
Robert B. France Arch-1

Architectural Models

Robert B. France
Colorado State University

Robert B. France Arch-2

What is an architectural design?
•  Concerned with

identifying
subsystems and
their
relationships.

Presentation (UI)

Application Logic
Security

Communication Relational DB Interface

Support Libraries

Model shown is for a single
system

 Italicized subsystems
represent new systems;
normal style represent
existing subsystems.
Dashed arrows represent
dependencies; the precise
nature of the dependency,
including protocols, can be
stated as annotations.

Robert B. France Arch-3

Architecture Types
•  Logical Architecture

– Organization of a system into logical units
(e.g., layers, subsystems)

– Logical units do not necessarily result in units
of implementation (e.g., Java packages,
components)

•  Implementation (Deployment) Architecture
– Organization of a system into physical units

(e.g., source files, Java packages, components)

Robert B. France Arch-4

Example Deployment Diagram

Architectural Modeling

•  Two forms covered in CS414
– Basic

•  Subsystems are connected by access, import
relationships

– Component
•  Subsystems connected via provided and required

interfaces

Robert B. France Arch-5

Robert B. France Arch-6

Basic Architecture

Component-based Architecture

Use cases grouped into
borrower services and
administrative services; two
subsystems for each of these
groupings is created – one
responsible for borrower
services, the other for
administrative services

Both administrative and
borrower services need copy
and borrower information.
This observation results in a
decision to include two
subsystems for managing
copies and borrowers.

Robert B. France Arch-8

Layered Logical Architectures

•  Layered
– System organized into layers of functionality

•  Presentation/Application/Persistence (Data)
– Each layer uses the services of a lower layer
– Supports separation of concerns

Robert B. France Arch-9

3-Tiered Layered Architectures

•  Separate presentation and application logic,
and other areas of concern.

UI Layer

“Domain” or “Application Logic” Layer

Services Layer

Persistence
Subsystem

Logging
Subsystem . . .

Robert B. France Arch-10

N-Tiered Layers

Robert B. France Arch-11

Architecture Guidelines

Robert B. France Arch-12

Packages

•  A package is a collection of model elements
•  In logical architectures a package is a

subsytem
•  A package is rendered as a tabbed folder

Robert B. France Arch-13

Core Concepts
Construct	

 Description	

 Syntax	

Access	

Import	

 A dependency indicating that the
public contents of the target
package are added to the namespace
of the source package.	

«import»	

A dependency indicating that the
public contents of the target
package are available in the
namespace of the source package.	

«access»	

Package	

 A grouping of model elements.	

Name	

Robert B. France Arch-14

Packages as a Namespace
•  A package defines a namespace

– A model element belongs to at most one
package

– Model elements can be referenced outside of
the packages they are defined in

•  package1::class1
•  package3::class1

– A package can contain other packages
•  package1::package2::class2

Robert B. France Arch-15

Package Examples

Order	

Customer	

Location	

 Item	

Stock Item	

 Order Item	

Sales	

Warehouse	

Robert B. France Arch-16

Packages

•  A package owns its model elements
–  destruction of the package results in destruction

of the model elements
–  relationship between a model element and its

package is a composition

Robert B. France Arch-17

Package Containment

•  Packages are shown in static diagrams
•  Two equivalent ways to show containment:

Robert B. France Arch-18

Package Dependencies

•  It is useful to
show the
coupling
with UML
dependency
lines.

•  A CASE tool
can reverse
engineer
these
diagrams.

Robert B. France Arch-19

Accessing Package Elements

•  To control access to elements in packages
they are accessed or imported.

•  Import/Access: A package that imports/
accesses another has access to the public
elements of the imported/accessed package
–  public elements are said to be exported

Robert B. France Arch-20

Import versus Access

•  Package1 contains public Class1; Package2
contains public Class2.

•  Package1 access Package2
–  elements in Package1 must reference Class2 as

follows: Package2::Class2
•  Package1 import Package2

–  elements in Package1 can reference Class2 as
just Class2

Robert B. France Arch-21

X	

 Y	

 Z	

Import vs. Access

«import»	

A	

B	

 +C	

-D	

+E	

«import»	

+G	

+F	

-H	

-Z::G	

+Z::F	

«access»	

 «access»	

X	

 Y	

 Z	

A	

B	

 +C	

-D	

+E	

 +G	

+F	

-H	

Y::C	

Y::E	

Y::F	

Robert B. France Arch-22

Subsystem Interfaces –
Component-based architecture

Robert B. France Arch-23

Operations
operation1() : Type1

operation2() : Type2

operation3() : Type3

operation4() : Type4

operation5() : Type5

«Interface»

«realize»
operation1()
operation2()
operation4()

«Interface»

«realize»
operation2()
operation3()
operation5()

Operations and Interfaces

The subsystem must support all operations in the offered
interfaces

Robert B. France Arch-24

Subsystem Interactions
•  Subsystems can be shown in interaction diagrams

–  sequence diagrams

Sequence Diagram

Robert B. France Arch-25

Facades

Robert B. France Arch-26

Application Coordination Layer
•  When you have many system operations consider an “application

coordination layer” whose objects are use case controllers

Robert B. France Arch-27

Another Example: Session Facades

© Robert B. France 28

Software Architectural Styles

Patterns for structuring architectures

© Robert B. France 29

Elements of Architecture Style

•  Vocabulary of component and connector
types

•  Rules for combining architectural elements
and/or constraints on valid combinations

•  Interpretation rules
•  Adaptation rules/guidelines, tradeoffs,

rationale

© Robert B. France 30

Common Architecture Styles

•  Pipes and filters
•  Layered systems
•  Event-based, implicit invocation
•  Repositories

© Robert B. France 31

Pipes and Filters - Characteristics

•  Components: filters
– A filter consumes inputs and produces

outputs.
•  Connectors: pipes

– inputs and outputs are transferred via
pipes.

