

the centroid. The thermal axial force is given by the expression

. (3.75)

The constitutive equations for the bending moments  and  are obtained by substituting eq. (3.72) for 

nz into the definitions of the bending moments in eq. (3.39), with the contribution of  neglected. The result is 

, (3.76)

where Ixx, Iyy, and Ixy denote the second area moments of the cross section with respect to the centroidal x-y 
coordinate system. The second area moments are given by the formulas

. (3.77)

The thermal bending moments in eq. (3.76) are given by the expressions

. (3.78)

Since the origin of the x-y system is taken at the centroid of the cross section, the first area moments are zero by 
the definition of the centroid. For , eqs. (3.73) and (3.76) reduce to

. (3.79)

Locating the origin of the cross-sectional Cartesian system at the centroid decouples the extensional and 
bending responses in the material law (3.79) for the bar. Solve eq. (3.79) for the derivatives of the displace-
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ment w and the rotations  and , and write it as

. (3.80)

Following Vasiliev (1993, p. 205), the new terms in eq. (3.80) are defined by

. (3.81)

Substitute the derivatives of the displacement and rotations from eq. (3.80) into the expressions for the strain 
(3.69) and stress (3.70) to get

, and (3.82)

. (3.83)

In the previous equation coordinate functions  and  are defined by

. (3.84)

Example 3.1 Centroidal coordinates and second area moments for the open section shown in figure 3.1 

Let  denote the contour coordinate in the straight branch 1 with  at its lower end and  at its 

upper end where it meets at the junction with the semicircular branch 2. Let  denote the con-

tour coordinate in branch 2 with  at its lower end where it meets at the junction with branch 1 and 

 at its upper end. The Cartesian coordinates with respect to point O for each branch are

, and (a)

. (b)

Let S denote the total arc-length of the contour and let A denote the area of the cross section. Then S and A are 
given by

. (c)

The first area moment of the cross-sectional area about the X-axis is denoted by , and the first area 

moment of the cross-sectional area about the Y-axis is denoted by . These first area moments are determined 

from the integrals
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, and (d)

. (e)

The relationship between the Cartesian coordinates with origin at point O and the parallel coordinates with the 
origin at the point C (centroid) are

. (f)

The definition of the centroid is that the value of the first area moments about the x-axis and y-axis are zero. Sub-
stitute eq. (f) into the definitions of the first area moments about the centroidal axes (3.74) to get

, and (g)

. (h)

Hence the coordinates of the centroid relative to point O are given by

. (i)

The contour coordinates with respect the centroid are determined from eqs. (a), (b) and (f). The results are

(j)

. (k)

The expressions for second area moments about the x-y system with origin at the centroid are given in eq. 
(3.77). Substitute the eqs. (j) and (k) for the contour coordinates into the definitions of the second area moments, 
followed by integration to get following results:

, (l)

, and (m)

. J (n)

QX Y1 s1( )[ ]t s1d

0

a

∫ Y2 θ( )[ ]ta θd

π– 2⁄

π 2⁄

∫+ 3 2⁄( )a2t–= =

QY X1 s1( )[ ]t s1d

0

a

∫ X2 θ( )[ ]ta θd

π– 2⁄

π 2⁄

∫+ 2a2t= =

X s( ) x s( ) Xc+= Y s( ) y s( ) Yc+=

Qx y s( )[ ]t sd
c
∫ Y s( )[ ]t sd

c
∫ Yc t sd

c
∫– QX YcA– 0= = = =

Qy x s( )[ ]t sd
c
∫ X s( )[ ]t sd

c
∫ Xc t sd

c
∫– QY XcA– 0= = = =

Xc QY A⁄ 2a
1 π+
------------ 0.482906a= = = Yc QX A⁄ 3a–

2 1 π+( )
-------------------- 0.36218– a= = =

x1 s1( ) 0.482906a–= y1 s1( ) 1.63782a– s1+= 0 s1 a≤ ≤

x2 θ( ) 0.482906a– a θcos+= y2 θ( ) 0.36218a a θsin+= π 2⁄– θ π 2⁄≤ ≤

Ixx y2t sd
c
∫ y1

2t s1d

0

a

∫ y2
2ta θd

π 2⁄–

π 2⁄

∫+ 3.36086a3t= = =

Iyy x2t sd
c
∫ x1

2t s1d

0

a

∫ x2
2ta θd

π 2⁄–

π 2⁄

∫+ 0.604984a3t= = =

Ixy xyt sd
c
∫ x1y1t s1d

0

a

∫ x2y2ta θd

π 2⁄–

π 2⁄

∫+ 0.724359a3t= = =



Aerospace Structures 49

Shear flow due to the transverse shear forces

3.8 Shear flow due to the transverse shear forces

The shear flow q is defined in eq. (3.37) as the definite integral of the shear stress component tangent to the con-

tour  across the thickness of the wall. In this article the shear flow is determined from axial equilibrium.4 A 

free body diagram for axial equilibrium of a differential element with area ∆s-by-∆z of the middle surface is 
shown in figure 3.10. It is assumed that there is no prescribed surface traction acting on the middle surface of the 

wall in the axial direction. Refer to figure 3.8(a) on page 41. For prescribed traction component , it 

follows from eq. (3.42) that the axial force per unit length , and from eqs. (3.45) that the bending 

moments per unit axial length .

Summation of the forces in the z-direction yields

. (3.85)

Division by ∆s∆z followed by taking the limit as  and  yields the partial differential equation

. (3.86)

The normal stress resultant nz is given by eq. (3.72) and it is based on the kinematic assumption for the displace-
ments made in article 3.3, infinitesimal deformation, and Hooke’s law. The expression for the normal stress 
resultant is written as . Substitute eq. (3.82) for the normal strain to get

. (3.87)

Take the partial derivative of the normal stress resultant (3.87) with respect to z. In the process of taking the 
derivative we eliminate the derivative of the axial force using equilibrium eq. (3.53), and we eliminate the deriv-
ative of the bending moments using equilibrium eqs. (3.55), and (3.57). The final result for the derivative of the 
normal stress resultant with respect to z is

. (3.88)

4. The alternative is to derive the shear flow from Hooke’s law in shear with the shear strain  given in eq. 

(3.31). This alternative derivation is not used in the theory of thin-walled bars under consideration.
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Fig. 3.10 Free body diagram for axial equilibrium of a differential element of the middle surface
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Assume differentiation with respect to z can be interchanged with the definite integrals with respect to s (Leib-
niz’s rule). Then, the new terms in eq. (3.88) are given by the equations

. (3.89)

The functions  and  are defined as thermal shear forces. Integrate the differential equation (3.86) 

with respect to the contour coordinate from s = 0 to s = s to get

. (3.90)

Solve the latter equation for the shear flow to write

, (3.91)

where . Note that the origin of the contour coordinate where s = 0 is arbitrary at this point. Now 

the result for the integral with respect to the contour coordinate of the derivative of the normal stress resultant is 
written as

. (3.92)

In eq. (3.92) the functions  and  are called distribution functions. They are defined with respect to 

coordinate functions  and  for the segment of the contour from s = 0 to s, and are given by

. (3.93)

In eq. (3.93) the distribution functions with respect to the centroidal coordinates  and  are defined by

. (3.94)

The function  in eq. (3.92) is the shear flow from the temperature gradient in the axial coordinate z. It is 

defined by

, (3.95)

where the area of the contour segment is

. (3.96)
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The shear flow from the change in temperature vanishes for two practical cases: (1) The temperature is spatially 

uniform in the axial coordinate z so that  and , and (2) the change in temperature and material 

coefficient β are spatially uniform over the cross section so .

Substitute the result for the integral in eq. (3.92) into eq. (3.91), we write the formula for the shear flow due 
to the transverse shear forces as

. (3.97)

3.8.1  Open cross-sectional contour

From eq. (3.97) the shear flow at the contour origin is . For most open cross sections, there is a 

longitudinal edge of the bar that is free of external tractions. If the contour origin is taken at the location of the 
free longitudinal edge, then .The shear flow for an open cross section with the contour ori-

gin located at the longitudinal free edge and  is given by

. (3.98)

Example 3.2 Shear flow distribution in the open cross section shown in figure 3.1

Take the change in temperature , , and . Hence,  for the shear flow 

expression given by eq. (3.98). Second area moments were computed in example 3.1 page 47 with the results 
listed in eqs. (l) to (n). Cross-sectional properties that depend on the second area moments, eq. (3.81), are

. (a)

The first area moments of the segment of branch 1 from  to  with respect the centroidal 

coordinates are

. (b)

From eq. (j) of example 3.1  and . Performing the integrals in 

the first area moments we get

. (c)

The distribution functions of the segment with respect to the -  system are given by eq. (3.93), which for 
branch 1 results in 
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, (d)

. (e)

At s1 = 0, the longitudinal free edge condition requires q0 = 0. The shear flow in branch 1 can now be computed 
from eq. (3.98). The result is

. (f)

The first area moments of the cross-sectional area consisting of branch 1 and a segment of branch 2 are given 
by

. (g)

where from eq. (c) we find

. (h)

From eq. (k) of example 3.1  and . Evaluating the 

integrals in the first area moments for branch 2 we get

.

Thus, the first area moments of the cross-sectional area consisting of branch 1 and a segment of branch 2 are

. (i)

Note that at  both , since the origin of the x-y system is at centroid of the cross sec-

tion(i.e., the first area moments of the entire cross-sectional area about the centroidal coordinate system vanish).

The first area moment  given in eq. (3.93) for the cross-sectional area consisting of branch 1 plus a seg-
ment of branch 2 is computed as 

.

Combining terms we get

. (j)

The first area moment  given in eq. (3.93) for the cross-sectional area consisting of branch 1 plus a segment of 
branch 2 is computed as

. (k)

Combining terms we get
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. (l)

The shear flow in branch 2 can now be computed from eq. (3.98), which yields

. (m)

Note that , which is consistent with the vanishing of the shear flow at the top free edge. Shear flow 

distributions are plotted normal to the contour in figure 3.11. J

3.8.2 Location of the shear center for an open cross section

The shear flow given by eq. (3.98) is determined by transverse shear forces Vx and Vy, and is independent of the 
torque Mz. For transverse bending the shear flow q is the dominate term in the expression (3.40) for the torque. 
Hence, the contribution of the twisting moment resultant mzs and the transverse stress resultant qz are neglected 

in eq. (3.40) with respect to the shear flow.5 The torque with respect to the shear center resulting from the shear 
flow is then

. (3.99)

Expanding eq. (3.99), we get

5.  Note that mzs and qz are the main contributors to Mz under pure torsion of an open section as is discussed in 
article 3.9.
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Fig. 3.11 Shear flow distributions for the open section in figure 3.1.
 (a) Vx > 0 & Vy = 0. (b) Vx = 0 & Vy > 0.
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. (3.100)

The contribution of the shear forces acting at the shear center to the torque in eq. (3.100) must vanish by the def-
inition of the shear center. Thus,

. (3.101)

Equation (3.101) can only be satisfied if

. (3.102)

To locate the shear center relative to the centroid, substitute the expression for the normal coordinate  

from eq. (3.10) into the preceding geometric properties of the shear center to get

, and (3.103)

. (3.104)

With the aid of eqs. (3.93), (3.84), (3.81), and (3.77), integrate by parts the following terms in eqs. (3.103) and 
(3.104) to find

. (3.105)

Substitute the results from eq. (3.105) into eqs. (3.103) and (3.104), and then solve for the coordinates of the 
shear center relative to the centroid as 

. (3.106)

Note that normal coordinate  is computed from the second of eq. (3.11) once the contour coordinates with 

respect to the centroid are established.

Example 3.3  Shear center of the open section shown in figure 3.1

Method 1.  For the open section consisting of two branches, the coordinates of the shear center relative to the 
centroid from eq. (3.106) are given by

.

Some of the terms in these formulas are listed as eqs. (l) and (m) in example 3.1 page 47, and eqs. (d), (c), (j)), 
and (l) in example 3.2 on page 51. We list these terms for convenience as follows:
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,

, and

.

From eq. (3.11) the coordinates normal to the contour relative to the centroid are given by

.

The Cartesian coordinates of the contour for each branch are given by eqs. (j) and (k) in example 3.1, which are 
repeated below:

.

The results for the coordinates normal to the contour are

.

The shear center coordinates are determined from the following integrals

.

The preceding integrals were evaluated in Mathematica to get

. (a)

Method 2.  The shear flow distributions were determined in example 3.2 on page 51 with the results given by eq. 
(f) for branch 1 and by eq. (m) for branch 2. These shear flows are illustrated in the left-hand sketch in figure  
3.12. It is convenient to determine the resultant of the shear flow distribution at point O first. As shown in figure  
3.12 the components of the resultant force are  and , and the torque is . Under transverse bending the 

contributions of the transverse shear resultant  and twisting moment resultant  are negligible with respect 

to the shear flow q in the expressions for the shear forces and the torque6 in eq. (3.40). Hence, the force compo-
nents and the torque are given by the following integrals of the shear flow over the contour. 
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. (b)

The line of action of the shear flow in branch 1 is parallel to the Y-direction and so does not contribute to the force 
component  in eq. (b). From example 3.2 substitute eq. (d) for  and eq. (h) for  into eq. (b) above, then 

perform the integrations, to find  and . It is expected that the force components would be 

equal to their respective transverse shear components, since the shear flows were determined from equilibrium 
conditions with respect to the transverse shear forces in article 3.8. Only the shear flow in branch 2 contributes to 
the torque about point O, since the line of action of the shear flow in branch 1 passes through point O. The 
moment arm to the differential force  in branch 2 about point O is simply the radius a. From example 3.2 

substitute eq. (h) for  in the expression for the torque in eq. (b) above, and perform the integration to get

. (c)

Now add and subtract the shear forces Vx and Vy at the shear center (S.C.) in order to preserve force equiva-
lence as is shown in figure 3.12. The upward force Vy at point O and the downward force Vy at S.C. form a clock-

wise couple  and no net vertical force. Similarly, force Vx at point O and the equal and opposite force Vx at 

the S.C. form a counterclockwise couple  and no net horizontal force. The total counterclockwise torque in 

the cross section must vanish by the definition of the S.C.; i.e., . Substitute eq.(c) for 

 in the total torque to get

. (d)

Therefore, the location of the shear center relative to point O is given by

. (e)

The coordinates of the shear center relative to the centroid are given by  and , 

6. Under pure torsion the transverse shear resultant and the twisting moment resultant are the major contributors to the torque 
as discussed in article 3.9.
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Fig. 3.12 Resultant of the shear flow distribution
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where the coordinates of the centroid relative to point O is given by eq. (i) in example 3.1 on page 47. Thus,

, (f)

which is the same result obtained in eq. (a) by method 1. J

3.8.3 Notes concerning the shear center

• The resultant of the shear flow distribution over the contour is a force with components Vx and Vy acting 
through the shear center such that there is no torque acting at the shear center. If the cross section is subject to 
a torque, this torque cannot be balanced by the shear flow which, according to eq. (3.98), is uniquely deter-
mined by the shear forces Vx and Vy.

• The location of the shear center in the cross section is determined by the pattern of the shear flow distribution 
and not on the magnitude of the transverse shear forces.

• Transverse shear forces Vx and Vy act in the plane of loading to equilibrate the externally applied lateral load 

intensities  and . (Refer to equilibrium equations (3.54) and (3.56).) Thus, the line of action of the 

external lateral loads must pass through the shear center to bend the bar without twisting it in torsion.

• The shear center is located on an axis of symmetry of the cross section if there is one. If there are two axes of 
symmetry in the cross section the shear center and the centroid lie on the intersection of the symmetry axes.

• For an open cross section with straight branches and one junction the shear center is at the junction, since the 
torque from the shear flows at the junction vanishes. See figure 3.13.

3.9 Torsion of an open section with a straight contour

Although we have located the shear center for the open cross-sectional contour, a material law for the torque act-
ing at the shear center remains to be determined. Torsion of an open section bar is an important problem in engi-
neering, but it is not a simple problem in elasticity. Saint-Venant (1855) guided by the solution of the bar with a 
circular cross section, made a brilliant guess and showed that an exact solution to a well-defined problem can be 
obtained. Here, we consider a simplified approach following the presentation given by Vasiliev (1993).

Consider a prismatic bar with a rectangular cross section subject to equal and opposite torques acting on the 
end cross sections at z = 0 and z = L. The lateral surfaces of the bar are traction free so  in eq. (3.31) 

and  in eq. (3.44) on page 41 for . Equilibrium equations (3.53) to (3.57) are identically sat-

isfied when  for , and torsional equilibrium (3.58) is satisfied for a 

xsc 1.15459a 0.48290a– 0.67169a= = ysc 0.128587a 0.36218a–( )– 0.490767a= =

fx z( ) fy z( )

S.C.

S.C.

S.C.

Angle Tee Cruciform

Fig. 3.13 Shear center locations for open sections with straight branches and one junction.

fx fy 0= =

mz z( ) 0= 0 z L≤ ≤

N Vx Vy Mx My 0= = = = = 0 z L≤ ≤
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torque  independent of axial coordinate z. Also, there is no change in temperature from the reference state 

. For a Hookean material the twist per unit length  is proportional to the torque, and so it is also a 

constant with respect to the z-coordinate. 

The contour of a rectangular cross section is a straight horizontal line of length b as shown in figure 3.14. 
The angle  in figure 3.3 for all values of s, and the geometric relations given by eqs. (3.3) to (3.6) and 
(3.8) specialize to

.

The cross-sectional coordinates are  with  and , and the origin is the 
location of the centroid and also of the shear center.

Displacements and strains.  Saint-Venant assumed that as the bar twists the cross section is displaced normal to 
the s-ζ plane (i.e., it warps) but its projection on the s-ζ plane rotates as a rigid body. To prevent rigid body dis-
placement, the displacement components of the centroid are set equal to zero. Then, the in-plane displacements 
given by eqs. (3.20) and (3.22) reduce to

. (3.107)

The out-of-plane displacement given by eq. (3.26) is 

. (3.108)

However, this out-of-plane displacement is changed to account for the warping of the cross section in uniform 
torsion. It is assumed that the rotation about the x-axis, or the negative s-axis, is independent of the z-coor-
dinate but is an unknown function of the s-coordinate. Consequently, the out-of-plane displacement in eq. 
(3.108) is changed to

. (3.109)

The only non-zero strains determined from the displacements (3.107) and (3.109) are shear strains  and 

, From the strain-displacement relations given by eq. (3.28) these shear strain-displacement relations are

. (3.110)

Hooke’s laws for the shear stresses are  and .
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Fig. 3.14 A bar with rectangular cross section subject to uniform torsion
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Stress resultants and equilibrium  The stress resultants associated with these non-zero shear strains (3.110) are 
determined from Hooke’s law, and the definition of stress resultants q, , and  in eq. (3.37). The expressions 

for the stress resultants are

. (3.111)

Performing the integrations through the thickness in eq. (3.111) we find the stress resultants are given by

. (3.112)

Since , the shear flow from 

eq. (3.97) reduces to . That is, the 

shear flow is spatially uniform in the s-coordinate. 
Furthermore, the longitudinal edges at  
are free of tractions, which means the shear flow 
vanishes. Hence,  for . It fol-
lows from the first equation in (3.112) that rotation 

.

The twisting moment resultant  and the 

transverse shear resultant  are related by moment equilibrium about the s-axis for a differential element ds by 

dz cut from the wall. From the free body diagram for differential element of the wall shown in figure 3.15 
moment equilibrium gives

 . (3.113)

Division of eq. (3.113) by area element ds by dz, followed by the limit as  and  yields the moment 
equilibrium differential equation

. (3.114)

Governing boundary value problem.  Substitute  from eq. (3.112) into the differential equation (3.114), 

followed by substitution of  from eq. (3.112) into (3.114). After these substitutions and re-arrangement, the 

result is 

. (3.115)

The longitudinal edges at  are free of tractions, which additionally means the twisting moment  

vanishes at . From eq. (3.112) the vanishing of the twisting moment at the end points leads to the 
boundary conditions
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. (3.116)

The solution to differential equation (3.115) subject to boundary conditions (3.116) is

, (3.117)

where

. (3.118)

Substitute the solution for  from (3.117) into the expressions for the twisting moment  and trans-

verse shear  listed in (3.112) to find

. (3.119)

From the third expression in eq. (3.40) the torque about the z-axis, counterclockwise positive, is given by

. (3.120)

Substituting the results for  and  from eq. (3.119) into the expression for the torque we write the result as

, (3.121)

where the torsion constant J is given by the integral

.

After performing the integration, the result for the torsion constant is

. (3.122)

For a thin, elongated rectangular cross section the value of the ratio of , which from the expression for  

in eq. (3.118) implies . In the limiting case of  we find

. (3.123)

In the simplified theory of thin-walled open section bars, the torsion constant in each open branch is given by eq. 
(3.123).
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The distribution of the twisting moment resultant  over the length of the contour for b/t = 20 is shown in 

figure  3.16. As shown in the plot the distribution of  is symmetric with respect to the contour coordinate, 

attains a uniform magnitude over the majority of the contour, and decreases rapidly to zero near the boundaries of 
the contour where . The distribution of the transverse shear resultant  over the contour is shown in 

figure  3.17. The distribution of  is antisymmetric with respect to the contour coordinate, it is essentially equal 

to zero over the majority of the contour, and its maximum magnitude occurs in the narrow boundaries of the con-
tour at . 

From Hooke’s law and eq. (3.110), the shear stress component tangent to the contour is

.

Substitute the solution for  from eq. (3.117) into the previous equation to get
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Fig. 3.16 Distribution of the twisting moment resultant over the contour for b/t = 20.
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Fig. 3.17 Distribution of the shear stress resultant over the contour for b/t = 20.
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. (3.124)

Note that this shear stress vanishes on the contour where  and attains its maximum magnitude along the 

top and bottom edges where . Shear stress  is the dominate shear stress in the rectangular cross 

section subject to uniform torsion, since through-the-thickness shear stress  is essentially zero over 

most of the contour. For large values of b/t, we neglect the shear stress  with respect to , and we use the 

following approximation

. (3.125)

Warping of the cross section.  Substitute eq. (3.117) for  in eq. (3.109), and recall that , to find 

that the warping displacement  is given by

. (3.126)

A contour plot of the warping displacement divided by  for  and  is shown in fig-

ure 3.18, where

.

Along the s-axis and the ζ-axis the warping displacement is zero, and it attains maximum magnitude near the 
corners of the rectangular cross section. For a positive unit twist,  if the product , and  if the 

product . 

For a thin rectangular cross section a good approximation to the warping function is
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. (3.127)

To show eq. (3.127) is a good approximation, let

  and .

Define the percentage error between the approximate warping function and the exact one by 
. For  the error is 0.482 percent, and for  the error is 0.123 percent.

3.9.1 Torsion of built-up open sections

For large values of the ratio of b/t, the analysis of thin-walled rectangular section of article 3.9 results in the fol-
lowing formulas given by eqs (3.121), (3.123), and (3.125):

. (3.128)

The maximum magnitude of the shear stress  occurs at . Then from the previous equations for 

large values of the ratio of b/t this maximum shear stress can be expressed as

. (3.129)

Now consider torsion of open section bars of more complex shape as are shown in figure  3.19. Understand-

ing the torsional response of these bars with complex, open cross-sectional shapes is facilitated by an analogy to 
the response of an initially flat membrane supported on its edges over an opening, where the edges of the opening 
are in the same shape as the cross section. The membrane is stretched under a uniform tension, and then subject 
to an internal pressure to cause the membrane to deflect. The deflected shape of this pressurized membrane is 
analogous to the torsion problem in that level contours on the surface of the deflected membrane coincide with 
the lines of action of the shear stresses, and that the slope of the membrane normal to the level contour is propor-
tional to the magnitude to the shear stress. Also, the volume between the x-y plane and the deflected surface of 
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Fig. 3.19 Some thin-walled open sections and their torsion constants
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the membrane is proportional to the total torque carried by the section. The following text excerpted from Oden 
and Ripperger (1981, p. 46) summarizes this analogy.

This analogy was first discovered by Ludwig Prandtl in 1903 and is known as Prandtl’s membrane analogy. 
Prandtl took full advantage of the analogy and devised clever experiments with membranes. By measuring 
the volumes under membranes formed by a soap film subject to a known pressure, he was able to evaluate 
torsional constants. By obtaining the contour lines of the membranes he determined stress distributions.

Torsional constants and the maximum shearing stress can be found for complex cross sections by using the 
results for the thin-walled rectangular section. The membrane analogy shows that the torsional load carrying 
capacity of the complex open section is nearly the same as the narrow rectangular section, because the volumes 
under the membranes are nearly the same if we neglect the small error introduced at the corners or junctions. In 
this way, the membrane analogy implies that the complex open cross section has about the same torsional load 
carrying capacity as a thin-walled rectangular section with a length equal to the total arc length of the contour of 
the complex section. 

Since each branch of the open section is equivalent to a narrow rectangular section with the same developed 
length and thickness, we can sum the torques carried by each branch in the following way

, (3.130)

where the torsion constant for the entire cross section is

. (3.131)

Note that the twist per unit length is the same for all branches in the open section, because the cross section is 
assumed to be rigid in its own plane. The use of eq. (3.131) for several open sections is shown in figure  3.19. 

Starting from eq. (3.129), the maximum shear stress in the ith branch of the section is given by

. (3.132)

That is, the maximum shear stress in the ith branch of the open section is the total torque divided by the torsion 

constant for the entire section times the thickness of the ith branch. Note that the largest shear stress magnitude in 
a built-up open section occurs in the thickest branch.

3.10 Inclusion of stringers in the analysis of the cross section 

A stringer is a longitudinal flange element connecting thin skins or webs in aerospace structures, and the cross-
sectional area of the flange is denoted by . Over the cross-sectional area of the flange it is assumed that

• the longitudinal normal stress  is uniformly distributed, and

•  the shear stresses .

That is, the stringer is a longitudinal bar element that does not resist shear. It is modeled as a point on the contour 
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with coordinates  relative to the centroid, where the contour coordinate of the stringer is denoted 

by . Thus, the stringer is mathematically represented as a point on the contour having the attribute of area. See 

figure 3.20.

The area and first area moments given by eq. (3.74) are modified to account for the cross section with string-
ers as

. (3.133)

Note that first area moments about the centroid are required to satisfy . The second area moments 

about the centroid in eq. (3.77) are modified to

. (3.134)

The material law for extension and bending (3.79) on 
page 46 remains valid with the geometric properties speci-
fied by eqs. (3.133) and (3.134). The thermal axial force 

 is given by eq. (3.75) on page 46, and the thermal 

bending moments  and  are given by eq. (3.78).

3.10.1 Effect of stringers on the shear flow 
distribution

The shear flow exiting the stringer location is denoted by 

, the shear flow entering the stringer location by , 

and the increase in the axial force in the stringer by . 

See figure 3.20. Sum the forces in the z-direction of the 
free body diagram shown in figure  3.20 to get

.

Divide this equilibrium equation by the incremental length , then let  to get in the limit

. (3.135)

Combine eqs. (3.95) and (3.97) to write the shear flow as

. (3.136)

Equation (3.89) was used to identify the derivative of the thermal force in the previous result. Then the jump in 
the shear flow across the stringer is
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(3.137)

Note that

. (3.138)

Under the assumption made to model the stringer . The axial normal stress in the stringer is given in 

eq. (3.83) on page 47. Thus, . Derivatives of the axial force and bending moments with respect to 

z appearing in  were replaced by equilibrium differential equations (3.53), (3.55), and (3.57), respec-

tively. The result for the derivative of the normal force in the stringer is

. (3.139)

Substitute eqs. (3.137) and (3.139) into (3.135) to find

. (3.140)

Equation (3.140) simplifies to

. (3.141)

Equation (3.141) is valid for every choice of the shear actions  and . Then to satisfy eq. 

(3.141), the coefficients of the shear actions must vanish, which leads to

. (3.142)

Relations (3.84) and (3.93) evaluated at  are repeated in the following relations:

. (3.143)

After substituting the relations (3.143) into eq. (3.142) we get

. (3.144)

Equation (3.144) shows that the jump in the shear flows exiting and entering the stringer (3.135) is equivalent to 
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a jump in value of the first area moments across the stringer area. 

3.11 Closed cross-sectional contour

Consider a single-cell, closed cross-sectional contour as shown in figure 3.21. The shear flow acting tangent to 
the contour is given by eq. (3.97) on page 51, where we assume the shear flow from the prescribed change in 
temperature vanishes. (Refer to the discussion in the paragraph preceding eq. (3.97).) Then the shear flow is 
given by

. (3.145)

The shear flow is statically equivalent to the shear forces and the torque acting on the cross section. The static 

equivalence with respect to the shear center given by eq. (3.40) on page 40 reduces to

. (3.146)

(It is assumed that the transverse shear resultant qz and the twisting moment resultant mzs are small with respect 
to the shear flow, and therefore are neglected in eq. (3.40).) The shear flow formula (3.145) is the sum of the open 
section shear flow, eq. (3.98), plus a shear flow q0 that is the spatially uniform around the contour. If (3.145) is 

substituted for the shear flow in the two expressions for the shear forces in (3.146), it can be shown7 that we get 
identities  and . That is, the shear flow (3.145) is statically equivalent to the shear forces Vx 

and Vy. independent of q0. If we substitute the shear flow (3.145) into the expression for the torque in eq. (3.146), 
then the shear flow q0 can be determined from the torque acting at the shear center. However, the location of the 
shear center is not known. 

Since the location of the centroid is determined before the location of the shear center, consider the torque 

from the shear flow resolved at the centroid. That is . The coordinate normal to the con-

7. Employ eq. (3.3) and integrate by parts using the results from eq. (3.105).

q s z,( ) q0 z( ) k
Iyy

------VxQy s( )– k
Ixx

------VyQx s( )–=

qds
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x

y

C

S.C.

s 0 & s, S= =

Vx
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Mz

S.C.
C

t

statically

equivalent

q0

Fig. 3.21 Static equivalence of the shear flow acting along a closed contour to shear forces and torque.
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tour relative to the centroid  is determined by the second equation in eq. (3.11) on page 34. Substitute the 

shear flow (3.145) into the expression for the torque at the centroid to get 

. (3.147)

Let the area enclosed by the contour be denoted by . As shown in figure 3.22, the enclosed area is given by

. (3.148)

The two expressions given above for the enclosed area is a conse-
quence of the relation (3.10) between the normal coordinates  and 

 when integrated around the closed contour. Solve eq. (3.147) for 

q0 to find

. (3.149)

Substitute the result for q0 from eq. (3.149) the into eq. (3.145) and denote the resulting expression for this shear 
flow as qC: the shear flow with respect to the centroid. The result for qC is written as

, (3.150)

where the shear flow distribution functions relative to the centroid are defined by

. (3.151)

We have used all the conditions of static equivalence to determine the shear flow. with respect to the centroid. 
Thus, it is a statically indeterminate problem to find the expression for shear flow relative to the shear center, as 
well as the location of the shear center in the cross section. The additional relation we need is a constitutive rela-
tion between the twist per unit length  and the shear flow q. 

3.11.1 Twist per unit longitudinal length

The shear strain  evaluated at the contour from eq. (3.31) on page 38 is

, (3.152)

where eq. (3.3) was used to write the trigonometric functions in terms of the derivatives of the contour coordinate 
functions. Integrate the shear strain (3.152) around the closed contour to get

. (3.153)

Continuity of the contour and the eq. (3.148) for the enclosed area results in

rnc s( )

MzC rnc q0
k

Iyy

------VxQy– k
Ixx

------VyQx– 
  ds∫° q0 rncds∫°

k
Iyy

------Vx rncQyds∫°– k
Ixx

------Vy rncQxds∫°–= =

Ac

ds
1
2
---rnds dAc=

rt

s

rn

S.C.

Fig. 3.22 Enclosed area element.
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.

Hooke’s law relates the shear strain to the shear stress by , where G is the shear modulus of the 

material. In torsion of a closed cross-sectional contour the shear stress is assumed uniform through the thickness 
of the wall. Hence, the shear stress is determined by the shear flow divided by the thickness of the wall, or 

. Substitute  into the equation for the twist per unit length to get.

. (3.154)

3.11.2 Location of the shear center and the final expression for the shear flow

Substitute eq. (3.150) for the shear flow in eq. (3.154) to find

. (3.155)

The torque Mzc and shear forces Vx and Vy are resolved at the centroid. We can find a statically equivalent torque 
and force system resolved at the shear center: Simply add and subtract the shear forces at the shear center which 
does not change static equivalence as shown in figure 3.23(a). The upward force Vy at point C and the downward 

force Vy at S.C. form a clockwise couple  and no net vertical force. Similarly, rightward force Vx at point C 

and the leftward force Vx at the S.C. form a counterclockwise couple  and no net horizontal force. The total 

counterclockwise torque in the cross section is . Formulating these couples leave forces Vx 

and Vy at the shear center as shown in part (b) of figure 3.23 and a counterclockwise torque. Thus,   the torque at 
the shear center must be

. (3.156)

Solve eq. (3.156) for the torque at the centroid and substitute the result for MzC into eq. (3.155) to get

. (3.157)

At the shear center the twist per unit length depends on the torque resolved at the shear center and not on the 
shear forces. In other words, the shear forces acting at the shear center do not contribute to torsion. This require-
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Fig. 3.23 The method to move the shear forces from the centroid to the shear center while 
maintaining static equivalence.
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ment means the coefficients of the shear forces in eq. (3.157) must vanish. Equating these coefficients to zero 
determines the coordinates of the shear center relative to the centroid as

. (3.158)

Equation (3.157) reduces to the form

, (3.159)

where the effective torsional stiffness is

. (3.160)

If the shear modulus is uniform around the contour, then

 and the torsion constant is . (3.161)

Substitute the solution for the torque at the centroid from eq. (3.156) into the expression for the shear flow in 
eq. (3.150). In the process, we drop the “C” subscript on qC to indicate that we are formulating the shear flow rel-
ative to the shear center. The result is

. (3.162)

Equation (3.162) is written in the form

, (3.163)

where the shear flow distribution functions relative to the shear center are defined by

. (3.164)

 In pure torsion only torque Mz acts on the section, and the shear terms in eq. (3.163) vanish. Then in pure 
torsion the shear flow is spatially uniform around the contour and leads to 

. (3.165)

Equation (3.165) is called Bredt’s formula, or the Bredt-Batho formula, and it relates the torque to the uniform 
shear flow in a single-cell section subject to torsion only.
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Example 3.4  A single-cell cross section stiffened by axial stringers

A uniform bar of length L with a closed, cross-sectional contour is stiffened by four axial stringers. The configu-
ration and the associated nomenclature is shown in figure  3.24(a), where the X-axis is an axis of symmetry. The 
areas of the stringer flanges are denoted by Af1 and Af2, and the wall thickness t is uniform along the entire con-
tour. As shown in figure 3.24(b), the contour is divided into four branches. Branch 1 is a semicircle segment of 
radius a between the lower stringer Af1 and the upper stringer Af1 of length aπ, branch 2 is the horizontal segment 
between upper stringer Af1 and upper stringer Af2 of length b, branch 3 is the vertical segment between the upper 
stringer Af2 and the lower stringer Af2 of length 2a, and branch 4 is the horizontal segment between lower stringer 
Af2 and lower stringer Af1 of length b. Dimensional data are

The numerical results presented in the solution of this example were performed in Mathematica.

a) Determine the location of the centroid (C) and the second area moments  and .

b) Determine the shear flow distribution functions  and  with respect to the centroid. 

c) Determine the location of the shear center (S.C.) relative to the centroid.

Solution to part (a).  Take the origin of the X-Y system at point O, the center of the vertical web. The parametric 
equations of the contour in each branch are listed in table 3.2,  

 Table 3.2  Parametric equations of the contour in example 3.4

Branch Range

i =1

i = 2 a

a 6 in.= b 7 in.= t 0.03 in.= Af1 0.30 in.2= and Af2 0.70 in.2=

s1 q1,

s2 q2,

s3 q3,

s4 q4,

x

y

C S.C.

X

Y

Af1

Af1Af2

Af2

a

t (typ.)

b

C S.C.
O

Fig. 3.24 Single-cell cross section. (a) Geometry. (b) Branch coordinates and associated shear flows.

(a) (b)

Ixx Iyy

Fxc s( ) Fyc s( )

Xi = Yi =

b a s1 a⁄( )sin+ a s1 a⁄( )cos– 0 s1 aπ≤ ≤

b s2– 0 s2 b≤ ≤
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The area A of the cross section is given by

. (a)

Since the cross section is symmetric about the X-axis, the centroid is located on this axis of symmetry. To locate 
the centroid we only need to compute the first area moment about the Y-axis. The first area moment  is given 

by

. (b)

The centroid coordinate is , and by symmetry . The Cartesian coordinates x 

and y with origin at the centroid are related to coordinates X and Y by 

  and , . (c)

From eq. (3.77) the second area moment about the x- and y-axes are given by

, and (d)

. (e)

The product area moment  since the x-axis is an axis of symmetry of the cross-sectional area.

Solution to part (b).  The first area moments about the x-axis for segments of each branch including stringers 
are

, (f)

, (g)

i = 3

i = 4

 Table 3.2  Parametric equations of the contour in example 3.4

Branch RangeXi = Yi =

0 a s3– 0 s3 2a≤ ≤

s4 a– 0 s4 b≤ ≤

A t sid
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∫
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Iyy xi
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0
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0

s2

∫+ + 0.18s2= = 0 s2 7in.≤ ≤
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, (h)

. (i)

As a check on the computation we evaluate  to find . The value of  

equals the first area moment about the x-axis through the centroid of the entire cross section, which vanishes by 
the definition of the centroid. The first area moments about the y-axis for segments of each branch including 
stringers are

, (j)

, (k)

, (l)

. ( d)

We evaluate  to find , which is as expected for a correct computation of the 

first area moment functions , . From eq. (3.11) on page 34, the results for the normal coor-

dinate functions with respect to the centroid for each branch are

. (m)

The area enclosed by the contour is

. (n)

Since the product area moment , eq. (3.81) gives , , and . Moreover, from eq. 

(3.93) we find  and . Thus, the expressions for the shear flow distribution func-

tions  and  in eq. (3.151) simplify. For each branch the shear flow distribution functions are given 

by

, and (o)
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. (p)

Evaluation of the following terms in the previous equations are

. (q)

The results for shear flow distribution functions  are

, (r)

, (s)

, and (t)

(u)

The results for shear flow distribution functions  are

, (v)

, (w)

, and (x)

. (y)

The dimensional unit of each shear flow distribution function is 

Solution to part c.  The x-coordinate of the shear center is given by eq. (3.158). First evaluate the following inte-
gral that appears in the denominator of (3.158):

. (z)

From (3.158) the coordinates of the shear center with respect to the centroid are

, and . (aa)

This result for  is expected since the shear center lies on an axis of symmetry, and the x-axis is the axis of 

symmetry for the cross section. From eq. (3.164) the shear flow distribution functions with respect to the shear 
center are .

We record below for later use the remaining shear flow distribution functions with respect to the shear center, 
which are determined from eq. (3.164).
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CHAPTER 4

 

Some aspects of the 
structural analysis

 

The thin-wall bar theory presented in chapter 3 accounts for the deformations due to extension, bending, trans-
verse shear, and torsion/twist. The inclusion of transverse shear strains is usually referred to as a Timoshenko bar 
theory. A summary of some of the equations from the theory is presented in article 4.1

The von Mises criterion for yielding of a ductile metal under a combined stress state is reviewed in article 
4.2. The permissible limits of the loads that prevent permanent deformation of the bar are determined by imple-
menting the yield criterion. 

In article 4.3 we present examples to determine the axial displacement, axial normal strain, and axial normal 
stress, which include the following topics:

 

•

 

shear force and bending moment diagrams for distributed loads acting on a wing and a ship,

 

•

 

the composite area technique to compute properties of plane areas,

 

•

 

for a bar with a zee cross section, we determine the neutral axis of the cross section for the section subject to 
bending, the normal stress distribution, and the displacements due to pure bending and transverse bending.

In article 4.4 the shear stresses are determined for several examples, including:

 

•

 

an open cross-sectional contour and a closed cross-sectional contour subject to a transverse shear force and a 
torque,

 

•

 

comparison of an open section and equivalent closed section subject to torsion,

 

•

 

resultant of a uniform shear flow and Bredt’s formula,

 

•

 

torsion of cross sections composed of two and three cells, and

 

•

 

transverse bending of a bar with a two-cell cross section.
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4.1 Review of the thin-wall bar theory

 

A straight bar is referenced to the Cartesian coordinate system 

 

x-y-z

 

, with the 

 

z

 

-axis coinciding with the longitu-
dinal axis of the bar. In the 

 

x-y

 

 plane the cross section is described by the contour and the thickness of the wall 
normal to the contour. The contour is a piece-wise continuous curve in the 

 

x-y

 

 plane whose subdivisions are 
called branches, and the tangent to the contour is continuous within a branch. The origin of the 

 

x-y

 

 system in the 
cross section is at the centroid, which is the point labeled C in figure 4.1. In the bar theory the dependent vari-
ables acting at the centroid the cross section of the bar are , , and . 

The axial displacement of the centroid is denoted by  and its corresponding axial force is denoted by 

 

N

 

, the 

rotation of the cross section about the 

 

x

 

-axis is denoted by  and its corresponding bending moment is denoted 

by , and the rotation about the negative 

 

y

 

-axis is denoted by  and its corresponding bending moment is 

denoted by . The shear center of the cross section is labeled S.C. in figure 4.1, and the dependent variables 

acting at the shear center are , , and . The 

 

x

 

-direction displacement of 

the shear center is denoted by  and its corresponding force by , the 

 

y

 

-direction displacement of the shear 

center is denoted by  and its corresponding force by , and the twist of the cross section is denoted by  and 

its associated torque by .

 

4.1.1 Extension and bending

 

Hooke’s law for extension and bending of the bar is defined relative to the centroid. From eq. (3.80) on page 47 
the compliance form of Hooke’s law is

.

 

(4.1)

 

Geometric properties of the cross section are its area 

 

A, 

 

its

 

 

 

first area moments

 

 

 

 and , and its second area 
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Fig. 4.1 Coordinate 
systems in the bar theory, 
and the dependent variables 
referenced to the centroid 
and the shear center of the 
cross section. 
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moments . In eq. (4.1) the modulus of elasticity of the material is denoted by E. The locus of 

points on the contour is expressed parametrically by the equations  and , where the arc-length of the 

contrary is denoted by s. Let  denote the thickness of the contour. See Fig. 4.1. The area and first area 
moments are given by

. (4.2)

First area moments  and  vanish since origin of the x-y-axes is located at the centroid of the cross section. 

Hence, the definition of the centroid allows decoupling of the extension and bending responses of the bar. That is, 
the axial strain  is independent of the bending moments  and , and bending rotation gradients 

, and  are independent of axial force . The second area moments are given by, 

. (4.3)

The dimensionless parameters are defined by

. (4.4)

The thermal loads , , and  appearing in eq. (4.1) are from the prescribed change in temperature from 

the reference state. Refer to eqs. (3.75), and (3.78) on page 46.

The axial normal stress  and the shear stress tangent to the contour  are shown in figure 4.2 The axial 

normal strain  and the axial normal stress  are given by eqs. (3.82) and (3.83) on page 47, respectively. 

These results are repeated below as eqs. (4.5) and (4.6), respectively.

, and (4.5)

. (4.6)

In eq. (4.6) , where  is the linear coefficient of thermal expansion of the material. The cross-sectional 
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coordinates of the contour  and  appearing in eq. (4.6) are defined by

. (4.7)

4.1.2 Shear stresses in open and closed sections

The location of the shear center and the equation for the shear stress depend on whether the cross-sectional con-
tour is open or closed. 

Open cross-sectional contour  The coordinates of the shear center with respect to the centroid for an open 
cross-sectional contour are given by

. (4.8)

In eq. (4.8) the functions denoted by  and  are called distribution functions. The equations for the 
distribution functions are

. (4.9)

In eq. (4.8) the coordinate normal to the contour with respect to the centroid is denoted by . Coordinate 

 is shown in figure 3.3(b) on page 33, which is given by 

. (4.10)

Also shown in figure 3.3(b) is the coordinate normal to the contour with respect to the shear center which is 
denoted by . It is given by

. (4.11)

The shear stress  for an open cross-sectional contour consists of the sum of two terms, and it is given by

. (4.12)

where the shear flow is denoted by , the torsion constant by J, and the thickness coordinate by ζ. The 
shear flow for an open section is related to the distribution functions and the shear forces by

. (4.13)

The first term on the right-hand side of eq. (4.12) is the shear stress component that varies with the contour coor-
dinate s, but it is independent of the thickness coordinate ζ. The second term on the right-hand side of eq. (4.12) 
is a linear function of the thickness coordinate ζ, but it is independent of the contour coordinate s in a branch of 
the cross section where the torsion constant is spatially uniform. The torsion constant is derived in article 3.9 on 
page 57 and in article 3.9.1. For thin-wall bars it is given by
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, (4.14)

where  is the arc-length of the i-th branch and  is the thickness of the i-th branch.

Closed cross-sectional contour.   We begin with the shear flow given by eq. (3.145) on page 67, which is 
repeated below as eq. (4.15).

. (4.15)

The shear flow  is spatially uniform around the contour, and it is determined from

 , (4.16)

where the torque with respect to the centroid is denoted by . Substitute eq. (4.15) for the shear flow into eq. 

(4.16) and solve for . The shear flow with respect to the centroid is expressed as

, (4.17)

where  is the area enclosed by the contour, and functions  and  account for the distribution of 

the shear flow due to the transverse shear forces. It is tacitly implied that the torque  and shear forces  and 

 are resolved at the centroid in the derivation of the shear flow given by eq. (4.17). Then the area enclosed by 

the contour is given by

. (4.18)

The shear flow distribution functions relative to the centroid appearing in eq. (4.17) are defined by

. (4.19)

The twist per unit longitudinal length due to torsion for a closed cell is derived in article 3.11.1 on page 68. It is 
an important equation and is given by 

, (4.20)

where the shear modulus of the material is denoted by G. From figure 3.23 on page 69, the torque at the shear 
center is related to the torque at the centroid and the shear forces acting at the shear center by 

. (4.21)

Substitute the shear flow from eq. (4.17), and substitute the torque at the centroid from eq. (4.21), into eq. (4.20) 
to find

. (4.22)

At the shear center the twist per unit length depends on the torque resolved at the shear center and not on the 
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shear forces. In other words, the shear forces acting at the shear center do not contribute to torsion. This require-
ment means the coefficients of the shear forces in eq. (4.22) must vanish. Hence, the location of the shear center 
with respect to the centroid is

. (4.23)

It follows from eq. (4.22) that the twist per unit length is related to the torque by

,

where the effective torsional stiffness is given by

. (4.24)

The shear flow defined with respect to the shear center is obtained as follows: Substitute eq. (4.21) for the torque 
acting at the centroid into the shear flow eq. (4.17) to get the result

 , (4.25)

where the shear flow distribution functions relative to the shear center are defined by

. (4.26)

The shear stress for a closed cross-sectional contour is given by . Note that the shear stress is 

uniform through the thickness of the wall but is a function of the contour coordinate.

4.1.3 Hooke’s law for transverse shear and torsion

Hooke’s law for transverse shear and torsion is defined relative to the shear center. From eq. (5.76) on page 144 
the compliance form of Hooke’s law is

, (4.27)

where  and  denote the averaged shear strains. These shear strains are depicted in figure 3.6 on 

page 38 and are given by

. (4.28)

In eq. (4.27) the compliance coefficients are denoted by . From eq. (5.62) on page 142 the compli-

ance coefficients for an open cross section are 
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. (4.29)

For a closed cross-sectional contour the compliance coefficients are given by eq. (5.66) on page 143, which are

. (4.30)

The shear flow functions defined relative to the shear center result in a decoupling of the transverse shear and tor-
sional responses of the bar as shown in eq. (4.27). That is, the shear strains are independent of the torque, and the 
twist per unit length is independent of the shear forces. For an open section the torsion constant is given by eq. 
(4.14) and for a single-cell, closed section  is given by eq. (4.24).

4.2 Yield criteria

From “Airplane design requirements” on page 14: All parts of the airplane are 
designed so they are not stressed beyond the yield point at the limit load fac-
tor. That is, there shall be no permanent deformation of the structure on 
removal of the loads. We first consider yielding of the material in uniaxial ten-
sion, and then discuss yield criteria for combined stress states.

The yield point, or yield strength, of a material is determined from mate-
rial characterization tests performed on standard specimens under simple 
loading situations as specified by the American Society of Testing Methods 
(ASTM). The standard governing the tensile test of ductile metals is ASTM 
E8--Standard Test Methods for Tension Testing of Metallic Materials. A plot 
of the normal stress with respect to the normal strain from typical tensile test 
of an aluminum alloy is depicted in figure 4.3. There is an initial linear elastic 
region whose slope is the modulus of elasticity E. Following the linear portion, the slope of the stress-strain curve 
continuously decreases until a relative maximum engineering stress occurs deep into the response regime where 
plastic deformation is dominant. For such material behavior we define an offset yield stress. A straight line is 
drawn parallel to the linear elastic portion of the stress-strain curve starting from a strain  on 

the strain axis. The stress at the intersection of this straight line with the stress-strain curve is defined to be the 
yield strength  of the material. Note that the strain of 0.002, or 0.2 percent (percent strain is defined as 

), is plastic strain, since unloading the specimen from the point  on the stress strain-curve 

would follow the straight dashed line in figure  4.3 and the strain of 0.002 would not be recovered. However, a 
permanent strain of 0.2 percent is not considered detrimental for most structural components, and the 0.2 percent 
offset yield strength has the advantage of being a precisely defined quantity. The offset yield stress is generally 
the most satisfactory means of defining the yielding event for engineering materials. Metals usually break in ten-
sion by the shear stresses acting on planes at  with respect to the tension axis.

Aircraft structural components modeled as thin-walled bars are not only subject to tension, but also com-
pression, bending, and torsion, or a combination of these. Consequently, the material is subject to a combined 
state of stress. For straight bars with thin-walled cross sections, the dominant stress components are shown in fig-
ure 4.2. These stress components acting on the cross section are directly related to the axial normal force, bend-
ing moments, transverse shear forces, and the torque as detailed in article 4.1.
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The maximum shear stress criterion and the von Mises criterion were developed to predict yielding for com-
bined stress states in ductile metals (Dowling, 1993). We use von Mises criterion since it compares favorably to 
test results (Dowling, p. 252) and it is easy to program. The von Mises criterion is based on the shear stress acting 
on octahedral planes, and it is alternatively called the octahedral shear stress yield criterion. The formula for the 
von Mises effective stress in thin-walled bar theory is

 . (4.31)

If , then there is no yielding of a ductile metal under a combined stress state, where  is deter-

mined in the uniaxial tension test. At the initiation of yielding . 

Criteria for failure initiation in modes other than yielding are also formulated in terms of stresses. Examples 
of stressed-based criteria for failure initiation in fiber-reinforced polymer composites are presented in chapter 9, 
and the criteria for the initiation crack propagation are presented in chapter 13.

4.3 Structural analyses for extension and flexure

4.3.1 Bending moment diagrams

To determine the axial normal stress distribution in bars subject to lateral loading, we have to first find the distri-
bution of the bending moment. Analyses are presented for a cantilever wing and barge in still water. Airplanes 
and ships can be regarded as vehicles moving in different mediums, the air or water. In this regard, the study of 
buoyancy distribution acting on ship structures is instructive in determining the distribution of the bending 
moment in the hull.

Example 4.1 Cantilever wing with tip tank

Consider the cantilever wing with tip tank as shown in figure  4.4. Given the weight of the tip tank and its con-
tents W, the distance e of the weight W from the wing tip, the wing span L, and the value of the distributed load 
intensity  at the wing root, determine the shear force and bending moment along the span.

Solution.  The differential equilibrium for the shear force is given by eq. (3.54) on page 43. Integration of this 
differential equation from z = 0 to z results in
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Fig. 4.4 Cantilever wing 
with tip tank.
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 , which evaluates as . (a)

The differential equation for the bending moment is given by eq. (3.55), where in this example the distributed 
moment per unit length . Integrating this differential equation from z = 0 to z results in

 , which evaluates as . (b)

At the wing tip, equilibrium of the tip tank as 
shown in figure 4.5 leads to

. (c)

Hence, the shear force and bending moment are

. (d)

Take , , , and . Numerical evaluation gives

. (e)

The shear force and bending moment distributions with respect to the normalized coordinate z/L are plotted in 
figure 4.6

The shear force equals zero at , which corresponds to . At  the 
bending moment exhibits a horizontal slope. Thus, the bending moment is a relative maximum at 

 with a value of 18,118.6 lb.-in. The largest magnitudes of the shear force and bending moment 

occur at the wing root where,  and  = –166,920. lb.-in. J
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Example 4.2 Uniform barge with symmetric load

Consider a barge at rest in still water with a uniform immersed cross section, and subjected to the symmetrical 
loads shown in figure  4.7. There is a distributed load acting on the barge due to buoyancy forces produced by 

displacing the water. Let  represent the distributed load intensity due to buoyancy, and  is a constant along 

the barge because the immersed cross section is uniform and the water is still. This is an example of a structure 
with no boundary supports, and is typical of aerospace and ocean vehicle structures.

a) Plot the shear force and bending moment diagrams for the barge,

b)  Determine the maximum axial normal stress.

Solution to part (a). Vertical equilibrium of the entire barge requires that the buoyant upthrust equals 40 kN, so 
that . The total distributed load intensity is the difference between  and the magnitude of the 

downward acting applied loading intensity. The point force of 10 kN acting at z = 10 m is shown schematically in 
the -diagram as a downward pointing arrow. Actually,  as , because a point force is a 

finite load acting over zero length. Point forces are idealizations to actual loads and introduce discontinuities in 
the mathematical descriptions of some of the dependent variables.

A semigraphical method is used to sketch the shear force and bending moment diagrams. In this approach 
we first sketch the distributive load  (F/L), then the shear force , and finally the bending moment 

. The differential equilibrium equations governing the shear force and the bending moment are eqs. (3.54) 

and (3.55) on page 43. These equations are repeated in eq. (a) below. 

. (a)

The prescribed external moment intensity  (F-L/L) in this example. From eq. (a) we note that the slope 

of shear diagram at z is the negative of the distributed load intensity at z, and that the slope of the moment dia-
gram at z is the shear force at z. Integrate eq (a) with respect to z from z = z1 to z = z2 to get

, and . (b)

Equation (b) is interpreted in a graphical sense to mean that the difference in the shear force between z2 and z1 is 
the negative of the area under the distributed loading diagram from z1 to z2, and the difference in the bending 
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Fig. 4.7 Uniform section barge in still water with symmetric load.
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moment between z2 and z1 is the area under the shear force diagram from z1 to z2. These are not geometrical 

areas. The area between the  curve and the z-axis has units of force, and may be positive, zero, or negative.

Free body diagrams of the barge at each end are shown in figure 4.8. The water pressure varies linearly with 

the depth of the immersed cross section and acts in z-direction. We assume the moment about the x-axis caused 
by the water pressure is small and can be neglected. As the infinitesimal distance , the distributed loading 
acting at each end vanishes. In the limit we get the equilibrium conditions

, and . (c)

From eq. (c) the shear force diagram begins at zero, and the slope 
 at z = 0 is equal to 1 kN/m. The slope is constant between 

, thus Vy(z) is a straight line in this range of z. The dif-
ference in the shear force between z = 5 m and z = 0 is equal to the 
negative of the area under the  curve, which is 5 kN. Thus 

Vy(5) = 5 kN since Vy(0) = 0. At z = 5+ m the loading intensity jumps to +2 kN/m. The slope of the shear force 
jumps from 1 kN/m to -2 kN/m at z = 5m, but the shear force is itself continuous. The difference Vy(10) – Vy(5) 

is equal to the negative of the area between the -curve and the z-axis between z = 5 m and z = 10 m. Thus 

Vy(10) – Vy(5) = –10 kN, so Vy(10) = –5 kN. Note the shear force is zero at z = 7.5 m. At z = 10 m the point force 

of 10 kN acts. As shown in figure 4.9, vertical equilibrium at z = 10 m yields at jump in the shear force Vy(10+) – 

Vy(10-) = 10 kN, so that Vy(10+) = 5 kN. The slope of the shear at z = 10 m is +2 kN/m, and remains constant 

until z = 15 m. The difference Vy(15) – Vy(10+) = –10 kN, so that Vy(15) = –5 kN. Finally, the slope changes to 

+1 kN/m at z = 15+ m and remains constant in the range 15 < z < 20. The difference Vy(20) – Vy(15) = 5 kN, so 
that Vy(20) = 0. The shear force equal to zero at z = 20 m is expected from the result in eq. (c). The shear force 
diagram is drawn below the loading intensity diagram in figure  4.10.

From eq. (c) the bending moment at z = 0 equals zero, and its slope z = 0 is equal to zero since the shear 
force is zero at z = 0. The slope  of the moment diagram increases linearly from zero at z = 0 to the 5 kN, 

which is the value of the shear force at z = 5 m. The difference Mx(5) – Mx(0) is equal to the area under shear dia-
gram from z = 0 to z = 5 m. Hence, Mx(5) – Mx(0) = 12.5 kNm, and Mx(5) = 12.5 kNm since Mx(0) = 0. From z = 
5 to z = 7.5 the slope of the moment decreases from 5 kN to zero. At z = 7.5, Mx is a local maximum with a mag-
nitude of 18.75 kNm. The slope of Mx(z) for 7.5 < z < 10 is negative, decreasing linearly from zero to –5 kN. The 
difference Mx(10) – Mx(7.5) = –6.25 kNm, so that Mx(10) = 12.50 kNm. The slope of Mx(z) at z = 10 m jumps 
from a –5 kN to +5 kN as shown in figure  4.10, but the moment itself is continuous. That is, the bending moment 
exhibits a cusp at z = 10 m. The bending moment diagram in the range 10 < z < 20 is completed in a manner sim-
ilar to the description of its construction in the range 0 < z < 10. In this example the shear force diagram is anti- 
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symmetric about z = 10 m and the bending moment is symmetric about z = 10 m. This follows from the symmet-
rical loading on the barge.

Solution part (b).  Let us assume an open cross section of the barge is as shown in figure 4.11. The thickness of 
the three branches is 5 mm, and the section is symmetric about the y-axis so the product area moment . 

From (4.4) the cross-sectional coefficients , , and . At  the shear force is 

equal to zero and the bending moment has a maximum value of 18.75 kNm. Hence, the shear stress  and 

the axial normal stress (4.6) is given by

, (d)

where the second area moment about the x-axis . The maximum magnitude of the normal 
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Fig. 4.10 The distributed 
loading, shear force, and 
bending moment diagrams 
for the barge in still water.
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stress occurs at , and it is a tensile stress with the value of 

. J (e)

4.3.2 Buoyancy force distribution on ships

The simple uniform buoyancy distribution acting on the barge in example 4.2 is an exception to the buoyancy 
distributions found in practice. It is true that equilibrium requires the total buoyant upthrust to equal the weight of 
the ship and its contents. However, the distribution of the buoyancy and weight along the length of the ship is not 
necessarily the same. The difference in the magnitudes of the buoyancy and weight distribution intensities is the 
applied load intensity . In ship design three conditions are recognized to compute  for the same ship. 

These conditions are called

• the still water condition,

• the sagging condition, and

• the hogging condition.

A more detailed account of these conditions on the longitudinal bending of the ship is given by Muckle 
(1967) and Zubaly (1996), and here we only summarize the basic ideas.

A ship in still water is shown in figure  4.12, and a section A-A between z and z + dz is also shown. 

Archimedes’s principle asserts that the buoyant upthrust is equal to the weight of the fluid displaced. Let A(z) 
denote the submerged cross section at z, and let γ denote the specific weight (force per volume) of the fluid. The 
differential buoyancy force dFb acting on the ship over a differential length dz is

. (4.32)

Consequently, the buoyant upthrust per unit ship length, which we designate , is equal to γA(z); i.e.,

y 25 12⁄( )m=

σzz max

18.75 kNm 25 12⁄  m( )
5 128⁄( )m4

------------------------------------------------------- 1 000, 3×10 N/m2( ) 1.0 MPa= = =

C
5
12
------  m

2.5 m

10 m

x

y
5 mm

18.75  kNmFig. 4.11 Cross section   of 
the barge in example 4.2.
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Fig. 4.12 A ship in still water.
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. (4.33)

A curve of  for a ship as well as the weight per unit length is shown in figure  4.13. Overall equilibrium 

requires the area under these curves to have the same magnitude. If the submerged cross section is uniform in z, 
as is the case for the barge in example 4.2, the distribution of the buoyancy per unit length  is a constant.

At sea a ship is subject to waves, and this alters the buoyancy distribution. For longitudinal bending of the 
ship two extreme static conditions are assumed: sagging and hogging. In each condition, the length of the wave is 
assumed to be the length of the ship. This is an “accepted” assumption for the worst buoyancy distribution caus-
ing the most severe bending of the ship.

The sagging condition is shown in figure  4.14(a). The wave crests are at the bow and stern, and the wave 
trough is amidships. A schematic of the buoyancy per unit length is shown below the ship in figure  4.14(a). The 
immersed cross section is the largest at or near the wave crests, and is least near the trough. The intensity of the 
buoyancy distribution reflects this. In this condition the deck sags and is in compression while the bottom is in 
tension. The worst location to concentrate the cargo in the ship is amidships, as this will result in the largest 
bending moment.

The hogging condition is depicted in figure  4.14(b). Here the wave troughs are at bow and stern, and the 
crest is amidships. The immersed cross section is greatest near amidships and is least near bow and stern. The 
distribution of the buoyancy per unit length , shown in figure  4.14(b), reflects this situation. In hogging the 

deck is in tension and the bottom is in compression. The worst possible locations to concentrate cargo is fore and 
aft, as this will produce the greatest bending moment in the ship.

fb
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dz
--------- γA z( )= =

fb
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Fig. 4.13 Conceptual longitudinal weight 
and buoyancy distributions acting on a 
ship.
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Fig. 4.14 Longitudinal bending conditions for a ship. (a) Sagging. (b) Hogging.
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4.3.3 Properties of plane areas

First and second area moments of the cross-sectional area need to be determined before evaluating eq. (4.6) for 
the normal stress. Analytical procedures were used in Example 3.1 on page 47 to compute first and second area 
moments for a thin-walled bar. Frequently, the composite area technique in conjunction with the parallel axis the-
orem are used to determine these geometric properties.

Parallel axis theorem.  Consider two parallel axes systems in the cross section. The origin of the Cartesian axes 
x and y coincide with the centroid of the cross-sectional area, which is labeled C in figure  4.15. The second Car-
tesian system  and  has its origin at an arbitrary point O, the -axis is parallel to the x-axis, and the -axis is 

parallel to the y-axis. The location of the centroid in the  and  system is denoted by coordinate values 

. Usually the  and  system is selected as something convenient to start with, and the first and second 

area moments with respect to the  and  system are computed or looked up in tables. Then the  coor-

dinates of the centroid are computed and the parallel axis theorem is used to find the second area moments in the 
x and y system.

For a thin-walled bar the area element is , in 
which s denotes the arc-length along the contour c, and t(s) 
denotes the thickness of the wall. In general, the thickness 
may vary smoothly with arc-length, but its magnitude must 
remain small with respect to the overall dimensions of the 
cross section. An abrupt change in thickness is modeled by a 
step change in thickness at a junction. The area of the cross 
section is given by

. (4.34)

In the  and  system, the first area moments are defined as

. (4.35)

The relationship between the two parallel coordinate systems is determined from the location of a generic point s 
on the contour in each system. This relationship is

. (4.36)

If eq. (4.36) is substituted into eq. (4.35), we get

. (4.37)

where

. (4.38)

Since the origin of the x and y system is at the centroid, the first moments  and  are zero by definition. Set-

ting  and  in eq. (4.37), we can solve to find the location of the centroid as

X Y X Y

X X

Xc Yc,( ) X Y

X Y Xc Yc,( )

x

y
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X

C

O

Yc

Xc

Fig. 4.15 Parallel Cartesian axes systems.
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. (4.39)

In the  and  coordinate system the second area moments are defined by

. (4.40)

Second area moments are often called moments of inertia in analogy to moments of inertia of mass elements 
used in rigid body dynamics. The fact that eq. (4.40) is second moments of area elements and not mass elements 
should be kept in mind even if the terminology “moments of inertia” is used in the context of beam bending. Now 
substitute eq. (4.36) for the  and  coordinates into eq. (4.40) to get

, (4.41)

where the second area moments with respect to the centroid are given by

. (4.42)

Since the origin of the x and y coordinates is at the centroid , and eq. (4.41) reduces to

. (4.43)

Equation (4.41) is the generalized parallel axis theorem, but in problem solving we usually use eq. (4.39) to 
locate the centroid and then the parallel axis theorem reduces to the use of eq. (4.43). Note that eq. (4.42) shows 

that  and  for real areas are always positive in value with dimensional units of L4. The product area 

moment  can be positive, zero, or negative in value. The product area moment  is zero if either the x -axis 

or y-axis is an axis of symmetry of the cross section.

Radii of gyration.  Define radii of gyration by 

. (4.44)

The radii of gyration (4.44) have dimensional units of length. However, the radii of gyration do not locate a phys-
ically significant point in the cross section. For example, , where  it the radius of gyration with 

respect to the -axis. (Using the parallel axis theorem, the relation between the radius of gyration about the -

axis to the x-axis is .) 

Composite area technique.  The composite area technique for computing the centroid and second area 
moments is a method applicable to cross-sectional areas that can be subdivided into simple geometric shapes 
whose properties are known. An entire area A is subdivided into N sub-areas ,  as shown in fig-

ure  4.16(a). Known properties of the i-th sub-area are its centroid denoted by , and . 

Sub-area coordinate axes are denoted by  with origin at . Reference axes are denoted by  with 

origin at point O. The xi-axis is parallel to the X-axis, and the yi-axis is parallel to the Y-axis. Coordinates  

in the reference system locate the centroid  of the i-th sub-area. 
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The pertinent equations for the assembled area properties are

, and (4.45)

. (4.46)

The coordinates  of the centroid C for the entire area shown in figure  4.16(b) are computed from the 

last two expressions in eq. (4.45). The origin of the parallel coordinate system x-y is located at the centroid C as 
shown in figure 4.16(b). The parallel axis theorem (4.43) is used to find the second area moments about centroi-
dal system x-y after the second area moments in the reference system are determined from eq. (4.46).

For branches that can be represented by a thin-walled rectangular area, we can obtain simple formulas for 
the second area moments. Consider a thin rectangular area, where . The contour is a straight line 
inclined at a angle θ as is shown in figure  4.17. The contour coordinate is denoted by s, and the area element is 

. The x and y coordinates of the point s on the contour are given by  and . 

Hence, the second area moments are computed from
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Fig. 4.16 (a) Division of area A into sub-areas. (b) Assembled properties of area A.
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. (4.47)

Example 4.3 Thin-walled zee section properties by the composite area technique

Determine the centroid and the second area moments for the thin-walled zee section shown in figure  4.18. The 
section is subdivided into three rectangular branches. One branch corresponds to the web and two branches cor-

respond to the flanges. 

Solution.  First we find the centroid. Equation (4.45) is represented in table 4.1 shown below. 

Table 4.1 Areas and first area moments for the zee section

i

1 bt b/2 0 b2t/2 0

2 2bt 0 b 0 2b2t

3 bt – b/2 2b – b2t/2 2b2t

Sum 4bt 0 4b2t

Ixx s θsin( )2t sd

b 2⁄–

b 2⁄

∫
b3t
12
------- θsin2= =
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b 2⁄–

b 2⁄

∫
b3t
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Ixy s θsin( ) s θcos( )t sd

b 2⁄–
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∫
b3t
12
------- θsin θcos= =
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Fig. 4.18 Zee section approximated by three rectangular branches.
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Summation of the appropriate columns gives

, (a)

so that the centroid has coordinates  and .

The second area moments are computed for the reference coordinate system  using table 4.2 shown 
below. Note that for the local coordinate systems originating at the centroid in each branch we can identify the 
angle θ in eq. (4.47) as , , and . These values of the angle θ in each branch are used 

to compute the local second area moments in each rectangular branch via eq. (4.47).  

From the summation of the columns, the second area moments in the  system via eq. (4.46) are

. (b)

Now we use the parallel axis theorem to transfer these moments to the x-y system. Equation (4.43) gives

(c)

(d)

.J (e)

4.3.4 Neutral axis of the cross section

For the case of a vanishing axial normal force N, and neglecting temperature effects, the axial normal stress (4.6) 
reduces to 

. (4.48)

At the centroid where  the axial normal stress vanishes. Set the axial normal stress equal to zero to 
get

Table 4.2 Second area moments for each branch of the zee section

1 0 0 b3t/4 b3t/12 0 0

2 (b2)2bt (2b)3t/12 0 0 0 0

3 (2b)2bt 0 b3t/4 b3t/12 – b3t 0

Sum 6b3t 2b3t/3 b3t/2 b3t/6 – b3t 0
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. (4.49)

Equation (4.49) defines a straight line in the cross section that is called the neutral axis. Substitute the definitions 
of  and  from eq. (4.4) into eq. (4.49), and then solve for y in terms of x. Let these coordinates be denoted as 

. After some algebra we find

, (4.50)

where

. (4.51)

Example 4.4  Normal stress distribution in a cantilever beam subject to pure bending.

The cantilever beam shown in figure  4.19 is subject to a bending moment M at its tip. The cross section is the 
thin-walled zee shown in figure 4.18. The second area moments about the centroidal axes are given by eqs. (c) to 
(e) in example 4.3. Determine the neutral axis in the cross section and the distribution of the bending normal 
stress.

Solution.  First, note that the components of the prescribed bending moment are  and . Thus, 

the cantilever beam is subject to loading in the y-z plane. The equation of the neutral axis is , 

where eq. (4.51) is

. (a)

The angle .

To compute the distribution of the normal stress (4.6) in the cross section, we begin by evaluating section 
coefficients (4.4):

. (b)

The coordinates in each branch of the cross section defined by eq. (4.7) are 

. (c)
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Fig. 4.19 Pure bending of a cantilever beam 
with a zee cross section.
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The normal stress (4.6) in i-th branch is given by

. (d)

Coordinates in branch 1 are , in branch 2 , and in branch 3 

. The normal stress in each branch is a linear function of the contour coordinate. The results 

are

, (e)

, and (f)

. (g)

The neutral axis and the bending normal stress distribution are shown in figure  4.20.J

Example 4.5 Displacements of the cantilever beam of example 4.4

Determine the lateral displacement functions  and , 0 ≤ z ≤ L, for the zee section beam of example 4.4.

Solution.  First note that this a statically determinate beam subject to pure bending. The equilibrium equations 
are satisfied for  and  for all , where M denotes the specified end moment. To find 

the lateral displacements  and , , we begin with matrix eq. (4.1), which for this example 
reduces to
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Fig. 4.20 Bending normal stress 
distribution along the contour of the 
zee section.
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. . (a)

For this pure bending case the derivatives of the rotations are given by

, and (b)

. (c)

Integrate eqs. (b) and (c) from z = 0 to z to get

, and (d)

. (e)

At z = 0 the beam is clamped to the rigid wall so that the rotations of the cross section at the wall are 
. The results for the rotations are

. (f)

The cantilever beam is subject to pure bending and by equilibrium the transverse shear forces , for 

. Hooke’s law (4.27) then yields that the transverse shear strains , for . Vanish-

ing of the transverse shear strains in eq. (4.28) leads to

. (g)

From eqs. (f) and (g) the derivatives of the displacements are given by

. (h)

Integrate eq. (h) from z = 0 to z to get

. (i)

At the clamped end the beam displacements equal zero. Thus, the displacements are

. (j)

dw dz⁄
dφx dz⁄

dφy dz⁄

1
E
---

1 A⁄ 0 0
0 k Ixx⁄ knx–( ) Iyy⁄

0 kny–( ) Ixx⁄ k Iyy⁄

0
M–

0

=

dφx

dz
-------- k M–( )

EIxx

---------------- 16 7⁄
8 3⁄( )Eb3t

-------------------------- M–( ) 6
7
--- M

Eb3t
----------- 
 –= = =

dφy

dz
--------

kny

EIxx

---------- M–( )– 16 7⁄( ) 3 2⁄–( )
8 3⁄( )Eb3t

------------------------------------ M–( )– 9
14
------ M

Eb3t
----------- 
 –= = =

φx z( ) φx 0( )– 6
7
--- M

Eb3t
----------- 
 – zd

0

z

∫
6
7
--- M

Eb3t
----------- 
 – z= =

φy z( ) φy 0( )– 9
14
------ M

Eb3t
----------- 
 – zd

0

z

∫
9
14
------ M

Eb3t
----------- 
 – z= =

φx 0( ) φy 0( ) 0= =

φx z( ) 6
7
--- M

Eb3t
----------- 
 – z= φy z( ) 9

14
------ M

Eb3t
----------- 
 – z=

Vx Vy 0= =

0 z L≤ ≤ ψx ψy 0= = 0 z L≤ ≤

ψx
du
dz
------ φy+ 0= = ψy

dv
dz
------ φx+ 0= =

du
dz
------ φy– 9

14
------ M

Eb3t
----------- 
 z= = dv

dz
------ φx– 6

7
--- M

Eb3t
----------- 
  z= =

u z( ) u 0( )– 9
14
------ M

Eb3t
----------- 
  z2

2
----= v z( ) v 0( )– 6

7
--- M

Eb3t
----------- 
  z2

2
----=

u z( ) 9
14
------ M

Eb3t
----------- 
  z2

2
----= v z( ) 6

7
--- M

Eb3t
----------- 
  z2

2
----=



Aerospace Structures 99

Structural analyses for extension and flexure

The view of the lateral displacements of the beam at z = L are shown in figure  4.21. As a result of  the 

beam displaces both vertically and horizontally for a load that is applied in y-z plane.
   J

Example 4.6 Transverse bending of a cantilever beam

Consider a uniform cantilever beam from example 4.4 subject to a vertical force F acting through the shear center 
at its free end as shown in figure 4.22. There is no change in temperature from the stress-free state. The cross sec-
tion is the thin-walled zee shown in figure 4.18. Determine the displacements of the cantilever. 

Solution.  The cantilever is statically determinate, and from equilibrium the shear force and bending moment are

. (a)

From Hooke’s law (4.1) we find the derivatives of the rotations are

. (b)

Integrate the rotations in eq. (b) with respect to coordinate z and impose  at the clamped end 

of the cantilever to get

Ixy 0≠

x

y

u L( )

v L( )

M

N.A.

β 56.31°= 53.13°

Fig. 4.21  Displacement of the centroid at the tip of the cantilever beam subject to pure bending.

x

y

s1

s2

s3

C, S.C.

Section A-A

z

y

L

FA

A

Fig. 4.22 Transverse bending of a cantilever 
beam with a zee cross section.
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. (c)

From eq. (4.27) the shear strains of the cantilever beam are

. (d)

The compliance coefficients (4.29) for this example are

, and (e)

. (f)

To evaluate the compliance coefficients in eq. (d) we need the parametric equations of the contour of the cross 
section with respect to centroidal coordinates. The equations are listed in table 4.3.

We need to determine the distribution functions  and , , beginning with the contour 

origin from the general expression in eq. (4.9). The contour origin is in branch 1 where  at its intersection 

with the traction-free longitudinal edge. As we move along the contour each branch is cut at a generic value of its 
contour coordinate. The area of the contour preceding the cut determines the range of integration for the distribu-
tion function as shown in figure 4.23. Using the parametric equations in table 4.3 the results for branch one are

, and .(g)

 For a cut in branch 2, the integration includes all of branch 1 and the integration of the segment in branch 2. The 
distribution functions for the cut in branch 2 are

, and (h)

, where . (i)

Table 4.3 Contour coordinate functions

Branch 

i = 1

i = 2 0

i = 3
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-----------------------------F= φy
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b
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2b
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b
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  2
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2
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0

b

∫ Qx2
2
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0

2b
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2
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0

b
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xi si( ) yi si( )

b s1– b– 0 s1 b≤ ≤
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s1 0=

Qx1 s1( ) y1 s1( ) nyx1 s1( )–[ ]t s1d

0
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1
4
--- 2b 3s1–( )s1t= = Qy1 s1( ) x1 s1( ) nxy1 s1( )–[ ]t s1d

0
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1
8
--- 5b 4s1–( )s1t= =
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For a cut in branch 3, the integration includes all of branch 1, all of branch 2, and the integration of the segment 
in branch 3. The distribution functions for the cut in branch 3 are

, and (j)

, where . (k)

Substitute the distribution functions in eqs. (g) to (k) into the compliance coefficients of eqs. (e) and (f), followed 
by integration, to find 

. (l)

From the definition of the shear strains (4.28), we get the following integrals for the displacements that satisfy the 
boundary conditions :

. (m)

Substitute the compliance coefficients from eq. (i) into Hooke’s law (d), followed by substituting the result for 
shear strains into eq. (m). Then substitute eq. (c) for the rotations into eq. (m). Perform the integration with 
respect to z to get:

. (n)

The vertical displacement at point of application of the force F is

, (o)

where the last result was obtained by factoring out the first term on the right-hand side. For aluminum alloys 
, eq. (o) can be manipulated to the form

s1

s2

s3

Fig. 4.23 Range of integration 
along the contour to compute 
the distribution functions.
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. (p)

The function  is evaluated for several ratios of , and the results are listed in table 4.4. The function 

 for values of  , which implies the displacement  for .

This result means the contribution of the displacement due to transverse shear deformation is negligible with 
respect to the component due to bending for beams that are long with respect to their cross-sectional dimensions. 
To neglect the influence of transverse shear means we can set shear strains  and . Setting the 

shear strains equal to zero in Hooke’s law for transverse shear in (4.27) means the shear forces equal zero. How-
ever, the shear forces are necessary for beam equilibrium. Hence, we omit Hooke’s law for transverse shear in a 
theory where the shear strains are assumed equal to zero. The beam theory neglecting transverse shear strains is 
called the Euler-Bernoulli beam theory. J

4.4 Structural analyses for transverse shear and torsion

The shear stress  is directly proportional to the transverse shear force components Vx and Vy, and the torque 

Mz for a straight bar and for infinitesimal deformations of a Hookean material. Procedures to calculate  are 

different for an open contour and for a closed contour. The stress analysis for an open cross-sectional contour is 
presented in example 4.7, and the stress analysis for a closed cross-sectional contour is presented in example 4.8. 

Example 4.7 Shear stress analysis for an open cross-sectional contour

The open contour shown in figure 4.24 consists of a semicircular branch of radius a.  For simplicity the origin of 
the X-Y system is at the center of the semicircle which is labeled point O in figure 4.24. The X-axis is an axis of 
symmetry, and the centroid C and shear center S.C. lie on this axis. To find the shear center we take the shear 
force . The shear force  and the torque  act at the shear center. If , then the shear force Vy 

causes a displacement  in bending of the bar, and . If , then the torque  causes a rotation  

twisting the bar, and  at the shear center. 

Table 4.4 Ratio of the transverse shear
 displacement to the bending displacement

1 5.77

2 2.19

5 1.19

10 1.05

15 1.02

v L( ) 16L3F
21EIxx

---------------- 1 4.77
L b⁄( )2

-----------------+=

      

g L b⁄( )=

g L b⁄( ) L b⁄

g L b⁄( ) 1→ L b⁄ 10> v L( ) 16L3F
21EIxx

----------------→ L b⁄ 10>

L b⁄ g L b⁄( )

ψx 0= ψy 0=

σzs

σzs

Vx 0= Vy Mz Mz 0=

v φz 0= Vy 0= Mz φz

v 0=
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Determine

a) the location of the centroid,

b) the shear flow due , 

c) the location of the shear center, and

d)  the shear stress  in terms of  and . 

Solution to part (a).  The parametric equations of the semicircular contour are

. (a)

We compute the area A, the first area moment about the Y-axis , and the location of the centroid as follows.

. (b)

The coordinates relative to the centroid, and the second area moment about the x-axis through the centroid are

. (c)

Solution to part (b).  The distribution function for the shear flow with the contour origin at  is given 
by 

. (d)

Since the product area moment , eq. (4.4) yields the parameters  and . The shear 

flow in eq. (4.13) on page 80 reduces to 

, (e)

and the explicit equation for the shear flow is

. (f)

O
C S.C.

x

X

Y y
θ

a

Vy v,

Mz φz,

s

t

Fig. 4.24  Semicircular, open section. 
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Ixx

------Qx s( )–=
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----------- θcos= =
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The shear flow is plotted normal to the contour in figure 4.25, and it apparent in the 
figure that the shear flow is a maximum at θ = 0. 

Solution to part (c).  The coordinates of the shear center relative to the centroid is 
given in eq. (4.8) on page 80. In this example the equation for the coordinate  

reduces to

, (g)

where the coordinate normal to the contour with respect to the centroid is given in 
eq. (4.10). In this example the normal coordinate is

. (h)

Substitute eq. (h) for the normal coordinate and substitute eq. (d) for the distribution function, into eq. (g) to find

.

Relative to point O the coordinate of the shear center is given by . The shear center 

lies outside of the circular contour.

As a check on the shear flow we compute its torque 
with respect to the shear center by

, (i)

where  is the coordinate normal to the line of 

action of the shear flow as shown in figure 4.26. The 
normal coordinate is given by eq. (4.11).where 

 is the coordinate normal to the line of action 

of the shear flow with respect to the centroid as 
shown in figure 4.26. In this example the normal 
coordinate with respect to the centroid is

, (j)

Substitute eq. (k) for  in eq. (i) followed by substitution eq. (f) for the shear flow to get

. (k)

Evaluating eq. (k) we find

X

Y

O

q

a

Fig. 4.25 Distribution 
of the shear flow in 
the open section. Vy > 
0.
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Fig. 4.26 The shear 
flow located from the 
centroid and shear 
center by 
coordinates tangent 
and normal to the 
contour.
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. (l)

The result of the integration given by eq. (l) verifies that the shear flow results in no torque at the shear center.

Solution to part (d).  The shear stress  is the sum of the shear stresses from the transverse shear force Vy and 

from the torque , and is given by eq. (4.12) on page 80. For this example we find 

. (m)

From eq. (4.14) the torsion constant . The shear stress (m) is a maximum at θ = 0, 
where the shear flow is maximum. At θ = 0 the maximum shear stress is determined from 

.J (n)

Example 4.8 Shear stress analysis for a closed cross-sectional contour

A closed contour in the shape of the letter D is shown in figure 4.27. The 
origin of the X-Y system is taken at the center of the semicircular branch. 
The cross section is symmetric about the X-axis, so the centroid and shear 
center lie on the X-axis. To locate the shear center we take shear force 

, and note that the shear force  and torque  act at the 

shear center.

a)  Locate the centroid,

b)  determine the shear flow with respect to the centroid,

c)  locate the shear center,

d)  establish the shear flow with respect to the shear center, and 

e)  determine the shear stress .

Solution to part (a).  The cross section is composed of two branches. 
Branch 1 is the semicircular contour, and branch 2 is the vertical web con-
necting the ends of branch 1. The parametric equations of the contour for each branch are

. (a)

Note that the contour coordinate s in branch 2 is defined in the negative y-direction. We compute the area A, the 
first area moment about the Y-axis , and the location of the centroid as follows:

. (b)

Solution part to (b).  The shear flow relative to the centroid is given by eq. (4.17) on page 81. For this example 
this shear flow function is

Mz
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Fig. 4.27 Closed contour.

Vx 0= Vy 0≠ Mz 0≠

σzs

X1 θ( ) Y1 θ( ),[ ] a θ( )cos θ( )sin,[ ]=

X2 s( ) Y2 s( ),[ ] 0 a s–,[ ]=

π– 2⁄ θ π 2⁄≤ ≤

0 s 2a≤ ≤

QY

A ta θd

π 2⁄–

π 2⁄

∫ t sd

0

2a

∫+ 2 π+( )at= = QY X1ta θd

π 2⁄–

π 2⁄

∫ X2t sd

0

2a

∫+ 2a2t= = XC

QY

A
------- 2a

2 π+
------------= =



Article 4.4

106 Aerospace Structures

, (c)

The function  is given by eq. (4.19). For this symmetric section the product area moment , and 

from eq. (4.4) on page 79 the cross-sectional coefficients  and . Also, from eq. (4.7) 

. The function  in eq. (4.19) reduces to

. (d)

The distribution function given by eq. (4.23) in this example is simplified to

, (e)

and the coordinate normal to the contour  in eq. (d) is given in eq. (4.10). The parametric equations of the 

contour with respect to the centroid are

. (f)

The second area moment of the cross section about the x-axis through the centroid is

. (g)

The distribution function about the x-axis beginning at the contour origin at  and going counter-
clockwise around the contour are determined for each branch from eq. (e) as

, and (h)

. (i)

Note that , since this represents the first area moment of the entire cross section about the centroi-

dal x-axis. From eq. (4.10) the coordinates normal to the contour for each branch are

. (j)

The area enclosed by the closed contour  is given by eq. (4.18), and we get the expected result as shown 
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below.

. (k)

Let the term containing the integral over the entire contour in eq. (d) be denoted by . We compute  for 

this cross section as

 . (l)

We now compute the shear flow distribution functions for each branch by substituting results from eqs. (h), (i), 
and (l) into eq. (d). The results are

, and (m)

. (n)

The shear flows with respect to the centroid in branch 1 and branch 2 are

. (o)

Solution to part (c).  The equation for the location of the shear center relative to the centroid is given in eq. 
(4.23). The shear modulus of the material is denoted by G in eq. (4.23), and we assume it is uniform around the 
contour in this example. Then the shear center relative to the centroid is

, where , (p)

Performing the integrals for  in eq. (p) we get

. (q)

The location of the shear center relative to point O is . 

Solution to part (d).  The shear flow relative to the shear center is given by eq. (4.25), which in this example is

, (r)

where the shear flow distribution function relative to the shear center is given by eq. (4.26). The results for the 
shear flow distribution functions relative to the shear center for each branch are as follows:
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, and (s)

. (t)

Finally, from eq. (r) the shear flows in each branch are given by

, and (u)

. (v)

A check on the shear flows is to compute the resultant for  and the resultant moment about the shear cen-

ter . Resolving the shear flows in the positive y-direction in each branch we compute the integrals

.

Thus, the resultant  is equal to the shear force. Note that q2 is positive in the negative y-direction. To compute 

the moment  we need the normal coordinate to the contour with respect to the shear center. From eq. (4.11) on 

page 80 the normal coordinates for each branch are determined by

. (w)

The resultant moment is

. (x)

The moment of the shear flows about the shear center equal the torque . The shear flows in eqs. (u) and (v) are 

statically equivalent to the shear force  and the torque  resolved at the shear center.

Solution to part (e).  The shear flows are plotted normal to the contour in figure 4.28. The shear flow from the 
torque is spatially uniform and equal to . The shear stress is equal to the shear flow divided by the 

thickness of the branch. From figure 4.28 it is apparent that the maximum magnitude of the shear stress occurs 
either at  in the semicircular contour or at  in the vertical contour. These shear stress components 
are
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. J (y)

Example 4.9 Torsional response of an open section and an equivalent closed section

A thin-walled circular tube with contour radius a and wall thickness t is subject to a torque . The wall of a 

second identical tube is cut parallel to its longitudinal axis along its entire length to make the cross section of this 
second tube an open circular arc. See figure  4.29. Assume the saw kerf is very small. Compare the unit twist and 
maximum shear stress in the closed section to the open section.

Solution.  For the closed section the shear flow  as shown in figure 4.28, and the torsion constant 

 from eq. (3.128) on page 70. Hence the maximum shear stress and unit twist are

. (a)

For the open section the developed length b of the contour is essentially , since the saw kerf is assumed 
to be very small. By the membrane analogy discussed in article 3.9.1 on page 63, the torsional response is the 
same as the thin-walled rectangular section of length b and thickness t. The maximum shear stress is given by eq. 
(3.129) on page 63, and the torsion constant is given in eq. (3.128). For , we have
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Mz 0 Vy,> 0=
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S.C.

Fig. 4.28 Shear flow distribution along the contour of the closed section shown in figure 4.27. The 
shear flow is the sum of a spatially uniform flow due to the torque plus a nonuniform flow due to the 
shear force.
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Fig. 4.29 Closed and open thin-walled 
circular sections.
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 . (b)

Forming the ratio of the maximum shear stress of the open section to the closed section we find

. (c)

Likewise, the ratio of the unit twists are

. (d)

Since the ratio of the radius to thickness is greater than ten for a thin-walled section, the above results show that 
the shear stress (c) and unit twist (d) of the open circular section are much larger than for the closed section if 
both sections are subject to the same torque.

Hence, if a bar is to resist torsional loading, a closed section is preferable to an equivalent open section bar.   
That is, the unit twist is smaller for the closed section bar (it is stiffer), and the maximum shear stress is smaller, 
than for the equivalent open section bar subject to the same torque. J

4.4.1 Resultant of uniform shear flow

In torsion problems it is often necessary to find the 
resultant of a constant shear flow along the contour of a 
curved branch. This situation is depicted in figure  4.30, 
where the curved branch begins at point A with coordi-
nates  and ends at point B with coordinates 

. The resultant of the shear flow is resolved at 

point A in this figure. 

The sense of the arc-length s and the shear flow q are 
assumed positive from A to B along the contour of the 
branch. The shear flow acts tangent to the contour, and 
the unit tangent vector to the contour is denoted by 

. The unit tangent vector is given by eq. (3.4) on 

page 33, where we note that  and 

. The differential force obtained from 
the shear flow is 

. (4.52)

Integrate eq. (4.52) from point A to point B on the contour to get
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Fig. 4.30 A constant shear flow in a curved 
branch. 
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, (4.53)

where the length of the chord connecting the ends of contour is denoted by . The length of the chord and the 

unit vector  are given by

. (4.54)

The differential torque about point A is

, (4.55)

where the position vector from point A to the line of action of the shear flow is , and  is the unit 
vector normal to the contour at s. The product of r times ds is twice the enclosed area of the triangle with base ds 
and height r. As shown in figure 4.30 . Integrate eq. (4.55) from point A to point B to get

. (4.56)

The area between the contour and the chord is denoted by . The force and torque resolved at point A is 

shown in figure 4.31(a). The force and torque at point A are statically equivalent to the force acting along a line of 
action that is parallel to the chord at a perpendicular distance e from the chord. The distance is determined from 

. Solve for e and substitute  for the torque to get

, or . (4.57)

The resultant of a constant shear flow is shown in figure 4.31(b).

Now consider a continuous contour that does not intersect itself except that point B coincides with point A as 

shown in figure 4.32. Since  in eq. (4.53) the force . For a closed contour let  and 
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Fig. 4.31 (a) The force and torque due to a constant shear flow resolved at point A. 
(b) The resultant of a constant shear flow is a force parallel to the chord at distance 
e from it.
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 in eq. (4.56). For a single-cell cross section subject to a torque  and no shear forces (pure torsion), 

the shear flow is given by 

. (4.58)

Equation (4.58) is called Bredt’s formula. (Also see eq. (3.165) on 
page 70,)

A constant shear flow in a closed contour is statically equivalent to a 
torque, and this torque is the same for any point in the plane about which 
moments are computed. The fact that the torque is a “free vector” is 
depicted in figure  4.33, in which it is shown that some of the enclosed area 
used in Bredt’s formula can add as a negative quantity if the torque pro-
duced by the constant shear flow is clockwise over a segment of the branch. 
About point O in this figure, the torque produced by the shear flow from 
point B to A in the right half of the contour is counterclockwise, and the 
torque produced by the shear flow from A to B in the left half is clockwise. 

Hence, the total torque is the sum of these two torques with due respect to the sign. This summation shows that 
the total torque is proportional to the area enclosed by the contour.

4.4.2 Torsion of a hybrid section

Consider a hybrid section composed of a single closed cell and open branches, or fins, as shown in figure  4.34. 
The total torque carried by the section is the sum of the torques carried by the closed cell and open branches. For 
n open branches, we have

, (4.59)

where

 and . (4.60)
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on a closed contour of 
arbitrary shape.
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Fig. 4.33 The torque about an arbitrary point O of a constant shear flow in a closed contour is twice the 
enclosed area of the circuit times the shear flow.
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The torsional stiffness for the closed cell is 

, (4.61)

and for each open branch the torsional stiffness is

. (4.62)

Combining eqs. (4.59) and (4.60), we have

. (4.63)

Comparing eq. (4.63) to the standard torsional formula 

, the effective torsional stiffness for the entire section is

. (4.64)

where the closed and open parts of the torsional stiffness are given by eqs. (4.61) and (4.62).

The shear stress in the closed cell is , where the portion of the torque car-

ried by the closed cell is . The unit twist is given by 

. Combining these results, the shear stress in the closed cell is

(4.65)

The shear stress in open branches is given by 

, (4.66)

which was derived as eq. (3.132) on page 64. Substitute the second equation in (4.60) for the torque carried by 
the branch, and then substitute eq. (4.62) for the torsional stiffness of the branch, to write the shear stress as

. (4.67)

Substitute  for the unit twist in eq. (4.67) to get

. (4.68)

If the shear modulus is the same in all branches, then eqs. (4.65) and (4.68) reduce to
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Fig. 4.34 Torsion of a hybrid section.
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, (4.69)

where .

Example 4.10 Torsion of a closed cross section composed of two cells

In multicell cross sections subject to pure torsion the shear flow is constant in each branch. In general the shear 
flows are different from branch to branch. Consider a cross section consisting of two cells with a horizontal axis 
of symmetry shown in figure 4.35. It is subject to a torque Mz. Cell 1 is enclosed by a semicircular exterior web 

of radius a, and a vertical web of length 2a, which is common with cell 2. Cell 2 is enclosed by an isosceles trian-
gle with equal exterior webs of length c and the common web of length 2a. Take a = 5 in., b = 12 in., and c = 13 
in. The thickness of the exterior webs t = 0.040 in., and the thickness of the common web is t/2. The contour is 
composed of four branches. Branch 1 is the semicircular web with the contour coordinate denoted by s1, branch 
2 is the upper exterior straight web of cell 2 with contour coordinate s2, branch 3 is the lower exterior straight 
web of cell 2 with contour coordinate s3, and branch 4 is the vertical common web between cells with the contour 

coordinate denoted by .The Cartesian coordinate system X-Y has its origin at point O, the center of the semi-

circular web. The X-axis is the axis of symmetry. 

A free body diagram of the junction between branches 1, 2, and 1-2 is shown in figure 4.36. The sum of 
forces in the axial direction is   , Hence, axial equilibrium per unit z-length deter-

mines the shear flow in the common web as

. (a)
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Fig. 4.35  (a) Cross section composed of two cells and subject to pure torsion. (b) Shear flows 
and web thicknesses.
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A simple rule to determine the axial equilibrium of the junction is to observe that the shear flow into the junction 
must equal the shear flow out of the junction. At the junction of branches 2 and 3 this rule results in . At 

the junction of branches 3, 1-2, and 1 the rule gives , but , which leads us to the 

same relation given by eq. (a). We started with four unknown shear flows q1, q2, q3, and q1-2. Axial equilibrium at 
the three junctions results in two relations between the four shear flows. Two shear flows remain unknown, say q1 
and q2, at this point in the analysis. 

The remaining equation of static equivalence is to equate the torque due to the shear flows to Mz. The con-
stant shear flows in each branch are shown in figure 4.37(a), and the resultants of these shear flows are deter-
mined by the analysis presented in article 4.4.1. As shown in figure 4.37(b) the resultant of the shear flow  in 

branch 1 is a vertical upward force of magnitude , the resultant of the shear flow  in branches 2 and 3 is 

a vertical downward force of magnitude , and the resultant of the shear flow in the common branch is a 

downward force of magnitude . The locations of the lines of action of the force resultants with 

respect to the common branch are also shown in figure 4.37(b). The vertical force F shown in figure 4.37(c) is 
determined from the branch forces by equilibrium. The result is

. (b)

Take the moment of the branch forces in figure 4.37(b) about the common web to determine the torque Mz shown 
in figure 4.37(c). The result for static equivalence of the torque is

, or

. (4.70)

Equation (4.70) is the extension of Bredt’s formula in eq. (4.58) to two cells.

We have used all the conditions of static equivalence, but the two shear flows q1 and q2 remain unknown. An 
additional equation relating the shear flows is based on the assumed rigidity of the cross section in its own plane. 
In torsion, this rigid cross section condition implies the unit twist of each cell is the same. The unit twist for a sin-
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Fig. 4.37 (a) Shear flows. (b) Statically equivalent branch forces. (c) Cross section resultant.
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gle cell is given by eq. (4.20) on page 81. Since the shear modulus is the same for all branches in the cross sec-
tion eq. (4.20) reduces to

. (4.71)

This unit twist formula was derived on the basis that a counterclockwise shear flow tends to produce a counter-
clockwise unit twist. Apply this equation to cell 1 to get

. (c)

For cell 2, the unit twist is

. (d)

Note that the contribution of the common branch shear flow is negative in the unit twist formula for cell 2. Rela-
tive to an observer in cell 2, a positive value for the shear flow q1-2 tends to produce a clockwise unit twist, and 
hence is negative by the convention that counterclockwise is positive. Since the unit twist of each cell is the same, 
we equate eqs. (c) and (d) to get

. (e)

After some algebraic manipulations eq.( e) is written in the form

. (f)

The enclosed areas of each cell are . and . Numerical evaluations of eqs. (4.70) 

and (f) are

. (g)

The solutions of the two equations in (g) for the shear flows are 

. (h)

The shear stresses in each branch are obtained from , , and 

. The results are

. (i)

The twist per unit length for the entire cross section is obtained from either eq. (c) or eq. (d). For the shear flows 
given in eq. (h) the evaluation of unit twist is 
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. (j)

Finally, we compute the torsion constant J by the following relation

J (k)

Example 4.11 Torsion of a closed section with three cells; circuit shear flow

Consider the cross section composed of three cells shown in figure  4.38(a). All branches have the same thickness 
t and shear modulus G. It is convenient to define circuit shear flows in each cell. Circuit shear flows are assumed 
to be positive counterclockwise in each cell and are equal to the actual shear flows in the exterior branches of the 
cell, if there are any exterior branches. However, the shear flow in a common branch between cells is the differ-
ence between the circuit shear flows sharing the common branch. At the junction of the three branches shown in 
figure 4.38(b) the shear flow into the junction is , and this equals the shear flow out of the junction, which 

is . The method of defining circuit shear flows automatically satisfies axial equilibrium at 

the junction. 

For an applied torque , determine

• shear flows q1, q2, and q3,

• the torsion constant J, and

• magnitude of the torque at the initiation of yielding. 

Solution.  Bredt’s formula for the section composed of two cells in eq. (4.70) is extended to three cells in this 
example to get 

. (a)

The areas enclosed by cells are

. (b)
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From eq. (4.71) the twist per unit length for this example reduces to

. (c)

We apply eq.(c) to each cell and note that a shear flow is positive counterclockwise consistent with a positive 
counterclockwise unit twist. The results for each cell are as follows.

(d)

(e)

. (f)

Since the cross section is assumed to be rigid in its own plane, the unit twist of each cell must be the same. This 
kinematic condition can be written between cells 1 and 2 as

. (g)

Evaluation of eq. (g) leads to

. (h)

Compatibility of the unit twist between cells 2 and 3 is

. (i)

Evaluation of eq. (i) leads to

. (j)

Solve eqs. (a), (h), and (j) for the shear flows to find

. (k)

The unit twist of the section can be determined by substituting the shear flows (k) into any one of the eqs. (d), (e), 
or (f). The unit twist is

. (l)

Compare this to the standard formula  to find to find the torsion constant J.

dφz

dz
-------- 1

2 AcG t
--------------- qds∫°

1
2 AcG t
--------------- ∆sq∑= =

dφz

dz
-------- 
 

1

1
2Ac1Gt
------------------ 4aq1

3a
2

------ q1 q2–( ) a
2
--- q1 q3–( )+ +=

dφz

dz
-------- 
 

2

1
2Ac2Gt
------------------ 5a

2
------q2 a q2 q3–( ) a

2
--- q2 q1–( )+ +=

dφz

dz
-------- 
 

3

1
2Ac3Gt
------------------ 3a

2
------q3

a
2
--- q3 q1–( ) a q3 q2–( )+ +=

dφz

dz
-------- 
 

1

dφz

dz
-------- 
 

2
– 0=

48q1 49q2– 5q3+

24Gat
-------------------------------------------- 0=

dφz

dz
-------- 
 

2

dφz

dz
-------- 
 

3
– 0=

2 4q2 5q3–( )

3Gat
------------------------------- 0=

q1
75
604
---------

Mz

a2
------= q2

20
151
---------

Mz

a2
------= q3

16
151
---------

Mz

a2
------=

dφz

dz
-------- 149

1208Ga3t
------------------------Mz=

dφz

dz
--------

Mz

GJ
-------=
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. (m)

The shear flows in the common branches are

. (n)

The magnitude of the largest shear flow is in the exterior branches of cell 2, which is also the location of the max-
imum shear stress. The maximum shear stress is

. (o)

According to von Mises criterion (4.31) yield initiates at , so the magnitude of the torque at 

the initiation of yielding is

. (p)

If all the common branches were removed to make the section shown in figure  4.38(a) a single-cell, square 
section 2a by 2a, then from eq. (3.161) on page 70 the torsion constant is

 . (q)

For this example, subdividing the single-cell section into three cells shown in figure  4.38(a) increases the tor-
sional stiffness (m) by only 1.32 percent with respect to the single-cell section, while the weight of the three-cell 
section increases by 37.5 percent with respect to the weight of the single-cell section. However, a multicell sec-
tion may be required for improved damage tolerance; i.e., if we modeled damage as a longitudinal fracture, or 
cut, of an exterior branch, then the loss of torsional stiffness of the single-cell would be substantial since it 
becomes an open section. Damage to an exterior branch of a multicell section on the other hand results in less of 
a reduction in torsional load carrying capability since some closed cells remain intact to carry the torsional 
load.J

Example 4.12 Transverse bending of a two-cell cross section

Consider the cross section of example 4.10 on page 114 subject to a shear force Vy with . There 

are two cells with a horizontal axis of symmetry as shown in figure 4.39. I. Cell 1 is enclosed by a semicircular 

J 1208a3t
149

-------------------=

q1 q2–( ) q1 q3–( ) q3 q2–( ), ,{ } 0.0083 0.0182 0.0265–, ,–{ } Mz a2⁄( )=

σzs( )max q2 t⁄ 0.13245Mz a2t( )⁄= =

3 σzs( )max σyield=

Mz max 4.359 a2tσyield( )=

J
single cell

4Ac
2

ds
t

-----∫°
--------- 4 4a2( )2

8a
t

------
------------------- 8a3t= = =

Vx Mz 0= =

X x,

y

Y

C S.C. C S.C.

Vy

cell 1
cell 2

Fig. 4.39 Closed cross section consisting of two cells subject to transverse bending
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exterior web of radius a, and a vertical web of length 2a, which is common with cell 2. Cell 2 is enclosed by an 
isosceles triangle with equal exterior webs of length c and the common web of length 2a. Take a = 5 in., b = 12 
in., and c = 13 in. The thickness of the exterior webs t = 0.040 in., and the thickness of the common web is t/2. 
The contour is composed of four branches. Branch 1 is the semicircular web with the contour coordinate denoted 
by s1, branch 2 is the upper exterior straight web of cell 2 with contour coordinate s2, branch 3 is the lower exte-
rior straight web of cell 2 with contour coordinate s3, and branch 4 is the vertical common web between cells 
with the contour coordinate denoted by s1-2. The Cartesian coordinate system X-Y has its origin at point O, the 
center of the semicircular web. The X-axis is the axis of symmetry. The Cartesian coordinates of each branch as a 
function of the contour coordinate are listed in table 4.5.

The cross-sectional area A, first area moment QY, and location of the centroid Xc are computed as follows:

(a)

(b)

(c)

Symmetry about X-axis results in , so that . The Cartesian coordinates of the branches with 

respect to the centroid are , and , . The second area moment 

about the x-axis is

. (d)

The shear flow is given by eq. (4.15) on page 81, and it is repeated as eq. (e) below.

. (e)

In this example the product area moment . From eq. (4.4) cross-sectional coefficients  and 

Table 4.5  Parametric equations of the contour

ith branch  =  = Range

i = 1

i = 2

i = 3

i = 1-2

Xi s( ) Yi s( )

a s1 a⁄( )sin a s1 a⁄( )cos– 0 s1 aπ≤ ≤

b s2 c⁄( )– a 1 s2 c⁄–( ) 0 s2 c≤ ≤

b 1 s3 c⁄–( )– a s3 c⁄( )– 0 s3 c≤ ≤

0 a s1-2 – 0 s1-2 2a≤ ≤

A t s1d

0

aπ

∫ t s2d

0

c

∫ t s3d

0

c

∫ t 2⁄( ) s1-2d

0

2a

∫+ + + aπ 2c a+ +( )t 1.86832 in.2= = =

QY X1t s1d

0

aπ

∫ X2t s2d

0

c

∫ X3t s3d

0

c

∫ X12 t 2⁄( ) s1-sd

0

2a

∫+ + + 2a2 bc–( )t 4.24 in.3–= = =

Xc QY A⁄ 2.26942 in.–= =

QX 0= Yc 0=

xi si( ) Xi si( ) Xc–= yi si( ) Yi si( )= i 1 2 3 1-2, , ,=

Ixx y1
2t s1d

0

aπ

∫ y2
2t s2d

0

c

∫ y3
2t s3d

0

c

∫ y12
2 t 2⁄( ) s1-2 d

0

2a

∫+ + + πa3t
2

----------- 2a2ct
3

------------- a3t
3

-------+ + 18.1873 in.4= = =

q s z,( ) q0 z( ) k
Iyy

------VxQy s( )– k
Ixx

------VyQx s( )–=

Ixy 0= nx ny 0= =
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. The distribution function defined in eq. (4.9) simplifies to  since . Hence, 

the shear flow equation in the i-th branch reduces to the form

 . (f)

At the contour origin of the i-th branch where  the shear flow in eq. (f) is denoted by , and the distribu-

tion function is given by

 . (g)

Axial equilibrium per unit z-length at the three junctions connecting the 
branches leads to

. (h)

The shear flows acting at the three junctions are shown in figure 4.40. We use 
the first two expressions in eq. (h) to eliminate  and . After computing 

the first area moment functions, the shear flows are as follows:

(i)

(j)

(k)

. (l)

Note: If eqs. (k) and (l) are substituted into the third junction condition of eq. (h), then we obtain the identity 
. Hence, the shear flows from the axial equilibrium conditions contain two unknowns  and .

