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Introduction

About this book

In this textbook analytical methods are developed for the response and failure of the primary structural compo-
nents of aircraft. Newton's laws of motion, Hooke s law, and the first law of thermodynamics are the basis to
model the thermoelastic response of thin-walled, straight bars and coplanar curved bars. Analytical methods
include energy principles to develop Castigliano's theorems and to develop the cross-sectional material law for
transverse shear and torsion. Stiffened shells typical of aircraft structures are analyzed with the thin-walled bar
theory. Externally prescribed loads are due to accelerated flight and the thermal environment. Velocity-load fac-
tor (V-n) diagrams for maneuvers and gusts are described to evaluate flight loads.

Initiation of failure is predicted by one of the following criteria: von Mises yield criterion for ductile
metals; the critical load to cause buckling (failure by excessive displacements); fracture criteria for the critical
stress to cause crack propagation; and Puck’s criterion for the brittle failure modes in fiber-reinforced polymer
composites (FRP).

The subject of structural stability of discrete conservative systems introduces the methods of stability
analysis, classification of bifurcation buckling problems, the concept of imperfection sensitivity, and snap-
through at a limit point. Static instability of an elastic column from pre-buckling equilibrium, buckling, and
through initial post-buckling is presented in detail. Buckling of flat rectangular plates subject to compression and
shear is presented in a qualitative way using the classic charts from the National Advisory Committee for Aero-
nautics (NACA). The analysis for the static instability of a wing in steady incompressible flow, or divergence, is
part of the discussion of aeroelastic phenomena.

* Results from linear elastic fracture mechanics (LEFM) are introduced to illustrate the relation between crack
size and the stress to cause crack propagation. Airplane damage-tolerant design is based on LEFM such that
subcritical length cracks do not grow to critical length between inspection intervals.

* The incentive to study optimal design is illustrated by the example of an aluminum wing spar. The objective
is to achieve minimum weight by a search for two design variables. Constraints on yielding, buckling, and
fracture are evaluated with the thin-walled bar theory.

* The analyses are developed for closed and open section bars made from fiber-reinforced polymer compos-
ites. The cross-sectional compliance matrix for bars with a closed cross-sectional contour and an open cross-
sectional contour include shear-extension coupling. The first ply failure envelope for a graphite epoxy circu-
lar tube subject to an axial force and torque is determined by Puck’s intralaminar criterion. Interlaminar fail-
ure, or delamination, is modeled with fracture mechanics, and the method is illustrated by analyses of
standard fracture test specimens.

* Numerical methods for static analysis begin with the direct stiffness method, which originated to model skel-
etal structures consisting of bars connected by joints. Applications include coplanar trusses, beams, and co-
planar frames. The finite element method is developed from the integral formulation of the ordinary
differential equations of an axial bar and a beam.

* Analyses for the linear elastic, dynamic response of axial bars, coplanar trusses, beams, and coplanar frames
are presented using the finite element method and the mode-separation method. Hamilton’s principle and
Lagrange’s equations are developed for discrete mechanical systems.

» Numerous examples to illustrate the application of the structural analysis are presented in each chapter us-
ing either U.S. customary units. or SI units.

I acknowledge the technical discussions with Professors William Hallauer, Raphael Haftka, Rakesh
Kapania, Raymond Plaut, and Mayuresh Patil whose contributions to the subject matter of this course have been
used in the preparation of the text. I accept responsibility for any errors in the text, and would appreciate if the
reader would inform me of comments and corrections via email (erjohns4@vt.edu). Thanks to Professor Anita
Walz, open education librarian at Virginia Tech, and her staff for all the work necessary to publish this text as
an open educational resource. Also, thanks to Mr. Joseph Brooks and Ms. Varakini Sanmugadas who assisted
in the preparation of the text.

Eric R. Johnson
Warm Springs, Virginia
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Audience

This text is evolved from lecture notes by the author for junior and senior students in the aerospace engineering
curriculum at Virginia Tech. The subjects covered in the book presume some knowledge of statics, dynamics of
rigid bodies, mechanics of deformable bodies, and mechanical vibrations. Several practice exercises in the text

require programming, and typically the students use Mathematica' or MATLAB 2 software to complete them.
Examples in the text were programmed in Mathematica.

A first semester sequence for junior students includes chapters 1 through 6. Note that chapter 3 on thin-wall bar
theory may be too mathematical for some students, but can be used as a reference for the applications of the
theory provided in chapter 4. The important topic of work and energy is covered in chapter 5, and chapter 6 is
devoted to the application of Castigliano’s theorems to trusses, beams, and frames.

A second semester sequence for junior students includes topics selected by the instructor from chapter 7 on
curved bars, and chapters 10 through 16. The in fluence of imperfection sensitivity on the buckling load of
discrete systems is presented in chapter 10, followed by buckling of columns and plates in chapter 11. Article
11.2 is optional. Analysis for wing divergence is presented in the introduction to aeroelasticity in chapter 12.
The methods of linear elastic fracture mechanics to predict critical loads for crack propagation is discussed in
chapter 13. Design of a landing strut, and the optimal design of a spar subject to constraints on yielding,
buckling and frac-ture are presented in chapter 14. Chapters 15 and 16 detail the direct stiffness method for
trusses, beams and frames.

Topics appropriate for senior students are in chapters 8, 9, 17, and 18, and initial post-buckling in article 11.2.
The response of closed and open section bars fabricated from a fiber-reinforced polymer composite (FRP) is
presented in chapter 8, and failure initiation of FRP bars is presented in chapter 9. The finite element method
applied to the extension and bending of bars is presented in chapter 17, which includes transverse shear
deformations. The topic of adaptive mesh refinement in article 17.2.4 is optional. Articles 18.1 to 18.4 cover the
dynamic response of lumped mass models, eigenvalue problems, and Lagrange’s equations. The remainder of
chapter 18 utilizes the finite element method for the dynamic response of beams, trusses, and frames.
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CHAPTER 1 Function of flight vehicle
dructural members

The purpose of this chapter isto present a brief description of aircraft structural members and their function.

A structure may be defined as any assemblage of materialsthat isintended to sustain loads. It isimportant to
recognize that structures are made from materials, and that the history of structures follows the development of
materials and the development of tools to fabricate the materials. Ashby (1992) details a systematic approach to
material selection in mechanical design, and the manufacturing processes required produce the functional shape
of adesign. The evolution of the airframe, for example, istied closely to the introduction of materials and cost-
effective meansfor their fabrication. Early aircraft were constructed of wire-braced wood frames with fabric cov-
ers. Currently, advanced composite materials are very attractive for weight-sensitive structures, like aircraft,
because of their high stiffness-to-weight and strength-to-weight ratios. Thereis an interesting and rich history of
the evolution of aircraft structures, but for the sake of brevity it is not presented here. Instead, the interested
reader isreferred to the textbook by Curtis (1997). Curtis details the history of fixed—wing aircraft structures
from 1903 to modern aircraft.

In this text analytical methods are developed for the response and failure of the primary structural compo-
nents of aircraft. The primary structure of aflight vehicle consists of the components that are necessary to sustain
design ultimate flight and ground loads. Failure of the primary structure causes catastrophic collapse and loss of
control. For aircraft the primary structure consists of the wings, fuselage, tail, and landing gear. Forms of con-
struction are space trusses/frames, monocoque and semimonocoque.

1.1 Spacetruss/frame

A truss structure fuselage is often used in lightweight aircraft. See figure 1.1. It consists of wood or steel tubes
with afabric covering providing aerodynamic shape. Membersin a space truss are subject to axial forces, and

members of a space frame are subject to axial forces, shear forces, and bending moments. The fabric covering

does not add much to the overall stiffness of the structure.

Aerospace Sructures (¢) Eric Raymond Johnson. CC BY NC SA https:/doi.org/10.21061/AerospaceStructures 1
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(tubular steel)

Diagonal web members
(tubular steel)

Fig.1.1 A fuselage
space frame structure.

Vertical web members

1.2  Monocoque and semimonocoque constructions

Most flight vehicle structures are thin shells with the cover skin providing the aerodynamic shape. Monocoque
refers to a shell without supporting stiffening members, whose origin is from the twentieth-century Greek word
“mono” meaning alone, plus the French “coque’ meaning shell. See figure 1.2 The wall of a monocoque struc-
ture has to be strong enough to resist bending and compressive and torsional |oads without buckling. The chal-
lenge in monocoque design is maintaining strength within allowable weight limits. Another difficulty with
monocogue structureis how to design it to accommodate concentrated | oads such as engine mountings and wing-
fuselage interface, which may require the incorporation of formers (frames) and bulkheads. For large cross-sec-
tional dimensions the skin of a monocoque structure must be relatively thick. A more efficient type of construc-

Skin
/ / Former

Fig. 1.2 Monocoque fuselage
structure with transver se
stiffeners.

Bulkhead

tion is one which contains stiffening members that permit athinner skin. Also, stiffening members can be used to

2 Aerospace Sructures



Monocoque and semimonocoque constructions

diffuse concentrated loads into the skin. A stiffened thin-walled shell is called semimonocoque. A semimono-
cogue body structure and wing structure are shown in figure 1.3. Both the body structure figure 1.3(a) and the
wing structure in figure 1.3(b) have longitudinal stiffening members and transverse stiffening members support-
ing thin skins.

Cover skin
Transverse rib
Cover skin
Longitudinal
stringer Spar web
Spar cap Longitudinal
Transverse stringer
frames
@ (b)

Fig. 1.3 (@) Semimonocoque body structure. (b) Semimonocoque wing structure.

Longitudinal members are called longitudinals, stringers, or stiffeners. Longerons are longitudinal members
having a large cross section. Longitudinal members act with the skin to resist applied bending and axial loads.
Transverse members in a body structure are known as frames, rings, and if they cover most of the cross section
they are called bulkheads. Pressure bulkheads cover the entire cross section. Frame members maintain cross-sec-
tional shape and are used to distribute concentrated loads to the skin.

In awing the longitudinal member is called a spar, and it consists of the spar web and spar cap. The spar cap
act with the skin to resists axial and bending loads applied to the wing. The skin and the spar web develop shear-
ing stresses to resist torsion and transverse shear due to bending. Transverse membersin awing are called ribs,
and they act to maintain the airfoil shape. Ribs act with the skin and longitudinalsin resisting circumferential
loads due to pressurization.

Longitudinal and transverse members also function to divide the skin into smaller panelsto increase the
buckling strength. (See Example 11.5 on page 354.)

Additional components of awing are shown in figure 1.4. The internal wing structure consists of spars, ribs,
and stringers. The external wing structure is the skin. Ribs are also used in ailerons, elevators (flaps), fins, and
stabilizers. In afixed-wing aircraft, the spar is the main structural member connected to the fuselage at its root
and running spanwise to thetip of the wing. It bendsin transmitting the lift due to flight loads acting on the wing.
Theflight loads acting on awing not only cause bending, but a significant amount of torsion/ twisting of thewing
aswell. The skin and shear webs form closed cellsin awing, and torsion is resisted by shear stresses devel oped
in thewall of these cells.

A semimonocoque fusel age structure for atransport aircraft is shown in figure 1.5. The skin is stiffened by
longitudinal stringers, spaced six to ten inches apart, which function to increase the buckling strength of the skin
and resist fuselage bending loads. Transverse frames maintain the shape of the fuselage and are typically spaced
twenty inches apart (Young, 2011).
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Fig. 1.4 Nomenclaturefor atypical wing structure.

Stringers

Fig. 1.5 Semi monocoque
fuselage structure.

1.3  Rocket structure

A full-scale rocket consists of alaunch vehicle and payload. There are four major systemsin afull-scale rocket:

the structural system, the payload system, the guidance system, and the propulsion system. The structural system
includes the cylindrical body, the fairings, and any control fins. The payload is the entire spacecraft such as a sat-
ellite, experiment, or whatever elseis being lifted into space. When a spacecraft is to be launched by an expend-
able booster, a booster adapter, or alaunch-vehicle adapter, structurally links the spacecraft to the launch vehicle.
The payload and its structure is protected by afairing. Also, refer to the configuration of the Atlas | launch vehi-
cle shown in figure 18.1 on page 534. Atlas | consists of an expendable booster and an expendable second stage.
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The cylindrical body of the launch vehicle, or frame, has a thin skin to reduce weight. Engine thrust isthe
dominate load that causes compression in the rocket parts. The buckling resistance of the thin skinsisincreased
under compression loading by a grid of internal stiffening members attached to the skins similar to those shown
infigure 1.3(a). The buckling loads for axially compressed cylindrical shellsin experiments are significantly less
than the buckling load determined from an analysis of the perfect structure. Imperfection in the shell geometry is
main the reason for the discrepancy between theory and experiment Refer to the discussion at the end of article
10.2.1 on page 298. The buckling knockdown factor (KDF) has been introduced to reduce the buckling load pre-
dicted by the analysis of the prefect structure to aid in the structural design (Hilburger, 2018).
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Fig.1.6 Rocket systemsand components.
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CHAPTER 2 Aircraft loads

Consider an airplane moving through calm air. Particles of air affected by the airplane are accelerated and the
reaction of the accelerated particles isfelt over the surfaces of the airplane as a distribution of pressures. The
pressure distribution acting on the surfaces of the airplane can be resolved into the total lift and drag forces. In
addition to the aerodynamic forces of lift and drag, there are so-called inertia loads resulting from the accelera-
tion of the airplane. Other loading conditions such as landing loads, ground-handling loads, horizontal and verti-
cal tail loads, and monocoque body loads are discussed in detail by Lomax (1996).

Load analysisisimportant in aircraft design, and a design cannot proceed without information on loads. The
aircraft loads analysis presented in this chapter isused in preliminary design, which is defined in the next section.
In this chapter we define load factors, discuss the aerodynamic data required for structural analysis, develop the
basic maneuver V-n diagram, and discuss gust load factors used in design.

2.1  Aircraft design process

Phases of the aircraft design may be divided into a concept formulation, a concept design, a preliminary design,
and adetail design. Concept formulation is where the basic requirements for new aircraft are developed. Require-
ments are developed by a combination of market and customer surveys, and statistical analyses. Concept design
begins with the basic requirements and sizes the aircraft. Only the most simple analysis methods and historical
dataare used. In preliminary design the sized conceptual baseline aircraft is further developed. Increased level of
analysisis used to define the aerodynamics, performance, weight, propulsion, acoustic and cost parameters of the
design. Detailed design is where the various parts of the aircraft are designed for fabrication. Part and assembly
drawings are developed for manufacturing.

2.2 Inertialoads

The maximum load on any part of the airplane structure occurs when it accelerates. In preliminary design, inertia
force calculations are usually based on rigid body dynamics of the airplane. Once these loads are determined they
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Article 2.2

are imposed on the airplane, and the structural design proceeds by assuming the airplaneisflexible (i.e., a
deformable body). Determining inertialoads for adeformable body is more complex, and may be warranted later
in the structural design process.

221 Coordinate systemsand Newton’s laws of motion

The right-handed Cartesian coordinate system OXYZ isfixed to the Earth, origin at point O, and it is assumed that
thisisan inertial system. That is, Newton’'s laws of motion are valid in the Earth axis system. The unit base vec-

torsin the OXYZ system are denoted by (/, J, K) . The right-handed Cartesian coordinate system Gxyzisfixed in
the body of the aircraft, with its origin at the center of gravity, which islabeled G. The unit base vectorsin the

Gxyz system are denoted by (i, j, k) . Consider planar motion of the aircraft — that is, symmetrical maneuvers of

the aircraft, and where the aircraft is symmetrical about its vertical fore and aft plane. Body axis Gx is directed
forward, axis Gy is directed toward the starboard wing, and body axis Gzisin the normal direction. For symmet-

rical maneuversthereisnoroll or yaw of the airplane, so symmetrical maneuversimply} = :] for al timet. Let

f?c denote the position vector of the center of gravity G with respect to fixed point O. The flight path is a plane
curve in the X-Z plane with the arc-length along the curve denoted by s. The unit tangent vector to the flight path

at sisdenoted by ; , the unit normal vector at s by ;z , and the angle between the flight path and the unit tangent

vector, or the x-axis, by 6. Note that ; = ; . Angle 6 represents the clockwise rotation of the aircraft in pitch. See
figure 2.1.

flight path

Fig.2.1 Acceleration of the center of gravity tangent and normal to theflight path.

The unit tangent vector and its derivative aong the path are

t = s
ds ds ds

21

Let 0’ = dO/ds . Thechangein slope of the flight path with respect to arc-length 6’ defines the curvature of the
path, and the radius of curvatureis R = 1/0'. The velocity of the center of gravity G along the flight path is

— _ df(’G _ dIA?Gds _ "
= 480 - 42048 _ 4, 2.2
Vo T T T asar O (2-2)

where the speed of the center of gravity of the aircraft along the flight pathis v; = ds/dt. The acceleration of
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Inertia loads

the center of gravity is
g = Mo _di, oy, dids oG g 2.3)
S dr  dt ¢ 9 C
where v-G = dv/dt isthe acceleration component tangent to the path. The acceleration component normal to

thepath vZ0' = vZ/R, or centripetal acceleration, is directed toward the concave side of the path.

A free body diagram of the aircraft at timet and its time rate of change of momenta are shown in figure 2.2.

Time rate of change of momentum FBD at timet

Fig.2.2 Freebody and rate of momenta diagramsfor symmetrical motion of
an aircraft at timet.

Derivatives with respect to time of the pitch angle are written as

2
do _ do _ »

—~ =f,and=_ =160. 2.4
dt o dr? @4

The mass of the aircraft is denoted by m, the moment of inertia about the center of gravity by 7, the local accel-

eration dueto gravity by g, and the weight of the aircraft by Wwhere W = mg . Equations for Newton's second
law at timet are

BN

F = mvgt+vi0'n) Mg =1L Mo = Roxm(vgt+v36'n)+1,6j, (2.5)
where the resultant force is denoted by Ii" , the moment about the center of gravity by A?G , and the moment about

the fixed point by A?o . These force and moment vectors are determined from

F = EFm Mg = EVm/GXFm Mo = Mg+RgxF, (2.6)

m =1 m=1
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where /¢ isthe position vector of the point of application of force £, with respect to the center of gravity.

2.2.2 Principleof D’ Alembert

D’ Alembert in 1743 proposed a principle that would reduce a problem in dynamicsto an equivalent onein statics
by introducing so-called inertial forces. The inertial force acting at the airplane’s center of gravity is defined as

—m;z(; , and theinertial moment about the center of gravity isdefined as —Iyé} . Theseinertial forcesare drawn on

the free body diagram of the airplane in addition to all the applied forces. D’ Alembert’s principle states that the
applied forces together with theinertial forces forma systemin equilibrium. Thus we write Newton’s second law
as

F+ (—m\;G;—mvg;G';z) =0 A710+ (—Iyé;') =0. (2.7)

The free body diagram is modified accordingly as shown in figure 2.3. In the free body diagram the inertial
forces and moment are indicated by dashed lines. From the free body diagram we proceed as in statics to write
the conditions of (dynamic) equilibrium.

. ]

mvg0'(—n) ' WK

Fig.2.3 Aircraft freebody diagram at timet including theinertial forces and the inertial moment.
The curvature of the flight path 6’ can change sign. As shown in figure 2.4, the curvature is positive for a

pull-up maneuver from a dive, and the curvature is negative for a push-down maneuver from a climb. Conse-
guently, the inertiaforce normal to the flight path is directed toward the convex side of the path.

6=00<0
(b)
flight path lg
Fig.2.4  Sign of the curvaturefor (a) pull-up
from a dive, and (b) push-down from a climb.
6=006>0
@)

10 Aerospace Structures



Inertia loads

2.2.3 Relativevelocity and acceleration

Often it is necessary to determinetheinertial forces at |ocations within the airplane not coincident with the center
of gravity. For these computations we need the relative velocity and acceleration formulas from rigid body
dynamics. Consider two points A and G fixed in the body. The position of point Arelativeto G istaken as x , /G; ,
as shownin figure 2.5.

Xy,6t

Fig.2.5 Relative position of two pointsfixed in arigid body.

The position vectors of points A and G are related by

R4 =Rc+x,,4l. (2.8)

The velocity vectors of points A and G are then

N N

- d p
va = vc;+d7(xA/Gt). (2.9)

Since vector x G; is embedded in the rigid body for all time, itsrate of change is determined from its cross
product with the vector of the time rate of change of pitch rotation. That is,

%(xA/Gt) = éjxxA/Gt = xA/Gén. (2.10)

Hence,

N N ~

v4 = vg+ xA/Gén . (2.11)
Thetime rate of change of this velocity expression (2.11) relates the acceleration of A relativeto G by
a4 = ac +%[xA/Gé;z] = a4+x,,50n+ é%[xA/G;;] = ag+x,,00n+0[0j xx,,cn]. 2.12)

Perform the vector cross product in eg. (2.12) to find

AN

a4 = ac +xA/Gén—ézxA/Gt. (2.13)
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2.24 Uniform linear and angular accelerations

In some inertial load problemsit is reasonable to assume that the acceleration of a particle and/or the angular
acceleration of arigid body are constant over atime interval. Let s denote the distance of a particle along a
straight line, v its speed along the line, and a its constant acceleration. Then, we have the following formulas

v = at+v, s = %at2+v0t+s0 2a(s —sy) = v?=v§, (2.14)

wheres = s, and v = v, attime s = 0. Similarly if the angular acceleration 6 is constant over some time
interval, then

6 = 0r+86 o = %ét2+éot+60 20(0-0,) = 6% -63, (2.15)

where 6 = 6 and 6 = 0, attimes = 0.

2.3 Load factors

It is convenient to combine the inertial forces and gravity forcesin the analysis of aircraft structural components.
Consider an airplane in genera plane motion as depicted in figure 2.6.

AL

24 .
Teng P

wr

Fig.2.6 Inertial force, weight, and other forces acting on an airplanein general plane motion.

The actions shown in figure 2.6 represent: Z = lift force (wing and tail), B = drag force, }eng =thrust force,

—LVZG =inertiaforce, and ZG = acceleration of the center of gravity given by eg. (2.3). We are not considering
g

the moment of momentum equation for now. However, 60 in general . For the configuration shown in figure
2.6 dynamic equilibriumis

g
Let thetotal applied force on the airplane excluding weight be noted by EIA? . Thetotal applied force, in general,

may include other effects than those shown in the sketch above (e.g., wheel reactions on landing.) Then dynamic
equilibrium is written as
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The V-n diagram

- [—WK+ —Wac} =0
g
_\f—/
combined weight and inertia force _

Asshown in figure 2.7, the projection of the gravity unit vector on the tangent and normal

directionsis IA< = sine(—;) + cose(—;z) . Similarly, we define the projections of the resultant
forcesin the tangent and normal directions as

EF-} = (EF)x EF-; = (EF)H. 2.18)

Dynamic equilibrium (2.17) separated into tangent and normal directionsis

Ve T vZ0'\ 71~
F) —W| 'e+—G}t+ F) —W([cos®+-9—)|n = 0. 2.19
{(E )x (sm g> [(E )n (cos p ”n (2.19)
Rewrite dynamic equilibrium (2.19) in the form
[(EF)x—an];+[(EF)n—nZW];l =0, (2.20)
where the load factors in the tangent and normal directions are defined by
- —
n,= (sin@ + V—G> n, = (cos@ + ‘i> . (2.21)
4 g

Also, eq. (2.20) shows that the load factors can be determined from

n, = (EF)X/W n, = (EF)n/W . (2.22)

Note that the load factor is a dimensionless number, and it can be negative, zero, or positive. The free body dia-
gram for dynamic equilibrium of the airplane employing load factorsis shown in figure 2.8.

)

Fig.2.8 Inertial forcesand gravity forces
represented by load factorsfor dynamic
equilibrium of the airplane. (> F);

n.Ww

24 TheV-ndiagram

First, some definitions:

Limit load — the maximum load that an aircraft may be expected to encounter at any timein service
Limit load factor —n associated with limit load n W = LL

Ultimate load — force necessary to rupture

Ultimate load factor — n associated with ultimate load n W = UL

Factor of safety — ultimate load/limit load > 1; usually 1.5
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24.1 Airplanedesign requirements

1. All parts of the airplane are designed so they are not stressed beyond the yield point at the limit load
factor.

2. Theairplane structure must carry the ultimate loads for at least 3 seconds without collapsing, even
though the members may acquire permanent deformation.

24.2 Regulations

Limit load factors are specified by regulations, which depend on the type of aircraft (e.g., transport, aerobatic,
etc.). Criteriafor civil aerospace vehiclesin the United States.

Code of Federal Regulations
Title 14, Aeronautics and Space
Parts1—-59
Federal Aviation Administration (Department of Transportation is the regulatory agency.)
Military requirementsin the United States. issued in M | L —Specs covering specific topics of structural
design of USAir Force, Navy, and Marine aircraft.

24.3 Specified data

Specified maximum positive load factor; n,,, > 1.

Specified maximum negative load factor; n
Specified design airspeeds:

<0.

min

Ve = maximum level flight cruise speed

V) = maximum dive speed ~ 1.2 to 1.5V,

24.4 Basic maneuver V-n diagram

Thisis predicated on pilot-controlled, symmetrical maneuvers in flight through calm air (i.e., no gust). Assump-
tions made for analytical purposes are that the pitching acceleration is assumed zero or negligible, the airspeed is
constant during the maneuver, and there is no rolling or yawing of the aircraft, although rolling or yawing

maneuvers may be considered in design as well. For no pitching accel eration the pitch rate 6 is constant with
respect to time. Use the chain rule to write the pitch rate as

o= do - dods _

Tdr dsar 9 @29

Hence, in asteady state maneuver 6'v,; isconstant with respect to time. The load factors (2.21) for asteady state
maneuver are

20
n, = sin0 n, = (cosG+vG—>. (2.24)
g

A pull-up from adive, and a push-down from a climb are examples of steady state symmetrical maneuvers and
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The V-n diagram

are depicted in figure 2.4. Also, alevel flight, coordinated turn is considered a symmetrical maneuver even
though the airplane does have alateral acceleration in the turn. (Refer to practice exercise 2.) In general, the
steady state symmetrical maneuvers will produce the maximum design wing loads. See figure 2.9.

" A M max

maneuvering within this
envelope is acceptable on
P the basis of structural con-
siderations only

Fig.2.9 Maneuver V-n diagram based on
structural considerationsonly. 0

¢
V. Vb

min

245 Aerodynamic data

When atwo-dimensional airfoil is subject to arelative wind there is a net pressure distribution over the airfoil
that depends on the angle of attack, which is denoted by a.. The angle of attack is the angle between the relative
wind and the chord of the airfoil. The chord is the width of the airfoil and itslength is denoted by c. The resultant
action of the pressure distribution is aforce R and no moment at the center of pressure, which islabeled C.P.in
figure 2.10(a). The center of pressure location varies with the angle of attack. The resultant action of the pressure
distribution is aforce and a moment at any other location. The standard reference point for aerodynamic datais
the aerodynamic center, which islabeled A.C. in figure 2.10(b). The aerodynamic center is the point where the
pitching moment is independent of the angle of attack. For most subsonic wing sectionsthe A.C. is around 25
percent of the chord.The net force of the pressure distribution is resolved at the aerodynamic center into alift
force perpendicular to the relative wind and adrag force parallel to the relative wind and the pitching moment.

stall

(©

Fig. 2.10 Characteristicsof atwo-dimensional airfoil: (a) center of pressure, (b) aerodynamic
center, (c) stall.

Thelift increases asthe angle of attack increases. At some point, however, the flow can no longer stay attached to
the upper surface and detaches. Thisresultsin adecreasein lift, which is called aerodynamic stall as shown in
figure 2.10(c). The sharpness of the decrease in lift is dependent on the type of airfoil.

Airplanes are three-dimensional vehicles with three-dimensional aerodynamic surfaces, so the aerodynamic
loads are spread over these surfaces. This distribution in the spanwise direction of the wing resultsin aforce and
moment at the root of the wing. The spanwise distribution of the airload is afunction of the wing planform shape,
the airfoil sections, and the geometric twist. The basic aerodynamic reference for three-dimensional wingsisthe
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mean aer odynamic chord (MAC). Thethickness, chord length, and angle of attack of the MAC airfoil sectionis
used as areference for all aerodynamic data. For arectangular wing planform, the MAC is equal to the wing
chord, and for atrapezoidal planform of the semiwing the MAC is equal to the chord at the centroid of the trape-

zoid.

Methods of data acquisition. Basic methods to calculate aerodynamic data for aircraft design and analysis are
preliminary design estimates, wind tunnel testing, numerical fluid analysis, and aircraft flight test. The wind tun-
nel test isthe major source for aerodynamic data in the preliminary design phase, and it involves construction of
ascale model of the aircraft. The model is instrumented with pressure and force transducers. Data required for
the structural analysis are thelift, drag, and pitching moment curves for the complete airplane with the horizontal
tail removed through the range of angles of attack from the negative stalling angle to the positive angle. Data for
the combination of the wing and fuselage, or the wing, fuselage, and nacelles, are more difficult to calculate
accurately from the published data, because of the uncertain effects of the aerodynamic interference of the vari-

ous components.

Thelift force L isnormal to the relative velocity (flight path), the drag force D is parallel to the relative
velocity, and the pitching moment A4, ,5 is nose-up positive at the mean aerodynamic chord as shown in figure

2.11(a). The angle 6 is measured from the flight path to the x-axis and is equal to the difference between to the
angle of attack o and the angle of wing incidencei.

chord line

Fig.2.11 (a) Lift force, drag force, and pitching moment at the MAC.
(b) Lift and drag resolved along the body x- and z-axesat MAC.

Thelift force, drag force, and pitching moment for the tail-off are expressed in terms of the dynamic pressure q,
wing reference area S, and dimensionless aerodynamic coefficients C, , C,, and C,,, 55 - The dynamic pressure

is
q = lp vz, (2.25)
2
where the air density at atitude is denoted by p . The aerodynamic actions are expressed as

L= C,qS D = CpqS Myrs = Chpoa5qSC, (2.26)

where the mean aerodynamic chord is denoted by c.
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The aerodynamic actionsL, D, and M, ,s at the mean aerodynamic chord are statically equivalent to the
aerodynamic actions f, , f,, and M, at the center of gravity. The lift and drag forces are resolved into compo-
nents normal f, and parallel /. to the flight path by

f, = Lcos®+ DsinB,and f, = Lsin® —DcosB. (2.27)
The moment at the center of gravity is determined from figure 2.11(b):
M, = My,s+xc,6f—2c 6y - (2.28)

The forces acting on the airplane are shown in figure 2.12, in which the tail force L, acts perpendicular to the
flight path at the center of pressure of the horizonta tail.

Fig.2.12 Forcesacting on the airplane during steady state symmetrical maneuvers. No pitching
acceleration.

The dynamic equilibrium equations for no acceleration in pitch are

fo+ Tepg—n, W+ L;sin® = 0, (2.29)
f,—n,W+L,cos8 = 0,and (2.30)
M,+z,T,,,—x7,6L,cos8 = 0. (2.31)

Substitute the moment at the center of gravity (2.28) into eg. (2.31) to get

Myrs+xc,6fn=2c/6fx ¥ Z2eLone —Xp,6L,c0s0 = 0. (2.32)

eleng
Introduce aerodynamic coefficients C,,, C, and C, by therelations
f,=CuqS.f, = CqS,andL, = CgqS. (2.33)
Substituting f, and f, from the definitions (2.33) into eg. (2.27) determines the coefficients C, and C, as
C, = C,cos0+ Cpsin®,and C, = C,;sinB —Cpcos6. (2.34)

The balancing tail force coefficient C, isto be determined from the equations of dynamic equilibrium. From the

relations (2.33) and (2.34), the equilibrium eguations (2.29) and (2.30) are written as
nW = (C,+C,sinb)gS+T,,,and (2.35)

nW = (C,+ C,cos0)gS. (2.36)
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Let n,W = CyqS, where the airplane normal coefficient is denoted by C,,. From eq. (2.36) the normal coeffi-
cientis
Cy = C,+C,cos0. (2.37)

In terms of the aerodynamic relations introduced, the moment about the center of gravity (2.32) is

Cur02595¢ +X0,6CoqS =20, cCoqS + 2,T,, . —x7,cC,gScosd = 0. (2.38)

eteng

Rearrange eg. (2.38) to

(Chioas¢ *+ %/ 6Cr=2¢,GC—x7,6C,c080)qS +2,T,,, = 0. (2.39)
Consider the case of power-off so that 7,,, = 0, and solvefor C,cos6 to get
Cieos8 = (¢/x7,6)Cuoas + (e 6/%1/6)C = (2¢/6/X1/6) C. - (2.40)

If the term on the right side containing longitudinal coefficient C, isassumed small with respect to the other
terms and neglected, then the resulting expression for coefficient C, is consistent with the traditional equation for
the balancing tail load (Lomax, p. 9). Substitute C,cos8 from eq. (2.40) into eg. (2.37) to get the expression for

the normal coefficient determined from the aerodynamic coefficients with the tail off:
Cy = (¢/%71,6)Cho s * (c/6/%1/6) Cu = (2¢/6/%1/6) Cr - (2.41)

Thetotal normal forceisdenoted by L. . Fromeq. (2.30) L, = f,+ L,cos6 = n,W,and n,W = C,qS . Hence,

z

= nW = CyqS = (%sz)SCN. (2.42)

From wind tunnel datafor complete airplane the aerodynamic coefficient of lift along the z axisis plotted against
the angle of attack as depicted in figure 2.13. Generally, the magnitudes of the maximum and minimum values of
the normal aerodynamic coefficient corresponding to stall and inverted stall, respectively, satisfy

‘(CN)min‘ < ‘(CN)maX‘ ’

CN
A
(CN)max e
Fig. 2.13 Normal force coefficient asa
/ > O function of the angle of attack.

/ 0
- = 7 (CN)min

Substitute C,, from eq. (2.34) into eg. (2.35) to find the longitudinal load factor as
nW = [(C,+C,)sinb —Cpcos0]gS + T, - (2.43)

At agiven airspeed
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The V-n diagram

Hence,

1 .
(L) = (zp Vz) S(Cy)max = MW pull-up from dive

. (2.44)
(L) = (%_ p V2) S(C\) iy = Mot W push-down from climb.
(pr?/2) (pV?/2)
Mrmax = (CN)max ( W/S) Momin = (CN)min ( W/S) ! (2.45)

which are quadratic functions of 7.

24.6

Maneuver V-n diagram including aerodynamic stall

The maneuver V-n diagram including aerodynamic stall is shown in figure 2.14.

Note:
1.

A
n,ultimate b — — — — — — — — =
npacstructural limit £ — — -
stall
(0/2) 1
1+ (Cma (775"
14
0 + >
4 c V. D
1 inverted
Y stall
AgipStructural limit | — — — —/2
n_ultimate & — — -
0/2) 1n
(Cy). V-
min( 7/ §)

Fig. 2.14 Maneuver V-n diagram including aerodynamic stall and specified data.

Cy varies with compressibility, and varies with the C.G. location as shown in eqg. (2.41). Generally we must
consider different altitudes and weight configurations.

For flight in incompressible air, the dynamic pressure ¢ = %sz,where V' isthe airspeed and p istheair

density, both at altitude. Define equivalent airspeed Vy,g at sealevel by

_1 1
q = 5|0V2 = 5P V2Eas - (2.46)

Then the equivalent airspeed isgivenby 7, = |£-¥.Use V. onV-ndiagram to cover all altitudes. Some
Ps.1.

Aerospace Sructures
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Article 2.4

typical values of the load factors are shown in table 2.1

Table 2.1 Structural limit load factors

Structural limits

Category Nmax Nmin
U.S. civil transports (Boeing) 2.5 -1.0
U.S. military heavy bomber 3.0 -1.0
U.S. military subsonic attack 8.0 30
U.K. civil aerobatic 6.0 -3.0
U.K. sailplane, aerobatic 7.0 -5.0

Transport category airplanes. The airworthiness standards for transport category airplanes are specified in

Part 25 of the Federal Aviation Regulations (FAR). Flight maneuver and gust conditions are specified in subsec-
tions 25.331-25.351. The maneuver V-n diagram is shown in figure 2.15. The strength requirements must be met
at each combination of airspeed and load factor on and within the boundaries of the representative maneuvering

envelope (V-n diagram). The stalling speed with the flaps retracted at n, = 1 isdenoted by 7, .

Equivalent air speed

3L ( CN)max
Flaps up "\ A
|
2 1L
(CN)max !
Flaps down )
n, 14+ - -- e
1
1
1
1
0 .
Vsl VF VD
-1
H
(CN)min
Flaps up Fig.2.15 Flight maneuvering envelope per FAR 25.333.
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Design gust load factors

2.5 Design gust load factors

Turbulent conditions of varying intensity occur in air through which an airplane flies. For example, atmospheric
phenomena that create turbulence are thermal s (convection), mountain waves (terrain effects), wind shears, and
jet streams. Assume steady level flight from still air, n= 1, into an ideal sharp-edged gust as shownin figure 2.16.

U
V oooooooo@ooagm oooooo
U « V usually U~ 0(50 ft./s) V ~0(300 ft./s)

Fig.2.16 Steady level fight into a sharp-edged gust.

The change in the angle of attack due to the idealized sharp-edged gust is depicted in figure 2.17.

Ao
A v
Ao = atanU/V=U/V

Fig.2.17 Equivalent relative wind.

Thelift curve slope between stall pointsis m = (dCy)/(do) . Therefore, the change in the aerodynamic coeffi-
cientis
ACy = m(Aa), (2.47)

and the changein lift is
ALift = (lpW>Sm(Aa) = Lovsmu. (2.48)
2 2
Now the change in the load factor due to the gust is

An

_ ALift _ [(pm)/Z

v, |
v Lm/s) } v (2:49)
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where /S isthewing loading in Ib./ft.2 The changein

{s]ope = <pm_/2> y theload factor An varieslinearly with airspeed V as

I w/s depicted in figure 2.18.

—_ — = d

|14 L
I > 2.5.1Gust alleviation factor

A morerealistic, semiempirical treatment of gust effects,
based on experience and analysis, isto replace the sharp-
edge gust speed U by K, U, where K|, isthe gust alleviation factor. In reality there is no such thing as a sharp-

edged gust so we account empirically for gust build-up and airplane response. For transport airplanes, NACA
specified

Fig. 2.18 Thelinear changein theload factor

0.88
K = —2Me (g3, (2.50)
£ 53+u,

where u, isthe airplane massratio defined by

w/S

g = — T, (2.51)
(pcgm)/2

w

and where ¢ isthe mean aerodynamic chord; c=5S/b ,and b isthewing span. Seefigure 2.19.

_ w
*(pgS(c/2) )m

weight of a chunk of air —/

Fig.2.19 Depiction of the airplane massratio.

252 Gust load factor
For steady level flight, the gust load factor is

n= 1+(M)K ur | (2.52)
w/S) &

Notethat alightly loaded airplane is more susceptible than when heavily loaded. Thisis because theincrement in
lift isindependent of the weight. A heavily loaded airplane has more inertia with which to smooth out gusts than
alightly loaded airplane, all other things being equal.

25.3 NACA discrete gust conditions

Discrete gusts refer to sudden changes, or alleviated sharp-edged gusts, as opposed to continuous turbulence air-
craft gust analysis. In continuous turbulence gusts are represented as a stationary Gaussian random process lead-

22 Aerospace Sructures



Design gust load factors

ing to specification of a power spectral density (Hoblit, 1988). For civil transport airplanes 0—20,000 ft., three
discrete gusts are specified:

1. Roughairgust: U = 66 ft/s a V' = V, aspeed related to the stall speed.
2. Highspeed gust: U = 50 ft/s at cruise speed V..
3. Divespeed gust: U = 25 ft/s at dive speed V), .
The gust V-n diagram is shown in figure 2.20, and it is almost symmetrical with n= 1 linesince gusts are as
likely to act down as up.
U = 25 ft/s

n A

U = 66 ft/sﬂ\/
Fig.2.20 Gust V-n diagram.
1 & < | _
U= 66tvs— v,
0-¢ > Veas.
-1
U = 25 ft/s

U = 50 ft/s

254 DesignV-n diagram

The extreme load factors of both maneuver and gust diagrams must be met. Superimpose the two and take the
outer boundaries as shown in figure 2.21. Generally, large airplanes are designed primarily by gust load factors.
Small military and aerobatic airplanes are designed by maneuver |oad factors.

(1)
-
-
Ll
Fig.2.21 Design V-n diagram. T
v, V
0 ~ NgY) #C 2> Veas
~~@__43
-1 ¢
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2.6 Design V-n diagram example

Thisexampleistypical of asmall aerobatic or perhaps military airplane, with specified data given figure 2.22.

W = 10, 000 Ib.
S = 100 fi2

b =25 ft.
c=S/b=4ft

V. = 500 mph V, = 650 mph (Cx)yy = 207

b
dCy/da. = 4.37 per radian |< |

(CN) iy = —1.2 m
str. limit load factors Ry = 1.5 Rin = =3

Fig. 2.22 Datafor the small aerobatic or military airplane.

Problem statement: Determine the design V-n diagram at sea level using the NACA formulas for gust loads.

First, draw the maneuver V-n diagram. The stall boundary is given by

/2
Ps.1. V2

Rt = (CN)max W/S

The density of air at sealevel is
P = 0.002378%?—8,Where 1 1b. = (1slug)(1ft/s?).
Thewing loading is

w/S = (10,000 1b.)/(100 ft.2) = 100 Ib./ft.2.
Substitute egs. (b) and () into eg. (a) to get

(0.002378%‘22/2)

Ry = (2.07) 00T /f;z V2, or

Ny = 2.46x107 12 Vin ft./s .

Theinverted stall boundary is

/2 _

@

(b)

(©)

(d)

(e)

®
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Design V-n diagram example

Mgy = —1.43%x107 12 Vinft/s. )

The airspeeds at stall and structural limit factors are

— 60 mph
2.46x10°V2 = 75 V. = 552 ft./s( 2212 = 376 mph, and h
=T r S( %8 ft./s) op "
—1.43x10° (V') = =3.0 V', = 459 ft/s = 313 mph. 0

The maneuver V-n diagram is shown in figure 2.23.

Second, draw the gust V-n diagram using NACA formulas. Find the value of the gust alleviation factor as
givenin eg. (2.50). The airplane massratio is

w/S  _ 100 Ib./ft2
(pegm)s2  (0.002378 b s2/ft4)(4 ft.)(32.2 f/s?)(4.37) /2

Wy = , Where 1)

w, = 149 dimensionless .

Hence, the gust alleviation factor is K, = 0.85 . The change in the load factor due to the gust is

An = (M)K uy = Q002378(437)/2 0 o5y iy o ©
& w/S) 100
Ang, = 442x10°UV U, Vinft/s. 0)

Forgust (1) U = 66 ft/s at V' = V. Tofind the airplane speed /, on the stall boundary we set the load factor
ineq. (2.52) equal to itsrelationship to the airplane speed on the stall boundary; i.e.,
246x10°V3 = 1+ 4.42x10°(66) V,
—

S ——

3
stall 2.91x10 m)

Solve eg. (m) for speed V', asfollows:

_ 2.91x107 = J(2.91x10°) + 4(2.46x107)(1)

Vi -
2(2.46x107)

Q)]

_ 2.91x10” + 1.03x10°
2(2.46x107)

Vg choose +. (0)

Hence, V; = 269 ft/s = 184 mph, and the change in load factor for gust (1) is

An, = 4.42x10°(66)(269) = 0.78.. ®)

Forgust (2) U = 50 ft/s a V. = 500 mph . Hence, the change in load factor is

_ 88 fi/s
An, = 4.42x107°(50 [500 h J - 1.62.
2 X (30) mp (60 mph) @
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For gust (3) U = 25 ft/s at 650 mph, and the change in load factor is

- 88 ft/s
An, = 442x107°(25 [650 p(381Us J = 1.05.
"3 8 (25) P (60 mph) ®

Thus, the six points on the gust V-n diagram are

1.78,0.22 Vy = 184 mph

1 =An,

1 =An, = 2.62,-0.62 Ve = 500 mph

1 +An, = 2.05,-0.05 V), = 650 mph ©

A sketch of the gust V-n diagram is shown in figure 2.23. Here the design V-n diagram is the maneuver V-n dia-
gram since the gust V-n diagram is contained inside the maneuver V-n diagram.

8 5 Myax = 7.5

(3)

hhhhh - : VD
@)

inverted
21 stal

100 200 300 400 500 600 700

MPH

Fig. 2.23 Maneuver and gust V-n diagramsfor the example of a small aerobatic or military airplane.
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Practice exercises

don: Arnold, a member of the Hodder Headline Group, 1999.

Peery, D. J., 2011, Aircraft Structures. Dover Publications, Inc., 2011. (Unabridged republication of the work
originally published in 1950 by the McGraw-Hill Book Company, New York.) Chapter 3.

2.8 Practice exercises

1. Anairplane weighting 8,000 Ib. has an upward acceleration of 3g when landing. If the dimensions are as
shown in figure 2.24, what are the wheel reactions R, and R, ? What is the time required to decelerate the air-

plane from avertical velocity of 12 ft./s? What is the shear and bending moment on avertical section A-A, if the
weight forward of this section is 2,000 Ib. and has a center of gravity 40 in. from this cross section. (Peery, 2011,
p. 54).

Fig.2.24 Exercisel.

A
40 in.
Ry 240 in. R

2. An 8,000 Ib. airplane is making a horizontal turn with aradius of 1,000 ft. and with no change in atitude.
See figure 2.25. Find the angle of bank and the load factor for a speed of (a) 200 mph., (b) 300 mph, and (c) 400
mph. Find the loads on the wing and tail if the dimensions are as shown (Peery, 2011, p. 72).

AL

CE.@0 ——

10in. 200 in.

nw Y *P

Fig.2.25 Exercise 2. Level flight coordinated turn.

3. Theairplane shown infigure 2.26 is making an arrested landing on a carrier deck. At the position shown, the
angular velocity is 0.5 rad/s counterclockwise and the vertical velocity of the center of gravity is 12 ft./s. The

radius of gyration for the mass of the airplane about the center of gravity is 60 in. Find the load factors », and

n,, paralel and perpendicular to the deck, for apoint at the center of gravity, a point 200 in. aft of the center of

gravity, and apoint 100 in. forward of the center of gravity. Find the vertical velocity with which the nose wheel
strikes the deck. Assume no change in the dimensions or loads, and the downward accel eration of the nose wheel
is constant in the 10 in. of vertical travel (Peery, 2011, p. 72).
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Macy I
o = 0.50 r/s ccw -t \Ica g = 386 in./szl
Macx
-+

Fig.2.26 Exercise3. ) y
Arrested landingon a 10in. 7 20 kips
carrier deck. _ X

IOklpS*

_ 30 kips
&—L——l—min.

4. Theaircraft shown below weighs 135 kN and has landed such that at the instant of impact the ground reac-
tion on each main undercarriage wheel is 200 kN and its vertical velocity is 3.5 m/s. (Adapted from Megson,

L

N oleo strut
™ A
VIS SIS SIS SIS SIS SIS SIS IS SIS SIS IS /sy

Fig.2.27 Exercise4: Instant of impact upon landing. 150 mm

1999, P8.1, p. 272.)

Each undercarriage wheel weighs 2.25 kN and is attached to an oleo strut.

a) What isan oleo strut? What isits purpose? Describe is components and how it functions.

b) Calculatethe axial load N and bending moment M in the strut, assuming the strut is vertical.
c) Determine the shortening of the strut when the vertical velocity of the aircraft is zero.

d) Cadlculate the shear force and bending moment in the wing section A-A if the wing outboard of section
A-A weighs 6.6 kN and has a center of gravity 3.05 m from A-A.

5. Anairplane has atotal weight of 40,000 Ib. and total rolling moment of inertia about the C.G. of 1,000,000
Ib.-s%-in. Each wi ng-tip store weighs 2,000 Ib. In steady level flight, each wing's resultant liftis L, = 21, 000
Ib. (Thetail carries stabilizing a negative lift of 2,000 Ib.) In a sudden evasive roll maneuver from steady level
flight, each aileron introduces alift increment L, = =3, 000 |b. Assuming the airplane to be rigid and, neglect-
ing wing weight, calculate the total root bending moment for each wing (i.e., M, and M} ). Neglect the moment
of inertia of each wing-tip store about its own C.G.

6. Usethedatagivenin table 2.2 and the NACA gust formulas to develop the design V-n diagram for the Boe-
ing 727 aircraft at sealevel. The airspeed should be in knots. One knot equals one nautical mile per hour, and
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1000 b 1000 Ib

Fig.2.28 Exerciseb:
Evasiveroll maneuver

) D
from steady level flight. Ly w
All dimensionsin 30 30
inches. 100 100

180 180
220 220

»
-

v, M
O NG O

approximate one nautical mile as 6,080 ft.1 Clearly label the plot. Also calculate the level flight stall speed Vs, .

Table 2.2 Exercise 6

S 1560 ft.2

b 108 ft.

W 170,000 Ib.
(dC.,)/(do) | 5.0 per radian
C.omax 0.951

C.amin —0.400

Nmax 2.5 (structural)
Nmin —1.0 (structural)
Ve 350 knots

Vp 440 knots

7. Shown below isthe maneuver V-n diagram at sealevel for an aircraft of wing span 27.5 m, mean aerody-
namic chord 3.05 m, and total weight 196,000 N. The aerodynamic center is 0.915 m forward of the center of
gravity and the center of lift for the tail unit is 16.7 m aft of the C.G. The pitching moment coefficient is

Cymozs = —0.0638(nose-up positive) .

1. A nautical mileisbased on the circumference of the planet Earth. If you were to cut the Earth in half at the equator, you could pick up one
of the halves and look at the equator asacircle. You could divide that circle into 360 degrees. You could then divide a degree into 60 minutes.
A minute of arc on the planet Earth is 1 nautical mile. This unit of measurement is used by all nationsfor air and seatravel. A nautical mileis
1,852 meters, or 1.852 kilometers. In the English measurement system, a nautical mileis 1.1508 miles, or 6,076 feet. [http://www.howstuff-
works.com]
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Both the pitching moment coefficient and the position of the aerodynamic center are specified for the complete
aircraft lessthe tail unit.

n |

35 o
| |
| |
| | e
: Cruise point :
ol S L N 25 po. = 1223 Kg/m?
’ |
| |
: ! ! V /
0 \61.0 915 1525 183 e
0 1) R '

Fig. 2.29 Exercise7: Maneuver V-n diagram at sea level (U.K. regulations).

For steady level flight at sea level the fuselage bending moment at the C.G. was recorded by test equipment to
be 600,000 N m. Calculate the maximum value of this bending moment for the given flight envelope, or V-n dia-
gram. For this purpose it may be assumed that the aerodynamic loadings on the fuselage structure itself can be

neglected; i.e., the on
lage.

ly loads on the fuselage aft of the C.G. are those due to tail lift and the inertia of the fuse-
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CHAPTER 3 Elementsof athin-walled
bar theory

Essential aspects of alinear elastic theory for straight, uniform, thin-walled barsis presented. It is assumed that
the material is homogeneous and isotropic. Bars with an open cross section are presented first, followed by bars
with a closed cross section. The thin-walled bar theory presented in this chapter allows for free warping of the
cross section out of its plane under torsion and transverse shear. Constrained warping theory is not discussed, but
itis presented in texts by Gjelsvik (1981), Oden and Ripperger (1981), Vasiliev (1993), and Vasiliev and Moro-
zov (2013). Bars fabricated by laminating fibrous composite materials are discussed in article 8.1.

3.1 Open cross section

A bar with an open cross section isshown in figure 3.1(a). There are two branchesin the cross section. A vertical
straight branch of length a with wall thicknesst, and a semicircular branch of radius a with wall thicknesst.

Fig.3.1 Thin-walled open cross section: (a) geometry and coor dinate systems and (b) internal actions.
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Article 3.1

The geometry of the bar’s cross section is defined by the locus of points along the

gap center line of thewall, which is called the contour, and the thicknesst of the wall.

overlap /—e ' The contour consists of piece-wise continuous lines or curvesin the plane of the
A cross section whose subdivisions are called branches. Points between branches

t -] | < occur at junctions or sharp corners. Let the arc-length along the contour be
denoted by s, and the thickness can be afunction of s. Thatis ¢z = #(s) >0, as

Fig.3.2 Idealized long asit is small with respect to the length of abranch and to its radius of curva-

junction. ture (e.g., 0 < ¢ «a for the section shown in figure 3.1(a)). At junctions between

branches overlaps and gaps of cross-sectional areas can occur as shown in figure
3.2, but its effect on the geometrical properties of the section are small under the thin-walled assumption. A step
change in thickness along a contour is accommodated by defining a junction at the location of the step.

The bar isreferenced to two, right-handed Cartesian coordinate systems labeled (X,Y,Z) and (x,y,2). The pos-
itive directions of the Z-axis and the z-axis are out of the plane of the cross section shown in thefigurewith Z = z,
where z €[0, L] and L isthe axial length of the bar. The cross section shown figure 3.1(a) is called a positive z-
face since the normal to the cross section points outward (positive z-direction) from the material contained
behind the cross section. The origin of the (X,Y) system in the cross section is taken at the center of the semicir-
cular branch for convenience, and islabeled point O. The (x,y) systemis parallel to the (X,Y) system, and the ori-
gin of the (x,y) system is at the centroid, which islabeled point C. The shear center in the cross section islabeled
as point SC.

Theinternal resultants acting on the cross section of thebar are N, V., V,, M, M, and M_, and these

X2 »
resultants are functions of the axial coordinate z. Refer to figure 3.1(b). The axial normal forceislabeled N, and
is defined positive in tension acting at the centroid. Note that N is not shown in figure 3.1(b). The axial displace-

ment corresponding to N is denoted by w(z) . The transverse shear forces Vy and Vy, are defined positive in posi-
tive x- and y-directions on a positive z-face, respectively, and act at the shear center. The displacements
corresponding to V, and V, are denoted by u(z) and v(z) , respectively. The bending moment A, (z) and its cor-

responding rotation ¢, (z) are referenced to the centroid, and are defined positive in the positive x-direction by
theright-hand screw rule. (Put your right thumb along the positive x-axis and your fingers curl in the direction of
the positive moment and corresponding rotation.) The bending moment A4,(z) and its corresponding rotation

¢,(z) arereferenced to the centroid and are defined positive in the negative y-direction by the right-hand screw
rule. Note that positive bending moments cause tension of the axial fibersin the first quadrant of the x-y coordi-
nate system. The torqueis denoted by A/,(z) , and its corresponding rotation ¢,(z) are defined at the shear center
and are positive counterclockwise on the positive z-face.

Centroid C. The centroid decouples the extension and bending responses of the bar in the material law. Refer to
€g. (3.80) on page 47. The procedure to locate the centroid is presented in example 3.1 on page 47 for an open
cross-sectional contour, and in part (a) of example 3.4 on page 71 for a closed cross-sectional contour.

Shear center S.C. The shear center isapoint in the cross section through which the plane of the loading must
pass for the bar to bend and not twist in torsion. That is, the resultant of the shear forces in the cross section must
act through the shear center to prevent torsion. Using energy methodsin article 5.5.3 it is shown that the shear
center decouples the transverse shear and torsion responses of the bar in the material law. Refer to eg. (5.76) on
page 144. The procedure to locate the shear center is presented in example 3.3 on page 54 for an open cross-sec-
tional contour, and in part (c) of example 3.4 on page 71 for a closed cross-sectional contour.
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3.2 Contour geometry

The contour in the cross section is defined in parametric form by its coordinates x(s) and y(s) where s denotes the
arc-length of the contour as shown in figure 3.3(a). The position vector from point C to a point s on the contour is

F(s) = x(s)i+y(s)], 3.1

where the Cartesian unit vectors are denoted i, j, k£ aong the positive x-, y-, and z-directions, respectively. The
Cartesian coordinates are a right-handed system, or ; x} = IAc , and the arc-length s is taken positive counter-
clockwise aong the contour. The differential arc-length on the contour is given by

NN 2 2
ds? = dredr = dx*+dy?, which implies (i{c) + (4-2> =1. (3.2)
ds ds

Unit vectors tangent and normal to the contour are denoted by ;(s) and 7A1(s) , respectively. Let the angle between

the positive x-direction and the unit normal ;; be denoted by 6(s) . From the differential geometry along the con-
tour shown in figure 3.3, the trigonometric functions of the angle 6(s) are given by

@ = —sinBO C—JZ = cos0. (3.3)
s ds

contour contour

x,.cos0 +y .sin0

i . S.C. (x5 50 SC.
1
[ - >
C:(0,0) C e
@ (b)

Fig.3.3 (&) Analytic geometry of the contour. (b) Tangential and normal coordinates with respect
to the shear center and centroid.

The unit tangent vector to the contour is

~
1
15
1
—
&8
~—
~. )
+
—
SIE

)]A = (—sinG)E + (0056)}. (3.4)
s

The unit normal to the contour is given by the cross product ;1 = ; X lAc , which yields
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1; = (cosG);+(sin8)} = (%)Z—(%)} (3.5)

The derivatives of the unit tangent and normal vectors along the contour are obtained by differentiating eq. (3.4)
and eqg. (3.5) with respect to arc-length s. The results are expressed as

d;_—n

dn
ds R ds

s

>

R, R, ds

where d6/ds isthe curvature of the contour at s, and R, istheradius of curvature at s. For subsequent computa-
tions the direction cosines between the two Cartesian and contour unit vectors are listed in table 3.1.

Table 3.1 Direction cosines

i j k

cosO sin® 0
p —sin® cos® 0

& 0 0 1

The position vector ;(s) is also expressed as a function of the tangential coordinate r,(s) and normal coor-
dinate r,(s) by

H(s) = x,i+ .+ r(s)i(s) +r (s)n(s), 37)

where the coordinates of the shear center with respect to the centroid are denoted by x,,. and y,.. . Equating the

two expressions (3.1) and (3.7) for the position vector and using the direction cosine table 3.1, the following rela-
tions between the contour coordinates result:

rs) = —[x(s) =x,,]sinB(s) + [y(s) —y,.JcosO(s) .,
A(5) = [x(s) =x,,]cos0(s) + [y(s) ~ . IsinO(s) oo
x(s)—x,, = —r,(s)sinB(s) +r,(s)cosO(s) y(s)=y,. = r(s)cosO(s)+r,(s)sinb(s). (3.9)

Replace the trigonometric functions in eq. (3.8) by derivatives of the contour coordinates using eg. (3.3). Then
expand eg. (3.8) and write it as

dx d d dx
r, = rtc_xsca _yscdii); Ty = T _xscdi)sj +ysc$’ (3.10)
where
— dx dy _ dy . \dx
e x(s)$ +y(s)$ e x(s)a y(s)a. (3.11)

In eg. (3.11), the tangent and normal coordinates to a generic point on the contour relative to the centroid are
denoted by r,.(s) and r,.(s) , respectively. The relationship expressed by eqg. (3.10) is shown in figure 3.3(b).
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The derivative of the position vector with respect to the arc length coordinate s is the unit tangent vector in
€g. (3.4). Take the derivative of ;(s) with respect to susing eqg. (3.7) to get

d; ~ dr, v\~ dr, TN"
ar— ¢ = <—-—+——)t+<———>n. (3.12)
ds ds R, ds R,

Since d;/ ds = ; , it follows that coordinates »,(s) and r,(s), and the radius of curvature R, are related by

dry T _ @_Q:O_ (3.13)
ds R ds R

S N

3.3 Displacements

Consider amateria point in the wall of the cross section located by coordinates (s,C), where T denotes the thick-
ness coordinate. Coordinate € = 0 on the contour and —¢/2 < T < ¢/2 . Denote the position vector f? to point (s,2)
relative to the shear center by

R(,0) = ri+(r, +O)n. (3.14)

It isassumed that the cross section displaces, and then undergoes an infinitesimal rotation asarigid
disk. Let :lsc(Z) denote the displacement vector of the shear center of the cross section, and let ;(s, z, L) denote
the displacement vector of the particle at point (s,z,C). The position vector IAQ in the cross section is displaced and
rotated in therigid disk to f?(*) . Since fe(*) is embedded in the rigid disk, the magnitudes of vector fe(*) and vec-
tor fe arethe same; i.e., 13(*) . fz(*) = 13 . fz . As shown in figure 3.4 the displacement Z(s, z,C) relatedtodis

placement ;sc(Z) and the change in direction of vector fe by

u(s,2,C) = use(z) + R —R. (3.15)

y (520 M50

5

fdfe
R

D

(b)

Fig. 3.4 (a) Displacement vectors of the shear center and a generic particlein thebar. (b) Changein
direction of position vector R dueto an infinitesimal rotation & . dR isnormal tothe planeof R and D .

Let d denote theinfinitesimal rotation vector of the cross section embedded in the rigid disk. The changein
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direction of ﬁ is denoted as df? and is determined by the vector cross product (Goldstein, p.128):
R7-R = dR = B xR. (3.16)
Substitute eqg. (3.16) for ﬁ(*) —IAQ ineq. (3.15) to get
w(s,2,C) = use(z) + B x R. (3.17)

The vectors usc(z) , u(s, z, C) , and ®(z) arewritten in the Cartesian basis or contour coordinate basis as
follows:

use(z) = u(2)i+v(2)j + wy (2)k
u(s,2,C) = uy(s, 2,0t +1u.(s, 2, Dk +ue(s, 2, Ln (3.18)
B(z) = 4,(2)i = 0,(2)] + 0.(2)k
where w,.(z) istheaxial displacement of the shear center. The components of the displacement vector ;(s, z,C)

in terms of the displacement vector ;sc(Z) of the shear center and the contribution from the rotation is given by
the following scalar products:

uls,z,C) = :l(S, z,C) '2 = :tsc(z) o ; +® x (r,;+ (r,+ ?;);1) ';
U(5,2,0) = u(s,2,0) 2 k = use(z) * k+B x (r,1 +(r, +T)n) * k - (3.19)
U5, C) = w5, 2 C) o0 = use(z) o n+Bx(rp+ (r, +C)n) o n

Performing the scalar productsin eg. (3.19) with the aid of (3.9) and (3.18) and table 3.1, we find that the dis-
placement components of a particle in the cross section with respect to the shear center are

u(s,z,C) = —u(z)sinB(s) +v(z)cosB(s) +[r,(s) +Tlp.(z), (3.20)
u(s,2,8) = wy(2) +[1(s) = 19,(2) + [x(s) —x,.19,(2) + C[,(2)sinO(s) + ¢,(z)cosB(s)],  (3.21)
u(s,z,€) = u(z)cosO(s) +v(z)sinb(s)-r,(s),(z). (3.22)

Let Zlc(Z) denote the displacement of the centroid, with the component form given by

AN

uc(z) = uc(z); + vc(z)} + w(z)lAc. (3.23)

where u_(z) and v.(z) denote the x-direction and y-direction displacements of the centroid. From figure 3.5 the
displacement of the shear center relative to the displacement of the centroid is

use(z) = ue(z) + Rye = Rse = ue(z) + dRse = ue(z) + ® x Rye . (3.24)
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whereit is noted that position vector ﬁsc isembedded in therigid disk con-
taining the cross section which undergoes the infinitesimal rotation ®(z) .