© Robert B. France 32

Pipes and Filters - Properties

•  A filter’s behavior is independent of
behavior of other filters.

•  Filters do not have knowledge of where
their inputs originate from or to where their
outputs are directed.

•  Correctness of system should not depend on
order in which filters are executed.

© Robert B. France 33

Pipes and Filters - Specializations
•  Pipelines: topology restricted to linear

sequences of filter
•  Bounded pipes: amount of data on pipes

bounded
•  Typed pipes: type of data transmitted on

pipes restricted
•  Batch sequential systems: filters consume

all inputs as a single entity

© Robert B. France 34

Pipes and Filters - Examples

•  Unix piping mechanisms
•  Compilers

© Robert B. France 35

Pipes and Filters - Benefits

•  Supports reuse
•  Easy to maintain and enhance
•  System can be understood as a simple

composition of behaviors
•  Specialized analysis of throughput and

deadlock
•  Concurrency

© Robert B. France 36

Pipes and Filters - Drawbacks

•  Interactive use not supported
•  Data representation may not be optimal for

processing in all filters, resulting in some
parsing and unparsing (this could have a
negative impact on performance)

•  Could be required to maintain an invariant
property over two separate but related
streams

© Robert B. France 37

Layered Structures -
Characteristics

•  Components: subsystems (called layers)
that provide services

•  Links: protocols that define how the
modules will interact

© Robert B. France 38

Layered Architectures -
Properties

•  In some systems layers are hidden from all
except their adjacent outer layers.
– Such layers are called virtual machines

•  Some systems limit interactions only to the
adjacent layers.

© Robert B. France 39

Layered Architectures - Benefits

•  Support designs based on increasing levels
of abstraction.

•  Limited interaction between layers
facilitates maintenance.

•  Layers can be replaced by modules with
identical interfaces (basis for defining
layering standards).

© Robert B. France 40

Layered Systems - Drawbacks

•  Layered architecture may have performance
costs.
– Performance considerations may require

closer coupling of layers
•  May be difficult to find right layer of

abstraction for services.

© Robert B. France 41

Layered Structure - Examples

•  Layered communication protocols (e.g.,
OSI)

•  Database systems: end-user layer ->
application layer -> DBMS -> physical
database

•  Operating systems: user layer -> utilities
layer -> kernel

© Robert B. France 42

Event Based Systems -
Characteristics

•  Components: subsystem with a service
interface

•  Links: Explicit and implicit service
(procedure) calls
– Implicit call: when a subsystem (module)

broadcasts an event all services registered
with the event are invoked

© Robert B. France 43

Implicit Calls

•  Components register an interest in an event
by associating a service (procedure) with
the event.

•  When event is broadcast, the system
invokes all services registered with the
event.

•  Examples: model analysis/simulation
systems.

© Robert B. France 44

Implicit Calls - Properties

•  Event broadcasters do not know which
services will be invoked.
– Such modules cannot make assumptions

about the order in which services will be
executed, or which services will be
executed.

– Explicit calls are used if control over
services is needed.

© Robert B. France 45

Implicit Calls - Benefits

•  Eases maintenance and extensions
– A new behavior can be added by registering a

new service with an event.
– A component can be replaced by another

component with an identical interface.

© Robert B. France 46

Implicit Calls - Drawbacks

•  Components lose control of actions taken as
a result of generating events.

•  If generation of an event requires access to a
global data repository by a number of
services, concurrency control is needed.
This could result in degradation of services.

•  Verification of properties problematic.

© Robert B. France 47

Implicit Calls - Examples

•  Programming environments
•  Database systems - to ensure consistency

constraints
•  User interfaces - to separate representation

from data management
•  Syntax-directed editors - to support

incremental semantic checking

© Robert B. France 48

Control Models

•  Concerned with how modules are
controlled/coordinated

•  Two general approaches:
– Centralized control
– Event-based control

© Robert B. France 49

Centralized Control

•  Subsystem (module) coordinates system
execution; this subsystem is called the
system controller.

•  Forms:
– Call - return model
– Manager model

© Robert B. France 50

Event - Driven Systems

•  Coordination is distributed among modules.
•  Two types:

– Broadcast models: Events are broadcast to all
modules; any module that can react will react.

–  Interrupt - driven models: Interrupts are
detected by a handler and appropriate action is
taken.

© Robert B. France 51

Broadcast Model

•  Efficient variant
•  Modules register interest in event with

handler
•  When handler detects an event it checks the

register and passes the event to registered
modules

© Robert B. France 52

Interrupt - Driven Model

•  Allows very fast responses to events
•  Complex to program
•  Difficult to validate

© Robert B. France 53

Repositories - Characteristics

•  Components: a central data structure and
components that intact with the data
structure.

•  Links: varies ...

© Robert B. France 54

Repositories - Variants

•  2 major classes of repositories
– Databases: input streams determine the

services to be executed
– Blackboards: the state of the repository

determines the services to be executed

© Robert B. France 55

Heterogeneous Architectures

•  Most systems involve a combination of
architectural styles.

•  Hierarchical heterogeneity: a component’s (or
link’s) internal structure may have different style.

•  Link heterogeneity: a component may use a
variety of links to interact with others.

•  Level heterogeneity: A level may be elaborated
using a different style.