The resultant force acting on the section from the shear flows is given by the general relation

 . (m)

Evaluation of the resultant forces gives

, and (n)

k 1= Qx s( ) Qx s( )= y s( ) y s( )=

qi si( ) q0i Vy Ixx⁄( )Qxi si( )–=

si 0= q0i

Qxi si( ) yi si( )ti sid

0

si

∫= i 1 2 3 1-2, , ,=

q012

q01

q1 aπ( )q02

q2 c( )

q03

q12 2a( )

q3 c( )

Fig. 4.40 Junction shear 
flows.

q1 aπ( ) q02 q012+= q2 c( ) q03= q1-2 2a( ) q3 c( )+ q01=

q012 q03

q1 s1( ) q01 Vy Ixx⁄( )a2t s1 a⁄( )sin+=

q2 s2( ) q02 Vy Ixx⁄( ) ats2
ats2

2

2c
----------––=

q3 s3( ) q02 Vy Ixx⁄( ) act
2

--------
ats3

2

2c
----------––=

q1-2 s1-2 ( ) q01 q02– Vy Ixx⁄( )
ats1-2 

2
--------------

ts1-2 
2

4
-----------––=

q01 q01= q01 q02

FXî FYĵ+ qt̂ sd
c
∫ qdx

ds
------ sd

c
∫ î qdy

ds
------ sd

c
∫ ĵ+= =

FX q1 s1d

dx1

 
 
 

s1d

0

aπ

∫ q2 s2d

dx2

 
 
 

s2d

0

c

∫ q3 s3d

dx3

 
 
 
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0

c
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 
 
 
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0
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∫+ + + 0= =
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. (o)

The shear flow is statically equivalent to the shear force, as expected. No new information to determine  and 

 is obtained. The shear force acting at the shear center implies the twist per unit axial length of the cross sec-

tion vanishes. This condition leads to two equations governing the shear flows in each cell. For a uniform shear 
modulus the twist per unit length is

. (p)

Evaluate the twist per unit length for each cell and equate them to zero:

(q)

(r)

Evaluation of eqs. (q) and (r), respectively, results in

, and (s)

. (t)

Solve eqs. (s) and (t) for the shear flows  and  to get

, and (u)

. (v)

The final result for the shear flows are listed in eqs. (w) to (z) below. 

(w)

(x)

(y)

(z)

FY q1 s1d

dy1

 
 
 

s1d

0

aπ

∫ q2 s2d

dy2

 
 
 

s2d

0

c

∫ q3 s3d

dy3
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 
 

s3d

0

c
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dy12
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 
 
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0
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t
--- q1 s1d

0

aπ
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2
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t
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1
t
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0

c

∫
2
t
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2a

0

∫+ +→ 0=

a
t
--- 4 π+( )q01

4a
t
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3Ixx

---------Vy+ 0=

4a
t
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2 2a c+( )

t
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2ab2

3Ixx

------------Vy–+ 0=

q01 q02

q01
4at 3a2 ac c2–+( )–
4c 2aπ cπ+ +( )

-------------------------------------------------
Vy

3Ixx

--------- 3.42199 3–×10  in. 1–( )Vy= =

q02
t 12a3 4ac2– a3π ac2π–+( )–

4c 2aπ cπ+ +( )
-------------------------------------------------------------------------

Vy

3Ixx

--------- 24.4374 3–×10  in. 1–( )Vy= =

q1 3.42199 3–×10  in. 1– 54.9834 3–×10  in. 1–( ) s1 5⁄( )sin+[ ]Vy= 0 s1 5π≤ ≤

q2 24.4374 3–×10  in. 1– 10.9967 3–×10  in. 2–( )s2– 0.422949 3–×10  in. 3–( )s2
2+[ ]Vy= 0 s2 13 in.≤ ≤

q3 47.041– 3–×10  in. 1– 0.433949 3–×10  in. 3–( )s3
2+[ ]Vy= 0 s3 13 in.≤ ≤
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3–

×10  in. 2–( )s1-2 – 5.49834
3–

×10  in. 3–( )s1-2 
2+[ ]Vy= 0 s1-2 10 in.≤ ≤
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With the shear flows known we compute the torque about the centroid due to the shear flows by

, (aa)

where  is the normal coordinate to the contour with respect to the centroid in the i-th branch. From eq. 

(4.10) the normal coordinates are determined from

. (ab)

The results for the normal coordinates are

. (ac)

Substitute eqs. (w) to (z) for the shear flows into eq. (y), followed by substitution of eq. (ac) for the normal coor-
dinates. Numerical evaluation of the integrals after the substitutions leads to the expression for the torque in the 
form

. (ad)

The resultant force and torque at the centroid are shown in figure 4.41(a). We also added and subtracted the shear 
force at the shear center in figure 4.41(a), which does not change the static state. The upward shear force at the 
centroid and the downward shear force at the shear center form a clockwise couple whose moment is . In 

figure 4.41(b) we resolved the torque  and shear force at the shear center. Since 

the torque at the shear center is equal to zero in this case, we can solve for the shear center location relative to the 
centroid to get

(ae)

We perform one last check on the solution by computing the torque at the shear due to the shear flows from 
the equation

, (af)

where the coordinates normal to contour with respect to the shear center are denoted by . From eq. (3.10) 

Mzc rnc1q1 s1d

0

aπ

∫ rnc2q2 s2d

0

c

∫ rnc3q3 s3d

0

c

∫ rnc12q1-2 s1-2 d

0

2a

∫+ + +=

rnci si( )

rnci xi si( )
sid

dyi yi si( )
sid

dxi–=

rnc1 a Xc s1 a⁄( )sin–= rnc2 a b Xc+( ) c⁄= rnc3 a b Xc+( ) c⁄= rnc1-2 Xc=

Mzc 2.50157 in.( )Vy=

xscVy

Mz 2.50157 in.( )Vy xscVy–=

xsc 2.50157 in.=

Vy

xsc 2.50157 in.=

C
S.C.

Vy

2.50157Vy

Vy

Vy

xsc

C
S.C.

(a) (b)

Fig. 4.41 (a) Resultant of the shear flows at the centroid. (b) Resultant of the shear flows at the shear 
center.

Mz rn1q1 s1d

0

aπ

∫ rn2q2 s2d

0

c

∫ rn3q3 s3d

0

c

∫ rn12q1-2 s1-2 d

0

2a

∫+ + +=

rni si( )
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on page 34 the normal coordinates are related by 

. (ag)

In this example , and the results for the coordinates  are given in eqs. (ah) and (ai) below.

(ah)

(ai)

Substitute the shear flows from eqs. (w) to (z) into eq. (af), followed by the substitution of the coordinates normal 
to the contour in eqs. (ah) and (ai). After these substitutions we perform the integrations indicated in eq. (af) to 
find the result for torque at the shear center as

. (aj)

Hence, the numerical result for the torque at the shear center with respect to finite precision arithmetic is equal to 

zero1. J

Example 4.13  Superposition of example 4.10 and example 4.12

Now consider that the cross section of example 4.10 
and example 4.12 is subject to a torque  and a shear 

force  at the shear center as shown in figure 4.42. 

We simply add the results for the shear flows due to the 
torque from example 4.10 to the shear flows due to the 
transverse shear force  from example 4.12.

The results are

, , 

,

, and

1. All computations performed numerically in a computer (MatLab, Mathematica, etc.) are performed with finite precision. 
That is, a decimal representation of a number that has been rounded or truncated. Computations performed numerically 
with decimal, or decimal floating point, representation are referred to as finite precision arithmetic.

rni rnci xsc sid

dyi– ysc sid

dxi+=

ysc 0= rni si( )

rn1 rnc1 xsc s1∂

∂y1

 
 
 

– 5 0.232149 s1 5⁄( )sin–= = rn2 rnc2 xsc s2∂

∂y2

 
 
 

– 4.70467 in.= =

rn3 rnc3 xsc s3∂

∂y3

 
 
 

– 4.70467 in.= = rn1-2 rnc1-2 xsc s1 2–∂

∂y1 2–

 
 
 

– 0.232149 in.= =

Mz 1.421 14–×10–( )
Vy

Ixx

------ 0≈=

S.C.C

Vy

MzFig. 4.42 Transverse 
shear and torsion of 
the two-cell section.

Mz

Vy

Vy

q1 s1( ) 0.0040053 in. 2–( )Mz= 0.00342199 in. 1– 0.0549834 in. 1–( ) s1 5⁄( )sin+[ ]Vy+ 0 s1 5π( ) in.≤ ≤

q2 s2( ) 0.00300903 in. 2–( )Mz 0.0244374 in. 1– 0.0109967 in. 2–( )s2– 0.000422949 in. 3–( )s2
2+[ ]Vy+=

0 s2 13 in.≤ ≤

q3 s3( ) 0.00300903 in. 2–( )Mz 0.047041–  in. 1– 0.000422949 in. 3–( )s3
2+[ ]Vy+= 0 s3 13 in.≤ ≤
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4.6 Practice exercises

1. A 7 m long AH-1W Supercobra helicopter blade is rotating at 300 rpm and has a mass of 300 kg. Centrifugal 
forces due to the rotation of the blade lead to tension in the blade. Plot the distributed axial force intensity and the 
internal axial force distribution on the blade. Calculate the stress at the root for a blade cross-sectional area of 

0.02 m2. (Assume that the mass is evenly distributed and the center of mass of the cross section coincides with 
the tension axis.)

2. The cantilever wing is subject to a distributed air load , where the total lift (2 wings) 

 at cruise, wing length ft., and . Also, the wing supports an engine 

weighing 1000 lb. See figure 4.43. Plot the loading diagram, shear force diagram , and bending moment 

diagram  as functions of z for ft. Partial answer:  = 9,000 lb. and  = –131,934 lb.-

ft.

3. The barge shown figure 4.44 is 20 m long and has a uniform cross section along its length that is the same 
cross section shown in figure 4.11 on page 89. It is subject to a uniformly distributed downward load with inten-
sity , and a buoyancy distribution in the hogging condition. The buoyancy distribution is given 

q1 2– s1-2 ( ) 0.000915085 in. 2–( )Mz 0.0210154–  in. 1– 0.00549834 in. 2–( )s1-2 – 0.00549834 in. 3–( )s1-2 
2+[ ]Vy+=

0 s1-2 10 in.≤ ≤

fy z( ) 2L
πzmax

------------- 1 z( )
2

–=

L 20 000 lb.,= zmax 32.5= z z zmax⁄=

Vy z( )

Mx z( ) 0 z 32.5≤ ≤ Vy 0( ) Mx 0( )

MxMx

Vy
fy

+
Vy

y

z

fy z( )

6 ft.

32.5 ft.

1,000 lb. engine

fuselage

Fig. 4.43 Exercise 3.

f0 100 kN/m=
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by ,where γ = 9.8 kN/m3 is the specific weight of water, b = 10 m,  is the depth of 

the immersed cross section amidships, and L = 10 m. Refer to figure 4.44

a) Determine .

b) Determine the distributed loading intensity function  for 

c) Determine the shear force  and bending moment  for .

d) Draw the distributed loading intensity, shear force, and bending moment diagrams in the manner shown 
in figure 4.10 on page 88. Label significant points.

e) Determine the maximum value of the normal stress . 

4. Half of the cross section of a ship is shown in figure 4.45. Only the material that is effective in the longitudi-
nal bending is illustrated in the figure. Determine the area A, location of the centroid , and the second area 

moment about the x-axis( ) for the full section. Use the tabular format for the computations similar to table 4.2 

on page 95. All plating has a thickness t = 14 mm unless other wise noted. The descriptions of the numbered 
structural elements shown in the figure are listed in table 4.6.  

Table 4.6 Description of structural member in figure 4.45. 

Item # Description

1 Outer bottom

2 Inner bottom

3 Center girder

4 & 5 Side girders

6 Bilge (curved portion)

7 Side plating

8 Second deck plating

9 & 11 Hatch side girders 

10 Strength deck plating

fb γbdm 1 π z
L
--- 

 cos–= dm

dm

fy z( ) 0 z 20 m≤ ≤

Vy z( ) Mx z( ) 0 z 20 m≤ ≤

σzz

waterline

z
L

f0

dm

y

L

Fig. 4.44 Barge in a hogging condition.

YC

Ixx

L500 400 25××
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5.  The thickness of each branch in the thin-walled cross section shown in figure 4.46 is 3 mm and 

. The shear force . 

a) Determine the shear flow distribution and sketch it on the cross section. Indicate on the sketch the posi-
tive sense along the branch.

b) Estimate the shear stress due to the transverse shear force at point A.

c) Estimate the maximum shear stress due to transverse shear.

6. The cross section shown in figure 4.46 is subject to a vertical shear force , positive upward, and a counter-

clockwise torque  acting at the shear center. Take dimensions  and  Determine 

torsion constant J and the magnitude of the maximum shear stress .

C

500 mm

400 mm

139 mm

L500 400 25××

x

A 0.0225 m2=

t
C

x

R
2R π⁄

Ixx
π
2
---R3t 1

2
--- 4

π2
-----– 

 =

A π
2
---Rt=

4 m

9 m

5.5 m

R = 1 m
3.5 m

6.5 m

1

2

345
6

7

8

9

10

11

X

x
C

t/2

YCY

Fig. 4.45 Exercise 4. Ship half section.

Ixx 105 mm4= Vy 5 kN=

Vy

Mz b 40 mm= t 0.635 mm=

σzs( )max
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7. Determine the shear flow in two-cell cross section shown in figure 4.47. The X-axis is a horizontal axis of 
symmetry,

50 5030 30

10

40

C x

y

A

Note: all dimensions in mm

Fig. 4.46  Exercise 5.
2t

t
t

3b 2⁄

b

b
Fig. 4.46  
Exercise 6.

Vy

Mz

X

Y
s1 q1,

s3 q3,

s2 q2,

s4 q4,

s5 q5,

s6 q6,

s1-2
˙ q1 2–,

8

12 8

5
1000 lb.

0.05

0.05

0.06 0.03

0.03

0.03

0.04

All dimensions in inches Fig. 4.47 Two-cell box cross section.
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CHAPTER 5

 

Work and energy 
methods

 

In article 5.1 and article 5.2 Hooke’s law is presented in terms of generalized forces and their corresponding gen-
eralized displacements acting on a body. Refer to eqs. (5.6) and (5.10). Corollaries to Hooke’s law are the princi-

ple of superposition and the reciprocal theorem of Maxwell.

 

 

 

Articles 5.3 to 5.6 develop expressions for the 
energy stored due to elastic deformation of a thin-walled bar. Castigliano’s energy theorems are presented in arti-
cles 5.7 and 5.8. 

 

5.1 Hooke’s law and its corollaries

 

Consider a body, or structure, supported so that rigid body motion is impossible. If it subject to a force, say by 
hanging a weight on it, then by Newton’s law of action-reaction the body must resist the force by producing an 
equal and opposite force. The manner by which the body produces this reactive force is by deforming. That is, 
the body changes shape under the action of a mechanical force and it is the change in shape that enables it to sup-
ply the reactive force. If the force is removed and the body returns to its original shape, then the body is 

 

elastic

 

.

Consider the action of force  at point 1 on the body, and the action 

of force  at point 2 on the body shown in figure 5.1. Let the forces be 

fixed in direction and in point of application. Let the displacements at 
points 1 and 2 be denoted by  and , respectively, being measured with 

respect to a rectangular Cartesian reference frame. Define the displace-
ments

 

  

 

and

 

  

 

at the points of application to be in the direction of the 

forces

 

 

 

 and , respectively. Displacements 

 

 

 

and forces

 

 , 

, 

 

are said to 

 

correspond

 

; they are defined at the same point and in 
the same direction.

 

 

For a linear elastic body Hooke’s law governs the response (Robert Hooke, 1635–1703). If only force 

 

Q

 

1

 

 is 
applied, Hooke’s law is

1

Q1 q1,Q2 q2,

2

Fig. 5.1 Static equilibrium of 
a body under external forces.

Q1

Q2

q1 q2

q1 q2

Q1 Q2 qi Qi

i 1 2,=
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.

 

(5.1)

 

If force only force 

 

Q

 

2

 

 is applied, Hooke’s law is

.

 

(5.2)

 

The coefficients 

 

c

 

11

 

, 

 

c

 

12

 

, 

 

c

 

21

 

, and 

 

c

 

22

 

 are called 

 

flexibility influence coefficients

 

, and they depend on the points 
of application and the direction of the corresponding forces and displacements, and the size, shape, and the mate-
rial of the body.

Note that the application of the force 

 

Q

 

1

 

 results in a displacement at point 2, and force 

 

Q

 

2

 

 results in a dis-
placement at point 1. Under mechanical load Hooke recognized that the material from which the body is made 
deforms internally throughout its extent. We now know the scale of deformation is to the level of the distortion of 
interatomic bonds constituting the material. At the atomic scale the material is not continuous. However, for 
length scales greater than that of interatomic distances the atomic structure of the body is ignored and the body is 
idealized as a 

 

continuum

 

. Points within the body are identified with the material particles, and continuity is 
defined in the mathematical sense. Neighboring points remain neighbors under any loading condition.

If both forces 

 

Q

 

1

 

 and 

 

Q

 

2

 

 act on the body, a questions that arises: Is Hooke’s law given by eq. (5.3) below?

.

 

(5.3)

 

From the hypothesis that the body returns to its original shape after the forces are removed it is proved that eq. 
(5.3) for two loads is the correct form of Hooke’s law. The proof is given by Fung (1965, p. 3). Also, coefficients 

 

c

 

11

 

 and 

 

c

 

21

 

 are independent of force 

 

Q

 

2

 

, and coefficients 

 

c

 

12

 

 and 

 

c

 

22

 

 are independent of force 

 

Q

 

1

 

. This proof 
leads to the principle of superposition.

 

5.1.1 Work of the external loads

 

Multiplying the first of eq. (5.3) by , the second equation by , and adding, we obtain

.

 

(5.4)

 

The quantity above is independent of the order in which the loads are applied. Hence, it has a definite meaning 
for each order of the application of loads 

 

Q

 

1

 

 and 

 

Q

 

2

 

.

 

Principle of superposition

 

For a linear elastic body the effects caused by two or more loads are the sum of the 
loads applied separately.

 

•

 

The deformations are small, and

 

•

 

the order of loading is unimportant.

q1 c11Q1= for Q2 0=

q2 c21Q1= for Q2 0=

q1 c12Q2= for  Q1 0=

q2 c22Q2= for Q1 0=

q1 c11Q1 c12Q2+=

q2 c21Q1 c22Q2+=

Q1 Q2

Q1q1 Q2q2+ c11Q1
2 c12Q1Q2 c21Q2Q1 c22Q2

2+ + +=
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Consider the special case of proportional loading, where the ratio 

 

Q

 

2

 

/

 

Q

 

1

 

 is kept constant and the loading increases very slowly from zero 
to the final value (i.e., 

 

quasi-static loading)

 

. In this case, the corre-
sponding displacements also increase proportionally and slowly. 
Force-displacement plots at points 1 and 2 are shown in figure 5.2 for 
this special case of proportional loading.   It should be clear that the 

work done by the force  is exactly , and that of  is 

. 

Hence, we conclude from eq. (5.4) that the 

 

total work done, W, by the set of forces is independent of the 
order in which the forces are applied.

 

.

 

(5.5)

 

5.1.2 Maxwell’s reciprocal theorem

Now consider the two different sequences in the application of forces Q1 and Q2. First, apply  slowly with 

. At the final value of , the displacement of point 1 is  and the displacement of point 2 is 

. The work done is . With  held fixed, apply  slowly until  attains its final value. The 

additional displacement at point 1 is  and the additional displacement at point 2 is . The additional 

work done is . When the forces are applied in the order , the total work done, as 

shown in figure 5.3, is

.

Second, apply  slowly with . At the final value of , the displacement of point 1 is  and 

the displacement of point 2 is . The work done is . With  held fixed, apply  slowly until  

attains its final value. The additional displacement at point 1 is  and the additional displacement at point 2 

0 0

Q1

q1

Q2

q2

Fig. 5.2 Load-displacement 
plots for proportional loading
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Q1
1
2
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2
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2+ Q1 Q2,
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Fig. 5.3 Load-
displacement plots for the 
loading sequence Q1, Q2.
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is . The additional work done is . When the forces are applied in the order  the 

total work done, as shown in figure 5.4, is

.

However,  for arbitrary order of application of . Hence, .

For a set of applied forces  and their corresponding displacements , eq. (5.3) 

generalizes to

. (5.6)

Since the flexibility influence coefficients c12 = c21, the work done on the body can be written as

. (5.7)

Take the partial derivatives of the work function in eq. (5.7) with respect to forces Q1 and Q2, and recognize the 
material law in eq. (5.3), to find that

. (5.8)

That is, the partial derivative of the work function with respect to a force equals the corresponding displacement.

Maxwell’s reciprocal theorem

The influence coefficients for corresponding forces and displacements are symmet-
ric.

•

In other words, the displacement at point i due to a unit load at another point j is 
equal to the displacement at j due to a unit load at i, provided that the displace-
ments and forces “correspond,” (i.e., that they are measured in the same direction 
at each point.)

c21Q1 Q2c21Q1
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2+ Q2 Q1,

W′ 1
2
---c11Q1

2 1
2
---c22Q2
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q2

c11Q1c12Q2 c21Q1c22Q2

Fig. 5.4 Load-
displacement plots for the 
loading sequence Q2, Q1.

W W′= Q1 Q2, c12 c21=
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qi cijQj
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n
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cij cji=
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5.2 Extensions of Hooke’s law to include a couple and rotation

Hooke’s law, eq. (5.3), can be extended to include the moment of a 
couple acting on the body and the rotation of the arm connecting the 
couple.

As shown in figure 5.5, the forces  and  form a couple 

with an arm of length  if  and . That is, forces 

 and  are functions of the force . Take the partial derivative 

of the work done by the forces with respect to force P and use the 
chain rule to get

.

Let  denote the displacement corresponding to force , and let  denote the displacement corresponding 

to force . Then, with reference to eq. (5.8) , , and note that . So

.

For small displacements, , where q is the small 

rotation of the moment arm in radians, as is shown in figure 5.6. 

Thus, . Divide this last equation by the length of the 

moment arm to get . Lastly, the moment of a couple is 

, so we get

. (5.9)

Thus, in Hooke’s law if  is a rotation, then corresponding “force”  is a moment.

We can consider a concentrated couple as the limiting case of two equal and opposite forces acting in a 
plane at the surface of the body that approach each other, but maintain a constant moment; i.e.,

 

In this limiting process . Then, the angle of rotation q is interpreted as the rotation of an infinitesimal line 
element in the plane of the couple.

1
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2
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Fig. 5.5 Static equilibrium of a body 
under external forces including a 
couple

Q'3 Q'4

a Q'3 P= Q'4 P=

Q'3 Q'4 P

∂W
∂P
-------- ∂W

∂Q'3
-----------

∂Q'3
∂P

----------- ∂W
∂Q'4
-----------

∂Q'4
∂P

-----------+=

q'3 Q'3 q'4

Q'4 q'3
∂W
∂Q'3
-----------= q'4

∂W
∂Q'4
-----------=

∂Q'3
∂P

-----------
∂Q'4
∂P

----------- 1= =

∂W
∂P
-------- q'3 q'4+=

3
q'3

q'4
4

a
θtan

q'3 q'4+

a
-------------------=
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5.2.1 Generalized forces and displacements

Define  as the magnitude of the generalized force acting at point i on the body, and let  denote the corre-

sponding generalized displacement at point i, where . The product of  has dimensional units 

of work, or F-L. If  is a force, then  is the corresponding displacement. If  is the moment of a concen-

trated couple with dimensional unit F-L, then  is the corresponding rotation in radians of the infinitesimal line 

element in the plane of the couple at the point of its application. By defining generalized forces and moments, we 
can extend Hooke’s law in eq. (5.6) to include moments and rotations as well as forces and displacements. In eq. 
(5.6), the flexibility influence coefficients can have different dimensional units. For example, if  is a displace-

ment of point 1 on the body and  is a moment of a couple acting point 2, then the dimensional unit of flexibil-

ity influence coefficient  is . Since the generalized displacement  corresponding to  is a rotation in 

radians and the generalized force  acting at point 1 is a force corresponding to , then the dimensional unit 

of flexibility influence coefficient  is also . Also, the dimensional unit of  is , and  is .

5.2.2 Stiffness influence coefficients

Assume that the displacement-force system given by eq. (5.6) can be inverted so that the forces may be expressed 
in terms of the displacements as

, (5.10)

where constants  are called stiffness influence coefficients. In matrix notation, we write the displacement-

force form of Hooke’s law, eq. (5.6), as

, (5.11)

and the force-displacement form, eq. (5.10), as

. (5.12)

Matrix [c] is called the flexibility matrix and [k] is called the stiffness matrix. Both matrices are square of order 
. In matrix algebra the stiffness matrix is the inverse of the flexibility matrix, or

. (5.13)

The inverse matrix has the property that

, (5.14)

where [I] is the  identity matrix (i.e., the identity matrix is a square matrix with all diagonal elements equal 
to unity and all off-diagonal elements equal to zero).

Maxwell’s theorem in article 5.1.2 states that the flexibility matrix is symmetric. In matrix algebra symmetry 
is written as

Qi qi

i 1 2 … n, , ,= Qiqi

Qi qi Qi

qi

q1

Q2

c12 F 1– q2 Q2

Q1 q1

c21 F 1– c11 LF 1– c22 F 1– L 1–

Qi kijqj

j 1=

n

∑= i 1 2 … n, , ,=

kij

q{ } c[ ] Q{ }=

        

n 1× n n× n 1×

Q{ } k[ ] q{ }=

        

n 1× n n× n 1×

n n×

k[ ] c[ ] 1–=

c[ ] 1– c[ ] c[ ] c[ ] 1– I[ ]= =

n n×
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, (5.15)

where the superscript T means matrix transpose (i.e., the matrix obtained by interchanging its rows with its col-
umns). Since the flexibility matrix is symmetric, the stiffness matrix is also symmetric. That is,

. (5.16)

Proof.   By definition

. (5.17)

Take the transpose of eq. (5.17) to get

. (5.18)

Use the fact that the transpose of the product of two matrices is equal to the product of the transpose of the sec-
ond matrix times the transpose of the first matrix, and that the transpose of the identity matrix is equal to itself. 
Hence, eq. (5.18) is equal to

. (5.19)

By symmetry of the flexibility matrix eq. (5.19) is equal to

. (5.20)

Pre-multiply eq. (5.20) by the inverse of the flexibility matrix to get

. (5.21)

Employ the relation in eq. (5.14) and write eq. (5.21) as

. (5.22)

Again, by definition . Thus,

. J (5.23)

Similarly in the generalized force and generalized displacement form of eq. (5.12), the stiffness influence 
coefficients, , also can have different dimensional units.

5.3 Strain energy density functions

External loads imposed on a body cause it to deform. The energy stored in an elastic body due to deformation is 
called the strain energy, and the strain energy per unit volume is called the strain energy density. For the thin wall 
bar theory discussed in article 3.4 on page 37, deformation is quantified by values of the axial normal strain , 

and shear strains  and . The three remaining strains . In this article expressions for 

the strain energy density functions in terms of the non-zero strains are developed.

5.3.1 Strain energy density in uniaxial normal strain

Begin with the axial equation of motion for an element of the bar of length ∆z as shown in figure 5.7. The equa-
tion of motion is

c[ ]T c[ ]=

k[ ]T k[ ]=

c[ ] 1– c[ ] I[ ]=

c[ ] 1– c[ ]( )
T

I[ ]T=

c[ ]T c[ ] 1–( )T I[ ]=

c[ ] c[ ] 1–( )T I[ ]=

c[ ] 1– c[ ] c[ ] 1–( )T c[ ] 1– I[ ] c[ ] 1–= =

c[ ] 1–( )T c[ ] 1–=

c[ ] 1– k[ ]≡

k[ ]T k[ ]=

kij

εzz

γ zs γ zζ εss εζζ γ sζ 0= = =
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, (5.24)

in which A denotes the cross-sectional area, ρ the mass density, and  the axial velocity. Division of eq. (5.24) 

by A∆z followed by letting  yields the differential equation at coordinate z and time t as

. (5.25)

Consider the first law of thermodynamics for a closed system of continuous matter not interchanging matter 
with its surroundings. Then the first law is (Malvern, 1969, p. 229)

, (5.26)

where Pinput is the power input of the external loads, Qinput is the rate of heat input, and E is the total energy of 
the system. Assume the process is adiabatic so Qinput = 0. The energy is the sum of the kinetic energy and inter-
nal energy. For the closed system consisting of the axial bar element shown in figure 5.7, Pinput is the time rate of 
work of the normal stresses acting on the element. Expressions for Pinput and the time rate of change of energy 

are

, (5.27)

where U0 is the internal energy per unit volume, or internal energy density. Substitute eq. (5.27) into the first law 

(5.26) with Qinput = 0, followed by division by A∆z. In the result from these previous manipulations let  
to get the differential equation of the first law at coordinate z and time t as

. (5.28)

Expand the derivative on the left-hand side of eq. (5.28) to get

. (5.29)

Substitute the equation of motion (5.25) for  in the first term on the left-hand side of eq. (5.29). We 
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Fig. 5.7 Axial bar element. (a) free body diagram. (b) time rate of change of linear momentum.
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assume it is permissible to interchange the order of differentiation of the second term on the left-hand side and 
write it as

.

Hence, eq. (5.29) becomes

,

and note that the terms involving the acceleration cancel. We are left with

. (5.30)

For the response of an elastic body under an adiabatic conditions, it is assumed that the internal energy density is 
a function of the strain (Allen and Haisler, 1985, pp. 101,102). For , and that the strain at point z is 

a function of time t, we use the change rule to write 

. (5.31)

Substitute eq. (5.31) into the first law (5.30) to get

. (5.32)

Since the time rate of strain is, in general, not zero, it is concluded from (5.32) that

. (5.33)

Thus, the derivative of the internal energy density function  with respect normal strain equals the corre-

sponding normal stress under the assumption of adiabatic deformation for an elastic material. 

In elasticity a function having the property illustrated by eq. (5.33) is called the strain energy density. Thus, 
the internal energy density function is identified as the strain energy density. It is shown in continuum mechanics 
texts, e.g. Fung (1965, p. 348), that the strain energy density is identified with the internal energy in an adiabatic 
process and the free energy for an isothermal process. For a thermoelastic stress-strain law that is not associated 
with an adiabatic or isothermal process, it is assumed that a strain energy function exists. That is, an elastic 
material is defined by postulating that a scalar function exists such that its derivative with respect to a 
strain component determines the corresponding stress component. Consequently, the postulate of a strain 
energy function leads to the material law relating the stresses to the strains. Equation (A.110) in the appendix 
augments eq. (5.33) to include a three-dimensional state of stress and strain.

From eq. (3.65) on page 45 Hooke’s law for the axial stress and strain is , where E is the 

modulus of elasticity, β = E α, and α is the coefficient of thermal expansion. Substitute the expression for stress 
σzz from Hooke’s law into the left-hand side of eq. (5.33) and then integrate the result with respect to the strain 
εzz to get
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. (5.34)

The strain energy density is zero in the unstrained state, since it will be the change in strain energy that is impor-
tant in subsequent applications. A graphical representation of the strain energy density is obtained in the plot of 
Hooke’s law as shown in figure 5.8. It is interpreted as the “area” between Hooke’s law and the strain axis. From 
the graph the “area” is

 , or

. (5.35)

Simplification of eq. (5.35) reduces it to eq. (5.34). The “area” represents 
the work done per unit volume of the stress acting through the strain. The 
static analog to eq. (5.30) is , where the incremental work 

per unit volume . The work done during the deformation is

. (5.36)

That is, the work done per unit volume is equal to the strain-energy-density function, and W0 only depends on the 

final state of strain and not the strain history.1 

Strain energy density functions for a Hookean material subject to a three-dimensional state of strain, includ-
ing thermal strains, are given by eq. (A.140) in the appendix. The three-dimensional strain energy density func-
tion reduces to eq. (5.34) for uniaxial strain if the Poisson effect is neglected.

5.3.2 Complementary energy density in uniaxial normal stress

Equation (5.33) is transformed to a conjugate form by introducing a new function  called the comple-

mentary-strain-energy density. The transformation was developed by A. M. Legendre. Refer to the discussion by 
Langhaar (1962, p. 120). It is defined by

. (5.37)

Take the partial derivative of the complementary-strain-energy density with respect to the normal stress compo-
nent to get

, (5.38)

1. Note that reversing the order of application of the mechanical load σz and thermal load ∆T changes the “area” 
under the stress-strain plot, which implies W0 is path dependent. See, for example, the discussion in Donald-
son (1993, p. 510) and Allen and Haisler (1985, p. 287). However, these authors use eq. (5.34) for .
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in which the leading term on the right-hand side of eq. (5.38) the vanishes by eq. (5.33). Hence, complementary-
strain-energy density has the property that

. (5.39)

Equation (5.39) is the conjugate to eq. (5.33). Hooke’s law for the normal strain is , which 

is substituted for the strain in eq. (5.39). The result is integrated with respect to the stress to get

. (5.40)

As is shown in figure 5.9, the complementary-strain-energy density repre-
sents the “area” between Hooke’s law and the stress axis. Expand the last 
result for the complementary strain energy density to find

. (5.41)

The third term in the complementary-strain-energy density above depends 

only on the change in temperature. This third term in the expression for  

may be omitted under the assumption of one-way, thermal-mechanical cou-
pling, since the change in temperature is specified independent of the mechanical state. (Refer to the discussion 

in article 3.7.1 on page 44.) It is the change in  with respect to the stress state that is important in subsequent 

analyses.

5.3.3 Strain energy density in shear

The properties of the strain-energy densities in shear are

. (5.42)

Hooke’s law relates the shear stress to the shear strain by , where G is the shear modulus of the mate-

rial. Substituting Hooke’s law into eq. (5.42) followed by integration, we get the expressions for the strain energy 
densities as

. (5.43)

As is shown in figure 5.10, the strain-energy density is the “area” between Hooke’s 
law and the strain axis, and the complementary-strain-energy density is the “area” 
between Hooke’s law and the stress axis. Including shear strain  and it corre-

sponding shear stress , the combined strain energy densities in shear are

. (5.44)
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5.4 Strain energy for extension and bending of a thin-walled bar

Assuming that the axial normal strain is uniform through the thickness of the wall, we obtain from eq. (3.30) on 
page 38 that the axial normal strain is related to the axial displacement , and bending rotations  and 

, by

. (5.45)

Substitute eq. (5.45) for the normal strain into the strain energy density (5.34) to get

. (5.46)

The strain energy per unit axial length is defined by . Substitute eq. (5.46) for the strain 

energy density into the strain energy per unit axial length, and note the geometric properties listed in eqs. (3.74) 
and (3.77) on page 46 relative to the centroid, to get

. (5.47)

The thermal actions appearing in eq. (5.47) are given by eqs. (3.75) and (3.78) on page 46. 

Assuming that the axial normal stress is uniform through the thickness of the wall, then the axial normal 
stress is given by eq. (3.83) on page 47. Substitute eq. (3.83) for the normal stress into the expression (5.41) for 
the complementary strain energy density to get

,

in which the quadratic term in the temperature change of eq. (5.41) is neglected. Expand and simplify the latter 
expression to find

. (5.48)

Again, all terms in the simplification of eq. (5.48) that contain only the temperature are neglected. The comple-

mentary strain energy per unit axial length is defined by . Substitute eq. (5.48) for the 

complementary strain energy density into the complementary strain energy per unit length. In the evaluation of 

 we use the definitions given by eqs. (3.74), (3.81), and (3.84) in article 3.7.2 on page 45 to determine the fol-
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lowing integrals:

, and (5.49)

. (5.50)

The final result for the complementary strain energy per unit length is

. (5.51)

5.5 Strain energy for shear and torsion of a thin-walled bar

Consider the strain energy densities due to shear (5.44). Integrate these strain energy densities over the cross-sec-
tional area to get the strain energies per unit axial length.That is,

. (5.52)

If we substituted the shear strains  and  from eq. (3.31) on page 38 into the strain energy per unit length 

and performed the integration over the cross section we would get the strain energy function per unit length in the 
form

 . (5.53)

Partial derivatives of  with respect to the transverse shears and twist per unit length determine the material law 
for the transverse shear forces and torque. That is,

. (5.54)

The shear stresses enter the definitions of the shear flow q, twisting moment resultant mzs, and the transverse 

stress resultant qz, given by eq. (3.37) on page 40. For a thin, curved wall we neglect the term  in the factor 

 appearing in the integrand of eq. (3.37). It follows that the shear stresses consistent with stress result-

ant definitions are 

. (5.55)

Substitute eq. (5.55) for the stresses in complementary energy per unit length (5.52), followed by integration 
through the thickness to get 
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. (5.56)

5.5.1 Open cross-sectional contour

The shear flow in the first integral on the right-hand side of (5.56) is given by eq. (3.98) on page 51. It is repeated 
below. 

. (5.57)

Note that the shear flow is directly related to the shear forces and is independent of the torque. To account for the 
torque, evaluate the second integral on the right-hand side of eq. (5.56) for torsion of the open section with the 
straight contour presented in article 3.9 on page 57. From eq. (3.119) on page 60 these stress resultants are

, (5.58)

where

.

Substituting the stress resultants  and  from eq. (5.58) into the second integral in the complementary strain 

energy (5.56), followed by evaluating the integral, we find

. (5.59)

Hence, the complementary strain energy per unit axial length is

. (5.60)

We write the eq. (5.60) in the form

, (5.61)

where  are the flexibility influence coefficients for the cross section of the bar given by

. (5.62)

5.5.2 Closed cross-sectional contour

The shear flow for the closed cross-sectional contour is directly related to the shear forces and the torque resolved 
at the shear center. Equation (3.163) on page 70 is
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,

where the shear flow distribution functions  and  are determined from eqs. (3.151) and (3.164) on 

page 69. For the closed section the stress resultants  and  are assumed negligible with respect to the shear 

flow q. Consequently, in the complementary strain energy per unit axial length (5.56) the second integral on the 
right-hand side is neglected with respect to the first integral on the right-hand side. The complementary strain 
energy per unit axial length is then given by

. (5.63)

Expand the integrand of latter equation and write it as

. (5.64)

The flexibility influence coefficients for the closed cross-sectional contour are

, and (5.65)

. (5.66)

The torsion constant J for a single-cell cross section is given by eq. (3.160) on page 70. Influence coefficients 
, since the shear flow distribution functions  and  are defined with respect to the shear 

center. (Refer to eq. (3.151) and eq. (3.164).)

5.5.3 Material law for transverse shear and torsion

The relation between the strain energy densities in shear is analogous to the one for normal stress and strain 
(5.37). This relation is

. (5.67)

Integrate eq. (5.67) over the cross-sectional area to get 

. (5.68)

Substitute (5.55) for the stresses, and eq. (3.31) on page 38 for the strains, in the second integral labeled I on the 
right-hand side of eq. (5.68). After integration over the thickness the integral I is

. (5.69)

Rearrange the integrand in eq. (5.69) to
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. (5.70)

From eq. (3.40) on page 40 recognize that the coefficient of shear  is the shear force Vx, the coefficient of 

shear  is the shear force Vy, and the coefficient of the twist per unit length is the torque Mz. Hence, the integral 

I is given by

. (5.71)

The relation between the shear strain energies per unit axial length in eq. (5.68) becomes

. (5.72)

Take the partial derivative of (5.72) with respect to the shear force Vx as follows:

. (5.73)

The term  in eq. (5.73) since it is the elastic material law for the shear force given by eq. 

(5.54). Consequently, eq. (5.73) leads to the material law for shear 

. (5.74)

Following steps similar to those used in eqs. (5.72) to (5.74) leads to the additional material laws

 and . (5.75)

Substitute the complementary strain energy from either eq. (5.61) or (5.64) into eqs. (5.74) and (5.75) to 
obtain the material law governing the transverse shears and the twist per unit length. Since the expressions for the 
complementary strain energy per unit axial length with respect to the shear center are the same for the open con-
tour (5.61) and the closed contour (5.64), the material law in both cases is

. (5.76)

Assume we can invert the material law (5.76) and write it as

, (5.77)
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where

. (5.78)

The strain energy per unit axial length in shear and torsion is

. (5.79)

5.6 Total strain energy expressions for a thin-walled bar

The total strain energy is obtained from strain energy per unit axial length by integration with respect to axial 
coordinate z, , where L is the length of the bar. The total strain energy is written as

, (5.80)

where the strain energy obtained from axial normal strain  is denoted by , and the strain energy obtained 

from shear strains  and  is denoted by . From eqs. (5.47) and (5.79) these strain energies are

, (5.81)

and

. (5.82)

The stiffness coefficients in eq. (5.82) are computed from the compliance coefficients as shown in eq. (5.78).

The total complementary strain energy is written as

, (5.83)

where the complementary strain energy obtained from axial normal stress  is denoted by , and the com-

plementary strain energy obtained from shear stresses  and  is denoted by . From eqs. (5.51) and 

(5.61) these complementary strain energies are

, (5.84)

and

. (5.85)

The compliance coefficients in eq. (5.85) are determined by eq. (5.62) for the open contour and by eqs. (5.65) 
and (5.66) for the closed contour.
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5.7  Castigliano’s first theorem

The work function can be written in terms of the generalized displacements and stiffness influence coefficients 
by substituting n = 2 in eq. (5.10), then substituting the result for the generalized forces into the work eq. (5.5). 
The result is

. (5.86)

Take the partial derivative of the work function with respect to q1 and q2 to get

.

Comparing these results for the partial derivatives of W to the eq. (5.10) for n = 2, we find

. (5.87)

That is, the partial derivative of the work function with respect to a displacement equals the corresponding force. 
Equation (5.87) yields the stiffness law, and it is the conjugate to eq. (5.8) that yields the compliance law.

For adiabatic deformation of a Hookean material the first law of thermodynamics shows that the work done 
per unit volume is equal to the strain energy density. Refer to eq. (5.36) on page 138. For the body composed of a 
Hookean material, we take the work done by the external loads equal to the strain energy of the entire body. Then 
W = U in eq. (5.87), which leads to Castigliano’s first theorem in terms of generalized displacements and forces 
as follows:

For the thin-walled bar the strain energy U is given by eqs. (5.80) to (5.82), and it has the form

.

The prime indicates ordinary derivative with respect to coordinate z (e.g. ), and the averaged shears 

from eq. (3.32) on page 38 are repeated below.

Castigliano’s first theorem

If the strain energy of an elastic structure is expressed in terms of the independent 
generalized displacement components , , in the direction of the pre-

scribed generalized point forces , then the first partial derivative of the 

strain energy with respect to the displacement  is equal to the corresponding force 
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.

 The procedure in the application of the first theorem to structural analysis is to assume functions for the dis-
placement components  and rotations  that satisfy the three condi-

tions below.

1. The displacement and rotations must be continuous functions of the coordinate z, so that their derivatives with 
respect to the coordinate, or strains, exist and are integrable over the domain of the bar. 

2. The displacement and rotations must satisfy any prescribed conditions at the boundaries z = 0 and z = L. 

3. The displacement and rotation functions are selected such that they equate to the generalized displacements 
, , at their defined points of application.

Displacement and rotation functions that satisfy continuity conditions and prescribed displacement bound-
ary conditions are said to be kinematically admissible. Kinematically admissible displacements lead to a com-
patible deformation. Compatibility of a deformable body means the displacements are continuous and single-
valued (i.e., no gaps or overlaps of material result in the deformed state). Castigliano’s first theorem is a condi-
tion of equilibrium consistent with the assumed kinematically admissible displacements.

Example 5.1 Response of cantilever beam by Castigliano’s first theorem 

The cantilever beam shown in figure 5.11 is subject to a vertical displacement q1 and a clockwise ration q2 at its 

tip, and a uniform thermal moment  along its length. The cross section is symmetric with respect to the y-z 

plane. 

Assume a kinematically admissible displacement and bending rotation as

. (a)

Continuous and differentiable functions for the generalized displacements are ensured by employing polynomial 
functions in coordinate z. Also, assumptions (a) satisfy the prescribed end conditions  and . 

Therefore, assumptions (a) satisfy the conditions of kinematic admissibility. The strain energy reduces to a func-
tion generalized displacements q1 and q2. For this example the expression for the strain energy from (5.81) and 
(5.82) is

 where . (b)

The derivatives of the functions in (a) with respect to z, and the evaluation of the transverse shear strain are

ψx z( )
zd

du φy z( )+= ψy z( )
zd

dv φx z( )+=

u z( ) v z( ) and w z( ), , φx z( ) φy z( ) and φz z( ), ,

qi i 1 2 … n, , ,=

MxT

y v,

z
L

1

2
Fig. 5.11 Cantilever beam subject to a 
temperature gradient and end loads.

v z( ) q1 z L⁄( )= φx z( ) q2 z L⁄( )= 0 z L≤ ≤

v 0( ) 0= φx 0( ) 0=

U U φ'x ψy,[ ] zd

0

L

∫= U φ'x ψy,[ ] 1
2
---EIxx φx′( )2 MxT φ'x( )– 1

2
---syyψy

2+=
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. (c)

Substitute eq. (c) into eq. (b) to get

. (d)

The definite integral of eq. (d) over the length of beam yields the discrete form of the strain energy (b). The result 
is

. (e)

The strain energy expression in eq. (b) is called a functional because its value is determined by the functions 
 and . Assumption (a) results in a strain energy function given by eq. (e) where the generalized dis-

placements  and  are the independent variables. The generalized forces  and  corresponding to  

and , respectively, are determined by Castigliano’s first theorem. That is,

 and . (f)

Take the partial derivatives of eq. (e) with respect to  and  to find

 and . (g)

The expressions in eq. (g) are written in the matrix form

. (h)

The elements of the 2X2 stiffness matrix in eq. (h) are the stiffness influence coefficients. Also note than the stiff-
ness matrix is symmetric.

From eq. (3.79) Hooke’s law for the bending moment is

, (i)

and from eq. (5.77) the material law for the transverse shear force i

. (j)

Substitute  and  from eq. (c) into eqs. (i) and (j) to get

 and . (k)

Equilibrium differential equations (3.54) and (3.55) are

v′ z( ) q1 L⁄= φx′ z( ) q2 L⁄= ψy z( ) q1 L⁄ q2 z L⁄( )+=

U
EIxx

2L2
----------q2

2
syy

2
------
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L
-----

q2

L
-----z+ 

 
2 MxT

L
---------q2–+=

U q1 q2,( )
EIxx

2L
----------q2

2
syy

2L
------q1

2
syy

2
------q1q2

syyL

6
----------q2

2 MxTq2–+ + +=

φx z( ) ψy z( )

q1 q2 Q1 Q2 q1

q2

Q1
∂U
∂q1
--------= Q2

∂U
∂q2
--------=

q1 q2

Q1
syy

L
------q1

syy

2
------q2+= Q2

syy

2
------q1

EIxx

L
----------

Lsyy

3
----------+ 

  q2 MxT–+=

Q1

Q2

syy

L
------

syy

2
------

syy

2
------

EIxx

L
----------

Lsyy

3
----------+

q1

q2

0
1

MxT–=

Mx EIxxφx′ z( ) MxT–=

Vy syyψy=

φx′ ψy

Mx EIxx q2 L⁄( ) MxT–= Vy syy q1 L⁄ q2 z L⁄( )+( )=
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 and  for . (l)

Substitute the bending moment and shear force from eq. (k) into eq. (l) to get

 and , (m)

where c denotes a constant of integration for the shear force. The differential equations are not satisfied for the 
assumption in eq. (a). Of all the possible kinematically admissible displacement functions those given by (a) lead 
to an approximate equilibrium solution but not the exact equilibrium solution. J

5.8 Castigliano’s second theorem

The generalized displacements from Hooke’s law in eq. (5.3) are substituted into the work eq. (5.5) to express the 
work function as

.

Take the partial derivative of the work function with respect to Q1 and Q2 to get

.

Comparing these results for the partial derivatives of W to the two equations (5.3), we find

 and . (5.88)

If the work function is written in terms of the forces and flexibility influence coefficients, then partial derivatives 
of the work with respect to a force equals the corresponding displacement. The work done on a Hookean body is 

equal to the change in energy stored due to elastic deformation. We use the complementary strain energy  in 

this case to represent the change in energy since  in the reference state. Hence, set , and we 
arrive at Castigliano’s second theorem in terms of generalized displacements and forces, which is as follows:

For a thin-walled bar the complementary strain energy given by eqs. (5.83) to (5.85) has the form

Castigliano’s second theorem

If an elastic structure is mounted such that rigid body displacements are impossible 
and certain generalized point forces  act on the structure, in addition to 

distributed loads and thermal strains, the displacement component ,  

of the point of application of force  in the direction of  is determined by the equa-

tion

.

dVy

dz
--------- 0=

dMx

dz
---------- Vy– 0= 0 z L< <

dVy

dz
---------

syy

L
------q2 0≠=

dMx

dz
---------- Vy– 0

syy

L
------q2z c+ 
 – 0≠=

W 1
2
--- 
  c11Q1

2 c12Q1Q2 c21Q2Q1 c22Q2
2+ + +( )=

∂W
∂Q1
--------- c11Q1 c12Q2+= ∂W

∂Q2
--------- c12Q1 c22Q2+=

q1
∂W
∂Q1
---------= q2

∂W
∂Q2
---------=

U*

U* 0= W U*=

Q1 Q2 … Qn, , ,

qi i 1 2 … n, , ,=

Qi Qi

qi
∂U*

∂Qi

----------=
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. (5.89)

The procedure in the application of the second theorem to the analysis of thin-walled bars is to assume functions 
in the axial coordinate z for the bar resultants , that satisfy the three conditions below. 

1. The bar resultants must be represented by functions of the Cartesian coordinates that satisfy the differential 
equations of equilibrium of article 3.6.1 on page 41 for .

2. The functions for the bar resultants must satisfy their prescribed values on the boundaries at z = 0 and z = L.

3. The functions for the bar resultants must contain the generalized forces , , as parameters. 

Functions for the bar resultants that satisfy the differential equations of equilibrium and prescribed force 
boundary conditions are said to be statically admissible. Castigliano’s second theorem is the condition of 
compatibility for the statically admissible bar resultants. Compatibility of a deformable body means the dis-
placements are continuous and single-valued (i.e., no gaps or overlaps of material result in the deformed state). 
Castigliano’s second theorem is useful in determining displacements of a structure.

Example 5.2 Response of the cantilever beam by Castigliano’s second theorem

Consider the cantilever beam in example 5.1 on page 147 again. 
Take the end loads Q1 and Q2 to be specified, and use Cas-
tigliano’s second theorem to determine the corresponding dis-
placements q1 and q2. We note that the beam in this example is 
statically determinate. From equilibrium of the free body diagram 
shown in figure 5.12 the statically admissible internal actions are.

. (a)

The complementary strain energy from (5.84) and (5.85) is

, where . (b)

Substitute the shear force and bending moment from eq. (a) into the complementary strain energy per unit axial 
length given in eq. (b) to get

. (c)

Integrate eq. (c) over the length of the beam to find the complementary strain energy as

. (d)

The statically admissible functions assumed in eq. (a) transform the complementary strain energy functional 

U* U
*

Vx Vy N Mx My Mz, , , , ,( ) zd

0

L

∫=

Vx Vy N Mx My and Mz, , , , ,

0 z L< <

Qi i 1 2 … n, , ,=

z
L

Q1

Q2

Vy

Mx

Fig. 5.12
Free body 
diagram of 
the beam.

Vy Q1= Mx Q2 Q1 L z–( )–= 0 z L≤ ≤

U* U
*

Vy Mx,[ ] zd

0

L

∫= U
*

Vy Mx,[ ] 1
2
---cyyVy

2 1
2EIxx

------------- Mx MxT+( )2+=

U
* cyy

2
------Q1

2
Q2 L z–( )Q1– MxT+[ ]2

2EIxx

-----------------------------------------------------------+=

U*
cyyL

2
---------- L3

6EIxx

-------------+ 
 Q1

2 L2

2EIxx
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2EIxx

-------------Q2
2 L2

2EIxx

-------------MxTQ1– L
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----------MxTQ2

LMxT
2
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-------------+ + +=
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given by eq. (b) to a function of the independent variables  and  in eq. (d). Castiglinao’s second theorem 

determines the generalized displacements  and  corresponding to the generalized forces  and . That 

is,

 and . (e)

Substitute the complementary strain energy (d) into Castigliano’s second theorem (e) to get

, and (f)

. (g)

Equations (f) and (g) are written in the matrix form as

. (h)

The elements of the 2X2 compliance matrix in eq. (h) are the flexibility influence coefficients. Also note that the 
compliance matrix is symmetric. J

Q1 Q2

q1 q2 Q1 Q2

q1
∂U

*

∂Q1
---------= q2

∂U
*

∂Q2
---------=

q1 cyyL L3

3EIxx

-------------+ 
 Q1

L2

3EIxx
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2EIxx

-------------MxT–=

q2
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----------Q1– L
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----------Q2
L

EIxx

----------MxT+ +=

q1

q2

cyyL L3

3EIxx

-------------+ L2

2EIxx
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L2

2EIxx

-------------– L
EIxx

----------

Q1

Q2

L2

2EIxx

-------------–

L
EIxx

----------

MxT+=
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CHAPTER 6

 

Applications of 
Castigliano’s Theorems

 

6.1 Coplanar trusses

 

6.1.1 Castigliano’s first theorem

 

Consider a truss idealized as an assemblage of uniform bars connected by smooth ball-and-socket joints in three-
dimensional trusses, or by smooth hinge joints in a coplanar truss. External forces are assumed to act only at the 
joints. The line connecting the joints at the end of each bar is assumed to coincide with the reference axis of the 
bar. Hence, the axial force and strain in each bar is uniform along its length, and the bar is either in tension or 
compression. 

A coplanar truss consisting of fifteen bars and eight joints is shown in figure  6.1. Each joint in a coplanar 
truss has two degrees of freedom, one horizontal displacement and the one vertical displacement. Hence, there 
are sixteen displacement degrees of freedom for this truss. At joint 

 

i

 

, 

 

i

 

 = 1, 2,..., 8, the horizontal displacement is 
denoted by  and the vertical displacement is denoted by . The positive directions for the displacements 

and corresponding forces in the fifteen bar truss are shown in figure  6.1. The original coordinates of the joints 
and the sixteen displacements completely define the configuration of the truss in the deformed state. 

A typical bar in a truss connecting joints labeled 

 

i

 

 and 

 

j

 

 is shown in figure 6.2(a). The location of the bar in a 

 

X-Y

 

 coordinate system is established by the coordinates of joint 

 

i

 

 (

 

X

 

i

 

, 

 

Y

 

i

 

) and those of joint 

 

j

 

 (

 

X

 

j

 

,

 

Y

 

j

 

). The angle of 
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Fig. 6.1  A fifteen-bar truss.
joint numbering degree of freedom numbering

q2i 1– q2i
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the bar with respect to the 

 

X

 

-axis is denoted by 

 

θ

 

. Trigonometric functions of the angle 

 

θ

 

 are related to the coor-
dinates of the joints and length 

 

L

 

 of the bar by

.

 

(6.1)

 

As shown In figure  6.2(a), the axial displacement of the bar at joint 

 

i

 

 is  and that of joint

 

 j

 

 is . Assume the 

axial displacement , . The axial strain , and 

denote the elongation . Also, assume the temperature change is uniform in 

 

z

 

. From eq. (3.79) on 

page 46 the axial force in the bar is

.

 

(6.2)

 

The differential equation of equilibrium  (eq. (3.53) on page 42) is satisfied under assumptions of uni-

form axial strain and uniform axial change in temperature.The strain energy (5.81) on page 145 of the bar 
reduces to

.

 

(6.3)

 

Castigliano’s first theorem determines the force  corresponding to displacement , and force  correspond-

ing to displacement . The results are

 and .

 

(6.4)

 

Note that , which is the condition of equilibrium.

θ
i

j
L

q2i 1–

q2i q2j 1–

q2j

qi Qi,

qj Qj,

θi

j

Xi Yi,( )

Xj Yj,( )L

X

Y

X

Y

Fig. 6.2 (a) Truss bar i-j subject to axial displacements. (b) Truss bar i-j subject to horizontal and 
vertical displacements.

(a) (b)

θcos Xj Xi–( ) L⁄= θsin Yj Yi–( ) L⁄= L Xj Xi–( )2 Yj Yi–( )2+=

qi qj

w z( ) qi 1 z L⁄–( ) qj z L⁄( )+= 0 z L≤ ≤ εzz w′ qj qi–( ) L⁄= =

∆i j– qj qi–=

Ni j–
EA
L

------- 
 

i j–
∆i j= NT( )i j––=

dN
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------- 0=

U 1
2
---EA

L
-------∆i j–

2 NT∆i j––=

Qi qi Qj
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Qi
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------- EA
L

------- qi qj–( ) NT+= = Qj
EA
L

------- qi– qj+( ) NT–=

Qi Qj+ 0=
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In figure 6.2(b) truss displacements of joint i are  and for joint j are . At joint i the 

truss and axial displacements are related by  and  as shown in figure 6.3. Likewise 

at joint j  and . These relations can be solved for the axial displacement in terms 

of the truss displacements to get 

. (6.5)

The elongation of the truss bar i-j in terms of the joint displacements is

. (6.6)

The elongation (6.6) is the sum of the projections of the relative displacements onto the reference axis of the 
undeformed bar which is depicted in figure 6.4.

 For the m-th bar of the truss shown in figure 6.1, where, m = 1, 2,..., 15, denote its extension stiffness by 
, its elongation by ∆m, and denote the thermal force by . The temperature change is uniform in 

each bar, but can be different from bar to bar. The relation between bar index m and the joints i and j of the bar are 
defined by assignment. For example in figure 6.1, the bar identified by m = 2 may be selected as the bar connect-
ing joint 1 to joint 4, so its elongation (6.6) is

.

The sine and cosine of angle θ2 are determined from eq. (6.1). The strain energy of the assemblage is simply the 
sum of the strain energies in each bar, where (6.3) is the energy for one bar. Hence, the total strain energy is

(6.7)

q2i 1– q2i,( ) q2j 1– q2j,( )

θ

θ
q2i 1–

q2i
qi

X

Y

i

Fig. 6.3 Relation between the 
displacements components at joint i.

q2i 1– qi θcos= q2i qi θsin=

q2j 1– qj θcos= q2j qj θsin=

qi q2i 1– θcos q2i θsin+= qj q2j 1– θcos q2j θsin+=

∆i j– qj qi– q2j 1– q2i 1––( ) θcos q2j q2i–( ) θsin+= =

i

j

θ
i

j

θ i

j

θ

∆i j–θq2j q2i–( )

θsin q2j q2i–( )

θ

q2j 1– q2i 1––( )

θcos q2j 1– q2i 1––( )

Fig. 6.4 Elongation of the bar as the sum of projections of the relative horizontal 
and vertical displacements along the direction of the undeformed bar.

EA L⁄( )m NTm

∆2 ∆1 4– q7 q1–( ) θ2cos q8 q2–( ) θ2sin+= =

U 1
2
--- EA

L
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m
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The displacements  and the corresponding forces , , used in the formulation of Cas-

tigliano’s theorem are the displacements and corresponding forces at the joints. Hence, Castigliano’s first theo-
rem for the truss shown in figure  6.1 is

. (6.8)

Example 6.1 Three-bar coplanar truss

The coplanar truss shown in figure  6.5 consists of three bars (m = 1, 2, 3) and four joints 1, 2, 3, 4. Beginning 
joint i and end joint j for each bar are listed in the figure. Joints 2, 3, and 4 are fixed so their displacements equal 
zero, and joint 1 is movable. The change in the thermal force in each bar is equal to zero. The spring stiffness of 
the bars are denoted by . Determine the 2 x 2 stiffness matrix using Castigliano’s first theorem.

Solution.  The elongation of each bar as determined from eq. (6.6) is

. (a)

Castigliano’s theorem (6.8) applied to this example yields

(b)

(c)

These results are written in the matrix form 

, (d)

where the elements of the stiffness matrix are

. (e)

Note that this example is statically indeterminate, since there are only two equilibrium equations at the movable 

qn Qn n 1 2 … 16, , ,=

Qn
EA
L

------- 
  ∆m NTm–
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----------

m 1=

15

∑= n 1 2 … 16, , ,=

EA L⁄( )m

q1 Q1,

q2 Q2,

θ1 θ2 θ3

1

2 3 4 X

Y

Fig. 6.5  Three-bar truss. 
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joint 1 but three unknown bar forces. For specified nodal forces Q1 and Q2, matrix eq. (d) is solved for the nodal 
displacements q1 and q2. From eq. (a) the elongation of each bar is then computed, and from these elongations 
the bar forces are determined from

J (f)

Example 6.2 Three-bar truss with lack of fit

Consider the same three bar-truss of example 6.1, but now assume that bar 1 was too short and had to be 

stretched an amount  in order to connect it to joint 1. This is a case of lack of fit, and lack of fit is common in 

the fabrication of structures. That is, before the external loads are applied ( ), the truss bars experi-

ence initial forces due to the lack of fit of bar 1. Determine the initial forces in the bars using Castigliano’s first 
theorem.

Solution.  Lack of fit can be included in the energy analysis by modifying the specified thermal force term in the 
strain energy (6.7). For uniform material properties and uniform change in temperature, the thermal force in a 
truss bar is . (Refer to eq. (3.75) on page 46.) The factor  is the initial strain due to the 

temperature change. Note  is dimensionless. Now interpret  as the initial strain specified due to lack of fit. 

The initial strain due to the specified displacement  required to connect a bar to a joint is . Let 

. The strain energy is modified to

. (a)

The specified initial strain is only for bar 1, so

. (b)

Castigliano’s theorem (6.8) leads to

. (c)

The matrix form of eq. (c) is

. (d)

Elements of the stiffness matrix are the same as given by eq. (e) of example 6.1. Set  and , since 

no external forces are applied to the joint just after assembly. Then solve the matrix equation (d) for the joint dis-
placements to get
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. (e)

From this solution for the displacements we can calculate the elongation of each bar after assembly from eq. (a) 
in example 6.1. The initial bar forces after assembly are computed from

. (f)

A specific case: , , , and  is the same for each bar. Take , so that 

, and . The solution for the displacements from eq. (b) are  and 

. The elongations are , , and , and the bar forces from 

eq. (f) are

.J (g)

6.1.2 Castigliano’s second theorem for a statically determinate truss

Example 6.3 Truss displacements

The truss shown in figure 6.6 consists of three bars labeled 1-2, 1-3, and 2-3. Joint 1 is a fixed pin, and pin joint 3 
is free to move vertically but not horizontally. A downward applied force of a 84,000 N acts at joint 2. The cross-

sectional areas of bars are , , and . Each bar has a mod-

ulus of elasticity E = 70,000 N/mm2. The degree of freedom numbering is shown the figure. Determine displace-
ments q3 and q4 by Castigliano’s second theorem

A note on static determinacy:  Let m = the number of unknown bar forces, r = the number of support reactions, 
and let j = the number of joints. There are two independent equilibrium equations per joint. For a statically deter-
minate truss, the number of unknown forces is equal to number of independent equilibrium equations (i.e., 2j = m 

q1

q2
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Fig. 6.6 A statically determinate three-bar truss.
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+ r). For the truss in this example j = 3, m = 3, and r = 3. So it is statically determinate. For the truss in example 
6.1, j = 3, m = 3, and r = 6, and 6 < 3 + 6. So the truss in example 6.1 is statically indeterminate. 

Solution.  Free body diagrams of joints 2 and 3 are shown figure 6.7. The diagrams are drawn assuming each bar 
is in tension, so the reaction of the bar force acting on a joint is an arrow aligned with the bar and pointing away 
from the joint. The objective is to determine each bar force in terms of external forces Q3 and Q4. Note that Q3 = 
0 and Q4 = –84,000 N, but we will wait to substitute these numerical values after the derivatives are evaluated in 
Castigliano’s second theorem.

The only contribution to the complementary strain energy in (5.84) on page 145 is the axial normal force N, 
which is spatially uniform along the length of the bar. Also, there is no change in temperature from the reference 
state. Hence, the complementary strain energy for the truss is

, ( a)

Castigliano’s second theorem for the displacement q3 is

. ( b)

The terms in eq. (b) are listed in table 6.1. Replace the derivatives of the bar forces with their values listed in the 

table to get

. ( c)

Substitute the equation for bar force N1-2 from the table in the previous equation and note that  and 

Table 6.1 Terms in Castigliano’s theorem for displacements q3 and q4

Bar L, mm A, mm2 L/(EA), mm/N N

1-2 750 900 1 3/4

1-3 1000 300 0 1

2-3 1250 1200 0

N2 3–

N1 3–

Q5 3

4

FBD joint 3

N1 2–

N2 3–

Q3

Q4

3

4

FBD joint 2

Fig. 6.7 Free body diagrams of two joints of the three-bar truss.
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 to get

. ( d)

Castigliano’s second theorem for the displacement q4 is

. ( e)

Replace the bar forces and their derivatives in eq. (e) with their values listed in table 6.1 to get

. ( f)

Substitute numerical values into eq. (f) to get

. ( g)

The final result from eq. (g) is

J (h)

6.2 Beam structures

Example 6.4 Cross-sectional properties of a thin-walled tube

The cross section is a thin-walled tube with a circular contour of radius a and wall 
thickness t. as shown in figure 6.8.

Solution.  The x- and y- axes are axes of symmetry in the cross section, so the cen-
troid and shear center coincide with the center of the circular contour. The paramet-
ric coordinates of the circular contour are  and , and the arc 

length along the contour ; . The cross-sectional area and first 
area moments are

. (a)

The first area moments equal zero since the center of thee circle is the centroid. The second area moments are

. (b)

Since the product area moment is zero, then coefficients  and  from eq. (4.4) on page 79. To 
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Fig. 6.8.

x a θcos= y a θsin=

s aθ= 0 θ 2π≤ ≤

A ta θd

0

2π

∫ 2πat= = Qx yta θd

0

2π

∫ 0= = Qy xta θd

0

2π

∫ 0= =

Ixx y2ta θd

0

2π

∫ πa3t= = Iyy x2ta θd

0

2π

∫ πa3t= = Ixy xyta θd

0

2π

∫ 0= =

nx ny 0= = k 1=



Aerospace Structures 161

Beam structures

compute the transverse shear compliances given in eq. (4.30) on page 83, we need to compute the distribution 
functions from eq. (4.19) and eq. (4.26). The distribution functions for the first area moments for a segment of the 
contour from  to  are given by

. (c)

The coordinates normal and tangent to the contour with respect to the shear center are

. (d)

(Refer to eq. (3.10) on page 34.) The area enclosed by the contour is

. (e)

The shear flow distribution functions given by eqs.(4.19) and (4.26) on page 82 for the closed section are

, and (f)

. (g)

Finally, the transverse shear compliances are 

, and (h)

. (i)

For a uniform shear modulus around the contour, the torsion constant is determined from eq. (3.161) on page 70 
as

J (j)
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6.2.1 Castigliano’s second theorem

Example 6.5 Thin-walled tube subject to radiant heating

A common structural member in orbiting space structures is a 
thin-walled tube. Tubes are used as truss members and for 
satellite booms. Solar heating combined with heat conduction 
results in the distribution of temperature around the perimeter 
and along the length of the tube. The data in this example is 
for an aluminum 6061-T6 tube taken from Thornton (1996, 
pp. 118-121).

A thin-walled tube with a circular contour of radius a, and 
wall thickness t is subjected to radiant heating as shown in 

figure 6.9. The tube is cantilevered, that is, fixed at z = 0 and free at z = L, where L is the length of tube.The 
change in temperature from the reference state is uniform along the length but it varies around the perimeter. and 
is specified by

. (a)

where the average temperature is denoted by  and the perturbation in temperature is denoted by . Data for 

this example are listed in table 6.2.

Determine the displacements q1 and q3, and rotation q5 of the cross section at the free end using Castigliano’s 
second theorem. The degree of freedom numbering is shown in figure 6.10. 

Solution.  From eqs. (5.83) to (5.85) on page 145 the complementary strain energy in this example is

Table 6.2 Numerical data for example 6.5

radius Poisson’s ratio

wall thickness coefficient of thermal expansion

tube length average temperature

modulus of elasticity perturbation temperature 

x

y

θ

a

t

Fig. 6.9
Radiant 
heating of 
a tube.

∆T θ( ) T Tm θcos+= θ 0 2π,[ ]∈

T Tm

a 0.03812 m= ν 0.33=

t 7.14 4–×10 m= α 23 6–×10 °K=

L 0.8 m= T 462°K=

E 68.3 GPa= Tm 34°K=

1

2

3 4

5

6

x

y

z
z 0=

z L=

Fig. 6.10 Degree of freedom 
numbering at the free end of the 
cantilevered tube.
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. (b)

The cross-sectional properties were determined in example 6.4, and they are

, (c)

, and . (d)

The shear modulus is given by the isotropic formula , so the transverse shear 
compliances are

. (e)

The thermal axial force is given by eq. (3.75) on page 46, and thermal moments are given in eq. (3.78). Material 
properties are uniform along the contour and , and  in the thermal action formulas. The 
results for these thermal actions are

, (f)

, and (g)

. (h)

The free body diagram of the tube in the x-z plane is shown in figure 6.11. Generalized forces Q1, Q3, and Q5 are 
introduced at the free end to facilitate computing the corresponding displacements via Castigliano’s theorem, and 
they are set equal to zero at the end of the procedure (i.e., they are fictitious actions). 

Equilibrium of the free body diagram in the x-z plane yields

. (i)

Since generalized forces , equilibrium in the y-z plane yields  for . The 

complementary strain energy reduces to
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Fig. 6.11 Fictional actions 
acting at the free end of the 
cantilevered tube.
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. (j)

Displacement q1 is determined from

, (k)

where we interchanged the derivative and integral since our functions are continuous. Performing the derivative 
inside the integral we get

. (l)

Now set Q1 and Q5 equal to zero and find

. (m)

Axial displacement q3 is given by

. (n)

Since Q3 = 0, the latter equation reduces to

. (o)

Finally, the rotation in radians about the y-axis is given by

,

.J (p)
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Example 6.6 Wing spar subject to a distributed spanwise air load

A light airplane experiences a total lift L = 12,000 lb. in a certain symmetric maneuver. Thus, the lift acting on 
each wing is L/2. Assume the airload is distributed elliptically over the wing, so that the airload intensity  per 

unit span is given as

, ( a)

where z is the spanwise coordinate, z = 0 at the root, and  at the tip of the wing. See figure 6.12 (a). The 

spar of the wing is a uniform, longitudinal, thin-walled beam with a closed section stiffened by four longitudinal 
stringers as shown in figure 6.12 (b). This cross-section is the same one shown in figure 3.24 and analyzed in 
example 3.4 on page 71. Assume the spar is clamped at the root and free at the tip (i.e., a cantilever spar). At the 
tip of the spar we will use Castigliano’s second theorem to find the vertical displacement of the shear center 
denoted by q2, and to find the torsional rotation of the cross section denoted by q6. To use the theorem, we intro-
duce a fictitious force Q2 corresponding to displacement q2, and a fictitious torque Q6 corresponding to rotation 
q6. A typical cross section of the spar with the locations of the centroid (XC), the shear center (XSC), and the line 
of action of the airload (XL) with respect to the vertical web are shown in the left-hand sketch of figure 6.13. The 
right-hand sketch in figure 6.13 illustrates that the airload is statically equivalent to the external line load inten-
sity  and line moment intensity  resolved at the shear center. 

Numerical data for the cross-sectional dimensions are listed in table 6.3. The material is an aluminium alloy with 

a Young’s modulus , a shear modulus , and with a yield strength 

. Additional cross-sectional properties computed from example 3.4 on page 71 are listed in 

Table 6.3 Cross-sectional data for the wing spar

Dimensional data of the cross section 

, stringer 1 flange area 0.30 in.2 b, length horizontal web 7.0 in.

, stringer 2 flange area 0.70 in.2 t, wall thickness 0.030 in.

a, nose web radius 6.0 in XL, location of the airload 10.0 in.

fL

fL
2L

πzmax

------------- 1 z
zmax

---------- 
  2

–= 0 z zmax≤ ≤

z zmax=

fy mz

fL

z zmax

Q2

Q6

(a) Wing loading (b) z = zmax

Fig. 6.12 : (a) Wing spanwise airload intensity and fictitious actions Q2 and Q6 of example 6.6. 
(b) Wing tip cross section and the corresponding generalized displacements q2 and q6.
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table 6.4.

a) Determine the statically admissible bar resultants in the spar for .

b) Determine the generalized displacements q2 and q6 of the shear center at 

c) Tabulate the displacement q2, percentage of the displacement q2 due to transverse shear, and the rotation 

q6 of part (b) for the following spar lengths:  Also, tabu-

late the ratio of the maximum von Mises effective stress (eq. (4.31) on p. 84 ) to the yield strength in the 
semi-circular web, or branch 1, at z = 0 for the same set of spar lengths.

Solution to part (a).  The external distributed line load intensities resolved at the shear center are shown figure  
6.13. In terms of the specified airload  and , where . The differential equation for 

Table 6.4  Data from example 3.4 

A, area of the cross section 3.3455 in.2

XC, horizontal location of the 
centroid

3.52367 in. cyy, compliance coefficient in 

transverse sheara

a. Note: from eq. (5.65) on page 143 , where the shear flow distribution functions  

are given by eqs. (d) to (g) in part c of example 3.4.

XSC, horizontal location of the 
shear center

6.39638 in. czz, compliance coefficient in 

torsionb

b. Note: , and from eq. (3.160) on page 70 the torsion constant .

Ixx, second area moment about 
the x-axis

101.619 in.4 Ac, area enclosed by the contour 140.549 in.2

a

b

t
Af1
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Af2

C S.C.

fL
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XSC

b

Af1

Af2

Af2

C S.C.

XC
XSC

fy
mz

statically

equivalent

XL

Af1
Af1

Fig. 6.13 example 6.6: Typical cross section of the uniform spar.
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the transverse shear force Vy is given by eq. (3.54) on page 43. Substitute the expression for the airload to get the 
shear force as

. (a)

Note that the integration is facilitated by the substitution , and using trigonometric identities. 

The constant of integration c1 is determined by the boundary condition . Hence , and 

the final result for the shear force is

. (b)

The shear force at the root for Q2 = 0 is .

The bending moment Mx is determined by eq. (3.55) on page 43. Substitute the result for the shear force Vy 
into eq. (3.55) to find

.

Again, the integration for Mx is facilitated by the substitution , and using trigonometric identities 

to get

. (c)

The constant of integration c2 is determined by the boundary condition . Hence , 

and the final result for the bending moment is

. (d)

The bending moment at the root of the spar for Q2 = 0 is .

From eq. (3.61) on page 43, and that , we can express the torque Mz as

. (e)

Hence,

. (f)
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The constant of integration c3 is determined from the boundary condition , which yields 

. The final result for the torque is

. (g)

The torque at the root of the spar for Q6 = 0 is .We have determined the statically admissi-

ble shear force Vy, bending moment Mx, and torque Mz in the wing spar in terms of the distributed airload, exter-
nal force Q2, and external torque Q6.

Solution to part (b).  From eqs. (5.84) and (5.85) on page 145, the total complementary strain energy for the bar 
in this example is

. (h)

Castigliano’s second theorem for the vertical displacement of the shear center is

. (i)

Note that the torque is independent of force Q2, so that . Let , where  is the 

portion of the displacement due to bending moment Mx and  is the portion due to transverse shear force Vy.

. (j)

Substitute eq. (d) for Mx with Q2 = 0 into eq. (j), and perform the integration to get

. (k)

The portion of the displacement due to transverse shear force Vy is

. (l)

Add eqs. (k) and (l) to get the total vertical displacement at the shear center as

. (m)
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Castigliano’s second theorem for the rotation of the cross-section at z = zmax about the shear center is

. (n)

The bending moment Mx and transverse shear force Vy are independent of the external torque Q6. Hence,

. (o)

The integration of eq. (o) yields

. (p)

Solution to part (c).   Numerical evaluation of the displacements yields

. (q)

The expression for the shear flow is given by eq. (3.163) on page 70. At the root cross section the equation 
for the shear flow reduces to

. (r)

The torque results in a spatially uniform component to the shear flow around the contour equal to

. (s)

(Refer to eq. (3.165) on p. 70 ).The total shear flow in each branch is

, (t)

where the contour coordinates si are shown in figure  3.24(b) on page 71, and the shear flow distribution func-

tions  are given by eqs. (ab) to (ae) in part c of example 3.4. The shear stress distribution along the con-

tour in each branch is given by

. (u)

In this example  and  in the axial normal stress given by eq. (4.6) on page 79. For no 

change in temperature and , the axial normal stress eq. (4.6) at the root cross section in each 

branch reduces to

. (v)

The parametric equations for the y-coordinates of the contour in each branch are
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. (w)

(Refer to figure 3.24 on page 71.) From eq. (4.31) the von Mises effective stress is

. (x)

The von Mises effective stress normalized by the yield strength is plotted with respect to the contour coordinate 
for zmax = 60 inches in figure 6.14. As shown in the figure the maximum normalized effective stress is 0.383 at s 
=    4.696 inches in branch 1. In terms of an angular measurement in the semi-circular branch 1, we note the loca-
tion as . For the other values of zmax, the maximum value of the von 

Mises stress also occurs in branch 1 but at different angular locations. Discontinuities in the von Mises stress 
with respect to the contour coordinate are a result of the jumps in the shear flow across the stringers. (Refer to eq. 
(3.135) on p. 65 ).

Numerical results are listed in table 6.5.

Note that as the length of the spar increases the percentage of the vertical displacement at the tip due to trans-
verse shear decreases and the von Mises effective stress increases. At zmax = 300 in. the von Mises stress exceeds 
the yield strength of the material indicating failure by material yielding.

Table 6.5 Wing tip displacements and wing root stresses as a function of the span

Wing tip Wing root

,% , deg.

12. 0.0135 93.1 0.0298 0.379 90.0

24. 0.0327 77.0 0.0597 0.379 90.0

60. 0.180 34.9 0.149 0.383 44.8

120. 1.066 11.8 0.298 0.509 8.82

180. 3.360 5.62 0.448 0.683 3.81

240. 7.77 3.29 0.597 0.872 2.13

300. 15.0 2.10 0.746 1.07 1.36

y1 s1( ) a s1 a⁄( )cos–= y2 a= y3 s3( ) a s3–= y4 a–=

σMises ( )i σzi si 0,( )[ ]2 3 σzsi si 0,( )[ ]2+= i 1 2 3 4, , ,=

s1 a⁄ 4.696 6⁄( ) 180° π⁄( ) 44.8°= =

10 20 30 40

0.1

0.2

0.3

0.4

4.696 in.

0.383

σMises

σyield
-------------

s, in.

branch 1 2 3 4

zmax 60in.=

0

Fig. 6.14 Normalized 
von Mises effective 
stress plotted with 
respect to the contour 
coordinate s at the root 
cross section of the 
spar.

zmax, in. q2  in., q2v q2⁄ q6, deg. σMises σyield⁄ s1 a⁄
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6.3 Coplanar Frames

Frames are also skeletal structures composed of slender bars that can transmit axial, bending, and transverse 
shear loads. The bars act as beams with a superimposed axial load. Joints in a frame are usually assumed rigid, 
which means that the rotation of all bars connected to the joint are the same. Moments can be transferred through 
a rigid joint, but not a hinge joint, nor ball-and-socket joint. A frame structure may also contain some hinge 
joints.

Example 6.7 A frame of two tubular bars

The tubular post shown in figure 6.15 supports a load of 250 N at 
the free end. The diameter of the cross-sectional contour is 100 
mm and the wall thickness is 3 mm. The material is steel with 

modulus of elasticity of 206,000 N/mm2 and a Poisson’s ratio of 
0.3. Each bar of the frame has the same uniform geometric cross 
section along its length. Find the vertical and horizontal displace-
ment of the free end.

Solution.  We use Castigliano’s second theorem to determine the 
displacements of the free end for this statically determinate struc-
ture. A horizontal force Q is introduced at the free end so that the horizontal displacement can be computed from 
the theorem. Also, let P = 250 N. The complementary strain energy is determined from eqs. (5.84) and (5.85). 
Since there is no change in temperature nor torsion, the complementary strain energy is

. (a)

Let  denote the displacement corresponding to force P, and let  denote the displacement corresponding to 

force Q. These displacements are given by

. (b)

The coordinate system in each bar is shown in figure 6.16 (a), the free body diagram for the vertical bar in figure 
6.16 (b), and the free body diagram of the horizontal bar is shown in figure 6.16 (c) The partial derivatives of the 
complementary strain energy for the frame with respect to the external loads are

, and (c)

, (d)

where  and . Equilibrium determines the internal actions  in each bar. 

The results are

, and (e)

3000 mm

250 N
6000 mm

rigid joint

Fig. 6.15 Tubular 
post. 
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. (f)

Evaluating the partial derivatives based on equilibrium conditions we get

, and (g)

. (h)

The displacements can now be computed from the expressions for the partial derivatives as

(i)

. (j)

P
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QN2
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P

z2
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L1 z1–

Q
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V1

M1

P

z2

L2
y2

y1

z1

L1

Q

FBD 1 FBD 2

(a) (b) (c)

Fig. 6.16 (a) Coordinates in each bar. (b) FBD of vertical bar. (c) FBD of horizontal bar.
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The formulas for the section properties are given in example 6.4 on page 160. For  and  
we get

. (k)

For an isotropic material the shear modulus is computed from , which evaluates to 

. Numerical evaluation of the displacements gives

, (l)

, and (m)

. (n)

Note that the contribution to the displacement  due to bending is , 

which is  of the total displacement. As a general rule the deflections of 

frames composed of slender bars is dominated by bending, and the contributions due to axial stretching 
and transverse shear deformations to the deflections can be neglected. J

6.4 Castigliano’s second theorem and statically indeterminate 
structures 

A statically indeterminate structure is one in which the number of unknown forces exceeds the number of inde-
pendent equations of static equilibrium. The excess forces are called redundants. By removing supports and/or 
members in a statically indeterminate structure equal to the number of redundants, a stable statically base struc-
ture can be obtained. To determine the redundants, we can imposed displacement compatibility using Cas-
tigliano’s second theorem. A stable statically determinate base structure is capable of resisting the external loads. 
Removing a support reaction or a member in statically determinate structure renders it unstable – it is not capable 
of resisting external loads and it is classified as moving mechanical system (i.e., either a mechanism or linkage).

Consider a coplanar truss which consists of straight bars connected by smooth hinge joints with the external 
loads applied only to the joints. As discussed in example 6.3 on page 158, a truss is statically determinate if 

 and statically indeterminate if , where m denotes the number of bars or members, j the 
number of joints, and r denotes the number of reaction forces at the supports. Even statically determinate trusses 
can be unstable if the members are not arranged properly. Statical determinacy is a necessary condition for stabil-
ity, not a sufficient condition. Each truss must be examined individually to determine stability. For the truss 
shown in part (a) of figure 6.17, m = 9, r = 4, and j = 6, so it is statically indeterminate. If the upper left support is 
removed and replaced with a horizontal force Q, then a statically determinate base structure results as shown in 
part (b) of figure 6.17. The force Q is the redundant and it is treated as an external load on the base structure. 
Equilibrium of the base structure determines the internal bar forces in terms of external forces P and Q. The solu-
tion to the truss in part (a) is effected by imposing the displacement corresponding to force Q to vanish via Cas-

tigliano’s second theorem (i.e., ). This displacement compatibility condition determines the 
redundant Q.
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Example 6.8    Statically indeterminate truss 

Consider the truss shown in part (a) of figure 6.18. The horizontal bars and the vertical bars have a length denoted 
by L, and each bar has the same elastic modulus E and same cross-sectional area A. For this truss m = 6, r = 3, 
and j = 4. So the truss is statically indeterminate. Note that this truss is statically determinate externally, but is 
statically indeterminate internally. Determine the bar forces in terms of the external applied load P.

Solution.  Consider a statically determinate truss with bar 2-4 removed, and a force F1 acting at joint 2 and a 
force F2 acting at joint 4 as shown in figure 6.18 (b). These forces are oppositely directed along a line action 
coinciding with the removed bar 2-4. Let the complementary strain energy for this statically determinate, five-bar 

truss be denoted by . We employ Castigliano’s second theorem to determine the displacement u1 correspond-
ing to force F1 and displacement u2 corresponding to F2. That is,

. (a)

The bar forces are determined by joint equilibrium, and the results are shown in table 6.6. Bar forces are assumed 

P P
Q

Fig. 6.17 A singly redundant truss (a), and its stable statically determinate base structure (b).

(b)(a)

P

F2

P

Fig. 6.18 (a) Statically indeterminate truss. (b) Statically determinant base structure with bar 
2-4 replaced by forces F1 and F2. (c) Bar 2-4 subject to equal and opposite forces.

(a) (b) (c)

1 2

34

F1

Q

Q

2

4

Û
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positive in tension.

The sum of elements in column five divided by the product EA determines displacement u1, and the sum of col-
umn six divided by EA determines u2. Simplifying the results leads to

 and . (b)

The relative inward displacement between joints 2 and joint 4 is given by the sum . For equal and oppo-

site forces we set , and then the relative inward displacement reduces to

. (c)

The seventh column in the table is obtained by setting . The sum of elements in the seventh col-

umn divided by EA is derivative of  with respect to Q; i.e.,

. (d)

We conclude that the relative inward displacement between joints 2 and joint 4 is given by

. (e)

The elongation of bar 2-4 is denoted by  and its complementary strain energy is denoted by . 

Hooke’s law for bar 2-4 is given by eq. (6.2) on page 154, which for  and  is solved for its elon-
gation. The complementary strain energy is given by eq. (5.84) on page 145. These relations are

Table 6.6  Terms in eq. (a) for Castigliano’s second theorem

Bar Length L Axial force N

1-2 L 0

1-3 1 0

1-4 L 0 0

2-3 L 0

3-4 L 0
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 and . (f)

Castigliano’s second theorem is , which is equal to the elongation. Thus, .

Geometric compatibility of the statically indeterminate, six-bar truss requires the relative inward displace-
ment between joints 2 and 4 equals the negative of the elongation of bar 2-4. In other words, the sum 

. Hence,

, (g)

where the total complementary strain energy of the statically indeterminate six-bar truss is . 

Hence, Castigliano’s second theorem applied to the six-bar truss is

. (h)

From eq. (h) we determine the redundant as

 . (i)

Finally, the bar forces are

. (j)

The condition that  is interpreted as the relative displacement between the faces of an imagi-
nary cut in bar 2-4 is equal to zero.J

If the solution of the truss in example 6.8 was undertaken using Castigliano’s first theorem, it would lead to 
five simultaneous linear equations for the unknown joint displacements  in terms of the 

applied load P. (Refer to “Coplanar trusses” on page 153 for the displacement numbering convention.) After 
solving for these simultaneous equations for the joints displacements, the elongations of each bar, , would 

be computed from eq. (6.6) on page 155. Lastly, the bar forces are determined from . 

Using Castigliano’s second theorem for this singly redundant truss, we only had to solve one equation for the 
unknown redundant Q. The number of simultaneous equations to be solved in a statically indeterminate structure 
by Castigliano’s second theorem is equal to the number of redundants.
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Example 6.9 King Post truss

In this example we paraphrase the problem 
statement given in the text by Bruhn (1973, p. 
A8.42). The structure shown in figure 6.19 con-
sists of members ADC, AB, BC, and BD. Con-
tinuous member ADC is simply supported at 

ends A and C, has an area of 9.25 in2, and a sec-

ond area moment of 216 in4. Members AB, BC 

and BD have areas of 2 in2. The modulus of 
elasticity is the same for all members. Deter-
mine the internal actions in each member using 
Castigliano’s second theorem.

Solution.  This structure is statically determinant externally. Also, the structure, its support conditions, and the 

external loading are symmetric about the vertical line of action of the 5,000 lb. force. The support reactions of the 
truss removed from its supports at A and C are shown in figure 6.20(a). Consideration of the free body diagrams 
of members AD, AB, and BD in figure 6.20(b) leads to the conclusion that this structure is statically indetermi-
nate internally. The redundant Q is taken as the axial force in member AB. If Q is known, then the forces and 
moments in the other members are determined by equilibrium. Neglecting the energy due to transverse shear in 
member ADC, the complementary strain energy is

. (a)

Note that the complementary strain energy in members AD and AB are multiplied by two to account for the 
energy in members DC and BC, respectively. The compatibility condition that the relative displacement of an 
imaginary cut in member AB vanishes is that the derivative of the complementary energy with respect to Q 
equals zero. Thus,

. (b)
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Fig. 6.20 Free body diagrams of the King Post truss.
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Equilibrium equations of member AD are

. (c)

The axial equilibrium equation for member BD is

. (d)

Substitute member axial forces and moment from the equilibrium eq. (c) into the compatibility condition (b) to 
get

. (e)

Perform the integration in eq. (e) followed by the substitutions , , and 

 to find

. (f)

Solve. (f) for the redundant Q:

. (g)

Substitute the numerical values for the quantities on the right-hand side of eq. (g) to find the redundant:

. (h)

The axial force in member BD from eq. (d) is

. (i)

The negative value of  means member BD is in compression. The axial force and bending moment in mem-

ber AD is

J (j)

6.4.1 Function of a Turnbuckle

A turnbuckle is a metal coupling device consisting of an oblong piece, or barrel, internally threaded at both ends 
into which the corresponding sections of two threaded rods are screwed in order to form a unit that can be 
adjusted for tension or length. A right-hand thread is used at one end and a left-hand thread at the other end. The 
device either lengthens or shortens when the barrel is rotated. Each full turn of the barrel causes it to travel a dis-
tance p along each screw, where p is the pitch of the threads. Tightening the turnbuckle by one turn causes the 
rods to be drawn closer together by a distance 2p. That is, one turn to tighten causes the device to shorten by 2p. 
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For n turns the shortening distance is 2np, where n need not be an integer. Turnbuckles are widely used in air-
craft. Biplanes may use turnbuckles to adjust the tension on structural wires bracing their wings as discussed in 
example 6.10 below. Turnbuckles are also widely used with flexible cables in flight control systems.

Example 6.10 Rigging biplane landing and flying wires

An acrobatic biplane has a maximum gross weight of 1,700 lbs. and a wing span of 25 feet. The cross sections of 
the lower and upper wings are thin, so the wing structure is strengthened by external bracing. As shown in figure 
6.21 the bracing consists of landing and flying wires connecting the fuselage to the wings at the interplane strut. 
Turnbuckles inserted in the landing and flying wires are used to pre-tension the wires by changing their length. 

We will model the structural unit consisting of the lower wing, upper wing, interplane strut, landing wires, 
and flying wires as shown in figure 6.22 (a). The left-hand wings are modeled as a pin-jointed truss. Bars 1-2 and 
3-4 represent the spars in the lower wing and upper wing, respectively, and are of length L = 10 ft. The spars are 

made of Sitka spruce with a Young’s modulus parallel to the grain of  lb./in.2, and a cross-sectional area 

of 1.25 in.2. Bar 1-3 represents the landing wire, bar 2-4 the flying wire, and the wires are made of stainless steel 

with a modulus of  lb./in.2 Each wire has a diameter of 0.125 in. Bar 1-4 is the interplane strut of length 

h equal to 4.3 ft., and it is assumed to be very stiff. The wings are specified to have a dihedral angle . 

Determine the number of turns in the flying wire turnbuckle , and the number of turns in the landing wire 

turnbuckle , such that the flying wire tension is 400 lb., and the dihedral is maintained at four degrees. The 

pitch of the turnbuckle threads is .

Solution.  The structural model of the left-hand wing and bracing shown in figure 6.22 (a) consists of five truss 
bars. The turnbuckle displacements are determined from the horizontal position of the wing. Free body diagrams 
of joints 1 and 4 are shown in figure 6.22 (b). A vertical external force Q2 is introduced at joint 1 so that its corre-
sponding displacement q2 can be determined in the application of Castigliano’s theorem. Displacement q2 is 

specified from the wing’s required dihedral. That is , and after its determination external force  is 

set to zero. 

From eq. (5.84) on page 145 the complementary energy for a homogenous truss bar subject to a uniform 
change in temperature is

. (a)

To account for the displacements of the turnbuckles in Castigliano’s second theorem we modify the axial temper-

landing wires

flying wires

interplane struts

cabane strut

lower wing

upper wing

Fig. 6.21 Aerobatic biplane.
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ature term in the complementary strain energy. The thermal axial force in the truss bar is obtained from eq. (3.75) 
on page 46:

. (b)

Let the thermal strain  be replaced by the initial strain induced by the turnbuckle displacement  

divided by the length of the bar containing the turnbuckle. That is, . Then the complementary 

strain energy in eq. (a) that includes the displacement caused by the turnbuckle is

, (c)

where the flexibility influence coefficient .

The interplane strut subject to force  is assumed to be rigid. Its flexibility influence coefficients van-

ishes and it does not contribute the elastic complementary strain energy. The complementary strain energy is

. (d)

The flexibility influence coefficients for the two wing spars is

, (e)

and the flexibility influence coefficients for the two wires is

. (f)

Equilibrium equations at joint 1 in figure 6.22(b) are

, (g)

and equilibrium equations at joint 4 are
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Fig. 6.22 (a) Structural model of the left-hand wing and bracing. (b) Free body diagrams.
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. (h)

The trigonometric functions of the angle θ are

. (i)

Now eliminate the bar force  between the four equilibrium equations to get the three equations

. (j)

The force  in the flying wire is taken as the redundant. Solve the remaining bar forces from eq. (j) in terms 

of the redundant and force Q2 to get

. (k)

Substitute the results for , , and  from eq. (k) into the complementary strain energy (d) to 

find the energy in the form  with turnbuckle displacements ∆L and ∆F appearing in  as param-

eters.

. (l)

. (m)

Set  in eq. (l) and solve for the landing wire turnbuckle displacement, followed by solving eq. (m) 

for the to find flying wire turnbuckle displacement. The results are

 and . (n)

Set  to obtain the numerical results for the turnbuckle displacements and their number of turns 

as

. (o)

The landing wire turnbuckle decreases the length between joints 1 and 3, and the flying wire turnbuckle increases 
the length between joints 2 and 4. The bar forces are

. J (p)
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6.6 Practice exercises

1. Each bar in the truss shown in figure 6.23 has a 

cross-sectional area of 1.0 in.2, and a modulus of elas-

ticity of 107 psi. There is no change in temperature. 
Use Castigliano’s first theorem to find

a)the horizontal and vertical displacements of joint 1,

b)the stress in psi in each bar, and

c)the horizontal and vertical support reactions at joint 
5.

2.The bars in the truss shown in figure 6.24 have the 

following cross-sectional areas: , 

, , 

. The modulus of elasticity of 

each bar is 107 psi. Compute the vertical displacement 
of the right-hand joint using Castigliano’s second theo-
rem. Note this truss is statically determinate and all bar 
forces can be determined in terms of external load Q.

3.Use Castigliano’s’ second theorem to compute the 
horizontal displacement of the right-hand joint of exer-
cise 2.

4.The truss shown figure 6.25 consists of three bars: 1-
4, 2-4, and 3-4. Each bar has the same cross-sectional area A, modulus of elasticity E, and the same coefficient of 
thermal expansion α. Bar 1-4 is subjected to a change in temperature ∆T from ambient temperature (the 
unstressed state), while bars 2-4 and 3-4 remain at ambient temperature. Use Castigliano’s first theorem to deter-

12

3

4

5

100 in.

10,000 lb.45°

60°
45°

30°

x

y

Fig. 6.23 Four-bar truss of exercise 1.
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A5 A6 3 2⁄  in.2= =
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mine the horizontal displacement q7 and the vertical displacement q8 of joint 4. 

5. The plane truss shown in figure 6.26 represents a single bay of a wing spar truss. For all bars:  

and . The cross-sectional areas of the bars are: 2580 mm2 for the horizontal bars, 387 mm2 

for the vertical bars, and 2690 mm2 for the diagonal bars. The upper horizontal bar is heated to  above the 
zero stress temperature, and all other bars remain at the zero stress temperature. Two 45 kN lift forces act at joints 
1 and 2. 

Use Castigliano’s first theorem to find

a) stiffness matrix in kN/mm,

b) displacement of all joints in mm,

c) all boundary reactions in kN, and

d) the stresses in MPa in each bar.

6. The truss shown in figure 6.27 consists of five bars: 1-2, 1-3, 1-4, 2-4, and 3-4. Each bar has the same cross-
sectional area A and same modulus of elasticity E. The lengths of bars 1-2, 1-4, and 3-4 are the same, and are 
denoted by L. A horizontal force of magnitude P is applied to joint 1. Use Castigliano’s second theorem to deter-
mine the horizontal displacement q5 of joint 3.

7. A simply supported, uniform beam of length L is subjected to a moment  at its left end as shown in figure 

6.28. The material is homogeneous and linear elastic, the cross section is symmetric ( ), and there are no 

thermal strains. The bending stiffness is EI. Use Castigliano’s second theorem to determine the rotation at (a) the 
left end, and (b) the right end. Neglect energy due to transverse shear deformation.

3L

4L 2.25L

q7

q8

∆T

1 2 3

4
A E α, ,

x

y
Fig. 6.25 Three-bar 
truss of exercise 4.
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α 23.0 6–×10 °C⁄=

250°C
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45kN

45kN
13

24

Fig. 6.26 Six-bar truss in a 
single bay of a wing spar.

Q1
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8.A coplanar frame is subjected to an end force  as 

shown in figure 6.29. The bars of the frame are uniform 
with axial stiffness EA and bending stiffness EI. Use 
Castigliano’s second theorem to find

a) the end rotation , and

b) the vertical displacement  at the joint.

9. Consider the statically indeterminate, uniform beam shown in figure 6.30 that is subjected to a uniform, 
downward distributed load of intensity p. For small displacements assume that only the complementary strain 

energy in bending is significant. If the center support moves downward by the amount  and 

remains attached to the beam, use Castigliano’s second theorem to find the reactions at the left and right supports.

10. The frame consists of three slender, uniform bars of length L, and two right angle bends. Assume the bends 
are rigid joints. Each member has a solid circular cross section of diameter d. A force P acts in the global X-direc-
tion at point A. Find the three displacement components  of point A in terms of P, L, d, and E using 

1

2 3

4

L L

L
P

q5

A E,Fig. 6.27 Five-bar 
truss of exercise 6.

zQ1 q1, q2

L

EI
Fig. 6.28 Simply 
supported beam of 
exercise 7.
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Castigliano’s second theorem. Assume . Neglect deformations due to transverse shear.

11. The rectangular space truss shown in the sketch consists of six bars: 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. The 

cross-sectional area of each bar is 200 mm2. The temperature of bar 2-3 is increased by  above the stress 
free temperature, while the other five bars remain at the stress free temperature. Calculate the forces in all six 

bars. The coefficient of thermal expansion , and the modulus of elasticity 

.

Note that , , and . Hence, , and this truss cannot support an external load without 
accelerating. However, under the self-straining caused by the temperature change, it is statically indeterminate 
internally.

12.  Sketch the bending moment diagrams of bars 1-2 and 2-3 in the singly redundant frame shown in figure 
6.33. Each bar has the same length L and flexural stiffness EI. Since the bars are slender, neglect deformations 
due to extension and transverse shear. Take the reaction moment at support point 1 as the redundant.

G 0.4E=

L

L
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Y v,
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Fig. 6.31 Space frame of 
exercise 10.

30°C

α 7 6–×10 °C⁄=

E 200 3×10  N/mm2=

1 2

34

4000 mm

3000 mm
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P L

L

1

2 3

Fig. 6.33 Two-bar frame of 
exercise 12.
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13. The aerodynamic advantages of high aspect-ratio (AR) wings are well-known—long span reduces lift-
induced drag and narrow chord promotes laminar flow to reduce skin-friction drag. However, a long wing span 
significantly increases the structural loads at the wing root requiring heaver components to safely transmit the 
loading to the fuselage. The truss-braced wing (TWB) is a method to reduce the load at the wing root. (It is the 
subject of research in AOE at Virginia Tech under a NASA program to achieve significant fuel savings for 737 
type airplanes (Warwick, 2011)). A simplified model of TWB in this exercise is a single truss bar supporting a 
wing spar.

A wing spar is clamped at its root and supported by a truss bar that is pinned to the support at one end and 
pinned to the spar at the other end. Refer to figure 6.34. The spar is subjected to a span-wise distributed air load 

 approximated by

. (a)

where the lift on the wing is denoted by L and the wing span is denoted by b. The pin connection of the truss bar 
to the spar is at the span-wise distance  from the root, where the range of nondimensional parameter s is 

. 

The assemblage is statically indeterminate, and the statically determinate base structure is obtained by 
removing the lower pin support of the truss bar and replacing it by the redundant force Q which is also the tensile 
force in the truss bar. Refer to the right-hand sketch in figure 6.34. The condition of compatibility is the displace-
ment corresponding to the redundant is equal to zero. Enforce compatibility by Castigliano’s second theorem 
given by

. (b)

where  is the length of the strut. Numerical data are listed in table 6.7.

 

a) Plot the normalized bending moment at the wing root  versus s for , where 

 is the root bending moment of the cantilever wing; i.e., 

b) Plot the tensile normal stress  in the strut versus s for .

c) If the allowable tensile stress in the strut is 30 ksi, what is the value of s to yield the smallest value of the 
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ratio ? What is the value of  for this particular s?

Table 6.7 Numerical data for the strut-braced wing

b, wing span 390 in.

h, vertical distance from the spar centroid to lower strut support 72 in.

A, cross-sectional area of the spar 23.88 in.2

Ixx, second area moment of the cross section of the spar 872.716 in.4

As, cross-sectional area of the strut (1.75 in. diameter) 2.40528 in.2

L, wing lift 50,000. lb.

E, modulus of elasticity for the spar and strut material

Mx 0( )( ) M0⁄ Mx 0( )( ) M0⁄

10 6×10  lb./in.2
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CHAPTER 7

 

Arches, rings and 
fuselage frames

 

A common structural component in aerospace structures is a curved bar. For example, fuselage frames are often 

composed of slender curved elements and thin rings. The Winkler

 

1

 

 theory for the linear elastic response of co-
planar curved bars within their plane is presented in article 7.1. (Also refer to Langhaar, 1962). The Winkler the-
ory models both thick and thin curved bars. A curved bar is generally considered thin if the ratio of the radius of 
curvature to its the in-plane thickness is greater than ten. Ratios less than ten are considered thick bars. It is 
assumed that there is no out-of-plane bending and torsion of the bar in article 7.1. Consistent with this limitation 
and assumption is an idealization employed in aircraft structural analyses that a ring frame is coplanar structure 
supporting loads in its plane and not supporting loads normal to its plane. Out-of plane bending and torsion of 
planar, thin curved bars is reviewed in the article by Chidamparam and Leissa (1993).

 

7.1 Coplanar curved bars

 

The reference axis of the bar is defined as a uniformly continuous plane curve within a closed interval. It is 
assumed that the cross sections of the bar are symmetric with respect to the plane of the reference axis, and that 
the locus of points along the centroids of each cross section coincide with the reference axis. Only deformations 
of the bar in the plane of symmetry are considered.

The Cartesian coordinates of the reference axis with origin at point O are denoted by  and  in the 

plane of symmetry, where 

 

s

 

 denotes the curvilinear coordinate of the reference axis. Geometry of the curved bar 
in its plane of symmetry is shown in figure. 7.1. The position vector of the reference axis with respect to the ori-

gin O is , where  and  are fixed unit vectors along the positive 

 

y

 

0

 

 and 

 

z

 

0

 

 directions, 

respectively. The unit tangent vector to the reference axis at point 

 

s

 

 is

.

 

(7.1)

 

1. Emil Winkler, 1835-1888, German civil engineer and professor.
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The Cartesian coordinates in a cross section are denoted by 

 

x

 

 and 

 

y

 

 with origin at the centroid labeled C as is 

shown in section A-A of figure. 7.1. Let  denote the angle from the fixed unit vector  to the unit tangent 

vector , and let  denote the unit vector normal to reference axis at 

 

s

 

. The positive 

 

y

 

-coordinate is directed 

along the unit normal . From the triangular insert in figure. 7.1 we see that the differential Cartesian coordi-

nates along the reference axis are related to the angle  by  and . Thus, the 

unit tangent vector  and the unit normal vector  to the reference axis at 

 

s

 

 are given by

.

 

(7.2)

 

From the previous equation we obtain the derivatives of the unit tangent vector and unit normal vector with 
respect to arc-length as

,

 

(7.3)

 

where  denotes the radius of curvature of the reference axis at 

 

s

 

. A curve parallel to the reference axis is 
characterized by a fixed value of the 

 

y

 

-coordinate. Let the position vector of a parallel curve with respect to origin 

O be denoted by , where . Then, the differential of this position vector along the paral-

lel curve is , where  is the differential arc-length along the parallel curve. The differential arc-
length of the parallel curve is related to the corresponding differential arc length of the reference axis by

.