Position vector Rsc = x,.i + ./, and the rotation vector is given in eq.

(3.18). From the forgoing vector relations, the displacement components of
the shear center relative to the centroid are

u(z) = uc(z) _yscq)z(z)
v(z) = v (z) +x,.9.(2) . (3.25)
Wie(2) = w(z) +x,.0,(2) +.9,(2)

Fig.3.5 Displacementsof the
centroid and shear center.

Substitute the expression for axial displacement w,.(z) fromeq.
(3.25) into eg. (3.21) to get

u(s,2,8) = w(z) +y(s)9(z) + x(s)9,(2) + TL,(2)sinB(s) + ¢ (z) cosO(s)]. (326)

3.4 Srains

Consider three mutually perpendicular, infinitesimal line elements S, dz, and dC in the undeformed body, where
the arc-length of the line element parallel to the contour isrelated to the arc-length of the contour by

dS = (1 +T/R,)ds . Let g denotethenorma strain for line element dS, ¢,, the normal strain for dz, and e
the normal strain for line element dC. For infinitesimal deformations, these normal strains are related to displace-
ments Us, Uy, and u by

ou a d
€ = Mo X /<1 +£) €, = e €r = M, (3.27)
. ds R R 9z atC

S,

Let y,, denote the engineering shear strain between line elements dSand dz, y . the engineering shear strain

between dSand dg, and v the engineering shear strain between line elements dz and dC. For infinitesimal
deformations, the shear strain-displacement relations are

Vs =

9z (1+CT/R)os st = 52 T (1+C/R,) R 9T 9z

dug 1 Ou, _ Oug ;(gut_;’;) Y = du | g (3.28)
N s

Substitute the displacements from egs. (3.20), (3.22), and (3.26) into the strain-displacement relations for
€451 &g @Nd v, tofind

(%) (@5 3)
e, = #4)2 =0 ec = 0 Ve = 1245 & Y 9. =0. (3.29)
S 1+T/R, o 1+&
R

Strains e, = v, = 0 result from the relations between the coordinates », and r, given by eq. (3.13). More-
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over, the vanishing of the strainsin eg. (3.29) is a consequence of the assumption that the cross section is unde-
formablein its own plane. Substitute the axial displacement from eg. (3.26) into the axial normal strain-
displacement in eq. (3.27) to get

_ dW dq)x dq)y dq)x . dq)y
€, = @ +y(s)$ +x(s)$ +C[E s1n6(s)+$ cos@(s)] (3.30)

Substitute the displacements from egs. (3.20), (3.22), and (3.26) into the last two shear strain-displacement equa-
tionsto find

d d
Vo = —,8in0 + 4y, cosh + (r,(s) + C)j) Yoo = P,cos8 +1p sinb —rtj)z.
] dz

% (3.31)

In previous expressions for the shear strains new quantities g, and y, areintroduced. These new quantities rep-
resent shear strains averaged over the cross section of the bar and are defined by

0 = T W = Pra). (332

See figure 3.6 for agraphical representation of these averaged transverse shear strains.

(a) x-z plane (b) y-z plane

Fig.3.6 Transverse shear strainsof the bar with respect to the shear
center: (a) projection in the x-z plane, (b) projection in they-z plane.

3.5 Sresses, stress resultants and bar resultants

Let 0., denote the stressnormal to the cross section, o, denote the shear stress acting tangent to the contour of
the cross section, and let o, denote the shear stress normal to the contour acting on the cross section. These

stress components act on an infinitesimal area of the cross section denoted by d4 = (1 + T/R,)dsdC .These
stress components are shown in figure 3.7(a).
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o..dA

zs

o..dA

dA = (1+%/R,)dsdt

Fig.3.7 (&) Stresscomponents acting on differential area dA of the cross section. (b) stress
resultants acting at the contour of length ds.

Consider the work done on a cross section at afixed value of z by the stresses acting through incremental
displacements. The incremental displacement corresponding to o, is du, 2, incremental displacement corre-

sponding to o, is du,, and the incremental displacement corresponding to o, is du. . Let 317, denote the
incremental work, which is given by the integral

t/2
dW, = ﬂ f (0..0u, + 0 du +0du)(1+T/R)dC |ds . (3.33)
C—t/2
Theincremental displacements are determined from egs. (3.20), (3.22), and (3.26), and are

du_(s,2,C) = dw(z) + ¥(5)89,(z) +x(5)8¢,(z) + T[d¢,(2)sinO(s) + 8¢,(z) cosO(s) ]
duy(s,z,T) = —0u(z)sinB(s) + dv(z)cosO(s) + [r,(s) +T]0d.(z) , (3.34)
duc(s,z,C) = du(z)cosO(s) + dv(z)sinO(s)—r(s)0¢.(z)

where du(z), dv(z), and dw(z) denote the incremental displacements of the cross section, d¢,(z) , 8¢,(z),

and d¢.(z) denote theincremental rotations of the cross section. Substitute the incremental displacements from

eg. (3.34) into the expression (3.33) for the incremental work, followed by integration through the thickness of
the wall. The result of this processiswritten as

2. Thenotation du, denotes a continuos function of infinitesimal magnitude added to the displacement function u_ , which

vanishes at prescribed values of . That is, u, + du_ isanew displacement function. Function du, isinterpreted asa

change in displacement at fixed values of independent coordinates s, z, and T, where the independent variables identify a
material point. In differential calculus du, istheinfinitesimal changein the displacement function with respect to changes

in the independent variables without changing the function itself.
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dw, = f[(—qsin@ +¢q,c0s0)du + (gcosO + ¢, sinB)dv + n_dw +
(yn, +m,,sin0)d¢, + (xn, +m..cos0)d¢, + (r,q +m_ —r,q.)8¢,]ds (3.35)

Theintegration through the thickness leads to the definition of stress resultants acting at the contour. The normal
stress resultant is denoted by ., shear flow resultant by g, transverse stress resultant by ¢, , bending moment

resultant by m., and twisting moment resultant by m . . These stress resultants are given by the following inte-
grals through the thickness:

t/2

() = [ (LQo(1+T/R)C, (3.36)
—t/2
and
t/2 t/2
(gm) = [(LOo(I+T/RIE .= [ oI +T/R). (3.37)
—t/2 —t/2
See figure 3.7(b).

Theintegral over the contour of the incremental work in (3.35) is written as
SW, = V.du+V,0v+Ndw+ M, +Mdp, + M3, . (3.38)

Integration over the contour defines the bar resultants in terms of the stress resultants as

N = (n.ds M_= ((yn.+m_sin0)ds M, = [(xn.+m__cosB)ds, and (3.39)
V4 X y V4 zZz y z r44

V., = f(—qsin6+qzcos8)ds Vv, = f(qc0s9+qzsin6)ds M, = f(rnq+mzs—r,qz)ds. (3.40)

3.6 External loads and equilibrium of an element of the bar

The prescribed external traction components acting on the bar are denoted by functions p (s, z) , p,(s, z) and
p.(s, z) , which are defined per unit area of the middle surface where T = 0. The dimensional units of these

traction components are F/L?. Seefi gure 3.8. At atypical cross section these tractions are resolved into distrib-
utedlineloads f, , £, and f, having dimensional units F/L. The lineloads are determined from the following vec-
tor relation:

f2) = fi+fj+fk = f(pn?« +pyt+p.k)ds . (3.41)

Using the direction cosines in table 3.1, these line load intensities are related to the specified tractions by
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(p,dsdz)t (p,dsdz)n

(pzdsdz)lAc ratr,n
S.C.
xSCi +yYG;
k
@ (b)

Fig.3.8 (&) External tractionsprescribed on thereference surface.
(b) Statically equivalent external lineload intensities.

fi(2) :f(pnCOSG—pSsine)ds 5(2) :f(pnsine +p,cosB)ds fi(z) :fpzds. (3.42)

c

At atypical cross section these traction components result in an external torque per unit axial length with respect

to the centroid denoted by m: » with dimensional units (F-L/)L. The external moment per unit axial length with

respect to centroid is determined from the following vector cross product relation:
mc = f[(xsci ty. )t (roptrt)]x[p,n+pt+pklds. (3.43)
c

Perform the cross products to find the moment per unit axial length about the centroid from the prescribed trac-
tion to get

me = mi—mj+[x, f,(2) =y, filz) + m ()], (3.44)
where

m =fy(s)pz(s,2)ds m, =fx(S)pz(s,Z)ds m, =ﬂrn(S)ps(s,z)—r,(S)pn(s,Z)]ds. (3.45)

Equation (3.38) is applicable at each end of the bar wherez=0and z=L. Hence, [N, w], [V, u], [V, v],

[M,, b,], [M,, ¢,],and [M,, ¢.] are corresponding variables. We can prescribe a“force” variable or its corre-

sponding “displacement” variable as external “loads’ acting on the end cross sections, but not both the “force”
and the “ displacement” simultaneously.

3.6.1 Differential equilibrium equations

Let the internal forces acting on the cross section at z be denoted by the vector f(z) , and let the internal

moments acting on the cross section resolved at the centroid be denoted by the vector M(z) . These vectors of
internal actions are

f’(z) = Vx; + V}} + NIAc, and (3.46)
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M(z) = M,i—Mj+M,ck. (3.47)

Consider the forces and moments acting on a bar element defined by zand z+ Az, Az> 0, as shown in figure 3.9.

—M N
EA \ Az Az
/ ;w(z*)Az
F( ) Z\// 1?(2 ")

z+ Az
Fig.3.9 A freebody diagram of the segment Az of a bar ]\7(2 +Az)
subject to internal actions at itsend cross sections, and

subject to prescribed external actionsalong itslength.

The vector equations of equilibrium are

F(2+Az)—;’(z) +}(z*)AZ =0 ]\7(2+Az)—1\7[(z)+Az/’;><]?(z+Az)+(z* —z)/;x}(z*)Az+r;dz*) =0, (3.48)

where z < z* <z + Az . For acontinuous force vector and moment vector with respect to coordinate z, eq. (3.48)
can be written as

AN

dF Az +}(Z*)AZ =0
z

z z

iIM Az+Azk><F(Z+Az)+(Z —Z)k xf(z )Az+mc(z*)AZ =0. (3.49)

Dividethe latter equations by Az and takethelimit as Az — 0 and notethat z* — z inthelimit. The differential
equations of equilibrium obtained from the limiting procedure are

d

dE 1 4z = 0 dM 7 F(z)+mc(z) = 0. (3.50)
dz dz

Expand the differential equation (3.50) in terms of componentsto get

( Ser)i <.Zz+f> + (e )k = 0 +0j+ 0k, and (351)
(d‘?;[ v +m>;+(_%+ Vx—my>;'+<¥-]§I—ch+mz+xscfy—ysafx)/; = 0+ 0j+0k. (352)

Axial equilibrium.  From lAc-component of eqg. (3.51) the differential equilibrium equation is
(;—N+fz(z) =0 N = N(z) 0O<z<L. (3.53)
z

At the end pointsz= 0 and z= L, prescribe either axial force N or the corresponding displacement w, but not
both.

Bending in they-zplane. From the} component of eg. (3.51) the differential equation for the shear forceis
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dd—zv +fy(z) =0 v, = Vy(z) 0<z<L. (3.54)

Attheend pointsz=0and z= L, prescribe either shear force V, or the corresponding displacement v, but not
both. From the ; -component of eq. (3.52) the differential equation for the bending moment is

aM
dZX_Vy+mx(Z) =0 M, = M(z) 0<z<L. (3.55)

At theend pointsz= 0 and z= L, prescribe either bending moment A7, or the corresponding rotation ¢, but not
both.

Bending in the x-z plane. From the ;-component of eg. (3.51) the differential equation for the shear forceis

dv
7 +f(z) =0 V.= V2) 0<z<L. (3.56)
z

At theend pointsz=0and z= L, prescribe either shear force V, or the corresponding displacement u, but not
both. From the} -component of eq. (3.52) the differential equation for the bending moment is

aMm,
E)'_Vx"'my(z) =0 M, = M/z) 0<z<lL. (3.57)

Attheend pointsz=0and z= L, prescribe either bending moment M, or the corresponding rotation ¢, , but not
both.
Torsion. From the IAc—component of eg. (3.52) the differential equation for torsion about the shear center axisis

M.
?ZC + X fy =Yoot m. = 0. (3.58)

The torque at the centroid is related to the torque and the shear forces acting at the shear center by static equiva-
lence. (Refer to Fig. 3.23 on page 69.) That is,

MZC = Mz * X Vy —Vse Vx ' (3.59)
Substitute eg. (3.59) for M, . into eg. (3.58) to get
dM dv. dv.
Iy —L 4+ — —+ + =0. .
dz xSC( dz fv) y”( dz fz) e (3.60)
Impose equilibrium egs. (3.54) and (3.56) in eg. (3.60) to get
dj/lz+mz =0 M, = M[z) 0<z<L. (3.61)
Z

At the end points z= 0 and z = L, prescribe either torque M, or the corresponding rotation ¢._, but not both.
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3.7 Hooke'slaw

For alinear elastic, isotropic material, there are two independent material constants: the modulus of elasticity E
and Poisson’sratio v. (Refer to eq. (A.146) in the appendix.) Hooke's law for the normal strainsis

Ess 1/E —v/E —~V/E Oss
€. = |-v/E 1/E —v/E||O..
—/E —-~v/E 1/E Ot

(3.62)

e

where o denotes the normal stress acting on the s-face, and where o denotes the normal stress on the C-face
acting on an infinitesimal element ds-by-dz-by-dC. The thickness normal stress o is assumed to be very small

with respect to the axial normal stress o__ , and hence is neglected in Hooke's law. From the kinematic assump-

tion, eg. (3.29), thenormal strain e, = 0. Setting .. = o, = 0 inthethird row of eq. (3.62), leadsto
o, +0,, = 0,whichisavery unlikely result. Thus, we neglect thisthird equation in Hooke's law. Furthermore,
in most thin-walled beam theories (e.g., see Gjelsvik, 1981, p. 16), the normal stress o, is assumed to be small

with respect to the axial normal stress o,, and is neglected in Hooke's law. Setting o, = o = 0 leadsto

o, = Ee__. (3.63)

z

Consequently, the first row of matrix eg. (3.62) leadsto e,, = —vo,./E . However, the kinematic assumption,

eg. (3.29), resultedin e, = 0. If weset e, = 0 inthefirst row of eg. (3.62), solveit for o
stitution into the second row of eg. (3.62), we get

followed by sub-

s87

_E_
O, = 1 _vzgzz‘

(3.64)

It isrecognized that Hooke's law in the elasticity sense of eq. (3.62) isviolated under the assumptions of the thin-
walled beam theory under consideration. In the following developments of the theory, eq. (3.63) is assumed as
the material law governing the axial normal stress and axial normal strain, which is acommon assumption in
classical beam theory.

3.7.1 Effect of thermal expansion

Consider structures subject not only to external forces, but also subject to heating. Aerospace examplesinclude
high-speed flight vehicles and orhiting space structures. Aerothermal |oads consisting of pressure, skin friction or
shearing stresses, and aerodynamic heating, are exerted on the external surfaces of high-speed flight vehicles.
Conduction and radiant heat transfer result in significant thermally induced forces acting on orbiting space struc-
tures. These aerospace examples are discussed in detail by Thornton (1996), who provides an historical account,
and methods of analysis, of thermal structures for aerospace applications.

It is assumed that a change in temperature (thermal state) causes a change in deformation and stress
(mechanical state) in the structure, but a change in deformation does not cause a change in temperature. For
example, under adiabatic conditions strain can cause a change in temperature. However, in many structural appli-
cations the change in temperature under adiabatic straining is negligible and can beignored (Fung, 1965, p. 390).
Thornton (1996, p.51) defines the change in thermal energy state causing a change in mechanical state, but not
the reverse, as one-way thermal-mechanical coupling. Thus, heat conduction and thermoelasticty separate into
two separate problems. In thistext it is assumed that the heat conduction problem has been solved so that the
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temperature distribution in the structure is known. The ther moelastic problem is to determine the mechanical
state in an elastic structure for the specified temperature distribution and the specified external |oads.

For auniaxial stress state the generalized Hooke's law including temperature is

e, = (0, +PAT)/E or o,, = Fe__—PBAT, (3.65)

zZZ

where p = Ea, and o isthe coefficient of thermal expansion. The change in temperature is denoted by
AT = T—-T,,and T, isthespatially uniform temperature in the reference state. The reference stateis stressfree

when the external loads acting on the bar are removed and the spatially uniform temperature 7' = 7,,. Assume a
linear distribution of the change in temperature in the thickness, which we write as

AT(s,z,C) = AT(s,z) +CDI(s, z), (3.66)

where

AT(s,z) = AT(s,z0) and DT(s,z) = 9AT (3.67)

9T |y

3.7.2 Material law for extension and bending

Substitute the expression (3.30) for the axial strain, and substitute eq. (3.66) for the change in temperature, into
Hooke's law (3.65) to get the following expression for normal stress.

o, = E[@ +y(s)(i¢)r + x(s)dj)y —aAT(s, z)} + CE[dj)Xsinﬂ(s) + dii)}’cos 0(s)—aDT(s, z)} . (3.68)
dz dz dz dz dz
In thethin-wall bar theory we neglect the distribution of the normal stress and normal strain acrossthe
thickness of the wall. Therefore, the normal strain and stress is assumed uniform in the thickness coordinate,

and are given by

do,

_ dw do, ;
€., = az +y(S)$ +x(s)$ )

4

and (3:69)

_ dW dq),\
o, = E[E +y(3)$ +x(s)

In other words, the local bending of the wall represented by the bending moment resultant m,, in (3.36) is
neglected with respect to the membrane stiffness of the wall represented by the normal stress resultant n. In

addition, for athin, curved wall we neglect theterm T/ R inthefactor (1 + T/R,) appearing in the integrand of

Wy _ G AT(s, Z)J . (3.70)
dz

eq. (3.36)2. The definition of the normal stress resultant reduces to

n, = f o..d%. (3.71)

Substitute eg. (3.70) for the normal stress into the normal stress resultant (3.71) to get

3. Notethat \C/RS\ < \t/(st)\ . A contour that isastraight linehas 1/R, = 0. A thin, curved wall is one in which
R >10z.Hence, 0 <|t/(2R)| < 0.05 for most practical contour geometries.
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- E{%W ¥ y(s)J+x(s) ocAT(s,z)} . (3.72)

The constitutive equation for the axial normal force N is obtained by substituting eg. (3.72) for the normal
stress resultant in the expression (3.39). Theresult is

N = EA@+EQ do, +Edei"y
dz

= -N,, (3.73)

where A denotes the cross-sectional area, O, thefirst areamoment about the x-axis, O, the first area moment

about the y-axis, and N,(z) thethermal axial force. These geometrical measures of the cross section are given by
the formulas

A4 = ftds Q. = [ytds = 0 0, = [xtds = 0. (3.74)

Thefirst areamoments O, and O, are equal to zero because the origin of the x-y coordinate system islocated at
the centroid. The thermal axia forceis given by the expression

Ny(z) :f[:’;AT(s,z)t(s)ds. (3.75)

c

The constitutive equations for the bending moments M, and M, are obtained by substituting eg. (3.72) for
n, into the definitions of the bending momentsin eq. (3.39), with the contribution of »_ neglected. The result is

do, do, — e Ow do, do,
M, = EQ — +E1 o EIWOT -M.; M, = EQy$ +E["yd Elyy$ -M,r, (3.76)
where Iy, Iyy, and 1, denote the second area moments of the cross section with respect to the centroidal x-y

coordinate system. The second area moments are given by the formulas
= fyztds I, = fxztds I, = fxytds . 3.77)
The thermal bending momentsin eqg. (3.76) are given by the expressions

M (z) = fﬁAT(s, 2)y(s)t(s)ds M,(z) = fﬁAT(s, z)x(s)t(s)ds . (3.78)
Since the origin of the x-y system istaken at the centroid of the cross section, the first area moments are zero by
the definition of the centroid. For O, = 0, = 0, egs. (3.73) and (3.76) reduce to

N+ Ny A0 Of|dw/dz
Mx +MxT =k 0 Ixx Ixy d(l),c/dZ . (3.79)
M, +M,, 01, 1,||do,/dz

Locating the origin of the cross-sectional Cartesian system at the centroid decouples the extensional and
bending responsesin the material law (3.79) for the bar. Solve eg. (3.79) for the derivatives of the displace-
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ment w and the rotations ¢, and ¢,, and writeit as
dw/dz 1/4 0 0 N+ Ny
dy,/dz| = 7 0 k/ L (=kn)/L| | M.+ M- (3.80)
d¢,/dz 0 (<kn)/L, K/, ||M,+M,;

Following Vasiliev (1993, p. 205), the new termsin eg. (3.80) are defined by

= - - 1
n,=1,/I. n, =1,/1, k= T (3.81)

Xn_y

Substitute the derivatives of the displacement and rotations from eg. (3.80) into the expressions for the strain
(3.69) and stress (3.70) to get

N+N M +M_;)- M, +M,;)-
e = 7y M xT)y(S) +k(_y_,vl)x(s) _and (3.82)
EA Elxx EI)’)’
N+ N M_+M_;)- M, +M ;)-
o, = T+k( X XT)y(s) + k(—Lﬂx(s)—ﬁAT(s,z) . (3.83)
A [xx [yy

In the previous equation coordinate functions ;c(s) and j/(s) are defined by

x(s) = x(s)=ng(s)  w(s) = y(s)—nx(s). (3.84)

Example 3.1 Centroidal coordinatesand second area momentsfor the open section shown in figure 3.1

Let s, denote the contour coordinate in the straight branch 1 with s; = 0 atitslowerendand s, = a atits
upper end where it meets at the junction with the semicircular branch 2. Let s, = a(xt/2 + 6) denote the con-
tour coordinatein branch 2with 6 = —t/2 at itslower end where it meets at the junction with branch 1 and
= ;t/2 atitsupper end. The Cartesian coordinates with respect to point O for each branch are
X,(s;) =0 Y,(s,) = —2a+s, 0<s,=<a,and (a)
X,(0) = acosH Y,(0) = asin0 —-n/2=<0=n/2. (b)

Let Sdenote the total arc-length of the contour and |et A denote the area of the cross section. Then Sand A are
given by

a /2 a /2
S = [(1)ds, + (1)add = a+amn A = [(t)ds, + (t)ad® = at+amnt. (c)
e s Jooe ),

Thefirst area moment of the cross-sectional area about the X-axis is denoted by Q,, and thefirst area

moment of the cross-sectional area about the Y-axis is denoted by Q. These first area moments are determined
from the integrals
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a n/2
Oy = f[Yl(sl)]tdsl + f [Y,(0)]tadd = —(3/2)a?t, and (d)
0 —n/2
a /2
Oy = (1X,(s,)]eds, + [X,(0)]tadd = 2a4°t. (e)
frese

The relationship between the Cartesian coordinates with origin at point O and the parallel coordinates with the
origin at the point C (centroid) are

X(s) = x(s)+ X, Y(s) = y(s)+7,. ()

The definition of the centroid is that the value of the first area moments about the x-axis and y-axis are zero. Sub-
stitute eqg. () into the definitions of the first area moments about the centroidal axes (3.74) to get

0, :f[y(s)]tds :f[Y(s)]tds—YLftds = Qy-Y.A4=0,ad (@)
0, Zf[x(s)]tds :f[X(s)]tds —chtds = 0,-XA4=0. ()
Hence the coordinates of the centroid relative to point O are given by
- - 2a _ - _ _3a_ _ _ .
X. = 0,/4 = Tom - 0.482906a Y, = 0y/A4 = T+m 0.36218a . 0)

The contour coordinates with respect the centroid are determined from egs. (a), (b) and (f). The results are
x,(s;) = —0.482906a y(s;) = —1.63782a + s, O<s,=a 0)

x,(0) = —0.482906a + acosO ¥,(0) = 0.36218a + asin® —-n/2=0=mn/2. (k)

The expressions for second area moments about the x-y system with origin at the centroid are givenin eqg.
(3.77). Substitute the egs. (j) and (k) for the contour coordinates into the definitions of the second area moments,
followed by integration to get following results:

a /2
I, = (ytds = (yitds, + [ y3tad® = 3.36086a°¢, 0)
s
a /2
I, = fxztds = fx%tdsl + f x3tad® = 0.60498443¢, and (m)
c 0 /2
a /2
I, =fxytds :fxlylta’s1 + fxzyztade = 0.7243594°t. (n)
c 0 /2
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3.8 Shear flow due to the transverse shear forces

The shear flow q is defined in eg. (3.37) as the definite integral of the shear stress component tangent to the con-
tour o, across the thickness of the wall. In this article the shear flow is determined from axial equilibri um. A

free body diagram for axial equilibrium of a differential element with area As-by-Az of the middle surfaceis
shown in figure 3.10. It is assumed that there is no prescribed surface traction acting on the middle surface of the

n(s*, z)As
/

s<s¥<s+As

q(s+As,z")Az /
n(s*,z+Az)As /

z<z'<z+Az

/'q(s, z")Az

Fig. 3.10 Freebody diagram for axial equilibrium of a differential element of the middle surface

wall in the axial direction. Refer to figure 3.8(a) on page 41. For prescribed traction component p,(s,z) = 0, it
follows from eqg. (3.42) that the axial force per unit length /. = 0, and from egs. (3.45) that the bending
moments per unit axial length m, = m, = 0.

Summation of the forcesin the z-direction yields

[n(s*,z+Az)—n(s",z)]As +[q(s + As, z") —q(s,2")]Az = 0. (3.85)

Division by AsAz followed by taking the limit as As — 0 and Az — 0 yields the partial differential equation

9
P99 — (3.86)
dz 0ds

The normal stress resultant n, is given by eq. (3.72) and it is based on the kinematic assumption for the displace-
ments made in article 3.3, infinitesimal deformation, and Hooke's law. The expression for the normal stress
resultant iswrittenas n, = #(s)[Ee,, —BAT]. Substitute eq. (3.82) for the normal strain to get

F 0y (B B )l By par .

XX yy
Take the partial derivative of the normal stress resultant (3.87) with respect to z. In the process of taking the
derivative we eliminate the derivative of the axial force using equilibrium eg. (3.53), and we eliminate the deriv-
ative of the bending moments using equilibrium egs. (3.55), and (3.57). The final result for the derivative of the
normal stress resultant with respect to zis

n = is) —

(3.87)

an. _ t(s)dNr  ,9AT k - k N
—= = —_— == + — + + — + X .
Pl el C) Ixx[Vy Vyrlv(s)t(s) IW[Vx Vyrlx(s)t(s) (3.88)

4. The dternative isto derive the shear flow from Hooke's law in shear with the shear strain y,, givenin eq.
(3.31). This alternative derivation is not used in the theory of thin-walled bars under consideration.

Aerospace Structures 49



Article 3.8

Assume differentiation with respect to z can be interchanged with the definite integrals with respect to s (Leib-
niz'srule). Then, the new termsin eg. (3.88) are given by the equations

fﬁwx Ver = "%ﬂ = fB%Tx(s)t(s)ds Vyr = f BELy(s)i(s)ds . (3.89)

Thefunctions V,(z) and V,;(z) are defined as thermal shear forces. Integrate the differential equation (3.86)
with respect to the contour coordinate from s=0to s= sto get

fi—ngds+q(s,z)—q(0,z) =0. (3.90)
z

Solve the latter equation for the shear flow to write

* 9
4(5:2) = 4ol2) = a’jds, (3.01)

where ¢,(z) = ¢(0, z) . Note that the origin of the contour coordinate where s = O is arbitrary at this point. Now

the result for the integral with respect to the contour coordinate of the derivative of the normal stress resultant is
written as

f—Zd = —V(Z)Qa(s)+% VA2)0(5) + qy(s, 2). (3.92)

Yy

In eg. (3.92) the functions Qx(s) and Q,(s) are called distribution functions. They are defined with respect to

coordinate functions ;c(s) and }(s) for the segment of the contour from s=0to s, and are given by

s

O:(s) = ﬂi(s)t(s)]ds = 0,()-m,0,(s)  Oyls) = ﬂ;c(sy(s)]ds = 0,(s)-m0,(s). (399

0
In eg. (3.93) the distribution functions with respect to the centroidal coordinates x(s) and y(s) are defined by

s

0.(s) =fy(s)t(s)ds 0,(s) :fx(s)t(s)ds. (3.94)

0

Thefunction g,(s, z) ineg. (3.92) is the shear flow from the temperature gradient in the axial coordinate z. It is
defined by

_ _(_) AT aAT k [ sndAT AT
q(s,z) y f —=1(s)ds f[ﬁ +Ixx<ﬂ3 = (s )t(s)ds) Iquﬁ x(s)t(s) ds)Qy(s), (3.95)
where the area of the contour segment is
A(s) th(s)ds. (3.96)
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The shear flow from the change in temperature vanishes for two practical cases: (1) The temperatureis spatially

AT _
0z

coefficient  are spatially uniform over the cross section so A7 = AT(z).

uniform in the axial coordinate zso that AT(s) and 0, and (2) the change in temperature and material

Substitute the result for the integral in eg. (3.92) into eg. (3.91), we write the formula for the shear flow due
to the transverse shear forces as

4(5.2) = 40(2) = V,0,() = 2V,0,(9) ~a1(5.2) | (3.97)
vy xx

3.8.1 Open cross-sectional contour

From eq. (3.97) the shear flow at the contour originis ¢(0, z) = ¢,(z) . For most open cross sections, thereis a
longitudinal edge of the bar that is free of external tractions. If the contour origin istaken at the location of the
free longitudinal edge, then ¢(0,z) = ¢,(z) = 0.The shear flow for an open cross section with the contour ori-

gin located at the longitudinal free edgeand ¢, = 0 isgiven by

4(s.2) = =£1,0,(5)-£1,0,(5). 299
vy xx

Example 3.2 Shear flow distribution in the open cross section shown in figure 3.1

Take the change in temperature AT(s,z) = 0, 0=<s=<S,and 0 <z=<L.Hence, g, = 0 for the shear flow

expression given by eqg. (3.98). Second area moments were computed in example 3.1 page 47 with the results
listedin egs. (1) to (n). Cross-sectional properties that depend on the second area moments, eg. (3.81), are

I 3 I 3
= o o 0PIV 515508 g = 2w o= QT2 9730 g = 134781, (@)

YL, 33608643 YL, 0.604984a3

n

The first area moments of the segment of branch 1 from s, = 0 to s, € [0, a] with respect the centroidal
coordinates are

S S
0. =fy1(s1)tdsl 0, =fx1(s1)tds]. (b)
0 0
From eqg. (j) of example 3.1 x,(s,) = —0.482906a and y,(s,) = —1.63782a + s, . Performing the integralsin
the first area moments we get

t(—a—4am+s, +ms,)s,
2(1+m)

—2at
- _ + 2 =
1.63782ats, + 0.501s7 0, T+

O, = s, = —0.482906ats,. (c)

The distribution functions of the segment with respect to the x- jz system are given by eqg. (3.93), which for
branch 1 resultsin
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0.1 = —1.63782ats, +0.50¢s? — (1.19732)(—0.482906ats,) = —1.05963ats, + 0.5ts2, )

0,1 = (—0.482906ats,) —(0.215528)(~ 1.63782ats, + 0.50ts2) = —0.12991ats, —0.1077641s2.  (e)

At s; =0, the longitudinal free edge condition requires gp = 0. The shear flow in branch 1 can now be computed
from eg. (3.98). Theresult is

q,(s;) = [0.289419(%‘) + 0.240081(%) 2}% + [0.424944@) —0.200516(2—‘) 2}% Oss;sa. ()

Thefirst area moments of the cross-sectional area consisting of branch 1 and a segment of branch 2 are given
by

0 0
0,,(0) = Oy(a) + fh(e)mde 0,,(0) = 0,y(a) + f x,(0)tads . (@)
—n/2 -n/2
where from eqg. (¢) wefind
0,,(a) = (-1.13782)a’¢ 0,,(a) = (-0.482906)at. (h)

From eg. (k) of example 3.1 x,(8) = —0.482906a + acosO and y,(0) = 0.36218a + asin6 . Evaluating the
integrals in the first area moments for branch 2 we get

0 0
f ¥,(0)tadd = (0.56891 +0.362186 — cos0)a?t f x,(0)tad® = (0.241453 —0.4829060 + sin6)a’s.
-n/2 —n/2

Thus, the first area moments of the cross-sectional area consisting of branch 1 and a segment of branch 2 are

0., = ((—1.13782) +0.56891 +0.3621860 — cos0)a’t = (—0.56891 +0.362180 — cos0)a2t

. 0]
0,5 = ((-0.482906) + 0.241453 —0.4829060 + sin0)a?t = (—0.241453 —0.4829060 + sin0)a’t

Notethatat 6 = m/2 both O, = 0, = 0, sincetheorigin of the x-y systemis at centroid of the cross sec-

tion(i.e., the first area moments of the entire cross-sectional area about the centroidal coordinate system vanish).

Thefirst area moment éx givenin eg. (3.93) for the cross-sectional area consisting of branch 1 plus a seg-
ment of branch 2 is computed as

Ox2 = (=0.56891 +0.362180 — cos0)a2t — (1.19732)((= 0.241453 — 0.4829060 + sin0)a2t).

Combining terms we get

éxZ = (—0.279814 + 0.9403726 — cosO — 1.19732sin0)a’z . 0

Thefirst area moment éy givenin eg. (3.93) for the cross-sectional area consisting of branch 1 plus a segment of
branch 2 is computed as

éyZ = (—0.241453 —0.4829060 + sinB)a?t —(0.215528)((—0.56891 + 0.3621860 — cos0)a?t). (k)

Combining terms we get
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02 = (—0.118837 —0.5609666 + 0.215528 cos6 + sinB)a?z . 0)
The shear flow in branch 2 can now be computed from eqg. (3.98), which yields

v
q,(0) = [0.26475 + 1.249746 — 0.480162 cos® —2.22784 sinf]—= +
a

. 14
[0.112214 —-0.3771186 + 0.401031 cosO + 0.480162sin6 |~
a. (m)
Notethat ¢,(w/2) = 0, whichisconsistent with the vanishing of the shear flow at the top free edge. Shear flow
distributions are plotted normal to the contour in figure 3.11. |l

(€Y (b)

Fig.3.11 Shear flow distributionsfor the open section in figure 3.1.
(@ Vy>0&V,=0.(b)Vx=0& Vy>0.

3.8.2 Location of the shear center for an open cross section

The shear flow given by eq. (3.98) is determined by transverse shear forces Vy and Vy, and is independent of the
torque M, For transverse bending the shear flow q is the dominate term in the expression (3.40) for the torque.
Hence, the contribution of the twisting moment resultant m,g and the transverse stress resultant g, are neglected

in eq. (3.40) with respect to the shear flow.” The torque with respect to the shear center resulting from the shear
flow isthen

Y X

M. = frods = [rn<s)[—,foQy<s>—,%Vny(SﬂdS- 99

Expanding eg. (3.99), we get

5. Note that m,qand g, are the main contributors to M, under pure torsion of an open section asis discussed in
article 3.9.
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M, = — R[yi)‘[rn(s)Qy(s)ds} V.- {(i)[rn(s)gx(s)ds} V,. (3.100)

The contribution of the shear forces acting at the shear center to the torque in eg. (3.100) must vanish by the def-
inition of the shear center. Thus,

- (%) Ur”(s)éy(s)ds} V.- (1—k-> Urn(s)éx(s)ds} V,=0 VIV &V, (3.101)
Yy c XX v
Equation (3.101) can only be satisfied if

frn(s)éy(s)ds =0 frn(s)éx(s)ds =0. (3.102)

To locate the shear center relative to the centroid, substitute the expression for the normal coordinate r,(s)
from eg. (3.10) into the preceding geometric properties of the shear center to get

frn(s)gy(s)ds =frnc(s)§y(s)ds—xsc Qv(s)%ds +y.. Qv(s)%ds =0,and (3.103)
frn(s)éx(s)ds =frm,(s)gx(s)ds—xscfix(s)%ds + Ve Q(s)%ds =0. (3.104)

With the aid of egs. (3.93), (3.84), (3.81), and (3.77), integrate by parts the following termsin egs. (3.103) and
(3.104) tofind

féy(s)(%)ds - _—;ZZ fcéx(s)<%>ds =0 fg}y(s)%)ds =0 fcéx(s)(%>ds - —17 (3.105)

Substitute the results from eg. (3.105) into egs. (3.103) and (3.104), and then solve for the coordinates of the
shear center relative to the centroid as

Yo = A7) fral®0ds| v = | fras| | (3106)

y
c VyC

Note that normal coordinate r,.(s) iscomputed from the second of eqg. (3.11) once the contour coordinates with
respect to the centroid are established.

Example 3.3 Shear center of the open section shown in figure 3.1

Method 1. For the open section consisting of two branches, the coordinates of the shear center relative to the
centroid from eqg. (3.106) are given by

a /2 a /2
Xse = (_k/[xx)(frnleX1dSl + f rncZszade) Vse = (k/]yy)(frncl yldsl + f rncZQyzade) .
0 —n/2 0 —n/2

Some of the termsin these formulas are listed as egs. (1) and (m) in example 3.1 page 47, and egs. (d), (¢), (j)),
and (1) in example 3.2 on page 51. We list these terms for convenience as follows:
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k= 134781 I, =336086a% I, = 0.604984a’t,
0.1 = —1.05963ats, +0.5¢s? 0,1 = —0.12991ats, —0.107764¢s2 , and

éxZ = (=0.279814 + 0.9403726 — cosO — 1.19732sin0)a?t
éyZ = (—0.118837 —0.5609660 + 0.215528 cos 6 + sinB)a?s

From eg. (3.11) the coordinates normal to the contour relative to the centroid are given by

The Cartesian coordinates of the contour for each branch are given by egs. (j) and (k) in example 3.1, which are
repeated below:
x,(sy) = —0.482906a vi(s;) = —1.63782a + s, O<s,=a
x,(0) = —0.4829064a + acosB ¥,(0) = 0.36218a + asin® —n/2<0=m/2

The results for the coordinates normal to the contour are

Foop = —0482906a  r,., = a(1—0.482906cosO +0.36218sin0).

The shear center coordinates are determined from the following integrals

= (ﬂ) Ua(—0.482906a)(— 1.05963ats, +0.5¢s7)ds, +
3.36086a37 Lo

sc

n/2
f [a(1—-0.482906cosO + 0.36218sin0) ][ (—0.279814 + 0.9403726 — cosO — 1.19732 sin@)azt]adﬂ}

—n/2

1.34781 a
P A —0.4829064a)(—0.12991ats, —0.1077641s?)ds, +
Yse <O.604984a3t> UO( N ! D)ds)

/2
f [a(1—0.482906c0s0 + 0.36218sin0)][(—0.118837 —0.5609666 + 0.215528 cosO + sinﬂ)azt]ade}

—/2
The preceding integrals were evaluated in Mathematica to get
X, = 0.67169a Ve = 0.490767a . (@)

Method 2. The shear flow distributions were determined in example 3.2 on page 51 with the results given by eqg.
(f) for branch 1 and by eq. (m) for branch 2. These shear flows areillustrated in the left-hand sketch in figure
3.12. It is convenient to determine the resultant of the shear flow distribution at point O first. As shown in figure

3.12 the components of the resultant force are F, and F,, and the torque is M, . Under transverse bending the
contributions of the transverse shear resultant ¢ and twisting moment resultant m_, are negligible with respect

to the shear flow q in the expressions for the shear forces and the torque® in eqg. (3.40). Hence, the force compo-
nents and the torque are given by the following integrals of the shear flow over the contour.
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/2 a /2 /2
Fy = f q,(0)(—sinB)ado Fy=fql(sl)dsl + f q,(0)(cosB0)add M, = f alq,(0)add]. (b)
—n/2 0 —n/2 —n/2

Theline of action of the shear flow in branch 1 isparallel to the Y-direction and so does not contribute to the force
component £ in eg. (b). From example 3.2 substitute eq. (d) for ¢, and eg. (h) for ¢, into eq. (b) above, then
perform the integrations, to find 7y = ¥V, and F, = V. It is expected that the force components would be

equal to their respective transverse shear components, since the shear flows were determined from equilibrium
conditions with respect to the transverse shear forcesin article 3.8. Only the shear flow in branch 2 contributes to
the torque about point O, since the line of action of the shear flow in branch 1 passes through point O. The

moment arm to the differential force g,ad8 in branch 2 about point O is simply the radius a. From example 3.2
substitute eq. (h) for ¢, in the expression for the torquein eg. (b) above, and perform the integration to get

M.y = —0.128587aV, + 1.15459aV, . ©

v N Fy v,
A " .
X\ statically 20 F statically statically v,
L = > x| a—>» -
01 } equi i equivalent
quivalent equivalent

Fig.3.12 Resultant of the shear flow distribution

Now add and subtract the shear forcesV, and V,, at the shear center (S.C.) in order to preserve force equiva-
lence asis shown in figure 3.12. The upward force Vy, at point O and the downward force Vi, at S.C. form a clock-

wise couple X, .V, and no net vertical force. Similarly, forceV, at point O and the equal and opposite forceV, at
the S.C. form acounterclockwise couple Y, .V, and no net horizontal force. The total counterclockwise torquein
the cross section must vanish by the definition of the SC.;i.e, M, — X .V, + Y, .V, = 0. Substitute eq.(c) for
M., inthetotal torqueto get

(~0.128587a + Y, )V, + (1.15459a - X,,)V, = 0 V(V,.7,). ()
Therefore, the location of the shear center relative to point O is given by
X,, = 1.154594 Y,. = 0.128587a. ©)
The coordinates of the shear center relative to the centroid are givenby x,, = X, —X, and y,, = Y, — Y.,

6. Under puretorsion the transverse shear resultant and the twisting moment resultant are the major contributorsto the torque
asdiscussed in article 3.9.
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where the coordinates of the centroid relative to point O is given by eq. (i) in example 3.1 on page 47. Thus,
x,, = 1.15459a —0.48290a = 0.67169a Vse = 0.128587a —(-0.36218a) = 0.490767a, ()
which isthe same result obtained in eq. (a) by method 1. [l

3.8.3 Notesconcerning the shear center

* Theresultant of the shear flow distribution over the contour is aforce with components V, and V,, acting

through the shear center such that there is no torque acting at the shear center. If the cross section is subject to
atorque, this torque cannot be balanced by the shear flow which, according to eqg. (3.98), is uniquely deter-
mined by the shear forcesV, and V,,.

* Thelocation of the shear center in the cross section is determined by the pattern of the shear flow distribution
and not on the magnitude of the transverse shear forces.

* Transverse shear forcesV, and Vy act in the plane of loading to equilibrate the externally applied lateral load
intensities /,(z) and f,(z) . (Refer to equilibrium equations (3.54) and (3.56).) Thus, the line of action of the
external lateral loads must pass through the shear center to bend the bar without twisting it in torsion.

e Theshear center islocated on an axis of symmetry of the cross section if there is one. If there are two axes of
symmetry in the cross section the shear center and the centroid lie on the intersection of the symmetry axes.

* For an open cross section with straight branches and one junction the shear center is at the junction, since the
torque from the shear flows at the junction vanishes. See figure 3.13.

LT F

Angle Cruciform

Fig. 3.13 Shear center locationsfor open sectionswith straight branches and one junction.

3.9 Torsion of an open section with a straight contour

Although we have located the shear center for the open cross-sectional contour, amaterial law for the torque act-
ing at the shear center remains to be determined. Torsion of an open section bar is an important problem in engi-
neering, but it is not asimple problem in elasticity. Saint-Venant (1855) guided by the solution of the bar with a

circular cross section, made a brilliant guess and showed that an exact solution to a well-defined problem can be
obtained. Here, we consider a simplified approach following the presentation given by Vasiliev (1993).

Consider a prismatic bar with arectangular cross section subject to equal and opposite torques acting on the
end cross sectionsat z=0and z= L. The lateral surfaces of the bar aretractionfreeso f, = f, = 0 ineq. (3.31)

and m_(z) = 0 ineqg. (3.44) onpage 4l for 0 <z < L . Equilibrium equations (3.53) to (3.57) are identically sat-
isfiedwhen N = V, =V, = M, = M, = 0 for 0<z=< L, and torsional equilibrium (3.58) is satisfied for a
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torque M, independent of axial coordinate z. Also, thereis no change in temperature from the reference state

AT = 0. For aHookean material the twist per unit length d¢,/dz isproportional to thetorque, and soitisaso a
constant with respect to the z-coordinate.

The contour of arectangular cross section is a straight horizontal line of length b as shown in figure 3.14.
Theangle 6 = 90° infigure 3.3 for al values of s, and the geometric relations given by egs. (3.3) to (3.6) and
(3.8) specidizeto

x=-s y=0 t=- n=j r=s r, =0  d8/ds=1/R =0.

The cross-sectional coordinates are (s, C) with s €[-b/2,b/2] and TE[-1/2,¢/2], and the origin isthe
location of the centroid and also of the shear center.

4%, O 4 g n
us,?zs_*(s’ <) s,}<l—l C&S.C. J M, ¢, } t

- >|< >

b/2 b/2

Fig. 3.14 A bar with rectangular cross section subject to uniform torsion

Displacements and strains. Saint-Venant assumed that as the bar twists the cross section is displaced normal to
the s-C plane (i.e., it warps) but its projection on the s-C plane rotates as arigid body. To prevent rigid body dis-

placement, the displacement components of the centroid are set equal to zero. Then, the in-plane displacements
given by egs. (3.20) and (3.22) reduce to

ug(s,z,8) = =s¢,(2) uls,z,C) = Tp.(z). (3.107)
The out-of-plane displacement given by eq. (3.26) is
u,(s,2,C) = =s¢,(z) +C[,(2)]. (3.108)

However, this out-of-plane displacement is changed to account for the warping of the cross section in uniform
torsion. It isassumed that therotation about the x-axis, or the negative s-axis, isindependent of the z-coor-
dinate but isan unknown function of the s-coor dinate. Consequently, the out-of-plane displacement in eq.
(3.108) is changed to

u(s,z,C) = Th.(s) —sd,(2). (3.109)

The only non-zero strains determined from the displacements (3.107) and (3.109) are shear strains y,, and

Y. » From the strain-displacement relations given by eq. (3.28) these shear strain-displacement relations are

_ (Yo,  dp, _ do.
- (& +$>C ¢y Yz§ - q)x S& . (3'110)

zs

Hooke's laws for the shear stressesare o, = Gy, and 0, = Gy .
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Stressresultants and equilibrium The stress resultants associated with these non-zero shear strains (3.110) are
determined from Hooke's law, and the definition of stressresultantsq, m,,, and ¢. ineg. (3.37). The expressions
for the stress resultants are

zs?

t/2 t/2 (1) (1)
(g.m) = [ (LDodE =G [ (LY)|( 5 )e-0|a f 0l = Gf< e @
—t/2 —t/2 —t/2 —t/2

Performing the integrations through the thickness in eq. (3.111) we find the stress resultants are given by

q = -Gt¢, m,, = (di) df) q, = Gt(¢x—s$)z> . (3.112)

Since V, = V, = q; = 0, theshear flow from A C
! (m.dz)|
eg. (3.97) reducesto ¢(s,z) = g,(z). Thatis, the l s

d
shear flow is spatially uniform in the s-coordinate (q:ds) |

o ' ’ —_—
Furthermore, the longitudinal edgesat s = +b/2 ﬂ q ds)‘ Z
are free of tractions, which means the shear flow ez
vanishes. Hence, ¢ = 0 for -6/2<s<b/2 .1t fol- A//((
(mszd )‘

lows from the first equation in (3.112) that rotation S
¢, =0.

s+ds
Fig. 3.15 FBD for moments about the s-axis
The twisting moment resultant m,, and the

transverse shear resultant ¢, are related by moment equilibrium about the s-axis for adifferential element ds by
dz cut from the wall. From the free body diagram for differential element of the wall shown in figure 3.15
moment equilibrium gives

92 (g.ds),

dz _
Stads)| + = (q.ds)| ~[(mgdz)| | —(m.dz)| ] =0. (3.113)

Division of eg. (3.113) by areaelement ds by dz, followed by thelimitas ds — 0 and dz — 0 yieldsthe moment
equilibrium differential equation

dm,,
g.—— =0, (3.114)
ds

Governing boundary value problem. Substitute m_, from eg. (3.112) into the differential equation (3.114),

followed by substitution of ¢, from eg. (3.112) into (3.114). After these substitutions and re-arrangement, the
resultis

O, = ¢.(s) —b/2<s<b/2. (3.115)

2

do, 12 1209,
ds? ¢ < 2dz )
Thelongitudinal edgesat s = +b/2 arefree of tractions, which additionally means the twisting moment

vanishesat s = +=b/2 . From eqg. (3.112) the vanishing of the twisting moment at the end points leads to the
boundary conditions
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dp,  do,
_“+__ " = = = . .
< at's b/2 (3.116)

The solution to differential equation (3.115) subject to boundary conditions (3.116) is

_ [._2sinhks7d9.
0:(5) = [S kcosh)j& ' (3:117)
where
_ 2.3 - kb _ b
k= p Iy 5 ﬁ(t) (3.118)

Substitute the solution for ¢..(s) from (3.117) into the expressions for the twisting moment m_, and trans-
verse shear ¢, listed in (3.112) to find

m = G?t}(l B coshks) <d¢z> - Gt sinhks (61;4)2) _ (3.119)

= coshi/ \dz 1 = kcoshA\ dz
From the third expression in eq. (3.40) the torque about the z-axis, counterclockwise positive, is given by

b/2
M, = f(mzs—sqz)dS- (3.120)
—b/2

Substituting the resultsfor m_, and ¢, from eg. (3.119) into the expression for the torque we write the result as

d¢
M, = —, 3.121
‘ GJ( dz) ( )
where the torsion constant J is given by the integral
b/2 3 )
J= [E—<1 _ cosh(ks [) +2ts<smhgks !ﬂds.
6 coshh kcoshA
—b/2
After performing the integration, the result for the torsion constant is
b tanh A
J==(1- . 3.122
3 < A > ( )

For athin, elongated rectangular cross section the value of theratio of 5/¢» 1, which from the expression for A
ineq. (3.118) implies A » 1 . In the limiting case of A — « wefind
b3

J = 5 as A— o, (3.123)

In the simplified theory of thin-walled open section bars, the torsion constant in each open branch is given by eq.
(3.123).
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Torsion of an open section with a straight contour

The distribution of the twisting moment resultant m,, over the length of the contour for b/t = 20 is shown in

figure 3.16. Asshown in the plot the distribution of m:_, is symmetric with respect to the contour coordinate,
attains a uniform magnitude over the majority of the contour, and decreasesrapidly to zero near the boundaries of
the contour where s = =b/2 . The distribution of the transverse shear resultant ¢, over the contour is shown in
figure 3.17. Thedistribution of ¢, isantisymmetric with respect to the contour coordinate, it is essentially equal
to zero over the mgjority of the contour, and its maximum magnitude occursin the narrow boundaries of the con-
tourat s = =b/2.

1.0

Note: ¢," =

z
0.8 - m

ZS

Gr¢.'/6

06
04

0.2

S
b/2 10 05 05 1.0

Fig.3.16 Distribution of the twisting moment resultant over the contour for b/t = 20.

1.0 d
q: Note: ¢_' = 49

G129, / 3 dz
05

1.0 0.5 0 -05 -1.0

b/2

-1.0

Fig. 3.17 Distribution of the shear stressresultant over the contour for b/t = 20.

From Hooke's law and eg. (3.110), the shear stress component tangent to the contour is

Substitute the solution for ¢, from eg. (3.117) into the previous equation to get
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0.(s,C) = 2G<C;¢Z> (1 —M>C. (3.124)

dz coshA

Note that this shear stress vanishes on the contour where T = 0 and attains its maximum magnitude along the
top and bottom edgeswhere T = =¢/2 . Shear stress o, isthe dominate shear stress in the rectangular cross

section subject to uniform torsion, since through-the-thickness shear stress . = ¢,/t isessentially zero over

most of the contour. For large values of bit, we neglect the shear stress o, with respect to o, and we use the
following approximation
d9
=2G(—= 1. 3.125
o., G( dz)g b/t» (3.125)

Warping of the cross section. Substitute eg. (3.117) for ¢,(s) ineqg. (3.109), and recall that ¢, = 0, to find
that the warping displacement u_(s, T) isgiven by

u(s,C) = C[s—ﬁ%w%) : (3.126)

A contour plot of the warping displacement divided by u.(b/2,¢/2) for b/t = 4 and % >0 isshowninfig-
z

ure 3.18, where
do,
u(b/2,1/2) = 0.7113;2(—) b/t = 4.
dz

Along the s-axis and the T-axis the warping displacement is zero, and it attains maximum magnitude near the
corners of the rectangular cross section. For a positive unit twist, «_ > 0 if the product s€ >0, and u_ < 0 if the

product sT < 0.

t/2

t/2

b/2 b/2

Fig. 3.18 Contour plot of the normalized war ping displacement in torsion for b/t = 4.

For athin rectangular cross section a good approximation to the warping function is
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Torsion of an open section with a straight contour

U, ~u_ = s¢ b/t»1. (3.127)

To show eq. (3.127) isagood approximation, let

/2 b/2 172 /2 b/2 1/2
I, = (f f [u,(s, C)Pdsd?;) and /, = (f f [u,,(s, ?;)]zdst)
—1/2-b/2 —1/2-b/2

Define the percentage error between the approximate warping function and the exact one by
error = ([,—1,)100/1,.For b/t = 20 theerror is0.482 percent, and for b/¢ = 40 theerror is 0.123 percent.

3.9.1 Torsion of built-up open sections

For large values of the ratio of b/t, the analysis of thin-walled rectangular section of article 3.9 resultsin the fol-
lowing formulas given by egs (3.121), (3.123), and (3.125):

d¢ b3 de
M, = GJ[— J == = 2G(—=)C. 3.128
‘ ( dz ) 3 Ozs ( dz ) ¢ ( )
The maximum magnitude of the shear stress o, occursat T = +¢/2 . Then from the previous equations for
large values of the ratio of b/t this maximum shear stress can be expressed as
p— 3MZ
max - b2 ’

(3.129)

GZS‘

Now consider torsion of open section bars of more complex shape as are shown in figure 3.19. Understand-

b, b, b,
[ |'¥'
t )
b, b,
t, —ple— >l 1
J = l(b 13 +4b,13 J = lbﬁ J = l(b 13 +2b,13)
- 3 1°1 282 - 3 - 3 141 282

Fig. 3.19 Some thin-walled open sections and their torsion constants

ing the torsional response of these bars with complex, open cross-sectional shapesis facilitated by an analogy to
the response of an initially flat membrane supported on its edges over an opening, where the edges of the opening
are in the same shape as the cross section. The membrane is stretched under a uniform tension, and then subject
to an internal pressure to cause the membrane to deflect. The deflected shape of this pressurized membraneis
analogous to the torsion problem in that level contours on the surface of the deflected membrane coincide with
the lines of action of the shear stresses, and that the slope of the membrane normal to the level contour is propor-
tional to the magnitude to the shear stress. Also, the volume between the x-y plane and the deflected surface of
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the membrane is proportional to the total torque carried by the section. The following text excerpted from Oden
and Ripperger (1981, p. 46) summarizes this anal ogy.

This analogy wasfirst discovered by Ludwig Prandtl in 1903 and is known as Prandtl’s membrane anal ogy.
Prandtl took full advantage of the analogy and devised clever experiments with membranes. By measuring
the volumes under membranes formed by a soap film subject to a known pressure, he was able to evaluate
torsional constants. By obtaining the contour lines of the membranes he determined stress distributions.

Torsional constants and the maximum shearing stress can be found for complex cross sections by using the
results for the thin-walled rectangular section. The membrane analogy shows that the torsional 1oad carrying
capacity of the complex open section is nearly the same as the narrow rectangular section, because the volumes
under the membranes are nearly the same if we neglect the small error introduced at the corners or junctions. In
this way, the membrane analogy implies that the complex open cross section has about the same torsional load
carrying capacity as athin-walled rectangular section with alength equal to the total arc length of the contour of
the complex section.

Since each branch of the open section is equivalent to a narrow rectangular section with the same devel oped
length and thickness, we can sum the torques carried by each branch in the following way

dq)z dq)z
M, = M, = GJ,(—) = GJ(—) , (3.130)
dz dz
branches branches
where the torsion constant for the entire cross section is
J = J; = %bit?. (3.131)
branches branches

Note that the twist per unit length is the same for all branches in the open section, because the cross section is
assumed to berigid in its own plane. The use of eq. (3.131) for several open sectionsis shownin figure 3.19.

Starting from eq. (3.129), the maximum shear stressin the it branch of the section is given by

_3M;; _3GJdg, _ 3G(lbt3><Mz> _ My

(Ozs‘ ) - g i a] J

= — 3.132
max’io bt} bt} dz bt} ( )

That is, the maximum shear stressin the i branch of the open section is the total torque divided by the torsion

constant for the entire section times the thickness of thei™ branch. Note that the largest shear stress magnitudein
abuilt-up open section occurs in the thickest branch.

3.10 Inclusion of stringersin the analysis of the cross section

A stringer isalongitudinal flange element connecting thin skins or webs in aerospace structures, and the cross-
sectional area of the flange is denoted by 4. Over the cross-sectional area of the flange it is assumed that

* thelongitudinal normal stress o, is uniformly distributed, and

¢ theshear stresses o, = 0, = 0.

That is, the stringer isalongitudinal bar element that does not resist shear. It is modeled as a point on the contour
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with coordinates [x(s,), y(s,)] relativeto the centroid, where the contour coordinate of the stringer is denoted

by s,. Thus, the stringer is mathematically represented as a point on the contour having the attribute of area. See
figure 3.20.

The areaand first area moments given by eg. (3.74) are modified to account for the cross section with string-
ersas

A =ft(s)ds+ E 4, 0, =fy(s)t(s)ds+ E vy 0, = [x(s)t(s)ds + E XA, (3133)

stringers stringers ¢ stringers

Note that first area moments about the centroid are required to satisfy O, = O, = 0. The second areamoments
about the centroid in eg. (3.77) are modified to

I, :fthds+ E y)%Af I, :fx2tds+ E xszf I, :fxytds+ E XA (3.134)

stringers ¢ stringers c stringers

The material law for extension and bending (3.79) on
page 46 remains valid with the geometric properties speci-
fied by egs. (3.133) and (3.134). The thermal axial force

N, isgiven by eqg. (3.75) on page 46, and the thermal
bending moments M., and M, are given by eq. (3.78).

3.10.1 Effect of stringerson the shear flow

distribution z
The shear flow exiting the stringer location is denoted by
g™, the shear flow entering the stringer location by ¢,
and the increase in the axial force in the stringer by AN/,

Seefigure 3.20. Sum the forces in the z-direction of the
free body diagram shown in figure 3.20 to get

Fig. 3.20 Freebody diagram of the stringer

q(sfNAz—q(sf))Az+ AN, = 0.

Divide this equilibrium equation by the incremental length Az, thenlet Az — 0 to get in the limit

q(s§) —q(sf) + %Nf =0. (3.135)
. . =

Combine egs. (3.95) and (3.97) to write the shear flow as

Lk 0k 5 (o) _A(s)INr | AT
4(5) = Go=7 (Ve Ve Qu(s) = 1= (7, + Vy)Quls) T T B0 (s)ds. SRED
0

Equation (3.89) was used to identify the derivative of the thermal force in the previous result. Then the jump in
the shear flow across the stringer is
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a0 =atsp) = =0 V@A) -0 0, 1 L0sp) - 0]

Yy

i
[A(sf) —A(sf))] dNy AT
- 7 $+ fﬁ aZt(s)oz’s.
A (3.137)
Note that
A IAT OAT
A(sf) =A(sp) = 4, and fﬁgt(S)dS = Ap== (3.138)

s§) s
Under the assumption made to model the stringer N, = ©,,4,. The axial normal stressin the stringer is givenin

€g. (3.83) on page 47. Thus, a;i\f[ =4 fSTO 2. Derivatives of the axial force and bending moments with respect to
A z

zappearing in do,./dz were replaced by equilibrium differential equations (3.53), (3.55), and (3.57), respec-
tively. The result for the derivative of the normal force in the stringer is

dN, _ k -k - AdN, IAT
Ef = I:V(Vx + VxT)Afx.f"'I_x'x( Vo +V,p)Ayr+ j@ _Afﬁg v (3.139)
°f
Substitute egs. (3.137) and (3.139) into (3.135) to find
—{%( Vit V[0 - Orlsf) —Afxf]} —{%(Vy 1V, LO(55) ~ Oulsf) —Afyf]}
yy xx
ANy ANy IAT OAT
T PG PR S X I g e
Adz Adz P 0z P 0z 0
¥ ¥ (3.140)

Equation (3.140) simplifiesto
0 =B A= 0 V@) -0 =) = 0. aen
yy XX
Equation (3.141) is valid for every choice of the shear actions (¥, + V) and (¥, + ¥, ;) . Then to satisfy eq.
(3.141), the coefficients of the shear actions must vanish, which leadsto
Ou(sfN = Oylsf) =Apr = 0 Ox(sf?) = Oxlsf) =4y = 0. (3.142)
Relations (3.84) and (3.93) evaluated at s = s, are repeated in the following relations:

=y =y Odsy) = QD=0 7)  Oulsy) = Qs mnO.(s) . (3143)
After substituting the relations (3.143) into eqg. (3.142) we get

O,(sfN) = 0,(sf)) —Apx; = 0 O.(sfN) =0 (sf)) —Ap, = 0. (3.144)

Equation (3.144) shows that the jump in the shear flows exiting and entering the stringer (3.135) is equivalent to
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ajump in value of the first area moments across the stringer area.

3.11 Closed cross-sectional contour

Consider asingle-cell, closed cross-sectional contour as shown in figure 3.21. The shear flow acting tangent to
the contour is given by eq. (3.97) on page 51, where we assume the shear flow from the prescribed changein
temperature vanishes. (Refer to the discussion in the paragraph preceding eg. (3.97).) Then the shear flow is
given by

g(s,2) = qo(z)—]k ngy(s)—lk V,0.(s). (3.145)

yy xx

The shear flow is statically equivalent to the shear forces and the torque acting on the cross section. The static

4
s=0,&s =S X
statically M,
r, < B V.
equivalent S.C.

e

Fig.3.21 Static equivalence of the shear flow acting along a closed contour to shear forces and torque.

equivalence with respect to the shear center given by eq. (3.40) on page 40 reduces to
V.= f(—q sin0)ds Vv, = f(q cos0)ds M, = f(rnq)ds . (3.146)

(It is assumed that the transverse shear resultant g, and the twisting moment resultant m,¢ are small with respect

to the shear flow, and therefore are neglected in eg. (3.40).) The shear flow formula (3.145) is the sum of the open
section shear flow, eg. (3.98), plus a shear flow qg that is the spatially uniform around the contour. If (3.145) is

substituted for the shear flow in the two expressions for the shear forcesin (3.146), it can be shown’ that we get
identities V', = ¥, and V,, = V. That is, the shear flow (3.145) is statically equivalent to the shear forcesVy

and Vy. independent of qo. I we substitute the shear flow (3.145) into the expression for the torque in eq. (3.146),
then the shear flow g, can be determined from the torque acting at the shear center. However, the location of the

shear center is not known.

