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Abstract

When is record-keeping better arranged through distributed ledger technology (DLT)
than through a traditional centralized intermediary? The ideal qualities of any record-
keeping system are (i) correctness, (ii) decentralization, and (iii) cost efficiency. We
point out a Blockchain Trilemma: no ledger can satisfy all three properties simultane-
ously. A centralized ledger writer extracts rents due to its monopoly on the ledger. Its
franchise value dynamically incentivizes honest reporting. Decentralized ledgers pro-
vide static incentives for honesty through computationally expensive Proof-of-Work
algorithms but eliminate rents through “fork competition.” Portability of information
between “forks” and competition among miners fosters competition among decentral-
ized ledgers that is fiercer than traditional competition. However, fork competition can
engender instability and miscoordination. While blockchains can keep track of own-
ership transfers, enforcement of possession rights is still needed in many blockchain
applications.
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1 Introduction

Traditionally, records have been maintained by centralized entities. Distributed Ledger
Technology (DLT) has provided us with a radical alternative to record information. DLT
has the potential to be as groundbreaking as the invention of double-entry bookkeeping
in fourteenth-century Italy. It could revolutionize record-keeping of financial transactions
and ownership data.

Blockchains are a particular type of distributed ledger written by decentralized, usually
anonymous groups of agents rather than known centralized parties. Consensus is attained
by making the ledger publicly viewable and verifiable. Ideally, a ledger should (i) record all
information correctly and do so (ii) in a cost efficient and (iii) fully decentralized manner
to avoid any concentration of power. In this paper we point out a “Blockchain Trilemma”:
it is impossible for any ledger to fully satisfy the three properties shown in Figure 1 simul-
taneously.

Figure 1: The Blockchain Trilemma.

Traditional ledgers, managed by a single centralized intermediary, forgo the desired
feature of decentralization. The correctness of the ledger is maintained by limiting com-
petition. A centralized ledger writer is incentivized to report honestly because he does
not wish to jeopardize his future profits and franchise value. That is, a centralized ledger
writer is dynamically incentivized. In contrast, decentralized ledgers promote competition
but entail real inefficiencies. Competition completely erodes writers’ future profits and
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franchise values. Consequently, dynamic incentivization of decentralized ledger writers is
impossible. The ledger’s correctness must rely on a mechanism that provides purely static
incentives.

Blockchains allow two forms of competition that lead to two distinct inefficiencies.
(i) First, there is free entry of ledger writers. As anybody can become a ledger writer
(or miner) on a public blockchain, a consensus mechanism is needed to determine the true
history written on the ledger (from possibly conflicting reports). Applying a majority rule is
complicated by the fact that individual entities can masquerade as a large number of entities
for free, subverting the democratic nature of the distributed ledger. To limit this problem
and ensure honest record-keeping, ledger writers must typically perform computationally
expensive tasks in order to record information and validate others’ reports. The cost of
writing on the ledger gives writers static incentives not to report dishonestly. (ii) Second,
information on the existing ledger is made portable to possibly competing ledgers via
“fork competition”. A proposer of a new ledger can “fork off” an existing blockchain by
establishing different rules while retaining all the information contained in the original
blockchain. Fork competition erodes the rents of a ledger monopolist, but also comes at a
cost: too many competing blockchains may coexist. The community of users/readers may
be split among too many different ledgers (or cryptocurrencies) and fail to fully exploit
positive network externalities. This entails a true efficiency loss, above and beyond the
redistributive rent extraction associated with a monopolistic ledger writer or the waste of
computational resources resulting from free entry. Finally, current technology limits the
scalability of blockchain technology, a third cost.

We emphasize that fork competition eliminates inertia in the adoption of new, com-
peting ledgers. In a traditional setting, ledger users are anchored to an incumbent ledger
by the centralized intermediary’s monopoly on the information contained in the ledger.
Those with high stakes in the existing ledger are reluctant to switch to a competitor. Net-
work externalities amplify this informational anchor, making even those with low stakes in
the existing ledger unwilling to switch. When network externalities are strong, the mar-
ket ceases to be contestable– even with free entry of competing ledgers, the incumbent’s
advantage is so great that it is able to extract full surplus from users. Fork competi-
tion eliminates the anchor on the established ledger due to the portability of information.
Network externalities then play no role in amplifying inertia, and the market is always
contestable: competing forks of the blockchain are at no disadvantage whatsoever against
the established ledger.

In addition to the polar cases of completely centralized traditional ledgers and com-
pletely decentralized blockchains, there is a third type of ledger called a “permissioned”
blockchain that shows promise in many applications. The writers of a permissioned
blockchain are known agents rather than anonymous miners, so Proof-of-Work is unnec-
essary. Permissioned blockchains then seemingly break the Trilemma: they allow for fork
competition, like anonymous blockchains, but completely eliminate the waste of resources.
We show that the impediments to entry of writers on a permissioned blockchain sub-
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stantially weaken fork competition. Permissioned writers have franchise values and there-
fore can collude to prevent competing forks from surviving, whereas dynamic punishment
schemes that sustain collusion are impossible when there is free entry of writers.

Finally, we informally make the important point that while blockchains guarantee trans-
fers of ownership, some sort of enforcement is required to ensure transfers of possession.
For example, in a housing market the owner of the house is the person whose name is on the
deed, but the possessor of the house is the person who resides in it. The buyer of the deed
needs to be certain that once she holds the deed, her ownership of the house will be en-
forced. In the stock market, the purchaser of a share has ownership of future dividends but
not necessarily possession, since the delivery of dividends needs to be enforced. Broadly,
blockchains can record obligations. Punishing those who default on their obligations is
another matter. While it is difficult to provide static incentives for blockchain writers to
impose discipline on users of the ledger, centralized intermediaries’ incentives can be ap-
propriately aligned: if a centralized intermediary fails to guarantee transfers of possession,
the ledger’s users can abandon the ledger, destroying the intermediary’s franchise value.

Blockchains have applications that reach far beyond the realm of cryptocurrencies and
tokens. For instance, blockchains could be used in the fintech space to track consumers’
transaction and credit histories. Permissioned blockchains have also been suggested as
a tool to manage supply chains and track the delivery of items in real time. There are
several potential applications of blockchains that, if pursued, will require enforcement by
intermediaries or legal entities. Banks could use blockchains to track interbank loans or
manage their clients’ collateral, both of which require mechanisms to ensure debtors will
repay their creditors. Governments may also turn to blockchains to maintain land registries,
which could be useful in developing countries where the primary institutional friction is
overly bureaucratic record-keeping processes, but seems likely to be unhelpful when the
issue is instead that the government enforces ownership selectively.

Related Literature. The paper most closely related to ours is Biais et al. (2017),
who study the stability of a blockchain-based system. It shows that while the strategy
of mining the longest chain proposed by Nakamoto (2008) is in fact an equilibrium, there
are other equilibria in which the blockchain forks, as observed empirically. In that model,
forks occur for several reasons and are interpreted as causing instability. Writers’ payoffs
when forking depend exogenously on the number of writers who choose a given branch of
the fork. In our model, writers’ payoffs are instead determined by readers’ preferences,
which puts more discipline on exactly how and when a fork may occur. Cong and He
(2017) focus mostly on the issue of how ledger transparency leads to a greater scope for
collusion between users of the system. In contrast, we consider collusion between writers
of the blockchain rather than users and show that collusion can occur only when entry of
writers is constrained.

Some of the recent literature on blockchains in economics focuses on the security and
the costs of the system. Easley, O’Hara, and Basu (2017) use a game-theoretic framework
to analyze the emergence of transaction fees in Bitcoin and the implications of these fees
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for mining costs. The R&D race between Bitcoin mining pools is described in Gans, Ma,
and Tourky (2018), who argue that regulation of Bitcoin mining would reduce the overall
costs of the system and improve welfare. Huberman, Moallemi, and Leshno (2017) study
transaction fees in Bitcoin and conclude that the blockchain market structure completely
eliminates the rents that a monopolist would extract despite the fact that only one miner
processes transactions at a time. We depart from these analyses by endogenizing the
mechanism used by the blockchain: in our model, users of the system essentially choose
between competing mechanisms on different branches of a blockchain fork. The cost of
implementing a given mechanism is pinned down by the free entry condition.

Our framework uses a global game of the type pioneered by Carlsson and van Damme
(1993) in order to select a unique equilibrium. Rather than review the massive literature
on global games here, we refer the reader to Morris and Shin (2001) for an extensive and
general analysis of the global games framework. We use techniques from the more recent
literature on global games with non-Gaussian private values pioneered by Sakovics and
Steiner (2012) and advanced by Drozd and Serrano-Padial (2017). Our work is also related
to the recent literature on the importance of network externalities in blockchain payment
systems. Sockin and Xiong (2018) show that strategic complementarities in cryptocurrency
holdings lead to fragile equilibria with different cryptocurrency prices. Cong, Li, and
Wang (2018) argue that expectations of growth in a blockchain’s participation impact
the current price of its native token. Our paper differs from these studies in that we
analyze the importance of network externalities for arbitrary blockchains rather than just
cryptocurrency blockchains and show that these externalities interact with the replicability
of information on a blockchain in an important way.

We also relate to the literature on cryptocurrencies. Chiu and Koeppl (2017) develop a
macroeconomic model in which the sizes of cryptocurrency transactions are capped by the
possibility of a double-spend attack and derive optimal compensation schemes for writers.
Schilling and Uhlig (2018) study cryptocurrency pricing in a monetary model and derive
necessary conditions for speculation to occur in equilibrium. Pagnotta and Buraschi (2018)
derive a pricing framework for cryptocurrencies that explicitly accounts for the interplay
between demand for the currency and the cryptographic security provided by miners.

Recent computer science literature has studied blockchain security extensively. Most
papers in computer science, such as Gervais et al. (2016), study how to defend against
“double-spend” attacks or other types of attacks that could be undertaken by a single
individual who holds control over a large portion of the network’s computing power. The
conclusion of studies in the computer science literature is that a large fraction of the
blockchain writers must always play honestly in order for the network to be secure. In such
models, writers are prevented from deviating by other writers who discipline them. Writers
are implicitly prevented from colluding in any way. In contrast, we study a more general
type of attack without explicitly referring to double-spending. Our model shows that the
cost of operating a blockchain is intrinsically linked to the cost of preventing attacks, no
matter what they may be. Furthermore, our model shows that the implicit assumption of
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no collusion is unnecessary. The impossibility of dynamic collusion between writers on a
blockchain is a characteristic that emerges naturally from the free entry condition.

Finally, our paper is related to the literature on optimal intermediation structures.
Most notably, Diamond (1984) shows that when monitoring is costly, it is most efficient
to use a single intermediary. In contrast, in our framework it is optimal to have several
intermediaries because competition in writing on the ledger yields outcomes that are more
desirable for the blockchain’s users. In the computer science literature, Wüst and Gervais
(2017) study the applicability of blockchain to several markets from an informal standpoint.

The rest of the paper is structured as follows. Section 2 discusses the basics of blockchain
technology. In Section 3, we present the baseline model of a static choice between ledgers.
We analyze a specific example where agents choose between two branches of a blockchain
fork and another example in which agents choose between traditional ledgers in order
to spell out the tradeoffs between decentralization and cost-efficiency. Section 4 extends
the static model to a repeated setting and studies permissioned blockchain as well as the
security features of traditional ledgers and blockchains. Section 5 discusses practical issues
related to blockchain technology including some points that we do not address in our formal
model, such as the transfer of physical assets on a blockchain. Section 6 concludes.

2 Blockchain Technology

In this section we outline how blockchains work and the distinguishing features of
blockchains with anonymous writers.

2.1 What is a blockchain?

A blockchain is a ledger in which agents known as writers (or nodes) take turns record-
ing information. This information could consist of payment histories, contracts outlining
wagers between anonymous parties, or data on ownership of domain names, among other
applications. As discussed later, there are many possible algorithms to select the current
writer. The ledger consists of a tree of blocks that contains all the information recorded by
writers starting from the first block, which is called the genesis block. Each branch of the
tree corresponds to a chain leading back to the genesis block (hence the name “blockchain”).

A chain of blocks leading back to the genesis summarizes a state. Readers and writers
of the ledger must reach a consensus about which state is considered the valid state.
Typically, the community coordinates on the longest chain of blocks as the valid state, as
suggested in Nakamoto (2008). Each writer is periodically allowed to add a block to the
tree. Writers usually extend only the consensus chain, and readers will act only in response
to events on that chain. A writer’s decision to extend a given chain can be seen as a signal
that the writer accepts that chain as valid. Writers are rewarded for achieving consensus
through readers’ acceptance of the chain they extend. In general, writers accrue rewards

6



and transaction fees for each block added to the tree, so these rewards are realized only if
those fees are on the consensus chain.

However, it is in principle possible for readers and writers to coordinate on a chain
other than the longest one or even for different communities to coordinate on separate
chains. A “hard fork” occurs when part (or all) of the community decides to change the
rules governing the blockchain. To do so, they start their own blockchain that builds off
of the old chain, but they ignore any writers who do not follow the new rules. Similarly,
writers who use the old rules will ignore all writers who use the new ones, so the blockchain
effectively forks and becomes two blockchains. The data contained in the original chain
is included in both of the new blockchains, but neither blockchain uses data that was
recorded on the other after the fork occurred. Hard forks will feature prominently in our
model and will intensify competition between ledgers by allowing information from the
original blockchain to be replicated on a competing ledger.