 

(7.4)
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yĵ
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Fig. 7.1 Geometry of a coplanar curved bar defined in its plane of symmetry.
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7.1.1 Displacements and strain

Consider the displacement of a particle located by  on the parallel curve to the position located by dis-

placement vector  with respect to origin O on the parallel curve in the deformed bar. Let S* denote the 
arc-length along the parallel curve in the deformed bar, where the y-coordinate remains unchanged in the defor-
mation. That is, it is assumed the cross section remains rigid in its own plane. We write the position of the par-

ticle in the deformed bar with respect to its position in the undeformed bar as , where the 
displacement vector is defined by

. (7.5)

The differential of  along the parallel curve in the deformed bar is given by

, (7.6)

in which we use the chain rule of differentiation (i.e., ) and eq. (7.4) to transform the derivative with 

respect S to the derivative with respect s. Performing the differentiations in eq. (7.6) and using the relations in eq. 
(7.3), we get

. (7.7)

The last result is written as

, (7.8)

where

. (7.9)

The differential arc-length along the parallel curve in the deformed bar is determined by 

, and the unit tangent vector to the parallel curve in the deformed bar is . 

The stretch ratio  is defined by , and with regard to eq. (7.8) . Consider the 

binomial series . For , the binomial series for the stretch ratio 

is . Since the engineering strain is defined by , we see that to the 

lowest degree in the series expansion of the engineering strain that  is interpreted as the normal strain of a par-

allel curve for infinitesimal deformation. To interpret the physical meaning of  a graph of eq. (7.8) is shown in 

figure. 7.2(a). Let  denote the angle between the unit tangent vector  of the parallel curve in the undeformed 

bar and the unit tangent vector  of the parallel curve in the deformed bar. From the geometry of the triangle in 

figure. 7.2(a) we see that . Using the small angle approximation for the tangent function, and 
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the assumption of infinitesimal strain, we find . That is,  represents the rotation of the tangent line ele-

ment to the parallel curve for infinitesimal deformations of the bar. Let  denote unit normal vector to . From 

figure. 7.2(a) the unit normal vector . For small angles , the unit normal vector 
approximates as

. (7.10)

The relationship between the displacement vector of the parallel curve to the displacement vector of the 
reference axis is based on the assumptions that plane cross sections normal to the reference axis remain 
normal to the reference axis in the deformed bar and that the cross section remains rigid in its own plane. 
These assumptions, which are the basis of classical beam theory, are depicted in figure. 7.2(b). Thus,

, (7.11)

where the displacement vector of the reference axis is defined by

. (7.12)

Substitute eq. (7.5) for  in eq. (7.11), followed by substitutions of eq. (7.10) and (7.12) into eq. (7.11) to 
find

. (7.13)

Substitute the displacements of eq. (7.13) into the expression in eq. (7.9) for  to get

. (7.14)

Solve eq. (7.14) for  to find

. (7.15)

Finally, substitute the displacements of eq. (7.13) into the expression for  in eq. (7.9), followed by the substitu-
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Fig. 7.2 (a) Differential line element of a parallel curve in the deformed bar. (b) Relationship of 
the displacement of a particle on a parallel curve to the displacement of the corresponding 
particle on the reference axis.
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tion of  from eq. (7.15), to get the strain-displacement relation for the curved bar as

. (7.16)

Although the displacements (7.13) are linear in the thickness coordinate y, note that the strain (7.16) is nonlinear 
in y.

7.1.2 Normal stress, stress resultants, and strain energy

The material of the bar is assumed to linear elastic, isotropic, and homogeneous. Then, the normal stress σ acting 
on the cross section is related to the normal strain ε via Hooke’s law. As was discussed in article 3.7 we take 

, where E is the modulus of elasticity of the material. The result for the normal stress is written as

. (7.17)

The normal force N and bending moment M about the centroidal x-axis of the cross section are related to the nor-
mal stress by

, (7.18)

where A denotes the cross-sectional area of the bar. Substitute Hooke’s law for the normal stress (7.17) into eq. 
(7.18) to get the relation between the resultants and the displacements. In this substitution process the following 
integrals over the cross section occur:

, (7.19)

in which Y is the dimensionless parameter of Winkler’s curved bar theory. Equivalence of the three integrals 
(7.19) with respect to parameter Y can be demonstrated by dividing the denominator into the numerator of the 

integrand in the first two integrals and noting , since y is measured from the centroid. Langhaar 

(1962) states that the third expression in eq. (7.19) is the most convenient for the evaluation of the parameter Y if 
numerical integration is required. If , then the third expression in eq. (7.19) approximates Y as

 . (7.20)

The equations for the resultants are

, and (7.21)

. (7.22)

From eqs. (7.21) and (7.22), the following results are obtained:

ω

ε dw
ds
------- v

R y+
------------ y

R y+
------------ R

s2

2

d
d v

 
 
  w

R
---- dR

ds
------- 
 +–+=

σ Eε=

σ E
R y+
------------ v Rdw

ds
-------+ 

  y dw
ds
------- R

s2

2

d
d v

 
 
  w

R
---- dR

ds
------- 
 +–+

 
 
 

=

N M,( ) 1 y,( )σ Ad
A
∫=

Ad
R y+
------------

A
∫

A
R
--- 1 Y+( )= y Ad

R y+
------------

A
∫ YA–= y2 Ad

R y+
------------

A
∫ YAR=

y Ad
A
∫ 0=

R y»

Y Yappx≅ I AR2( )⁄= where I y2 Ad
A
∫=

N EA
R

------- v Rdw
ds
-------+ 

  Y v R R
s2

2

d
d v

 
 
  w

R
---- dR

ds
------- 
 +++

 
 
 

=

M EAY v R R
s2

2

d
d v

 
 
  w

R
---- dR

ds
------- 
 ++

 
 
 

–=



Article 7.1

194 Aerospace Structures

. (7.23)

Substitution of eq. (7.23) into the expression for the normal stress (7.17), yields the stress in terms of resultants 
as

. (7.24)

Note the normal stress at the centroid (y = 0) in pure bending (N = 0) is . That is, the centroidal 
axis does not coincide with the neutral axis of the cross section for the curved bar. The neutral axis of the curved 
bar is located radially inward from the centroidal axis, i.e., . For pure bending of a straight bar 

the  at the centroid, so the centroidal axis and neutral axis coincide. 

The complementary strain energy is given by

, (7.25)

where the volume element is . Substitute eq. (7.24) for the normal stress into the complementary 
strain energy (7.25), followed by integration over the cross-sectional area, to get

. (7.26)

The final result for the complementary strain energy (7.26) was obtained using property of the centroid 

, the third integral in (7.19), and .

Example 7.1 Pure bending of a circular bar with a rectangular cross section.

The reference axis is a segment of a circle of radius a. Thus, the radius of curvature is uniform with respect to the 
arc-length along the reference axis, and . The cross section is a solid rectangle of height h and width b. 
The bar is subject to equal and opposite moments M at each end, and no other loads. See figure. 7.3. Equilibrium 
is satisfied by the fact that the bending moment in the bar at each cross section is equal to the applied moment M, 
and that the circumferential force N vanishes at each cross section. The normal stress distribution through the 
thickness at a typical cross section is determined from eq. (7.24).
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Fig. 7.3 Pure bending example 7.1.
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The formula for the dimensionless Winkler parameter Y is evaluated from the third expression in eq. (7.19), 
where the cross-sectional area A = bh. That is,

 . (a)

For the simple rectangular section the following indefinite integral is obtained from a table of integrals:

. (b)

The natural logarithm is specified in eq. (b). After some algebra we get

. (c)

Practical geometries require . That is, . If , then . 

For selected values of , the values of Y, , and percentage error between the exact and approximate values 

of Y are listed in table 7.1.  As can be seen in table 7.1, the parameter Y decreases rapidly with increasing radius 

to thickness ratios , and that the approximate value of Y is less than 0.15 percent of the exact value for 

.

From eq. (7.24) the normal stress for the curved bar is . For a straight bar subject to 

pure bending the normal stress is given by , where the second area moment about the x-axis is 

. Define the dimensionless thickness coordinate , and a dimensionless normal    

stress by . Then  for the straight bar, and

(d)

The distributions of the dimensionless stress through the thickness of the curved bar and the straight bar are 
shown in figure. 7.4 for radius to thickness ratios of 1 and 5. The normal stress for the curved bar is hyperbolic in 
the thickness coordinate y, whereas for the straight bar the distribution of the normal stress is linear in coordinate 
y. For M > 0 the maximum tensile stress for the curved bar is less than that of the straight bar, but the magnitude 

Table 7.1 Winkler parameter for selected radius to thickness ratios

%

1 0.09861 0.08333 15.4

5 0.003353 0.003333 0.60

10 0.0008346 0.0008333 0.150

20 0.0002084 0.0002083 0.0375
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of the maximum compressive stress is larger for the curved bar than for the straight bar. The graph for  
in figure. 7.4 shows that the stress distribution in the curved bar is close to the linear distribution of the straight 
bar. The percentage error of the maximum compressive stress of the straight bar with respect to the curved bar for 
increasing radius to thickness ratios are listed in table 7.2. 

The error approximating the maximum stress from straight bar theory with respect to curved bar theory is 3.32 
percent for , and less than 1.66 percent for .J 

Example 7.2 Displacement of a semicircular bar

A semicircular bar of radius a is connected to a fixed pin support at its left end and a pin support free to move 
horizontally at its right end. The right end support is subject to a horizontal force Q with a corresponding dis-
placement denoted by q. The cross section of the bar is the thin-walled tube of example 6.4 on page 160 with the 
mean radius denoted by b, and a wall thickness denoted by t. See figure. 7.5. Determine the flexibility influence 
coefficient c in the relation  using Castigliano’s second theorem.

Solution.   The complementary strain energy in eq. (7.26) reduces to

Table 7.2  Percentage error in the maximum compressive 
stress of a straight bar with respect to a curved bar

1 34.4%

5 6.64%

10 3.32%

20 1.66%

50 0.67%
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Fig. 7.4 Thickness distributions of the dimensionless normal stress for a/h = 1 and a/h = 5. The 
solid line corresponds to the curved bar and the dashed line to the straight bar.
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. (a)

A free body diagram of the segment of the bar is shown in figure. 7.6. The circumferential normal force N and the 

bending moment M determined from equilibrium are

. (b)

From Castigliano’s theorem the displacement corresponding to force Q is given by

. (c)

Substitute for the actions N and M from eq. (b) into eq. (c) and perform the integral to get

. (d)

Thus, the flexibility influence coefficient is identified in eq. (d) as

, (e)

Q q,
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Section A-A

b

Fig. 7.5  Configuration of the semicircular bar of example 7.2, and its thin-walled cross section. 
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Fig. 7.6 Free body diagram of a segment of the semicircular bar.
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in which the radius-to-thickness ratio is defined by . The formula for the Winkler parameter Y is 
obtained from the third expression in eq. (7.19) as

. (f)

The integration was performed in Mathematica for  to get

. (g)

Consider computing the flexibility influence coefficient from the complementary strain energy of a straight 
bar but applied to the semicircular bar. For this example eq. (5.51) on page 141 reduces to the complementary 
energy expression 

. (h)

Let the displacement obtained from Castigliano’s theorem using the complementary strain energy expression in 
eq. (h) be denoted by . Then,

. (i)

Substitute for the actions N and M from equilibrium eq. (b) into eq. (i) and perform the integral to get

, (j)

in which we substitute for the area and second area moment  and , respectively. The 

approximate flexibility influence coefficient, denoted by , is

, (k)

where .

The ratio of the flexibility influence coefficient in eq. (e) to its approximate value in eq. (k) is

. (l)

Numerical results for selected values of the radius-to-thickness ratios ρ are presented in table 7.3. The third col-
umn in the table lists the ratio of the flexibility influence coefficient to its approximate value. For ρ = 1 the 
approximate flexibility influence coefficient is about 1.39 c, which means the displacement  is larger than the 

displacement determined from curved bar theory. For ρ = 10 , and for ρ exceeding ten,  is essen-
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tially equal to c. Hence, we can use the strain energy expression for a straight bar to determine the displacement 
of the curved bar if .J 
 

7.2 Strain-displacement and Hooke’s law for thin curved bars

It was demonstrated in example 7.1 and example 7.2 that some equations of straight bar theory are applicable to 
the analysis of curved bars if the radius of curvature to the thickness in the plane of curvature is greater than ten. 
If the ratio of the minimum radius of curvature to the in-plane thickness is greater than ten, then the bar is identi-
fied as a thin curved bar. Ratios less than ten are considered thick curved bars. For example, thin curved bar 
formulas are applicable to fuselage ring-frames. Fittings, machine parts, crane hooks, and chain links are exam-
ples where thick curved bar theory is required. Thin curved bar formulas for strain, stress, stress resultants, and 
complementary strain energy are as follows:

, (7.27)

, and (7.28)

. (7.29)

Example 7.3 Circular arch

Consider a thin curved bar that forms a circular arch as shown in figure. 7.7. It is supported by smooth pins at 
each end. The distance L between the end supports remains fixed as the arch is subject to a downward force P at 
midspan. The area of the cross section is denoted by A, the radius of the circular arc passing through the centroid 
of each cross section by a, and its semi-opening angle by . The arch is statically indeterminate and the horizon-
tal reaction force Q is the redundant. The overall free body diagram of the arch is shown in figure. 7.7.

Table 7.3 Ratio of the exact flexibility coefficient to the 
approximate value for selected radius-to-thickness ratios

1 0.154701 0.718234

2 0.0327956 0.923998

3 0.0141851 0.965705

4 0.00790526 0.980605

5 0.00503782 0.987556

10 0.00125235 0.996879
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(a) Using Castigliano’s second theorem determine the redundant load Q. Neglect strain energy due to trans-
verse shear. 

(b) Take L = 1m, , and . Plot Q/P as function of the rise to span 

ratio H/L for .

 

Solution to part (a).  The arch is symmetric about the vertical axis through the center, so only the left-half sec-
tion is analyzed. The free body diagram shown in figure. 7.8 cuts the arch at angle  measured counterclockwise 

from the vertical axis, and . The internal actions on the cut face are the circumferential normal force N, 

transverse shear force V, and the bending moment M. The cut face is a negative -face with a positive normal 
force causing circumferential extension, a positive shear force is defined radially inward, and a positive bending 
moment causes tension on the radially outboard circumference.

Equilibrium in the direction of the normal force leads to the equation

. (a)

Equilibrium in the direction of the shear force leads to the equation

EA 175 6×10  N= EI 218 750,  N-m2=

1° β 90°≤ ≤

P

ββ

a

h

P 2⁄ P 2⁄

Q Q

P

ββ

a

h
H

L

Fig. 7.7 Circular arch. a/h > 10.

θ

0 θ β≤ ≤

θ

a

a

β

θ

NV

M

P 2⁄

Q
a θcos βcos–( )

a βsin θsin–( )

Fig. 7.8 Free body diagram of a 
section of the arch.
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. (b)

Moment equilibrium at the -face leads to the equation

. (c)

The complementary strain energy from eq. (7.29) reduces to

. (d)

In the previous integral, integration is performed over the left-hand portion of the arch, and the total complemen-
tary energy stored in the arch is accounted for by the factor of two multiplying the integral. Since the displace-
ment in the direction of the horizontal redundant force Q is zero, Castigliano’s second theorem gives 

. Thus,

. (e)

Substitute eq. (a) for N and eq. (c) for M in eq. (e) followed by integration to get

. (f)

Solve eq. (f) for the redundant force Q to get

. (g)

Solution to part (b).  The rise-to-span ratio in terms of the semi-opening angle β is

. (h)

Note that this ratio is independent of the radius a. The distance L between the supports is fixed at one meter, and 
. Hence, the radius of the arch is a function of the semi-opening angle β given by

. (i)

Specifying β, we compute a from eq. (i), H/L from eq. (h), and the ratio of Q/P from eq. (g). A graph of Q/P ver-
sus H/L is shown in figure. 7.9.
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The maximum value of the redundant is 2P for H/L = 0.0485 corresponding to . This maximum 
occurs for a shallow arch. A shallow arch is characterized by a small value of the angle β. J 

Example 7.4 Thin ring subject to diametric tension

A uniform, thin ring of radius a is subject to equal and opposite tension forces labeled P as shown in the left 
sketch in figure. 7.10. This configuration is symmetric about the horizontal diameter AB and the vertical diame-
ter. Determine the bending moment distribution in the upper right-hand quarter segment of the ring where the 
angle  has the range . Include only bending deformations in Castigliano’s second theorem to deter-
mine the redundant actions. 

Solution.  The right-hand sketch in figure. 7.10 shows the free body diagrams obtained by sectioning the ring 
across diameter AB. Action-reaction pairs of the internal circumferential normal forces, internal transverse shear 
forces, and internal bending moments are labeled in the free body diagrams. The upper and lower free body dia-
grams are mirror images of one another, which implies that the transverse shear forces  in the upper and lower 

free body diagrams should be drawn in the same direction at the cut at A. But this mirror image argument is in 
contradiction with the action-reaction pairing. So to resolve this contradiction means that the transverse shear 
force . A similar argument implies that the transverse shear force at cut B must vanish (i.e., ).

From symmetry about the vertical diameter the circumferential normal forces  and  are equal and the 

bending moments  and  are equal. Vertical force equilibrium yields . Thus, the only 

redundant is the bending moment . A free body diagram of the section from point A to the cut at  is shown 

in figure. 7.11. 

Moment equilibrium about the cut at  determines the bending moment as

. (a)
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The complementary strain energy including bending only is

. (b)

By symmetry, the rotation corresponding to the moment  must vanish. Hence, Castigliano’s second theorem 

gives

. (c)

Perform the integration in eq. (c) to get

P
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AB

Fig. 7.10 A thin ring subject to diametric tension. Free body diagrams obtained from a cut 
across the horizontal diameter. 
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Fig. 7.11 Free body 
diagram of a circular 
sector of the ring in 
example 7.4.

U* M2

2EI
--------- a θd

0

π
2
---

∫=

MA

0 ∂U* 

∂MA

----------- 1
EI
------ M[ ] ∂M

∂MA

----------- a θd

0

π
2
---

∫
1

EI
------ MA a 1 θcos–( ) P 2⁄( )+[ ] 1[ ]a θd

0

π
2
---

∫= = =



Article 7.3

204 Aerospace Structures

. (d)

Solve eq. (d) for the redundant to find

. (e)

Substitute eq. (e) into eq. (a) to get the bending moment as

. (f)

The bending moment is plotted in figure. 7.12 as a radial coordinate with respect to the ring, where a positive 
moment is plotted outside the ring and a negative moment is plotted inside the ring. J

7.3 Differential equilibrium equations of a curved bar

Consider a differential element of a curved bar subject to prescribed line load per unit length along the reference 

axis. The vector of the external line load intensity is denoted by  with component  tangent to the refer-

ence axis and component  normal to the reference axis. That is

. (7.30)

Denote the internal force vector acting on the cross section by  with component  normal to the cross 

section positive in tension, and the shear component  tangent to the cross section. That is,
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Fig. 7.12 Bending moment distribution in one 
quarter of the ring, which is subject to diametric 
tension.

f s( ) q s( )

p s( )

f s( ) q s( ) t̂ s( ) p s( )+= ĵ s( )
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. (7.31)

Summation of forces acting on the differential element shown in figure. 7.13 leads to

. (7.32)

Expanding the force vectors in a series we write eq. (7.32) as

. (7.33)

Divide eq. (7.33) by ds, followed by taking the limit as , and note that  in the limit. The resulting 
differential equation is

. (7.34)

The derivative of the internal force vector in eq. (7.31) is

,

where the derivatives of the unit vectors are given in eq. (7.3). Hence, the scalar differential equation of force 
equilibrium in the tangent direction is

, (7.35)

and differential equation in the normal direction is

. (7.36)
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y0 s ds+( )

z0 s ds+( )

Fig. 7.13 Free body diagram of an element of a curved bar.
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The bending moment acting on the cross section is denoted by  with a positive moment causing an 
increase in curvature of the bar. Take the sum of moments about s in the free body diagram to get

, (7.37)

Expanding the moment and force vector in a series we write

. (7.38)

Divide by ds and then take the limit as , and note that  in the limit, to get

. (7.39)

The moment differential equation is

. (7.40)

Example 7.5 Funicular arch

Consider a uniform, pinned-pinned arch subject to uniformly distributed load of intensity p0 that is directed ver-
tically downward as shown in figure. 7.14. For example p0 could represent the weight per unit length of the arch. 
We determine the form or shape of the arch such that each cross section is in pure compression (i.e., there is no 
bending). This condition of pure compression under a uniform lateral load can be achieved with a curved bar, but 
not with a straight bar or beam. A beam carries a uniform lateral load by bending. Tailoring the shape of the arch 
for pure compression to the uniformly distributed loading defines the funicular arch. All of the parallel fibers in a 
cross section are under the same compressive stress, which means all of the material in the cross section is uti-
lized in resisting the load.

Resolve the applied downward load intensity into the tangential and normal components of eq. (7.30) to find
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Fig. 7.14 Funicular arch subject to a uniformly distributed load.
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. (a)

For the bending moment and shear force to vanish for all values of s the equilibrium equations (7.35) to (7.40) 
reduce to the following:

. (b)

Eliminating the tangential force between the last two equations leads to the following differential equation for the 
radius of curvature:

. (c)

The solution for the radius of curvature is 

, (d)

where a is the constant of integration and is equal to the radius of curvature at θ = 0. The curvature is  and 
from the third expression in eq. (7.3) we obtain

. (e)

Perform the integration in eq. (e) to find . From the result that the 
tangent of θ is equal to the arc-length divided by a, we obtain the trigonometric 
relations (see figure. 7.15) 

. (f)

As shown by the insert in figure. 7.1, , which combined with the cosine relation from eq. (b) 

can be integrated to determine coordinate function ; i.e.,

.

Thus,

. (g)

Also as shown by the insert in figure. 7.1, , which combined with the sine relation from eq. 

(f) can be integrated to determine coordinate function ; i.e.,

. (h)

We specify , and find . The coordinate function  is
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. (i)

Express eq. (i) as , and use eq. (g) to replace the ratio s/a to get

. (j)

The latter result in eq. (j) is the equation for the shape of the funicular arch, which is

. (k)

Equation (k) is the equation of a catenary. A catenary is a curve formed by a wire, rope, or chain hanging freely 
from two points that is in tension. The funicular arch is an inverted catenary and is in compression.

The tangential force in the arch is given by . Using eqs. (d), (f), and (g), it can be shown that 

the spanwise distribution of the tangential force is

, (l)

where . Set  in eq. (k) to find . Define the thrust as 

the negative of the tangential force. The spanwise distribution of the thrust scaled by  is shown in figure. 

7.16. The minimum thrust is  at the crown and increases to a maximum of  at each pin support.

7.4 Loads on fuselage frames

The skins, or webs, in semimonocoque construction are thin and cannot withstand large concentrated loads. 
Instead, stiffeners are located into the design of the structure where the concentrated loads are applied. The con-
centrated load acting on the stiffener diffuses the load to the attached skins or webs. For example, a fuselage 
structure has closely spaced frames or bulkheads that resist loads in the transverse planes, while the fuselage 
shell resist loads in the fore-and-aft direction. Typically, frames react to point loads from the wing spar attach-
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ments and distributed loads from floor beams, and are often modeled as two-dimensional rings subject to in-
plane loading. In the following analyses, we quantitatively determine how loads applied to frames are transferred 
to the attached skin, followed by the determination of the internal actions in the frame. Additional examples of 
loads acting on fuselage frames and wing ribs are given in Bruhn (1973), Curtis (1997), and Megson (1999).

Consider a transverse frame together with the attached skin of the fuselage. The frame is subject to forces 
 and , and torque  as shown in figure. 7.17(a). Note that positive values of  and  are defined in the 

negative x- and y-directions, respectively, and a positive torque is defined in the negative z-direction by the right-
hand screw rule. Equilibrium immediately fore and aft of the frame leads to jumps in the shear forces and torque 
acting on the fuselage skin. As depicted in figure. 7.17(b), the jump conditions are

. (7.41)

As shown in figure. 7.17(c) the shear flows acting on the cross section of the fuselage immediately fore and aft of 

the frame are denoted by  and , respectively. The shear flow exerted by the frame on the skin at the interface 

is denoted by . Equilibrium of the shear flows in figure. 7.17(c) yields

. (7.42)

The shear flow acting on a single-cell cross section is given by eq. (3.163) on page 70. For this situation 

. (7.43)

Assume the geometry of the fuselage shell is the same fore and aft of the frame. Substitute eq. (7.43) for the 
shear flows in the skin fore and aft of the frame into eq. (7.42) to find the shear flow exerted on the skin by the 
frame as

. (7.44)

Now substitute the jump conditions from eq. (7.41) into eq. (7.44) to get
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Fig. 7.17 (a) Frame loads. (b) Forces and torques acting on frame and fuselage skin viewed from 
the y-z plane. (c) Shear flows in the skin fore and aft of the frame and the interface shear flow from 
the frame acting on the skin.
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. (7.45)

Since the shear center and centroid coincide, the shear flow distribution functions from eqs. (3.151) and (3.164) 
on page 68 and page 70, respectively, are given by

. (7.46)

Equation (7.45) determines the interface shear flow exerted by the frame on the fuselage skin in terms of the con-
centrated loads acting on the frame as depicted in figure. 7.18(a). The reaction to this interface shear flow acts on 
the frame, and the free body diagram of the frame is shown in figure. 7.18(b). 

Example 7.6 Floor loading on a frame in a stringer-stiffened fuselage

A frame in a circular fuselage is subject to a uniformly 
distributed line load with an intensity of 12 lb./in. acting 
on its floor support. See the adjacent sketch. The fuselage 
skin thickness , and it is stiffened by six 

stringers spaced  apart. Stringers 1, 2, 4, and 5 have 

flange areas , and stringers 3 and 6 have 

flange areas . Determine the interface 

shear flows acting on the skin-stringer fuselage due to the 
contact with the frame.

Solution.  The circular skin-stringer fuselage is symmet-
ric with respect to the x- and y-axes through its center, so 
the centroid and shear center are both located at the cen-
ter of the circle. The resultant downward force acting on 
the frame is . When the 

frame is removed from the fuselage the action of the 
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Fig. 7.18 (a) Free body diagram of the fuselage skin. (b) Free body diagram of the frame.
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frame on the fuselage is represented by a jump in the shear force in the fuselage. From eq. (7.41) . A 

free body diagram of the skin-stringer structure is shown in figure. 7.20. 

The expression (7.45) for the interface shear flow in this example reduces to . The contour 

coordinate s is related to the polar angle  by , where the radius of the circular contour , and 

 radians. The contour distribution function , or , is given by eq. (7.46), which is a evalu-

ated by computing the first area moment with respect to the x-axis of a portion of the skin-stringer fuselage from 
 to a value in the range . The expression for the first area moment  is facili-

tated by accumulating the first area moments in each of the six segments of the contour.

 Beginning at , and proceeding counterclockwise around the contour, the first area moments of 

the skin-stringer structure with respect to the x-axis are denoted by , . The first area 

moments are calculated as follows:
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Fig. 7.20 Free body diagram of the skin-stringer structure.
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∫+ + a 2Af at θcos+( )–= = π 6⁄ θ π 2⁄<≤
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, (d)

, and (e)

. (f)

Note that the first area moment of the entire cross section about the x-axis vanishes, or , since 

the x-axis passes through the centroid.

 The expression for the shear flow distribution function from eq. (7.46) is written as

. (g)

The integral of  around the entire contour, where , is given by

, (h)

which after integration yields

. (i)

The area enclosed by the contour is . Hence, the interface shear flows are given by

. (j)

The second area moment about the x-axis is given by

(k)

Results for the interface shear flows with dimensional units of lb./in. are listed below:

, (l)

Qx4 θ( ) Qx3
π
2
--- 
  a 2Af( ) a θsin( )ta θd

π 2⁄

θ

∫+ + a2t θcos–= = π 2⁄ θ 5π 6⁄<≤

Qx5 θ( ) Qx4
5π
6

------ 
  a

2
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 Af a θsin( )ta θd

5π 6⁄

θ

∫+ + a
2
--- Af 2at θcos–( )= = 5π 6⁄ θ 7π 6⁄<≤

Qx6 θ( ) Qx5
7π
6
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  a

2
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7π 6⁄

θ

∫+ + a2t θcos–= = 7π 6⁄ θ 3π 2⁄<≤

Qx6 3π 2⁄( ) 0=

Fyi θ( ) 1
Ixx
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2Ac
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rnQx rn a=

rnQx( )adθ∫° aQx1 θ( )a θd

π 2⁄–

π– 6⁄

∫ aQx2 θ( )a θd

π– 6⁄

π 6⁄

∫ aQx3 θ( )a θd

π 6⁄

π 2⁄

∫ aQx4 θ( )a θd
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5π 6⁄

∫+ + + +=

aQx5θ θd

5π 6⁄

7π 6⁄

∫ aQx6 θ( )a θd

7π 6⁄

3π 2⁄
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rnQx( )adθ∫° 2πa3Af–=

Ac a2π=

qi θ( ) 1
Ixx

------ 
  Qxi θ( ) aAf+[ ]Py–= i 1 2… 6,,=

Ixx a θsin( )2ta θd

0

2π

∫ yfi( )2Afi

i 1=

6

∑+ 5a2Af πa3t+ 7 765.49 in.4,= = =

q1 θ( )
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Ixx
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, (m)

, (n)

, (o)

, and (p)

. (q)

The shear flows are plotted normal to the contour in the graph shown in figure. 7.21.
J

Example 7.7 Bending moment in the frame of example 7.6

We use symmetry of the frame about the y-axis and draw a free body diagram of the right half of the frame as 
shown in figure. 7.22. Consequently, the frame has three vertical cuts: cut a is at the bottom of the frame, cut b at 
the top, and cut c at the center of the floor beam. The action of the left half of the frame on the right half is repre-
sented by three forces Na, Nb, and Nc, and by three moments Ma, Mb, and Mc at the location of the three cuts as 
shown in figure. 7.22. Shear forces at cuts a, b, and c vanish by symmetry conditions similar to what was dis-
cussed in example 7.4. These six unknown actions at the cuts are related by the three independent equations of 
equilibrium for the overall free body diagram in figure. 7.22. Hence, this is a statically indeterminate structure. 
The redundants are determined from conditions of compatibility imposed via Castigliano’s second theorem. The 
solution process is divided into six steps: 

1. Overall frame equilibrium

2. Solutions to the differential equilibrium equations for the frame

3. Bending moments in segments 1, 2, and 3 of the frame

q2 θ( )
a 3Af 2at θcos+( )

2Ixx

------------------------------------------- Py 1.50551 5.01836 θcos+= = π– 6⁄ θ π 6⁄<≤

q3 θ( )
a Af at θcos+[ ]

Ixx

-------------------------------------Py 1.00367 5.01836 θcos+= = π 6⁄ θ π 2⁄<≤

q4 θ( )
a Af at θcos–( )–

Ixx

----------------------------------------Py 1.00367– 5.01836 θcos+= = π 2⁄ θ 5π 6⁄<≤

q5 θ( )
a 3Af 2at θcos–( )–

2Ixx

----------------------------------------------Py 1.50551– 5.01836 θcos+= = 5π 6⁄ θ 7π 6⁄<≤

q6 θ( )
a Af at θcos–( )–

Ixx

----------------------------------------Py 1.00367– 5.01836 θcos+= = 7π 6⁄ θ 3π 2⁄<≤

x
y

a

q
Fig. 7.21 Distribution of the             
interface shear flow acting skin-stringer 
fuselage in example 7.6.
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4. Floor beam equilibrium

5. Equilibrium at the junction of the floor beam and frame

6. Compatibility conditions
 

Solution to part 1.  Overall frame equilibrium
Force equilibrium of the right half frame segment in the negative x-direction requires

. (a)

The resultant force  as determined from the interface shear flows given in example 7.6. Hence, force 

equilibrium in the x-direction reduces to

. (b)

Force equilibrium of the right half frame segment in the y-direction requires

. (c)

Substituting the interface shear flows from example 7.6 we find the force . So force equilibrium in 

the y-direction is identically satisfied. Torsional equilibrium about the origin yields

, (d)

q1 θ( )

q2 θ( )

q3 θ( )

x

y

Na Ma

Nb

Mb

Nc

Mc

p0

a

θ

L 2⁄

a 2⁄

a 2⁄

a

Fig. 7.22 Free body diagram of the right-half 
section of the frame in example 7.6. 

Na Nb Nc q1 θ( ) θsin( )a θd

π 2⁄–

π 6⁄–

∫ q2 θ( ) θsin( )a θd

π 6⁄–

π 6⁄

∫ q3 θ( ) θsin( )a θd

π 6⁄

π 2⁄

∫+ ++ + + 0=

                          

Rx=

Rx 0=

Na Nb Nc+ + 0=

q1 θ( ) θcos( )a θd

π 2⁄–

π 6⁄–

∫ q2 θ( ) θcos( )a θd

π 6⁄–

π 6⁄

∫ q3 θ( ) θcos( )a θd

π 6⁄

π 2⁄

∫+ + Py 2⁄– 0=

                            

Ry=

Ry Py 2⁄=

Mz Mb Mc Ma– aNb a 2⁄( )Nc– aNa– L 4⁄( ) Py 2⁄( )–+ + + 0=
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where the torque from the interface shear flows is given by

(e)

Solution to part 2.  Solutions to the differential equilibrium equations for the frame.
The differential equilibrium equations (7.35), (7.36), and (7.40) are solved for R = a, ds = adθ, p  = 0, and 

. Differentiate eq. (7.35) with respect to θ, and then substitute eq. (7.36) for the derivative of the shear 
force to get

. (f)

Each interface shear flow has the functional form

, (g)

where

(h)

Substitute eq. (g) for the shear flow in eq. (f), then the resulting differential equation is solved for N(θ) to get

. (i)

Equilibrium equations (7.35) and (7.40) determine the shear force and bending moment as

. (j)

It is convenient to determine the three constants c1, c2, and c3 in terms of the forces and moment at the point 

 by the following conditions

. (k)

The point  on the contour is either the initial point or final point of the contour segment. The statically admis-

sible solution for the normal force, shear force, and bending is

, (l)

where

Mz aq1 θ( )a θd

π 2⁄–

π 6⁄–

∫ aq2 θ( )a θd

π 6⁄–

π 6⁄

∫ aq3 θ( )a θd

π 6⁄

π 2⁄

∫+ + 34 289.4 lb.-in.,= =

q q θ( )=

θ2

2

d
d N N adq

dθ
------+ + 0=

qi θ( ) Ai B θcos+= i 1 2 3, ,=

A1 A3
a af( )Py

Ixx
------------------- 1.0037 lb./in.= = = A2

3
2
---A1 1.50555 lb./in.= = B

a2tPy

Ixx
------------- 5.01836 lb./in.= =

N θ( ) c1 θcos c2 θsin aB 2⁄( )θ θcos–+=

V θ( ) aqi θ( )– dN
dθ
-------–= M θ( ) a V θ( ) θd∫ c3+=

θ θα=

N θα( ) Nα= V θα( ) Vα= M θα( ) Mα=

θα

N θ θα;( )

V θ θα;( )

M θ θα;( )

Nα

θ θα–( )cos

θ θα–( )sin

a 1 θ θα–( )cos–[ ]

Vα

θ θα–( )sin–

θ θα–( )cos

a θ θα–( )sin

Mα

0
0
1

Nq θ θα;( )

Vq θ θα;( )

Mq θ θα;( )

+ + +=
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.(m)

Solution to part 3.  Bending moments in segments 1, 2, and 3 of the frame

The range for the solution interval in frame segment 1 is , and we let , 

, , and  in eq. (i). The numerical result for the bending moment in segment 1 is 

. (n)

The range for the solution interval in frame segment 3 is , and we let , , 

, and  in eq. (i). The numerical result for the bending moment in segment 3 is 

. (o)

 The range for the solution interval in frame segment 2 is , and we let , 

, , and  in eq. (i). At the junction of segment 2 and 3 where , we 

impose continuity conditions

. (p)

The result of imposing the previous continuity conditions is to express  in terms of Nb and Mb.   

The numerical results for the bending moments in segments 2 is

. (q)

Solution to part 4.  Floor beam equilibrium
The internal shear force in the floor beam is denoted by V4 and the bending moment by M4. Equilibrium of the 
floor beam yields

. (r)

The axial force Nc is uniform in the beam.

Solution to part 5.  Equilibrium at the junction of the floor beam and frame.
A free body diagram of the junction of the frame and the floor beam is shown in figure. 7.23. Force equilibrium 
in the tangential direction to the frame yields

. (s)

Equation (s) leads to , which also satisfies eq. (b). Force equilibrium in the normal direction to 

the frame yields

Nq θ θα;( )

Vq θ θα;( )

Mq θ θα;( )

Ai

a θ θα–( )sin–

a 1 θ θα–( )cos–[ ]–

a– 2 θ θα– θ θα–( )sin–[ ]

aB
4

------- 
 –

2 θ θα–( ) θcos 2 θα θ θα–( )sincos+

θcos θ 2θα–( )cos– 2 θ θα–( ) θsin+

a 2– θ θα–( ) θcos 3 θsin θ 2θα–( )sin– 4 θαsin–+[ ]

=

π– 2⁄ θ π– 6⁄≤ ≤ θα π– 2⁄→

Nα Na→ Vα 0→ Mα Ma→

M1 θ( ) 50Na 1 θsin+( ) Ma 16 487.8 2509.25– θ,– 12 363.1, θcos 6 273.1θ θcos, 12 546.3 θsin,–+ + +=

π 6⁄ θ π 2⁄≤ ≤ θα π 2⁄→ Nα Nb→

Vα 0→ Mα Mb→

M3 θ( ) 50Nb 1 θsin–( ) Mb 16 487.8, 2 509.25θ,– 12 363.1 θcos,– 6 273.13θ θcos, 12 546.3 θsin,–+ + +=

π– 6⁄ θ π 6⁄≤ ≤ θα π 6⁄→

Nα N2a→ Vα V2a→ Mα M2a→ θ π 6⁄=

N3 π 6⁄( ) N2a= V3 π 6⁄( ) V2a= M3 π 6⁄( ) M2a=

N2a V2a M2a, ,

M2 θ( ) 50Nb 1 θsin–( ) Mb 17 144.7, 3 763.88θ,– 12 990.4 θcos,– 6 273.13θ θcos, 11 459.7 θsin,–+ + +=

V4 x( ) Py x L⁄( )= M4 x( ) Mc
Py

2L
------x2+= 0 x L 2⁄≤ ≤

N2 π– 6⁄( ) N1 π– 6⁄( )– Nc 30°sin– Py 2⁄( ) 30°cos– 0=

Nc Na– Nb–=
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. (t)

Equation (t) leads to , which is satisfied by the solution for Nc from the tangential equilibrium 

equation. Torsional equilibrium at the junction yields

. (u)

Numerical evaluation of the torsional equilibrium equation gives

, (v)

which is solved for Mc to get 

. (w)

The overall torsional equilibrium equation (d) is identically satisfied for the results determined for Nc and Mc 
from equilibrium at the junction. At this point in the solution process all static equilibrium equations are satisfied, 
and the expressions for the bending moments in the frame are

, (x)

, and (y)

. (z)

The bending moment in the floor beam is

. (aa)

The unknown parameters Na, Ma, Nb, and Mb in this statically admissible solution, eqs. (x) to (aa), are the redun-
dants.

Solution to part 6.   Compatibility conditions
To determine the redundants we impose compatibility by using Castigliano’s second theorem. Neglect the com-
plementary strain energies due to the tangential force N and the shear force V, which implies that complementary 
strain energy in bending is the main contributor to the deflections of the frame. Assume for simplicity that the 
flexural stiffness EI of the frame and the floor beam are the same. Symmetry about the vertical axis of the frame 

N2 π– 6⁄( )

N1 π– 6⁄( )

V2 π– 6⁄( )

V1 π– 6⁄( )

Nc

Py 2⁄

ϕ

ϕ
ϕ

ϕ ϕ 30°=

M2 π– 6⁄( )

M1 π– 6⁄( )

Mc PyL( ) 8⁄+

Fig. 7.23 Free body diagram of the junction 
of the frame and floor beam.

V2 π– 6⁄( ) V1 π– 6⁄( )– Nc 30°cos– Py 2⁄( ) 30°sin+ 0=

Na Nb Nc+ + 0=

M2 π– 6⁄( ) M1 π– 6⁄( )– Mc PyL 8⁄+( )+ 0=

23 039.4, Ma– Mb Mc 25– Na 75Nb+ + + 0=

Mc 23 039.4,– Ma Mb– 25.Na 75.Nb–+ +=

M1 θ( ) 50.Na 1 θsin+( ) Ma 16 487.8 2– 509.25θ 12 363.1 θcos,+,,– 6 273.13θ, θcos 12 546.3 θsin,–+ +=

M2 θ( ) 50. 1 θsin–( )Nb Mb 17 144.7, 12– 990.4, 6 273.13θ,+( ) θcos 11 459.7 θsin,–+ + +=

M3 θ( ) 50 1 θsin–( )Nb Mb 16 487.8, 2 509.25θ,– 12– 363.1, 6 273.13θ,+( ) θcos 12 546.3 θsin,–+ + +=

M4 x( ) 23 039.41,– Ma Mb–+= 25Na 75Nb 6x2+–+
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requires the generalized displacements correspond to the redundants to vanish. Then, setting the displacement 
corresponding to redundant Na equal to zero is imposed by

. (ab)

After substituting eqs. (x) to (aa) into eq. (ab) we find

. (ac)

Setting the rotation corresponding to redundant Ma equal to zero leads to the following equation

, (ad)

which evaluates as

. (ae)

Setting the displacement corresponding to redundant Nb equal to zero yields

, (af)

which evaluates as

. (ag)

Setting the rotation corresponding to redundant Mb equal to zero leads to the following equation

, (ah)

which evaluates as

. (ai)

The solution for the redundants in eqs. (ac), (ae), (ag), and (ai) is

(aj)

The remaining actions at cut c and the bending moment at the end of the floor beam are

. (ak)

A plot of the bending moment in segments one, two, and three of the frame is shown in figure. 7.24. The bending 
moment exhibits a step change in value at the junction of the frame and the floor beam. That is,
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This step change in the bending moment between curved segments one and two of the frame is equal to the mag-
nitude of the bending moment at the end of the floor beam.
J 

7.5 References

Bruhn, E. F. Analysis and Design of Flight Vehicle Structures. Carmel IN: Jacobs Publishing, Inc., 1973, p. 
A13.17., and Chapter A21

Chidamparam, P, and A. W. Leissa. “Vibrations of Planar Curved Beams, Rings, and Arches.” American Society 
of Mechanical Engineers, Applied Mechanics Reviews 46, no. 9 (September1993).

Curtis, Howard. D. Fundamentals of Aircraft Structural Analysis. Jefferson City, MO: Richard D. Irwin, a 

M2 π 6⁄–( ) M1 π 6⁄–( )– 102.182 6 232.98,– 6 130.8,–  in.-lb.= =

-100 -50 50 100

-2000

2000

4000

6000

θ degrees,

M in.lb.,

Fig. 7.24 Frame bending moment distribution.



Article 7.6

220 Aerospace Structures

Times Mirror Higher Education Group, Inc. Company, 1997, pp. 269, 270, 384-389.

Langhaar, H. L. Energy Methods in Applied Mechanics. New York: John Wiley & Sons, 1962, pp. 48-50.

Megson, T. H. G. Aircraft Structures for Engineering Students. 3d ed. London and New York: Arnold and John 
Wiley & Sons, Inc., 1999 Section 10.4.

7.6 Practice exercises

1. The radius of the centroidal arc of a thick, semicircular bar is 42 mm as shown in figure. 7.25. It is subject to 
two 5 kN loads symmetrically distributed with respect to midspan. Determine the normal stresses in the radial 
inboard flange ( ) and the radial outboard flange ( ) at midspan.

2. Consider a thin curved bar with a uniform, symmetrical cross section whose reference axis is one-quarter of 
a circle of radius a as shown in figure. 7.26. The cross section of the bar is the thin-walled tube of example 6.4 on 
page 160 with the mean radius denoted by a and a wall thickness denoted by t. The bar is clamped to a fixed sup-
port at its upper end, and supported by a roller at its lower end that is free to move vertically but not horizontally. 
An upward vertical force P is applied at the lower end of the bar. Determine the horizontal reaction force Q at its 
lower end in terms of the applied force P using Castigliano’s second theorem.

3. Continuing with the arch problem in example 7.3 do the following:

a) Use Castigliano’s second theorem to determine the displacement ∆ in the direction of the external force 
P in terms of P, the semi-opening angle β, redundant Q, extensional stiffness EA, and flexural stiffness 

y1 y3

42

51

2345°

5 kN 5 kN

y1

y3

C

42
4

20

8

18

19
x

y

Cross Section

Fig. 7.25 Exercise 1: All dimensions in mm.

x

y

b

t

a

Section A-A

a

P

Q q,
θ

A

A

Fig. 7.26 Exercise 2. 
Thin curved bar.
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EI. Note that the redundant was determined and is given by eq. (g).

b) The structural stiffness of the arch is defined by K = P/∆. For a straight beam having the same flexural 
stiffness as the arch, spanning the distance L between the supports, and subject to force P at midspan, 

the structural stiffness is . Plot the ratio of the arch stiffness to the beam 

stiffness  as a function of the rise-to-span ratio given by eq. (h). Use the numerical data given in 

the example. Plot parametrically by selecting values of the semi-opening angle β in the range 
, then compute the sequence H/L, R, Q/P, and  for each β.

4. Consider a thin-walled, cylindrical shell stiffened by an internal frame. As shown in figure. 7.27, the frame 
consists of a thin-walled circular bar of radius a, and a horizontal bar of length 2a clamped to the ends of the cir-
cular bar. A point load P is applied to the midspan of the horizontal bar. This load is equilibrated by interface 
shear flows, which were determined from a free body diagram of the shell with the following results:

, and (7.47)

, (7.48)

where . The frame is symmetric 

with respect to the vertical line A-B through the center of the circular part. A free body diagram of the right half 
of the frame is also shown in the sketch below. The action of the left half on the right half of the frame are repre-
sented by normal forces Na and Nb, and bending moments Ma and Mb. The shear forces Va and Vb acting on the 
cross sections at A and B vanish because of symmetry. There are four unknown actions at A and B but only three 
independent equilibrium equations for the right half of the frame. Hence, the half frame is singly redundant.

a) Determine the redundant in terms of parameters a and P from the compatibility equation obtained by 
application of Castigliano’s second theorem. Include only the bending moments in the complementary 
strain energy, and assume the flexural stiffness EI is uniform in the frame.

b) List the values of Na, Nb, Ma, and Mb in terms of parameters a and P.

c) Determine the maximum bending moment in the frame, as well as the point, or points, where the bend-
ing moment is zero. (Partial answer: the magnitude of the maximum bending moment is 0.3162 aP.) 

Hint.  Show that the following results for the normal force in the straight part  and in the circular part  sat-

isfy equilibrium:

Kb P ∆b⁄ 48EI( ) L3⁄= =

K Kb⁄

1° β 90°≤ ≤ K Kb⁄

q1 s( ) k1
P
a2
----- a s–( )–= 0 s 2a≤ ≤

q2 θ( ) P
a
--- k2– k3θ k4 θcos+ +( )= 0 θ π≤ ≤

k1 k3
4

8– 2π π2+ +
--------------------------------= = k2

2π
8– 2π π2+ +

--------------------------------= k4
2 2 π+( )
8– 2π π2+ +

--------------------------------=

B

A

P

a

q2 θ( )

θ

s q1 s( ),

Overall FBD of the frame

P 2⁄ a

q2 θ( )

θ

q1 s( )

Nb

Mb

Na

Ma

FBD of the right half

Fig. 7.27 Internal 
frame in a cylindrical 
shell.

N1 N2
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, (7.49)

, (7.50)

where c1 and c2 are constants to be determined.

  

N1 s( ) Na k1P s a–( )2 2a2( )⁄–= a s 2a≤ ≤

N2 θ( ) c1 θcos c2 θsin P 2k3 k4θ θcos+( ) 2⁄–+= 0 θ π 2⁄≤ ≤
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CHAPTER 8

 

Laminated bars of fiber-
reinforced polymer 
composites

 

8.1 Fibrous composites

 

A composite material consists of two or more constituents that are chemically distinct on a macroscopic scale 
and have a recognizable interface between them. An important class of composites for aerospace applications are 
fiber-reinforced polymer composites (FRP). Fiber-reinforced polymer composites consist of continuous and 
aligned fibers embedded in a polymer matrix. Continuous glass fibers are 3-20 

 

µ

 

m in diameter, with most about 
12 

 

µ

 

m. The diameter of carbon and graphite fibers is about 8 

 

µ

 

m. Fibers are inherently much stiffer and stronger 
than the same material in bulk form. The polymer matrix supports, protects, and transfers stresses to the fibers. 
Typically the matrix is of considerably lower density, stiffness, and strength than the fibers. Polymers are subdi-
vided into thermosets and thermoplastics. Thermoset polymers, such as epoxies, become cross-linked during fab-
rication and do not soften on reheating. Thermoplastic polymers, such as PEEK, soften on heating and can be 
reshaped with heat and pressure. Usually fibers are bundled in tows, which can consist of 3,000 to 30,000 fibers. 

The unidirectional lamina is the basic form of a continuous fiber composite (i.e., one with all fibers in the 
same direction as shown in figure. 8.1). It can be fabricated from pre-impregnated tape (filament tows pre-
impregnated with epoxy), filament winding, pultrusion, or resin transfer molding (RTM). The thickness of lam-
ina, denoted by 

 

t

 

ply

 

, in a laminate is typically about 0.127 mm (0.005 in.). Laminates are fabricated by stacking 

unidirectional lamina at different fiber orientations followed by curing. Curing is a drying process of the matrix 
material to form a bond between the fibers and between the lamina.

tply

Fig. 8.1  Unidirectional lamina 
of a continuous fiber composite.
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The advantage of polymer-composites aerospace structures are many: They weigh less 
than equivalent-strength aluminum, do not corrode or fatigue, require less maintenance, and 
reduce the need for drilled holes and parts. Composite parts generally cost more than equiva-
lent metal parts, but that premium is decreasing. And the cost premium is offset by operating 
savings in fuel and maintenance (Canaday, 2015).

 

8.1.1 Material law in principal directions

 

Fiber-reinforced composites are usually treated as a linear elastic material with orthotropic material properties in 
the material principal directions (i.e directions parallel and perpendicular to the fibers). In a right-handed Carte-
sian system denoted by 

 

x

 

1

 

-x

 

2

 

-x

 

3

 

, let the 

 

x

 

1

 

-axis be parallel to the fibers, the 

 

x

 

2

 

-axis be transverse to the fibers, and 
the 

 

x

 

3

 

-axis be parallel to the thickness of the lamina. (Also, refer to discussion with respect to eq. (A.131) in the 
appendix.) In the discussion of the material law, it is convenient to use a contracted notation for strain compo-
nents and the corresponding stress components. The contracted notation defines the 6-by-1 engineering strain 
vector in principal material directions as

,

 

(8.1)

 

where the normal strains are denoted by 

 

ε

 

11

 

, 

 

ε

 

22

 

, and 

 

ε

 

33

 

, and the shear strains are denoted by 

 

γ

 

23

 

, 

 

γ

 

31

 

, and 

 

γ

 

12

 

.   
The corresponding 6-by-1 stress vector in principal material directions is

,

 

(8.2)

 

where the normal stresses are denoted by 

 

σ

 

11

 

, 

 

σ

 

22

 

, and 

 

σ

 

33

 

, and the shear stresses are denoted by 

 

σ

 

23

 

, 

 

σ

 

31

 

, and 

 

σ

 

12

 

. See figure. 8.2.

Hooke’s law for an orthotropic material in the contracted notation is 

,

 

(8.3)

γm{ } ε11 ε22 ε33 γ 23 γ 31 γ 12

T
=

σm{ } σ11 σ22 σ33 σ23 σ31 σ12

T
=

x1

x2

x3

σ11

σ12
σ13

σ21

σ23

σ33

σ31 σ32

σ22

Fig. 8.2 Stresses in material 
principal directions.

ε11

ε22

ε33

γ 23

γ 31

γ 12

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

σ11

σ22

σ33

σ23

σ31

σ12

=

            

C[ ]
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in which [

 

C

 

] is the symmetric 6X6 compliance matrix. The non-zero elements of the compliance matrix in terms 
of engineering constants are

, and

 

(8.4)

 

.

 

(8.5)

 

The nine independent engineering constants are described as follows:

 

•

 

Moduli of elasticity in the fiber direction, transverse direction, and thickness direction are denoted by 

 

E

 

1

 

, 

 

E

 

2

 

, 
and 

 

E

 

3

 

, respectively. 

 

•

 

The principal Poisson’s ratios are 

 

ν

 

21

 

, 

 

ν

 

31

 

, and 

 

ν

 

32

 

.

 

•

 

Shear moduli in the 2-3 plane, 3-1 plane, and 1-2 plane are denoted by 

 

G

 

23

 

, G31, and G12, respectively.

The three minor Poisson’s ratios, , are determined from symmetry of the compliance matrix. 

Material characterization tests are conducted to measure the nine independent engineering constants. However, 
the most accurate measurements are made for the in-plane properties E1, E2, ν21, and G12.

8.1.2 Compliance matrix in bar coordinate directions

Consider the thin-walled bar, or beam, analysis presented in article 3.2 to article 3.5. Instead of a the wall com-
posed of a homogeneous, linear elastic material as in article 3.7, we now take the wall to be composed of a 
fibrous composite material. The fibers are parallel and contained in thin layers, or lamina, that are normal to the 
thickness coordinate direction ζ of the wall. Within a lamina the bar contour coordinate direction s, and longitu-
dinal direction z, are not, in general, aligned with the material principal coordinate directions x1 and x2. Define a 

positive angle  by the counterclockwise rotation from the positive z-axis to the positive x1-axis as shown in fig-
ure. 8.3.

The direction cosines between the principal material coordinate directions x1-x2-x3 and the bar coordinate direc-
tions s-z-ζ are listed in table 8.1.

C11
1
E1
------= C22

1
E2
------= C33

1
E3
------= C44

1
G23
--------= C55

1
G13
--------= C66

1
G12
--------=

C21 ν21 E1⁄– C12 ν12 E2⁄–= = =

C31 ν– 31 E1⁄ C13 ν13 E3⁄–= = =

C32 ν32 E2⁄– C23 ν23 E3⁄–= = =

ν12 ν13  and ν23, ,

ϕ

ζ x3,

x1

x2

s

z

ϕ

Fig. 8.3  Material principal directions x1, 
x2, and x3 with respect to bar axes s, z, and ζ.

ϕ
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Let  and . Then, the matrix relations between the coordinate directions are written as 

. (8.6)

Matrix [λ] is an orthogonal matrix so that , and . In the material coordi-

nate directions the symmetric, Cartesian strain tensor is denoted by the 3X3 matrix , and the symmetric, 

stress tensor is denoted by the 3X3 matrix . The elements of these matrices are

 and . (8.7)

In the bar coordinate directions, the strain matrix  and stress matrix  are denoted by

 and . (8.8)

From eq. (A.63) and eq. (A.65) in the appendix the transformation relations between the Cartesian strain matri-
ces are

 and . (8.9)

From eq. (A.96) and eq. (A.97) in the appendix the transformation relations between the stress matrices are

 and . (8.10)

After performing the matrix operations indicated for the strain matrices (8.9), we can establish the contracted 
notation for the transformation of the strain vectors. The results are as follows:

Table 8.1 Direction cosines

s z ζ

x1 0

x2 0

x3 0 0 1

90° ϕ+( )cos ϕcos

180° ϕ–( )cos 90° ϕ+( )cos

m ϕcos= n ϕsin=

x1

x2

x3

n– m 0
m– n– 0
0 0 1

s

z

ζ

= and
s

z

ζ

n– m– 0
m n– 0
0 0 1

x1

x2

x3

=

         

λ λ
T

λ λ
T

λ
T
λ I= = Det λ 1=

ε

σ

ε

ε11 γ 12 2⁄ γ 13 2⁄

γ 12 2⁄ ε22 γ 23 2⁄

γ 13 2⁄ γ 23 2⁄ ε33

= σ

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

=

ε′ σ′

ε′

εss γ zs 2⁄ γζs 2⁄

γ zs 2⁄ εzz γζz 2⁄

γζs 2⁄ γζz 2⁄ εζζ

= σ'

σss σzs σζs

σzs σzz σζz

σζs σζz σζζ

=

ε′ λ ε λ
T= ε λ

T
ε′ λ=

σ′ λ σ λ
T= σ λ

T
σ′ λ=
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(8.11)

. (8.12)

Note that , and . That is, . After performing the 

matrix operations indicated for the stress matrices (8.10), we can establish the contracted notation for the trans-
formation of the stress vectors. The results are as follows:

(8.13)

. (8.14)

εss

εzz

εζζ
γ zζ

γ ζs

γ sz

n2 m2 0 0 0 mn–

m2 n2 0 0 0 mn

0 0 1 0 0 0
0 0 0 n– m– 0
0 0 0 m n– 0

2mn 2mn– 0 0 0 m2– n2+

ε11

ε22

ε33

γ 23

γ 31

γ 12

=

              

Tε1

ε11

ε22

ε33

γ 23

γ 31

γ 12

n2 m2 0 0 0 mn

m2 n2 0 0 0 m– n

0 0 1 0 0 0
0 0 0 n– m 0
0 0 0 m– n– 0

2– mn 2mn 0 0 0 m2– n2+

εss

εzz

εζζ
γ zζ

γ ζs

γ sz

=

              

Tε2

Det Tε1[ ] Det Tε2[ ] 1= = Tε1 Tε2 I= Tε2 Tε1

1–
=

σss

σzz

σζζ

σzζ

σζs

σsz

n2 m2 0 0 0 2mn–

m2 n2 0 0 0 2mn

0 0 1 0 0 0
0 0 0 n– m– 0
0 0 0 m n– 0

mn mn– 0 0 0 m2– n2+

σ11

σ22

σ33

σ23

σ31

σ12

=

            

Tσ1

σ11

σ22

σ33

σ23

σ31

σ12

n2 m2 0 0 0 2mn

m2 n2 0 0 0 2– mn

0 0 1 0 0 0
0 0 0 n– m 0
0 0 0 m– n– 0

m– n mn 0 0 0 m2– n2+

σss

σzz

σζζ

σzζ

σζs

σsz

=

            

Tσ2



Article 8.1

228 Aerospace Structures

Note that , and . That is, . Additionally, from the 

foregoing eqs. (8.11) to (8.14) the following matrix relations can be shown:

 and . (8.15)

The elements of the 6X6 matrices in eq. (8.15) are as follows:

, and

.

To determine the off-axis compliance material law we pre-multiply the on-axis material law (8.3) by matrix 

, followed by substituting of eq. (8.14) for the on-axis stresses on the right-hand side of eq. (8.3). Use the 

fact that  from eq. (8.15). Denote the 6X6 off-axis compliance matrix by  and we find that 

. The form of the off-axis material law is

. (8.16)

Matrix  is symmetric with the compliance coefficients in terms of the engineering constants and the direc-

tions cosines given by eq. (8.17) to (8.23) below.

Det Tσ1[ ] Det Tσ2[ ] 1= = Tσ1 Tσ2 I= Tσ2 Tσ1

1–
=

Tε1

T
Tσ2

= Tε2

T
Tσ1

=

n2 m2 0 0 0 mn–

m2 n2 0 0 0 mn

0 0 1 0 0 0
0 0 0 n– m– 0
0 0 0 m n– 0

2mn 2mn– 0 0 0 m2– n2+

T
n2 m2 0 0 0 2mn

m2 n2 0 0 0 2mn–

0 0 1 0 0 0
0 0 0 n– m 0
0 0 0 m– n– 0

mn– mn 0 0 0 m2– n2+

=

                           

Tε1

T
Tσ2

n2 m2 0 0 0 mn

m2 n2 0 0 0 m– n

0 0 1 0 0 0
0 0 0 n– m 0
0 0 0 m– n– 0

2– mn 2mn 0 0 0 m2– n2+

T
n2 m2 0 0 0 2– mn

m2 n2 0 0 0 2mn

0 0 1 0 0 0
0 0 0 n– m– 0
0 0 0 m n– 0

mn m– n 0 0 0 m2– n2+

=

                           
Tε2

T
Tσ1

Tε1

Tε1

T
Tσ2

= C′

C′ Tε1 C Tε1

T
=

εss

εzz

εζζ
γ zζ

γ ζs

γ sz

C′11 C′12 C′13 0 0 C′16

C′21 C′22 C′23 0 0 C′26

C′31 C′32 C′33 0 0 C′36

0 0 0 C′44 C′45 0

0 0 0 C′54 C′55 0

C′61 C′62 C′63 0 0 C′66

σss

σzz

σζζ

σzζ

σζs

σsz

=

C′
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(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

. (8.23)

8.1.3 Plane stress

Since composites used in many structural applications are thin plates or thin shells, the assumption of a plane 
stress state as used plate and shell theory is also made for a composite plate. In figure. 8.2 the in-plane stress 
components are σ11, σ22, and σ12. Thus, the following stress components are assumed negligible with respect to 
the in-plane stress components and set equal to zero in eq. (8.3):

. (8.24)

Hence, the compliance form of the orthotropic material law for a unidirectional lamina subject to plane stress is

, (8.25)

and the thickness normal strain is 

. (8.26)

The stress-strain form of the material law (8.25) is written as

, (8.27)

C′11
m4

E2
------ m2n2

G12
------------

n4 2m2n2ν21–

E1
-----------------------------------+ += C′21 C′12

m2n2 G12 E2–( )

E2G12
--------------------------------------

m2n2 m4 n4+( )ν21–

E1
-------------------------------------------------+= =

C′31 C′13
n2ν31–

E1
----------------

m2ν32

E2
--------------–= = C′61 C′16 mn 2m2–

E2
------------- m2 n2–

G12
------------------

2m2ν21

E1
------------------

2n2 1 ν21+( )

E1
------------------------------+–+ 

 = =

C′22
m2n2

G12
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E2
------

m4 2m2n2ν21–

E1
------------------------------------+ += C′23 C′32

m2ν31–
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-----------------

n2ν32
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-------------–= =

C′26 C′62 mn 2n2–
E2

------------ n2 m2–
G12
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2m2 1 ν21+( ) 2n2ν21–

E1
-------------------------------------------------------+ + 

 = =

C′33
1
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------= C′63 C′36 2mn

ν32

E2
-------

ν31

E1
-------– 

 = =

C′44
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G13
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G23
--------+= C′54 C′45 mn 1

G13
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G23
--------– 
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--------+=
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4m2n2 E1 1 2ν21+( )E2+( )
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where the matrix [Q] is called the reduced stiffness matrix. Matrix  is symmetric since . 

(refer to eq. (8.5)). It follows from eq. (8.3) that the transverse shear strains , which leads to 

transverse shear strains  by eq. (8.11). Also, the normal strain . From eq. (8.13) the 

stresses . 

Transform eq. (8.27) to an off-axis material law as follows: For plane stress the stress transformation equa-
tion (8.13) reduces to

, (8.28)

and the strain transformation eq. (8.11) reduces to 

. (8.29)

Pre-multiply eq. (8.27) , and substitute the strain transformation eq. (8.29) on the right-hand side of eq. 

(8.27). Use the fact that  from eq. (8.15). These matrix manipulations result in the off-axis mate-

rial law in plane stress given by

, (8.30)

where the transformed reduced stiffness matrix is given by . Since the on-axis reduced 

stiffness matrix  is symmetric, it follows from these matrix relations that the transformed stiffness matrix is 

symmetric ( ). Elements of the transformed reduced stiffness matrix in terms of the reduced matrix 

elements are given by

Q ν21E2 ν12E1=

γ 23 γ 31 0= =

γ zζ γ ζs 0= = εζζ ε33=

σζζ σzζ σζs 0= = =

σss

σzz

σsz

n2 m2 2mn–

m2 n2 2mn

mn mn– m2– n2+( )

σ11

σ22

σ12

=

          

Tσ1

ε11

ε22

γ 12

n2 m2 mn

m2 n2 mn–

2mn– 2mn m2– n2+( )

εss

εzz

γ sz

=

          

Tε2

Tσ1

Tε2 Tσ1

T
=

σss

σzz

σsz

Q

εss

εzz

γ sz

Q11 Q12 Q16

Q21 Q22 Q26

Q61 Q62 Q66

εss

εzz

γ sz

= =

Q Tσ1 Q Tσ1

T
=

Q

Q
T

Q=
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. (8.31)

8.1.4 Nomenclature of composite materials

Composite materials are identified by the name of the fiber followed by the name of the matrix. For example, 
AS4/3501-6 denotes the carbon fiber AS4 and the epoxy matrix 3501-6. The data in table 8.2 is taken from Hera-
kovich (1998, p.14), and it lists typical properties for AS4/3501-6 and T300/5208 carbon fiber-reinforced epoxy 
composites. 

Table 8.2 Material properties of selected CFRP lamina

Property Units AS4/3501-6 T300/5208

Axial modulus E1 GPa 148 132

Msi 21.5 19.2

Transverse modulus E2 GPa 10.5 10.8

Msi 1.46 1.56

Major Poisson’s ratio ν21 dimensionless 0.30 0.24

Major Poisson’s ratio ν23 dimensionless 0.59 0.59

Shear modulus G12 GPa 5.61 5.65

Msi 0.81 0.82

Shear modulus G23 GPa 3.17 3.38

Msi 0.46 0.49

Density g/cm3 1.52 1.54

lb./in.3 0.055 0.056

Ply thickness tply mm 0.127 0.127

in. 0.005 0.005

Fiber volume fraction Vf dimensionless 0.62 0.62

Q11

Q22

Q21

Q66

Q16

Q26

n4 m4 2m2n2 4m2n2

m4 n4 2m2n2 4m2n2

m2n2 m2n2 m4 n4+( ) 4m2n2–

m2n2 m2n2 2m2n2– m2– n2+( )2

mn3 m3n– mn m2 n2–( ) 2mn m2 n2–( )

m3n mn3– mn m2 n2–( )– 2mn m2 n2–( )–

Q11

Q22

Q21

Q66

=
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Example 8.1 Transformed reduced stiffness matrix for an off-axis ply

Determine the transformed reduced stiffness matrix of T300/5208 carbon/epoxy for a 30-degree off-axis lamina 
in U.S. customary units.

Solution.  From table 8.2 , , , and . The minor 

Poisson’s ratio is . The reduced stiffness matrix is computed 

from eq. (8.30) and eq. (8.31); i.e.,

. (a)

The transformed reduced stiffness matrix is given by , the reduced stiffness by eq. 

(8.27), and the transform matrix  by eq. (8.28). The matrix product is

, (b)

and the result is

.JJJJ (c)

8.1.5 Laminated wall

Laminates are made by stacking the unidirectional lamina, also called plies, at different fiber orientations. The 
plies are usually bound together by the same matrix material that is used within the lamina. Laminates are desig-

nated by the ply angle stacking sequence. A  stacking sequence denotes a 4-ply laminate with plies 

at 45, – 45, 0, and 90 degrees with respect to the longitudinal z-axis. A  stacking sequence denotes 

an 8-ply laminate with plies at 45, – 45, 0, 90, 45,– 45, 0, and 90 degrees. A  stacking sequence 

denotes an 8-ply symmetric laminate with plies at 45, – 45, 0, 90, 90, 0, – 45, and 45 degrees. The assumptions of 
lamination theory are

• The laminate consists of perfectly bonded layers or lamina.

• Each layer is a homogeneous material with known effective properties.

• Each layer is in a state of plane stress.

• Individual layers can be isotropic or orthotropic.

E1 19.2 Msi= E2 1.56 Msi= ν21 0.24= G12 0.82 Msi=

ν12 0.24 1.56 Msi( ) 19.2 Msi( )⁄[ ] 0.0195= =

Q

19.3 0.376 0
0.376 1.57 0

0 0 0.82

Msi=

Q Tσ1 Q Tσ1

T
=

Tσ1

Q

1 4⁄ 3 4⁄ 3 2⁄–

3 4⁄ 1 4⁄ 3 2⁄

3 4⁄ 3 4⁄– 1 2⁄–

19.3 0.376 0
0.376 1.57 0

0 0 0.82

1 4⁄ 3 4⁄ 3 4⁄

3 4⁄ 1 4⁄ 3 4⁄–

3 2⁄– 3 2⁄ 1 2⁄–

=

Q

2.84537 3.53313 2.01589
3.53313 11.7104 5.66142
2.01589 5.66142 3.97713

Msi=

45 45– 0 90

45 45– 0 90 2

45 45– 0 90 S
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Consistent with thin-walled bar theory in chapter 3, we assume that the strains , , and  are spa-

tially uniform through the thickness of the wall. That is, there is no local bending of the laminated wall. The 
laminate can stretch and shear in-plane as membrane. For a laminate of Np-plies, the material law for the k-th ply, 
where , is obtained from eq. (8.30) as

. (8.32)

Even though the strains are uniform through the thickness of the wall, note that the stresses are piecewise 
constant through the thickness of the wall since the transformed reduced stiffness matrix changes from ply to ply. 
Let the origin of the thickness coordinate ζ be at the midplane of the laminate, such that , where t 

denotes the total thickness of the laminated wall. The stress resultant , the axial stress resultant , and the 

shear flow  are defined by integrals through the thickness of the wall of the corresponding stresses; i.e.,

, (8.33)

where  at the bottom of the k-th ply, and  at the top of the k-th ply. Denote the thickness of the 

k-th ply by  such that . Substitute for the stresses from Hooke’s law (8.32) into eq. (8.33) to get   

. (8.34)

The last result is written as

, (8.35)

where  is the in-plane stiffness matrix. Elements of the in-plane stiffness matrix are computed by the sum

. (8.36)
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Stiffness elements  and  correspond to in-plane extensional stiffnesses in the s- and z-directions, respec-

tively. Element  corresponds to a shear stiffness in the s-z plane, stiffnesses  are Poisson’s type 

terms, and stiffnesses  and  couple in-plane shear and extension. The in-plane stiffness 

matrix depends on the content of the layers in the laminate, and is independent of the stacking sequence of the 
layers through the thickness of the laminate.

Example 8.2 In-plane stiffness matrix for a laminate with two plies

Consider a two-ply  laminate with plies of equal thickness t/2.

(a) Determine the [A] matrix
(b) Evaluate the [A] matrix for T300/5208 with  and 

Solution to part (a).   The transformed reduced stiffnesses are given by eq. (8.31) in which  and 

. Note that stiffnesses , , , and  are even functions of the ply angle , and stiffnesses 

 and  are odd functions of . Thus,

.

Solution to part (b).   From the T300/5208 example on page 231 , 

, , and . Thus,

J.

8.1.6 Balanced and specially orthotropic laminates

A laminate consisting of off-axis plies with positive fiber angles  and off-axis plies with negative fiber angles 

, , with each -ply and -ply having the same thickness and material properties, is 

called a balanced laminate. For example, a stacking sequence  is a balanced laminate consisting of 

eight plies if each -ply and -ply have the same thickness and material properties. For a balanced lami-
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nate the in-plane stiffness coefficients , and  as example 8.2 illustrates. The in-

plane material law for a balanced laminate reduces to the form

. (8.37)

In eq. (8.37) resultants ns and nz are independent of the shear strain , and the shear flow q is independent of 

the normal strains εss and εzz. That is, there is no coupling between in-plane extension and shear. Laminates 

whose material law is given by (8.37) are also said to be specially orthotropic. Laminates consisting of only  

and  plies are specially orthotropic laminates, since the product  in the last two rows 

of (8.31) results in  for these laminates. Hence, a  laminate has coupling stiffnesses 

 as can be recognized from eq. (8.36). Another example of a specially orthotropic laminate is a 

stacking sequence . 

8.2 Composite thin-walled bar with a closed cross-sectional contour

The analysis in this section was published by Johnson, et al., (2001), and it is also reviewed by Vasiliev and 
Morozov (2013). We consider free bending and torsion of a thin-walled bar with a closed cross-sectional contour 
as depicted in figure. 8.4. The laminated wall consists of unidirectional FRP layers. The external traction compo-

nents acting on the lateral surface of the bar , , and  appearing in eq. (3.42) on page 41 

are prescribed to be zero for all values of s and z. Thus, distributed force intensities  in eq. 

(3.42), and distributed moment intensities  in eq. (3.45) all vanish. The differential equilib-

rium equations (3.53), (3.56), (3.54), and (3.61) on page 42 are satisfied for

 . (8.38)

A16 A61 0= = A26 A62 0= =

ns

nz

q

A11 A12 0

A21 A22 0

0 0 A66

εss

εzz

γ zs

=

γ zs

0°

90° mn ϕ ϕsincos 0= =

Q16 Q26 0= = 0/90[ ]

A16 A26 0= =

45± /0/90[ ]S

z

s ζ

x

z 0=

y
z

Vx u,

Vx

Vy v,

Vy

N w,

Nz

Mx φx,

Mx
0

My φy,

My
0

Mz φz,

Mz

Fig. 8.4 Closed cross-sectional bar   
subject to free bending and torsion.
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Hence, the axial force N, shear forces Vx and Vy, and the torque Mz are uniform along the length L of the bar. 
Bending moment equilibrium equations (3.55) and (3.57) on page 43 are satisfied by

, (8.39)

where  and  are the bending moments acting on the cross section at z = 0.

Consider a free body diagram of the stress resultants acting on a segment of the wall with dimensions ∆s-by-
∆z is shown in figure. 8.5. 

Force equilibrium leads to

. (8.40)

Expand the functions n(s,z), q(s,z), and ns(s,z) in a Taylor series about s and z to get

. (8.41)

Division of eq. (8.41) by the product , followed by taking the limit as  and  leads to the 
differential equations

.

From eq. (3.6) on page 34 the derivative of the unit tangent vector is , where Rs is the radius of curvature 

of the contour. The differential equations of equilibrium at coordinates s and z in the wall are

. (8.42)

From the last two equations in (8.42) we get

. (8.43)

That is, the circumferential stress resultant vanishes and the shear flow is independent of the longitudinal coordi-
nate z.
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8.2.1 Anisotropic Hooke’s law for the cross section

Set  in eq. (8.35), and solve for the normal strain  to eliminate it in the material law. We write the 

resulting material law in several forms to be used in subsequent developments:

, and (8.44)

. (8.45)

The coefficients in the previous equations are

, (8.46)

, and (8.47)

. (8.48)

The stiffness parameters  and  represent the shear-extension coupling of the laminated wall, since they are 

directly related to stiffnesses A61 and A62 by eqs. (8.47) and (8.48). In a specially orthotropic laminate 

, so . There is no material coupling between shear and extension in a specially 

orthotropic laminate.

The second assumption is traditional for the beam theory and states that the axial strain is a linear function of 
coordinates x and y. From eq. (3.30) on page 38 the axial normal strain along the contour (ζ = 0) is

. (8.49)

where  is the axial displacement of the cross section,  is the rotation of the cross section about the x-

axis, and  is the rotation of the cross section about the negative y-axis. Refer to figure. 8.5. Substitute eq. 

(8.49) for the strain in the first equation of (8.44) to get the normal stress resultant as

. (8.50)

Substitute the previous expression for the normal stress resultant into the definition of the bar resultant N in eq. 
(3.39) on page 40 to get 

, (8.51)

where

. (8.52)

In eq. (8.52) the modulus-weighted extensional stiffness of the cross section of the beam is denoted by , the 

modulus-weighted first moment of the cross-sectional area about the x-axis by , and the modulus-weighted 

first moment of the cross-sectional area about the y-axis by . We now locate the origin of the x-y coordinates at 
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the modulus-weighted centroid of the cross section. Let  and , where  

and  are the Cartesian coordinates of the contour with respect to an arbitrary origin at point O (see Fig. 3.1 
on page 31). The coordinates (Xc, Yc) of the modulus-weighted centroid are determined from

. (8.53)

Since , eq. (8.51) is written as

. (8.54)

The bending moments Mx and My acting in the cross section are determined from the normal stress resultant  

by

. (8.55)

Substitute eq. (8.50) for the normal stress resultant into these expressions for the bending moments to get

. (8.56)

The modulus-weighted second moments of the cross section appearing in eq. (8.56) are defined by

. (8.57)

Solve for the gradients of the bending rotations eq. (8.56) and write the result as

, (8.58)

where

, (8.59)

and

. (8.60)

Substitute eq. (8.54) for the axial displacement gradient, and eq. (8.58) for the bending rotation gradients, into 
eq. (8.50) to express the normal stress resultant as

, (8.61)

where

. (8.62)
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8.2.2 Expressions for the shear flow and normal stress resultant

Substitute the normal stress resultant from eq. (8.61) into the equilibrium differential equation (8.42), to get

. (8.63)

Recall that the stiffness parameter b and the shear flow q are independent of coordinate z. Derivatives of , , 

and  with respect to z are determined from eqs. (8.54) and (8.60) as

. (8.64)

Derivatives of the bar resultants are given by equilibrium equations (8.38) and (8.39). Thus,

. (8.65)

The derivative of the shear flow with respect to the contour coordinate reduces to

. (8.66)

Now we integrate the previous result with respect to the contour coordinate from s = 0 to s = s and write the result 
as

, (8.67)

where

. (8.68)

Substitute eq. (8.62) for  and  into eq. (8.68) to get

, (8.69)

where the modulus-weighted first moments of a segment of the cross-sectional area from s = 0 to s = s are defined 
by

. (8.70)

Note that  and  evaluated at the end point of the closed contour vanish, which is consistent with eq. 

(8.53). The shear flow at the contour origin q0 is determined by torque equivalence of the shear flow with respect 
to the modulus-weighted centroid. That is,

, (8.71)

where  is the coordinate normal to the contour as depicted in Fig. 3.3 on page 33, and it is determined from 
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eq. (3.11) on page 34. Substitute eq. (8.67) for the shear flow in eq. (8.71) and solve for q0 to find

, (8.72)

where the area enclosed by the contour is given by

. (8.73)

With q0 determined, we write the final expression for the shear flow in eq. (8.67) as

, (8.74)

where the shear flow distribution functions are defined by

. (8.75)

 Substitute eq. (8.54) for the normal stress resultant  in eq. (8.61), and substitute for  and  from eq. 
(8.60) into eq. (8.61), to get

. (8.76)

Substitute eq. (8.74) for the shear flow into the previous equation for the normal stress resultant. After some alge-
braic manipulations we write the result as

. (8.77)

The functions , , and  are a consequence of the coupling between extension and shear in the 

material law (i.e., ). If the stiffness parameter b = 0 over the entire contour, then 

. Equations for these functions are

, (8.78)

, and (8.79)

. (8.80)

8.2.3 Complementary work and energy

Consider a free bending and torsion state of the bar as shown in figure. 8.4 where the displacements, strains, and 
forces satisfy the compatibility conditions, Hooke’s law, and the equilibrium conditions. In this state, the actual 
displacements of the modulus-weighted centroid are , and the corresponding forces are 
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, respectively. The actual rotations of a cross section with respect to the modulus-

weighted centroid are , and the corresponding moments are , 

respectively. Now consider infinitesimal increments in the forces and moments denoted by 
 from the equilibrium state. For an element of the bar of length ∆z, the com-

plementary work is given by

, (8.81)

where  denotes the increment in the complementary work per unit axial length. Divide eq. (8.81) by ∆z, and 

let , to get in the limit

. (8.82)

Statically admissible incremental actions requires that they satisfy the equilibrium differential equations (8.38) 
and (8.39): i.e., 

. (8.83)

Imposing equilibrium (8.83) reduces eq. (8.82) to

, (8.84)

where shear strains averaged over the cross section of the bar relative to the centroid are defined by

. (8.85)

An elastic material is defined by the existence of a complementary strain energy function per unit axial length 

with the form . Then, the total increment in function  is

, (8.86)

Identify the complementary work (8.84) with the complementary energy (8.86) to get the important properties of 
complementary strain energy function. That is,

. (8.87)

Now consider the complementary work for the free bending and torsion state of an element of the wall ∆s-
by-∆z as shown in Fig.  8.5. On the contour (ζ = 0) the axial displacement  corresponds to the stress 

resultant nz and tangential displacement  corresponds to the shear flow q.  Let  denote the increment 

in the complementary work per unit area for increments in the stress resultants δnz and δq acting on the element 
∆s-by-∆z of Fig.  8.5. Then, the complementary work is

. (8.88)
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-------------δMzC+ + + + +=

zd

dφx ∂U
*

∂Mx

----------=
zd

dφy ∂U
*

∂My

----------=
zd

dw ∂U
*

∂N
----------= ψxc

∂U
*

∂Vx

----------= ψyc
∂U

*

∂Vy

----------=
zd

dφz ∂U
*

∂MzC

-------------=

uz s z,( )

us s z,( ) δUo
*

δUo
*∆s∆z δnz∆s( )uz δq∆s( )us+[ ]

z

z ∆z+ δq∆z( )uz[ ]
ss

s ∆s++=
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Divide eq. (8.88) by , and let  and , to get in the limit

, (8.89)

which expands to

. (8.90)

Statically admissible increments in the stress resultants δnz and δq requires that they satisfy equilibrium equa-
tions (8.42) and (8.43), which are

. (8.91)

From the strain-displacement relations (3.27) and (3.28) on page 37 we identify the axial normal strain  and 

the shear strain  as

. (8.92)

Substitute eqs. (8.91) and (8.92) into eq. (8.90) to get the increment in the complementary work per unit area as

. (8.93)

For an elastic material we identify  with the increment in the complementary strain energy function per unit 

area, which is a function of the stress resultants, or , with the properties

. (8.94)

Now substitute Hooke’s law (8.45) for the normal strain  and for the shear strain  in the previous equation 

to get

. (8.95)

The complementary strain energy function per unit area consistent with these properties (8.95) is

. (8.96)

The increment in the complementary energy per unit axial length  is defined . Hence,

. (8.97)

Equations (8.74) and (8.77) relate the shear flow and normal stress resultant to the bar forces  and 

the moments . Imposing the properties of the complementary strain energy for the bar given by 

(8.87) to the expression (8.97) for the complementary strain energy, we get the following relations:

∆s∆z ∆s 0→ ∆z 0→

δUo
*

z∂
∂ δnz( )uz δq( )us+[ ]

s∂
∂ δq( )uz[ ]+=

δUo
*

z∂
∂ δnz( )

s∂
∂ δq( )+ uz z∂

∂ δq( ) us z∂

∂uzδnz s∂

∂uz

z∂

∂us+ 
  δq+ + +=

z∂
∂ δnz( )

s∂
∂ δq( )+ 0=

z∂
∂ δq( ) 0=

εzz

γ sz

εzz z∂

∂uz= γ sz s∂

∂uz

z∂

∂us+=

δUo
* εzzδnz γ szδq+=

δUo
*

Uo
* nz

˙ q,( )

εzz
∂Uo

*

∂nz

----------= γ sz
∂Uo

*

∂q
----------=

εzz γ sz

∂Uo
*

∂nz

---------- 1
B
--- nz bq–( )=

∂Uo
*

∂q
---------- 1

B
--- aq bnz–( )=

Uo
* 1

2B
------- nz

2 2bnzq– aq2+( )=

δU
*

δU
*

δUo
*ds∫°=

U
* 1

2
--- 1

B
--- nz

2 2bnzq– aq2+( )ds∫°=

N Vx  and Vy, ,

Mx My  and Mz, ,
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(8.98)

(8.99)

(8.100)

(8.101)

(8.102)

. (8.103)

Equations (8.98) to (8.103) are statements of Castigilano’s second theorem.

8.2.4 Cross-sectional compliance matrix

Substitute eq. (8.74) for the shear flow, and substitute eq. (8.77) for the normal stress resultant, into eqs. (8.98) to 
(8.103), followed by integration over the contour. The result from the integration leads to compliance form of the 
material law: 

. (8.104)

Elements of the compliance matrix are given below.

(8.105)

(8.106)

(8.107)

(8.108)

zd

dφx 1
B
--- nz bq–( )

∂nz

∂Mx

---------- aq bnz–( ) ∂q
∂Mx

----------+ ds∫°=

zd

dφy 1
B
--- nz bq–( )

∂nz

∂My

---------- aq bnz–( ) ∂q
∂My

----------+ ds∫°=

zd
dw 1

B
--- nz bq–( )

∂nz

∂N
-------- aq bnz–( ) ∂q

∂N
-------+ ds∫°=

ψxc
1
B
--- nz bq–( )

∂nz

∂Vx

--------- aq bnz–( ) ∂q
∂Vx

---------+ ds∫°=

ψyc
1
B
--- nz bq–( )

∂nz

∂Vy

--------- aq bnz–( ) ∂q
∂Vy

---------+ ds∫°=

zd

dφz 1
B
--- nz bq–( )

∂nz

∂MzC

------------- aq bnz–( ) ∂q
∂MzC

-------------+ ds∫°=

dφx dz⁄

dφy dz⁄

dw dz⁄
ψxc

ψyc

dφz dz⁄

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

Mx

My

N

Vx

Vy

MzC

=

c11
k

Dxx

--------= c21
kny–

Dxx

----------- c12
knx–

Dyy

-----------= = = c13 c31 0= = c14 c41
k

Dxx

-------- 
  byFxc( )ds∫°= =

c15 c51
k

Dxx

-------- 
  byFyc( )ds∫°= = c16 c61

k–
2AcDxx

------------------ 
  by( )ds∫°= =

c22
k

Dyy

--------= c23 c32 0= = c24 c42
k

Dyy

-------- 
  bxFxc( )ds∫°= =

c25 c52
k

Dyy

-------- 
  bxFyc( )ds∫°= = c26 c62

k–
2AcDyy

------------------ 
  bx( )ds∫°= = c33 1 S⁄=
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(8.109)

(8.110)

(8.111)

. (8.112)

Matrix  is symmetric so that twenty-one of the coefficients are independent. The fifteen of the off-diagonal 

coefficients correspond to different types of coupling effects as described in table 8.3. 

Table 8.3 Description of coupling coefficients

Coefficients Coupling effects Comment

c21 combined bending about x- and 
y-axes

c21 = 0 if 

c31 & c32 bending-extension c31 = c32 = 0, since origin is at modulus weighted 
centroid

c41, c51, c42, & c52 bending-shearing are zero if parameter b = 0 over entire contour

c61 & c62 bending-torsion are zero if parameter b = 0 over entire contour

c43 & c53 shearing-extension are zero if parameter b = 0 over entire contour

c63 torsion-extension is zero if parameter b = 0 over entire contour

c64 & c65 torsion-shearing

c45 combined transverse shear in x-z 
and y-z planes

c34 c43
1
S
--- 
  bFxc( )ds∫°= = c35 c53

1
S
--- 
  bFyc( )ds∫°= = c36 c63

1–
2AcS
------------ 
  b( )ds∫°= =

c44
1
B
--- aFxc

2 2bFxcΦx Φx
2+ +( )ds∫°= c45 c54

1
B
--- aFxcFyc bFycΦx bFxcΦy+ + ΦxΦy+( )ds∫°= =

c46 c64
1

2Ac

--------- 
  1

B
--- a– Fxc bFxcΦ bΦx– ΦΦx+ +( )ds∫°= = c55

1
B
--- aFyc

2 2bFycΦy Φy
2+ +( )ds∫°=

c56 c65
1

2Ac

--------- 
  1

B
--- a– Fyc bFycΦ bΦy– ΦΦy+ +( )ds∫°= = c66

1
4Ac

2
--------- 
  1

B
--- a 2bΦ– Φ2+( )ds∫°=

cij

Dxy 0=
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Example 8.3 Graphite-epoxy circular tube

Nixon (1987) conducted experiments on thin-walled tubes fabricated from T300/5208 graphite/epoxy. The test     
specimens had a mean radius R = 20.32 mm, a wall thickness t = 1.016 mm, and were composed of two unidrec-
tional layers with angles  and . The thickness of both layers is the same, and the properties 

of the material are E1 = 146.7 GPa (21.3 ksi), E2 = 11.0 GPa (1.6 ksi), G12 = 6.41 GPa (0.93 ksi), principal Pois-

son’s ration  and the minor Poisson’s ratio . The twist per unit length  was 

measured in the experiment for an applied axial force N and an applied torque . Determine this relationship 

from the composite bar theory.

Solution.  The in-plane stiffness matrix is determined from , where the formulas 

for the elements of transformed reduced stiffness matrix are listed in eq. (8.35). The result is

. (a)

From eqs. (8.47) and (8.48) the stiffness parameters of the composite bar theory are

. (b)

Note that the stiffness parameters are spatially uniform over the entire contour. Cartesian coordinates relative to 
the center of the circular contour are  and , . From eq. (8.52) the axial stiff-

ness is , and the modulus-weighted first moments (8.70) are

. (c)

As a consequence of eq. (c) the modulus-weighted centroid coincides with the center of the circular contour. The 
modulus-weighed second moments are computed from eq. (8.57), and the results are

. (d)

Thus, from eq. (8.59) and eq. (8.62) we find , , , and . The combined first 

moment functions in eq. (8.69) are computed from the first moment functions in eq. (8.70). The results are

. (e)

Note that . The shear flow distribution functions Fxc and Fyc are com-

puted from eq. (8.75). Functions , which couple shear and torsion to the normal stress resultant (8.77), 

are computed from eqs. (8.78) to (8.80). In this example, the results for these functions are

. (f)

ϕ1 20°–= ϕ2 70°=

ν21 0.38= ν12 0.0285= dφz dz⁄

Mz

A Q ϕ1( )
t
2
--- Q ϕ2( )

t
2
---+=

A11 A12 A16

A21 A22 A26

A61 A62 A66

67.8649 17.4628 15.6839
17.4628 67.8649 15.6839–

15.6839 15.6839– 19.6701

MN/m=

Bs 16.0454 MN/m= Bz 19.7196 MN/m–= b 1.22899–= B 39.1363 MN/m= a 3.9495=

x R θcos= y R θsin= 0 θ 2π<≤

S 4.99669 MN=

Sx B s( )y s( )ds∫° B y θ( )R θd

0

2π

∫ 0= = = Sy B s( )x s( )ds∫° B x θ( )R θd

0

2π

∫ 0= = =

Dxx Dyy πBR3 1 031.57 N-m2,= = = Dxy 0=

nx ny 0= = k 1= x x= y y=

Sx θ( ) BR2 1 θcos–( )= Sy θ( ) BR2 θsin=

Sx 0( ) Sy 0( ) Sx 2π( ) Sy 2π( ) 0= = = =

Φx Φy Φ, ,

Fxc
θsin

πR
-----------= Fyc

θcos–
πR

---------------= Φx Φy Φ 0= = = 0 θ 2π<≤
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Elements of the compliance matrix are determined by eqs. (8.105) to (8.112). In this example the result for 
the cross-sectional compliance matrix is

. (g)

The twist per unit length, or unit twist, for the circular tube is equal to . The unit twist evalu-

ates as

. (h)

The unit twist in eq. (h) is plotted with respect to the torque in figure. 8.6 for two values of the axial force. Dis-
crete measurements from the experiment reported by Nixon (1987) are shown by filled circles in the plot. J

dφx dz⁄

dφy dz⁄

dw dz⁄
ψx

ψy

dφz dz⁄

1
πBR3
-------------

1 0 0 bR 0 0
0 1 0 0 bR– 0

0 0 R2

2
------ 0 0 bR–

2
----------

bR 0 0 aR2 0 0

0 bR– 0 0 aR2 0

0 0 bR–
2

---------- 0 0 a
2
---

Mx

My

N

Vx

Vy

Mz

=

c63N c66Mz+

dφz

dz
-------- b–

2πBR2
----------------- 
 N a

2πBR3
----------------- 
 Mz+ 1.21043 5–×10( )N 1.91431 3–×10( )Mz+= =

10 20 30 40 50

0.05

0.10

0.15

dφz

dz
--------  rad.

m
----------

Mz MN-m
0

N 0=

N 4.448 kN=

Fig. 8.6 example 8.3: Unit twist versus torque for the two values of the axial force.   

Experiment 
Analysis



Aerospace Structures 247

Composite thin-walled bar with a closed cross-sectional contour

Example 8.4 Composite box beam

Consider the composite box beam in the experiments conducted by Smith and Chopra (1991) and Chandra et al. 
(1990). As shown in figure. 8.7, the beam is clamped at its left end where the axial coordinate , , 
where the length of the beam L = 762 mm. The cross-sectional dimensions of the rectangular contour are 

 and , and the wall thickness  over the entire contour. The materi-

al is unidirectional tape of carbon-epoxy with properties , , , 

, and .

 The lower horizontal flange, or branch 1, is a unidirectional laminate with a ply angle , and the 

upper horizontal flange, or branch 3, is also a unidirectional laminate with a ply angle of . The vertical 

webs, or branches 2 and 4, are angle-ply laminates with a layup of . Imagine cutting the box beam 
parallel to the z-axis through point O. Then unfold the laminated walls and lay them flat such that the outside sur-
face is facing up. The fiber directions with respect to s-z-ζ coordinates in each branch are shown in figure. 8.8. 

a) Determine the torsional rotation  under transverse bending .

b) Determine the slope  of the reference axis due to a torque Mz.

z 0= 0 z L≤ ≤

bx 24.2 mm= by 13.6 mm= t 0.76 mm=

E1 142 GPa= E2 9.8 GPa= G12 6 GPa=

ν21 0.42= ν12 0.029=

Fig. 8.7 Cantilever, thin-walled box beam.
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Fig. 8.8 Outside 
surface of the unfolded 
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Solution.  Stiffness coefficients of the four branches comprising the contour are listed in table 8.4.

Note that , , , , and .The origin of the contour coordinate where s 

= 0 is at point O of section A-A of figure. 8.7. The Cartesian coordinate functions  with origin also 
at point O are listed in table 8.5. 

The axial stiffness is

. (a)

The first moments with respect to the X-Y coordinates are

. (b)

Consequently, the modulus-weighted centroid is located at

. (c)

Table 8.4 Stiffness coefficients for each branch of the box beam

Stiffness 
coefficient Branch 1 Branch 3 Branches 2 & 4

A11, MN/m 8.59 8.59 8.59

A12, MN/m 8.93 8.93 8.93

A22, MN/m 9.67 9.67 9.67

A66, MN/m 10.3 10.3 10.3

A16, MN/m –2.73 2.73 0

A26, MN/m –2.27 2.27 0

Bz, MN/m -19.9 19.8 0

Bs, MN/m 9.46 9.455 10.3

B, MN/m 45.7 45.7 87.4

b, (–) –2.1 2.1 0

a, (–) 9.242 9.242 8.465

Table 8.5 Parametric equations of the contour for the box beam

Branch no. Range of s, in. X(s) Y(s)

1

2

3

4

B3 B1= B4 B2= b3 b1–= a3 a1= a4 a2=

X s( ) Y s( ),( )

0 s bx≤ ≤ s 0

bx s bx by+≤ ≤ bx s bx–

bx by+ s 2bx by+≤ ≤ 2bx by s–+ by

2bx by+ s 2 bx by+( )≤ ≤ 0 2 bx by+( ) s–

S Bds∫° 2 B1bx B2by+( ) 4.58819 MN= = =

SX BYds∫° by B1bx B2by+( )= = SY BXds∫° bx B1bx B2by+( )= =

Xc SY S⁄ bx 2⁄= = Yc SX S⁄ by 2⁄= =
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In this example the modulus-weighted centroid coincides with the geometric centroid of the cross section. The 
Cartesian coordinates of the contour with respect to the modulus-weighted centroid are determined from 

 and . The modulus-weighted second moments computed from eq. (8.57) are

. (d)

The values of the parameters listed in eq. (8.59) are  and . Hence, from eq. (8.62) we find 

 and . Also, from eq. (8.69)  and . The modulus-

weighted distribution functions  and  with respect to a segment of the cross-sectional area are defined 

in eq. (8.70), and the results for these functions are listed in table 8.6. 

The procedure to determine  and  is the same procedure used to determine the first area moments 

 and  for a cross section with a wall made of an isotropic material. See example 3.4 on page 71. For 

the composite wall  is analogous to  of the isotropic wall, and  is analogous to . Note 

that  in branch 1, and that  in branch 4, which are necessary conditions for the 

first moment about the centroidal x-axis. Similarly,  in branch 1, and  in branch 4, 

which are necessary conditions for the first moment about the centroidal y-axis.

The coordinates normal to the contour for each branch with respect to the centroid given by eq. (3.10) on 
page 34, and the area enclosed by the contour, are as follows:

, , and . (e)

The numerical evaluation of the shear flow distribution functions in eq. (8.75) can now be computed with the 
results shown in table 8.7.

Table 8.6 Modulus-weighted distribution functions for the first area moments

B
ra

nc
h

1

2

3

4

Table 8.7 Shear flow distribution functions for the box beam

Branch

1

2

x s( ) X s( ) Xc–= y s( ) Y s( ) Yc–=

Dxx
by

2

6
----- 3B1bx B2by+( ) 138.884 Nm2= = Dyy

bx
2

6
----- B1bx 3B2by+( ) 455.927 Nm2= = Dxy 0=

nx ny 0= = k 1=

x s( ) x s( )= y s( ) y s( )= Sx s( ) Sx s( )= Sy s( ) Sy s( )=

Sx s( ) Sy s( )

Sx s( ) Sx s( )= Sy s( ) Sy s( )=

B1bys–( ) 2⁄ B1s bx– s+( ) 2⁄[ ]

B1bxby– B2 bx s–( ) bx by s–+( )+[ ] 2⁄ B2bx bx– s+( )[ ] 2⁄

B1by 2bx by s–+( )–[ ] 2⁄ B2bxby B1 2bx
2 3bx by s–( ) by s–( )2+ +( )–[ ] 2⁄

B2 4bx
2 6bxby 2by

2 4bxs– 3bys– s2+ + +[ ] 2⁄( )– B2bx 2bx 2by s–+( )[ ] 2⁄

Sx s( ) Sy s( )

Qx s( ) Qy s( )

Sx s( ) Qx s( ) Sy s( ) Qy s( )

Sx 0( ) 0= Sx 2 bx by+( )[ ] 0=

Sy 0( ) 0= Sy 2 bx by+( )[ ] 0=

rnc1 rnc3 by 2⁄ 6.8 mm= = = rnc2 rnc4 bx 2⁄ 12.1 mm= = = Ac bxby 329.12 mm2= =

Fxc m 1–,  (s in meters) Fyc m 1–,  (s in meters)

15.771– 1 212.5,– s 50 102.5s2,+ 27.066 2 236.88,–– s

71.896– 2 319.2s,+ 260.728– 19 505.9,– s 314 612s2,+
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For anisotropic wall properties, the normal stress resultant (8.77) is related to shear and torsion in addition to the 
axial normal force and bending moments. The coefficient functions of the shear terms (  and ) and 

torsion term ( ) are given by eqs. (8.78) to (8.80), and the numerical results for these functions are listed 
below.
.

The numerical result for the compliance matrix (8.104) is

.

The non-zero compliance coefficient c16 couples the torsional and bending responses of the beam. This cou-
pling is illustrated in the following numerical examples.

a. Take the beam subject to transverse shear with , , and no other actions. The bending mo-
ment is . The twist per unit length under transverse bending is . The tor-
sional rotation is given by

.

The distributions of the torsional rotation for Q = 4.448 N (1 lb.) from the present analysis, and from the experi-
ment conducted by Smith and Chopra (1991), are shown in figure. 8.9.

3

4

Table 8.8 Coefficient functions for shear and torsion for the box beam (refer to eqs. (8.78) to (8.80)).

Branch
, dimensionless

and s in meters

1

2 0

3

4 0

Table 8.7 Shear flow distribution functions for the box beam

Branch Fxc m 1–,  (s in meters) Fyc m 1–,  (s in meters)

101.65– 5 000.2s 50 102.5,– s2,+ 111.62– 2 236.88s,+

159.564– 2 319.24,– s 1 447.58,– 43 290.5s 314 612,– s2,+

Φx s( ) Φy s( )

Φ s( )

Φx m 1–,  (s in meters) Φy m 1–,  (s in meters)
Φ s( )

12.209– 2 546.37s,– 105 222s2,+ 56.8427 4 697.75s,– 0.554009–

40.0001 13.482 434.916s–

234.389 10 501.1s,– 105 222s2,+ 234.418 4 697.75s,– 0.554009

40.0001 29.9222– 434.916s+

dφx dz⁄

dφy dz⁄

dw dz⁄
ψx

ψy

dφz dz⁄

10 3–

7.200 0 0 0 0 7.561–

0 2.193 0 0 0 0

0 0 2.180 4–×10 4.577 4–×10 0 0

0 0 4.577 4–×10 3.389 3–×10 0 0

0 0 0 0 4.861 3–×10 0
7.561– 0 0 0 0 25.83

Mx

My

N

Vx

Vy

Mz

=

Vy Q= 0 z L≤ ≤
Mx Q L z–( )–= dφz dz⁄ c61Mx=

φz c61 Q– Lz z2

2
----– 

  c61L2Q z
L
--- 1

2
--- z

L
--- 
  2

–– 0.00439Q z
L
--- 1

2
--- z

L
--- 
  2

–= = =
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b. Take the beam subject to a torque Mz and no other actions. From the compliance matrix we find 

. From eq. (8.85) the slope of the reference axis , and from the compliance 

matrix , and . Since , the expression for the slope is

.

The distributions of the slope of the reference axis from the present analysis, and from the experiment conducted 
by Chandra et al. (1990), for the torque  (1.0 lb.-in.) are shown in figure. 8.10. 

0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

φz rad.,

z L⁄

Fig. 8.9 Spanwise distribution of the torsional rotation for Vy = Q = 4.448 N (1 lb.).

Experiment, Smith & Chopra (1991) 
Analysis

ψy c55 0⋅ 0= = dv dz⁄ φx–=

dφx dz⁄ c16Mz= φx c16Mzz= c16 c61=

zd
dv c61Mzz– 7.561– 3–×10( )LMz z L⁄( )– 0.005761 1

Nm
--------- 
 Mz z L⁄( )= = =

Mz 0.113 Nm=

0.2 0.4 0.6 0.8 1.0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Experiment, Chandra et al. (1990) 
Analysis

dv
dz
------

z L⁄0

Fig. 8.10 Slope of the reference axis for an applied torque of 0.113 Nm (1.0 lb.-in.)
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8.3 Open cross-sectional contour

For an open cross-sectional contour the shear flow is obtained from eq. (8.67) on page 239. The shear flow at the 
contour origin  if the origin is located at intersection with a longitudinal free edge. (Refer to the discus-

sion in article 3.8.1 on page 51.) The equation for the shear flow for the FRP composite bar is 

. (8.113)

The notes concerning the shear center in article 3.8.3 on page 57 apply as well to a bar made of an FRP compos-
ite. In particular from these notes, the resultant of the shear flow distribution over the contour is a force with com-
ponents Vx and Vy acting through the shear center such that there is no torque acting at the shear center. If the 
cross section is subject to a torque, this torque cannot be balanced by the shear flow, which, according to eq. 
(8.113), is uniquely determined by the shear forces Vx and Vy. Part (b) of example 8.5 on page 263 shows how to 
find the shear center for an open section starting with eq. (8.113). After locating the shear center for the open 
cross-sectional contour, a material law for the torque acting at the shear center remains to be determined. This 
material law for torsion is developed in the next section.

8.4 Uniform torsion of an FRP bar with a rectangular cross section 

We consider the uniform torsion of a prismatic bar with a rectangular cross section composed of a linear elastic, 
anisotropic material. Cartesian coordinates of the bar are denoted by , where the coordinate z is parallel 
to the longitudinal axis of the bar. The origin of the coordinates s and ζ is at the center of the cross section; 

 where the width of the cross section is denoted by b, and  where the thickness 
by t. See figure. 8.11. 

The only applied load is a torque  about the z-axis, and the rotation about the z-axis corresponding to the 

torque is denoted by . The torque and rotation are positive counterclockwise as shown in figure. 8.11. The 

shear stress components acting on the cross section are denoted by  and , and the torque is related to the 

shear stresses by the following integral over the cross section:

. (8.114)

The lateral surfaces of the bar are not subject any loads or tractions. Hence, the stress components must satisfy 
the following conditions at the boundaries of the cross section:

, for  at . (8.115)
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, at  for . (8.116)

Under uniform torsion all stress components and their corresponding strains are independent of the axial 
coordinate z. The exact elasticity formulation for the anisotropic bar is given in the monograph by Lekhnitskii 
(1981). We seek an approximate solution based on the following assumptions:

• Stress components , , and  are equal to zero in the domain of the cross section.

• The cross section is rigid in its own plane.

The procedure to develop the material law is as follows: (a) determine the displacements of the bar using the 
strain-displacement relations and the anisotropic form of Hooke’s law, (b) satisfy the differential equation of 
equilibrium using a separable form of the stress function, (c) use static equivalence to determine the resultants of 
the axial normal stress, and (d) impose the principle of complementary virtual work to find the unknown part of 
the stress function. The final result for the material law in torsion is given by eqs. (8.193) and (8.194) on 
page 263.