Since the location of the centroid is determined before the location of the shear center, consider the torque
from the shear flow resolved at the centroid. That is M, = frm,(s)q(s)ds . The coordinate normal to the con-

7. Employ eqg. (3.3) and integrate by parts using the results from eg. (3.105).
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tour relative to the centroid r,(s) isdetermined by the second equation in eg. (3.11) on page 34. Substitute the
shear flow (3.145) into the expression for the torque at the centroid to get

M, = fr,,c<qo 7 VQ) V Qx) ds = qofr ds— Vf ande 7 V ranxds (3.147)

vy XX

L et the area enclosed by the contour be denoted by 4, . As shown in figure 3.22, the enclosed areais given by

A4, = 1 r,ds = 1 7 peds . (3.148)
2 2

=d4.  Thetwo expressions given above for the enclosed areais a conse-
quence of the relation (3.10) between the normal coordinates r, and
r,. When integrated around the closed contour. Solve eq. (3.147) for

gptofind
Fig. 3.22 Enclosed area element. M
9 o = <+ V.6r, Ovds + V,§r,.Ouds.  (3.149)
24, 2Aclvy 2A1

Substitute the result for gy from eqg. (3.149) the into eg. (3.145) and denote the resulting expression for this shear
flow as qc: the shear flow with respect to the centroid. The result for gc iswritten as

M. (z)

24, F..(s)V.(z)- ch(S)Vy(Z) , (3.150)

C]c(s z) =

where the shear flow distribution functions relative to the centroid are defined by

= ko) s ()0 - E[55) -6 (5)0x
Fres) = [ 0= fradus)ds|  Fus) = 7 09) = ()Q:)ds . @asy

We have used al the conditions of static equivalence to determine the shear flow. with respect to the centroid.
Thus, it is a statically indeterminate problem to find the expression for shear flow relative to the shear center, as
well as the location of the shear center in the cross section. The additional relation we need is a constitutive rela-

tion between the twist per unit length d¢,/dz and the shear flow g.

3.11.1 Twist per unit longitudinal length
The shear strain vy, evaluated at the contour from eqg. (3.31) on page 38 is

Vos(8,2) = Y, (Z)— +(z )—2+r (S) at t=0, (3.152)

where eqg. (3.3) was used to write the trigonometric functionsin terms of the derivatives of the contour coordinate
functions. Integrate the shear strain (3.152) around the closed contour to get

d¢.
Y, ds = wx(z)j)d ds + (z) fzds + ¢r ds
f fas® " i
=0 = 0 =24,

(3.153)
Continuity of the contour and the eg. (3.148) for the enclosed arearesultsin
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Hooke's law relates the shear strain to the shear stressby y,, = o,,/ G, where G is the shear modulus of the

material. In torsion of aclosed cross-sectional contour the shear stressis assumed uniform through the thickness
of the wall. Hence, the shear stress is determined by the shear flow divided by the thickness of the wall, or

o,, = gq/t.Substitute y,. = ¢/(Gt) into the equation for the twist per unit length to get.

3.11.2 Location of the shear center and thefinal expression for the shear flow
Substitute eq. (3.150) for the shear flow in eqg. (3.154) to find

M V
. _ Mcpds Vo Fre g Vo glve (3.155)
dz 442) Gt 24) Gt 24 J Gt
The torque M, and shear forces V, and Vy are resolved at the centroid. We can find astatically equivalent torque

and force system resolved at the shear center: Simply add and subtract the shear forces at the shear center which
does not change static equivalence as shown in figure 3.23(a). The upward force Vy, at point C and the downward

v
MzC_xsc Vy Ve Vx Vx
V., | S.C.

1

1

i -0 |

: xSC !
—_Pp

Fig. 3.23 Themethod to movethe shear forcesfrom the centroid to the shear center while
maintaining static equivalence.

forceVy at S.C. form aclockwise couple x,.¥, and no net vertical force. Similarly, rightward force V, at point C
and the leftward force V, at the S.C. form a counterclockwise couple y,. 7, and no net horizontal force. The total

counterclockwise torque in the cross sectionis M, . —x, .V, + y, .V, . Formulating these couples |eave forces Vy

and Vy, at the shear center as shown in part (b) of figure 3.23 and a counterclockwise torque. Thus, the torque at
the shear center must be

Mz = MzC_xchy +ychx : (3.156)
Solve eg. (3.156) for the torque at the centroid and substitute the result for M, into eg. (3.155) to get

d M
W o Hopds [Jugds, |ghey]y o[Tugds 1 gheyly (3157
dz  442) Gt 1442) Gt 24 Gt 442) Gt 24, Gt !
At the shear center the twist per unit length depends on the torque resolved at the shear center and not on the
shear forces. In other words, the shear forces acting at the shear center do not contribute to torsion. This require-
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ment means the coefficients of the shear forcesin eg. (3.157) must vanish. Equating these coefficients to zero
determines the coordinates of the shear center relative to the centroid as

24, o F,(s) 24, F. (s) - (3.158)
= e\ g = | 2 gl =2\ g
Fse @f( Gi ) y Fse { @f( Gi > g
Gt Gt
Equation (3.157) reducesto the form
a, _ M, (3.159)
dz (GD)er’ '
where the effective torsional stiffnessis
442
GJ).o = —£. 3.160
(GJ) g ds ( )
Gt
If the shear modulus is uniform around the contour, then
M 442
& = — andthetorsion constantis J = —=<. (3.161)

dz  GJ ds
t

Substitute the solution for the torque at the centroid from eg. (3.156) into the expression for the shear flow in
€g. (3.150). In the process, we drop the “ C” subscript on qc to indicate that we are formulating the shear flow rel-

ative to the shear center. Theresult is

- Mz +xchy_ychx_

7 24,

Foo(s)V(2) =F,(s)V,(2). (3.162)

Equation (3.162) is written in the form

M (z
a(s,2) = 22 F (1) - Fn,6)| (¢.169
where the shear flow distribution functions relative to the shear center are defined by
F(s) = 2yA FF(s)  Fs) = - (ZXA) FF,(s). (3.164)

In puretorsion only torque M, acts on the section, and the shear termsin eg. (3.163) vanish. Thenin pure
torsion the shear flow is spatially uniform around the contour and leads to
M

= = or M. =24 q. 3.165
q 24, z 4 ( )

Equation (3.165) is called Bredt’s formula, or the Bredt-Batho formula, and it relates the torque to the uniform
shear flow in asingle-cell section subject to torsion only.
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Example3.4 A single-cell cross section stiffened by axial stringers

A uniform bar of length L with a closed, cross-sectional contour is stiffened by four axial stringers. The configu-
ration and the associated nomenclature is shown in figure 3.24(a), where the X-axisis an axis of symmetry. The
areas of the stringer flanges are denoted by A¢; and As,, and the wall thicknesst is uniform along the entire con-

tour. As shown in figure 3.24(b), the contour is divided into four branches. Branch 1 is a semicircle segment of
radius a between the lower stringer Ay and the upper stringer A¢; of length ar, branch 2 isthe horizontal segment
between upper stringer A¢; and upper stringer As, of length b, branch 3 is the vertical segment between the upper
stringer As, and the lower stringer As, of length 2a, and branch 4 isthe horizontal segment between lower stringer
A, and lower stringer A¢; of length b. Dimensional data are

a = 6in. b =7 in. ¢t = 0.03 in. A4y = 0.30in.? and Ap = 0.70 in.?

The numerical results presented in the solution of this example were performed in Mathematica.

$2: 42

S4, 94
(b)

Fig. 3.24 Single-cell cross section. (a) Geometry. (b) Branch coor dinates and associated shear flows.

a) Determinethe location of the centroid (C) and the second area moments 7/, and 7, .

b) Determine the shear flow distribution functions £, .(s) and F,.(s) with respect to the centroid.

c) Determinethelocation of the shear center (S.C.) relative to the centroid.

Solution to part (a). Taketheorigin of the X-Y system at point O, the center of the vertical web. The parametric
equations of the contour in each branch are listed in table 3.2,

Table 3.2 Parametric equations of the contour in example 3.4

Branch X; = Y, = Range
i=1 b+asin(s,/a) —acos(s,/a) O<s,=an
=2 b-s, a O<s,<b
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Table 3.2 Parametric equations of the contour in example 3.4

X, = Y. =

Branch i i Range
i=3 0 a—ss O<sy=<2a
i=4 Sy —a O=s,=b

The area A of the cross section is given by

4 (Si)max
A= tds,+2A, + 24, = 3.34549 in.2. @)
i 11 12
2
Since the cross section is symmetric about the X-axis, the centroid is located on this axis of symmetry. To locate
the centroid we only need to compute the first area moment about the Y-axis. The first areamoment O, is given
by
4 (Si)max
Oy = E f X,(s)tds; + X,(0)A, + X,(0)A,; + X5(0)A4,, + X, (0)4,, = 11.7884 in.3 . (b)
i=1 o
The centroid coordinateis X, = Q,/A4 = 3.52367 in., and by symmetry Y. = 0. The Cartesian coordinates x
and y with origin at the centroid are related to coordinates X and Y by
xi(s;) = Xi(s) =X, and y,(s;) = Yi(s) =Y. = Yi(s;),i = 1,2,3,4. (c)
From eg. (3.77) the second area moment about the x- and y-axes are given by

4 (5 max

I, = E f yi(s)tds; + y1(0)Ay +y3(0)Ay +3(0)A4,, +y7(0)4,, = 101.619 in.*, and (d)
i=1 o

4 (51 max
I, = E f xF(s;)tds; + x7(0)Ayy +x3(0)Ay +x3(0)A +x3(0)A, = 62.8491 in 4. (e)
i=1 o

The product areamoment /,, = 0 since the x-axisis an axis of symmetry of the cross-sectional area.

Solution to part (b). The first area moments about the x-axis for segments of each branch including stringers
are

R

0,1(sy) = »(0)4, +fy1(51)tdsl = —1.8[1 +sin(s,/6)] 0<s,<6m, ®
0
0,2(57) = 0,1(67) +y,(0)4 +fy2(s2)ta’s2 = 0.18s, 0<s,=<7in., (@)
0
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53

0.5(53) = O,(7)+y3(0)A, + [y5(55)tds; = 5.46 +0.185, —0.015s3 0<s,=<12in., (h)
x3(83 X2 3 1 3\83)1ds; 3 3 3

S4

0.4(s4) = 0,5(12) +3,(0)A4p, +fy4(s4)tds4 = 1.26-0.18s, 0=<s,=<7in.. 0

As acheck on the computation we evaluate Q.,(7) tofind Q,,(7) = —2.2x10"°~ 0. The value of 0.4(7)

equals the first area moment about the x-axis through the centroid of the entire cross section, which vanishes by
the definition of the centroid. The first area moments about the y-axis for segments of each branch including
stringers are

S1
0,1(s)) = x,(0)4,, +fx1(s1)tds1 = 2.1229 +0.10429s, — 1.08cos(s;/6)  O0ss, =6m, ()
0
$2

0,,(s5) = 0,,(6m) +x,(0)4 +fx2(s2)tds2 = 6.21161 +0.10429s, —0.01553 0<s,=71in., (kK

53

0,5(s3) = 0,,(7) +x3(0)4, +fx3(s3)tds3 = 3.74007 —0.10571s, 0=sy=12in., ()

Sq

Qy4(s4) = Qy3(12) +x4(O)Aﬂ +fx4(s4)tds4 = 0.00497169 —0.10571s, + 0.015s3 O=s,=71in.. (d)

Weevaluate Q,,(7) tofind 0,,(7) = —1.6x107° ~0 , which is as expected for a correct computation of the

first areamoment functions Q,,.(s;), i = 1,2, 3, 4. From eq. (3.11) on page 34, the results for the normal coor-
dinate functions with respect to the centroid for each branch are

Pper = 0+3.347633sin(s,/6) Fpea = 6 Fpey = 3.52367 = X, Ppea = 0. (m)
The area enclosed by the contour is

4 (Y )1mx

A, 22 f = 140.549 in.2. )

Since the product areamoment /,,, = 0, eq. (3.81) givesn, = 0, n, = 0,and k = 1. Moreover, from eq.

(3.93) wefind éx(S) = Q.(s) and éy(s) = 0,(s) . Thus, the expressions for the shear flow distribution func-
tions F,.(s) and F,.(s) ineq. (3.151) simplify. For each branch the shear flow distribution functions are given
by

FXCI(S) { W(S) ( ) Eﬂ ncz ]le(s )dS and (0)

;
Cz—l Y
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Fu(s;) = {Qx,(s )= (2,4 ) Eﬁ Fei(5:)10,(s,)ds L : ®)
Evaluation of the following termsin the previous equations are
(2A ) Ef 1ei(5)Q,(s)ds; = 3.10581 in.3 ( ) Ef = (5)0,(s)ds; = —0.330117 in 3. (@
i=1 C i=1
The results for shear flow distribution functions £ ,(s;) are
F..(s) = =0.0156392 +0.00165937s, —0.017184cos(s,/6) 0<s, <6m, )
F..,(s,) = 0.494169 +0.00165937s, —0.00023866753 0<s,=<7in., s)
F..5(s3) = 0.0100918 —0.00168197s, 0=<s,<12in.,and ®
F..4(sy) = —0.0493378 —0.00168197s, + 0.000238667s2 0<s,=<7in. ()

The results for shear flow distribution functions £, ,(s;) are

Fooi(s;) = —0.0144647 —0.010628sin(s; /6) ~ 0=s, =67, W)
Fyop(s;) = 0.00324859 +0.00177133s, ~ 0=s,s7 in., w)
Fu5(s3) = 0.0569788 +0.00177133s; —0.000147611s3  0=s;= 12 in., and ®

Fuy(s;) = 0.0156479-0.00177133s,  O0=s,<7 in.. )

The dimensional unit of each shear flow distribution function is in.~!

Solution to part c. The x-coordinate of the shear center is given by eq. (3.158). First evaluate the following inte-
gral that appears in the denominator of (3.158):

_ 1 _ 149499
Gt— E( Dmax = = @)

i=1

From (3.158) the coordinates of the shear center with respect to the centroid are

24, 4 () (s)

Feils;) :

Cl —_ -
X = E f —y—d = 28727 in.,and y,. = { . Z
fth =10 fGt’ B
Thisresult for y,, isexpected since the shear center lies on an axis of symmetry, and the x-axis is the axis of

symmetry for the cross section. From eq. (3.164) the shear flow distribution functions with respect to the shear
center are F;(s;) = F..(s;).

maxF‘Cu( )
J
0

] = —13x10" ~0. (aa)
1

We record below for later use the remaining shear flow distribution functions with respect to the shear center,
which are determined from eq. (3.164).

Fy(s)) = —0.0246843 —0.010628sin(s,/6)  Oss, =6m (ab)
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Fy(s,) = —0.00697102 +0.00177133s, 0s<s,<7in. (ac)
F,3(s3) = 0.0467592 +0.00177133s, —0.0001476115? 0<sy=12in. (ad)
F,4(s5) = 0.00542827 —0.00177133s, 0<s,<7in. (ae)
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CHAPTER 4 Some aspects of the

Sructural analyss

The thin-wall bar theory presented in chapter 3 accounts for the deformations due to extension, bending, trans-
verse shear, and torsion/twist. The inclusion of transverse shear strainsis usually referred to as a Timoshenko bar
theory. A summary of some of the equations from the theory is presented in article 4.1

The von Mises criterion for yielding of a ductile metal under a combined stress state isreviewed in article

4.2. The permissible limits of the loads that prevent permanent deformation of the bar are determined by imple-
menting the yield criterion.

In article 4.3 we present examples to determine the axial displacement, axial normal strain, and axial normal

stress, which include the following topics:

shear force and bending moment diagrams for distributed loads acting on awing and a ship,
the composite area technique to compute properties of plane areas,

for abar with a zee cross section, we determine the neutral axis of the cross section for the section subject to
bending, the normal stress distribution, and the displacements due to pure bending and transverse bending.

In article 4.4 the shear stresses are determined for several examples, including:
an open cross-sectional contour and a closed cross-sectional contour subject to a transverse shear force and a
torque,
comparison of an open section and equivalent closed section subject to torsion,
resultant of a uniform shear flow and Bredt's formula,
torsion of cross sections composed of two and three cells, and
transverse bending of abar with atwo-cell cross section.
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4.1 Review of the thin-wall bar theory

A straight bar is referenced to the Cartesian coordinate system x-y-z, with the z-axis coinciding with the longitu-
dinal axis of the bar. In the x-y plane the cross section is described by the contour and the thickness of the wall
normal to the contour. The contour is a piece-wise continuous curve in the x-y plane whose subdivisions are
called branches, and the tangent to the contour is continuous within a branch. The origin of the x-y system in the
cross section is at the centroid, which isthe point labeled C in figure 4.1. In the bar theory the dependent vari-

ables acting at the centroid the cross section of the bar are [w(z), N(2)], [¢,(z), M,(z)], and [¢,(z), M, (z)].
The axial displacement of the centroid is denoted by w and its corresponding axial force is denoted by N, the
rotation of the cross section about the x-axis is denoted by ¢, and its corresponding bending moment is denoted

by M, , and the rotation about the negative y-axisis denoted by ¢, and its corresponding bending moment is
denoted by A,,. The shear center of the cross section islabeled S.C. infigure 4.1, and the dependent variables
acting at the shear center are [u(z), V,(z)], [v(z), V,(z)], and [¢.(z), M,(z)] . The x-direction displacement of
the shear center is denoted by » and its corresponding force by V., the y-direction displacement of the shear
center is denoted by v and its corresponding force by ¥, , and the twist of the cross section is denoted by ¢, and
its associated torque by M, .

Fig. 4.1 Coordinate
systemsin the bar theory,
and thedependent variables
referenced to the centroid
and the shear center of the
Cross section.

contour ¢

4.1.1 Extension and bending

Hooke's law for extension and bending of the bar is defined relative to the centroid. From eqg. (3.80) on page 47
the compliance form of Hooke's law is

dw/dz 1/4 0 0 N+N;
do/dz| = 2| 0 KLy (kn)/ Ll M+ M- 4.2
do,/dz 0 (<kn)/I, Kk/L, ||M,+M,;

Geometric properties of the cross section areitsarea A, itsfirst areamoments O, and O, and its second area
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moments /., [

xx° P2 V’

and /,,,. In eq. (4.1) the modulus of elasticity of the material is denoted by E. The locus of

points on the contour is expressed parametrically by the equations x(s) and y(s) , where the arc-length of the

contrary isdenoted by s. Let #(s) denote the thickness of the contour. See Fig. 4.1. The area and first area
moments are given by

A = ft(s)ds 0, = fy(s)t(s)ds =0 0, = fx(s)t(s)ds =0. (4.2)
First areamoments O, and O, vanish since origin of the x-y-axesis |located at the centroid of the cross section.
Hence, the definition of the centroid allows decoupling of the extension and bending responses of the bar. That is,
the axial strain dw/dz isindependent of the bending moments M, and M,,, and bending rotation gradients

d¢,/dz,and d¢,/dz areindependent of axial force N. The second area moments are given by,

I, = fyz(s)t(s)ds I, = fxz(s)t(s)ds I, = fx(s)y(s)t(s)ds. (4.3)
The dimensionless parameters are defined by
— — _ 1
n, = ]xy/lxx Ixy/[yy k = 1—n.n (4.4)
x'ty

Thethermal loads N, M, ;, and M, appearing in eq. (4.1) are from the prescribed change in temperature from
the reference state. Refer to egs. (3.75), and (3.78) on page 46.

Theaxial normal stress o_, and the shear stress tangent to the contour o, are shown in figure 4.2 The axial

s

¢ s (s)

\AZ

x(s) y(s)

Le

X

z

normal strain ¢, and the axial normal stress o,, are given by egs. (3.82) and (3.83) on page 47, respectively.
These results are repeated below as egs. (4.5) and (4.6), respectively.

Fig. 4.2 Dominant stresses acting on the z-face in a thin-walled bar.

N+ N M_+M_;)- M +M ;)-
€, = L'+ k( = AT)y(s) + k(—v—&)x(s) ,and (4.5)
EA EIl. i
N+ N M. +M M
o, = T (M Mandy ) 4 (LBt ) pars, o). o)
xx »y

Ineg. (4.6) p = Ea, where a isthelinear coefficient of thermal expansion of the material. The cross-sectional
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coordinates of the contour ;c(s) and i/(s) appearing in eq. (4.6) are defined by

x(s) = x(s)—n(s)  ¥(s) = y(s)—nx(s). @7

4.1.2 Shear stressesin open and closed sections
The location of the shear center and the equation for the shear stress depend on whether the cross-sectional con-
tour is open or closed.

Open cross-sectional contour The coordinates of the shear center with respect to the centroid for an open
cross-sectional contour are given by

% =) urm(s)Qx(s)ds} ve = 1 Crnc(S)QymdS] 4

In eg. (4.8) the functions denoted by éx(s) and éy(s) are called distribution functions. The equations for the
distribution functions are

N

0:(s) = [()()ds  Oy(s) = (Tx(s)e(s)]ds. (4.9)
/ I
In eg. (4.8) the coordinate normal to the contour with respect to the centroid is denoted by r,.(s) . Coordinate
r,.(s) isshownin figure 3.3(b) on page 33, which is given by

rp(s) = x(s)dl —y(s)%. (4.10)
ds ds
Also shown in figure 3.3(b) is the coordinate normal to the contour with respect to the shear center which is

denoted by r,(s) . Itisgiven by

dy dx

scds +ysc$ . (4.11)

r,(s) = r,(s)—x

The shear stress o, for an open cross-sectional contour consists of the sum of two terms, and it is given by

o = U2 LM (4.12)
t(s) J

where the shear flow is denoted by ¢(s, z) , the torsion constant by J, and the thickness coordinate by C. The
shear flow for an open section is related to the distribution functions and the shear forces by

4(5.2) = = F0()V, ()= L0V, (2) @19
yy xx
Thefirst term on the right-hand side of eq. (4.12) is the shear stress component that varies with the contour coor-
dinate s, but it isindependent of the thickness coordinate C. The second term on the right-hand side of eq. (4.12)
isalinear function of the thickness coordinate C, but it is independent of the contour coordinate sin a branch of
the cross section where the torsion constant is spatially uniform. The torsion constant is derived in article 3.9 on
page 57 and in article 3.9.1. For thin-wall barsit is given by
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J = %bﬁ (4.14)

[

branches

where b, isthe arc-length of thei-th branch and ¢, isthe thickness of thei-th branch.

Closed cross-sectional contour. We begin with the shear flow given by eg. (3.145) on page 67, which is
repeated below as eg. (4.15).

k7~ k
q(s:2) = qo(2) = =V 0,(s) = =V, 0.(s) (4.15)
»y xx
The shear flow ¢ (z) is spatially uniform around the contour, and it is determined from

M. = anC(S)CI(S)ds, (4.16)

where the torque with respect to the centroid is denoted by A7, . Substitute eq. (4.15) for the shear flow into eq.
(4.16) and solve for g,(z) . The shear flow with respect to the centroid is expressed as

qco(s,z) = j—\'/%-;l(—z—)—FXC(S)VX(Z)—F)/C(S)V)/(Z), (4.17)

where 4, isthe area enclosed by the contour, and functions 7, (s) and F,.(s) account for the distribution of
the shear flow due to the transverse shear forces. It istacitly implied that the torque M, and shear forces 7, and

v, areresolved at the centroid in the derivation of the shear flow given by eq. (4.17). Then the area enclosed by
the contour is given by

_ 1
4. = Zfrnc(s)ds' (4.18)
The shear flow distribution functions relative to the centroid appearing in eg. (4.17) are defined by

1
(24,),

L
[XX

Fols) = £ 000) = 2 fre)0:()ds | Fuls) =
Yy

24) [éx(s) - rnc(s)éx(s)ds} . @19

The twist per unit longitudinal length due to torsion for a closed cell is derived in article 3.11.1 on page 68. It is
an important equation and is given by

do, _
e 2& f(—g—t)ds, (4.20)

where the shear modulus of the material is denoted by G. From figure 3.23 on page 69, the torque at the shear
center isrelated to the torque at the centroid and the shear forces acting at the shear center by

Mz = Mzc_xchy +ych

X

(4.21)

Substitute the shear flow from eqg. (4.17), and substitute the torque at the centroid from eq. (4.21), into eg. (4.20)

to find
d M
_q.)_z = —=Z dﬁ_[llc_ Ed..£+_.1._ —X'EdS}Vx"'[h i‘g__..l._ —EdS}V . (4.22)
dz ~ 442fGt Laa2fG” 24 G 242¥Gt 24y G

At the shear center the twist per unit length depends on the torque resolved at the shear center and not on the
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shear forces. In other words, the shear forces acting at the shear center do not contribute to torsion. This require-
ment means the coefficients of the shear forcesin eg. (4.22) must vanish. Hence, the location of the shear center
with respect to the centroid is

24, F,(s) 24 (s)
= | —=f(X=—)d = - —=fl—==—)d 4.23
¥ @f( &) S] Vse { @f( ) 429
Gt Gt
It follows from eqg. (4.22) that the twist per unit length is related to the torque by
o, _ M,
dz (G eir’
where the effective torsional stiffnessis given by
442
(Ger = —- (4.24)
as
Gt

The shear flow defined with respect to the shear center is obtained as follows: Substitute eg. (4.21) for the torque
acting at the centroid into the shear flow eq. (4.17) to get the result

M
q(s,z) = 2—2/(15—) —F (s)V(2)=F,(s)V (2), (4.25)
where the shear flow distribution functions relative to the shear center are defined by

= y_sc_ = — h
F(s) = 2A(.+Fxc(s) F(s) (ZA > +F,(s). (4.26)

C

The shear stressfor aclosed cross-sectional contour isgivenby o, = ¢(s,z)/#(s) . Note that the shear stressis
uniform through the thickness of the wall but is a function of the contour coordinate.

4.1.3 Hooke'slaw for transverse shear and torsion

Hooke's law for transverse shear and torsion is defined relative to the shear center. From eg. (5.76) on page 144
the compliance form of Hooke's law is

Cxx cxy 0 Vx
Ve = e Gy O V| (4.27)
a9, 0 0 1/(GJ)||M.
dz

where y,(z) and ¢ ,(z) denote the averaged shear strains. These shear strains are depicted in figure 3.6 on
page 38 and are given by

0@ = T w6 = Pra). @.28)

In eg. (4.27) the compliance coefficients are denoted by (c,,, ¢

1y Cxy) - From eq. (5.62) on page 142 the compli-
ance coefficients for an open cross section are
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I, Gt .

_ _ _
¢, = (A)z OOy o=, = ,kj fQAsé&(s)] s e, = (L)Z %jﬂds. (4.29)
xxty v

c c

For a closed cross-sectional contour the compliance coefficients are given by eq. (5.66) on page 143, which are
_ (i) ) _ = GEF(s)
Cpp = fF—G;-—ds cyy = ff—v—;—ds Cry = Cpx = —---G—t‘—--—ds . (4.30)

The shear flow functions defined relative to the shear center result in adecoupling of the transverse shear and tor-
sional responses of the bar as shown in eq. (4.27). That is, the shear strains are independent of the torque, and the
twist per unit length is independent of the shear forces. For an open section the torsion constant is given by eq.

(4.14) and for asingle-cell, closed section GJ isgiven by eqg. (4.24).

4.2 Yieldcriteria

From “Airplane design requirements’ on page 14: All parts of the airplane are

designed so they are not stressed beyond the yield point at the limit load fac- Oyiel dA(z“_ _____
tor. That is, there shall be no permanent deformation of the structure on /1
removal of the loads. Wefirst consider yielding of the material in uniaxial ten- /// :
sion, and then discuss yield criteria for combined stress states. /7
/ 1

Theyield point, or yield strength, of amaterial is determined from mate- E /JE :
rial characterization tests performed on standard specimens under smple L, 1 !
loading situations as specified by the American Society of Testing Methods 0 f—¢ . ' =
(ASTM). The standard governing the tensile test of ductile metalsisASTM 0.002 yield

ES8--Standard Test Methods for Tension Testing of Metallic Materials. A plot Fig.4.3 0.2 percent

of the normal stress with respect to the normal strain from typical tensiletest ~ Offset yield strength

of an aluminum alloy isdepicted in figure 4.3. Thereisaninitial linear elastic

region whose slope isthe modulus of elasticity E. Following the linear portion, the slope of the stress-strain curve
continuously decreases until a relative maximum engineering stress occurs deep into the response regime where
plastic deformation is dominant. For such material behavior we define an offset yield stress. A straight lineis
drawn parallel to the linear elastic portion of the stress-strain curve starting fromastrain e, = ¢,, = 0.002 on
the strain axis. The stress at the intersection of this straight line with the stress-strain curve is defined to be the
yield strength 0,4 of the material. Note that the strain of 0.002, or 0.2 percent (percent strain is defined as

100¢,, ), is plastic strain, since unloading the specimen from the point (& ;. 4, Oy;eiq) ON the stress strain-curve

would follow the straight dashed linein figure 4.3 and the strain of 0.002 would not be recovered. However, a
permanent strain of 0.2 percent is not considered detrimental for most structural components, and the 0.2 percent
offset yield strength has the advantage of being a precisely defined quantity. The offset yield stressis generally
the most satisfactory means of defining the yielding event for engineering materials. Metals usually break in ten-

sion by the shear stresses acting on planes at 45° with respect to the tension axis.

Aircraft structural components modeled as thin-walled bars are not only subject to tension, but also com-
pression, bending, and torsion, or a combination of these. Consequently, the material is subject to a combined
state of stress. For straight bars with thin-walled cross sections, the dominant stress components are shown in fig-
ure 4.2. These stress components acting on the cross section are directly related to the axial normal force, bend-
ing moments, transverse shear forces, and the torque as detailed in article 4.1.
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The maximum shear stress criterion and the von Mises criterion were devel oped to predict yielding for com-
bined stress states in ductile metals (Dowling, 1993). We use von Mises criterion since it compares favorably to
test results (Dowling, p. 252) and it is easy to program. The von Mises criterion is based on the shear stress acting
on octahedral planes, and it is alternatively called the octahedral shear stressyield criterion. The formulafor the
von Mises effective stressin thin-walled bar theory is

OMises = A/O2 1302, (4.31)

If Opfiges <O then thereis no yielding of a ductile metal under a combined stress state, where o4 is deter-

yield » yield

mined in the uniaxial tension test. At the initiation of yielding Oyjises = Oyieiq -

Criteriafor failure initiation in modes other than yielding are also formulated in terms of stresses. Examples
of stressed-based criteriafor failure initiation in fiber-reinforced polymer composites are presented in chapter 9,
and the criteria for the initiation crack propagation are presented in chapter 13.

4.3 Sructural analyses for extension and flexure

4.3.1 Bending moment diagrams

To determine the axial normal stress distribution in bars subject to lateral loading, we have to first find the distri-
bution of the bending moment. Analyses are presented for a cantilever wing and barge in still water. Airplanes
and ships can be regarded as vehicles moving in different mediums, the air or water. In this regard, the study of
buoyancy distribution acting on ship structures is instructive in determining the distribution of the bending
moment in the hull.

Example 4.1 Cantilever wing with tip tank

Consider the cantilever wing with tip tank as shown in figure 4.4. Given the weight of the tip tank and its con-
tents W, the distance e of the weight W from the wing tip, the wing span L, and the value of the distributed load

intensity 7. at the wing root, determine the shear force and bending moment along the span.

Fig. 4.4 Cantilever wing
with tip tank.

Solution. The differential equilibrium for the shear forceis given by eqg. (3.54) on page 43. Integration of this
differential equation from z=0to zresultsin
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z

V,(2) = 1,(0) = ff,(u/Lydu, which evautes as V,(z) = Vy(O)—f,(ZZ—z). @
0

The differential equation for the bending moment is given by eqg. (3.55), where in this example the distributed
moment per unit length m, = 0. Integrating this differential equation from z=0to zresultsin

z

M,(z) = M,(0)+ ny(u)du,Which evaluates as M,(z) = M,(0) + V,(0) z— f(é—i) . (b)
0
At the wing tip, equilibrium of thetip tank as V.(0)
. . y
shown in figure 4.5 leads to Fig.45 Freebody )M (0)( @
~ ~ diagram of tip tank. *
V,0) =W MJ(0) = eW. © S v,(0)
Hence, the shear force and bending moment are
_ z2 _ z3
V,(z) = W—f,(2—L> MJ(z) = eW+ Wz +f,<a) 0<z<L. )

Teke L = 144 in.,e = 6in., W = 500 Ib.,and f, = 70 Ib./in. . Numerical evaluation gives

V,(z) = 500—(3522)/ 144 M,(z) = 3,000 + 500z — (3523)/432.. ©

The shear force and bending moment distributions with respect to the normalized coordinate Z/L are plotted in
figure 4.6

v 1b
Vi Mx, lb-in
-\ ‘ | ‘ ‘ s / L A
‘ ‘ ‘ ‘ ~ z/L
0:2 03§ 0:60:81:0 0.20.40.¢0.81.0
-1000+
-500007
-2000¢
-100000+
-3000+
— 4000+ -150000¢
@ (b)

Fig. 4.6 (@) Shear forcediagram, and (b) Bending moment diagram for example 4.1.

The shear forceequalszeroat z/L = 0.315, which correspondsto z = 45.3557 in.. At z = 45.3557 in. the
bending moment exhibits a horizontal slope. Thus, the bending moment is a relative maximum at
z = 45.3557 in. with avalue of 18,118.6 |b.-in. The largest magnitudes of the shear force and bending moment

occur at the wing root where, ¥ (L) = —4, 540 Ib. and M, (L) =-166,920. Ib.-in. B
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Example 4.2 Uniform barge with symmetric load

Consider abarge at rest in still water with auniform immersed cross section, and subjected to the symmetrical
loads shown in figure 4.7. There is adistributed load acting on the barge due to buoyancy forces produced by
5m 5m 5m

5m
15 kN (total) k * < * >| 15 kN (total)
10 kN
/\WL vVVVY l l l v éﬁﬁr‘/—\

ava z v

N N R

Fig. 4.7 Uniform section bargein still water with symmetric load.

displacing the water. Let f, represent the distributed load intensity due to buoyancy, and f; isa constant along
the barge because the immersed cross section is uniform and the water is still. Thisis an example of a structure
with no boundary supports, and is typical of aerospace and ocean vehicle structures.

a) Plot the shear force and bending moment diagrams for the barge,

b) Determine the maximum axial normal stress.
Solution to part (a). Vertical equilibrium of the entire barge requires that the buoyant upthrust equals 40 kN, so
that /, = 2 KN/m . Thetotal distributed load intensity is the difference between f, and the magnitude of the

downward acting applied loading intensity. The point force of 10 kN acting at z= 10 m is shown schematically in
the /,(z) -diagram as adownward pointing arrow. Actually, f, = — asz — 10 m, because apoint forceisa

finite load acting over zero length. Point forces are idealizations to actual |oads and introduce discontinuitiesin
the mathematical descriptions of some of the dependent variables.

A semigraphical method is used to sketch the shear force and bending moment diagrams. In this approach
wefirst sketch the distributive load f,(z) (F/L), then the shear force V/,(z) , and finally the bending moment

M (z) . Thedifferential equilibrium equations governing the shear force and the bending moment are egs. (3.54)
and (3.55) on page 43. These equations are repeated in eq. (a) below.

dv M., _
7ZY+fy(z) =0 o -V,+mJ(z) = 0. (a)

The prescribed external moment intensity m, = 0 (F-L/L) in this example. From eg. (a) we note that the slope

of shear diagram at z is the negative of the distributed load intensity at z, and that the slope of the moment dia-
gram at zis the shear force at z Integrate eq (a) with respect to zfrom z=z; to z= z, to get

Vi(z) = V,(z,) = —ffy(z)dz cand M (z,) —-M(z)) = ny(z)dz . (b)
Equation (b) isinterpreted in agraphical sense to mean that the difference in the shear force between z, and z; is
the negative of the area under the distributed loading diagram from z; to z,, and the difference in the bending
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moment between z, and z; isthe area under the shear force diagram from z; to z,. These are not geometrical
areas. The area between the 1 (z) curve and the z-axis has units of force, and may be positive, zero, or negative.

Free body diagrams of the barge at each end are shown in figure 4.8. The water pressure varies linearly with

7,(0) 7,(20)
Fig. 4.8 Freebody diagrams of ‘ \T) M, (0) Mx(20)Cl|:|
thebarge at each end. Note ¢ = 0. =
F— |
z
z=0 z =20m

the depth of the immersed cross section and acts in z-direction. We assume the moment about the x-axis caused
by the water pressure is small and can be neglected. Asthe infinitesimal distance ¢ — 0, the distributed loading
acting at each end vanishes. In the limit we get the equilibrium conditions

V,(0) = 0 M,(0) = 0,and ¥,(20) = 0 M,(20) = 0. ©
From eg. (c) the shear force diagram begins at zero, and the slope 10KN
dV,/dz atz=0isequal to 1 kN/m. Theslopeisconstant between Figt-h4-2h Jump +
’ in the shear
0<z<5m,thusV,(?) isastraight linein thisrange of z The dif-  force. V,(107) H:IT V,(10%)
ferencein the shear force betweenz=5m and z= 0 isequal to the P

negative of the areaunder the f,(z) curve, whichis5kN. Thus

Vy(5) =5kN sinceVy(0) = 0. At z= 5" m the loading intensity jumps to +2 kN/m. The slope of the shear force
jumps from 1 kN/m to -2 kN/m at z = 5m, but the shear forceisitself continuous. The difference Vy(10) —V(5)
isequal to the negative of the area between the f/(z) -curve and the z-axis between z=5m and z= 10 m. Thus
Vy(10) —Vy(5) =10 kN, s0 V(10) = -5 kN. Note the shear forceis zero at z= 7.5 m. At z= 10 m the point force

of 10 kN acts. Asshown in figure 4.9, vertical equilibrium at z= 10 myields at jump in the shear forceVy(10+) -
Vy(10") = 10 kN, so that Vy(10+) =5KkN. The slope of the shear at z= 10 mis +2 kN/m, and remains constant
until z= 15 m. The difference V,(15) —Vy(10+ =-10kN, so that V| (15) = -5 kN. Finally, the slope changes to

+1 kN/m at z= 15" m and remains constant in the range 15 < z < 20. The difference Vy(20) —Vy(15) =5kN, so
that Vy(20) = 0. The shear force equal to zero at z= 20 mis expected from the result in eq. (c). The shear force
diagram is drawn below the loading intensity diagram in figure 4.10.

From eq. (c) the bending moment at z = 0 equals zero, and its slope z= 0 is equal to zero since the shear
forceiszeroat z= 0. Theslope dM,./dz of the moment diagram increases linearly from zero at z= 0 to the 5 kN,
which isthe value of the shear force at z= 5 m. The difference M, (5) — M,(0) is equal to the area under shear dia-
gram from z=0to z=5 m. Hence, My(5) — M,(0) = 12.5 kNm, and My(5) = 12.5 kNm since My(0) = 0. From z=
510 z= 7.5 the slope of the moment decreases from 5 kN to zero. At z= 7.5, My is alocal maximum with a mag-
nitude of 18.75 kNm. The slope of M(2) for 7.5 < z< 10 is negative, decreasing linearly from zero to—-5 kN. The
difference My(10) — My(7.5) = —6.25 kNm, so that M,(10) = 12.50 kNm. The slope of M,(2) at z=10 m jumps
froma-5kN to +5 kN asshowninfigure 4.10, but the moment itself is continuous. That is, the bending moment

exhibitsa cusp at z= 10 m. The bending moment diagram in the range 10 < z< 20 is completed in amanner sim-
ilar to the description of its construction in the range 0 < z < 10. In this example the shear force diagram is anti-

Aerospace Structures 87



Article 4.3

symmetric about z= 10 m and the bending moment is symmetric about z = 10 m. This follows from the symmet-
rical loading on the barge.

10 kN

20}
1.5¢
1.0¢
S, KN/m 05/

-05¢
-1.0

Fig. 4.10 Thedistributed

loading, shear force, and V kN
bending moment diagrams v ‘ ‘ ‘
for thebargein still water. 5 10 15 0

15¢

M, , kN-m 101

Solution part (b). Let usassume an open cross section of the barge is as shown in figure 4.11. The thickness of
the three branches is 5 mm, and the section is symmetric about the y-axis so the product areamoment /,,, = 0.
From (4.4) the cross-sectional coefficients n, = n, = 0,k = 1, andj; = y.Atz = 7.5 m theshear forceis

equal to zero and the bending moment has a maximum value of 18.75 kNm. Hence, the shear stress o, = 0 and
the axial normal stress (4.6) is given by

o =A—/11‘y ——S—msysz—s-m, (d)
= 12 12

where the second area moment about the x-axis 7, = (5/128)m#*. The maximum magnitude of the normal
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stressoccursat y = (25/12)m, and it isatensile stress with the value of

| = BB KNMAS/12m) - g9gx10°(N/m?) = 1.0 MPa. Il @©
max (5/128)m*
5 mm —p-|a— F
. . y 25m
Fig.4.11 Crosssection of 2 m i C 18.75 kNm
the bargein example 4.2. 12 ¥¥ x v —
|A 10 m

\/

4.3.2 Buoyancy force distribution on ships

The simple uniform buoyancy distribution acting on the barge in example 4.2 is an exception to the buoyancy

distributionsfound in practice. It istrue that equilibrium requiresthe total buoyant upthrust to equal the weight of
the ship and its contents. However, the distribution of the buoyancy and weight along the length of the ship is not
necessarily the same. The difference in the magnitudes of the buoyancy and weight distribution intensities is the

applied load intensity £,(z) . In ship design three conditions are recognized to compute f,(z) for the same ship.
These conditions are called

e the dtill water condition,
* the sagging condition, and
* the hogging condition.

A more detailed account of these conditions on the longitudinal bending of the ship is given by Muckle
(1967) and Zubaly (1996), and here we only summarize the basic ideas.

A shipin still water is shown in figure 4.12, and a section A-A between zand z + dzis also shown.

Z
| A - Section A-A

/ v v | | w

\ A = / \\m_stA)zz

Fig. 4.12 A shipin still water.

v

Archimedes's principle asserts that the buoyant upthrust is equal to the weight of the fluid displaced. Let A(2)
denote the submerged cross section at z, and let y denote the specific weight (force per volume) of the fluid. The
differential buoyancy force dF, acting on the ship over adifferentia length dzis

dF, = yA(z)dz. (4.32)

Consequently, the buoyant upthrust per unit ship length, which we designate 7, , is equal to YA(2); i.e.,
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dF
fp = d_Zb = yA(z). (4.33)

A curveof £, for aship aswell asthe weight per unit length is shown in figure 4.13. Overall equilibrium

weight/length
Fig. 4.13 Conceptual longitudinal weight
and buoyancy distributions acting on a buoyancy/length
ship.
o> Z

requires the area under these curves to have the same magnitude. If the submerged cross section is uniformin z,
asisthe case for the barge in example 4.2, the distribution of the buoyancy per unit length £, is aconstant.

At seaaship is subject to waves, and this alters the buoyancy distribution. For longitudinal bending of the
ship two extreme static conditions are assumed: sagging and hogging. In each condition, the length of thewaveis
assumed to be the length of the ship. Thisis an “accepted” assumption for the worst buoyancy distribution caus-
ing the most severe bending of the ship.

The sagging condition is shown in figure 4.14(a). The wave crests are at the bow and stern, and the wave
trough is amidships. A schematic of the buoyancy per unit length is shown below the ship in figure 4.14(a). The
immersed cross section isthe largest at or near the wave crests, and isleast near the trough. The intensity of the
buoyancy distribution reflects this. In this condition the deck sags and isin compression while the bottomisin
tension. The worst location to concentrate the cargo in the ship is amidships, asthiswill result in the largest
bending moment.

concentrated weight

concentrated weights
y A

~— ~/,

@ (b)
Fig. 4.14 Longitudinal bending conditionsfor a ship. (a) Sagging. (b) Hogging.

The hogging condition is depicted in figure 4.14(b). Here the wave troughs are at bow and stern, and the
crest isamidships. The immersed cross section is greatest near amidships and is least near bow and stern. The

distribution of the buoyancy per unit length £, , shown in figure 4.14(b), reflects this situation. In hogging the

deck isin tension and the bottom isin compression. The worst possible |ocations to concentrate cargo is fore and
aft, as thiswill produce the greatest bending moment in the ship.
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4.3.3 Propertiesof plane areas

First and second area moments of the cross-sectional area need to be determined before evaluating eq. (4.6) for
the normal stress. Analytical procedures were used in Example 3.1 on page 47 to compute first and second area
moments for athin-walled bar. Frequently, the composite area technique in conjunction with the parallel axis the-
orem are used to determine these geometric properties.

Parallel axistheorem. Consider two parallel axes systemsin the cross section. The origin of the Cartesian axes
x and y coincide with the centroid of the cross-sectional area, which islabeled C in figure 4.15. The second Car-

tesian system X and Y hasitsorigin at an arbitrary point O, the X -axisis parallel to the x-axis, and the Y -axisis
parallel to the y-axis. The location of the centroid in the X and X system is denoted by coordinate values
(X,, ¥,).Usualy the X and Y system is selected as something convenient to start with, and the first and second

area moments with respect to the X and Y system are computed or looked up in tables. Then the (XX, Y,.) coor-

dinates of the centroid are computed and the parallel axistheorem is used to find the second area momentsin the
x andy system.

For athin-walled bar the areaelement is d4 = #(s)ds, in
4 y which s denotes the arc-length along the contour ¢, and t(s)
Y denotes the thickness of the wall. In general, the thickness
A may vary smoothly with arc-length, but its magnitude must
remain small with respect to the overall dimensions of the
Y. ¢ —— — -@——X cross section. An abrupt change in thickness is modeled by a
step change in thickness at a junction. The area of the cross
) === section is given by
-
O I A= ft(s)ds ) (4.34)
-+ X C

Inthe X and Y system, the first area moments are defined as

Fig. 4.15 Parallel Cartesian axes systems.
Oy = fYtds Oy = thds. (4.35)

The relationship between the two parallel coordinate systems is determined from the location of ageneric point s
on the contour in each system. Thisrelationship is
X(s) = Xo+x(s) Y(s) = Yo +y(s). (4.36)
If eq. (4.36) is substituted into eq. (4.35), we get
Oy = YA+ 0, Oy =XcA+0,. (4.37)

where

0. :fy(s)z(s)ds 0, fx(s)t(s)ds. (4.38)

Since the origin of thex and y system is at the centroid, the first moments O, and O, are zero by definition. Set-
ting O, = 0 and O, = 0 ineq. (4.37), we can solveto find the location of the centroid as
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Xc = %Y Yo = =, (4.39)

Inthe X and Y coordinate system the second area moments are defined by

Iy = sztds Iy = f)@tds Iyy = fXYtds. (4.40)

Second area moments are often called moments of inertiain analogy to moments of inertia of mass elements
used in rigid body dynamics. The fact that eg. (4.40) is second moments of area elements and not mass elements
should be kept in mind even if the terminology “moments of inertia’ isused in the context of beam bending. Now

substitute eq. (4.36) for the X and Y coordinates into eg. (4.40) to get
Iyy = Y2A+2Y 0 +1, Iyy = X2A+2X.0,+1, Iyy = XcYcA+ X0 + Y0 +1, (4.41)

where the second area moments with respect to the centroid are given by

I, =fy2tds I, =fx2tds I, = fxytds. (4.42)

c c

Since the origin of the x and y coordinatesis at the centroid O, = O, = 0, and eq. (4.41) reduces to

Iyy = Yed+1,, Iy = XeA+1 Lyy = XcYed+ 1, . (4.43)

vy

Equation (4.41) is the generalized parallel axistheorem, but in problem solving we usually use eqg. (4.39) to
locate the centroid and then the parallel axis theorem reduces to the use of eq. (4.43). Note that eq. (4.42) shows

that 7, and /,, for real areas are always positive in value with dimensional units of L% The product area

moment /,, can be positive, zero, or negative in value. The product areamoment /,, is zero if either the x -axis
or y-axisis an axis of symmetry of the cross section.

Radii of gyration. Defineradii of gyration by

rxx = m ryy = m ' (4.44)

Theradii of gyration (4.44) have dimensional units of length. However, the radii of gyration do not locate a phys-
ically significant point in the cross section. For example, ryy = Y, + 7., where ry, it theradius of gyration with

xx

respect to the X -axis. (Using the parallel axis theorem, the relation between the radius of gyration about the X -
axistothex-axisis r3y = Yz +r2,. .

Composite area technique. The composite area technique for computing the centroid and second area
moments is a method applicable to cross-sectional areas that can be subdivided into simple geometric shapes

whose properties are known. An entire area A is subdivided into N sub-areas 4;, i = 1,2, ..., N asshowninfig-
ure 4.16(a). Known properties of thei-th sub-areaareits centroid denoted by C;, and 4,, (1,,),, (1), (), -
Sub-area coordinate axes are denoted by (x;, y,) with origin at C,. Reference axes are denoted by (X, Y) with
origin at point O. The x-axisis parallel to the X-axis, and the y;-axisis parallel to the Y-axis. Coordinates (X;, Y;)
in the reference system locate the centroid C; of thei-th sub-area
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Y A Y A
YC
Y, f---
i , i-th sub-area
[ ' DX ® ' > X
0] X; (@] Xc
(@ (b)

Fig. 4.16 (@) Division of area A into sub-areas. (b) Assembled propertiesof areaA.

The pertinent equations for the assembled area properties are

N N N
A= 2 A, AY = 2 YA, AX, = 2 X.A4,;,and (4.45)
i=1,2,... i=1,2,... i=1,2,...
N N N
Iyy = ~-Z (I, + Y24), Iyy = ~-Z (1, +X24), Lyy = ‘_Z (I, +XYA),. (4.46)

The coordinates (X, Y) of the centroid C for the entire area shown in figure 4.16(b) are computed from the

last two expressions in eg. (4.45). The origin of the parallel coordinate system x-y islocated at the centroid C as
shown in figure 4.16(b). The parallel axistheorem (4.43) is used to find the second area moments about centroi-
dal system x-y after the second area moments in the reference system are determined from eq. (4.46).

For branches that can be represented by a thin-walled rectangular area, we can obtain simple formulas for
the second area moments. Consider athin rectangular area, where 0 < ¢ « 5 . The contour isastraight line
inclined at aangle 6 asisshown in figure 4.17. The contour coordinate is denoted by s, and the area element is
dA = tds. Thex and y coordinates of the point s on the contour are given by x = scos¢ and y = ssing.

Fig. 4.17 Thin rectangular area C
inclined at an angle 6.

\/,‘ b/2

Hence, the second area moments are computed from
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I, = f (ssinB)?¢ds

b/2 X
b—tsinze
12

-b/2
b/2

I, = f(scosﬁ)ztds = Dl oos2e

—b/2
b/2

(4.47)

- . _ bt
I, = f (ssin0)(scos0)tds = Esmecosﬁ

-b/2

Example 4.3 Thin-walled zee section properties by the composite area technique

Determine the centroid and the second area moments for the thin-walled zee section shown in figure 4.18. The
section is subdivided into three rectangular branches. One branch corresponds to the web and two branches cor-

AY A vy
V3
4 . t = thickness of all branches
3
:ir——- <F::F7_4— r___________:
b/2
b <
8%
I c
% —p X, [ = x
b Y1 YC =5
A
X1
y == @@ §] —>» —— > X —T=X
O/ b2 | 0
amallIN
Fig. 4.18 Zee section approximated by threerectangular branches.
respond to the flanges.
Solution. First we find the centroid. Equation (4.45) is represented in table 4.1 shown below.
Table 4.1 Areas and first area momentsfor the zee section
I 4, X; Y; Xid; Yid;i
1 bt b/2 0 b2t/2 0
2 2bt 0 b 0 202t
3 bt —b/2 2b b2 2b%
Sum  4bt 0 4b%t
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Summation of the appropriate columns gives

A = 4bt XA=0 Y. A = 4bt, @)

C

so that the centroid has coordinates X, = 0 and ¥, = b.

The second area moments are computed for the reference coordinate system (X, Y) using table 4.2 shown
below. Note that for the local coordinate systems originating at the centroid in each branch we can identify the
angle®ineq. (447)as 0, = 0°,0, = 90°,and 6; = 0°. These values of the angle 6 in each branch are used

to compute the local second area moments in each rectangular branch via eq. (4.47).

Table 4.2 Second area moments for each branch of the zee section

I YizAi (Ixx)i XizAi (Iyy)i X;Y 4, (Ixy)i
1 0 0 b3t/4 b3t/12 0 0
2 (b?)2bt (2b)%/12 0 0 0 0
3 (2b)?bt 0 b3t/4 b3t/12 — b3 0
Sum - eb3t 2b%/3 b%t/2 b%t/6 — b3t 0

From the summation of the columns, the second area momentsin the (X, Y) system viaeq. (4.46) are

Lyy = 6b3%t+2b%/3 = (20b31)/3
Lyy = (B3)/2+(b31)/6 = (2b%1)/3. ®)
Iyy = =b3t

Now we use the parallel axis theorem to transfer these moments to the x-y system. Equation (4.43) gives

I, = Ly—124 = 2—3Qb3t—b2(4bt) = §b3t ©
I, =1I,,—X24 = 2b3t—(0)(4bt) = 2p3 d
yy — 1YYy c - 3 - 3 (d)
Ixy = Iy—XcYeAd = =b3t—(0)(b)(4bt) = | (e)

4.3.4 Neutral axis of the cross section

For the case of avanishing axial normal force N, and neglecting temperature effects, the axial normal stress (4.6)
reduces to

kM- kM,- kM kM. —n M, M M, nM
0. = ——y+—x = —(y-nx)+—(x—ny) = k( % x+—l)x+k<——*—"—u )y. (4.48)
Ixx Iyy Ixx [yy Ixx yy Ixx Iyy

At the centroid where x = y = 0 the axial normal stress vanishes. Set the axial normal stress equal to zero to
get
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(—nva N %)x N <1‘i _ %) y=0. (4.49)
]xx ]yy Ixx Iyy

Equation (4.49) defines astraight line in the cross section that is called the neutral axis. Substitute the definitions
of n, and n, fromeq. (4.4) into eq. (4.49), and then solve for y in terms of x. L et these coordinates be denoted as

(Xnas Vna) - After some algebrawe find

MX (t B) (4.50)
YNa = _( )XNA = —tanp)xya :
[yny_IXyMy
where
I M _+I M
tanp = —Lx v (4.51)
LM, —1,M,
Example 4.4 Normal stressdistribution in a cantilever beam subject to pure bending.

The cantilever beam shown in figure 4.19 is subject to a bending moment M at its tip. The cross section isthe
thin-walled zee shown in figure 4.18. The second area moments about the centroidal axes are given by egs. (c) to
(e) in example 4.3. Determine the neutral axisin the cross section and the distribution of the bending normal
stress.

y
A

with a zee cross section. — 7 | D M

Fig. 4.19 Pure bending of a cantilever beam /
/

L |
}

.
| >
|- >

Solution. First, note that the components of the prescribed bending moment are M, = —M and M, = 0. Thus,

the cantilever beam is subject to loading in the y-z plane. The equation of the neutral axisis yy, = —(tanf)xy, »
where eg. (4.51) is

_ (HL)EM) (b3 _ 3 .
tan 7,,(=M0) ngZ 5 @

Theangle p = 56.31°.

To compute the distribution of the normal stress (4.6) in the cross section, we begin by evaluating section
coefficients (4.4):

n,=1,/1,=-3/8 n,=1/I, =-3/2 k= =16/7. ()

—-n, 5

The coordinates in each branch of the cross section defined by eq. (4.7) are

xi(s) = 1) —nyds)  pils) = yds)—npx(s) 0= 1,2,3. ©
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The normal stress (4.6) ini-th branch is given by

(0..), = [k'([__]w)}j’l(s) = [li(l:]\_l)}(yi_nyxi) = 7_23;(—M)<yi+%xi>. (d)

XX XX

Coordinatesin branch Lare (x,y,) = (x,,—b),inbranch 2 (x,,y,) = (0,y,), and inbranch 3

(x3,y3) = (x5, b). Thenormal stressin each branch isalinear function of the contour coordinate. The results
are

(0..), = %(—M)<—b+§xl) O=<x,=b, )
(0..), = %(—M)(yz—nyxz) = %(—M)yz -b<y,<b,and )
(0.); = S (M5 =nyxs) = ZEe(M)(b+3v))  b=vy=0, @

The neutral axis and the bending normal stress distribution are shown in figure 4.20J}

Fig. 4.20 Bending normal stress
distribution along the contour of the
zee section.

Example 4.5 Displacements of the cantilever beam of example 4.4

Determine the lateral displacement functions u(z) and v(z), 0 =z <L, for the zee section beam of example 4.4.

Solution. First note that this a statically determinate beam subject to pure bending. The equilibrium equations
are satisfied for M, = —-M and M, =0 for al z& (0, L), where M denotes the specified end moment. To find

the lateral displacements u(z) and v(z), 0 =z < L, we begin with matrix eq. (4.1), which for this example
reduces to
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dw/dz 1/4 0 0 0
|doysdz) = 210 kL, (kn)/Lf ) @
do,/dz 0 (<kn,)/L, k/I, |0

For this pure bending case the derivatives of the rotations are given by

d _
Aoy _ kM) - 1677y = —9(—M-—> and )
dz  EI_  (8/3)Eb%t NEb

d kn, —

9%, _ ——Y(=M) = — 16/7)(=3/2 (-M) = —2(£>. (©)

i  EL. (8/3)Eb’t 12\Ep3

Integrate egs. (b) and (c) from z=0to zto get

z

01900 = [ e - [- 42 s
0
00010 = -2 e = [-34 -

0

At z= 0 the beam is clamped to the rigid wall so that the rotations of the cross section at the wall are
¢.(0) = ¢,(0) = 0. Theresultsfor the rotations are

¢.(2) = _g<1?%})z 9,(2) = —%(E%t)z 0

The cantilever beam is subject to pure bending and by equilibrium the transverse shear forces v, = ¥, = 0, for

0<z=<L.Hooke'slaw (4.27) then yields that the transverse shear strains ¢, = ¢, = 0,for 0 <z< /L. Vanish-
ing of the transverse shear strainsin eg. (4.28) leadsto

du dv
= — 4+ = = — 4+ = .
vo= g =0y, =Ly =0 ©

From egs. (f) and (g) the derivatives of the displacements are given by

du 9/ M dv 6 M
—_— = = S —— —-_— = = o — . h
iz - 14(Eb3t>z iz 7(Eb3t>z ®

Integrate eq. (h) fromz=0to zto get

_ 9 (M2 o0) = G M )22 .
u(z) —u(0) = 14<Eb3t)2 v(z) =v(0) 7<Eb3t)2. ()

At the clamped end the beam displacements equal zero. Thus, the displacements are
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The view of the lateral displacements of thebeam at z= L are shown in figure 4.21. Asaresultof /., = 0 the
beam displaces both vertically and horizontally for aload that is applied in y-z plane.
|

¥

Fig. 4.21 Displacement of the centroid at thetip of the cantilever beam subject to pure bending.

Example 4.6 Transver se bending of a cantilever beam

Consider auniform cantilever beam from example 4.4 subject to avertical force F acting through the shear center
at itsfree end as shown in figure 4.22. There is no change in temperature from the stress-free state. The cross sec-
tion is the thin-walled zee shown in figure 4.18. Determine the displacements of the cantilever.

y
i ol
v A
/ 7 T F C,s.C.
I | N —x
/
/ A S
| -] 't
L -
S
Fig. 4.22 Transverse bending of a cantilever Section A-A

beam with a zee cross section.

Solution. The cantilever is statically determinate, and from equilibrium the shear force and bending moment are

V,=F M, = —(L-z)F O<zs<L. (a)

From Hooke's law (4.1) we find the derivatives of the rotations are

M _ i k
di%:b: —k(L—Z)F 6ﬁ)‘!:_@ZMY:—MK(L—Z)F. (b)
dZ E Ixx E [xx dZ E [xx ’ EIXX

Integrate the rotationsin eq. (b) with respect to coordinate zand impose ¢,(0) = ¢,(0) = 0 at the clamped end
of the cantilever to get
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0, = —3Z!2L—Z!F o = —9Z§2L—Z!F ©
TEb3t Y 14b3tE
From eg. (4.27) the shear strains of the cantilever beam are

Y, = F Y, = ¢, k. (d)
The compliance coefficients (4.29) for this example are

b 2b b
_ K -~ = - = —~ = 1
Cx)/ - Ixxlyy{fQXIledsl +fo2Qy2dS2 +fo3Qy3dS3}a y and (e)
0 0 0
5 b 2b b
_ [k -2 2 -2 1
Cyy = <[T) {foldsl +fQX2d52 +fo3dS3 a (M
0 0 0

To evaluate the compliance coefficientsin eg. (d) we need the parametric equations of the contour of the cross
section with respect to centroidal coordinates. The equations are listed in table 4.3.