For example, in 2016 the Ethereum community split after a hack that stole $55 million
from investors in a contract on that blockchain. Some Ethereum users argued that the
currency should be returned to the investors, whereas others believed the blockchain should
be immutable. The users who believed the currency should be returned ignored all blocks
occurring after the hack and built their own chain on which the hack never occurred. After
this point, both sides began ignoring the blocks built by the other side, and each part of
the community considered only its own chain to be the valid chain.

On any blockchain, there are some rules that readers and writers tacitly agree to fol-
low. These rules are written into the code distributed by the software developers for that
blockchain. For example, cryptocurrency transactions are signed cryptographically by the
sender of the transaction. Whenever blockchain writers receive a message to add a given
transaction to a block, they can perform a cheap computation to verify that the sender
properly signed the transaction. If the verification fails, the transaction is considered fraud-
ulent. Writers who follow the rules will refuse to add any such transaction to a block. In
general, blockchain security algorithms work so that it is inexpensive for writers to confirm
that the rules are being followed. If a previous writer added fraudulent transactions to a
block at the end of the longest chain, the consensus algorithm prescribed by Nakamoto
(2008) specifies that all other writers should ignore that particular block and refuse to put
other blocks on top of it.

Another example of rules that blockchain users agree to follow are the rules for writers’
compensation. For instance, Bitcoin miners are awarded a certain number of coins for
finding a block. All other writers must check that the miner who found the last block did
not attempt to circumvent the blockchain’s policies by minting more coins than what is
allowed. In most of our analysis we will suppose that the network is sufficiently secure to
ensure that the rules are followed. We focus on which rules for writer compensation emerge
in equilibrium when there is scope for competition between ledgers. In an extension of our
model, we examine how the rules are enforced in the first place.

An attack on a blockchain involves the addition of blocks that are somehow invalid.
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Either the blocks contain outright fraudulent transactions, or they are added somewhere
other than the end of the longest valid chain. It is clear that attackers stand to gain by
adding fraudulent transactions to their blocks simply because such a strategy allows them
to steal from others as long as other readers and writers go along with the attack, but these
attacks are usually automatically detected by all users of the system. It is perhaps less
obvious why an attacker would want to add valid blocks somewhere other than the end of
the longest chain. The key observation is that this type of attack permits dishonest actors to
reverse transactions or records written on the longest valid chain. If an attacker or group of
attackers controls the majority of the computing power on the network, even if this group’s
chain of blocks begins behind the longest valid chain written on by others, eventually the
length of the attackers’ chain will exceed that of the other chain. At this point it becomes
the longest valid chain. All writers (both the honest ones and the attackers) then write on
the attackers’ chain.

In cryptocurrency blockchains, this type of attack is commonly referred to as a double-
spend attack. An attacker will spend some currency on the longest valid chain, wait to
obtain the goods purchased, and then begin building an alternative chain on which the
currency was never spent, absconding with both the goods and the money. Double-spends
are by far the largest security concern of the cryptocurrency community. This type of
attack is also possible when the blockchain in question handles assets other than currency.
For example, a financial institution that loses money on a trade may wish to reverse the
history of transactions including that trade. Our model extension embeds double spending,
but it encompasses a broader class of attacks.

2.2 The Types of Blockchains

There are three main types of blockchains. In a private blockchain, a single centralized
entity has complete control over what is written on the ledger. That is, there is only
one writer. The readers in this situation could be the public, the entity’s clients, or a
regulator. Different groups may also have different types of read privileges on the ledger:
for example, a regulator would likely need to see the entire ledger, whereas a client may be
content to see only those transactions that are relevant to her. There is no need for identity
management with a private blockchain, since only one entity is permitted to write on the
ledger. Therefore, there are no computational costs and the system functions similarly to
a privately maintained database that gives read privileges to outsiders. In this system, the
writer is disciplined entirely by the readers, who may decide to punish the writer in some
way when the writer changes the ledger’s rules (or fee structure) or if they detect some sort
of fraudulent activity. One way in which this sort of punishment could arise in reality is if
an online platform like Amazon decides to raise subscription rates for vendors and vendors
respond by switching to a competitor.

A permissioned blockchain is one in which the write privilege is granted not to one entity,
but to a consortium of entities. These entities govern the policies of the blockchain and are
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the only ones permitted to propagate and verify transactions. The read privilege may be
granted to the public or kept private to some extent. The permissioned writers take turns
adding blocks to the chain according to a predefined algorithm, so again costly identity
management is unnecessary. The writers on a permissioned blockchain are disciplined by
readers, just as in a private blockchain, but they are also disciplined by other writers. If
one writer deviates and begins validating fraudulent ledger entries by including them in his
block, other writers may ignore him and refuse to extend his chain. If a writer proposes
a change of the blockchain’s policies, other writers may prevent such a change by writing
according to the existing policies.

The third and most common type of blockchain is a public blockchain. In a public
blockchain, both the read and write privileges are completely unrestricted. Writers are
disciplined exactly as in permissioned blockchains. All users of the network are anonymous.
However, when writers are allowed to be anonymous, some sort of identity management
is necessary. Otherwise, it would be possible for a small entity to pretend to be a large
entity, allowing it to add blocks more often than others and hence giving it significant
power over which chain of transactions is accepted as valid. This type of attack is known
as a “Sybil attack.” The typical approach to identity management is to force writers to
prove they have accomplished a computationally difficult task before permitting them to
write on the ledger. This method is known as Proof-of-Work (PoW) and is used by most
major cryptocurrency blockchains, such as Bitcoin, Ethereum, and Litecoin. In order to
incentivize writers to perform these expensive computations, they are usually rewarded
with seignorage and transaction fees for each block added to the chain. The structure of
a blockchain’s rewards gives rise to the free entry condition for that particular blockchain.
The costs of writers’ rewards tend to be economically large. For example, the Bitcoin
blockchain currently uses more electricity than Hungary.

3 Static Ledger Choice Model

In this section, we present a general model of ledger choice as a coordination game.
Our objective is to be able to capture a variety of settings in which readers choose among
competing ledgers with different rules or policies. Our leading example applies our model to
study competition between two branches of a blockchain fork. We then contrast the model
of two competing blockchains with a model in which two traditional ledgers compete. We
also examine a hybrid model of competition between a traditional ledger and a blockchain,
and in the next section we extend the model to a dynamic setting and analyze the differences
between a permissionless blockchain and a permissioned blockchain. The specific examples
of competition between different types of ledgers will illustrate the tradeoffs suggested by
the Blockchain Trilemma.

We focus on the importance of coordination because many types of ledgers are useful
only if they are widely used. For example, consumers will want to hold a fiat currency only
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if it is accepted by most vendors. Another situation in which coordination is important
is when the ledger contains information about user’s creditworthiness (such as Alibaba’s
Sesame credit score system)– users will not have an incentive to build up their credit
score if there are no lenders. Throughout, we will abstract from the specific details of the
coordination motive and instead compare different settings by varying a parameter that
governs the strength of network externalities.

There are three periods, t = 0, 1, 2. There is a set of agents j ∈ M known as writ-
ers. These agents correspond to those who maintain the ledger. For a cryptocurrency
blockchain, these agents would be miners. For a traditional payments ledger, a single cen-
tralized intermediary (such as the Federal Reserve or a bank) is usually the sole writer.
There is also a continuum of agents i ∈ [0, 1] known as readers, who are users of the ledger.
Finally, there are two agents known as proposers, PA and PB. These proposers are respon-
sible for choosing the rules under which the ledger operates. Software developers are the
“proposers” for a blockchain. When a part of the community wants to fork the blockchain,
a developer will write commonly accepted code that implements the desired changes to the
rules. On the other hand, for a traditional ledger the proposer is also the writer. That
is, the monopolist who runs the ledger also decides on the rules. In what follows, we will
allow for the possibility that some writer j ∈M is also one of the proposers.

Each ledger k ∈ {A,B} is associated with a fundamental parameter Lk ∈ Lk determin-
ing the revenues earned by writers. A simple way of thinking about Lk is as an explicit fee
charged to readers by the writer(s) of the ledger, but more broadly Lk could be interpreted
as an implicit fee. Such implicit fees could arise, for instance, if a monopolist who runs
a ledger chooses to sell readers’ data to an outside party. The fundamental parameter
Lk could also represent a goverment’s choice of policy, such as inflation. For example, a
government may wish to inflate away its debt, but doing so could be costly for people
who hold the currency, who may then collectively decide to abandon the national currency
altogether (as in Zimbabwe). Henceforth we will refer to Lk as a fee for ease of exposition.

Readers and writers must both choose ledgers in which to participate. Readers will
have homogeneous preferences for coordination on a given ledger as well as heterogeneous
fundamental preferences for each ledger, as described below. Writers will choose a ledger k
and take an action aj ∈ A(πk) to write on the ledger (where the set of allowable actions may
depend on the fraction of readers πk who participate on that ledger). In our applications,
this action will generally correspond to the expenditure of computational resources to
write on a blockchain, but at times it will also refer to actions taken in order to distort the
contents of the ledger.

Readers are heterogeneous in their fundamental preferences for ledgers. Each reader is
assigned a type

si = si,A − si,B

Here si,k is meant to represent the stake that agent i has in ledger k and τi,k is a common
value for ledger k. The stake that a reader has in a given ledger should be interpreted as
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the amount of information pertaining to that reader that is encoded in the ledger. For any
ledger that keeps track of asset holdings, a reader’s stake is simply the set of assets held
by that reader, with larger asset holdings being interpreted as a higher stake. However,
a reader’s stake does not necessarily have to represent the market value of some asset. A
reader with a high stake may also be a consumer who has built up a high credit score or
a financial institution with a complex set of contracts with other institutions. We denote
the population distribution of stakes si = si,A − si,B by Q(s).

There is also a common value component in readers’ preferences, τ = τA−τB. When τ >
0, the common value induces a preference for A among all readers, and when τ < 0, readers
prefer B. We introduce incomplete information about the common value for equilibrium
selection. Formally, we assume that each reader i receives a signal xi = τ + σηi, where
η is uniformly distributed on [−1

2 ,
1
2 ]. We typically work in the limit σ → 0, so there is

an arbitrarily small amount of noise in agents’ signals.1Incomplete information about this
value could be motivated by, for example, uncertainty about the properties of the ledger’s
technology. With incomplete information about τ , readers’ types become two-dimensional.
An individual reader’s type can be summarized by θi = (xi, si).

Proposers choose the fundamental ledger parameters by choosing Lk ∈ Lk and the
assignment of stakes to agents by choosing sk ∈ Sk. Formally, a mapping Sk of stakes to
agents is just a function Sk : [0, 1] → R. Readers are informed about their stakes when they
receive their types si. The proposer’s choice of stakes is meant to capture the information
encoded in the proposed ledger. When information on ledger A can be replicated on ledger
B, for example, there would be a set of stakes s ∈ SA that the proposer of ledger B could
use as well, so s ∈ SB. However, when information on ledger A cannot be replicated,
there would be some s ∈ SA such that s /∈ SB. Broadly speaking, information can be
replicated across two branches of a blockchain fork, since both branches share the same
root blockchain. With a traditional ledger, on the other hand, the centralized intermediary
who manages the ledger typically has a monopoly over the information it contains. One
of our main results in our applications will be that replicability of information intensifies
competition across ledgers– when information can be replicated on a competing ledger,
readers no longer face the cost of losing their stakes when switching to a competitor’s
ledger.

The timing of the game is as follows:
t=0: Proposers PA and PB choose (LA, SA) and (LB, SB), respectively.
t=1: Readers first observe writers’ choices and their own types θi. They then choose a
ledger r(i) ∈ {A,B} in which to participate.
t=2: Writers choose a ledger k ∈ Fj ⊂ {A,B} and take actions aj ∈ A(πk). Payoffs are
realized.

Readers’ preferences for each ledger depend on their types, the proportion of other
readers who choose that ledger, the revenues (fees) collected by writers, and the actions

1When σ → 0, agents’ priors over τ become unimportant.
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taken by writers at t = 2. The actions taken by writers at t = 2 may be important to
readers for several reasons. If the action at t = 2 corresponds to the amount of compu-
tational power a writer contributes to a blockchain, readers may prefer ledgers that are
more cryptographically secure in the sense that greater computing power is dedicated to
it. When the action taken at t = 2 corresponds to a distortion of the ledger, readers will
prefer ledgers that have not been distorted. Let πk be the proportion of readers who choose
ledger k, and let ak = {aj}w(j)=k be the action taken by writers at t = 2. A reader who
chooses ledger k obtains utility u(τ, si,k, πk, Lk, ak). We assume that u takes the form

u(τ, si,k, πk, Lk, ak) = bθ(τ + si,k − g(Lk)− h(ak)) + bππk

where g is an increasing function and bθ, bπ > 0. That is, utility is linear in τ , si,k, g(Lk),
and πk conditional on the action taken by writers. Linearity in τ , si,k is natural in this
context and is the usual approach taken in the global games literature. Linearity in πk
will be useful in deriving the properties of equilibria because it will ease the computation
of expected utility across possible realizations of πk. We also define

∆ = u(τ, si,A, πA, LA, aA)− u(τ, si,B, πB, LB, aB)

to be the opportunity cost of choosing ledger B. When aA = aB = a, ∆ takes the form

∆ = bθ
(

τ + si − (g(LA)− g(LB))
)

+ bπ(2πA − 1)2

We will define π̂(τ, s, a, La, LB) to be the πA such that ∆ = 0 when a reader’s type is s, the
common value is τ , writers take actions a, andthe fundamental parameters of the ledgers
are LA, LB. We will usually suppress the dependence on τ, a, LA, LB. According to this
definition,

1− π̂(s) =
1

2
+ κ−1

(

τ + s− (g(LA) + h(aA)− g(LB)− h(aB))
)

where κ ≡ 2bπ
bθ

. In what follows, it will sometimes be important to impose the following
condition.
Condition SC: Q(s) and 1− π̂(θ) satisfy a single-crossing property: there exists θ∗ such
that Q(s) > 1− π̂(θ) for all θ < θ∗ and Q(s) ≤ 1− π̂(θ) for all θ ≥ θ∗.

