Architectural Models

Robert B. France
Colorado State University

Robert B. France Arch-1

What 1s an architectural design?

« Concerned with
identifying
subsystems and
their
relationships.

Model shown is for a single
system

Italicized subsystems
represent new systems;
normal style represent
existing subsystems.

Dashed arrows represent
dependencies; the precise

nature of the dependency,
including protocols, can be
stated as annotations.

Presentation (UI) |

\

Application Logic }

\
I I
: : Security
|]
I I .
NV ;
Relational DB Interface Communication l i
1 1 E
I l |
i ——V |
|]
S > Support Libraries ’(— ———————— !
Robert B. France Arch-2

Architecture Types

* Logical Architecture

— Organization of a system into logical units
(e.g., layers, subsystems)

— Logical units do not necessarily result in units
of implementation (e.g., Java packages,
components)

* Implementation (Deployment) Architecture

— Organization of a system into physical units
(e.g., source files, Java packages, components)

Robert B. France Arch-3

Example Deployment Diagram

node

connection
component

\

* :OrderProcessingServer

:.I:I :Order Tracking

\ :CustomerServer

W ¥

\/ TcPP
|—|—| , CustomerCare
‘OrderDomain f{~~~~__
::I:I ‘Order Invoicing I /N\ \ TCP/IP IRRRENN AV
_______ 1 \ _
~ \\ CustDomain
: TCP/IP . -
o 3 \ P
.an(loEwsPC \\\ [1cpe /
: \:D atabase Sexver ' ,/
1 N -
I:I.:l InvoicingClientFacade \.\ /,"
Y| :DataAccess /!
— Detshoses ¢
! = :Oraclelnterface
I:l__,_l:l InvoicingU] \E/
— ‘OracleDatabage

Robert B. France

Arch-4

Architectural Modeling

« Two forms covered in CS414
— Basic

* Subsystems are connected by access, import
relationships

— Component

« Subsystems connected via provided and required
interfaces

Robert B. France Arch-5

Basic Architecture

_/Customer SeTkices

dependency
Customer Problem 1
| Tracking Domain)

7\)
E \:3 —
| Customers]
Order Processing Sy@’& ' 7~
. y TN !
 — «1umporty Order Tracki — :
Invoicing [K—————7 Tder 1 rac mg] <a°°f£’»>7 Orders]
) A \/ ///
Shippirg | -
depemiem‘/' E
1
independent\‘ E
P —— - .
Oracle Interface - Relational DB Interface “
 — -
Informix Interface

Robert B. France Arch-6

Component-based Architecture

’ ul
Use cases grouped into ~— ~— — — — — T T T T T T T T T T T
borrower services and BorrServices - v
administrative services; two O
subsystems for each of these
groupings is created —one | BorrowerServices Adsintsntive

£ Services
responsible for borrower

services, the other for TR e - ‘
administrative services TETETOEE T TR r S SERGT e TR T T

IBorr 2 |Copy

Borrower

Copy Manager
Manager

IBorrServices
IBorr

checkOut(Copyid,Borrid)
returnCopy(Copyid) findBorr(Borrid)
getCheckedOutCopies(Borrid) getBorrStatus(Borrid)

= recordCheckOut(Borrower,Copy,Date)
calcFines(Borrower,Days)
addBorrower(Borrid)
deleteBorrower(Borrid)
getFines(Borrid)

IAdmin

createStatement(borrid)

Presentation
Layer

)

Business Service
Layer

Both administrative and
borrower services need copy
Buionss Object and borrower information.
(Domain) Layer K X K
This observation results in a
decision to include two
subsystems for managing
copies and borrowers.

ICopy

findCopy(Copyid)
getCopyStatus(Copyid)
recordcheckOut(Borrower,Copy,Date)
getBorrower(Copyid)

registerBorrower(Borrid)
deleteBorrower(Borrid)
addCopy(Copyid)
deleteCopy(Copyid)
getFines(Borrid)
getCopyStatus(Copyid)

Layered Logical Architectures

« Layered

— System organized into layers of functionality
 Presentation/Application/Persistence (Data)

— Each layer uses the services of a lower layer
— Supports separation of concerns

Robert B. France Arch-8

3-Tiered Layered Architectures

* Separate presentation and application logic,
and other areas of concern.