Table 4.3 Contour coordinate functions

Branch xi(sy) il(s;)

i=1 b—s, -b O<s,=<b

i=2 0 —b+s, 0<s,=<2b
i=3 -85 b O=s,=b

We need to determine the distribution functions éxi(s,.) and éyi(s[) .1 = 1,2, 3, beginning with the contour
origin from the general expression in eg. (4.9). The contour originisin branch 1 where s, = 0 at itsintersection

with the traction-free longitudinal edge. As we move along the contour each branch is cut at ageneric value of its
contour coordinate. The area of the contour preceding the cut determines the range of integration for the distribu-
tion function as shown in figure 4.23. Using the parametric equations in table 4.3 the results for branch one are

éﬂ(sl) = f[yl(sl)—nyxl(sl)]ta’sl = i(Zb—3sl)slt, and éy1(s1) = f[xl(sl)—nxyl(sl)]tdsl = %(5b—4s1)s1t.(g)
0 0

For acut in branch 2, the integration includes all of branch 1 and the integration of the segment in branch 2. The
distribution functions for the cut in branch 2 are

S2

éxZ(Sz) = éxl(b) +f[)’2(52) —n,Xy(s,)edsy = —}‘(bz +4bs, —2s3)t, and (h)
0

S2
Oy2(s,) = Oy1(b) +f[x2(s2) —n.y,(s,)tds, = %(sz —6bs, +3s3)t,where 0 <5, <2b. (i)
0
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S3
__II

Fig. 4.23 Rangeof integration

along the contour to compute

thedistribution functions. I
)

be—

S

For acut in branch 3, the integration includes al of branch 1, al of branch 2, and the integration of the segment
in branch 3. The distribution functions for the cut in branch 3 are

53

éx3(s3) = éxZ(Zb) +f[)’3(53) —nyxs(s3)Jedsy = —i(bz —4bsy +3s3)t,and 0)
0

éy3(S3) = éyz(2b) +f[x3(s3) —n,y5(s5)]tds; = %(b2 +3bs;—4s3)t,where 0 <s;<b. (k)
0

Substitute the distribution functionsin egs. (g) to (k) into the compliance coefficients of egs. (e) and (f), followed
by integration, to find

c.. = 2 I 267 . 0]
o 196bGt Y 4906Gt

From the definition of the shear strains (4.28), we get the following integrals for the displacements that satisfy the
boundary conditions #(0) = v(0) = 0:

u(z) = (v, —¢,)dz v(z) = [(y,—¢,)dz. (m)
{ {

Substitute the compliance coefficients from eg. (i) into Hooke's law (d), followed by substituting the result for
shear strainsinto eg. (m). Then substitute eg. (c) for the rotations into eq. (m). Perform the integration with
respect to z to get:

_ 9Fz 9LFz2  3FzZ3 _ 267Fz  3LFz> FzZ3
u(z) = + - v(z) = + - .
196bGt  14b3tE  14b3tE 480btG  Th3tE Tb3E

The vertical displacement at point of application of the forceF is

()

(0)

(L) = < 213 | 267L )F _ (3L3F)[1+2_67_1_9_2§]

Tb3tE  490btG Tb3tE 140L2G

where the last result was obtained by factoring out the first term on the right-hand side. For aluminum alloys
E/G=2.5,eqg. (o) can be manipulated to the form
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3
W) = 16L°F [1_'_ 4.77 J

20EL, L7 (L/b)?

| —

= g(L/b) ©®)

Thefunction g(L/b) isevauated for several ratiosof L/b , and the results are listed in table 4.4. The function
16L3F
21E1

XX

g(L/b) — 1 forvauesof L/b> 10 , whichimpliesthe displacement v(L) — for L/b>10.

Table 4.4 Ratio of the transver se shear
displacement to the bending displacement

L/b g(L/b)
5.77
2.19
1.19

10 1.05

15 1.02

This result means the contribution of the displacement due to transverse shear deformation is negligible with
respect to the component due to bending for beams that are long with respect to their cross-sectional dimensions.

To neglect the influence of transverse shear means we can set shear strainsy, = 0 and ¢, = 0. Setting the

shear strains equal to zero in Hooke's law for transverse shear in (4.27) means the shear forces equal zero. How-
ever, the shear forces are necessary for beam equilibrium. Hence, we omit Hooke's law for transverse shear in a
theory where the shear strains are assumed equal to zero. The beam theory neglecting transverse shear strainsis
called the Euler-Bernoulli beam theory. |}

4.4  Sructural analyses for transverse shear and torsion

The shear stress o, isdirectly proportional to the transverse shear force components 'V, and Vy, and the torque

M, for astraight bar and for infinitesimal deformations of a Hookean material. Procedures to calculate o,, are

different for an open contour and for a closed contour. The stress analysis for an open cross-sectional contour is
presented in example 4.7, and the stress analysis for a closed cross-sectional contour is presented in example 4.8.

Example 4.7 Shear stress analysisfor an open cross-sectional contour

The open contour shown in figure 4.24 consists of asemicircular branch of radiusa. For simplicity the origin of
the X-Y system is at the center of the semicircle which islabeled point O in figure 4.24. The X-axisis an axis of
symmetry, and the centroid C and shear center S.C. lie on this axis. To find the shear center we take the shear

force 1, = 0. Theshear force V, and thetorque M, act at the shear center. If M, = 0, then the shear forceV,,
causes adisplacement v in bending of thebar,and ¢, = 0.1f V/, = 0, thenthetorque M, causesarotation ¢,
twisting the bar, and v = 0 at the shear center.
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Determine

a) thelocation of the centroid,
b) the shear flow due V,,
c) thelocation of the shear center, and

d) theshear stress o, intermsof V, and M, .

Fig. 4.24 Semicircular, open section.

Solution to part (a). The parametric equations of the semicircular contour are

X(0) = acosH Y(0) = asinb s = ab —-n/2=<0=mn/2. (a)

We compute the area A, the first area moment about the Y-axis O, and the location of the centroid as follows.

/2 n/2
A= f tad® = amt Oy = f X(0)tad® = 2a*t  X. = Qy/4 = 2a/m. (b)
—n/2 —rt/2

The coordinates relative to the centroid, and the second area moment about the x-axis through the centroid are

/2
x(0) = X(0)—X. = acos®—2a/n y(0) = Y(0) I, = f y2(0)tadd = a’nt/2. (c)

—n/2

Solution to part (b). The distribution function for the shear flow with the contour originat 6 = —xt/2 isgiven
by

0
0.(0) = f y(0)tadd = —a?tcosH -n/2=<0=m/2. (d)
—n/2

Since the product areamoment /,,, = 0, eq. (4.4) yieldsthe parameters n, = n, = 0 and k = 1. The shear
flow in eg. (4.13) on page 80 reduces to

(5,2) = 0., ©

and the explicit equation for the shear flow is

2V
q(6) = _Vny(e)/]xx = —XcosH. 0
at
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The shear flow is plotted normal to the contour in figure 4.25, and it apparent in the
figure that the shear flow isamaximum at 6 = 0.

Solution to part (c). The coordinates of the shear center relative to the centroid is
givenin eg. (4.8) on page 80. In this example the equation for the coordinate x,,

reduces to
- (L
%o = ()|l @0,(0)ado | ©

Fig. 4.25 Distribution ' ‘ . e
of the shear flow in where the coordinate normal to the contour with respect to the centroid is givenin
the open section. Vy> eq. (4.10). In this example the normal coordinate is
0.

Poe = x(s)dl—y(s)% = a—z—acosG. (h)

ds ds 7

Substitute eg. (h) for the normal coordinate and substitute eq. (d) for the distribution function, into eqg. (g) to find

Yoo = 2L [r,(0)0,(0)ad0 = 22
’ I, T

Relative to point O the coordinate of the shear center isgivenby X, = X, +x,. = (4a)/n. The shear center
lies outside of the circular contour.

As a check on the shear flow we compute its torque
with respect to the shear center by

/2
M, = f r,(0)q(0)ado, 0}

—n/2

Fig. 4.26 The shear
flow located from the
centroid and shear
center by

coor dinates tangent
and normal to the
contour.

where r,(8) isthe coordinate normal to the line of
action of the shear flow as shown in figure 4.26. The
normal coordinate is given by eq. (4.11).where
r,.(s) isthe coordinate normal to the line of action
of the shear flow with respect to the centroid as

shown in figure 4.26. In this example the normal
coordinate with respect to the centroid is

r, = a(l—icosﬂ), 0

Substitute eg. (k) for »,(0) ineq. (i) followed by substitution eqg. (f) for the shear flow to get

/2 oy /2 n/2
M. = f [a(l—é—lcoseﬂ[—zcosﬁ}ade = 2—C—ZV) f [cos@—é—lcoszﬁ}de = Z—QV,[sinG—é(Q+lsin26>} . (k)
z 7 (am) a Y T a7 n\2 4
-n/2 /2 —n/2

Evaluating eg. (k) wefind

104 Aerospace Structures



Structural analyses for transverse shear and torsion

= 210 -45-(2) bo-o] - B oSz bo-o] - Brp-n-o. o

The result of the integration given by eqg. (1) verifies that the shear flow resultsin no torque at the shear center.

Solution to part (d). The shear stress o, isthe sum of the shear stresses from the transverse shear forceVy, and
from the torque M, , and is given by eqg. (4.12) on page 80. For this example we find

0, = q/t+2(M,/J)T = 2(V,/A)cosb +2(M,/J)T —n/2=<0=mn/2 —t/2<C=<t/2. (m)

From eq. (4.14) thetorsion constant J = (b#3)/3 = (amt3)/3 . The shear stress (m) isamaximum at 6 = 0,
where the shear flow is maximum. At 6 = 0 the maximum shear stress is determined from

o

0" 2V, /4)=(M,/ )t I (n)

ZS‘G

Example 4.8 Shear stressanalysisfor a closed cross-sectional contour

A closed contour in the shape of the letter D is shown in figure 4.27. The
origin of the X-Y system is taken at the center of the semicircular branch.
The cross section is symmetric about the X-axis, so the centroid and shear
center lie on the X-axis. To locate the shear center we take shear force

V. = 0, and note that the shear force //, = 0 and torque M, = 0 act at the
shear center.

a) Locatethe centroid,

b) determine the shear flow with respect to the centroid,

c) locate the shear center,

d) establish the shear flow with respect to the shear center, and

€) determine the shear stress o, .

Fig. 4.27 Closed contour.
Solution to part (a). The cross section is composed of two branches.
Branch 1 isthe semicircular contour, and branch 2 is the vertical web con-
necting the ends of branch 1. The parametric equations of the contour for each branch are

[X(0), Y,(6)] = a[cos(0), sin(6)] —/2<0=n/2

[X,(5), Y5(5)] = [0, a—s] 0=ss2a @

Note that the contour coordinate sin branch 2 is defined in the negative y-direction. We compute the area A, the
first area moment about the Y-axis Q,, and the location of the centroid as follows:

/2 2a n/2 2a
A= f tadd + ftds = (2+m)at Oy = f X, tado + sztds = 242t X =
—n/2 0 —n/2 0

(b)

n|O
~
[\
+|s
a

Solution part to (b). The shear flow relative to the centroid is given by eq. (4.17) on page 81. For this example
this shear flow function is
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M. .(z) 3

2 EOE), ©

qC(S7 Z) =

Thefunction F,.(s) isgiven by eq. (4.19). For this symmetric section the product areamoment /,,, = 0, and
from eqg. (4.4) on page 79 the cross-sectional coefficients n, = n, = 0 and k = 1. Also, from eq. (4.7)

}(s) = y(s) . Thefunction F (s) ineq. (4.19) reducesto

Fyels) = 7 p< w(5)0,(5)ds . @

2A)

The distribution function given by eq. (4.23) in this exampleis simplified to

Q:g:pmmm, ©

and the coordinate normal to the contour r,.(s) ineg. (d) isgiven in eg. (4.10). The parametric equations of the
contour with respect to the centroid are

x(0) = X(0) X, = Z_%c+ac056 y1(8) = Y,(0) o
x(8) = ()Xo = 2L py(5) = 1y(s)

The second area moment of the cross section about the x-axis through the centroid is

/2 2a

= [ yhrado+ fygtds = (4 * 3”) 3t = 2.237464%t . ©
6
—n/2
The distribution function about the x-axis beginning at the contour originat 6 = —x/2 and going counter-

clockwise around the contour are determined for each branch from eqg. (e) as

0
0,,00) = f v tad® = —a’tcos6 —t/2<0=n/2,and (h)

—n/2

s

0.,(s) = Q,(n/2) +fy2tds = ats —t(%z) 0<s=<2a. (i)

Notethat Q,,(2a) = 0, since this represents the first area moment of the entire cross section about the centroi-
dal x-axis. From eqg. (4.10) the coordinates normal to the contour for each branch are

Tpel = (dy) yl<dxl> = a<1— 2 cose> Tper = xz(dlz>
ne ad® ad® 2+m ne ds

The area enclosed by the closed contour 4, is given by eq. (4.18), and we get the expected result as shown

(a;;z) - 22+an '
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below.
/2 2a
A, = f re1ad0 +frn62ds = ma?/2. (k)
—n/2 0
Let the term containing the integral over the entire contour in eg. (d) be denoted by 7., . We compute £, for
this cross section as
/2 2a
_ 1 _ 1 _ 8+3n
Fro = w0000 = 5| [ raOua [ra0ut] = g5 0. 0
—n/2 0

We now compute the shear flow distribution functions for each branch by substituting results from egs. (h), (i),
and (1) into eg. (d). Theresults are

Fyy = (Q"‘[ ORI (0 16071 —0.446935 cos®) , and m)
Fro = Q200 = 1016071 +0.446935(s/a) — 0.223467(s/a)?
ye2 = 7 = ;( . . (s/a)-0. (s/a)?). 0)

XX

The shear flows with respect to the centroid in branch 1 and branch 2 are

MZC(Z)
24,

M. .(z)

F,(8)V,(2) qca(s,2) = 24,

qei(s,z) = - ycz(e)Vy(z). (0)

Solution to part (c). The equation for the location of the shear center relative to the centroid is given in eq.
(4.23). The shear modulus of the material is denoted by G in eg. (4.23), and we assume it is uniform around the
contour in this example. Then the shear center relative to the centroid is

n/2 2a w/2 2a
24, {
f F ad8+fF ds Wherefds = f add +fds = (2+n)a, )
yel ye2
fds —n/2 —n/2
Performing the integralsfor x,. in eq. (p) we get
_ ma?/2[16=-2x7 _  (16-2m) _
= = = 0.140773a.
Yo T 00 n)a[4n + 3n2J 2 +m)(4+3m)" ‘ W

The location of the shear center relative to point O is X = X +x,. = 0.529757a.

Solution to part (d). The shear flow relative to the shear center is given by eg. (4.25), which in this example is

(Z)

C

q(s,z) = —F(s)V,(2), "

where the shear flow distribution function relative to the shear center is given by eqg. (4.26). The results for the
shear flow distribution functions relative to the shear center for each branch are as follows:
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X 1
F, = _<270) +Fyep = ~(0.1159 0445635 cos0) , and (s)
Xge 1 s 5\ 2
F,=—(=<\+F , =100.1159+0.446935(%) —0.223467(%) " |. t
2 (ZA) yez a[ (a) <a> } ©

Finally, from eq. (r) the shear flows in each branch are given by

— Mz — Mz 1
q, = 27;—}7}}11/} = TEE—(—I(O1159—04456350056)Vy,and (u)
M, 1 s 5\ 2
= —=-—F,V, = —=—=10.1159 + 0.446935( =) —0.223467 —) }
72 24, Y na? a[ (a) (a v

A check on the shear flowsisto compute the resultant for #, and the resultant moment about the shear cen-

ter C, . Resolving the shear flows in the positive y-direction in each branch we compute the integrals

/2 2a
F, = f qlcosﬂade—fqzds =V,.
/2 0

Thus, theresultant #, isequal to the shear force. Note that g, is positive in the negative y-direction. To compute

the moment C, we need the normal coordinate to the contour with respect to the shear center. From eg. (4.11) on
page 80 the normal coordinates for each branch are determined by

d d
ry = rncl—xsc(a—;‘é> = a(1-0.529757cos0)  r,, = rncz—xsc<7ysg> = 0.529757a . (W)
The resultant moment is
/2 2a
C, = f rnlqlad6+frn2q2ds =M,. (x)
/2 0

The moment of the shear flows about the shear center equal the torque M. . The shear flowsin egs. (u) and (v) are
statically equivalent to the shear force V,, and the torque M, resolved at the shear center.

Solution to part (€). The shear flows are plotted normal to the contour in figure 4.28. The shear flow from the
torqueis spatially uniform and equal to M,/(24,.) . The shear stressis equal to the shear flow divided by the
thickness of the branch. From figure 4.28 it is apparent that the maximum magnitude of the shear stress occurs
either at 6 = 0 inthe semicircular contour or at s = a inthevertical contour. These shear stress components
are
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M 0.3297V M. 03394V
Ozsl(o) = =+ Ozsz(a) = = - . . v)
Ta’t at wa’t at

’_A
%

=\

M.>0,V, =0 M. =0,V,>0

Fig. 4.28 Shear flow distribution along the contour of the closed section shown in figure 4.27. The
shear flow isthe sum of a spatially uniform flow due to the torque plus a nonuniform flow dueto the
shear force.

Example 4.9 Torsional response of an open section and an equivalent closed section

A thin-walled circular tube with contour radius a and wall thicknesst is subject to atorque M, . The wall of a

second identical tubeis cut parallél to itslongitudinal axisalong its entire length to make the cross section of this
second tube an open circular arc. Seefigure 4.29. Assume the saw kerf isvery small. Compare the unit twist and
maximum shear stress in the closed section to the open section.

Fig. 4.29 Closed and open thin-walled
circular sections.

Mz Mz

. . M . .
Solution. For the closed section the shear flow ¢ = o 22) as shown in figure 4.28, and the torsion constant
Ta

J = 2na3t from eg. (3.128) on page 70. Hence the maximum shear stress and unit twist are

MZ MZ
=2 = @

EZ—) closed GJ G(zna3t) .

M, de,
(Oﬂzs)closed - dralt (
For the open section the developed length b of the contour is essentially 2wa , since the saw kerf is assumed
to be very small. By the membrane analogy discussed in article 3.9.1 on page 63, the torsional responseisthe
same as the thin-walled rectangular section of length b and thicknesst. The maximum shear stressis given by eq.

(3.129) on page 63, and the torsion constant isgiven in eq. (3.128). For b = 2ma , we have
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3IM

(O open = 53— (g) TR —. (b)
open G(EZnaﬂ)

Forming the ratio of the maximum shear stress of the open section to the closed section we find

(GZS)open _ 3‘}‘42 ‘Znazt -

2
(GZS)closed 2at MZ

3¢ 51.
t» ()

Likewise, the ratio of the unit twists are

(do./dz),,,, _ 3M. Gmadt _ 3<g)2»1_ )
t

(d0./dz),,,,,, G2mat® M.

Since the ratio of the radius to thickness is greater than ten for a thin-walled section, the above results show that
the shear stress (c) and unit twist (d) of the open circular section are much larger than for the closed section if
both sections are subject to the same torque.

Hence, if abar isto resist torsional loading, a closed section is preferable to an equivalent open section bar.
That is, the unit twist is smaller for the closed section bar (it is stiffer), and the maximum shear stressis smaller,
than for the equivalent open section bar subject to the same torque. [l

441 Resultant of uniform shear flow

- In torsion problemsit is often necessary to find the

h resultant of a constant shear flow along the contour of a

(X(s). Y(s)) curved branch. Thissituationisdepicted in figure 4.30,
’ where the curved branch begins at point A with coordi-

L» nates (X, Y,) and ends at point B with coordinates
(X, Yp) . Theresultant of the shear flow is resolved at
point A in thisfigure.

The sense of the arc-length s and the shear flow g are
assumed positive from A to B along the contour of the
= X branch. The shear flow acts tangent to the contour, and
the unit tangent vector to the contour is denoted by

Fig. 4.30 A constant shear flow in a curved

branch. ;(s) . The unit tangent vector is given by eq. (3.4) on

page 33, where we note that dX/ds = dx/ds and

dY/ds = dy/ds.Thedifferentia force obtained from
the shear flow is

d]i" = qu; = qu[(%);();+ (%5)]1 = q[(dX);+(dY)}]. (4.52)

Integrate eq. (4.52) from point A to point B on the contour to get
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B
;' = fl{f(dXi"'de)} = q[(Xp—X)i+ (Y=Y, )il = (qLp,4)us/4, (4.53)
A

where the length of the chord connecting the ends of contour isdenoted by L, , . Thelength of the chord and the

unit vector ug,4 are given by

- Xy—X)  (Yy=Y,)
Lg,y = /\/(XB_XA)2+(YB_YA)2 Up/4 = (s A)i"'( z A)j- (4.54)
Ly, , Lg,,

The differential torque about point Ais
dA?A = r(s);z(s) qus; = qr(s)dslAc, (4.55)

where the position vector from point A to the line of action of the shear flow is r(s);q(s) ,and IAa(s) isthe unit
vector normal to the contour at s. The product of r times ds is twice the enclosed area of the triangle with base ds
and height r. As shown in figure 4.30 r(s)ds = 2dAy,, . Integrate eq. (4.55) from point A to point B to get

B B
My = a[(r(s)dsk = g 24y, k= 244y, k- (4.56)
A A

The area between the contour and the chord is denoted by 4, , . The force and torque resolved at point Ais

shownin figure 4.31(a). The force and torque at point A are statically equivalent to the force acting along aline of
action that is paralel to the chord at a perpendicular distance e from the chord. The distance is determined from

= qL
Y A Y A B/A
(XB’ YB) (XB’ YB)
\
Ap, 4 L
N
F =qlLg, uB/4 LB//l N ad
; N . " UB/A 7, = 24,4
Yo M = q24p, .k A (X, 7)) Lg/a
i i ’
o) P > X (o) > > X
@ (b)

Fig. 4.31 (a) Theforce and torque dueto a constant shear flow resolved at point A.
(b) Theresultant of a constant shear flow isa force parallel tothechord at distance
efromit.

M, = eF = eqL,, ;. Solvefor eand substitute 2¢A,, for the torque to get

24
e = =84 (4.57)
qLp, 4 qLg, 4 Ly, 4

The resultant of a constant shear flow is shown in figure 4.31(b).

Now consider a continuous contour that does not intersect itself except that point B coincides with point A as

shownin figure 4.32. Since L, , = 0 ineq. (4.53) the force F = 0 . For aclosed contour et Ag,q = 4, and
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M, = M_ ineq. (4.56). For asingle-cell cross section subject to atorque M, and no shear forces (pure torsion),
the shear flow is given by
M

77 2a

(4.58)

Equation (4.58) is called Bredt’s formula. (Also see eg. (3.165) on
page 70,)

A constant shear flow in aclosed contour is statically equivalent to a
torque, and thistorque is the same for any point in the plane about which

Y moments are computed. The fact that the torqueisa“free vector” is
i depicted in figure 4.33, in which it is shown that some of the enclosed area
0 X used in Bredt's formula can add as a negative quantity if the torque pro-
Fig. 4.32 Constant shear flow duced by _the cqnsta_nt shear flow is clockwise over asegment of the branch.
on a closed contour of About point O in this figure, the torque produced by the shear flow from
arbitrary shape. point B to A in the right half of the contour is counterclockwise, and the

torque produced by the shear flow from A to B in the left half is clockwise.
Hence, the total torque is the sum of these two torques with due respect to the sign. This summation shows that
the total torqueis proportional to the area enclosed by the contour.

Fig. 4.33 Thetorque about an arbitrary point O of a constant shear flow in a closed contour istwicethe
enclosed area of the circuit times the shear flow.

442 Torsion of ahybrid section

Consider a hybrid section composed of asingle closed cell and open branches, or fins, as shown in figure 4.34.
Thetotal torque carried by the section is the sum of the torques carried by the closed cell and open branches. For
n open branches, we have

n

MZ = (Mz)closed + E (Mz)i’ (4.59)
i=1
where
d d
(Mz)closed = (GJ)CIOSEd(di;Z) and (Mz),' = (GJ)I(di;Z) . (4.60)
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The torsional stiffness for the closed cell is

442

(GJ)closed = d ' (4.61)
as
Gt

and for each open branch the torsional stiffnessis

= o(lp s

(GJ), = Gi<3biti> . 4.62)

Combining egs. (4.59) and (4.60), we have )
1 =n
- dg, _ . -
M, = | (GJ),1ps0a+ E (G| == (4.63) Fig. 4.34 Torsion of a hybrid section.
A
i=1

Comparing eg. (4.63) to the standard torsional formula

d
M, = (GJ)ef]<%> , the effective torsional stiffness for the entire section is

z
(GJ)eff = (GJ)closed+ E (GJ)z . (4.64)

i=1

where the closed and open parts of the torsional stiffness are given by egs. (4.61) and (4.62).

The shear stressin the closed cell is (o.,),.,,.0 = (M.)
ried by the closed cell is (M.).,,..q = (GJ),1p504(dd./dz) . The unit twist is given by
(do./dz) = MZ/(GJ)eff. Combining these results, the shear stressin the closed cell is

/(24,t) , where the portion of the torque car-

closed

(0 ) — (GJ)closed . MZ (4.65)
zs/closed (GJ)e/f 2Act

The shear stressin open branchesis given by

( ) M., 4.66
o = —F, .

zs ‘ max’ i bit? ( )
which was derived as eg. (3.132) on page 64. Substitute the second equation in (4.60) for the torque carried by
the branch, and then substitute eq. (4.62) for the torsional stiffness of the branch, to write the shear stress as

3(M,), _ 3 1, 5\9%
). = 1= = . (Gzb3) —=. 4.67
( zé)l bltlz bltlz ( 13 ll) dZ ( )

. M .
Subsntutedi)z = ——=— for the unit twist in eq. (4.67) to get
dz  (GJ),y
Gt
(0.), = —=—M.. (4.68)
’ (G‘])eff

If the shear modulusis the same in all branches, then egs. (4.65) and (4.68) reduce to
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Jotosed M. ;M.
(OZS)CZDSGd — Yclosed , z (st)[ — iz , (4.69)
Jop 24t Josr

n
where J,; = Jjpe0a EJi'

i=1

Example 4.10 Torsion of a closed cross section composed of two cells

In multicell cross sections subject to pure torsion the shear flow is constant in each branch. In general the shear
flows are different from branch to branch. Consider a cross section consisting of two cells with a horizontal axis
of symmetry shown in figure 4.35. It is subject to atorque M,. Cell 1 isenclosed by a semicircular exterior web

I?Y
q>

c P ¥

A )Mz
Lb_>l a b

@) (b)

t

Fig. 4.35 (a) Cross section composed of two cells and subject to puretorsion. (b) Shear flows
and web thicknesses.

of radius a, and a vertical web of length 2a, which is common with cell 2. Cell 2 is enclosed by an isoscelestrian-
gle with equal exterior webs of length ¢ and the common web of length 2a. Takea=5in.,b=12in.,and c= 13
in. The thickness of the exterior webst = 0.040 in., and the thickness of the common web ist/2. The contour is

composed of four branches. Branch 1 is the semicircular web with the contour coordinate denoted by s, branch

2 isthe upper exterior straight web of cell 2 with contour coordinate s,, branch 3 is the lower exterior straight
web of cell 2 with contour coordinate s3, and branch 4 isthe vertical common web between cells with the contour
coordinate denoted by s, _, .The Cartesian coordinate system X-Y hasits origin at point O, the center of the semi-
circular web. The X-axisisthe axis of symmetry.

A free body diagram of the junction between branches 1, 2, and 1-2 is shown in figure 4.36. The sum of
forcesin the axial directionis ¢,_,Az+¢,Az—q,Az = 0, Hence, axia equilibrium per unit z-length deter-
mines the shear flow in the common web as

di-2 = 41=9>- @

Fig. 4.36 Freebody diagram of thejunction between
branches 1, 2, and 1-2.
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A simpleruleto determine the axial equilibrium of the junction isto observe that the shear flow into the junction
must equal the shear flow out of the junction. At the junction of branches 2 and 3 thisruleresultsin ¢; = ¢, . At
the junction of branches 3, 1-2, and 1 therulegives ¢, _, + g; —¢, = 0, but ¢; = ¢, , whichleadsusto the

samerelation given by eqg. (a). We started with four unknown shear flows gy, 0y, gz, and g;.,. Axia equilibrium at
thethreejunctionsresultsin two relations between the four shear flows. Two shear flows remain unknown, say g,
and gy, at this point in the analysis.

The remaining equation of static equivalence is to equate the torque due to the shear flows to M,. The con-
stant shear flows in each branch are shown in figure 4.37(a), and the resultants of these shear flows are deter-
mined by the analysis presented in article 4.4.1. As shown in figure 4.37(b) the resultant of the shear flow ¢, in

branch 1 is avertical upward force of magnitude 2agq, , the resultant of the shear flow ¢, inbranches2 and 3is
avertical downward force of magnitude 2aq, , and the resultant of the shear flow in the common branch isa

downward force of magnitude 2a(q, —¢,) . The locations of the lines of action of the force resultants with

respect to the common branch are also shown in figure 4.37(b). The vertical force F shown in figure 4.37(c) is
determined from the branch forces by equilibrium. The result is

F = 2aq,-2aq,-2a(q,—q,) = 0. (b)
Take the moment of the branch forces in figure 4.37(b) about the common web to determine the torque M, shown

in figure 4.37(c). The result for static equivalence of the torqueis

<2Acl

2aq, + 24q 2 = M_,or
a —=)2a = ,
2a ) 4 < 2a ) 7 ‘

24,09, 24,9, = M,. (4.70)

z

Equation (4.70) is the extension of Bredt's formulain eq. (4.58) to two cells.

91 =49 M,
2aq, <\
> 91 = had
qz\g 2aq,

2, | 2 F
Z 2a
@ (b) (©
2“(41 _‘12)

Fig. 4.37 (@) Shear flows. (b) Statically equivalent branch forces. (c) Cross section resultant.

We have used all the conditions of static equivalence, but the two shear flows g; and g, remain unknown. An

additional equation relating the shear flows is based on the assumed rigidity of the cross section in its own plane.
Intorsion, thisrigid cross section condition implies the unit twist of each cell isthe same. The unit twist for asin-
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glecell isgiven by eqg. (4.20) on page 81. Since the shear modulusis the same for all branchesin the cross sec-
tion eg. (4.20) reduces to

o, _ 1
yeabyye jﬂ;ds. @.71)

This unit twist formula was derived on the basis that a counterclockwise shear flow tends to produce a counter-
clockwise unit twist. Apply this equation to cell 1 to get

d 4 —
(£, = 55 [ (o-ec]

For cell 2, the unit twist is

do, 1 2¢ 2a
—) = =g, - = - ) d
<dz>2 24,6 [( z)qz (x/z>(q1 qz)J @
Note that the contribution of the common branch shear flow is negative in the unit twist formulafor cell 2. Rela-
tiveto an observer in cell 2, apositive value for the shear flow g, tends to produce a clockwise unit twist, and
hence is negative by the convention that counterclockwise is positive. Since the unit twist of each cell isthe same,
we equate egs. (c) and (d) to get

1 [(2a 2a 1 [(2¢ 2a
i —_ 4+ (| — —_ e —— _ —_ —_— — .
Acl[( F)a <t/2>(q1 qZ)J Aci( ;)qz (r/2>(q1 qZ)J ©
After some algebraic manipulations eg.( e) iswritten in the form
[4a+an+4_a} 1_[4_a+4a+20}12:0_ 0
At At Acit - At

The enclosed areas of each cell are 4,, = na?.and 4, = %bza = ba . Numerical evaluations of egs. (4.70)
and (f) are

(507 in.2)g, + (120 in.2)g, = M.

. ©
(19.6995 in.2)g, —(25.5329 in.2)gq, = 0

The solutions of the two equationsin (g) for the shear flows are

g, = (4.00538x10"in2)M, g, = (3.00903x10"in2)M,  gq,_, = (0.915085x10 " in.2)M. . (h)

The shear stresses in each branch are obtained from (o), = ¢q,/t, (0.,), = ¢q,/t,and

(0.),_, = q,_,/(t/2) . Theresultsare

(0,5), = (0.100135 in )M, (0,5, = (0.0772575 in. )M, (0,9),_, = (0.0457542 in>)M_ . 0}

The twist per unit length for the entire cross section is obtained from either eg. (c) or eq. (d). For the shear flows
givenin eq. (h) the evaluation of unit twist is
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‘% = (”%)1 = (‘%)2 = (0.0129263 in.*)(M./G). i)

Finally, we compute the torsion constant J by the following relation

M
J = dfp = 773619 in.* |} (k)
o(%2)

Example 4.11 Torsion of a closed section with three cells; circuit shear flow

Consider the cross section composed of three cells shown in figure 4.38(a). All branches have the same thickness
t and shear modulus G. It is convenient to define circuit shear flowsin each cell. Circuit shear flows are assumed
to be positive counterclockwise in each cell and are equal to the actual shear flows in the exterior branches of the
cell, if there are any exterior branches. However, the shear flow in a common branch between cellsis the differ-

ence between the circuit shear flows sharing the common branch. At the junction of the three branches shown in

figure 4.38(b) the shear flow into thejunctionis ¢, — ¢, , and this equals the shear flow out of the junction, which
is (¢, —q3) + (g5 —qg,) - The method of defining circuit shear flows automatically satisfies axial equilibrium at
the junction.

For an applied torque M. , determine
» shear flows gy, gy, and g,

* thetorsion constant J, and
* magnitude of the torque at the initiation of yielding.

(O8]
1N

NI
[\]

flowsin thethree-

Fig.4.38 (a) |<.>|<—>|
Circuit shear 93— 4> f|
cell cross section.
g . M - <
(b) Circuit shear CZ Q3 @ ¢ 91=95 91792

flows at the .
junction of the Junction of the
threecells. three cells

t, typ. |-

A

(@ (b)

Solution. Bredt's formulafor the section composed of two cellsin eq. (4.70) is extended to three cellsin this
exampleto get

24,49, % 24,59, 245395 = M, @

z

The areas enclosed by cells are

A, =2a® A, =3a2/2 A, = ad/2. (b)

cl c
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From eg. (4.71) the twist per unit length for this example reducesto

d¢ 1 1
@ - d Asq .
= - 2ig: §e 2ACGIE 5 ©

We apply eq.(c) to each cell and note that a shear flow is positive counterclockwise consistent with a positive
counterclockwise unit twist. The results for each cell are as follows.

dd, 1 3a a

—= = 4 + —= — + = —

<dz>1 2A61Gt[ aq+ (@ =) + 34 qﬂ @
dd, 1 S5a a

T e + — + = —

(dz)z 2/16.2(%[2‘12 «d2=43) * 59 ql)} ©)
do.y _ 1 [3a_ .,a

(dz>3_2Ac3Gt[2q3+2(q3 q1) +algs qz)] ®

Since the cross section is assumed to berigid in its own plane, the unit twist of each cell must be the same. This
kinematic condition can be written between cells 1 and 2 as

dooy_dgn
(%), (), = ®

Evaluation of eq. (g) leadsto

48q,—49q, + 5q;

=0. h
24Gat ™
Compatibility of the unit twist between cells2 and 3 is
d¢ d¢
—_rzy (L= =0. i
(dz)z <dZ>3 O
Evaluation of eq. (i) leadsto
2(4g9, -5
( Zz q3) -0 i)
Gat
Solve egs. (a), (h), and (j) for the shear flowsto find
a7z BT i

The unit twist of the section can be determined by substituting the shear flows (k) into any one of the egs. (d), (e),
or (f). The unit twist is

do. _ 149

= ———M.. 0
dz 1208 Ga3t

) d M . ' .
Compare thisto the standard formula % = EZ/ to find to find the torsion constant J.
z
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_ 120843t
T T m
The shear flows in the common branches are
{(91=92), (91 —95), (95 —q,)} = {-0.0083, 0.0182, —0.0265}(M,/a?). (n)

The magnitude of the largest shear flow isin the exterior branches of cell 2, which is also the location of the max-
imum shear stress. The maximum shear stressis

(0.9)e = 42/t = 0.13245M_/(a21). (©)

According to von Mises criterion (4.31) yield initiates at ./3(o
theinitiation of yielding is

= Oyie1q» SO the magnitude of the torque at

Zﬂ)max

M| x = 4.359(a2t0yield). )

If al the common branches were removed to make the section shown in figure 4.38(a) asingle-cell, square
section 2a by 2a, then from eq. (3.161) on page 70 the torsion constant is

J‘ single cell § 8a
feon

For this example, subdividing the single-cell section into three cells shown in figure 4.38(a) increases the tor-
sional stiffness (m) by only 1.32 percent with respect to the single-cell section, while the weight of the three-cell
section increases by 37.5 percent with respect to the weight of the single-cell section. However, amulticell sec-
tion may be required for improved damage tolerance; i.e., if we modeled damage as alongitudina fracture, or
cut, of an exterior branch, then the loss of torsional stiffness of the single-cell would be substantial since it
becomes an open section. Damage to an exterior branch of amulticell section on the other hand resultsin less of
areduction in torsional load carrying capability since some closed cells remain intact to carry the torsional

load i

Example 4.12 Transver se bending of a two-cell cross section

442 (4a2)?
= e o ddar) g, (@)

Consider the cross section of example 4.10 on page 114 subject to a shear forceVy with V, = M, = 0. There
are two cells with a horizontal axis of symmetry as shown in figure 4.39. |. Cell 1 isenclosed by a semicircular

Y v,
Ay
cell 1
X, x
cell 2 : 2>
C S.C.

Fig. 4.39 Closed cross section consisting of two cells subject to transver se bending
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exterior web of radius a, and a vertical web of length 2a, which is common with cell 2. Cell 2 is enclosed by an
isosceles triangle with equal exterior webs of length ¢ and the common web of length 2a. Takea=5in., b =12
in., and ¢ = 13 in. The thickness of the exterior webst = 0.040 in., and the thickness of the common web ist/2.
The contour is composed of four branches. Branch 1 isthe semicircular web with the contour coordinate denoted
by s, branch 2 isthe upper exterior straight web of cell 2 with contour coordinate s,, branch 3 isthe lower exte-
rior straight web of cell 2 with contour coordinate s;, and branch 4 is the vertical common web between cells
with the contour coordinate denoted by s;_,. The Cartesian coordinate system X-Y has its origin at point O, the
center of the semicircular web. The X-axisisthe axis of symmetry. The Cartesian coordinates of each branch asa
function of the contour coordinate are listed in table 4.5.

Table 4.5 Parametric equations of the contour

X(s) = Yi(s) =

i branch Range

i=1 asin(s,/a) —acos(s,/a) O<s,=amn
i=2 ~b(s,/¢c) a(l—=s,/¢) O=ss,=c
i=3 —b(1 —s5/¢) —a(s5/¢c) O=ssy=c
i=1-2 0 a—s, 0<s,, =2a

The cross-sectional area A, first area moment Qy, and location of the centroid X are computed as follows:

amn c c 2a
A = ftdsl +ftds2 +ftds3 +f(t/2)ds1_2 = (an+2c+a)t = 1.86832 in.? ()
0 0 0 0
amn c c 2a
Oy = letds] +fX2tds2 +fX3tds3 +fX12(t/2)ds1_S = (2a2-bc)t = —4.24 in3 (b)
0 0 0 0
X, = Oy/A = =2.26942 in. (c)

Symmetry about X-axisresultsin O, = 0, sothat Y, = 0. The Cartesian coordinates of the branches with
respect to the centroid are x,(s;) = X;(s;) —X,,and y,(s;) = Y,(s;),i = 1,2,3,1-2. The second area moment
about the x-axis is

an c c 2a

_ _ wa’t  2a%ct  adt _ .
I, = fylztds1 +fy§tds2 +fy§tds3 +fy122(t/2)ds1_2 = =+ + 3 - 18.1873 in.4. (d)
0 0 0 0

2 3

The shear flow is given by eq. (4.15) on page 81, and it is repeated as eq. (e) below.

4(5.2) = qo(2) = £V 0,() = 1-1,0.06) ©
yy xx

In this example the product areamoment /., = 0. From eq. (4.4) cross-sectional coefficients n, = n, = 0 and
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Structural analyses for transverse shear and torsion

k = 1. Thedistribution function defined in eq. (4.9) simplifiesto éx(s) = 0.(s) since);(s) = y(s) . Hence,
the shear flow equation in thei-th branch reduces to the form

q,(s;) = qu—(Vy/[xx)Qx,-(Si). )

At the contour origin of thei-th branch where s; = 0 the shear flow in eqg. (f) is denoted by ¢, , and the distribu-
tion function is given by

Si

0.:(s;) = fyi(si)t,-dsi i=1,2,31-2. (@)
Axial equilibrium per unit z-length at the three junctions connecting the
branches leads to qw\l(“”)
() -7 Qo1
ql(an) =490t 49012 412(0) = 403 q1_2(2a)+q3(c) =401 - (h) ’i/’ : 012 \
S q,,(2a) | 1
The shear flows acting at the three junctions are shown in figure 4.40. We use do3 ~< _ 1 )
the first two expressionsin eg. (h) to eliminate ¢,,,, and g,; . After computing R e
the first area moment functions, the shear flows are as follows: 95(¢) 01
Fig. 4.40 Junction shear
q,(s1) = qo +(V, /1, )a’tsin(s,/a) (i flows.
ats3 _
q,(s,) = f]oz_(Vy/[xx)[atsz_TJ 0)
C
(55) = g = (/1| %" m%} 0
q3\83 902 y x| T e

ats;,  1si, } 0

= o1 —qor—(V./1 [
q12(512) = 901 =902 (y o) ) 4

Note: If egs. (k) and (1) are substituted into the third junction condition of eq. (h), then we obtain the identity
do1 = 4, - Hence, the shear flows from the axial equilibrium conditions contain two unknowns ¢, and g, .

The resultant force acting on the section from the shear flows is given by the general relation

FX;+FY]A’ = fq;ds = Uq%ds};+ Uqg%ds};. (m)

Evaluation of the resultant forces gives

e folao gl ol ol som
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ar

e ol o2

(0)

The shear flow is statically equivalent to the shear force, as expected. No new information to determine ¢, and

q,, isobtained. The shear force acting at the shear center implies the twist per unit axial length of the cross sec-
tion vanishes. This condition leads to two equations governing the shear flows in each cell. For a uniform shear

modulus the twist per unit lengthis

o, _ 1 d
— = — S.
dz 24G fqt

Evaluate the twist per unit length for each cell and equate them to zero:

do,
(dz " :0) f%dsl f% 2dsy_, =0

c c 0
do | . ,
_rz =0 = ds. + = dsa + 2 P -
(dz cell 2 )_> ffqz %2 tfq3 53 tfq1‘2 S1a
0 0 2a

Evaluation of egs. (q) and (r), respectively, resultsin

4a 4q3
4+x -—
( )01 P qdor * 3, 7

a
t

4a 2(2a+c) 2ab?,, _
_da, 4 _2abTy .
o1 PR 3.7

Solve egs. (s) and (t) for the shear flows ¢, and ¢, to get

_ 2 VAN 4 _
gy = —2alBa’tac—cl) 2 - (342199x107 in-1)¥, , and

(4c+2am+cm) 31,

- 3 _4ac? 2
dor = 1(12a° —4ac’ +adn—ac’n) V, _ (24.4374x10° in. Y,

(4c+2am+ cm) 37

XX

Thefinal result for the shear flows are listed in egs. (w) to (z) below.

| = [3.42199x10° in.~! + (54.9834x10” in.)sin(s, /5)]¥, 0<s, <5n
) = [24.4374x107 in.7! - (10.9967x10" in.2)s, + (0.422949x10" in.2)s3]V,

g3 = [47.041x10" in."! +(0.433949x10 in.3)s3]¥,  Ossy=13in.

2 = [-21.0154x107 in.~ — (5.49834x10° in.2)s, , +(5.49834x10" in. )57, 1V,

=s, =13 in.

0<s,, =10in.

(p)

(@)

Q)

(s)

®

(@)

(v)

(w)

)

()

@
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With the shear flows known we compute the torque about the centroid due to the shear flows by

am c c 2a
M., = frnclqldsl +f”nc2Q2dsz +frnc3q3ds3 +f’”ncle1-2dS1-2 ) (aa)
0 0 0 0

where r,.,(s;) isthe normal coordinate to the contour with respect to the centroid in thei-th branch. From eq.
(4.10) the normal coordinates are determined from

dy. )
= (s ) —v(s. )L b
rncl x[(sl)dSl .yl(Sl)dSl (a )
The results for the normal coordinates are
Fpeg = a—X_.sin(s,/a) Py = a(b+X,)/c Py = a(b+X,)/c Pretn = X, (ac)

Substitute egs. (w) to (z) for the shear flowsinto eqg. (y), followed by substitution of eq. (ac) for the normal coor-
dinates. Numerical evaluation of the integrals after the substitutions leads to the expression for the torque in the
form

M., = (250157 in.)V, . (ad)

The resultant force and torque at the centroid are shown in figure 4.41(a). We also added and subtracted the shear
force at the shear center in figure 4.41(a), which does not change the static state. The upward shear force at the

centroid and the downward shear force at the shear center form a clockwise couple whose momentisx_.V, . In

sc’y
figure 4.41(b) we resolved the torque M, = (2.50157 in.) ¥, —x, .V, and shear force at the shear center. Since

the torque at the shear center isequal to zero in this case, we can solve for the shear center location relative to the
centroid to get

x,, = 2.50157 in. (ae)
v, v, v,
2.50157V,
x,, X, = 2.50157 in.
@—» 9 5C. @o—» 9 S.C.
C C
@ (b)
14

y

Fig. 4.41 (@) Resultant of the shear flowsat the centroid. (b) Resultant of the shear flowsat the shear
center.

We perform one last check on the solution by computing the torque at the shear due to the shear flows from
the equation

am c c 2a
M, = frnlqldsl +f”n2€I2d52 +frn3‘I3dS3 +f”,112511-2d~91-2 ) (af)
0 0 0 0

where the coordinates normal to contour with respect to the shear center are denoted by r,,(s;) . From eqg. (3.10)
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on page 34 the normal coordinates are related by

dyi+ i (ag)
vr,. =r, .—X, — - al
ni ncit _SLdSi yéLdSl g
Inthisexample y,. = 0, and the results for the coordinates r,,(s;) are givenin egs. (ah) and (ai) below.
ad d
o= x| | = 5-0232149sin(s,/5) 1, = 1y —x,| 22| = 470467 in. (ah)
ds, CRP
d d
Py = x| 23| = 470467 in. 1y, = 1 x| 22| = 0232149 in. (ai)
053 98, _»

Substitute the shear flows from egs. (w) to (z) into eg. (af), followed by the substitution of the coordinates normal
to the contour in egs. (ah) and (ai). After these substitutions we perform the integrations indicated in eg. (af) to
find the result for torque at the shear center as

M, = (—1.421x10‘”);—/2 ~0. (@)

XX
Hence, the numerical result for the torque at the shear center with respect to finite precision arithmetic is equal to
1
zero~. |l

Example 4.13 Superposition of example 4.10 and example 4.12

Now consider that the cross section of example 4.10
and example 4.12 is subject to atorque M, and a shear
Fig. 4.42 Transverse

shear and torsion of
the two-cell section.

force ¥/, at the shear center as shown in figure 4.42.

We simply add the results for the shear flows due to the
torque from example 4.10 to the shear flows due to the

transverse shear force ¥, from example 4.12.

Theresults are
q1(s,) = (0.0040053 in.=2)M_ +[0.00342199 in.~! + (0.0549834 in.")sin(s,/5)]V,, 0 s, < (5m) in.,

q5(s) = (0.00300903 in.2)M_ +[0.0244374 in.~ = (0.0109967 in.=2)s, + (0.000422949 in.~3)s3]V,

0=s,=13in.

g3(s3) = (0.00300903 in. )M, +[-0.047041 in.~! +(0.000422949 in.=)s3]V, 0=s;=13in.,and

1. All computations performed numerically in a computer (MatLab, Mathematica, etc.) are performed with finite precision.
That is, adecimal representation of a number that has been rounded or truncated. Computations performed numerically
with decimal, or decimal floating point, representation are referred to asfinite precision arithmetic.
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gy _5(s15) = (0.000915085 in. )M, +[-0.0210154 in.~ —(0.00549834 in."2)s, , +(0.00549834 in.2)s}, 1V,

0<s,, =10in.
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4.6 Practice exercises

1. A 7mlongAH-1W Supercobrahelicopter bladeisrotating at 300 rpm and has amass of 300 kg. Centrifugal
forces dueto the rotation of the blade lead to tension in the blade. Plot the distributed axial force intensity and the
internal axial force distribution on the blade. Calculate the stress at the root for a blade cross-sectional area of

0.02 m?. (Assume that the mass is evenly distributed and the center of mass of the cross section coincides with
the tension axis.)

2. Thecantilever wingis subject to adistributed air load £,(z) = —2&

J1=(z)°, wherethe total lift (2 wings)

L = 20,000 Ib. at cruise, wing length z,,,, = 32.5ft,and z = z/z,,,, . Also, the wing supports an engine
weighing 1000 Ib. See figure 4.43. Plot the loading diagram, shear force diagram V(z) , and bending moment
diagram M (z) asfunctionsof zfor 0 <z < 32.5 ft. Partial answer: //,(0) =9,0001b. and M,(0) =-131,9341b.-

ft.

max

£(2)
1 e
e o uhig
6 ft 1,000 Ib. engine
325ft

|=

Y

Fig. 4.43 Exercise 3.
fuselage

3. Thebarge shown figure 4.44 is 20 m long and has a uniform cross section along its length that is the same
cross section shown in figure 4.11 on page 89. It is subject to auniformly distributed downward load with inten-

sity £, = 100 kN/m, and a buoyancy distribution in the hogging condition. The buoyancy distribution is given
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by £, = ybdm[l - cos<n§ﬂ wherey = 9.8 kN/m® is the specific weight of water, b= 10m, d,, is the depth of

the immersed cross section amidships, and L = 10 m. Refer to figure 4.44

a)
b)

<)
d)

€)

Determine d,, .
Determine the distributed |oading intensity function f,(z) for 0 <z<20 m

Determine the shear force V,(z) and bending moment M, (z) for 0 <z<20 m.

Draw the distributed loading intensity, shear force, and bending moment diagramsin the manner shown
in figure 4.10 on page 88. Label significant points.

Determine the maximum value of the normal stress o, .

4 fi
Y VY Y OY Y Y VY Y v ¥

= N

- a,
i i
¢ |

Fig. 4.44 Bargein a hogging condition.

k

waterline

4. Half of the cross section of aship isshown in figure 4.45. Only the material that is effective in the longitudi-
nal bending isillustrated in the figure. Determine the area A, location of the centroid Y., and the second area

moment about the x-axis(Z,, ) for the full section. Use the tabular format for the computations similar to table 4.2

on page 95. All plating has athicknesst = 14 mm unless other wise noted. The descriptions of the numbered
structural elements shown in the figure are listed in table 4.6.

Table 4.6 Description of structural member in figure 4.45.

Item # Description

Outer bottom
Inner bottom

3 Center girder

4&5 Side girders

6 Bilge (curved portion)

7 Side plating

8 Second deck plating

9& 11 Hatch side girders L500 x 400 x 25

10 Strength deck plating
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4m
¢
0 |
A J 11 ‘
- Fig. 4.45 Exercise 4. Ship half section. !
9Im ‘
° |
4 e ‘
c ‘ *
55m f I
y 4 Ye
Y v
5 4 3
6 t/2 |- X
R=1m =
35m
B 6.5m ‘;
L500 x 400 x 25
A
]
R A = =Rt
C _ T 3 1 4
t 0——1—l> x L. =3R f(z‘ﬂj) * 50 mm v
R I
400 mm
A = 0.0225 m?

5.
I, = 10° mm*. The shear force 7, = 5 kN.

The thickness of each branch in the thin-walled cross section shown in figure 4.46 is 3 mm and

a) Determine the shear flow distribution and sketch it on the cross section. Indicate on the sketch the posi-

tive sense along the branch.

b) Estimate the shear stress due to the transverse shear force at point A.

c) Estimate the maximum shear stress due to transverse shear.

6. Thecross section shownin figure 4.46 is subject to avertical shear force V/,,, positive upward, and a counter-

clockwise torque M. acting at the shear center. Take dimensions » = 40 mm and ¢+ = 0.635 mm Determine

torsion constant J and the magnitude of the maximum shear stress (o,

S/ max *
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y

|
|

V

40 I 7

C X
A 10 : M,
50 30 30 50 |
Note: all dimensionsin mm | Fig. 4.46
1 Exercise 6.

Fig. 4.46 Exerciseb.

7. Determine the shear flow in two-cell cross section shown in figure 4.47. The X-axisis a horizontal axis of

symmetry,
1000 Ib.
| 5 1 Y ?
S Se> de
0.05 0.03 S50y l
8 0.06 0.03 0.04 — X .
0.05 0.03 S12491-2 YS& s
| < 53,43 S4 94
e
All dimensionsin inches Fig. 4.47 Two-cell box cross section.
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CHAPTER 5 Work and energy
methods

Inarticle 5.1 and article 5.2 Hooke's law is presented in terms of generalized forces and their corresponding gen-
eralized displacements acting on a body. Refer to egs. (5.6) and (5.10). Corollaries to Hooke's law are the princi-
ple of superposition and the reciprocal theorem of Maxwell. Articles 5.3 to 5.6 develop expressions for the

energy stored due to elastic deformation of athin-walled bar. Castigliano’s energy theorems are presented in arti-
cles5.7 and 5.8.

5.1 Hooke'slaw and its corollaries

Consider a body, or structure, supported so that rigid body motion isimpossible. If it subject to aforce, say by
hanging aweight on it, then by Newton’s law of action-reaction the body must resist the force by producing an
equal and opposite force. The manner by which the body produces this reactive forceis by deforming. That is,
the body changes shape under the action of a mechanical force and it is the change in shape that enablesit to sup-
ply the reactive force. If the force is removed and the body returnsto its original shape, then the body is elastic.

Consider the action of force Q, at point 1 on the body, and the action 0,45 0.4,

of force O, at point 2 on the body shown in figure 5.1. Let the forces be
fixed in direction and in point of application. Let the displacements at
points 1 and 2 be denoted by ¢, and ¢, , respectively, being measured with
respect to arectangular Cartesian reference frame. Define the displace-

ments ¢, and ¢, at the points of application to be in the direction of the
. . Fig.5.1 Staticequilibrium of
forces 0, and Q, , respectively. Displacements ¢, and forces 0, , abody under external forces.

i = 1,2, aresaidto correspond; they are defined at the same point and in
the same direction.

For alinear elastic body Hooke's law governs the response (Robert Hooke, 1635-1703). If only force Qq is
applied, Hooke's law is
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g, = 19, for 0, = 0
. (5.1)
9, = 0, for 0, = 0
If force only force Q, is applied, Hooke's law is
g, = 120, for 0, =0
(5.2)

4, = €30, for 0, = 0’

The coefficients ¢4, €5, Cyq, @0d Cy, are called flexibility influence coefficients, and they depend on the points

of application and the direction of the corresponding forces and displacements, and the size, shape, and the mate-
rial of the body.

Note that the application of the force Q, resultsin a displacement at point 2, and force Q, resultsin adis-
placement at point 1. Under mechanical 1oad Hooke recognized that the material from which the body is made
deformsinternally throughout its extent. We now know the scale of deformation isto the level of the distortion of
interatomic bonds constituting the material. At the atomic scale the material is not continuous. However, for
length scales greater than that of interatomic distances the atomic structure of the body isignored and the body is
idealized as a continuum. Points within the body are identified with the material particles, and continuity is
defined in the mathematical sense. Neighboring points remain neighbors under any loading condition.

If both forces Q; and Q, act on the body, a questions that arises: Is Hooke's law given by eg. (5.3) below?

g1 = 10yt 0,
4y = €101 t¢0,
From the hypothesis that the body returnsto its original shape after the forces are removed it is proved that eg.

(5.3) for two loads is the correct form of Hooke's law. The proof is given by Fung (1965, p. 3). Also, coefficients
11 and ¢, are independent of force Q,, and coefficients ¢, and ¢,, are independent of force Q,. This proof

leads to the principle of superposition.

(5:3)

Principle of superposition

For alinear elastic body the effects caused by two or moreloadsarethesum of the
loads applied separ ately.

¢ The deformations are small, and

e the order of loading is unimportant.

511 Work of the external loads
Multiplying thefirst of eg. (5.3) by O, , the second equation by Q, , and adding, we obtain

019, + 029, = ¢; 07 + 120,05 + ¢, 0,0, +¢,03. (5.4)

The quantity above isindependent of the order in which the loads are applied. Hence, it has a definite meaning
for each order of the application of loads Q; and Q..
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Consider the specia case of proportional loading, where the ratio
Q,/Q, iskept constant and the |oading increases very slowly from zero
to the final value (i.e., quasi-static loading). In this case, the corre- O~ .
sponding displacements also increase proportionally and slowly. |
Force-displacement plots at points 1 and 2 are shown in figure 5.2 for :

0,/0, = constant

this special case of proportional loading. It should be clear that the 0

91
work done by theforce Q, isexactly lqul ,and that of O, is Fig.5.2 L oad-displacement
2 plotsfor proportional loading

1
2Q2‘12-

Hence, we conclude from eq. (5.4) that the total work done, W, by the set of forcesisindependent of the
order in which theforcesare applied.

1
w = 5(Q1‘11 +0,q,) - (5.5)

5.1.2 Maxwell’sreciprocal theorem

Now consider the two different sequences in the application of forces Q1 and Q. First, apply O, slowly with
0, = 0.Atthefina valueof Q,, the displacement of point 1is ¢,,Q, and the displacement of point 2 is

¢,,0, . Thework doneis %c“Q%.With 0, heldfixed, apply O, slowly until Q, attainsitsfina value. The
additional displacement at point 1 is ¢,,0, and the additional displacement at point 2is ¢,,0, . The additional

work doneis Q,c¢;,0, + %cZng . When the forces are applied in the order O, O, , the total work done, as

showninfigure 5.3, is

_ 1 1
W= ECIIQIZ+CIZQ1Q2 +§¢22Q%

pt. 1 pt. 2

Fig.5.3 Load-
displacement plotsfor the

loading sequence Qq, Q.

Second, apply Q, slowly with O, = 0.Atthefinal value of Q,, the displacement of point 1 is ¢,,Q, and
the displacement of point 2is ¢,,0, . Thework doneis %cngg . With O, heldfixed, apply O, slowly until O,

attainsitsfinal value. The additional displacement at point 1 is ¢,;Q, and the additional displacement at point 2
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iS ¢,, 0, - The additional work doneis Q,c,,0, + %c“Q% . When the forces are applied in the order O,, O, the

total work done, as shownin figure 5.4, is

| 1
W= EcllQ%+ 5022Q§+621Q1Q2

.
pt. 1 pt. 2
Fig.54 Load- Qp------- . Qo -~ -
displacement plotsfor the ! | :
loading sequence Q,, Q;. : I |
Uy oa U
sy 0 €0y €19y

However, W = W' for arbitrary order of application of Q,, O, . Hence, .

For aset of applied forces 0, 0,, ..., @, and their corresponding displacements ¢, ¢,, ..., q,,, €9. (5.3)
generalizesto

n

q;, = Ecij f] i = 1,2,...,1’1. (5.6)
j=

Maxwell’sreciprocal theorem

Theinfluence coefficientsfor corresponding forcesand displacements are symmet-
ric.

¢ G TG

In other words, the displacement at point i dueto a unit load at another point j is
equal to the displacement at j dueto a unit load at i, provided that the displace-
mentsand forces*“ correspond,” (i.e., that they are measured in the same direction
at each point.)

Since the flexibility influence coefficients ¢, = ¢54, the work done on the body can be written as

1
W= E(CIIQ%+2CIZQ1Q2+C22Q%)- (5.7)
Take the partial derivatives of the work function in eg. (5.7) with respect to forces Q; and Q,, and recognize the
material law in eqg. (5.3), to find that

A ) 4
90, * 00,

That is, the partial derivative of the work function with respect to aforce equals the corresponding displacement.

q, (5.8)
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5.2 Extensions of Hooke's law to include a couple and rotation

Hooke's law, eg. (5.3), can be extended to include the moment of a
couple acting on the body and the rotation of the arm connecting the
couple.

Asshown infigure 5.5, theforces Q'; and Q's form acouple

with an arm of length ¢ if Q'; = P and Q'y = P.Thatis, forces

0'5 and Q'; arefunctionsof theforce P . Takethe partial derivative Fig.5.5 Static equilibrium of a body

of the work done by the forces with respect to force P and use the gggglreexternal forcesincluding a
chain rule to get

AW _ oW IQs oW IQy
OP 905 0P 90, OP

Let ¢'; denote the displacement corresponding to force Q's , and let ¢'; denote the displacement corresponding

toforce Q' . Then, with referenceto eq. (5.8) ¢'; = oW L'y = a—VK,and note that 005 _ 994 _ 1.%0
90’5 04 aP P
aw . .
—_— = + .
9P 43744
For small displacements, ¢'; + ¢'s = aq, where qisthe small 3
rotation of the moment arm in radians, asis shown in figure 5.6. q's ;
0 _43+4qy
Thus, %—Z = agq . Divide this |ast equation by the length of the T Rgy  anb =
q'4
4
moment amto get 12X = 4 . Lastly, the moment of acoupleis Fig.5.6  Rotation of thearm of the
adP couple
QO = aP,soweget
ow
5@ = (5.9)

Thus, in Hooke'slaw if ¢, isarotation, then corresponding “force” Q; isamoment.
We can consider a concentrated couple as the limiting case of two equal and opposite forces acting in a
plane at the surface of the body that approach each other, but maintain a constant moment; i.e.,

Limit(aP) = O

a—0

In thislimiting process P — « . Then, the angle of rotation q isinterpreted as the rotation of an infinitesimal line
element in the plane of the couple.
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521 Generalized forces and displacements

Define Q, asthe magnitude of the generalized force acting at point i on the body, and let ¢; denote the corre-
sponding generalized displacement at point i, where i = 1,2, ..., n. Theproduct of Q,q; has dimensional units
of work, or F-L. If O, isaforce, then ¢, isthe corresponding displacement. If O, isthe moment of a concen-

trated couple with dimensional unit F-L, then ¢, isthe corresponding rotation in radians of the infinitesimal line

element in the plane of the couple at the point of its application. By defining generalized forces and moments, we
can extend Hooke's law in eqg. (5.6) to include moments and rotations as well as forces and displacements. In eq.

(5.6), the flexibility influence coefficients can have different dimensional units. For example, if ¢, isadisplace-
ment of point 1 on the body and O, isamoment of a couple acting point 2, then the dimensional unit of flexibil-
ity influence coefficient ¢,, is F~'. Since the generalized displacement ¢, correspondingto O, isarotationin
radians and the generalized force Q, acting at point 1 is aforce corresponding to ¢, , then the dimensional unit

of flexibility influence coefficient ¢,, isalso F~!'. Also, thedimensiona unit of ¢, is LF~!,and ¢,, is FIL7!.

5.2.2 Stiffnessinfluence coefficients

Assume that the displacement-force system given by eq. (5.6) can be inverted so that the forces may be expressed
in terms of the displacements as

n
0, = Ek"q" i=1,2,..,n, (5.10)
j=1
where constants k;; are called stiffnessinfluence coefficients. In matrix notation, we write the displacement-
force form of Hooke's law, eg. (5.6), as

{q} = [ {0}

nxl nxn nxl ’ (5.11)
and the force-displacement form, eqg. (5.10), as

{0} = [k {q}

nxl nxn nxl (5.12)

Matrix [c] is called the flexibility matrix and [K] is called the stiffness matrix. Both matrices are square of order
n x n. In matrix algebra the stiffness matrix is the inverse of the flexibility matrix, or
[k] = [c]. (5.13)
Theinverse matrix has the property that
[c]7'[c] = [cllc]! = [1], (5.14)
where[l] isthe n x n identity matrix (i.e., the identity matrix is a square matrix with all diagonal elements equal

to unity and all off-diagonal elements equal to zero).