One way to rephrase Condition SC is to impose monotonicity of the function

ζ(s) = s+ κ(1− 2Q(s))

in s.
Writers’ preferences are described by a function vw(πw(j), aw(j)) of participation and

actions taken by all writers on the ledger wj that they choose. In our applications, writers

2We use this simple specification of utility to derive sharp analytical results, but our results go through
qualitatively as long as readers play a game with strategic complementarities.
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will prefer to write on widely used ledgers because their revenues will scale with the number
of readers. It is important to allow for dependence on the actions of other writers because
when there is competition to write on a given ledger, an individual writer’s revenues will
depend on the competition faced. Proposer k obtains utility vp(πk, ak) at t = 3. In our
specific examples we elaborate in more detail on how proposers’ preferences for participa-
tion arise, but one way to motivate these preferences is by thinking of proposers as large
stakeholders who benefit when others participate in the ledger through an increase in the
value of their stakes. When more readers participate in the proposed ledger, the proposer’s
stake appreciates by a greater amount.

3.1 Characterization of equilibrium with arbitrary competing ledgers

We now prove properties of equilibrium that will hold in all of the settings we consider.
First, we show that as noise about the common value vanishes, readers’ play is uniquely
pinned down in equilibrium. We also characterize the multiplicity of equilibria in a bench-
mark setting where readers’ types are identical. Here we restrict attention to pure-strategy
Perfect Bayesian equilibria of the ledger choice game. For a formal definition of Perfect
Bayesian equilibrium, we refer the reader to Fudenberg and Tirole (1991).

The main property of equilibria that we can prove at this point is that equilibria
will take a “cutoff” form: there will be threshold values k(s) such that all agents with
xi < k(si) choose ledger B and all readers with xi > k(si) choose ledger A. These cutoffs
will be decreasing in s, meaning agents with larger stakes in ledger A will be more likely
to choose A. This is true as long as the actions taken by writers are the same on ledgers
A and B. That is, readers sort themselves across ledgers according to their preferences.
Those whose fundamental preferences for A are above a certain bound will choose A and
all other readers will switch to B.

Proposition 1. There is an essentially unique equilibrium of the game played by readers
at t = 1 holding fixed the actions of writers at t = 2. There exist weakly monotonically
decreasing cutoffs k(s) such that all readers with xi > k(si) choose r(i) = A and all readers
with xi < k(si) choose r(i) = B. When condition SC holds, the cutoffs are given by

k(s) = −(s− (g(LA)− g(LB)) + κ(1− 2Q(s)))

The proof of Proposition 1 relies on standard techniques from the global games literature
with heterogeneous preferences, as in Sakovics and Steiner (2012) or Drozd and Serrano-
Padial (2017). The logic behind the proof is as follows. In this setup, there are certain types
s whose fundamental preferences for ledger A are so strong that it is a dominant action to
choose A even if all other agents choose B. We call this set of types a “dominance region.”
Then some other types who strongly prefer A will choose A as well, since on top of their
fundamental preference for A they know that all types in the dominance region choose A.
This logic can be iterated to derive a unique equilibrium under certain conditions. The
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actions of types with extreme fundamental preferences are “contagious” and induce even
types with mild preferences for one ledger over the other to take a given action. It is
possible to find the set of types who choose B in exactly the same way.

When Condition SC holds, the cutoffs take a particularly nice form. The reason that
the equilibrium is so simple in this case is that readers’ types are very dispersed. In fact,
their types are so dispersed that even without incomplete information about θ, there would
still be a unique equilibrium. The uniqueness of equilibrium comes from the fact that some
readers’ preferences will be so extreme that they are in the dominance region, meaning
there is no need to introduce the relevance of these types through higher-order uncertainty.
Hence when preferences satisfy Condition SC, there is effectively no uncertainty about
coordination.

In a benchmark case with complete information and identical preferences (captured
by stakes), this property does not hold. The introduction of incomplete information or
heterogeneous stakes is necessary to select a unique equilibrium. Here we also state a
benchmark result that when preferences are identical, there are three equilibria as long as
playing A or B is not a dominant action.

Proposition 2. As long as neither A nor B is a dominant action for any type s, generically
there are three equilibria taking writers’ actions at t = 2 as given: one in which all readers
play A, one in which all play B, and a mixed equilibrium.

In the benchmark case with complete information and identical preferences, there are
usually three equilibria. When all agents choose either A or B, it is optimal for any
individual agents to follow the crowd. However, there is also a mixed equilibrium in which
agents are exactly indifferent between the two ledgers: the ledger with a lower value of
Lk will have less participation, which induces most agents to choose the ledger on which
writers receive larger revenues.

3.2 Competition between distributed ledgers

In this section, we present our baseline model of competition between blockchain
ledgers. In reality, this competition corresponds to a “hard fork,” in which some of the
blockchain’s writers decide to build their own blockchain with new protocols off of a pre-
viously existing (parent) blockchain. Critically, a hard fork preserves all of the data in
the parent blockchain. This observation will be crucial for our conclusions: the ability of
writers to change the rules of the blockchain but keep readers’ stakes in the network intact
will allow for perfect competition between ledgers. There will be no inertia in switching
ledgers because readers will lose nothing by doing so as long as all other readers switch as
well. Blockchains will enhance competition between ledgers, but they will come at the cost
of proof-of-work, the first (and most important) cost of decentralization. This example
will thus illustrating one aspect of the decentralization-cost efficiency tradeoff postulated
in the Trilemma.
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The model of blockchain competition falls within the general class of models of ledger
competition described earlier. In the game, readers must coordinate on a ledger (branch
of a blockchain fork), which corresponds to choosing a ledger A or B. We take A to be
the branch that keeps the rules of the existing blockchain. This branch has a fundamental
parameter LA and readers have stakes S on that branch. That is, we constrain the proposer
PA to choose (LA, S). This proposer can be thought of as one of the original developers of
the blockchain. The proposer on branch B may choose a new fundamental parameter LB

in a compact set L ⊂ R+ but must choose stakes S as well. Proposer PB can be thought of
as a blockchain software developer who wants to fork the blockchain and therefore chooses
new protocols but keeps all users’ data intact. If participation on the ledger proposed by
PB is πB, PB receives a payoff πB(K − gP (LB)), where gP is an increasing function of
LB and K is a constant. The proposer’s payoff is assumed to come from an appreciation
of the developer’s stake when the proposed ledger is adopted. Function gP relates the
appreciation of the proposer’s stake to the fundamental parameter of ledger B, so that it
is better for the proposer to suggest rules that benefit readers.

In this setting, the set M of writers is a continuum [0,M ], where M is taken to be
large. We assume there are two branches of the fork, branch A and branch B. Writers
are responsible for cryptographically securing the ledger, and they are given some surplus
for contributing computing power to the blockchain. At t = 2, writer j chooses a ledger
w(j) ∈ {A,B} and an amount of computational power cj ≤ 1 to contribute to that ledger.
We assume that writers can observe readers’ actions before making a decision because in
practice, this is often exactly what happens. Cryptocurrency “mining pools” are set up to
automatically mine on whatever blockchain yields the highest profits at that moment. To
the extent that the token price on a blockchain proxies for participation on that blockchain,
mining pools essentially condition their decisions on users’ actions.

Writers pay a linear cost f(c) = c of generating computational power. Let Ck =
∫

w(j′)=k

cj′dj
′ be the total computational power contributed to branch k of the fork, and

denote the participation on that fork by πk. Then a writer’s net profits when contributing
computing power cj to branch k are

vw(πk, cj , Ck) =
cj
Ck

πkLk − cj

when Ck > 0 and −cj otherwise. The writer’s revenues are proportional to participation
and the fundamental parameter Lk but are inversely proportional to the computational
power contributed by other writers. This revenue function captures two features shared
most blockchains. Namely, (1) the total rewards given to writers are fixed, and (2) those
rewards tend to be more valuable when the blockchain has been adopted by a larger group
of users.

Readers prefer ledgers that are cryptographically secure. Their preferences for cryp-
tographic security are parametrized by a function h(Ck

πk
) such that h(Ck

πk
) = 0 whenever
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Ck

πk
≥ C and h(Ck

πk
) = H, where H is a large constant, otherwise.3 That is, readers value

security in terms of the amount of computational power committed to the blockchain per
user, and there is some threshold level C of computational power above which readers are
completely satisfied with the ledger’s security. Below that level, readers are unsatisfied
with the ledger’s security. For now, we keep the function h exogenous and discuss the
benefits of fork competition. In our discussion of attacks on the blockchain we outline how
it can be endogenized and discuss the tradeoff between free entry of writers and costly
proof-of-work in greater detail.

There is incomplete information about readers’ preferences. A common parameter τ
affects readers’ preferences for ledger A over B (where τ > 0 pushes readers towards A
over B). Readers receive signals xi = τ + σηi, where ηi are independently and identically
distributed uniformly on the interval [−1

2 ,
1
2 ] and we take the limit σ → 0. The value of τ

is unknown to readers. They may have some prior over its distribution, but in the limit
σ → 0 this prior will be irrelevant because their signals are extremely precise.4This small
amount of noise in preferences gives rise to a type distribution xi ∼ U [τ − σ

2 , τ +
σ
2 ], since

all readers have the same stakes on both ledgers. Adding an arbitrarily small amount of
noise to the information structure will ultimately allow us to select a unique equilibrium.

Readers’ preferences are summarized by

∆ = E

[

(1

2
κπA + τ − g(LA)− h(

CA

πA
)
)

−
(1

2
κπB − g(LB)− h(

CB

πB
)
)

|xi

]

since each reader’s stake is the same on both ledgers. Here κ is a coefficient determining
preferences for coordination. When h(CA

πA
) = h(CB

πB
) = h(C), we obtain

∆(xi, π, LA, LB) = E

[

τ − (g(LA)− g(LB)) +
1

2
κ(2π − 1)|xi

]

where π represents participation on ledger A, as before. Critically, here we assume that
a proposal LB induces the same preference among all readers. Later we analyze a case in
which readers have heterogeneous preferences for ledger B following a proposal LB.

Finally, we define the publicly information observable to players at each t. At t = 1,
players observe the proposer’s action LB. At t = 2, all players observe the measure of
readers πk who chose ledger k at t = 1 for k ∈ {A,B}.

Now that we have set up the blockchain game, we may prove our main result.

Proposition 3. Suppose there is LB ∈ L such that C ≤ LB < LA. There exists a unique
equilibrium when τ ≤ 0. In this equilibrium, proposer PB announces L̃B = min{L : L ∈
L, L ≥ C}, all readers and writers choose ledger B, and writers break even.

3Here we take writers’ action set A(π) = [0, 1

π
] to be the computational power produced per blockchain

reader. Under this specification, readers’ payoffs are of the form assumed in the generic ledger choice model.
4We must also assume that the prior on τ is smooth and has full support to guarantee uniform conver-

gence of the posterior. See Frankel, Morris, and Pauzner (2003).
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Proposition 3 is a remarkable result. It states that in a setting in which there is an
opportunity to fork a blockchain, readers will always choose the branch of the fork on
which writers receive the lowest revenues, and proposers (developers) will propose rules
that are beneficial to readers rather than writers.5 Figure 1 depicts an example of the
equilibrium of the blockchain game. Of course, the result that proposers suggest protocols
that are beneficial to readers depends partly on the assumption that proposers’ incentives
are aligned with those of readers, but in a setting with free entry of writers this assumption
is not overly restrictive. Writers always make zero profits, so proposing a ledger that
increases writers’ revenues is pointless. Furthermore, readers choose to switch to ledger
B only because they do not stand to lose their stakes when doing so. The replicability
of information on ledger B completely removes an obstacle to switching ledgers. We will
show that when information cannot be replicated on a competing ledger, readers’ stakes
impede switching to a ledger where writers earn lower revenue.

Proposition 3 highlights the benefits of a blockchain. When all readers’ fundamental
preferences for an alternative ledger are identical, the absence of switching costs induces
full coordination on the competing ledger. There is perfect competition among ledgers in
that as long as it is feasible to set LB even slightly lower than LA, the competing ledger
will win out over the existing one. Remarkably, there is perfect competition between
ledgers. Coordination inefficiencies are precluded under these assumptions, but in the next
subsection we discuss how coordination can break down when readers have heterogeneous
fundamental preferences.