Ul Layer

“Domain” or “Application Logic” Layer

Services Layer

Persistence Logging
Subsystem Subsystem

Robert B. France Arch-9

N-Tiered Layers

GUI windows

reports

speech interface

HTML, XML, XSLT, JSP, Javascript, ...

handles presentation layer requests
workflow

session state

window/page transitions
consolidation/transformation of disparate
data for presentation

handles application layer requests
implementation of domain rules

domain services (POS, Inventory)

- services may be used by just one
application, but there is also the possibilit
of multi-application services

very general low-level business services
used in many business domains
Currency Converter

(relatively) high-level technical services
and frameworks
Persistence, Security

low-level technical services, utilities,
and frameworks

data structures, threads, math,

file, DB, and network VO

}
j
)
;
;

(AKA Presentation, View)

ul

Application
(AKA Workflow, Process,
Mediation, App Controller)

dependency

|

Application Logic, Model)

Domain
(AKA Business,

(AKA Low-level Business Services)

Business Infrastructure

Technical Services
(AKA Technical Infrastructure,
High-level Technical Services)

more
app
specific
A

Foundation
(AKA Core Services, Base Services,
Low-level Technical Services/Infrastructure)

width implies range of applicability

Robert B. France

Arch-10

Architecture Guidelines

Worse k Better ﬁ

mixes logical and deployment views a logical view
Domain(s) a logical representationk
— of the need for data or

Domain(s) services related to these

POS Inventory = @ - Subdomains, abstracting
" | implementation
) decisions such as a
Technical database.
Services Technical Serviceg_,_,_..-»'--""""" |
Foundation Persistence ~Naming and Web
Directory Services AppFramework
«component»
Novell
MySQL LDAP Foundation

Inventory

UML notation. A UML component, or replaceable, modular part of the physical system H

e UML notation: A physical database in the UML. H

Robert B. France Arch-11

Packages

* A package 1s a collection of model elements

 In logical architectures a package 1s a
subsytem

* A package 1s rendered as a tabbed folder

Robert B. France Arch-12

Core Concepts

Construct

Description

Syntax

Package

A grouping of model elements.

Name

Import

A dependency indicating that the
public contents of the target
package are added to the namespace
of the source package.

«import»

Access

A dependency indicating that the
public contents of the target
package are available in the
namespace of the source package.

Robert B. France

Arch-13

Packages as a Namespace

» A package defines a namespace
— A model element belongs to at most one
package
— Model elements can be referenced outside of
the packages they are defined in
» packagel::classl
 package3::classl
— A package can contain other packages
 packagel::package2::class2

Robert B. France Arch-14

Package Examples

Sales

Warehouse

o
k] [0k

Robert B. France Arch-15

Packages

* A package owns its model elements

— destruction of the package results in destruction
of the model elements

— relationship between a model element and 1ts
package 1s a composition

Robert B. France Arch-16

Package Containment

» Packages are shown 1n static diagrams

* Two equivalent ways to show containment:

[]

—
— 3

" Em ==

Robert B. France Arch-17

Package Dependencies

 Itis useful to
show the
coupling
with UML
dependency
lines.

A CASE tool
can reverse
engineer
these
diagrams.

Ul

|

Functions

Major

Editors

AppCoordination

Y

Domain
Evaluation
Core ..
Policies
Se,r"’vices T \
———— : \\\/‘&% :
Persistence Logging

Robert B. France

Arch-18

Accessing Package Elements

* To control access to elements 1n packages
they are accessed or imported.

» Import/Access: A package that imports/
accesses another has access to the public
elements of the imported/accessed package

— public elements are said to be exported

Robert B. France Arch-19

Import versus Access

» Packagel contains public Class1; Package2
contains public Class2.
» Packagel access Package?2

— elements 1n Packagel must reference Class2 as
follows: Package2::Class?2

» Packagel import Package?