Maxwell’stheorem in article 5.1.2 states that the flexibility matrix is symmetric. In matrix algebra symmetry
iswritten as
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[l = [e], (5.15)

where the superscript T means matrix transpose (i.e., the matrix obtained by interchanging its rows with its col-
umns). Since the flexibility matrix is symmetric, the stiffness matrix is also symmetric. That is,

[k]T = [k]. (5.16)
Proof. By definition
[c]7'[c] = [1]. (5.17)
Take the transpose of eg. (5.17) to get
(LeT'[eD” = 111" (518)

Use the fact that the transpose of the product of two matricesis equal to the product of the transpose of the sec-
ond matrix times the transpose of the first matrix, and that the transpose of the identity matrix is equal to itself.
Hence, eg. (5.18) isequal to

] ([eI)" = [1]. (5.19)
By symmetry of the flexibility matrix eg. (5.19) isequal to
[cl([eIDT = [1]. (5.20)
Pre-multiply eq. (5.20) by the inverse of the flexibility matrix to get
[e]' ][] = [e]'[1] = [c]. (5.21)
Employ therelation in eg. (5.14) and write eq. (5.21) as
(eI = [e]. (5.22)
Again, by definition [¢]' =[£]. Thus,
(k] = [x]. 1 (5.23)

Similarly in the generalized force and generalized displacement form of eg. (5.12), the stiffness influence
coefficients, ;;, also can have different dimensional units.

5.3 Srain energy density functions

External loads imposed on abody cause it to deform. The energy stored in an elastic body due to deformation is
called the strain energy, and the strain energy per unit volumeis called the strain energy density. For the thin wall

bar theory discussed in article 3.4 on page 37, deformation is quantified by values of the axial normal strain ¢

zz !
and shear strains v, and vy, . Thethreeremaining strains e, = €. = v, = 0. Inthisarticle expressions for
the strain energy density functions in terms of the non-zero strains are devel oped.

5.3.1 Strain energy density in uniaxial normal strain

Begin with the axial equation of motion for an element of the bar of length Az as shown in figure 5.7. The equa-
tion of motionis
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2

Jaw
> (PDAAz)—
(p )6t2

T

O‘ZZA‘Z‘_ _>OZZA‘Z+AZ

4 o Az>|

(@) (b)

Fig.5.7 Axial bar element. (a) free body diagram. (b) timerate of change of linear momentum.

2
ad
0. A, = 0uA, = (pAAI) T, (5.24)

in which A denotes the cross-sectional area, p the mass density, and %—V: the axial velocity. Division of eq. (5.24)

by AAzfollowed by letting Az — 0 yields the differential equation at coordinate zand timet as
ow. (5.25)

Consider thefirst law of thermodynamics for a closed system of continuous matter not interchanging matter
with its surroundings. Then the first law is (Malvern, 1969, p. 229)

oL

-, 5.26
Py (5.26)

Pinput + Qinput =
where Pjn, ¢ is the power input of the external loads, Qi is the rate of heat input, and E isthe total energy of
the system. Assume the process is adiabatic s0 Qjp = 0. The energy is the sum of the kinetic energy and inter-
nal energy. For the closed system consisting of the axial bar element shown in figure 5.7, Pjp+ isthe time rate of
work of the normal stresses acting on the element. Expressions for Pj,+ and the time rate of change of energy
are
IE _

aw il aw\? U,
—o, 4% 0L = 9L o unz) ()] + 48222, 5.27
=l o082 (5)) |+ 482 &:20)

_ aw
input — OzzA(—‘)_

P

z+Az
where Ug istheinternal energy per unit volume, or internal energy density. Substitute eg. (5.27) into thefirst law

(5.26) with Qi = O, followed by division by AAz. In the result from these previous manipulationslet Az — 0
to get the differential equation of the first law at coordinate zand timet as

2
a< 6w> _  dwaw  9U,

Ol oW 5.28
dz\ * ot at oz It 5.29)
Expand the derivative on the left-hand side of eq. (5.28) to get
2
d aU,
Oz0w Ozzi<a_w> = pdwow, 9% (5.29)
dz ot dz\ at at 92 at

Substitute the equation of motion (5.25) for do,./dz in thefirst term on the left-hand side of eg. (5.29). We
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assume it is permissible to interchange the order of differentiation of the second term on the left-hand side and
writeit as

i(LW) - £<8_W> - 9%
dz\ ot dt\ 9z at

Hence, eg. (5.29) becomes

2 2
d w)aw 3822: a_waw_'_aUO
a2 ) ar T 9t atarr ot

and note that the terms involving the acceleration cancel. We are left with

zZZ

5 de,, _ dU,
= 9t at

(5.30)

For the response of an elastic body under an adiabatic conditions, it is assumed that the internal energy density is
afunction of the strain (Allen and Haisler, 1985, pp. 101,102). For U, = Uy(e.,), and that the strain at point zis
afunction of timet, we use the change rule to write

aU, _ aU, ¢,
— = — (. 5.31
at asu( az) 531
Substitute eg. (5.31) into the first law (5.30) to get
AU /0¢
- =) = 0. 5.32
(o5 (%) 532
Since the timerate of strain is, in general, not zero, it is concluded from (5.32) that
aU,
= . (5.33)
e

zZZ

Thus, the derivative of the internal energy density function U,(e.,) with respect normal strain equals the corre-
sponding normal stress under the assumption of adiabatic deformation for an elastic material.

In elasticity afunction having the property illustrated by eq. (5.33) iscalled the strain energy density. Thus,
theinternal energy density function isidentified asthe strain energy density. It is shown in continuum mechanics
texts, e.g. Fung (1965, p. 348), that the strain energy density is identified with the internal energy in an adiabatic
process and the free energy for an isothermal process. For athermoelastic stress-strain law that is not associated
with an adiabatic or isothermal process, it is assumed that a strain energy function exists. That is, an elastic
material isdefined by postulating that a scalar function exists such that its derivative with respect to a
strain component deter mines the corresponding stress component. Consequently, the postulate of a strain
energy function leads to the material law relating the stresses to the strains. Equation (A.110) in the appendix
augments eg. (5.33) to include a three-dimensional state of stress and strain.

From eg. (3.65) on page 45 Hooke's law for the axial stressand strainis o,, = Ee_,—BAT, whereE isthe

modulus of elasticity, f = E a, and o is the coefficient of thermal expansion. Substitute the expression for stress
0,, from Hooke's law into the |eft-hand side of eg. (5.33) and then integrate the result with respect to the strain

€5, 10 get
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U, = %EEZZZ—ﬁATEZZ. (5.34)

The strain energy density is zero in the unstrained state, since it will be the change in strain energy that isimpor-
tant in subsequent applications. A graphical representation of the strain energy density is obtained in the plot of
Hooke's law as shown in figure 5.8. It isinterpreted as the “area’ between Hooke's law and the strain axis. From
the graph the “area’ is

Uy = Yo..(c.—aAT) + %(—BAT)(OLAT) or

E O,

U, = g[(ezz—ocAT)z—(aAT)z]. (5.35)

Simplification of eg. (5.35) reducesit to eq. (5.34). The “area’ represents
the work done per unit volume of the stress acting through the strain. The
static analog to eqg. (5.30) is 0,,0¢,., = dU,, where the incremental work

per unit volume 8, = o,,d¢,, . Thework done during the deformation is

€,

W, = fozzészz = fBUO = Uy(e,,) —Uy(0) = Uy(e.,). (5.36)
0 0

That is, thework done per unit volumeis equal to the strain-energy-density function, and W only depends on the
final state of strain and not the strain history.

Strain energy density functions for a Hookean material subject to athree-dimensional state of strain, includ-
ing thermal strains, are given by eq. (A.140) in the appendix. The three-dimensional strain energy density func-
tion reducesto eg. (5.34) for uniaxial strain if the Poisson effect is neglected.

5.3.2 Complementary energy density in uniaxial normal stress

Equation (5.33) is transformed to a conjugate form by introducing a new function U;(o,,) called the comple-

mentary-strain-energy density. The transformation was developed by A. M. Legendre. Refer to the discussion by
Langhaar (1962, p. 120). It is defined by

Uslo..]1==-Uyle..]+o (5.37)

ZZEZZ *

Take the partial derivative of the complementary-strain-energy density with respect to the normal stress compo-
nent to get

au; _ananZ+ b 08 _ (39U, 98\
9 P € 0—zza - O, 9 9 €.,
€,,00,, O, €., O,
S —

=0

Jdo

zz

, (5.38)

1. Notethat reversing the order of application of the mechanical load o, and thermal load AT changes the “area’
under the stress-strain plot, which implies W is path dependent. See, for example, the discussion in Donald-
son (1993, p. 510) and Allen and Haisler (1985, p. 287). However, these authors use eq. (5.34) for U, .
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in which the leading term on the right-hand side of eg. (5.38) the vanishes by eqg. (5.33). Hence, complementary-
strain-energy density has the property that
aU;

= . 39
pys (5:39)

EZZ
zz

Equation (5.39) is the conjugate to eq. (5.33). Hooke'slaw for the normal strainise,. = (o,,+ BAT)/E, which
is substituted for the strain in eq. (5.39). The result isintegrated with respect to the stress to get

O.

Ui = [ [0+ BAT)/E)do,, = 5-(0..+ BAT). (540
—BAT
Asisshown in figure 5.9, the complementary-strain-energy density repre-
sentsthe “area’ between Hooke's law and the stress axis. Expand the last 4
result for the complementary strain energy density to find O,

2
Up = ZLE(OEZ +2BATo,,) + %L- (5.41)

The third term in the complementary-strain-energy density above depends
only on the change in temperature. Thisthird termin the expression for U; —BAT ¢

may be omitted under the assumption of one-way, thermal-mechanical cou-
pling, since the change in temperature is specified independent of the mechanical state. (Refer to the discussion

inarticle 3.7.1 on page 44.) It isthe change in U;; with respect to the stress state that is important in subsequent
analyses.

5.3.3  Strain energy density in shear
The properties of the strain-energy densitiesin shear are

_aU, _aU;

= 5.42
AT - (542

zs

Jdo

zs

Hooke's law relates the sheer stressto the shear strain by o.; = Gy, where G isthe shear modulus of the mate-

rial. Substituting Hooke's law into eq. (5.42) followed by integration, we get the expressions for the strain energy
densities as
1 . _ 102
U, = =Gy2 Up = ==,
0 2 YZS 0 2 G
Asisshown in figure 5.10, the strain-energy density isthe “area’ between Hooke's
law and the strain axis, and the complementary-strain-energy density isthe “area’

between Hooke's law and the stress axis. Including shear strain v, and it corre-

(5.43)

sponding shear stress o, , the combined strain energy densities in shear are

G * 1
U, = 5(yzzs+yzzz) Uy = 2_G(OZZS +O'ZZC). (5.44)
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54 Srain energy for extension and bending of a thin-walled bar

Assuming that the axial normal strain is uniform through the thickness of the wall, we obtain from eqg. (3.30) on
page 38 that the axial normal strain isrelated to the axial displacement w(z) , and bending rotations ¢.(z) and

b,(2), by

€, = dw +y(s)—"+x(s)d—¢y- (5.45)
dz dz

Substitute eq. (5.45) for the normal strain into the strain energy density (5.34) to get
dw

Unte.) = £(3 4 ()50 4 x(s)

d
dz ¢>

ﬁAT(?+ (s )7 +x(s) ) (5.46)

The strain energy per unit axial length is defined by U= on(ﬁzz)f(S)dS . Substitute eq. (5.46) for the strain

energy density into the strain energy per unit axial length, and note the geometric properties listed in egs. (3.74)
and (3.77) on page 46 relative to the centroid, to get

chw dpoy*, . /dop di, /0, chw do, di,
== I (— 1 +21, — ) =M ") =M ). .
U= [ <dz> " xx(dz ) " yy(dz ) <dz )(dz ﬂ NT(dz) XT(dz > yT<dz ) (5.47)
The thermal actions appearing in eq. (5.47) are given by egs. (3.75) and (3.78) on page 46.
Assuming that the axial normal stressis uniform through the thickness of the wall, then the axial normal

stressis given by eqg. (3.83) on page 47. Substitute eg. (3.83) for the normal stress into the expression (5.41) for
the complementary strain energy density to get

UO(O_ZZ) — ( 1 ){[N+NT+k(Mx+MxT)y(S) +k(Mv;-MVT);C(S)_ﬁAT}2 +

2F A I, Ly
N+ N (M‘C+M‘CT)7 (M M )
2BAT gy (s)+ x(s)— ﬁAT}
[ y L. 7 » }

in which the quadratic term in the temperature change of eq. (5.41) is neglected. Expand and simplify the latter
expression to find

Uio.) = QLE{(N;NT{k(Mx;M”)y(s)} R ) o R (1 ) 4
yy

XX XX

2 () a2t (o) |

vy XX yy

(5.48)
Again, all termsin the simplification of eq. (5.48) that contain only the temperature are neglected. The comple-

mentary strain energy per unit axial length is defined by U = f Uy (0,,)t(s)ds . Substitute eq. (5.48) for the

complementary strain energy density into the complementary strain energy per unit length. In the evaluation of

U we use the definitions given by egs. (3.74), (3.81), and (3.84) in article 3.7.2 on page 45 to determine the fol-
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lowing integrals:

fx(s)tds =0,-n0 =0

fy(s)tds =Q0,-n0,=0,ad
W 1
tds = =
Pt

(5.49)
- I, -- -1
fxztds = fxytds = (5.50)
k k
Thefinal result for the complementary strain energy per unit length is
= L[(N+ Np? (Mt M) (M M2 )(Mx + M, )(M, + MVT)} . (550
2 E A I)C X [yy o IXX Iyy

5.5 Srain energy for shear and torsion of a thin-walled bar

t/2

ZJ:%J'

Consider the strain energy densities due to shear (5.44). Integrate these strain energy densities over the cross-sec-
tional areato get the strain energies per unit axial length.That is,

€=—t/2

f G(vﬁﬁvﬁg)dt}ds U = %f

(5.52)
—t/2
If we substituted the shear strains y_; and y_. from eq. (3.31) on page 38 into the strain energy per unit length
form

and performed the integration over the cross section we would get the strain energy function per unit length in the

t/2
[ Eloa o&;)d@}ds.

U= Zl[wx, WPy, gﬁﬂ .

(5.53)
v4
Partial derivativesof U with respect to the transverse shears and twist per unit length determine the material law
for the transverse shear forces and torque. That is,

Sl

d
|
GIV Y9

(o5}
ISt

MZ

<

<

. (5.54)
do
9 oz
(dz )

The shear stresses enter the definitions of the shear flow g, twisting moment resultant m,g, and the transverse
stress resultant g, given by eg. (3.37) on page 40. For athin, curved wall we neglect theterm T/R, in the factor

(1+T/R,) appearing in theintegrand of eq. (3.37). It follows that the shear stresses consistent with stress result-
ant definitions are

o,(s,2,C) = q(s.z) +

) %mzs(s, z)C 0.c(s,2) = q.(s,2)/(s). (5.55)
Substitute eg. (5.55) for the stresses in complementary energy per unit length (5.52), followed by integration
through the thickness to get
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2fGt 2fG[ U qTZszs. (5.56)

5.5.1 Open cross-sectional contour

The shear flow in thefirst integral on the right-hand side of (5.56) is given by eqg. (3.98) on page 51. It is repeated
below.

4(s.2) = =LV(2)0,(5) = £, (2)0,05) . 5)

yy XX

Note that the shear flow is directly related to the shear forces and is independent of the torque. To account for the
torque, evaluate the second integral on the right-hand side of eg. (5.56) for torsion of the open section with the
straight contour presented in article 3.9 on page 57. From eg. (3.119) on page 60 these stress resultants are

_ (. _coshks _ , sinhks d¢,

Mz = 6J( cosh)») : == kcoshk( dt) h/2=s=b/2, ©-59)

where

dp, _ M b3 tanh A 2.3 kb b
£ = = J = 22 (1 -22L k= &2 A= = ./32.
dz GJ 3( Iy ) [t

Substituting the stressresultants m_, and ¢, from eg. (5.58) into the second integral in the complementary strain
energy (5.56), followed by evaluating the integral, we find

112“%} - 22+ J - M 5.59
2fG[r3m“ ‘ 2Gf T 559
¢ -b/2
Hence, the complementary strain energy per unit axial length is
2
-— ——V = . 5.60
=3 fgi D0 =720, ()]s + 2= (5.60)
We write the eg. (5.60) in the form
_1
= E[CHVX +2¢, V.V, +c, V32 ZGJ (5.61)
where c,,, c,), ¢,,, and ¢, aretheflexibility influence coefficients for the cross section of the bar given by
2 O 2 2 O 7,
o= (AR =g, = K AQWOO, ok j{Qx(S)] is. (662
I, Gt A A & Gt I

55.2 Closed cross-sectional contour

The shear flow for the closed cross-sectional contour isdirectly related to the shear forces and the torque resolved
at the shear center. Equation (3.163) on page 70 is
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M(z)
24

c

q(s,z) = —F )V, (2) - F (s)V,(2),

where the shear flow distribution functions F,(s) and £,(s) are determined from egs. (3.151) and (3.164) on

page 69. For the closed section the stress resultants m_, and ¢, are assumed negligible with respect to the shear

flow g. Consequently, in the complementary strain energy per unit axial length (5.56) the second integral on the
right-hand side is neglected with respect to the first integral on the right-hand side. The complementary strain
energy per unit axial length is then given by

ﬁ_ligﬁ_

2
[y F()V(2) = F,()V,(=) | ds. (5.63)

Expand the integrand of latter equation and write it as

* 1
U = E[cxfo + 0y V24 e M2+ 20, VM. +2¢, VM +2c,V.V,]. (5.64)

The flexibility influence coefficients for the closed cross-sectional contour are

: ; 1 ods 1
Cop = $=ds c,, = $=Lds ¢, = —¢= = —  and (5.65)
’ Gt 7 Gt 442 Gt GJ
F F F
Cop = Cpp = (2114) Extds =0 €, = ¢,y = (2114) axtds =0 Crp = Cpp = fFé—tvds. (5.66)

The torsion constant J for a single-cell cross section is given by eqg. (3.160) on page 70. Influence coefficients
€. = ¢, =0, since the shear flow distribution functions F(s) and F\(s) are defined with respect to the shear
center. (Refer to eq. (3.151) and eg. (3.164).)

55.3 Material law for transver se shear and torsion

The relation between the strain energy densitiesin shear is analogous to the one for normal stress and strain
(5.37). Thisrelationis

Ua[ozs] =- UO[st’ th] oVt 0¥zt (5.67)

Integrate eq. (5.67) over the cross-sectional areato get

t/2 t/2 t/2
f fUS[O—zs]dz;}dS = - f fUO[Yz.vYZC]dZ}dS + ﬂf(o—stzs-'-oﬁzt,YzC)dt}dS
C—t/2 C—t/2 C=—t/2
—x — do, 7
UV, v, M,] Uty g

(5.68)

Substitute (5.55) for the stresses, and eqg. (3.31) on page 38 for the strains, in the second integral labeled | on the
right-hand side of eq. (5.68). After integration over the thicknesstheintegral | is

- , do, do, , do,
I= f[q( Y, sind +1,cosO + raSq > tm qz<1pxcos6 +1p,sin0 g ”ds . (5.69)

Rearrange the integrand in eg. (5.69) to
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d
I = U‘(—qsine ¥ qzcose)ds}px ¥ U(qcose ‘. sine)ds}py ¥ U(rnq rm, —r,qz)ds}dﬂ)? (5.70)
Z

From eg. (3.40) on page 40 recognize that the coefficient of shear ), isthe shear forceV,, the coefficient of
shear y, isthe shear forceVy, and the coefficient of the twist per unit length is the torque M,. Hence, theintegral
| isgiven by
t/2 d¢
I = f{ f (0,47, oztyzc)dﬁ}ds =V, Vo, + Mz$z. (5.71)

C—/2

The relation between the shear strain energies per unit axia length in eq. (5.68) becomes

d.
} + wax + Vywy_'-MzE .

Take the partial derivative of (5.72) with respect to the shear force V, asfollows:

. _ d
U, v, M] = —U[wx, v, d—¢2

Z

(5.72)

U Ud GLIN U\ /9
& = _M&.q.wx.; VX& = (Vx_ﬂ><&> +, . (5.73)
av, op, oV, av, P,/ \aV, ;

Theterm V, — aﬁ/awx = 0 ineg. (5.73) sinceit isthe elastic material law for the shear force given by eq.
(5.54). Consequently, eqg. (5.73) leads to the material law for shear

U

av. =, (5.74)

Following steps similar to those used in egs. (5.72) to (5.74) leads to the additional material laws

U
— = and
av, Wy

oU _ df.
— = _7, 5.75
oM, dz (5.75)

Substitute the complementary strain energy from either eg. (5.61) or (5.64) into egs. (5.74) and (5.75) to
obtain the material law governing the transverse shears and the twist per unit length. Since the expressionsfor the
complementary strain energy per unit axial length with respect to the shear center are the same for the open con-
tour (5.61) and the closed contour (5.64), the material law in both casesis

m Crx Cxy 0 Vx

dy = ny cyy 0 Vy . (5.76)
Wl 1o 0 16| M.

dz

Assume we can invert the material law (5.76) and write it as

VX sxx Sxy O wx
Vy = sxy Syy 0 wy 3 (5.77)
M, 0 0 GJ||9.
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where

[S1e Spps Sxp] = [€400 Cos €1/ (ercy, =) - (5.78)
The strain energy per unit axial length in shear and torsion is
2

- d
U = %[ XX )%+ 2Sx1)wxwy + syywz + GJ( dt) J " (579)

5.6 Total strain energy expressions for a thin-walled bar

Thetotal strain energy is obtained from strain energy per unit axial length by integration with respect to axial
coordinate z, 0 < z < L, where L isthe length of the bar. The total strain energy iswritten as

U=U,+ UY , (5.80)

where the strain energy obtained from axial normal strain ¢, isdenoted by U, , and the strain energy obtained
from shear strains v, and v, isdenoted by U, . From egs. (5.47) and (5.79) these strain energies are

o {2 )+ G ) ) s o

L

- %f 502 + 25,00, * 5,07 + G (%

2} dz. (5.82)

The stiffness coefficientsin eq. (5.82) are computed from the compliance coefficients as shown in eg. (5.78).

Thetotal complementary strain energy iswritten as
U =Uu,+U;, (5.83)
where the complementary strain energy obtained from axial normal stress o_, isdenoted by U, , and the com-

plementary strain energy obtained from shear stresses o, and o isdenoted by Uy . From egs. (5.51) and
(5.61) these complementary strain energies are

(N+N,)? M +M 2 M.+ M. )2 M +M_)(M, +M
0 f{ T) ( T) k( y VT) _Zk]xy( X xT)( v yT)}dZ, (5.84)
2E ]xx Iyy Ixx Iyy
and
L M2
Up = 3f[eatirac Vb ve, vi+ . (5.85)
2 Y GJ

0

The compliance coefficientsin eg. (5.85) are determined by eq. (5.62) for the open contour and by egs. (5.65)
and (5.66) for the closed contour.
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5.7 Cadtigliano’sfirst theorem

The work function can be written in terms of the generalized displacements and stiffness influence coefficients
by substituting n = 2 in eg. (5.10), then substituting the result for the generalized forces into the work eq. (5.5).
Theresultis

W= <%>(k11‘1%+2k12Q1‘12+k22‘1§)- (5.86)
Take the partial derivative of the work function with respect to g; and g, to get

oW _ ow _

— = kg, thpg — = kg thyg,.

09, 9q,

Comparing these results for the partial derivatives of W to the eq. (5.10) for n = 2, we find
/4 aw

= Q = =,
9q, 2 g,

That is, the partial derivative of the work function with respect to a displacement equal s the corresponding force.
Equation (5.87) yields the stiffness law, and it is the conjugate to eg. (5.8) that yields the compliance law.

(5.87)

o

For adiabatic deformation of a Hookean material the first law of thermodynamics shows that the work done
per unit volumeis equal to the strain energy density. Refer to eqg. (5.36) on page 138. For the body composed of a
Hookean material, we take the work done by the external loads equal to the strain energy of the entire body. Then
W=U in eg. (5.87), which leads to Castigliano’s first theorem in terms of generalized displacements and forces
asfollows:

Castigliano'sfirst theorem
If the strain energy of an elastic structure is expressed in terms of the independent
generalized displacement components ¢;, i = 1,2, ..., n, in the direction of the pre-

scribed generalized point forces Q,, 0,, ...Q, , then thefirst partial derivative of the

strain energy with respect to the displacement ¢, isequal to the corresponding force
0, or

For the thin-walled bar the strain energy U is given by egs. (5.80) to (5.82), and it has the form

L
U= fU(W|7 ¢x.> (I)y" q)z" wm lpy)dz .

0

The prime indicates ordinary derivative with respect to coordinate z (e.g. w' = ‘;—W ), and the averaged shears
VA

from eq. (3.32) on page 38 are repeated below.
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v = L0 we = Pra.

The procedure in the application of the first theorem to structural analysisis to assume functions for the dis-
placement components u(z), v(z), and w(z) and rotations ¢,(z), ¢,(z), and ¢.(z) that satisfy the three condi-
tions below.

1. Thedisplacement and rotations must be continuous functions of the coordinate z, so that their derivativeswith
respect to the coordinate, or strains, exist and are integrable over the domain of the bar.

2. Thedisplacement and rotations must satisfy any prescribed conditions at the boundariesz=0and z= L.

3. Thedisplacement and rotation functions are selected such that they equate to the generalized displacements
q;»1=1,2,...,n,attheir defined points of application.

Displacement and rotation functions that satisfy continuity conditions and prescribed displacement bound-
ary conditions are said to be kinematically admissible. Kinematically admissible displacements lead to a com-
patible deformation. Compatibility of adeformable body means the displacements are continuous and single-
valued (i.e., no gaps or overlaps of material result in the deformed state). Castigliano’sfirst theorem isa condi-
tion of equilibrium consistent with the assumed kinematically admissible displacements.

Example 5.1 Response of cantilever beam by Castigliano’sfirst theorem

The cantilever beam shown in figure 5.11 is subject to a vertical displacement g, and a clockwiseration g, at its
tip, and a uniform thermal moment A/, aong its length. The cross section is symmetric with respect to the y-z
plane.

Ay,v 1
Fig.5.11 Cantilever beam subject to a / T
temperature gradient and end loads. —Z . | ) 2

Assume a kinematically admissible displacement and bending rotation as

v(z) = q,(z/L) 0,.(z) = g,(z/L) O0<zs<L. (a)
Continuous and differentiable functions for the generalized displacements are ensured by employing polynomial
functionsin coordinate z. Also, assumptions (a) satisfy the prescribed end conditions v(0) = 0 and ¢.(0) = 0.

Therefore, assumptions (a) satisfy the conditions of kinematic admissibility. The strain energy reducesto afunc-
tion generalized displacements g, and g,. For this example the expression for the strain energy from (5.81) and

(5.82) is

L
U= f&[qfx, W, ]dz where U[¢',.,] = %Elmwg)z — M (¢',) + ésywa . (b)
0

The derivatives of the functionsin (a) with respect to z, and the evaluation of the transverse shear strain are
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vi(z) = ¢,/L 6,'(z) = q,/L Y,(z) = q,/L+q,y(z/L). (c)
Substitute eg. (c) into eg. (b) to get
El

— 2
— Xx 2 *EZZ Cﬂ q_2 _MxT
U_2L22+2<L+LZ> L @

The definiteintegral of eg. (d) over the length of beam yields the discrete form of the strain energy (b). The result
is

El S N s,,L
U(q1,92) = 2qu%+ﬁq%+-§2qlqz+-%Lq%—Mxm- )

The strain energy expression in eqg. (b) is called afunctional because its value is determined by the functions
¢,(z) and y (z) . Assumption (a) resultsin astrain energy function given by eq. (e) where the generalized dis-

placements ¢, and ¢, aretheindependent variables. The generalized forces O, and Q, corresponding to ¢,
and ¢, , respectively, are determined by Castigliano’sfirst theorem. That is,

Q1=wansz=M- (f)
aq, aq,

Take the partial derivatives of eg. (e) with respect to ¢, and ¢, tofind

s s Sy El, Ls
0, = ‘iz%""%z% and O, = ‘%l%"'( L’ +—3‘u>‘]2_Mxr- (9)

The expressionsin eg. (g) are written in the matrix form

N

S Sw
=L 2 q —HM”. )
A S Bl Loyl [92) U

2 L 3

The elements of the 2X2 stiffness matrix in eq. (h) are the stiffness influence coefficients. Also note than the stiff-
ness matrix is symmetric.

From eg. (3.79) Hooke's law for the bending moment is
Mx = E]qu)x,(z) _MxT’ 0]
and from eg. (5.77) the material law for the transverse shear forcei
Vy = sy, @

Substitute ¢," and vy, from eqg. (c) into egs. (i) and (j) to get

M, = EI_(q,/L)-M, , and Vy = syy(ql/L+q2(z/L)). (k)

Equilibrium differential equations (3.54) and (3.55) are
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dv. dM., _
7Z¥:Oand o -V, =0for0<z<L. 0}

Substitute the bending moment and shear force from eg. (k) into eqg. (I) to get

dv, _ dM, _ s,

dz

s,
- 0 and
17 q,*

where ¢ denotes a constant of integration for the shear force. The differential equations are not satisfied for the
assumption in eg. (a). Of all the possible kinematically admissible displacement functions those given by (a) lead
to an approximate equilibrium solution but not the exact equilibrium solution. i

5.8 Castigliano's second theorem

The generalized displacements from Hooke's law in eqg. (5.3) are substituted into the work eg. (5.5) to expressthe
work function as

W= (%)(CnQ% +¢1p0,0)+ 0,0, +¢03).

Take the partial derivative of the work function with respect to Q and Q, to get

oW _ oW
a_Ql = 10+ 120, a_Qz

Comparing these results for the partial derivatives of W to the two equations (5.3), we find

= 1,0, ¢0,.

= M and q, = M
90, 00,

If the work function iswritten in terms of the forces and flexibility influence coefficients, then partial derivatives
of the work with respect to aforce equals the corresponding displacement. The work done on a Hookean body is

q: (5.88)

equal to the change in energy stored due to elastic deformation. We use the complementary strain energy U in

this case to represent the change in energy since U = 0 inthereference state. Hence, set W = U, and we
arrive at Castigliano’s second theorem in terms of generalized displacements and forces, which is as follows:

Castigliano’s second theorem

If an elastic structure is mounted such that rigid body displacements areimpossible
and certain generalized point forces Q,, O,, ..., O, act on the structure, in addition to

distributed loads and thermal strains, the displacement component ¢;, i = 1,2, ..., n
of the point of application of force Q; inthedirection of O, isdetermined by the equa-
tion

au”

90,

q; =

For athin-walled bar the complementary strain energy given by egs. (5.83) to (5.85) has the form
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U = fﬁ (Vo Vo N, M, M, M.)dz . (5.89)

The procedure in the application of the second theorem to the analysis of thin-walled barsis to assume functions

inthe axial coordinate z for the bar resultants V', V,, N, M, M, and M, , that satisfy the three conditions below.

1. The bar resultants must be represented by functions of the Cartesian coordinates that satisfy the differential
equations of equilibrium of article 3.6.1 onpage4lfor 0 <z<L.

2. Thefunctionsfor the bar resultants must satisfy their prescribed values on the boundariesat z=0and z= L.

3. Thefunctions for the bar resultants must contain the generalized forces Q,, i = 1,2, ..., n, as parameters.

Functions for the bar resultants that satisfy the differential equations of equilibrium and prescribed force
boundary conditions are said to be statically admissible. Castigliano’s second theorem is the condition of
compatibility for the statically admissible bar resultants. Compatibility of a deformable body meansthe dis-
placements are continuous and single-valued (i.e., no gaps or overlaps of material result in the deformed state).
Castigliano’s second theorem is useful in determining displacements of a structure.

Example 5.2 Response of the cantilever beam by Castigliano’s second theorem

Consider the cantilever beam in example 5.1 on page 147 again.

Fig.5.12 M, l ? Take the end loads Q; and Q, to be specified, and use Cas-

giraeerg(r)r?}éf Q ) 0, tigliano’s second theorem to determine the corresponding dis-

thegbeam. Z_/\,_,>| . placements g, and g,. We note that the beam in this exampleis
statically determinate. From equilibrium of the free body diagram

shown in figure 5.12 the statically admissible internal actions are.

v, =0 M, = 0,-0,(L-z) O<z=<L. ()
The complementary strain energy from (5.84) and (5.85) is

U :fU[VV,M]dz WhereU[V M) = Ecny)% ZEI —— (M, + M ;). (b)

Substitute the shear force and bending moment from eg. (a) into the complementary strain energy per unit axial
length given in eqg. (b) to get
oy —(L—2)Q, + M, ;]?
2EI '

XX

- fzzQ% + [Q2 (©)
2
Integrate eq. (c) over the length of the beam to find the complementary strain energy as

. _ e, L L3 L2 L L2 LMZ;
U :(‘V + 2_ = + —_—_— 2 . d
2 6E1x,>Q1 2EIMQ1Q2 2EIXXQ2 2EI, Mg+ EI M@y 2FI,, @

The statically admissible functions assumed in eg. (a) transform the complementary strain energy functional
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given by eqg. (b) to afunction of the independent variables O, and Q, in eqg. (d). Castiglinao’s second theorem

determines the generalized displacements ¢, and ¢, corresponding to the generalized forces O, and Q, . That
is,

oU oU
= — andg, = —.
g 900, = 90, ©
Substitute the complementary strain energy (d) into Castigliano’s second theorem (e) to get
L3 12 12
= L+ —— -—0,———M_,,and f
a1 = (e 3E1x) Q155 Q27 gp Mo ®
L2 L L
= - + =0, + M.,
q, ElxeI Elxez L, xT ()]

Equations (f) and (g) are written in the matrix form as

C L + L — L2 _L_2
q WY U3EI . 2EL]|O 2EL ]
1| = xx X2 I+ XX MxT' (h)
9> __L? L 2 L
2EI., ET.. EI.

The elements of the 2X2 compliance matrix in eq. (h) are the flexibility influence coefficients. Also note that the
compliance matrix is symmetric. i}
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CHAPTER 6 Appllcatl OnS Of
Cadligliano’s Theorens

6.1 Coplanar trusses

6.1.1 Castigliano'sfirst theorem

Consider atrussidealized as an assemblage of uniform bars connected by smooth ball-and-socket jointsin three-
dimensional trusses, or by smooth hinge jointsin a coplanar truss. External forces are assumed to act only at the
joints. The line connecting the joints at the end of each bar is assumed to coincide with the reference axis of the
bar. Hence, the axial force and strain in each bar is uniform along its length, and the bar is either in tension or
compression.

2 4 6 8
1 3 5 7
joint numbering degree of freedom numbering

Fig.6.1 A fifteen-bar truss.

A coplanar truss consisting of fifteen bars and eight jointsis shown in figure 6.1. Each joint in a coplanar
truss has two degrees of freedom, one horizontal displacement and the one vertical displacement. Hence, there
are sixteen displacement degrees of freedom for thistruss. At jointi, i =1, 2,..., 8, the horizontal displacement is
denoted by ¢,,_, and the vertical displacement is denoted by ¢,; . The positive directions for the displacements
and corresponding forces in the fifteen bar truss are shown in figure 6.1. The original coordinates of the joints
and the sixteen displacements completely define the configuration of the truss in the deformed state.

A typical bar in atruss connecting jointslabeled i and j is shown in figure 6.2(a). The location of the bar ina
X-Y coordinate system is established by the coordinates of joint i (X;, Y;) and those of joint j (X;,Y;). The angle of
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- q2;
Y qi I J —> 92—
0

q2i-1

(b)

Fig.6.2 (@) Trussbar i-j subject to axial displacements. (b) Trussbar i-j subject to horizontal and
vertical displacements.

the bar with respect to the X-axis is denoted by 6. Trigonometric functions of the angle 6 are related to the coor-
dinates of the joints and length L of the bar by

cosb = (X,—X,)/L sinf = (¥,—Y,)/L L= J(X;—X)2+(Y,-Y)2. (6.1)
Asshown In figure 6.2(a), the axial displacement of the bar at jointi is cfi and that of jointj is cfj .Assumethe
axial displacement w(z) = éi(l—z/L)+&,-(z/L), O<z=L.Theaxia straine,, = w' = (;1,~—£1,-)/L,and

denote the elongation A, _; = ;1,- - ;11- . Also, assume the temperature change is uniform in z. From eq. (3.79) on
page 46 the axial forcein the bar is

N.

_ (EA
l—j_<

- ) Aro;=(Np),_,. 6.2)

i-j
The differential equation of equilibrium dN _ 0 (eg. (3.53) on page 42) is satisfied under assumptions of uni-
z

form axial strain and uniform axial change in temperature.The strain energy (5.81) on page 145 of the bar

reduces to

_ 1E4
2 L

U A7 =N7A; ;. (6.3)

Castigliano’s first theorem determines the force Q- corresponding to displacement Zp , and force éj correspond-

ing to displacement c}j . Theresults are
P oU _ EA,~ ~ P EA, ~
Qi == ="(qgi—q)+Npand 0; = ==(-qi+¢;) ~Nr. 64)
aqi

Note that éi + éj = 0, which isthe condition of equilibrium.
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Infigure 6.2(b) truss displacements of joint i are (¢,;_,, ¢,;) and for jointj are (¢,;_,, q,;) . Atjointi the

Fig.6.3 Relation between the
displacements components at joint i.

truss and axial displacementsarerelated by ¢,,_, = ¢;cos and g,;, = ¢;sin0 asshowninfigure6.3. Likewise

ajointj gy, _; = cfjcose and q,; = @sin@.Th&ee relations can be solved for the axia displacement in terms
of the truss displacements to get

q; = q,;_,€080 + g,,;sin0 q; = gp;_1€088 +¢,;8in0. (6.5)

The elongation of the truss bar i-j in terms of the joint displacementsis

A= qi=qi = (qay-1 = q2i-1) €080 + (g5, = ¢5,)sin0 . (6.6)

The elongation (6.6) is the sum of the projections of the relative displacements onto the reference axis of the
undeformed bar which is depicted in figure 6.4.

COSB(qu—l_qu—l)

Fig.6.4 Elongation of the bar asthe sum of projections of therelative horizontal
and vertical displacements along the direction of the undefor med bar.

For the m-th bar of the truss shown in figure 6.1, where, m=1, 2,..., 15, denote its extension stiffness by
(EA/L),, , itselongation by Ay, and denote the thermal force by N, . The temperature changeis uniformin
each bar, but can be different from bar to bar. The relation between bar index mand the jointsi and j of the bar are
defined by assignment. For example in figure 6.1, the bar identified by m = 2 may be selected as the bar connect-
ing joint 1 to joint 4, so its elongation (6.6) is

Ay = Ay = (g7—q)cosB, + (g5 —q,)sinb, .
The sine and cosine of angle 6, are determined from eg. (6.1). The strain energy of the assemblage is simply the
sum of the strain energies in each bar, where (6.3) is the energy for one bar. Hence, the total strain energy is

15

U= El{%(%) A,%—NTmAm} 6.7)

m
m=
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The displacements ¢,, and the corresponding forces Q,,, n = 1,2, ..., 16, used in the formulation of Cas-

tigliano’s theorem are the displacements and corresponding forces at the joints. Hence, Castigliano’s first theo-
rem for the truss shown in figure 6.1is

15

EA dA,,
= —)A, - Np, |— =1,2,..16. 6.8
Qn E [( L ) m TmJ aqn n 5~ > ( )
m=1
Example 6.1 Three-bar coplanar truss

The coplanar truss shown in figure 6.5 consists of three bars (m= 1, 2, 3) and four joints 1, 2, 3, 4. Beginning
jointi and end joint j for each bar are listed in the figure. Joints 2, 3, and 4 are fixed so their displacements equal
zero, and joint 1 is movable. The change in the thermal force in each bar is equal to zero. The spring stiffness of

the bars are denoted by (E4/L),, . Determine the 2 x 2 stiffness matrix using Castigliano’s first theorem.

Fig.6.5 Three-bar truss.

m jointi | jointj 0,

1 2 1

2 3 1

3 4 1 2 ~0, X
S S S S S

S ST

Solution. The elongation of each bar as determined from eqg. (6.6) is
A,, = cos(0,,)q, +sin(0,,)q, m=1,2,3. ()
Castigliano’s theorem (6.8) applied to this example yields

3

0, = 2 <E£é) [cos(0,,)q, + sin(6,,)q,][cos(6,,)] ®)
el m
3
0, = E (EL_A) [cos(0,,)q, + sin(6,,)g,][sin(6,,)] ©

m=1

These results are written in the matrix form

ki k
[Ql} - { 11 12] {‘h], «d)
2 ki kx| |4qn
where the elements of the stiffness matrix are

3 3 3
ky = El(%>mcosz(8m) ky, = 21<EL—A>msin2(9m) kyy = kyy = El<%)mcos(6m)sin(8m). (e)
m= m= m=

Note that this exampleis statically indeterminate, since there are only two equilibrium equations at the movable
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joint 1 but three unknown bar forces. For specified nodal forces Q; and Q,, matrix eg. (d) is solved for the nodal
displacements g, and d,. From eg. (a) the elongation of each bar is then computed, and from these elongations
the bar forces are determined from

EA
Ny = (7) A, m=1231 (M)
Example 6.2 Three-bar trusswith lack of fit

Consider the same three bar-truss of example 6.1, but now assume that bar 1 was too short and had to be
stretched an amount A; in order to connect it to joint 1. Thisis acase of lack of fit, and lack of fit is common in

the fabrication of structures. That is, before the external loads are applied (O, = O, = 0), thetruss bars experi-

ence initial forces due to the lack of fit of bar 1. Determine the initial forces in the bars using Castigliano’sfirst
theorem.

Solution. Lack of fit can be included in the energy analysis by modifying the specified thermal forcetermin the
strain energy (6.7). For uniform material properties and uniform change in temperature, the thermal forcein a

trussbaris N, = EAaAT. (Refer to eg. (3.75) on page 46.) Thefactor aAT = g, istheinitia strain dueto the
temperature change. Note ¢, isdimensionless. Now interpret ¢, astheinitial strain specified due to lack of fit.
Theinitial strain due to the specified displacement A required to connect abar to ajointise, = A/L.Let
N;— Ny = EA(A/L). The strain energy is modified to

U= é{%(%) A;—NMAM}. (@)

- m

m=1

The specified initial strainisonly for bar 1, so

3
1/EA EA\ +—
U= —(—) A2—<—> AA,. b
Ez L N m L . 171 (b)
m=1

Castigliano’s theorem (6.8) leads to

3
o= S [(E - 50 amea

m=1
O _ kyy kia| | g, _(E_A) A C?S(el) . @
2 kyy kx| 9> L7 sin(0,)

Elements of the stiffness matrix are the same as given by eqg. (e) of example6.1. Set 0, = 0 and O, = 0, since

no external forces are applied to the joint just after assembly. Then solve the matrix equation (d) for thejoint dis-
placements to get

The matrix form of eq. (c) is
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-1
9| — kyy kiy
q; kyy Ky, sin(6,) L

From this solution for the displacements we can cal culate the elongation of each bar after assembly from eg. (a)
in example 6.1. Theinitial bar forces after assembly are computed from

Cos<91>] (E4) ,. .
1

W) aea me () % ()

A specificcase: 6, = 30°, 0, = 45°, 0; = 60°,and E4 isthesamefor each bar. Teke L, = L, sothat
L, = L/J2,and Ly = L/(4/3). Thesolution for the displacements from eq. (b) are ¢, = 1.458A, and

¢, = —A,.Theelongationsare A, = 0.763A,, A, = 0.324A,,and A, = —0.137A,, and the bar forces from
eq. (f) are

N, = —0.237EA(A,/L) N, = 0.458EA(A,/L) Ny = =0237EA(A,/L) @)

6.1.2 Castigliano’s second theorem for a statically determinate truss

Example 6.3 Trussdisplacements

The truss shown in figure 6.6 consists of three barslabeled 1-2, 1-3, and 2-3. Joint 1 isafixed pin, and pinjoint 3
isfree to move vertically but not horizontally. A downward applied force of a84,000 N acts at joint 2. The cross-

sectional areasof barsare 4, _, = 900mm?, 4,_; = 300mm?,and 4,_; = 1,200mm? . Each bar has amod-

ulus of elasticity E = 70,000 N/mm?. The degree of freedom numbering is shown the figure. Determine displace-
ments g3 and g, by Castigliano’s second theorem

— 5
1000 mm
2 * 4
* — —?
1
750
i 84, 000 N Degrees of freedom

Fig.6.6 A dtatically determinate three-bar truss.

A note on static determinacy: Let m=the number of unknown bar forces, r = the number of support reactions,
and let j = the number of joints. There are two independent equilibrium equations per joint. For a statically deter-
minate truss, the number of unknown forcesis equal to number of independent equilibrium equations(i.e., 2j =m
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+r). For thetrussin thisexamplej =3, m=3, andr = 3. So it is statically determinate. For the truss in example
6.1,j =3, m=3,andr =6, and 6 < 3 + 6. So the trussin example 6.1 is statically indeterminate.

Solution. Freebody diagrams of joints 2 and 3 are shown figure 6.7. The diagrams are drawn assuming each bar
isin tension, so the reaction of the bar force acting on ajoint is an arrow aligned with the bar and pointing away
from thejoint. The objectiveisto determine each bar force in terms of external forces Qg and Q4. Note that Q3 =

0 and Q4 =—84,000 N, but we will wait to substitute these numerical values after the derivatives are evaluated in
Castigliano’s second theorem.

FBD joint 3 FBD joint 2

Fig.6.7 Freebody diagrams of two joints of the three-bar truss.

The only contribution to the complementary strain energy in (5.84) on page 145 isthe axial normal force N,
which is spatially uniform along the length of the bar. Also, there is no change in temperature from the reference
state. Hence, the complementary strain energy for the trussis

v =35, e (5, (), ) (2

Castigliano’s second theorem for the displacement gz is

_oU* _ (L aN1—2+ L N, _5 (L IN, _3
=50, = (F1), Momee (g, Memet(5), Mot (»)
00; 1-2 0; 1-3 0; 2.3 0;

73 EA EA
Thetermsin eg. (b) arelisted in table 6.1. Replace the derivatives of the bar forces with their valueslisted in the

Table 6.1 Termsin Castigliano’s theorem for displacements gz and q,

Bar  L,mm A, mm2 L/(EA), mm/N N IN/0Qy  IN/IQ,
1-2 750 900 11.90x10™° 0,+30,/4 1 3/4
1-3 1000 300 47.62x10° 0, 0 1
23 1250 1200 14.88%10° 50,/4 0 5,4
tableto get
6= (), N ()N o

Substitute the equation for bar force N;_, from the table in the previous equation and note that O; = 0 and
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0, = —84,000 N to get

L 6 3
= (= + 4) = (11.90x10 " mm +2(—84 N)) = —0. _ d
7 (EA>1_2(Q3 30,/4) = (11.90x /N)<0 4( 84, 000 )) 0.750 mm (d)

Castigliano’s second theorem for the displacement g, is

44

_M_:(L) N aN1—2+(L) IN| 3 (L> INy_5 (0

T 00, \EA),_y 70, \E4), L' TUa0, \EA), s PO,
Replace the bar forces and their derivativesin eg. (e) with their valueslisted in table 6.1 to get

= (L 3\ 4 (L L _ )
9 = (EA>1_2(0+3Q4/4)<4> +<EA>1_3(Q4)(1)+<EA)2_3( 5Q4/4)( 4)' o
Substitute numerical valuesinto eqg. (f) to get
_ —6 9 —6 —6 25
d4 = [(11.90x10 mm/N) = + (47.62510° mm/N) + (14.88x10 mm/N)E}(—84, 000 N) . (9)
Thefina result fromeg. (g) is
g5 = —0.750 mm g4 = —6.516 mm [l (h)
6.2 Beamstructures
Example 6.4 Cross-sectional properties of a thin-walled tube

The cross section is athin-walled tube with a circular contour of radius a and wall

A thicknesst. as shown in figure 6.8.
?A Solution. The x- and y- axes are axes of symmetry in the cross section, so the cen-
~ x troid and shear center coincide with the center of the circular contour. The paramet-
ric coordinates of the circular contour are x = acosf and y = asin, andthearc

\ ; length along the contour s = a6 ; 0 <0 < 2x. The cross-sectional area and first
) areamoments are
Fig. 6.8.
21 2n 21

A= ftad@ = 2mat 0, = fytadﬂ =0 0, = fxtad@ =0. (a
0 0 0
The first area moments equal zero since the center of thee circleis the centroid. The second area moments are

2n 2n 2
I, = fyztadﬁ = ma’t I, = fxztadﬁ = ma’t I, = fxytadﬁ =0. (b)
0 0 0

Since the product areamoment is zero, then coefficients n, = n, = 0 and £ = 1 from eq. (4.4) on page 79. To
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compute the transverse shear compliances given in eg. (4.30) on page 83, we need to compute the distribution
functionsfrom eqg. (4.19) and eqg. (4.26). The distribution functionsfor the first area momentsfor a segment of the

contour froms = 0 tos = ab aregiven by

0 0
0.(0) :fytadﬂ = a2t(1 —cos0) 0,(0) =fxtad8 = a2tsin0 . ©
0 0

The coordinates normal and tangent to the contour with respect to the shear center are

= () ) = = {ade) e = O @

(Refer to eg. (3.10) on page 34.) The area enclosed by the contour is

2w
A, = %‘frnade = ma?. (e)
0

The shear flow distribution functions given by eqgs.(4.19) and (4.26) on page 82 for the closed section are

2n

I .
F, = 10,0)-= (r,0,(0)ado | = L5100 - sinb oy 0
1= 24, y I, am
0
2 5
1 1 a-t —cos0
F, = —0.(0)- 0)add | = —( <L) cosh = =22
y ,JQA )= 54 [ 100 } () cose = =2 ©
0
Finally, the transverse shear compliances are
2w 2m
1 wadt 1 1 1
= — (F%(0)add = =— = = — (F%(0)add = ,and h
Cax th #(0)a GI2, wmatG y th y(0)a watG ™
0 0
2n
-1 _ ,
Gy = o [F.(0)F,(0)]add = 0. (i)

0

For a uniform shear modulus around the contour, the torsion constant is determined from eqg. (3.161) on page 70
as

442 2)2
el G R PR N Q)

fd_s 2na
t t
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6.2.1 Castigliano’s second theorem

Example 6.5 Thin-walled tube subject to radiant heating

A common structural member in orbiting space structuresisa
Y thin-walled tube. Tubes are used as truss members and for
satellite booms. Solar heating combined with heat conduction
Fig. 6.9 VA resultsin the distribution of temperature around the perimeter
Egegliﬁgt of - X and along the length of the tube. The datain this exampleis
atube. for an aluminum 6061-T6 tube taken from Thornton (1996,
~ pp. 118-121).
t
A thin-walled tube with acircular contour of radius a, and
wall thicknesst is subjected to radiant heating as shown in
figure 6.9. Thetubeis cantilevered, that is, fixed at z= 0 and freeat z= L, where L isthe length of tube.The
change in temperature from the reference state is uniform along the length but it varies around the perimeter. and
is specified by

AT(0) = T+T,cosb 0 €[0,2x]. @

where the average temperature is denoted by T and the perturbation in temperature is denoted by 7', . Data for
thisexample are listed in table 6.2.

Table 6.2 Numerical data for example 6.5

radius a = 0.03812 m Poisson’sratio v = 0.33

wall thickness = 714x10m coefficient of thermal expansion  _ 53 15760,
tube length L =08m average temperature T = 462°K
modulus of elasticity E = 683 GPa perturbation temperature T, = 34°K

Determine the displacements g, and g3, and rotation gg of the cross section at the free end using Castigliano’s
second theorem. The degree of freedom numbering is shown in figure 6.10.

Fig.6.10 Degree of freedom
numbering at the free end of the
cantilevered tube.

Solution. From egs. (5.83) to (5.85) on page 145 the complementary strain energy in thisexampleis

162 Aerospace Sructures



Beam structures

(N+Np)? (M, +M )2 (M, +M,;)? M?
f[ T) T) ( y yT) + Cxx V)% + ny V)% + _z}d (b)
T2 EI. EL, GJ

The cross-sectional properties were determined in example 6.4, and they are

A = 2mat = 27(0.03812m)(7.14x10 'm) = 171.014x10 °m?, ©
I, = I,, = nadt = 7(0.03812m)3(7.14x10 'm) = 124.25x10 m*,and J = 2ma’s = 248.50x10" m*. (d)
The shear modulusis given by theisotropic formula G = E/(2(1 +v)) = 25.6 GPa, so the transverse shear

compliances are

1 1 456.61x10"°

Cox = Cppy = = = . (e)
Yo matG o 5(0.03812m)(7.14x10 "m)(25.6x10°N/m?) N
Thethermal axia forceis given by eqg. (3.75) on page 46, and thermal moments are given in eg. (3.78). Material
properties are uniform along the contour and x = acosf, and y = asin® inthe thermal action formulas. The
results for these thermal actions are

2% 2n 2n
Np = Eo [ATtadd = 2xatEal My = Eo [ATytadd =0 M,; = Fa [ATxtadd = na’tEaT,, ()
0 0 0

Ny = 27(0.03812m)(7.14x10 'm)(68.3x10"N/m?2)(23x10 °°K)(462°K) = 124.11x10°N,and  (q)

M., = m(0.03812m)2(7.14x10 'm)(68.3x10’N/m?)(23x10 *°K)(34°K) = 174.10N-m . )

y

The free body diagram of the tube in the x-z plane is shown in figure 6.11. Generalized forces Qq, Q3, and Qg are

introduced at the free end to facilitate computing the corresponding displacements via Castigliano’s theorem, and
they are set equal to zero at the end of the procedure (i.e., they arefictitious actions).

Vx Ql
0;

- . X M. N
Fig.6.11 Fictional actions < <_Q/Iv¢
acting at the free end of the z

cantilevered tube.

0Os

Equilibrium of the free body diagram in the x-z plane yields
N = 0, V. = 0, M, = 0s—-0,(L-2z) M, =0 z€[0,L]. 0)

Since generalized forces 0, = O, = 0, equilibriuminthey-zplaneyields ¥/, = M, = 0 for z&[0,L]. The
complementary strain energy reducesto

Aerospace Structures 163



Article 6.2

[(Q3+NT)2 [QS_QI(L_Z)+MyT]2+ 01 }dz i)

2f El, natG

Displacement g is determined from

QU™ (Q3+N)6(Q3+NT) [Q5 Q1(L Z)"'M}T]G[Qs (L Z)+MT] aQ] -
190, 0{ EA 90, El 90, natG(E)Q”

(k)

yy

where we interchanged the derivative and integral since our functions are continuous. Performing the derivative
inside the integral we get

L L
1 1
q = ETy)f[QS_Ql(L z) + M, r)[~(L —z)]dz + thQl(l)dZ' 0}
0 0
Now set Q; and Qg equal to zero and find
2
( )f (L—2)]dz = —L MyT _ —(0.22 m)2(174.10 N-m) - = 6565x10"°m . m)
2EL,  2(68.3x10° N/m2)(124.25x10 m*)

Axial displacement g3 is given by

- aU* {(Q3+NT)6(Q3+NT) [Qs_Ql(L_Z)+MVT]6[Q5_Q1(L_Z)+MVT]+ Q] (a—Qlﬂdz

q
3760, EA 905 El, 90, natG\9Q,

(W)

Since Q3 = 0, the latter equation reduces to

L

3
g = (El_A>f(Q3+NT)(1)dZ Ly - (0.8m)(124.11x10°N)
0

T .
EA (68.3x10'N/m?2)(171.014x10 °m2)
0;=0

= 85x10°m. (o)

Finally, the rotation in radians about the y-axisis given by
L
1
qs = (77) (195 = OQ(L—z) + M, ][ 1]dz ;
<Ely)ﬂ 5=l T
0,=05=0
LM,y _ (0.8 m)(174.10 N-m)

; —— = 1641x10 rad | ®)
EL,  (68.3x10° N/m2)(124.25x10 " m*)

qs =
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Example 6.6 Wing spar subject to a distributed spanwise air load

A light airplane experiences atotal lift L = 12,000 Ib. in a certain symmetric maneuver. Thus, the lift acting on
each wing is L/2. Assume the airload is distributed elliptically over the wing, so that the airload intensity £, per
unit span is given as

J-l:Z}'I’la)C Zma

2
fL:‘Z—L l—(ix) Osz=z,,., (a)

where zis the spanwise coordinate, z= 0 at theroot, and z = z,,,, at thetip of thewing. Seefigure 6.12 (a). The

spar of thewingisauniform, longitudinal, thin-walled beam with a closed section stiffened by four longitudinal
stringers as shown in figure 6.12 (b). This cross-section is the same one shown in figure 3.24 and analyzed in
example 3.4 on page 71. Assume the spar is clamped at the root and free at thetip (i.e., a cantilever spar). At the
tip of the spar we will use Castigliano’s second theorem to find the vertical displacement of the shear center
denoted by g,, and to find the torsional rotation of the cross section denoted by gg. To use the theorem, we intro-

duce afictitious force Q, corresponding to displacement ¢, and afictitious torque Qg corresponding to rotation
g A typical cross section of the spar with the locations of the centroid (X¢), the shear center (Xg), and theline
of action of the airload (X ) with respect to the vertical web are shown in the |eft-hand sketch of figure 6.13. The
right-hand sketch in figure 6.13 illustrates that the airload is statically equivalent to the external line load inten-
sity f, and line moment intensity m, resolved at the shear center.

/1

T T
th |

|
(@) Wing loading Ap

N
S

Fig.6.12 : (a) Wing spanwise airload intensity and fictitious actions Q, and Qg of example 6.6.
(b) Wing tip cross section and the corresponding generalized displacements g, and gg.

Numerical datafor the cross-sectiona dimensionsarelisted in table 6.3. The materia isan aluminium alloy with

Table 6.3 Cross-sectional data for the wing spar

Dimensional data of the cross section

Ay, stringer 1 flange area 0.30in.2 b, length horizontal web 7.0in.
Asz , stringer 2 flange area 0.70in.2 t, wall thickness 0.030in.
a, nose web radius 6.0in XL, location of the airload 10.0in.

aYoung'smodulus E = 10.5 x10° ksi , ashear modulus G = 4.0x10’ ksi , and with ayield strength

o = 44 ksi . Additional cross-sectional properties computed from example 3.4 on page 71 are listed in

yield

Aerospace Structures 165



Article 6.2

statically
equivalent

Fig. 6.13 example 6.6: Typical cross section of the uniform spar.

table 6.4.

Table 6.4 Datafrom example 3.4

A, areaof the cross section 3.3455 in.2

Xc, horizontal |ocation of the 352367in. ¢y, compliance coefficient in 1.64758\ 1
centroid transverse shear? ( in.2 ) G
Xsc, horizontal location of the 6.39638in.  c,,, compliance coefficient in 0.0189201\ 1
shear center torsion? ( in.4 ) G

I Second area moment about 101.619in% A areaenclosed by the contour 140,549 in.2
the x-axis

(5 yax

4 max
F2.(s,) T .

a Note: fromeq. (5.65) onpage 143 ¢, = E f %dsi , where the shear flow distribution functions ' ,(s;)

i=1 o

are given by egs. (d) to (g) in part ¢ of example 3.4.

b. Note: ¢,. = (GJ)™!, and from eq. (3.160) on page 70 the torsion constant J = (4A§)/<f§) .

a) Determinethe statically admissible bar resultantsinthe spar for 0 <z <z

max *

b) Determine the generalized displacements g, and gg of the shear center at z =

= Zmax
c) Tabulate the displacement g,, percentage of the displacement g, dueto transverse shear, and the rotation

g of part (b) for the following spar lengths: z,.,, = 12, 24, 60, 120, 1800, 240, and 300 in. Also, tabu-

late the ratio of the maximum von Mises effective stress (eg. (4.31) on p. 84 ) to theyield strength in the
semi-circular web, or branch 1, at z= 0 for the same set of spar lengths.

Solution to part (a). The external distributed line load intensities resolved at the shear center are shown figure
6.13. Intermsof the specified airload /, = f; and m, = ef, ,wheree = X, — X5 . Thedifferential equation for
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the transverse shear force Vy, is given by eq. (3.54) on page 43. Substitute the expression for the airload to get the
shear force as

= ) G5 e = Qles2) -(5) =) Jrer @

max max max max

Note that the integration is facilitated by the substitution z/z

The constant of integration ¢, is determined by the boundary condition ¥ (z,,,.) = Q,.Hencec, = Q,,and
the final result for the shear forceis

= (Do) =) - () Jres ©

max max max

= cos0, and using trigonometric identities.

max

The shear force at the root for Q, = 0is I{V(O)‘Q 0 " L/2.

The bending moment M, is determined by eq. (3.55) on page 43. Substitute the result for the shear force'V,,
into eg. (3.55) to find

Zmux max max

= {82 - o

Again, theintegration for M, isfacilitated by the substitution z/z,,,, = cos6, and using trigonometric identities

to get
= (B - () A2 T (Do e o

The constant of integration c, is determined by the boundary condition M, (z
and the final result for the bending moment is

M = (LZ—;H) [_m +%[1 _<Zmzax> 2}3/2+<Z;X> acos(zrjﬂxﬂ—Qz(zmax—Z)- ©)

. . 2L
The bending moment at the root of the spar for Q2:0|sMx(0)\Q — = —;ZM
2" TT

= 0.Hencec, = “Zpmax Dy

maz)

From eg. (3.61) on page 43, and that m, = ef; , we can express the torque M, as

dam,
dz

-m, = —ef; . (e)

Hence,

2
M, = —ef 2L 1—<L> dz+cy =
max Zmllx

®

|
|
Q
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—
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The constant of integration c3 is determined from the boundary condition M._(z = Qg , wWhichyields

max)

cy = e% + Qg . Thefinal result for the torque is

2
u.= S-S 5) -5 ) oo @

The torque at the root of the spar for Qg =0is M_(0) ‘Q 0 " eL /2 \We have determined the statically admissi-

ble shear force Vy, bending moment My, and torque M, in the wing spar in terms of the distributed airload, exter-
nal force Q,, and external torque Qg.

Solution to part (b). From egs. (5.84) and (5.85) on page 145, the total complementary strain energy for the bar
inthisexampleis

1 x
U= Ef(F+CYJ’Vy2+cZZM22)dZ' (h)
0

Castigliano’s second theorem for the vertical displacement of the shear center is

Zmax

* T M. oM v oM
g, = - f[ Lo Ve M, Z}dz ()
aQ2 _ _ EIxxaQZ . aQZ an
0,=04=0 0

0,=0,=0
Note that the torque is independent of force Q,, so that dM,/90, = 0.Let g, = ¢,,, +¢,, ., Where ¢,,, isthe
portion of the displacement due to bending moment M, and ¢,, isthe portion due to transverse shear force Vy,.