8.4.1 Displacements

The non-zero stress components are the axial normal stress , and the shear stresses  and . To effect the 

rigidity assumption consider Hooke’s law (8.16) for the strain components , , and . Write these mate-

rial laws as

, (8.117)

where  is the modulus of elasticity for tension/compression along the s-axis,  is the modulus along the ζ-

axis, and  is the shear modulus in the plane of the cross section. These moduli are related to the compliance 

coefficients by , , and . Invoke the rigidity of the cross section by 

letting , , and . The assumption of a rigid cross-sectional plane leads to the vanishing 

of the following strain-displacement relations:

. (8.118)

The normal strains in eq. (8.118) mean displacement functions  and . Hooke’s law 

(8.16) for the remaining strains reduces to

, (8.119)

, and (8.120)
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. (8.121)

Let the axial normal strain , where the function  is to be determined from the indepen-

dence of the strains on axial coordinate z. Begin by integrating the strain-displacement equation for the axial nor-
mal strain with respect to z to determine the axial displacement as

. (8.122)

Solve eq. (8.119), for the axial normal stress to get

. (8.123)

Substitute the axial displacement (8.122) into eq. (8.120) to find

. (8.124)

Integrate eq. (8.124) with respect to z to get

. (8.125)

Substitute eq. (8.125) for the displacement  for the expression for the strain  in eq. (8.118) to get

, for all values of z. (8.126)

Substitute eq. (8.123) for the axial normal stress into eq. (8.121) to get

, (8.127)

where . Substitute eq. (8.122) for  into eq. (8.127) to get

. (8.128)

Integrate eq. (8.128) the with respect to z to find the displacement  as

. (8.129)

Substitute eq. (8.129) for displacement  in the expression for the strain  in eq. (8.118) to get

, for all values of z. (8.130)

Substitute displacement  from eq. (8.125), and substitute displacement  from eq. (8.129), into the expres-

sion for the shear strain  in eq. (8.118) to get

. (8.131)

γ sz
∂uz

∂s
--------

∂us

∂z
--------+ C′62σzz C′66σsz+= =

εzz D s ζ,( )= D s ζ,( )

uz zD s ζ,( ) w s ζ,( )+=

σzz D C′26σzs–( ) C′22( )⁄=

∂uζ

∂z
-------- z∂D

∂ζ
-------– ∂w

∂ζ
-------– C′44σzζ+ 

 +=

uζ
z2–
2

-------∂D
∂ζ
------- z ∂w

∂ζ
-------– C′44σzζ+ 

  v s( )+ +=

uζ εζζ

εζζ
∂uς

∂ζ
-------- 0 z2–

2
-------∂

2D
∂ζ2
---------- z ∂

∂ζ
------ ∂w

∂ζ
-------– C′44σzζ+ 

 += = =

γ sz
∂uz

∂s
--------

∂us

∂z
--------+ C′62D( ) C′22⁄ β66σsz+= =

β66 C′66 C′26
2 C′22⁄–( )= uz

∂us

∂z
-------- z∂D

∂s
-------– ∂w

∂s
-------– C′62D( ) C′22⁄ β66σsz+ + 

 +=

us

us
z2–
2

-------∂D
∂s
------- z ∂w

∂s
-------– β66σsz C′62D( ) C′22⁄+ + 

  u ζ( )+ +=

us εss

εss
∂us

∂s
-------- 0 z2–

2
------- ∂2D

∂s2
---------- 
  z ∂

∂s
----- ∂w

∂s
-------– β66σsz C′62D( ) C′22⁄+ + 

 += = =

uζ us

γζs

γζs 0 z2 ∂2D
∂s∂ζ
------------– z ∂

∂s
----- ∂w

∂ζ
-------– C′44σzζ+ 

  ∂
∂ζ
------ ∂w

∂s
-------– β66σsz C′62D( ) C′22⁄+ + 

 + dv
ds
------ du

dζ
------+ + += =



Aerospace Structures 255

Uniform torsion of an FRP bar with a rectangular cross section

Equations (8.126), (8.130), and (8.131) are to be satisfied for all values of z, from which we conclude the fol-
lowing results:

(8.132)

 (8.133)

. (8.134)

To satisfy the vanishing of partial derivatives of D in eq. (8.132), we find that function D is linear in the coordi-
nates. That is,

, (8.135)

where , , and  are constants that will be determined later. Integrate the second expression eq. (8.133) with 
respect to s, and then integrate the first expression in eq. (8.133) with respect to ζ. The results of these integra-
tions are

, and (8.136)

. (8.137)

Substitute eq. (8.136) and eq. (8.137) into the first expression in eq. (8.134) to find

. (8.138)

Equation (8.138) is satisfied by  and , where λ is called a separation constant. Substi-

tute the result for F1 into eq. (8.136) to find

. (8.139)

Substitute the result for F2 into eq. (8.137) to find

. (8.140)

Substitute the derivative of displacement  with respect to ζ from eq. (8.140) into the displacement  given in 

eq. (8.125) to get

. (8.141)

Substitute the derivative of displacement  with respect to s from eq. (8.139) into the displacement  given in 

eq. (8.129) to get

. (8.142)
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From eq. (8.134) consider the relation . The latter relation is satisfied by  and , 

where  is a second separation constant. Thus,  and . Substitute the 

equations for  and  into eqs. eq. (8.141)and eq. (8.142) to get

. (8.143)

From eq. (8.118) the in-plane shear strain . As 

shown in figure. 8.12 the partial derivative terms appearing in the shear 

strain can be related to rotation  of the cross section. Let  

and let . The partial derivatives of the displacements in eq. 

(8.143) are equated to the rotation to get

, and . (8.144)

Thus, , from which we identify the separation constant . The separation constant  repre-

sents a rigid body rotation of the bar about the z-axis. To prevent rigid body rotation and displacement of the 
cross section set , , and . The final results for the displacements are

, (8.145)

, and (8.146)

. (8.147)

8.4.2 Equilibrium

The differential equation for axial equilibrium is

. (8.148)

The axial normal stress  does not contribute to eq. (8.148) since it is independent of coordinate z. Equation 

(8.148) is identically satisfied by the introduction of the stress function  where the stress components are 
related to the stress function by

. (8.149)

For shear stress  to satisfy the boundary conditions (8.115) at  the stress function . 
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For shear stress  to satisfy the boundary conditions (8.116) at  the stress function . 

That is the stress function is a constant on the boundaries, and for convenience we take  on the boundaries 
of the rectangular domain.

Substitute eq. (8.149) for the shear stresses in the expression (8.114) for the torque to get

. (8.150)

Integrate eq. (8.150) by parts with respect to s and ζ to get

. (8.151)

Since the stress function is equal to zero on the boundaries we find that the torque is given by integral of the 
stress function over the cross-sectional area:

. (8.152)

We make an additional assumption for the stress function that

, (8.153)

which satisfies the boundary condition that . Function  must satisfy the boundary condi-

tion . The shear stresses for this assumption are given by

. (8.154)

Substitute the stress function (8.153) into the torque (8.152) to get

. (8.155)

8.4.3 Static equivalence

In general, the resultants of the axial normal stress  acting over the cross section are a normal force denoted 

by N, a bending moment about the s-axis by , and a bending moment about the ζ-axis by . For a laminated 

wall these resultants are given by

, (8.156)

where  is the number of plies, and . At the bottom of the k-th ply , and at the top of 

the k-th ply , . From eqs. (8.123) and (8.149) the axial normal stress in the k-th ply is
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. (8.157)

Substitute eq. (8.157) for the axial normal stress into the equations for the axial force and bending moments 
given by eq. (8.156). In the process of computing the resultants, integrals that are explicit in coordinates s and ζ 
are performed. Integrals of the stress function also appear in this process and from eq. (8.155), and we use the 
fact that

.

The results are

, (8.158)

, and (8.159)

. (8.160)

Stiffness coefficients in the previous equations are defined by

. (8.161)

Shear-extension coupling coefficients are defined by

. (8.162)

We limit consideration to a symmetric laminate in which the stacking sequence of the plies is symmetric about 
the midplane. Symmetry leads to coefficients

. (8.163)

To illustrate that symmetry results in the previous property consider two identical plies labeled K and L in figure. 
8.13. The two plies have the same material properties, same thickness denoted by h, and are symmetrically 

located with respect to the midplane. Symmetry requires the coordinates . The remaining coordi-

nates are  and . The sum the of plies K and L that contribute to coefficient  
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. (8.164)

Hence, for a symmetric laminate the normal force  leads to coefficient , bending moment  

leads to coefficient , and bending moment  leads to coefficient  given by

. (8.165)

The transverse shear resultants acting on the cross section are denoted by  and . They are given by

 and . (8.166)

Substitute eq. (8.154) for the shear stresses in the integrals of the previous equations to get

, and (8.167)

. (8.168)

Therefore, the resultants acting on the cross section of the bar are  and an 

applied torque .

8.4.4 Principle of complementary virtual work

Consider uniform torsion state of the bar as shown in figure. 8.11 where the displacements, strains, and forces 
satisfy the compatibility conditions, Hooke’s law, and the equilibrium conditions. In this state, the actual dis-
placements are  given by eqs. (8.145), (8.146), and (8.147), respectively. The actual non-zero 

strains are  and the corresponding stresses are , respectively. The only cross-

sectional resultant is the torque  and its corresponding rotation is . Now consider infinitesimal increments 

in the stresses denoted by  that satisfy equilibrium. For a bar of length L, , the 

increment in the internal complementary work is given by

, (8.169)

Note that the strains and stresses are independent of the axial coordinate z. The increment in the external comple-
mentary work is 

. (8.170)
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From eqs. (8.145) to (8.147), and with displacement coefficients , the displacements at the end cross 
sections are as follows:

At , , , and . (8.171)

At , , , and . (8.172)

Substitute the displacements at  and  into the increment in the external work (8.170) to get

,

in which we used the fact that the increments in the stresses are independent of the coordinate z. The integrals 
involving  add to zero. Hence,

.

Rearrange the terms in the last equation, and note displacement coefficient  is a constant, to get

. (8.173)

Integrals of the increments in the stresses are identified as increments in the resultants , , and . 

Then, we find

. (8.174)

Since the bending moment  is prescribed then . Similarly, shear force  is prescribed, so 

. The final expression for the increment in the external work is

. (8.175)

Equate the increment in the external work (8.175) to the increment in internal work (8.169), followed by division 
by L, to get the principle of complementary work as

. (8.176)

The strain-stress relations are given by Hooke’s law in eqs. (8.119) to (8.121). In Hooke’s law for the strains 
 and  we substitute eq. (8.123) for the axial normal stress. After the process of eliminating the axial normal 

stress, we get the strain relations as

A C 0= =

z 0= uz w s ζ,( )= uζ 0= us 0=

z L= uz LBζ w s ζ,( )+= uζ
L2B

2
---------– Ls

dφz

dz
--------–= us Lζ

dφz

dz
--------=

z 0= z L=

δWext LBζ w s ζ,( )+( )δσzz
L2B

2
----------– Ls

dφz

dz
--------– 

  δσzζ Lζ
dφz

dz
-------- 

  δσzs+ + ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫ w s ζ,( )δσzz[ ] ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫–=

wδσzz

δWext LBζ( )δσzz
L2B

2
----------– Ls

dφz

dz
--------– 

  δσzζ Lζ
dφz

dz
-------- 

  δσzs+ + ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫=

B

δWext LB ζδσxx ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫
L2B

2
--------- δσzζ ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫– L
dφz

dz
-------- ζδσzs sδσzζ–( ) ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫+=

δMs δVζ δMz

δWext LBδMs
L2B

2
---------δVζ– L

dφz

dz
--------δMz+=

Ms δMs 0= Vζ

δVζ 0=

δWext L
dφz

dz
--------δMz=

dφz

dz
--------δMz εzzδσzz γ zζδσzζ γ szδσsz+ +( ) ζd sd

t 2⁄–

t 2⁄

∫
b 2⁄–

b 2⁄

∫=

εzz γ sz
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, (8.177)

where the compliance coefficient . Let  and  in eq. 

(8.123) to find that the increment in the normal stress is 

. (8.178)

Substitute eq. (8.177) for the strains in eq. (8.176), followed by substitution of eq. (8.178) for the increment in 
the normal stress. The result of these substitutions is the following form for the principle of complementary 
work:

. (8.179)

Statically admissible increments  and  in eq. (8.179) are defined in terms of the increment in the stress 

function  by

. (8.180)

Substitute eq. (8.180) for the increments in the stresses in eq. (8.179), followed by the substituting of eq. (8.154) 
for the stresses  and  in eq. (8.179). The result of these substitutions is

. (8.181)

In the case of laminated cross section the last equation is written as

.

The integrations with respect to ζ are carried out in the previous equation, and the result is written as

, (8.182)

where the stiffness coefficient  is given in eq. (8.161). The laminate compliance coefficients in eq. (8.182)are 

defined by

, and (8.183)

εzz Bζ= γ zζ C′44σzζ= γ sz
C′26

C′22
---------- 
 Bζ β66σsz+=

β66 C′66 C′26
2 C′22⁄–= B B δB+→ σsz σsz δσsz+→

δσzz
ζ

C′22
----------δB

C′26

C′22
----------δσsz–=

dφz

dz
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ζ2

C′22
----------B 
  δB C′44σzζ( )δσzζ β66σsz( )δσsz+ + ζd
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t 2⁄

∫
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 
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sd
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b 2⁄

∫=

δσzs δσzζ

δψ1
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2
--- 
  2
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----------B 
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2
---

2
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2dψ1

ds
--------- 

  δ
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--------- 
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 

sd
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∫=

dφz
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--------δMz

ζ2

C′22
k( )

-----------B 
  δB C′44

k( ) t
2
---

2
ζ2–

2dψ1

ds
--------- 

  δ
dψ1

ds
--------- 
  4β66

k( )ζ2ψ1( )δψ1+ +

ζk

ζk 1+

∫
k 1=

Np

∑
 
 
 
 
 

sd

b 2⁄–
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∫=

dφz

dz
--------δMz D22B( )δB t5
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--------- 
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  ψ1 δψ1+ + sd

b 2⁄–

b 2⁄

∫=

D22

a44
30
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------ 
  C′44

k( ) t
2
---

2
ζ2–

2
ζd
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∫
k 1=

Np

∑ 30
t5
------ 
  C′44

k( ) t4
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--- ζk 1+
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. (8.184)

The terms involving the derivatives of  and in eq. (8.182) are integrated by parts with respect to s. Note 

that the boundary term vanishes since . (  is specified at .) After integration by 

parts, eq. (8.182) reduces to

. (8.185)

From eq. (8.165) we substitute  in eq. (8.185) and collect the terms multiplying  to get

. (8.186)

Finally, substitute  in eq. (8.186) to get the complementary work statement as

. (8.187)

Since the increment in complementary work (8.187) holds for every continuous function  such that 

, we find the following differential equation governing function :

. (8.188)

Simplify eq. (8.188) by multiplying by  to write the differential equation as

. (8.189)

The solution of eq. (8.189) subject to  is

, where . (8.190)

The torque is computed from eq. (8.155) to find

, (8.191)

where the function  is defined as

a66
12
t3
------ 
  β66

k( ) ζ2 ζd

ζk

ζk 1+

∫
k 1=

Np

∑ 12
t3
------ 
  β66

k( )1
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--- ζk 1+
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3–( )

k 1=

Np

∑= =

ψ1 δψ1
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  d2ψ1
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------------– t3

3
----a66ψ1+ δψ1 sd
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∫+=
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b 2⁄
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t3
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----
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dz
-------- η26B– 
  δψ1 sd
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∫
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dφz

dz
-------- η26B– 
 –= b 2⁄– s b 2⁄< <

ψ1 b 2⁄±( ) 0=

ψ1 s( ) 1
a66
-------

dφz

dz
-------- η26B– 
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, and . (8.192)

Substitute eq. (8.165) for coefficient  in eq. (8.191) to find

Solve the latter equation for the torque and write the result as

. (8.193)

where  is the torsional stiffness of the bar given by

 . (8.194)

From eq. (8.146) and eq. (8.165), the lateral displacement of the bar is

. (8.195)

Under the action of torsion the axis of the bar does not remain straight, but it is curved as shown in figure. 
8.14(a).

Example 8.5 Transverse bending and torsion of a composite channel section

The cross section of the bar shown in figure. 8.15(a) is composed of a lower horizontal flange with length 
, an upper horizontal flange with length . The flanges are joined by a vertical web 

with length . The lower flange is denoted by branch 1, the web by branch 2, and the upper flange by 

branch 3. Each branch is fabricated from T300/5208 graphite/epoxy with material properties listed in Table 8.2 
on page 231, and the dimensional units used in this example are Newtons and millimeters. The laminate in each 
branch consists of eight plies with a specially orthotropic, symmetric stacking sequence of . 

The thickness of each branch . As shown in figure. 8.15(b), the cross section is symmetric about 
the X-axis both in geometry and material properties. The axial stiffness per unit length B is given in eq. (8.46), 

g µb
2
--- 

  1 µb
2
--- 

  1–
µb

2
--- 

 tanh–= µb
2
--- b

2t
----- 10 a66 a44⁄( )=

B

Mz
bt3

3a66
----------

dφz

dz
--------

η26
2

bD22
------------Mz– 

  g µb
2
--- 

 =

Mz DT
dφz

dz
--------=

DT

DT
bt3

3
-------

g µb
2
--- 

 

a66 t3η26
2 g µb

2
--- 

  3D22( )⁄+

---------------------------------------------------------------------=

uζ
z2

2
----

η26

bD22
------------ 
 Mz– zs

Mz

DT

------ 
 –=

b 2⁄

uζ

s
b 2⁄–

z L=

uζ

0 zL

L2

2
-----

η26

bD22
------------ 
 Mz–

s 0=
(a) (b)

Fig. 8.14 Lateral displacement of the bar under torsion: (a) in the plane s = 0, and (b) in the plane z = L

0

b1 16 mm= b3 16 mm=

b2 32 mm=

45°/ 45°– /0/90[ ]S

t 1.016 mm=
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the torsional stiffness per unit length  is given in eq. (8.47), and they are the same in each branch. For a spe-

cially orthotropic laminate the coupling coefficient b = 0 in eq. (8.46). Numerical evaluation of these stiffness 
coefficients are

 , and .

 The section shown in figure. 8.15(a) is subject to an axial force N (not shown in figure. 8.15(a)), transverse shear 
forces Vx and Vy, bending moments Mx and My, and a torque Mz.

a) Determine the material law for extension and bending of the bar.

b) Determine the material law for shear and torsion of the bar.

Solution to part (a).  The parametric equations of the contour in the X-Y coordinates are

 ,

, and

.

To locate the modulus-weighted centroid on the X-axis, we first have to determine the modulus-weighted area  

and the modulus-weighted first area moment about the Y-axis  from eq. (8.52). These are given by

, and 

.

The location of the modulus-weighted centroid (8.53) is

.

The parametric equations of the contour with respect to the centroidal axes x and y are determined as follows:

Bs

B A22 A12A21 A11⁄– 15 822.7 N/mm,= = Bs A66 5 565.23 N/mm,= =

Mx

My

CVx

Vy

Mz

S.C.

b1

b2

b3

s1 q1,s2 q2,

s3 q3,

X x,

Y

y

S.C. O
C

(a) (b)

Fig. 8.15 (a) Channel section subject to transverse bending and torsion. 
(b) Cross-sectional coordinate systems and shear flows.

X1 s1( ) b1 s1–= Y1 b2 2⁄–= 0 s1 b1≤ ≤

X2 s2( ) 0= Y2 s2( ) b2 2⁄– s2+= 0 s2 b2≤ ≤

X3 s3( ) s3= Y3 b2 2⁄= 0 s3 b3≤ ≤

S

SY

S B s1d

0

b1

∫ B s2d

0

b2

∫ B s3d

0

b3

∫+ + B b1 b2 b3+ +( ) 1.01265
6

×10 N= = =

SY BX1 s1( ) s1d

0

b1

∫ BX2 s2( ) s2d

0

b2

∫ BX3 s3( ) s3d

0

b3

∫+ + B b1
2 b3

2+( ) 2⁄ 4.05061 6×10 N-mm= = =

Xc SY S⁄
b1

2 b3
2+

2 b1 b2 b3+ +( )
------------------------------------- 4 mm= = = Yc 0=
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(a)

(b)

(c)

Equations (a), (b), and (c) are substituted into the formulas for the modulus-weighted second moments  and 

 given by eq. (8.57) to get 

, and (d)

. (e)

The modulus-weighted product moment , because the x-axis is an axis of symmetry. The cross-sec-

tional material law in extension and bending is

. (f)

Solution to part (b).  To establish the material law for shear and torsion we start with the shear flow given by eq. 
(8.113). For the channel section the product moment , which means coefficients  and 

 in eqs. (8.59) and (8.69). At the contour origin where  the shear flow must equal zero since the 

longitudinal edge is free of traction. Equation (8.113) for each branch reduces to

. (g)

The modulus-weighted, first area moments  and  are functions of the contour coordinate given by eq. 

(8.70), and have dimensional units of N-mm. The first area moment functions with respect to the x-axis are

, (h)

, and (i)

x1 s1( ) X1 s1( ) Xc– 12 mm s1–= = y1 16 mm–= 0 s1≤ 16 mm≤

x2 s2( ) 4 mm–= y2 s2( ) 16 mm– s2+= 0 s2 32 mm≤ ≤
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Dyy
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0
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2
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S 0 0
0 Dxx 0

0 0 Dyy

dw
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-------

dφx

dz
--------

dφy

dz
--------

106
1.01265 N 0 0

0 172.826 N-mm2 0

0 0 27.004 N-mm2

dw
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-------

dφx

dz
--------

dφy

dz
--------

= =

Dxy 0= nx ny 0= =

k 1= s1 0=

qj sj( ) Sxj sj( )
Vy

Dxx

--------– Syj sj( )
Vx
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--------–= 0 sj bj≤ ≤ j 1 2 3, ,=

Sx Sy

Sx1 s1( ) By1 s1d

0
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. (j)

Note that at the free longitudinal edges  and . The 

first area moment functions with respect to the y-axis are

, (k)

, and (l)

. (m)

Also note that  and . The resultant of the shear flow distribution is a horizontal force 

denoted by , a vertical force , and a torque at the shear center . The resultant forces are

, and . (n)

Equation (n) yields the expected result that the horizontal force equals the shear force , and the vertical force 

equals the shear force . We cannot compute the torque until the location of the shear center is known. The 

coordinates of the shear center  are determined by letting , , , and 

 in eq. (3.106) on page 54. The transformation of eq. (3.106) to the composite laminate is

. (o)

The coordinate normal to the contour with respect to the centroid is denoted by . It is depicted in figure. 

3.3(b) on page 33, and the expression to compute it is given in eq. (3.11) on page 34. For the channel section the 
normal coordinates for each branch are

. (p)

Evaluation of eq. (p) results in , , and . For the channel section 

in this example the evaluation of eq. (o) is
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. (q)

The torque from the shear flows with respect to the shear center is

, (r)

where the coordinate normal to the contour with respect to the shear center is denoted by . This normal 

coordinate is depicted in figure. 3.3(b) on page 33, and the expression to compute it is given in eq. (3.10) on 
page 34. For this example the normal coordinate for each branch is given by

. (s)

Evaluation of eq. (s) yields , , and . Evaluating the torque given by 

eq. (r) gives

. (t)

Equation (t) shows that the torque due to the shear flows equals zero at the shear center. Hence, the resultant of 
the shear flow distribution is a force with its line of action passing through the shear center having components 

 and .

The material law for transverse shear relates the shear strains  and  to the shear forces  and . For 

the bar made of an homogeneous, isotropic material this material law is discussed in article 5.5.3 on page 143. 
Referring to eq. (5.76) the form of the material law is the same for the composite material. That is, 

, (u)

where the flexibility influence coefficients  are determined from the complementary strain 

energy per unit axial length . For the open section  is obtained from eq. (8.97) on page 242, and it is

. (v)

The shear strains  and  are determined from derivatives of the complementary strain energy per unit axial 

length with respect to the shear forces. For the channel section in this example we get the following results:

,
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,

. (w)

In general, external loads cause the bar to resist a torque. For an open cross-sectional contour the shear flows 
cannot provide this resistance to torsion. A separate analysis for the linear elastic response to uniform torsion of a 
symmetrically laminated bar was developed in article 8.4. The result of this development is the material law 
(8.193) that equates the torque to torsional stiffness  times the twist per unit length. The torsional stiffness is 

given by eq. (8.194). To compute  we evaluate the following laminate properties: 

• the transverse shear compliance (8.183) , 

• the torsional compliance (8.184) ,

• the bending stiffness (8.161) , 

• the dimensionless shear-extension coefficient in bending (8.162) , and

• the solution parameter (8.190) .

The function  appearing in the equation for  depends on the length of the branch. For the channel 

section the values of this function are

. (x)

The torsional stiffnesses for each branch are

, and (y)

. (z)

The torsional stiffness of the channel is equal to the sum of the torsional stiffnesses of each of its branches. That 
is,

. (aa)

Finally, the material law for transverse shear and torsion is

ψy
1

A66( )i

--------------qi
∂qi

∂Vy

--------- sid

0

bi

∫
i 1=

3

∑ cyxVx cyyVy+= =

cxx 9.16404 6–×10  N 1–= cxy cyx 0= = cyy 6.73827 6–×10  N 1–=

DT

DT

a44 242.736 6–×10  mm2/N=

a66 200.446 6–×10  mm2/N=

D22 1 130.94 N-mm,=

η26 0.0459727–=

µ 2.82838 mm 1–=

g µb 2⁄( ) DT

g
µb1

2
--------- 
  g

µb3

2
--------- 
  0.955805= = g

µb2

2
--------- 
  0.977903=

DT1 DT3
16t3

3
----------

g µ16
2
------ 

 

a66 t3η26
2 g µ16

2
------ 

  3D22( )⁄+

------------------------------------------------------------------------ 26 589 N-mm2,= = =

DT2
32t3

3
----------

g µ32
2
------ 

 

a66 t3η26
2 g µ32

2
------ 

  3D22( )⁄+

------------------------------------------------------------------------ 54 403.4 N-mm2,= =

DT DT1 DT2 DT3+ + 107 581. N-mm2,= =
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CHAPTER 9

 

Failure initiation in FRP 
composites

 

9.1 Strength of a composite ply

 

The strength of a laminated composite wall is assessed on a ply-by-ply basis. The main failure modes of unidi-
rectional plies of fiber-reinforced polymer (FRP) composites are 

 

  

 

matrix compression failure,

 

  

 

matrix tension failure, 

 

 

 

 fiber compression failure,

 

 

 

 fiber tension failure,

 

 

 

 delamination.

The fiber modes and the matrix modes are intralaminar failure modes, meaning these failures occur within a ply. 
Intralaminar modes include fractures of the fiber and/or matrix, and fiber kinking or buckling in compression. 
Delamination is an interlaminar failure mode, and it refers to the formation of an interfacial crack, or a debond-
ing, occurring between adjacent lamina with different fiber orientations. Delamination has been modeled with the 
concepts of fracture mechanics, where the displacements are discontinuous across the interfacial crack faces. An 
initial delamination crack is postulated and fracture mechanics principles are used to determine if the crack will 
propagate in a self-similar manner. Analysis of delamination by fracture mechanics is presented in article 13.7 on 
page 392.

 Simple tests are conducted on unidirectional plies of FRP composites to determine its intralaminar failure 
strengths. There are five independent strengths of a unidirectional ply. Denote 

 

X

 

T

 

 as the longitudinal tensile 
strength along the fiber direction, 

 

X

 

C

 

 the longitudinal compression strength along the fiber direction, 

 

Y

 

T

 

 the trans-
verse tensile strength perpendicular to the fibers, 

 

Y

 

C

 

 the transverse compression strength perpendicular to the 
fibers, and 

 

S

 

L

 

 the longitudinal shear strength in the 

 

x

 

1

 

-

 

x

 

2

 

 plane. Typical values of the five basic strengths of 
selected composite materials are listed in table 9.1.
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Failure criteria for unidirectional FRP composites based on general states of stress 

 

σ

 

11

 

, 

 

σ

 

22

 

, and 

 

σ

 

12

 

 are 
reviewed in Tsai (1992, Section 8) and in Herakovich (1998, Section 9.3). Several of these criteria are in the form 
of dimensionless quadratic equations in the stress components with the five basic strengths appearing as parame-
ters. The reader is referred to these references and the other references cited therein to see the details of these cri-
teria. In the next subsection we review a recent criterion based on observed damage states. 

 

9.1.1 Puck’s failure criterion

 

Intralaminar criteria for failure initiation have recently been assessed for FRP composites in the World-Wide 
Failure Exercise (WWFE) as summarized by Soden, et al. (2004). Nineteen theoretical approaches for predicting 
the deformation and failure response of FRP composite laminates were compared to test results. At the conclu-
sion of the WWFE five leading theories were selected to create recommendations and guidelines for designers. 
The theory proposed by Puck, et al. (2002) was cited as one of the five producing the highest number of accurate 
predictions and capturing more general features of the experimental results. Puck’s methodology assumes brittle 
fracture of polymer matrix composites, and distinguishes between fiber failure and inter-fiber failure (IFF) by 
separate criteria. Inter-fiber failure refers to cracks running parallel to the fibers through the thickness of a ply, 
with the plane of crack determined by three matrix-mode criteria denoted by A, B, and C.

With respect to the material principal directions 

 

x

 

1

 

-

 

x

 

2

 

-

 

x

 

3

 

, the fracture plane is parallel to the 

 

x

 

1

 

-axis as shown 
in figure. 9.1. Coordinates with respect to the fracture plane are denoted by 

 

x

 

1

 

-

 

x

 

n

 

-

 

x

 

t 

 

with the 

 

x

 

n

 

-axis normal to the 
plane. The 

 

x

 

n

 

-axis is located by a counterclockwise rotation through the angle 

 

α

 

 about the 

 

x

 

1

 

-axis. The relation 
between coordinate directions shown in figure. 9.1 is given by the direction cosines of the angle 

 

α:

 

, or ,

 

(9.1)

 

where  is the direction cosine matrix. The transformation from the stress components in the material princi-

pal directions to the stress components in the 

 

x

 

1

 

-

 

x

 

n

 

-

 

x

 

t

 

 axis system is given eq. (A.96) in the appendix. With due 
regard to the notation in this article this matrix transformation is

 

Table 9.1 

 

Strengths of selected composite materials in MPa from Tsai (1992 p. 8-2)

 

Test and strength data Composite ply

Loading Specimen Strength MPa
T300/
5208

AS/
3501

E-glass/
epoxy

Kevlar 
49/epoxy

IM6/
epoxy

 

Uniaxial [0] Longit tension 1,500 1,447 1,062 1,400 3,500

Uniaxial [0] Longit compr 1,500 1,447 610 235 1,540

Uniaxial [90] Trans tension 40 52 31 12 56

Uniaxial [90] Trans compr 246 206 118 53 150

Shear [0] or [90] Longit shear 68 93 72 34 98

XT

XC

YT

YC

SL

x1

x2

x3

1 0 0
0 αcos αsin–

0 αsin αcos

x1

xn

xt

=

x1

x2

x3

λ

x1

xn

xt

=

λ
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.

 

(9.2)

 

Complete the matrix multiplication in the previous equation to find the stress components 

 

σ

 

nn

 

, 

 

σ

 

nt

 

, and 

 

σ

 

n1

 

 act-
ing on the fracture plane in terms of the stress components in the principal material directions. The results are

.

 

(9.3)

 

Note that the stress component 

 

σ

 

11

 

 does not appear in a criterion formulated from the stress components on the 
fracture plane.

Puck’s criteria are expressed in terms of a dimensionless failure index denoted by 

 

FI

 

 for either a matrix 
mode 

 

FI

 

M

 

 or a fiber mode 

 

FI

 

F

 

. The range of the failure indices are  for no failure, and  at fail-
ure initiation. 

 

Matrix mode A.  

 

 In the uniaxial transverse tension test and the in-plane shear test, the plane of fracture is nor-
mal to the 

 

x

 

2

 

-direction so 

 

α

 

 = 0. From eq. (9.3) the stresses on the fracture plane are 

 

σ

 

nn

 

 = 

 

σ

 

22

 

, 

 

σ

 

nt

 

 = 

 

σ

 

23

 

, and 

 

σ

 

n1

 

 
= 

 

σ

 

21

 

. In the transverse tension test 

 

σ

 

22

 

 = 

 

Y

 

T

 

 at failure, and all other stresses in the 

 

x

 

i

 

-system vanish. For the in-
plane shear test all stresses in the 

 

x

 

i

 

-system vanish except that 

 

σ

 

21

 

 = 

 

S

 

L

 

 at failure. The proposed criterion includ-
ing these test results is quadratic and of the form

.

 

(9.4)

σ11 σ1n σ1t

σn1 σnn σnt

σt1 σtn σtt

λ

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

λ
T=

σnn
1
2
--- σ22 σ33+( ) 1

2
--- σ22 σ33–( ) 2αcos σ23 2αsin+ +=

σnt
1
2
--- σ22 σ33–( ) 2αsin– σ23 2αcos+=

σn1 σ21 αcos σ31 αsin+=

x1

x2

x3

xnxt

σ11

σ12

σnn
σnt

σn1

σ22

σ21

α

fracture plane

σ23

σ33

σ31
σ32

σ13

Fig. 9.1 Inter-fiber fracture plane is located by rotation through angle α about the x1-axis.

0 FI≤ 1< FI 1=

1 c1–( )
σnn

YT

-------- 
 

2
c1

σnn

YT

-------- 
  σnt

ST

------- 
 

2 σn1

SL

-------- 
 

2
+ + + 1= σnn 0≥
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The shear strength transverse to the fibers in the fracture plane is denoted 

by ST in eq. (9.4)1. In the Cartesian coordinates with axes σnn, σnt, and σn1 
the surface given by eq. (9.4) is an ellipsoid if the constant c1 < 1. In the 
shear stress plane σnt -σn1 where σnn is equal to zero, the cross section of 
the ellipsoid is an ellipse shown in figure. 9.2. The equation for the ellipse 
in the plane σnn equal to zero is

. (9.5)

The resultant of the shear stress components is denoted by , and the 

angle between the line of action of the resultant and σnt-axis is denoted by  
ψ. The stress components are related to the resultant by 

. (9.6)

Substitute eq. (9.6) for the stress components in eq. (9.5) to get

. (9.7)

On the failure ellipse  in eq. (9.7). Hence, strength  is related to strengths ST and SL by 

. (9.8)

To interpret constant c1 we take the differential of (9.4) with respect to σnn followed by setting σnn = 0 to get

. (9.9)

Along the curve on the ellipsoid defined by angle ψ equal to a constant, substitute the relations (9.6) with 
 into eq. (9.9) to get

. (9.10)

Use the result in eq. (9.8) to write eq. (9.10) as

. (9.11)

Along the curve on the ellipsoid defined by angle ψ equal to a constant, let the negative of the slope of the  

with respect to σnn at σnn = 0 be denoted by . That is,

1. There is no simple test to determine ST for FRP composites. In Puck’s criterion ST is determined from the pure transverse 
compression test. Refer to eq. (9.49) on page 280. 

σnt

σn1

SL

ST

ψ

0

σnψ
Sψ

ST–

SL–

Fig. 9.2 σnn = 0 plane.

σnt

ST

------- 
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2 σn1

SL

-------- 
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2
+ 1= σnn 0=

σnψ

σnt σnψ ψcos= σn1 σnψ ψsin=

σnψ
2 ψcos2

ST
2

--------------- ψsin2

SL
2

--------------+ 
  1= σnn 0=

σnψ Sψ= Sψ

Sψ
2 ψcos2

ST
2

--------------- ψsin2

SL
2

--------------+ 
  1= σnn 0=

c1

YT

-----
2σnt

ST
2

----------
dσnt

˙

dσnn

-----------
2σn1

SL
2

-----------
dσn1

dσnn

-----------+ + 0= σnn 0=

σnψ Sψ=

c1

2YT

--------- Sψ
ψcos2

ST
2

--------------- ψsin2

SL
2

--------------+ 
  dσnψ

dσnn

------------+ 0= σnn 0=

c1

2YT

--------- 1
Sψ
------

dσnψ

dσnn

------------+ 0= σnn 0=

σnψ

pnψ
+( )
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. (9.12)

Puck defines  as an inclination parameter. Therefore, the constant c1 is determined from

. (9.13)

Substitute the constant c1 determined from eq. (9.13) into eq. (9.4) to get the failure criterion for mode A as

. (9.14)

The following failure index for mode A is given by Puck:

. (9.15)

To show eqs. (9.14) and (9.15) are equivalent: Set  in (9.15) and subtract  from each side. 

Then square the result to arrive at eq. (9.14) after some algebraic manipulations.

The inclination parameter  is related to the inclination parameters defined for the ψ = 0 and  

failure loci on the ellipsoid. The locus of failure initiation for  is a curve in the σnn-σnt plane. At the point 

on this curve where  failure initiates when . The gradient condition at this 

point from eq. (9.9) is

. (9.16)

The locus of failure initiation for  is a curve in the σnn-σn1 plane. At the point on this curve where 

 failure initiates when . The gradient condition at this point from eq. (9.9) is

. (9.17)

Define the inclination parameter on the  curve as , and on the  curve as 

. Combine eqs. (9.13), (9.16), and (9.17) to find

, and . (9.18)

Multiply the first expression in eq. (9.18) by , and add it to the second expression in eq. (9.18) multiplied 

by , to get relationship between the inclination parameters on the tension side of the ellipse in figure. 9.2 as 

pnψ
+( )

dσnψ

dσnn

------------
σnn 0=

–=

pnψ
+( )

c1

2YT

---------
pnψ

+( )

Sψ
---------=

1
2YT

Sψ
---------pnψ

+( )– 
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2 2YT
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ST
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2 σn1
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FIM 1
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2 σnn
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SL
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+( ) ψ π 2⁄=

ψ 0=

σnn σn1,( ) 0 0,( )= σnt ST Sψ= =
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˙
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-----------+ 0=
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. (9.19)

Matrix modes B and C.  These modes are defined for a compressive normal stress, σnn < 0, acting on the frac-
ture plane. The motivation of Puck’s criterion for modes B and C is the Coulomb-Mohr (C-M) criterion (Dowl-
ing, 1993, pp. 255-261) for failure of brittle materials. In the C-M criterion a compressive normal stress resists 
fracture caused by the shear stresses σnt and σn1. The C-M criterion can be considered to be a shear stress crite-
rion in which the limiting shear stress increases for larger amounts of compression. Consider the case where σ n1 

= 0, so on the fracture plane σnn < 0 and . Then the C-M criterion can be written in the form 

, where µ is a friction coefficient and ST is the shear strength transverse to the fibers in the 

fracture plane. The friction effect, , can be used to increase the strength or to decrease the applied shear 

stress in a C-M criterion. Puck and Schürmann (1998) proposed the following criterion

, (9.20)

in which the strengths in the denominators are increased by the compressive normal stress, and  are the 

inclination parameters in compression. Set σn1 = 0 in eq. (9.20) to get , and from this expres-

sion the inclination parameter is interpreted as the negative slope of σnt with respect to σnn, or

. (9.21)

Set σnt = 0 in eq. (9.20) to get , and from this expression the inclination parameter is inter-

preted as the negative slope of σn1 with respect to σnn, or

. (9.22)

Citing better agreement with experimental results, the denominators of the shear stresses in eq. (9.20) are 
expanded and the quadratic terms in the normal stress σnn are neglected with respect to the linear terms in σnn, so 
the criterion reduces to

. (9.23)

For mathematical simplification Puck and Shürmann assume that the inclination parameters are related in a sim-
ilar way to eq. (9.18) by

. (9.24)

With this assumption eq. (9.23) reduces to the simpler form
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. (9.25)

In the Cartesian coordinates with axes σnn, σnt, and σn1 the surface given by eq. (9.25) is an elliptic paraboloid. 
Note that the failure surface does not intersect the negative σnn-axis according to the hypothesis that a compres-
sive normal stress impedes a shear fracture (i.e., the shear resistance to fracture means the contour lines in the 
failure surface increase with increasing compression). In the shear stress plane σnt -σn1 where σnn is equal to ze-
ro, the cross section of the ellipsoid is an ellipse shown in figure. 9.2. Substitute the relations given by eq. (9.6) 
into eq. (9.25) to get

. (9.26)

Differentiate eq. (9.26) with respect to σnn to get

. (9.27)

Consider the σnt-σn1 plane at σnn = 0. On the failure ellipse  and (9.26) is

. (9.28)

Evaluate eq. (9.27) at , followed by the substitution of eq. (9.28). The result is

. (9.29)

Define the inclination parameter for the curve ψ equal to a constant by . Hence,

. (9.30)

Substitute the result (9.30) into the condition of failure initiation (9.25) to find

. (9.31)

The following failure index for  is given by Puck.

. (9.32)

One can show eq. (9.32) is equivalent to eq. (9.31) if we set  in (9.32).

Combining eqs. (9.24) and (9.30) we get

, and . (9.33)
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Similar to the manipulations to get eq. (9.19), the expressions in eq. (9.33) lead to the relationship between the 
inclination parameters on the compression side of the ellipse of figure. 9.2 as 

. (9.34)

For given values of the stress components σ22, σ33, σ23, σ21, and σ31 for which , the failure index is 

a function of the angle α of the fracture plane. The condition to find α is to make the failure index a maximum. 

The necessary condition for a maximum is .To find α that satisfies the necessary condition requires a 

numerical search.

The section of the failure surface in the σnn-σnt plane where σn1 = 0 is shown in figure. 9.3(a), and the sec-
tion of the failure surface in the σnn-σn1 plane where σnt = 0 is shown in figure. 9.3(b). In addition to the five 

basic strength data for an FRP composite ply listed in table 9.1, Puck’s criterion introduces four new dimension-

less parameters: , , , and . The inclination parameters  and  are the slopes of the failure 

locus at the σnt-axis in figure. 9.3(a). Inclination parameters  and  are the slopes of the failure locus at the 

σn1-axis shown in figure. 9.3(b). Puck, et al. (2002) recommend that , which makes the slope of the 

σnn-σnt curve continuous at the σnt-axis. The inclination parameters  and  with  

computed from eq. (9.24) were used in the WWFE. Recommended ranges of inclination parameters are listed 
table 9.2.

Fiber modes.   A simple fiber mode criterion that does not interact with the longitudinal shear stresses σ21 and 

σ31 is the maximum stress criterion along the fibers. The fiber failure index  is defined by

Table 9.2 Recommended range for inclination parameter  

 from Puck et al. (2002)

Glass-fiber/epoxy 0.20 to 0.25 0.20 to 0.25

Carbon-fiber/epoxy 0.25 to 0.30 0.25 to 0.30
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Fig. 9.3 (a) Sections of the failure surface in the σnn-σnt plane, and (b) in the σnn-σn1 plane.
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, (9.35)

where  for no failure of the fiber, and  at failure.

9.1.2 Matrix failure criteria for a plane stress state

The assumption of plane stress is that out-of-plane stresses σ33, σ23, and σ31 are negligible in comparison to the 
in-plane stress components σ22 and σ21. Hence, the out-of-plane stresses can be neglected in the stress transfor-
mation equations (9.3). The stress transformation equations reduce to

. (9.36)

In mode A α = 0, and stresses σnn = σ22, σnt = 0, and σn1 =  σ21. For σnt = 0 the locus of failure initiation is 

a curve in the σnn-σn1 plane and . From eq. (9.19) we find . Therefore, the mode A failure 

index. (9.15) in plane stress reduces to

. (9.37)

Modes B and C for a plane stress state.   Substitute the stress transformation equations (9.36) into eq. (9.25) to 
get

. (9.38)

The angle of the fracture plane is determined when index FIM is a maximum value with respect to α. Substitute 

 in (9.38) to express index  as a function of . Then the necessary condition for a 

maximum can be written as

. (9.39)

One solution of eq. (9.39) is α = 0, which is the mode B fracture where the fracture plane is normal to the x2-di-
rection.

(9.40)

Now take the derivative of the failure index (9.38) with respect to  and set it equal to zero. Solve the re-

sulting expression for  to find

. (9.41)
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Equation (9.41) is used to eliminate the trigonometric functions in the failure index (9.38) to get

. (9.42)

Note that , so that the square root of eq. (9.42) is

. (9.43)

Take the left-hand inequality of eq. (9.43) and multiply by –1 to get the form

. (9.44)

Finally, add  to each side of eq. (9.44) followed by division by  to get

, (9.45)

where FIM = 1 at failure in mode C. Equation (9.41) is written in the equivalent form as

. (9.46)

At failure eq. (9.45) is solved in the form

. (9.47)

Substitute eq. (9.47) into eq. (9.46) and perform some algebra to get final result for the angle of fracture plane for 
mode C: 

. (9.48)

Transverse shear strength.   The shear strength transverse to the fibers in the fracture plane ST cannot be deter-
mined from simple tests. Instead ST is derived from the uniaxial transverse compression test in which σ22 = –YC 
at failure and all other stresses in the xi-system vanish. In eq. (9.45) set FIM = 1, σ21 = 0, and σ22 = –YC to evalu-
ate the transverse shear strength ST at the pure transverse compression condition. The result is

. (9.49)

To find the transition values of stresses σ21 and σ22 between modes B and C, solve the eq. (9.40) for σ21 and 
substitute this result for σ21 in eq. (9.45) with FIM = 1. The results are

. (9.50)

Thus, for plane stress the matrix failure indices are

FIM
1
2
---

ST

σ22
-------- 
  σ22

ST

-------- 
 

2 σ21

SL

-------- 
 

2
+ pnt

(-) +
 
 
 

2

=

1 FIM 1≤ ≤–

1 1
2
---

ST

σ22
-------- 
  σ22

ST

-------- 
 

2 σ21

SL

-------- 
 

2
2pnt

(-) 
σ22

ST

-------- 
 + + 1≤ ≤–

1 1
2
---

ST

σ– 22
----------- 
  σ22

ST

-------- 
 

2 σ21

SL

-------- 
 

2
+ pnt

(-) –≥

pnt
(-) 1 pnt

(-) +

1
2 1 pnt

(-) +( )
--------------------------

σ22

ST

-------- 
 

2 σ21

SL

-------- 
 

2
+

ST

σ– 22
----------- 
  FIM= σ22 0≤ mode C

αcos2 1
2
---

ST

σ22
-------- 
 

2 σ22

ST

-------- 
 

2 σ21

SL

-------- 
 

2
2pnt

(-) 
σ22

ST

-------- 
 + +=

σ22

ST

-------- 
 

2 σ21

SL

-------- 
 

2
+ 2 1 pnt

(-) +( )
σ22–

ST

----------- 
 =

αcos2
ST

σ22–
-----------= σ22 ST–≤ mode C

ST
YC

2 1 pnt
(-)+( )

-------------------------=

σ22 ST–= σ21 SL 1 2pnt
(-)+=



Aerospace Structures 281

Strength of a composite ply

(9.51)

(9.52)

. (9.53)

The matrix failure locus is plotted in  stress space in figure. 9.4 for the lamina subject to plane 

stress, The stress components at selected points are listed in table 9.3. 

Table 9.3 Stress components at selected points labeled in figure. 9.4

Point

a 0 0 0

b 0 0 0

c 0

d a
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Fig. 9.4 Matrix failure locus in the , , and 

 stress space for a unidirectional ply subject to 
plane stress. The failure locus is symmetric with 
respect to the  plane and the  
plane.
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 The matrix failure locus shown in figure. 9.4 is plotted in the σ22-σ21 stress plane in figure. 9.5.

 In multidirectional laminates the intralaminar failure predictions are made by the analysis of strains and/or 
stresses in each lamina, with failure criteria evaluated in each lamina. A failure initiated in one lamina predicts 
the onset of damage, or first ply failure (FPF), that is usually not the ultimate failure of the laminate. It is insuffi-
cient to predict ultimate failure with the failure initiation criteria alone if the composite structure can accumulate 
damage before ultimate failure.

9.2 Stresses in the principal material directions

The stresses in the k-th ply, , of the laminated wall are required to assess the strength of the ply. 
Starting from eq. (8.27) on page 229 we have for the k-th ply

, (9.54)

where the reduced stiffness matrix is

. (9.55)

The strains in the principal material directions are related to the strains in the beam coordinate directions by eq. 
(8.29), which is repeated below.
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Fig. 9.5 Matrix failure modes for Puck’s criterion in the  -  stress plane for 
a unidirectional ply.
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, (9.56)

where  and . Substitute eq. (9.56) for the strains in eq. (9.54) to get

. (9.57)

The axial normal strain  and the shear strain  are determined from the material law, eq. (8.45) on page 237; 

i.e.,

. (9.58)

The normal strain  is determined from the assumption  in eq. (8.35) on page 233, which yields 

. (9.59)

With the strains , , and  determined from eq. (9.58) and eq. (9.59), the stresses in the material principal 

directions in the k-th ply are obtained from eq. (9.57)

Example 9.1 First ply failure envelope for the circular tube in example 8.3

The graphite-epoxy tube is subject to a prescribed axial force N and torque Mz at its free end, and no other exter-
nal loads. Thus, the only internal actions at each cross section are an axial force N and a torque Mz. The shear 
flow q from eq. (8.74), and the normal stress resultant n from eq. (8.77), at each cross section reduce to

. (a)

From eq. (f) in example 8.3 on page 245 the function , , so the torque does not contribute 
to the expression for the normal stress resultant. From example 8.3 we have the following data:

.

Consider proportional loading and take

 . (b)

For , the torque . A radial ray that runs from the ori-

gin to the point of failure initiation in the plane of the axial force and torque is shown in figure. 9.6. Use Puck’s 
criterion, eqs. (9.51) to (9.53), to determine which of the two unidrectional layers with angles  and 

 fail first. That is, we find the minimum value of  for specified values of ,  to assess 

first ply failure. The strengths of T300/5208 graphite/epoxy are listed in table 9.4.
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.

The strains from the compliance law (9.58) are

, (c)

The normal strain  in eq. (9.59) is evaluated from in-plane stiffness matrix is given by eq. (a) of example 8.3. 

The results for the laminate strains are

. (d)

The reduced stiffness matrix is determined from the material property data listed in example 8.3 which yields the 
result

. (e)

The stresses in the principal directions of a ply are determined from eq. (9.57). For the  ply, 

 and  in eq. (9.56). The stresses in the principal material directions are

Table 9.4  Strength parameters for Puck’s criterion: eqs. (9.51) to (9.53)

a

a. Nixon (1987).

 ( ) 0.25

 ( ) 0.25

a  ( ) 0.25

b

b. Tsai (1992).

c

c. Equation (9.24).

0.241725
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Fig. 9.6 A load ray in 
the plane of the axial 
force and torque 

initiation of failure
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. (f)

For the  ply,  and  in eq. (9.56). The stresses in the principal material 

directions are

. (g)

 To illustrate the failure methodology we detail the first ply failure analysis for  and . 
The stress components in the material directions in each ply are listed in table 9.5.

Computations for .  The stress component in the fiber direction  for both plies indicates a fiber 

tension mode of failure for . Since  is larger in the  ply it leads to a smaller value of λ. From 

(9.35)

, (h)

which is solved to find . In the  ply the stress components  and  which cor-

responds to the quadrant IV of the stress plane of figure. 9.5. Evaluation of the mode A failure criterion (9.51) for 
the  ply leads to

 . (i)

The positive root of eq. (i) is . In the  ply the stresses  and , which corre-

sponds to quadrant I of the stress plane. Evaluation of the mode A failure criterion (9.51) for the  ply leads to

 . (j)

Table 9.5 Stresses in the principal material directions in the  ply and the  ply for two different load 

rays 

Stress  ply  ply  ply  ply
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The positive root of eq. (j) is . The results of first ply failure analysis for  is a matrix 

mode A failure in the  ply at .

Computations for .  The stress  in the  ply, and  in the  ply for . The 

magnitude of  in the -ply exceeds the magnitude of  in the -ply, so for fiber failure the -

ply leads to a smaller value of λ. Equating the fiber failure index in compression to equal one leads to 

, (k)

which is solved to find . 

In the -ply stresses , and , which means the matrix failure index is evaluated in quad-

rant III of the stress plane shown in figure. 9.5. To determine if the failure index is evaluated in the mode B or 
mode C sub-domain of quadrant III, we calculate the slope of the line representing the stress ratio  and 

compare it to the slope of the line dividing the mode B and mode C sub-domains. Let  denote the slope of the 

line determined by the stress ratio, and let  denote the slope of the line dividing sub-domains in quadrant III. 

Refer to figure. 9.5 to see that the stress coordinates  and  define a point on the 

line subdividing mode B and mode C. The strength data is listed in table 9.4. Numerical evaluation of the slopes 
yields

. (l)

Since , the matrix failure index is evaluated in the mode B sub-domain of quadrant III. Set the 

failure index in mode B (9.52) equal to one to get the quadratic equation

. (m)

The positive root of eq. (m) is .

In the -ply the matrix stresses  and , so the matrix failure index is computed in quadrant 

II of the stress plane. To determine if the failure is a mode B or mode C, we again determine the slopes  and 

 in quadrant II. The numerical results for the slopes are

. (n)

Since , the failure index is compute for mode C in quadrant II. Set the failure index in mode C 

(9.53) equal to one to get

. (o)

Hence, for the matrix mode C in the  ply . For  the minimum value of λ is 
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, which corresponds to a fiber compression mode in the  ply.

The following table lists first ply failure results for selected values of .

Note that the majority of first ply failures are matrix modes A and B. For  the mode of fail-

ure is fiber compression in the  ply. The first ply failure locus is plotted in figure. 9.7.

Table 9.6 First ply failure data for selected load rays

, degrees Axial force Torque Mode of failure

0 27,936.9 27.94 0  ply matrix mode A

30 17,609.8 15.25 178.9  ply matrix mode A

35 16,658.1 13.65 194.2  ply matrix mode A

90 15,625.6 0 317.5  ply matrix mode A

135 39,199.9 –27.72 563.2  ply matrix mode A

140 50,399. –38.61 658.2  ply matrix mode B

145 71,295.8 –58.40 831.0  ply matrix mode B

150 92,811.4 –80.38 943.0  ply fiber compression

155 94,149.1 –85.33 808.5  ply fiber compression

160 96,269.3 –90.46 669.1  ply fiber compression

165 99,260.1 –95.88 522.0  ply fiber compression

170 71.408. –101.7 364.3  ply matrix mode B 

180 40,067.3 –51.14 0  ply matrix mode B 

210 19,203.1 –17.91 –210.1  ply matrix mode B

215 17,992.2 –15.73 –223.8  ply matrix mode B

245 14,868.6 –6.352 –276.8  ply matrix mode B

250 14,814. –5.085 –283.9  ply matrix mode A

270 15,625.6 0 –310.1  ply matrix mode A

335 38,849.7 33.53 –317.8  ply matrix mode A

355 30,944.9 34.02 –60.49  ply matrix mode A

92 811.4 N, 20°–
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β λ  N, N  kN, Mz  N-m,
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CHAPTER 10

 

Structural stability of 
discrete conservative 
systems 

 

Structures subject to compression fail in differently than those subject to tension. For some ductile metals that are 
short and thick, compression failure is associated with a shear mechanism with a fracture plane inclined with 
respect to the axis of the compressive load. Other ductile metals may not fracture in compression but crush dur-
ing plastic deformation. Long and thin compression members fail by buckling in which the member responds by 
displacing sideways with respect to the direction of the compressive load. Buckling is characterized by

 

•

 

failure due to excessive displacements (loss of structural stiffness), and/or

 

•

 

loss of stability of an equilibrium configuration 

 

 Stability of equilibrium

 

 means that the response of the structure due to a small disturbance from its equilib-
rium configuration remains small; the smaller the disturbance the smaller the resulting magnitude of the displace-
ment in the response. If a small disturbance causes large displacement, perhaps even theoretically infinite, then 
the equilibrium state is unstable. Practical structures in engineering are stable at no load. Now consider increas-
ing the load slowly. We are interested in the value of the load, called the 

 

critical load

 

, at which buckling occurs. 
That is, we are interested when a sequence of stable equilibrium states as a function of the load, one state for each 
value of the load, ceases to be stable.

In this chapter structural stability phenomena, concepts, and methods are presented by analyzing discrete 
systems composed of rigid bars and springs. Stability of discrete systems are also presented by Simitses (1976), 
and in a monograph by Huseyin (1975). The latter author presents a general non-linear theory of elastic stability 
of discrete systems. Continuum analyses for the buckling of columns and plates are discussed in the next chapter.

 

10.1 Model A: stable symmetric bifurcation buckling 

 

This model is shown in figure 10.1 and it has one coordinate 

 

θ, 

 

, to describe the configuration of the 
model under the 

 

deadweight load P

 

. (An external load independent of its corresponding displacement.) The 
model consists of a rigid rod of length 

 

L

 

, connected by smooth hinge to a rigid base. The rod can rotate about the 
hinge, but it is restrained by a linear elastic torsional spring of stiffness 

 

K

 

 (dimensional units of F-L/ radian). The 
restoring moment of the spring acting on the bar is zero at 

 

θ

 

 = 0. Neglect the weight of the rod with respect to the 

π– θ π< <
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applied load 

 

P

 

. From the free body diagram of the rod shown in figure 10.1, the equation of motion for rotation 
about the fixed hinge is

 

(10.1)

 

where 

 

I

 

0

 

 is the moment of inertia of the rod about the fixed point and 

 

t

 

 is time.

 

10.1.1 Equilibrium method

 

This method is also known as the classical method or bifurcation method. Consider equilibrium states under the 
static, downward load 

 

P

 

 which are characterized by the angle 

 

θ

 

 being independent of time 

 

t

 

. Hence, the inertia 
term in eq. (10.1) vanishes and we have

.

 

(10.2)

 

One solution to eq. (10.2) is

.

 

(10.3)

 

Equilibrium path (10.3) is called the trivial equilibrium configuration. The equilibrium method is characterized 
by the question

 

What are the values of the load for which the perfect system admits non-trivial equilibrium configurations? 
(Ziegler, 1968)

 

A second solution of eq. (10.2) is

 

(10.4)

 

Recall from the calculus using l’Hôpital’s rule that the limit of the indeterminate form  as  is 
one. The two equilibrium paths are plotted in the load-deflection diagram shown in figure 10.2. Equilibrium path 

 

p2

 

 is called the secondary path and we note it is symmetric about 

 

θ

 

 = 0. For  there is only one equilib-

rium position:  on the primary path 

 

p1

 

. For  there are three equilibrium positions:  on 
path

 

 p1

 

, and two on the secondary path 

 

p2

 

.

L

K

θ

L

θ

Kθ

Ox

Oy

P P

initial deflected

FBD

L

Fig. 10.1  One degree-of-freedom structural model.

PL θsin Kθ– I0 t2

2

d
d θ= θ θ t( )= t 0>

PL θsin Kθ– 0= θ π<

p1: θ 0 for any P=

p2: P K
L
---- 
  θ

θsin
-----------=

θ θsin( )⁄ θ 0→

P K L⁄<

θ 0= P K L⁄> θ 0=



 

Aerospace Structures

 

291

 

Model A: stable symmetric bifurcation buckling

 

The two equilibrium paths intersect at (

 

θ

 

,

 

P

 

) = (0,

 

K/L

 

). This intersection of the two paths is called a 

 

bifurca-
tion point, 

 

and represents the equilibrium state or position common to two separate equilibrium paths. At no load 
the rod is vertical and this corresponds to the origin in the load-deflection diagram. As the load 

 

P

 

 is slowly 
increased from zero the rod remains vertical (

 

θ

 

 = 0), and at 

 

P = K/L

 

 adjacent equilibrium states exists on the sec-
ondary path.

The existence of adjacent equilibrium states in the vicinity of the 
primary equilibrium path has been noted by investigators of struc-
tural stability as the onset of buckling. Hence, buckling is character-
ized by the bifurcation point on the load-deflection diagram. For 
this reason, the term bifurcation buckling is used to describe this 
condition. As we will show later, the rod will not remain vertical for 
loads 

 

P > K/L

 

 if there are infinitesimal disturbances present (there 
always are), but will rotate either to the left or right depending on 
type of infinitesimal disturbance. We note that the magnitude of the 
angle 

 

θ

 

 becomes large as the load is increased from 

 

K/L

 

 on the sec-
ondary path. The load at the bifurcation point is called the critical 
load and is denoted as . Thus,

.

 

(10.5)

 

Small 

 

θ

 

 analysis  

 

Consider the small angles of rotation such that  for 

 

θ

 

 measured in radians. Equilib-
rium eq. (10.2) becomes

.

 

(10.6)

 

The solutions of this equation (10.6) are

, and

 

(10.7)

 

.

 

(10.8)

 

These solutions are shown in the load-deflection plane in figure 10.3. The equilib-
rium path  coincides with path 

 

p1

 

, but path  is not a good approximation to 
path 

 

p2

 

 unless 

 

θ

 

 is very small. However, the bifurcation point is the same as 
obtained in the large 

 

θ

 

-analysis. Hence, the critical load from the small 

 

θ

 

-analysis is 
the same as obtained in eq. (10.5) from the large 

 

θ

 

-analysis.

 

10.1.2 Kinetic method

 

The kinetic method, or the vibration method, is based on the definition of stability of 
equilibrium. The vibration method is characterized by the question

 

What is the value of the load for which the most general free motion of the perfect system in the equilibrium 
position ceases to be bounded? (Ziegler, 1968)

 

Let the rotation angle

 ,

 

(10.9)

 

where  is independent of time and satisfies the equilibrium eq. (10.2); i.e.,
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Fig. 10.2 Equilibrium paths
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. (10.10)

Consider the additional rotation angle  to be small in magnitude but a function 
of time. Thus, we are considering small oscillations about an equilibrium state 

 as shown in figure 10.4. Substitute eq. (10.9) for  in the equation of 

motion, eq. (10.1), to get

, (10.11)

where the dots denote derivatives with respect to time (e.g., ). Using the 

trigonometric identity for the sine of the sum of two angles, and performing some 
minor rearrangements, equation (10.11) becomes

. (10.12)

Now expand the trigonometric functions of angle  in a Taylor Series about  to get

, (10.13)

in which  means terms of order  and higher. Arrange eq. (10.13) in powers of  to get

. (10.14)

Note that “coefficient” of the term  vanishes because of the equilibrium condition given by eq. (10.10).

For very small additional rotation angles  about the equilibrium configuration, eq. (10.14) is approxi-
mated by

, (10.15)

where

. (10.16)

The solution of the second order differential equation (10.15) for  is

, (10.17)

in which constants  and  are determined by initial conditions for  and . The solution given by 

eq. (10.17) is a harmonic oscillation about the equilibrium configuration and  is interpreted as the natural fre-

quency in radians per second. Initial conditions  and  are considered to be very small to simulate an 
arbitrary infinitesimal disturbance. The smaller the initial disturbance, the smaller the maximum amplitude of the 

oscillation in . Thus,  is a condition for a stable equilibrium configuration with respect to infinitesimal 
disturbances.

The solution of the second order differential equation, eq. (10.15), for  is

PL θ0sin Kθ0– 0=

L

P

θ0

θ t( ) ϕ t( )

Fig. 10.4 Rotations in 
the stability analysis.
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. (10.18)

For arbitrary initial conditions, the term with the positive exponent in the dominates the solution. This corre-

sponds to large values of the  no matter how small the initial disturbance. Hence,  is a condition of 
unstable equilibrium configuration with respect to infinitesimal disturbances. The kinetic method for model A 
leads to the following criterion.

On the primary equilibrium path p1 given by eq. (10.3), we have from eq. (10.16) that

. (10.19)

Thus, equilibrium configurations are stable if , 

critical if , and unstable if . The pri-

mary equilibrium path ceases to be stable at , 

and  is the buckling load. On the secondary path 

(10.4) , and  for 

, Thus, the equilibrium configuration on the 

secondary path is critical at , and the equilibrium 

configurations for  are stable. Retaining the 

first non-zero term in the expansion of the differential equation of motion (10.13) at the bifurcation point 
 we get

. (10.20)

Differential equation of motion (10.20) is nonlinear. Since coefficient , its solution is a nonlinear 

oscillation about the bifurcation point for small initial disturbances (Simitses, 1976). Hence, equilibrium at the 
bifurcation point is stable. The stability of the equilibrium states for model A are shown in figure 10.5.

10.1.3 Energy method

Theorem.   A conservative mechanical system is in a configuration of stable equilibrium if, and only if, the value 
of the potential energy is a relative minimum, otherwise it is unstable.

This method is characterized by the question:

What is the value of the load for which the potential energy of the system in the equilibrium position ceases 
to be positive definite? (Ziegler, 1968)

 Dynamic criterion for stability of an equilibrium state

The equilibrium state is stable if

The equilibrium state is critical if

The equilibrium state is unstable if
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states for 
model A.
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First we have to determine if model A is a conservative mechanical system. The incremental work of the 
external load and the rotational spring acting on the bar shown in figure 10.6 are given by

. (10.21)

The incremental external work is positive since 
load P and the shortening  act in the same 
direction, but the incremental work of the spring 
on the bar opposes the increase in rotation. The 
shortening is given by

. (10.22)

The increment in the shortening with respect to an 
infinitesimal change in the rotation is

. (10.23)

The incremental external work is . Since the load P is independent of angle θ for dead-

weight loading, we can integrate incremental work expression to get . The constant C is 

determined if we define  when θ = 0. The external work function is

. (10.24)

Note that the work of P is independent of path. For example, the value of  is the same if the bar first rotated 

to 2θ and then rotated back to θ. The expression for the incremental work of the spring acting on the bar is inte-

grated with respect to θ to get . The constant  is determined if we define  at  θ = 

0. Hence,

. (10.25)

Since the work done by the external load and the spring force are independent of the process of how the final 
value of θ is achieved, they are conservative forces. The potential energy is defined as the negative of the work 
function. The negative sign means that the work done by the spring force against the rotation increases the poten-
tial energy while the work done by the force P with the rotation decreases the potential energy. Let  denote the 

potential energy of the spring and let  denote the potential energy of the external load. Then

. (10.26)

The total potential energy is denoted by V, where

. (10.27)

Second, we must determine the equilibrium positions and if these correspond to a relative minimum of V. A 
necessary condition for a relative minimum is that V is stationary with respect to θ, and this leads to equilibrium. 
That is,

, (10.28)
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which is the same equation (10.2) governing equilibrium found from the free body diagram approach. Let     

denote the rotation of the bar in equilibrium under load P, or . The Taylor series of the 

potential energy about the equilibrium position is

, (10.29)

where

. (10.30)

At equilibrium .The change in potential energy  is

 (10.31)

For infinitesimal changes in  from the equilibrium position, the lowest degree term in h dominates the 

series of . Consequently, the potential energy is positive definite if , indefinite if , and 

negative definite if . The second derivative of  is 

. (10.32)

On trivial equilibrium path  for any P, and the second derivative . Therefore,

. (10.33)

In answer to the question characterizing the 
energy method, the potential energy ceases 
to be positive definite on the primary equi-
librium path when . On the sec-

ondary path , and the 

second derivative of the potential energy is

. (10.34)

A graph of eq. (10.34) is shown in figure 
10.7. Thus,

. (10.35)

These results from the energy method confirm the previous results from the kinetic method. At the bifurcation 
point , and the second derivative . Evaluate the next two terms in the series 
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(10.31) for  at the bifurcation point to find

. (10.36)

The series for  a the bifurcation point is

. (10.37)

Hence, , and the bifurcation point  is stable.

10.1.4 Eccentric load

Consider the applied load P applied slightly off the center line of the bar by  as shown in figure 10.8. Moment 

equilibrium about the fixed pin is

. (10.38)

The equilibrium equation (10.38) solved numerically and the equilibrium paths in the load-deflection plane are 
shown as dashed lines in figure 10.9. There are two equilibrium paths: the first one begins from the unloaded 
state (P = 0, θ = 0), and a second complementary path that is not connected to the first path. As the load P 
increases from zero along the first path, the angle θ increases slowly until P is in the vicinity of . 

Equilibrium positions on the first path are stable ( ). 

Note the following characteristics.

• The deflection for the path beginning from the unloaded state is always the same sign as .

• If  is small, the equilibrium path of the imperfect system approaches that of the perfect model as the de-

flection becomes large.

• There is no intersection of two equilibrium paths.

• Even if  there are three equilibrium states for .

• There is a minimum load on the complementary path that divides unstable and stable equilibrium states.
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Fig. 10.8  Model A subject to eccentric load.
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10.1.5 Initial angle

When P = 0, suppose the bar is not vertical but is at an initial angle  with the spring restoring moment 

equal to zero as shown in figure 10.10.   Moment equilibrium about the fixed pin is

. (10.39)

Equilibrium equation (10.39) is plotted in figure 10.11. The response of model A with the initial angle is similar 
to the response of model A subject to the eccentric load in figure 10.9

Discussion.  Eccentricity in load and the initial slope of the bar are examples of imperfections. The structural 
systems are imperfect. Small imperfections of model A do not change the fact that there are large displacements 
when  of the perfect system. Model A is classified as stable symmetric bifurcation. The secondary 

equilibrium path p2 of the perfect system in figure 10.2 is symmetric about θ = 0 and it is stable.

Real structures exhibiting stable symmetric bifurcation are,

a. long straight columns subject to axial compression, and
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b. flat plates subject to in-plane edge loading.

10.2 Model B: unstable symmetric bifurcation

This model consists of a coplanar arrangement of two rigid bars of length L and a linear elastic spring of stiffness 
K. The bars are horizontal in the initial position and connect to a center hinge, with the opposite ends of each bar 
supported on roller support. The vertical spring connects to the center hinge and is not stretched when the bars 
are in the horizontal position. A horizontal load P acts at each roller support to subject the model to compression.

The deflected configuration of the model is symmetric with respect to the vertical line through the spring, 
and each bar rotates through an angle θ with respect to the original horizontal position. The deflection of the 
spring is , and the load P is independent of the corresponding displacement . The potential energy is

. (10.40)

The potential energy is stationary at equilibrium, or , which leads to
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. (10.41)

The solutions of eq. (10.41) are

. (10.42)

The equilibrium paths are shown on the load-deflection plot in figure 10.13. Equilibrium paths intersect at the 
bifurcation point .   By the equilibrium method the critical load is . However, 

equilibrium states in figure 10.13 are different than those of model A shown in figure 10.2. Note that there are 
three equilibrium positions for . 

The stability of the equilibrium states is assessed from the second derivative of the potential energy (10.40). 
The second derivative is

. (10.43)

On equilibrium path p1

. (10.44)

Therefore, on equilibrium path p1

.(10.45)

On equilibrium path p2 . The second derivative is

. (10.46)

Therefore, on equilibrium path p2

.(10.47)

At the bifurcation point  on path p2 the derivatives of the potential energy are

. (10.48)

The potential energy is a relative maximum at the bifurcation point, so the bifurcation point is unstable. Model B 
exhibits unstable symmetric bifurcation.
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Fig. 10.13 Model B equilibrium states.
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10.2.1 Initial angle imperfection

Consider a small deviation of the bars from the horizontal position represented by angle  as shown in figure 

10.14. The spring is not stretched in the initial position. 

The potential energy of the system is

. (10.49)

The potential energy is stationary at equilibrium, or . Hence, the equilibrium equation is

. (10.50)

Equation (10.50) is written in the equivalent form as

, (10.51)

where the critical load of the perfect system is . One solution to eq. (10.51) is the unloaded state at 

. Other solutions are plotted as dashed lines in the load-deflection plane of figure 10.15. Equi-

librium states along the path beginning at the unloaded state are stable until a relative maximum on the path is 
encountered at , which is indicated by the filled circles in figure 10.15. There are no stable adjacent 

equilibrium states if the load P increases from  or if θ is increases from . Any small increase in load or 

rotation from the relative maximum results in a dynamic motion of the system that may lead to catastrophic col-
lapse.

δ0

L L

K

initial

δ0 δ0

deflected

P ∆, P ∆,

θ θ

LL

K

Fig. 10.14 Imperfect model B.

V 1
2
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------- 0=
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The relative maximum on the equilibrium path emanating from the unloaded state is determined from

, where . (10.52)

For selected values of angle  the values of  are plotted from eq. (10.52) in figure 10.16. There is a 

rapid decrease in the maximum load for small increases in the imperfection angle. For example, at  

( ) , which is a 30% reduction of the buckling load with respect to the perfect system. For 

, the value of , or , which is a large rotation at the maximum load.

Discussion.  All real structures are imperfect. For columns and plates these imperfections if small did not signif-
icantly reduce the actual buckling load from the critical load  obtained in the analysis of the perfect structure. 

However, the buckling loads for axially compressed cylindrical shells in experiments are significantly less than 
the critical load determined from the perfect analysis (small displacements and slopes). Refer to Brush and Alm-
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Fig. 10.15 Equilibrium paths of the imperfect model B are shown in the load-deflection plane by 
dashed lines for (a)  and (b) .δ0 0> δ0 0<
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Fig. 10.16 The maximum load as a 
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roth (1975). Even for small imperfections in axially compressed shells the maximum load  is much lower 

than . The axially compressed cylindrical shell is sensitive to imperfections.

Is is concluded then, that the value of  may not be meaningful in practice. It depends on the nonlinear 

behavior of the equilibrium paths.

• Model B is imperfection sensitive.

• Model A is imperfection insensitive.

The question of whether a structure is imperfection sensitive is answered completely by the stability or insta-
bility of the bifurcation point or by the initial, nonlinear post-buckling path.

10.3 Model C: asymmetric bifurcation

Model C is a coplanar arrangement of two rigid bars of length L and a linear elastic spring with stiffness K. In the 
initial configuration the bars are horizontal and the spring is at a  angle with respect to the bars. The bars and 
the spring are connected to a smooth central pin. The opposite end of the left bar is pinned to a fixed point, and 
the opposite end of the spring is connected to a fixed pin at distance L below the fixed end of the left bar. The 
opposite end of the right bar is pinned to a roller support free to move horizontally. A compressive force P acts at 
the roller support and under its action the bars can rotated through an angle θ with respect to the original horizon-
tal position..

The potential energy is , where  denotes the change in the length of the spring and ∆ 

denotes the shortening of the distance between supports. These changes in length are related to angle θ by

. (10.53)

The total potential energy  is given by

. (10.54)

The potential energy is stationary at equilibrium which leads to

. (10.55)

The solutions of eq. (10.55) are

Pm

Pcr

Pcr

45°

LL

L
K

θθ

P ∆,
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initial deflected

Fig. 10.17 Model C.

V K∆s
2 2⁄ P∆–= ∆s
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V θ( ) KL2 1 θsin– 1–( )2 2PL 1 θcos–( )–=
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. (10.56)

On path p2 as , we get the indeterminate form . The limit of this indeterminate 

form is found from l’Hôpital’s rule to be

. (10.57)

The equilibrium paths are plotted on the load-deflection plane in figure 10.18. Equilibrium path p2 is asymmetric     
about θ = 0. Stability analysis leads to path p2 being stable for θ > 0 and unstable for θ < 0. Path p1 is stable for 

 and unstable for . At the bifurcation point  higher derivatives of the poten-

tial energy are  and . That is, the potential energy is neither a minimum nor maximum, 

but has a horizontal inflection point at . 

Consider a geometric imperfection of model C in which the bars 
are at an angle  with respect to the horizontal before the load is 

applied as is shown in figure 10.19. In the unloaded configuration the 
spring is not stretched nor contracted. The change in spring length is 

. (10.58)

The potential energy is

. (10.59)

The potential energy is stationary at equilibrium, which leads to

. (10.60)

Solve eq. (10.60) for P and divide by  to get

. (10.61)

Note that a solution of eq. (10.61) is . The equilibrium paths determined from eq. (10.61) are 
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Fig. 10.18 Model C equilibrium states.
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shown as dashed lines in the load-deflection plane of figure 10.20. The equilibrium path beginning at the 
unloaded state for  in figure 10.20(a) is stable and the deflection increases rapidly as the load approaches 

the critical load of the perfect system. The equilibrium path beginning at the unloaded state for  in figure 

10.20(b) is stable until the maximum load is encountered, which is indicated by the filled circle. There are no 

stable adjacent equilibrium states if P is increased from  or if θ decreases from the maximum load point. 

Hence, model C is imperfection sensitive for . 

A real structure exhibiting asymmetric bifurcation is a 
pin-supported, two-member frame. The joint connecting 
the members is assumed rigid. Thus, each bar rotates 
through the same angle at the joint as shown in figure 
10.21. For  the horizontal member is in tension, 

which is a stabilizing effect. For  the horizontal 
member is in compression, which is a destabilizing 
effect.

10.4 Discussion of models A, B, and C

We have considered three one-degree-of-freedom models (one coordinate is sufficient to describe the equilibrium 
configuration). The equilibrium paths were plotted on the  plane. For the perfect system θ = 0 for any P is 
an equilibrium state (trivial equilibrium). Two equilibrium paths of the perfect system cross at the bifurcation 
point . There are three basic bifurcation points: stable symmetric, unstable symmetric, and 

asymmetric. The unstable symmetric and asymmetric cases are imperfection sensitive. A maximum load  

below  is possible when the system has imperfections. This theory was originally developed in the PhD dis-

sertation by Koiter (1945 in Dutch, English translation 1970).
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Fig. 10.20 Equilibrium paths of the imperfect model C shown as dashed lines for (a)  and (b) 
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Model D: snap-through instability

10.5 Model D: snap-through instability

Model D is a coplanar arrangement of two rigid bars and a linear elastic spring in the shape of an arch as shown 
in figure 10.22. Each bar has the same length L, and the bars connect to a central pin. The bars are at angle α with 
respect to a horizontal line passing through the supported ends of the bars. The left end of the left bar is pin-con-
nected to a fixed support. The right end of the right bar is pin-connected to a roller support restrained to move 
horizontally by a linear elastic spring with stiffness K. The model is subject to a downward, deadweight load P 
acting at the central pin.

The total potential energy is , where  is the change in length of the spring and  is 

the downward displacement corresponding to the load P. The change in length of the spring and the downward 
displacement are

. (10.62)

Hence, the total potential energy is

. (10.63)

The total potential energy is stationary at equilibrium, which yields the equilibrium equation

. (10.64)

Solve eq. (10.64) for load P to get

. (10.65)

Note that the range of θ in eq. (10.65) is  for finite values of the load P. On a plot of the load P 

as a function of θ, horizontal slopes occur at . The derivative of eq. (10.65) with respect to θ is

. (10.66)

Therefore horizontal slopes occur at

, (10.67)

Substitute  into eq. (10.65) and use trigonometric identities to find the load at the horizontal 
slope to be

. (10.68)
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Fig. 10.22 Model D.
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For , . At  the load  with the corresponding displace-

ment . At  the load  with the corresponding displacement 

. The load-displacement response is plotted in figure 10.23 by selecting θ and computing P from     

eq. (10.65) and ∆ from eq. (10.62). There is one continuous path with no bifurcation. The loads at the horizontal 
slopes are indicated by filled circles in figure 10.23. 

The stability of the equilibrium states are determined from the second derivative of the potential energy. The 
second derivative is

. (10.69)

Substitute the expression for P from eq. (10.65) into eq. (10.69) to evaluate the second derivative on the equilib-
rium path to find

. (10.70)

For , . Select a value of θ in the range . Then, the value of  is computed from eq. 
(10.62) and the value of the second derivative of the potential energy is computed from eq. (10.70). The plot of 

the second derivative divided by  with respect to  is shown in figure 10.24. 
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Model E: a two-degree-of freedom system

For  the range of ∆ is  when θ is in the interval . From figure 
10.24 the stability of the equilibrium path is determined as

, (10.71)

, and (10.72)

. (10.73)

The stability of the equilibrium path is depicted in figure 10.25. As the load P is increased from  a maxi-

mum load is encountered. If the load is increased further the system snaps-through. The maximum point is 

called a limit point. This is a different kind of instability from the perfect systems of models A, B, and C. In 
models A, B, and C θ = 0 was an equilibrium state of the perfect system. Model D is said to have pre-buckling 
“deformations.” That is  before buckling. Snap-through is a dynamic event, and the system can settle to an 
inverted, stable equilibrium state. If the load is decreased from the inverted state to the lower limit point the sys-
tem can snap back to a shape resembling the original configuration.    

10.6 Model E: a two-degree-of freedom system

Models A to D are single-degree-of-freedom systems. Only one coordinate θ determines the position of the sys-
tem. Consider a two-degree-of-freedom system consisting of rigid bar restrained by two rotational springs with 
stiffnesses K1 and K2, and subject to a vertical, deadweight load P as shown in figure 10.26. This model is known 
as Augusti’s column. See Bazant and Cedolin (1991). The position of the bar is referenced to a right-handed Car-

tesian coordinate system x-y-z, with corresponding unit vectors . The initial position of the bar is vertical 
coinciding with the z-axis shown in figure 10.26(a), and in the deflected position it is located by two angles θ1 
and θ2 shown in figure 10.26(b) The projection of the bar into the x-z plane is at angle θ1 with respect to the z-
axis. The projection of the bar in the y-z plane is at angle θ2 with respect to the z-axis. 

The angle between the bar and the z-axis is denoted by . The Cartesian coordinates at the end of the bar in 

its deflected position in shown in figure 10.26 (c) are . By the Pythagorean theorem the 

square of the length of the bar in the deflected position is given by
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V2 0  stable, 0.293– ∆ L⁄ 0.253< <  &  1.16 ∆ L⁄ 1.1707< <,>
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V2 0  unstable, 0.253 ∆ L⁄ 1.16< <,<

∆ 0=

Pm

θ 0≠

P

∆0

snap through

snap back

stable states

unstable states

Fig. 10.25 Stability of the 
equilibrium path for model D. 
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. (10.74)

From eq. (10.74) we find that the cosine of the angle  is

. (10.75)

The displacement corresponding to load P is . The total potential energy is

. (10.76)

The series expansion of  is

. (10.77)

Neglect terms of order six and higher in the series expansion to get the total potential energy as

. (10.78)

Let  and  denote the angles in an equilibrium state, and let small changes in the angles 

with respect to the equilibrium state be denoted by

. (10.79)

The Taylor series of the potential energy about the equilibrium state is

, (10.80)

where  is called the first variation with terms linear in h1 and h2, and  is called the second variation with 
terms quadratic in h1 and h2, etc. The change in potential energy about the equilibrium state is 

. Thus,

. (10.81)

Partial derivatives of the potential energy evaluated at the equilibrium state are represented by the notation
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Fig. 10.26 Model E. (a) Initial unloaded configuration. (b) Deflected configuration 
under a downward applied load. (c) Coordinates at end of the bar.
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. (10.82)

For example,

. (10.83)

The terms in the Taylor series expansion (10.81) are

. (10.84)

A necessary condition for the potential energy to be a relative minimum or maximum at the equilibrium state 

is  for every h1 and h2, but both not equal to zero. Thus, “coefficients”  and . The 

potential energy is stationary at equilibrium. Take the partial derivatives of the potential energy (10.78) to get the 
equilibrium equations

, and (10.85)

. (10.86)

A solution to the equilibrium equations (10.85) and (10.86) is

. (10.87)

The next non-zero term in the expansion of  is the second variation. Evaluating the second order partial deriv-
atives of the potential energy (10.78) followed by evaluation on equilibrium path p1 we get

. (10.88)

Buckling loads are determined when second variation vanishes for every value of h1 
and h2, but both not equal to zero. This leads to two buckling loads and associated 
modes

, and (10.89)

. (10.90)

The critical loads and modes are shown in the load-deflection plane of figure 10.27. 
Take the case of . Then, the critical load is  and the asso-

ciated mode is .
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The second variation  is a quadratic form in variables h1 and h2. Examples of quadratic forms and their 
descriptions are listed in Table 10.1. 

The second variation (10.88) is positive definite for . At the critical load the second variation is

. (10.91)

The second variation at the critical load is said to be positive semidefinite. It is zero for all non-zero values of h1 
and h2 = 0, but is positive for all non-zero values of h2 and h1 = 0. The second variation ceases to be positive def-

inite at the critical state. The stability of equilibrium path  is determined from eq. (10.88) as follows:

. (10.92)

The stability of the bifurcation point  is not determined from the second variation of 

the potential energy.

At the critical load . This suggests we seek a solution to equilibrium equations (10.85) and (10.86) 

with  and . Equation (10.86) is identically satisfied, and eq. (10.85) reduces to

. (10.93)

Solve eq. (10.93) for P to get

. (10.94)

The equilibrium path described by eq. (10.94) is shown in figure 10.28. The load increases in the initial post-
buckling response indicating the bifurcation point is stable. 

Consider the case where . The critical points P1 and P2 coincide on the path p1 and simulta-

neous buckling modes  and  interact at . In this 

case both  and  at the bifurcation point, and we have to consider the next non-zero term in the 
expansion of the change in potential energy (10.81). To evaluate the third variation at the bifurcation point, the 
third partial derivatives of the total potential energy evaluated a the bifurcation point are

Table 10.1 Examples of quadratic forms

Description

Positive definite

Positive semidefinite

Negative definite

Negative semidefinite

Indefinite

δ2V

δ2V

h1
2 h2

2+

h1 h2+( )2

h1
2– h2

2–

h1 h2+( )2–

h1h2

0 P K1 L⁄<≤

δ2V 1
2
--- 0 h1

2⋅ K2 K1–( )h2
2+[ ]=

p1

δ2V
p1

0  stable, 0 P K1 L⁄<≤,> δ2V
p1

0 critical, P, K1 L⁄= = δ2V
p1

0 unstable, P K1 L⁄>,<

θ1 θ2 P, ,( ) 0 0 K1 L⁄, ,( )=

θ2 0=

θ10 0≠ θ20 0=

K1θ10 LP θ10 θ10
3 6⁄–( )– 0=

P
Pcr
-------

θ10

θ10 θ10
3 6⁄–

----------------------------=

K1 K2 K= =

h1 h2,( ) 1 0,( )= h1 h2,( ) 0 1,( )= θ1 θ2 P, ,( ) 0 0 K L⁄, ,( )=

δV 0= δ2V 0=
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. (10.95)

Hence,  for all values of h1 and h2. Evaluate the fourth partial derivatives of the total potential energy at 
the bifurcation point to find

. (10.96)

The fourth variation of the potential energy is

. (10.97)

The fourth variation vanishes at  and . Regions in the h1-h2 plane where the 

fourth variation is positive and negative are established by plotting the locus where it is zero as shown in figure 

10.29. The minimum values of the fourth variation occur along the directions  and are 

. Since the fourth variation can be positive, zero, and negative depending on the values of h1 

and h2, the fourth variation is indefinite. The bifurcation point is unstable. It is shown in Bazant and Cedolin 
(1991) that the condition for existence of a non-zero solution to equilibrium equations (10.85) and (10.86) is 

. The two equilibrium equations reduce to the single equation

. (10.98)

Solve eq. (10.98) for the load P to get

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

θ10 rad( )

P Pcr⁄Fig. 10.28 Post-buckling equilibrium path 
for model E with  and K1 < K2.θ20 0=

V0
3 0,( ) V0

2 1,( ) V0
1 2,( ) V0

0 3,( ) 0= = = =

δ3V 0=

V0
4 0,( ) K1= V0

3 1,( ) 0= V0
2 2,( ) K1–= V0

1.3( ) 0= V0
0 4,( ) K1=

δ4V 1
24
------ K1h1

4 6K1h1
2h2

2– K1h2
4+( )=

h2 0.414h1±= h2 2.414h1±=

h1

h2

Fig. 10.29 Regions in the h1-h2 plane where the 
fourth variation is positive and negative, Along 
the dashed lines the fourth variation is zero.

h2 3h1±=

δ4V K1– h1
4 3⁄=

θ10 θ20 θ= =

Kθ PL θ θ3 3⁄+( )– 0=
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. (10.99)

The load decreases from the critical value on the post-buckling path for  as shown in figure 10.30.

For  the bifurcation point stable and the system is imperfection insensitive. For  

the bifurcation point is unstable and the system is imperfection sensitive.
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10.8 Practice exercises

1. A rigid, straight bar of length L is pinned a point O, restrained by a linear elastic spring with stiffness K, and 
subject to a downward load P. Neglect the weight of the bar. The bar is vertical in the initial configuration as 
shown in figure 10.31(a).The spring remains horizontal as the bar rotates from the vertical through angle  as 
shown in figure 10.31(b). Refer to the free body diagram in figure 10.31(c) to find the equation of motion is

P Pcr⁄ θ
θ θ3 3⁄+
----------------------=

θ 0>

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

P
Pcr
-------

θ rad( )

Fig. 10.30 Model E post-buckling 
equilibrium path for K1 = K2 and θ1 = 
θ2 = θ.

K1 K2< K1 K2 K= =

θ
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, (10.100)

where I0 is the moment of inertia of the rod about the fixed point and t is time.  clockwise. 

a) Plot the equilibrium paths on the  plane for  and P > 0. Note,  is independent of t.

b) What is the critical load ?

c) Let the rotation angle  where  is independent of time and satisfies the equilibrium 

equation of part (a), and where the additional rotation about the equilibrium configuration  is infin-

itesimal. Determine  on the equilibrium paths, and from the dynamic criterion state the stability of 
the equilibrium states on each equilibrium path.

2. Determine the stability of the post-buckling path for model E given by eq. (10.94) and shown in figure 10.28.

PL θsin K a θsin( )[ ]a θcos– I0 t2

2

d
d θ= θ θ t( )=

θ 0>

P θ– π
2
---– θ π

2
---< < θ

Pcr

θ t( ) θ0 ϕ t( )+= θ0

ϕ t( )

ω2

L

K

a
O

θ
P

LaOx

θ

P

K a θsin( )

Oy

L

K

a

O

(a) (b) (c)

Fig. 10.31 (a) initial configuration. (b) Deflected configuration. (c) Free body diagram.
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CHAPTER 11

 

 Buckling of columns and 
plates

 

If buckling occurs before the elastic limit of the material, which is roughly the yield strength of the material, then 
it is called 

 

elastic buckling

 

. If buckling occurs beyond the elastic limit, it is called 

 

inelastic buckling

 

, or plastic 
buckling if the material exhibits plasticity during buckling (mainly metals). Many thin-walled structural compo-
nents buckle in compression below the elastic limit. Therefore, buckling determines the limit state in compres-
sion rather than material yielding. In fact, about 50 percent of an airplane structure is designed based on buckling 
constraints.

 

11.1 Perfect columns

 

Consider a perfectly straight, uniform column of length 

 

L

 

 with cross-sectional area 

 

A

 

 subject to a centric end load 

 

P

 

 as shown in figure. 11.1. (The column is drawn horizontally for convenience.) The column is long relative to its 
largest cross-sectional dimension, and the column consists of a homogeneous, linear elastic material whose mod-
ulus of elasticity is denoted by 

 

E

 

. Buckling analyses are inherently nonlinear. As the previous structural models 
discussed in chapter 10 demonstrate, nonlinear analysis results in more than one equilibrium state for a specified 
load, whereas in linear analysis there is only one equilibrium state for a specified load. A geometrically nonlinear 
analysis of a column is developed in this article in which the axial strain-displacement relation is nonlinear and 
equilibrium is taken on the displaced structure. 

z,w

y,v

L

PEA EI,

Fig. 11.1 A straight column subject to a centric, compressive axial force.
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Kinematics.  

 

Consider a differential element 

 

dz

 

-by-

 

dy

 

 in the initial, undeformed column, where 

 

dz

 

 is along the 
centroidal axis and 

 

dy

 

 is perpendicular to the centroidal axis as shown in figure. 11.2. In the 

 

z-y

 

 coordinate sys-
tem, the material point at coordinates 

 

(z,0)

 

 displaces to coordinates 

 

(z*, y*)

 

 in the deformed bar, where 

 

(z*,y*) 

 

is 
referenced to the same 

 

z-y

 

 system. These coordinates are related by

,

 

(11.1)

 

where  is the displacement parallel to the 

 

z

 

-axis and  is the displacement parallel to the 

 

y

 

-axis. The 
material points along length 

 

dz

 

 map to the differential length 

 

ds*

 

 along the centroidal axis in the deformed bar. 

By the Pythagorean theorem . The differential lengths in the deformed bar are

  and .

 

(11.2)

 

 Define the stretch ratio 

 

λ

 

 by . Consequently, the stretch ratio is related to the derivatives of the dis-

placements by

.

 

(11.3)

 

The clockwise rotation angle of element 

 

ds

 

* with respect to the 

 

z

 

-direction is denoted by . Trigonometric 

functions of this rotation angle are given by

 and .

 

(11.4)

 

Using the chain rule of differentiation and the definition of the stretch ratio these trigonometric functions can be 
written as

, and similarly .

 

(11.5)

 

We impose the hypothesis of classical theory that cross sections normal to the centroidal axis in the undeformed 
bar remain rigid and normal to the centroidal axis in the deformed bar. Thus, the differential line element 

 

dy

 

 in 
the undeformed bar does not change length in the deformed bar and remains normal to the centroidal axis in the 
deformed bar. That is, line element 

 

dy

 

 also rotates clockwise through angle . The stretch ratio (11.3) is 

expanded in a binomial series to get

z* z w z( )+= y* 0 v z( )+=

w z( ) v z( )

ds*( )2 dz*( )2 dy*( )2+=

dz* 1 dw
dz
-------+ 

  dz= dy* dv
dz
------ 
  dz=

φx

φx
dy

ds*

z* y*,( )
dz*

dy*–

z 0,( ) z dz+ 0,( )

dy

y v,

z w,

0
(a) initial state

(b) deformed state

Fig. 11.2 Differential elements in the initial state (a) and in the deformed state (b).

λ ds* dz⁄=

λ 1 dw
dz
-------+ 

  2 dv
dz
------ 
  2

+=

φx z( )

φxsin dy*–
ds*

------------= φxcos dz*
ds*
---------=

φxsin dy*–
dz

------------ 
  dz

ds*
--------- 1

λ
--- dv–

dz
--------- 
 = = φxcos 1

λ
--- 1 dw

dz
-------+ 

 =

φx
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.

 

(11.6)

 

The engineering strain is defined as . If cubic powers and higher of the displacement derivatives in 

the series expansion of  are neglected, then the strain-displacement relation is

.

 

(11.7)

 

Equilibrium.  

 

The free body diagram of the element of the bar in the deformed state is shown in figure. 11.3(a). 

The force 

 

F

 

 acting on the cross section of the deformed bar is resolved in two sets of orthogonal components. 
Components 

 

H

 

 and  act in horizontal direction and the vertical direction, respectively. Components 

 

N

 

 and  

act tangent and normal to the centroidal axis, respectively. Let 

 

α

 

 denote the angle between the vertical and the 
line of action of force 

 

F

 

. From figure. 11.3(b)  and . Components 

 

N and  are given 

by

, and (11.8)

. (11.9)

Equilibrium in the horizontal direction requires  and equilibrium in the vertical direction requires 

. Thus, the horizontal component H and the vertical component  are spatially uniform along the 

length of the bar. Since the applied compressive force P is also horizontal then . The bending moment is 

denoted by . Moment equilibrium about the right end of the element in figure. 11.3(a) leads to

. (11.10)

The differential functions are expanded in a series. For example . Then 

moment equilibrium becomes

. (11.11)

Division by dz followed by the limit as  leads to the differential equation

λ 1 1
2
--- 2dw

dz
------- dw

dz
------- 
  2 dv

dz
------ 
  2

+ + 1
8
--- 2dw

dz
------- dw

dz
------- 
  2 dv

dz
------ 
  2

+ +
2

– …+ + 1 dw
dz
------- 1

2
--- dv

dz
------ 
  2

O dw
dz
------- 
  3

+ + += =

εzz λ 1–=

λ

εzz
dw
dz
------- 1

2
--- dv

dz
------ 
  2

+=

dy*–

dz*

φx
H

H dH+
Sy

Sy dSy+

Mx

Mx dMx+

Fig. 11.3 Free body diagram of the differential element in the deformed bar (a), and the 
resolution of the resultant force F into components acting on the cross section (b).

(a) (b)
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Vy
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Sy Vy

H F αsin= Sy F αcos= Vy

N F α φx–( )sin F αsin( ) φxcos F αcos( ) φxsin– H φxcos Sy φxsin–= = =

Vy F α φx–( )cos F αcos( ) φxcos F αsin( ) φxsin+ Sy φxcos H φxsin+= = =

dH 0=

dSy 0= Sy

H P–=

Mx

Mx dMx Mx– dy*–( )H– dz*( )Sy–+ 0=

dMx
dMx
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----------dz
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2

d

d Mz dz2( ) …+ +=

dMx
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---------- dy*–
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------------ 
 H– dz*

dz
--------- 
  Sy– dz O dz2( )+ 0=
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. (11.12)

Hooke’s law.  The normal force component N is proportional to the axial strain  of the centroidal axis, and the 

bending moment is proportional to the rotation gradient  of the cross section. That is,

, (11.13)

where the modulus of elasticity is denoted by E, the cross-sectional area by A, and the second area moment of the 
cross section by I.

11.1.1 Pre-buckling equilibrium

The trivial equilibrium configuration of the column is straight and in compression subject to the applied axial 
force P. The lateral displacement , rotation , and  for . From eq. (11.8) 

. From eq. (11.9)  but overall equilibrium requires . Let  denote the axial 

displacement in pre-buckling equilibrium. Then, strain (11.7) and stretch ratio reduce to  and 

, respectively. Hooke’s law (11.13) for the axial force is . Integrate Hooke’s law 

and take the axial displacement  to get

. (11.14)

11.1.2 Buckling

To assess buckling of a slightly defected column, we introduce a small, dimensionless parameter  such that all 

dependent variables equal there pre-buckling equilibrium expressions as . The displacements and rotation 
are expressed as

. (11.15)

The trigonometric functions of the rotation angle are

. (11.16)

In the following developments terms of  and higher degrees are neglected. The vertical shear force 

. The axial strain (11.7) expansion is

. (11.17)

The first expression in (11.8) is written as , where . The expansion for 

this equation containing the force N is

dMx

dz
---------- dv

dz
------ 
 P– 1 dw

dz
-------+ 

  Sy– 0=

εzz

Mx
dφx

dz
--------

N EAεzz= Mx EI
dφx

dz
-------- 
 =

v z( ) 0= φx z( ) 0= Mx 0= 0 z L≤ ≤

N H P–= = Sy Vy= Sy 0= w0 z( )

εzz
dw0

dz
---------=

λ 1
dw0

dz
---------+= P– EA

dw0

dz
--------- 
 =

w0 0( ) 0=

w0 z( ) Pz–
EA
---------=

ξ

ξ 0→

w z( ) w0 z( ) ξw1 z( )+= v z( ) ξv1 z( )= φx z( ) ξφ1 z( )=

φxsin ξφ1 z( ) O ξ3( )+= φxcos 1 O ξ2( )+=

ξ2

Sy ξSy1=

εzz
dw0

dz
--------- ξ

dw1

dz
---------+=

N P φxcos Sy φxsin+ + 0= N EAεzz=
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. (11.18)

To satisfy the last equation for each value of , the coefficients of  and  must vanish, which leads to

. (11.19)

On the pre-buckling equilibrium path the stretch ratio .

The expansion of the equilibrium equation for bending (11.12) combined with the moment from Hooke’s 
law (11.13) is

. (11.20)

Therefore, the significant result from eq. (11.20) is

. (11.21)

The first expression in eq. (11.5) relating the rotation, the stretch ratio, and the displacement v(z) is written as

. (11.22)

The expansion of eq. (11.22) becomes

. (11.23)

Therefore,

. (11.24)

Solve eq. (11.24) for  and substitute the result into eq. (11.21) to get

. (11.25)

Now differentiate eq. (11.25) with respect to z and note that  consistent with the equilibrium equation 

. The final result is

, (11.26)

where

ξ0 EA
dw0

dz
--------- P+ ξ EA

dw1

dz
--------- O ξ2( )+ + 0=

ξ 0≠ ξ0 ξ1

dw0

dz
--------- P–
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-------=

dw1
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--------- 0=

λ 1 P EA( )⁄–=

ξ0 0⋅ ξ EI
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2

d

d φ1 P
dv1
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--------– 1 P
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-------– 
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2

d

d φ1 P
dv1

dz
--------– 1 P

EA
-------– 
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1 P EA( )⁄–[ ] φxsin dv
dz
------+ 0=

ξ0 0⋅ ξ
dv1

dz
-------- 1 P

EA
-------– 

  φ1+ O ξ2( )+ + 0=

dv1

dz
-------- 1 P

EA
-------– 

  φ1+ 0=

φ1 z( )

EI
z3

3

d

d v1– P 1 P
EA
-------– 

  dv1

dz
--------– 1 P

EA
-------– 

  2
Sy1– 0=

dSy1

dz
---------- 0=

dSy

dz
-------- 0=

z4

4

d

d v1 K2

z2

2

d

d v1+ 0= v1 v1 z( )= 0 z L< <
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. (11.27)

The expressions for the bending moment and vertical shear force are

. (11.28)

The solution of eq. (11.26) for  is subject to boundary conditions at z = 0 and z = L. There are four so-

called standard boundary conditions. These are shown in figure. 11.4.

   

One solution to the differential equation (11.26) subject to boundary conditions A-D is  for all 

values of the load P. This is the trivial solution. The general solution of eq. (11.26) for  is

, (11.29)

where A1, A2, A3, and A4 are arbitrary constants to be determined by boundary conditions.

K2 P
EI
------ 1 P

EA
-------– 

 =

1 P
EA
-------– 

 Mx1 EI
d2v1

dz2
---------- 
 –= 1 P

EA
-------– 

  2
Sy1 E– I

z3

3

d

d v1 K2
dv1

dz
--------+=

v1 z( )

z
L

P

A. Pinned-pinned

v1 0( ) 0= v1 L( ) 0=

Mx1 0( ) 0= Mx1 L( ) 0=

z
L

P
B. Clamped-free

v1 0( ) 0= Mx1 L( ) 0=

φx1 0( ) 0= Sy1 L( ) 0=

z
L

P

C. Clamped-clamped

v1 0( ) 0=

φx1 0( ) 0=

v1 L( ) 0=

φx1 L( ) 0=

z
L

P

D. Clamped-pinned

v1 0( ) 0=

φx1 0( ) 0=

v1 L( ) 0=

Mx1 L( ) 0=

Fig. 11.4 Standard buckling boundary conditions.

v1 z( ) 0=

K2 0>

v1 z( ) A1 Kz( )sin A2 Kz( )cos A3z A4+ + +=
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Example 11.1 Critical load for clamped-free boundary conditions in figure. 11.4(B)

Consider the clamped-free boundary conditions denoted as (B). Determine the critical load  for which the 

perfect column admits a non-trivial equilibrium state.

Solution.  The bending moment and vertical shear force (11.28) vanish at z = L. The four boundary conditions in 
this case are

, (a)

where the primes denote derivatives with respect to z. Taking derivatives of eq. (11.29) we have

. (b)

Substitute these solutions into the four boundary conditions to get

. (c)

A non-trivial solution for A1 to A4 requires the determinate of coefficients to vanish:

. (d)

After expanding this determinate we get

, (e)

which is called the characteristic equation. The solution  of the characteristic equation leads to the triv-

ial solution for . Non-trivial solutions to the characteristic equation occur for , whose positive 
roots are

. (f)

For the discrete values of  in eq. (f) to satisfy the equation in the fourth row of matrix eq. (c) requires 

. Setting  in the equation in the second row of matrix eq. (c) requires . The equation of 

the first row of matrix eq. (c) yields . Note that the equation obtained from the third row of matrix eq. 

Pcr

v1 0( ) 0= v1′ 0( ) 0= EIv1″ L( ) 0= v1′′′ K2v1′+[ ]z L= 0=

v1 A1 Kz( )sin A2 Kz( )cos A3z A4+ + +=

v1′ A1K Kz( )cos A2K Kz( )sin– A3+=

v1″ A1K2 Kz( )sin– A2K2 Kz( )cos–=

v1′′′ A1K3 Kz( )cos– A2K3 Kz( )sin+=

0 1 0 1
K 0 1 0

K2 KL( )sin– K2 KL( )cos– 0 0

0 0 K2 0

A1

A2

A3

A4

0=

det

0 1 0 1
K 0 1 0

K2 KL( )sin– K2 KL( )cos– 0 0

0 0 K2 0

0=

K5 KL( )cos– 0=

K 0=

v z( ) KL( )cos 0=

KnL 2n 1–( ) π 2⁄( )= n 1 2 3 …, , ,=

KnL

A3 0= A3 0= A1 0=

A2 A4–=
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(c) is identically satisfied for  and the discrete values of . For each value of n we have an associated 

buckling mode (A1 = A3 = 0, A2 = – A4):

. (g)

The buckling loads are determined from the expression for  in eq. (11.27), which after some manipula-
tion is written as

, (h)

where  and . The radius of gyration of the cross section is denoted by r. At 

 we have

, (i)

where . Equation (i) is a quadratic equation for , and the lowest root is

, (j)

where  is the slenderness ratio of the column. For selected values of the slenderness ratio the values of  

are listed in table 11.1.

Values of  monotonically decrease with increasing slenderness ratios and approach a minimum value of 

 as . At  the value of  is 0.63 percent higher than the minimum, and at 

 the value of  is 0.03 percent higher than the minimum. In design we use the minimum value of 

 for the critical load. That is,

Table 11.1 Buckling coefficient for selected slenderness ratios.

20 1.00625

40 1.00153

60 1.00069

80 1.00039

100 1.00025

1.0
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--------- L
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---------------------
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. (k)

The result for the critical load in eq. (k) is obtained if the axial strain at the bifurcation point with is 
neglected with respect to unity. From eqs. (11.17) and (11.19) the strain at the bifurcation point is

.

For  the range of the strain at bifurcation point is . For small strain at 

the bifurcation point the stretch ratio . Equation (11.27) yields . Hence, the val-

ues of k are

(l)

Solve eq. (l) for the loads to get

, (m)

where Pn are the buckling loads. The first three buckling modes and corresponding buckling loads are shown in 
figure. 11.5. Remember that in design we use the minimum EI for the cross section. J
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Fig. 11.5 First three buckling modes for the clamped-free column.
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11.1.3 Buckling equations for negligible strain at the bifurcation point

Neglecting the axial strain with respect to unity means the stretch ratio , and eqs. (11.21), 
(11.24), and (11.27) simplify to

, (11.30)

From eq. (11.26) the differential equation governing buckling is

. (11.31)

The critical loads for boundary conditions A through D and for EI = constant are given in figure. 11.6.