Popular discussion has largely focused on the ways in which blockchains can decrease
essentially exogenous costs, such as by inducing faster consensus about a ledger’s contents.
This result shows that there is an endogenous channel through which blockchain reduces
the cost of maintaining a ledger: the synergy between portability of information and com-
petition among writers. When information can be ported to an outside ledger, readers will
want to use that ledger if writers are paid lower fees. Individually, writers are better off
writing on a ledger with high fees, but competitive forces drive writers to undercut each
other by writing on the ledger with lower fees. Writers know that all readers will use the
outside ledger when there are enough writers to secure it, so the end result is that all
writers must switch to the outside ledger. The downside of a blockchain is that while in a
traditional setting writers’ fees simply represent a (possibly distortionary) transfer, in the
case of blockchain writers’ fees are a pure waste of resources. We next examine under what
conditions a traditional ledger maintained by a monopolist induces a large distortion due
to rent extraction.

5Note that the hypothesis τ ≤ 0 is not restrictive. It just states that if agents are ex-ante neutral or
prefer ledger B, there will be a unique equilibrium in which they all switch to ledger B. A good benchmark
is the case τ = 0.
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Figure 2: An example of an equilibrium of the blockchain game. Here θ̄ = 3, g(L) = αL,
LA = 50, LB = 10, and κ = 4. The green line represents the actual CDF of types, which
is concentrated in a small interval around θ̄.
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3.3 A realistic “hard fork”

In this section, we analyze a hard fork that is more realistic than the type highlighted
in the preceding analysis where all users of the blockchain switch to one branch of the fork
and the other is completely abandoned. In reality, hard forks usually lead to a split of the
community. For example, the Ethereum community split after hackers stole cryptocurrency
from a smart contract. Although the majority of the blockchain’s users joined the segment
of the community that decided to fork, a significant percentage of users continued to use
the original blockchain. The Bitcoin blockchain has also been forked by the (significantly
less popular) cryptocurrencies Bitcoin Cash and Bitcoin Gold, both of which changed the
rules of Bitcoin in order to benefit users. In these cases, many users of Bitcoin refused to
actively use the new cryptocurrencies because they felt that the changes to the rules were
actually detrimental or compromised the security of the blockchain. This section will focus
on the tradeoff between fork competition and network externality inefficiencies, the second
cost of decentralization. Although fork competition can benefit users, we will show that it
can also lead to inefficient miscoordination, or “too many ledgers” in equilibrium.

The key mechanism that will underlie realistic hard forks in our model is preference
heterogeneity. Although in the benchmark model agents are heterogeneous in their pref-
erences, we take a limit in which this heterogeneity vanishes. We now consider a model
identical to the benchmark with the exception of the specification of types. Readers’ types
are now given by

θi = (xi, fi)

where fi ∈ {0, f}. The type fi reflects a preference for forking: readers with fi = f dislike
all forks equally, and readers with fi = 0 are not averse to forking the existing blockchain.6

Types fi are independently and identically distributed across readers with Pr(fi = η) = µ.
Types xi are distributed uniformly in the interval [τ − σ

2 , τ +
σ
2 ] as before. Readers observe

both xi and fi.
Note that if there exists LB ∈ L such that LB ≥ C and g(LB)− g(LA) > f , we obtain

the same result as in Section 3.2. Proposer PB will propose such an LB and all readers will
switch to branch B. In this case, there exists a feasible fundamental parameter LB that is
better than LA by such a wide margin that all readers, including those who dislike forks,
prefer ledger B with parameter LB.

We therefore consider only the case in which all LB ∈ L satisfy g(LB)− g(LA) < f . In
fact, the only situation in which multiple equilibria would arise under complete information
is if

f + g(LA)− g(LB) ≥ κ(1− 2µ) ≥ g(LA)− g(LB)

We derive the unique equilibrium under these conditions. The results are summarized in
Proposition 4.

6We adopt this specification for simplicity. Allowing for ηi to depend on the announced fundamental
parameters LA and LB would not change the main results. Anecdotal evidence suggests that there are
indeed blockchain users who are fundamentally averse to forking.
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Proposition 4. Suppose readers face ledgers with fundamental parameters LA, LB, Wk ≥
Lk writers commit to branch k at t = 1, and a fraction µ of readers are of type fi = f .
Then if

f + g(LA)− g(LB) ≥ κ(1− 2µ) ≥ g(LA)− g(LB)

the essentially unique equilibrium at t = 1 is of one of two types.

1. If f ≤ κ, then all readers choose branch A if g(LA) − g(LB) > µf and branch B if
g(LA)− g(LB) < µf .

2. If f > κ, readers of type fi = f choose branch A iff f − (g(LA)− g(LB)) > (1− µ)κ
and readers of type fi = 0 choose branch B iff g(LA) − g(LB) > µκ. That is, the
miscoordination equilibrium of the complete information game is selected when f > κ
if such an equilibrium exists.

This proposition essentially shows that when readers’ fundamental aversion to forking
is strong relative to the coordination motive, the blockchain is vulnerable to a hard fork
that splits the community. Intuitively, when network externalities are weak relative to
some readers’ dislike of forks, readers who are averse to forks will still prefer not to leave
the existing ledger even if all other readers join the new fork. Put another way, coordi-
nation motives are a source of strength for a blockchain: when network externalities are
weak, coordination among the blockchain community becomes fragile and the community
is susceptible to a split.

The possibility of a hard fork that splits the community has important implications
for welfare. When no fork is proposed, all readers obtain utility µf − g(LA) + κ. When a
fork is proposed and a community split occurs, on the other hand, readers obtain average
utility

µ(f − g(LA) + κµ) + (1− µ)(−g(LB) + κ(1µ))

Relative to the case with no forking, the welfare gains or losses are

(1− µ)(g(LA)− g(LB))− 2κµ(1− µ)

The first term is the fundamental benefit readers of type fi = 0 obtain by switching to B,
and the second term is the coordination loss associated with the split. Hence the fork is
detrimental to welfare if

2κµ > g(LA)− g(LB)

The results of the previous section and this one highlight the main tradeoff relevant for
determining whether a blockchain is worthwhile. Although a blockchain greatly enhances
competition between ledgers and lowers fees, it may also induce an undesirable breakdown
of coordination. The possibility of miscoordination is especially strong when network
externalities are weak, so a blockchain is likely particularly useful when the coordination
motive is important.
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3.4 Competition between traditional ledgers

In this section, we analyze a competition between a ledger maintained by a monopolist
and an outside ledger. The differences between this setting and one with two distributed
ledgers will clarify exactly how fork competition differs from standard competition; i.e.,
what exactly is accomplished by decentralization. We first begin by assuming that the
monopolist is the incumbent in the sense that readers have a stake in the monopolist’s
ledger but not the outside ledger. There are just two writers: the monopolist M on ledger
A and an outside writer (entrant) O on ledger B. In this case, the writers are also the
proposers PA = M and PB = O. Each writer may only write on her own ledger. At
t = 1, the incumbent may choose a fundamental parameter LA ≥ 0 and the the entrant
chooses LB ≥ 0. The incumbent and entrant choose stakes Ŝ and 0, respectively. The
restriction that the entrant must choose zero represents a situation in which readers have
no stake in the outside writer’s ledger and that writer is unable to replicate the stakes in
the monopolist’s ledger due to information frictions. Writers do not take actions at t = 2.

Readers have preferences summarized by

1− π̂(s) =
1

2
+ κ−1

(

τ + s− α(LA − LB)
)

(1)

Here we use a linear function αL to represent the disutility from paying fees to writers.
While less general than equation (1), these preferences will allow us to derive analytical
solutions for the monopolist’s optimal policy. Readers’ types θi are given by their stakes
on the monopolist’s ledger si, which has a cross-sectional distribution Q(s) that is uniform
on the interval [S − d

2 , S + d
2 ]. Here S is the average stake and d is the dispersion of

stakes. It is important to distinguish between situations in which Condition SC is satisfied
and situations in which it is not. Condition SC is satisfied if and only if d > κ. We will
henceforth assume in this section that the true realization of the common value τ is zero,
but that this is unknown to readers.

The monopolist receives a fee LA from each reader who participates. The monopolist’s
objective function is

max
LA≥0

πLA

where π denotes participation on ledger A. Similarly, the entrant’s objective function is

max
LB≥0

(1− π)LB

In order to proceed, we must determine how the writers’ choices of LA and LB map to
participation π. Proposition 5 provides an answer.

Proposition 5. When Condition SC holds and τ = 0, all readers for whom

1− π̂(s) =
1

2
+ κ−1

(

s− α(LA − LB)

)

> Q(s)
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Figure 3: Participation on the monopolist’s ledger when stakes are distributed uniformly
on [S − d

2 , S + d
2 ] with τ = 0, S = 4, d = 8, κ = 4, LA = 40, LB = 0, and α = 0.1.

choose to remain on ledger A, and all other readers choose ledger B. When Condition SC
does not hold, all readers choose A if α(LA − LB) < S and B if α(LA − LB) > S.

First, we consider the simpler case in which Condition SC does not hold. In this case,
network externalities are so strong that all readers will end up choosing the same ledger
regardless of how invested they are in ledger A. Proposition 5 shows that when network
externalities are strong, the incumbent and entrant effectively compete à la Bertrand. Each
will try to undercut the other as long as it is possible to do so. However, the incumbent has
a competitive advantage corresponding to the average stake S readers have in its ledger.
Therefore, in equilibrium the entrant must choose LB = 0, and the incumbent monopolist
chooses LA just small enough so that readers do not switch to B. By Proposition 5, this
yields

LA =
S

α
(2)

In this case, the profits earned by the monopolist depend only on the average stake and
α, which parametrizes readers’ aversion to fees. When the average stake is higher, the
monopolist has a larger competitive advantage because there is greater inertia in switching
ledgers.

Now we consider the case in which Condition SC holds. By Proposition 5, when the
monopolist selects LA, all readers for whom 1− π̂(s) > Q(s) = s−S

d
+ 1

2 choose to remain
on ledger A. Figure 2 illustrates this situation. To find the cutoff type θ∗ who is indifferent
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between remaining on the monopolist’s ledger and leaving, we solve

1

2
+ κ−1(s− α(LA − LB)) =

s− S

d
+

1

2

which implies

s∗ =
d

d− κ

(

α(LA − LB)− κ(
S

d
− 1)

)

(3)

so long as the expression on the right-hand side is in the range [0, S]. This yields Q(s∗) =
s∗−S

d
+ 1

2 , so we obtain an expression for participation in the monopolist’s ledger as a
function of LA:

π(LA, LB) = 1−Q(s∗(LA, LB)) =
S + d

2 − κ
2 − α(LA − LB)

d− κ

Then the monopolist’s problem reduces to

max
LA

(

S +
d

2
−
κ

2
− α(LA − LB)

)

LA

which yields

LA =
S + d

2 − κ
2 + αLB

2α
(4)

The rents extracted by the monopolist are increasing in the average stake on its ledger
because when the average stake is higher, readers must be charged a higher fee before they
become indifferent between leaving the ledger and losing their stakes. A high dispersion
of stakes also allows the monopolist to extract high fees because when there is a wide
distribution of stakes, the sensitivity of the monopolist’s revenues to LA is low. There are
fewer marginal readers, so an upwards adjustment of LA does not result in a large exodus
of readers from ledger A. Finally, when the parameter LB is large, readers are reluctant to
leave ledger A because they know that they will be charged high fees on the outside ledger
regardless, so the monopolist enjoys higher profits.

On the other hand, a strong coordination motive can be detrimental to the monopolist’s
business. If the coordination motive is strong, when a single marginal reader leaves the
ledger it induces many other readers to leave as well. In this case, the sensitivity of
participation to LA is high. Clearly, it will also be the case that when readers’ preferences
are sensitive to LA, the monopolist must set a lower LA.

Recall that with a blockchain, the fundamental parameter that is chosen in equilibrium
is essentially independent of the details of readers’ preferences– the ledger that is best for
readers is chosen automatically. In the traditional environment, when even partial compe-
tition is possible, network externalities work as a disciplining device against the incumbent
monopolist. That is, network externalities enhance the importance of ledgers’ fundamen-
tal parameters when replication of information and perfect, blockchain-style competition
between writers is impossible.
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Now we analyze the entrant’s problem. Participation on the entrant’s ledger is

1− π(LA, LB) =
d
2 − κ

2 − S + α(LA − LB)

d− κ

The entrant’s problem is then

max
LB≥0

(

d

2
−
κ

2
− S + α(LA − LB)

)

LB

The first-order condition of this problem is

LB =
d
2 − κ

2 − S + αLA

2α
(5)

The monopolist will choose this value of LB as long as S−αLA ≤ 1
2(d−κ). Otherwise, the

first-order condition is satisfied only for negative LB, which is impossible, so the entrant
sets LB = 0.

Equation (5) shows that the entrant will extract high rents if the dispersion in readers’
stakes is large or if the incumbent also extracts large rents. When the dispersion in readers’
stakes is large, the sensitivity of the entrant’s revenues to LB is low, as in the case where
the monopolist is the incumbent. That is, dispersion in stakes is harmful to readers no
matter which ledger they ultimately choose. When the fundamental parameter LA on the
incumbent’s ledger is large, readers are more willing to stomach high fees charged by the
entrant, so LB is higher.

The entrant’s rents are decreasing in the strength of the coordination motive κ, the
mean stake on the incumbent’s ledger S, and readers’ sensitivity to fundamentals α. Net-
work externalities discipline both the incumbent and the entrant– when these externalities
are strong, an increase in LB tends to cause a domino effect that results in a large mass
of readers leaving ledger B. The fee charged by the entrant is also decreasing in the mean
stake S on the incumbent’s ledger because that stake gives the incumbent a competitive
advantage, so the entrant must charge a lower fee in order to capture a significant segment
of the market.