Zimax Zimax

M. oM
o= (5550 = 5 [ M=z . 0
El 00, ElL.

0 0,=0,=0 0 0,=0,=0

Substitute eg. (d) for My with Q, = 0 into eqg. (j), and perform the integration to get

L(=32+45m)z3
dom = . (k)
720EI_x

The portion of the displacement due to transverse shear force Vy is

Zimax

av,
f {cnyy—*andz
0

max

- Cy:{ {(iﬂacos( z )_(Zz ) 1_<Zz)2}}{1}dz = 5?:&‘ 0

Zm ax max ma.

qry =

0,=0¢=0
Add egs. (k) and (1) to get the total vertical displacement at the shear center as

max

720E1, 7 3n

_ L(=32+45m)z3 . 2¢, Lz, .. .

q, (m)
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Castigliano’s second theorem for the rotation of the cross-section at z = 7,5, about the shear center is

* oM av. oM
gs = Y = f [ £ m, Ste, V===t M, ﬂdz (n)
aQ6 0,=0,=0 0 E]xx aQ6 i aQé aQﬁ

0,=0,=0
The bending moment M, and transverse shear force Vy, are independent of the external torque Qg. Hence,

z

max

ouU” el elL|/ z z \2 . z
= = = —-= 1- + 1]dz.
q6 aQé czz { 2 T [(Zma'c) <Zmax> e <Zmar>} }[ ] - (O)
0,=0s=0 0 . :
Theintegration of eqg. (o) yields
_ ZCZZeLZma)C ( )
s 3¢ P

Solution to part (c). Numerical evaluation of the displacementsyields

g5, = (1.0489x107)z g = (43905x107in. 1)z, . @

max

_ (5.438x10°1\ _,
q2m - <—'—'2_—>Zmax
n.

The expression for the shear flow is given by eg. (3.163) on page 70. At the root cross section the equation
for the shear flow reducesto

4(5.0) = M.(0)/(24,) = F,(s)V,(0). 0
The torque results in a spatially uniform component to the shear flow around the contour equal to
q, = M,(0)/(24,) = 76.9188 Ib/in. . (s)
(Refer to eg. (3.165) on p. 70).The total shear flow in each branch is
q,(s5 0) = 76.9188 Ib/in. = F,(s;)(6000.0 1b.) i=1,23,4, (t)

where the contour coordinates s, are shown in figure 3.24(b) on page 71, and the shear flow distribution func-
tions F,,(s;) aregiven by egs. (ab) to (ae) in part ¢ of example 3.4. The shear stress distribution along the con-

tour in each branch is given by
055, 0) = [g,(s;, 0)]/1 i=1,234. )

Inthisexample 7,, = n, = n, = 0 and k = 1 intheaxial normal stress given by eq. (4.6) on page 79. For no

changein temperatureand N = M, = 0, the axial normal stress eq. (4.6) at the root cross section in each
branch reduces to

M_(0)y.(s;
x(—)y’(sl) = [(—250591 &)Zmax}yi(si) i=1,234. V)
Ji in.4

XX

o,(s,0) =

The parametric equations for the y-coordinates of the contour in each branch are
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yi(sy) = —acos(s,/a) Y, = a y3(s3) = a—s; Yy = —a. (w)

(Refer to figure 3.24 on page 71.) From eq. (4.31) the von Mises effective stressis

(GMises )i = /\/[Ozi(sl'a 0)]2 + 3[0—2S[(S[> 0)]2 i = 17 27 3> 4. (X)

The von Mises effective stress normalized by the yield strength is plotted with respect to the contour coordinate
for z,,ax = 60 inchesin figure 6.14. As shown in the figure the maximum normalized effective stressis0.383 at s

= 4.696 inchesin branch 1. In terms of an angular measurement in the semi-circular branch 1, we note the loca-
tionass,/a = (4.696/6)(180°/m) = 44.8°. For the other values of z,,,, the maximum value of the von
Mises stress also occurs in branch 1 but at different angular locations. Discontinuities in the von Mises stress

with respect to the contour coordinate are aresult of the jumpsin the shear flow across the stringers. (Refer to eq.
(3.135) on p. 65).

0.4y

e
_/ ! ~_
0.383—" .| :
1
Fig.6.14 Normalized Owmi 1
von Mises effective - Alses ol ! \ /
stress plotted with yield !
respect to the contour .
coordinate sat theroot ol Zoax = 00in.
cross section of the ' ! 4.696 in.
Spar. :/_
' 1 1 1 1 S’n
0 10 20 30 40 '
| branch 1 I2|'3'|4I

Numerical results are listed in table 6.5.

Table 6.5 Wing tip displacements and wing root stresses as a function of the span

Wing tip Wing root
Z o 10 q,, in. 42/ q2 % q, deg. OMises” Oyield  51/@ , deg.
12. 0.0135 93.1 0.0298 0.379 90.0
24, 0.0327 77.0 0.0597 0.379 90.0
60. 0.180 34.9 0.149 0.383 44.8
120. 1.066 11.8 0.298 0.509 8.82
180. 3.360 5.62 0.448 0.683 381
240. 7.77 3.29 0.597 0.872 213
300. 15.0 2.10 0.746 1.07 1.36

Note that as the length of the spar increases the percentage of the vertical displacement at the tip due to trans-
verse shear decreases and the von Mises effective stress increases. At z,,4, = 300 in. the von Mises stress exceeds

the yield strength of the material indicating failure by material yielding.
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6.3 Coplanar Frames

Frames are also skeletal structures composed of slender bars that can transmit axial, bending, and transverse
shear loads. The bars act as beams with a superimposed axial load. Joints in aframe are usually assumed rigid,
which means that the rotation of all bars connected to the joint are the same. Moments can be transferred through
arigid joint, but not a hinge joint, nor ball-and-socket joint. A frame structure may also contain some hinge
joints.

Example 6.7 A frame of two tubular bars

The tubular post shown in figure 6.15 supports aload of 250 N at o
the free end. The diameter of the cross-sectional contour is 100 “g'dJomt\l 3000 mm
mm and the wall thicknessis 3 mm. The materid is steel with

modulus of elasticity of 206,000 N/mm? and a Poisson’s ratio of

0.3. Each bar of the frame has the same uniform geometric cross 6000 mm
section along its length. Find the vertical and horizontal displace-

ment of the free end.

250 N

Fig.6.15 Tubular

Solution. We use Castigliano’s second theorem to determine the V// /8

displacements of the free end for this statically determinate struc-

ture. A horizontal force Q isintroduced at the free end so that the horizontal displacement can be computed from
the theorem. Also, let P = 250 N. The complementary strain energy is determined from egs. (5.84) and (5.85).
Since there is no change in temperature nor torsion, the complementary strain energy is

2
1 2
s
Ea 2EA4 2EI o J : @

rs 0
Let up denote the displacement corresponding to force P, and let u, denote the displacement corresponding to
force Q. These displacements are given by

_ U

Ut
‘TP

uo = 55 (b)

P=250,0=0 P=250,0=0

The coordinate system in each bar is shown in figure 6.16 (a), the free body diagram for the vertical bar in figure
6.16 (b), and the free body diagram of the horizontal bar is shown in figure 6.16 (c) The partial derivatives of the
complementary strain energy for the frame with respect to the external loads are

L
(NGON, M oMy, (NN, My oM,y

U = [ A o (5
dP f EA 9P EI_ 0P 7 'opP) ! f EA0P  EI_oP
0 0

V2 ¥ ) dz, , and (c)

L,

U <N1 ONy MMy Y, N, aN, | M, oM,

—L 4 —dz, + +
aQ FA90 EI_ 00 1aQ> “l f(EAaQ El_ 90 ¥
0

—) dz, , (d)

where L, = 6000 mm and L, = 3000 mm . Equilibrium determines the internal actions &, ¥, M in each bar.
Theresults are

N, = —P V,=-0 M, =LP+(L -z)0  z €[0,L,],ad ©
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Zl P Vl 2 P
\ ? %1 FBD 1 FBD 2
y] <t 71/1 Nl
(@ (b) (c)

Fig.6.16 (a) Coordinatesin each bar. (b) FBD of vertical bar. (c) FBD of horizontal bar.

N, =0 V, = -P M, = (L,—z,)P z,€[0,L,]. ®)
Evaluating the partial derivatives based on equilibrium conditions we get

Ly

o f[(EZ)(‘l“ IR L) + 6, (—0)(0) iz +

oP El_
OL
{80+ B2, 2y (1)
0 ' ,and ©
Ly
aa_UQ*_ = f[(gi)(o)"-(sz +(EI}1 —Zl)Q)(Ll —z)) +ny(_Q)(_1)szl n
0 XX
L,
Qa0+ E22h 0+, (P10 e
) XX ' .

The displacements can now be computed from the expressions for the partial derivatives as

L L
o p+L§Pd . 2(L2—22)2P+ Pl _ P, L3P 3P
= [\ea e | [ TR, e T EA EI,  3EL, 72
0 ’ 0 ' P =250 —_— P =250
bending 0
* b (L,P) L2L
o = aaUQ - f{Ei (L‘_Z‘)}dz‘ = SEL »
P=250,0=0 7 xx P =250 o lp =250
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Castigliano’s second theorem and statically indeterminate structures

The formulas for the section properties are given in example 6.4 on page 160. For ¢ = 50 mm and 7 = 3 mm
we get

A4=300mmm? ¢, = ——a— [ = 375000 mm*. ®)
’ G(150 mm?) )

For an isotropic material the shear modulusis computed from G = E/[2(1 +v)], which evaluates to

G = 79231 N/mm?2 . Numerical evaluation of the displacements gives

_ _ (6000250 _, (6000)(3000)2250 , _ (3000)3250 _, _ (3000)250
P 7 (206000)(3007)  (206000)(375000%)  3(206000)(375000%)  (79231)(1507)

up = 0.0077259681 + 55.62697 +9.2711617 + 0.020087459 = 64.925946 mm , and (m)

U]

_ _(6000)2(3000)250
2 7 2(206000)(3750007)

= 55.62697 mm . (n)

Note that the contribution to the displacement «,, dueto bending is 55.62697 +9.2711617 = 64.898132 mm,
64.898132
64.925946

frames composed of slender barsisdominated by bending, and the contributions dueto axial stretching
and transver se shear defor mationsto the deflections can be neglected. [l|i

whichis( )100 = 99.957161 % of thetotal displacement. Asa general rule the deflections of

6.4 Cadtigliano’s second theorem and statically indeterminate
structures

A statically indeterminate structure is one in which the number of unknown forces exceeds the number of inde-
pendent equations of static equilibrium. The excess forces are called redundants. By removing supports and/or
membersin a statically indeterminate structure equal to the number of redundants, a stable statically base struc-
ture can be obtained. To determine the redundants, we can imposed displacement compatibility using Cas-
tigliano’s second theorem. A stable statically determinate base structure is capable of resisting the external loads.
Removing a support reaction or amember in statically determinate structure rendersit unstable—it is not capable
of resisting external loads and it is classified as moving mechanical system (i.e., either a mechanism or linkage).

Consider a coplanar truss which consists of straight bars connected by smooth hinge joints with the external
loads applied only to the joints. As discussed in example 6.3 on page 158, atrussis statically determinate if
m = 2j—r and statically indeterminate if m > 2j —r, where m denotes the number of bars or members, j the
number of joints, and r denotes the number of reaction forces at the supports. Even statically determinate trusses
can be unstable if the members are not arranged properly. Statical determinacy is anecessary condition for stabil-
ity, not a sufficient condition. Each truss must be examined individually to determine stability. For the truss
shown in part (@) of figure6.17, m=9,r =4, andj = 6, so it isstatically indeterminate. If the upper left support is
removed and replaced with a horizontal force Q, then a statically determinate base structure results as shown in
part (b) of figure 6.17. The force Q is the redundant and it is treated as an external load on the base structure.
Equilibrium of the base structure determines the internal bar forcesin terms of external forces P and Q. The solu-
tionto the trussin part (@) is effected by imposing the displacement corresponding to force Q to vanish via Cas-

tigliano’s second theorem (i.e., ¢ = aU*/dQ = 0). This displacement compatibility condition determinesthe
redundant Q.
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P

.
@ N

Fig.6.17 A singly redundant truss (a), and itsstable statically deter minate base structure (b).

Example 6.8 Statically indeterminate truss

Consider thetruss shown in part (a) of figure 6.18. The horizontal bars and the vertical bars have alength denoted
by L, and each bar has the same elastic modulus E and same cross-sectional area A. For thistrussm=6, r = 3,
and j = 4. So thetrussis statically indeterminate. Note that thistrussis statically determinate externally, but is
statically indeterminate internally. Determine the bar forces in terms of the external applied load P.

4 TP3 7 TP Q\4

2

(@) (b) © ™y

@4

Fig. 6.18 (a) Statically indeterminatetruss. (b) Statically deter minant base structurewith bar
2-4 replaced by forcesFq and F». (c) Bar 2-4 subject to equal and opposite for ces.

Solution. Consider a statically determinate truss with bar 2-4 removed, and aforce F, acting at joint 2 and a
force F, acting at joint 4 as shown in figure 6.18 (b). These forces are oppositely directed along aline action
coinciding with the removed bar 2-4. Let the complementary strain energy for this statically determinate, five-bar

truss be denoted by f/* . We employ Castigliano’s second theorem to determine the displacement u; correspond-
ing to force F4 and displacement u, corresponding to F». That is,

oUu _ 1 6N12

. D e = N
" 9F, EA[ 259k,

aN aN aN. aN.
+2LN LR LN, F“‘ +LNy =2+ LN, aFﬂ i=1,2. (@

The bar forces are determined by joint equilibrium, and the results are shown in table 6.6. Bar forces are assumed
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positive in tension.

Table 6.6 Termsin eg. (a) for Castigliano’s second theorem

Fy=F, =0
NN N N
Bar LengthL  Axial forceN IN/IF, IF, IF, 00
1-2 L —F\/ 2 ~1/.2 LF,/2 0 LO/2
L NGY) Fy+.2P 1 J2LF, +2LP 0 J2LO+2LP
4 L —F,/ 2 0 0 (LFy)/2 | (LQ)/2
2-3 L —F, /2 ~1/.2 LF,/2 0 LO/2
34 L —F/2-P  -1/2  LF/2+LP/J2 O LO/2+LP/ 2

The sum of elements in column five divided by the product EA determines displacement u,, and the sum of col-
umn six divided by EA determines u,. Simplifying the results leads to

3422

ul_EA[ 2 }1 EA[“[Z}

—L——F2 . (b)

P and u, = TE4

The relative inward displacement between joints 2 and joint 4 is given by the sum u, + u, . For equal and oppo-

siteforcesweset £, = F, = Q, and then the relative inward displacement reduces to

)= —[2 210+ [“ﬁ} ©

A =u,tu
1/2 1 2\F1 )

=F,=
The seventh column in the table is obtained by setting #, = F, = Q. The sum of elementsin the seventh col-

umn divided by EA is derivative of EJ* with respectto Q; i.e,,

U Ly L[4+./2
0 - Loos o L[4
We conclude that the relative inward displacement between joints 2 and joint 4 is given by
_ U
A, = @' (e)

The elongation of bar 2-4 is denoted by A,, and its complementary strain energy is denoted by U*,, .

Hooke's law for bar 2-4 is given by eq. (6.2) on page 154, whichfor N — Q and L — /2L issolved for its elon-
gation. The complementary strain energy is given by eqg. (5.84) on page 145. These relations are
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ﬁL 1 2L
— = — = f
24 2FEA f 2EAQ ®
0 N=0
Castigliano's second theorem is ngz“ - «2L -0, whichis equal to the elongation. Thus, A, = E/sz;_

Geometric compatibility of the statically indeterminate, six-bar truss requires the relative inward displace-
ment between joints 2 and 4 equals the negative of the elongation of bar 2-4. In other words, the sum

A, +A,, = 0.Hence,

goauUr
Ay jptAy = %*‘ 8Q24 = aa(é 0, ()

where the total complementary strain energy of the statically indeterminate six-bar trussis U* = f/ +U .
Hence, Castigliano’s second theorem applied to the six-bar trussis

W= iy pios LR s 2Ly = Lo pio+4+.)PY2) = 0

00  EA
ﬂ. AU
90 90 )
From eg. (h) we determine the redundant as
0 = _<—4+f2 )p = —0.56066P. (i)
4(1+.42)

Finally, the bar forces are
Ny_, = 0.396447P N,_; = 0.853553P N,_, = 0.396447P
N,_5 = 0.396447P N,_, = =0.56066P Ny_, = —0.603553P 0

The conditionthat 0 U*/0Q = 0 isinterpreted as the relative displacement between the faces of an imagi-
nary cut in bar 2-4 is equal to zero i

If the solution of the truss in example 6.8 was undertaken using Castigliano’s first theorem, it would lead to
five simultaneous linear equations for the unknown joint displacements g5, 44, 95, g4, and,qg in terms of the
applied load P. (Refer to “ Coplanar trusses’ on page 153 for the displacement numbering convention.) After
solving for these simultaneous equations for the joints displacements, the elongations of each bar, A, _;, would

_j 1
be computed from eq. (6.6) on page 155. Lastly, the bar forces are determined from N, _; = (EA/L);_/A;_;.

Using Castigliano’s second theorem for this singly redundant truss, we only had to solve one equation for the
unknown redundant Q. The number of simultaneous equations to be solved in a statically indeterminate structure
by Castigliano’s second theorem is equal to the number of redundants.
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Example 6.9 King Post truss

In this example we paraphrase the problem 5000 Ib
statement given in the text by Bruhn (1973, p.

A8.42). The structure shown in figure 6.19 con- A D C
sists of membersADC, AB, BC, and BD. Con-  Fig. 6.19

tinuous member ADC is simply supported at King Post _
. Truss. T4 r#. |60 in
endsA and C, has an area of 9.25 in“, and a sec- |
ond area moment of 216 in*. MembersAB, BC L B
and BD have areas of 2 in?. The modulus of : :
120 in 120 in

elasticity isthe same for all members. Deter-
mine the internal actions in each member using
Castigliano’s second theorem.

Solution. Thisstructureis statically determinant externally. Also, the structure, its support conditions, and the
P y %
A D C A ‘ !s
E ] N 0=sz<L
| A
g p L P TNi o M
2 2 N
Q BD
B
L—»L—»l \ A
L L \ Q Q
B
o B

(a) The structure removed from its supports \ B

Sl
1Ny

(b) MembersAD, AB, and BD
Fig.6.20 Freebody diagrams of the King Post truss.

external loading are symmetric about the vertical line of action of the 5,000 Ib. force. The support reactions of the
truss removed from its supports at A and C are shown in figure 6.20(a). Consideration of the free body diagrams
of membersAD, AB, and BD in figure 6.20(b) leads to the conclusion that this structure is statically indetermi-
nate internally. The redundant Q is taken as the axial force in member AB. If Q is known, then the forces and
moments in the other members are determined by equilibrium. Neglecting the energy due to transverse shear in
member ADC, the complementary strain energy is

L

U = 2{[ N M2}d2+2[LABQZJ+(L/2)N123D'

2EA,. 2EI 2EA 2EA @

Note that the complementary strain energy in members AD and AB are multiplied by two to account for the
energy in members DC and BC, respectively. The compatibility condition that the relative displacement of an
imaginary cut in member AB vanishesis that the derivative of the complementary energy with respect to Q
equals zero. Thus,

0 = 2}{ N (8_]!) +M(Q_A/_I> }dz+2LABQ+ (L/z)NBD<aNAB) _ ®)
0

EA,\oQ)  EN9Q EA EA 20
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Equilibrium equations of member AD are
N+ Qcosp =0 V+P/2—-Qsinff =0 M+ (P/2—-Qsinf)z = 0 Osz<L. (c)
The axial equilibrium equation for member BD is
Ngp+20sinp = 0. (d)

Substitute member axial forces and moment from the equilibrium eg. (c) into the compatibility condition (b) to
get

L
0= 2f{§:g%@(—cosﬁ)+[‘“’/z ;IQSinB)Z][(sinB)z]}dz+2L£jg+(L/z)(ngSinB)(—Zsinﬁ). ©
AC
0

Perform the integration in eq. (e) followed by the substitutions L ,, = (J/5L)/2, cosp = 2/(./5), and
sinp = 1/(4/5) tofind

0 = 2( —L3P , 4LO L3Q> +zLQ+[5LQ_ "

6./5E1 S5EA,. 15EIl S5EA  EA
Solve. (f) for the redundant Q:

B 544 ,.L2P
2441+ 64, oI+ 1554, oI + 244, L2

()]

Substitute the numerical values for the quantities on the right-hand side of eqg. (g) to find the redundant:

J5(2)(9.25)(1202)(5000)

= = 4,787.18 Ib. (h)
24(2)(216) +6(9.25)(216) + 15./5(9.25)(216) +2(2)(9.25)(1202)
The axial forcein member BD from eqg. (d) is
- _ 1Y - .
Nyp = 2(4787.18)([5) —4281.78 Ib.. (i)

The negative value of N, means member BD isin compression. The axial force and bending moment in mem-
ber AD is

N=—(4787.18)2/./5 = 428178 b. M = (—2soo+ 474[“8 )z = (359.111b)z  o0=z<120in[ll )
5

6.4.1 Function of a Turnbuckle

A turnbuckle isametal coupling device consisting of an oblong piece, or barrel, internally threaded at both ends
into which the corresponding sections of two threaded rods are screwed in order to form a unit that can be
adjusted for tension or length. A right-hand thread is used at one end and aleft-hand thread at the other end. The
device either lengthens or shortens when the barrel isrotated. Each full turn of the barrel causesit to travel adis-
tance p along each screw, where p is the pitch of the threads. Tightening the turnbuckle by one turn causes the
rods to be drawn closer together by a distance 2p. That is, one turn to tighten causes the device to shorten by 2p.
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For n turns the shortening distance is 2np, where n need not be an integer. Turnbuckles are widely used in air-
craft. Biplanes may use turnbuckles to adjust the tension on structural wires bracing their wings as discussed in
example 6.10 below. Turnbuckles are also widely used with flexible cablesin flight control systems.

Example 6.10 Rigging biplane landing and flying wires

An acrobatic biplane has a maximum gross weight of 1,700 |bs. and awing span of 25 feet. The cross sections of

the lower and upper wings are thin, so the wing structure is strengthened by external bracing. As shown in figure

6.21 the bracing consists of landing and flying wires connecting the fuselage to the wings at the interplane strut.
Turnbuckles inserted in the landing and flying wires are used to pre-tension the wires by changing their length.

flyi i cabane strut

ying wires 7 ane stru upper wing

L Z ]

Fig.6.21 Aerobatic biplane.

interplane struts |

lower wing

landing wires A

We will model the structural unit consisting of the lower wing, upper wing, interplane strut, landing wires,
and flying wires as shown in figure 6.22 (a). The left-hand wings are modeled as a pin-jointed truss. Bars 1-2 and
3-4 represent the sparsin the lower wing and upper wing, respectively, and are of length L = 10 ft. The spars are

made of Sitka spruce with aYoung's modulus parallel to the grain of 1.5 x10° Ib./in.2, and a cross-sectional area
of 1.25in.%. Bar 1-3 represents the landing wire, bar 2-4 the flying wire, and the wires are made of stainless steel
with amodulus of 30x10° 1b./in.2 Each wire has a diameter of 0.125 in. Bar 1-4 isthe interplane strut of length
h equal to 4.3 ft., and it is assumed to be very stiff. The wings are specified to have adihedral angle ' = 4°.

Determine the number of turnsin the flying wire turnbuckle n ., and the number of turnsin the landing wire
turnbuckle r, , such that the flying wire tension is 400 Ib., and the dihedral is maintained at four degrees. The
pitch of the turnbuckle threadsis p = 1 in./(10 turns).

Solution. The structural model of the left-hand wing and bracing shown in figure 6.22 (a) consists of five truss
bars. The turnbuckle displacements are determined from the horizontal position of the wing. Free body diagrams
of joints 1 and 4 are shown in figure 6.22 (b). A vertical external force Q, isintroduced at joint 1 so that its corre-

sponding displacement g, can be determined in the application of Castigliano’s theorem. Displacement g, is
specified from thewing'srequired dihedral. That is ¢, = LsinI", and after its determination external force Q, is
set to zero.

From eg. (5.84) on page 145 the complementary energy for a homogenous truss bar subject to a uniform
change in temperature is

L
U* = —=(N+N,)2.
2EA( ) @

To account for the displacements of the turnbucklesin Castigliano’s second theorem we modify the axial temper-
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ature term in the complementary strain energy. The thermal axial force in the truss bar is obtained from eq. (3.75)
on page 46:

Ny = fﬁAT(s,z)t(s)ds = EAoAT. (b)

Let the thermal strain a AT be replaced by the initial strain induced by the turnbuckle displacement A, = 2np

divided by the length of the bar containing the turnbuckle. That is, aAT — A,/ L . Then the complementary
strain energy in eq. (a) that includes the displacement caused by the turnbuckleis

U = g(N+ A/c)?, ©

where the flexibility influence coefficient ¢ = L/(EA).

>
~

N
>
=
&
AV N\ § | N
=
- IS
@
= \
YR
IS |
~

1
L 2 0,
QQ‘ ) (b)

Fig.6.22 (a) Structural model of the left-hand wing and bracing. (b) Free body diagrams.

The interplane strut subject to force N, _, isassumed to be rigid. Its flexibility influence coefficients van-
ishes and it does not contribute the elastic complementary strain energy. The complementary strain energy is

w1 1 1 1
U = ECW(NI )P ECST(NI 3t A egr)? + ECST(N2—4 +Ap/cgr) ECW(N3—4)2 : (@

The flexibility influence coefficients for the two wing sparsis

y = —L = 120 = 64x10°° in/Ib ©
6
Epdy  (1.5x10°)1.25
and the flexibility influence coefficients for the two wiresis
2 2
c 1202 +51.6 _ 130.624 = 354.81x10 " in./Ib . ()

;= =
(30x10%)m(0.125/2)2  (30x10°)(0.012272)

Equilibrium equations at joint 1 in figure 6.22(b) are

N;_3co0s0+N,_, =0 O, +N;_,+N,_;sin0 = 0, (@)

and equilibrium equations at joint 4 are
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Ny_,+N,_,cos0 =0 N,_4+N,_,sin0 = 0. (h)

The trigonometric functions of the angle 6 are

120 - 091866919 sinf = p = —2L6

A120% +51.62 A/120%2 +51.62

Now eliminate the bar force N, _, between the four eguilibrium equations to get the three equations

cos = A = = 0.39502775. 0)

Nish+ N, =0 Ny 4+ Ny 4k =0 Oy =Ny _4u+N;_su = 0. 0)

Theforce N, _, intheflying wireis taken as the redundant. Solve the remaining bar forces from eg. (j) in terms
of the redundant and force Q, to get

Ni_p = =Ny_4A+ 001 Ni_3 = Ny_4—0y/u Ny_y = =Ny_4M. (k)

Substitute the resultsfor N, _,, N, _5, and N;_, from eq. (k) into the complementary strain energy (d) to

find the energy in the form U*[N, _,, Q,] with turnbuckle displacements A| and Ag appearingin U* as param-
eters.

d
g, = = —(cgp+ ) (Ny_4/n) —(AL)/w. 0)
90,
0,=0
a?vU* = 2(cgpt e MINy g —(csrt cyh?)(Qy/ W) + A+ Ap = 0. (m)
2-4

Set ¢, = LsinT ineqg. (1) and solve for the landing wire turnbuckle displacement, followed by solving eg. (m)
for the to find flying wire turnbuckle displacement. The results are

AL = —(cgpt ¢, N)N,_,—uLsinl’ and AF = —(cgp+ ¢, ,A*)N,_4+ulsinT . (n)

Set N,_, = 400 Ib. to obtain the numerical results for the turnbuckle displacements and their number of turns
as

AL = —3.41912 in. n; = —17.0956 turns AF = 3.19425 in. np = 15.9713 turns . (0)

The landing wire turnbuckle decreases the length between joints 1 and 3, and the flying wire turnbuckle increases
the length between joints 2 and 4. The bar forces are

N,_, = Ny_, = -367.4681b. N, =N, , =400Ib. N,_, =-158.0111b..[H ®)
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6.6 Practice exercises

9 _ 1 1. Each bar in the truss shown in figure 6.23 has a
»'_ 100 in. - cross-sectional areaof 1.0in.2, and amodulus of elas-
|

ticity of 10’ psi. There is no change in temperature.
Use Castigliano’s first theorem to find

a)the horizontal and vertical displacements of joint 1,
10,000 Ib.

b)the stressin psi in each bar, and

c)the horizontal and vertical support reactions at joint
5.

2.The barsin the truss shown in figure 6.24 have the
following cross-sectional areas: 4, = 1.0 in.2,

Ay, = A, =20in2,4; = 1/21in.2,
Ag = 3/2 in.2. Themodulus of elasticity of

1\ N\ NNNNNNNN

o
wn
1]

40 in.
each bar is 107 psi. Compute the vertical displacement

of theright-hand joint using Castigliano’s second theo-
rem. Notethistrussis statically determinate and all bar
forces can be determined in terms of external load Q.

- >|<
30 in. 30 in. o
Fig. 6.24 Six-bar 3.Use Cadtigliano’s' second theorem to compute the
trussfor exercises 0 = 30,000 Ib. horizontal displacement of the right-hand joint of exer-

4.The truss shown figure 6.25 consists of three bars: 1-
4, 2-4, and 3-4. Each bar has the same cross-sectional area A, modulus of elasticity E, and the same coefficient of
thermal expansion a.. Bar 1-4 is subjected to a change in temperature AT from ambient temperature (the
unstressed state), while bars 2-4 and 3-4 remain at ambient temperature. Use Castigliano’s first theorem to deter-
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mine the horizontal displacement g; and the vertical displacement gg of joint 4.

qs *
A E, o q7

Fig.6.25 Three-bar
truss of exercise 4.

3L T
X

5. The planetruss shown in figure 6.26 represents a single bay of awing spar truss. For all bars: £ = 75 GPa

PG

2.25L

and o = 23.0x10°°/°C . The cross-sectional areas of the bars are: 2580 mm? for the horizontal bars, 387 mm?

for the vertical bars, and 2690 mm? for the diagonal bars. The upper horizontal bar is heated to 250°C above the

zero stresstemperature, and all other bars remain at the zero stresstemperature. Two 45 kN lift forces act at joints
land2.

250°C T 45kN
4 RRXXXXKXXXXX! 2

Fig. 6.26 Six-bar trussina

single bay of awing spar. 810 mm

/ _Vv

3 1
< 1080 mm 45kN

Use Castigliano’s first theorem to find
a) diffness matrix in KN/mm,
b) displacement of all jointsin mm,
¢) al boundary reactionsin kN, and
d) thestressesin MPain each bar.

6. Thetrussshown in figure 6.27 consists of five bars: 1-2, 1-3, 1-4, 2-4, and 3-4. Each bar has the same cross-
sectional area A and same modulus of elasticity E. The lengths of bars 1-2, 1-4, and 3-4 are the same, and are
denoted by L. A horizontal force of magnitude P is applied to joint 1. Use Castigliano’s second theorem to deter-
mine the horizontal displacement gs of joint 3.

7. A simply supported, uniform beam of length L is subjected to amoment Q, at itsleft end as shownin figure

6.28. The material is homogeneous and linear elastic, the cross section is symmetric (/,, = 0), and there are no

thermal strains. The bending stiffnessis El. Use Castigliano’s second theorem to determine the rotation at (a) the
left end, and (b) the right end. Neglect energy due to transverse shear deformation.
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Fig. 6.27 Five-bar
truss of exercise 6.

Fig.6.28 Simply 9
supported beam of

exercise 7. L 970

8.A coplanar frame is subjected to an end force O, as

shown in figure 6.29. The bars of the frame are uniform
with axia stiffness EA and bending stiffness El. Use
Castigliano’s second theorem to find

a) the end rotation ¢, , and

b) the vertical displacement ¢ at thejoint.

9. Consider the statically indeterminate, uniform beam shown in figure 6.30 that is subjected to a uniform,
downward distributed load of intensity p. For small displacements assume that only the complementary strain

energy in bending is significant. If the center support moves downward by the amount 0.01pL*/EI . and
remains attached to the beam, use Castigliano’s second theorem to find the reactions at the left and right supports.

wemuen L

beam of exercise 9 . = Z,W

10. The frame consists of three slender, uniform bars of length L, and two right angle bends. Assume the bends
arerigid joints. Each member hasa solid circular cross section of diameter d. A force P actsin the global X-direc-

tion at point A. Find the three displacement components « ,, v, w, of pointA intermsof P, L, d, and E using

184 Aerospace Structures



Practice exercises

Castigliano’s second theorem. Assume G = 0.4F . Neglect deformations due to transverse shear.

Y,v

Fig.6.31 Spaceframe of
exercise 10.

11. The rectangular space truss shown in the sketch consists of six bars. 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. The

cross-sectional area of each bar is 200 mm?. The temperature of bar 2-3 isincreased by 30°C above the stress
free temperature, while the other five bars remain at the stress free temperature. Calculate the forcesin all six

bars. The coefficient of thermal expansion o = 7 x107°/°C , and the modulus of elastici ty

E = 200x10° N/mm?.

Fig. 6.32 Spacetrussof

exercise 11 3000 mm

1 2
|< 4000 mm >|

Notethat m = 6, = 4,and r = 0. Hence, m <2j—r, and thistruss cannot support an external load without
accelerating. However, under the self-straining caused by the temperature change, it is statically indeterminate
internally.

12. Sketch the bending moment diagrams of bars 1-2 and 2-3 in the singly redundant frame shown in figure
6.33. Each bar has the same length L and flexural stiffness El. Since the bars are slender, neglect deformations
due to extension and transverse shear. Take the reaction moment at support point 1 as the redundant.

P 2 L 3

—>
Fig. 6.33 Two-bar frame of /4
exercise 12. L
1
P4
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13. The aerodynamic advantages of high aspect-ratio (AR) wings are well-known—Iong span reduces lift-
induced drag and narrow chord promotes laminar flow to reduce skin-friction drag. However, along wing span
significantly increases the structural loads at the wing root requiring heaver components to safely transmit the
loading to the fuselage. The truss-braced wing (TWB) is a method to reduce the load at the wing root. (It isthe
subject of research in AOE at Virginia Tech under aNASA program to achieve significant fuel savings for 737
type airplanes (Warwick, 2011)). A ssimplified model of TWB in this exercise isasingle truss bar supporting a
wing spar.

A wing spar is clamped at its root and supported by atruss bar that is pinned to the support at one end and
pinned to the spar at the other end. Refer to figure 6.34. The spar is subjected to a span-wise distributed air load

f,(z) approximated by

wo = $-] os( e

where the lift on the wing is denoted by L and the wing span is denoted by b. The pin connection of the truss bar
to the spar is at the span-wise distance s - 5 from the root, where the range of nondimensional parameter sis

O<s<1.

The assemblage is statically indeterminate, and the statically determinate base structure is obtained by
removing the lower pin support of the truss bar and replacing it by the redundant force Q which isalso thetensile
forcein the truss bar. Refer to the right-hand sketch in figure 6.34. The condition of compatibility is the displace-
ment corresponding to the redundant is equal to zero. Enforce compatibility by Castigliano’s second theorem
given by

. sb M2 %

_ U _ . N M 021,
7 (jalé =0 U _{(2EIXX+2_EZ)dZ+_£<2E]”>dZ+§—E—‘_AS' ®)

where [, isthe length of the strut. Numerical data are listed in table 6.7.

£,(2)
/, /

= = Z = =

| b 9 statically determinate base structure
>

Fig.6.34 Trussbraced wing.

a) Plot the normalized bending moment at the wing root (,(0))/ M, versussfor 0.0l <s =<1, where
M, isthe root bending moment of the cantilever wing; i.e., M, = —(3/8)bL

b) Plotthetensilenormal stresso = Q/A4, inthestrut versussfor 0.01 <ss=<1.

c) If theallowabletensilestressin the strut is30 ksi, what isthe value of sto yield the smallest value of the
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ratio (M,(0))/M,?What isthe value of (,(0))/ M, for thisparticular s?

Table 6.7 Numerical data for the strut-braced wing

b, wing span
h, vertical distance from the spar centroid to lower strut support
A, cross-sectional area of the spar

I, Second area moment of the cross section of the spar
A, cross-sectional area of the strut (1.75 in. diameter)
L, wing lift

E, modulus of elasticity for the spar and strut material

390in.
72in.

23.88in.?
872.716in*
2.40528in.2
50,000. Ib.

10x10° 1b./in.2
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CHAPTER 7 Arches, ringsand
fusdlage frames

A common structural component in aerospace structures is a curved bar. For example, fuselage frames are often

composed of slender curved elements and thin rings. The Wi nkler? theory for the linear elastic response of co-
planar curved bars within their planeis presented in article 7.1. (Also refer to Langhaar, 1962). The Winkler the-
ory models both thick and thin curved bars. A curved bar is generally considered thin if the ratio of the radius of
curvature to its the in-plane thickness is greater than ten. Ratios less than ten are considered thick bars. It is
assumed that there is no out-of-plane bending and torsion of the bar in article 7.1. Consistent with this limitation
and assumption is an idealization employed in aircraft structural analyses that aring frameis coplanar structure
supporting loads in its plane and not supporting loads normal to its plane. Out-of plane bending and torsion of
planar, thin curved barsis reviewed in the article by Chidamparam and Leissa (1993).

7.1 Coplanar curved bars

The reference axis of the bar is defined as a uniformly continuous plane curve within a closed interval. Itis
assumed that the cross sections of the bar are symmetric with respect to the plane of the reference axis, and that
the locus of points aong the centroids of each cross section coincide with the reference axis. Only deformations
of the bar in the plane of symmetry are considered.

The Cartesian coordinates of the reference axis with origin at point O are denoted by y,(s) and z,(s) inthe
plane of symmetry, where s denotes the curvilinear coordinate of the reference axis. Geometry of the curved bar
inits plane of symmetry isshown in figure. 7.1. The position vector of the reference axis with respect to the ori-
ginOis ;(s) = yo(s)jAO + zo(s)lgO , WherejA0 and l€0 are fixed unit vectors along the positive y, and 7, directions,
respectively. The unit tangent vector to the reference axis at point sis

dr _ dyy~ dzy~

b _ _ 0
t(s) = =— = =—j,+—k,. 7.1
()= 55 = ot o (74

1. Emil Winkler, 1835-1888, German civil engineer and professor.
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VJ - Yo(8)jo

R(s)

Section A-A

< — ®0
Zo(s)k()

Fig.7.1 Geometry of a coplanar curved bar defined in its plane of symmetry.

The Cartesian coordinates in a cross section are denoted by x and y with origin at the centroid labeled C asis
shown in section A-A of figure. 7.1. Let 6(s) denote the angle from the fixed unit vector kAO to the unit tangent

vector ;(s) , and let }(s) denote the unit vector normal to reference axis at s. The positive y-coordinate is directed
along the unit normal }(s) . From the triangular insert in figure. 7.1 we see that the differential Cartesian coordi-

nates along the reference axis are related to the angle 6 by dy, = (—sin8)ds and dz, = (cos8)ds . Thus, the

unit tangent vector #(s) and the unit normal vector j(s) to the reference axis at s are given by

1(s) = —sinB(s), + cosB(s)ky  j(5) = cos(s)/y + sinB(s)k, - (7.2)

From the previous equation we obtain the derivatives of the unit tangent vector and unit normal vector with
respect to arc-length as

ﬂ:__L él:; L:CE' (7.3)
ds  R(s) ds (s) R(s) ds

where R(s) denotesthe radius of curvature of the reference axisat s. A curve parallel to the reference axisis
characterized by afixed value of they-coordinate. Let the position vector of aparallel curve with respect to origin

O be denoted by R, where R(s, y) = r(s) +j(s) . Then, the differential of this position vector along the paral-

lel curveis dﬁ = dS; , Where dS' isthe differential arc-length along the parallel curve. The differential arc-
length of the parallel curve isrelated to the corresponding differential arc length of the reference axis by

ds = (1 +}-€-(2S—)>ds. (7.4)
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7.1.1 Displacementsand strain

Consider the displacement of a particle located by ﬁ(S, y) onthe parallel curveto the position located by dis-

placement vector R (8*, y) with respect to origin O on the parallel curvein the deformed bar. Let S denote the
arc-length along the parallel curve in the deformed bar, where the y-coordinate remains unchanged in the defor-
mation. That is, it isassumed the cross section remainsrigid in its own plane. We write the position of the par-

ticle in the deformed bar with respect to its position in the undeformed bar as R = 13 +u , Wwhere the
displacement vector is defined by

u(S,¥) = u (S, 2)i(s) +u,(S,1)j(s). (75)

The differential of ?‘(S*,y) along the parallel curvein the deformed bar is given by

=% cod, 0 . S fd, , -l
dR* = dSt+ L (ut+ dS=dSt+[— t+ J 1+-L) 4s, 7.6
g5t + i) g5l ) ( R(s)) 9
inwhich we usethe chain rule of differentiation (i.e., % = %‘% ) and eqg. (7.4) to transform the derivative with
S

respect Sto the derivative with respect s. Performing the differentiationsin eg. (7.6) and using the relationsin eqg.
(7.3), we get

AR = }+<1 izy-;'é(us}m;) ds = ;+<1iz>[<%+%;+(%_%m ds. .7)
R R
The last result iswritten as
AR = [(1 +€)i—ay]dS, 7.8)
where
- R qduy _ (R Ay _u
¢ _R+y(ds R) @= <R+y><ds R>' (79

The differential arc-length along the parallel curve in the deformed bar is determined by

(dS*)? = dR* ¢ dR* , and the unit tangent vector to the parallel curvein the deformed bar iss* = (dﬁ)/(ds*).
The stretch ratio A isdefined by dS* = AdS, and withregardto eq. (7.8) A = /(1 +¢)2+ w?. Consider the

binomial series /1 +& = 1+&/2—-82/8 = ....For € = 2¢ +¢2 + w?, thebinomial seriesfor the stretch ratio
ish = 1l +e+w2/2+....Sincetheengineering strainisdefinedby A —1 = ¢ + w2/2 + ..., we seethat to the
lowest degree in the series expansion of the engineering strain that € isinterpreted as the normal strain of a par-
allel curvefor infinitesimal deformation. To interpret the physical meaning of o agraph of eg. (7.8) isshown in
figure. 7.2(a). Let Q denote the angle between the unit tangent vector ; of the parallel curve in the undeformed

bar and the unit tangent vector t* of the parallel curve in the deformed bar. From the geometry of thetrianglein
figure. 7.2(a) we seethat tanQ = w/(1 + ¢) . Using the small angle approximation for the tangent function, and
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the assumption of infinitesimal strain, wefind Q = w . Thatis, o represents the rotation of the tangent line ele-

ment to the parallel curve for infinitesimal deformations of the bar. Let jA* denote unit normal vector to 7 . From

figure. 7.2(a) the unit normal vector jA* = (cosQ)} + (sinQ);. For small angles Q , the unit normal vector
approximates as

J'A* =j+ot. (7.10)

(1+¢)dSt

Q

wdS(=)

(@ (b)

Fig.7.2 (a) Differential line element of a parallel curvein the deformed bar. (b) Relationship of
the displacement of a particle on a parallel curveto the displacement of the corresponding
particle on the reference axis.

The relationship between the displacement vector of the parallel curve to the displacement vector of the
reference axisis based on the assumptionsthat plane cross sections normal to the reference axisremain
normal to the reference axisin the deformed bar and that the cross section remainsrigid in itsown plane.
These assumptions, which are the basis of classical beam theory, are depicted in figure. 7.2(b). Thus,

u(S,y) = ucls) +y(* =), (711)
where the displacement vector of the reference axisis defined by
uc(s) = w(s)(s) + v(s)j(s) . (7.12)

Substitute eg. (7.5) for Z(S, ») ineg. (7.11), followed by substitutions of eq. (7.10) and (7.12) into eg. (7.11) to
find

u;, = w(s)+yo(s) u, = v(s). (7.13)

Substitute the displacements of eg. (7.13) into the expression in eq. (7.9) for » to get

o = () (Y 5

Solve eq. (7.14) for w tofind

o = —(%’—%) . (7.15)

Finally, substitute the displacements of eg. (7.13) into the expression for ¢ in eqg. (7.9), followed by the substitu-
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tion of w from eg. (7.15), to get the strain-displacement relation for the curved bar as

2
c=dw, v __y |pldv), (dR) (7.16)
ds R+y R+y|l |ds? ds
Although the displacements (7.13) are linear in the thickness coordinate y, note that the strain (7.16) is nonlinear
iny.

7.1.2 Normal stress, stressresultants, and strain energy

The material of the bar isassumed to linear elastic, isotropic, and homogeneous. Then, the normal stress o acting
on the cross section is related to the normal strain € viaHooke's law. As was discussed in article 3.7 we take

o0 = Eg,where E isthe modulus of elasticity of the material. The result for the normal stressiswritten as

2
E dw dw dv) , w/dR
= =—J(v+REE) +y| 2L _|R :
R+y{<v ds) J{ds { (ds ) (ds)ﬂ} (7.17)
The normal force N and bending moment M about the centroidal x-axis of the cross section are related to the nor-
mal stress by

(N, M) = f(l,y)odA, (7.18)

where A denotes the cross-sectional area of the bar. Substitute Hooke's law for the normal stress (7.17) into eqg.
(7.18) to get the relation between the resultants and the displacements. In this substitution process the following
integrals over the cross section occur:

2
_dd _ _(1 +7) j‘m —YA fw = YAR, (7.19)
R+y AR+y R+y

inwhichY is the dimensionless parameter of Winkler's curved bar theory. Equivalence of the three integrals
(7.19) with respect to parameter Y can be demonstrated by dividing the denominator into the numerator of the

integrand in thefirst two integrals and noting f ydA = 0, sinceyismeasured from the centroid. Langhaar

A
(1962) states that the third expression in eg. (7.19) is the most convenient for the evaluation of the parameter Y if
numerical integration isrequired. If R » y, then the third expression in eg. (7.19) approximatesY as

Y=Y, = I/(4R?) where I= fysz. (7.20)

The equations for the resultants are

v = Bl (o) ool {2 3 .o
- —EAY{v+R{ (gsvz) (‘éf)“ (7.22)

From egs. (7.21) and (7.22), the following results are obtained:
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2
dw _ RN+ M dw dv w/dR 1 1
+ R dw _|pldv) ywidR\ | 1 Fen(14+ 5] 723
VRS A ds { (dﬂ) R(ds” REA[ ( Y) } (7.23)

Substitution of eq. (7.23) into the expression for the normal stress (7.17), yields the stress in terms of resultants
as

0':]_\.]+<1+—L->M or 0-:L<RN+M+_-LA_4>_ (7.24)
(R+y)Y/RA RA R+yY

Note the normal stress at the centroid (y = 0) in pure bending (N=0) isc = M/(RA) . That is, the centroidal
axis does not coincide with the neutral axis of the cross section for the curved bar. The neutral axis of the curved
bar islocated radialy inward from the centroidal axis, i.e.,, y = —=RY/(1 + Y) . For pure bending of astraight bar
the o = 0 at the centroid, so the centroidal axis and neutral axis coincide.

I'he complementary strain energy is given by
« _ 1 2
= = —_— +
U 2_” (R +y)dodA (7.25)

where the volume element is (R + y)d0dA . Substitute eq. (7.24) for the normal stress into the complementary
strain energy (7.25), followed by integration over the cross-sectional area, to get

U =

f2E;€2A [(RN +M)2+ Aiﬂds . (7.26)

Thefinal result for the complementary strain energy (7.26) was obtained using property of the centroid

fydA = 0, thethird integral in (7.19), and ds = Rd6.
A

Example 7.1 Pure bending of a circular bar with arectangular cross section.

Thereference axisis a segment of acircle of radius a. Thus, the radius of curvature is uniform with respect to the
arc-length along the reference axis, and R = a . The cross section is a solid rectangle of height h and width b.
The bar is subject to equal and opposite moments M at each end, and no other loads. See figure. 7.3. Equilibrium
is satisfied by the fact that the bending moment in the bar at each cross section is equal to the applied moment M,
and that the circumferential force N vanishes at each cross section. The normal stress distribution through the
thickness at atypical cross section is determined from eq. (7.24).

AV
h/2
1_ C > X
ab w2 }_
\_/ \/ b
M M Cross section

Fig. 7.3 Purebending example7.1.
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The formulafor the dimensionless Winkler parameter Y is evaluated from the third expression in eg. (7.19),
where the cross-sectional area A = bh. That is,

W2 W2
D S L NP S O
Y= — bdy = — dy.
bha J a+y Y ha ) a+y Y @
—h/2 —h/2

For the simple rectangular section the following indefinite integral is obtained from atable of integrals:

2
[75% = (@+y2/2-2a(a+y) + alog(a +y). ®
ary

The natural logarithm is specified in eq. (b). After some algebra we get

Y = plog(%%—t——i)—l where p=a’h. (c)

3
Practical geometriesrequire p > 1/2. Thatis, a>h/2 . If a»y, then Y, . = <£%2>/(bha2) = 1/(12p2).

For selected values of p, thevaluesof Y, Y, ., and percentage error between the exact and approximate values
of Yarelisted intable 7.1. Ascan be seenintable 7.1, the parameter Y decreases rapidly with increasing radius

Table 7.1 Winkler parameter for selected radiusto thicknessratios

p=ah Y Yappx (Y=Y ppx)/ Y x 100 %
1 0.09861 0.08333 15.4

5 0.003353 0.003333 0.60

10 0.0008346 0.0008333 0.150

20 0.0002084 0.0002083 0.0375

to thicknessratios a/ , and that the approximate value of Y is less than 0.15 percent of the exact value for
a/h>10.

From eg. (7.24) the normal stressfor the curved baris 6 = MA[I + —%% . For astraight bar subject to
a aty

pure bending the normal stressisgivenby o = (My)/1, where the second area moment about the x-axisis
1 = (bh3)/12 . Define the dimensionless thickness coordinate n = (2y)/h, and adimensionless normal

stresshy 6 = %—Ij—j.Then o = m for the straight bar, and

o= i[l + —Tl—l} for the curved bar. (d)
2p+nY.

The distributions of the dimensionless stress through the thickness of the curved bar and the straight bar are
shown in figure. 7.4 for radius to thickness ratios of 1 and 5. The normal stress for the curved bar is hyperbolicin
the thickness coordinate y, whereas for the straight bar the distribution of the normal stressislinear in coordinate
y. For M > 0 the maximum tensile stress for the curved bar isless than that of the straight bar, but the magnitude
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of the maximum compressive stressis larger for the curved bar than for the straight bar. The graphfor a/2 = 5
in figure. 7.4 shows that the stress distribution in the curved bar is close to the linear distribution of the straight
bar. The percentage error of the maximum compressive stress of the straight bar with respect to the curved bar for
increasing radius to thicknessratios are listed in table 7.2.

Table 7.2 Percentage error in the maximum compressive
stress of a straight bar with respect to a curved bar

(chrved — 0straight ) 100

a/h Ocurved
1 34.4%
5 6.64%
10 3.32%
20 1.66%
50 0.67%

The error approximating the maximum stress from straight bar theory with respect to curved bar theory is 3.32
percent for a/h = 10, and less than 1.66 percent for a/h > 20 i

2y 1.0¢ 2y 10 4
h h
0.5} 05"
: : : G : : : - G
-15 -1.0 -0.5 » -1.0 -05 05 1.0
% 0.5
51 -0.5+
a - 1 a _ 5
h h
-1.0 7 -1.0

Fig. 7.4 Thicknessdistributions of the dimensionless normal stressfor a’/h =1 and a/lh =5. The
solid line correspondsto the curved bar and the dashed lineto the straight bar.

Example 7.2 Displacement of a semicircular bar

A semicircular bar of radius ais connected to afixed pin support at its left end and a pin support free to move
horizontally at its right end. The right end support is subject to a horizontal force Q with a corresponding dis-
placement denoted by g. The cross section of the bar isthe thin-walled tube of example 6.4 on page 160 with the
mean radius denoted by b, and awall thickness denoted by t. See figure. 7.5. Determine the flexibility influence

coefficient cintherelation ¢ = ¢Q using Castigliano’s second theorem.

Solution. The complementary strain energy in eq. (7.26) reduces to
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Section A-A

Fig. 7.5 Configuration of the semicircular bar of example 7.2, and itsthin-walled cross section.

T T

= Sl (o0 eed =

M
Y

[(aN+M)2+ }de. ()

1
2Ea(2nbt)f
0 0

A free body diagram of the segment of the bar is shown in figure. 7.6. The circumferential normal force N and the

e

N v %

Y \0/
G_»Q

R

— —_ —

Free body diagram of a segment of the base structure Component of Q along direction of N

Fig. 7.6  Freebody diagram of a segment of the semicircular bar.

bending moment M determined from equilibrium are
N = Qsinf M = —(asin0)Q. (b)
From Castigliano’s theorem the displacement corresponding to force Q is given by

BT W ON , OM\ , MM
1750 Ea(2nbt)f[(aN+M)<a8Q+ aQ) *Yool®: ©
0

Substitute for the actions N and M from eqg. (b) into eq. (c) and perform the integral to get

I
- 0 %sin’0
Ea(2nbt) Y
0

0 - ()0

q
Thus, the flexibility influence coefficient isidentified in eq. (d) as

c = a = —Q——, (e)
4EbtY 2EtY
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in which the radius-to-thicknessratio isdefined by p = a/(2b). The formulafor the Winkler parameter Y is
obtained from the third expression in eg. (7.19) as

2n 2n
2 )2 2
y= Lp2lgy = 1 f(bsmf") thdp = —— [—S2@_ 40 0
aAAa +y a(2nbt)) a + bsing 4mpJ 2p + sing
0 0

The integration was performed in Mathematica for p > 1/2 to get

Y = _ZL_I_ (9)
JAp?—1

Consider computing the flexibility influence coefficient from the complementary strain energy of a straight
bar but applied to the semicircular bar. For this example eq. (5.51) on page 141 reduces to the complementary
energy expression

14

T
1 1
U* = ‘M?2add + — [(N?adb . h
Qe )" 2EAf “ ®)

0 0

L et the displacement obtained from Castigliano’s theorem using the complementary strain energy expression in
eg. (h) be denoted by ¢, . Then,

T T
1\ oy, M 1 N .
= MM a0 + L (N g0 .
Ta (EI)f 00" " E4) 90" 0
0 0

Substitute for the actions N and M from equilibrium eg. (b) into eg. (i) and perform the integral to get

= @Q_,_a%cQ = a0 | a’Q G§)

Ya = JAE " 2I_E ~ 4btE 2b%E’

in which we substitute for the area and second areamoment 4 = 2xbs and I, = nb3t, respectively. The
approximate flexibility influence coefficient, denoted by ¢, , is

o o= 44 a®> _ p+8p?
4 4btE  2b3tE 2tE

, (k)
where p = a/(2b).

The ratio of the flexibility influence coefficient in eg. (e) to its approximate value in eqg. (k) is

_ 1
¢, =c/c, = ——.
(1+8p2)Y

Numerical results for selected values of the radius-to-thickness ratios p are presented in table 7.3. The third col-
umn in the table lists the ratio of the flexibility influence coefficient to its approximate value. For p = 1 the

approximate flexibility influence coefficient is about 1.39 ¢, which means the displacement ¢, islarger than the

U]

displacement determined from curved bar theory. For p =10 ¢, = 1.003¢, and for p exceeding ten, ¢, isessen-
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tially equal to c. Hence, we can use the strain energy expression for a straight bar to determine the displacement
of the curved bar if p = 10 i

Table 7.3 Ratio of the exact flexibility coefficient to the
approximate value for selected radius-to-thicknessratios

p = a/(2b) Y(p) c/c,

1 0.154701 0.718234
2 0.0327956  0.923998
3 0.0141851  0.965705
4 0.00790526  0.980605
5 0.00503782  0.987556
10 0.00125235  0.996879

7.2 Srain-displacement and Hooke's law for thin curved bars

It was demonstrated in example 7.1 and example 7.2 that some equations of straight bar theory are applicable to
the analysis of curved barsif the radius of curvature to the thickness in the plane of curvature is greater than ten.
If the ratio of the minimum radius of curvature to the in-plane thickness is greater than ten, then the bar isidenti-
fied asathin curved bar. Ratios less than ten are considered thick curved bars. For example, thin curved bar
formulas are applicable to fuselage ring-frames. Fittings, machine parts, crane hooks, and chain links are exam-
ples where thick curved bar theory is required. Thin curved bar formulas for strain, stress, stress resultants, and
complementary strain energy are as follows:

2
dw v dv , wdR

=Wy X |2V 4 2Ry 7.27
¢ ds R y(dsz des) (7.27)

d dy . wdR
N = EA(2Y + X M = —-EI_|2YV + X480 and 7.28
(ds R) xx(dsz R2ds ( )

N, M « _ 1 /N2, M?
= Fe = = +y= Ut = =[ &=+ =—)ds. 7.29
R 2f (72 EIX) s (7:29)

Example 7.3 Circular arch

Consider athin curved bar that forms acircular arch as shown in figure. 7.7. It is supported by smooth pins at
each end. The distance L between the end supports remains fixed as the arch is subject to a downward force P at
midspan. The area of the cross section is denoted by A, the radius of the circular arc passing through the centroid
of each cross section by a, and its semi-opening angle by f . The arch is statically indeterminate and the horizon-
tal reaction force Q is the redundant. The overall free body diagram of the arch is shown in figure. 7.7.
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(8) Using Castigliano’s second theorem determine the redundant load Q. Neglect strain energy due to trans-
verse shear.

(b) TekeL =1m, EA = 175x10° N ,and EI = 218,750 N-m2. Plot Q/P as function of the rise to span
ratio H/L for 1° < <90°.

‘ . p/2 P/2.
L

Fig.7.7 Circular arch. a/h > 10.

Solution to part (a). Thearch is symmetric about the vertical axis through the center, so only the left-half sec-
tion isanalyzed. The free body diagram shown in figure. 7.8 cutsthe arch at angle 6 measured counterclockwise
fromthe vertical axis, and 0 < 6 < 3. Theinternal actions on the cut face are the circumferential normal force N,
transverse shear forceV, and the bending moment M. The cut face is a negative 6 -face with a positive normal

force causing circumferential extension, a positive shear forceis defined radially inward, and a positive bending
moment causes tension on the radially outboard circumference.

A

Fig.7.8 Freebody diagram of a _
section of thearch. a(cos —cosf)

a(sinf —sin0) t7—>

Equilibrium in the direction of the normal force leads to the equation

N = —(P/2)sin0 —QcosH. (@)
Equilibrium in the direction of the shear force leads to the equation
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= (P/2)cosB —Qsinb . (b)
Moment equilibrium at the 6 -face leads to the equation

M = —a(sinf —sin0)(P/2) + a(cos® —cosP)Q. (c)
The complementary strain energy from eq. (7.29) reduces to

Ut = 2(2>f [2]1\;4 21\14521} a0 @
0

In the previous integral, integration is performed over the left-hand portion of the arch, and the total complemen-
tary energy stored in the arch is accounted for by the factor of two multiplying the integral. Since the displace-
ment in the direction of the horizontal redundant force Q is zero, Castigliano’s second theorem gives

0 = (aU")/(90). Thus,

p
d
do .
f[EA(aQ) EI( Zﬂ“ ©
0
Substitute eg. (a) for N and eqg. (c) for M in eq. (e) followed by integration to get

= (ZEA>[sm2[5P + (2B + sin2B)Q] +

<4E1) [(1—4cosp +3cos2p +2Bsin2P)P + (8p + 4B cos2p — 6sin2p)0]
®
Solve eg. (f) for the redundant force Q to get

O _ a*(=1+4cosPp—3cos2B —2Psin2B)EA —(2sin?B)E]
P a’(8P + 4P cos2p —6sin2P)EA + (4P + 2sin2B)EI

()]

Solution to part (b). Therise-to-span ratio in terms of the semi-opening angle § is

H _ a(1—cosp) _ (1—cosf) (h)
L 2asinf 2sinf

Note that thisratio isindependent of the radius a. The distance L between the supportsis fixed at one meter, and
L = 2asinf . Hence, the radius of the arch is afunction of the semi-opening angle 3 given by

a = (Im)/(2sinp). 0)

Specifying 3, we compute a from eqg. (i), H/L from eqg. (h), and theratio of Q/P from eqg. (g). A graph of Q/P ver-
sus H/L isshown in figure. 7.9.
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load as a function of P
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The maximum value of the redundant is 2P for H/L = 0.0485 correspondingto f = 11.08°. This maximum
occurs for ashallow arch. A shallow arch is characterized by asmall value of the angle 8. [l

Example 7.4 Thin ring subject to diametric tension

A uniform, thin ring of radius a is subject to equal and opposite tension forces labeled P as shown in the left
sketch in figure. 7.10. This configuration is symmetric about the horizontal diameter AB and the vertical diame-
ter. Determine the bending moment distribution in the upper right-hand quarter segment of the ring where the

angle 6 hastherange 0 < 6 < zt/2 . Include only bending deformationsin Castigliano’s second theorem to deter-
mine the redundant actions.

Solution. The right-hand sketch in figure. 7.10 shows the free body diagrams obtained by sectioning the ring
across diameter AB. Action-reaction pairs of the internal circumferential normal forces, internal transverse shear
forces, and internal bending moments are labeled in the free body diagrams. The upper and lower free body dia-

grams are mirror images of one another, which implies that the transverse shear forces 1, in the upper and lower

free body diagrams should be drawn in the same direction at the cut at A. But this mirror image argument isin
contradiction with the action-reaction pairing. So to resolve this contradiction means that the transverse shear

force V, = 0.A similar argument implies that the transverse shear force at cut B must vanish (i.e.,, ¥z = 0).

From symmetry about the vertical diameter the circumferential normal forces N, and N, are equal and the
bending moments M, and M, are equal. Vertical force equilibriumyields N, = Ny = P/2.Thus, the only

redundant is the bending moment A, . A free body diagram of the section from point A to the cut at 6 is shown
infigure. 7.11.

Moment equilibrium about the cut at 6 determines the bending moment as

M= M,+a(l—cos6)(P/2). (a)
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Fig. 7.10 A thin ring subject to diametric tension. Free body diagrams obtained from a cut
across the horizontal diameter.

Fig.7.11 Freebody
diagram of a circular
sector of theringin
example 7.4.