11.2 Initial post-buckling of the pinned-pinned column

The objective in this analysis is to seek an approximation for the displacement and load about the bifurcation 
point so that the early post-buckling behavior can be estimated. That is, does the load increase or decrease from 
its value at the bifurcation point on the post-buckling equilibrium path? The theory was originally due to Koiter 
using total potential energy (1945, in Dutch, English translation in 1970). Later Budiansky and Hutchinson 
(1964) and Budiansky (1966) employed the principal of virtual work to get results equivalent to Koiter’s static 
post-buckling analysis. In this article the nonlinear equilibrium equations are used to develop the initial post-
buckling behavior.
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Fig. 11.6 Critical buckling loads for the standard boundary conditions A to D.
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11.2.1 Summary of the nonlinear equations

The overall free body diagram of the column in a deflected 
configuration is shown in figure. 11.7. The shortening of the 
distance between support points is denoted by , where 

. If the column is cut at some point along its 
length, then equilibrium results in the vertical force compo-
nent  for .

The relation of the force N to load P is obtained from eq. (11.8) with  as

(11.32)

In eq. (11.32) force N was replaced by Hooke’s law (11.13), and we dropped the subscript x on the rotation  

introduced in article 11.1 for convenience in the following developments. The strain  is related to the deriva-

tives of the displacements by the nonlinear relation (11.7). Substitute Hooke’s law (11.13) for the bending 
moment into eq. (11.12) to get the differential equation for bending as

, (11.33)

From eq. (11.5) the trigonometric functions of the rotation are related to the displacements by

, (11.34)

where the stretch ratio is . The boundary conditions to be satisfied are

. (11.35)

11.2.2 The perturbation expansion.

From the expressions in eq. (11.30) the differential equation governing buckling in terms of the rotation is

, (11.36)

subject to the boundary conditions

. (11.37)

The solution to this boundary value problem is

. (11.38)

The lateral displacement is determined from the second equation in (11.30) as

∆
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. (11.39)

Consider the rotation and displacement in the differential equation (11.33) to be a function the dimensionless 

parameter  as well as independent variable z (i.e.,  and ). An approximate solution to the nonlin-

ear differential equation (11.33) and kinematic equation (11.34) is to be determined by perturbation expansions 
of the dependent variables in the parameter  for very small values of . To effect the procedure, the displace-

ments and rotation are expanded in a series in  as

. (11.40)

Functions , , and  are given by eqs. (11.14), (11.38), and (11.39), respectively. The remaining 

functions in the expansion (11.40) are to be determined. The expansion of the sine and cosine functions are

. (11.41)

11.2.3 Relations between the expansion functions for the rotations and lateral displacement 

With respect to the discussion in article 11.1.3 we take , so the expansion of the first equation in (11.34) is

. (11.42)

The previous series converges to zero for each sufficiently small value of  requires that the coefficient of 

each power of  must vanish. Hence,

. (11.43)

11.2.4 Perturbation expansion of the load P

We utilize the relations in eq. (11.43) to get the expansion of eq. (11.33) as

. (11.44)

To determine how the load P is a function of  multiply eq. (11.44) by  and integrate with respect to z from z 

= 0 to z = L:

. (11.45)
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Integrate twice by parts with respect to z of the  term in eq. (11.45) to get

. (11.46)

The boundary terms in the expansion functions vanish consistent with the conditions in eq. (11.35). Also, inte-

grate twice by parts with respect to z of the  term. After integrating by parts, eq. (11.45) is

. (11.47)

From the differential equation (11.36) at buckling we have

. (11.48)

Substitute eq. (11.48) into eq. (11.47) to find

. (11.49)

The last step is to impose the orthogonality conditions on the expansion functions, which are

. (11.50)

Equation (11.49) reduces to

. (11.51)

Divide eq. (11.51) by  and rearrange terms to the form ,

where

. (11.52)

The series of , which leads to

. (11.53)

In general, the expansion of  is written as
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. (11.54)

11.2.5 Solutions for the rotation and lateral displacement functions

Substitute the expansion of load P from eq. (11.54) into eq. (11.44), and arrange terms in powers of  to get

. (11.55)

For the series (11.55) to converge to zero for each sufficiently small value of , the coefficient of each power of 

 must vanish. The coefficient of  is the differential equation for buckling, eqs. (11.36) and (11.38). The coef-

ficients of  and  lead to differential equations

, (11.56)

subject to boundary conditions

. (11.57)

The non-homogeneous terms in eq. (11.56) depend on previous solutions of the expansion functions. That is,

. (11.58)

Let . The general solution to differential equation (11.56) consists of a complementary function 

 that satisfies the homogeneous equation plus a particular solution denoted by  

that satisfies the non-homogeneous equation. Then, the general solution is

. (11.59)

Consider conditions required to solve the boundary value problem presented by eqs. (11.56) and (11.57). Multi-
ply eq. (11.56) by  and integrate the result from z = 0 to z = L. The result is

. (11.60)

Integrate the first term on the left-hand side of eq. (11.60) by parts twice to get

. (11.61)

Boundary conditions (11.37) and (11.57) result in the terms on the left-hand side of eq. (11.61) evaluated at the 
end points of the interval equal to zero. Also, the integrand on the left-hand side vanishes since rotation  satis-

fies eq. (11.36). We are left with the condition for the solution of the boundary value problem for  that
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. (11.62)

For k = 2 condition (11.62) is

. (11.63)

The only way to satisfy the condition in eq. (11.63) is to take the post-buckling coefficient . The solution 

for  that satisfies the boundary conditions (11.57) is . The orthogonality condition 

(11.50) determines . Thus, . From eq. (11.43) and boundary condition (11.35) we find 

 for . For k = 3, condition (11.62) is

. (11.64)

Equation (11.64) determines post-buckling coefficient b, and it is the same as given in eq. (11.52).

From eq. (11.56) the governing equation for  with  and  is

. (11.65)

Use the trigonometric identity  to find

. (11.66)

The solution to differential equation (11.66) is

. (11.67)

Boundary conditions (11.57) lead to coefficient . Coefficient  is determined from the orthogonality 

condition (11.50)

. (11.68)

Therefore  and the solution for function  is

. (11.69)

The function  can now be determined from eq. (11.43). The result that satisfies boundary conditions (11.35) 
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. (11.70)

11.2.6 Solutions for the axial displacement functions

We make use of eq. (11.43) to find that the expansion of the strain  in (11.7) is

. (11.71)

Substitute expansions of the strain from eq. (11.71), the load P from eq. (11.54), and the cosine function from eq. 
(11.41), into eq. (11.32) to find the expansion of the axial equilibrium as

. (11.72)

For eq. (11.72) to converge to zero for each sufficiently small value of ,the coefficient of each power of  must 

vanish. Thus, we get to expressions for the derivatives of the expansion functions of displacement  as

. (11.73)

Since  and , the displacement function  for . The expression for the 

derivative of displacement function  is integrated with respect to z, and we set  to find

. (11.74)

11.2.7 Summary

From this initial post-buckling analysis the results for the expansions of the load, displacements, and rotation are

. (11.75)

The strain of the centroidal axis is

. (11.76)

Rotation functions  and  are given by eqs. (11.38) and (11.69), respectively. Lateral displacement 

functions  and  are given by eqs. (11.39) and (11.70), respectively, and the axial displacement func-

tion  is given by eq. (11.74).
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Example 11.2 Numerical results for the initial post-buckling of the pinned-pinned column 

Consider the column with a solid, rectangular cross section of height h and width b, where h < b. The radius of 

gyration is . The strain at the bifurcation point is obtained from eq. (11.76) for  is 

, and take this strain equal to . Since , we have

. (a)

Hence, the span-to-thickness ratio 

The restriction on the magnitude of the expansion parameter  in the initial post-buckling analysis is based 

on the strain at the elastic limit of 7075-T6 aluminum alloy, which is about . Let  denote the strain of a 

line element parallel to the centroidal axis. It is the sum of the strain of centroidal axis  plus the strain due to 

bending. That is,

, (b)

where  and  is the curvature of the centroidal axis. The magnitude of the maximum 

compressive strain in post-buckling occurs at midspan, , and . That is,

. (c)

The expansion for the curvature at midspan is determined from eqs. (11.75), (11.38) and (11.69). The result is

. (d)

Substitute  and  in the expansions for the strains. The numerical evaluations of the 

strain in eq. (11.76) and the strain from bending are

. (e)

The axial strain on the concave side of the bar at midspan is set equal to the elastic limit strain of . Thus,

.

The real root of the previous polynomial is the maximum value of parameter , which is 

. (f)

For post-buckling coefficients a = 0 and , we get  at  from eq. (11.54). 

There is a very small increase in the load during post-buckling. The lateral displacement of the column is deter-
mined from eqs. (11.75), (11.39), and (11.70), and it is a maximum at midspan. Evaluation of the maximum dis-
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placement is

, (g)

and  at .

The axial displacement of the column is determined from eqs. (11.75) and (11.74). The shortening of dis-
tance between supports is

. (h)

The shortening at buckling is , and the normalized shortening is defined by

. (i)

At ,  on the post-buckling path. The configuration of the column at  is shown in 

figure. 11.8.

The pre-buckling equilibrium path is determined from eq. (11.14) where , or 

. Divide by the critical load to get . From eq. (a) the factor 

. Thus,  on the pre-buckling equilibrium path.

 The load-deflection response is shown in figure. 11.9(a), and the load-shortening response is shown in fig-
ure. 11.9(b). The post-buckling behavior of the column is stable symmetric bifurcation, which is the same 
behavior as model A in article 10.1 on page 289. The load does not decrease in post-buckling. However, the 
increase in load is very small in post-buckling. From a practical point of view, the column is considered neutral in 
post-buckling.The structural stiffness is defined as . For post-buckling the structural stiffness is com-
puted as

.

The structural stiffness in pre-buckling is . The ratio of the post-buckling stiffness to the pre-buckling 
stiffness is 0.0003, which indicates the dramatic loss of structural stiffness due to buckling.J

vmax v L 2⁄( ) Lξ
π

------ 7Lξ2

64π
------------–= =

vmax 0.04638L= ξ ξmax=

∆ w L( )– L 0.0006( ) L
4
--- L 0.0006( )

8
-------------------------+ 

  ξ2+= =

∆cr ∆
ξ 0=

L 0.0006( )= =

∆ ∆cr⁄ 1 416.792ξ2+=

ξ ξmax= ∆ ∆cr⁄ 9.89= ξmax

P 1.0027Pcr=

0.994L

0.0464L

ξ ξmax 0.14605= =

Fig. 11.8 Post-
buckling configuration 
of the pinned-pinned 
column at the elastic 
limit strain.
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In-plane buckling of trusses

From eq. (11.54) the perturbation expansion of the load in initial post-buckling is . 

The post-buckling coefficients  and  correspond to unstable symmetric bifurcation behavior illus-

trated by model B in article 10.2 on page 298. Post-buckling coefficient  corresponds to asymmetric bifur-
cation behavior illustrated by model C in article 10.3 on page 302.

11.3 In-plane buckling of trusses

When a truss has all of its joints pinned, then there will be no interaction between the bending deflections of indi-
vidual members. Hence the buckling load of the truss will be the load at which the weakest compression member 
buckles as an Euler column (case A in figure. 11.6). However, when a truss is rigidly jointed, as in a frame, there 
will be interaction between bending deflections of neighboring members through rotation of the common joint. A 
rigid-jointed truss is stiffer than a pin-jointed truss, and therefore its buckling load is increased relative to the pin-
jointed truss.

Example 11.3 Buckling of a two-bar truss

A symmetric truss consisting of two identical bars of length L are connected together by a hinge joint at the cen-
ter of the truss. The opposite end of each bar connects to a separate hinge joint at a fixed support. Both supports 
are at a distance H below central joint. The central joint is subject to downward load Q whose corresponding dis-
placement is denoted by q. 

We consider a linear analysis and a nonlinear analysis for the stability of the truss, where Hooke’s law gov-
erns the material behavior in both analyses. The material of the bars is 7075-T6 aluminum alloy with a modulus 

of elasticity  and yield strength of . The remaining numerical data are 
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Fig. 11.9 Equilibrium paths for the pinned-pinned column subject to axial compression (a) on the 
load-deflection plot, and (b) on the load-shortening plot.
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listed in table 11.2. From the data in table 11.2 the angle . A small value of β characterizes a shallow 
truss configuration.    

Axial strain-displacement relation.  The strain-displacement relation (11.7) for each bar is

, (a)

where the axial displacement is denoted by  and the lateral displacement is 

denoted by . Consider the bar on the left-hand side of the truss as shown in 

figure. 11.11. At the fixed end where z =0, . At the end of the 
bar where z = L the axial displacement and the lateral displacement are related 
to the downward displacement q of the movable joint by  and 

, respectively. The axial strain in a truss bar is uniform along 
its length, which means that the displacements are linear in coordinate z. Linear 

displacement functions for each displacement satisfying the end conditions are, 

. (b)

Substitute eq. (b) for the displacement functions into eq. (a) to get the strain-displacement relation

. (c)

Substitute , and  into eq. (c) to get

. (d)

Numerical evaluation of eq. (d) is

. (e)

Table 11.2 Numerical data for the truss in figure. 11.10

Length of truss bars L, mm 300 Width of truss bar b, mm 25

Truss rise above supports H, mm 27 Area of truss bar A, mm2 450

Thickness of truss bar h, mm 18 Second area moment I, mm4 12,150

β 5.16°=

Q q,

L H
βA

Ah

b
Section A A–

βsin H L⁄=

Fig. 11.10 A shallow truss horizontally constrained between fixed points.
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Fig. 11.11 Left-hand bar 
of the truss.
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In-plane buckling of trusses

The strain energy of the truss is

, (f)

in which the leading factor of 2 accounts for the two bars. Castigliano’s first theorem determines the force Q by

. (g)

Substitute eq. (d) for the strain into eq. (f) to get

. (h)

Numerical evaluation of eq. (h) is

. (i)

In-plane buckling of the truss bars based on linear analysis.  The expressions for the axial strain (e) and 
applied load (h) reduce to

, and   . (j)

The axial force in each bar is given by

. (k)

The Euler buckling force . Set  to find the displacement for in-plane 

buckling of the truss bars . The corresponding load .

Equations (i) and (j) are plotted on the graph of load Q versus displacement q in figure. 11.12. As the load is 
increased from zero on the nonlinear path (i) a limit point load of 9.038 kN at a displacement of 11.5 mm is 
encountered. As discussed in article 10.5 a dynamic snap-through motion occurs at the limit load that eventually 
(with damping) settles to a displacement of 58.65 mm. The linear response path (j) is the straight line in figure. 
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11.12, and the load causing in-plane buckling of the truss bars is 17.028 kN. Thus, the critical load for this struc-
ture is at the limit point.J

11.4 Geometrically imperfect column

Consider a uniform, pinned-pinned column that is slightly 
crooked under no load. The initial shape under no load is 
described by the function . The column is subject to a 

centric, axial compressive load P. The lateral displacement of 
the column is denoted by , so that  when 

P = 0. Moment equilibrium of the free body diagram for a 
segment of the column shown in figure. 11.13 is

. (11.77)

The bending moment in the column is zero under no load, so we write the material law for bending as

, (11.78)

where  is the rotation of the initial shape of the column. For small slopes of the slightly deflected column 

the rotations are related to the lateral displacements by

 . (11.79)

Hence, the bending moment becomes
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9.87 mm 17.028 kN,( )
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58.65 mm 9.038 kN,( )

dynamic snap through →

Fig. 11.12 Load-displacement responses of the two-bar truss from linear and nonlinear analyses.
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Geometrically imperfect column

. (11.80)

Substitute the bending moment from eq. (11.80) into the moment equilibrium equation (11.77) to get

. (11.81)

Equation (11.81) is arranged to the form

, (11.82)

where . Take the initial shape of the column , where a1 is the amplitude of 

the initial shape at midspan. Then the differential equation for  is

. (11.83)

The boundary conditions are . The solution of the differential equation (11.83) subject to 
boundary conditions is

. (11.84)

The term  where the critical load of the perfect structure is . It is conve-

nient to measure the deflection of the imperfect column under load with respect to its original unloaded state. 
That is, let δ define the additional displacement at midspan by . Hence,

. (11.85)

The load-displacement response is sketched in figure. 11.14. Note that  as  for . That is, 

for a non-zero value of the imperfection amplitude, the displacement gets very large as the axial force approaches 
the buckling load of the perfect column. Also, the imperfect column deflects in the direction of imperfection 
(e.g., if , then ).

An arbitrary initial shape is represented by a Fourier Sine series as

. (11.86)

Timoshenko and Gere (1961) show the solution for  is
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. (11.87)

For  as , the first term dominates the solution for . Thus, for P near Pcr

. (11.88)

The buckling behavior of a long, straight column subject to centric axial compression (the perfect column) is 
classified as stable symmetric bifurcation. As such it is imperfection insensitive. Refer to the discussions in arti-
cle 10.1.5 on page 297 and article 10.2.1 on page 300. Even for a well manufactured column whose geometric 
imperfections are small, and with the load eccentricity small, the displacements become excessive as the axial 
compressive force P approaches the critical load  of the perfect column. Hence, the critical load determined 

from the analysis of the perfect column is meaningful in practice.

11.4.1 Southwell plot

Rearrange eq. (11.88) as follows: , then . Divide the 

last by P to get

 . (11.89)

We plot  versus  from eq. (11.89) in figure. 11.15, which is called the Southwell plot (Southwell, 1932).1 

The Southwell plot is very useful for determining Pcr from test data in the elastic range. As , ,  

becomes large and the data ( ) tends to plot on a straight line. Extrapolating this straight line back to 

toward the ordinate axis ( ) one can estimate a1 and Pcr. It is more difficult to determine Pcr by the load-
deflection curve obtained in experiments as illustrated in figure. 11.16. 

1. Richard V. Southwell (1888 -1970), British mathematician specializing in applied mechanics. In his article “On the Anal-
ysis of Experimental Observations in Problems of Elastic Stability”, he discussed the coordinates used in the plot to corre-
late the experimental data on elastic column buckling with linear theory. 
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Column design curve

11.5 Column design curve

Consider the pinned-pinned uniform column whose critical load is given by . Let A denote the 

cross-sectional area of the column. At the onset of buckling the critical stress is defined as

. (11.90)

The second area moment is , where r denotes the minimum radius of 
gyration of the cross section. For the rectangular section shown in figure. 11.17, 

 and , so that , where . Thus, 

the critical stress becomes

. (11.91)

and  is called the slenderness ratio. The slenderness ratio is the column length divided by a cross-sectional 
dimension significant to bending. 

For any set of boundary conditions define the effective length  by the formula

. (11.92)
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The effective lengths for the four standard boundary conditions are as follows:

The definition of effective length uses case A boundary conditions as a reference. The concept of effective length 
accounts for boundary conditions other than simple support, or pinned-pinned end conditions.

The column curve is a plot of the critical stress versus the effective slenderness ratio (i.e., ). 

For elastic column buckling under all boundary conditions

, (11.93)

which is a hyperbola that depends only on the modulus of elasticity E of the material. This equation governing 
elastic buckling is called the Euler curve, and columns that buckle in the elastic range are called long columns. 
See figure. 11.18. 

11.5.1 Inelastic buckling

The column curve equation, eq. (11.93), is valid up to the proportional limit of the material, denoted by . The 

proportional limit is defined as the stress where the compressive stress-strain curve of the material deviates from 
a straight line. If the stress at the onset of buckling is greater than the proportional limit, then the column is said 
to be of intermediate length, and the Euler formula, eq. (11.93), cannot be used. The proportional limit is difficult 
to measure from test data because its definition is based on the deviation from linearity. In particular, the com-
pressive stress-strain curves for aluminum alloys typically used in aircraft construction do not exhibit a very pro-
nounced linear range. For aluminum alloys a material law developed by Ramberg and Osgood (1943) is often 
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used to describe the nonlinear compressive stress-strain curve. The Ramberg-Osgood equation is a three-parame-
ter fit to the compressive stress-strain curves of aluminum alloys. From the experimental compressive stress-
strain curve the slope near the origin is the modulus of elasticity E. The stress where the secant line drawn from 
the origin with slope 0.85 E intersects the stress-strain curve is denoted .The stress where a second secant 

line drawn from the origin with slope 0.7E intersects the stress-strain curve is denoted by . These data are 

depicted in figure. 11.19. Note that the compressive normal strain corresponding to the stress  is usually 

about the 0.2 percent offset yield strain for the material. Hence, stress  is close to the 0.2 percent offset yield 

stress of the aluminum alloy. The Ramberg-Osgood equation is

, (11.94)

where the shape parameter n is given by

. (11.95)

Equation (11.94) is re-written as

, (11.96)

and is plotted as  versus  for various values of the shape parameter n, This plot is shown in fig-

ure. 11.20. Some approximate values for common aluminum alloys are listed in table 11.3. 

Table 11.3 Ramberg-Osgood parameters for selected aluminum alloys

AL E in106 psi  in 103psi n

2014-T6 10.6 60 20

2024-T4 10.6 48 10

6061-T6 10.0 40 30

7075-T6 10.4 73 20
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Fig. 11.19  Data used to fit the compression 
stress-strain curve of aluminum alloys.
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From the Ramberg-Osgood equation, eq. (11.94), the local slope of the compressive stress-strain curve is 
determined as a function of the stress. This slope of the compressive stress-strain curve is called the tangent mod-

ulus (i.e.,  where Et is the tangent modulus). Differentiate eq. (11.94) to get

. (11.97)

Thus, the tangent modulus is

. (11.98)

For intermediate length columns it has been demonstrated by extensive testing that the critical stress is rea-
sonably well predicted using the Euler curve, eq. (11.93), with the modulus of elasticity replaced by the tangent 
modulus. This inelastic buckling analysis is called the tangent modulus theory. That is,

. (11.99)

Now substitute eq. (11.98) for the tangent modulus in the latter equation, noting that , to get

. (11.100)
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Bending of thin plates

After division by , eq. (11.100) can be written as

. (11.101)

A plot of the column curve given by eq. (11.101) is shown in figure. 11.21. 

11.6 Bending of thin plates

Recall that bars and beams are structural elements characterized by having two orthogonal dimensions, say the 
thickness and width, that are small compared to the third orthogonal dimension, the length. Thin plates, both flat 
and curved, are common structural elements in flight vehicle structures, and they are characterized by one dimen-
sion being small, say the thickness, with respect to the other two orthogonal dimensions, say the width and 
length. A thin, rectangular, flat plate shown in figure. 11.22 is referenced to Cartesian axes x, y, and z, where the 
x-direction is parallel to the length, the y-direction is parallel to the width, and the z-axis is parallel to the thick-
ness of the plate. We denote the length of the plate by a, the width by b, and the thickness by t, and , 

, and . The plane with z = 0 is the midsurface, or reference surface, of the plate. 

A beam resists the transverse loads, or lateral loads, primarily by the longitudinal normal stress σx, and the 
so-called lateral stresses σy, σz, τyx, and τyz are assumed to be negligible. Transverse loads, acting in the z-direc-
tion applied to the plate are primarily resisted by the in-plane stress components σx, σy, and τxy. Transverse shear 
stresses τxz and τyz are necessary for force equilibrium in the z-direction under transverse loads, but are smaller 
in magnitude with respect to the in-plane stresses. In plate theory, the transverse normal stress σz is very small 
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Fig. 11.21 Column curves for a Ramberg-Osgood material law with different shape factors.
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with respect to the in-plane normal stresses and, hence, is neglected. Bending of thin plates is discussed in many 
texts on plate theory; for example, see Ugural and Fenster (2003). Only some elements of the plate bending the-
ory are discussed here. The assumptions of the linear theory for thin plates are as follows:

1. The deflection of the midsurface is small with respect to the thickness of the plate, and the slope of the 
deflected midsurface is much less than unity.

2. Straight lines normal to the midsurface in the undeformed plate remain straight and normal to the midsurface 
in the deformed plate, and do not change length.

3. The normal stress component σz is negligible with respect to the in-plane normal stresses and is neglected in 
Hooke’s law.

Now consider the deformation, or strains, caused by the normal stresses. Hooke’s law for the normal stresses 
and strains in a three-dimensional state of stress is 

, (11.102)

where E is the modulus of elasticity and  is Poisson’s ratio. From assumption 3 the thickness normal stress σz 

is assumed negligible and is set to zero in Hooke’s law. From assumption 2 the thickness normal strain , 

because the line element normal to the midsurface does not change length. Since the normal stress  is also 

assumed to vanish, the third of eq. (11.102) leads to a contradiction. Hence, the third equation of Hooke’s law is 
neglected. The material law for the in-plane normal strains and stresses for thin plates is

. (11.103)

Consider two cases of pure bending of a plate or a beam subject to moment M. In the first case the cross sec-
tion is compact with dimension b nearly equal to thickness t, and in the second case dimension b is much larger 
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Fig. 11.22  Illustration of the nomenclature and primary stresses for a flat, rectangular plate.
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than thickness t. In the first case the structure is a beam, and in the second case it is a plate.   In pure bending the 

neutral axis of the beam deforms into an arc of a circle with radius , and the normal strain in the x-direction is 

. Note that we assumed that the x-axis coincided with the neutral axis in the undeformed beam. Hence, 

longitudinal line elements above the neutral axis, z > 0, are stretched, and line elements below the neutral axis, z 
< 0, are compressed. In the case of a beam, the normal stress in the y-direction, , is also very small and is 

neglected with respect to the longitudinal normal stress . That is, the beam resists the applied bending moment 

by the longitudinal normal stress . Since , we get from Hooke’s law, eq. (11.103), that 

. (11.104)

Hence, the longitudinal normal stress is the modulus of elasticity times the longitudinal normal strain, and the 
normal strain in the y-direction is just Poisson’s ratio times the longitudinal normal strain. The form of the last 
expression for εy in eq. (11.104) shows that the line elements in the cross section parallel to the y-axis before 
deformation also bend into circular arcs. The line element parallel to the y-direction at z = 0 in the undeformed 

beam has a radius of curvature of  in the deformed beam. This transverse curvature is called anticlastic curva-

ture, and is illustrated in figure. 11.23. 

Now consider pure bending of a plate under the same moment M, where now the dimension b is much larger 
than thickness t. In this case experiments show that the transverse line elements remain straight over the central 
section of the plate, so that the anticlastic curvature is suppressed. In this central section of the plate the trans-
verse normal stress σy is non-zero. However, the transverse normal stress must vanish at the free edges at y = 0 
and y = b, so that anticlastic curvature develops only in narrow zones near the free edges to adjust to vanishing of 
the normal stress  at the free edges. In the central portion of the plate, the associated normal strain is zero. The 

suppression of anticlastic curvature is characterized by the vanishing of the normal strain εy. Hence from Hooke’s 
law, eq. (11.103), for εy = 0 we get

ρ
ν
---

y

z

Section A-A

A

A
x

z

ρ MM

Fig. 11.23  Pure bending of a beam in the x-z plane and the associated anticlastic curvature of its 
cross section.
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. (11.105)

Since the denominator in the expression for σx is positive but less than unity, the plate is stiffer than the beam 

owing to the presence of the non-zero transverse normal stress  to help in resisting the applied moment. Com-

pare eqs. (11.104) and (11.105) for the normal stress σx. The quantity  is an effective modulus of the 
plate.

11.7 Compression buckling of thin rectangular plates

Consider the perfectly flat plate subject to a longitudinal compressive force of magnitude  applied in a spa-

tially uniform manner along edges x = 0 and x = a, as shown in figure. 11.24. The equilibrium response of the 

plate in linear theory is that of pure compression in the x-y plane with no out-of-plane deflection of the midsur-
face. That is, in the pre-buckling equilibrium state the plate remains flat. The normal stress  in the plate is spa-

tially uniform, and we write it as , where  is the applied compressive stress.

At a critical value of the compressive force  the plate will buckle, or deflect out of the flat pre-buckling 

equilibrium state. To determine this critical force we have to consider a slightly deflected equilibrium configura-
tion of the plate, similar to the analysis of the perfect column presented in article 11.1. Refer to Brush and Alm-
roth (1975) for the details of this adjacent equilibrium analysis for the critical force.

Instead of a detailed adjacent equilibrium analysis of the plate, we can make a comparison to the critical 
force determined for the pinned-pinned column in figure. 11.6. The configuration of the plate comparable to the 
pinned-pinned column has simply supported, or hinged, edges at  and , and has free edges at 

 and . The compressively loaded plate for these boundary conditions is called a wide column. The 
critical force for the pinned-pinned column is
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Fig. 11.24 Uniformly applied compressive forces applied to opposite longitudinal edges of a 
rectangular plate.
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. (11.106)

For the plate, replace the modulus of elasticity  in the column formula by , since the plate is stiffer 

than the column. Also set  for the plate. The formula for the second area moment of a rectangular cross 

section is . Hence, eq. (11.106) transforms to

. (11.107)

For the wide column configuration of the plate, the critical load is written in the form

, (11.108)

where the bending stiffness, or flexural rigidity, of the plate is defined as

. (11.109)

The critical compressive stress at buckling is simply . Divide eq. (11.107) by area bt to get

.

By convention, this critical compressive stress is written in the form

(11.110)

where  is a nondimensional buckling coefficient for compressive loading, which is a function of the plate 

aspect ratio . For the unloaded edges free and the loaded edges simply supported, this buckling coefficient is

. (11.111)

For other support conditions on the edges , , , and , the critical compressive 
stress is also given by eq. (11.110) but the compressive bucking coefficient is a different function of the plate 
aspect ratio. The transition from column to plate as supports are added along the unloaded edges (  and 

) are depicted in figure. 11.25 on page 349. The compressive buckling coefficient is plotted for various 
support conditions as shown in figure. 11.26 on page 350. Note that some of the curves for the buckling coeffi-
cient exhibit cusps, or discontinuous slopes, at selected values of the plate aspect ratio. The cusps correspond to 
changes in the half wave length of the buckle pattern along the x-direction. In particular, for the plate with simple 
support on all four edges, case C in figure. 11.26 on page 350, note that  for integer aspect ratios.
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11.7.1 Simply supported rectangular plate

Consider a plate simply supported on all four edges and subject to uniform compressive on edges x = 0 and x = a. 
In the pre-buckling equilibrium configuration the plate remains flat, , with a spatially uniform com-

pressive stress equal to the applied compressive stress . From the method of adjacent equilibrium, the out-of-
plane displacement of the plate at the onset of buckling is

, (11.112)

where m and n are positive integers and  is an arbitrary amplitude. Integer m corresponds to the number of half 

waves in the x-direction and integer n corresponds to the number of half waves in the y-direction. Thus, specific 
values of integers m and n in eq. (11.112) characterize a buckling mode, and for each buckling mode there is a 
corresponding buckling stress. Equation (11.110) is the formula for the compressive stress at buckling, with the 
compressive buckling coefficient given by

. (11.113)

The critical stress is the lowest buckling stress, which occurs for a certain choice of m and n. Since  is directly 

proportional to powers of integer n, the minimum value of  occurs for n = 1. Then minimum values of  are 

related to a/b and integer m by

. (11.114)

w0 x y,( ) 0=

σ

w1 x y,( ) A1
mπx

a
----------- 
 sin nπy

b
--------- 
 sin=

A1

kc
m

a b⁄
---------- n2 a b⁄( )

m
--------------+ 

  2
= m n, 1 2 …, ,=

kc

kc kc

kc
m

a b⁄
---------- a b⁄( )˙

m
--------------+ 

 
2

=



Aerospace Structures 349

Compression buckling of thin rectangular plates

Fig. 11.25  Transition form column to plate as supports are added along unloaded edges. Note changes in 
buckle configurations (NACA TN 3781, figure 1).
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Fig. 11.26  Compression buckling coefficient for flat rectangular plates (NACA TN 3781, figure 14).
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Critical values of the compressive buckling coefficient as a function of a few aspect ratios are listed in table 11.4.

These critical values of the compression buckling coefficient are plotted as case C in figure. 11.26 on page 350. 
The buckling modes for three integer values of the aspect ratio are depicted in figure. 11.27. There is one half 
wave across the width (n = 1) and the number of half waves across the length, m, increases with increasing aspect 
ratio. For integer values of the aspect ratio the critical value of the compressive buckling coefficient , and 

it follows that the critical compressive stress is

. (11.115)

From eq. (11.112) the length of a half wave in the x-direction is , and the length of a half wave in the y-

direction is the plate width b for n = 1. These half wave lengths are the same when , or . 
That is, the half wave lengths in the x- and y-directions are the same for integer values of the aspect ratio. Hence, 
for integer values of the plate aspect ratio the buckling mode consists of a sequence of square buckles. 

Table 11.4 Compression buckling coefficient for selected plate aspect ratios
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direction
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Example 11.4 Critical load for simply supported rectangular plate in compression

Let a = 20 in., b = 10 in., t = 0.10 in., , and . From eq. (11.110) the critical com-
pressive stress

. (a)

From eq. (11.114) the compression buckling coefficient is

. (b)

For m = 1, 2, 3, , respectively. For larger values of m, coefficient  is larger. The minimum 

value of  is 4 corresponding to m = 2. Hence, the critical stress is

. (c)

The critical compressive load . Hence,

. (d)

The buckling mode for  has one half sine wave in the transverse direction and two half 

waves in the longitudinal direction. The load  is the lowest load at which such a plate can lose 

its stability.J

11.8 Buckling of flat rectangular plates under shear loads

Consider a thin, rectangular plate with a thickness denoted by t, and the in-plane dimensions denoted by a and b, 
where . Note that a denotes the long dimension of the plate and b denotes the short dimension. It is 

subject to uniformly distributed shear stress  as illustrated in figure. 11.28. From Mohr’s circle for plane stress, 
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Fig. 11.28 Plate subject to in-plane shear loading.
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the state of pure shear is equivalent to tensile and compressive normal stresses at forty-five degrees to the direc-
tion of pure shear. It is this compressive normal stress that leads to buckling of the thin plate subjected to shear.

The critical value of the shear stress per unit length, , is given by the formula

, (11.116)

where  is a nondimensional buckling coefficient for shear loading. This buckling coefficient is a function of the 

plate aspect ratio  and the boundary conditions applied to the plate. Values of the shear buckling coefficient 
are given in figure. 11.30 on page 354. The buckling mode labeled the symmetric mode in the figure pertains to a 
buckled form that is symmetric with respect to a diagonal across the plate at the node line slope. For a narrow 
range of aspect ratios the plate buckles in an antisymmetric mode. For an infinitely long strip, or , 

 for simply supported, or hinged, edges at , and  for clamped edges. 

A least squares fit of the shear buckling coefficient as a function of the plate aspect ratio is convenient in 
problem solving. For the simply supported plate, or the plate with hinged edges, the data listed in table 11.5 was 
read from the graph in figure. 11.30. 

These data are fit to the functions 1 and . The result of the least squares fit to these data is

. (11.117)

The least squares fit and the input data are plotted in figure. 11.29.

Table 11.5 Shear buckling coefficient
 for selected plate aspect ratios
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Fig. 11.30 Shear-buckling-stress coefficient of plates as a function of a/b for clamped and hinged edges 
(NACA TN 3781, figure 22). 
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11.9 Buckling of flat rectangular plates under combined compression 
and shear

A plate subject to uniformly applied longitudinal compression and shear is shown in figure. 11.31. The critical 

combination of shear and compression stresses under different boundary conditions and different aspect ratios of 
the plate can be approximated to a sufficient accuracy by

, (11.118)

where  and  are the critical values of the separately acting shear stress and the compression normal stress, 

respectively (NACA TN 3781, pp. 38, 39). Equation (11.118) is plotted in figure. 11.32.
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Fig. 11.31 Plate subject to longitudinal compression and in-plane shear loading.
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Example 11.5 Wing rib spacing based on a buckling constraint

The stringer stiffened box beam that is the main spar in a wing is shown in figure. 11.33. For a pull-up maneuver, 

the calculated transverse shear force  and the bending moment  at the 

wing root. The thickness and width of the upper and lower cover skins are  and , respec-

tively. The thickness and height of the left and right webs are  and , respectively, and 

the flange area of the stringers . The material is isotropic with properties  and 

. For , the upper skin is in compression. Determine the rib spacing, denoted by a, such that the 

margin of safety for buckling of the upper skin is slightly positive.

Solution.  The centroid and the shear center of the cross section coincide with the center of the box beam due to 
symmetry. The normal stress due to bending in the upper skin is calculated from the flexure formula; i.e.,

, (a)

where the second area moment of the cross section about the x-axis is

(b)

Hence, the bending normal stress in the upper skin is

. (c)
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Fig. 11.33 Wing box beam of example 11.5.

σz
Mx bw 2⁄( )

Ixx

-------------------------=

Ixx bw
2 Af

1
2
---bfbw

2 tf
1
6
---bw

3 tw+ + 1 461.85 in.4,= =

σz 18 408.2,–  lb./in.2=



Aerospace Structures 357

Buckling of flat rectangular plates under combined compression and shear

The shear stress in the upper skin is determined from the analysis of the shear flow distribution around the 
contour of the cross section, which is shown in figure. 11.34. 

The shear flow in the upper skin is

. (d)

The shear stress , and its evaluation is

. (e)

Computing the maximum magnitude and the average value of this shear stress results in

. (f)

The maximum magnitude of the shear stress in the upper skin is 7.25 percent of the magnitude of the bending 
normal stress. Moreover, the average value of the shear stress is zero in the upper skin. Hence, it is reasonable to 
neglect the effect of the shear stress on the buckling of the upper skin.

Assume the upper skin is a simply supported rectangular plate between the stringers and ribs. Actually, the 
stringer and ribs provide rotational constraint to the upper skin, but the assumption of no rotational constraint is 
conservative with respect to design. The critical compressive stress for simple support on all four edges of the 
upper skin underestimates its actual value. Equation (11.110) for the top cover skin is

, (g)

and eq. (11.114) for the compression buckling coefficient is

. (a)

The margin of safety is defined by
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. (11.119)

The margin of safety (11.119) is positive for a feasible design, otherwise the design is infeasible. It should be a 
small positive value for a design of least weight. The computations for the margin of safety are listed in 
table 11.6.

A rib spacing of 16 in. is a feasible design with a slightly positive margin of safety.J
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Table 11.6 Margin of safety for selected rib spacings
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18 0.750 4.34028 17,026.0 – 0.07509 infeasible

19 0.792 4.2223 16,563.2 – 0.1002 infeasible

MS Excess strength
Required strength
------------------------------------------

σcr σz–

σz

---------------------= =

σcr
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Ugural A. C., and S. K. Fenster. Advanced Strength and Applied Elasticity, 4th ed.,Upper Saddle River, NJ: 
Pearson Education, Inc., Publishing as Prentice Hall Professional Technical Reference, 2003, pp. 472-490.

11.11 Practice exercises

1. An ideal column of length L is pinned at one end and fixed to a rigid bar of length a at the other end. The sec-
ond end of the rigid bar is pinned on rollers. Refer to figure. 11.35 Find the critical load  and discuss the 

extreme cases of  and .

2. The column shown in figure. 11.36 is pinned at the left end and supported by an extensional spring of stiff-
ness  at the loaded right end.

a) Use the adjacent equilibrium method to show that the characteristic equation is

.

b) Plot the critical load  as a function of , . For 

what values of  will the column buckle in the Euler 
mode? (i.e., case A in figure. 11.6).

3. The statically indeterminate truss shown in figure. 11.37 
consists of six bars, labeled 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. It is 
subject to a vertical force F at joint number 2. The cross-sec-

tional area of each bar is 2,000 mm2, the second area moment of 

each bar is 160,000 mm4, and the modulus of elasticity of each 

bar is 75,000 N/mm2.

a) Take bar force 1-4 as the redundant (i.e., ). 

Using Castigliano’s second theorem to determine the 
redundant Q in terms of the external load F. 

b) Determine the value of F in kN to initiate buckling of 

Pcr

a 0→ a ∞→

EI rigid

L a

P

Fig. 11.35 Exercise 1.

α

P

α

y v1,

z

EI L,Fig. 11.36 Exercise 2.

k2– kLsin k2– αL
EI
-------+ 0=

1 080 mm,

810 mm

F

1

2

3

4

Fig. 11.37 Truss for exercise 3.

Pcr α 0 α≤

α

N1 4– Q=



Article 11.11

360 Aerospace Structures

the truss.

c) If the yield strength of the material is 400 MPa in tension, determine the value of F in kN to initiate 
yielding of the truss.

4. Bars 1-2, 2-3, and 2-4 of the truss shown figure. 11.38 are unstressed at the ambient temperature. Only bar 1-
2 is heated above the ambient temperature. Determine the increase in temperature, denoted by , of bar 1-2 to 

cause buckling of the truss. The cross section of each bar is a thin-walled tube with radius  and wall 

thickness . Take length . All three bars are made of the same material with properties 

 and .

5. Consider the wing spar in example 11.5. A counterclockwise torque  is specified to act at 
the root cross section in addition to the specified transverse shear force and bending moment. Determine the rib 
spacing, denoted by a, such that the margin of safety with respect to buckling of the upper skin is slightly posi-
tive. Report the value of a to two significant figures and the associated margin of safety. The margin of safety is 
defined by the formula

.

Use the average value of the shear stress over the width of the upper skin for the shear stress  in the margin of 
safety formula. Remember that dimension b is smaller than dimension a in the formula for the critical value of 
the shear stress, and that b is the width of the plate/skin on which the compressive normal stress acts in the for-
mula for .

∆T

R 13 mm=

t 1.5 mm= L 762 mm=

E 75 000 N/mm2,= α 23 6–×10  /°C=

R

t

cross section

1

2

34

30°30°

L

L

1

2

34

Q q,

A 2πRt=

I πR3t=

Fig. 11.38 Exercise 4. (a) three-bar truss, (b) base structure. (c) cross section of the bars.

(a) (b) (c)

T 6 6×10  lb.-in.=

MS
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-------------= where fb
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CHAPTER 12

 

Introduction to 
aeroelasticity

 

12.1 The Collar diagram of aeroelastic forces

 

The following paragraphs are excerpted from 

 

Aeroelasticity

 

 by R. L. Bisplinghoff, H. Ashley, and R. L. Halfman 
(1996).

 

Aeroelasticity is defined as a science which studies the mutual interaction between aero-
dynamic forces and elastic forces, and the influence of this interaction on airplane design. 
Aeroelastic problems would not exist if the airplane structure were perfectly rigid. Modern air-
plane structures are very flexible, and this flexibility is fundamentally responsible for the vari-
ous types of aeroelastic phenomena. Structural flexibility itself may not be objectionable; 
however, aeroelastic phenomena arise when structural deformations induce additional aerody-
namic forces. Such interactions may become smaller and smaller until a condition of stable 
equilibrium is reached, or they may tend to diverge and destroy the structure.

The term aeroelasticity, however, is not completely descriptive, since many important 
aeroelastic phenomena involve inertial forces as well as aerodynamic and elastic forces. We 
shall apply a definition in which the term aeroelasticity includes phenomena involving interac-
tions among inertial, aerodynamic, and elastic forces, and other phenomena involving interac-
tions between aerodynamic and elastic forces. The former will be referred to as 

 

dynamic

 

 and 
the latter as 

 

static

 

 aeroelastic phenomena.

Collar has ingeniously classified problems in aeroelasticity by means of a triangle of 
forces. Referring to Fig. 1-1 [figure. 12.1 below], the three types of forces, aerodynamic. elas-
tic, and inertial are represented by the symbols 

 

A

 

, 

 

E

 

, and 

 

I

 

, respectively, are placed at the ver-
tices of a triangle. Each aeroelastic phenomenon can be located on the diagram according to 
its relation to the three vertices. For example, dynamic aeroelastic phenomena such as flutter 

 

F

 

, lie within the triangle, since they involve all three types of forces and must be bonded to all 
three vertices. Static aeroelastic phenomena such as wing divergence, 

 

D

 

, lie outside the trian-
gle on the upper left side, since they involve only aerodynamic and elastic forces. Although it is 
difficult to define precise limits on the field of aeroelasticity, the classes of problems connected 
by solid lines to the vertices in Fig. 1-1 are usually accepted as the principal ones. Of course, 
other borderline fields of mechanical vibrations, 

 

V

 

, and rigid-body aerodynamic stability, 

 

DS

 

, 
are connected to the vertices by dotted lines. It is very likely that in certain cases the dynamic 
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stability problem is influenced by airplane flexibility and it would therefore be moved within the 
triangle to correspond with 

 

DSA

 

, where it would be regarded as a dynamic aeroelastic prob-
lem.

It would be convenient to state concise definitions of each aeroelastic phenomenon which 
appears on the diagram in Fig. 1-1.

 

Flutter, F

 

. A dynamic instability occurring in an aircraft in flight at a speed called the flutter 
speed, where the elasticity of the structure plays an essential part in the instability.

 

Buffeting, B. 

 

Transient vibrations of aircraft structural components due to aerodynamic 
impulses produced by the wake behind wings, nacelles, fuselage pods, or other components 
of the airplane.

 

Dynamic response, Z

 

. Transient response of aircraft structural components produced by 
rapidly applied loads due to gusts, landing, gun reactions, abrupt control motions, moving 
shock waves, or other dynamic loads.

 

Aeroelastic effects on stability, DSA & SSA

 

. Influence of elastic deformations of the struc-
ture on dynamic and static airplane stability.

 

Load distribution, L

 

. Influence of elastic deformations of the structure on the distribution of 
aerodynamic pressures over the structure.

 

Divergence, D. 

 

A static instability of a lifting surface of an aircraft in flight, at a speed called 
the divergence speed, where the elasticity of lifting surface plays an essential role in the insta-
bility.

 

Control effectiveness, C

 

. Influence of elastic deformations of the structure on the controlla-
bility of an airplane.

 

Control system reversal, R.

 

 A condition occurring in flight, at a speed called the control 

F B Z DSA

A

E I

V

DS

R

D

C

L

SSA

Fig. 12.1 The aeroelastic triangle of forces.
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Divergence analysis of a rigid wing segment

 

reversal speed, at which the intended effects of displacing a given component of the control 
system are completely nullified by elastic deformations of the structure.

 

Mechanical vibrations, V.

 

 A related field.

 

Dynamic stability, DS

 

. A related field.

 

12.2 Divergence analysis of a rigid wing segment

 

A model to illustrate the phenomenon of wing divergence consists of a uniform, rigid wing segment hinged to a 
fixed support in a wind tunnel as is shown in figure. 12.2. The hinge line is located at the 

 

elastic axis

 

 (E.A.) of the 
wing. The elastic axis coincides with the locus of shear centers of the wing sections.

Recall that the 

 

shear center

 

 of the cross section of a bar (wing) is a reference point in the cross section 
where the lateral deflections due to bending are de-coupled from the twist due to torsion (i.e., a shear force acting 
at the elastic axis results in bending deflections and no twist, and a torque acting at the elastic axis causes twist 
but no lateral deflection of the elastic axis due to bending).

The rigid wing segment is restrained against rotation, or twist, about the E.A. by a linear elastic rotational 
spring of stiffness . This rotational spring is analogous the torsional stiffness per unit span, or , of a 
wing.

We assume two-dimensional, incompressible aerodynamics is applicable. Let  denote the airspeed,  the 

angle of attack relative to the zero lift angle,  the lift,  the pitching moment, and let  denote the weight 

of the wing segment acting at the center of gravity (C.G.). The lift and pitching moment act at the aerodynamic 
center (A.C.), which is the point about which the pitching moment is independent of the angle of attack. Usually 
the A.C. is close to the quarter chord. We neglect the drag force  relative to the lift since .

The angle of attack is written as

 ,

 

(12.1)

 

where  is the initial wing incidence, or the angle of attack if there are no aerodynamic and gravity loads, and 

K GJ( ) L⁄

αV

L

MAC

W

A.C.
C.G. E.A.

K

e

d

Fig. 12.2 Rigid wing segment 
model for divergence analysis

V α

L MAC W

D D L«

α α0 θ+=

α0
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 is the rotation angle due to elastic deformations of the spring. Assume small angles such that , 

, and . The lift is given by

,

 

(12.2)

 

where  is the dynamic pressure,  is the wing planform area, and  is the lift coefficient. Let  denote the 

density of air,  the chord length, and  the wing span. The dynamic pressure, planform area, and lift coefficient 
are given by

.

 

(12.3)

 

In the above equation  is the lift curve slope, which is assumed constant between stall points.

The pitching moment is given by

,

 

(12.4)

 

where  is the pitching moment coefficient about the A.C., and is independent of .

Moment equilibrium about the E.A. gives

,

 

(12.5)

 

where  is the distance from the E. A. to the A. C., assuming the E.A. is behind the A.C.

Substituting for the elastic twist, lift, and pitching moment from eqs. (12.1) to (12.4), the moment equation 
becomes

.

 

(12.6)

 

Rearrange eq. (12.6) to

.

 

(12.7)

 

Now divide eq. (12.7) by  to get

.

 

(12.8)

 

Let

.

 

(12.9)

 

Hence, equation (12.8) for the equilibrium value of the angle of attack reduces to

θ αsin α≈

αcos 1≈ αtan α≈
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. (12.10)

A plot of  versus the angle of attack obtained from eq. (12.10) is shown in figure. 12.3.

From eq. (12.10) we see that  as  for . That is, the angle of attack grows without 

bound as . Of course, this excessive twist is a theoretical result. In reality the wing will stall or twist off 

due to a strength failure. Hence, the divergence dynamic pressure is defined as

, (12.11)

and the divergence speed is

. (12.12)

Divergence corresponds to static instability. At  we get excessive rotation in twist of the wing.

12.2.1 Responses of the rigid wing segment and the imperfect column

The response plots of the rigid wing segment model of article 12.2 and the geometrically imperfect column in 
article 11.4 on page 336 are repeated in figure. 12.4. Comparing the two response plots reveals that these phe-
nomena are the same. Both the column buckling and the wing divergence are static instabilities. The critical load 

 for the column and the divergence dynamic pressure  of the rigid wing segment model are determined 

from a static analysis of the slightly deflected structure. 

α

α0 Wd( ) K⁄– q
qD

------ 
  c

e
-- 
  CMAC

∂CL

∂α
--------- 
 
---------------+

1 q qD⁄–
----------------------------------------------------------------------------------=

q qD⁄

q
qD

------

0

1

α0 Wd( ) K⁄–
α

Fig. 12.3 Response of the rigid wing segment model.
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12.2.2 Divergence experiments

Experiments to measure the divergence dynamic pressure of an elastic wing confront the issue of damaging the 
wing and its supporting structure if the dynamic pressure is near or at its critical value. A nondestructive method 
to measure the critical dynamic pressure is accomplished by plotting the data on a Southwell plot, which was 
developed for elastic column buckling in article 11.4.1 on page 338. The Southwell plotting coordinates are 
determined from eq. (12.10) by formulating the change in the angle of attack , where 

. After some algebraic manipulations, the change in the angle of attack is written as

, (12.13)

where

. (12.14)

Equation (12.13) is rearranged as follows: (1), Multiply each side by , and write

.

(2) Divide by the dynamic pressure and write the final result as

. (12.15)

On the Southwell plot  is the ordinate and  is the abscissa. Thus, eq. (12.15) is a straight line on 
the plot as shown in figure. 12.5. The important aspect of the Southwell plot from the experimental viewpoint is 
that the slope of the graph is the reciprocal of the divergence dynamic pressure. As the dynamic pressure is 
increased from magnitudes less than the divergence dynamic pressure, the changes in angle of attack  

become large, and the data of  versus  tends to plot as a straight line. The experimental divergence 

0
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Fig. 12.4 Response plots of the geometrically imperfect column and the rigid wing 
segment model.
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Straight, uniform, unswept, high aspect ratio, cantilever wing in steady incompressible flow

dynamic pressure is determined from the slope of this fitted straight line. The actual value of  is not significant 

with respect to the determination of the experimental divergence dynamic pressure.

12.3 Straight, uniform, unswept, high aspect ratio, cantilever wing in 
steady incompressible flow

Let  denote the total wing incidence, and let  denote the fixed incidence at the wing root. The fixed 

incidence could be a function of  for a variable in built-in twist, but we will consider it constant along the span. 
So

, (12.16)

∆α

∆α
q
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Fig. 12.5 Southwell plot.
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Fig. 12.6 Wing model for torsional divergence analysis.
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where  is the twist angle of the wing due to elastic deformation. Neglect airfoil weight, since we saw for the 

rigid wing segment that this factor played no role in the divergence dynamic pressure.

From eq. (3.61) on page 43 the differential equation in torsion is

, (12.17)

where  denotes the external torque per unit span. In this case the external torque per unit span is due to the 

aerodynamic loads acting on the wing.

In reference to eq. (3.121) on page 60, St. Venant’s torsion theory relates the torque to the unit twist as

, (12.18)

where  is the torsional stiffness of the wing box. From eq. (3.161) page 70, the torsion constant for a single-
cell cross section is given by

, (12.19)

where  is the area enclosed by the cross-sectional contour,  is the arc-length along the contour, and  is the 

thickness of the contour. Substitute eq. (12.18) into (12.17) and use the fact that the wing is uniform along the 
span to get

. (12.20)

12.3.1 Aerodynamic strip theory

Strip theory assumes aerodynamic lift and moment at station  depends only on the angle of attack, or incidence, 

at , and is independent of the angle of attack at any other spanwise locations. Physically, this is reasonable for 
high aspect ratio wings.
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Fig. 12.7 Lift and pitching moment acting on the differential element of a wing.
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Straight, uniform, unswept, high aspect ratio, cantilever wing in steady incompressible flow

The differential lift and differential pitching moment acting at the A.C. on an typical element of the wing are 
shown in the figure. 12.7, where  is the local lift coefficient and  is the local moment coefficient about the 

A.C. Hence, the external torque acting on the differential element about the elastic axis is

, (12.21)

or

. (12.22)

According to strip theory

, (12.23)

where  is the lift curve slope. Substituting eq. (12.16) into (12.23), we get

. (12.24)

Hence,

. (12.25)

12.3.2 Differential equation of torsional divergence 

Now substitute eq. (12.25) into (12.20) and rearrange the terms to get

. (12.26)

Equation (12.26) is the governing, second order, ordinary differential equation for  with . The 

boundary conditions at  and  are to specify either  or , but not both. For a cantilever wing, 

which is clamped at the root and free at the tip, the boundary conditions are

. (12.27)

The general solution of the ordinary differential eq. (12.26) is the sum of a particular solution and a homog-
enous solution.

. (12.28)

By the method of undetermined coefficients the particular solution is

. (12.29)

The homogenous equation is

 , (12.30)
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and its solution is given by

, (12.31)

where

. (12.32)

Hence, the general solution for the wing twist is

. (12.33)

Substitute the general solution (12.33) into the boundary conditions (12.27) to determine constants  and :

. (12.34)

Solving eq. (12.34) for the constants, we get

. (12.35)

Substitute eq. (12.35) for A1 and A2 into eq. (12.33) to get the angle of twist for the cantilever wing as

. (12.36)

Hence from eqs. (12.16) and (12.36), the total wing incidence is

. (12.37)

Using the trigonometric identity for the cosine of the sum of two angles, this last result can be written as

. (12.38)

From eq. (12.38) we see that  if . Vanishing of the cosine function occurs when 

. The lowest root gives the critical divergence dynamic pressure as

. (12.39)

The value of  in eq. (12.39) is the wing’s torsional divergence dynamic pressure.
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Effect of wing sweep on divergence

The analogy between the divergence dynamic pressure for the rigid wing model and the elastic wing model 
is summarized in table 12.1.

12.4 Effect of wing sweep on divergence

Divergence of a slender straight wing that is approximately perpendicular to the airplane plane of symmetry is 
dependent on wing twist, referred to as torsional divergence, and bending is not a factor in the instability. For 
slender swept wings bending of the wing has an important and complicating affect on divergence and is referred 
to as bending-torsional divergence.

Let the angle  denote the wing sweep measured rela-

tive to the unswept wing with  for a swept-back wing, 

and  for a swept-forward wing. See figure. 12.8. When 

a swept-back wing ( ) bends, its angle of attack in the 
streamwise direction is reduced. Bending causes a nose-down 
twist in the streamwise direction. To understand this bending 
effect, consider an upward force applied to the reference axis. 
Points A and B deflect upward about the same amount. Point 

 has less upward deflection since it is closer to the wing 

root. Hence, streamwise segment  will have a smaller 
angle of attack due to bending and a negative increment in lift 
results. This negative lift increment due to bending is a stabi-
lizing influence, since it opposes the nose-up twist of segment 

. 

Consider a swept-forward wing with  as shown in figure. 12.9. Bending causes an increase in the angle 

of attack, or nose-up twist, for the streamwise segment . This increase in angle of attack due to bending is a 
destabilizing influence. Divergence essentially rules out swept-forward metallic wings. For wings made of com-
posite materials, it is possible to materially couple bending and torsion in such a way to have an acceptable diver-
gence speed for forward-swept wings (e.g., the X-29 demonstrator). 

From NASA Armstrong Fact Sheet: X-29 Advanced Technology Demonstrator Aircraft 
(Gibbs, 2015): The X-29’s thin supercritical wing was of composite construction. State-of-the-
art composites permit aeroelastic tailoring, which allows the wing some bending but limits 

Table 12.1 Expressions for divergence dynamic
 pressure of the rigid wing and of the elastic wing

Rigid, eq. (12.10) Elastic, eq. (12.39)
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twisting and eliminates structural divergence within the flight envelope (deformation of the 
wing or breaking off in flight).
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12.6 Practice exercises

1. An interesting historical account of wing torsional divergence is given by Gordon (2003); An excerpt fol-
lows.

During World War I Antony Fokker developed an advanced monoplane fighter – the Fokker 
D8 – with performance better than available or in immediate prospect on the Allied side. As 
soon as the D8 was flown in combat conditions it was found out that, when the aircraft was 
pulled out of a dive in a dog fight, the wings came off. Since many lives were lost – including 
those of some of the best and most experienced German fighter pilots – this was a matter of 
very grave concern to the Germans at the time, and is still instructive to study the cause of the 
trouble.

Read pages 260-271 in the book by Gordon and answer the following questions.

a) For a given engine power, why is a monoplane generally faster than a biplane?

b) What was the material of wing skin on the D8? Is it effective in resisting shear? 

c) What was the method of loading in the structural test of the wings of the D8? 

d) What was the ultimate load factor from the structural test?
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Practice exercises

e) What was the first attempt to strengthen the rear wing spar? 

f) What was the best method to strengthen the rear wing spar? and why did it work?

g) What is aileron reversal?

h) What common geometric feature do a tube and the torsion box of the old-fashioned biplane have that 
makes them so effective in resisting torsion?

2. The uniform wing sketched in figure. 12.10 is fixed at both ends. Starting with the general solution eq. 
(12.33), derive the algebraic expression for

a. total incidence , and

b. divergence dynamic pressure .

3. Consider a rigid wing segment of weight W mounted on an elastic sting in a wind tunnel. The sting is mod-
eled as a uniform, elastic, cantilever beam with bending stiffness  and length . Neglect the weight 

of the sting. The model is mounted in such a way to have the angle of attack  when the beam is undeformed. 

Thus, the angle of attack , where  is the nose-up rotation of the wing resulting from the bending of 

the sting. Denote the lift and the pitching moment acting at the aerodynamic center (A.C.) as L and , respec-

tively.
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Assume

• steady, two-dimensional incompressible flow at airspeed  and density ,

• the lift curve slope  is constant between stall points,

• and that the angle of attack is small.

a. Use the second theorem of Castigliano to determine the rotation  of the cantilever beam due to end 

force  and moment  as shown in the sketch above. Consider bending only.

b. Determine the angle of attack  as a function of the dynamic pressure , , wing refer-

ence area S, flexural stiffness EI, chord length c, , pitching moment coefficient , distance d, 

and weight W.

c. Determine the divergence dynamic pressure, .

4. A uniform beam with a rectangular cross section rests on a knife edge at its left end, while the right end is 
clamped in rigid disk. This configuration is shown in figure. 12.12. The bending stiffness , the dis-

tance between the knife edge and the beam’s connection to the disk is L, and the radius of the disk is R. This disk 
rotates about a fixed smooth pin through its center under the action of applied moment Ma as shown. Determine 
the relation between the applied moment Ma and rotation angle θ of the disk under the assumption that the angle 
of rotation θ is small. In a wind tunnel test the disk is connected to a rigid airfoil, then this structural configura-
tion is used to provide the rotational spring of stiffness  depicted in figure. 12.2. 
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CHAPTER 13

 

Fracture of cracked 
members

 

The strength of ductile metals is limited by yielding. However, the presence of a crack in a structure may weaken 
it so that it fails by fracturing in two or more pieces. The study of crack propagation in bodies is the subject of 

 

fracture mechanics

 

. Linear elastic fracture mechanics (

 

LEFM

 

) is the study of crack propagation in linear elas-
tic bodies.

 

Damage tolerant design

 

 allows for the presence of subcritical cracks that will not grow to critical length 
between inspection intervals. Cracks can nucleate and grow in airplane structures under cyclic loading, or 
fatigue. This important structural issue of fatigue crack growth is tragically illustrated by the Comet disasters of 
1954.

 

13.1 Comet disasters of 1954

 

The content of this article is taken from Wikipedia, the free encyclopedia, and Cawthon (2005). 

The de Havilland Comet was the world's first commercial jet airliner to reach production. Developed and 
manufactured by de Havilland, it first flew in 1949 and was considered a landmark British aeronautical design. 
The Comet is an all-metal low-wing cantilever monoplane powered by four jet engines, approximately the length 
of a Boeing 737 but carrying fewer people in greater comfort. The clean, low-drag design featured many unique 
or innovative design elements, including a swept leading edge, integral wing fuel tanks, and four-wheel bogie 
main undercarriage units designed by de Havilland. The Comet was also the first pressurized jet-propelled com-
mercial aircraft. Comet went into commercial service with BOAC on 22 January 1952. In May, the first paying 
passengers flew from Heathrow Airport to Johannesburg, South Africa. The Comet could fly higher and faster 
than any other airliner of the day and passengers loved it. They especially liked the Comet's big, rectangular win-
dows, which allowed a much better view than those on competing planes. See figure. 13.1.
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The structural flaws in the Comet's design caused two fatal accidents in 1954. The first came just after the 
New Year, on January 10. BOAC Comet G-ALYP left Ciampino airport in Rome on its way to London. Less than 
a half-hour after takeoff, a routine radio call was cut off in mid-transmission. The Comet had crashed into the 
Mediterranean Sea about 16 miles from the island of Elba. The investigators determined the cabin failed because 
of metal fatigue. Just three months later, another Comet crashed, this time it was South African Airways G-
ALYY, which was also flying out of Ciampino and also wound up in the Mediterranean, killing all twenty-one 
people on board. Authorities were unable to retrieve much wreckage, but cited the circumstances that caused the 
January incident.

Engineers subjected an identical airframe, G-ALYU (“Yoke Uncle”), to repeated repressurization and over 
pressurization and after 3,057 flight cycles (1,221 actual and 1,836 simulated), Yoke Uncle failed due to metal 
fatigue near the front port-side escape hatch. Investigators began considering fatigue as the most likely cause of 
both accidents, and further research into measurable strain on the skin began. Stress around the window corners 
was found to be much higher than expected, “probably over 40,000 psi,” and stresses on the skin were generally 
more than previously expected or tested. This was due to stress concentration, a consequence of the window's 
square shape. The stresses caused by thousands of takeoffs and landings were causing the plane's aluminum skin 
to begin to crack around the right-angle edges of those nice, big windows that were so popular with the passen-
gers. Eventually the metal would completely fail, causing immediate depressurization of the cabin and cata-
strophic structure failure.

The problem was exacerbated by the punch rivet construction technique employed. The windows had been 
engineered to be glued and riveted, but had been punch riveted only. Unlike drill riveting, the imperfect nature of 
the hole created by punch riveting may cause the start of fatigue cracks around the rivet.

The square windows of the Comet 1 were redesigned as oval for the Comet 2, which first flew in 1953. The 
skin sheeting was thickened slightly. The remaining Comet 1s and 1As were either scrapped or modified with 
oval window rip-stop doublers. All production Comet 2s were modified to alleviate the fatigue problems, and 
most of these served with the Royal Air Force as the Comet C2. The Comet did not resume commercial airline 
service until 1958, when the much-improved Comet 4 was introduced and became the first jet airliner to enter 
transatlantic service. As is often the case in aeronautical engineering, other aircraft manufacturers learned from 
and profited by de Havilland's hard-learned lessons. Representatives from American manufacturers such as Boe-
ing and Douglas “admitted that if it hadn't been for our problems, it would have happened to one of them.”

Fig. 13.1 BOAC De Havilland DH106 Comet 1G-ALYX on tarmac. (c) British Airways 
Speedbird Heritage Centre. Released under CC BY NC SA license 4.0
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The Comet 4 not only had a stronger airframe and rounded windows, it was also longer, carried more pas-
sengers, and had four new Rolls-Royce Avon engines, which produced twice the thrust of the original de Havil-
land Ghosts. BOAC had ordered nineteen of the new Comets in 1955, before the redesign was completed. The 
Comet 4 made its maiden flight on 27 April 1958 and de Havilland began delivering planes to BOAC in Septem-
ber. BOAC started Comet passenger service with London to New York on 4 October 1958, beating Pan Am's 
inaugural 707 Clipper Service by three weeks.

But it was too late. The Comet, unbeatable in 1954, was an also-ran in 1958. In addition to its early prob-
lems, the Comet's dated design and smaller size convinced most carriers to select the newer 707 or Douglas DC-
8. Only seventy-six Comet 4s were built from 1958 to 1964, and it was America, not Great Britain, that owned 
the commercial jetliner market for the rest of the twentieth century.

 

13.2 Cracks as stress raisers

 

Some of the discussion in this article paraphrases that given by Dowling (1993, p.279). Consider the linear elastic 
response of a rectangular plate containing a centrally located elliptical hole that is subject to a remote tensile 

stress 

 

.

 

 See figure. 13.2. The major axis of the through hole is denoted by 

 

a

 

 and the minor axis by 

 

d

 

. The radius 

of curvature  at the tip of the major axis is given by . 

The stress concentration factor, , at the edge of the hole is defined by

.

 

(13.1)

 

From linear elasticity for a plate half width , this stress concentration factor for an isotropic material is 
given by

σ
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Fig. 13.2 Stresses at the tip of an elliptical through hole in a rectangular plate subject to remote tension.
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.

 

(13.2)

 

For selected values of the ratio 

 

a/d, 

 

the stress concentration factors are listed in table 13.1.

As , or , . This limiting geometry is a crack-like slit. Consequently the plate experi-

ences a strength failure at no load. Clearly, this is a theoretical result from linear elasticity. Real materials cannot 
support infinite stress. In ductile metals, large plastic deformation exists in the vicinity of the crack tip. The stress 
is not infinite and the sharp crack tip is blunted.

There are generally three modes of loading, which involve different crack surface displacements as depicted 
in the sketches of figure. 13.3. The three modes are:

 Mode I: opening or tensile mode (the crack faces are pulled apart)

 Mode II: sliding or in-plane shear (the crack surfaces slide over each other)

 Mode III: tearing or anti-plane shear (the crack surfaces move parallel to the leading edge of the crack 
and relative to each other)

 

13.3 LEFM stress field in the vicinity of the crack tip for mode I

 

A center-cracked plate subject to remote tension, or mode I loading, is shown in figure. 13.4. This loading is sym-
metric with respect to the crack surface. The crack length is 2

 

a

 

, plate width 2

 

b

 

, and the plate thickness 

 

t

 

. The two 
free surface areas of the crack are 2

 

a

 

-by-

 

t

 

. The remote tensile stress is denoted by . Let 

 

r

 

 and  denote the 

 

Table 13.1 

 

Stress concentration factors
 for selected elliptical hole sizes

 

1 (circular hole) 3

2 5

3 7

Kt 1 2a
d
---+ 1 2 a

ρ
---+= =

a d⁄ Kt

d 0→ ρ 0→ Kt ∞→

Mode I Mode IIIMode II

Fig. 13.3 Basic displacement modes of a cracked body.
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LEFM stress field in the vicinity of the crack tip for mode I

 

polar coordinates in the 

 

x-y

 

 plane measured from the crack tip. From linear elastic fracture mechanics (Anderson, 
1995, pp. 31-96), LEFM, the dominant terms in the stress field near the crack tip are as follows:

,

 

(13.3)

 

,

 

(13.4)

 

,

 

(13.5)

 

,

 

(13.6)

 

.

 

(13.7)

 

Poisson’s ratio is denoted by . The plane stress solution is more appropriate if the thickness 

 

t

 

 is relatively small, 

and the plane strain solution is more appropriate if the thickness is relatively large. At , stress components 

 near . So  as . For small values of 

 

r, 

 

stress components  and  

are proportional to . 

The magnitude of the stress field in the vicinity of the crack tip is characterized by . Hence,  is a mea-

sure of the severity of the crack. 

 

The parameter  is called the mode I stress intensity factor

 

. For an infinite 

plate, where  with , LEFM yields the result that

.

 

(13.8)
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For finite plate geometries

, (13.9)

where F is a dimensionless width-correction factor that is a function of the geometry and the ratio of a/b. For the 
center-cracked plate, the quantity F is given by

, and (13.10)

. (13.11)

In general the correction factor is a function of the loading configuration as well as the geometry and ratio of a/b. 
The reader is referred to Dowling (1999) and the references cited there for additional relations for F.

The following facts are noted:

• The mode I stress intensity factor  depends on the remote stress , and  is the stress  if no crack is 

present.

• The mode I stress intensity factor  depends on the square root of the half crack length.

• The dimensional units of  are stress times the square root of length (e.g.,  in U.S. customary units, 

or  in SI units.)

The crack opening displacement  along the crack surface is also of interest, where the origin of the x-
axis is located at the center of the crack as is shown in figure. 13.7. For the infinite plate geometry under mode I 

loading, the displacement at the upper and lower crack faces are symmetrical, so only the displacement on the 
upper crack surface needs to be described. The expression for  as given by Sun (1998, p. 162) is

, (13.12)

where

. (13.13)
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LEFM stress field in the vicinity of the crack tip for mode I

The critical mode I stress intensity factor is denoted by , and it is assumed to be a material param-

eter. 

• . There is no crack growth, and the material resists the crack without brittle fracture.

• . The crack begins to propagate and brittle fracture occurs.

The critical mode I stress intensity factor is also called the fracture toughness. A tough material has a large 
value of , which means it is effective in resisting crack growth. At crack growth, the remote stress is denoted 

by  and is given by 

. (13.14)

A representative graph of eq. (13.14) is shown in figure. 13.6. The value of the half crack length when , 

is called the transition crack length , where  denotes the yield strength of the material. Set  in eq. 

(13.14) to find

. (13.15)

The transition crack length is the approximate length above which strength is limited by fracture. If  then 

fracture limits strength. If  then yielding dominates strength. Materials with

a.  high  and low  imply a long  and small cracks are no problem, and

b.  low  and high  imply a short  and small cracks can be a problem.

KIc

KI KIc<  

KI KIc=

KIc

σcr

σcr
KIc

F πa
--------------=

σcr, crack propagation

no crack propagation

σ

σY

0
a

at

σY is the yield strength

Fig. 13.6 Representative graph of the critical 
stress for crack propagation as a function of the 
half crack length.
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Typical values of the fracture toughness at room temperature are listed in table 13.2.

Example 13.1 ASTM compact tension configuration

The configuration shown in figure. 13.7 is subject to a tensile load P, has a crack length 
denoted by a, and a thickness denoted by t. It is the configuration of the ASTM standard 
compact specimen. The mode I stress intensity factor is given by (Dowling, p. 295)

, (a)

where . The nondimensional function Fp is

. (b)

For , b = 50 mm, and t = 25 mm, determine the critical crack length for brittle fracture of 2024-
T351 aluminum alloy. The numerical factor multiplying Fp is

. (c)

A graph of the stress intensity factor as a function of the crack length in the range from 15 mm to 35 mm is 

shown in figure. 13.8. The critical mode I stress intensity factor is 34 MPa  from table 13.2, and it plots as 
horizontal line in the graph. Using a root finding procedure, or a trial and error method, the intersection of the 

Table 13.2 Fracture toughness and corresponding tensile properties for selected metals at room 
temperature (Dowling, 1999).

Material

Toughness Yield strength Ultimate Strength 

MPa ksi MPa ksi

Steels

AISI 1144 66 60 540 78 840 122

AISI 4130 110 100 1090 158 1150 167

Aluminum and titanium alloys (L-T Orientation)

2014-T651 24 22 415 60 485 70

2024-T351 34 31 325 47 470 68

2219-T851 36 33 350 51 455 66

7075-T651 29 26 505 73 570 83

7475-T7351 52 47 435 63 505 73

Ti-6Al-4V 
annealed

66 60 925 134 1000 145

KIc σY σU
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P

Fig. 13.7 .
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LEFM stress field in the vicinity of the crack tip for mode I

two lines in the graph occurs at 23.1 mm. Thus, the critical crack length for brittle fracture is 23.1 mm. J

The example that follows illustrates how the methods of strength of materials and fracture mechanics are 
employed to analyze the strength of a cantilever beam.

Example 13.2 Strength of a cantilever beam.

This example is adapted from Kanninen and Popelar (1985, pp. 10-12). Determine the maximum value of the tip 
load Q acting on a cantilever beam depicted in figure. 13.9 by the strength of materials method and the fracture 
mechanics method. The beam has a length , height , and rectangular cross section 

with width . Assume a factor of safety (FS) of 1.5. The material is aluminum alloy 2014-T651 with 
properties listed in table 13.2. Plot the maximum value of Q versus the crack length a. 

(a) Strength of materials approach.  The maximum load is determined such that the maximum stress in the 
beam is less than the yield strength of the material. The maximum tensile normal stress occurs at the bottom of 
the beam at its built-in end. The bending moment at the built-in end is , and the flexure formula for the 
maximum normal stress is

, (a)

where the second area moment of the rectangular cross section is . Hence,
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Fig. 13.8 Stress intensity 
factor as a function of crack 
length.
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Fig. 13.9 Basis for the comparison of strength of materials and fracture mechanics approaches.
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. (b)

Solve the inequality for the load in eq. (b) to get

. (c)

Hence, .

(b) Fracture mechanics approach.  Consider that the beam, instead of being defect free, contains an edge crack 
of length a normal to the free edge. Further suppose that, as shown in figure. 13.9(b), the crack is located where 
the maximum tensile stress is anticipated. This geometry and loading configuration is not the center-cracked 
plate. However, for a relatively small crack, an LEFM-based analysis of the flawed beam shown in figure. 13.9(b) 
would give a reasonable approximation in the following expression for the stress intensity factor:

, (d)

where  is the stress that would occur at the crack location in the absence of the crack. The beam is safe 

from fracture if . Further assurance can be obtained by having , where, just as in the 

strength of materials approach, the number FS is the factor of safety. Using eq. (b) to replace  in eq. (d) 
then leads to (e)

. (f)

Solve eq. (e) for the load to get

. (g)

Substitute numerical values into eq. (f) to get

. (h)

Hence, , which is the fracture mechanics estimate of the safe operating load. A graph of the 

failure load is shown in figure. 13.10. From the plots in the graph, yielding governs failure for 
, whereas fracture governs failure for . The transition crack length, 

, determines the crack length for which it can be expected that fracture rather than yielding gov-

erns the mode of failure. In this example the transition crack length is only 2.8 percent of the height, h, of the 
beam.
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A comparison between eq. (c) and eq. (g) is instructive. It can be seen that the structural geometry and the 
factor of safety enter both relations in exactly the same way – that is, through the multiplicative parameter 

. Also, both relations contain a basic, albeit different, material property. The essential differ-
ence is that the fracture mechanics approach explicitly introduces a new physical parameter: the size of a (real or 
postulated) crack-like flaw. In fracture mechanics the size of the crack is the dominant structural parameter. It is 
the specification of this parameter that distinguishes fracture mechanics from conventional failure analyses.J

13.4 LEFM stress field in the vicinity of the crack tip for mode II

Mode II fracture is associated with loading that is antisymmetric with respect to the crack surface. Shear loading 
is shown in figure. 13.11 and is a mode II fracture problem. 

From the linear elastic fracture mechanics analysis, the singular stress field near the crack tip in terms of the 
polar coordinates shown in figure. 13.4 is 
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Fig. 13.10 Failure load versus crack length for the cantilever beam of example 13.2.
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Fig. 13.11 Antisymmetric shear loading.



Article 13.4

386 Aerospace Structures

, (13.16)

, (13.17)

, (13.18)

where  is the mode II stress intensity factor, and  at the crack tip. Along the x-axis where , the 

stresses near the crack tip are

. (13.19)

Hence, the linear elastic analysis gives  as . For an infinite plate subject to a uniform shear  as 

shown in figure. 13.11, 

. (13.20)

The critical mode II stress intensity factor is denoted by , and it is assumed to be a material 

parameter. 

• . There is no crack growth, and the material resists the crack without brittle fracture.

• . The crack begins to propagate and brittle fracture occurs.

The critical mode II stress intensity factor is also called the mode II fracture toughness.

The displacements on the two crack surfaces are antisymmetric with respect to the x-axis. Let u denote the 
displacement component in the x-direction, and let v denote the displacement component in the y-direction. The 
expression for the upper surface displacement  as given by Sun (1998, p. 163) is

 and , . (13.21)

The origin of the x-axis is located at the center of the crack as is shown in figure. 13.5, and  depends on Pois-
son’s ratio, which is given by eq. (13.13). Under antisymmetric loading the crack surfaces are in sliding contact 
with each other and do not open as they do in mode I.
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13.5 Energy criterion for crack growth

The text that follows is taken from Gordon (1978).

The paradox that a material with a sharp crack has infinite stress at the tip, so that it fails at 
infinitesimal load, motivated Griffith to develop a fracture theory based on energy.

From chemistry, the surface energy needed to break chemical bonds on any one plane is 
from 0.1 to 1.0 J/m2 for most structural solids. For brittle materials – stone, brick, concrete – 1 

J/m2 is nearly all the energy, or work, required to produce a new fracture surface. Ductile 
materials – many metals – yield before fracture, so much work goes into plastic deformation 
ahead of the crack tip. Some approximate values of the work of fracture are listed in the table 
[table 13.3] that follows.

A tough material has a work of fracture between 103 – 106 J/m2.

13.5.1 Griffith criterion

The rationale for the Griffith energy criterion is the first law of thermodynamics and the theorem of minimum 
potential energy for an elastic body. The critical condition for equilibrium crack growth is that there is no net 
change in the total energy (Anderson, 1995, p. 36). Consider a cracked plate of thickness t with a through crack 
of length a as shown in figure. 13.12. Then the infinitesimal increase in the crack area is . 

Let E denote the total energy,  the total strain energy contained in the plate,  the work performed by the 

Table 13.3 Work of fracture for selected materials from Gordon (1978)

Material
Approximate work 
of fracture J/m2

Approximate tensile 
strength MPa

glass, pottery 1 – 10 170

cement, brick 3 – 40 4

epoxy resins 100 50

wood 10,000 100

mild steel 104 – 106 4,000

high tensile steel 104 1,000

dA tda=

Fig. 13.12 Mode I loading 
of a cracked plate.

a da

t

P v 2⁄,

P v 2⁄,

U We
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external force, and  the work to create new surfaces. Then,  and the critical condition for 

crack growth in the plate is given by 

. (13.22)

Rearrange the previous equation to

. (13.23)

In the latter equation  denotes the material resistance to crack growth, and  denotes the energy release rate. 
The energy release rate is a measure of the energy available for an increment of crack extension, and since it is 
obtained from the derivative of a potential, it is also called the crack extension force or crack driving force.

 (13.24)

When  there is sufficient energy in the system to form an additional crack size dA. For the plate under the 
action of the load P, the load application points undergo a relative displacement v. When the crack length 
increases by da, the displacement will increase by dv. The work done by the external load is Pdv. Hence, for 
mode I loading

. (13.25)

Prior to crack growth , where  is the compliance of the plate, and the strain energy . 

as is shown in figure. 13.13. 

Hence,

. (13.26)

Performing the differentiations in eq. (13.26) we get

. (13.27)
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Fig. 13.13 Elastic response 
prior to crack growth.
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Therefore, the strain energy release rate is independent of whether the load changes or not during crack growth, 
and we get

. (13.28)

Consider two types of loading as shown in figure. 13.14.

a. Load P = constant during crack growth

The strain energy and its differential with respect to the compliance at a fixed value of the load is

,

or

. (13.29)

Comparing eq. (13.28) and eq. (13.29), we find

. (13.30)

That is,  for , and for P fixed in value.

b. Fixed grips with v = constant

In this case  since . Hence, the differential of the strain 

energy with fixed grips is

. (13.31)
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(a) P = constant (b) Fixed grips

Fig. 13.14 Two types of loading under mode I crack growth.
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Substitute  for v in eq. (13.31) to get

. (13.32)

Comparing eq. (13.28) and eq. (13.32), we find

. (13.33)

So  for , and for v fixed in value, and no external work is done by load P.

Equations (13.30) and (13.33) show that the strain energy release rate is always equal to the derivative of the 
strain energy apart from the sign. Crack extension occurs when  where R is the work of fracture, or the 

material resistance to crack extension. For an ideally brittle material, like glass, , which is twice the 
surface energy to create two new surfaces. For ductile metals, the work of fracture is much larger than the surface 
energy to create new free surfaces because of plastic deformation occurring in front of the crack tip. During crack 
extension energy is expended by deformation of a new plastic zone at the tip of the advancing crack. Note that 
the Griffith energy criterion is based on linear elastic material behavior, so the formation of a nonlinear effect 
such as plasticity seems to negate the analysis. However, if the plastic zone ahead of the crack tip is very small 
compared to the bulk material remaining elastic, then the criterion is applicable. If the increase in energy required 
for plastic deformation is independent of the increase in crack area, then . From fracture tests of a 
material, the value of G at crack growth, which equals R, is called the critical strain energy release rate, 
denoted by , and is assumed to be a material parameter.

. (13.34)

13.6 Relation between K and G

Consider the through-the-thickness crack in a infinite plate of unit thickness subject to uniform tension, or mode 
I loading.as shown in figure. 13.4. The through-crack opening displacement for a crack length of 2a is shown in 
figure. 13.5 and given by eq. (13.12). The relation between K and G is established by computing the work done to 
close a crack of length 2a, and restore the uniform stress σ in the plate to its pre-cracked value. This crack closure 
method is presented in several texts on fracture mechanics (e.g., Broek (1986, p. 126), Anderson (1995, p. 70), 
and Sun (1998, p. 164)). The analysis for the crack closure method that follows is from Sun. Denote the work 
done to close the crack as  where

. (13.35)

The factor of 2 preceding the integral in the expression for  accounts for two crack surfaces. The crack 

opening displacement  given by eq. (13.12) is symmetric with respect to x, and σ is independent of the dis-
placement. Perform the integration to get the work done to close the crack as
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. (13.36)

The mode I strain energy release rate per crack tip is

. (13.37)

Substitute  from (13.8), and substitute eq. (13.13) for , in the previous equation to get

, (13.38)

where

   and . (13.39)

For mode II fracture the relation between KII and GII is

. (13.40)

 Equations (13.38) to (13.40) are also valid for finite dimensions and arbitrary loading, however, KI and KII 
depend on the configuration and loading of the plate. Thin plates that are closer to the ideal plane stress condition 
have higher fracture toughness than thick plates that are closer to the state of plane strain. Most standard fracture 
tests are performed using thick specimens, and thus they give fracture toughness under the plane strain condition. 
Fracture toughness of a material can be given by either  or .

13.6.1 Mixed mode fracture

Generally, crack growth occurs under mixed mode loading. Under this type of loading, crack growth might occur 
before any of the energy release rate components attain their individual critical value. Failure interaction criteria 
are established from mixed mode fracture test configurations. The following criterion has been shown to fit test 
data for many materials quite well:

, (13.41)

where GIc and GIIc are the single mode critical energy release rates for modes I and II, respectively. From the 
relations between G and K in eqs. (13.38) and (13.40), the previous criterion (13.41) in terms of the stress inten-
sity factors is

. (13.42)
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13.7 Interlaminar failure in composites: delamination 

The main failure modes of fiber-reinforced polymer (FRP) composites were discussed in article 9.1 on page 271. 
Laminated composite structures can fail within lamina, which is intralaminar failure; between lamina, which is 
interlaminar failure; or by interacting together in a complex manner. Interlaminar failure refers to debonding of 
adjacent lamina, or delamination, which can initiate from an interfacial crack.

Delamination is the chief vulnerability of composites. However, Boeing’s Chief Technology 
Officer states: “We designed [composite parts] so they carry loads even if delaminated. We 
know how to inspect and we know how to repair.” (Canaday, 2015) 

In this section delamination is analyzed with the concepts from fracture mechanics. An initial delamination 
crack is postulated and fracture mechanics principles are used to determine if the crack will propagate in a self-
similar manner. The examples analyzed here are standard fracture test configurations. The tests are performed on 
unidirectional composites with the fibers oriented such that they are parallel to the length of the initial delamina-
tion. Consequently, the fracture configurations are modeled as laminated beams. The material is carbon fiber-
reinforced epoxy with the properties listed in table 13.4.

Note that the critical mode I strain energy release rate GIc for interface fracture is the order of the work of frac-
ture listed for epoxy resins in article 13.5 on page 387.

Example 13.3 Double cantilever beam (DCB) fracture test specimen

Consider a cantilever, laminated beam subject to equal and oppositely directed forces of magnitude P applied at 
the free end. Under the action of the forces there is a crack at the free end perpendicular to the forces of length a 
and centered with respect to the depth of the beam. The length of the beam is L, depth is 2h, and its thickness is t. 
This is a case of mode I loading, and the initial crack length  when P = 0. See figure. 13.15. The 

following data is specified: , , and . Material properties are listed in table 13.4. 
Let v denote the relative vertical displacement of the load points. Determine static response of the beam and plot 

Table 13.4 T300/977-2 carbon fiber composite

E1 E2 ν21 G12 GIc GIIc

150 GPa 11.0 GPa 0.25 6.0 GPa 352 J/m2 1,450 J/m2

a0 50 mm=

P

P

h

h

a b

L

x

2h

t

A

A

Section A-A

Fig. 13.15 Double cantilever beam configuration of example 13.3.

h 1.98 mm= t 20 mm= L 2h»
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it on the P-v plane. Analytical and numerical solutions for this example were originally given by Mi, et al., 
(1998).

Solution.  We use Castigliano’s second theorem to determine the relative displacement v. Complementary strain 
energy is stored in each arm of the beam for , and not in the un-stressed section of the beam from 

. The complementary strain energy is

, (a)

where the bending moment in the upper arm is , the bending moment in the lower arm is , and the second 

area moment of each arm is

. (b)

Note that the modulus of elasticity . The distribution of the bending moment in each arm is determined 

from equilibrium. The results are

. (c)

Hence,

. (d)

Performing the integration in eq. (d) we get

. (e)

From this last equation, the compliance of the beam is given by . The strain energy release 
rate is determined from eq. (13.28), which yields

. (f)

At the initiation of crack growth , so

. (g)

Solve eq. (g) for the crack length a to get

. (h)

Substitute eq. (h) for crack length a into eq. (e) to get
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. (i)

Prior to crack growth eq. (e) determines the response as

. (j)

For the propagating crack eq. (h) evaluates to

. (k)

For the initial crack length  eq. (k) determines the maximum load, and then either eq. (e) or eq. (j) 

determines the corresponding displacement; i.e., 

 and  at the initiation of crack growth.

For the propagating crack eq. (i) evaluates to

. (l)

Equations (j) and (l) are used to plot the load-displacement response shown in figure. 13.16. 

In load control, where P is specified and increased slowly from zero, a sudden dynamic increase in crack growth 
occurs at  since there is no stable adjacent equilibrium state. In displacement control, where v is 

specified and is increased slowly from zero to 3.17 mm, the load P increases to 73.92 N. For  the 
load decreases as the crack increases in length. 
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Fig. 13.16 Static response of the DCB 
configuration. Crack growth begins 
at 73.92 N and 3.17 mm.
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Example 13.4 End load split (ELS) configuration

The end load split (ELS) configuration shown in figure. 13.17 has an initial crack length denoted by , 

length by , height by , and thickness normal to the x-y plane by . The lower arm at the tip is subject to ver-

tical force . Both arms below and above the crack are identical and are subject to the same load as shown in the 

free body diagrams of figure. 13.18. Hence, both arms have the same lateral displacement  and rotation 

. The x-direction displacement at the crack tip of the upper arm is , and the x-direction displace-

ment of the lower arm at the crack tip is , Thus, the relative axial displacement between the lower sur-

face of the upper arm and the upper surface of the lower arm is , which is a mode II displacement 
loading. Determine the strain energy release rate GII. Analytical and numerical solutions for this example were 
originally given by Chen et al. (1999). 

Solution.   The strain energy is

, (a)

where M1 denotes the bending moment in the arm below the crack, M2 the bending moment in the arm above the 
crack, and M3 the bending moment in the segment not containing the crack. The second area moment of each 

arm is denoted by I, and . From the free body diagrams shown in figure. 13.18, equilibrium deter-
mines the bending moments as

, and (b)

. (c)

Substitute eqs. (b) and (c) for the bending moments in eq. (a), and perform the integrations to get
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Fig. 13.17 End load split configuration of example 13.4.

U
M1

2

2EI
--------- xd

0

a

∫
M2

2

2EI
--------- xd

0

a

∫+=
M3

2

2E 8I( )
----------------- xd

a

L

∫+

I th3( ) 12⁄=

M1 x( ) M2 x( ) P
2
--- 
  x–= = 0 x a≤ ≤

M3 x( ) x a–( )– P M1 a( ) M2 a( )+ + Px–= = a x L≤ ≤



Article 13.7

396 Aerospace Structures

. (d)

The mode II strain energy release rate is

.J (e)

13.7.1 Mixed mode fracture

Consider a cantilever beam of length L containing a through crack of length a centered at its free end. This con-
figuration subject to load P shown in part (a) of figure. 13.19 is labeled FRMM, which means fixed ratio mixed 
mode. By the method of superposition FRMM is equivalent to the DCB test configuration shown in part (b) of 
the figure plus the ELS test configuration shown in part (c) of the figure. Hence, the FRMM configuration is a 
mixed mode I and II fracture test.

From eq. (f) in example 13.3 the mode I strain energy release rate for the configuration in part (b) of figure. 
13.19 is

. (13.43)
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P 2⁄

x

x

M1 x( )

M2 x( )

a

P
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M1 a( ) M2 a( )+ M3 x( )

x

Fig. 13.18 Free body diagrams of the three segments of the ELS configuration.
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Fig. 13.19 Mixed mode I and II loading: (a) fixed ratio mixed mode, (b) double cantilever beam, 
and (c) end load split.
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From eq.(e) in example 13.4 the mode II strain energy release rate for the configuration in part (c) of figure. 
13.19 is

. (13.44)

Therefore, the mixed mode ratio for the FRMM configuration is .

Example 13.5 Response of the FRMM configuration shown in figure. 13.19

Take the height of the arms , thickness , length , so that 

. The initial crack length . From table 13.4 where , 

 and . Determine the load-displacement response, and the crack-

length-displacement response.

Solution.  The bending moment in the FRMM configuration is , . The strain energy is

, (a)

where . The displacement corresponding to load P is given by

. (b)

The displacement prior to crack growth

 . (c)

The mode I (13.43) and mode II (13.44) strain energy release rates are

. (d)

Evaluate the mixed mode fracture criterion (13.41) to get

. (e)

Solve eq. (e) for a to find

. (f)

Substitute the crack length from eq. (f) into eq. (b) to get the displacement for the propagating crack

. (g)

The transition from the initial crack to the propagating crack is obtained by equating eq. (c) to eq. (g). The result 
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is

. (h)

For the crack length , eq. (f) yields . Hence, at completed separation

 . (i)

The response plots for the FRMM fracture specimen are shown in figure. 13.20. J
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13.9 Practice exercises

1. A monococque fuselage consists of a circular cylindrical shell with a mean radius R = 50.0 in. and wall 
thickness denoted by t, where . It is subject to internal pressure p, with the design ultimate pressure speci-
fied as p = 18.2 psi. A damage tolerance philosophy allows for the presence of a subcritical crack that will not 
grow to critical length between periodic inspections. Assume an axial crack through the thickness of the wall of 
the shell with a length 2a = 2.0 in. Determine the minimum thickness of the shell such that crack growth 
does not occur at the design ultimate pressure. The material is 2024-T351 aluminum alloy with a fracture 

toughness , and a yield strength of 47 ksi.

 The mode I stress intensity factor for an axial crack through the thickness of a cylindrical shell subject to 
internal pressure is (Anderson, p. 636)

, (a)

where the dimensionless parameter . The circumferential normal stress, or hoop stress, is 

.

2. Consider the cross section at the root of the wing spar in example 6.6 on page 165 as shown in figure. 13.21. 

During an inspection a one-inch crack (2a = 1.0) is detected that is parallel to the chord in the center of the lower 
web at the root section. (This web is labeled branch 4 in Fig. 3.24 on page 71.) At the root cross section the trans-
verse shear force Vy, bending moment Mx, and torque Mz are given by

R t»

KIc 31 ksi in.=

KI σθ πa 1 0.52χ 1.29χ2 0.074χ3–+ +=

χ a Rt( )⁄=

σθ pR( ) t⁄=

r

b

t
Af1

Af2

Af2

C

S.C.

Af1

2a

Vy

Mz

MxFig. 13.21 Cross section at the root of the 
wing spar in Exercise 8.2. 
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. (b)

The total lift force acting on the airplane is denoted by L, the span of the wing spar by zmax, and e denotes the dis-
tance from the shear center to the line of action of the lift force acting on the wing. Take zmax = 120. in.
Pertinent data are listed in table 13.5.

To aid in computing the shear stress, the shear flow in the lower web is given by

. (c)

Repeating eq. (ae) in example 3.4 on page 71, the shear flow distribution function is

(d)

The critical mode I stress intensity factor , and the critical mode II stress intensity factor 

. Determine the lift force L to initiate crack growth using a factor of safety FS = 1.5.

3. Consider the end load split (ELS) fracture configuration in example 13.4 on page 395. It is modeled as a 
laminated beam made of unidirectional plies of the carbon-epoxy listed in table 13.4. Take E1 for the modulus of 

elasticity. For , , , and , complete the following steps:

a) Use Castigliano’s second theorem to determine the tip displacement  at the point of load application. 

b) Determine the crack length a for .

c) Determine the displacement v for the crack length in part (b).

d) Plot the load P versus displacement v for . Comment on the P-v plot for the propagating 

crack as compared to the same plot for the DCB configuration shown in figure. 13.16.

Partial answer: The maximum load is 571.183 N.

Table 13.5  Data from example 6.6

r, nose web radius 6.0 in Ixx, second area moment about 
the x-axis

101.619 in.4

b, length horizontal web 7.0 in. Ac, area enclosed by the contour 140.549 in.2

t, wall thickness 0.030 in. e = XL — XSC 3.604 in.

Vy L
2
---= Mx

2Lzmax–

3π
--------------------= Mz

eL
2

------=

q4 s4( )
Mz

2Ac

--------- Fy4 s4( )Vy–=

Fy4 s4( ) 0.00542827 0.00177133s4–= 0 s4 7 in.≤ ≤

KIc 31 ksi in.=

KIIc 23.5 ksi in=

a0 30 mm= L 100 mm= t 30 mm= h 1.5 mm=

v

GII GIIc=

a0 a L≤ ≤
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4. Consider the fixed ratio mixed mode (FRMM) fracture configuration in article 13.7.1. It is modeled as a lam-
inated beam of made of unidirectional plies of the carbon-epoxy listed in table 13.4. Take E1 for the modulus of 

elasticity. For , , , and , complete the following steps:

a) Use Castigliano’s second theorem to determine the tip displacement  at the point of load application. 

b) Determine the crack length a from eq. (13.41).

c) Determine the displacement v for the crack length in part (b).

d) Plot the load P versus displacement v for .

Partial answer: The maximum load is 56.04 N.

a0 40 mm= L 100 mm= t 10 mm= h 1.5 mm=

v

a0 a L≤ ≤
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CHAPTER 14

 

Design of a landing strut 
and wing spar

 

The methodology for the design of a landing strut and a wing spar are discussed in this chapter. Simultaneous 
satisfaction of the strength and deflection are required in the design of the landing strut. The objective for the 
wing spar design is to determine two design variables that minimize the weight of the spar subject to constraints 
on material yielding, buckling, and fracture. Practice exercises in design are included for the reader to complete. 
The exercise in article 14.1.2 requires a re-design of the strut. The exercise in article 14.2.3 involves a mono-
coque spar, and the exercise in article 14.3.3 involves a stringer-stiffened spar. 

 

14.1 Landing strut

 

Private aircraft are certified in the United States under the FAA Federal Aviation Regulation (FAR) Part 23 – 
Normal, utility, acrobatic, and commuter category. Landing gear struts, or shock struts, are designed to absorb 
dynamic loads due severe impact. Design of a simple steel leaf spring strut is discussed in this article, which aug-
ments the original design methodology presented by Thurston (1995). FAA design conditions require each main 
wheel to carry a vertical load at least equal to the airplane gross weight per FAR 23.473(g) and FAR 23 Appendix 
C. The gross weight of the airplane  lb., and the configuration of the landing strut is shown in figure. 
14.1. 

 

14.1.1 Strut deflection

 

When developing a strut design it is necessary to vary the spring strut dimensions 

 

b

 

 and 

 

h

 

 as shown in figure. 
14.1 until sufficient deflection is obtained to provide acceptable vertical force load factors. If the spring strut is 
too stiff, the deflection is too low and the vertical load factor is high. If the spring strut is too compliant, the 
deflection is too large and the landing gear is springy, but the vertical load factor may be acceptable. We use Cas-
tigliano’s second theorem to determine the formula for vertical deflection of the strut:

,

 

(14.1)

 

where  is the complementary strain energy. Energy is stored in the strut due to bending, compression, and 

W 2 000,=

∆ ∂U*
∂R

-----------=

U*
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transverse shear deformation. However, the deflection is dominated by bending, so 

,

 

(14.2)

 

where  is the length of the strut,  is the axial coordinate;  @ axel,  is the bending moment,  is 

Young’s modulus, and  is the second area moment about the centroidal 

 

x

 

-axis. Interchanging the derivative 

and definite integral in eq. (14.2), the deflection in the direction of 

 

R

 

 is

.

 

(14.3)

 

To determine how the bending moment, axial force, and shear force depend on 

 

R

 

, impose static equilibrium con-
ditions on the strut. From the free-body diagram shown in figure. 14.2, we get

. 

 

(14.4)

θ 58°=

l 22.5 in.=

∆

R 2 000 lb.,=

A

A

6.00X6 wheel and tireGround line

b

h

Spring strut section A-A
at fuselage side

Fig. 14.1 Sketch of the steel leaf spring strut configuration.
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------------- zd
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∫=

L z z 0= Mx z( ) E

Ixx

∆ ∂U*
∂R

-----------
Mx

EIxx

----------
∂Mx

∂R
---------- zd

0

L

∫= =

Vy R θsin+ 0= N R θcos+ 0= Mx zR θsin+ 0= 0 z L≤ ≤
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y
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θ

L

l

N
Vy
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Fig. 14.2 Free body diagram of the strut.
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Substitute the bending moment from eq. (14.4) into eq. (14.3) to find   

.

 

(14.5)

 

The horizontal length . Eliminate strut length in terms of the horizontal length in eq. (14.5) to get

.

 

(14.6)

 

Take the strut to be made of steel having a Young’s modulus of  psi. Consider an initial size of

 

(14.7)

 

The cross-sectional area .The second area moment about the centroidal 

 

x

 

-axis in the 
cross section is

 

(14.8)

 

Numerical evaluation of the strut deflection is

 

(14.9)

 

The stopping distance 

 

d

 

 is equal to the stroke of the strut plus the tire deflection. From 6.00X6 tire deflection 
charts at an inflation pressure of 20 psi, the tire deflection is 3.14 in. at 2,200 lb. loading. Hence,

.

 

(14.10)

 

According to FAR 23.473(d), the initial descent velocity, in feet per sec-

ond, for landing gear design calculations cannot be less than 4.4(

 

W/S

 

)

 

1/4

 

, 
where 

 

W

 

 is the gross weight in pounds and 

 

S

 

 is the wing reference area in 

sq. ft. Assuming 

 

S

 

 = 157 ft.

 

2

 

 we get  ft./s. Now assume the 

acceleration of the mass center is constant during the period of landing. 
Let descent velocity at touchdown be denoted by , and during the 

period of landing the vertical speed reduces from  to zero. The accel-

eration of the mass center is computed from the uniform acceleration for-
mula given by eq. (2.14) on page 12. See figure. 14.3. 

.

 

(14.11)

 

The load factor at touchdown is

.

 

(14.12)

 

The load reduction due to wing lift is 0.67 as stipulated in FAR 23.473(e), so the landing gear limit load factor is

.

 

(14.13)

∆ 1
EIxx

---------- zR θsin–( ) z θsin–( ) zd

0

L

∫
RL3 θsin2

3EIxx

-----------------------= =

l L θsin=

∆ Rl3

3EIxx θsin
-------------------------=

30 106×

b 3.0 in.= h 0.69 in.=

A 3 0.69( ) 2.07 in.2= =

Ixx
bh3

12
-------- 3 0.69( )3

12
--------------------- 0.0821 in.4= = =

∆ 2 200 lb.,( ) 22.5 in.( )3

3 30 106×  lb./in.2( ) 0.0821in.2( ) 58°sin
---------------------------------------------------------------------------------------------- 4.00 in.= =

d ∆ 3.14 in.+ 7.14 in. 0.595 ft.= = =

s 0=

s d=

aG

Vd

V 0=

Fig. 14.3
Uniform 
deceleration 
along a 
straight line. 

Vd 8.5=
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Vd

aG Vd
2 2d( )⁄ 8.5( )2

2 0.595( )
--------------------- 60.714 ft/s2= = =

n 1 60.714
32.2

----------------+ 2.89= =
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Strength consideration.  The axial normal stress is due to the superposition of the bending component and the 
compression component.

. (14.14)

Substitute Mx and N from eq. (14.4), and substitute Ixx from eq. (14.8), into eq. (14.14) to get

. (14.15)

The axial normal stress (14.15) attains maximum magnitude at z = L. For b = 3 in. and h = 0.69 in. the maximum 
magnitude is

.

Steel alloy 4340, oil quenched and tempered, has a yield strength of 230 ksi and an ultimate tensile strength of 
250 ksi. A major application of alloy 4340 is to aircraft landing gears because of its high strength. For design 
assume an allowable stress of 160 ksi, which implies a factor of safety of 1.4 with respect to yield. The margin of 
safety is defined by

. (14.16)

The margin of safety is positive for a feasible design, and negative for an infeasible design. For the design b = 3 
in. and h = 0.69 in., the . Therefore, with respect to strength the design (14.7) is infeasible.

Moreover, the landing gear limit load factor is specified as 2.0 in FAR 23.473(g), and not the 2.2 determined 
for the initial design (14.7). To achieve the required landing gear load factor we compute new values for the 
acceleration, the stopping distance and the stroke of the strut as follows:

. (14.17)

The new second area moment for the leaf spring strut is obtained by a rearrangement of (14.9):

. (14.18)

Solve eq. (14.18) for h to get

. (14.19)

Substitute eq. (14.19) for h into axial normal stress (14.15) and evaluate it at z = L to get

. (14.20)

Set  in eq. (14.20), and by a root finding routine, or by a trial and error method, find

(14.21)

For the design (14.21), the margin of safety (14.16) is positive for  as shown in figure. 14.4. At 

 it is  and at z = 0 it is 594.7. The design (14.21) is feasible with respect to 
strength and also satisfies the landing gear load factor of 2.

σz
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2
---– y h

2
---≤ ≤ 0 z L≤ ≤
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----------------– 6zR θsin–
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----------------–= =

σz z L=
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-------------------------------------------= =
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aG 2 1– 0.67+( )g 53.77  ft./s2= = d Vd
2 2aG( )⁄ 8.09 in.= = ∆ d 3.14– 4.95 in.= =

Ixx
Rl3
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h 0.9269883 b1 3/⁄=
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0 z L≤ ≤
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14.1.2 Strut design exercise

Although the margin of safety is positive along the length of the strut in figure. 14.4, it is very large over most of 
the length of the strut. An efficient use of material to carry the load has a margin of safety that is sightly positive. 
The large positive values of the margin of safety shown in figure. 14.4 indicate that the design is too heavy. The 

specific weight of steel is 0.284 lb./in.3, so the weight of the leaf spring strut (14.21) is

(14.22)

Since the axial normal stress (14.15) is linear in the coordinate z, it is reasonable to assume that the cross-sec-
tional area of the strut should be linear in z. Take the thickness of the strut h to be independent of z, and let the 
width of the strut be a linear function of z. That is,

, (14.23)

where  is the width at the axel and  is the width at the fuselage. Of course, this means that the second area 

moment of the cross section, , is a linear function of z. 

1. Determine the value of the design variables h, , and  such that stroke is equal to 4.95 in. and the mag-

nitude of the normal stress  is less than, or equal to, an allowable value of 160,000 psi.

2. Plot the margin of safety for strength of the design in step 1 with respect to z for . 

3. Compute the weight of the design determined in step 1.

14.2  Wing spar design

The wing spar is the primary load bearing structure in the wing. Consider the design of a spar for minimum 
weight under a particular maneuver condition subject to different design limit states. The example is the Mohawk 
commuter airplane shown in figure. 14.5. The wing is slightly tapered, but to simplify the analysis we will treat it 
as uniform. The wing span is 74 feet, and the wing area is 592 square feet, so that the average chord is 8 feet. 
About 9 feet of this wing span is the fuselage width, so that we will assume that each wing is a 32.5-foot-long 
cantilever beam. At the root of the wing, the airfoil is NACA 23016, with a thickness-to-chord ratio (t/c) of 16 

5 10 15 20 25

2

4

6

8

10

MS

z in.,

Fig. 14.4 Distribution of the margin 
of safety along the length of the strut 
for design (14.21).
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percent, while at the tip, the airfoil is NACA 32012, with a thickness-to-chord ratio of 12 percent. Assume a con-
stant t/c = 0.14, corresponding to a maximum thickness of the airfoil of 1.12 ft.