In order to find the equilibrium of the game between the incumbent monopolist and
the entrant, we simply combine their first-order conditions. Hence we simultaneously solve
equations (4) and (5). This yields

LA =
1

2α
(d− κ) +

1

3α
S, LB =

1

2α
(d− κ)−

1

3α
S (6)

Then participation on each ledger is

πA = π =
1

2
+

1

3

S

d− κ
, πB = 1− π =

1

2
−

1

3

S

d− κ
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We need 0 ≤ πA, πB ≤ 1 and Lk ≥ 0 for k ∈ {A,B}. A necessary and sufficient condition
is

S ≤
3

2
(d− κ) (7)

This inequality is a no-entry bound. If this inequality does not hold, the incumbent A
is in fact able to retain all readers even when LB = 0. That is, the stakes readers have
in ledger A endogenously prevent entry by even the most competitive entrant. While
network externalities discipline the fees charged by the incumbent, inequality (7) shows
that they actually impede entry by competitors as well. When the participation of others
is important to readers, it is difficult for a competitor to enter because it cannot attract
enough readers to get itself off the ground. On the other hand, when readers’ stakes on
ledger A are dispersed, it is easier for the entrant to attract the readers with the least to
lose by switching, which in turn induces switching by other readers. When the no-entry
bound holds,

LA = LNE =
1

α

(

S −
1

2
(d− κ)

)

(8)

The incumbent sets LA to be the highest value such that all readers participate in the
ledger. We have the following results regarding the case with no entry.

Proposition 6. The no-entry bound on the average stake S is decreasing in the strength
of the coordination motive κ and increasing in the dispersion of stakes d. Readers’ welfare
under the no-entry bound is decreasing in S, increasing in d, and decreasing in κ.

Now we turn to the case in which there is entry. Equation (6) clarifies that dispersion in
stakes and the strength of the coordination motive κ affect the fees charged on both ledgers
symmetrically. When the coordination motive is powerful, both monopolists are disciplined
by the fact that a higher fee will cause a large loss of clientele through spillover effects.
When one reader leaves a ledger, other nearly marginal readers follow suit because of the
importance of coordination. On the other hand, dispersion in stakes has the opposite effect.
When readers’ stakes are heterogeneous, only a small mass of readers will be marginal for
any given fee, so an increase in the fee does not cause a large loss in a monopolist’s client
base.

The mean stake S has an asymmetric effect on monopolist’s fees. An increase in
S increases LA while decreasing LB. When the mean of readers’ stakes on ledger A is
high, there is a competitive wedge between ledgers A and B. Monopolist M can extract
higher rents than the entrant O because readers’ stake in ledger A acts as an inertial force
preventing them from leaving.

We have outlined three types of equilibria: one type in which Condition SC does not
hold and all readers choose ledger A, an equilibrium in which there is no entry even though
Condition SC holds, and an equilibrium with entry. We can now collect our results to
determine how the incumbent monopolist’s fees vary across the spectrum of equilibria.
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Proposition 7. The incumbent monopolist charges fees

LA =







1
α
S κ > d

1
α
S − 1

2α(d− κ) d− 2
3S ≤ κ < d

1
3αS + 1

2α(d− κ) κ < d− 2
3S

These fees are decreasing in κ for κ < d− 2
3S and increasing in κ for κ > d− 2

3S.

The main insight of Proposition 7 is that the equilibrium fee charged by the incumbent
monopolist is non-monotonic in the strength κ of network externalities. When the coor-
dination motive is weak, fees are decreasing in κ because a stronger coordination motive
leads to a more powerful domino effect causing readers to switch ledgers. Once κ reaches a
threshold level, network externalities become strong enough to prevent entry, so a larger κ
actually leads to higher fees because the barrier to entry becomes stronger. When network
externalities are more powerful still, the fees charged by the monopolist depend only on
its competitive advantage, i.e. the average stake in its ledger, because there is no threat
of entry. The market essentially ceases to be contestable, and the monopolist extracts the
maximum possible surplus from readers.

Overall, this situation is quite different from the case where two forks of a blockchain
compete against one another. When two forks of a blockchain compete, the combination
of portability of information and competition between writers drives fees down as far as
they can go while still providing sufficient incentives for writers to secure the network. The
equilibrium outcome is independent of the distribution of readers’ stakes. Welfare losses
come mostly from the waste of computational resources and miscoordination due to forking
(which tends to occur when network externalities are weak). Under traditional monopo-
listic competition, even when there is competition both the monopolists may charge high
fees. If there is no possibility of entry, strong network externalities protect the incum-
bent and increase distortionary rents. The incumbent further enjoys high rents because
of its monopoly on information, which is detrimental to readers’ welfare. Taken together,
these results suggest that blockchains should be used as ledgers when coordination motives
among users are strong or when switching costs in a traditional setting are high.

3.5 Competition between a monopolist and a blockchain

Now we turn to competition between a monopolist and a blockchain. The primary
difference from the previous example is that the agent who proposes the fee structure for
a blockchain does not care about the fees earned by writers because writers always break
even. Rather, the proposer’s incentives are aligned with those of readers. As before, the
proposer can be thought of as a developer of blockchain software who has a large stake
in the network that appreciates when others use the blockchain platform. Formally, there
are two ledgers A (monopolist) and B (blockchain) with proposers PA = M, who is also
the writer on ledger A, and PB = D (for “developer”) who is not a blockchain writer.
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Proposers PA and PB choose parameters LA, LB ∈ L at t = 0. Proposer PA is constrained
to choose stakes ŜA, which are uniformly distributed on [S − d

2 , S + d
2 ], and PB must

choose stakes ŜB = 0. When a blockchain competes against a monopolist, there is still
perfect competition between blockchain writers, but the blockchain cannot replicate the
information contained on the monopolist’s ledger.

As in the baseline blockchain model, there is a continuum of writers j ∈ [0,M ]. How-
ever, there is no longer incomplete information. When readers’ stakes on ledger A are
distributed in an interval of finite length, an arbitrarily small amount of noise in agent’s
beliefs will have no effect on the equilibrium. Nevertheless, despite this change to the
model, the equilibrium played by writers will be the same as in the baseline model of a
blockchain fork.7 Furthermore, blockchain writers cannot write on the monopolist’s ledger,
so they all must commit to ledger B at t = 1. The equilibrium at t = 2 is just like the
equilibrium in the case of monopolistic competition so long as Condition SC is satisfied,
which again reduces to the inequality d ≥ κ. To see this, note that in this setting the
distribution of types is simply the distribution of stakes on ledger A and apply Proposition
1.

We then have equilibrium play along any path for t ≥ 1, so solving the model reduces
to solving the proposers’ optimization problems at t = 0. The monopolist behaves as
if facing a fixed outside ledger with parameter LB, so the optimal LA is again given by
(4). However, PB has different preferences than an entrant monopolist. As in the baseline
blockchain model, PB’s preferences are given by (1 − π)(K − gP (LB)), where gP is an
increasing function. If readers only join ledgers for which the average computing power
per user is at least C, PB must choose L∗

B = min{L : L ∈ L, L ≥ C}. The monopolist then
chooses

LA =
d
2 − κ

2 + S + αL∗
B

2α

as long as

S + αL∗
B ≤

3

2
(d− κ)

This inequality is the no-entry bound in the presence of a blockchain. Note that the
no-entry bound is tighter when L∗

B is larger. This is because when the minimum feasible
computational power required to support a blockchain is large, the compensation necessary
to attract writers (and thus the minimum blockchain fee) will be higher, thereby dissuading
readers from using the blockchain.

The fee charged on the blockchain will be lower than that charged by an entrant mo-
nopolist precisely when L∗

B is less than the expression given in (6) for the entrant’s fee.
Furthermore, in this case the lower fee charged on the blockchain will induce the incumbent
monopolist to drop its fee below what it would charge when facing an entrant monopolist.

7Indeed, the t = 3 part of the proof of Proposition 3 is independent of the information structure so long
as all writers observe participation on the ledger.

27



The condition for a blockchain to lower fees on both ledgers is

L∗
B <

1

2α
(d− κ)−

1

3α
S

When L∗
B = C, this result is particularly stark. A blockchain lowers costs for readers

when the computational expenditure required to placate readers’ need for cryptographic
security is small, when the dispersion of readers’ stakes on the monopolist’s ledger is high,
or when the coordination motive is weak. Surprisingly, a blockchain tends to lower costs
when the average stake on a monopolist’s ledger is small. This is because when stakes on
a monopolist’s ledger are large, an entrant monopolist would optimally charge a low fee
in order to induce switching by readers. Hence when the incumbent already charges high
fees, competition by a traditional intermediary should be enough to lower costs to readers.
Blockchain is useful primarily when entrants into the market have incentives to charge
high fees. Free entry of blockchain writers implies that there is no incentive for a proposer
to choose a policy that gives writers large fees because all writers break even regardless.
The feature of the blockchain that allows it to more effectively compete with traditional
intermediaries is that it strips writers of their market power.

4 Dynamic Ledger Choice

We now consider a repeated version of the static blockchain ledger choice game pre-
sented in the previous section. We show that, remarkably, readers and writers must play
the static equilibrium of Proposition 1 in every period of the game. In short, this is because
the free entry condition guarantees that writers cannot be rewarded or punished by any
dynamic scheme. Therefore, writers will not be able to collude with each other on an out-
come that is beneficial to them. Importantly, this property of permissionless blockchains
with free entry will not carry over to permissioned blockchains where certain known parties
write on the ledger. On a permissioned blockchain, it will be possible for collusion between
writers to prevent low fees from emerging.

4.1 Permissionless blockchain

The repeated game with a permissionless blockchain is played on “days” T = 1, 2, . . . .
On each day, proposers, readers, and writers play the static game. Readers are short-lived
and die after one period, but writers and proposers PA, PB live forever and discount payoffs
at rate δ. Histories of this game are defined recursively. Let H1 = {∅}. Then define

HT = HT−1 × L× [0, 1]× [0,M ]2 × L

The observable quantities are whether the initial writer chose on day T chooses to propose
a fork (where 1 indicates that a fork was proposed), which fork LB ∈ L was proposed, how
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many readers chose branch A, and how much computing power was committed to each
branch. The last L represents the parameter Lk on the ledger k chosen by the majority of
readers at t = 2, which becomes the reference parameter on branch A in the next period.
That is, when readers choose a particular fork of the blockchain, that chain is extended
and becomes the default for developers to build off of if they want to fork in the future.
The histories HT,t that are publicly observable within subperiod t of day T are defined in
the obvious way. Readers observe their own private signals and writers observe the entire
history of their private signals.

We define subgame-perfect equilibrium in the usual way. We now show that in any
SPE of the repeated game, writers always make zero profits from contributing computing
power to the blockchain. The unique SPE of the repeated game will then be one in which
agents play the unique SPE of the static game.

Proposition 8. In any SPE of the repeated game, writers make zero profits. The unique
SPE is the equilibrium of Proposition 1 played on every day T .

4.2 Permissioned Blockchain

We now consider the case of a permissioned blockchain. One might think that a permis-
sioned blockchain strictly dominates a permissionless blockchain in any application, since
it allows the replication of information just like a permissionless blockchain but does not
involve any waste of computational resources. If the set of equilibria with permissioned and
permissionless blockchains were the same, in a sense permissioned blockchains would break
the Trilemma by eliminating the usual waste of resources. However, free entry of writers
on a permissionless blockchain actually helps to sustain equilibria that are beneficial to
readers because they eliminate the possibility of collusion among writers. The computa-
tional costs of a permissionless blockchain can then be seen as the costs of allowing for
free entry. On a permissioned blockchain, there is no free entry: the consortium of entities
that are allowed to write on the ledger jointly decide whether to admit new members, and
then those new members are identified to the blockchain’s readers. The lack of free entry
represents a failure of true decentralization. In the case of permissioned blockchain, the
synergy between replicability of information and competition between writers fails because
competition between writers is imperfect, since writers earn rents.

In order to capture this situation, we present a simple model of a permissioned blockchain.
The model is similar to the baseline model with the exception that there is a finite number
of writers who do not incur computational costs. Play occurs on days T = 1, 2, . . . , and
each day consists of subperiods t = 0, 1, 2 just as in the benchmark ledger choice model.
There are proposers PA, PB who choose fixed parameters LA > LB, respectively, in each
period. They both choose stakes Ŝ (which are irrelevant because information is always
replicated across branches of the fork). Here branch A can be seen as the reference ledger.
Our main result will be that with a permissioned blockchain, it will be possible for writers
to prevent forking to branch B.
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There are M ∈ N writers who discount payoffs at rate δ and a continuum of short-lived
readers i ∈ [0, 1]. The timing is as follows. At t = 0, proposers announce LA and LB. At
t = 1, after learning writers’ decisions, readers individually choose a fork k ∈ {A,B} of the
blockchain. Writers choose a branch of the fork at t = 2. Readers receive a payoff of zero
if no writer chooses the branch of the fork that they chose at t = 1.