The complementary strain energy including bending only is

U = [ZMEJade . (b)

Oga Na

By symmetry, the rotation corresponding to the moment A/, must vanish. Hence, Castigliano’s second theorem
gives

n x
2 2
Ut _ 1 oM 1
= L2 0a0 = L Tar, +a(1 = cos®)(P/2)[1]ado .
oM, Elf[ ][ana Elf[ a+a(l=cosB)(P/2)][1]a ©
0 0

0=

Perform the integration in eg. (c) to get
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0= i[MATm _ba? + lpnaz

2 2 4 } @

Solve eq. (d) for the redundant to find
M, :Pa{2—n}_ ©
2n
Substitute eqg. (e) into eg. (a) to get the bending moment as
M:Q—lPacosﬂ 0<0<Z. ®
Tt 2 2

The bending moment is plotted in figure. 7.12 as aradial coordinate with respect to the ring, where a positive
moment is plotted outside the ring and a negative moment is plotted inside the ring. [l

M = 03183P -a—»

Fig. 7.12 Bending moment distribution in one
quarter of thering, which is subject to diametric
tension.

M= 018177 a—F @

7.3 Differential equilibrium equations of a curved bar

Consider adifferentia element of acurved bar subject to prescribed line load per unit length along the reference

axis. The vector of the external line load intensity is denoted by }(s) with component ¢(s) tangent to the refer-
ence axis and component p(s) normal to the reference axis. That is

(s) = q(s)t(s) + p(s)j(s) . (7.30)

Denote the internal force vector acting on the cross section by f(s) with component N(s) normal to the cross
section positive in tension, and the shear component ¥(s) tangent to the cross section. That is,
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o2

(5) = N(s)i(s) + V(s)i(s). (7.31)

yo(s)j:)

vo(s +ds)

0]

< L —
zo(s+ds)  zy(s)k,

Fig. 7.13 Freebody diagram of an element of a curved bar.

Summation of forces acting on the differential element shown in figure. 7.13 leads to

Ié(s+ds)—1i"(s) +}(s*)ds =0 s<s <s+ds. (7.32)

Expanding the force vectorsin a series we write eq. (7.32) as

{c;_f+ @‘(s) ¥ ff(s* —S)J }ds +0(ds?) = 0. (7.33)

Divide eg. (7.33) by ds, followed by taking the limit as ds — 0, and note that s* — s in the limit. The resulting
differential equation is

51—1—:+}(s) =0. (7.34)
ds

The derivative of the internal force vector in eg. (7.31) is

dF _ (dN\" . (dt dV)‘. dj\ _ (dN V> dV N
— = ([—)t+N—=—)+|[—]|]+V = (=+=)t+|(——-=)J,
ds <ds> (ds) (ds] <ds> (ds R (ds ZIDJ
where the derivatives of the unit vectors are given in eqg. (7.3). Hence, the scalar differential equation of force
equilibrium in the tangent direction is
dN  V

—+—=-+¢g =0, 7.35
I R q (7.35)

and differential equation in the normal directionis

dvV N
—_———t =0. 7.36
ds R P (7.38)
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The bending moment acting on the cross section is denoted by M(s) with a positive moment causing an
increase in curvature of the bar. Take the sum of moments about sin the free body diagram to get

M(s + ds)i — M(s)i +[r(s +ds)—r(s)] x F(s +ds) + [r(s*) =r(s)] x A(s" )ds = 0, (7.37)

Expanding the moment and force vector in a series we write

{9@—4; wdry ?(s) + [;(s*) —;(s)] x}(s* )}ds +0(ds?) = 0. (7.38)
ds ds

Divide by ds and then take the limit as ds — 0, and note that #(s™) — r(s) in the limit, to get

aM:. o ” dM o
—i+ix[Nt+Vj] = (==V)i = 0. 39
G TV = (TR0 (7:39)
The moment differential equationis
dM
aM_py =9, 7.40
s (7.40)

Example 7.5 Funicular arch

Consider a uniform, pinned-pinned arch subject to uniformly distributed load of intensity pg that is directed ver-
tically downward as shown in figure. 7.14. For example pg could represent the weight per unit length of the arch.
We determine the form or shape of the arch such that each cross section isin pure compression (i.e., thereis no
bending). This condition of pure compression under auniform lateral load can be achieved with a curved bar, but
not with a straight bar or beam. A beam carries auniform lateral 1oad by bending. Tailoring the shape of the arch
for pure compression to the uniformly distributed loading defines the funicular arch. All of the parallel fibersin a
cross section are under the same compressive stress, which means all of the material in the cross section is uti-
lized in resisting the load.

1y

Po

EEE

vy

EEE

%
<
%
<
%
<
%
<
%
<

@)

Fig. 7.14 Funicular arch subject to a uniformly distributed load.

Resolve the applied downward load intensity into the tangential and normal components of eg. (7.30) to find
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q = pysin® P = —pycoso. ()
For the bending moment and shear force to vanish for all values of s the equilibrium equations (7.35) to (7.40)
reduce to the following:

%‘é_]g+posine =0 —g—pocose =0. (b)

Eliminating the tangential force between the last two equations leads to the following differential equation for the
radius of curvature:

dR

r —(2tan®)R = 0. (c)

The solution for the radius of curvatureis
R =% d
cos20 @

where a is the constant of integration and is equal to the radius of curvature at 6 = 0. The curvatureis 1/R and
from the third expression in eq. (7.3) we obtain

df _ cos?6 By 1
— = — 0d0 = (-ds.
ds a fsec fa y ©)

Perform theintegration in eg. (€) tofind tan® = s/a . From theresult that the

a
tangent of 6 isequal to the arc-length divided by a, we obtain the trigonometric Fig. 7.15 B
relations (see figure. 7.15) P8 .
a S

sinf = S and cosO = = . ®
[aZ + S2 1a2 + SZ

Asshown by theinsertinfigure. 7.1, (dz,)/(ds) = cos6 , which combined with the cosine relation from eqg. (b)
can be integrated to determine coordinate function z(s) ; i.e.,

zy :f ﬁa2a+s2ds =f1%<£)2d<f—z> = asinh—li.
N a
Thus,
sinh(zy/a) = s/a. ()]

Also asshown by theinsertinfigure. 7.1, (dy,)/(ds) = —sin6 , which combined with the sine relation from eq.
(f) can be integrated to determine coordinate function y,(s); i.e.,

—S
= ds = —Ja?+s2+c. (h)
yO f/a2+s2

We specify y,(0) = a,andfind ¢ = 2a. The coordinate function y,(s) is
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Yo = 2a—dJa*+s?. 0]

Expresseq. (i) asy, = 2a—a4/l +(s/a)?*, and use eg. (g) to replace theratio g/a to get

Z 4
Yo = 2a—a |l +sinh220 = 2a-a Icoshzzo. 0

The latter result in eq. (j) isthe equation for the shape of the funicular arch, whichis

Yo = 2a—acosh(zy/a). (k)
Equation (k) isthe equation of acatenary. A catenary is acurve formed by awire, rope, or chain hanging freely
from two pointsthat isin tension. The funicular arch is an inverted catenary and isin compression.

Thetangential forceinthearchisgivenby N = —p Rcos6 . Using egs. (d), (f), and (g), it can be shown that
the spanwise distribution of the tangential forceis

N = —pyacosh(zy/a), 0)

where —z,,/a<z,/a<z,/a.Sety, = 0 ineq. (k) tofind z,,/a = ArcCosh (2) = 1.317. Definethethrust as
the negative of the tangential force. The spanwise distribution of the thrust scaled by p,a isshownin figure.
7.16. The minimum thrust is p,a at the crown and increases to a maximum of 2p,a at each pin support.

—N/(ap,)
A
________ 2 —_—
[ |
| I
I I
| I Fig.7.16 Distribution of thethrust with
| respect to the span of thefunicular arch,
I
| | Zy/a=1317.
I I
| I
I I
zy/a L ] ] I
0 z, 1 0 -1 —,
a a

7.4 Loadson fuselage frames

The skins, or webs, in semimonocoque construction are thin and cannot withstand large concentrated loads.
Instead, stiffeners are located into the design of the structure where the concentrated loads are applied. The con-
centrated load acting on the stiffener diffuses the load to the attached skins or webs. For example, afuselage
structure has closely spaced frames or bulkheads that resist [oads in the transverse planes, while the fuselage
shell resist loads in the fore-and-aft direction. Typically, frames react to point loads from the wing spar attach-
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ments and distributed loads from floor beams, and are often modeled as two-dimensional rings subject to in-
plane loading. In the following analyses, we quantitatively determine how loads applied to frames are transferred
to the attached skin, followed by the determination of the internal actions in the frame. Additional examples of
loads acting on fuselage frames and wing ribs are given in Bruhn (1973), Curtis (1997), and Megson (1999).

Consider atransverse frame together with the attached skin of the fuselage. The frame is subject to forces
P, and P,, and torque 7, asshownin figure. 7.17(a). Note that positive values of P, and P, are defined in the

y y
X z
= skin-frameinterface
V*T
Y HH
M | M-
<t— | | — >
LVi
| T.
—
Py
(b) (©

Fig.7.17 (&) Frameloads. (b) Forcesand torques acting on frame and fuselage skin viewed from
they-z plane. (c) Shear flowsin the skin fore and aft of the frame and the interface shear flow from
the frame acting on the skin.

negative x- and y-directions, respectively, and a positive torque is defined in the negative z-direction by the right-
hand screw rule. Equilibrium immediately fore and aft of the frame leads to jumps in the shear forces and torque
acting on the fuselage skin. As depicted in figure. 7.17(b), the jump conditions are

AV, = Vi-V=P, AV, = Vi=V, =P, AM, = M=M= T,. (7.41)

Asshown infigure. 7.17(c) the shear flows acting on the cross section of the fuselage immediately fore and aft of
theframe are denoted by ¢* and ¢—, respectively. The shear flow exerted by the frame on the skin at the interface

is denoted by ;1 . Equilibrium of the shear flowsin figure. 7.17(c) yields

¢ -q=q. (7.42)
The shear flow acting on asingle-cell cross section is given by eqg. (3.163) on page 70. For this situation

g(s,z) = ZZ —F )V (2)=F,(s)V,(). (7.43)

c

Assume the geometry of the fuselage shell isthe same fore and aft of the frame. Substitute eq. (7.43) for the
shear flows in the skin fore and aft of the frame into eg. (7.42) to find the shear flow exerted on the skin by the
frame as

g = —F () Vi=VAF, () Vi =V, +[M; —M1/(24,) . (7.44)
Now substitute the jump conditions from eqg. (7.41) into eq. (7.44) to get
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g = —F(s)P,~F,(s)P,+T./(24,). (7.45)

Since the shear center and centroid coincide, the shear flow distribution functions from egs. (3.151) and (3.164)
on page 68 and page 70, respectively, are given by

_ 1 1 _ 1 1
Fs) = [ Q)= flnQ)ds| B = 00 =5 gl 00ds . (7.46
Equation (7.45) determines the interface shear flow exerted by the frame on the fuselage skin in terms of the con-
centrated | oads acting on the frame as depicted in figure. 7.18(a). The reaction to this interface shear flow actson

the frame, and the free body diagram of the frame is shown in figure. 7.18(b).

(b)

Fig. 7.18 (a) Freebody diagram of the fuselage skin. (b) Free body diagram of the frame.

Example 7.6 Floor loading on a framein a stringer-stiffened fuselage

A framein acircular fuselage is subject to auniformly
distributed line load with an intensity of 12 Ib./in. acting
onitsfloor support. See the adjacent sketch. The fuselage
skin thickness ¢+ = 0.015 in., and it is stiffened by six
As 2 stringers spaced 60° apart. Stringers 1, 2, 4, and 5 have
flange areas 4, = 0.15 in.?, and stringers 3 and 6 have

BN flange areas 24, = 0.30 in.2 . Determine the interface
12 Ib/in. . =X

¢ } 4/ y ¢ ‘ ¢ if;t:r ag[ ?/\v/\:.:, f??:: Q?rgrr:] tel’.le skin-stringer fuselage dueto the

Solution. The circular skin-stringer fuselage is symmet-
ric with respect to the x- and y-axes through its center, so
the centroid and shear center are both located at the cen-
ter of the circle. The resultant downward force acting on
theframeis P, = 12x86.6 = 1,039.2 Ib.. When the

frame is removed from the fuselage the action of the

86.6 in.

A
y

100 in. diameter

Fig.7.19 Fuselageframe.
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frame on the fuselage is represented by ajump in the shear force in the fuselage. From eq. (7.41) AV, = P,. A
free body diagram of the skin-stringer structure is shown in figure. 7.20.

Fig. 7.20 Freebody diagram of the skin-stringer structure.

The expression (7.45) for the interface shear flow in this example reduces to c} = —F,(s)P, . The contour
coordinate sisrelated to the polar angle 6 by s = a6, where the radius of the circular contour ¢ = 50 in. , and
0 <6 <2x radians. The contour distribution function #,(s) , or F,,(6), isgiven by eq. (7.46), which isaevalu-
ated by computing the first area moment with respect to the x-axis of a portion of the skin-stringer fuselage from
6 = —n/2 toavalueintherange —n/2 < 0 < 3xn/2 . The expression for the first area moment QO (0) isfacili-
tated by accumulating the first area moments in each of the six segments of the contour.

Beginningat 6 = —xt/2, and proceeding counterclockwise around the contour, the first area moments of
the skin-stringer structure with respect to the x-axisare denoted by 0.,(6),i = 1,2, ..., 6. Thefirst area
moments are calculated as follows:

6

0.1(0) = —a(24,) + f (asin®)tadd = —a(24,) —a*tcos6 -n/2<0<-m/6, ()
—n/2

0

0.,(0) = Q,n(—g) +<—§>Af+ f (asin®)tadd = —g(SAf+ 2atcosB) -n/6<0<m/6, (b)
—/6
0

0.4(0) =0 (’—‘) +(‘-’)A + [ (asin®)rad® = —a(24,+ atcos®) n/6<0<n/2 ©

x3 x2 6 2 f f f ’

/6
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0
0.,(0) = Qx3<g> *a(24)+ [ (asin®)radd = —arcosd  7/250<5n/6, @

/2

0

0.5(0) = Qx4(%“> + (%)Af+ f (asinB)tadd = g(Af—Zatcose) 5t/6<0<71/6,and ()
5n/6

0

— gk . _
0.6(0) = st(?) + (—%)Af+ f (asin®)tadd = —a?tcos6 Tn/6<0<3m/2. )
/6

Note that the first area moment of the entire cross section about the x-axis vanishes, or QO (37/2) = 0, since
the x-axis passes through the centroid.

The expression for the shear flow distribution function from eq. (7.46) is written as

F,(0) = i[gxi(e)—jf(rngx)adﬂ i=1,2...,6. ©

Theintegral of r,Q. around the entire contour, where r, = a, isgiven by

/6 n/6 /2 5m/6
f(”an)ade = fanl(B)a o + fanz(e)ad6+fan3(9)ad6+ fan4(6)ad6+
/2 /6 /6 n/2
77/6 3n/2
f aQ,s0do + f aQ,(0)add
5m/6 7m/6 , )

which after integration yields

f(ran)adG = 2ma*4,. @)

The area enclosed by the contour is 4. = a?x . Hence, the interface shear flows are given by

1
I

XX

gi(0) = —( )[Qxi(6)+aAf]Py i=1,2..,6. ()

The second area moment about the x-axisis given by

2w 6
I, = f(asin@)ztad6+ E(yf,.)zAf,. = 54’ A+ madt = 7,765.49 in.4 (k)
0 i=1

Results for the interface shear flows with dimensional units of 1b./in. are listed below:

- A+ at 0
71(0) = [Ci-ﬁl—ai(i)}}’y = 1.00367 +5.01836c0s6  —m/2=0<-1/6, 0

XX
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a(34,+2atcosb)
21

XX

72(8) = [ }Py = 150551 +5.01836c0s0  —1/6<0<n/6, (m)

- a[A,+ atcosB]
q3(0) = —;—[ P, = 1.00367 +5.01836 cosB n/6=<0<m/2, (n)

XX

A,—atcos®
wpy = —1.00367 +5.01836cos0  7/250<57/6, (©)

XX

q4(0) =

- _ —a(34,—2atcosH)

qs(0) = i P, = —1.50551 +5.01836cos6 Sn/6=<0<7n/6,and ()
- —a(A,—atcosB)
q6(0) = ———-L———I P, = —1.00367 +5.01836cos0 Tn/6<0<3n/2. (@)

XX

The shear flows are plotted normal to the contour in the graph shown in figure. 7.21.

Fig. 7.21 Distribution of the
interface shear flow acting skin-stringer
fuselage in example 7.6.

Example 7.7 Bending moment in the frame of example 7.6

We use symmetry of the frame about the y-axis and draw afree body diagram of the right half of the frame as
shown in figure. 7.22. Consequently, the frame has three vertical cuts: cut aisat the bottom of the frame, cut b at
the top, and cut c at the center of the floor beam. The action of the left half of the frame on the right half is repre-
sented by three forces N, Ny, and N, and by three moments M,, My, and M., at the location of the three cuts as
shown in figure. 7.22. Shear forces at cuts a, b, and ¢ vanish by symmetry conditions similar to what was dis-
cussed in example 7.4. These six unknown actions at the cuts are related by the three independent equations of
equilibrium for the overall free body diagram in figure. 7.22. Hence, this is a statically indeterminate structure.
The redundants are determined from conditions of compatibility imposed via Castigliano’s second theorem. The
solution processis divided into six steps:

1. Overal frame equilibrium
2. Solutionsto the differential equilibrium equations for the frame
3. Bending momentsin segments 1, 2, and 3 of the frame
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4. Foor beam equilibrium
5. Equilibrium at the junction of the floor beam and frame
6. Compatibility conditions

93(0)
A '6
PAYEIANY
a a -
q2(0)
Y 0 - Fig. 7.22 Freebody diagram of theright-half

section of theframein example 7.6.

Solution to part 1. Overall frame equilibrium
Force equilibrium of the right half frame segment in the negative x-direction requires

—/6 /6 /2
N,+N,+N, + f(c}l(e)sine)adm f(Zp(e)sine)admf(c}s(e)sme)ade =0
/2 /6 /6
=R

x . (@)
Theresultant force R, = 0 asdetermined from the interface shear flows given in example 7.6. Hence, force
equilibrium in the x-direction reduces to
N,+N,+N. = 0. (b)

Force equilibrium of the right half frame segment in the y-direction requires

-t/ 6 /6 /2
f (¢1(0)cos0)add + f (¢2(0)cos0)add + I(Els(e)cose)ade ~P/2=0
/2 /6 /6

=R

Y . (c)
Substituting the interface shear flows from example 7.6 we find the force R, = P, /2. So force equilibriumin
the y-direction isidentically satisfied. Torsional equilibrium about the origin yields

M, +My+M.—M,+aN,—(a/2)N,—aN,—(L/4)(P,/2) = 0, (d)
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where the torque from the interface shear flowsis given by

-/6 /6 /2
M, = f aq1(0)ado + f aq2(0)add + faq3(8)ad6 = 34,289.4 Ib.-in. (e
—n/2 —/6 /6

Solution to part 2. Solutions to the differential equilibrium equations for the frame.
The differential equilibrium equations (7.35), (7.36), and (7.40) are solved for R=a, ds=adb, p =0, and

q = c}(e) . Differentiate eq. (7.35) with respect to 6, and then substitute eq. (7.36) for the derivative of the shear
forceto get

2
7dN+N+aiq =0.
de? do

Each interface shear flow has the functional form

()

q,(0) = 4, + BcosH i=1,2,3, )
where
P 2tp
A=Ay = CLj)LZ = 1.0037 Ib/in. 4, = %Al = 150555 Ib/in. B = — = 501836 Ib./in.  (h)
XX XX

Substitute eq. (g) for the shear flow in eq. (f), then the resulting differential equation is solved for N(6) to get
N(8) = c,cosB + c,sinB —(aB/2)BcosH. @
Equilibrium equations (7.35) and (7.40) determine the shear force and bending moment as
(0) = —ag(®) - M(0) = a¥(0)d0 +c,. Q)
i do f 3
It is convenient to determine the three constants ¢4, ¢,, and c3 in terms of the forces and moment at the point
6 = 0, by thefollowing conditions
N(ea) = N(x V(ea) = V(x M(eq) = M(x (k)

The point 6, on the contour is either the initial point or final point of the contour segment. The statically admis-
sible solution for the normal force, shear force, and bending is

N(6:8,) cos(6-6,) —sin(0—-6,) 0 N,(6:8,,)
V(0;0,)| = No| sin(6-0,) Vol cos(6-6,) |t Malo| *|V,(0:0,)] 0}
M(0:6,) a[l—cos(6-6,)] asin(6-6,) 1 M, (6:0,,)

where
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N,(0:0,) —asin(0—-0,) B 2(6-6,)cos0 +2cosb,sin(6—6,)
V00, = 4] —a[1-cos(0-0,)] |{%) cos® — cos(8—26,) + 2(6 -6, )sin@ m)
M, (6:0,,) —a’[6-6,—sin(6-6,)] a[-2(8—6,)cosO +3sin6 —sin(6 —260,,) —4sin6,, ]

Solution to part 3. Bending moments in segments 1, 2, and 3 of the frame

The range for the solution interval in frame segment 1is —/2 <6 <—n/6,and welet 8, — —n/2,
N,—N,, V,—0,and M, — M, ineq. (i). The numerical result for the bending moment in segment 1is

M, (6) = 50N (1 +sin0) + M, —16,487.8-2509.250 + 12, 363.1cos0 + 6,273.10cos0 — 12, 546.3sin0 . (n)

Therange for the solution interval in frame segment 3isn/6 <0 <n/2,andwelet 6, — /2, N, — N,
V,—0,and M, — M, ineq. (i). The numerical result for the bending moment in segment 3 is

M5(0) = 50N, (1 —sin0) + M, + 16, 487.8 -2, 509.250 — 12, 363.1cos0 + 6, 273.130 cos 6 — 12, 546.3sin0 . (o)

The range for the solution interval in frame segment 2is —-t/6 <0 <x/6,and welet 6, — n/6,
N,—=N,,, V,—=V,,,and M, — M,, ineq. (i). At thejunction of segment 2 and 3where 6 = /6, we

o

impose continuity conditions
N3(n/6) = N,, Viy(mn/6) = V,, My(rt/6) = M,,. (p)

The result of imposing the previous continuity conditionsisto express N, , V,,, M,, intermsof Ny and My,
The numerical results for the bending momentsin segments 2 is

M,(0) = 50N, (1 —sin0) + M, + 17, 144.7 -3, 763.880 — 12, 990.4cos0 + 6, 273.130cos0 — 11, 459.7sin0 . @)

Solution to part 4. Floor beam equilibrium
Theinterna shear force in the floor beam is denoted by V, and the bending moment by M. Equilibrium of the

floor beam yields

P
Vy(x) = P,(x/L) My(x) = M_+ 2—£x2 Osx=<L/2. ("

The axial force N is uniform in the beam.

Solution to part 5. Equilibrium at the junction of the floor beam and frame.
A free body diagram of the junction of the frame and the floor beam is shown in figure. 7.23. Force equilibrium
in the tangential direction to the frameyields

Ny(—m/6) =N, (—/6) —N,sin30° — (P,/2)cos30° = 0. (s)

Equation (s) leadsto N, = —N,— N, , which also satisfies eq. (b). Force equilibrium in the normal direction to
the frameyields
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Vi(—m/6) N,(—mt/6)

Mc+ (PyL)/8 M2 —3'15/6)

N,
Fig. 7.23 Freebody diagram of thejunction ( ¢ - 30°
of theframe and floor beam.

N,(~/6)

pP,/2

Vy(=m/6) =V, (—/6) =N .cos30° +(P,/2)sin30° = 0. ®

Equation (t) leadsto N, + N, + N. = 0, whichissatisfied by the solution for N, from the tangential equilibrium
equation. Torsional equilibrium at the junction yields

M,(~n/6) =M, (-n/6) + (M. +P,L/8) = 0. ()
Numerical evaluation of the torsional equilibrium equation gives

23,0394-M,+M,+ M -25N,+75N, = 0, (v)
which is solved for M, to get

M, = —23,039.4+M,—M, +25.N,~75.N,. ()

The overall torsional equilibrium equation (d) isidentically satisfied for the results determined for N, and M,

from equilibrium at the junction. At this point in the solution process all static equilibrium equations are satisfied,
and the expressions for the bending moments in the frame are

M,(0) = 50.N,(1+sin0) + M, — 16, 487.8-2, 509.250 + 12, 363.1cos0 + 6, 273.130cos 0 — 12, 546.3sin0,  (x)
M,(8) = 50.(1—sinO)N, + M, + 17, 144.7 + (=12, 990.4 + 6, 273.130) cos® — 11, 459.7sin6 , and V)
M;(8) = 50(1 —sinB)N,, + M, + 16, 487.8 2, 509.250 + (=12, 363.1 + 6, 273.130) cos 0 — 12, 546.3 sin6 . @

The bending moment in the floor beam is

My(x) ==23,039.41 +M,— M, +25N,—T5N, + 6x2. (aa)

The unknown parameters N,, M, Ny, and My, in this statically admissible solution, egs. (x) to (aa), are the redun-
dants.

Solution to part 6. Compatibility conditions

To determine the redundants we impose compatibility by using Castigliano’s second theorem. Neglect the com-
plementary strain energies due to the tangential force N and the shear force V, which implies that complementary
strain energy in bending is the main contributor to the deflections of the frame. Assume for simplicity that the
flexural stiffness El of the frame and the floor beam are the same. Symmetry about the vertical axis of the frame
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requires the generalized displacements correspond to the redundants to vanish. Then, setting the displacement
corresponding to redundant N, equal to zero isimposed by

o= [l

/2
oM, oM, M,
)ad6+ f Mz( a)ad6+ fM3(a a)ade+ fM4( :)d . (ab)
—n/2 /6
After substituting egs. (x) to (aa) into eq. (ab) we find

0 = —2.10978x10 + 1, 535.46M,—1082.53M, + 33, 969.8N,—81, 189.9N, . (ac)
Setting the rotation corresponding to redundant M, equal to zero leads to the following equation

-/ 6 /2
oM, oM, oM
fMl( )ad6+ sz( M)ad6+ fM3( )ade fM4( i)dx, (ad)
—/2 —/6 /6
which evaluates as
0 = —847,565. +95.6611M,—43.3013M,, + 1, 535.46N, — 3, 247.6N, . (ae)

Setting the displacement corresponding to redundant N, equal to zero yields

—/6 /2
M M M
M ade + (M ado+ (M addo+ (M dx, (af)
-/2 —/6 /6

which evaluates as

0 = 7.73981x10" -3, 247.6M,+ 6,318.52M, —81, 189.9N, + 392, 699.N, . (ag)
Setting the rotation corresponding to redundant My, equal to zero leads to the following equation

—/6

M, M, M M,
fMl(aMb)ad6+ sz(aMb)ad6+ fM3(a b)ad8+ fM4(a b)d , (ah)

—n/2 —/6 /6

which evaluates as

0 = 1.09574x10° —43.3013M,+148.021M, -1, 082.53N, + 6, 318.52N,,. (ai)

The solution for the redundantsin egs. (ac), (ae), (ag), and (ai) is

N, = =361.122 Ib. M, = -1,756.43 in.-lb. N, = —166.284 1b. M, = 1,822.71 in-lb. (aj)
The remaining actions at cut ¢ and the bending moment at the end of the floor beam are
N, = —194.838 Ib. M, = =5,119.2 in.-Ib. M, +(P,L)/8 = 6,130.8 in-Ib.. (ak)

A plot of the bending moment in segments one, two, and three of the frameis shown in figure. 7.24. The bending
moment exhibits a step change in value at the junction of the frame and the floor beam. That is,
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M,(—n/6)—M,(—n/6) = 102.182 -6, 232.98 = -6, 130.8 in.-lb.

This step change in the bending moment between curved segments one and two of the frameis equal to the mag-
nitude of the bending moment at the end of the floor beam.

M, in.1b.

6000 -

4000 -

2000 -

— 0, degrees

L I I I I
-100 -50 100

Fig.7.24 Frame bending moment distribution.
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7.6 Practice exercises

1. Theradius of the centroidal arc of athick, semicircular bar is42 mm as shown in figure. 7.25. It is subject to
two 5 kN loads symmetrically distributed with respect to midspan. Determine the normal stresses in the radial

inboard flange (v, ) and the radial outboard flange (y ) at midspan.
—|> T
X
20

42
—>|4|<—

Cross Section

Fig. 7.25 Exercise 1. All dimensionsin mm.

2. Consider athin curved bar with auniform, symmetrical cross section whose reference axisis one-quarter of
acircle of radiusa as shown in figure. 7.26. The cross section of the bar isthe thin-walled tube of example 6.4 on
page 160 with the mean radius denoted by a and awall thickness denoted by t. The bar is clamped to a fixed sup-
port at its upper end, and supported by aroller at itslower end that is free to move vertically but not horizontally.
An upward vertical force P isapplied at the lower end of the bar. Determine the horizontal reaction force Q at its
lower end in terms of the applied force P using Castigliano’s second theorem.

Fig.7.26 Exercise2.
Thin curved bar.

Section A-A

3. Continuing with the arch problem in example 7.3 do the following:

a) UseCastigliano’s second theorem to determine the displacement A in the direction of the external force
P in terms of P, the semi-opening angle 3, redundant Q, extensional stiffness EA, and flexural stiffness
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El. Note that the redundant was determined and is given by eqg. (g).

b) The structura stiffness of the arch is defined by K = P/A. For a straight beam having the same flexural
stiffness as the arch, spanning the distance L between the supports, and subject to force P at midspan,
the structural stiffnessis K, = P/A, = (48EI)/L3 . Plot theratio of the arch stiffness to the beam

stiffness K/ K, as a function of the rise-to-span ratio given by eqg. (h). Use the numerical data givenin
the example. Plot parametrically by selecting values of the semi-opening angle 3 in the range
1° < B =90°, then compute the sequence H/L, R, Q/P, and K/ K, for each f3.

4. Consider athin-walled, cylindrical shell stiffened by an internal frame. As shown in figure. 7.27, the frame
consists of athin-walled circular bar of radius a, and a horizontal bar of length 2a clamped to the ends of the cir-
cular bar. A point load P is applied to the midspan of the horizontal bar. Thisload is equilibrated by interface
shear flows, which were determined from a free body diagram of the shell with the following results:

;]1(s) = —kl%(a—s) 0<s=<2a,and (7.47)
a
- _P
q2(0) = =(—ky + k30 + kycos0) 0<0=m, (7.48)
a
where k, = ky = S S k, = " S ky = M.Theframeissymmetric
—8+2m + 2 —8+2m + 2 —8+2m +x?

with respect to the vertical line A-B through the center of the circular part. A free body diagram of the right half
of the frame is also shown in the sketch below. The action of the left half on the right half of the frame are repre-
sented by normal forces N, and Nj,, and bending moments M, and My, The shear forces V, and V,, acting on the
cross sections at A and B vanish because of symmetry. There are four unknown actions at A and B but only three
independent equilibrium equations for the right half of the frame. Hence, the half frame is singly redundant.

a) Determine the redundant in terms of parametersa and P from the compatibility equation obtained by
application of Castigliano’s second theorem. Include only the bending momentsin the complementary
strain energy, and assume the flexural stiffness El is uniform in the frame.

b) Listthevaluesof N, Ny, Mg, and My, in terms of parameters a and P.

c) Determine the maximum bending moment in the frame, as well as the point, or points, where the bend-
ing moment is zero. (Partial answer: the magnitude of the maximum bending moment is 0.3162 aP.)

M,
Fig.7.27 Internal B . b .
framein acylindrical 0 Ny 4‘&
shall. %)
a P/2

0 M,
e - \ Na<_&
s, q1(s) lp

Overall FBD of the frame FBD of theright half

Hint. Show that the following results for the normal forcein the straight part N, and in the circular part N, sat-
isfy equilibrium:
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N,(s) = N,—k,P(s—a)*/(2a?) ass<2a, (7.49)
N,(8) = ¢ cosB +c,sinB —P(2ky + k,0cos0)/2 0<0=m/2, (7.50)

where ¢, and ¢, are constants to be determined.
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CHAPTER 8 Lam nataj barS Of fIM'
reinforced polymer

compogites

8.1 Fibrous composites

A composite material consists of two or more constituents that are chemically distinct on a macroscopic scale
and have a recognizable interface between them. An important class of composites for aerospace applications are
fiber-reinforced polymer composites (FRP). Fiber-reinforced polymer composites consist of continuous and
aligned fibers embedded in a polymer matrix. Continuous glass fibers are 3-20 um in diameter, with most about
12 um. The diameter of carbon and graphite fibersis about 8 wm. Fibers are inherently much stiffer and stronger
than the same material in bulk form. The polymer matrix supports, protects, and transfers stresses to the fibers.
Typically the matrix is of considerably lower density, stiffness, and strength than the fibers. Polymers are subdi-
vided into thermosets and thermopl astics. Thermoset polymers, such as epoxies, become cross-linked during fab-
rication and do not soften on reheating. Thermoplastic polymers, such as PEEK, soften on heating and can be
reshaped with heat and pressure. Usually fibers are bundled in tows, which can consist of 3,000 to 30,000 fibers.

The unidirectional laminais the basic form of a continuous fiber composite (i.e., one with al fibersin the
same direction as shown in figure. 8.1). It can be fabricated from pre-impregnated tape (filament tows pre-
impregnated with epoxy), filament winding, pultrusion, or resin transfer molding (RTM). The thickness of lam-
ina, denoted by tyy, in alaminate is typically about 0.127 mm (0.005 in.). Laminates are fabricated by stacking

of a continuous fiber composite.
unidirectional lamina at different fiber orientations followed by curing. Curing is a drying process of the matrix
materia to form abond between the fibers and between the lamina.

YYX)
YT X\
YT X\
YY X
YY X
YY X\
Y X\
YY X\
YY X\
xxx
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The advantage of polymer-composites aerospace structures are many: They weigh less
than equivalent-strength aluminum, do not corrode or fatigue, require less maintenance, and
reduce the need for drilled holes and parts. Composite parts generally cost more than equiva-
lent metal parts, but that premium is decreasing. And the cost premium is offset by operating
savings in fuel and maintenance (Canaday, 2015).

8.1.1 Material law in principal directions

Fiber-reinforced composites are usually treated as alinear elastic material with orthotropic material propertiesin
the material principal directions (i.e directions parallel and perpendicular to the fibers). In aright-handed Carte-
sian system denoted by x;-X,-X3, |t the x,-axis be parallel to the fibers, the x,-axis be transverse to the fibers, and

the x3-axis be parallel to the thickness of the lamina. (Also, refer to discussion with respect to eg. (A.131) in the
appendix.) In the discussion of the material law, it is convenient to use a contracted notation for strain compo-

nents and the corresponding stress components. The contracted notation defines the 6-by-1 engineering strain
vector in principal material directions as
_ T
(v} = [311 € €33 Y23 V31 le} ' ®1)
where the normal strains are denoted by €44, €55, and ez3, and the shear strains are denoted by y,3, 131, and yq».
The corresponding 6-by-1 stress vector in principal material directionsis
_ T
{on} = [011 Oy O33 Op3 O34 012} ' (8.2)

where the normal stresses are denoted by o4, 055, and o33, and the shear stresses are denoted by o,3, 034, and
O10. Seefigure. 8.2.

3] o O3 . . .
31 32 j Fig.8.2 Stressesin material
o1 R oy » — X principal directions.

s

X

Hooke's law for an orthotropic material in the contracted notation is

€1 CiCpC3 0 0 0 on
€2 Gy CpCy 00 0 O
€33 — C;1C5C5 0 0 0 O33
Y3 0 0 0Cy O O Oy
Y31 0 0 0 0 Cs55 O oy
1V 12) |0 0 0 0 0 Cg [0
[C] , 8.3)
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inwhich [C] isthe symmetric 6X6 compliance matrix. The non-zero elements of the compliance matrix in terms
of engineering constants are

Cy = vy //E, = Ci3 = —v3/E;. (8.5)
Cyy = v/ Ey = Cpy = —vy3/ By
The nine independent engineering constants are described as follows:
» Moduli of elasticity in the fiber direction, transverse direction, and thickness direction are denoted by E4, E,
and Eg, respectively.
* Theprincipal Poisson’sratios are voq, va1, and va,.
* Shear moduli in the 2-3 plane, 3-1 plane, and 1-2 plane are denoted by Gys, G31, and G4, respectively.

The three minor Poisson’srétios, v,,, Vi3, and v, , are determined from symmetry of the compliance matrix.

Material characterization tests are conducted to measure the nine independent engineering constants. However,
the most accurate measurements are made for the in-plane properties E;, E;, v,q, and Gy».

8.1.2 Compliance matrix in bar coordinate directions

Consider the thin-walled bar, or beam, analysis presented in article 3.2 to article 3.5. Instead of athe wall com-
posed of a homogeneous, linear elastic material asin article 3.7, we now take the wall to be composed of a
fibrous composite material. The fibers are parallel and contained in thin layers, or lamina, that are normal to the
thickness coordinate direction T of the wall. Within alaminathe bar contour coordinate direction s, and longitu-
dinal direction z, are not, in general, aligned with the material principal coordinate directions x; and x,. Definea

positive angle ¢ by the counterclockwise rotation from the positive z-axis to the positive x;-axis as shown in fig-
ure. 8.3.

Fig.8.3  Material principal directions x4,
X5, and Xz with respect to bar axess, z, and C.

The direction cosines between the principal material coordinate directions X;-X>-X3 and the bar coordinate direc-
tionss-z-C arelisted in table 8.1.
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Table 8.1 Direction cosines

S z g
Xy | cos(90°+@)  cosg 0
X2 | cos(180°—q) cos(90°+¢) O

x3 |0 0 1

Let m = cosg and n = sing . Then, the matrix relations between the coordinate directions are written as

X1 -n m 0] |s s -n —m 0| |*1

X T |-m-no0| |z and zl T |m —n 0| |x,

X3 0 0 1] |C C 0 0 1] |x,
| —— | —

b b’ e

Matrix [A] is an orthogonal matrix so that m w "= m Tm = @ ,and Detm = 1. Inthe material coordi-
nate directions the symmetric, Cartesian strain tensor is denoted by the 3X3 matrix M , and the symmetric,

stress tensor is denoted by the 3X 3 matrix [0} . The elements of these matrices are

€1 Y12/2 v13/2 O1p O Oy3
[E} T V122 gy 1372 and [0} = |03 Oy Op3) - 8.7)
Vi3/2 ¥3/2 €33 O3 Oz3 O3

In the bar coordinate directions, the strain matrix | /| and stress matrix || are denoted by

€55 st/z YCs/z O, O 0?;3
[E/] T V2 YCZ/z and [01 = |0 0. Ot.| (8.8)
YCS‘/Z YCz/z €t Oy Og; Ot

From eg. (A.63) and eg. (A.65) in the appendix the transformation relations between the Cartesian strain matri-
cesare

o] = B [ = WL e

From eq. (A.96) and eg. (A.97) in the appendix the transformation relations between the stress matrices are

(o] = Dlle] [ @ [o] = [a] o] 2] .10

After performing the matrix operations indicated for the strain matrices (8.9), we can establish the contracted
notation for the transformation of the strain vectors. The results are as follows:
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1V 12]

Notethat Det[7,,] = Det[T,,] = 1, and [TEJ [ng} =

n2 m? 00 0
m2 n?2 00 O
0 0 10 0
0 0 0-n-m
0 0 O0Om —n

0

2mn 2mn 0 0 0 —m?+n?|

Y23
Y31
1V 12]

7.l

n2 m?2 00 0
m2 n?2 00 O
0 010 0
0 0 0-nm
0 0 0-m-n

|—2mn 2mn 0 0 0 —m?+n?

0

(8.11)

7.

(8.12)

(/] - Thatis, [TEZ} = [Ts J ! After performing the

matrix operations indicated for the stress matrices (8.10), we can establish the contracted notation for the trans-
formation of the stress vectors. The results are as follows:

Oss n m> 00 0 2mn Su
cyzz m2 I’l2 00 O 2mn 022
Ot 0O 0 10 0 0 O33
O—Z?; 0 0 0 —n —m O 023
Ot_,s 0 0 0m —n 0 031
o, lmn —mn 0 0 0 —m?+n? o
T
[ "J (8.13)
S n2 m20 0 0 2mn Oss
O m2 n20 0 0 2mn Oz
O33 0 010 O 0 Ot
O3 0 0 0-nm 0 O.¢
O3 0 0 0-m —n 0 O'ZS
o1 |l-mnmn 0 0 0 —m?+n? o]
T
[ "2} (8.14)
227
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Notethat Det[ T,,,] = Detl7,,] = 1,and |1, |[7,,] = [f] . Thatis 1, = [TUJ_I . Additionally, from the
foregoing egs. (8.11) to (8.14) the following matrix relations can be shown:

) = [ @[] = [7.]- (8.15)

The elements of the 6X6 matricesin eqg. (8.15) are as follows:

n2 m* 00 0 —mn ! n2 m20 0 0 2mn
m2 n2 00 0 mn m2 n20 0 0 2mn
0 0 10 0 0 — 0O 010 O 0
0 0 0-n-m 0 0 0 0-nm 0
0 0 O0Om —n 0 0 0 0-m-n 0
12mn 2mn 0 0 0 —m?+n?| l-mnmn 0 0 0 —m?+n?
T
B S
_ - - _
n2 m?2 00 0 mn n2 m2 00 0 —2mn
m2 n2 00 0 —mn m2 n2 00 0 2mn
0 0 10 0 0 - /0 0 10 O 0
0 0 0-nm 0 0 0 0-n-m 0
0 0 0-m-n 0 0 0 Om —n 0
|—2mn 2mn 0 0 0 —m?+n?| lmn —mn 0 0 0 —m?+n?

T
L 7
To determine the off-axis compliance material law we pre-multiply the on-axis material law (8.3) by matrix
[Ts J , followed by substituting of eq. (8.14) for the on-axis stresses on the right-hand side of eq. (8.3). Usethe

fact that [Tg J = [To 2} from eqg. (8.15). Denote the 6X6 off-axis compliance matrix by [C’] and we find that

[c] = [TEJ ] [TSJ " Theform of the off-axis material law is

ﬁgssﬁ *C,ll CpCyi 00 Cllg ﬁGssﬁ
€2z CunCpCh 0 0 Cyllo,
el = |C51CCyi 0 0 Csgf|Oge| (8.16)
Y.t 0 0 0 CyuClys 0|0
Ves 0 0 0 C5yCs 0o
|V sz [C61 C'ea C'e3 0 0 Clgg |0

Matrix [C’] is symmetric with the compliance coefficients in terms of the engineering constants and the direc-

tions cosines given by eq. (8.17) to (8.23) below.
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4 2,2 2,2 2,2 44 4
m4 _m2n2 _n*=2m’n>v,, m?n*(G,—E,) m?n>—(m*+n*)v,y,

Cy=—+ + Cy=0Cp= + (8.17)
E, Gy E, EyGyy E,
—n2 2 _ 2 2_ .2 2m? 2n2(1 +
Cy = Cp = V3 MTV3 C'y = Cly = mn( 2m?  m>—n> ZM7Vy 2N ( Vz1)> (8.18)
E, E, Lk, G E, E,
2.2 4 4 _ 2,2 2 2
Clyy = 7 2m>n’vy, Cyy=Clhy= MV _""V3 (8.19)
G, E £, E, E,
002 n2—m2 2m2(1+v,,)—=2n2%v
Cy =Cle = mn( 22 n2—m?  2mA(1 ¥ vy) =20 21) (8.20)
E, G E,
! p— 1 ’ p— ! — V V
C'y = T Clgy = Cly = 2mn<E—322—E—311> (8.21)
2 2 2 2
C’44 = ﬂ_+£._ C’54 = C’45 = mn(_l___l_) C’SS = m_+£_ (8.22)
Gi3 Gy Gi; Gy Gy Gy
C’66 - (}fy[2 —n2)2 + 4m2n2(E1 + (1 + 2V21 )EZ) ‘ (823)

G12 EIEZ

8.1.3 Planestress

Since composites used in many structural applications are thin plates or thin shells, the assumption of a plane
stress state as used plate and shell theory is also made for a composite plate. In figure. 8.2 the in-plane stress
components are 011, 055, and o1,. Thus, the following stress components are assumed negligible with respect to
the in-plane stress components and set equal to zero in eg. (8.3):

O3 = 033 = O3 = 03 = 0p3 = 0. (8.24)

Hence, the compliance form of the orthotropic material law for a unidirectional lamina subject to plane stressis

€1 €, Cp 0 O IVE, —v,/E, 0 Oy
€n| = |Gy Cpn 0 On| = |=Vu/E; 1/E, 0 O
Y12 0 0 Cg |0 0 0 1/Gyy| |0
S ——
.
) (8.25)
and the thickness normal strain is
€33 = (3,00 + C5,0,,. (8.26)
The stress-strain form of the material law (8.25) iswritten as
Oy 0,0, 0 €y E\/(1=vyvpp)  (viE)/(1=vyvp) 0 ||ey
Opl = |02 0y 0 €| T [(VarEy)/(1=vyyvyp)  Ep/(1=vyvy,) 0 |lex
O 0 0 Ol (Y12 0 0 G| Y12
[ ——
[Q} , (8.27)
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where the matrix [Q] is called the reduced stiffness matrix. Matrix [Q] issymmetricsince v, E, = v,E; .

(refer to eg. (8.5)). It follows from eq. (8.3) that the transverse shear strains y,; = y5, = 0, which leadsto
transverse shear strains y_. = y., = 0 by eq. (8.11). Also, thenormal strain e = &35 . From eq. (8.13) the
stresses o, = 0, = Og, = 0.

Transform eg. (8.27) to an off-axis material law asfollows: For plane stress the stress transformation equa-
tion (8.13) reduces to

2

Oy n? m? —2mn Oy

- 2

o,, m?2 n? 2mn Oy

mn —mn (—m?+n?)| |0,

7o

, (8.28)
and the strain transformation eg. (8.11) reduces to
€ nr  m? mn s
Ep| = | m* n?2  -mn €.
Yo —2mn 2mn (—m? +n?)| |y,
T
[ 82} (8.29)

Pre-multiply eqg. (8.27) [To J , and substitute the strain transformation eq. (8.29) on the right-hand side of eq.

(8.27). Use the fact that [Ts 2} = [TUJ " from eq. (8.15). These matrix manipulations result in the off-axis mate-

rial law in plane stress given by

Os Egs éll éu ém €
Ozz - [Q} €2z = Q21 Q22 QZ() €| (8.30)
GSZ YSZ Qﬁl Q62 Q66 Ysz

where the transformed reduced stiffness matrix is given by [é} = [T J o] [To J "' Since the on-axis reduced

o

stiffness matrix [Q} is symmetric, it follows from these matrix relations that the transformed stiffness matrix is

symmetric ( b} = [@} ). Elements of the transformed reduced stiffness matrix in terms of the reduced matrix

elements are given by
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g“ n*  m? 2m?n? 4m?2n?

On m*  n* 2m?n? 4m2n?

Q21| = |m?n? m?n2  (m*+n) —4m?2n?

é“ m2n? m?n?  —2mZn? (—m? + n?)2
é mn3 —m3n mn(m?—n?) 2mn(m?—n?)
i | m3n —mn3 —mn(m? —n?) 2mn(m?* —n?)|
Q2]

8.1.4 Nomenclature of composite materials

Qll
On|
0,
Q66

(8.31)

Composite materials are identified by the name of the fiber followed by the name of the matrix. For example,
A S4/3501-6 denotes the carbon fiber AS4 and the epoxy matrix 3501-6. The datain table 8.2 is taken from Hera-
kovich (1998, p.14), and it lists typical properties for AS4/3501-6 and T300/5208 carbon fiber-reinforced epoxy

composites.

Table 8.2 Material properties of selected CFRP lamina

Property Units AS$4/3501-6 T300/5208
Axia modulus Eq GPa 148 132
Msi 215 19.2
Transverse modulus E, GPa 10.5 10.8
Msi 1.46 1.56
Major Poisson’s ratio voq dimensionless  0.30 0.24
Major Poisson’s ratio vo3 dimensionless  0.59 0.59
Shear modulus G,, GPa 5.61 5.65
Msi 0.81 0.82
Shear modulus G,3 GPa 3.17 3.38
Msi 0.46 0.49
Density g/em® 1.52 1.54
Ib/in3 0.055 0.056
Ply thickness tyy, mm 0.127 0.127
in. 0.005 0.005
Fiber volume fraction V; dimensionless  0.62 0.62
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Example 8.1 Transformed reduced stiffness matrix for an off-axis ply

Determine the transformed reduced stiffness matrix of T300/5208 carbon/epoxy for a 30-degree off-axis lamina
in U.S. customary units.

Solution. Fromtable8.2 E, = 19.2 Msi, E, = 1.56 Msi, v,, = 0.24,and G, = 0.82 Msi. The minor

Poisson’sratiois v, = 0.24[(1.56 Msi)/(19.2 Msi)] = 0.0195 . The reduced stiffness matrix is computed
from eg. (8.30) and eg. (8.31); i.e.,

193 0376 0
lo] = |0376 1.57 o |Msi. (@)
0 0 082

The transformed reduced stiffness matrix is given by b} = [T } o] [To J " the reduced stiffness by eq.

ol

(8.27), and the transform matrix [Tg J by eqg. (8.28). The matrix product is

1/4 3/4 =J3/2/1193 0376 0 1/4 3/4 .J3/4
ol = |3/4 174 J3/2/0376 157 0 || 3/4 1/4 -f3/4] (b)
J3/4 =374 1,2 (L O 0 082]\_ 3,5 3/ _1/2

and theresult is

2.84537 3.53313 2.01589
ol = 13.53313 11.7104 5.66142|Msi Il (©)
2.01589 5.66142 3.97713

8.1.5 Laminated wall

Laminates are made by stacking the unidirectional lamina, also called plies, at different fiber orientations. The
plies are usually bound together by the same matrix material that is used within the lamina. Laminates are desig-

nated by the ply angle stacking sequence. A [45 _450 90] stacking sequence denotes a4-ply laminate with plies
at 45, —45, 0, and 90 degrees with respect to the longitudinal z-axis. A [45 450 90] , Stacking sequence denotes

an 8-ply laminate with plies at 45, — 45, 0, 90, 45,— 45, 0, and 90 degrees. A [45 450 90] s stacking sequence

denotes an 8-ply symmetric laminate with plies at 45, — 45, 0, 90, 90, 0, — 45, and 45 degrees. The assumptions of
lamination theory are

* Thelaminate consists of perfectly bonded layers or lamina.

e Each layer is ahomogeneous material with known effective properties.
e Each layer isin astate of plane stress.

* Individual layers can beisotropic or orthotropic.
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Consistent with thin-walled bar theory in chapter 3, we assumethat thestrainse_,, €., and y,, arespa-
tially uniform through the thickness of thewall. That is, thereisno local bending of the laminated wall. The
laminate can stretch and shear in-plane as membrane. For alaminate of Np-plies, the material law for the k-th ply,
where k = 1,2, ..., Np, isobtained from eg. (8.30) as

(k) . _ _ W
Ogs Qll Q12 Q16 Ess
Oz - 021 022 Q2 €z k=12, s NP (8.32)

sz éél Qsz ées Vsz

Even though the strains are uniform through the thickness of the wall, note that the stresses are piecewise
constant through the thickness of the wall since the transformed reduced stiffness matrix changes from ply to ply.

Let the origin of the thickness coordinate T be at the midplane of the laminate, such that —#/2 < T < ¢/2 , wheret
denotes the total thickness of the laminated wall. The stress resultant », , the axial stressresultant #, , and the

shear flow ¢ are defined by integrals through the thickness of the wall of the corresponding stresses; i.e.,

(k)

ng /2 |0 Np (Geer| O

n| = f o,.|dC = E f o, dc, (8.33)
- k=1

q 12 GZS C,( 025

where € = T, at the bottom of the k-th ply,and T = C,, , at thetop of the k-th ply. Denote the thickness of the
k-thply by ¢, suchthat €, ,, —C, = ¢, . Substitutefor the stressesfrom Hooke'slaw (8.32) into eqg. (8.33) to get

(k)

nS Np Ck+l éll élz élé SSS
n.| = E f 021 02 O dc e | - (8.34)
k=1 z, — — _
1 ' Q61 Q62 Qs Ysz
The last result is written as
i Ay Ay Al &gy

Ay Ay Ang| &2z
q Agy Agy Age|  |Vs2

S ——

4]

where [A} isthe in-plane stiffness matrix. Elements of the in-plane stiffness matrix are computed by the sum

n
, (8.35)

_ _ _ W
Ay Ay Ay Np |01 Q12 Qis

Ay Ay Ape| = E 021 O Ox| 'k
Ag Agy Agg|  *7! éﬂ ém é“

(8.36)
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Stiffness elements 4,, and 4,, correspond to in-plane extensional stiffnessesin the s- and z-directions, respec-
tively. Element 4, corresponds to a shear stiffnessin the s-z plane, stiffnesses 4,, = 4,, are Poisson’stype

terms, and stiffnesses 4, = 4,, and 4., = A,, couplein-plane shear and extension. The in-plane stiffness

matrix depends on the content of the layers in the laminate, and is independent of the stacking sequence of the
layers through the thickness of the laminate.

Example 8.2 In-plane stiffness matrix for alaminate with two plies

Consider atwo-ply [(p _cp} laminate with plies of equal thicknesst/2.

(a) Determine the [A] matrix

(b) Evaluate the [A] matrix for T300/5208 with ¢ = 30° and /2 = 0.005 in.

Solution to part (a). The transformed reduced stiffnesses are given by eq. (8.31) in which m = cosg and

n = sing . Note that stiffnesses én , ézz, ésa , and ézl are even functions of the ply angle ¢ , and stiffnesses

ém and é@ are odd functions of ¢ . Thus,

éll(fp) éu(q)) ém(cp) , éll((P) élZ((P) —(élé(fp)) ,
4] = | 021(¢) 022(9) 0(0)|3* | 0m(9)  0m(9) ~(Oa(e))3
061(9) 062(9) Qes(®)] | Q61(9)) «Q62(9))  Qss()

011(9) On2(gp) 0
4 = |0a(9) 0n(e) 0 |1
0 0 QOes(e)

Solution to part (b). From the T300/5208 example on page 231 @11(30) = 2.843 Msi,
é22(30) = 11.7 Msi, é66(30) = 3.975 Msi, and é21(30) = 3.531 Msi. Thus,

28433531 0 2843 353 0
4] = |3531 117 o [(10°1b/in2)(0.01in) = | 353 117. ¢ |10 Ib/in. M
0 0 3975 0 0 397

8.1.6 Balanced and specially orthotropic laminates

A laminate consisting of off-axis plies with positive fiber angles ¢; and off-axis plies with negative fiber angles
—p;, i = 1,2,3, ..., i,,.. witheach ¢, -ply and —¢, -ply having the same thickness and material properties, is
called abalanced laminate. For example, a stacking sequence [30/-30], ¢ is abalanced laminate consisting of

eight pliesif each 30° -ply and —30 -ply have the same thickness and material properties. For a balanced lami-
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nate the in-plane stiffness coefficients 4,, = 4,, = 0,and 4, = 4, = 0 asexample 8.2 illustrates. Thein-
plane material law for abalanced laminate reduces to the form

n Ay A 0| |e

s

z zz

q 0 0 A66 Yzs

SS

In eg. (8.37) resultants ng and n, are independent of the shear strain v, , and the shear flow q is independent of
the normal strains e and ¢,,. That is, thereis no coupling between in-plane extension and shear. Laminates
whose material law is given by (8.37) are also said to be specially orthotropic. Laminates consisting of only 0°
and 90° plies are specialy orthotropic laminates, since the product mn = cosgsing = 0 inthe last two rows
of (8.31) resultsin él() = éz() = 0 for these laminates. Hence, a [0/90] laminate has coupling stiffnesses
A,4 = 4,5 = 0 ascan berecognized from eqg. (8.36). Another example of a specially orthotropic laminate isa
stacking sequence [+45/0/90] .

8.2 Composite thin-walled bar with a closed cross-sectional contour

The analysisin this section was published by Johnson, et al., (2001), and it is also reviewed by Vasiliev and
Morozov (2013). We consider free bending and torsion of athin-walled bar with a closed cross-sectional contour
as depicted in figure. 8.4. The laminated wall consists of unidirectional FRP layers. The external traction compo-

MY *
Vi /fM;
S

Fig.8.4 Closed cross-sectional bar
subject to free bending and torsion.

nents acting on the lateral surface of the bar p, (s, z), p,(s, z) , and p,(s, z) appearing in eg. (3.42) on page 41
are prescribed to be zero for all values of sand z. Thus, distributed force intensities f, = f, = f, = 0 ineq.
(3.42), and distributed moment intensities m, = m, = m_, = 0 ineq. (3.45) all vanish. The differential equilib-

y

rium equations (3.53), (3.56), (3.54), and (3.61) on’page 42 are satisfied for

dv dv M
d_]v:() X =90 —r =9 =0

O=<sz=<L. (8.38)
dz dz dz dz
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Hence, the axial force N, shear forcesV, and V,, and the torque M, are uniform along the length L of the bar.
Bending moment equilibrium equations (3.55) and (3.57) on page 43 are satisfied by

M, = M)+ 7V, z M, = M)+ 7V z 0<zs<L, (8.39)

where M} and M} are the bending moments acting on the cross section at z= 0.

Consider afree body diagram of the stress resultants acting on a segment of the wall with dimensions As-by-
Azisshownin figure. 8.5.

s+ As N

-~ _qt Z —nk
ngt z
S+AS‘\
Fig.8.5 Stressresultantsacting
on an element of the wall As Az F .
_qk

Z7z+ Az ~ _nst
qt

zZ

s

s

z+Az

Force equilibrium leads to

[nZAs/)c‘HAZ —nZAs;cL] + [qulAc‘ —qulAcL] + [qu;‘ﬁAz —qu;‘z] + [nSAZ;L s —nSAZ;L] = 0. (8.40)

s+ As

Expand the functions n(s,2), q(s,2), and ng(s,2) in aTaylor series about s and z to get

ant

an ~ ~ ~ -
<nz+ a—zAz—nZ>Ask+ <q + %?As—q) Azk + (q + %ZAZ—q)Ast+ (nst+

z

As —ns;) Az +O(As?, AZ2) = 0. (8.41)
S
Division of eqg. (8.41) by the product As - Az, followed by taking the limit as As — 0 and Az — 0 leadsto the
differential equations

(0_"z+a_q>,;+<a_q+a_"§);+nﬁ=0_
9z ds 9z ds “9s

From eqg. (3.6) on page 34 the derivative of the unit tangent vector is % = ;7” , Where Rgistheradius of curvature
s )

of the contour. The differential equations of equilibrium at coordinates s and z in the wall are

3_]’!2+a_q=0 G_Q-pa_nsz()

I (8.42)
dz  ds dz  ds R,

From the last two equationsin (8.42) we get

no=0 99 - 9. (8.43)

s aZ

That is, the circumferential stress resultant vanishes and the shear flow is independent of the longitudinal coordi-
nate z
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8.2.1 Anisotropic Hooke' s law for the cross section

Set n, = 0 ineg. (8.35), and solve for the normal strain ¢, to eliminateit in the material law. We write the
resulting material law in several formsto be used in subsequent developments:

n, = Be__+bg q = By,.+B.e,_,and (8.44)
e = l(n —bq) Y., = l(aq—bn ). (8.45)
zZZ B z A4 B V4
The coefficients in the previous equations are
B =A4,,—4,,4,,/4,,—bB., (8.46)
By = Agg—Ag 416/ 4, B. = Agp—Aydq /4, and (847)
a = Z%(AH—AHAZI/AH) b = B./B,. (8.48)

The stiffness parameters b and B, represent the shear-extension coupling of the laminated wall, since they are
directly related to stiffnesses Ag; and Ag, by egs. (8.47) and (8.48). In a specially orthotropic laminate

Ag = Ag = 0,50 b = B, = 0. Thereisno material coupling between shear and extension in a specially
orthotropic laminate.

The second assumption istraditional for the beam theory and states that the axial strain isalinear function of
coordinates x and y. From eqg. (3.30) on page 38 the axial normal strain along the contour (C = 0) is

= g g (8.49)
where w(z) isthe axial displacement of the cross section, ¢.(z) isthe rotation of the cross section about the x-

axis, and ¢,(z) istherotation of the cross section about the negative y-axis. Refer to figure. 8.5. Substitute eq.
(8.49) for the strain in the first equation of (8.44) to get the normal stress resultant as

n, = B(g? y(s )— +x(S)j¢ ) +bgq. (8.50)

Substitute the previous expression for the normal stress resultant into the definition of the bar resultant N in eq.
(3.39) on page 40 to get

N = s = 5(&) +5,(52) +5,(52) *flba)ds @s1)
where
S = fB(s)ds S, = fB(s)y(s)ds S, = fB(s)x(s)ds. (8.52)

In eg. (8.52) the modulus-weighted extensional stiffness of the cross section of the beam is denoted by S, the
modulus-weighted first moment of the cross-sectional area about the x-axisby S, and the modul us-weighted

first moment of the cross-sectional area about the y-axisby S, . We now locate the origin of the x-y coordinates at
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the modulus-weighted centroid of the cross section. Let x(s) = X(s)—X, and y(s) = Y(s)—7Y., where X(s)

and Y(s) arethe Cartesian coordinates of the contour with respect to an arbitrary origin at point O (see Fig. 3.1
on page 31). The coordinates (X, Y,) of the modulus-weighted centroid are determined from

S, =0= fB(s)Y(s)ds—YcS S, =0= fB(s)X(s)ds—XcS. (8.53)

Since S, = S, = 0, eq. (8.51) iswritten as

N = S(%‘/) where N = N—f(bq)ds. (8.54)

The bending moments M, and My, acting in the cross section are determined from the normal stress resultant »,
by

M, = f(ynz)ds M, = f(xnz)ds. (8.55)
Substitute eg. (8.50) for the normal stress resultant into these expressions for the bending moments to get
_ do, dj,, _ do, do,
Mx - Dxx(& ) +ny($ > +f(ybq)ds MV - ny(& ) +Dyy($ > +f(qu)dS . (8.56)

The modulus-weighted second moments of the cross section appearing in eg. (8.56) are defined by

[DXX D,, ny} = f [yz 2 xy} Bds . (8.57)

Solve for the gradients of the bending rotations eqg. (8.56) and write the result as

d¢x 1

dz =k Dxx Dyy 7,\: , (8.58)
L I e 73
dz D, D,
where
D D
n, = =+ n, = = k = 1 , (8.59)
Dxx Dyy 1 —nxny
and
M. = M, —f(ybq)ds My = M, —f(qu)ds. (8.60)

Substitute eg. (8.54) for the axial displacement gradient, and eg. (8.58) for the bending rotation gradients, into
€g. (8.50) to express the normal stress resultant as

BT - k = Ny k -
n, = §N+ By(s)D—XxMx + Bx(s)D—yyMy +bq, (8.61)
where
x(s) = x(s)=ng(s)  w(s) = y(s)—nx(s). (8.62)
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8.2.2 Expressionsfor the shear flow and normal stressresultant
Substitute the normal stress resultant from eg. (8.61) into the equilibrium differential equation (8.42), to get

-k dM: - k
y— —Bx—
dz D, dz D

Yy

icz:_(l_?)d_N_B

aMy (8.63)
ds S dz

Recall that the stiffness parameter b and the shear flow q are independent of coordinate z. Derivatives of N , M, ,

and My with respect to z are determined from egs. (8.54) and (8.60) as

dN _dN  dM. _ dM.  am, _ dM,

—_— == = — = . (8.64)
dz dz dz dz dz dz
Derivatives of the bar resultants are given by equilibrium equations (8.38) and (8.39). Thus,
M M
d_]v =0 L( =T d_X = Vx' (8.65)
dz dz Y dz
The derivative of the shear flow with respect to the contour coordinate reduces to
dg _ -k -k
= —By—V —Bx—V_. 8.66
s y D> X D, (8.66)

Now we integrate the previous result with respect to the contour coordinate from s=0to s= sand write the result
as

q(s) = qo—éx(s)Di V,—Sy(s)

X

k
—V,, 8.67
I (8:67)

Yy
where
N N

B);(s)ds . (8.68)

9 = q(0)  Si(s) = fB&(s)ds Sils) =
0 0
Substitute eg. (8.62) for x(s) and y(s) into eq. (8.68) to get
Se(s) = S,(s) —n,S,(s) Sy(s) = S,(s) =n,S,(s), (8.69)

where the modulus-weighted first moments of a segment of the cross-sectional areafrom s=0to s=sare defined
by

S.(s) = [B(s)y(s)ds Sy(s) = [B(s)x(s)ds. (8.70)
I I

Notethat S,(s) and S,(s) evaluated at the end point of the closed contour vanish, which is consistent with eq.