— elements in Packagel can reference Class2 as
just Class2

Robert B. France Arch-20

Import vs. Access

Y
«import» - «import»
B SIS

X Y

«access» «aCCEeSS»

Z
--
>
LA [+ [+6 |

Robert B. France Arch-21

Subsystem Interfaces —
Component-based architecture

Trunk

Trunk

Traffic
Control

m

m

Subscription

EEENG
Qe

Traffic
Control

™

Robert B. France

n

Subscription

Arch-22

Operations and Interfaces

«Interface»

operationl()
operation2()
operation4()

V<

~
~

«realize»

-

~

Operations

-

-

-

/’v

«Interface»

«realize»

operation2()
operation3()
operationS()

The subsystem must support all operations in the offered

interfaces

Robert B. France

Arch-23

Subsystem Interactions

* Subsystems can be shown 1n interaction diagrams

— sequence diagrams

Sequence Diagram

Robert B. France Arch-24

ul

Facades

Swing

ProcessSale
Frame

Domain

for applications with only a few system
| operations, perhaps only one object acts as the
facade into the layer

Sales

N>

Register

Sale

Technical Services

The Technical Services layer
typically exposes many
interfaces--at least one per
subsystem

A

Persistence

DBFacade

v

Log4J

Jess

SOAP

Robert B. France

Arch-25

Application Coordination Layer

* When you have many system operations consider an “application
coordination layer” whose objects are use case controllers

Ul

Major
Functions

Editors

AppCoordination

Y

§]] |
Summaries Editors
AppCoordination |
RentingVideo PayingFines
UCHandler UCHandler
Domain |
Evaluation
Core ..
Policies

Robert B. France

Domain |
Evaluation
Core . .
Policies
Services L
——— V \\\\\/\'\&*\
Persistence Logging
Arch-26

Another Example: Session Facades

Ul

Swing

ProcessSale
JFrame

ProcessRental
JFrame

Application

v

v

v

ProcessSale
SessionFacade

ProcessRental
SessionFacade

HandleReturns
SessionFacade

Domain

A

Application session
facade objects that
maintain session
state and control
workflow related to
some work--often
by use case.

Sales

Rentals

Register

Sale

Rental

Robert B. France

Arch-27

Software Architectural Styles

Patterns for structuring architectures

© Robert B. France

28

Elements of Architecture Style

Vocabulary of component and connector
types

Rules for combining architectural elements
and/or constraints on valid combinations

Interpretation rules

Adaptation rules/guidelines, tradeoffs,
rationale

© Robert B. France 29

Common Architecture Styles

Pipes and filters
Layered systems
Event-based, implicit invocation

Repositories

© Robert B. France

30

Pipes and Filters - Characteristics

* Components: filters

— A filter consumes 1nputs and produces
outputs.

* Connectors: pipes

— inputs and outputs are transferred via
pIpes.

© Robert B. France 31

Pipes and Filters - Properties

A filter’s behavior 1s independent of
behavior of other filters.

 Filters do not have knowledge of where
their inputs originate from or to where their
outputs are directed.

* Correctness of system should not depend on
order in which filters are executed.

© Robert B. France 32

Pipes and Filters - Specializations

Pipelines: topology restricted to linear
sequences of filter

Bounded pipes: amount of data on pipes
bounded

Typed pipes: type of data transmitted on
pipes restricted

Batch sequential systems: filters consume
all inputs as a single entity

© Robert B. France 33

Pipes and Filters - Examples

* Unix piping mechanisms
* Compilers

© Robert B. France

34

Pipes and Filters - Benefits

Supports reuse
Easy to maintain and enhance

System can be understood as a simple
composition of behaviors

Specialized analysis of throughput and
deadlock

Concurrency

© Robert B. France

35

Pipes and Filters - Drawbacks

 Interactive use not supported

» Data representation may not be optimal for
processing in all filters, resulting in some
parsing and unparsing (this could have a
negative impact on performance)

* Could be required to maintain an invariant
property over two separate but related
streams

© Robert B. France

36

Layered Structures -
Characteristics

* Components: subsystems (called layers)
that provide services

* Links: protocols that define how the
modules will interact

© Robert B. France

37

Layered Architectures -
Properties

* In some systems layers are hidden from all
except their adjacent outer layers.