In this setting, there is no question of computational security because there are no
computational problems to be solved. Therefore, readers’ preferences can be represented
by

1− π̂(θ) =
1

2
+ κ

(

θ − (g(LA)− g(LB))
)

Writers obtain payoffs 1
Wk
πkLk if they write on a branch with participation πk, surplus

parameter Lk, and Wk writers.
Now we show that when δ is sufficiently large or M is sufficiently small, there is a SPE

of this game in which all writers choose ledger A and a new ledger is never proposed. This
is in contrast to the permissionless blockchain case, in which readers and writers would
always coordinate on ledger B if LB < LA. Consider the following equilibrium conjecture:

1. After any history in which all writers chose A in all previous periods, all writers
choose A.

2. After any history in which some writer chose B in some previous period, all writers
choose B.

Within a given day, writers have an incentive to announce B because then all readers
switch to B and they obtain all the revenues on branch B. However, afterwards they
receive lower payoffs because all writers play B, and they cannot deviate to obtain higher
payoffs because readers will choose B in every period.

Formally, the incentive constraint that must be satisfied in order for the specified strat-
egy profile to be an equilibrium is

LB +
δ

M(1− δ)
LB ≤

1

M(1− δ)
LA

This inequality can be rearranged to obtain

LA

LB

≥ δ + (1− δ)M (9)

This inequality holds when LA

LB
is sufficiently large. Playing A is incentive compatible when

LA is large relative to LB because when a writer decides to play B, she takes an immediate
payoff of B but loses future rents proportional to LA. This inequality is also satisfied for
large δ or low M . When writers are patient or competition between writers is weak, they
have an incentive to conform to equilibrium play.
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To restate the main point, there is nothing inherent in the blockchain data structure
itself that impedes rent-seeking behavior. Adding a costly identity management system
to allow for free entry of writers in fact increases the costs of using the ledger for a given
set of policies. However, perfect competition among writers combined with the fact that
blockchains can be forked endogenously decreases the cost of using a ledger because it
allows for the selection of rules that are most beneficial to readers. With a permissioned
blockchain, there is no computational cost of verification, so it is possible to maintain a de-
centralized, immutable ledger with no single point of failure without any waste of resources
whatsoever. However, when there is no computational expenditure involved in manag-
ing a blockchain, writers must earn rents, so collusion via dynamic punishment schemes
can reduce incentives for writers to choose non-distortionary policies that are beneficial to
readers. Decentralization is critical to competition precisely because it prevents collusion.

4.3 Blockchain security

Traditional ledgers have been criticized for being opaque and vulnerable to fraud. One
of the principal advantages of blockchain protocols is that the ledger is resilient to fraud
by a single bad actor. In this section, we analyze the security of both traditional ledgers
maintained by monopolists and blockchains. We outline a simple model of blockchain secu-
rity and compare the security of a blockchain to that of a ledger written by a monopolist.
We show that while centralized intermediaries have dynamic incentives not to distort their
own ledgers, blockchain writers’ incentives are static, which makes it expensive to incen-
tivize honest reporting. We discuss the tradeoff between correctness and monopolistic rent
extraction on the one hand and that between correctness and decentralization on the other,
showing how proof-of-work costs arise naturally.

The model of blockchain security is based off of the dynamic blockchain model. As
before, there are two proposers PA and PB and a continuum of readers i ∈ [0, 1]. We
depart from the earlier model in that we allow for some “large” writers who each command
a positive measure of computing power. There is a large writer J with unlimited computing
capacity and a continuum j ∈ [0,M ] of infinitesimally small writers with computing power
dj. This assumption is meant to capture “51% attacks” in which an entity or mining pool
able to control a majority of a blockchain’s computing power mounts a malicious attack
on the network in order to reap financial gains. We will also assume the large writer lives
for only one period. We do this in order to abstract away from dynamic punishments for
large writers who can attack the network. This assumption is reasonable because (1) large
writers would not be able to profitably attack the blockchain on a regular basis given that
others would join the attacks and drive their profits to zero, and (2) even if the blockchain
completely shut down these writers could simply choose to attack another blockchain.

In subperiod t = 0 of each day T , proposers PA and PB announce a fixed fundamental
parameter L ∈ L. For simplicity, we will assume L =M so that in an equilibrium with no
attacks, small writers always expend their entire computing power. The proposers differ in

31



their announcements of stakes: PA announces stakes ST while PB announces ST−1. Here
ST represents the stakes on the longest chain in the blockchain, whereas ST−1 represents
forking the blockchain back to the state in the previous period. The ability to fork the
blockchain backwards will discipline writers who engage in fraudulent activity because their
gains will be nullified when such a backwards fork occurs. Subperiod t = 1 is the same as
in the benchmark model. Readers choose a ledger at t = 1 after learning their types.8

The main difference from the benchmark model is at t = 2. In each period, an attack
is possible on ledger A with some small probability µ > 0. We assume an attack is unlikely
to ensure that small writers do not play as if the blockchain is constantly under attack,
which would imply that they take large losses in periods where attacks succeed and make
positive profits when they fail (in contrast to what happens in reality). When an attack
is possible, the large writer chooses an action aJ ∈ [0, a] as well as computing power at
t = 2. The action aJ represents the size of the distortion of the ledger attempted by writer
J . In order for the attack to have a chance of succeeding, the large writer must choose
computing power cJ >

∫

cjdj, so that the computing power provided by the large writer
is sufficient to overwhelm the rest of the network. The type of attack modeled here is one
in which the large writer creates an invalid fork of the blockchain on which he distorts the
ledger while small writers write on a valid fork. Readers are initially fooled by large writers’
reports9and transact according to the invalid chain because it has greater proof-of-work.10

On each day T > 0, a public signal yT ∈ {0, 1} is revealed. The signal takes value
1 with probability p(aJ,T−1), where aJ,T−1 is the action aJ played by the large writer at
T − 1. We assume that

d

da

p(a)

1− p(a)
≥ 0

i.e., the hazard rate is nondecreasing. This signal could correspond to news media revealing
that an attack on the blockchain has occurred, large numbers of people realizing that
their accounts on the ledger have been compromised and spreading word of the attack,
or participants with a vested interest in the blockchain communicating evidence of the
attack to the community. In this setting, the assumption y ∈ {0, 1} will be without loss
of generality– the equilibrium will be the same regardless of whether readers can perfectly
observe aJ,T−1.

8In reality, blockchains have forked after an attack on the network was discovered. Most famously, the
Ethereum blockchain forked in 2016 after hackers stole roughly $50 million from a smart contract on the
blockchain.

10If readers were perfectly able to observe misconduct on the blockchain (as is the case for some
blockchains that are not storage-intensive), there would be no possibility of an attack in the first place. In
this case, though, a traditional intermediary could arrange the same outcome by being the sole writer on a
blockchain of its own with the same protocols, meaning a blockchain would be unnecessary for security.

10A 51% attack works because readers look for the longest chain of blocks, so despite the fact that small
writers are sending reports as well, these reports are initially ignored by readers.
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Readers’ preferences are as before. Their fundamental preferences for each branch of
the fork are given by ui,T = τ − γE[aJ,T−1|{ys}

T
s=1]. The term τ is a (small) preference

for the longer chain, reflecting the fact that readers prefer a ledger that does not omit
the most recent information. The term E[γaJ,T−1|{ys}

T
s=1] corresponds to the fact that

readers’ stakes are impacted by the attack and they can essentially reverse their losses
from the previous distortion of the ledger by forking from a point in the blockchain before
the distortion occurred. Readers receive a noisy signal xi = τ + σηi of the common
value as before, and their only signals of aJ,T−1 are the public signals yT . The extent to
which yT is informative about aJ,T−1 in equilibrium determines what readers learn from
the public signal. Readers’ types are hence given by θi = (xi, yT ). Small writers receive
revenues

cj
Ck
πkLk when writing on ledger k unless a successful attack occurs, in which case

they receive zero. Again, because attacks are infrequent, small writers can neglect the
possibility of an attack. Proposers’ actions are fixed, so we do not model their preferences.
When the large writer attacks ledger A successfully at time T − 1, he receives revenues
L+a
M
πA,T where πA,T denotes the participation on ledger A at time T . If readers abandon

ledger A on the next day, writers get nothing from their attack.
In a period after no attack has occurred and no attack is possible, the equilibrium is

as in Proposition 3. Readers prefer the longer chain slightly, so all readers coordinate on
that branch of the fork and writers break even. When no attack occurred in the previous
period but an attack is possible at t = 2, play at t = 1 must be the same as in Proposition
3 because readers and writers are not aware of the possibility of an attack.

In order to understand large writers’ incentives at t = 2 of day T − 1, we must analyze
the equilibrium after an attack at time T . At t = 1, the public signal yT is realized.
When yT = 0, the equilibrium must be the one described in Proposition 3. Given that
readers slightly prefer the longer chain, the attack is successful and large writers profit.
The equilibrium is different when yT = 1, however. Let a∗ = E[aJ,T−1|yT = 1] and note
that a∗ > 0. Then when τ is sufficiently small, we have

ui = τ − γa∗ < 0

so were are in the same case as Proposition 3 with τ̄ = τ − γa∗ < 0. Hence all readers
switch to branch B (the fork of the blockchain in which the attack is rolled back) and the
attackers receive zero.

We may now analyze the large writer’s choices at t = 2 when an attack is possible. Of
course, the only interesting case is the case in which the large writer chooses cJ =M and
aJ > 0. We look for conditions under which he never does so in equilibrium. We have
argued that whenever yT = 1, the attack is not successful. When the attack is successful,
the large writer gets fees L plus the revenue a from the distortion. Therefore, the large
writer must solve

max
a

(1− p(a))(L+ a)
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The first-order condition implies

1 =
p′(a∗)

1− p(a∗)
(L+ a∗) (10)

This equation implies that since L =M , an equilibrium in which writers attempt to steal

may exist only when the hazard rate H(a) ≡ p′(a)
1−p(a) is uniformly low, i.e. H(a) < 1

L
for all

a ∈ [0, a]. By our earlier assumption that H(a) is nondecreasing, a sufficient condition to
ensure a∗ = 0 is

H(0) ≥
1

L

When the hazard rate is large, the probability of detection is high enough to completely
dissuade the large writer from even attempting an attack. Note that this condition is
satisfied for sufficiently large L, meaning that when the fee earned by blockchain writers
is high, even agents with the ability to subvert the network prefer not to attack it because
they stand to lose the fee that they would earn through honest writing. The second force
that prevents cheating by writers is that even if a∗ > 0, it may be that profits earned
through ledger distortion are negative. This occurs when

(1− p(a∗))(L+ a∗)− L = (1− p(a∗))a∗ − p(a∗)L < 0

This second condition reflects the fact that even if the large writer’s fee is not large enough
to dissuade him from distorting the ledger, the cost L of mounting a 51% attack is enough
to render the attack unprofitable. In equilibrium, the cost of the attack L is equal to the fee
earned through honest writing, but conceptually they are two distinct objects. Proposition
9 summarizes these findings:

Proposition 9. The large writer chooses not to attack the blockchain if and only if

max
a

(1− p(a))a− p(a)L ≤ 0

A sufficient condition that guarantees this inequality will hold is

H(0) ≡
p′(0)

1− p(0)
≥

1

L

This bound on L (the first cost of blockchain) characterizes the tradeoff between de-
centralization and cost efficiency required to maintain correctness.

Proposition 9 has a striking implication. When the probability of detection is suffi-
ciently large, it is unnecessary to set up an expensive fee structure for writers that leads to
a large waste of computational resources. Writers will abstain from distorting the ledger
regardless because each marginal unit of computational power spent on an attack earns less
on average than one spent on writing honestly. The cost of conducting an attack, which is
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exactly equal to the fee earned in equilibrium, acts as further protection against attacks.
Crucially, in this framework the equilibrium is unique– readers always abandon the ledger
after detecting an attack. The uniqueness of equilibrium is a direct consequence of fork
competition. If an attack makes all readers worse off they will coordinate on an alternative
ledger on which the attack never happened but the rest of the information on the ledger is
intact. Competition among writers will cause writers to coordinate on that ledger as well,
and the attacker will get nothing. As we will show, this mechanism is quite different from
the one that secures a traditional ledger.

4.4 Monopolistic ledger security

Now we analyze the case where a monopolist is able to distort its own ledger while
facing competition from a fixed outside ledger. The structure of the game is similar to the
dynamic blockchain game where the ledger can be attacked by a group of writers. There
is a monopolist who discounts payoffs at rate δ, a manager of the outside ledger, and a
continuum i ∈ [0, 1] of readers who live for one period. On each day T at t = 0, the
monopolist proposes a fixed pair (LA, ŜT ) ∈ L × S and the outside proposer announces a
fixed LB ∈ L and stakes equal to zero. The stakes announced by the monopolist depend
on the history up until period T because the actions taken by the monopolist to distort
the ledger may also distort the stakes. Here the stake announcement should be interpreted
as a set of private signals received by readers corresponding to their stakes in the ledger.
At t = 1, each writer chooses its own ledger.