(8.53). The shear flow at the contour origin g is determined by torque eguivalence of the shear flow with respect
to the modulus-weighted centroid. That is,

M. = frnc(S)Q(S)ds, 8.71)

where r,,.(s) isthe coordinate normal to the contour asdepicted in Fig. 3.3 on page 33, and it is determined from
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eg. (3.11) on page 34. Substitute eq. (8.67) for the shear flow in eg. (8.71) and solve for gg to find

- L ) g s g0 s
q0 = 2AC[MZC + (Dx)f(rnch)ds + (Dy)f(rncSy)dsJ , (8.72)
where the area enclosed by the contour is given by
_ 1
A4, = Zfrncds. (8.73)
With gq determined, we write the final expression for the shear flow in eg. (8.67) as
- MZC
q(s) = 2—AC—FXC(S)VX—F},C(S)V}, . (8.74)
where the shear flow distribution functions are defined by
Fxc(s) = L[ST);(S)_Lf(rnc&y)ds} ch(s) = k [STX(S)—Lf(Vnc&x)dSJ ' (8.75)
D, 24 D, 24

Substitute eg. (8.54) for the normal stress resultant N in eg. (8.61), and substitute for M, and Ajly from eqg.
(8.60) into eg. (8.61), to get

k -k
DM[MX f(ybq)ds] + Bnyy[My f(qu)ds] +bg. (8.76)

n. = SIN=flbq)ds]+ By

Substitute eq. (8.74) for the shear flow into the previous equation for the normal stress resultant. After some alge-
braic manipulations we write the result as

_B
n, ==

S

k
D

- - k MZ
N+ By(s) Mx+Bx(s)5-—My+<I>x(s)Vx+(Dy(s)Vy+<I)(s)2—1-i—c . (8.77)

XX vy c

The functions @, (s), @ (s), and ®(s) are aconsequence of the coupling between extension and shear in the

material law (i.e., b = 0). If the stiffness parameter b = 0 over the entire contour, then
@, (s) = @,(s) = ®(s) = 0. Equations for these functions are

D (s) = —bF, (s)+ g(bexcds) ¥ B_kDﬂi)(fbnycds) ¥ Z%Q(fbxk"xcds) , (©.78)
xx yy
D (s) = ~bF, (s)+ g(beycds) + B_kDKQ(fbychds) + f%ﬁ)(fbxpycds) , and (8.79)
xx yy
D(s) = b—Efbds—B—kAQ byds—BKXS) gp i (8.80)
s D.. D,

8.2.3 Complementary work and energy

Consider afree bending and torsion state of the bar as shown in figure. 8.4 where the displacements, strains, and
forces satisfy the compatibility conditions, Hooke's law, and the equilibrium conditions. In this state, the actual

displacements of the modulus-weighted centroid are u_(z), v.(z), and w(z) , and the corresponding forces are
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Vi(z), V,(z), and N(z) , respectively. The actual rotations of a cross section with respect to the modulus-
weighted centroid are ¢,(z), ¢,(z), and ¢.(z) , and the corresponding moments are M, (z), M (z), and M, (z),
respectively. Now consider infinitesimal increments in the forces and moments denoted by

oV, 8V, 8N, dM,, M, and d M. from the equilibrium state. For an element of the bar of length Az, the com-
plementary work is given by

z+Az

U Az = [V, + Vv, +dNw+dM,9, +3M,9, +dM,c9.]] (8.81)

where U~ denotes the increment in the complementary work per unit axial length. Divide eg. (8.81) by Az, and
let Az — 0, to getinthelimit

SU = 7[6Vu + 8V, + ONw + M, + SM, 0, + OM.9.]. (8.82)

Statically admissible incremental actions requires that they satisfy the equilibrium differential equations (8.38)
and (8.39): i.e,

d d d d d d

—8V, = =8V, = —ON = —OM_. =0 —dM_ =8V —dM, = V.. .
dz ¥ dz Yy dz dz dz  ~ Y dz 7 x (6.83)
Imposing equilibrium (8.83) reduces eqg. (8.82) to
dw do, dg, dop.
SU" = 9, 0V, +,.87, +(dz)6N+( >6MV+< >6M +( ) , (8.84)

where shear strains averaged over the cross section of the bar relative to the centroid are defined by

wxc = - + q)y wyc = _° + q)x . (885)

An elastic materia is defined by the existence of acomplementary strain energy function per unit axial length
with the form U (M, M,,N, V., V,, M,c) . Then, thetotal increment in function U is

oU = Wosnr + 2 s, + sy + sy + W5y 4+ 2 6M (8.86)
oM, o, TN O a0 T Y T oM

X

I dentify the complementary work (8.84) with the complementary energy (8.86) to get the important properties of
complementary strain energy function. That is,

7¢x = & 7¢y = & di\/V = & wxc = 9 wyc = & 7¢Z = _(9 U . (8_87)
dz M, dz M, dz IN av, av, dz oM,

Now consider the complementary work for the free bending and torsion state of an element of the wall As-
by-Az as shown in Fig. 8.5. On the contour (€ = 0) the axial displacement u,(s, z) corresponds to the stress
resultant n, and tangential displacement (s, z) correspondsto the shear flow g. Let U, denote theincrement

in the complementary work per unit area for increments in the stress resultants 6n, and dq acting on the element
As-by-Az of Fig. 8.5. Then, the complementary work is

dU,AsAz = [(6nZAs)uZ+(6qu)us]‘Z+Az+[(Bqu)uz]‘HAS. (8.88)
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Divide eg. (8.88) by AsAz,andlet As — 0 and Az — 0, to get in the limit

U, = L (on)u, + (5q)u,]+ L[ (dq)u.], (8.89)
dz as

which expandsto
* 0 J 9 auz Guz 8us
SU* = [E(anz) +5(6q)JuZ + [&(fm)}us o dm (5 o >6q. (8.90)

Statically admissible incrementsin the stress resultants dn, and dq requires that they satisfy equilibrium equa-
tions (8.42) and (8.43), which are

d dJ ad

—(d —(8¢q) =0 —(8q) = 0. .

=-(0n.) +=(d9) 2-(99) (8.91)

From the strain-displacement relations (3.27) and (3.28) on page 37 we identify the axial normal strain ¢, and
the shear strain vy, as

ou _ Ou, + ou

= 9% It 8.92
29z Vsz as 0z (8.92)

€

Substitute egs. (8.91) and (8.92) into eq. (8.90) to get the increment in the complementary work per unit area as
dU, = &,,0n,+v,,0q. (8.93)
For an elastic material weidentify U, with theincrement in the complementary strain energy function per unit

area, which is afunction of the stress resultants, or Ujj(riz, q) , with the properties

_ U, _ U,
€. = on Vsz = aq ' (8.94)
z

Now substitute Hooke's law (8.45) for the normal strain €., and for the shear strain vy, in the previous equation
to get

ouU’ aur 1
c -b 2 = = —bn.). 8.95
= plnemba) e = lag=bn) (3.95)

z

|—

The complementary strain energy function per unit area consistent with these properties (8.95) is

U, = 2—-15(}122 —2bn,g +aq?). (8.96)

The increment in the complementary energy per unit axial length SU isdefined 8U = fa U,ds . Hence,

U = %fll;(nzz —2bn,q +aq?)ds. (8.97)

Equations (8.74) and (8.77) relate the shear flow and normal stress resultant to the bar forces N, V,, and ¥, and

the moments M,, M,, and M., . Imposing the properties of the complementary strain energy for the bar given by
(8.87) to the expression (8.97) for the complementary strain energy, we get the following relations:

242 Aerospace Sructures



Composite thin-walled bar with a closed cross-sectional contour

%’x - fé[(n _bg) x+(aq—bnz)a%3jds (3.98)
%’y :fll?[(n —bg) A/[z+(aq b )@‘L} (8.99)
Q- ﬁ?[(n ~bg) 5+ (ag ~ bn )24 las (8.100)
v gl oot
W, —fll?[(n —bgq) Vi+(aq bn )a_rﬂ (8.102)

fB[ —bq) =+ (aq =bn )—qz—c}ds. (8.103)

Equations (8.98) to (8.103) are statements of Casti gi lano’s second theorem.

8.24 Cross-sectional compliance matrix

Substitute eq. (8.74) for the shear flow, and substitute eqg. (8.77) for the normal stress resultant, into egs. (8.98) to
(8.103), followed by integration over the contour. The result from the integration leads to compliance form of the
material law:

do,/dz Cl1 €12 €13 €14 €15 C6| | M,

dé,/dz a1 Cxp Ca3 Co4 Ca5 Cog| | M,

dw/dz| _ |€31 C3p €33 C34 C35 C36/ | N | (8.104)
L Cqy Cap Ca3 Cay Cys Cag| | Vi
Py €51 Csy Cs3 Csq Cs5 Csgl | V)

149./dz|  |cey gy C3 Cos Cos Cog) | M-

Elements of the compliance matrix are given below.

_ ok _ —kn, _ _ —kn _ _ _ _k -
= b Cy = D_XXZ = ¢ Dyyx €3 =¢5 =0 Cig = Ca = <D—Xx>f(bnyc)ds (8.105)
k - —k y
C15 = C5 = (D )f(byFyC)ds Clg = Cep = <2A 5 )f(by)ds (8.106)
k k N
Cyy = — Cy3 =C3p =0 Coy = Cgp = (—) (bxF, )ds (8.107)
Dy, D,, f
k ,
Cys = C5y = (D—)f(bxch)ds Crg = Cep = 2A 0 )f bx)ds ¢33 = 1/8 (8.108)
»y
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Cyq = Cy3 = (%‘)f(bF“)dS Cy35 = Cq3 = (é)f(bec)ds Cy = Ces (2A S)f(b)ds (8.109)

:f}g(ach+2bec<I>x+<I>f)ds Cas = Csq :f}g(aF F, +bF, ® +bF, &, +®.® )ds (8110)

xct ye

Cag = Cop = (22 ) fé(—anC+becd)—bd>x+d)d)x)ds ess = ﬁ}(azﬁ +2bF, D, +D2)ds  (8111)

Matrix [C,-J is symmetric so that twenty-one of the coefficients are independent. The fifteen of the off-diagonal
coefficients correspond to different types of coupling effects as described in table 8.3.

Table 8.3 Description of coupling coefficients

Coefficients Coupling effects Comment
Co1 combined bending about x- and Cyy = 0if D, =0

y-axes
C31 & Czp bending-extension C31 = C3p =0, since origin is at modulus weighted

centroid

C41, C51, Cap, & Cgp  bending-shearing are zero if parameter b = O over entire contour
Ce1 & Cgo bending-torsion are zero if parameter b = 0 over entire contour
Cs3 & Cg3 shearing-extension are zero if parameter b = 0 over entire contour
Cs3 torsion-extension is zero if parameter b = 0 over entire contour
Ce4 & Cgs torsion-shearing
Cs5 combined transverse shear in x-z

and y-z planes
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Example 8.3 Graphite-epoxy circular tube

Nixon (1987) conducted experiments on thin-walled tubes fabricated from T300/5208 graphite/epoxy. The test
specimens had amean radius R = 20.32 mm, awall thicknesst = 1.016 mm, and were composed of two unidrec-

tional layerswith angles ¢, = —20° and ¢, = 70°. Thethickness of both layersis the same, and the properties
of the material are E; = 146.7 GPa (21.3 ksi), E, = 11.0 GPa (1.6 ksi), G, = 6.41 GPa (0.93 ksi), principal Pois-
son’sration v,; = 0.38 and the minor Poisson’sratio v, = 0.0285 . The twist per unit length d¢,/dz was
measured in the experiment for an applied axial force N and an applied torque M, . Determine this relationship
from the composite bar theory.

Solution. Thein-plane stiffness matrix is determined from [ 4] = [@(cp]; é + [é(%)}é,wheretheformulas

for the elements of transformed reduced stiffness matrix arelisted in eq. (8.35). Theresult is

Ay A A 67.8649 17.4628 15.6839 |
Ay Ay Asg| = |17.4628 67.8649 —15.6839| MN/m. @
Ag Agy Agg 15.6839 —15.6839 19.6701 |

From egs. (8.47) and (8.48) the stiffness parameters of the composite bar theory are

B = 16.0454 MN/m B, = -19.7196 MN/m = —1.22899 B = 39.1363 MN/m a = 3.9495. (b)

Note that the stiffness parameters are spatially uniform over the entire contour. Cartesian coordinates relative to
the center of the circular contour are x = Rcosf and y = Rsin6, 0 <6 <2x. From eqg. (8.52) the axial stiff-
nessis S = 4.99669 MN , and the modulus-weighted first moments (8.70) are

2n 2%

S, = fB(s)y(s)ds = B{y(@)Rd@ =0 S, = fB(s)x(s)ds = B{x(B)RdG =0. (c)

Asaconseguence of eg. (c) the modulus-weighted centroid coincides with the center of the circular contour. The
modul us-weighed second moments are computed from eqg. (8.57), and the results are

D,, = D,, = nBR® = 1,031.57 N-m? D,, =0. )

Thus, from eq. (8.59) and eq. (8.62) wefind n, = n, = 0,k = 1,x = x,andy = y. The combined first
moment functionsin eg. (8.69) are computed from the first moment functionsin eqg. (8.70). The results are
S:(8) = BR2(1 —cos9) S,(0) = BR?sin® . ©

Notethat S:(0) = 5,(0) = Sx(2m) = Sy(2m) = 0. The shear flow distribution functions F, and F,. are com-
puted from eq. (8.75). Functions @,, @, @, which couple shear and torsion to the normal stress resultant (8.77),
are computed from egs. (8.78) to (8.80). In this example, the results for these functions are

]:VXCZSI—I}Qe chzlﬁe (I)x:q)v:(l):() Ose<2ﬂ:. (f)
T 7T )
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Elements of the compliance matrix are determined by egs. (8.105) to (8.112). In this example the result for
the cross-sectional compliance matrix is

- 10 0 bR 0 0] -

¢,/ dz 0 1 0 0 bR 0 ||M

dw/dz| _ 1 2 2 ||~
= — . ©

v, TBRIbR 0 0 aR> 0 0 ||V

W, 0 —bR 0 0 aR2 0 ||V,

|d¢./dz| 0 0 ‘%3 o o 4™

The twist per unit length, or unit twist, for the circular tubeisequal to ¢, N + ¢ M, . The unit twist evalu-

ates as

d¢ —b a _5 _3
d. _ N+ M. = (1.21043x10°)N + (1.91431x107°) M. . h
dz <2nBR2> <2nBR3) 2= x10 )N+ ( x10 )M, ")

The unit twist in eg. (h) is plotted with respect to the torque in figure. 8.6 for two values of the axia force. Dis-
crete measurements from the experiment reported by Nixon (1987) are shown by filled circlesin the plot. [l

0.15

= 4448 kN —\

d9.rad.  0.10;
dz m r

0.05

Analysis
@® Experiment

M. MN-m

0 10 20 30 40 50

Fig.8.6 example 8.3: Unit twist versustorque for the two values of the axial force.
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Example 8.4 Composite box beam

Consider the composite box beam in the experiments conducted by Smith and Chopra (1991) and Chandraet al.
(1990). Asshown in figure. 8.7, the beam is clamped at its left end where the axial coordinatez = 0,0<z=<L,
where the length of the beam L = 762 mm. The cross-sectional dimensions of the rectangular contour are

b, = 242 mm and b, = 13.6 mm, and the wall thickness # = 0.76 mm over the entire contour. The materi-
al isunidirectional tape of carbon-epoxy with properties £, = 142 GPa, E, = 9.8 GPa, G|, = 6 GPa,

v, = 042,and v,, = 0.029.

Y
g
A7 ? *t branch 3 8
7 A< G 4 v §=
’—D W by ’ X, U
4 branch 4 (X, Y.) s ﬁ branch 2
< _ 4 - - Obi—2= 5 branch 1 LG = X
S -
Section A-A

Fig. 8.7 Cantilever, thin-walled box beam.

The lower horizontal flange, or branch 1, isa unidirectional laminate with aply angle ¢ = —15°, and the
upper horizontal flange, or branch 3, is also a unidirectional laminate with aply angleof ¢ = 15°. The vertical
webs, or branches 2 and 4, are angle-ply laminates with alayup of (15°,—15°). Imagine cutting the box beam

parallel to the z-axis through point O. Then unfold the laminated walls and lay them flat such that the outside sur-
faceisfacing up. The fiber directions with respect to s-z-C coordinates in each branch are shown in figure. 8.8.

(@) (0]
s s
Fig.8.8 Outside S s
surface of the unfolded sxz—C
box. X1 X
Z 1
z zZ z
@ = 15° ¢ = —15°
branch 4 branch 3 branch 2 branch 1 0
(@]

a) Determinethetorsional rotation ¢.(z) under transverse bending v, = Q.

b) Determinethe slope dv/dz of the reference axis due to atorque M,.
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Solution. Stiffness coefficients of the four branches comprising the contour are listed in table 8.4.

Table 8.4 Stiffness coefficients for each branch of the box beam

Stiffness

coefficient Branch 1 Branch 3 Branches2 & 4
A1, MN/m  8.59 8.59 8.59
Ay, MN/m 893 8.93 8.93
Ao, MN/m  9.67 9.67 9.67
Agg, MN/m  10.3 10.3 10.3
A, MN/m  —2.73 273 0
Asg, MN/m  -2.27 2.27 0

B,, MN/m -19.9 19.8 0

By, MN/m 9.46 9.455 10.3
B, MN/m 45.7 457 874
b, (- 21 21 0

a 9.242 9.242 8.465

Notethat By = B,, B, = B,, by = =b,, a,

= a,,and a, = a,.Theorigin of the contour coordinate where s

=0isat point O of section A-A of figure. 8.7. The Cartesian coordinate functions (X(s), Y(s)) with origin also

at point O arelisted in table 8.5.

Table 8.5 Parametric equations of the contour for the box beam

Branch no. Range of s, in. X(s) Y(s)
1 O=ss=<bh, s 0
2 byss<b,+tb, b, s—b,
3 b +b,=s<2b.+Db, 2b,+b,—s b,
4 2b,+b,<s<2(b,+b))| 0 2(b,+by)—s
The axia stiffnessis
S = des = 2(B;b,+ B,b,) = 4.58819 MN. ()
The first moments with respect to the X-Y coordinates are
Sy = fBYds = b,(Bb,+ B,b)) Sy = fBXdS = b (Bb,+Byb)). (b)
Consequently, the modulus-weighted centroid is located at
X, =58,/8 =52 Y, = 8/S=b/2. ©)
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In this example the modul us-weighted centroid coincides with the geometric centroid of the cross section. The
Cartesian coordinates of the contour with respect to the modulus-weighted centroid are determined from

x(s) = X(s)—X, and y(s) = Y(s)—7Y,. The modulus-weighted second moments computed from eq. (8.57) are

b2 b2
Dy = Z2(3Bib+Byb,) = 138884 Nm> D, = X(Bib+3Byb)) = 455927 Nm> D, = 0.0

The values of the parameterslisted ineq. (8.59) are n, = n, = 0 and k£ = 1. Hence, from eq. (8.62) wefind

x(s) = x(s) and y(s) = y(s).Also, fromeq. (8.69) Sk(s) = S,(s) and Sy(s) = 5,(s). The modulus-
weighted distribution functions S.(s) and S,(s) with respect to a segment of the cross-sectional areaare defined
in eq. (8.70), and the results for these functions are listed in table 8.6.

Table 8.6 M odulus-weighted distribution functionsfor thefirst area moments

£ 5 = 5, Si(s) = $,(s)

1 (-Bibys)/2 Bs[(=b, +s)/2]

2 [=B\bb, +By(b,—s)(b,+b,—5)]/2 [Byb (b, +5)]/2

3 [-B\b(2b,+b,—5)]/2 [B,b.b,—B(2b2+3b(b,—s) +(b,—5)*)]/2
4

—By([4b2 +6b.b, +2b2—4b s —3b s +5%]/2) [B,b,(2b,+2b,~5)]/2

The procedure to determine S, (s) and S,(s) isthe same procedure used to determine the first area moments
0.(s) and Q,(s) for across section with awall made of an isotropic material. See example 3.4 on page 71. For
the compositewall S.(s) isanalogousto Q,(s) of theisotropic wall, and S,(s) is analogous to 0,(s) . Note

that :%(0) = 0 inbranch 1, and that §x[2(bx +b,)] = 0 inbranch 4, which are necessary conditions for the

first moment about the centroidal x-axis. Similarly, :S’y(O) = 0 inbranch 1, and 5‘y[2(bx +b,)] = 0 inbranch 4,
which are necessary conditions for the first moment about the centroidal y-axis.

The coordinates normal to the contour for each branch with respect to the centroid given by eq. (3.10) on
page 34, and the area enclosed by the contour, are as follows:

Fucl = Faes = b,/2 = 68mm, 1,y = 7y = b,/2 = 121 mm, and 4, = bb, = 329.12mm>.  (e)

The numerical evaluation of the shear flow distribution functionsin eg. (8.75) can now be computed with the
results shown in table 8.7.

Table 8.7 Shear flow distribution functions for the box beam

Branch F.., m™! (s in meters) F,., m™" (s in meters)
1 —15.771-1, 212.55 + 50, 102.5s2 —27.066 —2, 236.88s
2 —71.896 +2,319.2s —260.728-19, 505.9s + 314, 61252
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Table 8.7 Shear flow distribution functionsfor the box beam

Branch F_., m™' (s in meters) F,., m™" (s in meters)
3 —101.65 + 5, 000.25-50, 102.552 —111.62 + 2, 236.88s
4 —159.564-2,319.24s —1,447.58 +43,290.55-314, 61252

For anisotropic wall properties, the normal stress resultant (8.77) isrelated to shear and torsion in addition to the
axial normal force and bending moments. The coefficient functions of the shear terms (®,(s) and @ (s)) and

torsion term (P(s) ) are given by egs. (8.78) to (8.80), and the numerical results for these functions are listed
below.

Table 8.8 Coefficient functionsfor shear and torsion for the box beam (refer to egs. (8.78) to (8.80)).

®(s), dimensionless

Branch @, m~! (s in meters) @, m~! (s in meters) and sin meters

1 —12.209 —2, 546.37s + 105, 22252 56.8427 —4,697.75s —0.554009

2 40.0001 0 13.482 —434.916s

3 234.389 — 10, 501.1s + 105, 22252 234.418 —4, 697.755 0.554009

4 40.0001 0 —29.9222 + 4349165

The numerical result for the compliance matrix (8.104) is

d¢,/dz] 17200 0 0 0 0 -7.561|[m
do,/dz 0 2193 0 0 0 0 ||m,
dw/dz| _ gs| 0 0 2.180x107 4577x10° 0 0 || N|
Y, 0 0 4577x10°3.389x10° 0 0 ||"
Wy 0 0 0 0 4861x10° o ||V
|d9./ dz| |-7.561 0 0 0 0 25.83 | [M]

The non-zero compliance coefficient ¢, couples the torsional and bending responses of the beam. This cou-
pling isillustrated in the following numerical examples.

a. Takethe beam subject to transverse shear with V, = O, 0 <z <L, and no other actions. The bending mo-
mentis M, = —Q(L —z) . Thetwist per unit length under transverse bending is d¢,/dz = ¢4, M, . Thetor-
sional rotation is given by

b, = Cm[‘Q(LZ_Zz_zﬂ = _CélLZQE_%@)T - 0'00439Q[1%_%<1%)2]

The distributions of the torsional rotation for Q = 4.448 N (1 |b.) from the present analysis, and from the experi-
ment conducted by Smith and Chopra (1991), are shown in figure. 8.9.
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¢, rad.

Fig. 8.9

0.010 -
° )
0.008 |- °
0.006 |- °
0.004 |- _
Analysis
@® Experiment, Smith & Chopra (1991
0.002|-
. | . . . | . . . | . . | . . . | z/L
0.2 0.4 0.6 0.8 1.0

Spanwise distribution of thetorsional rotation for Vy, = Q=4.448N (1 1b.).

b. Take the beam subject to a torque M, and no other actions. From the compliance matrix we find
Y, = cs5-0 = 0. From eq. (8.85) the slope of the reference axis dv/dz = —¢, , and from the compliance

matrix d¢./dz = c,¢M,,and ¢, = ¢,(M.z.Since ¢4 = ¢ , the expression for the slope is

dv

dz

= ¢ M.z = (=1.561x10°)LM.(z/L) = 0.005761(—-—L>Mz(z/L).

Nm

The distributions of the slope of the reference axis from the present analysis, and from the experiment conducted
by Chandraet a. (1990), for thetorque ., = 0.113 Nm (1.0 Ib.-in.) are shown in figure. 8.10.

dz

0.0006 ;
0.0005
0.0004
0.0003 |
0.0002

0.0001 |

@® Experiment, Chandraet al. (1990

Analysis

/L

0.2 0.4 0.6 0.8 1.0

Fig.8.10 Slope of thereference axisfor an applied torque of 0.113 Nm (1.0 Ib.-in.)
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8.3  Open cross-sectional contour

For an open cross-sectional contour the shear flow is obtained from eg. (8.67) on page 239. The shear flow at the
contour origin ¢, = 0 if the origin islocated at intersection with alongitudinal free edge. (Refer to the discus-
sionin article 3.8.1 on page 51.) The equation for the shear flow for the FRP composite bar is

k.

q(s) = —Si(s) 5

Vy—ﬁy(s)i V.. (8.113)
xx D vy

The notes concerning the shear center in article 3.8.3 on page 57 apply as well to abar made of an FRP compos-
ite. In particular from these notes, the resultant of the shear flow distribution over the contour is aforce with com-
ponents V, and V,, acting through the shear center such that there is no torque acting at the shear center. If the

Ccross section is subject to atorque, this torque cannot be balanced by the shear flow, which, according to eqg.
(8.113), isuniquely determined by the shear forces V, and Vy. Part (b) of example 8.5 on page 263 shows how to
find the shear center for an open section starting with eq. (8.113). After locating the shear center for the open
cross-sectional contour, amaterial law for the torque acting at the shear center remains to be determined. This
material law for torsion is developed in the next section.

8.4 Uniformtorsion of an FRP bar with a rectangular cross section

We consider the uniform torsion of a prismatic bar with a rectangular cross section composed of alinear elastic,
anisotropic material. Cartesian coordinates of the bar are denoted by s —z — T, where the coordinate zis parallel
to the longitudinal axis of the bar. The origin of the coordinates sand T is at the center of the cross section;
—b/2 = s = b/2 wherethewidth of the cross section is denoted by b, and —/2 < T < ¢/2 where the thickness
by t. Seefigure. 8.11.

o c
<) 4
Fig.8.11 Bar with arectangular | |
Cross section subject to uniform Ozs s M., ¢D t
torsion. ha

I< b/2 >|< b/2 »l

The only applied load isatorque A/, about the z-axis, and the rotation about the z-axis corresponding to the

torque is denoted by ¢ . The torque and rotation are positive counterclockwise as shown in figure. 8.11. The

shear stress components acting on the cross section are denoted by o, and o, , and the torque is related to the
shear stresses by the following integral over the cross section:

b/2 t/2

M, = (Co,,—s0,:)dCds . (8.114)
J [ (Fommso)
—b/2—t/2

The lateral surfaces of the bar are not subject any loads or tractions. Hence, the stress components must satisfy
the following conditions at the boundaries of the cross section:

Ogy = Og, = O = 0,for =b/2<s<b/2 @T = =t/2. (8.115)
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Oy =0, =0y =0,as==b/2for—1/2sC=1/2. (8.116)

SS

Under uniform torsion all stress components and their corresponding strains are independent of the axial
coordinate z. The exact elasticity formulation for the anisotropic bar is given in the monograph by Lekhnitskii
(1981). We seek an approximate solution based on the following assumptions:

* Stresscomponents o, , 0, , and o areequal to zero in the domain of the cross section.

MO

e Thecrosssectionisrigid in its own plane.

The procedure to devel op the material law isasfollows: () determine the displacements of the bar using the
strain-displacement relations and the anisotropic form of Hooke's law, (b) satisfy the differential equation of
equilibrium using a separable form of the stress function, (c) use static equivalence to determine the resultants of
the axial normal stress, and (d) impose the principle of complementary virtual work to find the unknown part of
the stress function. The final result for the material law in torsion is given by egs. (8.193) and (8.194) on
page 263.

8.4.1 Displacements

The non-zero stress components are the axial normal stress o, , and the shear stresses o, and o, . To effect the

rigidity assumption consider Hooke's law (8.16) for the strain components &, €., and vy, . Write these mate-
rial laws as

e = U o L[GSS+<;12)GH+<$)%+(ﬁ)%}
s E C' C'n C'y

<$) Oy + (&) 0—zz) + GCZ + (C_;3§> O—sz ' (8:117)
C 33 c 33 ¢ 33

Ve, = S, O o L{(&)O
ds  0C G

where E isthe modulus of elasticity for tension/compression along the s-axis, E¢. isthe modulus aong the T-
axis, and G, isthe shear modulusin the plane of the cross section. These moduli are related to the compliance

coefficientsby E,; = (C'())™", Ez = (C'33)7',and G, = (C's5)~" . Invoke therigidity of the cross section by
letting £, — », Ee = o, and G, — o« . Theassumption of arigid cross-sectional planeleadsto the vanishing
of the following strain-displacement relations;

Ju du, du- Jdu
Essz-gjzo SCC=8—==0 chzﬁ'Fa—z;:O. (8.118)

The normal strainsin eg. (8.118) mean displacement functions u; = u(z, €) and u. = u.(z, s) . Hooke's law
(8.16) for the remaining strains reduces to

auZ ! !
€ = g =C 220 +C 2605z s (8.119)
dur Jdu
= %+ —==(,0.,and 8.120
YZQ 9z 6?; 44%2C ( )
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du, Ju , ,
Ysz = g + a_ZS =C 6202z +C 6695z - (8.121)

Let the axial normal strain e, = D(s, C), where the function D(s, T) isto be determined from the indepen-

dence of the strains on axial coordinate z. Begin by integrating the strain-displacement equation for the axial nor-
mal strain with respect to zto determine the axial displacement as

u, = zD(s,C) +w(s, T). (8.122)
Solve eg. (8.119), for the axial normal stressto get
0,, = (D=C"50,,)/(C'y). (8.123)
Substitute the axial displacement (8.122) into eg. (8.120) to find

du 9D ow
= _ _+(__+C/ . 8.124
0z =9t at 4402@) (6124

Integrate eq. (8.124) with respect to zto get

_ —226D aw ’
u = 552 (- e 10) + V(). (8.125)

Substitute eg. (8.125) for the displacement ;. for the expression for the strain €. in eq. (8.118) to get

€ :a_US:O:__ZZaZ__D-}.Zi
€ st 2 92 Tt

Substitute eg. (8.123) for the axial normal stressinto eq. (8.121) to get

d /
(— 6_2 +C 44(52@) , for all values of z (8.126)

du, Jdu, , ,
Vo = =+ = = (C'uD)/C'y + B0y s (8.127)
ds  dz
where B¢, = (C'¢s—C'3,/C',,) . Substitute eg. (8.122) for u, into eq. (8.127) to get
oug _ 9D 9 ) ,
=0 (—a—? +(C',D)/C'yy + 5660s2> : (8.128)
Integrate eq. (8.128) the with respect to z to find the displacement u, as
—_ 26D a ! !
u, = %g + z(— a—vsv+ BesO,. + (C',D)/C 22) +u(Q). (8.129)
Substitute eg. (8.129) for displacement «, in the expression for the strain ¢, in eg. (8.118) to get
ou —z2(92D a( dw
=—=0==(—=)+z—(——+ +(C',D)/C',,) , for al values of z 8.130
fss = s 2 <as2> Zas( ds BosOiz + (C'aD) 22) ratva z (8-130)

Substitute displacement . from eqg. (8.125), and substitute displacement «, from eq. (8.129), into the expres-
sion for the shear strain v in eq. (8.118) to get

92D d( oW, ~ Jd( dw ) ) dv , du
tz|—(——+ +—=(——+ + D + =+ =, 8.131
359C Z[8s< ot C 4402z;> 3C< BesOs. + (C'eaD)/ C 22)} e (8:131)

Voo = 0= - ds ds
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Equations (8.126), (8.130), and (8.131) are to be satisfied for all values of z, from which we conclude the fol-
lowing results:

92D 92D 92D
D _ 9D _ = 8.132
ac? ds? ds0C ( )
J J , _ d J ' / _
6_C<_6_VCV +C 44(72@) =0 5(‘ a_vsv+ BesO,. +(C'u D)/ C 22) =0 (8.133)
i(—@h C' 40 ) + i(— AL +(C’62D)/C’22> =0 Dpdu_ (8.134)
as\  aC ) at\ as 5z ds dt

To satisfy the vanishing of partial derivatives of D in eq. (8.132), we find that function D islinear in the coordi-
nates. That is,

D = As+BT+C, (8.135)

where 4 , B ,and C are congtants that will be determined later. Integrate the second expression eg. (8.133) with

respect to s, and then integrate the first expression in eg. (8.133) with respect to C. The results of these integra-
tionsare

- aa—‘: + B0+ (C'yD)/Clyy + Fy(T) = 0, and (8.136)
- ‘;—‘g +C' 0+ Fy(s) = 0. (8.137)
Substitute eg. (8.136) and eg. (8.137) into the first expression in eg. (8.134) to find
cﬂ +d—F2 =0. (8.138)
dg ds

Equation (8.138) is satisfied by F,(T) = —AC and F,(s) = As, where \ is called a separation constant. Substi-
tute the result for F4 into eg. (8.136) to find

% = B0 T (C'aD)/C'y —AE. (8.139)

Substitute the result for F, into eg. (8.137) to find
aw
ac

Substitute the derivative of displacement w with respect to € from eq. (8.140) into the displacement . givenin

€g. (8.125) to get

= ('O + As. (8.140)

2=
ug = %B —hzs +v(s). (8.141)

Substitute the derivative of displacement w with respect to s from eqg. (8.139) into the displacement «, givenin
€g. (8.129) to get

22—
u, = %A +AzC+u(T). (8.142)
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From eq. (8.134) consider the relation &¥ + 4% = (. The latter relation is satisfied by & = —» and & = o,
ds dt ds dg

where o isasecond separation constant. Thus, v(s) = —ws +v(0) and u(T) = T+ u(0) . Substitute the
equationsfor v(s) and u(T) into egs. eg. (8.141)and eq. (8.142) to get

2= _2-
ug = %B—)\zs—ws+v(0) u, = %A+kz?;+oo?;+u(0). (8.143)

s

. . d d
From eg. (8.118) the in-plane shear strain y., = a—% + a—% =0.As
S

FAC Gy showninfigure. 8.12 the partial derivative terms appearing in the shear

. . . ad
strain can be related to rotation ¢, of the cross section. Let ik g

aC :

S, Vg
_Oup _ o and let —aa—u@ = ¢, . The partial derivatives of the displacementsin eqg.
ds z N

(8.143) are equated to the rotation to get
Fig. 8.12 Rotation of thecross s s
section about the z-axis. 0, = a_ucs = hz+w,and ¢, = _a_ug = Azt 0. (8.144)
S

Thus, ¢, = Az + o, from which we identify the separation constant A = ilq)z
z

. The separation constant o repre-

sents arigid body rotation of the bar about the z-axis. To prevent rigid body rotation and displacement of the
crosssectionset w = 0, v(0) = 0,and u(0) = 0. Thefinal results for the displacements are

u, = z(;ls + E?‘g + 6) +w(s, Q), (8.145)
2= d
ue = —;—B—zs-c%,and (8.146)
2
u, = %A +z§c%. (8.147)

8.4.2 Equilibrium
The differential equation for axial equilibriumis

900, + d0¢, + 00,,
as aC 0z

[ —)

=0

(8.148)
The axial normal stress o, does not contribute to eqg. (8.148) sinceiit is independent of coordinate z. Equation

(8.148) isidentically satisfied by the introduction of the stress function (s, €) where the stress components are
related to the stress function by

OSZ - a@
For shear stress o, to satisfy the boundary conditions (8.115) at T = =#/2 thestressfunction dy/ds = 0.

ST T 6149
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For shear stress o, to satisfy the boundary conditions (8.116) at s = =b/2 the stressfunction dy/d¢ = 0.

That isthe stress function is a constant on the boundaries, and for conveniencewetake y = 0 onthe boundaries
of the rectangular domain.

Substitute eq. (8.149) for the shear stresses in the expression (8.114) for the torque to get

o 1 ()

—b/2W—1/2

Integrate eq. (8.150) by parts with respect to sand T to get

—b/2

b/2 2 t/2 t/2 b2 t/2
M, = {‘C‘Pt/z +f wd@}ds +f {[—Sw]_b/z +f wds}di;- (8.151)
—t/2 —t/2 —b/2

Since the stress function is equal to zero on the boundaries we find that the torque is given by integral of the
stress function over the cross-sectiona area:

b/2 /2

M, = f YdCds. (8.152)
—b/2J —t/2
We make an additional assumption for the stress function that

W(s,©) = p(9)[(2/2)* -T2, (8.153)

which satisfies the boundary condition that y (s, +//2) = 0. Function y,(s) must satisfy the boundary condi-
tion 1, (xb/2) = 0. The shear stresses for this assumption are given by

d
0. = 2,()C o = %[(z/zy—;q. (8.154)

Substitute the stress function (8.153) into the torque (8.152) to get

; b/2
_t
M, = 3 f Y, (s)ds . (8.155)
~b/2

8.4.3 Static equivalence

In general, the resultants of the axial normal stress o, acting over the cross section are a normal force denoted

by N, abending moment about the s-axisby M, and a bending moment about the C-axisby M. . For alaminated
wall these resultants are given by

b/2 Np Cri
(N, M, M) = {E (1, C,s)0§§>dC]ds, (8.156)
_;,[2 k=1 !:

where N, isthe number of plies,and £ = 1,2, ..., N, . At the bottom of thek-th ply € = T, and at the top of

thek-thply T = C;,,, Cy4, > C,. Fromegs. (8.123) and (8.149) the axial normal stressin the k-th ply is
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() As+ B+ C oy ()
ot = D_ <C26> OSZ:M_(C%) 20, (s) . (8.157)

o\ c\Cx
Substitute eg. (8.157) for the axial normal stressinto the equations for the axial force and bending moments
given by eqg. (8.156). In the process of computing the resultants, integrals that are explicit in coordinates sand T
are performed. Integrals of the stress function also appear in this process and from eqg. (8.155), and we use the
fact that

b/2 .
f P, (s)ds = 32.
t

-b/2

Theresults are

N = (bBp)B + (bAzz)E—t%e%MZ, (8.158)
M, = (szz)E+(szz)6—n26Mz, and (8.159)
b/2
b3 y
M, = <EA22)A—2626 f sy, (s)ds . (8.160)

—b/2
Stiffness coefficients in the previous equations are defined by

Np Np

Np
_ 1 _ 1 _ 1
A4y = k_El"""—C,%)(Ckn—@k) By, = k_Elz"""—C,%)(Z/%H -Ch Dy, = k_213——c,§,§)(2;2+1 -C}). (8.161)

Shear-extension coupling coefficients are defined by

N, , N ,
= 3 (@) e = (93 (@) e, -

We limit consideration to a symmetric laminate in which the stacking sequence of the pliesis symmetric about
the midplane. Symmetry leads to coefficients

By =0, =0. (8.163)

Toillustrate that symmetry results in the previous property consider two identical plieslabeled K and L in figure.
8.13. The two plies have the same material properties, same thickness denoted by h, and are symmetrically

—_ - CL+]
A [ eyl o 026 |§L

Fig.8.13 Identical pliessymmetric C
about the midplane. midplane G, +Cgyq = 0

ke

Tk

[ plyK C'y, 05 |

located with respect to the midplane. Symmetry requires the coordinates T, + T, .., = 0. Theremaining coordi-

natesare Ly = Cppy—h and ¢, ,, = C, + k. Thesumthe of pliesK and L that contribute to coefficient B,,
are
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L
2C',,

1

[C2.1 —C2+8k+1 —Ck] = S [(C + A2 =L +(L,)* = (=L, —h)*] = 0. (8.164)
2

Hence, for asymmetric laminate the normal force N = 0 |leadsto coefficient C=0 , bending moment M, = 0
leads to coefficient 4 = 0 , and bending moment A/, = 0 leadsto coefficient B given by
- N6
B = —M_. 8.165
bD,, * ¢ )
The transverse shear resultants acting on the cross section are denoted by ¥ and V.. They are given by

b/2 ~t/2 t/2 ~b/2

v, = f {f ozsdt}ds and V', = f { f ozcds}dg (8.166)

—b/2—t/2 —t/2-=b/2

Substitute eq. (8.154) for the shear stresses in the integrals of the previous equations to get

b/2 t/2 b/2

v, = Zw{ Cd;}ls = 2y,[0]ds = 0, and (8.167)
ER i )
t/2 b/zd t/2
Ve = f [z/zz—v]h %ds} dg = f{[t/22—Czl[wl(b/z)—wl(—b/z)]}dc =0.  (8168)
—1/2 —b/2 —1/2

Therefore, the resultants acting on the cross section of thebarare N = V, = V. = M, = M, = 0 andan
applied torque M, = 0 .

8.4.4 Principle of complementary virtual work

Consider uniform torsion state of the bar as shown in figure. 8.11 where the displacements, strains, and forces
satisfy the compatibility conditions, Hooke's law, and the equilibrium conditions. In this state, the actual dis-
placementsare u,, u., and u, given by egs. (8.145), (8.146), and (8.147), respectively. The actual non-zero

strainsare e_, v, and y . and the corresponding stressesare ¢, 0, and o, respectively. The only cross-

sz
sectional resultant is the torque A7, and its corresponding rotation is ¢, . Now consider infinitesimal increments
in the stresses denoted by 60, 80, and d0,, that satisfy equilibrium. For abar of lengthL, 0 <z<L, the
increment in the internal complementary work is given by

L _b/2 t/2 b/2 t/2

6I/Vint = f{ f f (8226022 +Y2§602§ + Yszécsz)dz;ds }dz =L f f (8226022 +YZC602C +Yx260sz)dcds’ (8.169)
0~=b/2-t/2 —b/2-t/2

Note that the strains and stresses are independent of the axial coordinate z. The increment in the external comple-
mentary work is

b/2 t/2 b/2 t/2
6Wext = f f (uzaozz + uC602§ + uséo-zs) ‘Z - LdCdS - f f (uza(jzz + u€602<g + USBO'ZS) ‘z _ OdCdS . (8170)
=b/2—-t/2 —b/2-t/2

Aerospace Structures 259



Article 8.4

From egs. (8.145) to (8.147), and with displacement coefficients A=C=0 , the displacements at the end cross
sections are as follows:

Atz =0, u, = w(s,8), u = 0,andu, = 0. (8.171)
d d

Atz = L,u, = LBL+w(s,C), u§=—IJ—B—L W: and u, = 122 (8.172)
2 dz dz

Substitute the displacementsat z = 0 and z = L into theincrement in the external work (8.170) to get

b/2 t/2 B LZE d¢z ¢ b/2 t/2
[ f[(LBC+W(S,C))6OZZ+(—T—Lsz> (LC )60 Jdcds— [ [ s )0, Jdcds,
—b/2—t/2 —b/2—t/2

in which we used the fact that the incrementsin the stresses are independent of the coordinate z. The integrals
involving wdo,, add to zero. Hence,

b/2 t/2 _ LZE dq)z ¢
M= [ [ [(LB§)6022+ (-5E-Ls==) b0 + (L= )escm}dz;ds

—b/2-t/2

Rearrange the terms in the last equation, and note displacement coefficient B is aconstant, to get

b/2 t/2 7b/2 t/2 b/2 t/2
W = LB [ f?;éondzds——— [ [bo ZCdes+L——(P— [ [ (wo.=sbo.dcas.  @ara)
—b/2—t/2 —b/2—t/2 —b/2—-t/2

Integrals of the incrementsin the stresses are identified as increments in the resultants 3, , 8V, and 6. .
Then, we find

— 2 . d
oW, = LBoM,~Bsp, + 1% (8.174)
2 dz
Since the bending moment A/, is prescribed then M, = 0. Similarly, shear force V. is prescribed, so
8V = 0.Thefina expression for the increment in the external work is

d9

Wy = Ld—zzéMz. (8.175)

Equate the increment in the external work (8.175) to theincrement in internal work (8.169), followed by division
by L, to get the principle of complementary work as

b/2 t/2

do, -

Z(SMZ = f f (8,,00,,+v,80,. +v,,00,)dCds . (8.176)
—b/2-t/2

The strain-stress rel ations are given by Hooke's law in egs. (8.119) to (8.121). In Hooke's law for the strains
e., and y,, wesubstitute eq. (8.123) for the axial normal stress. After the process of eliminating the axial normal
stress, we get the strain relations as
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—_ C!
€, = BtJ Yz?; = C,4402§ Ysz = (C 26) BC * 666032' (8.177)
22
where the compliance coefficient B, = C'¢s—C'3,/C’',, . Let B—B+3B and o,,—> 0, +00, ineq.
(8.123) to find that the increment in the normal stressis

’

b0, = —CdB—25g . (8.178)
C 22 ¢ 22
Substitute eq. (8.177) for the strainsin eg. (8.176), followed by substitution of eg. (8.178) for the increment in
the normal stress. The result of these substitutions is the following form for the principle of complementary
work:

b/2 |t/2

dé, 2

o= [ fRCsz B)OB +(C'440.0)80. + (Bego, )6032}1?; ds. (8.179)
—b/2 | t/2

Statically admissible increments 60, and 80, in eq. (8.179) are defined in terms of the increment in the stress
function &y, by
— — dwl 2
b0, = 28dy,(s)  do = a( — )[( ) -t } (8.180)

Substitute eg. (8.180) for the incrementsin the stressesin eg. (8.179), followed by the substituting of eg. (8.154)
for the stresses o, and o, in eq. (8.179). The result of these substitutionsis

b/2 | t/2
o= [ T[98+ (culf T rnm e
-b/2 | t/2

In the case of laminated cross section the last equation is written as

Np G
o= 13 TG+ (a5 < S sz
-b/2 k=1 ¢,

The integrations with respect to € are carried out in the previous equation, and the result is written as

n b/2 v J ;

z b b ts 1 w] 15
—dM, = D,,B)dB + || —ay)— |8(—) +|(4— Sy, |ds, 8.182
dz  * f [( 228) [(300!44) ds} <ds> [( 12%6)11)1} wl} y ( )
-b/2

where the stiffness coefficient D,, isgivenin eg. (8.161). The laminate compliance coefficientsin eg. (8.182)are
defined by

Ck+l
= )2 s“f[ o (3S>}jcak>[ (a1 -8 -5~ + b, -¢p)] and @189
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Np ?;k+1

66 = (It—f) E Bé’?f C2de = (12) E ﬁé Gt — (8.184)
k=1 %

The termsinvolving the derivatives of vy, and 81, in eg. (8.182) are integrated by parts with respect to s. Note

that the boundary term vanishes since oy, (=b/2) = 0. (y, isspecifiedat s = +b/2.) After integration by
parts, eg. (8.182) reduces to

b/2
‘%aMZ = (bD,B)3B + [ [ (3’; ay) =2

dzllh

72 3a661p1}61p1ds (8.185)

—b/2

From eg. (8.165) we substitute 5B = l%—éMz in eg. (8.185) and collect the terms multiplying 8/, to get
22

b/2
do. s 5 \dY
6MZ[E—71263J = f [—(5%4) = 21 a66w1}6wlds (8.186)

—b/2
5 b/2
Finally, substitute 8, = % f dy,ds in eg. (8.186) to get the complementary work statement as

-b/2

b/2 b/2
f E;(Ci’q; 26Bﬂ6w1ds - f [—(%%4) ddqil a66¢1}6w1ds (8.187)
—5/2 —5/2

Since the increment in complementary work (8.187) holds for every continuous function 8, (s) such that
dy,(xb/2) = 0, wefind the following differential equation governing function 1 (s):

() 2 (G

30 Ayy e +3 AgeP = p —n263> —-b/2<s<b/2. (8.188)

Simplify eg. (8.188) by multiplying by -3/ to write the differential equation as

2o dy _ (99, =

EaMﬁ—a%wl = _(E_”%B) ~b/2<s<b/2. (8.189)
The solution of eg. (8.189) subject to ¢, (xb/2) = 0 is

1 (do p cosh s 1
= —(—=—-n,B)|l- ,whereuw = =, /10a../a,, . 8.190
wils) a66<dz N26 )[ coshub/Z} W= P das (6.150)

The torque is computed from eg. (8.155) to find

M, = g;(if n26/§>g(ug) : (8.191)

where the function g(ub/2) isdefined as
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g(“%) - 1_<”§)_ltanh<”§) »and “g = f‘tm- (8.192)

Substitute eg. (8.165) for coefficient B in eg. (8.191) to find

- L el

" 3ag\dz  bDy, 2

z

Solve the latter equation for the torque and write the result as

M, = DT@. (8.193)
dz
where D isthetorsional stiffness of the bar given by
b
D, = 5 ; . (8.194)
Qg+ [137]%6g(“§>}/(31)22)
From eg. (8.146) and eqg. (8.165), the lateral displacement of the bar is
— 22 MN2e Mz

= (2 M —zs( ). 1

Ty <bD22> : ZS(D,) (6199

Under the action of torsion the axis of the bar does not remain straight, but it is curved as shown in figure.
8.14(a).

”@T f’?;
b/2 —b/2
0 l{ > Z S <t 0 '
L2/ My P I/I/
(=M} —— ==
I

Fig.8.14 Lateral displacement of the bar under torsion: (a) in theplanes=0, and (b) in the planez=1L

Example 8.5 Transver se bending and torsion of a composite channel section

The cross section of the bar shown in figure. 8.15(a) is composed of alower horizontal flange with length
b, = 16 mm, an upper horizontal flange with length »; = 16 mm . The flanges are joined by a vertical web

with length 5, = 32 mm . The lower flange is denoted by branch 1, the web by branch 2, and the upper flange by

branch 3. Each branch is fabricated from T300/5208 graphite/epoxy with material properties listed in Table 8.2
on page 231, and the dimensional units used in this example are Newtons and millimeters. The laminate in each

branch consists of eight plies with a specially orthotropic, symmetric stacking sequence of [45°/—45°/0/90]; .

The thickness of each branch ¢+ = 1.016 mm . As shown in figure. 8.15(b), the cross section is symmetric about
the X-axis both in geometry and material properties. The axial stiffness per unit length B is given in eq. (8.46),
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the torsional stiffness per unit length B, isgiven in eq. (8.47), and they are the same in each branch. For a spe-

cialy orthotropic laminate the coupling coefficient b = 0 in eq. (8.46). Numerical evaluation of these stiffness
coefficients are

B = Ay —AAy /A4, = 15,8227 N/mm,and B, = A, = 5,565.23 N/mm.

by Y
fe— ? 5343

1
v, |
V Mz C Mx I y
ol b, | SC.e¢ O X, x
S.C. | C
My 5242 S 4
@ S S I (b
| 1 I | 1
bl

Fig. 8.15 (@) Channel section subject to transverse bending and torsion.
(b) Cross-sectional coordinate systemsand shear flows.

The section shown in figure. 8.15(a) is subject to an axial force N (not shown in figure. 8.15(a)), transverse shear
forcesV, and Vy, bending moments M, and My, and atorque M,.

a) Determine the material law for extension and bending of the bar.
b) Determine the material law for shear and torsion of the bar.

Solution to part (a). The parametric equations of the contour in the X-Y coordinates are
X,(s)) = by—s, Y, = =b,/2 O<s,=<b,,
X5(s,) = 0 Y,(s,) = =by/2+s, 0<s,=<b,,and
X;(s3) = 53 Y; = b,/2 O<sy=b;.

To locate the modulus-weighted centroid on the X-axis, we first have to determine the modulus-weighted area S
and the modulus-weighted first area moment about the Y-axis S, from eqg. (8.52). These are given by

b, b, b,
S = [Bds,+ [Bds,+ [Bdsy = B(by+by+b3) = 1.01265x10°N , and
0 0 0
bl b2 b}

Sy = fBXl(sl)dsl +fBX2(s2)dsz +fBX3(S3)dS3 = B(b2+b2)/2 = 4.05061x10°N-mm .
0 0 0

The location of the modulus-weighted centroid (8.53) is

b3+ b3
L3 = 4 mm Y. =0.

X =5/§= —m——
¢ ! 2(by + by +by) ‘

The parametric equations of the contour with respect to the centroidal axes x and y are determined as follows:

264 Aerospace Structures



Uniform torsion of an FRP bar with a rectangular cross section

xi(sy) = Xi(s))—X, = 12 mm —s, v, = —16 mm 0=s, =16 mm ()
X,(s,) = —4 mm Vo(s,) = =16 mm +35, 0=<s,=<32mm (b)
x5(s3) = —4 mm + 5,4 y; = 16 mm 0=<s;=16 mm (c)

Equations (a), (b), and (c) are substituted into the formulas for the modul us-weighted second moments D, and
D, givenby eqg. (8.57) to get

b, by by
Dy, = [Byids,+ [By}ds,+ [By}ds; = 1.72826x10° N-mm? , and )
0 0 0
bl b2 b3
Dy, = [Bxjds,+ [Bxjdsy+ [Bujdsy = 0.27004x10° N-mm” . ©)
0 0 0

The modulus-weighted product moment D, = 0, because the x-axisis an axis of symmetry. The cross-sec-
tional material law in extension and bending is

] ]
d d
N S0 0 d; 1.01265 N 0 0 d(;
My = |0 Dy 0| =2 = 10°0 0 172.826 N-mm? 0 - ®
M 0 0 D, 0 0 27.004 N-mm?
. nldo, dg,
| dz | | dz |

Solution to part (b). To establish the material law for shear and torsion we start with the shear flow given by eqg.
(8.113). For the channel section the product moment D,,, = 0, which means coefficients n, = n, = 0 and

k = 1 inegs. (8.59) and (8.69). At the contour origin where s; = 0 the shear flow must equal zero since the
longitudinal edgeisfree of traction. Equation (8.113) for each branch reducesto

v V. ,
q)(5)) = =Sy(s) 5= =S, (s) 5= O<s;<b;  j=123. @
xx vy

The modulus-weighted, first areamoments S, and S, are functions of the contour coordinate given by eq.
(8.70), and have dimensional units of N-mm. The first area moment functions with respect to the x-axis are

5

Sa(s)) = fo]ds1 = 253, 1635, 0<s, <16 mm, (h)
0

Sy

S.,(s,) = 8,,(16) +fo2ds2 = —4.05061x10° — 253, 163s, +7,911.3453 0<s,=<32mm,and ()
0
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S.a(s3) = 8,,(32) +fB3y3ds3 = —4.05061x10° + 253, 163.55 0<s;=<16 mm. 0
0

Note that at the free longitudinal edges S,,(0) = 0 and S.5(16) = —4.05061x10° +4.05061x10° = 0. The
first area moment functions with respect to the y-axis are

5

Sy(sy) = foldsl = 189, 872.s, —7,911.34s7 0<s,=<16 mm, (k)
0
S2
Syo(s2) = S,,(16) +fo2ds2 = 1.01265><106—63,290.7s2 0<s,=<32mm,and ()
0

3
Sy3(s3) = 8,,(32) +fB3x3ds3 = —-1.01265x10° — 63, 290.7s5 +7,911.3453 Ossy=lo6mm. (m)
0
Alsonotethat S,,(0) = 0 and S,5(16) = 0. Theresultant of the shear flow distribution is a horizontal force

denoted by F'y, avertical force F, and atorque at the shear center M, . The resultant forces are

b3 bl b2
Fo= (gudsae (qds, = 2+ 3y (2430 2y and Py = (gods, = 7 )
x = Jasds fardn = gm0 T igly) T Ve 80 Fy = faads = T
0 0 0

Equation (n) yields the expected result that the horizontal force equals the shear force V., and the vertical force
equals the shear force . We cannot compute the torque until the location of the shear center is known. The

coordinates of the shear center (x,,, y,.) are determined by letting 7, — D, ., I,, = D,,,, 0:(s) = Sx(s) , and

xx ot Ly

éy(s) — :9))(s) in eg. (3.106) on page 54. The transformation of eg. (3.106) to the composite laminate is

X, = —(li) [rac)Sis)ds . = (l%y) [rnc<s)sy<s>ds. ©

The coordinate normal to the contour with respect to the centroid is denoted by r,.(s) . It is depicted in figure.

3.3(b) on page 33, and the expression to compute it isgiven in eg. (3.11) on page 34. For the channel section the
normal coordinates for each branch are

dy; _dx;

" i — = 1,2,3.
nci XIdS- yldSl- ! (p)

Evaluation of eq. (p) resultsin r,,,; = =16 mm,
in this example the evaluation of eq. (o) is

= <4 mm,and r,.; = —16 mm . For the channel section

nc2
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3 b 3 b
_ (=1 _ _ (1 —
Xse = (D ) EfrncinidSi = —10 mm Yse = (D—) Efrncisyidsi =0. (@)
i 0 Y 0

The torque from the shear flows with respect to the shear center is

b;
M. = if”m%dsiv 0}

i=1p
where the coordinate normal to the contour with respect to the shear center is denoted by r,(s) . This normal

coordinate is depicted in figure. 3.3(b) on page 33, and the expression to computeit isgivenin eg. (3.10) on
page 34. For this example the normal coordinate for each branch is given by

dy; .
Tni = rnci_xscd_sj i=123. ()
Evaluation of eq. (s) yieldsr,;, = =16 mm, r,, = 6 mm, and r,; = —16 mm . Evaluating the torque given by
eg. (r) gives
M, = (8V,=3V,)+ (6V,) + (=8V,=3V,) =0
_— —— —_—
branch 1 branch 2 branch 3

®
Equation (t) shows that the torque due to the shear flows equals zero at the shear center. Hence, the resultant of
the shear flow distribution is aforce with its line of action passing through the shear center having components
V. oand V.
x y

Thematerial law for transverse shear relates the shear strains . and v, to the shear forces ¥, and v, . For

the bar made of an homogeneous, isotropic material this material law is discussed in article 5.5.3 on page 143.
Referring to eq. (5.76) the form of the material law is the same for the composite material. That is,

[w'ﬂ ] [CXX ny} [V)i | (U)
w)’ ny ny Vy

where the flexibility influence coefficients ¢ and ¢, are determined from the complementary strain

xx° ny’ ny’

energy per unit axial length U . For the open section U isobtained from eg. (8.97) on page 242, and it is
U =+ —q23ds . v)

The shear strains ¢, and v, are determined from derivatives of the complementary strain energy per unit axial
length with respect to the shear forces. For the channel section in this example we get the following results:

*

_ U
W= 5

3 b
1 dq,
= —ds. = vV + V.,
Ef(A66)iqlan Sl Cxx X ny y
0

i=1
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3 b
1 dq;
U) = qi dsi:Cer+C V'
Y Ef(A%)i aVy hZ yyoy
0

i=1

¢, = 9.16404x10° N-! Gy =€ =0 ¢ = 6.73827x10°° NI w)

In general, external |oads cause the bar to resist atorque. For an open cross-sectional contour the shear flows
cannot provide thisresistance to torsion. A separate analysisfor the linear elastic response to uniform torsion of a
symmetrically laminated bar was developed in article 8.4. The result of this development is the material law

(8.193) that equates the torque to torsional stiffness D, timesthe twist per unit length. The torsional stiffnessis
given by eqg. (8.194). To compute D, we evaluate the following laminate properties:

* thetransverse shear compliance (8.183) a,, = 242.736x10° mm2/N

* thetorsiona compliance (8.184) a., = 200.446x10°° mm2/N
* thebending stiffness (8.161) D,, = 1, 130.94 N-mm,
» the dimensionless shear-extension coefficient in bending (8.162) n,, = —0.0459727 , and

e the solution parameter (8.190) u = 2.82838 mm™!.

Thefunction g(ub/2) appearing in the equation for D, depends on the length of the branch. For the channel
section the values of this function are

g(”?bl> = g(%%) = 0.955805 g(%) = 0.977903.. ®)

Thetorsional stiffnesses for each branch are

(L)
2

Dy = Dpy = =& ” = 26, 589 N-mm?2, and v)
dge + [ﬁngsg(ua‘)}/BDzz)

(i)
2
Dy, = === = 54,403.4 N-mm?2. @

32
gt [ﬂﬂ%ég(ll?ﬂ/(?’[)zz)

Thetorsional stiffness of the channel is equal to the sum of the torsional stiffnesses of each of its branches. That
is,

D; = Dy +Dyy+Dyy = 107,581, N-mm?, (aa)

Finally, the material law for transverse shear and torsion is
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Ve 109, 122. N 0 0

v, = 0 148,406. N 0 v

M, 0 0 107,581 N-mm?| | %%
dz
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CHAPTER 9 Fallureinitiation in FRP
compogites

9.1 Srength of a composite ply

The strength of alaminated composite wall is assessed on a ply-by-ply basis. The main failure modes of unidi-
rectional plies of fiber-reinforced polymer (FRP) composites are
® matrix compression failure,

® matrix tension failure,

@ fiber compression failure,
® fiber tension failure,

® delamination.

The fiber modes and the matrix modes are intralaminar failu