Design load condition.  The load condition that usually designs most of the wing box is a pull-up maneuver. For 
transport aircraft the FAA specifies a maneuver of 2.5 g, with a safety factor of 1.5. That is, the wings need to be 
able to carry about 2.5 times the weight of the airplane without suffering material failure. The maximum takeoff 
weight is 23,810 lb., but in this condition there is a lot of fuel in the wing, and this fuel provides inertia relief, 
reducing the stresses in the wing. Also, part of the lift of the wing is provided by the area over the fuselage, so we 
will assume that the two wings carry 20,000 lb. in cruise, and 50,000 lb. in the design pull-up maneuver. 

Wing box overall dimensions.  Assume a wing box that is 24 in. in the chord-wise direction and 13 in. deep so 
that it can fit into the airfoil. See figure. 14.6. 

Material data.  1.The wing is made of aluminum alloy 2024-T351 with Young’s modulus of 

Fig. 14.5 Mohawk 298 commuter airplane

x

y

tw
bw 13in.= tw

tf bf 24in.=

tf

Af Af

Af Af

C,S.C

Fig. 14.6 Semimonocoque wing spar cross section. Design variables are the thicknesses tf and tw, 
and the stringer flange area Af.
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 psi, Poisson’s ratio of 0.3, a specific weight of 0.1 lb./in.3, a yield strength in 
tension or compression of 47,000 psi, and a mode I fracture toughness 

Spanwise airload distribution.  Let z denote the spanwise axis along the locus of shear centers of each cross 
section. The z-axis measured from the root to tip, with , and  Assume 

that the load is distributed elliptically over the wing as in example 6.6 on page 165, so that the load intensity  

per unit span is given as

    , (14.24)

where the total lift , and the wing span  

It is given that the line of action of the lift is acting on the front web of the box beam. Equilibrium conditions 
shown in figure. 14.7 determine the shear force, bending moment, and torque at the wing root as

 

14.2.1 Evaluation of stresses at root cross section

Since the wing box is uniform along the span, the thicknesses are sized by the conditions at the root. Ten loca-
tions for evaluation of the Mises effective stresses and the margins of safety are shown in figure. 14.8. 

The axial normal stress at the root due to flexure is determined from eq. (4.6) on page 79. For this symmetric 

cross section we get from eq. (4.4) that , ., and  by eq. (4.7). In the absence of 

an axial normal force and no thermal loads, the normal stress in eq. (4.6) reduces to

. (14.25)

The second area moment about the x-axis through the centroid of the cross section is given by

E 10 6×10=
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0

1
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Fig. 14.7 Free body diagram of the spar and the equilibrium equations.
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. (14.26)

The shear stresses tangent to the contour are determined from the shear flows and thicknesses of the panels of the 
box beam (i.e., ). For the box beam the shear stresses in each branch are

 , (14.27)

where  denotes the shear flow in the i-th branch, and  denotes the branch contour coordinate. The total 

shear flows are the summation of the shear flow due to the transverse shear force acting through the shear center 
and the torque. From eq. (4.25) on page 82, the total shear flow at a given contour location is

. (14.28)

The shear flow distribution function with respect to the shear center  is obtained from eq. (4.19) and eq. 

(4.26), where . For each branch we write

, (14.29)

where the area enclosed by the cell . The functions  in eq. (14.29) are distribution functions 

defined by first area moments, and are obtained from eq. (4.9) on page 80. For each branch functions  are 

determined from

, ,

, and . (14.30)

The contour coordinate functions , functions , and the evaluation of coordinates normal to 

s1 q1,

s2 q2,

s3 q3,

s4 q4,
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Fig. 14.8 Locations for the evaluation of stresses at the wing root.
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contour  are listed in table 14.1.

From the results listed in table 14.1, the integral term on the right-hand side of eq. (14.29) evaluates as

. (14.31)

The shear flow distribution functions are given in eq. (14.32) below.

. (14.32)

Strength limit state.  The Von Mises criterion given by eq. (4.31) on page 84 is used to predict the initiation of 
material yielding. The Mises effective stress is defined by

. (14.33)

If , then the material response is elastic, and if  yielding initiates. The margin of 

safety (14.16) in this case is

 . (14.34)

The allowable stress for the strength limit state is the yield strength of the material divided by the factor of safety 
(FS). That is 

. (14.35)

The margin of safety is nonnegative for a feasible design, otherwise the design is infeasible. It should be zero or 
a small positive number.

Table 14.1 Geometric functions of the contour

Branch si xi yi Qxi rni, eq. (4.11)
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14.2.2 Trial design of the monocoque box beam spar

A computer program was written to evaluate the Mises effective stresses at the ten locations of the root cross sec-
tion using a factor of safety of 1.5. For , , and  the weight of the spar is 

 The values of the ten margins of safety for this design are listed in table 14.2.

Since the margins of safety are all positive, this design is feasible. Although feasible, this design is too heavy and, 
consequently, not optimal. Lower weight feasible designs will have a nonnegative minimum margin of safety 
close to zero.

To aid in the search for the best design, consider the design plane shown in figure. 14.9. The thickness tf is 
the abscissa and the thickness tw is the ordinate. Each point in the plane represents a design, some are feasible 

some are not. Contours of constant margins of safety and constant spar weights are plotted in the design plane1. 

Only designs with a nonnegative margin of safety are feasible. The least weight design occurs at a point  

on the margin of safety contour equal to zero. A second condition is needed to determine point . This sec-

ond condition is to equate the slope  on the margin of safety contour  to the 

slope of the constant weight contour . That is, the point  on the contour  is 

tangent to the contour of least weight.

14.2.3 Design exercise A

Write a computer program to find the thicknesses tf and tw of the wing box for  that will minimize the 

weight and carry the load without experiencing material yield using a factor of safety of 1.5. Calculate the weight 
of the spar and the margins of safety at the ten locations shown in figure. 14.8. Although the design given in arti-
cle 14.2.2 is too heavy, it can be used to assess if the computer program is correct. Include a print out of the pro-
gram and the output for the best design, which includes the ten margins of safety and the weight. 

Table 14.2 Margins of safety for the trial design

MS1 0.0528 MS6 0.0714

MS2 0.0714 MS7 0.0528

MS3 0.0702 MS8 0.0378

MS4 0.0702 MS9 0.0378

MS5 9.086 MS10 2.619

1. Fig. 14.9 was generated by the Mathematica function ContourPlot[Min[MS[tf,tw,0]] == 0, {tf, 0.3, 0.8},{tw, 0.0, 0.3}], 
where definition of function MS[tf,tw,Af] is determined by eq. (14.34) and the ten points shown in figure. 14.8.
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14.3 Additional limit states for buckling and fracture

Consider design variables , , and  for the Mohawk 298 wing spar subject to constraints on 

yielding, buckling, and fracture. The locations in the cross section at the wing root where the design constraints 
are evaluated are shown in figure. 14.10. 

14.3.1 Buckling margin of safety

Let rib spacing along the span, or z-axis, at the root of the wing be denoted by , and take . The 

upper cover skin, or branch 3 with coordinates , is subject to compression and shear. The normal 

stress is  and the shear stress  is a linear function in the contour coordinate s3. Assume 

the skin can be modeled as simply supported flat plate between stiffeners for the buckling analysis. From eq. 
(11.118) on page 355 the combined compression and shear index for buckling is defined by

0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

MS 0=

700 900 1100 1300

red contour: MS 0.2–=

black contour:

blue contour: MS 0.2=

dashed contour: spar weights in lb.
tw  in.,

tf in.,

Fig. 14.9 Design plane for Af = 0. 
Contours of the margin of safety for yield 
and contours of constant spar weights.
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Fig. 14.10 Cross section of the stringer-stiffened box beam, and locations of constraint evaluations

ar ar bf 2⁄=

x3 s3( ) y3,[ ]

σzz Mxy3( ) Ixx⁄= τ3 s3( )



Article 14.3

414 Aerospace Structures

, (14.36)

where  for no buckling and  at the onset of buckling. The average shear stress is

. (14.37)

The critical stresses for compression (11.110) and shear (11.116) are

. (14.38)

The buckling coefficients are

. (14.39)

The margin of for the buckling limit state is

. (14.40)

14.3.2 Fracture margin of safety

The design damage condition is a through crack centered in the lower left skin that is 1.00 in. long 
( ) with the crack faces perpendicular to the z-axis. The lower skin, or branch 1 with coordinates 

, is subject to a tensile stress  and a shear stress  that is a linear function of 

contour coordinate s1. Thus, the crack is exposed to tension and shear, which leads to mixed mode cracking (i.e., 

a mixture of mode I and mode II). The stress intensity factor for mode I is , and the stress intensity 

factor for mode II is . The fracture toughness for mode I loading only is , and the fracture 

toughness for mode II loading only is . A fracture criterion for mixed mode loading is given by eq. (13.42) 

on page 391. The plane strain fracture toughness for mode I loading is usually readily available in the literature, 
but the mode II fracture toughness is not usually available. Tests for mode II are more difficult to design than for 

mode I. Usually mode II loading does not lead to fracture (Anderson, 1995)1. In other words . In addi-

tion for the design , the stresses at the center of branch 1 are  and 

. The shear stress is about 4 percent of the normal stress, and so it is expected that 

shear would have a small influence on fracture. Thus, we assume fracture is in mode I. The margin of safety for 
fracture is

, (14.41)

1. Mode II loading is important if there is weak interface in the material, which is the case for delamination of 
filamentary composites as discussed in article 13.7 on page 392.
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where the factor of safety for fracture is specified as .

14.3.3 Design exercise B

Consider a longitudinally stiffened configuration of the wing box for the Mohawk 298 commuter airplane 
described in article 14.3. Write a computer program to determine the thicknesses  and  of the wing box for 

selected values of the flange area  listed in the table below. The objective is to minimize the weight. The design 

limit states are material yield (14.34) using a factor of safety of 1.5, that the compression panel of the upper skin 
does not buckle (14.40), and that the crack in the lower panel does not propagate (14.41). Evaluate the margin of 
safety for yield at point 8 shown in figure. 14.8. The minimum margin of safety should not be negative for a fea-
sible design, but should be a small positive number. Write a computer program to determine the thicknesses  

and  of the wing box for selected values of the flange area  listed in table 14.3.

Table 14.3 Design exercise B

, in.2 , in. , in.
weight, 

lb.

Margins of safety

Yield Buckling Fracture
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1.0

2.0

3.0

FSf 1.2=

tf tw
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Af tf tw
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CHAPTER 15

 

Direct stiffness method

 

Unit action states and unit displacement states are defined in the first section followed by an example to show 
how these definitions can be used to find flexibility and stiffness influence coefficients. To introduce the basic 
methods of matrix structural analysis, the analyses of structures modeled with linear elastic springs are presented 
in article 15.2 to article 15.6. The objective is to illustrate the steps in the 

 

direct stiffness method, 

 

which is sum-
marized in

 

 

 

article 15.7. The approach followed here is based on chapters 2, 3, 4, and 6 of Martin (1966).

 

15.1 Physical interpretation of influence coefficients

 

Consider the structural model of a cantilever wing with two degrees of freedom shown in figure. 15.1. The gener-

alized forces are denoted by  and the corresponding generalized displacements by , . Refer to the 

discussion in article 5.2.1 and article 5.2.2 on page 134. The linear elastic response of the wing is determined 
from the matrix relations

.

 

(15.1)

 

Elements  of the stiffness matrix are stiffness influence coefficients, and elements  of the flexibility matrix 

Q1 q1,

Q2 q2,

y v z( ),

z
EI

L

Fig. 15.1 Two-degree-of-freedom model of the cantilever wing.
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are flexibility influence coefficients. Matrices  and  are symmetric, and they are the inverse of one 

another; i.e., 

.

 

(15.2)

 

The following definition of the stiffness influence coefficients is the basis of the unit displacement state 
(UDS) method:

 

The stiffness influence coefficient 

 

k

 

ij

 

 represents the generalized force at point 

 

i

 

 in the direction 

 

q

 

i

 

 due to a 

unit generalized displacement 

 

q

 

j

 

, all other generalized displacements equal to zero.

 

For UDS 1 take the displacement vector , then the generalized forces from the first of eqs. (15.1) are 

. For UDS 1 the force vector is equal to the first column of the stiffness matrix. For UDS 2 take 

, then the generalized force vector is . For UDS 2 the force vector is equal to the 

second column of the stiffness matrix. For the wing example the generalized force vectors in terms of the ele-
ments of the stiffness matrix are depicted in figure. 15.2.

The following definition of the flexibility influence coefficients is the basis of the unit action state (UAS) 
method:

k c

k
T

k= c
T

c= k c c k I= =
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q2

1
0

=
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UDS 2. q1 q2,( ) 0 1,( )=

Fig. 15.2 Generalized forces for the unit displacement states.
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The flexibility influence coefficient 

 

c

 

ij

 

 represents the generalized displacement at point 

 

i

 

 in the direction 

 

Q

 

i

 

 

due to a unit generalized force 

 

Q

 

j

 

, all other generalized forces equal to zero.

 

For UAS 1 take the generalized force vector , then the generalized displacements from the second of 

eq. (15.1) are . For UAS 1 the displacement vector is equal to the first column of the flexibility 

matrix. For UAS 2 take , then the generalized displacement vector is . For UAS 2 

the displacement vector is equal to the second column of the flexibility matrix. For the wing example the general-
ized displacement vectors in terms of the elements of the flexibility matrix are depicted in figure. 15.3.

 

Example 15.1 Two springs in series restrained at one end. 

 

Construct the flexibility influence matrix  by the method of unit action states (UAS), and the stiffness influ-

ence matrix , by the method of unit displacement states (UDS) for the two-degree-of freedom structural 

model shown in figure 15.4. The model consists of two linear elastic springs in series with the left end fixed 
against translation. The left spring has stiffness  and the right spring has stiffness .

The flexibility and stiffness matrix relations are of the form

Q1

Q2

1
0

=
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1⋅=
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0
1

=
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UAS 2. Q1 Q2,( ) 0 1,( )=

Fig. 15.3 Generalized displacements for unit action states.
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. (a)

Solution.  

UAS 1.    and . The free body diagrams of the springs, with the spring forces assumed positive 

in tension, and of joints 1 and 2 are shown in figure. 15.4.

Equilibrium at joints 1 and 2 gives

. (b)

Therefore,

. (c)

The material laws for the linear elastic springs are

. (d)

where  is the elongation of spring a and  is the elongation of spring b. Spring elongations are related to the 

nodal displacements by geometric compatibility, and for this example we have

. (e)

Thus,  and . Solve for the displacements to get

. (f)

ka kb

q1 Q1, q2 Q2,

Fig. 15.4 Two linear elastic springs in series restrained against rigid body translation.

q1

q2

c11 c12

c21 c22

Q1

Q2

=
Q1

Q2

k11 k12

k21 k22

q1

q2

=

Q1 1= Q2 0=

Sa SaSa

q1 c11=

Sb Sb Sb Sb

node 1  node 2

q2 c21=

Q2 0=Q1 1=

Fig. 15.5 Unit 
action state 1.

Sa– Sb 1+ + 0= Sb 0=

Sa 1= Sb 0=

Sa ka∆a= Sb kb∆b=

∆a ∆b

∆a q1= ∆b q2 q1–=

1 kaq1= 0 kb q2 q1–( )=

q1
1
ka

---- c11= = q2
1
ka

---- c21= =



Aerospace Structures 421

Physical interpretation of influence coefficients

UAS 2.    and . The free body diagrams are shown in figure. 15.5.

Equilibrium at the joints gives

. (g)

Therefore,

. (h)

The material laws for each spring and the elongation-displacement relations give

. (i)

Solve for the displacements to get

. (j)

From the method of unit action states we have determined the flexibility matrix to be

. (k)

The flexibility matrix is symmetric, which it must be for a linear elastic structure by Maxwell’s reciprocal theo-
rem: See article 5.1.2 on page 131.

UDS 1.    and . From the material laws for each spring and the elongation-displacement relations 

we have

. (l)
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Free body diagrams of the two joints are shown in figure. 15.6. 

Equilibrium at the joints gives

. (m)

But  and  for UDS 1. Also, we identify  and  for UDS 1. So

. (n)

UDS 2.    and . From the material laws for each spring and the elongation-displacement relations 

we have

. (o)

Free body diagrams of the two joints are shown in figure. 15.7. 

Nodal equilibrium gives

. (p)

But  and  for UDS 1. Also, we identify  and  for UDS 1. So

. (q)

Therefore, the stiffness matrix is

. (r)

The stiffness matrix is also symmetric, which was proved based on symmetry of the flexibility matrix. Refer to 
article 5.2.2.

Note that the matrix product

Sa ka= kaSa

Q1 k11=

k– b Sb kb–= Sb k– b

node 1  node 2

Q2 k21=

q1 1= q2 0=

Fig. 15.7 Unit 
displacement state 1.
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.

That is, the product of flexibility matrix and the stiffness matrix is the identity matrix. In other words, the inverse 
of the flexibility matrix is the stiffness matrix. J

15.2 Unrestrained structural stiffness matrix

The flexibility influence coefficients  are defined for a structure restrained against rigid body motion. How-

ever, it is not necessary to impose this rigid body constraint when forming the stiffness influence coefficients  

of a structure. Specifying the generalized displacements in the method of unit displacement states encompasses 
both rigid body displacements and those causing deformation. Consider a single, linear elastic spring element 
with two-degrees-of-freedom (DOFs) connected between joints i and j, where integers , as shown in figure 

15.9. Let  denote the stiffness of the spring, which has dimensional units of F/L.

The unrestrained structural stiffness matrix is, in general, given by

, (15.3)

in which . Free body diagrams of the joints and spring are shown in figure 15.10. Equilibrium at the joints 

yields

. (15.4)

The spring force is related to the nodal displacements by the material law
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Fig. 15.9 A two-degree-of-freedom spring element.
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Fig. 15.10 Free body diagram of the two-degree-of-freedom spring element.
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. (15.5)

UDS 1.   and . Therefore eq. (15.5) gives . Nodal equilibrium, eq. (15.4), and the 

matrix relation, eq. (15.3), give

. (15.6)

UDS 2.     and . Therefore eq. (15.5) gives . Nodal equilibrium, eq. (15.4), and the 

matrix relation, eq. (15.3), give

. (15.7)

So that the unrestrained structural stiffness matrix is given by

. (15.8)

Note that the unrestrained structural stiffness matrix (15.8) has the following properties:

1. Matrix  is symmetric (i.e., ).

2. The sum of the column elements equals zero.  for . The vanishing of this sum results 

from  for each UDS.

3. The . That is, the unrestrained structural stiffness matrix is singular. This occurs 

because the structure is not restrained against rigid body translation in the horizontal direction.
Under the action of no external loads (i.e.,  and ), the structure can translate horizontally at a 

constant speed. Rigid body motion can be used to establish constraints between elements of the unrestrained 
structural stiffness matrix. For example, let  denote the horizontal speed and let  denote time, then

. (15.9)

Equation (15.3) gives

, (15.10)

or

. (15.11)

Therefore, the constraints between elements of the unrestrained stiffness matrix are

. (15.12)

4. Diagonal elements of  are positive. This must be true based on physical grounds. If  and , 

then we expect . Thus, in the relation , the stiffness influence coefficient .
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15.3 Assembly of unrestrained structural stiffness matrices

Consider the construction of the 3X3 stiffness matrix for the unrestrained structure shown in figure. 15.11 given 
the generic stiffness matrix of the spring element from eq. (15.8).

Using the results from eq. (15.8) for each separate spring element, we can write the following results

(15.13)

. (15.14)

Assembly of the individual spring element stiffness matrices is accomplished by displacement continuity at the 
joints and equilibrium at the joints. Displacement continuity requires

. (15.15)

A free body diagram of the structure is shown below.

Equilibrium at the three joints requires

. (15.16)

Substitute for the displacements of the individual spring elements in eqs. (15.13) and (15.14) the structural dis-
placements in eqs. (15.15). Then substitute, in turn, these results into the nodal equilibrium eq. (15.16) to elimi-
nate individual spring forces . We get

, (15.17)
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Fig. 15.11 Unrestrained structure composed of two springs in series.
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Fig. 15.12 Free body diagram of the two springs in series.
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Write eq. (15.17) in matrix form

. (15.18)

Hence, the unrestrained structural stiffness matrix is 

. (15.19)

Note the following properties of the unrestrained structural stiffness matrix in eq. (15.19):

1. The matrix is symmetric, or .

2. Using a co-factor expansion by the third column, the determinate of the matrix is computed as follows:

.

Since the determinate is zero, the matrix is singular. The unrestrained structural stiffness matrix is singular 
because rigid body translation is not restrained.

3. The sum of the column elements is zero.  for .

4. Diagonal elements are positive .

Of course, we could have used the method of unit displacement states to determine the unrestrained struc-
tural stiffness matrix (15.19) for the two springs in series rather than the assembly procedure given above.

Another way to obtain the unrestrained structural stiffness matrix is to first expand the element unrestrained 
stiffness matrices to size 3X3 by adding rows and columns of zeros, and then add the 3X3 element stiffness 
matrices. For spring element stiffness matrix given by eq. (15.13), displacement compatibility, eq. (15.15), iden-
tifies  and . That is, columns one and two of the element stiffness matrix are associated with 

global degrees of freedom one and two. We write the element stiffness matrix as

. (15.20)

The global degrees of freedom are written above the appropriate columns of the expanded element stiffness 
matrix in eq. (15.20) to aid in keeping the order of the element columns consistent with the ordering of the global 
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displacements. For the spring element stiffness matrix given by eq. (15.14), displacement compatibility, eq. 
(15.15), identifies  and . That is, columns one and two of the element stiffness matrix are asso-

ciated with global degrees of freedom two and three. We write the element stiffness matrix as

. (15.21)

Note that the only non-zero elements in the expanded element stiffness matrix (15.21) are in rows and columns 
two and three. Since matrices (15.20) and (15.21) are of the same dimensions we can add them to get the unre-
strained stiffness matrix of the structure; i.e.,

. (15.22)

The unrestrained structural stiffness matrix in eq. (15.22) is the same as the matrix in eq. (15.19). Thus, the 
superposition of individual element stiffness matrices to obtain the unrestrained structural stiffness matrix is 
equivalent to imposing displacement compatibility and equilibrium at the joints.

15.4 Prescribed nodal displacements and forces

At a joint we can prescribe either the displacement or the corresponding force, but not both. Consider the unre-
strained structure of the last section in which we prescribe the values of the displacement , force , and force 

. That is, nodal values of  are known, and nodal values of  are unknown. Nodal 

forces  are the applied loads, and nodal force  is a reactive force, or support reaction. Nodal dis-

placements  are the unknown, or active, displacement degrees of freedom. We partition the unre-

strained stiffness matrix given in eq. (15.22) by drawing lines between rows and columns to separate active and 
reactive nodal variables. In this example, we partition row 1 and column 1 as

. (15.23)

Now rearrange the order of the equations and the order of the displacements in eq. (15.23). The equations for the 
applied loads  are moved to correspond with rows one and two, and the reactive force equation for 

 is put in row three. Simultaneously, the unknown displacements  are ordered such that they appear 

in columns one and two, and the prescribed displacement  appears in column three. The equations in matrix 

form now read as

qk q2= ql q3=

Kb[ ]
0 0 0
0 kb kb–

0 kb– kb

=

q1 q2 q3

K[ ] Ka[ ] Kb[ ]+
ka ka– 0

ka– ka kb+( ) kb–

0 kb– kb

= =

q1 q2 q3

q1 Q2

Q3 q1 Q2 and Q3, , Q1 q2 and q3, ,

Q2 and Q3, Q1

q2 and q3,
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=

Q2 and Q3,
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. (15.24)

The rearranged stiffness matrix is

. (15.25)

In terms of matrix algebra, the unrestrained stiffness matrix in eq. (15.22) was rearranged to the matrix in eq. 
(15.25) by the following four-step sequence: First interchange elements in rows 1 and 3. Second, interchange ele-
ments in columns 1 and 3. Third, interchange elements in rows 1 and 2. Fourth, interchange elements in columns 
1 and 2.

Let the vector of unknown displacement degrees of freedom be denoted by , the vector of prescribed 

displacements by , the vector of applied forces by , and the vector of reactive forces by . In the 

example of this and the last section these vectors are

. (15.26)

The unrestrained structural stiffness matrix is rearranged to separate unknown and known nodal variables. In 
general, this partitioned matrix is written in the form

. (15.27)

For the example in this and the last section, a comparison to the matrix in eq. (15.25) gives the submatrices in eq. 
(15.27) as

. (15.28)

The matrix equations for the structure in partitioned form are now written as

. (15.29)

Submatrix  is called the restrained structural stiffness matrix. It is a square, symmetric matrix. For the 

example of this section it is seen from eq. (15.28) that the restrained stiffness matrix is 2X2, and its determinate 
is positive (i.e., ). The restrained structural stiffness matrix is nonsingular if the prescribed 
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nodal displacements are sufficient to prevent rigid body motion of the structure. The restrained structural stiffness 
matrix for this example was determined by the method of unit displacement states in example 15.1. See eq.(r). 
The submatrix  is, in general, square and symmetric. For the example in this section, eq. (15.28) shows 

 is 1X1. The off-diagonal submatrices are, in general, rectangular, but they satisfy the relationship

. (15.30)

15.5 Solution for the unknown nodal variables

Multiply out the matrix equations (15.29) following the ordinary matrix product formula to get

(15.31)

. (15.32)

Since the applied load vector  and the prescribed displacement vector  are known, solve eq. (15.31) 

for the unknown nodal displacement vector to get

. (15.33)

Continuing with the example of the last two sections, the restrained structural stiffness matrix is given in first 
of eqs. (15.28). Its inverse can be computed from

.

where  is the adjoint matrix. The adjoint matrix1 is the transpose of the matrix of co-factors of matrix 

. For the 2X2 restrained structural stiffness matrix (15.28)1 in this example, the adjoint matrix is simple to 

compute. It is

. (15.34)

Hence, the inverse matrix is

1. Many determinates must be evaluated to compute the adjoint matrix. For large matrices, evaluating many determinates is 
computationally inefficient. Other, more efficient methods to solve large linear systems of equations are used in numerical 
algorithms.

Kββ[ ]
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T
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. (15.35)

Of course, the inverse of the restrained structural stiffness matrix is recognized as the flexibility matrix. Equation 
(15.35) was also obtained by the method of unit action state in example 15.1 eq. (k). Continuing with the compu-
tations indicated in eq. (15.33) for this example, we have

. (15.36)

Equation (15.36) is the solution for the unknown nodal displacements.

To find the reactive nodal force vector, substitute the solution for the active nodal displacement vector from 
eq. (15.33) into eq. (15.32) to get

. (15.37)

Multiply the matrix products and collect terms in the prescribed nodal displacement vector to get

. (15.38)

Let’s evaluate eq. (15.38) for the example problem. From eqs. (15.28) and (15.35)

. (15.39)

Performing some of the matrix products, we get

. (15.40)

This last matrix expression is equivalent to the scalar equation
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. (15.41)

The result (15.41) for the reactive nodal force is as expected from overall equilibrium of the structure shown in 
figure. 15.11.

15.6 Stress matrix

The stress matrix is a matrix that directly yields the internal forces or stresses in an element in terms of the nodal 
displacements. Consider a typical spring element between joints i and j as shown in figure. 15.13. From the over-

all solution for the structural response, the nodal displacement vector  is determined. Hence, the actual 

nodal displacements  and  for the typical spring element are known. Define a vector of equivalent nodal 

forces as the element stiffness matrix times the known nodal displacement vector, or

. (15.42)

These equivalent nodal forces are not the actual forces at the joints, so they are fictitious. From this equation, the 
equivalent nodal forces at the joint are

. (15.43)

From the free body diagram shown in figure. 15.13, the spring force  is related to the equivalent nodal forces 

by

. (15.44)

Substitute eqs. (15.43) into (15.44) to eliminate the equivalent nodal forces to find that both of eqs. (15.44) lead 
to the same expression for the spring element force. The result is

, (15.45)

where  is the stress matrix for the spring element given by

. (15.46)
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Fig. 15.13 Typical spring element and equivalent joint forces.
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For the example problem, the stress matrix for the spring between joints 1 and 2 is . Then, force in 

the spring element is

.

From eq. (15.36), the displacement at joint 2 is

.

Hence, the force in the spring element between joints 1 and 2 is

.

The stress matrix for the spring between joints 2 and 3 is . Then the force in this spring element is

.

Substitute the solution for the nodal displacements from eq. (15.36) into previous equation to get

.

Perform the matrix products in this last equation to find the force in the element between joints 2 and 3 is

.

15.7 Summary of the direct stiffness method

We have completed all the steps of the direct stiffness method for the structure shown in figure. 15.11 in the dis-
cussions beginning in article 15.2 through article 15.6. The method is summarized as follows:

1. Formulate the member stiffness matrix, and expand it to the overall structural degrees of freedom by adding 
rows and columns of zeros.

2. Assemble of the member stiffness matrices to form the unrestrained structural stiffness matrix.

. (15.47)

3. Prescribe boundary displacement restraints  and applied nodal forces :
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. (15.48)

4. Solve for the unknown nodal displacements.

. (15.49)

5. Solve for the unknown support reactions.

. (15.50)

6. Determine the member forces/stresses:

. (15.51)

Example 15.2 Partitioning an unrestrained structural stiffness matrix

A spring model with four degrees of freedom is shown in figure. 15.14. 

 The unrestrained structural stiffness matrix is given as

. (a)

It is prescribed that the displacement q1 = 1 in., force Q2 = 0, force Q3 = –400 lb., and that the displacement q4 = 
0.    

a) Determine the nodal displacement vectors  and , and the nodal force vectors  and 

.

b) Determine the submatrices , and .

c) Solve for the unknown nodal displacements and forces.
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Fig. 15.14 Spring model 
of example 15.2.
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Solution to part (a).  The known and unknown quantities are listed in table 15.1.

Therefore, the α-indices are 2 and 3, and the β-indices are 1 and 4. The unknown nodal displacement vector and 
the corresponding known nodal force vector are

. (d)

The known displacement vector and the corresponding unknown force vector are

. (e)

Solution to part (b).  We change the order of the columns in the unrestrained structural stiffness matrix to corre-
spond to displacements q2, q3, q1, and q4. Simultaneously we change the order of the rows to correspond to 
forces Q2, Q3, Q1, and Q4. The re-ordered unrestrained structural stiffness matrix is

. (f)

Compare the partition form of the previous matrix to the general partitioned form given by eq. (15.27) to find

. (g)

Solution to part (c).  The general form for the solution to the unknown nodal displacement vector is given by eq. 
(15.33). For this example the general form of the solution becomes

. (h)

Since the nodal displacement vector  has been determined, we use eq. (15.32) to find the unknown nodal 

force vector; i.e.,

Table 15.1 Classification of the nodal quantities

Known q1 Q2 Q3 q4

Unknown Q1 q2 q3 Q4
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15.9  Practice exercises

1. For the spring assembly shown in figure. 15.15, determine the 2X2 flexibility influence matrix  by the 
method of unit action states.

2. Consider a three-degree-of-freedom model of the string in tension shown in figure. 15.16. Let  denote the 
horizontal component of the tension force. The three degrees of freedom are the vertical displacements and cor-
responding forces at the quarter points. The analysis of this structure is different from the analyses we have been 
using in that we have to take equilibrium on a slightly deflected configuration rather than on the undeformed con-
figuration even though the displacements are small. A typical free body diagram to be used in the analysis is 
shown in the figure. Note that it is the horizontal component of the string tension that is equal to .

a) Use unit action states and the physical definition of flexibility influence coefficients to calculate the 3X3 
flexibility matrix . Write the elements of the matrix in terms of tension  and dimension . Recall 

the vertical displacements are assumed small compared to length . Partial answer: .

Q1

Q4

100– 0
200– 0

1–

1.5–
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0 200

1
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+ 200
200
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Fig. 15.15  Spring 
assembly of exercise 1.
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Fig. 15.16  (a) String in tension. (b) Typical free body diagram
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b) Use unit displacement states and the physical definition of stiffness matrix elements to calculate the 3X3 

stiffness matrix . Partial answer: .

c) Check the plausibility of the matrices determined in parts a and b. Are they symmetric? Are diagonal 
elements positive? Does ? 

3.  Derive by the method of unit displacement states the 3X3 stiffness matrix  for the structure shown in 

figure. 15.17. Assume small displacements and rotations of the horizontal rigid bar. Partial answer: .

4. For the spring model in example 15.2, use eq. (15.45) and determine the stress matrix and spring force in 
spring elements 1-2, 2-3, and 2-4. State if the spring element is in tension or compression. Note: the spring force 
2-3 is the force in the upper and lower spring between joints 2 and 3.

K[ ] k11 2 T
a
--- 
 =

K[ ] C[ ] I[ ]=

K[ ]

2k 2k

L 3⁄ 2L 3⁄

k1

3
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Fig. 15.17 Exercise 3.
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CHAPTER 16

 

Applications of the direct 
stiffness method 

 

16.1 Coplanar trusses

 

The member stiffness matrix for a truss bar in the 

 

X-Y

 

 plane is developed from the analysis in article 6.1.1 on 
page 153. A typical bar of length  located between joints 

 

i

 

 and 

 

j

 

 is shown in figure. 16.1. The coordinates of 

beginning joint 

 

i

 

 are , and coordinates of the end joint 

 

j

 

 are , in the undeformed state. The angle 

between the positive 

 

X

 

-direction and directed line element 

 

i-j

 

 is denoted as , and is determined from

.

 

(16.1)

 

The axial force 

 

N

 

i-j

 

 from eq. (6.2) on page 154 is

.

 

(16.2)

 

The elongation  is related to the joint displacements by eq. (6.6) on page 155, which is repeated as (16.3) 

L

Xi Yi,( ) Xj Yj,( )

θ

θcos( )i j–
Xj Xi–

Li j–

----------------= θsin( )i j–
Yj Yi–

Li j–

---------------= Li j– Xj Xi–( )2 Yj Yi–( )2+=

θ

θ
Ni j–

Ni j–

EA
L

------- 
 

i j–

q2i 1– Q2i 1–,

q2i Q2i,

i

q2j 1– Q2j 1–,

q2j Q2j,

j

X

Y

Fig. 16.1 Truss bar connected to 
joints i and j.
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below.

,

 

(16.3)

 

In matrix notation (16.3) is written as

,

 

(16.4)

 

where we introduce the shorthand notation for the trigonometric functions

.

 

(16.5)

 

Elements of the 4X1 matrix  and the 4X1 displacement vector are

.

 

(16.6)

 

Substitute the elongation-displacement relation (16.4) into Hooke’s law (16.2) to get

.

 

(16.7)

 

Free body diagrams of the bar and joints 

 

i

 

 and 

 

j

 

 are shown figure. 16.1. External forces in the 

 

X

 

- and 

 

Y

 

-direc-
tions at joint 

 

i

 

 are denoted by  and , respectively, and external forces in the 

 

X

 

- and 

 

Y

 

-directions at joint 

 

j

 

 are denoted by  and , respectively. Equilibrium at joints 

 

i

 

 and 

 

j

 

 yield

, , , and .

 

(16.8)

 

In matrix notation, equilibrium equations (16.8) are written as

 or ,

 

(16.9)

 

where  is the joint force vector and matrix  is defined in eq. (16.6). Substitute eq. (16.7) for the axial 

force in eq. (16.9) to get

.

 

(16.10)

 

The latter equation is written in the form

,

 

(16.11)

 

where  is the truss stiffness matrix, and  is the fixed-end force 

∆i j– θcos( )i j– q2j 1– q2i 1––( ) θsin( )i j– q2j q2i–( )+=

∆i j– c– s– c s

q2i 1–

q2i

q2j

q2j 1–

b
T q{ }i j–= =

c θcos( )i j–= s θsin( )i j–=

b[ ]

b
T

c– s– c s= q{ }i j–
T q2i 1– q2i q2j 1– q2j

=

Ni j–
EA
L

------- 
 

i j–
b

T q{ }i j– NT( )i j––=

Q2i 1– Q2i

Q2j 1– Q2j

Q2i 1– Ni j– θcos+ 0= Q2i Ni j– θsin+ 0= Q2j 1– Ni j– θcos– 0= Q2j Ni j– θsin– 0=

Q2i 1–

Q2i

Q2j 1–

Q2j

c–

s–

c

s

Ni j–= Q{ }i j– b Ni j–=

Q{ }i j– b

Q{ }i j–
EA
L

------- 
 

i j–
b b

T q{ }i j– b NT( )i j––=

Q{ }i j– K q{ }i j– Q0{ }i j–+=

K[ ] EA
L

------- 
 

i j–
b b

T= Q0{ }i j– b NT( )i j––=



Aerospace Structures 439

Coplanar trusses

vector. The stiffness matrix for the truss bar is

. (16.12)

Properties of the truss stiffness matrix (16.12):

• It is symmetric since the bar is linear elastic and the displacements are small.

• The sum of column elements is zero. This results from equilibrium of the bar for each unit displacement state. 

For example UDS 1  and the joint forces are 

.

Sum forces horizontally .

Sum forces vertically .

Sum moments about joint i .

•  since the bar is not restrained against rigid body displacements.

• Diagonal elements are positive.

The fixed-end force vector is

. (16.13)

Note that the nodal force vector is equal to the fixed-end vector when the joints are fixed and cannot displace; i.e., 

 if .

Equation (16.7) is rewritten for bar i-j as

, (16.14)

where the 1X4 stress matrix  is defined as

. (16.15)

K
EA
L

------- 
 

i j–

c2 cs c2– cs–

cs s2 cs– s2–

c2– cs– c2 cs

cs– s2– cs s2

=

q{ } 1 0 0, 0
T=

Q{ } Q2i 1– Q2i Q2j 1– Q2j

T
EA L⁄( ) c2 cs c2– cs–

T 1( )= =

Q2i 1– Q2j 1–+ EA L⁄( ) c2 c2–( )+( ) 1( ) 0= =

Q2i Q2j+ EA L⁄( ) cs cs–( )+( ) 1( ) 0= =

LcQ2j LsQ2j 1–– L EA L⁄( ) c cs–( ) s c2–( )–[ ] 1( ) 0= =

Det K[ ] 0=

Q0{ }i j–

Q0
2i 1–

Q0
2i

Q0
2j 1–

Q0
2j

b NT( )i j––

c–

s–

c

s

NT( )i j––= = =

Q{ }i j– Q0{ }i j–= q{ }T
i j– 0 0 0 0=

Ni j– S q{ }i j– NT( )i j––=

S

S
EA
L

------- 
 

i j–
c– s– c s≡ EA

L
------- 
 

i j–
b

T=
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Example 16.1 A three-bar truss

Each bar in the three-bar truss shown in figure. 16.2 has the same axial stiffness , and the joints are numbered 

as shown. The thermal forces in bar 1-2, 1-3, and 2-3 are denoted by , , and , respec-

tively. Determine the 6X6 unrestrained structural stiffness matrix and the 6X1 fixed-end action vector.

Solution.   The direction cosines and their products for each bar are listed in table 16.1.

The direction cosines from table 16.1 are inserted into eqs. (16.12) and (16.13), to get the 4X4 stiffness matrices 
and the 4X1 fixed-end actions for the truss member. The stiffness matrices are expanded to 6X6 by adding two 
rows and two columns of zeros, and the column vectors are expanded to 6X1 by adding two rows of zeros. Refer 
to the discussion in article 15.3 on page 425. The 6X1 vector of forces for bar 1-2 is

. (a)

Rows five and six, and columns five and six, of the stiffness matrix in eq. (a) contain zeros entries since degrees 
of freedom five and six do not influence the response of truss bar 1-2. The 6X1 vector of forces for bar 1-3 is

Table 16.1 Direction cosines for the three-bar truss

bar

1-2 1 0 1 0 0

1-3 0 1 0 1 0

2-3

EA

NT( )1 2– NT( )1 3– NT( )2 3–

1

2
3

4

5

6

1 2

3

45°

2L

L

L

y

x

DOF numbering convention

Fig. 16.2 Three-
bar truss example. 

θ c s c2 s2 cs

0°

90°

135° 1 2⁄– 1 2⁄ 1 2⁄ 1 2⁄ 1 2⁄–

Q1

Q2

Q3

Q4

Q5

Q6 1 2–

EA
L

------- 
 

1 0 1– 0 0 0
0 0 0 0 0 0
1– 0 1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

q1

q2

q3

q4

q5

q6

1–

0
1
0
0
0

NT( )1 2––=
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. (b)

Rows three and four, and columns three and four, of the stiffness matrix in eq. (b) contain zeros entries since 
degrees of freedom three and four do not influence the response of truss bar 1-3. The 6X1 vector of forces for bar 
2-3 is

. (c)

Rows one and two, and columns one and two, of the stiffness matrix in eq.(c) contain zeros entries since degrees 

of freedom one and two do not influence the response of truss bar 1-3. Let , so that

. (d)

Addition of the 6X1 force vectors for each truss member equals the external joint force vector acting on the truss. 
This addition of force vectors satisfies equilibrium at the joints assuming the procedure to expand each truss ele-
ment to six degrees of freedom to four degrees of freedom is done correctly. Hence, the condition of equilibrium 
is 

. (e)

Equations (a), (b), and (d) for the force vectors are substituted into eq. (e) to get the unrestrained stiffness matrix 

Q1

Q2

Q3

Q4

Q5

Q6 1 3–

EA
L

------- 
 

0 0 0 0 0 0
0 1 0 0 0 1–

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1– 0 0 0 1

q1

q2

q3

q4

q5

q6

0
1–

0
0
0
1

NT( )1 3––=

Q1

Q2

Q3

Q4

Q5

Q6 2 3–

EA

2L
---------- 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 2⁄ 1– 2⁄ 1– 2⁄ 1 2⁄
0 0 1– 2⁄ 1 2⁄ 1 2⁄ 1– 2⁄
0 0 1– 2⁄ 1 2⁄ 1 2⁄ 1– 2⁄
0 0 1 2⁄ 1– 2⁄ 1– 2⁄ 1 2⁄

q1

q2

q3

q4

q5

q6

0
0

1 2⁄

1 2⁄–

1 2⁄–

1 2⁄

NT( )2 3––=

a 1

2 2
----------=

Q1

Q2

Q3

Q4

Q5

Q6 2 3–

EA
L

------- 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 a a– a– a

0 0 a– a a a–

0 0 a– a a a–

0 0 a a– a– a

q1

q2

q3

q4

q5

q6

0
0

1 2⁄

1 2⁄–

1 2⁄–

1 2⁄

NT( )2 3––=

Q1

Q2

Q3

Q4

Q5

Q6

Q1

Q2

Q3

Q4

Q5

Q6 1 2–

Q1

Q2

Q3

Q4

Q5

Q6 1 3–

Q1

Q2

Q3

Q4

Q5

Q6 2 3–

+ +=
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of the truss as

. (f)

In compact notation eq. (f) is

, (g)

where the 6X6 unrestrained structural stiffness matrix is

, (h)

and the 6X1 fixed-end action vector is

. (i)

Note that the stiffness matrix in eq. (h) is symmetric; the sum of column elements equals zero; diagonal elements 
are positive; and its determinate vanishes. J

Q1

Q2

Q3

Q4

Q5

Q6

EA
L

-------

1 0 1– 0 0 0
0 1 0 0 0 1–

1– 0 1 a+ a– a– a

0 0 a– a a a–

0 0 a– a a a–

0 1– a a– a– 1 a+

q1

q2

q3

q4

q5

q6

NT( )1 2–

NT( )1 3–

NT( )– 1 2– NT( )2 3– 2⁄–

NT( )2 3– 2⁄

NT( )2 3– 2⁄

NT( )– 1 3– NT( )2 3– 2⁄–

+=

Q{ } K q{ } Q0{ }+=

K
EA
L

------- 
 

1 0 1– 0 0 0
0 1 0 0 0 1–

1– 0 1 a+ a– a– a

0 0 a– a a a–

0 0 a– a a a–

0 1– a a– a– 1 a+

=

q1 q2 q3 q4 q5 q6

Q0{ }

NT( )1 2–

NT( )1 3–

NT( )– 1 2– NT( )2 3– 2⁄–

NT( )2 3– 2⁄

NT( )2 3– 2⁄

NT( )– 1 3– NT( )2 3– 2⁄–

=
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16.1.1 Assembly algorithm

Consider again the three-bar truss in example 16.1 on page 440. For computer implementation an algorithm is 
presented to assemble the 6X6 unrestrained structural stiffness matrix from the three 4X4 truss stiffness matrices, 
and to assemble the 6X1 fixed-end vector from the three 4X1 fixed-end action vectors. Let a truss member be 
denoted by m, where m = 1 for bar 1-2, m = 2 for bar 1-3, and m = 3 for bar 2-3. A description of symbols used in 
the of assembly algorithm is given in table 16.2. 

Define the 3X1”spring” stiffness vector  and the 3X1 thermal force vector  by

. (16.16)

Direction cosines for each truss bar are specified in the 4X1 matrices , , in eq. (16.17) below:

. (16.17)

Defined a 3X4 connectivity matrix  by

 . (16.18)

Row one of matrix  is assigned to member 1 (bar 1-2), row two to member 2 (bar 1-3), and row three to 

Table 16.2 Nomenclature

Symbol Description

6X6 unrestrained stiffness matrix

row and column elements of the unrestrained stiffness 
matrix

4X4 stiffness matrix for truss member m

matrix elements of the truss member stiffness matrix

6X1 fixed-end action vector

row elements of the fixed-end action vector

4X1 fixed-end action vector of truss member m

row elements of the truss member fixed-end action vector

K

K row col,( )

Km[ ]

Km i j,( )

Q0{ }

Q0 row( )

Qm
0( ){ }

Qm
0 i( )

Kt NT

Kt
EA
L

------- EA
L

------- EA

2L
----------

T

= NT NT( )1 2– NT( )1 3– NT( )2 3–

T
=

bi
i 1 2 3, ,=

b1 1– 0 1 0
T= b2 0 1– 0 1

T= b3
1

2
------- 1

2
-------– 1

2
-------– 1

2
-------

T

=

C[ ]

C[ ]
1 2 3 4
1 2 5 6
3 4 5 6

=

q2i 1– q2i q2j 1– q2j

member 1

member 2

member 3

C
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member 3 (bar 2-3).
Column one contains the DOF for horizontal displacement  at the beginning joint i of the member,

column two contains the DOF for the vertical displacement  of the beginning joint i of the member,

column three contains the DOF of the horizontal displacement  at the end joint j of the member,

and column four contains the DOF for the vertical displacement  at the end joint j of the member.

Refer to the nomenclature in table 16.2, and to matrices defined in eqs. (16.16), (16.17), and (16.18), to 
understand the flow chart for the assembly algorithm in figure. 16.3.

Example 16.2 Restrained three-bar truss of example 16.1

Consider the truss of example 16.1 supported in such a manner that joint displacements 
 as is shown in figure. 16.4. The unknown displacements are q3 and q6, and take the 

corresponding joint forces . The thermal forces in bars 1-2, 1-3, and 2-3 are specified as 

, , and , respectively.

a) Determine the restrained structural stiffness matrix , and submatrices .

q2i 1–

q2i

q2j 1–

q2j

Km
Kt m( ) bm bm

T
=

F

Qm
0{ } bm

NT m( )–=

start K 06X6= T
end

Q0{ } 06X1=

create null

matrices

Print

K Q0{ }&

i = 1

i > 4?

i = i + 1

Q0 row( ) Q0 row( ) Qm
0 i( )+=row C m i,( )=

T

j = 1

j > 4?

j = j + 1

F

col C m j,( )=K row, col( ) K row, col( ) Km i j,( )+=

F

T

m = 1

m > 3?

m = m + 1

Fig. 16.3 Flow chart of the assembly algorithm.

q1 q2 q4 q5 0= = = =

Q3 Q6 0= =

NT( )1 2– 0= NT( )1 3– 0≠ NT( )2 3– 0=

Kαα Kαβ Kβα
and Kββ

, ,
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b) Determine the unknown joint displacements .

c) Determine the unknown support reactions .

d) Determine the bar forces .

Solution to part (a).   Rearrange the unrestrained stiffness matrix in eq. (h) of example 16.1 so that the order of 
the rows and columns correspond to degrees of freedom 3, 6, 1, 2, 4, and 5.

. (a)

Compare the matrix in eq. (a) to the general form (15.27) on page 428 to identify

, (b)

and

. (c)

The restrained structural stiffness matrix  is symmetric, and the sum of its column elements is not zero. 

Also note that the restrained stiffness structural matrix can be obtained from the unrestrained structural stiffness 
matrix in eq. (h) by merely crossing out rows and columns 1, 2, 4, and 5:

45°

2L

L

L

3

Fig. 16.4 Statically indeterminate 
three-bar truss.

6

q3 and q6,

Q1 Q2 Q4 and Q5, , ,

N1 2– N1 3– and N2 3–, ,

K
EA
L

------- 
 

1 a+ a 1– 0 a– a–

a 1 a+ 0 1– a– a–

1– 0 1 0 0 0
0 1– 0 1 0 0
a– a– 0 0 a a

a– a– 0 0 a a

=

q3 q6 q1 q2 q4 q5

Kαα
EA
L

------- 
  1 a+ a

a 1 a+
= Kαβ

EA
L

------- 
  1– 0 a– a–

0 1– a– a–
=

Kβα
EA
L

------- 
 

1– 0
0 1–

a– a–

a– a–

= Kββ
EA
L

------- 
 

1 0 0 0
0 1 0 0
0 0 a a

0 0 a a

=

Kαα
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. (d)

The fixed-end action vector in eq. (i) of example 16.1 for the unrestrained truss reduces to

. (e)

Elements in rows 3 and 6 constitute  while the remaining rows constitute . Thus,

. (f)

Solution to part (b).  Equation (15.31) on page 429 with the addition of the fixed-end action vector is

. (g)

The fixed-end action vector is subtracted from each side of this equation, since it is a known vector determined 
from the specified temperature changes in the bars. That is, eq. (g) is written in the form

. (h)

The vector  is called the equivalent joint force vector. In this example the prescribed joint displacement 

vector is , and the prescribed joint force vector is 

. The solution for the unknown joint displacement vector is

, where the inverse matrix is . (i)

The adjoint of the restrained structural stiffness matrix and its determinate are1

1. The , where  is a scalar and  is an n-by-n matrix, is equal to .

K
EA
L

------- 
 

1 0 1– 0 0 0
0 1 0 0 0 1–

1– 0 1 a+ a– a– a

0 0 a– a a a–

0 0 a– a a a–

0 1– a a– a– 1 a+

=

q1 q2 q3 q4 q5 q6

Q0{ } 0 NT( )1 3– 0 0 0 NT( )1 3––
T

=

Qα
0{ } Qβ

0{ }

Qα
0{ } 0

NT( )1 3––
= Qβ

0{ }

0
NT( )1 3–

0
0

=

Qα{ } Kαα
qα{ } Kαβ

qβ{ } Qα
0{ }+ +=

Qα{ } Qα
0{ }–( )+ Kαα

qα{ } Kαβ
qβ{ }+=

    

equivalent joint force vector

Q0{ }–

qβ{ } q1 q2 q4 q5

T
0 0 0 0

T= =

Qα{ }T Q3 Q6 0 0= =

qα{ } Kαα

1–
Qα

0–{ }= Kαα[ ] 1– adj Kαα 
  det Kαα 

 ⁄=

det k A( ) k A kndet A
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. (j)

So the inverse of the restrained structural stiffness matrix is

. (k)

Perform a check of this inverse. Is ?

. (l)

Hence, the inverse satisfies . The solution for the unknown nodal displacement vector is

. (m)

Solution to part (c).  The support reactions are determined from eq. (15.32) on page 429, which is repeated 
below as eq. (n).

 . (n)

The prescribed joint displacement vector , and submatrix  was determined in part (a). 

Hence,

. (o)

Substitute eq. (m) for the displacement vector into eq. (o) to get

adj Kαα
EA
L

------- 
  1 a+ a–

a– 1 a+
= det Kαα

EA
L

------- 
  2

1 a+( )2 a2–( ) EA
L

------- 
  2

1 2a+( )= =

Kαα[ ] 1– L
EA
------- 
  1

1 2a+
--------------- 
  1 a+ a–

a– 1 a+
=

Kαα Kαα

1–
I=

EA
L

------- 
  1 a+ a

a 1 a+

L
EA
------- 
  1

1 2a+
--------------- 
  1 a+ a–

a– 1 a+

1
1 2a+
--------------- 
  1 a+ a

a 1 a+

1 a+ a–

a– 1 a+
=

1
1 2a+
--------------- 1 a+( )2 a2–( )+ 1 a+( ) a–( ) a 1 a+( )+

a 1 a+( ) 1 a+( ) a–( )+ a2– 1 a+( )2+
= 1

1 2a+
--------------- 1 2a+ 0

0 1 2a+

1 0
0 1

= =

Kαα Kαα

1–
I=

q3

q6

L
EA
------- 
 

2–

4 2 2+
-------------------

4 2+

4 2 2+
-------------------

NT( )
1 3–

=

Qβ{ } Kβα[ ] qα{ } Kββ[ ] qβ{ } Qβ
0{ }+ +=

qβ{ } 04X1= Kβα

Q1

Q2

Q4

Q5

EA
L

------- 
 

1– 0
0 1–

a– a–

a– a–

q3

q6

0
NT( )1 3–

0
0

+=
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. (p)

After matrix algebra the reactive joint forces are

. (q)

A free body diagram of all the joint forces is shown in figure. 
16.5. 
The condition for horizontal equilibrium is . Substi-

tute the results for these reactive forces from eq. (q) into condition 
for horizontal equilibrium to get 

. (r)

Extract a common denominator in eq. (r):

. (s)

Combine terms in eq. (s) to get the final result

. (t)

Hence, the matrix solution for reactive forces Q1 and Q5 satisfy horizontal equilibrium. The condition for vertical 

equilibrium is . Substitute the results for these reactive forces from eq. (q) into the condition for 

vertical equilibrium to get

. (u)

Note that the algebra in eq. (u) is the same as the algebra detailed in eq. (r) to eq. (t). So the condition for vertical 
equilibrium is satisfied. Vanishing of the moment about joint 1 requires . Substitute the results 

for these reactive forces from eq. (q) into the condition for moment equilibrium to get

Q1

Q2

Q4

Q5

EA
L

------- 
 

1– 0
0 1–

a– a–

a– a–

L
EA
------- 
 

1–

2 2 2+
-------------------

4 2+

4 2 2+
-------------------

NT( )1 3–

0
NT( )1 3–

0
0

+=

Q1

Q2

Q4

Q5

1

2 2 2+
-------------------

1

2 2 2+
-------------------

1
2
--- 1

2
-------–

1
2
--- 1

2
-------–

NT( )1 3–=

Q1

Q2

Q3 0=

Q4

Q5

Q6 0=

L

L

45°

2L

1 2

3

Fig. 16.5 Joint 
forces acting on 
the truss. Q1 Q5+ 0=

Q1 Q5+ 1

2 2 2+
------------------- 1

2
--- 1

2
-------–+ 

  NT( )1 3–=

Q1 Q5+ 1

2 2 2+
------------------- 
  1 1 2+( ) 2 2 2+( )

2
------------------------–+ NT( )1 3–=

Q1 Q5+ 1

2 2 2+
------------------- 
  2 2 2 2+( )–+[ ] NT( )1 3–

1

2 2 2+
------------------- 
  0[ ] NT( )1 3– 0= = =

Q2 Q4+ 0=

Q2 Q4+ 1

2 2 2+
------------------- 1

2
--- 1

2
-------–+ NT( )1 3– 0= =

LQ4 LQ5– 0=
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. (v)

Hence, the matrix solution for the reactive forces plus the applied forces satisfies equilibrium of the free body 
diagram for the entire truss.

Solution to part (d).  The axial normal force in the bar between joints i and j from eq. (16.14) is

, (w)

where the stress matrix (16.15) is

. (x)

The direction cosines for each bar are listed in table 16.1.

For bar 1-2, the axial normal force is

. (y)

From eq. (m) the solution for the displacement is , Substitute the result for q3 into 

eq. (y) to find

.

For bar 1-3, the axial normal force is

. (z)

From eq. (m) the solution for the displacement is . Substitute the result for q6 into 

eq. (z) to find

. (aa)

For bar 2-3, the axial normal force is

LQ4 LQ5– L 1
2
--- 1

2
-------– 1

2
--- 1

2
-------– 

 – NT( )1 3– 0= =

Ni j– Si j–
q{ }i j– NT( )i j––=

Si j–

EA
L

------- 
 

i j–
c– s– c s i j–

≡

N1 2–
EA
L

------- 
 

1– 0 1 0

q1

q2

q3

q4

NT( )1 2–– EA
L

------- 
 

1– 0 1 0

0
0
q3

0

0– EA
L

------- 
  q3= = =

q3
L

EA
------- 
  2–

4 2 2+
------------------- 
  NT( )1 3–=

N1 2–
EA
L

------- 
  L

EA
------- 
  2–

4 2 2+
------------------- 
  NT( )1 3–

2–

4 2 2+
------------------- 
  NT( )1 3–= =

N1 3–
EA
L

------- 
 

0 1– 0 1

0
0
0
q6

NT( )1 3–– EA
L

------- 
  q6 NT( )1 3––= =

q6
L

EA
------- 
  4 2+

4 2 2+
------------------- NT( )1 3–=

N1 3–
EA
L

------- 
  L

EA
------- 
  4 2+

4 2 2+
------------------- NT( )1 3– NT( )1 3–– 1–

2 2 2+
------------------- 
  NT( )1 3–= =
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. (ab)

Expand eq. (ab) to get

. (ac)

The final result for the force in bar 2-3 is

. (ad)

Note that for this statically indeterminate truss all three bar forces are proportional to the change in temperature 
of bar 1-3.J

16.1.2 Self-strained truss

Strain of the bars in a truss can occur due to temperature changes and also due to the lack of fit during assembly, 
even in the absence of applied nodal forces. The analysis for lack of fit of bar 1-3 in example 16.2 is achieved by 
replacing the thermal force by

 ,

where  is the specified displacement of the bar to connect it to joints 1 and 3. For a gap between joints  

and for an overlap . Hence, the solution for the bar forces in example 16.2 can be interpreted for the prob-

lem of lack of fit of bar 1-3 by replacing  with . 

Example 16.3 Self-strained configuration of the truss in example 16.2

Now consider a statically determinate configuration of the truss in figure. 16.2, which is shown in figure. 16.6. 
Support conditions impose displacements . The applied external forces are specified as 

, and only bar 1-3 is subject to a thermal force .

a) Determine the unknown joint displacements.

b) Determine the unknown joint forces.

c) Determine the elongation of each bar.

Solution to part (a).  The matrix equation to determine the unknown joint displacements is

N2 3–
EA

2L
---------- 
 

1 2⁄ 1 2⁄– 1 2⁄– 1 2⁄

q3

q4

q5

q6

NT( )
2 3–

– EA

2L
---------- 
 

1 2⁄ 1 2⁄– 1 2⁄– 1 2⁄

q3

0
0
q6

0–= =

N2 3–
EA
2L
------- 
 

1 1
q3

q6

NT( )
2 3–

– EA
2L
------- q3 q6+( ) 0– EA

2L
------- L

EA
------- 
  2–

4 2 2+
------------------- 
  NT( )

1 3–
L

EA
------- 
  4 2+

4 2 2+
------------------- NT( )

1 3–
+= = =

1
2
--- 
  2–

4 2 2+
------------------- 4 2+

4 2 2+
-------------------+ NT( )

1 3–
= 1

2
--- 
  4

4 2 2+
------------------- NT( )

1 3–
=

N2 3–

NT( )1 3–

2 2+
--------------------=

NT( )1 3– EA ∆ L⁄( )1 3–→

∆ ∆ 0>

∆ 0<

NT( )1 3– EA ∆ L⁄( )1 3–

q2 q4 q5 0= = =

Q1 Q3 Q= = 6 0= NT( )1 3– EA α∆T( )=
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. (a)

Refer to the stiffness matrix in eq.(h) and the fixed-end vector in eq. (i) of example 16.1. Then the matrices in eq. 
(a) are

, , , , (b)

, and . (c)

The solution to eq. (a) for the joint displacements is

. (d)

Solution to part (b).  The matrix equation to determine the unknown joint forces is

. (e)

The matrices in eq. (e) are

, , , and . (f)

The solution of eq. (e) for the unknown joint forces, or the reactive forces, is

. (g)

There no external forces acting on the truss since both the applied and reactive forces are zero. Consequently, it is 
reasonable to surmise that the internal forces in the bars vanish. That is,

, (h)

45°

2L

L

L

1
3

6

Fig. 16.6 Statically determinate 
three-bar truss. 

Qα{ } Kαα
qα{ } Kαβ

qβ{ } Qα
0{ }+ +=

Qα{ }
Q1

Q3

Q6

0
0
0

= = Kαα
EA
L

-------
1 1– 0
1– 1 a+ a

0 a 1 a+

= qα{ }
q1

q3

q6

= Kαβ
EA
L

-------
0 0 0
0 a– a–

1– a– a–

=

qβ{ }
q2

q4

q5

0
0
0

= = Qα
0{ }

Q1
0

Q3
0

Q6
0

0
0

NT( )1 3––

= =

q1 L– α∆T( )= q3 L– α∆T( )= q6 L α∆T( )=

Qβ{ } Kβα
qα{ } Kββ

qβ{ } Qβ
0{ }+ +=

Qβ{ }
Q2

Q4

Q5

= Kβα
EA
L

-------
0 0 1–

0 a– a–

0 a– a–

= Kββ
EA
L

-------
1 0 0
0 a a

0 a a

= Qβ
0{ }

Q2
0

Q4
0

Q5
0

NT( )1 3–

0
0

= =

Q2 Q4 Q5 0= = =

N1 2– N1 3– N2 3– 0= = =
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which can be verified using eq. (16.14).

Solution to part (c).  The elongation of a truss is determined from eq. (16.4). Using the direction cosines listed 
in table 16.1, the elongation of each bar is given by

. (i)

Hence, bars 1-2 and 2-3 do not change in length, and the new length of bar 1-3 is . Assuming 

, the displaced truss is shown with respect to initial configuration in figure. 16.7.J 

Example 16.4 Five-bar truss

The five-bar truss shown in figure. 16.8 is restrained against rigid body motion, since joints 1 and 4 are fixed. pins 

All bars have the same extensional stiffness . Determine the restrained structural stiffness matrix . 

Solution.  The dimensions of the restrained structural stiffness matrix is 4X4 in displacement degrees of freedom 
. The direction cosines for the truss bars are listed in table 16.3.

∆1 2– 1( ) q3 q1–( ) 0( ) q4 q2–( )+ 0= =

∆1 3– 0( ) q5 q1–( ) 1( ) q6 q2–( )+ L α∆T( )= =

∆2 3–
1–

2
------- 
  q5 q3–( ) 1

2
------- 
  q6 q4–( )+ 1

2
------- 
  q6 q3+( ) 0= = =

L 1 α∆T+( )

α∆T 0>

1*
1 2* 2

3*

3Fig. 16.7 Initial configuration (dashed lines) and 
the displaced configuration (solid lines) of the 
self-strained truss in figure. 16.6.

α∆T 0>

EA Kαα

α

h

L

X

Y

1 2

34

αcos L

L2 h2+
---------------------=

αsin h

L2 h2+
---------------------=

q3

q4

q5

q6
Fig. 16.8 Five-bar truss.

q3 q4 q5 and q6, , ,
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From eq. (16.12) the following member stiffness matrices are constructed using the direction cosines in 
table 16.3. Only elements contributing to rows and columns 3, 4, 5, and 6 of the restrained structural stiffness 
matrix are extracted from the individual element stiffness matrices. These member stiffness matrices follow:

. (a)

           . (b)

. (c)

Assemblage of the restrained structural stiffness matrix is accomplished by adding like row and column elements 
from the stiffness matrices of each truss bar. The result for the restrained structural stiffness matrix is

. (d)

Note that the matrix is symmetric and the sum of the column elements do not add to zero. If we take , 
then the restrained structural stiffness matrix reduces to

Table 16.3 Direction cosines for the five-bar truss

Bar

1-2 1 0 1 0 0

1-3

2-3 0 1 0 1 0

2-4

3-4 –1 0 1 0 0

θ c s c2 s2 cs

0°

α αcos αsin αcos2 αsin2 αcos αsin

90°

180° α– αcos– αsin αcos2 αsin2 αcos αsin–

180°

Kαα 1 2–

EA L⁄ 0
0 0

= Kαα 1 3–

EA
L αcos( )⁄
------------------------ αcos2 α αsincos

α αsincos αsin2

EA
L

------- αcos3 αcos2 αsin

αcos2 αsin α αsin2cos
= =

q3 q4
q5 q6 q5 q6

Kαα 2 3–

EA
L αtan
--------------- 
 

0 0 0 0
0 1 0 1–

0 0 0 0
0 1– 0 1

EA
L

------- 
 

0 0 0 0
0 αcot 0 αcot–

0 0 0 0
0 αcot– 0 αcot

= =

q3 q4 q5 q6

Kαα 3 4–

EA L⁄ 0
0 0

=

q5 q6

Kαα 2 4–

EA
L αcos( )⁄
------------------------ 
  αcos2 α αsincos–

α αsincos– αsin2

EA
L

------- αcos3 αcos2– αsin

αcos2– αsin αcos αsin2
= =

q3 q4

Kαα
EA
L

------- 
 

1 αcos3+( ) αcos2– αsin 0 0

αcos2– αsin αcot αcos αsin2+( ) 0 αcot–

0 0 αcos3 1+( ) αcos2 αsin

0 αcot– αcos2 αsin α αsin2cos αcot+( )

=

q3 q4 q5 q6

α 30°=
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.J (e)

Example 16.5 Using symmetry to reduce problem size

Consider the five-bar truss problem of example 16.4 with  that is subject to prescribed nodal forces 

. Use symmetry to reduce the problem size to solve for the unknown joint displacements.

Solution.  We note that the structure and boundary conditions are symmetric about a horizontal axis through the 
center of the truss. The joint displacements and corresponding forces can be decomposed into a symmetric and 
antisymmetric sets about this horizontal axis of symmetry as shown in figure. 16.10. The joint displacements and 

the corresponding forces are related to the symmetric and antisymmetric counterparts by

, and . (a)

The expressions in eq. (a) are written in compact form as

Kαα
EA
L

------- 
 

1 3 3( ) 8⁄+ 3 8⁄– 0 0

3 8⁄– 3 9 8⁄( ) 0 3–

0 0 1 3 3( ) 8⁄+ 3 8⁄

0 3– 3 8⁄ 3 9 8⁄( )

=

q3 q4 q5 q6

α 30°=

Q3 Q4 Q5 and Q6, , ,

30°

L

X

Y
Q3

Q4

Q5

Q6

Fig. 16.9 Five-bar truss of 
example 16.5.

Q3 q3,

Q4 q4,

Q5 q5,
Q6 q6,

Xa xa,

Ya ya,

Xa xa,

Ya ya,

Xb xb,
Yb yb,

Xb xb,

Yb yb,

= +

(a) (b)

Fig. 16.10 (a) Symmetric truss. (b) Antisymmetric truss.

q3

q4

q5

q6

xa

ya–

xa

ya

x– b

yb

xb

yb

+

1 0 1– 0
0 1– 0 1
1 0 1 0
0 1 0 1

xa

ya

xb

yb

= =

Q3

Q4

Q5

Q6

Xa

Ya–

Xa

Ya

Xb–

Yb

Xb

Yb

+

1 0 1– 0
0 1– 0 1
1 0 1 0
0 1 0 1

Xa

Ya

Xb

Yb

= =
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, and , (b)

where the elements of the 4X4 matrix  are either –1, 0, or 1.The force vector is related to the displacement 

vector by , where matrix  is given by eq. (e) in example 16.4. Substitute eq. (b) into 

the matrix equation relating the force vector to the displacement vector to get 

. (c)

Pre-multiply eq. (c) by the inverse of matrix  to find

. (d)

Define stiffness matrix by . The the matrices to compute  are

. (e)

The result of the matrix multiplications in eq. (e) is

. (f)

Note that the partitioned form of  is diagonal, and the 2X2 sub-matrices on the diagonal are

, and . (g)

The inverses of the matrices in eq. (g) are

, and . (h)

qα{ } A x{ }= Qα{ } A X{ }=

A

Qα{ } Kαα[ ] qα{ }= Kαα

A X{ } Kαα A x{ }=

A

X{ } A
1–

Kαα A x{ }=

Kαα A
1–

Kαα A= Kαα

Kαα

1
2
---

1 0 1 0
0 1– 0 1
1– 0 1 0

0 1 0 1

EA
L

------- 
 

1 3 3( ) 8⁄+ 3 8⁄– 0 0

3 8⁄– 3 9 8⁄( ) 0 3–

0 0 1 3 3( ) 8⁄+ 3 8⁄

0 3– 3 8⁄ 3 9 8⁄( )

1 0 1– 0
0 1– 0 1
1 0 1 0
0 1 0 1

=

Kαα

EA
L

-------

1 3 3( ) 8⁄+ 3 8⁄ 0 0

3 8⁄ 17 3( ) 8⁄ 0 0

0 0 1 3 3( ) 8⁄+ 3 8⁄

0 0 3 8⁄ 3( ) 8⁄

Ka 02X2

02X2 Kb

= =

Kαα

Ka

EA
L

-------
1 3 3

8
----------+ 3

8
---

3
8
--- 17 3

8
-------------

= Kb

EA
L

-------
1 3 3

8
----------+ 3

8
---

3
8
--- 3

8
-------

=

Ka

1– L
EA
-------

17
181
--------- 17 6 3–( ) 1

181
--------- 18 17 3–( )

1
181
--------- 18 17 3–( ) 1

543
--------- 9 82 3+( )

= Kb

1– L
EA
------- 1 3–

3– 3 8 3⁄+( )
=
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Then the inverse of eq. (f) is given by

. (i)

Hence, the solution for the displacement vector  in terms of the force vector  is

. (j)

From eq. (b)  and  Substitute the latter relations into eq. (j) to get

 . (k)

Pre-multiply eq. (k) by matrix  to write the result for the unknown displacements as

, (l)

where the compliance matrix is

. (m)

The compliance matrix in eq. (m) was obtained by inverting two 2X2 sub-matrices, rather than directly inverting 

the 4X4 stiffness matrix . Exploiting the symmetry conditions as illustrated in figure. 16.10, reduces the 

number of computations to find the inverse of matrix .J

16.2 Structures containing beam members

Consider a prismatic, homogeneous beam that is referenced to the Cartesian system x-y-z. The z-coordinate is the 
longitudinal axis, and the coordinates x and y define cross-sectional axes with the origin at the centroid. Assume 
at least one axis x and/or y is an axis of symmetry so that the product area moment . External loads are 

specified as a transverse distributed load  as shown in figure. 3.8 on page 41, and we assume a change in 

temperature in the form . For this form of the prescribed change in temperature the ther-

mal axial force  in eq. (3.75), and thermal bending moment  in eq. (3.78). The plane of loading 

 coincides with the locus of shear centers. Hence, the beam bends in the y-z plane. Assume the Euler-Ber-

noulli theory in which the transverse shears in eq. (4.28) on page 82 equal zero. That is,

Kαα

1– Ka

1–
02X2

02X2 Kb

1–
=

x{ } X{ }

x{ } Kαα

1–
X{ }=

x{ } A
1– qα{ }= X{ } A

1– Qα{ }=

A
1– qα{ } Kαα

1–

A
1– Qα{ }=

A

qα{ } Cαα
Qα{ }=

Cαα A Kαα

1–

A
1– L

EA
-------

0.810306 0.897641 0.189694– 0.83441
0.897641 3.94847 0.83441– 3.67033
0.189694– 0.83441– 0.810306 0.897641–

0.83441 3.67033 0.897641– 3.94847

= =

Kαα

Kαα

Ixy 0=

fy z( )

∆T y z,( ) τy z( )y s( )=

NT 0= MxT 0≠

fy z( )
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. (16.19)

(Refer to the discussion about the Euler-Bernoulli theory following table 4.4 on page 102.) Equilibrium differen-
tial equations (3.54) and (3.55) are

. (16.20)

Hooke’s law (3.79) on page 46 for bending is

, (16.21)

where the thermal bending moment is given by eq. (3.78) on page 46. The change in temperature on the contour 
is  and eq. (3.78) simplifies to

 . (16.22)

Combine eqs. (16.20), (16.21), and (16.22) to get the governing differential equation for the deflection of the 
beam as 

. (16.23)

Let  denote the y-direction displacement of the neutral axis at z = 0,  the rotation of the cross section about 

the x-axis at z = 0,  the y-direction displacement of the neutral axis at z = L, and  the rotation of the cross 

section about the x-axis at z = L. Then the boundary conditions at the ends of the beam are 

. (16.24)

The governing boundary value problem defined by (16.23) and (16.24) is depicted in figure. 16.11(a). Actions 

corresponding to the generalized displacements q1, q2, q3, and q4 are denoted by Q1, Q2, Q3, and Q4, respec-
tively. Free body diagrams at the beginning joint (z = 0) and the end joint (z = L) are shown in figure. 16.11(b). 
Equilibrium at the joints leads to

. (16.25)

ψy zd
dv φx+ 0= =

zd

dVy fy+ 0=
zd

dMx Vy– 0=

Mx MxT+ EIxx zd

dφx=

∆T τy z( )y s( )=

MxT EIxxατy z( )=

EIxx z4

4

d
d v fy z( ) EIxxα z2

2

d

d τy–= 0 z L< <

q1
q2

q3 q4

v 0( ) q1= φx 0( ) q2= v L( ) q3= φx L( ) q4=

fy τy

z

y v,q1

q2

q3

q4

L
Vy 0( )

Mx 0( )

Vy 0( )

Vy L( )

Vy L( )

Mx L( )

Q1

Q4

Q3

Q2

(a) (b)

Fig. 16.11 (a) The boundary value problem for the beam. (b) Joint equilibrium.

Q1 Vy 0( )+ 0= Q2 Mx 0( )+ 0= Q3 Vy L( )– 0= Q4 Mx L( )– 0=
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The solution to the governing boundary value problem is sought by the method of superposition. Let the lat-
eral displacement be represented by the sum of displacements in the form

. (16.26)

The boundary value problem for  is selected as

. (16.27)

As a consequence the boundary value problem for  is

. (16.28)

In eqs. (16.27) and (16.28) ordinary derivatives with respect to z are denoted by primes (e.g., ). Also, we 

let . The boundary value problem (16.27) for displacement function  consists of an inhomoge-

neous differential equation with homogeneous boundary conditions, while the boundary value problem (16.28) 
for displacement function  consists of a homogeneous differential equation with inhomogeneous boundary 

conditions. Since the displacements and rotations vanish at the end points of the beam in the boundary value 
problem for , the solution for it will lead to fixed-end actions in the matrix structural analysis method. That 

is, the fixed-end action problem accounts for distributed load intensity , and the distributed temperature gra-

dient . By superposition the total bending moment is

, (16.29)

where the bending moments from the separate boundary value problems are

. (16.30)

The shear force is the sum

, (16.31)

where the shear forces from the separate boundary value problems are

. (16.32)

16.2.1  Boundary value problem (16.28). Generalized displacements at the boundaries

The general solution for  satisfying the differential equation in boundary value problem (16.28) is a cubic 

polynomial in the longitudinal coordinate, which is written as

, (16.33)

where the constants  are to be determined by the four boundary conditions specified in eq. 

(16.28). Substitute the general solution (16.33) into these four boundary conditions and write result as

v z( ) v0 z( ) v1 z( )+=

v0 z( )

EIv0′′′′ fy z( ) EIατy''–= 0 z L< <

v0 0( ) 0= v0′ 0( )– 0= v0 L( ) 0= v0′ L( )– 0=

v1 z( )

EIv1′′′′ 0= 0 z L< <

v1 0( ) q1= v0′ 0( )– q2= v0 L( ) q3= v0′ L( )– q4=

v′
zd

dv=

EIxx EI= v0 z( )

v1 z( )

v0 z( )

fy z( )

τy z( )

Mx z( ) EI v0'' v1''+( )– EIατy– Mx
0 Mx

1+= =

Mx
0 EIv0''– EIατy–= Mx

1 EIv1''–=

Vy z( ) Vy
0 Vy

1+=

Vy
0

zd
d Mx

0( )= Vy
1

zd
d Mx

1( )=

v1 z( )

v1 z( ) c3
z3

6
---- c2

z2

2
---- c1z c0+ + +=

c3 c2 c1 and c0, , ,
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. (16.34)

Solve eq. (16.34) for the constants  to get

. (16.35)

Substituting eq. (16.35) for the constants  into eq. (16.33) leads to

. (16.36)

Rearrange eq. (16.36) to the form

. (16.37)

Equation (16.37) is further written in the matrix form

. (16.38)

The shape functions, or interpolation functions, are defined as

. (16.39)

From eq. (16.19) the rotation associated with the lateral displacement function  is given by

, (16.40)

where

. (16.41)

These interpolation functions have the following properties at the end points, or joints, of the beam member:

0 0 0 1
0 0 1– 0

L3 6⁄ L2 2⁄ L 1

L2– 2⁄ L– 1– 0

c3

c2

c1

c0

q1

q2

q3

q4

=

c3 c2 c1 and c0, , ,

c3

c2

c1

c0

12 L3⁄ 6 L2⁄– 12 L3⁄– 6 L2⁄–

6 L2⁄– 4 L⁄ 6 L2⁄ 2 L⁄
0 1– 0 0
1 0 0 0

q1

q2

q3

q4

=

c3 c2 c1 and c0, , ,

v1 z( ) 1
6
--- 12

L3
------q1

6
L2
-----q2– 12

L3
------q3– 6

L2
-----q4– 

  z3 1
2
--- 6

L2
-----q1– 4

L
---q2

6
L2
-----q3

2
L
---q4+ + + 

  z2 q2–( )z q1+ + +=

v1 z( ) 2 z3

L3
----- 3 z2

L2
-----– 1+ 

  q1
z3

L2
-----– 2z2

L
---- z–+ 

  q2 2 z3

L3
-----– 3 z2

L2
-----+ 

  q3
z3

L2
-----– z2

L
----+ 

  q4+ + +=

v1 z( ) η1 z( ) η2 z( ) η3 z( ) η4 z( )

q1

q2

q3

q4

η z( )[ ] q{ }= =

η1 z( ) 2 z3

L3
----- 3 z2

L2
-----– 1+≡ η2 z( ) z3

L2
-----– 2z2

L
---- z–+≡ η3 z( ) 2 z3

L3
-----– 3 z2

L2
-----+≡ η4 z( ) z3

L2
-----– z2

L
----+≡

v1 z( )

φx z( ) v1′ z( )– η– 1′ z( ) η– 2′ z( ) η– 3′ z( ) η– 4′ z( )

q1

q2

q3

q4

= =

η1′ z( ) 6
L3
-----z2 6 z

L2
-----–= η2′ z( ) 3 z2

L2
-----– 4 z

L
--- 1–+= η3′ z( ) 6 z2

L3
-----– 6 z

L2
-----+= η4′ z( ) 3 z2

L2
-----– 2 z

L
---+=



Article 16.2

460 Aerospace Structures

. (16.42)

The distributions of the shear force (16.32) and the bending moment (16.30) for the boundary value problem 
(16.28) are

. (16.43)

Substitute for the shape functions from eq. (16.39) into eq. (16.43) to find

. (16.44)

Since eq. (16.44) relates the internal actions consisting of the shear force and the bending moment to the joint 
displacement vector, it defines the 2X4 stress matrix as

, (16.45)

such that

. (16.46)

Equilibrium at the joints z = 0 and z = L in (16.25) leads to

. (16.47)

Combine these results into one matrix equation to get

η1 0( ) 1=

η1′ 0( ) 0=

η1 L( ) 0=

η1′ L( ) 0=

η2 0( ) 0=

η2′ 0( ) 1–=

η2 L( ) 0=

η2′ L( ) 0=

η3 0( ) 0=

η3′ 0( ) 0=

η3 L( ) 1=

η3′ L( ) 0=

η4 0( ) 0=

η4′ 0( ) 0=

η4 L( ) 0=

η4′ L( ) 1–=

Vy
1 z( )

Mx
1 z( )

EI
v1′′′–

v1′′–
EI

η1′′′– η2′′′– η3′′′– η4′′′–

η1′′– η2′′– η3′′– η4′′–

q1

q2

q3

q4

= =

Vy
1 z( )

Mx
1 z( )

EI

12
L3
------– 6

L2
----- 12

L3
------ 6

L2
-----

6
L2
----- 12z

L3
--------– 4

L
---– 6z

L2
-----+ 6

L2
-----– 12z

L3
--------+ 2

L
---– 6z

L2
-----+

q1

q2

q3

q4

=

S1 z( ) EI

12
L3
------– 6

L2
----- 12

L3
------ 6

L2
-----

6
L2
----- 12z

L3
--------– 4

L
---– 6z

L2
-----+ 6

L2
-----– 12z

L3
--------+ 2

L
---– 6z

L2
-----+

≡

Vy
1 z( )

Mx
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. (16.48)

The beam element stiffness matrix is defined by 

. (16.49)

The stiffness matrix of the beam member (16.49) has the following properties:

• It is symmetric, because the material is linear elastic and the displacements and rotations of the beam are 
assumed small.

• The column elements satisfy equilibrium for each unit displacement state.

For example consider unit displacement state one with .

The corresponding generalized joint forces are .

The sum of the vertical forces is .

The sum of moments about the center of the beam clockwise positive are: 

.

As result of the four unit displacement states the elements of the beam stiffness matrix satisfy the following 
relationships.

The sum of rows one and three equals zero. .

The sum of L/2 times row one plus row two minus L/2 times row three plus row four is equal to zero.   

.

Since the stiffness matrix is symmetric, the column elements satisfy the same relationships as do the row ele-
ments 

• , since the beam member is not restrained against rigid body displacement.
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• Its diagonal elements are positive.

16.2.2  Boundary value problem (16.27). Fixed-end actions

The fixed-end action vector is computed from the boundary value problem (16.27) to account for the distributed 
load and the temperature distribution in the direct stiffness method. Many practical problems can be analyzed 
with a linear distribution of the load intensity and a linear distribution of the cross-sectional temperature gradient. 
These linear distributions are specified as

  and . (16.50)

The values of the distributed load and temperature gradient at z = 0 are  and , respectively. At z = L, the 

distributed load intensity is  and the temperature gradient is . The boundary value problem (16.27) reduces 

to

. (16.51)

The solution for displacement  is

. (16.52)

The distribution of the transverse shear force (16.32) and the bending moment (16.30) and are

. (16.53)

Substitute the results in (16.53) into joint equilibrium (16.25) to find the fixed-end actions

. (16.54)

In the case of uniform distributions where  and , the bending moment and 

shear force simplify to

, (16.55)

and the fixed-end actions are
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. . (16.56)

16.2.3 Results of the combined superposition solutions for the beam

Joint equilibrium (16.25) leads to the sum

, (16.57)

where  is the 4X1 joint force vector from the fixed-end action boundary value problem (16.27), and  
is the 4X1 joint force vector from the boundary value problem (16.28). That is, the total joint force vector is 

. From eq. (16.48) we have

, (16.58)

where the 4X4 beam stiffness matrix is given by eq. (16.49) and  is the 4X1 joint displacement vector. 
Hence, the total joint force vector is given by

. (16.59)

Equation (16.59) is written in the form

, (16.60)

where the vector  is called the equivalent joint force vector. It is the negative of the fixed-end action vec-
tor.

To summarize, the analysis of a structure composed of beam members, with some members subject to dis-
tributed loads and temperature gradients, is as follows:

1. Lock every joint of the structure against translation and rotation, and calculate the fixed-end actions.

2. Apply the fixed-end actions with the opposite sign.

3. Analyze the structure with the specified joint forces and the negative of the fixed-end actions; 

. Note that the joint displacements computed in this step are the actual joint displacements.

4. Obtain the internal actions consisting of the shear force and bending moment by superposition.

. (16.61)

For the linear distributions of the specified external loads, the shear force  and bending moment  are 

Q0{ }

Q1
0

Q2
0

Q3
0

Q4
0

L– 2⁄

L2 12⁄
L– 2⁄

L2– 12⁄

fy0 EIα

0
1–

0
1

τy0–= =

Q1

Q2

Q3

Q4

Vy
0 0( )–

Mx
0 0( )–

Vy
0 L( )

Mx
0 L( )

Vy
1 0( )–

Mx
1 0( )–

Vy
1 L( )

Mx
1 L( )

+

Q1
0

Q2
0

Q3
0

Q4
0

Q1
1

Q2
1

Q3
1

Q4
1

+= =

Q0{ } Q1{ }

Q{ } Q0{ } Q1{ }+=

Q1{ } K q{ }=

q{ }

Q{ } Q0{ } K q{ }+=

Q{ } Q0{ }–( )+ K q{ }=

Q0{ }–

Q{ } Q0{ }–( )+

Vy z( )

Mx z( )

Vy
0 z( )

Mx
0 z( )

Vy
1 z( )

Mx
1 z( )

+
Vy

0 z( )

Mx
0 z( )

S1 z( ) q{ }+= =

Vy
0 z( ) Mx

0 z( )



Article 16.2

464 Aerospace Structures

given by (16.53). The 2X4 stress matrix  is given by (16.46), and  is the 4X1 joint displacement vec-

tor of the beam member obtained from the solution of the assembly of the structural members.

Example 16.6 Multispan beam

Consider the multispan uniform beam in figure. 16.12. It is subject to equal and opposite couples in the y-z plane 
at z = 0 and z = L. The magnitude of the moment of these couples is denoted by . The bending stiffness  is 

the same constant in each span.

a) Determine the unknown joint displacements using symmetry to reduce problem size.

b) Draw the shear force and bending moment diagrams.

c) Determine the support reactions.

Solution for the unknown joint displacements.  The joints are taken at the support locations and are numbered 
one to five from left to right. Hence, there are ten degrees of freedom (DOFs) as is shown in the top sketch in fig-
ure. 16.13. The support conditions mean the vertical displacements vanish; i.e.,

. (a)

The geometry, boundary conditions, and material properties of the structure are symmetric about the vertical cen-
terline. If the top sketch of the beam and its DOFs are rotated  about this vertical centerline, the bottom 
sketch is obtained. See figure. 16.13. The displacements and rotations at the joints in the top and bottom sketch 
must be the same. Hence, symmetry implies the joint rotations must satisfy
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. (b)

Clearly, the last symmetry condition on the rotations means rotation of the center joint vanishes; . Then, 

the analysis for the response of the beam reduces to a two-span beam, clamped at its right end as is shown in fig-
ure. 16.14. The two active degrees of freedom are rotations  and . The stiffness matrices (16.49) for beam 

members 1-2 and 2-3 are

. (c)

The 6X6 unrestrained structural stiffness matrix is the sum  with each member stiffness matrix 

expanded to 6X6 by adding two rows and two columns of zeros for degrees of freedom not contained in the 
member. The result is

. (d)

Partition the unrestrained structural stiffness matrix in terms of unknowns and knowns to get

. (e)

The restrained structural stiffness matrix is
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. (f)

The unknown rotations are determined from

. (g)

Solve eq. (g) for the nodal rotations to find

. (h)

By symmetry the joint rotations for the entire structure are

. (i)

Solution for the shear force and bending moment distributions.  The shear force and bending moment distri-
bution in beam members 1-2 and 2-3 are determined from eq. (16.44). For member 1-2, we have

. (j)

But , so

. (k)

Substitute the solution for the rotations from eq. (h) into eq. (k) to get
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. (l)

Note that the coordinate z is local to the member in the formulas for the shear force and bending moment. For 
member 2-3, we have

. (m)

But , so

. (n)

Substitute the solution for rotation  from eq. (h) into eq. (n) to get

. (o)

Again, note that the -coordinate in these formulas for the shear force and bending moment in member 2-3 is 
local to the member and runs from zero to L. However, the beginning joint 2 corresponds to the global longitudi-
nal coordinate L, and end joint 3 corresponds to the global longitudinal coordinate 2L. The relationship between 
the member local coordinate and the global structural coordinate has to be taken into account when drawing the 
shear force and bending moment diagrams. The shear force and bending moment diagrams are shown in figure. 
16.15. In this example, the shear force diagram in antisymmetric, and the moment diagram is symmetric, about 
the center of the multispan beam.

Solution for the support reactions.  The support reactions are , since . 

Hence,

. (p)

Note that these are the support reactions for the left half of the beam. By symmetry the support reactions on the 
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right half of the beam are obtained by a rotation of the left half by  as shown in figure. 16.16. 
Joining the left half and right half we get the support reactions for the overall free body diagram of the multispan 
beam as shown in figure. 16.17. J   
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Fig. 16.15 Shear force and bending moment diagrams for the multispan beam.
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Example 16.7 Clamped-clamped, stepped beam restrained by a spring

The beam structure shown in figure. 16.18(a) has a step change in thickness at midspan, and is clamped at each 
end. The left half of has a uniform flexural stiffness , and the right half has a uniform flexural stiffness . 

Each half has a length denoted by . A vertical linear elastic spring of stiffness  is connected at 

midspan. The structure is subject to a vertical distributed load and a vertical point force  applied at midspan. 

The distributed load is uniform on the left half with intensity , and decreases linearly from  to zero on the 

right half. Model the response of the beam with two beam members, one in each half, and a spring member. 
Determine

a) The restrained structural stiffness matrix.

b) The fixed-end action vector.

c) The unknown joint displacements.

d) The support reactions.

e) The shear force and bending moment in the left half of the beam.

Solution to part (a).  The unrestrained structure has four joints and seven degrees of freedom as shown in figure. 
16.18(b). The size of the unrestrained structural stiffness matrix is 7X7. The support conditions impose the van-

ishing of the following generalized displacement vector: .   The active, or 

unknown, displacement vector is .

The stiffness matrices for the two beam members are obtained from eq. (16.49) as
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Fig. 16.17 Support reactions of the intact multispan beam.    
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. (a)

The spring stiffness matrix is obtained from eq. (15.8) on page 424 as

. (b)

Assembly of the element stiffness matrices is by summation of the element stiffness matrices with attention to 
the location of the matrix elements in the 7X7 unrestrained structural stiffness matrix. The result is 

. (c)

Partition the unrestrained structural stiffness matrix in eq. (c) so that rows and columns are in the order 3, 4, 1, 2, 
5, 6, 7: 

. (d)

From the partitioned form of eq. (d) the restrained structural stiffness matrix is 

. (e)

Solution to part (b).  From eqs. (16.54) and (16.56) fixed-end actions of the beam member are

K1 2–
EI

24 a3⁄ 12– a2⁄ 24– a3⁄ 12– a2⁄

12– a2⁄ 8 a⁄ 12 a2⁄ 4 a⁄

24– a3⁄ 12 a2⁄ 24 a3⁄ 12 a2⁄

12– a2⁄ 4 a⁄ 12 a2⁄ 8 a⁄

= K2 3–
EI

12 a3⁄ 6– a2⁄ 12– a3⁄ 6– a2⁄

6– a2⁄ 4 a⁄ 6 a2⁄ 2 a⁄

12– a3⁄ 6 a2⁄ 12 a3⁄ 6 a2⁄

6– a2⁄ 2 a⁄ 6 a2⁄ 4 a⁄

=

q1 q2 q3 q4
q3 q4 q5 q6

K4 2–
EI 6 a3⁄ 6– a3⁄

6– a3⁄ 6 a3⁄
=

q7 q3

K EI

24 a3⁄ 12– a2⁄ 24 a3⁄– 12– a2⁄ 0 0 0

12– a2⁄ 8 a⁄ 12 a2⁄ 4 a⁄ 0 0 0

24 a3⁄– 12 a2⁄ 42 a3⁄ 6 a2⁄ 12 a3⁄ 6– a2⁄ 6– a3⁄

12– a2⁄ 4 a⁄ 6 a2⁄ 12 a⁄ 6 a2⁄ 2 a⁄ 0

0 0 12– a3⁄ 6 a2⁄ 12 a3⁄ 6 a2⁄ 0

0 0 6– a2⁄ 2 a⁄ 6 a2⁄ 4 a⁄ 0

0 0 6– a3⁄ 0 0 0 6 a3⁄

=

q1 q2 q3 q4 q5 q6 q7

K EI

42 a3⁄ 6 a2⁄ 24 a3⁄– 12 a2⁄ 12– a3⁄ 6– a2⁄ 6– a3⁄

6 a2⁄ 12 a⁄ 12– a2⁄ 4 a⁄ 6 a2⁄ 2 a⁄ 0

24 a3⁄– 12– a2⁄ 24 a3⁄ 12– a2⁄ 0 0 0

12 a2⁄ 4 a⁄ 12– a2⁄ 8 a⁄ 0 0 0

12– a3⁄ 6 a2⁄ 0 0 12 a3⁄ 6 a2⁄ 0

6– a2⁄ 2 a⁄ 0 0 6 a2⁄ 4 a⁄ 0

6– a3⁄ 0 0 0 0 0 6 a3⁄

Kαα[ ] Kαβ[ ]

Kβα[ ] Kββ[ ]
= =

q3 q4 q1 q2 q5 q6 q7

Kαα
EI 42 a3⁄ 6 a2⁄

6 a2⁄ 12 a⁄
=



Aerospace Structures 471

Structures containing beam members

. (f)

The assembled 7X1 fixed-end action vector in the natural order 1, 2, 3, 4, 5, 6, 7 is

.

Partitioning the fixed-end action vector in the order 3, 4, 1, 2, 5, 6, 7 we get

,

where

. (g)

Solution to part (c).  The matrix equation to determine the unknown joint displacement  is

. (h)

The prescribed joint force vector  is

. (i)

The specified displacement vector . The matrix equation for the solution of the displacement vector 

 reduces to

, (j)

where  is the equivalent joint force vector. See figure. 16.19. The explicit form of the matrix equation to 

determine the unknown displacements is

.

The solution for the generalized displacements is
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. (k)

Solution to part (d).  The governing matrix equation for the unknown joint forces, or the support reactions, is

. (l)

The matrix 5X2  is obtained from the partitioned form eq. (d). Writing eq. (l) in detail we have

. (m)

After performing the matrix algebra in eq.(m) the result for the support reactions is

. (n)

Solution to part e.  Referring to eq. (16.61) on page 463, the shear force and bending moment in beam member 
1-2 is given by the superposition of the fixed-end solution and the displacement solution as

. (o)

From the fixed-end action solution (16.55) the vector of the shear force and bending moment is

2EI EI
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Fig. 16.19 Applied load P and the 
equivalent joint forces from the 
distributed loading.
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. (p)

Equations (16.45) and (16.46) combine to determine the shear and moment from the displacements of the mem-
ber. That is,

. (q)

Perform the matrix algebra in eq. (q) to find

. (r)

Finally, substitute eqs. (p) and (r) into (o) to get

.J

16.3 Coplanar frame structures

Frame members in a skeletal structure resist applied loads both by axial deformation and bending deformation. 
Frames are often modeled by assuming the joints are rigid, which means that members meeting at a joint have the 
same rotation. That is, instead of frictionless pins or ball and socket joints used to model trusses, the connections 
at a joint under the rigid joint assumption implies that bending moments in the members at the joint do not van-
ish. When distributed lateral loads act on the member, frame elements may be required even if the joints at the 
end of the member are modeled as frictionless pins. In a truss the loads are assumed to only act on the joints, and 
the members are not subject to lateral distributed loads. The stiffness matrix for a frame member is the superpo-
sition of the stiffness matrix for a truss member and the stiffness matrix for a beam member. There are three 
degrees of freedom at each joint in a coplanar frame member: two displacements and a rotation as shown in fig-
ure. 16.20. In this figure, degrees of freedom labeled one and four account for axial deformation, degrees of free-
dom two and five account for lateral deformation in bending, and degrees of freedom three and six account for 
rotations in bending. These degrees of freedom are referred to Cartesian coordinate directions along the longitu-
dinal axis and the axis perpendicular to the member. Let the coordinate along the longitudinal, centroidal axis be 
denoted by z, , and let y be the coordinate perpendicular to the member.
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Consider a typical plane frame member between joints i and j in a structure. Joint i is the beginning joint and 
joint j is the end joint, so that the z-axis is directed from joint i to joint j. Then, the 6X1 generalized displacement 
vector for the frame member in local coordinate directions is uniquely numbered by

. (16.62)

These displacement components are shown in figure. 16.21. The 6X6 frame stiffness matrix in local coordinate 

directions is the sum of the truss stiffness matrix and the beam stiffness matrix, where

. (16.63)

Now add the stiffness matrices in eq. (16.63) with due regard to the element locations in the 6X6 frame member 
stiffness matrix to get

. (16.64)

1

y 2,

4

3

5

6

L
z

EA EI,

Fig. 16.20  Frame member with six degrees of freedom.
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T
=

i j
q3i 2–
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q3i
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q3j 1–

q3j

z

Fig. 16.21 Generalized displacements for a frame element between joints i and j.
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The frame member stiffness matrix (16.64) is symmetric, singular, and its diagonal elements are positive. Let the 
6X1 generalized joint force vector corresponding to the generalized displacement vector for the member in local 
coordinates be denoted by

. (16.65)

Then, the matrix relationship between the generalized force and displacement vectors is

, (16.66)

where the frame member stiffness matrix in local coordinate directions is given by eq. (16.64).

16.3.1 Transformation of Cartesian coordinates

Let a coplanar frame assembly be defined with respect to global Cartesian coordinate directions (X,Y,Z). The 
local Cartesian coordinates of a frame member are  with the z-coordinate along the reference axis of the 
member. The z-axis lies in the X-Y plane at an angle θ with respect to the positive X-direction as shown in figure. 
16.22. To effect the assembly of member stiffness matrices it is necessary to transform the stiffness matrix 
(16.64) of a member from local coordinate directions  to the global coordinate directions (X,Y,Z). The 
transformation from one Cartesian system (X,Y,Z) to another Cartesian system (z,y,x) at joint i is effected by the 
direction cosines of the latter with respect to the former. For example, denote the cosine of the angle of the z-
direction with respect to the Z-direction as , the cosine of the angle of the z-direction with respect to the 

Y-direction as , etc. Then the Cartesian coordinate transformation from global to local directions in 
terms of the direction cosines is

. (16.67)

From figure. 16.22 the directions cosines in terms of angle θ are as follows. 

, , (16.68)

, , , (16.69)

, , . (16.70)
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=
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z y x, ,( )
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Xθ

θ

Z q3i–,

z
y

Y

x q3i,
i

q3i 2–

q3i 2–

q3i 1–

q3i 1–

Fig. 16.22 Local and global 
direction at node i.

z Y,( )cos

z z X,( )cos X z Y,( )cos Y z Z,( )cos Z+ +=

y y X,( )cos X y Y,( )cos Y y Z,( )cos Z+ +=

x x X,( )cos X x Y,( )cos Y x Z,( )cos Z+ +=

z X,( )cos θcos= z Y,( )cos θ– 90°+( )cos θsin= = z Z,( )cos 90°cos 0= =

y X,( )cos θ 90°+( )cos θsin–= = y Y,( )cos θcos= y Z,( )cos 90°cos 0= =

x X,( )cos 90°cos 0= = x Y,( )cos 90°cos 0= = x Z,( )cos 180°cos 1–= =
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Combine the direction cosines from eqs. (16.68) to (16.70) (b) into (16.67) to get the matrix transformation

. (16.71)

The inverse Cartesian coordinate transformation from local to global directions is determined from the reverse 
direction cosines as

. (16.72)

The direction cosines of the global directions with respect to the local directions as functions of θ are

, , , (16.73)

, , , and (16.74)

, , . (16.75)

Substitute the direction cosines from eqs. (16.73) to (16.75) into eq. (16.72) to get the inverse matrix transforma-
tion as

. (16.76)

The generalized displacements corresponding to local coordinates (z,y,x) at joint i are 

, and the generalized displacements corresponding to global coordinates (X,Y,Z) at 

joint i are . The directions of the generalized displacements coincide with the coordi-

nate directions as is shown in figure. 16.22. It follows from the coordinate transformation eq. (16.71) that the 
transformation of the generalized displacements from local to global directions is

. (16.77)

In matrix notation transformation eq. (16.77) is written as

, (16.78)

where

 . (16.79)
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Y z,( )cos θ– 90°+( )cos θsin= = Y y,( )cos θcos= Y x,( )cos 90°cos 0= =

Z z,( )cos 90°cos 0= = Z y,( )cos 90°cos 0= = Z x,( )cos 180°cos 1–= =

X

Y

Z
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It follows from the coordinate transformation in eq. (16.76) that the transformation of the generalized displace-
ments from global to local directions is

. (16.80)

In matrix notation the transformation in eq. (16.80) is written as

. (16.81)

The matrix of direction cosines has the following properties:

, (16.82)

and . Hence, the inverse of matrix  is equal to its transpose. Matrix  is said to be an orthogo-

nal matrix.

 Let  and . The transformation of the displacements at joint j is the same matrix equa-
tion as at joint i except that the components of the vectors are those corresponding to joint j. Hence, the transfor-
mation of the generalized displacement vector from global to local coordinate directions for frame member i-j 
can be written in matrix form as

. (16.83)

Equation (16.83) is written in compact form as 

 , (16.84)

where the 6X6 transformation matrix is
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. (16.85)

Transformation matrix  is also an orthogonal matrix. That is, its determinate is equal to one and its inverse is 

equal to its transpose. 

16.3.2 Frame stiffness matrix in global coordinate directions

The generalized joint force vector for frame member i-j transforms from global coordinate directions to local 
coordinate directions in the same manner as the generalized displacement vector does for the member. Hence, 
from eq. (16.84) the transformation of the 6X1 generalized force vector for element i-j is

, (16.86)

where the 6X1 generalized force vector in global directions is . 

Since the 6X6 transformation matrix is orthogonal, the inverse transformation from local to global directions is

. (16.87)

To obtain the 6X6 frame element stiffness matrix in global coordinate directions, substitute (16.84) for the 
generalized displacement vector, and substitute (16.86) for the generalized force vector, into eq. (16.66) to get

. (16.88)

Pre-multiply this equation by , recognizing that , to get

. (16.89)

The 6X6 matrix  is the frame member stiffness matrix in global coordinate directions, and is 

given by 

T
τ 03X3

03X3 τ
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0 0 0 0 0 1

= =
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=
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T Q{ }=

T Q{ } K T q{ }=

T
T

T
T

T I=

Q{ } T
T

K T q{ } K q{ }= =

K T
T

K T=
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. (16.90)

The frame member i-j referenced to global coordinate directions is shown in figure. 16.23.

The frame stiffness matrix (16.90) is symmetric and singular, and the diagonal elements are positive. Equilibrium 
of the frame member shown in figure. 16.23 for each of the six unit displacement states leads to the following 
relations for the elements of the stiffness matrix.

• Horizontal equilibrium: , , which implies row 1 plus row 4 = 0.

• Vertical equilibrium: , , which leads to row 2 plus row 5 = 0.

• Moment equilibrium about joint i: ,   , which leads 

to row 3 plus (L sine(θ)) times row 4 minus (L cosine(θ)) times row 5 plus row 6 = 0.

16.3.3 Frame stress matrix

The stress matrix for the frame member i-j relates the internal axial force , the transverse shear force , and 

the bending moment  to the generalized joint displacement vector. We can combine the stress matrix for the 
truss member, eq. (16.14), and the stress matrix for the beam member, eq. (16.44), if local coordinate direction 
displacements are employed. With due regard for the joint numbering convention for the frame member relative 
to the numbering convention of the truss and beam members, the following relationship can be obtained from the 
stress matrices of the truss and beam members:
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Fig. 16.23 Frame member with an arbitrary orientation referenced to global coordinate directions.
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. (16.91)

Recall that the axial coordinate  is a local coordinate in the frame element, which is zero at the beginning joint 

i and equal to the length L of the frame element at end joint j. The 3X6 stress matrix  (16.91) is refer-

enced to the generalized displacement vector in local coordinate directions. The stress matrix in terms of the gen-
eralized displacement vector in global coordinate directions is obtained by substituting (16.84) for the 
displacement vector in eq. (16.91) to get

, (16.92)

where

.

Perform the matrix multiplication in the last equation to find

. (16.93)

The 3X6 stress matrix , , for the frame member relates the internal actions in local coordinate 

directions z and y to the generalized displacement vector in global coordinate directions.
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Example 16.8 Portal frame

The coplanar rectangular frame shown in figure. 16.24 consists of three members: 1-2, 2-3, and 3-4. Joints1 and 
4 are restrained against displacement and rotation. At joint 2 there is a rigid connection between members 1-2 
and 2-3, and at joint 3 there is a rigid connection between members 2-3 and 3-4. Joints 2 and 3 are moveable, and 

the generalized displacement vector for these joints is . Each member has a cross-

sectional area , second area moment , and the same modulus of elasticity 

. The direction cosines for member 1-2 are , for member 2-3 

, and for member 3-4 . Determine the generalized displacements of the movable 
joints 2 and 3, and the bending moment in each member. 