— Such layers are called virtual machines

* Some systems limit interactions only to the
adjacent layers.

© Robert B. France

38

Layered Architectures - Benefits

* Support designs based on increasing levels
of abstraction.

» Limited interaction between layers
facilitates maintenance.

» Layers can be replaced by modules with
1dentical interfaces (basis for defining
layering standards).

© Robert B. France

39

Layered Systems - Drawbacks

» Layered architecture may have performance
COSts.

— Performance considerations may require
closer coupling of layers

* May be difficult to find right layer of
abstraction for services.

© Robert B. France 40

Layered Structure - Examples

» Layered communication protocols (e.g.,
OSI)

» Database systems: end-user layer ->
application layer -> DBMS -> physical
database

* Operating systems: user layer -> utilities
layer -> kernel

© Robert B. France

41

Event Based Systems -
Characteristics
* Components: subsystem with a service
interface
» Links: Explicit and implicit service
(procedure) calls

— Implicit call: when a subsystem (module)
broadcasts an event all services registered
with the event are invoked

© Robert B. France 42

Implicit Calls

* Components register an interest in an event
by associating a service (procedure) with
the event.

 When event 1s broadcast, the system
invokes all services registered with the
event.

« Examples: model analysis/simulation
systems.

© Robert B. France

43

Implicit Calls - Properties

 Event broadcasters do not know which
services will be invoked.

— Such modules cannot make assumptions
about the order in which services will be
executed, or which services will be
executed.

— Explicit calls are used if control over
services 1s needed.

© Robert B. France 44

Implicit Calls - Benefits

e Eases maintenance and extensions

— A new behavior can be added by registering a
new service with an event.

— A component can be replaced by another
component with an identical interface.

© Robert B. France

45

Implicit Calls - Drawbacks

* Components lose control of actions taken as
a result of generating events.

 [f generation of an event requires access to a
global data repository by a number of
services, concurrency control 1s needed.
This could result 1n degradation of services.

* Verification of properties problematic.

© Robert B. France 46

Implicit Calls - Examples

Programming environments

Database systems - to ensure consistency
constraints

User 1nterfaces - to separate representation
from data management

Syntax-directed editors - to support
incremental semantic checking

© Robert B. France

47

Control Models

e Concerned with how modules are
controlled/coordinated

* Two general approaches:
— Centralized control
— Event-based control

© Robert B. France

48

Centralized Control

* Subsystem (module) coordinates system
execution; this subsystem is called the

system controller.

e Forms:
— Call - return model

— Manager model

© Robert B. France

49

Event - Driven Systems

* Coordination 1s distributed among modules.

* Two types:

— Broadcast models: Events are broadcast to all
modules; any module that can react will react.

— Interrupt - driven models: Interrupts are
detected by a handler and appropriate action 1s
taken.

© Robert B. France

50

Broadcast Model

e Efficient variant

* Modules register interest in event with
handler

* When handler detects an event 1t checks the
register and passes the event to registered
modules

© Robert B. France 51

Interrupt - Driven Model

» Allows very fast responses to events
* Complex to program
 Difficult to validate

© Robert B. France

52

Repositories - Characteristics

 Components: a central data structure and
components that intact with the data

structure.
e [Links: varies ...

© Robert B. France

53

Repositories - Variants

* 2 major classes of repositories

— Databases: input streams determine the
services to be executed

— Blackboards: the state of the repository
determines the services to be executed

© Robert B. France

54

Heterogeneous Architectures

Most systems involve a combination of
architectural styles.

Hierarchical heterogeneity: a component’s (or

Link heterogeneity: a component may use a
variety of links to interact with others.

Level heterogeneity: A level may be elaborated
using a different style.

© Robert B. France

link’s) internal structure may have different style.

55