As in the blockchain model of security, the monopolist is able to distort the ledger
at t = 2 of each period. The monopolist chooses an action a ∈ [0, ā] at t = 2 and
immediately receives a payoff of πA,Ta (in addition to the fees it usually receives). The
structure of public signals is also the same as in the blockchain model. On each day T ,
a public signal yT ∈ {0, 1} is observed at t = 2 with Pr(yT = 1|a) = p(aT−1). When the
monopolist’s distortion is severe, it both affects more agents directly and is more likely
to be revealed to the public. Readers’ fundamental preferences for ledger A are given by
ui,T = τ + si − γE[aT |{ys}

T
s=1], where si is reader i’s stake on ledger A and readers receive

signals xi = τ + σηi as usual. As in the example with a blockchain, a reader’s utility is
decreased when the monopolist distorts the ledger and plays aT > 0. These preferences
differ from those in the blockchain security example in an important way. Reader’s stakes
in the ledger at T − 1 are not relevant. This is because readers do not have the option
to fork to a ledger on which the distortion that occurred at T − 1 never happened. The
monopolist’s action to distort the ledger is final. Whereas in the blockchain model readers’
play was affected by public signals because it was informative about the utility gains from
switching to the alternative ledger, in this model public signals matter only because they
affect readers’ expectations about the continuation play. Expectations of future attacks
can affect readers’ actions because the monopolist is able to distort the ledger in all periods.

There will be multiple equilibria because we have no mechanism to pin down readers’
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expectations of future play. However, we can establish a lower bound on the fee required
by the monopolist to ensure that a = 0 is played in all periods, which is a proxy for
the cost of maintaining a ledger under a centralized intermediary above and beyond the
rents extracted due to its competitive advantage. We will assume that readers punish
the monopolist in the harshest way possible– they play on ledger B in all future periods
after the public signal yT = 1 is realized. In order to ensure this is an equilibrium for
readers, it suffices to assume that there is an action ã the monopolist can take so that
max

i
si − γã− α(LA − LB) < 0, meaning even the type who is most anchored to ledger A

by a personal stake in the system prefers to leave the ledger when readers expect ã to be
played going forward. The expectations that justify this equilibrium, then, are

E[aT |{ys}
T
s=1] =

{

0 ys = 0 ∀ s ≤ T
ã ∃ s ≤ T, ys = 1

If we wish to derive a lower bound on LA, we may also assume that participation on the
monopolist’s ledger is π = 1 whenever ys = 0 for all s ≤ T . The monopolist’s problem
is stationary: as long as yt = 1 has not been realized, the monopolist can achieve some
value V in expectation, and after yt = 1 is realized the monopolist gets zero. Hence the
monopolist solves

max
a

a+ δ(1− p(a))V

The first-order condition is
1 = p′(a∗)δV

When the monopolist plays a∗, we have V = LA+a∗

1−δ(1−p(a∗)) . A sufficient condition for a

unique optimum a∗ ∈ [0, ā] to exist is then just d
da

p′(a)(LA+a)
1−δ(1−p(a)) > 0. This condition is similar

to the increasing hazard rate assumption made in the previous section. To ensure the
monopolist plays a∗ = 0, we need

δp′(0)

1− δ(1− p(0))
≥

1

LA

For small δ, this condition is usually significantly weaker than the one derived in the
previous section for blockchain security, so when the monopolist is punished as harshly as
possible, it is not necessary to pay the monopolist as much in fees as blockchain writers.
The intuition for this result is simple: while a blockchain writer is punished for misbehavior
only through nullification of the profits obtained by attacking the blockchain, a monopolist
is punished via the destruction of its franchise value, which consists of all future fees earned
through honest play. This result is restated in Proposition 10.

Proposition 10. There is a threshold value of LA such that the monopolist never distorts
the ledger:

LA =
1− δ(1− p(0))

δp′(0)
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Proposition 10 says that the monopolist’s ability to distort the ledger imposes an en-
dogenous lower bound on its fees above and beyond the bound due to the barriers to entry
resulting from readers’ stakes on the ledger. The less likely the monopolist is to be de-
tected in its deviations, the higher this bound must be. It is worth noting that while the
fee required for correctness provides a sharp bound on the cost of a blockchain (due to fork
competition), the fee charged by a monopolist may be far from this bound. If the rents
earned by a monopolist are large, there is no force to push the fee it charges down to the
level derived in Proposition 10.

There are several drawbacks that make the security of a traditional ledger less robust
than that of a blockchain, however. First, in a setting with a traditional ledger equilibrium
is not unique, so while it may be the case that under the harshest possible punishment
scheme it is not necessary to pay an intermediary large fees to obtain ledger security, the
equilibrium fee required to ensure good behavior may be much higher. Second, the signal
structure p(a) may well be more revealing for a blockchain than for a traditional ledger,
since blockchains are designed specifically to provide transparency about attacks on the
ledger. Finally, in this case the assumption that signals yT are either zero or one is not
without loss of generality. A richer signal structure would lead to even greater multiplicity
that would allow the monopolist to “nickel and dime” readers by proving to them that
although she is distorting the ledger, she is not doing so to the extent that readers would
prefer to switch to a competitor and lose their stakes in the established ledger. Fork
competition is thus important in securing a ledger as well as forcing competition among
writer compensation schemes.

Another interesting difference between securing a blockchain and securing a traditional
ledger is that the equilibrium in the blockchain game is unique and independent of the
nature of public signals while in the traditional setting there are multiple equilibria, and the
set of equilibria depends on the information structure. This dichotomy stems from the fact
that past actions can be “rewound” by a fork on a blockchain but not on a traditional ledger.
The equilibrium in the blockchain game is backwards-looking: readers decide whether they
want to switch to a different ledger on which an attack never occurred, meaning their
actions are determined by their expectations of malevolent writers’ past actions. The
equilibrium in the game with a traditional ledger is forward-looking: the public signal acts
as a coordinating device that determines readers’ expectations of the intermediary’s future
actions, but there is no possibility of undoing past events. The uniqueness of equilibrium
in the blockchain game can be seen as a security feature. When any attack is revealed
to the public, it will always be undone via a blockchain fork. Multiplicity of equilibrium
in the game with a centralized intermediary means there are no such guarantees in the
traditional setting.
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5 Discussion

In this section, we informally discuss some practical matters related to the application
of blockchain and distributed ledger technology that we do not address formally in our
model. The first (and most important) issue is that while distributed ledgers are useful for
transferring ownership of assets, they do not necessarily guarantee transfers of possession.
Consider a simple example in which a buyer wishes to purchase a car from a seller on a
blockchain. In this case, ownership of the car would be represented by a token in the seller’s
account on the blockchain. The blockchain’s writers would be able to transfer ownership of
the token to the buyer, but they would not be able to verify that the buyer was physically in
possession of the car after the transaction. To ensure transfers of possession, it is necessary
to have some entity that enforces contracts on the blockchain when those contracts involve
the transaction of physical assets. This type of enforcement would likely be the role of the
government, which would then have to explicitly make reference to the cases in which it
would enforce blockchain contracts.

The need for an enforcer alongside a distributed ledger raises two issues. First, while
several commentators claim that distributed ledger technology will benefit those in devel-
oping countries without strong property rights, one needs to identify why property rights
are weak in the first place before concluding that a distributed ledger is the solution. If the
government is overly bureaucratic and incapable of setting up good institutions to track
property rights, then a distributed ledger is an effective alternative. However, if the gov-
ernment is corrupt to the point that it would outright refuse to enforce some contracts in a
publicly available database, a distributed ledger will be useless. Again, the readers of the
ledger are the ultimate source of discipline, so a distributed ledger is useful only insofar
as it helps them to discipline a corrupt government (through greater disclosure of infor-
mation, most likely). If the enforcer is itself a private firm, such as a bank that enforces
debt obligations, it may be optimal for the enforcer to maintain the ledger as well. The
enforcer will have an incentive to fulfill its obligation for fear of losing the rents it earns by
maintaining the ledger.

The second issue is the incorporation of blockchains into the legal code. A government
cannot simply commit to enforce all contracts on a blockchain because the blockchain may
fork. The government could say it will enforce all contracts so long as certain policies
are followed, which prevents hard forks that change blockchain’s rules. Of course, this
enforcement policy would be detrimental because it would essentially destroy the potential
for competition between ledgers. Furthermore, if an attack on the blockchain were to occur,
such as the one on the Ethereum blockchain in 2016, the government would have enormous
power to resolve the issue in its own favor.
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6 Conclusion

We present a general model of ledger competition and apply it to understand when
a blockchain is more economically beneficial than a traditional ledger managed by a cen-
tralized intermediary. Our analysis of the tradeoffs between centralized and decentralized
record-keeping is guided by the Blockchain Trilemma. We focus the analysis of our static
model on the tradeoff between decentralization and cost efficiency. We find that with a
blockchain, the rules that are most beneficial to readers of the ledger always emerge in equi-
librium via hard forks. This surprising result arises due to the combination of portability of
information and competition between writers that are possible with a blockchain. Readers
are not reluctant to abandon an older version of a blockchain because all the information
contained in the old blockchain is contained in the new one with updated policies, so writers
compete to write on the blockchain preferred by readers. A centralized intermediary that
maintains a traditional ledger, on the other hand, is able to extract rents from readers by
exploiting their desire to keep their stakes in the established ledger. When the coordination
motive is sufficiently strong, entry by a competing traditional ledger is ruled out altogether,
which suggests that blockchains may help lower intermediaries’ rents in situations where
the coordination motive is strong. This result suggests that, for example, retail platforms
like Amazon’s might be better suited to a blockchain, since the coordination motive among
buyers and sellers is powerful. Decentralized ledgers do have costs, however. In addition
to the waste of resources required by proof-of-work, there is a second cost of blockchains:
miscoordination inefficiencies. Blockchains forks can lead to a split of the community and
too many competing ledgers in equilibrium.

We also present an extension of our static model to a repeated setting. This extension
allows us to show that there is no possibility of collusion among writers of a permissionless
blockchain in the repeated game. Free entry of writers rules out any sort of dynamic reward
and punishment scheme, so writers must play myopically in every period. Thus the optimal
outcome for readers emerges with a permissionless blockchain even in the repeated game.
By contrast, collusion is possible among writers of a permissioned blockchain because they
earn rents in equilibrium. With a permissioned blockchain, it is not always the case that
writers’ rents are competed down by hard forks. Permissioned blockchains, then, do not
break the Trilemma because they fail to fully meet the decentralization criterion due to
lack of free entry.

We also explicitly examine the costs of incentivizing writers to report honestly (cor-
rectness). On the one hand, centralized intermediaries are incentivized dynamically by
ensuring that the future profits they will earn are high enough to guarantee they do not
want to risk losing them. On the other hand, blockchain writers must be incentivized
statically by raising the proof-of-work to the point that attacks become unprofitable.

We highlight the important distinction between ownership and possession. Blockchains
can only effect transfers of ownership, but the discipline imposed by the security of owner-
ship on a blockchain can also prevent bad actors from defaulting on delivery of possession.
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In this paper, we have outlined the incentive mechanisms of two particularly important
types of ledgers. What we have not developed so far is a general theory of the interac-
tions between writers and readers on an arbitrary ledger. An investigation of the optimal
technological restrictions on the communication between writers and readers is a fruitful
avenue for future research.
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Appendix A: Proofs

Proof of Proposition 1:

Proof. This proposition is an immediate consequence of Theorem B.4 and Proposition B.5
in Appendix B.

Proof of Proposition 2:

Proof. If neither action is dominant for type θ, then clearly it must be that 1− π̂(θ) ∈ [0, 1].
When 1− π̂(θ) ∈ {0, 1}, then there are just two equilibria: one in which all agents play A
and one in which all play B. For all other values of θ, there will be three equilibria. Since
1 − π̂(θ) ∈ (0, 1), there are equilibria in which all agents play A or B. There is also an
equilibrium in which 1 − π̂(θ) agents play B and π̂(θ) agents play A (by the definition of
π̂(θ), which is the point at which type θ agents are indifferent between A and B).

Proof of Proposition 3:

Proof. We prove the proposition by backwards induction.

t=2: At t = 2, writers know the value of πk, k ∈ {A,B}. We show that Ck = πkLk in
equilibrium. Suppose first that Ck < πkLk. Then there exists a writer j such that cj < 1,
but writer j could make profits by setting cj = 1 because

1

Ck

πkLk − 1 > 0

Now suppose Ck > πkLk. This means that any writer j for whom cj > 0 would benefit by
setting cj = 0, since

cj
Ck

πkLk − cj = (
1

Ck

πkLk − 1)cj < 0

Hence Ck = πkLk.

t=1: We will guess and verify that in any equilibrium, LB < LA. Writers’ optimal play
at t = 2 implies that Ck

πk
= C for each branch of the fork. Then it must be that

1− π̂(s) ≤
1

2
+ κ−1

(

s− (g(LA)− g(LB))
)

in equilibrium. Furthermore, all readers have identical stakes, so si = 0 for all i. According
to Theorem B.4, type si’s cutoff signal k(si) is xi = g(LA) − g(LB), so as long as τ ≤ 0,
all readers will have such signals when σ is sufficiently close to zero. Therefore all readers
play B.
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t=0: Now we confirm our guess that LB < LA. The equilibrium derived above shows that
whenever LB < LA, the proposer obtains a payoff of K−g(LB). It is never possible for the
proposer to obtain a higher payoff by choosing LB ≥ LA. Furthermore, the proposer can
never choose LB < C, since in that case readers would know that the disparity in utility
between branches A and B is at least H. When H is sufficiently large, it is dominant to
play A. Then it must be that the proposer chooses the lowest possible LB in order to
maximize payoffs, so LB = min{L : L ∈ L, L ≥ C}.

Proof of Proposition 4:

Proof. These statements follow from Proposition B.7.