The stiffness matrix (16.90) for each member including only the generalized displacements of joints 2 and 3 
are as follows:

, (a)

,

qα{ } q4 q5 q6 q7 q8 q9
T

=
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E 70 3×10  N//mm2= c s,( ) 0 1,( )=

c s,( ) 1 0,( )= c s,( ) 0 1–,( )=
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2 3
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h

18kN

1

2

3

4

5

6
7

8

9

10

11

12
DOFs
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Fig. 16.24 (a) Portal frame. (b Degree of freedom numbering.
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, and (b)

. (c)

The restrained structural stiffness matrix is obtained by the sum of the member stiffness matrices in eqs.(a), (b), 
and (c) with due regard to the location of the matrix elements from the individual members to their place in the 
restrained stiffness matrix. The result is

. (d)

The prescribed external load vector is , and the matrix 

equation to determine the generalized displacements is . The solution for the generalized dis-

placements from the latter equation is

. (e)

The bending moment in member 1-2 is determined from its stress matrix (16.93) and the generalized dis-
placement vector for the member. Reading the third row of the stress matrix determines the bending moment as

, (f)

where . Numerical evaluation results in

.
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0 574.219 459 375,– 0 574.219– 459 375,–
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294. 0 294 000,
0 52 500, 0

294 000, 0 3.92
8

×10

= =

q7 q8 q9 q7 q8 q9

Kαα

65 919, 0 294 000,– 65 625,– 0 0
0 53 074.2, 459 375,– 0 574.219– 459 375,–

294 000,– 459 375,– 8.82
8

×10 0 459 375, 2.45
8

×10

65 625,– 0 0 65 919, 0 294 000,–

0 574.219– 459 375, 0 53 074.2, 459 375,

0 459 375,– 2.45
8

×10 294 000,– 459 375, 8.82
8

×10

=

q4 q5 q6 q7 q8 q9

Qα{ } Q4 Q5 Q6 Q7 Q8 Q9
T

18 000 N, 0 0 0 0 0
T= =

Qα{ } Kαα
qα{ }=

q4 41.6931 mm= q5 0.18859 mm= q6 0.0110439 rad.=

q7 41.5561 mm= q8 0.18859 mm–= q9 0.0109807 rad=

Mx( )
1 2– EI 6 h2⁄ 12z h3⁄–( )– 0 EI 4– h⁄ 6z h2⁄+( ) EI 6– h2⁄ 12z h3⁄+( )– 0 EI 2– h⁄ 6z h2⁄+( ) q1 2–{ }=

q1 2–{ } 0 0 0 q4 q5 q6
T

=

Mx( )
1 2–

294 000, 294.z–( )q4 1.96–
8

×10 294 000z,+( )q6+ 1.00931
7

×10 9 010.84z,–= =

0 z 2 000 mm  ,≤ ≤



Aerospace Structures 483

Practice exercises

. (g)

Following the same procedure for members 2-3 and 3-4 we find

, and (h)

, . (i)

The bending moment in each member is plotted with respect to the axial coordinate in figure. 16.25. The bending 
moment distribution is linear in each member and it passes through zero as it changes sign.J 

16.4  Practice exercises

1. Consider the plane truss restrained against rigid body motion and subject to the loads shown in figure. 
16.26(a). Use the degree of freedom numbering convention based on the joint numbering as shown in figure. 

16.26(b). All four bars have the same modulus of elasticity , and the same  where the cross-

Mx( )
2 3–

459 375, 574.219 z–( )q5 4.9
8

×10– 459 375 z,+( )q6 459 375,– 574.219 z+( )q8+ + +=

2.45–
8

×10 459 375 z,+( )q9 7.92854–
6

×10 9 900.99 z,+= 0 z 1 600 mm,≤ ≤

Mx( )
3 4–

294 000, 294 z–( )q7 3.92–
8

×10 294 000 z,+( )q9+ 7.91305
6

×10 8 989.16 z,–= = 0 z 2 000 mm,≤ ≤

z

z

z

1

2 2

3

3

4
10.1 MNm

1 120.1 mm,

7.93–  MNm

7.93–  MNm

800.8 mm

7.91 MNm

7.91 MNm

880.3 mm

10.1–  MNm

Fig. 16.25  Bending moments in the members of the portal frame: (a) member 1-2, (b) member 2-3, 
(c) member 3-4.
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8Fig. 16.26
(a) Truss with 
four joints and 
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(b) Degree of 
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numbering.
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sectional area for bar 1-2 is  Solve by hand the computations for the

a) unrestrained structural stiffness matrix,

b) restrained structural stiffness matrix, and

c) unknown joint displacements.

2. Consider the plane truss consisting of five bars shown in figure. 16.27(a). Each bar has the same extensional 
stiffness . Use the degree of freedom numbering convention based on the joint numbers labeled in the figure.

a) Determine the unrestrained structural stiffness matrix.

b) Joints 1 and 3 are restrained such that , and it is assumed the loads are applied in the 

remaining degrees of freedom. Determine the submatrix .

3. For the seven-bar truss shown in figure. 16.27(b) all bars have the same value for . The horizontal dis-

placement of joint 5 is prescribed as . All applied forces are zero. Use symmetry to reduce the order of 

the restrained structural stiffness matrix  and then determine the unknown nodal displacements 

.

4. In the three-bar truss shown in figure. 16.27(c) the temperature of bar 1-2 is increased  above ambient 
temperature, while bars 1-3 and 1-4 remain at ambient temperature. The bars are made of aluminum alloy with a 

modulus of elasticity  and coefficient of thermal expansion . The length of 

each bar , and the cross-sectional area of each bar .
Determine

a) the 8X1 fixed-end action vector,

b) the 8X8 unrestrained structural stiffness matrix,

c) the joint displacements  and  of movable joint 1,

d) the support reactions, and

e) the bar forces. State if they are in tension or compression.

0.5 in.2

EA

q1 q2 q6 0= = =

Kβα

EA L⁄

q9 1=

Kαα

q3 q4 q5  and q6, , ,

100°C

E 69 GPa= α 23.6 6–×10 °C⁄=

L 250 mm= A 400 mm2=

q1 q2

L

LL
45° 45°

1

23

4

q1

q2

45°

15°15°

45°

h

1 2

34

X
Y

1
L

30° 60°

2

34

5

Fig. 16.27 Truss configurations. (a) Exercise 2. (b) Exercise 3. (c) Exercise 4.

(a) (b) (c)



Aerospace Structures 485

Practice exercises

5. The uniform, multispan beam shown in figure. 16.28 is clamped at each end and subject to vertical point 
loads at joints 2 and 4. Use the joint numbers indicated in the figure, and the degree of freedom numbering con-
vention associated with the joint numbers.

a) Use symmetry to reduce the problem size and compute the joint displacement vector in terms of P, L, 
and EI.

b) Determine the shear force and bending moment distributions in each span in terms of P and L. Sketch 
the shear force and bending moment diagrams.

c) Determine the support reactions.

6.  The flexural stiffness of the uniform beam shown in figure. 16.29 is , and it has a of length 2L. It is sup-

ported by linear elastic springs at each end, each with a stiffness . It is subject to the linearly vary-

ing distributed load whose intensity is  at midspan. 

Use two members to model the beam, and use the degrees of freedom (DOFs) numbering shown in the fig-
ure.

a) Use symmetry about the vertical centerline and determine the restrained structural stiffness matrix in 
DOFs 1, 2, and 3, and in terms of parameters  and .

b) Determine the 6X1 fixed-end action vector  in terms of  and .

c) Solve for the unknown joint displacement vector  in terms of , , and .

7. Consider the frame shown in figure. 16.30(a) consisting of a vertical bar 1-2 and a horizontal bar 2-3, which 
are joined together by a rigid connection at joint 2. The ends of the bars opposite to their common joint are 

P P

LLLL

1 2

3

4 5

Fig. 16.28 Multispan beam.

EI

k 6EI L3⁄=

fy1

1

2

3

4

5

6

EI L, EI L,

LL

fy1

k k
EI

Fig. 16.29 (a) Beam with spring supports. 
(b) Degree of freedom numbering.(a)

(b)

EI L

Q0{ } fy1 L

q1 q2 q3 q4 q5 q6

T
EI L fy1
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clamped. The horizontal bar 1-2 is subject to a linearly distributed load. The degree of freedom numbering con-
vention is shown in figure. 16.30(b).

a) Determine the restrained structural stiffness matrix .

b) Determine the 9X1 fixed-end action vector .

8. Consider the model of a strut-braced wing spar shown in figure. 16.31 subject to the span-wise air load 
approximated as a linearly varying distributed line load. The intensity of the distributed load at the root 

 and the resultant lift acting on the spar is .

The spar is clamped at the root and free at the tip, and the strut is pinned-connected to the spar and the support. 
The matrix structural model consists of three members as shown in figure. 16.32(a). Since the air load bends the 
spar which in turn stretches the strut, the structure is modeled with a frame member between joints 1 and 2, a 
beam member between joints 2 and 3. and a truss bar between joints 2 and 4. The degree of freedom numbering 
convention is shown in figure. 16.32(b).

a)  Determine the fixed-end action vector  and its partitions  and . The -indices are 4, 

1

32

fy1

L1 EA1 EI1, , L2 EA2 EI2, ,

1

3

2

4

5

6
7

8

9

Fig. 16.30 (a) Frame configuration. (b) Degree of freedom numbering.

(a) (b)
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2
---fy1 32 12×( ) 25 000 lb,=

h

a

L
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Wengine 2 000 lb.,=

b
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b 264in.=
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Fig. 16.31
Strut-braced wing spar.
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Fig. 16.32 (a) Joint numbers for a three-member model. (b) Degrees of freedom.

(a) (b)

Q0{ } Qα
0{ } Qβ

0{ } α



Aerospace Structures 487

Practice exercises

5, 6, 7, and 8, and the -indices are 1, 2, 3, 9, and 10.

b) Additional numerical data are listed in table 16.7. Determine the unknown nodal displacements.

Table 16.7 Additional numerical data for the strut-braced wing

h, vertical distance from the spar centroid to lower strut support 60 in.

A, cross-sectional area of the spar 23.88 in.2

Ixx, second area moment of the cross section of the spar 872.716 in.4

As, cross-sectional area of the strut (1.75 in. diameter) 2.40528 in.2

L, wing lift 25,000 lb.

E, modulus of elasticity for the spar and strut material

β

10 6×10  lb./in.2
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CHAPTER 17

 

Finite element method

 

The direct stiffness method presented in chapters 15 and 16 developed matrix structural analyses for the linear 
elastic response of truss and frame members connected at a finite number of joints. Engineering bar theory mod-
eled the frame members so that the deflection and stresses were readily computed in the member once the gener-
alized displacements of the joints were determined by matrix methods. The direct stiffness method is a finite 
element method applied to trusses and frames. In the finite element method the joints are called nodes and the 
members are called elements. The development of the finite element method arose out of the need to determine 
influence coefficients for semimonocoque construction used in aerospace structures. Stiffened shells and flat 
plates are continuum structures an with an infinite number of interconnection points. In this chapter we present 
the finite element method to continuum structures in one dimension. Developments for two- and three-dimen-
sional continuum formulations are found in the large literature on the finite element method. We mention only 
two of the many references on finite elements for engineering students: Reddy (2019), and Huebner, Thornton, 
and Byrom (1995).

 

17.1 Elastic bar subject to axial loads

 

The presentation in this section follows, in part, that given by Szabo and Babuska (1991). A prismatic bar of 

length 

 

L

 

 and a cross-sectional area 

 

A 

 

is shown in figure 17.1(a). The bar is made of a homogeneous, linear elastic 
material whose modulus of elasticity is denoted by 

 

E

 

 and its coefficient of thermal expansion by 

 

α

 

. Let the axial 

N

z z ∆z+

N dN
dz
-------∆z+

fz z*( ) cw z*( )–[ ]∆z

z w z( ),

c

fz z( )

L

z z* z ∆z+< <

(a) (b)

Fig. 17.1 (a) Elastic bar subject to axial loading. (b) Free body of a segment of length ∆z.
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displacement function be denoted by  where 

 

z

 

 is the axial coordinate and . Prescribed external 

loads consist of an axial distributed load with intensity  (F/L) and a change in temperature that is indepen-

dent of the contour coordinate 

 

s

 

 but a function of the axial coordinate 

 

z

 

 (i.e., ). The bar is 

restrained by a distributed spring proportional to the axial displacement with an intensity given by  and 

 (F/L

 

2

 

). A free body diagram of a segment of the bar is shown in figure 17.1(b). The internal axial normal 

force is denoted by . Axial equilibrium of the segment as  leads to the differential equation

.

 

(17.1)

 

Hooke’s law including the prescribed thermal force is , where . Thus,

.

 

(17.2)

 

Substitute (17.2) for the axial force in equilibrium equation (17.1) to get the governing differential equation for 
axial displacement  as

.

 

(17.3)

 

The boundary conditions at 

 

z

 

 = 0 and 

 

z

 

 = 

 

L

 

 are to prescribe either the displacement  or the axial normal force 

 

N

 

. The displacement prescribed at the boundary is also called the essential boundary condition and the force pre-
scribed at the boundary is called the natural boundary condition.

Multiply (17.3) by an arbitrary axial displacement function  and integrate:

.

 

(17.4)

 

Integrate the left-hand side of the previous equation by parts:

.

 

(17.5)

 

Rearrange the terms in eq. (17.5) to get

.

 

(17.6)

 

If the governing boundary value problem for  (17.3) is satisfied, then (17.6) is also satisfied for any 

 for which the operations in (17.6) are defined. Note that in (17.6) the highest derivative of the displacement 

is , whereas the highest derivative in the differential equation (17.3) is . Integration by parts results in 
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a derivative of one less in  than what occurs in the differential equation. Equation (17.6) is called the weak 
form of the differential equation (17.3).

 In the finite element method the function  is called a trial function. The function  is called a test 

function or a virtual displacement, and  is the virtual strain. Function  is called a virtual displace-
ment because it is not the actual physical displacement, but merely a hypothetical, admissible displacement. Each 
term in (17.6) represents virtual work, that is, the work done by the internal action  through the virtual 
strain, work done by the distributed spring through the virtual displacement, work done by the prescribed distrib-
uted load and boundary forces through the virtual displacement, and the work of the virtual thermal force 

 due to the prescribed thermal strain . Define

, and (17.7)

. (17.8)

The bilinear form  associates a real number with any two functions  and , and the linear form 

 associates a real number for any function . The bilinear form  represents the internal virtual 

work and the linear form  represents the external virtual work. Let  denote the portion of the strain 

energy due to mechanical strain1 and that from the distributed spring. The expression for the strain energy is

. (17.9)

All continuous functions  defined on the open interval  have a finite strain energy 

, and  only if  on . The conditions that restrict the set of all continuous functions 
having a finite strain energy are called displacement, kinematic, and essential boundary conditions. For example, 
if it is prescribed that the trial function  where  has a numerical value, and the total displacement at 

z = 0 is , then the virtual displacement . The external virtual work for  

reduces to

. (17.10)

For displacement prescribed boundary conditions the virtual displacement must vanish at the boundaries. Kine-
matically admissible trial functions  are continuous, single valued, and equal the prescribed displacement 
boundary conditions.

1. Refer to eq. (5.81) on page 145.
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The principle of virtual work is to find a kinematically admissible displacement function  such that

. (17.11)

The principle of virtual work (17.11) is a statement of equilibrium for the linear elastic bar, and it depends on the 
boundary conditions. The trial function  is selected to satisfy displacement boundary conditions, if any, on 

the closed domain . In the applications of the principle of virtual work it is not practical to 

consider an infinite number of kinematically admissible test functions. Instead, a subset of kinematically admis-
sible functions is assumed. For example, polynomials in z are often selected because they are easy to differentiate 
and integrate. Consider an approximate polynomial for the trial function  and a similar polynomial for the 

test function  by selecting 

 and . (17.12)

Unknown coefficients ai in the trial function are determined from the principle of virtual work for every choice of 
the coefficients bi, i = 1, 2, 3, in the test function. Coefficients bi are independent of the coefficients ai in the trial 
function.

Example 17.1 An approximate solution by the principle of virtual work

Dimensional and material data for the bar shown in figure 17.1 are L = 500 mm, A = 400 mm2, E = 70,000 N/

mm2, , and . Uniform external loads are prescribed as  and a 

prescribed change in temperature  for . Boundary conditions are 

 and . Assume the trial and test functions for the displace-

ments as

 and . (a)

Note that the trial function  satisfies the prescribed displacement boundary condition at z = 0, and that the 

test function, or virtual displacement function,  vanishes at z = 0. The internal virtual work (17.7) is

, (b)

The external virtual work (17.8) is

. (c)

The principle of virtual work (17.11) for the assumed displacement functions is

. (d)

Hence, the equation to determine coefficient a1 is

w z( )
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. (e)

Solve (e) for a1 to get

. (f)

Note that a1 is dimensionless. The following equations are the results for the axial displacement in eq. (a), axial 
normal force in eq. (17.2), and the strain energy in eq. (17.9): 

. (g)

, (h)

. (i)

The exact solution to the differential equation (17.3) subject to the prescribed external loads and the pre-
scribed boundary conditions is

, (j)

where . The axial normal force and strain energy for the exact solution are

, and (k)

. (l)

The strain energy of the approximate solution exceeds that of the exact solution. The error in the strain energy is

. (m)

At z = L,  and for the approximate solution , an error of –72.7 percent. 

Graphs of the axial displacement distribution and axial force distribution are shown in figure 17.2 and figure 
17.3, respectively.
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Fig. 17.2 Axial displacement 
distribution for example 17.1. The 
exact solution is compared to the 
approximate solution by the 
principle of virtual work.
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The displacement and axial force in the approximate solution do not compare well with the exact solution. 
Including polynomial terms of higher degree for the trial function and test functions (a) results in improved 
approximate solutions. Rather than selecting polynomials of higher degree in the principle of virtual work, con-
sider a finite element approximation using piecewise, linear polynomials as is discussed next in article 17.2. J

17.2 Finite elements in one dimension

As stated in eq. (17.11) the principle of virtual work applies over the whole domain  of the bar. However, the 
principle of virtual work can also be applied to subdomains of the bar. In the finite element method we partition 

 into subdomains called finite elements. Partitions are called meshes, and finite element meshes are character-
ized by the selection of nodal points. Consider the mesh

, (17.13)

where M denotes the number of elements and M+1 is the number of nodes. The kth element is denoted by

. (17.14)

Each element is mapped onto a standard element denoted by

. (17.15)

The standard element is mapped onto the kth element by

, where  and . (17.16)

The inverse mapping is

. (17.17)

The length of the element is denoted by  where . Functions , i =1, 2, are called shape 

functions or interpolation functions, which have the properties

 . (17.18)

Kinematic admissibility requires the displacement function  to be continuous between elements and 

within an element. Continuity insures the derivative of the displacement is a square integrable function on  so 

100 200 300 400 500

-40000

-20000

20000

40000

Axial force
in Newtons z mm,

exact

approximate

Fig. 17.3 Axial normal force 
distribution in Newtons for 
example 17.1. The exact 
solution compared to the 
approximate solution.
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that the strain energy (17.9) is finite. The displacement in the kth element is denoted by , . Let the 

displacements at the nodes  and  be denoted by  and , respectively. A 

linear polynomial in the axial coordinate with two coefficients is sufficient to interpolate the displacement at the 
two nodes, and it meets the continuity requirement within the element. The simple choice is to use the same lin-
ear interpolation functions for the displacement of the kth element as were used to interpolate coordinate  

(17.16). Hence, the trial function for the axial displacement of the kth element is

 . (17.19)

At node  the displacement from the end of the kth element is , and the 

beginning displacement of the k+1 element is . Thus, interelement conti-

nuity is satisfied. The virtual displacement for the kth element is assumed to be the same functional form as the 
trial function:

, (17.20)

where coefficients  are independent of the trial function.

The axial strain in the kth element is . By the chain rule and the inverse mapping (17.17) we 

transform the derivative with respect to z to the derivative with respect to ζ by

. (17.21)

Thus, the strain in the kth element is 

. (17.22)

Note that the strain (17.22) is spatially uniform in the element. The virtual strain  is

. (17.23)

The bilinear form (17.7), or internal virtual work, for the kth element is

. (17.24)

Substitute (17.22) and (17.23) for the strains, and (17.19) and (17.20) for the displacements, into the internal vir-
tual work (17.24) to get

, (17.25)

where . Perform the matrix algebra in the latter equation to get
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. (17.26)

Perform the integration in eq. (17.26) to determine the element stiffness matrix . The result is

. (17.27)

Take the virtual displacement equal to the trial displacement, or , in (17.26), which implies  

and . Then, multiply the result by one-half to identify the strain energy in the kth element as

. (17.28)

The linear form (17.8), or the external virtual work, for the kth element is

. (17.29)

Substitute (17.20) for the virtual displacement and (17.23) for the virtual strain into the external virtual work 
(17.29), followed by employing the mapping of  (17.16). The result is

, (17.30)

where

. (17.31)

Arrange the terms in (17.30) to

. (17.32)

The last expression for the external virtual work is written as
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, (17.33)

where we define

, , (17.34)

, and . (17.35)

The forces acting on the element separated from the nodes, and the forces acting on the nodes are depicted in fig-
ure 17.4.

Finally, the external virtual work expression (17.33) for the kth element is written as

, where (17.36)

 , , and . (17.37)

The axial force in the kth element is

 . (17.38)

The virtual work expressions for the M-elements spanning  are

. (17.39)

Consider in the summation of the external virtual work the terms from the k-1 element and the kth element. From 
(17.33) these terms are

. (17.40)

Combine the terms multiplying virtual displacement bk in eq. (17.40) to write the external virtual work as 

. (17.41)
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Fig. 17.4 Forces acting on the bar and the nodes for element Ωk.
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At the common node zk let

 , (17.42)

where  is the external axial force at node zk. The definition of force  is based on equilibrium at node zk as 

shown by the free body diagram in figure 17.5. Force  is prescribed if displacement qk is unknown, or it is an 

unknown reactive force if displacement qk is prescribed. At node zk the total external axial force consists of the 

contribution from the axial force  plus the distributed loading from the k-1 element and the kth element (i.e., 

, where ). A depiction of a finite element model with a mesh consisting of four nodes 

and three elements is shown in figure 17.6.

If at node zk there is no prescribed externally applied point force, then we have the following relation from 
eq. (17.42):

 . (17.43)

Equation (17.43) implies that the axial force is continuous at the node connecting the k-1 element to the kth ele-
ment if . Displacement continuity at the common nodes is imposed in the finite element method. How-

ever, for the linear interpolation functions (17.20) the axial force is, in general, discontinuous at the common 

nodes (i.e., ). The jump in the axial force at common nodes decreases with mesh refine-

ment as is illustrated in example 17.2 below.

Example 17.2 Solution of example 17.1 using two finite elements

First consider a uniform mesh with M = 2 using the interpolation functions (17.16). The nodes are , 

, and . The lengths of the elements are . The total displacements for each ele-

ment are

, and . (a)

The virtual displacements for each element are

Qk Qk
k 1–( ) Qk

k( )+ N k 1–( ) zk( ) N k( ) zk( )–= =

Qk Qk

Qk
k 1–( ) Qk

k( )

Qk

zk 1– zk 1+
Ωk 1– Ωk

…… z
Fig. 17.5 Free body 
diagram of node zk.
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k( )+=

q1 Q1 F1
1( )+( ), q2 Q2 F2+( ), q3 Q3 F3+( ), q4 Q4 F2

3( )+( ),

z1 0= z2 z3 z4 L=Ω1 Ω2 Ω3

Fig. 17.6 A mesh consisting of four nodes and an assembly of three elements. Displacements and the 
corresponding external forces are shown at each node.

Qk 0 N k 1–( ) zk( ) N k( ) zk( )–= =

Qk 0=
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 and . (b)

Note that virtual displacement in the first element at node one , since the displacement q1 is pre-
scribed at node one in the trial function.

 The internal virtual work for elements one and two are 

, and (c)

. (d)

The element stiffness coefficients in eqs. (c) and (d) are given by eq. (17.27). For the assembly of the elements 
the total internal virtual work is

. (e)

In matrix notation the internal virtual work for the assembly is

, where (f)

. (g)

Use the relation that  to find that the stiffness matrix of the assembly is

. (h)

The external virtual work (17.33) for the first element is

. (i)

The external force from the change in temperature (17.35) for the first element is

. (j)

The external virtual work for the second element (17.33) is

. (k)

The external forces from the change in temperature for the second element are determined from eqs. (17.34) and 
(17.35):

w
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, and . (l)

The total external virtual work is the sum of the contributions from eqs. (i) and (k) is

. (m)

At node 2 there is no prescribed external force, so . Also at node 2 the sum of the thermal 

forces (j) and (l) is zero: that is, . Hence, the total external force at 

node 2 vanishes. At node 3 the prescribed force , and the thermal force . 

The total external virtual work is

. (n)

Equate expressions (f) and (n) to get the principle of virtual work: 

. (o)

It follows from eq. (o) that the matrix equation to determine the displacements is

, (p)

Note that the term involving displacement q1 is known and so it is moved to the right-hand side of eq. (p). 
Numerical evaluation of matrix equation (p) is

. (q)

The solution to matrix equation (o) for the nodal displacements is  and 

. The external forces acting on the bar modeled with two elements is shown in the free 

body diagram of figure 17.7. Force  is the reactive force at node 1 where the displacement is pre-

scribed. The thermal force at node 1 , which is evaluated from (17.34). 

The thermal force at node 3 is , which is evaluated from (17.35). Then, axial 

equilibrium of the bar determines the reactive force Q1 = 40,000 N.

The trial functions for the displacements of the two elements are
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Fig. 17.7 External forces 
acting on a two-element 
model.
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 , and (r)

 . (s)

The axial coordinate in element 1 is  and in element 2 it is 

. The axial displacement is plotted with respect to z from the exact solu-

tion given by eq. (j) in example 17.1 and from the finite element solution given by eqs. (r) and (s) in figure 17.8. 
The finite element representation of the axial displacement is a piecewise linear polynomial, which is an 
improvement with respect to the virtual work result shown in figure 17.2.

The strain energy for the two element model is

. (t)

The error in the strain energy with respect to the exact value given by eq. (l) in example 17.1 is

. (u)

From (17.38) the axial forces in each element are 

 and . (v)

The distributions of the axial force N from the exact solution given by eq. (k) in example 17.1 and the finite ele-
ment solution (v) are plotted in figure 17.9. The finite element result for N is piecewise constant, which is a 
improvement with respect to the virtual work result shown in figure 17.3. J 
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Fig. 17.8 Axial displacement. 
Exact solution and an 
approximate solution using 
two finite elements.
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Fig. 17.9 Axial force. Exact 
solution and an approximate 
solution using two finite 
elements.
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17.2.1  Results from 4, 8, and 16 finite element solutions to example 17.1

Improved numerical solutions are obtained by considering uniform meshes of four, eight, sixteen, etc., elements. 
As shown in figure 17.10, the piecewise polynomial approximation for the axial displacement using eight uni-
form elements is, to the scale of the plot, very close to the exact solution. The axial force from the exact solution 

and from the finite element solution with eight uniform elements is shown in figure 17.11. The piecewise con-
stant axial force from the solution with eight elements is an improvement with respect to the two element model 
shown in figure 17.9. 

The strain energy and the natural boundary condition at z = L are used to measure the error in the finite element 
solutions with respect to the exact solution. Results for uniform meshes of one to sixteen elements are listed in 
table 17.1. The data in the table demonstrates that the strain energy converges faster than the natural boundary 
condition to the exact solution as the number of elements is increased.

Table 17.1 Errors in the strain energies and natural boundary conditions of example 17.1 as the 
number of element is increased.

M, number of 
uniform 
elements

U, strain 
energy, N-mm

Percentage error in 
the strain energy N(L), Axial 

force in 
Newtons

Percentage error in 
the axial force at z = 
L

(U-Uex)100/Uex [FL -N(L)]100/FL

1a 14,975.3 93.1b –10,914.5 72.7c

2 10,589.9 36.6 –31,560.7 21.1

4 8,551.95 10.3 –32,260.1 19.3

8 7,961.15 2.67 –35,260.1 11.8

16 7,806.5 0.674 –37,347.6 6.63

100 200 300 400 500

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

z mm,w mm,
Fig. 17.10 Axial displacement. Exact 
solution and an approximate 
solution using eight finite elements.
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Fig. 17.11 Axial force. Exact 
solution and an approximate 
solution using eight finite 
elements.

F.E.
exact



Aerospace Structures 503

Finite elements in one dimension

17.2.2 Convergence requirements

Heubner et al. (1995, p. 85) list the following requirements for mathematical convergence of the finite element 
solution to the exact solution as an increasing number of smaller elements are used in the remeshng process.

• The elements must be made smaller in such a way that every point in the solution domain can always be 
within an element regardless of how small the element may be.

• All previous meshes must be contained in the refined meshes.

• The form of the interpolation functions must remain unchanged.

For example, the nodes in the mesh for M = 2 are also contained in the mesh for M = 4, nodes in the mesh for M 
= 4 are also contained in the mesh for M = 8, etc. The same linear interpolation functions (17.16) are used in each 
discretization.

17.2.3 Apparent loadings from the 8- and 16-element solutions of example 17.1

As illustrated in figure 17.11, the axial force exhibits jumps at the nodes between neighboring elements. These 
jumps can be interpreted as a series of concentrated forces applied at the nodes, and these forces are called the 

apparent loading (Szabo and Babuska, p. 63). Let  denote the apparent axial force at node . From (17.42), 

the apparent axial force in the positive z-direction at an interior node is

. (17.44)

The forces at the nodes computed from the jump in the internal axial force are listed in table 17.2 for the 8-ele-

ment model and for the 16-element model. Note that the sum of these forces  vanishes in each model, which 

is a consequence of the principle work as a statement of equilibrium. At common interior nodes the force  is 

smaller in the 16-element model than in the 8-element model.

a. From example 17.1.

b. Uex = 7,754.26 N-mm

c. FL = –40,000 N

Qk zk

Qk N k 1–( ) zk( ) N k( ) zk( )–= k 2 3 … M 1–, , ,=

Qk

Qk
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17.2.4 Adaptive mesh refinement beginning with the 8-element solution to example 17.1

A uniform mesh may converge slowly to the exact solution with continued refinement. In practice, finite element 
simulations are performed on a structure where the exact solution is not known. For those structures whose exact 
solutions are unknown, the apparent loading from the finite element solution can be used in adaptive procedures 
to refine the mesh. Adaptive mesh refinement is based on assessing the relative error of the energy norm in each 
element between the original loading and the apparent loading (Szabo and Babuska, p. 63). The energy norm for 
a kinematically admissible function  is denoted by , and it is defined as the square root of the strain 

energy (17.9) (i.e., ). The mesh and shape functions of the original model are not changed in the sec-
ond solution of the model subject to the apparent loading. Those elements exhibiting the largest discrepancy in 
the energy norm between the original loading and the apparent loading are subdivided to generate a new mesh. 
The new mesh will not be uniform, and is called quasi-uniform. The adaptive mesh procedure is repeated with 
respect to the new mesh. This repeated use of mesh refinement generates a sequence of meshes. An optimum 
mesh is achieved when the local error is distributed uniformly through the mesh (Heubner et al., p. 514).

Table 17.2  Apparent loading from the finite element solutions of example 17.1.

8 elements, 9 nodes 16 elements, 17 nodes

z k k

0 1 –25,950. 1 –35,743.3

L/16 ---------- 2 21,139.1

L/8 2 29,906.9 3 13,889.4

3 L/16 ---------- 4 9,134.26

L/4 3 12,697.5 5 6,019.91

5 L/16 ---------- 6 3,986.67

3 L/8 4 5,510.35 7 2,669.461

7 L/16 ---------- 8 1,831.7

L/2 5 2,672.57 9 1,322.93

9 L/16 ---------- 10 1,051.76

5 L/8 6 1,944.26 11 969.5

11 L/16 ---------- 12 1,061.37

3 L/4 7 2,750.58 13 1,343.86

13 L/16 ---------- 14 1,867.72

7 L/8 8 5,727.95 15 2,727.03

15 L/16 ---------- 16 4,076.14

L = 500 mm 9 –35,250.1 17 –37,347.6

Qk N, Qk N,

Qk

k 1=

9

∑ 0= Qk

k 1=

17

∑ 0=

w z( ) w z( )

w U w[ ]≡
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Consider the eight-element model (M = 8) with nine nodes. The nine nodes in the uniform mesh are

. (17.45)

Each element has the same length , . The dimensions of the restrained 

structural stiffness matrix  is 8X8. The displacement degrees of freedom and the corresponding forces are

 , and . (17.46)

The nodal force vector for the original loading is

. (17.47)

The matrix equation  is solved numerically to determine the displacement vector . 

The axial displacement  in each of the eight elements is computed from , followed by the computation 

of the energy norm in each element , .

For the apparent loading the nodal force vector from table 17.2 is

. (17.48)

Without changing the restrained structural stiffness matrix, the equation  is solved numeri-

cally for the displacement vector . Note that . From the displacement vector  the axial 

displacement in the kth element  is determined. The energy norm for the displacement in each element from 

the apparent loading is denoted by , . Results for the energy norms from the original load-

ing and apparent loading are listed in table 17.3. Elements 1, 8, 2, 7, 3, 5, 4, and 6 have the largest to the smallest 
discrepancy in the energy norms. 

Table 17.3 Element energy norms from the original and apparent loadings.

Element

Original loading Apparent loading Discrepancy

1 79.5058 120.577 –41.0708

2 33.5923 14.4801 19.1122

3 14.1945 12.1357 2.05885

4 6.01526 7.86369 –1.84843

5 2.76845 4.69067 –1.92222

6 2.84924 4.61159 –1.76235

7 6.26583 12.0038 –5.738

8 14.7925 34.9373 –20.1448

z9{ } 0 1 8⁄ 1 4⁄ 3 8⁄ 1 2⁄ 5 8⁄ 3 4⁄ 7 8⁄ 1, , , , , , , ,{ }L=

hk zk 1+ zk– L 8⁄= = k 1 2 … 8, , ,=

Kαα

qα{ } q2 q3 q4 q5 q6 q7 q8 q9, , , ,
T

= Qα{ } Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9, , , , ,
T

=

Qα{ } 8EA L⁄ cL 48⁄–( )q1 0 0 0 0 0 0 0 EAατ0 FL+, , , , , , , ,
T

79 183.3,– 0 0 0 0 0 0 0 14240.–, , , , , , , ,
T= =

Kαα
qα{ } Qα{ }= qα{ }

w k( ) qα{ }

w k( ) k 1 2 … 8, , ,=

Qα{ } 29 906.9, 12 679.5, 5 510.35, 2 672.57, 1 944.26, 2 750.58, 5 727.95, 35 260.1,–=

Kαα
qα{ } Qα{ }=

qα{ } qα{ } qα{ }≠ qα{ }

w k( )

w k( ) k 1 2 … 8, , ,=

wk wk wk wk–
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Based on the data in table 17.3, a quasi-uniform mesh is selected to increase the number of elements in the 
domain where the errors in energy norm are large. For example, a mesh of fifteen nodes and fourteen elements is 
illustrated below:

, (17.49)

where the lengths of the elements are

. (17.50)

The mesh with nine nodes and the mesh with fifteen nodes are depicted in figure 17.12. Nodes are clustered at the 

beginning and end of the domain of the 14-element model where discrepancies in the energy norm were the larg-
est. A finite element analysis of this 14-element model resulted in a strain energy of the assembly of 7,788.23 N-
mm, and a natural boundary condition . Compared to the exact solution the percentage 
error in the strain energy is 0.438 percent, and the error in the natural boundary condition is 4.59 percent. More-
over, compared to the results from the 16-element model with a uniform mesh in table 17.1, the 14-element 
model has a smaller error in the strain energy and a smaller error in the natural boundary condition.

17.3 A beam element including transverse shear deformation

The principle of virtual work is developed for a uniform beam of length L that is symmetric about the y-z plane         
as shown in figure 17.13. It is subject to a lateral distributed load intensity  (F/L) and a change in tempera-

ture , , where  ( ) is the prescribed through the thickness temperature gradient. 

The y-direction displacement of the centroidal axis is denoted by  (L), and the rotation of the cross section 

about the x-axis is denoted by  (radians).

z15{ } 0 1 24⁄ 1 12⁄ 1 8⁄ 3 16⁄ 1 4⁄ 3 8⁄ 1 2⁄ 5 8⁄ 3, 4⁄ 13 16⁄ 7 8⁄ 11 12⁄ 23 24⁄ 1, , , , , , , , , , , , ,{ }L=

h14{ } L
24
------ L

24
------ L

24
------ L

16
------ L

16
------ L

8
--- L

8
--- L

8
--- L

8
--- L

16
------ L

16
------ L

24
------ L

24
------ L

24
------, , , , , , , , , , , , ,

 
 
 

=

0.0 0.2 0.4 0.6 0.8 1.0

z L⁄

15 nodes

9 nodes

Fig. 17.12 The nine-node uniform mesh and the fifteen-node quasi-uniform mesh.

N L( ) 38 164.2,–  N=

fy z( )

∆T τy z( )y= 0 z L≤ ≤ τy z( ) °C L⁄

v z( )

φx z( )

z

y v,

φx

fy
τy

L

EIxx syy α, ,

Vy

Vy

MxMx

Fig. 17.13 (a) Symmetric 
beam subject to an 
external load and 
temperature gradient. 
(b) Definition for positive 
shear and moment.

(a) (b)
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The governing equations are as follows.

equilibrium:   , and , . (17.51)

Hooke’s law: , and . (17.52)

strain-displacement: , and . (17.53)

The boundary conditions at z = 0 and z = L are to

 , and to . (17.54)

For a symmetric cross section the transverse shear stiffness , where  (F-1) is the transverse shear 

compliance. (Equations for the shear compliances are given by eq. (5.62) on page 142 for an open cross-sectional 
contour and eq. (5.85) on page 145 for a closed cross-sectional contour.) 

Combine the equations associated with the shear force to get

. (17.55)

Multiply (17.55) by the virtual displacement  and integrate over the domain. Then integrate the result by 
parts to get 

. (17.56)

Combine the equations associated with the bending moment to get

. (17.57)

Multiply (17.57) by the virtual rotation  and integrate over the domain. Then integrate the result by parts to 

find

. (17.58)

Equations (17.55) and (17.57) are coupled in the dependent variables  and , as are (17.56) and (17.58). 

To obtain the principle of virtual work for the two dependent variables we add (17.56) and (17.58) to find

. (17.59)

Rearrange the terms in eq. (17.59) to get the weak form

dVy

dz
--------- fy z( )+ 0=

dMx

dz
---------- Vy– 0= 0 z L< <

Vy syyψy= Mx EIxx κ ατy–( )=

κ
dφx

dz
--------= ψy

dv
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------ φx+=

prescribe either v or Vy prescribe either φx or Mx

syy 1 cyy⁄= cyy

d
dz
----- syy

dv
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------ φx+ 
  fy+ 0=

v z( )

νVy 0

L syy
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  zd

0

L

∫– fyv zd

0

L

∫+ 0=

d
dz
----- EIxx

dφx

dz
-------- ατy– 
  syy
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 – 0=

φx z( )

φxMx 0

L
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, (17.60)

where the virtual shear strain is

. (17.61)

The principle of virtual work is determined from (17.60) is written in the form

. (17.62)

The internal virtual work is

, (17.63)

and the external virtual work is

. (17.64)

Equations (5.81) and (5.82) on page 145 are the expressions for the strain energy. For the beam under con-
sideration the strain energy from the mechanical strains is

. (17.65)

The first term in the integral (17.65) is the contribution of the bending to the strain energy, and the second term in 
the integral is the contribution of the transverse shear.

17.3.1 Element displacement functions and strains

The kth element is denoted by , where . The standard element 

 (17.15) is mapped to the kth element by eq. (17.16), and the inverse mapping is given by 

eq. (17.17). The lateral displacement of the kth element is denoted by  and the rotation by . Define 

the generalized nodal displacements as

. (17.66)

See figure 17.14. Admissible functions  and  must be 

continuous within an element and be continuous between ele-
ments. The following basis functions will be used for the beam 
element:

EIxx
dφx

dz
-------- 
  dφx

dz
-------- 
  syyψyψy+ zd
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L
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L φxMx 0

L
fyv zd
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L
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 . (17.67)

The basis functions  and  are the external shape functions with the interpolation properties (17.18). 

The basis functions  and  are called internal shape functions. The internal shape functions vanish 

at the nodes . The selection of the internal shape functions is based on Legendre polynomials. From 
Szabo and Babuska (1991, p. 38) the expressions for the internal shape function are

, (17.68)

where  is the Legendre polynomial of degree j in .1 Graphs of these basis functions are shown in figure 

17.15. 

Consider the strain  appearing in the bending moment (17.52), and the rotation  appearing in 

the transverse shear strain  (17.53). As discussed by Reddy (2019, p. 294), in order to avoid the numerical 

problem of “shear locking” in the thin beam limit where , a consistent interpolation procedure is 

employed. That is, a consistent interpolation of the shear strain  requires that the polynomial for the dis-

placement  be one degree greater in ζ than the polynomial for the rotation . The beam element devel-

oped here is capable of representing a linear distribution of the bending moment  and a constant shear 

force . Then  is linear in ζ, which implies the rotation is quadratic in ζ. It follows that displacement 

 is cubic in ζ. The trial functions for the kth element are 

. (17.69)

Internal degrees of freedom  and  are displacements with dimensions of length, and  is a rotation in 

radians. The internal degrees of freedom are not associated with a particular point in . That is, the beam ele-

ment under consideration does not have internal nodes. Equation (17.69) is written in the matrix notation as

1. , , , , .

η1 ζ( ) 1 ζ–( ) 2⁄= η2 ζ( ) 1 ζ+( ) 2⁄= η3 ζ( ) 1
2
--- 3

2
--- 

  ζ2 1–( )= η4 ζ( ) 1
2
--- 5

2
--- 

  ζ ζ2 1–( )=

η1 ζ( ) η2 ζ( )

η3 ζ( ) η4 ζ( )

ζ 1+−=

ηj ζ( ) 1

2 2j 1–( )
-------------------------- Pj ζ( ) Pj 1– ζ( )–[ ]= j 3 4,=

Pj ζ( ) ζ

P0 1= P1 ζ= P2 3ζ2 1–( ) 2⁄= P3 5ζ3 3ζ–( ) 2⁄= P4 35ζ4 30ζ2– 3+( ) 8⁄=

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

ζ

η1 η2

η3

η4
Fig. 17.15 Graphs of the basis 
functions for the beam element.
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, (17.70)

where the 4X1 and the 3X1 vectors of generalized displacements are

. (17.71)

The shape function matrices are

. (17.72)

This beam element has seven degrees of freedom. The virtual rotation and displacement for the kth element have 
the same functional form as (17.70) but with different coefficients:

, (17.73)

where

. (17.74)

Virtual degrees of freedom  are associated with the nodal displacements (external 

shape functions), and virtual degrees of freedom  are associated with the internal shape functions. 

Elements of the virtual displacement vectors  and  are independent of the trial functions (17.69).

Using the chain rule and the inverse mapping (17.17), the strains for the kth element are

, (17.75)

Substitute (17.70) and (17.72) into the expressions for the strains (17.75) and write the strain-displacement rela-
tionship as

. (17.76)

In compact notation the strain-displacement relation (17.76) is

, (17.77)

where the strain-displacement matrices associated with the external shape functions and internal shape functions 
are
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. (17.78)

The virtual strains are polynomials of the same degree as strains (17.77), but with independent coefficients:

. (17.79)

17.3.2 Principle of virtual work for a typical element

The internal virtual work (17.63) for the kth element in matrix notation is

, (17.80)

where the material matrix is defined by

. (17.81)

Substitute the strain-displacement matrices (17.77) and (17.79) into (17.80) to get

. (17.82)

Perform the matrix multiplications in (17.82) and arrange the result to

. (17.83)

The expression for the internal virtual work (17.83) is written as

, (17.84)

where the stiffness matrices are defined by

, and (17.85)
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. (17.86)

Evaluate the stiffness matrices to find

, and (17.87)

. (17.88)

Take  and  in (17.84), and multiply the result by one-half, to find the strain 
energy in kth element as

.(17.89)

 From the mapping (17.16), the distributed line load intensity and the thermal gradient are evaluated in the 
kth element as

. (17.90)

The external virtual work (17.65) for the kth element is 

. (17.91)

The boundary terms for the kth element are expressed in the form

, (17.92)

where generalized forces acting on the cross sections at z = zk and z = zk+1 are defined by

. (17.93)
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The integral term with respect to the line load  in (17.91) expands to

. (17.94)

The integral term with respect to the temperature gradient  in (17.91) expands to

. (17.95)

Combining (17.92), (17.94), and (17.95), the external virtual work (17.91) is written in the matrix form

, (17.96)

where the generalized nodal force vector is denoted by , the generalized force vector associated with the 

external shape functions by , and the generalized force vector associated with the internal shape func-

tions by . These vectors are

, , . (17.97)

 Equate the internal virtual work (17.84) to the external virtual work (17.96) to get

. (17.98)

The principle of virtual work leads to the governing matrix relations for the kth element:

, (17.99)

. (17.100)
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17.3.3 Static condensation

The internal degrees of freedom , , and  associated with the internal shape functions do not affect 

interelement continuity. To reduce the number of system equations to solve resulting from the assembly of ele-
ments, the internal degrees of freedom can be eliminated at the element level in the process called static conden-
sation. Further, the assembly algorithm is simplified if only the nodal displacements, or external degrees of 
freedom are employed. The internal degrees of freedom are eliminated in terms of the nodal displacements 

 and the generalized force vector  by solving (17.100). Thus, from (17.100)

, (17.101)

where

. (17.102)

We define  as the Guyan matrix, because the method of static condensation was first proposed by Guyan 

(1965), and it was also introduced by Irons (1965). In eq. (17.102) we have introduced the dimensionless factor 

. (17.103)

Substitute the displacement vector  from (17.101) into eq. (17.99) and write the final result as

, (17.104)

where

. (17.105)

The 4X4 matrix  is the condensed stiffness matrix for the kth element, and the 4X1 vector  is the 

condensed generalized force vector for the kth element. The generalized forces acting on the beam element sepa-
rated from the nodes, and the generalized forces acting on the nodes, are depicted in figure 17.16. 
The 4X4 condensed stiffness matrix is
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. (17.106)

17.3.4 Bending moment and shear force

Substitute vector  from (17.101) into the strain vector (17.77) to get

. (17.107)

The bending moment and shear force are determined from the matrix relation

. (17.108)

Substitute the strain (17.107) into (17.108) to find the matrix relation for the moment and shear:

. (17.109)

The previous equation is written as

, (17.110)

where the stress matrices are defined as
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Fig. 17.16 Generalized forces acting on the beam and the nodes for element Ωk.
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, and (17.111)

. (17.112)

17.3.5 Requirements of the interpolation functions. 

The remeshing procedure for an increasing number of elements presented in article 17.2.2 has the old mesh 
embedded in the new mesh. Monotonic convergence of this sequence of finite element meshes also requires the 
interpolation functions to be compatible and complete (Bathe, 1982). Compatibility means the displacements 
must be continuous within the elements and between elements. Completeness means the displacement functions 
of the element must be able to represent the rigid body displacements and uniform strain states. Consequently, 
the beam element under consideration must be capable of representing zero strain states for rigid body displace-
ments when the element is not subject to external loads. Note that the determinate of the stiffness matrix (17.106) 
is zero, since the element is not restrained against rigid body displacements. Now consider the response of the 
beam element under the two rigid body modes:

 and . (17.113)

Generalized displacement vector  is a vertical displacement of the element, and the generalized displace-

ment vector  is a clockwise rotation of the element about its center. In the absence of external loading the 

generalized force vectors , , , and . The internal 

degrees of freedom (17.101) for the rigid body modes and no external loading also vanish; i.e.,

 and . (17.114)

Also, evaluation of eq. (17.104) for the rigid body displacements results in  and 

, which are consistent with vanishing external loads. Finally, the strains (17.77) in the ele-

ment vanish for the rigid body displacements:

 and . (17.115)

Therefore, the beam element satisfies part of the completeness requirement of vanishing strains under rigid body 
displacements. Constant strain states are demonstrated in the next two examples.
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Example 17.3 Pure bending

A simply supported, uniform beam is shown in figure 17.17(a). It is subject to equal and opposite moments  

at each end, and a temperature gradient through the thickness  that is uniform along the length of the beam. 

The lateral distributed load intensity , . The beam is modeled with one finite element, and the 

two nodes are  and  as shown in figure 17.17(b). The mapping (17.16) is . 

The generalized displacement vector  is partitioned to unknown components  and 

known components :

, , and . (a)

The generalized displacement vector (17.69) is

. (b)

Displacement boundary conditions  and  are satisfied by (b). Matrix (17.106) represents 

the unrestrained structural stiffness matrix . The rows and columns of  are interchanged to the order 2, 

4, 1, and 3 to facilitate partitioning it into submatrices:
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Fig. 17.17  (a) Pure bending of a simply supported beam. (b) Finite element model.
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. (c)

The restrained structural stiffness matrix is

, (d)

where µ is defined in eq. (17.103). From (17.97) actions , since  and  is 

spatially uniform in ζ. Hence, from (17.105) the generalized nodal force vector is , which is 

evaluated from (17.97). The generalized nodal force vector  is partitioned into 

known components  and unknown components :

, and . (e)

The generalized force vector  (17.97) is prescribed and is partitioned as
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The matrix equation to determine the unknown displacements is , or
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The solution for  from eq. (g) is

. (h)

The rotations are equal magnitude and of the opposite sense. The reactive force vector is determined from 
, which is

. (i)

Hence, the reactive force vector  vanishes. The vector  associated with internal shape function is 

determined from (17.101) and (17.102). These computations are
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The matrix multiplication of  times the 4X1 vector in eq. (m) is

. (n)

The final result for the bending moment and shear force is

. (o)

The bending moment is constant in the element and it is equal to the prescribed external moment . The shear 

force vanishes within the element. If  and , then bending moment . However, the rotation 

and displacement are not zero; i.e.,

. (p)

This one-element solution is the same as the exact solution. J

Example 17.4 Transverse bending

A cantilever, uniform beam of length L is subject to a vertical force  at 

its free end as shown in figure 17.18. The distributed load intensity , 

and the through-the-thickness temperature gradient , . 

One element models the entire beam as shown in figure 17.17(b). Since 

 and , prescribed actions (17.97)  and 

. It follows from (17.105) that . The 4X1 

generalized nodal displacement vector  and the 4X1 generalized force vector  are partitioned into 
known and unknown components as follows:

, , , and . (a)

Matrix (17.106) represents the unrestrained structural stiffness matrix . The rows and columns of  are 

interchanged to the order 3, 4, 1, and 2 to facilitate partitioning it into submatrices:

Sq

6syyµζ–
EIxx–

L
------------- 3Lsyyµζ+ 
  6syyµζ

EIxx

L
---------- 3Lsyyµζ+ 
 

12– µsyy

L
-------------------- 6syyµ

12µsyy

L
----------------- 6syyµ

0
1–

0
1

EIxx

L
----------– 3µζLsyy+ 

 –
EIxx

L
---------- 3µζLsyy+ 
 +

0

=

Mx

Vy

2EIxx

L
-------------

0

L Ma EIxxατy+( )

2EIxx

----------------------------------------- EIxxατy

0
– Ma

0
= =

Ma

Ma 0= τy 0≠ Mx 0=

φx

v

Lατy( )ζ 2⁄

L
8
---

2
ατy 1 ζ2–( )

Ma 0=

=

y v,

z
L

Fa

Fig. 17.18 Transverse bending 
of a cantilever beam.

Fa

fy 0=

τy z( ) 0= 0 z L< <

fy 0= τy z( ) 0= FE 1( ){ } 04X1=

FI 1( ){ } 03X1= F 1( ){ } 04X1=

q 1( ){ } Q 1( ){ }

qα{ } q3 q4
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T
Fa 0

T
= = qβ{ } q1 q2

T
02X1= = Qβ{ } Q1 Q2

T
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. (b)

The matrix equation to determine the unknown displacements is , or

. (c)

The solution of eq. (c) for the displacements is

. (d)

The matrix formulation to determine the generalized reactive force vector is , 

or

. (e)

The generalized displacement vector  associated with internal shape function is determined from (17.101) 
and (17.102). The result is

. (f)

Ku
µ

12syy

L
------------ 6syy

12syy–

L
---------------- 6syy

6syy
12EIxx

L
---------------- 4Lsyy+ 6syy–

12EIxx–

L
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12syy–

L
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L
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12EIxx–

L
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12EIxx

L
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Kβα[ ] Kββ[ ]
= =

q3 q4 q1 q2
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12EIxx L2syy+
-----------------------------------
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L
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6syy
12EIxx

L
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q3

q4

Fa

0
=

q3

q4
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FaL

syy

---------+

FaL2–

2EIxx

---------------

=

Kβα[ ] qα{ } Kββ[ ] qβ{ }+ Qβ{ }=

Q1
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µ
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L
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12EIxx–
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syy

------+
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12EIxx L2syy+( )–
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Fa–

LFa
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+
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2 6EIxx
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The generalized displacement vector (17.70) is

. (g)

The vector of the bending moment and shear force (17.110) is

. (h)

The shear force is constant in the beam and is equal to the prescribed external force Fa. For  the bending 

moment decreases linearly from zero at the free end to a minimum ( ) at the clamped end. The finite ele-

ment solution for transverse bending is the same as the exact solution of the governing boundary value problem. 
J

Example 17.5 Cantilever wing spar

The wing spar of a light airplane described in example 6.6 on page 165 is modeled as a cantilever beam as shown 
in figure 17.19(a). In a symmetric maneuver of the airplane the total lift L = 12,000 lb., and the lift acting on each 

wing is L/2. Assume the airload acts along the locus of shear centers so that spar bends without twist in torsion. 
The airload is distributed elliptically over the wing, so that the airload intensity  per unit span is given as

, (a)

where z is the spanwise coordinate, z = 0 at the root, and  at the tip of the wing spar. The 

transverse temperature gradient , . Data taken from example 6.6 are: the modulus of elas-

φx
1( )

v 1( )

0 η1 0 η2

η1 0 η2 0

0
0
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q4

0 η3 0

η3 0 η4

a1
1( )
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1( )
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+

FaL3

8EIxx

------------- 3– 2ζ– ζ2+( )

FaL 1 ζ+( ) 24EIxx L2syy 5 4ζ ζ2–+( )+[ ]

48EIxxsyy

----------------------------------------------------------------------------------------------------

= =

Mx

Vy

Sq[ ]

0
0
q3

q4

6µsyyζ( )
FaL3

3EIxx

-------------
FaL

syy

---------+ 
  EIxx

L
---------- 3µLksyyζ+ 
  FaL2–

2EIxx

--------------- 
 +

12µsyy( )
FaL3

3EIxx

-------------
FaL

syy

---------+ 
  6µsyy( )
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2EIxx

--------------- 
 +

FaL 1– ζ+( )

2
-------------------------------

Fa

= = =

Fa 0>
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z

y v,

fy z( )

120 in.

q1 Q1 F1+( ),

q2 Q2 F2+( ),

q3 Q3 F3+( ),

q4 Q4 F4+( ),
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q6 Q6 F6+( ),

z1 0= z2 60 in.= z3 120 in.=

Fig. 17.19 (a) Cantilever wing spar. (b) Finite element model.

(a) (b)

Ω1 Ω2

fy z( )

fy z( ) 2L
πzmax

------------- 1 z
zmax

---------- 
  2

–= 0 z zmax≤ ≤

z zmax 120 in.= =

τy z( ) 0= 0 z zmax< <



Aerospace Structures 523

A beam element including transverse shear deformation

ticity , the second area moment of the cross section about the x-axis , 

and the transverse shear coefficient 

The finite element model shown in figure 17.19(b) has three nodes , and two equal 

length elements . The stiffness matrices (17.106) for each element are

 and (b)

. (c)

The assembly process effects the matrix addition  to get the unrestrained structural stiff-

ness matrix as

. (d)

The generalized nodal displacement vector  is partitioned into unknown components     

 and known components :

. (e)

We partition the unrestrained structural stiffness in eq. (d) in the form

, where (f)

E 10.5 6×10  lb./in.2= Ixx 101.619 in.4=

syy 2.4278 6×10  lb.=

z3{ } 0 60 120, ,{ } in.=

h1 h2 60 in.= =

K 1( )

24 048, 721 441,– 24 048,– 721 441,–

721 441,– 3.94266 7×10 721 441, 3.85991 6×10

24 048,– 721 441, 24 048, 721 441,

721 441,– 3.85991 6×10 721 441, 3.94266 7×10

=

q1 q2 q3 q4

K 2( )

24 048, 721 441,– 24 048,– 721 441,–

721 441,– 3.94266 7×10 721 441, 3.85991 6×10

24 048,– 721 441, 24 048, 721 441,

721 441,– 3.85991 6×10 721 441, 3.94266 7×10

=

q3 q4 q4 q5

Ku K 1( ) K 2( )+=

Ku

24 048, 721 441,– 24 048,– 721441.– 0 0

721 441,– 3.94266
7

×10 721441. 3.85991
6

×10 0 0
24 048,– 721 441, 48 096.1, 0 24 048,– 721441.–

721 441,– 3.85991
6

×10 0 7.88531
7

×10 721 441, 3.85991
6

×10

0 0 24 048,– 721 441, 24 048, 721 441,

0 0 721 441,– 3.85991
6

×10 721 441, 3.94266
7

×10

=

q2 q3 q4 q5 q6q1

q1 q2 q3 q4 q5 q6

T

qα{ } qβ{ }

qα{ } q3 q4 q5 q6
T

= qβ{ } q1 q2
T

02X1= =

Ku[ ]
Kββ[ ] Kβα[ ]

Kαβ[ ] Kαα[ ]
=
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, , (g)

and

. (h)

The generalized forces acting at the nodes of elements 1 and 2 are shown in figure 17.20.   The external general-

ized forces acting on elements Ω1 and Ω2 from the distributed airload (a) are computed by numerical integration 
because of the complexity of the integrands (17.97). (Refer to article 17.3.6 for details on numerical integration.) 
The external generalized forces acting on each element are determined from eq. (17.105). The transpose of the 

Guyan matrix used to compute the generalized force vectors  and  in eq. (17.105) is the same for 
each element in this example. It is given by

. (i)

The results for the generalized forces are

, (j)

Kαα

48 096.1, 0 24 048,– 721 441,–

0 7.88531 7×10 721 441, 3.85991 6×10
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=

q3 q4 q5 q6
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0 0
0 0
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= =
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=

q1 q2

Q1
1( ) F1

1( )+

Q2
1( ) F2

1( )+
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Fig. 17.20  Generalized forces acting on (a) element Ω1, and (b) element Ω2.

F 1( ){ } F 2( ){ }

Gaq
1( )[ ]T Gaq

2( )[ ]T

0 0.016526– 0.128289
12.2474 0.496859 3.84866–

0 0.016562 0.128289–
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= =

FE 1( ){ }

1 869 lb.,
0
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0

≡ FI 1( ){ }
1 499.03 lb.,–

0
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, and . (k)

Assembly of the two elements is shown in figure 17.19(b). The external generalized force vectors for the assem-
bly are

. (l)

The 6X1 generalized nodal force vector  is partitioned into known components  

and unknown components  as follows:

, and . (m)

There are no generalized point forces acting at nodes 2 and 3. Generalized point forces acting at node 1 are reac-
tive. The generalized forces from the airload are also partitioned as

 , and (n)

 . (o)

The matrix equation to determine the unknown generalized displacements is 

.The solution for the unknown displacement vector is

. (p)

The matrix equation to determine the unknown forces is , or

. (q)

Perform the matrix algebra in eq. (q) to find that the generalized reactive forces are

. (r)

FE 2( ){ }

1 384.05 lb.,
0

961.96 lb.
0

≡ FI 2( ){ }
991.799 lb.–

0
125.595 lb.
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F3
2( )
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= =
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1( )

F2
1( )
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1( ) F3

2( )+

F4
1( ) F4

2( )+

F5
2( )

F6
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945.848 lb.
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= =
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2( )+
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2( )
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=

Q1 Q2 Q3 Q4 Q5 Q6

T
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Qβ{ }

Qα{ } Q3 Q4 Q5 Q6

T
04X1= = Qβ{ } Q1 Q2

T
=

Fα{ } F3 F4 F5 F6

T
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T= =
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T
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T= =

Kαα
qα{ } Kαβ

qβ{ }+ Qα{ } Fα{ }+=

qα{ } 0.447103 0.0091821– 1.06555 0.0101218–
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The external generalized forces acting on the two-element model of wing spar are shown in the free body dia-
gram in figure 17.21. JJJJ  

17.3.6 Gaussian integration

Consider the integral to compute the external force component  in eq. (17.97) for element two in exam-

ple 17.5. The expression for this force component is

, (17.116)

where

. (17.117)

Numerical evaluation of eq. (17.116) leads to

. (17.118)

We carry out Gaussian integration of eq. (17.118) after a discussion of the method.

The method of Gaussian quadrature is to approximate the integral  by

, (17.119)

where  are the abscissas of the Legendre polynomial , and  are the weight factors. The abscissas, or 

roots, of the Legendre polynomial are symmetrically located in the interval . The weight factors are 
determined such that a polynomial of degree p is exactly equal to the sum in (17.119). Consider a polynomial of 

second degree . The exact integral is

. (17.120)

The exact integral is determined by two coefficients, c0 and c2. The Legendre polynomial for n = 2 is 

. The roots of  are

 and . (17.121)

1 872.39 lb.,

18 460.9 lb.-in.,

3 181.77 lb.,

5 627.30 lb.-in.,

945.848 lb

11 663.6 lb.-in.,

z1 0= z2 60 in.= z3 120 in.=
6 000 lb.,

305 577 lb.-in.,
Fig. 17.21 Generalized forces 
acting on the model with two 
elements.
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  2

– ζd

1–

1

∫=

z 2( ) η1 ζ( ) 60.( ) η2 ζ( ) 120( )+ 90 30ζ+= =

FE5
2( ) 954.930 1 ζ+( ) 0.4357 0.375ζ– 0.0625ζ2–[ ] ζd

1–

1

∫=

I f ζ( ) ζd

1–

1

∫=

I Iappr≈ wi f ζi( )

i 1=

n

∑=

ζi Pi ζ( ) wi

1– ζ 1≤ ≤

f ζ( ) c0 c1ζ c2ζ2+ +=

I c0 c1ζ c2ζ2+ +( ) ζd

1–

1

∫ 2c0
2
3
---c2+= =
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1– 3⁄ 1 3( )⁄



Aerospace Structures 527

A beam element including transverse shear deformation

Equation (17.119) for n = 2 is

. (17.122)

Evaluating eq. (17.122) we get

. (17.123)

Equate like coefficients in (17.120) and (17.123) to get three linear equations for the weight factors w1, and w2:

. (17.124)

The solution of eq. (17.124) is . Note that the weight factors of the positive root and the corre-

sponding negative root are the same because the term with the odd power of ζ does not contribute to I (17.120). 

Thus, a polynomial of degree 2 can be integrated exactly by evaluating it at  and multiplying by the 
appropriate equal weight factors. 

Consider the cubic polynomial  whose exact integral is . 

The Legendre polynomial for n = 3 is . The roots of  are , and . 

Equation (17.119) for n = 3 is

. (17.125)

Equating like coefficients between the last equation and the exact integral we find the weight factors  

and . In general, a polynomial of degree p is integrated exactly if .

Now consider the integrand in the definite integral (17.118). The integrand is

. (17.126)

Function  is continuous in the interval  as shown in figure 17.22. Its Taylor’s formula is an infinite 

series , where the  are real numbers. Consequently if  is replaced by its Taylor series, 

then the integrand is a polynomial of infinite degree. The integral of a polynomial of infinite degree implies an 
infinite number of abscissas and weights for Gaussian quadrature, which, of course, is not practical. Only a finite 
number of abscissas and weights in Gaussian quadrature are considered in the sequence of numerical integrations 
to follow.

Gaussian quadrature of the integrand (17.119) for n = 2 is

(17.127)

Gaussian quadrature of the integrand (17.119) for n = 3 is

(17.128)

I Iappr. w1f 1–

3
------- 
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3
------- 
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-----------------------c1
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--- w1 w2+( )+ += =

2 w1 w2+= 0 w2 w1–( ) 3( )⁄= 2
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--- w1 w2+( )=

w1 w= 2 1=

1+− 3⁄

f ζ( ) c0 c1ζ c2ζ2 c3ζ3+ + += I 2c0 2 3⁄( )c2+=

P3 ζ( ) 3ζ– 5ζ3+( ) 2⁄= P3 ζ( ) 0= 0 3 5⁄+−

I Iappr. w1f 0( ) w2f 3 5⁄–( ) w2f 3 5⁄( )+ + c0 w1 w2+( ) c2 6w2 5⁄( )+= = =
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w2 5 9⁄= n p 1+( ) 2⁄≥
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∞
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For n = 2, 3, 4, 5, 6, 7, 8, 9, and 10 the abscissa and weight factors are listed in table 17.4. Approximate values of 
the integrals of (17.126) are listed in table 17.5 based on the data in table 17.4. The results in table 17.5 show the 
integrals are slowly decreasing as the number of terms in the Gaussian integration increase. Apparently, the 
approximate values of the integrals are asymptotically approaching the value of 961.96 lb., which is the value of 
the integral of (17.126) computed from the function NIntegrate[f(ζ), {ζ, -1, 1}] in Mathematica.

Fig. 17.22 Graph of function (17.126) 
with the filled circles corresponding to 
the function evaluated at the abscissas 
in Gaussian quadrature for n = 10.
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Table 17.4 Abscissas and weight factors for Gaussian integration

0.18343 46424 95650 0.36268 37833 78362

0.52553 24099 16329 0.31370 66458 77877

0 0.79666 64774 13627 0.22238 10344 53374

0.96028  98564 97536 0.10122 85362 90376

0.33998 10435   84856 0.65214  51548  62546 0 0.33023 93550 01260

0.86113 63115 94053 0.34785 48451 37454 0.32425 34234 03809 0.31234 7 0770 40003

0.61337 14327 0 0590 0.26061 06964 02935

0 0.56888 88888 88889 0.83603 11073  26636 0.18064 81606 94857

0.53846 93101 05683 0.47862 86704 99366 0.96816 02395 07626 0.08127 43883 61574

0.90617 98459 38664 0.23692 68850 56189

0.14887 43389 81631 0.29552 42247 14753

0.23861 91860 83197 0.46791 39345 72691 0.43339 53941 29247 0.26926  67193 09996

0.66120 93864 66265 0.36076 15730 4 8139 0.67940 95682 99024 0.21908 63625 15982

0.93246 95142 03152 0.17132 44923 79170 0.86506 33666 88985 0.14945 13491 50581

0.97390 65285 17172 0.06667 13443 08688

0 0.417959183673470

0.405845151377397 0.381830050505119

0.741531185599395 0.279705391489277

0.949107912342759 0.129484966168870

ζi± wi ζi± wi

n 2= n 8=

1 3( )⁄ 1.0

n 3=

8 9⁄

3 5⁄ 5 9⁄
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17.4 Euler-Bernoulli beam element

The Euler-Bernoulli beam theory was discussed following table 4.4 on page 102, and in this theory we set the 
transverse shear strain . Hence, from eq. (17.53) the rotation of the cross section is related to the rotation 

of the centroidal axis by . The material law for the shear force (i.e Vy in eq. (17.52) is not valid). 

The shear force is reactive and it is determined by the first equilibrium equation (17.51). Combine the equilib-
rium equations (17.51) by eliminating the shear force to get

. (17.129)

The material law for the bending moment in eq. (17.52) becomes

. (17.130)

Substitute the material law for the bending moment (17.130) into the equilibrium equation (17.129) to find the 
fourth order differential equation for the lateral displacement v(z):

. (17.131)

The boundary conditions at z = 0 and z = L in eq. (17.54) become

 , and . (17.132)

Multiply (17.131) by the virtual displacement  and integrate over the domain. Then integrate the result 
by parts twice with respect to z to get

Table 17.5 Approximate integrals of (17.126).

n

2 995.043

3 972.382

4 966.61

5 964.443

6 963.443

7 962.917

8 962.613

9 962.426

10 962.304

Iappr. lb.

ψy 0=

φx dv dz⁄( )–=

d2Mx

dz2
------------ fy z( )+ 0= 0 z L< <

Mx EIxx
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dz2
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 –=

d2

dz2
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d2v
dz2
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  fy z( )+ 0= 0 z L< <

prescribe either v or Vy prescribe either dv
dz
------– 

   or Mx

v z( )
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. (17.133)

Note that the shear force is determined from equilibrium and the material law for the bending moment; i.e.,

. (17.134)

Equation (17.133) is rearranged as follows:

. (17.135)

The principle of virtual work is determined from (17.135) and is written in the form

. (17.136)

The internal virtual work is

, (17.137)

and the external virtual work is

. (17.138)

17.4.1 Element displacement functions and strains

The kth element is denoted by , where . The standard element 

 (17.15) is mapped to the kth element by (17.16), and the inverse mapping is given by 

(17.17). The lateral displacement of the kth element is denoted by  and the clockwise rotation by 

. Define the generalized nodal displacements as

. (17.139)

See figure 17.23. Admissible functions  and its derivative 
must be continuous within an element and be continuous between 
elements. Interpolation functions that satisfy these continuity 
requirements are Hermite cubic interpolation functions, which are 
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denoted by ,. . These interpolation functions are

. (17.140)

Let the derivative  be denoted by . The interpolation properties of the Hermite cubic functions are

. (17.141)

Graphs of Hermite cubic functions are shown in figure 17.24. The displacement for element Ωk is 

, where  is the 1X4 matrix of interpolation functions, and  is the 4X1 vec-

tor of the generalized displacements at the nodes. The interpolation matrix and nodal displacement vector are

, and . (17.142)

The virtual displacement is , where . The second derivative of the 

displacement, or curvature  of the centroidal axis in bending, is expressed as

, where (17.143)

. (17.144)

φi ζ( ) i 1 2 3 4, , ,=
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cubic interpolation 
functions.
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The the virtual curvature is . The bilinear form evaluates as

. (17.145)

The element stiffness matrix is

. (17.146)

Referring to Fig. 17.16 on page 515, we express the boundary terms in the external virtual work (17.138) as

. (17.147)

The prescribed distributed load terms in the external virtual work are

, (17.148)

where the distributed loading in the element is

. (17.149)

The final result for the external virtual work for element Ωk is

, where (17.150)

 and . (17.151)

Explicit expressions for the components of the generalized force vector from the distributed load are

, (17.152)

, (17.153)

, and (17.154)
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CHAPTER 18

 

 Introduction to flexible 
body dynamics

 

The transient response of a rocket at liftoff is presented to motivate the subject of structural dynamics. The accel-
erations at launch result in significant load factors imposed on the spacecraft, or payload. User guides for a 
launch vehicle specify load factors for preliminary design of the primary structure of the spacecraft. Often there 
are limits placed on the lowest natural frequency of the payload to ensure its dynamic characteristics do not 
adversely affect the control system of the booster (Sarafin, 1995). Thus, the capability to predict the load factor 
for the primary structure of the payload/spacecraft at launch, and the frequencies of the payload package, are 
necessary in the payload design. The example we begin with is the Atlas I.

 

18.1 Description of Atlas I

 

A spacecraft consists of mission-specific equipment called the payload and a collection of subsystem compo-
nents called a bus. Typical subsystem components may include attitude control, propulsion, communications, 
electrical power, etc. (Sarafin, 1995, p. 451). The spacecraft bus may be able to support different payloads for dif-
ferent missions. As shown in figure 18.1, the main components of the Atlas I space launch vehicle from bottom to 
top are an expendable booster, an expendable second stage called Centaur, and the payload/spacecraft (Isakowitz, 
1995). The spacecraft is covered by a fairing. An adapter, also known as a launch vehicle adapter, structurally 
links the spacecraft and Atlas I. The spacecraft developer usually designs the adapter. 

Selected weights and thrust data for the Atlas I in table 18.1 are from Isakowitz (1995).   

 

Table 18.1 

 

Selected data for Atlas I

 

Gross weight 362,200 lb.

Booster weight 321,100 lb.

Centaur (upper stage) 34,300 lb.

Payload fairing 3,027 lb

Payload 3,773 lb

Engine thrust at liftoff 439,300 lb.
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Rigid body load factor

 

Propellant weights in the booster and second stage, and the approximate structural weight are listed in table 18.2. 

In terms of percentages

92.6 percent of the total weight is propellant,
6.33 percent of the total weight is structure, and
1.04 percent of the total weight is payload.

Clearly, most of the weight is propellant.

 

Objective.  

 

Determine the maximum vertical load factor of the payload at liftoff. We assume the loss of mass due 
to propellant burn-off is small and can be neglected in the initial instants after liftoff.

 

18.2 Rigid body load factor

 

First, we assume Atlas I is a rigid body and determine the load factor from dynamic equilibrium. This analysis is 
shown in figure 18.2, where it is determined that the load factor is 1.213. However, this rigid body analysis omits 
information on frequencies. To determine frequencies of the structure we must consider flexible body dynamics, 
which is discussed beginning in the next section. 

 

Table 18.2 

 

Weights of propellants and structure for Atlas I

 

Booster propellant 305,500 lb.

Centaur propellant 30,000 lb.

Approximate structural weight

 

a

 

 

 

a. Gross weight of 362,200 lb. less the sum of propellant weights of 335,500 lb.and the payload weight of 3,773 l.

 

22,927 lb.

T thrust,

W total weight,

W
g
-----a inertia force,

T W– W
g
-----a– 0=

T W 1 a
g
---+ 

 – 0=

    

n

n T
W
----- 439 300, lb.

362 200 lb.,
-----------------------------= =

n 1.213=

Fig. 18.2 Rigid body analysis 
of Atlas I to determine the 
load factor at liftoff.
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18.3 Steps in flexible body dynamics 

 

1.

 

Equations of motion relative to the equilibrium state.

 

2.

 

Free vibration problem; normal modes.

 

3.

 

Coordinate transformation from physical coordinates to modal coordinates.

 

4.

 

Transform initial conditions from physical coordinates to modal coordinates. Solve for the time history of the 
modal coordinates.

 

5.

 

Transform back to physical coordinates.

 

6.

 

Calculate the payload acceleration time history.

 

Step 1: Equations of motion about equilibrium.  

 

Consider a three-degree-of-freedom model of Atlas I shown 
in figure 18.3(a). The model consists of three particles with lumped masses 

 

m

 

1

 

, 

 

m

 

2

 

, and 

 

m

 

3

 

 and two springs with 
stiffnesses 

 

k

 

12

 

, and 

 

k

 

23

 

. Mass 

 

m

 

1

 

 is one-half the mass of the booster and Centaur, mass 

 

m

 

2

 

 is one-half of the mass 
of the booster and Centaur plus the mass of the fairing, and mass 

 

m

 

3

 

 is the mass of the payload. The stiffness of 
the booster and Centaur is represented by 

 

k

 

12

 

, and the stiffness of the launch vehicle adapter is represented by 

 

k

 

23

 

. 

The axial coordinates of the particles in the equilibrium state at 

 

t

 

 = 0 are , , and the displace-

ments of the masses from their equilibrium state are denoted by , and . The weight of each par-

ticle is denoted by , . From the free body diagram shown in figure 18.3(b) the equations of motion 

are

,

 

(18.1)

 

, and

 

(18.2)

 

.

 

(18.3)

 

The two dots over the displacements is shorthand notation for the second derivative in time:

m1

m2

m3
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z2 0( )

z3 0( )

k12

k23

m1

m2

m3

z1 0( )

z2 0( )

z3 0( )

w1 t( )

w2 t( )

w3 t( ) W3 F23

F23

W2 F12

F12

W1 F1 t( )

k12

k23

F23

F23

F12

F12

g

t 0>t 0=

Fig. 18.3 Three-degree-of-freedom model of Atlas I. (a) At rest. (b) Free body diagrams.

(a) (b)

zi 0( ) i 1 2 3, ,=

wi t( ) wi 0( ) 0=

Wi i 1 2 3, ,=

F1 t( ) W1– F12+ m1ẇ̇1=

W2– F12– F23+ m2ẇ̇2=

W3– F23– m3ẇ̇3=
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. (18.4)

The spring forces are related to the relative coordinates between the particles. That is,

. (18.5)

Substitute the spring force relations (18.5) into the equations of motion (18.1) to (18.3) to get

, (18.6)

, and (18.7)

. (18.8)

In the equilibrium state the eqs. (18.6) to (18.8) are

. (18.9)

The solution of the equilibrium equation (18.9) is

. (18.10)

Force  is the reaction force from the launch pad acting on the rocket in the equilibrium state prior to liftoff.

The equations of motion with respect to the equilibrium state are obtained by substituting eq. (18.10) into 
the equations of motion (18.6) to (18.8). Writing these equations in matrix form we get 

, (18.11)

where the net thrust after liftoff is . Numerical evaluation for the masses of the particles 

are

, , and

.

To estimate the structural stiffness of the booster and Centaur, assume the vehicle structure is a thin-walled cylin-
drical shell with a mean radius of 5 ft., and with an effective wall thickness . We estimate the effective wall 
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thickness in the following way: The approximate structural weight of the booster is 15,600 lb., and its length is 
72.7 ft. The approximate weight of Centaur is 4,300 lb., and its length is 30 ft. We equate this structural weight to 
the volume of material in the shell wall of the booster and Centaur times the specific weight of stainless steel; i.e.,

.

Solve this equation for the booster shell wall thickness to get . Hence the equivalent cross-sec-

tional area of the booster and Centaur is  The structural stiffness is given by

The estimate of the stiffness of the launch vehicle adapter is

.

We neglect the loss of mass due to fuel burn during the initial period of liftoff, and assume the net thrust is a step 
function of time. That is,

,

where the unit step function  for , and  for . Numerical evaluation of eq. (18.11) is

. (18.12)

The initial conditions for the rocket at rest are:

. (18.13)

In compact notation the matrix equations of motion (18.12) are

. (18.14)

The linear ordinary differential equation (18.14) with constant coefficients can be solved numerically by step-by-
step integration with respect to time, or they can be solved by the mode-separation method. The mode-separation 
method is limited to linear differential equations, but the step-by-step method can be used for linear and nonlin-
ear ordinary differential equations. Step-by-step methods are discussed by Craig (1981, pp. 455-464) and 
Schiesser (1994), which contain many references to the literature. The mode-separation method is detailed in the 
following steps.

Step 2: Free vibration problem.  For the free vibration problem set , and seek a solution of the 

form

. (18.15)

Substitute eq. (18.15) into the free vibration equation of motion to get

. (18.16)

Satisfying eq. (18.16) leads to
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0 5 612.64, 0
0 0 117.174
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,where . (18.17)

One solution to eq. (18.17) is for the amplitude vector , which leads to  for all time. For 

non-zero solutions of the amplitude vector we require

. (18.18)

Evaluating the determinate (18.18) leads to the characteristic equation for , which in this case is a cubic poly-
nomial:

. (18.19)

Numerical solution for the roots of (18.19), which are called eigenvalues, are

. (18.20)

For each eigenvalue (18.20) there are three linear equations to determine the amplitude vector  obtained 
from eq. (18.17). Since the determinate of eq. (18.17) vanishes for each eigenvalue, the three linear equations to 
determine the amplitude vector  corresponding to each  are not independent. Solutions for  are called 
eigenvectors. From eigensystem software we find the following eigen pairs:

, , & . (18.21)

The eigen pairs  and  correspond to elastic modes, and  corresponds to a rigid 

body mode. An eigenvector  can be multiplied by a non-zero constant and still be a solution to eq. (18.17) 

with . 

Step 3: Coordinate transformation.  Now consider the solution to the forced vibration problem (18.14). Define 

the modal matrix  whose columns are the eigenvectors:

. (18.22)

Transform from physical coordinates  to modal coordinates  using the modal matrix:

. (18.23)

Step 4: Solutions for the time history of modal coordinates.  Substitute transformation (18.23) into the force 
vibration problem (18.14) to get

. (18.24)

K λ M–( ) φ{ } 0= λ ω2=

φ{ } 03X1= w t( ) 0=

Det K λ M–( ) 0=

λ

λ k12k23 m1 m2 m3+ +( )– k12m3 m1 m2+( ) k23m1 m2 m3+( )+( )λ m1m2m3λ2–+[ ] 0=

λ1 67159.2= λ2 5474.23= λ3 0=

φ{ }

φ{ } λ φ{ }

λ1 φ1{ },( ) 67 159.2
0.945544

3–
×10

0.0218065–

1

, ,

 
 
 
 
 

= λ2 φ2{ },( ) 5 474.23
0.953559–

0.916711
1

, ,

 
 
 
 
 

= λ3 φ3{ },( ) 0
1
1
1

,

 
 
 
 
 

=

λ1 φ1{ },( ) λ2 φ2{ },( ) λ3 φ3{ },( )

φi{ }

λ λi=

Φ

Φ φ1{ } φ2{ } φ3{ }
0.945544 3–×10 0.953559– 1

0.0218065– 0.916711 1
1 1 1

= =

w t( ){ } q t( ){ }

w1 t( )

w2 t( )

w3 t( )

Φ

q1 t( )

q2 t( )

q3 t( )

=

M Φ q̇̇ t( ){ } K Φ q t( ){ }+ T{ }=



Article 18.3

542 Aerospace Structures

Pre-multiply the previous matrix equation by the transpose of the modal matrix and write the result as

. (18.25)

The generalized mass matrix is defined by , the generalized stiffness matrix by 

, and the generalized force vector by . The generalized mass and stiff-

ness matrices are diagonal matrices; that is, the off-diagonal elements in these matrices are zero and the diagonal 
elements are non-zero. Numerical results for these generalized matrices are

. (18.26)

The equations of motion for the modal displacements are decoupled. Equations (18.13) and (18.23) determine 
the initial conditions for the modal displacements as

 and 

A convenient way to find the inverse of the modal matrix is to start with definition , pre-multi-

ply it by  to find . But . Hence,

. (18.27)

The inverse of the generalized mass matrix is equal to the reciprocal of the diagonal elements of . For this 

example the initial conditions for the modal coordinates are

. (18.28)

The differential equation for the first modal displacement is

. (18.29)

The solution to differential equation (18.29) is

, (18.30)

where . The constants c1 and c2 are determined from initial conditions (18.28). The 

final result for the first modal displacement is

. (18.31)

The differential equation for the second modal displacement is

Mg
q̇̇ t( ){ } Kg

q t( ){ }+ Tg{ }=

Mg Φ
T

M Φ=

Kg Φ
T

K Φ= Tg{ } Φ
T T{ }=

Mg

119.848 0 0
0 9 851.76, 0
0 0 11 248.4,

= Kg

8.04888
6

×10 0 0

0 5.39308
7

×10 0
0 0 0

= Tg{ }
72.9014
73 549.4,–

77 100,

=

q1 0( )

q2 t( )

q3 t( )

Φ
1–

w1 0( )

w2 0( )

w3 0( )

=
q̇1 0( )

q̇2 t( )

q̇3 t( )

Φ
1–

ẇ1 0( )

ẇ2 0( )

ẇ3 0( )

=

Φ Φ
1–

I=

Φ
T

M Φ
T

M Φ Φ
1–

Φ
T

M= Φ
T

K Φ Mg
=

Φ
1–

Mg

1–
Φ

T
M=

Mg

qi 0( ) 0= q̇i 0( ) 0= i 1 2 3, ,=

119.848 q̇̇1 8.04888 6×10 q1+ 72.9014= q1 q= 1 t( ) t 0≥

q1 t( ) 9.05734 6–×10 c2 ω1tcos c1 ω1tsin+ +=

ω1 λ1 259.151 rad/s= =

q1 t( ) 9.05734 6–×10 1 ω1tcos–( )= ω1 259.151 rad/s=
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. (18.32)

The solution to differential equation (18.32) subject to initial conditions (18.28) is

. (18.33)

The differential equation for the third modal displacement is

. (18.34)

The solution to differential equation (18.34) subject to initial conditions (18.28) is

. (18.35)

Step 5: Transform back to physical coordinates.  Equations (18.30), (18.33), and (18.35) are substituted for 
q1, q2. and q3, respectively, into the transformation (18.23) to determine the physical displacements. The payload 
displacement is

. (18.36)

Step 6: Payload acceleration.  The payload acceleration computed from the second derivative of eq. (18.36) is

. (18.37)

The payload acceleration over one period of the lowest frequency is plotted in figure 18.4. Maximum accelera-

tion is  at . The payload load factor is , which is a 19.7 
percent increase with respect to the rigid body load factor.

18.4 Eigenvalue problems for real symmetric matrices

In general an nxn real matrix  acts on an nx1 vector  by changing both its magnitude and direction. For 
example consider

. (a)

Vectors  and  are depicted in figure 18.5(a). Matrix  may act on certain vectors by changing 
only their magnitude, and leaving their direction unchanged; e.g., 

9 851.76 q̇̇2, 5.39308 7×10 q2+ 73 549.4,–= q2 q= 2 t( ) t 0≥

q2 t( ) 0.00136322 1 ω2tcos–( )–= ω2 λ2 73.988 rad/s= =

11 248.4 q̇̇3, 77 100,= q3 q3 t( )= t 0≥

q3 t( ) 3.42714t2=

w3 t( ) 0.00135416– 3.42714t2 0.00136322 73.988t( )cos 9.05734 6–×10 259.151t( )cos–+ +=

ẇ̇3 t( ) 6.85428 7.46257 73.988t( )cos– 0.608283 259.151t( )cos+=

14.56 ft./s2 t 0.0453 s= n 1 14.56 32.2⁄+ 1.452= =

0.05 0.10 0.15

5

10

15

ẇ̇3 ft./s2

t  s,

Fig. 18.4 Time history of the 
payload acceleration. 
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. (b)

Vector  is an eigenvector of matrix  and the number “3” is an eigenvalue. Consider the vector 

. Then, the matrix  operating on this second vector is

. (c)

Thus, vector  is an eigenvector and the number “1” is the eigenvalue. The eigenvectors of matrix  are 

depicted in figure 18.5(b).

The eigenpairs of matrix  are written as

. (d)

The standard matrix eigenvalue problem is

, (18.38)

where  is a real nxn matrix and  is an nx1 vector. It is also written as

. (e)

where  is the nxn identity matrix. (i.e., a diagonal matrix with each diagonal element equal to one). One solu-

tion to eq. (18.38) is , which is called the trivial solution. Non-trivial solutions for  require

, (18.39)

where  is a polynomial of degree n having n roots. The polynomial  is called the characteristic equa-

tion. The roots of  are the eigenvalues of matrix . The eigenvalue problem for the r-th mode is

2 1
1 2

1
1
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3

3 1
1

= =

1 1
T A[ ]

1– 1
T A[ ]

2 1
1 2

1–

1
1–

1
=

1– 1
T A[ ]

–1 0 1 2 3

1

2

3

φ1{ }

3 φ1{ }

φ2{ }

1 φ2{ }

0 1 2 3 4

1

2

3

4

φ{ }

A[ ] φ{ }

(a) (b)

Fig. 18.5 (a) Matrix A operating on a vector. (b) Matrix A operating on eigenvectors
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λ1 φ1{ },( ) 3 1
1

,
 
 
 

= and λ2 φ2{ },( ) 1 1–

1
,

 
 
 

=

A[ ] φ{ } λ φ{ }=

A[ ] φ{ }

A[ ] λ I[ ]–( ) φ{ } 0=

I[ ]

φ{ } 0nX1= φ{ }

Det A[ ] λ I[ ]–( ) p λ( ) 0= =

p λ( ) p λ( )

p λ( ) 0= A[ ]
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. (18.40)

The eigenpairs are denoted by . If  is a solution to eq. (18.40)), then  is also a solution 

where  is an arbitrary constant. Thus, the solution for the eigenvector is not unique. Scaling, or normalization, 

is the process to make the amplitude of the eigenvector unique. One method to normalize the amplitude is to 
require  be a unit vector in the n-dimensional space. That is, we specify

. (18.41)

Consider the eigenvalue problem for s-th mode 

. (18.42)

Pre-multiply the r-th mode in eq. (18.40) by  to get

. (18.43)

Pre-multiply the s-th mode in eq. (18.42) by :

. (18.44)

Take the transpose of eq. (18.43) and use the property of symmetry  to find

. (18.45)

Subtract eq. (18.45) from eq. (18.44) to find

. (18.46)

For  

. (18.47)

The eigenvectors for distinct eigenvalues are orthogonal. The eigenvectors are said to be orthonormal if

. (18.48)

Since the characteristic equation  has real coefficients, the roots  are real or occur as complex 
conjugate pairs. It can be shown that roots are real (Boresi, 1965, p. 34).

Let  denote the nxn modal matrix whose columns are the orthonormal eigenvectors. The r-th column 

contains the eigenvector  associated with eigenvalue , . Since the eigenvectors are 

orthonormal, the modal matrix has the property

. (18.49)

The modal matrix is called an orthogonal matrix, and it has the properties

. (18.50)

Using the modal matrix the standard eigenvalue problem can be written as

A[ ] φr{ } λr φr{ }=

λr φr{ },( ) φr{ } cr φr{ }

cr

φr{ }

φr{ }T φr{ } 1=

A[ ] φs{ } λs φs{ }=
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φr{ }T

φr{ }T A[ ] φs{ } λs φr{ }T φs{ }=

A[ ]T A[ ]=

φr{ }T A[ ] φs{ } λr φr{ }T φs{ }=

0 λr λs–( ) φr{ }T φs{ }=

λr λs≠

φr{ }T φs{ } 0= r s≠ r s, 1 2 … n, , ,=

r s=
r s≠

φr{ }T φs{ }
1

0



=

p λ( ) 0= λ

Φ[ ]

φr{ } λr r 1 2 … n, , ,=

Φ[ ]T Φ[ ] Φ[ ] Φ[ ]T I[ ]= =

Φ[ ] 1– Φ[ ]T= Det Φ[ ] 1=
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, (18.51)

where  is a diagonal matrix of the eigenvalues:

. (18.52)

Post-multiply eq. (18.51) by  to get

. (18.53)

Hence, matrix  has the decomposition

. (18.54)

An nxn real, symmetric matrix is positive definite if all eigenvalues , . It is positive 

semidefinite if the eigenvalues , that is, some of its eigenvalues may equal zero. For structures having 

rigid body freedoms the stiffness matrix [K] has as many zero eigenvalues as it has rigid body modes.

The mode superposition method leads to the generalized eigenvalue problem

, (18.55)

where the nxn matrices [K] and [M] are real and symmetric,  is the nx1 eigenvector, or modal vector, and the 

eigenvalue  is equal to the square of the natural frequency . Refer to eq. (18.17). The generalized eigenvalue 
problem (18.55) can be reduced to the standard form in eq. (18.38) if the mass matrix is positive definite (Bathe, 
p. 573). Then all the properties of the eigenvalues, eigenvectors, and characteristic polynomials can be derived 
from the properties of the standard eigenvalue problem. In particular, for the generalized eigenvalue problem

• all n of the ’s are real (no complex conjugates), and

• for ,  (i.e., the eigenvectors are M-orthogonal).

Vanishing of the determinate  is equivalent to finding the roots of a polyno-

mial of degree n. If , iterative solution procedures have to be employed (Graig, 1981). There are many effi-
cient subroutines available in various scientific subroutine libraries to numerically solve eigenvalue problems. In 
Mathematica the function “Eigensystem[{K,M}]” finds numerical eigenvalues and eigenvectors of the general-
ized eigenvalue problem. In MATLAB the statement “[V,D] = EIG(K,M)” finds a diagonal matrix D of general-
ized eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that 

. For the numerical solutions to the practice exercises listed in article 18.11 it is assumed 
the reader has access to a subroutine to find eigenvalues and eigenvectors. 
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Φ[ ]T
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I[ ]

A[ ]

A[ ] Φ[ ] D[ ] Φ[ ]T=

λr 0> r 1 2 … n, , ,=

λr 0≥

K[ ] φ{ } λ M[ ] φ{ }=

φ{ }

λ ω

λr

r s≠ φr{ }T M[ ] φs{ } 0=

Det K[ ] λ M[ ]–( ) p λ( ) 0= =

n 5≥

K[ ] V[ ] M[ ] V[ ] D[ ]=
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18.5 Hamilton’s principle and Lagrange’s equations

Consider a particle of mass M in motion along the x1-x2 plane as shown in figure 18.6. The position vector of the 

particle at time t is denoted by , where

, (18.56)

where  and  are unit vectors in the -, and x2-directions, respectively. From Newton’s second law the equa-

tion of motion for the particle is solved for its motion , , given its position  and the velocity 

 at . In contrast to Newton’s method, Hamilton’s approach to this moving particle is to determine 

the motion  given the positions  and , . All positions in the interval  describe a 

time-dependent path illustrated by a curve in figure 18.6. The path labeled  represents the actual motion. 

The path labeled  represents a motion from  to  in the vicinity of the actual motion.

Begin with D’Alembert’s principle and introduce the inertia force in addition the applied force  and write the 
dynamic equation of equilibrium as follows:

. (18.57)

At a fixed time introduce an infinitesimal virtual displacement denoted by the function . We can imagine 
the motion is stopped at time t when the virtual displacement is imposed on the particle with both the applied 
force and inertia force acting on the particle. The virtual changes in the coordinates imposed on the particle at a 
fixed time are denoted by  and , so that

. (18.58)

The varied path  in the vicinity of the actual path  is

. (18.59)

Since the varied path and actual path coincide at t = t0 and t = t1 the virtual displacement vanishes at these times:
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Fig. 18.6 Dynamical paths for a 
particle in plane motion.
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. (18.60)

The virtual work of the applied force and the inertia force acting through the virtual displacement is given by the 
scalar product of eq. (18.57) with the virtual displacement in eq. (18.58):

. (18.61)

Consider the relation

. (18.62)

The virtual change in velocity is defined by

. (18.63)

Equation (18.63) shows we can interchange the virtual operator  and the differential operator . Use 
the result from eq. (18.63) to write eq. (18.62) as

. (18.64)

Equation (18.64) is incorporated into the virtual work eq. (18.61) to get

. (18.65)

The virtual work of the applied force is written as , and let the velocity of the particle be denoted 

by , and its virtual velocity by . Then, eq. (18.65) for the virtual work is

. (18.66)

The kinetic energy of the particle is , and its kinetic energy on the varied path is

. (18.67)

For infinitesimal virtual velocities . Integrate eq. (18.66) with respect to time from t0 to t1 to get

. (18.68)

The virtual displacement  vanishes at times t0 and t1. Then eq. (18.68) becomes
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. (18.69)

Equation (18.69) is Hamilton’s principle. Note that  is not the total virtual work. It is the virtual work of the 
non-inertial forces.

18.5.1 Lagrange’s equations

Deriving equations of motion for connected bodies using Newton’s laws as was done in step 1 of article 18.3 
requires separate free body diagrams of each component, and the forces of interaction had to be eliminated to 
arrive at the final set of equations. An alternative method is to use the scalar functions kinetic energy T and the 
potential energy V of the system in Lagrange’s equations to obtain the equations of motion. Lagrange’s equations 
are derived from Hamilton’s variational principle (18.69). In general, the kinetic energy of a particle as depicted 

in figure 18.6 is a function of its position (x1, x2) and its velocities  at time t (i.e., ). 

The virtual change in kinetic energy is

. (18.70)

The virtual work of the applied force acting on the particle is . The applied 

forces can be decomposed as , , where  are non-conservative forces and  are the con-

servative forces. Conservative forces are determined in terms of the potential energy function  by the 

relations

. (18.71)

The virtual work is expressed as

. (18.72)

Substitue the virtual kinetic energy from eq. (18.70) and the virtual work from eq. (18.72) into Hamilton’s 
principle (18.69) to get

. (18.73)

Rearrange the terms in eq. (18.73) to

. (18.74)

Integrate by parts the last two terms in the integrand of eq. (18.74) and note that the virtual coordinates  and 

 vanish at the beginning and end time. Hence, eq. (18.74) becomes

δW δT+( ) td

t0

t1

∫ 0=

δW

ẋ1 ẋ2,( ) T T x1 x2 ẋ1 ẋ2, , ,( )=
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. (18.75)

The result of the manipulations from eq. (18.73)to eq. (18.75) is

. (18.76)

Define the Lagranian function L by

. (18.77)

Incorporating the Lagranian function in eq. (18.76) we get

. (18.78)

Equation (18.78) vanishes for every choice of the virtual coordinates  and , which leads to Lagrange’s 

equations of motion given by eq. (18.79) below.

. (18.79)

Example 18.1 Double pendulum

The pendulum shown figure 18.7 oscillates in the x1-x2 plane under the 
action of gravity. The mass is concentrated in the particle at the end of 
the lower bar. The hinges are frictionless. Two coordinates, angles θ1 
and θ2, describe the configuration the pendulum and are called gener-

alized coordinates.1 The coordinates of the particle are

. (a)

The kinetic energy is

. (b)

The potential energy is

1.  Requirements for generalized coordinates are (1) that there is a one-to-one correspondence between the coordinates and 
the configuration of the mechanical system, and (2) that infinitesimal increments in the generalized coordinates result in 
infinitesimal increments in the configuration. Requirement (1) precludes constraint equations between the generalize coor-
dinates.
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dt
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  δx1 Q2
∂L
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dt
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-------- 
 –+ 

  δx2+ td

t0
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∫ 0=

δx1 δx2

d
dt
----- ∂L

∂ẋ1
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  ∂L

∂x1
--------– Q1= d

dt
----- ∂L

∂ẋ2
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∂x2
--------– Q2=
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l
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M

g
Fig. 18.7

x1 t( ) l θ1 t( )cos l θ2 t( )cos+=

x2 t( ) l θ1 t( )sin l θ2 t( )sin+=

T 1
2
---M ẋ1( )

2
ẋ2( )

2
+[ ] 1

2
---Ml2 θ̇1( )2 θ̇2( )2 2θ̇1θ̇2 θ1 θ2–( )cos+ +[ ]= =
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. (c)

Lagrange’s equations (18.79) for the pendulum are

. (d)

Derivatives of the Lagranian function (18.77) with respect to  and  follow.

, (e)

, and . (f)

Substitute eqs. (e) and (f) into the Lagrangian equation for  in eq. (d) to get the equation of motion

. (g)

Similar mathematical manipulations for Lagrange’s equation in coordinate  lead to the second equation of 

motion

.J (h)

18.6 The dynamic response of an elastic thin-walled bar

Starting with Hamilton’s principle we develop a weak form for the dynamic response of a thin-walled bar suit-
able for a finite element analysis. Assume the bar is homogenous with a uniform cross section along the z-axis, 

, where L denotes the length of the bar. Since the bar is a one-dimensional continuum, Hamilton’s prin-
ciple (18.69) is expressed as

, (18.80)

where  is the virtual kinetic energy per unit axial length, and  is the virtual work of the non-inertial forces 
per unit axial length. From eqs. (3.20) and (3.22) on page 36, and eq. (3.26) on page 37, the displacements of a 
material point on the contour of the cross section are

, (18.81)

, and (18.82)

. (18.83)

The virtual kinetic energy term in Hamilton’s principle (18.80) is written as

V Mg 2l x1 x2––( ) Mgl 1 θ1cos–( ) 1 θ2cos–( )+[ ]= =

d
dt
----- ∂L

∂θ̇1

-------- 
  ∂L

∂θ1
--------– 0= d

dt
----- ∂L

∂θ̇2

-------- 
  ∂L

∂θ2
--------– 0=

θ1 θ̇1

∂L
∂θ1
-------- Ml2θ̇1θ̇2 θ1 θ2–( )sin– Mgl θ1sin–=

∂L

∂θ̇1

-------- Ml2 θ̇1 θ̇2 θ1 θ2–( )cos+[ ]= d
dt
----- ∂L

∂θ̇1

-------- 
  Ml2 θ̇̇1 θ̇̇2 θ1 θ2–( )cos θ̇2 θ̇1 θ̇2–( ) θ1 θ2–( )sin–+[ ]=

θ1

Ml2 θ̇̇1 θ̇̇2 θ1 θ2–( )cos θ̇2( )2 θ1 θ2–( )sin+ +[ ] Mgl θ1sin+ 0=

θ2

Ml2 θ̇̇2 θ̇̇1 θ1 θ2–( )cos θ̇1( )2 θ1 θ2–( )sin–+[ ] Mgl θ2sin+ 0=

0 z L≤ ≤

δT δW+( ) zd

0

L

∫ td

t0

t1

∫ 0=

δT δW

us s z t, ,( ) u z t,( ) θ s( )sin– v z t,( ) θ s( )cos rn s( )φz z t,( )+ +=

uζ s z, t,( ) u z t,( ) θ s( )cos v z t,( ) θsin s( ) rt– s( )φz z t,( )+=

uz s z t, ,( ) w z t,( ) y s( )φx z t,( ) x s( )φy z t,( )+ +=
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, (18.84)

where the kinetic energy per unit volume, or the kinetic energy density, is

, (18.85)

The mass density is denoted by ρ. The dot over the displacement function is a shorthand notation for the partial 
derivative of the function with respect to time; e.g.,

. (18.86)

The virtual kinetic energy density at a fixed time is

, (18.87)

where , , and  are the infinitesimal virtual velocity components. Interchange the order of the tempo-
ral and spatial integrals in eq. (18.84) to write the virtual kinetic energy term as

. (18.88)

The interior integral in eq. (18.88) with respect to time is integrated by parts as follows:

. (18.89)

By Hamilton’s principle the virtual displacements  vanish at times  and . Return to eq. 

(18.84) and identify

, (18.90)

where the virtual kinetic energy per unit axial length is

. (18.91)

We assume the density of mass ρ is independent of the contour coordinate s. The individual terms in the integral 

for  are as follows:

δT zd

0

L

∫ 
 
 

td

t0

t1

∫ δTt sd
c
∫ 
  zd

0

L

∫ td

t0

t1

∫=

T 1
2
---ρ u̇s( )

2
u̇ζ( )

2
u̇z( )

2
+ +[ ]=

u̇s
∂us

∂t
--------=

δT ∂T

∂u̇s

--------δu̇s
∂T

∂u̇ζ

--------δu̇ζ
∂T

∂u̇z

--------δu̇z+ + ρ u̇sδu̇s u̇ζδu̇ζ u̇zδu̇z+ +( )= =

δu̇s δu̇ζ δu̇z

δTt sd
c
∫ 
  zd

0

L

∫ td

t0

t1

∫ δT td

t0

t1

∫
 
 
 
 

t sd
c
∫ zd

0

L

∫=

δT td

t0

t1

∫ ρ u̇sδu̇s u̇ζδu̇ζ u̇zδu̇z+ +( ) td

t0

t1

∫=

ρ u̇̇sδus u̇̇ζδuζ u̇̇sδus+ +( ) td

t0

t1

∫– ρ u̇sδus u̇ζδuζ u̇zδuz+ +( )
t0

t1

+=

δus δuζ δuz, ,{ } t0 t1

δTt sd
c
∫ 
  zd

0

L

∫ td

t0

t1

∫ δT zd

0

L

∫ td

t0

t1

∫=

δT δTt sd
c
∫ ρ u̇̇sδus u̇̇ζδuζ u̇̇sδus+ +( )t sd

c
∫–= =

δT



Aerospace Structures 553

The dynamic response of an elastic thin-walled bar

, (18.92)

, and (18.93)

. (18.94)

Sum eqs. (18.92) to (18.94) and collect terms in the integral multiplying the virtual displacements and virtual 

rotations. In the process of evaluating and simplifying the result for , the following terms are identified or 
defined: 

• From eq. (3.9) on page 34 the relationship between normal and tangential coordinates of the contour and the 
Cartesian coordinates  of the contour is 

. (18.95)

• From eqs. (4.2) and (4.3) on page 79 the geometric properties of the cross section are identified as

. (18.96)

• Terms associated with the mass are defined by

, (18.97)

 , and (18.98)

 . (18.99)

The mass per unit length is denoted by m, rotary inertial moments due to bending by , and the 

polar moment of inertia about the z-axis through the shear center by . The final result for virtual kinetic energy 

per unit length in eq. (18.91) is

. (18.100)

The virtual work per unit axial length is determined from conservative forces and non-conservative forces. It 
is expressed as

, (18.101)

where  is the potential energy of the conservative forces and  is the virtual work of the non-conservative 
forces acting at point z in the bar. The potential energy per unit length represents the energy due to elastic defor-
mation of the bar and it is given by

ρ u̇̇sδus( )t sd
c
∫ ρ u̇̇ θsin– v̇̇ θcos rn φ̇̇z+ +[ ] δu θsin– δv θcos rnδφz+ +[ ]t sd

c
∫=

ρ u̇̇ζδuζ( )t sd
c
∫ ρ u̇̇ θcos v̇̇ θsin rt φ̇̇z–+[ ] δu θcos δv θsin rtδφz–+[ ]t sd

c
∫=

ρ u̇̇zδuz( )t sd
c
∫ ρ ẇ̇ y φ̇̇x x φ̇̇y+ +[ ] δw yδφx xδφy+ +[ ]t sd

c
∫=

δT

x s( ) y s( ),{ }

rn θcos rt θsin– x s( ) xsc–= rn θsin rt θcos+ y s( ) ysc–=

A t sd
c
∫= xt sd

c
∫ 0= yt sd

c
∫ 0= Ixx Iyy Ixy, ,( ) y2 x2 xy, ,( )t sd

c
∫=

m ρ t sd
c
∫ ρA= =

ρ Ixx Iyy Ixy, ,( ) ρA Ixx A⁄ Iyy A⁄ Ixy A⁄, ,( ) m rx
2 ry

2 rxy
2, ,( )= =

Iz ρ rn
2 rt

2+( )t sd
c
∫ ρA 1

A
--- rn

2 rt
2+( )t sd

c
∫ mrz

2= = =

ρ Ixx Iyy Ixy, ,( )

Iz

δT m u̇̇ ysc φ̇̇z+( )δu m v̇̇ xsc φ̇̇z–( )δv mẇ̇δw m rx
2 φ̇̇x rxy

2 φ̇̇y+( )δφx m rxy
2 φ̇̇x ry

2 φ̇̇y+( )δφy+ + + + +{–=

m rz
2 φ̇̇z yscu̇̇ xscv̇̇–+( )δφz }

δW δU– δWn.c.+=

U δWn.c.
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. (18.102)

The strain energy due extension and bending is denoted by , and the strain energy due to transverse shear and 

torsion by . From eq. (5.47) on page 140

, (18.103)

and from eq. (5.82) on page 145

. (18.104)

Note that the partial derivatives of the axial displacement and bending rotations are denoted by a prime super-
script in eq. (18.103). That is,

. (18.105)

The transverse shear strains in eq. (18.104) are related to the displacements and rotations by

. (18.106)

Refer to figure 3.6 on page 38. The virtual strains are denoted by , , , , , and , where

, and . (18.107)

 At a fixed value of the coordinate z the virtual strain energies per unit axial length are

, and (18.108)

. (18.109)

The generalized forces corresponding to the virtual strains in eqs. (18.108) and (18.109) are given by

, and (18.110)

. (18.111)

The total virtual strain energy is the sum of eqs. (18.108) and (18.109). That is,

. (18.112)

Substitute eq. (18.101) into Hamilton’s principle (18.80) to get

. (18.113)

Equation (18.113) is satisfied for  by

U Uε Uγ+=

Uε

Uγ

Uε
1
2
--- EA w′( )2 EIxx φx′( )2 EIyy φy′( )2 2EIxy φx′( ) φy′( )+ + +[ ]=

Uγ
1
2
--- sxxψx

2 2sxyψxψy syyψy
2 GJ φz′( )2+ + +[ ]=

w′ ∂w
∂z
-------= φx′

∂φx

∂z
--------= φy′

∂φy

∂z
--------=

ψx u′ φy+= ψy v′ φx+=

δw′ δφx′ δφy′ δψx δψy δφz′

δψx δu′ δφy+= δψy δv′ δφx+=

δUε
∂Uε

∂w′
---------δw′ ∂Uε

∂φx′
----------δφx′

∂Uε

∂φy′
----------δφy′+ + Nδw′ Mxδφx′ Myδφy′+ += =

δUγ
∂Uγ

∂ψx

---------δψx
∂Uγ

∂ψy

---------δψy
∂Uγ

∂φz′
----------δφz′+ + Vxδψx Vyδψy Mzδφz′+ += =

N EAw′= Mx EIxxφx′ EIxyφy′+= My EIxyφx′ EIyyφy′+=

Vx sxxψx sxyψy+= Vy sxyψx syyψy+= Mz GJφz′=

δU δUε δUγ+ Nδw′ Mxδφx′ Myδφy′ Vxδψx Vyδψy Mzδφz′+ + + + += =

δT δW+( ) zd

0

L

∫ td

t0

t1

∫ δ– T δU δWn,c.–+( ) zd

0

L

∫ td

t0

t1

∫– 0= =

t0 t t1≤ ≤
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. (18.114)

Substitute eq. (18.100) for  and eq. (18.112) for  into eq. (18.114) to get the weak form for the elastody-
namics of the thin-walled bar as

. (18.115)

The non-conservative virtual work is expressed in terms of the prescribed external loads acting on the bar 
shown in figure 18.8. The generalized forces acting on the cross sections at z = 0 and z = L are denoted by , 

. The prescribed distribution of force intensities (F/L) and distribution of moments intensities (F-

L/L) are functions of coordinate z and time t. Distributions  and  are resolved at the shear center, 

and distribution  is resolved at the centroid. Distributions of moments  and  are resolved 

at the centroid, and distribution  is resolved at the shear center. Also, refer to figure 3.8(b) on page 41.

The virtual displacements and rotations are independent variables. We can take  and its derivative  
not equal to zero, and the remaining virtual displacements and rotations equal to zero in eq. (18.115). Then the 
weak form governing virtual displacement  is

. (18.116)

From eq. (18.115) and eq. (18.107) the weak form governing  and its derivative is

δ– T δU δWn,c.–+( ) zd

0

L

∫ 0=

δT δU

m( u̇̇ ysc φ̇̇z+( )δu m v̇̇ xsc φ̇̇z–( )δv mẇ̇δw m rx
2 φ̇̇x rxy

2 φ̇̇y+( )δφx m rxy
2 φ̇̇x ry

2 φ̇̇y+( )δφy+ + + + +[{

0

L

∫

m rz
2 φ̇̇z yscu̇̇ xscv̇̇–+( )δφz ] Nδw′ Mxδφx′ Myδφy′ Vxδψx Vyδψy Mzδφz′+ + + + +[ ]+ }dz δWn.c. zd

0

L

∫=

Qi t( )
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fx z t,( ) fy z t,( )

fz z t,( ) mx z t,( ) my z t,( )

mz z t,( )

Q1 t( )

Q4 t( )

Q2 t( )

Q5 t( )

Q3 t( )

Q6 t( )

Q7 t( )

Q10 t( )

Q8 t( )

Q11 t( )
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z L=
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z

fz z t,( )dz
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C. locusFig. 18.8 External loads
 acting on the bar.

δu δu′

δu

m( u̇̇ ysc φ̇̇z+( )δu Vxδu′+[ ] zd

0

L

∫ fx z t,( )δu z t,( ) zd

0

L

∫ Q1 t( )δu 0 t,( ) Q7 t( )δu L t,( )+ +=

δv
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. (18.117)

The weak form governing  and its derivative is

. (18.118)

The remaining weak forms governing the virtual rotations in the order , , and  are as follows:

, (18.119)

, and (18.120)

. (18.121)

18.7  Finite element model for the dynamics of an axial bar 

The weak form governing the response of the bar is given by eq. (18.118). Following the discussion in article 
17.2 on page 494 consider the mesh

, (18.122)

where M denotes the number of elements, and M+1 is the number of nodes. The kth element is denoted by

. (18.123)

Each element is mapped into a standard element denoted by

. (18.124)

The standard element is mapped onto the kth element by

, where  and . (18.125)

The inverse mapping is

. (18.126)

The length of the element is denoted by  where . Let  denote the axial displacement 

in Ωk , which expressed in terms of the nodal displacements and the shape functions is

. (18.127)
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L
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0
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0

L
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0

L

∫ Q4 t( )δφx 0 t,( ) Q10 t( )δφx L t,( )+ +=

m rxy
2 φ̇̇x ry

2 φ̇̇y+( )δφy Myδφy′ Vxδφy+ +[ ] zd

0

L

∫ my z t,( )δφy z t,( ) zd

0

L

∫ Q5 t( )δφy 0 t,( ) Q11 t( )δφy L t,( )+ +=

m rz
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0

L

∫ mz z t,( )δφz z t,( ) zd

0

L
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(18.128)

The external loads acting on element Ωk are shown in figure 18.9. 

Let . The finite element representation of eq. (18.118) is

(18.129)

External loads at a common node between elements are defined by

, (18.130)

which are depicted in figure 18.10.

At the first node z1 and the last node zM+1 the external forces are

, and . (18.131)

The distributed loads lead to forces

. (18.132)

For , and , eq. (18.129) leads to

. (18.133)

For  and  eq. (18.129) leads to

δw k( ) bkη1 ζ( ) bk 1+ η2 ζ( )+=

zk zk 1+

Q3
k( ) Q9

k( )

fz η1wk η2wk 1++ t,[ ]

hk zk 1+ zk–=

Fig. 18.9 External loads acting on axial bar 
element Ωk.
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.

Finally we write the matrix form for element Ωk as

(18.134)

Note that the mass matrix in eq. (18.134) is not diagonal, but it is symmetric. This mass matrix is called a consis-
tent mass matrix, since the spatial distribution of the velocity function is consistent with the assumed spatial 
distribution of the axial displacement function (18.127).

Example 18.2 Unrestrained axial motion of a bar

Consider a three-degree-of freedom model of a uniform bar shown in figure 18.11 that undergoes unrestrained 
axial motion. The mass per unit length  and the axial stiffness  are constant. The bar is modeled with two 

finite elements Ω1 and Ω2, each with lengths . 

For element Ω1 the mass and stiffness matrices are

. (a)

For element Ω2 the mass and stiffness matrices are

. (b)

The matrix equation of motion after assembly is

. (c)

For the bar at rest at time t = 0 the initial axial displacements are

mhk
1
6
--- ẇ̇k

1
3
--- ẇ̇k 1++ 

  EA
hk

------- wk– wk 1++( )+ Qk 1+ t( ) Fk 1+ t( )+=
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6
--------- 2 1

1 2
ẇ̇k
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hk
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1– 1

wk

wk 1+

+
Qk t( ) Fk t( )+

Qk 1+ t( ) Fk 1+ t( )+
=

m EA

h1 h2 L= =

LL

w1 w2 w3

Ω1 Ω2z1 z2 z3

Q1 t( )
Fig. 18.11 Unrestrained axial 
motion of bar modeled with 
two elements.
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0 1– 1

w1

w2

w3

+
Q1 t( )

0
0

=
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. (d)

Consider the impulsive response of the bar , where  is the magnitude of the impulse and  

is the Dirac delta function. The Dirac delta function is defined by

 for , and . (e)

The Dirac delta function is depicted in figure 18.12, in which we take the limit 
as . The amplitude of  is undefined, but the area under the function 
is well defined. Note the dimensional units of the Dirac delta function are recip-

rocal seconds, and the dimensional units of impulse  are force-seconds. The 
impulsive force causes an initial velocity of the bar. To determine the initial 
velocity of the bar we integrate the equations of motion (c) with respect to time 
over an infinitesimal interval at t = 0 from  to . During this time 

interval there is no displacement of the bar and the velocities , . Integration of eq. (c) 
over the infinitesimal time interval is

. (f)

Solve eq. (f) for the initial velocities to get

. (g)

Free vibration solution.  Assume a solution  to eq. (c), which leads to the general-
ized eigenvalue problem

, (h)

where . The eigenvalues and modal matrix are
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ẇ2 +0( )

Q̂
δ t( )

0
0

td

0–

+0

∫ Q̂
1
0
0

= =
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, . and . (i)

The eigenvalue  and its associate mode  correspond to a rigid body motion of the bar. 

The non-zero eigenvalues  and , and their associated modes correspond to elastic modes of the bar. The fre-

quencies are

. (j)

Transient response.  The transformation from physical displacements to modal displacements is given by

. (k)

Substitute the transformation (k) into the equations of motion (c) to get equations of motion in modal coordi-
nates:

, . (l)

The initial conditions in modal coordinates are (refer to eq. (18.27))

, and . (m)

The solution of eq. (l) for the modal displacements are

. (n)

Substitute the modal displacements (n) into eq. (k) to find the results for the response of the physical displace-
ments:
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. (o)

We specify the following data for an aluminum alloy bar: , , , 

and . The mass density  Convert the pound-mass (lbm) to pound-
force (lb.) in the U.S. customary units by recognizing that one pound-force accelerates one pound-mass at the 

local acceleration of gravity g. Thus, , and the 

mass per unit length is

. (p)

The natural frequencies are

. (q)

Take the impulse , and compute . The transient response for displace-

ments  and  for  is shown in figure 18.13. The period for one complete oscillation at the 

lowest frequency is denoted by , where

. J

18.7.1  Truss element

Take one element to represent a truss bar of length L at an angle  with respect to the X-axis connected between 

the nodes labeled i and j as shown in figure 18.14(a). Let . The nodal displacements tangent and normal 

to the bar at node i are denoted by , respectively, and the nodal displacements tangent and normal to the 

bar at node j are denoted by , respectively. The nodal displacements in the X- and Y- directions to the bar 
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at node i are denoted by , respectively, and the corresponding nodal displacements at node j are 

denoted by , respectively. See figure 18.14(b). 

Expand eq. (18.134) to include displacements normal to the bar by adding rows and columns of zeros to get

. (a)

At node i the displacements in figure 18.14(a) are related to the displacements in figure 18.14(b) by 
, and . At node j we have similar displacement 

relations. The nodal displacements are related by matrix

 , (b)

where  and . Substitute eq. (b) into eq. (a), followed by pre-multiplication by  to get

. (c)

The mass matrix for the truss bar is
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Fig. 18.14 (a) Axial bar at an oblique angle. (b) Truss element.
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. (18.135)

The stiffness matrix for the truss bar is

. (18.136)

The stiffness matrix (18.136) is the same stiffness matrix as determined by the direct stiffness method. See eq. 
(16.12) on page 439.

Example 18.3 Free vibrations of a three-bar truss

The truss shown in figure 18.15 consists of three bars: 1-2, 1-3, and 1-4. Joints, or nodes, 2, 3, and 4 are fixed and 

only joint 1 is movable. For all three bars the cross-sectional area , the modulus of elasticity 

, and the mass density . The length . Determine the natural frequencies 
in Hz and the corresponding modal vectors. Normalize the modal vectors such that the component with the larg-
est magnitude is equal to one.

Solution.  The unknown nodal displacement vector , and the known nodal displace-

ment vector , . The length of each 

bar and the direction cosines are listed in table 18.3.
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Fig. 18.15 Free vibration. 
(a) Three-bar truss 
configuration. (b) Nodal 
displacements.
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From the mass matrix (18.135) and stiffness matrix (18.136) for the generic truss bar, we formulate the mass and 
stiffness matrices for each truss bar in degrees of freedom one and two as follows:

(a)

(b)

(c)

Assembly of the structural stiffness matrix in DOFs 1 and 2 results in

, (d)

in which  was used to get the numerical result for . Assembly of the structural 

mass matrix in DOFs 1 and 2 results in

Table 18.3 Direction cosines for each truss bar
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, (e)

in which  was used to get the numerical result for . The matrix eigenvalue problem for 

the natural frequencies and modes is , where the eigenvalue is  and . 

Written in detail for this structure the matrix eigenvalue problem is

. (f)

This eigenvalue system in eq. (f) was solved in Mathematica using the function , 

which finds the generalized eigenvalues and eigenvectors. The eigen pairs are

, and . (g)

The natural frequencies are

, and J (h)

18.8 Dynamic bending of a bar with two axes of symmetry

If the cross section is symmetric with respect to both the x- and y-axes through the centroid, then , 

, , and . In this case of double symmetry, transverse bending is decoupled from torsion 

in both the inertia and stiffness terms. That is, the inertia axis and elastic axis coincide. However, the motions of 
the lateral displacement  and the rotation  are linked because of the presence of transverse shear 

deformation . The governing weak forms (18.117) and (18.119) are

.

The previous two equations are combined to the matrix form
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, (18.137)

where the virtual work of the non-conservative forces is

. (18.138)

18.8.1 Finite element

The development of the generalized displacements in Ωk follows the discussion in article 17.3.1 on page 508. 

The lateral displacement of the kth element is denoted by  and the rotation by . Define the 

generalized external displacements in terms of the rotation and displacement at the nodes by

. (18.139)

See figure 18.16. The 7X1 displacement vector of element Ωk is denoted by,

, (18.140)

where , , and  are internal generalized displacement degrees of freedom. Rotation and dis-

placement functions within the element are expressed in terms of the 2X7 shape function matrix and the 7X1 dis-
placement vector:

, (18.141)

where the shape function matrix is

. (18.142)

The basis functions for the element are
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Fig. 18.16  Beam element Ωk.
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. (18.143)

The virtual rotation and displacement within the element are

, (18.144)

where the 7X1 vector . The virtual generalized displacements 

, , and  correspond to the internal degrees of freedom , , and , respectively. The 

virtual generalized displacement vector  is independent of the physical generalized displacement vector 

. The external virtual work of the non-conservative forces (18.138) for the elements is given by

. (18.145)

At the common node zk between elements Ωk-1 and Ωk there is an equilibrium relation between the externally 

applied force  and the externally applied moment  and the internal actions at the end of element Ωk-1 

and the beginning of element Ωk. Refer figure 18.17. These relations are

, and (18.146)

. (18.147)

We now write the virtual work of the non-conservative generalized forces as

, (18.148)

where

, and . (18.149)

The partial derivatives with respect to coordinate z in eq. (18.137) are replaced by derivatives with respect to 
dimensionless coordinate ζ using the chain rule. That is,

. (18.150)
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Note that in the following finite element development the prime superscript denotes a derivative with respect to ζ. 
The derivative of the rotation for element Ωk and the virtual rotation are

 , (18.151)

where the 1X7 matrix is given by

. (18.152)

The shear strain for element Ωk and the virtual shear strain are 

, (18.153)

where the 1X7 matrix is given by

. (18.154)

Substitute eqs. (18.151) and (18.153) into the finite element representation of eq. (18.137), and substitute eq. 
(18.148) for the virtual work, to get

. (18.155)

We satisfy eq. (18.155) for each element in the mesh by 

. (18.156)

Hence, the equation of motion for element Ωk is

. (18.157)

The mass, and stiffness matrices are

, and . (18.158)

Perform the matrix algebra in eq. (18.158) to find the 7X7 mass matrix

φx′ Nφ ζ( ) u k( ){ }= δφx′ Nφ ζ( ) b k( ){ }=

Nφ ζ( ) 0 η1′ 0 η2′ 0 η3′ 0=

2
hk

-----v′ φx+ 
 

Nψ ζ( ) u k( ){ }= 2
hk

-----δv′ δφx+ 
 

Nψ ζ( ) b{ }=

Nψ ζ( )
2
hk

-----η1′ η1
2
hk

-----η2′ η2
2
hk

-----η3′ η3
2
hk

-----η4′=

b k( ){ }T
N

T mrx
2 0

0 m
N u̇̇

k( )
{ } 2

hk
----- Nφ

T
EIxx

2
hk
----- Nφ

u k( ){ } 2
hk
----- Nψ

T
syy Nψ

u k( ){ }+ +
 
 
  hk

2
----- ζd

1–

1

∫ 
 
 

k 1=

M

∑ =

b k( ){ }T Q k( ){ } F k( ){ }+( )
k 1=

M

∑

b k( ){ }T
M u̇̇

k( )
{ } K u k( ){ } Q k( ){ } F k( ){ }+( )–+( ) 0= b k( ){ } 07X1≠( )∀

M u̇̇
k( )

{ } K u k( ){ }+ Q k( ){ } F k( ){ }+=

M N
T mrx

2 0

0 m
N

hk

2
----- ζd

1–

1

∫= K
2
hk
----- Nφ

T
EIxx

2
hk
----- Nφ

2
hk
----- Nψ

T
syy Nψ

+ 
  hk

2
----- ζd

1–

1

∫=
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. (18.159)

Perform the matrix algebra in of eq. (18.158) to find the 7X7 stiffness matrix

. (18.160)

18.8.2 Method of dynamic condensation

To eliminate the internal degrees of freedom we employ the Guyan reduction method (Craig, p. 413) and (Qu, 
2004, p. 52). The Guyan condensation matrix is determined by ignoring the inertia terms in the internal degrees 
of freedom. Of course, an error is introduced with respect to the full dynamic model of element Ωk. Refer to the 
discussions about the error in the latter references. Let

, (18.161)

where the 3X4 matrix  is the Guyan condensation matrix which was developed in the static condensation 

procedure of article 17.3.3 on page 514. Matrix  in eq. (17.102) on page 514 is equal to the matrix . 

The explicit form of eq. (18.161) is

M mhk

1 3⁄ 0 1 6⁄ 0 1– 2 6⁄ 0 1 6 10⁄

0 rx
2 3⁄ 0 rx

2 6⁄ 0 rx
2– 2 6⁄ 0

1 6⁄ 0 1 3⁄ 0 1– 2 6⁄ 0 1– 6 10⁄

0 rx
2 6⁄ 0 rx

2 3⁄ 0 rx
2– 2 6⁄ 0

1– 2 6⁄ 0 1– 2 6⁄ 0 1 5⁄ 0 0

0 rx
2– 2 6( )⁄ 0 rx

2– 2 6⁄ 0 rx
2 5⁄ 0

1 6 10( )⁄ 0 1– 6 10⁄ 0 0 0 1 21⁄

=

K

syy hk⁄ syy– 2⁄ syy– hk⁄ syy– 2⁄ 0 syy 6⁄ 0

syy– 2⁄ EIxx hk⁄ hksyy 3⁄+ syy 2⁄ EIxx– hk⁄ hksyy 6⁄+ syy– 6⁄ hksyy– 2 6⁄ 0

syy– hk⁄ syy 2⁄ syy hk⁄ syy 2⁄ 0 syy– 6⁄ 0

syy– 2⁄ EIxx– hk⁄ hksyy 6⁄+ syy 2⁄ EIxx hk⁄ hksyy 3⁄+ syy 6⁄ hksyy– 2 6⁄ 0

0 syy– 6⁄ 0 syy 6⁄ 2syy hk⁄ 0 0

syy 6⁄ hksyy– 2 6⁄ syy– 6⁄ hksyy– 2 6⁄ 0 2EIxx hk⁄ hksyy 5⁄+ syy 15⁄

0 0 0 0 0 syy 15⁄ 2syy hk⁄

=

u k( ){ }
I4X4

Gau

u2k 1–

u2k

u2k 1+

u2k 2+

TR

u2k 1–

u2k

u2k 1+

u2k 2+

= =

  

    

7X1

7X4

Gau

Gaq Gau
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. (18.162)

The coefficients in the virtual generalized displacements (18.144) are also transformed through matrix :

. (18.163)

Substitute the transformation for the generalized displacement  in eq. (18.161), and the transformation of 
the virtual coefficients (18.163), into the matrix form of Hamilton’s principle (18.156) to get

. (18.164)

The previous equation is to be satisfied for every choice of . Consequently, we 

obtain the reduced form of the equations of motion in the external degrees of freedom for element Ωk:

. (18.165)

The 4X4 symmetric mass matrix , the 4X4 symmetric stiffness matrix , and the 4X1 generalized force 

vector, are given by

, , and . (18.166)

The explicit form of the mass matrix is

u2k 1–

u2k

u2k 1+

u2k 2+

u1
k( )

u2
k( )

u3
k( )

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
hk

2 6
---------- 0
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2 6
----------
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12EIxx hk
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------------------------------------
3 2⁄ hk
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12EIxx hk
2syy+

------------------------------------
6hksyy

12EIxx hk
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------------------------------------
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------------------------------------

hk
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10 12EIxx hk
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----------------------------------------------------
hk

3– syy

2 10 12EIxx hk
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-------------------------------------------------------
hk
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10 12EIxx hk
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----------------------------------------------------
hk
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2 1012EIxx hk
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--------------------------------------------------
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u2k
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u2k 2+

=

TR

b k( ){ } TR
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b2k
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b2k 2+

=

  

  7X1
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u k( ){ }

b2k 1– b2k b2k 1+ b2k 2+ TR

T
M TR
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T
K TR

u2k 1–

u2k

u2k 1+

u2k 2+

TR

T
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01X4≠
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u̇̇2k 1+

u̇̇2k 2+

KR

u2k 1–

u2k

u2k 1+

u2k 2+

+ R{ }=
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, (18.167)

where formulas for the dimensionless coefficients ,  follow:

(18.168)

(18.169)

(18.170)

(18.171)

(18.172)

, (18.173)

Note that of the sixteen coefficients  only six are independent. The 4X4 stiffness matrix  is the same 4X4 

stiffness matrix given by eq. (17.106) on page 515.

Example 18.4 Free vibration of a cantilever beam

Consider the homogeneous, uniform cantilever beam shown in figure 18.18(a). The beam is a thin-walled tube 

with the data from example 6.5 on page 162. The length l = 0.8 m, cross-sectional area , 

second area moment , radius of gyration , modulus of elas-

ticity , transverse shear coefficient , and the mass density . 

The flexural stiffness .

Determine the natural frequencies in Hz and the corresponding vibration modes for the one-element model 
shown in figure 18.18(b). 

Solution.  Generalized displacements  for all . So formulate the restrained structural 

stiffness matrix, and the mass matrix, in DOFs 3 and 4. The total mass of the beam is   
. The numerical result for the 4X4 mass matrix (18.167) is

MR
mhk

µ11 hkµ12– µ13 hkµ14

hkµ21– hk
2µ22 hkµ23– hk

2µ24–

µ31 hkµ32– µ33 hkµ34

hkµ41 hk
2µ42– hkµ43 hk

2µ44

=

µij i j, 1 2 3 4, , ,=

µ11 µ33
1680 EIxx( )2 294EIxxhk

2syy hk
2 13hk

2 42rx
2+( )syy

2+ +

35 12EIxx hk
2syy+( )2

---------------------------------------------------------------------------------------------------------------------------= =

µ21 µ12 µ43 µ34
1260 EIxx( )2 21EIxx 11hk

2 60rx
2–( )syy hk

2 11hk
2 21rx

2+( )syy
2+ +

210 12EIxx hk
2syy+( )2

----------------------------------------------------------------------------------------------------------------------------------------------------= = = =

µ31 µ13
3 560 EIxx( )2 84EIxxhk

2syy hk
2 3hk

2 28rx
2–( )syy

2+ +( )

70 12EIxx hk
2syy+( )2

--------------------------------------------------------------------------------------------------------------------------= =

µ41 µ14 µ32 µ23
2520 EIxx( )2 126EIxx 3hk

2 20rx
2+( )syy hk

2 13hk
2 42rx

2–( )syy
2+ +

420 12EIxx hk
2syy+( )2

----------------------------------------------------------------------------------------------------------------------------------------------------= = = =

µ22 µ44
126 EIxx( )2 hk

2 40rx
2+( ) 21EIxxhk

2 hk
2 10rx

2+( )syy hk
4 hk

2 14rx
2+( )syy

2+ +

105hk
2 12EIxx hk

2syy+( )2
------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =

µ42 µ24
504 EIxx( )2 hk

2 20rx
2–( ) 84EIxxhk

2 hk
2 10rx

2+( )syy hk
4 3hk

2 14rx
2+( )syy

2+ +

420hk
2 12EIxx hk

2syy+( )2
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =

µij KR

A 171.014 6–×10 m2=

Ixx 124.25 9–×10 m4= rx Ixx A⁄ 0.026955 m= =

E 68.3GPa= syy 2.195 MN= ρ 2 710 Kg./m3,=

EIxx 8 486.28 N-m2,=

u1 t( ) u2 t( ) 0= = t 0≥

mh1 ρAh1 0.37075 Kg= =
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. (a)

The numerical evaluation of the 4X4 stiffness matrix is

. (b)

The mass and stiffness matrices are partitioned in terms of known and unknown generalized displacements as 
shown in eqs. (a) and (b). The equations of motion for the generalized displacements  and  are

. (c)

Assume a harmonic motion given by the equation

. (d)

Substitute eq. (d) into the equation of motion (c) to get

, or , (e)

where . The eigenvalues and eigenvectors are

z

v z t,( )y

l h1 l=

(a) (b)

u1

u2

u3

u4

Fig. 18.18 (a) Cantilever beam. (b) One-element model.

φx z t,( )

MR

mh1

420
----------

155.29 17.3257– 54.7098 10.6725
17.3257– 2.55726 10.6725– 1.9736–

54.7098 10.6725– 155.29 17.3275
10.6725 1.9736– 17.3275 2.55726

Mββ Mβα

Mαβ Mαα

= =

u̇̇1 u̇̇2 u̇̇3 u̇̇4

KR

185461. 74184.2– 185461.– 74184.2–

74184.2– 40281.8 74184.2 19065.6
185461.– 74184.2 185461. 74184.2
74184.2– 19065.6 74184.2 40281.8

Kββ Kβα

Kβα Kαα

= =

u1 u2 u3 u4

u3 t( ) u4 t( )

Mαα
u̇̇3

u̇̇4

Kαα

u3

u4

+ 0
0

=

u3 t( )

u4 t( )

q3

q4

ωt α–( )cos=

Kαα
λ Mαα

– 
  q3

q4

0= 18 5461, 74 184.2,
74 184.2, 40 281.8,

λ 0.137083 0.0152959
0.0152959 0.00225743

–
 
 
  q3

q4

0
0

=

λ ω2=
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. (f)

The frequencies in Hertz are

. (g)

The lateral displacement for the first vibration mode is given by

 , (h)

where the interior generalized displacements for mode one are determined from

. (i)

The 3X4 matrix  is obtained from the last three rows of eq. (18.162). Its numerical evaluation is

. (j)

The interior generalized displacement vector for the first mode is

. (k)

Hence, the expression for the lateral displacement in the first mode is

. (l)

The lateral displacement for the second vibration mode is given by

 , (m)

where the interior generalized displacements for mode two are determined from

. (n)

λ1 q1{ },( ) 541 936 0.509895–

0.860236
, ,

 
 
 

= λ2 q2{ },( ) 4.80887 7×10 0.102686–

0.994714
,

 
 
 

=

ω1 λ1 2π( )⁄ 117.164 Hz= = ω2 λ2 2π( )⁄ 1 103.68 Hz,= =

v1 ζ( ) η2 ζ( ) q3( )1 η3 ζ( ) u1
1( )( )1 η4 ζ( ) u3

1( )( )1+ +=

u1
1( )

u2
1( )

u3
1( )

1

Gau

0
0
q3

q4 1

=

Gau

Gau

0 0.163299 0 0.163299–

2.85495– 1.14198 2.85495 1.14198
0.294858 0.117943– 0.294858– 0.117943–

=

u1
1( )

u2
1( )

u3
1( )

1

0 0.163299 0 0.163299–

2.85495– 1.14198 2.85495 1.14198
0.294858 0.117943– 0.294858– 0.117943–

0
0

0.509895–

0.860236

0.14047568–

0.47335242–

0.048887805

= =

v1 ζ( ) η2 ζ( ) 0.509895–( ) η3 ζ( ) 0.14047568–( ) η4 ζ( ) 0.048887805( )+ +=

v2 ζ( ) η2 ζ( ) q3( )2 η3 ζ( ) u1
1( )( )2 η4 ζ( ) u3

1( )( )2+ +=

u1
1( )

u2
1( )

u3
1( )

2

Gau

0
0
q3

q4 2

=
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Numerical evaluation for the interior generalized displacement vector in the second mode is

. (o)

Hence, the lateral displacement in the second mode is

. (p)

For this two-degree-of-freedom model there is no prediction of the third and higher frequencies.J

For the cantilever beam of example 18.4, numerical analyses were conducted with two to sixteen equally 
spaced condensed elements. The details are omitted here, but the results for the first four frequencies are listed in 
table 18.4. The frequencies decrease with increasing mesh refinement, and the lowest two frequencies are con-
verging to 116.4 Hz and 668 Hz, respectively. The last row in the table lists the frequencies from a continuum 
analysis of the cantilever beam using Euler-Bernnolli beam theory. The inclusion of transverse shear deformation 
and rotary inertia in the finite element model result in lower values for the frequencies with respect to the Euler-
Bernnolli theory, particularly in the higher frequencies. 

The lateral displacement for the first four modes of the cantilever beam are shown in figure 18.19. The mode 
shapes were plotted such that the tip displacement was set equal to 0.2 m for clarity in the plots. The lateral dis-
placement passes through zero in the open domain  once for mode two, twice for mode three, and 
thrice for mode four. These zeros crossings are called vibration nodes. Vibration nodes are not to be confused 

Table 18.4 Free vibration frequencies of the cantilever beam

Number of 
condensed elements , Hz , Hz , Hz , Hz

1 117.2 1,103.7 ----- -----

2 116.5 682.0 2,344.4 6,153.1

4 116.4 672.5 1,735.9 3,109.9

8 116.4 669.2 1,691.1 2,979.9

16 116.4 668.4 1,679.2 2,920.3

Euler-Bernoullia

a. The free vibration analysis of a continuum model of the cantilever beam using Euler-
Bernoulli theory (  and ) is from the text by Craig (1981, p. 215).

118.3 741.5 2,076.2 4,068.8

u1
1( )

u2
1( )

u3
1( )

2

0 0.163299 0 0.163299–

2.85495– 1.14198 2.85495 1.14198
0.294858 0.117943– 0.294858– 0.117943–

0
0

0.102686–

0.994714

0.1624358–

0.8427801
0.087041765–

= =

v2 ζ( ) η2 ζ( ) 0.102686–( ) η3 ζ( ) 0.1624358–( ) η4 ζ( ) 0.087041765–( )+ +=

ω1 ω2 ω3 ω4

ψy 0= syy ∞→

0 z 0.8 m< <
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with finite element nodes. 

18.9 Vibrations of a coplanar frame

A bar in a coplanar frame is subject to extension and bending. In the local x-y-z coordinates of a bar, we assume 
that it is symmetric with the respect to the longitudinal x-z plane and the y-z plane as in article 18.8. The dynamic 
response of the bar for extension and bending in its y-z plane is governed by eq. (18.115) on page 555, which 
reduces to

. (18.174)

We use Euler-Bernoulli theory so that transverse shear strain , which means the cross-sectional rota-

tion. . Also, neglect the rotary inertia  in eq. (18.174). Ignoring rotary inertia and transverse 

shear deformation has negligible effect on the first few modes of vibration for slender bars (Langhaar, p. 288)1. 
Let one finite element model the bar so that  and . The frame element is shown in its refer-

ence configuration in figure 18.20(a) and in rotated configuration in figure 18.20(b). The 6X1 displacement vec-
tor of the frame element shown in figure 18.20(a) is

1. In regard to the effects of rotary inertia and shear deformation, Langhaar states: “they may cause appreciable perturbations 
of all modes when the theory of beams is employed as a basis for a study of vibrations of complicated structures, such as 
airplane wings and hulls of ships.”
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Fig. 18.19 First four vibration modes of the cantilever beam.
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------- 
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  zd

0

L

∫ =

Q2δv Q3δw Q4δφx+ +[ ]
z 0=

Q8δv Q9δw Q10δφx+ +[ ]
z L=

fy z t,( )δv z( ) zd

0

L

∫ fz z t,( )δw z( ) zd

0
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. (18.175)

The displacements are expressed as

, (18.176)

where the interpolation matrix is

. (18.177)

The interpolation functions for the lateral displacement , , are the Hermite cubic interpola-

tion functions given by eq. (17.140) on page 532. The virtual displacements have the same interpolation as the 
displacements, 

, (18.178)

where the 6X1vector  given in the following equation is independent of the nodal displacements

. (18.179)

The weak form for the element is

, (18.180)

u3i 2– Q3i 2–,

u3i 1– Q3i 1–,

u3i Q3i,

u3j 2– Q3j 2–,

w3 Q3,

v2 Q2,
φ4 Q4,

w9 Q9,

v8 Q8,
φ10 Q10,

L
z

u3j 1– Q3j 1–,

u3j Q3j,
θ

node i

node j

Fig. 18.20  (a) Reference frame element. (b) Rotated frame element.

(a) (b)
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w ζ t,( )

N ζ( ) u t( ){ }=

N ζ( )
0 φ1 ζ( ) φ2 ζ( ) 0 φ3 ζ( ) φ4 ζ( )
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=
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where the prime superscript means the derivative with respect to ζ, and the generalized force vector is

. (18.181)

The displacement derivatives with respect to ζ appearing in the stiffness terms of eq. (18.180) are written in the 
matrix form

, (18.182)

where the 2X6 matrix relating the derivatives of the displacements to the displacement vector is given by

. (18.183)

Substitute eqs. (18.176), (18.178), and (18.182) into (18.180) to get

, (18.184)

where the external force vector due to the distributed loading is

. (18.185)

We identify the mass matrix for the reference element as

. (18.186)

and the stiffness matrix for the element as

. (18.187)
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0 44– 16 0 26– 12–

70 0 0 140 0 0
0 54 26– 0 156 44
0 26 12– 0 44 16

= =

K DN
T EIxx 0

0 EA
DN

L
2
--- ζd

1–

1

∫
EIxx

L3
----------

L rx⁄( )2 0 0 L rx⁄( )2– 0 0

0 12 6L– 0 12– 6L–

0 6L– 4L2 0 6L 2L2

L rx⁄( )2– 0 0 L rx⁄( )2 0 0

0 12– 6L 0 12 6L

0 6L– 2L2 0 6L 4L2

= =
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In the stiffness matrix (18.187) . Equation (18.184) is valid for every choice of , which 

leads to the equation of motion (18.188) for the reference element below.

. (18.188)

The matrix equation of motion for the rotated frame element in figure 18.20(b) is obtained by using the 
transformation matrix in eq. (16.85) on page 478. This transformation equation is repeated below as eq. (18.189):

, (18.189)

where  and . The generalized displacement vector for the rotated frame element is given by 

. The equation of motion for the rotated element is determined from eq. (18.188) by pre-

multiplying it by : 

. (18.190)

Equation Eq. (18.190) is written as 

. (18.191)

The 6X1 transformed generalized force vectors are

, and (18.192)

. (18.193)

The mass and stiffness matrices for the rotated frame element are

, and (18.194)

rx
2 Ixx A⁄= b{ } 06X1≠

M
d2

dt2
------- u t( ){ } K u t( ){ }+ Q{ } F{ }+( )=

T

c s 0 0 0 0
s– c 0 0 0 0

0 0 1 0 0 0
0 0 0 c s 0
0 0 0 s– c 0
0 0 0 0 0 1

=

c θcos= s θsin=

u k( ){ } T u
k( )

{ }=

T
T

T
T

M T
d2

dt2
------- u{ } T

T K[ ] T u{ }+ T
T Q{ } F{ }+( )=

M
d2

dt2
------- u{ } K[ ] u{ }+ Qi j–{ } Fi j–{ }+=

Qi j–{ } cQ3 sQ2+( ) cQ2 sQ3–( ) Q9 cQ9 sQ8+( ) cQ8 sQ9–( ) Q10
T

=

Q3i 2– Q3i 1– Q3i Q3j 2– Q3j 1– Q3j

T
=

Fi j–{ } cF3 sF2+( ) cF2 sF3–( ) F9 cF9 sF8+( ) cF8 sF9–( ) F10
T

=

M
mL
420
---------

140c2 156s2+ 16cs– 44s 70c2 54s2+ 16cs 26cs–

16cs– 156c2 140s2+ 44c– 16cs 54c2 70s2+ 26c

44s 44c– 16 26s 26c– 12–

70c2 54s2+ 16cs 26s 140c2 156s2+ 16cs– 44s–

16cs 54c2 70s2+ 26c– 16cs– 156c2 140s2+ 44c

26cs– 26c 12– 44s– 44c 16

=
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. (18.195)

Example 18.5 A two-bar frame subject to harmonic excitation

The frame shown in figure 18.21(a) consists of two identical bars of length L. It is modeled with two finite ele-
ments. Element Ω1 is vertical with c = 0 and s =1, and element Ω2 is horizontal with c   = 1 and s = 0. The base 

of the vertical bar is subject to a horizontal harmonic displacement , where the amplitude is denoted by 
a and the driving frequently by Ω. There are nine degrees of freedom as shown in figure 18.21(b) for the unre-

strained frame. model. The active, or unknown, generalized displacement vector is

 . (a)

The prescribed displacement vector is

. (b)

The mass and stiffness matrices for element Ω1 are

K
EI
L3
------

L
rx
---- 
  2

c2 12s2+ L
rx
---- 
  2

12– cs 6Ls– L
rx
---- 
  2

c2 12s2+– 12 L
rx
---- 
  2

– cs 6Ls

L
rx
---- 
  2

12– cs 12c2 L
rx
---- 
  2

s2+ 6Lc– 12 L
rx
---- 
  2

– cs 12c2 L
rx
---- 
  2

s2+– 6Lc–

6Ls– 6Lc– 4L2 6Ls– 6Lc 2L2

L
rx
---- 
  2

c2 12s2+– 12 L
rx
---- 
  2

– cs 6Ls– L
rx
---- 
  2

c2 12s2+ L
rx
---- 
  2

12– cs 6Ls–

12 L
rx
---- 
  2

– cs 12c2 L
rx
---- 
  2

s2+– 6Lc L
rx
---- 
  2

12– cs 12c2 L
rx
---- 
  2

s2+ 6Lc

6Ls 6Lc– 2L2 6Ls– 6Lc 4L2

=

a Ωt( )sin

L

L

a Ωt( )sin
1

2

3

4

5
6

7
8

9

(a) (b)

Fig. 18.21 (a) Two-bar frame subject to harmonic excitation. (b) Degree of freedom numbering.

uα t( ){ } u3 t( ) u4 t( ) u5 t( ) u6 t( ) u9 t( )
T

=

uβ t( ){ } u1 t( ) u2 t( ) u7 t( ) u8 t( )
T

a Ωt( )sin 0 0 0
T= =
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. (c)

For element Ω2 the mass matrix is given by eq. (18.186), and the stiffness matrix is given by eq. (18.187), where 

the order of the columns is associated with generalized displacements . Assemble the mass 

matrices to get the 9X9 unrestrained mass matrix  with due regard in the summation of 

the matrix elements from the individual mass matrices to their location in . Similarly, the 9X9 unrestrained 

stiffness matrix is assembled as . After assembly, the unrestrained matrix equation of 

motion is reordered by simultaneously interchanging the rows and columns to . 

The resulting matrix equation of motion in partitioned form is

. (d)

The submatrices are

(e)

(f)

M 1( )
mL
420
---------

156 0 44 54 0 26–

0 140 0 0 70 0
44 0 16 26 0 12–

54 0 26 156 0 44–

0 70 0 0 140 0
26– 0 12– 44– 0 16

= K 1( )
EIxx

L3
----------

12 0 6L 12– 0 6L

0 L rx⁄( )2 0 0 L rx⁄( )2– 0

6L 0 4L2 6L– 0 2L2

12– 0 6L– 12 0 6L–

0 L rx⁄( )2– 0 0 L rx⁄( )2 0

6L 0 2L2 6L– 0 4L2

=

u̇̇1 u̇̇2 u̇̇3 u̇̇4 u̇̇5 u̇̇6
u1 u2 u3 u4 u5 u6

u4 u5 u6 u7 u8 u9

Mu M 1( ) M 2( )+=

Mu

Ku K 1( ) K 2( )+=

u3 u4 u5 u6 u9 u1 u2 u7 u8

Mαα Mαβ

Mβα Mββ

u̇̇α{ }

u̇̇β{ }

Kαα Kαβ

Kβα Kββ

uα{ }

uβ{ }
+

Qα{ }

Qβ{ }
=

Mαα
mL
420
---------

16 26 0 12– 0
26 296 0 44– 0
12– 44– 44– 32 12–

0 0 26 12– 16
0 0 26 12– 16

= Mαβ
mL
420
---------

44 0 0 0
54 0 70 0
0 70 0 54
26– 0 0 26–

0 0 0 44

Mβα

T
= =

Mββ
mL
420
---------

156 0 0 0
0 140 0 0
0 0 140 0
0 0 0 156

= Kαα

EIxx

L3
----------

4L2 6L– 0 2L2 0

6L– 12 L rx⁄( )2+ 0 6L– 0

0 0 12 L rx⁄( )2+ 6L– 6L–

2L2 6L– 6L– 8L2 2L2

0 0 6L– 2L2 4L2

=
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(g)

. (h)

There are no generalized forces prescribed in degrees of freedom 3, 4, 5, 6, and 9. The unknown generalized 
reaction force vector  corresponds to the prescribed generalized displacement vector . The matrix 

equation of motion for the unknown generalized displacements is

.

Numerical data are taken from example 6.5 on page 162: , , 

, , , , , and 

. The eigenvalue problem for the free vibrations of the frame is

. (i)

The numerical results for the eigenvalues and corresponding eigen vectors are

(j)

(k)

. (l)

The natural frequencies are given by , .

Kαβ

EIxx

L3
----------

6L 0 0 0

12– 0 L rx⁄( )2– 0

0 L rx⁄( )2– 0 12

6L 0 0 6L

0 0 0 6L

Kβα

T
= = Kββ

EIxx

L3
----------

12 0 0 0

0 L rx⁄( )2 0 0

0 0 L rx⁄( )2 0

0 0 0 12

=

Qα{ } 05X1= Qβ{ } Q1 Q2 Q7 Q9

T
=

Qβ{ } uβ{ }

Mαα
u̇̇α{ } Mαβ

u̇̇β{ } Kαα
uα{ } Kαβ

uβ{ }+ + + 05X1=

a 0.03812 m= A 171.014 6–×10 m2=

Ixx 124.25 9–×10 m4= L 0.8 m= rx 0.0269546 m= E 68.3 9×10  N/m2= ρ 2 710 Kg/m3,=

m ρA 0.463448 Kg/m= =

Kαα
φ{ } λ Mαα

φ{ }– 05X1=

λ1 φ1{ },( ) 9.99471
7

×10

0.324108
0.268035
0.268035
0.324108

,

 
 
 
 
 
 

= λ2 φ2{ },( ) 6.783
7

×10

1–

0.595335
0.595335–

1.026–
15–

×10

1

,

 
 
 
 
 
 
 
 

=

λ3 φ3{ },( ) 1.78362
7

×10

1
0.105789–

0.105789–

0.972216
1

,

 
 
 
 
 
 
 
 

= λ4 φ4{ },( ) 2.89664
6

×10

1
0.0104001
0.0104001–

2.72413–
15–

×10

1–

,

 
 
 
 
 
 
 
 

=

λ5 φ5{ },( ) 854 421

1
0.00365009
0.00365009

0.991238–

1

, ,

 
 
 
 
 
 
 
 

=

ωi λi= i 1 2 … 5, , ,=
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(m)

The prescribed displacement terms in the matrix equation of motion lead to a generalized force vector defined by

. (n)

Numerical evaluation of this generalized force vector is

. (o)

The matrix equation of motion governing the unknown displacements is rewritten as

. (p)

The initial conditions are  and . Transform from the physical displacements to 

the modal displacements by , where the columns of the modal matrix  are the eigen-

vectors. Equations of motion in modal coordinates are

, (q)

where the generalized mass, stiffness, and force vector are

(r)

,

, and where (s)

. (t)

The equation of motion for each modal coordinate is in the form

, (u)

ω1 ω2 ω3 ω4 ω5 9 997.36, 8 235.9, 4 223.3, 1 701.95, 924.346 rad/s=

Qα{ } Mαβ
u̇̇β{ }– Kαβ

uβ{ }–=

Qα{ }

3 032.78,– 0.00148063Ω2+

7 581.96, 0.00181714Ω2+

0

3 032.78,– 0.000874919Ω2–

0

Ωtsin=

Mαα
u̇̇α{ } Kαα

uα{ }+ Qα{ }=

uα 0( ){ } 05X1= u̇α 0( ){ } 05X1=

uα t( ){ } Φ[ ] q t( ){ }= Φ[ ]

Mg
q̇̇ Kg

+ q{ } Fg t( ){ }=

Mg
diag 0.02135 0.140492 0.0144387 0.0292596 0.098909=

Kg
diag 2134.77 9529.59 257.532 84.7545 84.5099 103=

Fg t( ){ } A Ω( ){ } Ωtsin=

A Ω( ){ }

1 983.5,– 92.0225
6–

×10 Ω2+

7 275.15, 463.879
6–

×10 Ω2–

6 061.51,– 610.799
6–

×10 Ω2+

2 953.93,– 1 499.53,
6–

×10 Ω2+

1.10169 2 354.52,
6–

×10 Ω2+

=

q̇̇i ωi
2qi+ 1

Mg i i,( )
------------------Ai Ω( ) Ωt( )sin= i 1 2 … 5, , ,=
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subject to initial conditions , and . The solution for  is

. (v)

The solution for  is

. (w)

Transform from modal coordinates to physical coordinates by . The vertical displacement 

at the joint connecting the frame members is , and for  it is

. (x)

The first term on the right-hand side of  is the forced motion and has the same frequency as the excitation. 

The remaining five terms on the right-hand side constitute the natural motion with contributions from the five 
natural frequencies of the frame. A graph of the displacement response is shown in figure 18.9 for , 

where τ is the period of the lowest natural frequency (i.e., ). The displacement 

response exhibits the phenomena of beating.

 Pure undamped beating, in general, is the combination of two sinusoids that have differ-
ent but closely spaced frequencies, as the two sinusoids pass into and out of phase with each 
other. (Hallauer, 2016).

In the case of the frame response shown in figure 18.22, the driving frequency  is close to the lowest natural 

frequency , and it is the combination of the two sinusoids  and  that are the source of beat-

ing.

For , the displacement  is

. (y)

A graph of the displacement response is shown in figure 18.23 for , where τ is the period of the lowest 

natural frequency. As shown in the graph, the amplitude of the vibrations for  increase linearly in time, 

which is the condition of resonance. 

qi 0( ) 0= q̇i 0( ) 0= Ω ωi≠

qi t( )
Ai Ω( )

Mg i i,( ) ωi
2 Ω2–( )

------------------------------------------- Ω–
ωi

------- ωit( )sin Ωt( )sin+=

Ω ωi=

qi t( )
Ai ωi( )–

2Mg i i,( )ωi
2

----------------------------- ωit( ) ωit( )cos ωit( )sin–[ ]=

uα t( ){ } Φ q t( ){ }=

u5 t( ) Ω 0.9ω1=

u5 t( ) 256.346
6–

×10 Ωt( )sin 333.609
6–

×10 ω5t( )sin– 151.009
6–

×10 ω4t( )sin– 47.4688
6–

×10 ω3t( )sin– +=

41.6693
6–

×10 ω2t( )sin 20.1981
6–

×10 ω1t( )sin+

u5 t( )

0 t 20τ≤ ≤

τ 2π( ) ω5⁄ 0.006797 s= =

Ω

ω5 Ωt( )sin ω5t( )sin

Ω ω5= u5 t( )

u5 t( ) 0.406236t Ωt( )cos– 319.34
6–

×10 ω5t( )sin 158.115
6–

×10 ω4t( )sin– 52.3109
6–

×10 ω3t( )sin–+ +=

45.9088
6–

×10 ω2t( )sin 22.3042
6–

×10 ω1t( )sin+

0 t 10τ≤ ≤

Ω ω5=
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18.11 Practice exercises

1. The Lagrangian for a three-degree-of-freedom model of Atlas I is

, (18.196)

where  is the displacement at the bottom of the booster,  is the displacement at the top of Centaur, 

and  is the displacement of the payload. These displacements are defined with respect to the equilibrium 

state. The combined mass of the booster and Centaur is denoted by m1, the mass of the fairing by m2, and the 
mass of the payload by m3. Masses are determined from the weight data given in “Description of Atlas I” on 
page 535. The spring stiffness k12 and k23 are listed in “Step 1: Equations of motion about equilibrium.” on 
page 538. Lagrange’s equations of motion are

, (18.197)

where R1 = 77,100. lb is the net thrust. Determine the maximum payload load factor during the initial instants of 
lift off. Partial answer: the value and its associated eigenvector for the smallest elastic mode is

. (18.198)

The eigenvector is normalized such that the magnitude of its largest component is a positive one.

2. Determine the natural frequencies in Hz and the corresponding modal vectors for the five-bar, pin-jointed 
truss shown in figure 18.24. Normalize the modal vectors such that the largest component in the vector is a posi-
tive 1. Sketch the mode shapes. 

L
m1

6
------ ẇ1( )

2
ẇ1ẇ2 ẇ2( )

2
+ +[ ] 1

2
---m2 ẇ2( )

2 1
2
---m3 ẇ3( )

2 1
2
---k12 w1 w2–( )2– 1

2
---k23 w3 w2–( )2–+ +=

w1 t( ) w2 t( )

w3 t( )

d
dt
----- ∂L

∂ẇ1

--------- 
  ∂L

∂w1
---------– R1= d

dt
----- ∂L

∂ẇ2

--------- 
  ∂L

∂w2
---------– 0= d

dt
----- ∂L

∂ẇ3

--------- 
  ∂L

∂w3
---------– 0=

λ2 φ2{ },( ) 15 710.5
0.795164–

0.760969
1

, ,

 
 
 
 
 

=
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3. The three-bar truss in example 18.3 on page 563 is subjected to the following initial conditions

. (18.199)

a) Determine the generalized mass matrix , the generalized stiffness matrix , and the initial con-

ditions in modal coordinates (begin with eqs. (d) and (e)).

b) Determine the solution in modal coordinates and in physical coordinates.

c) Determine the transient bar forces .

d) Plot the bar forces found in part (c) for .

4. Model the cantilever beam in example 18.4 on page 571 with two equal length elements as shown in figure 
18.25.

a) Determine the natural frequencies in Hz and the corresponding modal vectors. Normalize the modal 
vectors such that the tip displacement u5 is equal to one in each mode. Refer to table 18.4.

b) Determine the percentage error of each frequency with respect to the exact frequency from the continu-
ous beam vibration analysis.

c) Plot the lateral displacement of the beam, , for each mode using eq. (17.69) on page 509 

and matrix  from the last three rows of eq. (18.162). 

1

2

3

4
5

6

7

8

1

23

4

3 m

4 m

E 70 GPa=

A 475 6–×10= m2

ρ 2 710 Kg/m3,=

All bars

(a) (b)

Fig. 18.24 (a) Five-bar truss,
(b) Degrees of freedom.

u1 0( )

u2 0( )
0
0

= td

du1

td

du2

t 0=

0
1

m/s=

Mg[ ] Kg[ ]

N1 2– t( ) N1 3– t( ) and N1 4– t( ), ,

0 t 0.015 s≤ ≤

0 z 0.8 m≤ ≤

Gaq

0.8 m

0.4 m 0.4 m

u1

u2

u3

u4

u5

u6

z
Fig. 18.25 Beam of example 18.4 
modeled with two elements.
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5. The uniform beam shown in figure 18.26 is simply supported at 
each end. The material and geometric properties are the same as those 
given in example 18.4,

a. Determine the first two natural frequencies in Hz for the 
beam modeled with one element. Use the condensed mass 
matrix (18.167) and stiffness matrix (17.106) on page 515.

b. Compute the percent discrepancy of the frequencies with re-
spect to the continuous beam solution. The frequencies for the 
continuous beam vibration analysis in rad/s are listed in Graig 

(1981) as  

y

z

0.8 m

v z t,( )

φx z t,( )

Fig. 18.26 Simply supported beam.

ωn
nπ
l

------ 
  2 EIxx

ρA
----------= n 1 2.,=
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A-1

 

APPENDIX A

 

Linear elasticity of solid 
bodies

 

Solid mechanics is a branch of continuum mechanics that studies the behavior of solid materials under the action 
of forces, temperature changes, or other external agents. Elasticity is a branch of solid mechanics that refers to 
the ability of the body to return to its original size and shape after the forces causing deformation are removed. In 
this appendix the basic equations of the three-dimensional elasticity theory are developed at material point in the 
body. A material point, or particle, is identified by its position in a rectangular cartesian coordinate system 

. The fundamental equations of elasticity consist of the geometry of deformation in Article A.1, the 

stresses and equilibrium in Article A.2, and the stress-deformation relations in Article A.3. The focus is on the 
classical linear elasticity theory in which the strains are small with respect to unity and the material is linear elas-
tic. The basic equations are summarized in Article A.4 along with a description of the boundary value problems 
of elasticity ,

 

A.1 Geometry of deformation

 

A continuous three-dimensional body occupies a closed region denoted by  in the reference state. Let every 

point of  be defined in a fixed rectangular cartesian system of axes . Let  denote the closed region   

of the body after it undergoes a deformation.The position vector of the point  in region  with respect to the 

origin is

,

 

(A.1)

 

where the unit vectors along the fixed axes are . The particle at  passes to point 

 in region , where coordinates  are defined in the same fixed coordinate system. See 

Fig. A.1. The position vector of point  referred to the same origin is

.

 

(A.2)

 

The deformation of the body is defined by the equations

x1 x2 x3, ,( )

B0

B0 x1 x2 x3, , B

P0 B0

r x1 î1 x2 î2 x3 î3+ +=

î1 î2 î3, , P0: x1 x2 x3, ,( )

P: y1 y2 y3, ,( ) B y1 y2 y3, ,( )

P

R y1 î1 y2 î2 y3 î3+ +=
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,

 

(A.3)

 

where  are restricted to  and  are restricted to . In eq. (A.3) the , , on the 

right-hand side denotes a function of three variables , and  on the left-hand side denotes the value of 

the function. Equation (A.3) defines the final location of the particle in  that is located at point  in . To 

prohibit the possibility that a particle at point  in region  maps to more than one point in region , or visa 

versa, it is required that there is a one-to-one correspondence between points in regions  and . It follows that 

in region  eqs. (A.3) have single-valued solutions

 

(A.4)

 

The functions defined in eqs. (A.3) and (A.4) are assumed to be continuous and differentiable in their respective 
variables. Continuity insures no fracture of the body results in the deformation. If we choose eq. (A.3) to describe 
the deformation of the body then  are the independent variables, and the formulation is called the 

Lagrangian or the referential or material description. In the Lagrangian formulation we follow the particle origi-
nally at point  as the deformation proceeds. If we choose eq. (A.4) to describe the deformation of 

the body then  are the independent variables, and the formulation is called the Eulerian or spatial 

description. In the Eulerian formulation the same fixed spatial position  is occupied by different parti-
cles as the deformation proceeds. The Lagrangian description of the deformation is selected for the developments 

that follow in this appendix. The position vector of point  relative to point  is denoted by  and is called the 

displacement vector. Thus,

.

 

(A.5)

 

Components of the displacement vector are

 

 

(A.6)

y1 y1 x1 x2 x3, ,˙( )= y1 y2 x1 x2 x3, ,˙( )= y3 y3 x1 x2 x3, ,˙( )=

x1 x2 x3, , B0 y1 y2 y3, ,( ) B

r
R

P0
P

x1

x2

x3

y1

y2

y3

î2

î1

î3

Fig. A.1 A particle at point 
 in the reference 

configuration of the body and 
its position  in the 
body after deformation.

P0: x1 x2 x3, ,( )

P: y1 y2 y3, ,( )

yi i 1 2 3, ,=

x1 x2 x3, , yi

B P0 B0

P B B0

B0 B

B

x1 x1 y1 y2 y3, ,( )= x2 x2 y1 y2 y3, ,( )= x3 x3 y1 y2 y3, ,( )=

x1 x2 x3, ,

P0: x1 x2 x3, ,( )

y1 y2 y3, ,

y1 y2 y3, ,

P P0 u

u R r– y1 x1–( ) î1 y2 x2–( ) î2 y3 x3–( ) î3+ += =

u1 x1 x2 x3, ,( ) y1 x1 x2 x3, ,( ) x1–=

u2 x1 x2 x3, ,( ) y2 x1 x2 x3, ,( ) x2–=

u3 x1 x2 x3, ,( ) y3 x1 x2 x3, ,( ) x3–=
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Deformation is quantified by the change in distance between any two points in a body. Consider two infini-
tesimally close points  and  in region  that pass to points  and , respectively, in region . The dif-

ferential line element  in region  shown in Fig. A.2(a) passes to the differential line element  in 

region  shown in Fig. A.2(b). The differential position vector of line element  is 

. The square of the length of  is given by . 

The unit vector of point  with respect to point  is given by

.

Write this unit vector as

, , (A.7)

where , . The differential position vector of  is , and the 

square of its length is . Write the differential vector as  

where the unit vector of point  with respect to point  is

(A.8)

The total differentials  of the functions , , , are written in 

terms of the total differentials  by 

. (A.9)

P0 Q0 B0 P Q B

P0Q0

)

B0 PQ

)

B P0Q0

)

dr dx1 î1 dx2 î2 dx3 î3+ += dr ds2 dr dr• dx1( )2 dx2( )2 dx3( )2+ += =

Q0 P0

n̂ dr
ds
-----

dx1

ds
-------- î1

dx2

ds
-------- î2

dx3

ds
-------- î3+ += =

n̂ n1 î1 n2 î2 n3 î3+ +=

ni
dxi

ds
-------= i 1 2 3, ,= PQ

)

dR dy1 î1 dy2 î2 dy3 î3+ +=

dS2 dR dR• dy1( )2 dy2( )2 dy3( )2+ += = dR dSN̂=

Q P

N̂
dy1

dS
-------- î1

dy2

dS
-------- î2

dy3

dS
-------- î3+ + N1 î1 N2 î2 N3 î3+ += =

dy1

P

dR dSN̂=

dy2

dy3

î1

î2

î3

dx1

P0

dr dsn̂=

dx2

dx3

î1

î2

î3

Q0
Q

(a) reference configuration (b) after deformation

Fig. A.2 (a) Line element  passes to (b) line element P0Q0

)

PQ

)

dy1 dy2 dy3, ,( ) y1 x1 x2 x3, ,( ) y2 x1 x2 x3, ,( ) y3 x1 x2 x3, ,( )

dx1 dx2 dx3, ,( )

dy1

dy2

dy3

∂y1

∂x1
--------

∂y1

∂x2
--------

∂y1

∂x3
--------

∂y2

∂x1
--------

∂y2

∂x2
--------

∂y2

∂x3
--------
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∂x1
--------

∂y3

∂x2
--------
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--------

dx1
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The determinate of the 3X3 matrix in eq. (A.3) is 

, (A.10)

where J is called the Jacobian. Equations (A.3) possess a continuous single-valued solution satisfying the inverse 
(A.4) if and only if the Jacobian is positive for all points in region  (Batra, 2006). The strain of line element 

 is defined by

. (A.11)

Use the chain rule to write the square of the length of line element  with respect to the square of the length of 

line element  as

. (A.12)

From eq. (A.9) use the chain rule again to write the differential  as follows:

Substitute  from eq. (A.7), and substitute  for coordinate  from eq. (A.6), into the last 

expression for  to get

. (A.13)

Starting with differentials  and  from eq. (A.9), we perform similar manipulations leading to eq. (A.13) 

to find

. (A.14)

Substitute eq. (A.12) into eq. (A.11) to write the equivalent expression for the strain in eq. (A.11) as

, (A.15)

and use the fact that . Substitute the results from eqs. (A.13) and (A.14) into eq. (A.15) and 

write the result as

J det

∂y1

∂x1
--------

∂y1

∂x2
--------

∂y1

∂x3
--------

∂y2

∂x1
--------

∂y2

∂x2
--------

∂y2

∂x3
--------

∂y3

∂x1
--------

∂y3

∂x2
--------

∂y3

∂x3
--------

=

B0

PQ

)

εL
1
2
--- dS2 ds– 2

ds2
---------------------- 1

2
--- dS

ds
------ 
  2

1–= =

PQ
)

P0Q0

)

dS2
dy1

ds
-------- 
 

2 dy2

ds
-------- 
 

2 dy2

ds
-------- 
 

2

+ + ds2=

dy1

dy1
∂y1

∂x1
--------dx1

∂y1

∂x2
--------dx2

∂y1

∂x3
--------dx3+ +

∂y1

∂x1
--------

dx1

ds
--------

∂y1

∂x2
--------

dx2

ds
--------

∂y1

∂x3
--------

dx3

ds
--------+ + ds= =

dxi ds⁄ ni= u1 x1+ y1

dy1

dy1

ds
-------- 1

∂u1

∂x1
--------+ 

  n1
∂u1

∂x2
--------n2

∂u1

∂x3
--------n3+ +=

dy2 dy3

dy2

ds
--------

∂u2

∂x1
--------n1 1

∂u2

∂x2
--------+ 

  n2
∂u2

∂x3
--------n3+ +=

dy3

ds
--------

∂u3

∂x1
--------n1

∂u3

∂x2
--------n2 1

∂u3

dx3
--------+ 

  n3+ +=

εL
1
2
---

dy1

ds
-------- 
 

2 dy2

ds
-------- 
 

2 dy2

ds
-------- 
 

2

n1
2 n2

2 n3
2+ +( )–+ +=

n1
2 n2

2 n3
2+ + 1=
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. (A.16)

The expression (A.16) for the strain can be written in the matrix form

. (A.17)

The coefficients in the expression for the strain  are as follows:

 (A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

A.1.1 Physical interpretation of strain components 

For the line element parallel to the -axis in the reference configuration the components of the unit vector are 

, and from eq. (A.16) its strain is given by . For line element parallel to the -

axis the components of the unit vector are , and its strain is given by . For the 

line element parallel to the  axis its strain is . The physical interpretation of component  is deter-

mined from the passing of line elements  and  in region  to directions  and , respec-

tively, in region . In general the components of unit vector  are given by

, . (A.24)

If we take  in eq. (A.24), then  and in the transition from region  to region  

the unit vector . The unit vector  is given by

. (A.25)

εL ε11n1
2 ε12n1n2 ε13n1n3 ε21n2n1 ε22n2

2 ε23n2n3 ε31n3n1 ε32n3n2 ε33n3
2+ + + + + + + +=

εL n1 n2 n3

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

n1

n2

n3

=

ε11
∂u1

∂x1
-------- 1

2
---

∂u1

∂x1
-------- 
 

2 ∂u2

∂x1
-------- 
 

2 ∂u3

∂x1
-------- 
 

2
+ ++=

ε22
∂u2

∂x2
-------- 1

2
---

∂u1

∂x2
-------- 
  ∂u2

∂x2
-------- 
 

2 ∂u3

∂x2
-------- 
 

2
+ ++=

ε33
∂u3

∂x3
-------- 1

2
---

∂u1

∂x3
-------- 
 

2 ∂u2

∂x3
-------- 
 

2 ∂u3

∂x3
-------- 
 

2
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1
2
---
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∂x2
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∂x1
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∂x1
--------

∂u1

∂x2
--------

∂u2

∂x1
--------

∂u2

∂x2
--------

∂u3

∂x1
--------

∂u3

∂x2
--------+ + + += =

ε13 ε31
1
2
---

∂u1

∂x3
--------

∂u3

∂x1
--------

∂u1

∂x1
--------

∂u1

∂x3
--------

∂u2

∂x1
--------

∂u2

∂x3
--------

∂u3

∂x1
--------

∂u3

∂x3
--------+ + + += =

ε23 ε32
1
2
---

∂u2

∂x3
--------

∂u3

∂x2
--------

∂u1

∂x2
--------

∂u1

∂x3
--------

∂u2

∂x2
--------

∂u2

∂x3
--------

∂u3

∂x2
--------

∂u3

∂x3
--------+ + + += =

εij

x1

n1 n2 n3, ,( ) 1 0 0, ,( )= εL ε11= x2

n1 n2 n3, ,( ) 0 1 0, ,( )= εL ε22=

x3 εL ε33= ε12

dx1 î1 dx2 î2 B0 N̂( )1 N̂( )2

B N̂

Ni
dyi

dS
-------

dyi

ds
------- ds

dS
------

dyi

ds
------- 1

1 2εL+
---------------------- 
  ∂yi

∂x1
--------n1

∂yi

∂x2
--------n2

∂yi

∂x3
--------n3+ + 

  1

1 2εL+
---------------------- 
 = = = = i 1 2 3, ,=

n1 n2 n3, ,( ) 1 0 0, ,( )= εL ε11= B0 B

î1 N̂( )1→ N̂( )1

N̂( )1
∂y1

∂x1
-------- î1

∂y2

∂x1
-------- î2

∂y3

∂x1
-------- î3+ + 1

1 2ε11+
------------------------ 
 =
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If we and take  in eq. (A.24), then  and the transition of the unit vector is 

. The result for  is

. (A.26)

The scalar product of the two unit vectors  and  is equal to the cosine of the angle between them. Let 

this angle be denoted by  such that,

, (A.27)

where  denotes the change in the angle with respect to a right angle. Substitute eq. (A.25) for  and eq. 

(A.26) for  in the left-hand side of eq. (A.27) to get

.

Next substitute , , in the terms in the square brackets of the previous equation, and com-

pare the result to eq. (A.21) to find

. (A.28)

Thus, the right angle between line elements  and  in region  is changed in the transition to region 

 in direct proportion to the strain component . If , then , and the right angle is preserved in 

the deformed body. Similarly, the strain component  is proportional the change in the right angle between line   

elements  and  in the transition to the deformed body. 

A.1.2 Engineering strain

Engineering strain is defined by

(A.29)

Substitute for  from eq. (A.29) into eq. (A.11) to get . Equation (A.16) can be written in 

the equivalent form

, (A.30)

since the product of the direction cosines commute. In eq. (A.30) the engineering the shear strains are defined by

. (A.31)

n1 n2 n3, ,( ) 0 1 0, ,( )= εL ε22=

î2 N̂( )2→ N̂( )2

N̂( )2
∂y1

∂x2
-------- î1

∂y2

∂x2
-------- î2

∂y3

∂x2
-------- î3+ + 1

1 2ε22+
------------------------ 
 =

N̂( )1 N̂( )2

π 2⁄ θ12–

N̂( )1 N̂( )2• π
2
--- θ12– 
 cos θ12sin= =

θ12 N̂( )1

N̂( )2

θ12sin
∂y1

∂x1
--------

∂y1

∂x2
--------

∂y2

∂x1
--------

∂y2

∂x2
--------

∂y3

∂x1
--------

∂y3

∂x2
--------+ + 1

1 2ε11+ 1 2ε22+
------------------------------------------------=

yi ui xi+= i 1 2 3, ,=

θ12sin
2ε12

1 2ε11+ 1 2ε22+
------------------------------------------------=

dx1 î1 dx2 î2 B0

B ε12 ε12 0= θ12 0=

ε13

dx1 dx3

εE
dS ds–

ds
------------------ dS

ds
------ 1–= =

dS ds⁄ εL εE εE
2 2⁄+=

εL εE
1
2
---εE

2+ ε11n1
2 ε22n2

2 ε33n3
2 γ 12n1n2 γ 13n1n3 γ 23n2n3+ + + + += =

γ 12 ε12 ε21+= γ 13 ε13 ε31+= γ 23 ε23 ε32+=
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A.1.3 Linear strain-displacement relations

For many materials the strains are very small in the elastic range. A linear theory of deformation is characterized 

by the magnitude of the nine displacement gradients . Hence, we neglect the quadratic terms in the 

displacement gradients with respect to the linear terms in the strain-displacement eqs. (A.18) to (A.23). The 
resulting linear strain-displacement relations are

, (A.32)

, and (A.33)

. (A.34)

A.1.4 Transformation of the strains between two cartesian coordinate systems 

In the reference configuration  consider the two orthogonal cartesian coordinate systems  and 

 which have the same origin. In  system, or simply the  system, the corresponding 

unit vectors are . In the  system, or the  system, the corresponding unit vectors are 

. The position vector  of a point  in space is the same if written in the -system or in the -

system. That is,

(A.35)

The linear form  is said to remain invariant under the transformation of variables. Take the sca-

lar product, or dot product, of eq. (A.35) with unit vector  to get

. (A.36)

Define the nine direction cosines , , by

. (A.37)

For example,  is the cosine of the angle between the  axis and the  axis, and 

 is the cosine of the angle between the  axis and the  axis. From the definition of  eq. 

(A.36) is . If we take the dot product of eq. (A.35) with  and use the definition 

(A.37), then we find . The relation between the  coordinates and the  coordi-

nates at point  is given by the linear transformation

∂ui

∂xj

------- 10 3–∼

ε11
∂u1

∂x1
--------= ε22

∂u2

∂x2
--------= ε33

∂u3

∂x3
--------=

γ 12
∂u1

∂x2
--------

∂u2

∂x1
--------+= γ 13

∂u1

∂x3
--------

∂u3

∂x1
--------+= γ 23

∂u2

∂x3
--------

∂u3

∂x2
--------+=

εE ε11n1
2 ε22n2

2 ε33n3
2 γ 12n1n2 γ 13n1n3 γ 23n2n3+ + + + +=

B0 x1 x2 x3, ,( )

x1′ x2′ x3′, ,( ) x1 x2 x3, ,( ) xi

î1 î2 î3, ,( ) x1′ x2′ x3′, ,( ) xi′

î1′ î2′ î3′, ,( ) r P0 xi xi′

r x1 î1 x2 î2 x3 î3+ + x1′ î1′ x2′ î2′ x3′ î3′+ += =

x1 î1 x2 î2 x3 î3+ +

î1′

x1 î1 î1′• x2 î2 î1′• x3 î3 î1′•+ + x1′=

λij i j, 1 2 3, ,=

îi′ îj• λij≡ xi′ xj,( )cos=

λ12 x1′ x2,( )cos= x1′ x2

λ21 x2′ x1,( )cos= x2′ x1 λij

x1′ λ11x1 λ12x2 λ13x3+ += î2′

x2′ λ21x1 λ22x2 λ23x3+ += xi′ xi

P0
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. (A.38)

The compact form of matrix eq. (A.38) is

, where (A.39)

. (A.40)

The unit vectors in the  system are related to those in the  system by the same relation given in eq. (A.38):

. (A.41)

Consider the dot product , and from eq. (A.41) write it in terms of the unit vectors in the  system; 

i.e.,

.

Since unit vectors  are mutually perpendicular we find the relation

.

Consider the dot product  and write  and  from eq. (A.41) to get

.

Again  are mutually perpendicular, so we find the relation

.

We can proceed by performing the scalar products , , , and . 
Collectively we find the following relations between the direction cosines:

, , and . (A.42)

There are six relations in eq. (A.42) between the nine direction cosines. Hence, only three of direction cosines are 

independent. We show some interesting properties of the direction cosine matrix  beginning with the matrix 

x1′

x2′

x3′

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

x1

x2

x3

=

x′{ } λ x{ }=

x′{ }
x1′

x2′

x3′

= λ

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

= x{ }
x1

x2

x3

=

xi′ xi

î1′

î2

î3′

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

î1

î2

î3

=

î1′ î1′• 1= xi

1 λ11 î1 λ12 î2 λ13 î3+ +( ) λ11 î1 λ12 î2 λ13 î3+ +( )•=

î1 î2 î3, ,( )

1 λ11
2 λ12

2 λ13
2+ +=

î1′ î2′• 0= î1′ î2′

0 λ11 î1 λ12 î2 λ13 î3+ +( ) λ21 î1 λ22 î2 λ23 î3+ +( )•=

î1 î2 î3, ,( )

0 λ11λ21 λ12λ22 λ13λ23+ +=

î1′ î3′• 0= î2′ î2′• 1= î2′ î3′• 0= î3′ î3′• 1=

1 λ11
2 λ12

2 λ13
2+ +=

0 λ11λ21 λ12λ22 λ13λ23+ +=

0 λ11λ31 λ12λ32 λ13λ33+ +=

1 λ21
2 λ22

2 λ23
2+ +=

0 λ21λ31 λ22λ32 λ23λ33+ +=
1 λ31

2 λ32
2 λ33

2+ +=

λ



Aerospace Structures A-9

Geometry of deformation

product . The result is

. (A.43)

Compare the elements of the matrix in eq. (A.43) to the relations in eq. (A.42) to find

. (A.44)

Equation (A.44) shows that the matrix  is an orthogonal matrix. That is, the inverse  is equal to its 

transpose . Also , but .   Hence.

.

The determinate of an orthogonal matrix is either 1 or -1. The inverse of eq. (A.39) is  which 

written in expanded form is    

. (A.45)

From eq. (A.35) with obtain the unit vector  in both the  system and the  system in the invariant forms

. (A.46)

The derivatives of the coordinates in eq. (A.46) are obtained from eq. (A.38). These derivatives are 

. (A.47)

Let  and , . The matrix form of eq. (A.47) is 

, (A.48)

λ λ
T

λ λ
T

λ11
2 λ12

2 λ13
2+ + λ11λ21 λ12λ22 λ13λ23+ + λ11λ31 λ12λ32 λ13λ33+ +

λ11λ21 λ12λ22 λ13λ23+ + λ21
2 λ22

2 λ23
2+ + λ21λ31 λ22λ32 λ23λ33+ +

λ11λ31 λ12λ32 λ13λ33+ + λ21λ31 λ22λ32 λ23λ33+ + λ31
2 λ32

2 λ33
2+ +

=

λ λ
T

1 0 0
0 1 0
0 0 1

I= =

λ λ
1–

λ
T det λ λ

T( ) det λ det λ
T= det λ

T det λ=

det λ λ
T( ) det λ( )2 det I( )2 1= = =

x{ } λ
T x′{ }=

x1

x2

x3

λ11 λ21 λ31

λ12 λ22 λ32

λ13 λ23 λ33

x1′

x2′

x3′

=

n̂ xi xi′

n̂ dr
ds
-----

dx1

ds
-------- î1

dx2

ds
-------- î2

dx3

ds
-------- î3+ +

dx1′

ds
---------- î1′

dx2′

ds
---------- î2′

dx3′

ds
---------- î3′+ += = =

dx1′

ds
----------

dx2′

ds
----------

dx3′

ds
----------

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

dx1

ds
--------

dx2

ds
--------

dx3

ds
--------

=

ni
dxi

ds
-------= ni′

dx1′

ds
----------= i 1 2 3, ,=

n′{ } λ n{ }=
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where we write the unit vector in matrix notation as  and . The 

inverse of eq. (A.48) is

. (A.49)

The strain components  are functions in the variables , and the strains  are functions in the 

variables . These strain matrices are

, and . (A.50)

Note that the strain matrix  is symmetric. The strain of line element  must the same if computed in the 

 system or in the  system. The expression for the strain (A.17) in matrix notation is

(A.51)

Substitute eq. (A.49) for the unit vector into eq. (A.51) to get

, or

 (A.52)

For eq. (A.52) to be an invariant form of eq. (A.51) we conclude

 . (A.53)

Hence,

. (A.54)

Compare the forms of eq. (A.51) and eq. (A.54) to note their similarity. Also, we have the inverse transformation

. (A.55)

If we take the transpose of eq. (A.53) and use the fact that matrix  is symmetric, then . The engi-

neering shear strain , and . Thus . In terms of engineering shear 

strains (A.31) the strain transformation (A.53) is

. (A.56)

n{ } n1 n2 n3

T
= n′{ } n1′ n2′ n3′

T
=

n{ } λ
T n′{ }=

εij x1 x2 x3, ,( ) εij′

x1′ x2′ x3′, ,( )

ε

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

= ε′

ε11′ ε12′ ε13′

ε21′ ε22′ ε23′

ε31′ ε32′ ε33′

=

ε P0Q0

)

xi xi′

εL n{ }T
ε n{ }=

εL λ
T n′{ }( )T

ε λ
T n′{ }=

εL n′{ }T
λ ε λ

T n′{ }=

ε′ λ ε λ
T=

εL n′{ }T
ε′ n′{ }=

ε λ
T
ε′ λ=

ε ε′
T

ε′=

γ 12 ε12 ε21+= ε12 ε21= ε12 ε21 γ 12 2⁄= =

ε11′ γ 12′ 2⁄ γ 13′ 2⁄

γ 12′ 2⁄ ε22′ γ 23′ 2⁄

γ 13′ 2⁄ γ 23′ 2⁄ ε33′

λ

ε11 γ 12 2⁄ γ 13 2⁄

γ 12 2⁄ ε22 γ 23 2⁄

γ 13 2⁄ γ 23 2⁄ ε33

λ
T=
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A.2 Stress

The reference configuration  the body is assumed to be the natural or unstressed state. External forces acting 

on the body cause a state of stress in the deformed configuration , and it is in the configuration  where the 

study of stresses is to be carried out. However, for infinitesimal displacement gradients the point  in region  

and point  in region  lie very close together so that we do not distinguish between them. For small deforma-
tion theory, the study of equilibrium at a point in a deformable body is performed in the reference configuration.

Consider a continuos deformable body acted on by external forces shown in Fig. A.3(a). Due to the action of 
the external forces there will be internal forces acting between particles of the body. To examine the internal 
forces we pass a plane labeled mm through point P that is parallel to the  plane. Consider the free body to the 

left of the plane mm shown in Fig. A.3(b). Plane mm is divided into a large number of small areas, each  by 

. The internal forces acting on each of these areas varies in magnitude and in direction. 

 The internal force  acting at point P is a resultant of distributed force intensities acting over area 

. Let  denote the area . Force  represents the action exerted by the material outside the 

plane mm through area  on the material inside the plane mm. Point forces do not occur in nature. Forces are 

always distributed throughout regions which can have dimensions of length, area or volume. (However, point 
forces are an essential concept in the mechanics of solid bodies.) Consequently, as  the resultant of the 

distributed force intensities acting over  vanishes; i.e, . The stress vector or traction vector acting at 

point P is defined as

, (A.57)

where the unit normal to area  is . Now consider a rectangular parallelepiped with edges , , and 

 cut out of the body. It will have six separate plane surfaces which enclose the volume containing point P. 

Identify a surface face in terms of the coordinate axis normal to the surface. A face is defined as a positive face 
when its outwardly directed normal vector points in the direction of the positive coordinate direction, and as a 

B0

B B

P0 B0

P B

x2x3

∆x2

∆x3

∆x3

∆x2

∆F

P

x1

x2

x3

P

m m

m m

F1

F2

F3
F4

Fi

Fn

F2

F1

F3

(a) (b)

Fig. A.3 (a) Isolated, continuous body acted on by external forces. 
(b) Internal forces acting on plane mm.

∆F

∆x2∆x3 ∆A1 ∆x2∆x3 ∆F

∆A1

∆A1 0→

∆A1 ∆F 0→

T î1( ) lim ∆F ∆A1⁄( )=
∆A1 0→

∆A1 î1 ∆x1 ∆x2

∆x3
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negative face when its outward normal vector points in the negative coordinate direction. The projection of the 
parallelepiped in the  plane is shown Fig. A.4, where only the internal forces acting on the positive and neg-

ative faces normal to the -axis are explicitly shown. Not shown in the figure are the surface forces acting on 

the four lateral faces and the body force acting in the volume. Let  without changing the values of  

and . In the limit the forces acting on the lateral surfaces and the body force vanish, and force equilibrium 

yields

.

Since , we find from equilibrium that the stress vector on the negative -face is equal to the negative of 

the stress vector on the positive -face; i.e.,

. (A.58)

To simplify the notation let .Stress vectors acting on 

the positive -face and the positive -face are denoted by 

 and , respectively. Stress vectors acting on 

the negative -face and the negative -face are  and , 

respectively.

Define the stress components , . The 

first subscript on  is associated with the direction normal to the 

face and the second subscript is associated with the direction of the stress component. Thus the stress vectors in 
terms of components are

 or equivalently . (A.59)

Positive stress components acting on the positive faces of the rectangular parallelepiped are show in Fig. A.5. The 
stress components on the negative faces of the parallelepiped are equal and oppositely directed to those on the 
positive faces according to conditions like eq. (A.58). Hence, there are nine stress components at a point, not 
eighteen. We express the nine stress components at point in the matrix form

. (A.60)

The diagonal elements in the stress matrix (A.60) are the normal stresses, and the off-diagonal elements are the 

x1-x2

x1

∆x1 0→ ∆x2

∆x3

T î– 1( )∆A1 T î1( )∆A1+ 0=

∆A1 0> x1

x1

T î1( )∆A1

∆x1

î1î1–

T î– 1( )∆A1

x1

x2

Fig. A.4  Tractions acting on the 
positive -face and negative -face 
of a narrow width parallelepiped 

x1 x1

T î– 1( ) T î1( )–=

T1 T î1( )=

x2 x3

T2 T î2( )= T3 T î3( )=

x2 x3 T2– T3–

σij Ti îj•= i j, 1 2 3, ,=

σij

T1 σ11 î1 σ12 î2 σ13 î3+ +=

T2 σ21 î1 σ22 î2 σ23 î3+ +=

T3 σ31 î1 σ32 î2 σ33 î3+ +=

T1

T2

T3

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

î1

î2

î3

=

σ

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

=
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shear stresses. The nine stresses in matrix (A.60) are shown in Fig. A.5.

We pose the following question: Are the nine stress components at point P sufficient to determine the 
stresses on an arbitrarily orientated plane face through the point? To answer this question we consider equilib-
rium of a tetrahedron cut from the body at point P. The external surfaces of the tetrahedron shown in Fig. A.6 (a) 

consist of three right triangles normal to the coordinate axes, and one oblique triangular area that is shaded in 

Fig. A.6. For the surface with unit outward normal vector  the area is , for the surface 

with unit outward normal  the area is , and for the surface with unit outward normal vec-

tor  the area is . The area of the oblique surface is denoted by  and its unit outward 

normal vector is . To calculate the area of the oblique face we use the fact the cross product of two position vec-
tors is equal to the area of a parallelogram formed by the vectors and in a direction normal to the plane of the par-

allelogram. The vectors along the edges of the oblique face are  and , and the 

area of the parallelogram formed by these vectors is equal to . Thus,

,

which simplifies to

. (A.61)

From eq. (A.61) we find that area of the oblique face , and the components 

of the unit normal vector are

σ11

σ13

σ22
σ21

σ23

σ33

σ31
σ32

x1

x2

x3

σ12

Fig. A.5 Stresses acting on the 
positive coordinate faces of a 
rectangular parallelepiped

P
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∆x1 î1

∆x3 î3

P ∆x2 î2

∆Ann̂

(a) (b)
BdVol

Fig. A.6 (a) Geometry of the tetrahedron at point P. (b) Free body diagram of the tetrahedron

î1– ∆A1 ∆x2∆x3( ) 2⁄=

î2– ∆A2 ∆x1∆x3( ) 2⁄=

î3– ∆A3 ∆x1∆x2( ) 2⁄= ∆An

n̂

∆x1 î1– ∆x2 î2+ ∆x1 î1– ∆x3 î3+

2An

2∆Ann̂ ∆x1 î1– ∆x2 î2+( ) ∆x1 î1– ∆x3 î3+( )× ∆x2∆x3 î1 ∆x1∆x3 î2 ∆x1∆x2 î3+ +( )= =

∆Ann̂ ∆A1 î1 ∆A2 î2 ∆A3 î3+ +=

∆An ∆A1( )2 ∆A2( )2 ∆A3( )2+ +=
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. (A.62)

Equilibrium of the free body diagram in Fig. A.6(b) leads to

, (A.63)

where  is the body force vector per unit volume. The tetrahedron is also a triangular pyramid where  is the 

area of its triangular base, and the volume of the pyramid is  where  is its height. Divide eq. (A.63) by 

 to get

,

It can be shown that the height in this case is given by . In the limit where 

,  and , the height . Hence, in the limit the equilibrium equation is

. (A.64)

The implication of eq. (A.64) is that the nine stress components  at point P are sufficient to determine the trac-

tion, or stresses, on any face through the point.

A.2.1 Equilibrium differential equations

Consider the forces acting on a rectangular parallelepiped at point P. The free body diagram is shown in Fig. A.7.

The vector sum of forces is

.

For small increments in , , the Taylor series representation of surface forces results in the equilib-

rium equation

n1 ∆A1 ∆An⁄= n2 ∆A2 ∆An⁄= n3 ∆A3 ∆An⁄=

T n̂( )∆An T1∆A1–( ) T2∆A2–( ) T3∆A3–( ) B dVol( )+ + + + 0=

B ∆An

h∆An 3⁄ h

∆An

T
n( )

T1n1 T2n2 T3n3 B h 3⁄( )–+ +=

h ∆x1n1 ∆x2n2 ∆x3n3= = =

∆x1 0→ ∆x2 0→ ∆x3 0→ h 0→

T n̂( ) T1n1 T2n2 T3n3+ +=

σij

T1∆x2∆x3 x1 ∆x1+

T1∆x2∆x3 x1

–

P

T2∆x1∆x3 x2 ∆x2+

T2∆x1∆x3 x2

–

T3∆x1∆x2 x3 ∆x3+

T3∆x1∆x2 x3

–B∆x1∆x2∆x3

Fig. A.7 Surface 
forces and a body 
force acting on a 
rectangular 
parallelepiped 
∆x1∆x2∆x3

T1∆x2∆x3 x1 ∆x1+
T1∆x2∆x3 x1

– T2∆x1∆x3 x2 ∆x2+
T2∆x1∆x3 x2

– T3∆x1∆x2 x3 ∆x3+
T3∆x1∆x2 x3

– B∆x1∆x2∆x3+ + +

∆xi i 1 2 3, ,=
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. (A.65)

(A.66)

Divide eq. (A.66) by the volume followed by the limit as  to get the vector differential equation 

of force equilibrium at point P as

. (A.67)

Substitute eq. (A.59) for the traction vectors in eq. (A.67) to write the equilibrium differential equations in the  

coordinate directions. In the order of  coordinate directions these equations are

. (A.68)

Now consider moment equilibrium about the coordinate axes of the rectangular parallelepiped at point P. For 
moment equilibrium about the  axis refer to the free body diagram in Fig. A.8.

The moment arm from point P to the line of action of the normal force  acting on the positive 

 face is denoted by , where . Parameter  is not known, but this will not matter in the end 

result. The moment arm from point P to the line of action of the shear force  acting    on       

the positive  face is . Including all the forces shown in Fig. A.8, the sum of moments about the  axis 

through point P, counterclockwise positive, is

∂
∂x1
-------- T1∆x2∆x3( )∆x1

∂
∂x2
-------- T2∆x1∆x3( )∆x2

∂
∂x3
-------- T3∆x1∆x2( )∆x3 B∆x1∆x2∆x3 O ∆xi( )4( )+ + + + 0=

∂T1

∂x1
-------- ∂T2

∂x2
-------- ∂T3

∂x3
-------- B+ + +

 
 
 

∆x1∆x2∆x3 O ∆xi( )4( )+ 0=

∆x1∆x2∆x3 0→

∂T1

∂x1
-------- ∂T2

∂x2
-------- ∂T3

∂x3
-------- B+ + + 0=

xi

x1 x2 x3, ,

∂σ11

∂x1
-----------

∂σ21

∂x2
-----------

∂σ31

∂x3
----------- B1+ + + 0=
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∂x1
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∂x2
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∂σ32

∂x3
----------- B2+ + + 0=
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-----------
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∂x3
----------- B3+ + + 0=

x1

∆x2
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Fig. A.8 A free body 
diagram of the 
parallelepiped at point P 
for moment equilibrium 
about the  axis. The  
axis points normal to the 
page towards the reader.
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. (A.69)

Use the Taylor series to expand the forces acting on the positive coordinate faces with respect to the forces        
acting on the negative coordinate faces to get

. (A.70)

Expand eq. (A.70) in powers of  to write it as

, (A.71)

where  means higher order terms. That is, terms of quartic powers and higher in the increments in the 

coordinates. Notice the terms multiplied by  are quartic powers of the increments in the coordinates. Division 

of eq. (A.71) by , followed by the limit of  leads the condition of moment equilibrium about 

the  axis that . Moment equilibrium about the -axis leads to , and moment equilib-

rium about the -axis leads to . The equations of moment equilibrium are

. (A.72)

Hence, the stress matrix (A.59) is symmetric.

A.2.2 Transformation of stresses between two cartesian coordinate systems

At point  coordinates  are linearly related to coordinates  by eq. (A.38). The stress 

components  are functions in the variables , and the stresses  are functions in the variables 

. The stress vectors acting on the -faces are denoted by , and those acting on the -faces are 

denoted by . These stress vectors are written in their respective coordinate systems by

, and . (A.73)

In eq. (A.73) the stress matrices are

, and . (A.74)

ε∆x3 σ22∆x1∆x3( )
x2 ∆x2+

– ε∆x3 σ22∆x1∆x3( )
x2

∆x2

2
--------- σ23∆x1∆x3( )

x2 ∆x2+

∆x2

2
--------- σ23∆x1∆x3( )

x2
+ + + +

ε∆2 σ33∆x1∆x2( )
x3 ∆x3+

ε∆2 σ33∆x1∆x2( )
x3

–
∆x3

2
--------- σ32∆x1∆x2( )

x3 ∆x3+
–

∆x3

2
--------- σ32∆x1∆x2( )

x3
– 0=

ε∆x3–
∂σ22
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-----------∆x2 O ∆x2

2( )+ ∆x1∆x3

∆x2

2
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∂σ23
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2( )+ + ∆x1∆x3+ +

ε∆x2
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2( )+ ∆x1∆x2

∆x3

2
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2( )+ + ∆x1∆x2– 0=

∆xi
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î1′
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Equation (A.72) shows that the stress matrix  is symmetric. The stress transformation equations between the 

cartesian coordinate systems  and  is determined by selecting the unit normal in eq. 

(A.64) to be either , , or . First let  such that  in eq. (A.64), and from eq. (A.41) we 

have . Hence, eq. (A.64) becomes

.

Second, let  such that  and from eq. (A.41) we have . Hence, eq. 

(A.64) becomes

.

Third, let  such that  and . Hence,

.

The three selections for the unit normal in eq. (A.64) relate the tractions acting on the  coordinate faces to the 

tractions acting on the  faces by 

. (A.75)

Substitute the expressions for the stress vectors from eq. (A.73) into eq. (A.75) to get

(A.76)

The unit vectors in the -coordinates are related to the unit vectors in -coordinates by

. (A.77)

Substitute eq. (A.77) into the right-hand side of eq. (A.76) and rearrange the result to find

. (A.78)

σ

x1 x2 x3, ,( ) x1′ x2′ x3′, ,( )

î1′ î2′ î3′ n̂ î1′= T
n( )
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î2

î3
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To satisfy eq. (A.78) we find that the stress components  in the  system are related to the stress compo-

nents  in the  system by

. (A.79)

Equation (A.79) in compact form is

. (A.80)

Pre-multiply eq. (A.80) by , post-multiply it by , and note that  to find the 

inverse transformation 

. (A.81)

The transpose of eq. (A.80) is , but , so the stress matrix  is also symmetric. Com-

paring the strain transformation eq. (A.53) to the stress transformation eq. (A.80), it is clear that the transforma-
tion of strains  is the same form as the transformation of the stresses .

A.2.3 Cartesian tensors

A tensor is a system of numbers or functions, whose components obey a certain law of transformation when the 
independent variables undergo a linear transformation. If the independent variables are the rectangular cartesian 

systems  and  transforming by the linear relations given by  at point P, then the systems 

obeying certain laws of transformation are called cartesian tensors. 

Definition.  A system of order two may be defined to have nine components  in  and nine components  

in . If

then the functions  and  are the components in their respective variables of a second order cartesian ten-

sor. Similarly, functions  and  are the components in their respective variables of a second order carte-

sian tensor.

A.3 Linear elastic material law

To this point in the study of the mechanics of a solid body we have eighteen unknown functions of the cartesian 
coordinates . These are the three displacements , the six strains , and 

nine stresses . There are twelve equations relating these unknowns; the 

six strain-displacement equations (A.32) and (A.33), and the six equilibrium equations (A.68) and (A.72). There-
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λ31 λ32 λ33

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

λ11 λ21 λ31

λ12 λ22 λ32

λ13 λ23 λ33

=

σ′ λ σ λ
T=

λ
T

λ λ
T
λ λ λ

T
I= =

σ λ
T
σ′ λ=

λ σ
T
λ

T
σ

T
σ= σ′

εij σij

xi xi′ x′{ } λ x{ }=

εij xi εij′

xi′

εij′ λ εij λ
T=
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fore we need six more equation to get the number of unknowns equal to number of equations. The additional six 
equations come from the relations between the strains and the stresses which express the material law. This rela-
tion between strains and stresses for different materials is established by material characterization tests on stan-
dard test specimens.

Solid bodies that can instantly recover their original size and shape when the forces producing the deforma-
tion are removed are called perfectly elastic. The elastic limit is defined as the greatest stress which can applied 
without resulting in permanent strain on release of the stress. Elasticity is applicable to any body provided the 
stresses do not exceed the elastic limit. For many solid bodies there is a region where the stress is very nearly pro-
portional to strain. The proportional limit is defined as the greatest stress for which the stress is still proportional 
to the strain. Both the elastic limit and proportional limit cannot be precisely determined from test data since they 
are defined by the limiting cases of no permanent deformation and no deviation from linearity. In practice the 
definition of the yield strength of a material is used to determine the limit of elastic behavior. 

The theoretical basis for an elastic material law is the first law of thermodynamics applied to an arbitrary 
infinitesimal rectangular parallelepiped isolated from the body. We assume the deformation process is adiabatic. 
That is, no heat is lost or gained in the body during the deformation. The work expended in the transition from 
the reference state to the final deformed state is independent of the manner in which the process proceeds. The 
first law of thermodynamics states that work done on the rectangular parallelepiped is equal to the change in 

internal energy of the material contained in the parallelepiped.1 In elasticity the internal energy is called the 
strain energy. The strain energy per unit volume of the reference configuration, or strain energy density, is a func-
tion of the six strain components and is denoted by . The strain energy density func-

tion depends on the physical properties of the material. The incremental work of the tractions and body force 
acting on the parallelepiped is formulated in terms of incremental displacements from the equilibrium state. 
These incremental displacements functions are denoted by , , and to be kinematically 

admissible they are continuous and single-valued in the independent variables. In addition, functions  are 

assumed to be infinitesimal in magnitude. The total displacement is , where  are the displace-

ments components in the equilibrium state.

The distinction between  and     In one-

dimension we define  as the displacement 

function of a particle originally at coordinate  in 

the reference configuration of the body. (region ). 

The definition of incremental work necessitates con-
sideration of the incremental displacement of a parti-
cle in the body. The distinction between  and 

 is illustrated in Fig. A.9. The incremental dis-

placement  is at fixed value of the independent 

variable  and the differential  is the change in 

displacement with respect to the change in the independent variable . In the formulation of incremental work 

1. We are not considering th e change in kinetic energy for simplicity. If kinetic energy were actuated for in the first law of 
thermodynamics, then the final results obtained in this article would be unchanged.

U ε11 ε22 ε33 γ 23 γ 31 γ 12, , , , ,( )

δui x1 x2 x3, ,( ) i 1 2 3, ,=

δui

ũi ui δui+= ui

δu1 du1
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Fig. A.9 Graph of  and u1 x1( ) ũ1 x1( )

u1 x1( )

x1

B0

δu1

du1

δu1

x1 du1

x1



Article A

A-20 Aerospace Structures

we interpret  as the infinitesimal change in a the displacement of one particle identified by its coordinate in 

region . The interpretation of  is the relative displacement between two particles, one originally at 

 and the other originally at  in region .

For an adiabatic deformation process the first law of thermodynamics for the material in the rectangular par-
allelepiped of Fig. A.7 is

,

where the incremental displacement vector is . Expand the tractions acting on the 

faces of the rectangular parallelepiped at point P in a Taylor series keeping only those terms to the first degree in 
the differentials  to get

.

Divide by the volume  to get

(A.82)

The first term on the left-hand side vanishes via equilibrium eq. (A.67). Hence, (A.82) reduces to

(A.83)

Consider the term

. (A.84)

The variation in the derivative of a function is defined as

, . (A.85)

Substitute  into eq. (A.85) to get

Hence, 

(A.86)
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Employing the result of eq. (A.86) in eq. (A.84) we write the latter as

. (A.87)

Similarly the remaining terms on the left-hand side of eq. (A.83) can be evaluated as was done starting with eq. 
(A.84). The result is

, (A.88)

The increments in the strains are determined from eq. (A.32) and eq. (A.33) by letting , The strain 

increments are

Thus eq. (A.88) is

. (A.89)

The change in the strain energy for the material in the rectangular parallelepiped as the strains are incremented is 
determined from the series

,

where H.O.T. are higher order terms that contain quadratic and higher powers in the strain increments. The 
change in strain energy is given by

For infinitesimal increments in the strains  where

(A.90)

Compare eqs. (A.89) and (A.90) to identify 

. (A.91)

To simplify further developments of the material law, we introduce the following short hand notation for the 
stresses and strains

, and (A.92)

. (A.93)

T1
∂
∂x1
-------- δu( )• σ11 î1 σ12 î2 σ13 î3+ +[ ] δ
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The strain energy function    is expanded in a series

, (A.94)

in which the strain energy is assumed to vanish when all the strain components are zero. Employing the proper-
ties given in eq. (A.91) we get

, . (A.95)

Note that when all strain components equal zero, eq. (A.95) yields . Non-zero stresses can occur in a 

state of vanishing strains when there is a change in temperature. Let the change in temperature from the reference 
state be denoted by . For the change in temperature let

, (A.96)

where the  are thermal coefficients. For k = 1 and k = 2 eq. (A.95) expands to

.

Clearly, , so we can take  without changing the stress-strain relation. By 

implication . The full expression for the linear elastic material law is

(A.97)

The 6X6 elasticity matrix  is symmetric which means there are twenty-one independent elastic constants, and 

there are six independent thermal coefficients. Equation (A.97) is the material law for an anisotropic material 
where the number of independent elastic constants is determined by the existence of the strain energy density 
function and the symmetry of the strain and stress tensors.

A.3.1 Material symmetry

Consider a monoclinic material for which the  plane at a point P is a plane of elastic symmetry. This means 

that the elastic constants at point P have the same values for a pair of Cartesian coordinate systems which are 
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mirror images of one another in the elastic plane. The elastic constants  are invariant under the reflection   

coordinate transformation , , and . The direction cosines for this reflection transfor-

mation are listed in Table 1 

From strain and stress transformations in eq. (A.53) and eq. (A.79), respectively, we find

In the  system the first of eq. (A.97) becomes

.

Substitute the stress and strain transformation relations into the latter equation to find

.

Comparison of last equation to the first equation from (A.97) shows that  and . Constructing 

material law for  and following a similar procedure used for the  material law leads to  and 

. Considerations for the material law for  leads to  and , material law  leads to 

 and , and finally material law  leads to  and . The material law for the 

 plane of elastic symmetry is

. (A.98)

There are thirteen independent elastic constants , and four independent thermal coefficients. Equation (A.98) 

is the material law for a monoclinic material 

TABLE 1. Direction cosines
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Certain elastic constants in eq. (A.98) vanish if in addition to the  plane of elastic symmetry the  

plane is a plane of elastic symmetry. The reflection coordinate transformation is , , and 

. The direction cosines are listed in Table 2. 

The strain and stress transformation equations for the direction cosines in Table 2 are

.

In the  system the first of eq. (A.98) becomes

.

Substitute the transformations for the stress and strain in the last equation to get

. (A.99)

In the  system the first of eq. (A.98) is

. (A.100)

Comparison of eq. (A.99) and eq. (A.100) leads to . Also, following the same procedure for the equation 

starting with  leads to , and starting with the equation for  leads to . Following this pro-

cedure for we find . Hence . Finally, consider 

, Hence . The material law for two orthog-

onal elastic planes of symmetry is

. (A.101)

If we additonally impose the that the  plane is a plane of elastic symmetry, this condition does not change       

the results given in eq. (A.101). An orthotropic material has three mutually orthogonal planes of elastic symme-
try, nine independent elastic constants , and three independent thermal coefficients. Equation (A.101) is the 

material law for an orthotropic material; e.g wood.
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The material properties are independent of direction for an isotropic material. Starting with the orthotropic 
material law (A.101) consider the following sequence of rotations from the  coordinates to the 

 coordinates.

1.  rotation about the -axis. The direction cosine matrix .

2.  rotation about the -axis. The direction cosine matrix .

3.  rotation about the -axis. The direction cosine matrix .

For the material law to be invariant from the first rotation we find

.

For the material law to be invariant from the second rotation we find

.

For the third rotation the material law for  in the  coordinates is

, (A.102)

since . The stress transformation and the strain transformations relations are

(A.103)

Substitute the transformations in (A.103) into eq. (A.102) to get

(A.104)

In the  coordinates the formulation of the quantity  is

. (A.105)

For eqs. (A.104) and (A.105) to be identical we get that

. (A.106)

For an isotropic material there are two independent elastic constants and one thermal coefficient. Let  

and , where  and  are called Lame’s elastic constants. From eq. (A.106) . The isotro-

pic material law is
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. (A.107)

The strain-stress form of eq. (A.107) is

, (A.108)

where 

. (A.109)

Consider a uniaxial tension test conducted on a circular cylindrical bar made of an isotropic, homogenous mate-
rial at the reference state temperature. The test a pp rat us is configured such that the applied axial normal force 
divided by the cross-sectional area of the bar is equal to the normal stress , and the remaining stresses 

. The normal strains  are monitored and plotted with respect to the 

applied normal stress . In the linear elastic range of the test data the following relationships are established 

, , where  denotes Young’s modulus, or the modulus of elasticity, 

and  denotes Poisson’s ratio. The tension test results correspond to the first column of the 6X6 compliance 

matrix (A.108). Hence,  and . Substitute the values for  and  from the ten-

sile    test into eq. (A.109) to get

From the previous equations we can write Young’s modulus an Poisson’s ratio in terms of  and  as

. (A.110)

It can be shown from the two expressions in eq. (A.110) that the Lame constants in terms of  and  are

. (A.111)

Also note that , where  is the linear coefficient of thermal expan-

sion. In shear tests of an isotropic, homogeneous material Lame’s elastic constant  is called the shear modulus 
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of the material. In terms of engineering constants the material law for a homogenous and isotropic material is

, and . (A.112)

A.4 Summary and the boundary value problems of elasticity

At a point  in the body the unknown functions are

• three displacements , , and 

• six strains 

• nine stresses 

The total number of unknown functions is eighteen.

The number of equations are

• six strain-displacement equations (A.32) and (A.33)

• three force equilibrium equations (A.68)

• three moment equilibrium equations (A.72)

• six equations for the material law from one of the following expressions: anisotropic (A.97), monoclinic 
(A.98), orthotropic (A.101), or isotropic (A.112).

The total number of equations is eighteen.

Let the boundary surface of region  be denoted by . On the surface  we can prescribe the displace-

ments and/or the tractions. In eq. (A.64) let  be the unit outward normal to the surface . We write eq. (A.64) in 
the form

,

where , , and  are the cartesian components of the traction vector acting on the surface. We use eq. 

(A.59) to determine that these traction components are related to the stresses by

, .

On the portion of the surface where tractions are prescribed we have the boundary conditions

. (A.113)
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n( ) î2 T3
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1. Boundary value problem 1: Determine the distribution of stress and displacement in the interior of an elastic 
body in equilibrium when the body forces  are prescribed and the distribution of the surface tractions 

 are prescribed.

2. Boundary value problem 2: Determine the distribution of stress and displacement in the interior of an elastic 
body in equilibrium when the body forces  are prescribed and the displacements  of points on the 

surface of the body are prescribed functions. 

3. Boundary value problem 3, or the mixed boundary value problem. Determine the distribution of the stress and 
displacement of an elastic body in equilibrium when body forces are prescribed, and the distribution of sur-
face tractions are prescribed on surface  and displacements are prescribed on surface . That is, surface 

 is separated into parts  and . 

In boundary value problem 1, the prescribed body forces and prescribed surface tractions must satisfy overall 
equilibrium of the body.

A.5 References
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