Proof of Proposition 5:

Proof. The equilibrium follows from Propositions B.5 and B.6.

Proof of Proposition 6:

Proof. These properties are a result of equation (8).

Proof of Proposition 7

Proof. This equation follows from equations (6), (7), and (8).

Proof of Proposition 8

Proof. First we show that at any history hT,2, on either branch k of the fork, the total
computing power contributed by writers must be πkLk. Suppose that Ck < πkLk. Then
there must be some writer j who contributes cj < 1. By deviating to cj = 1 on branch
k, this writer can achieve positive profits in the current period. Furthermore, this writer’s
deviation does not affect any publicly observable signal in the future history, since the
writer is of measure zero. An analogous argument shows that Ck cannot be greater than
πkLk, so Ck = πkLk at any history.

Second, we must check that proposers play static best responses. Given that both
readers and writers play the same strategies that they do in the static game, a proposer
can maximize her flow of payoffs by playing LB = min{L : L ∈ L, L ≥ C}.

Proofs of Propositions 9 and 10:

Proof. (Under construction)
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Appendix B: Global Games with Heterogeneous Preferences

We begin by describing the model considered in this Appendix. There is a continuum
of players i ∈ [0, 1] who play a one-shot coordination game in which they choose between
two options, A and B. Players’ fundamental preferences consist of heterogeneous private
values θi,k ∈ R for choice k ∈ {A,B} and common values τk for each choice. Players also
obtain utility κπk by playing k if πk other players make the same choice. Let θ = θA − θB,
τ = τA − τB, and π = πB. We assume that θ is iid across players with distribution F (θ).
For now, we assume F is a discrete distribution with finite support but later take the limit
of a continuous distribution F . Players’ preferences can be described by the function

v(θ, τ, π) = θ + τ + κ(1− 2π)

When v(θ, τ, π) > 0, it is a best response for a player of type θ to choose A. Conversely, a
player of type θ should choose B if v(τ, θ, π) < 0.

Henceforth we will assume that players have incomplete information about the common
value τ . We assume players have an improper uniform prior over τ11and receive signals
si = τ + σηi (σ > 0), where ηi is iid across players and independent of τ . The noise term
ηi is distributed with CDF H(η) with support on the interval [−1

2 ,
1
2 ]. In what follows, we

will frequently consider the limit σ → 0.
By Theorem 5 in Milgrom and Roberts (1990), this is a supermodular game. Therefore,

if the signal profile is s, there are largest and smallest rationalizable strategy profiles k(s)
and k(s). Furthermore, every equilibrium strategy profile k(s) satisfies k(s) ≤ k(s) ≤ k(s).
Given that agents observe only their own signals, it must be that all agents play cutoff
strategies: for each type θ, there is a signal k(θ) such that θ plays A if si > k(θ) and plays
B if si < k(θ). When agents play a cutoff equilibrium k, we will denote the expected utility
derived from playing A for the cutoff type k(θ) by E[v|k, k(θ)]. The equilibrium condition
is just

E[v|k, k(θ)] = 0 (11)

for all θ. The following lemma establishes that there is a unique equilibrium in cutoff
strategies. The proof is essentially the same as that in Drozd and Serrano-Padial (2017).

Lemma B.1. If k is a cutoff strategy equilibrium and ∆ > 0, then E[v|k, k(θ)] < E[v|k+
∆, k(θ) + ∆].

11The results do not change if we instead assume τ is uniformly distributed on an interval of finite length
as long as that interval is sufficiently large.
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Proof.

E[v|k, k(θ)] = E[θ + τ + κ(1− 2π)|k, k(θ)]

=

k(θ)+σ
2

∫

k(θ)−σ
2

(

τ + θ + κ(

∫

θ′

(2H(
k(θ′)− τ

σ
)− 1)dF (θ′))

)

h(
k(θ)− τ

σ
)dτ

<

k(θ)+σ
2

∫

k(θ)−σ
2

(

τ +∆+ θ + κ(

∫

θ′

(2H(
k(θ′)− τ

σ
)− 1)dF (θ′))

)

h(
k(θ)− τ

σ
)dτ

=

k(θ)+∆+σ
2

∫

k(θ)+∆−σ
2

(

τ + θ + κ(

∫

θ′

(2H(
k(θ′) + ∆− τ

σ
)− 1)dF (θ′))

)

h(
k(θ) + ∆− τ

σ
)dτ

= E[v|k+∆, k(θ) + ∆]

From Lemma 1 it is immediate to see that there is a unique equilibrium. Suppose that
k < k. Let ∆̂ = max

θ
k(θ)− k(θ), and let θ̂ be the value of θ that achieves this maximum.

Then
E[v|k, k(θ̂)] < E[v|k+ ∆̂, k(θ̂) + ∆̂] ≤ E[v|k, k(θ̂)]

where the last inequality comes from the fact that k ≤ k+ ∆̂.
In what follows, it will be useful to define the following object: for all θ ∈ Θ, where Θ

is some set contained in the support of F , set

ψ(τ,Θ) =
1

∑

Θ

f(θ)

∑

Θ

H

(

k(θ)− τ

σ

)

f(θ)

This expression is the expectation of the number of agents in Θ who play B given the
common value τ . We now prove an important lemma (called the “Belief Constraint”)
about the function ψ due to Sakovics and Steiner (2012) and Drozd and Serrano-Padial
(2017):

Lemma B.2. For any subset Θ ⊂ supp(F ) and any z ∈ [0, 1],

1
∑

Θ

f(θ)

∑

Θ

Pr(ψ(τ,Θ) < z|s = k(θ))f(θ) = z

Proof. Begin by defining “virtual types” δ(s, θ) = s−k(θ). This reduces the two-dimensional
type space to a one-dimensional one. Agents play A whenever δ(s, θ) > 0 and B when
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δ(s, θ) < 0. With this definition,

ψ(τ,Θ) = Pr(δ(s, θ) < 0|τ,Θ)

First we show that Pr(ψ(τ,Θ) ≤ z|δ(si, θi) = 0) = z. This property is due to Morris and
Shin (2003). For brevity, we will denote δ(si, θi) by δi.

Define η̃i =
δi−τ
σ

, and denote the distribution of η̃ conditional on θ ∈ Θ by H̃. This
variable is iid across players. We have

Pr(ψ(τ,Θ) < z|δi = 0) = Pr(Pr(δj > 0|τ) < z|δi = 0)

= Pr

(

Pr

(

η̃j < −
τ

σ

)

< z|δi = 0

)

= Pr

(

1− H̃

(

−
τ

σ

)

< z|δi = 0

)

= Pr(1− H̃(η̃i) < z)

= Pr(η̃i > H̃−1(1− z))

= 1− H̃(H̃−1(1− z)) = z

Now to complete the proof, observe that

Pr(ψ(τ,Θ) < z|δ = 0) =
∑

Θ

Pr(ψ(τ,Θ) < z|s = k(θ)) Pr(θ|δ = 0,Θ)

Given the uniform prior over τ , the information environment is translation-invariant, so

Pr(θ|δ = 0,Θ) =
f(θ)

∑

Θ

f(θ′)

That is, knowing δ = 0 yields no additional information about θ, since each type is equally
likely to observe δ = 0. Hence

1
∑

Θ

f(θ)

∑

Θ

Pr(ψ(τ,Θ) < z|s = k(θ))f(θ) = z

as desired.

Up until this point, none of the results have depended on taking the limit σ → 0. Now
we specialize to the case considered in the text where σ becomes arbitrarily small and define
kσ to be the threshold equilibrium played for variance parameter σ. Correspondingly, we
denote a specific type θ’s cutoff by kσ(θ). We then define

Aθ(z|k
σ,Θ) = Pr(ψ(τ,Θ) < z|s = kσ(θ))
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to be the strategic belief of type θ– that is, it is the probability that type θ assigns to
the event that a proportion less than z of agents in Θ play action B. Now we prove the
final lemma we will need before proving the main result (due to Drozd and Serrano-Padial
(2017)).

Lemma B.3. There exist a unique partition Θ1, . . . ,ΘS and thresholds k1 > · · · > kS such
that, as σ → 0, kσ(θ) → ki uniformly for all θ ∈ Θi and all i ∈ {1, . . . , S}. Furthermore,
the cutoffs ki satisfy the limit conditions

1
∫

0

(

ki + θ + κ(1− 2
∑

Θj ,j<i

f(θ′)− 2z
∑

Θi

f(θ′))

)

dAθ(z|k,Θi) = 0

where k denotes the set of limit cutoffs.

Proof. Fix σ̃ > 0 and define a partition of types Θ1, . . . ,ΘS by placing two types θ, θ′ in
the same equivalence class whenever |kσ̃(θ) − kσ̃(θ′)| < σ̃. Define Qσ̃

θ (χ|k
σ̃, z) = Pr(τ ≤

χ|s = kσ̃(θ), ψ(τ,Θi) = z) (for θ ∈ Θi) to be type kσ̃(θ)’s belief about τ conditional on the
event that a proportion z of players in the same equivalence class of the partition play B.
We have

E[v|kσ̃, kσ̃(θ)] =

1
∫

0

kσ̃+ σ̃
2

∫

kσ̃− σ̃
2

(

χ+θ+κ(1−2
∑

Θj ,j<i

f(θ)−2z
∑

Θi

f(θ))

)

dQσ̃
θ (χ|k

σ̃, z)dAθ(z|k
σ̃,Θi)

The term χ in the integrand is bounded by kσ̃ ± σ̃
2 , so

E[v|kσ̃, kσ̃(θ)] ≤

1
∫

0

(kσ̃ +
σ̃

2
+ θ + κ(1− 2

∑

Θj ,j<i

f(θ)− 2z
∑

Θi

f(θ)))dAθ(z|k
σ̃,Θi) (12)

and

E[v|kσ̃, kσ̃(θ)] ≥

1
∫

0

(kσ̃ −
σ̃

2
+ θ + κ(1− 2

∑

Θj ,j<i

f(θ)− 2z
∑

Θi

f(θ)))dAθ(z|k
σ̃,Θi) (13)

Note that as σ̃ → 0, the right-hand side of (2) converges to the right-hand side of (3) as
long as dAθ is bounded, which is shown in Lemma 8 of Drozd and Serrano-Padial (2017).

Now, for each i, take some arbitrary θi ∈ Θi and set ki = kσ̃(θi). As σ is taken to

zero from σ̃, set cutoffs k̂
σ̃

σ so that ∆θi,θ
′
i
=

ki−k̂σ̃σ(θ
′
i)

σ
=

ki−kσ̃(θ′i)
σ̃

for all θ′i ∈ Θi. Note that
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Aθ(z|k̂
σ̃

σ,Θi) is constant as σ → 0 under these transformed cutoffs. Then as σ → 0,

E[v|kσ̃
σ, k

σ̃(θ)] →

1
∫

0

(

ki + θ + κ(1− 2
∑

Θj ,j<i

f(θ)− 2z
∑

Θi

f(θ))

)

dAθ(z|k
σ̃
σ,Θi)

= ki + θ + κ(1− 2
∑

Θj ,j<i

f(θ))− 2κ
∑

Θi

f(θ)

1
∫

0

zdAθ(z|k
σ̃,Θi)

Fix ǫ > 0. If we pick σ̃ close to zero, we can ensure that

∣

∣E[v|kσ̃
σ, k

σ̃(θ)]− E[v|kσ̃, kσ̃(θ)]
∣

∣ < ǫ

for all σ < σ̃. This is because the solution of the system of equations E[v|kσ̃, kσ̃(θ)] = 0
can be seen as the correct choice of kσ̃(θi) and ∆θi,θ

′
i
for each i holding Wi fixed (which is

possible as long as σ̃ is sufficiently small). The solution to this system of equations lies in a
compact set, so for small σ̃ the limit condition will not differ from the equilibrium condition
E[v|kσ̃, kσ̃(θ)] = 0 by more than ǫ. Therefore the limit condition holds as σ̃ → 0.

We now prove the main theorem.

Theorem B.4. In the limit σ → 0, the equilibrium strategies are given by a monotone
partition Θ1, . . . ,ΘS of Θ and cutoffs k1 > · · · > kS such that

(i) For all θ ∈ Θi, k(θ) = ki;

(ii) −θi − κ(1− 2F (θi)
−) ≤ ki ≤ −θi − κ(1− 2F (θi))

(iii) ki + κ

(

1− 2
∑

Θj ,j<i

f(θ)−
∑

Θi

f(θ)

)

= −E[θ|θ ∈ Θi] for all i.

where θi = minΘi, θi = maxΘi.

Proof. Point (i) is a consequence of Lemma 3. We now show the partition is monotone.
Suppose that θ1 > θ2 but θ2 ∈ Θj , θ1 ∈ Θm with j > m. Then

−θ1 ≥ km + κ(1− 2
∑

Θn,n≤m

f(θ)) ≥ kj + κ(1− 2
∑

Θi,i<j

f(θ)) ≥ −θ2

a contradiction. From this it immediately follows that

−θi − κ(1− 2F (θi)
−) ≤ ki ≤ −θi − κ(1− 2F (θi))

which is point (ii).
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To see (iii), note that Lemma 3 implies that for all θ ∈ Θi,

0 = ki + θ + κ

(

1− 2
∑

Θj ,j<i

f(θ)− 2
∑

Θi

f(θ)

1
∫

0

zdAθ(z|k,Θi)

)

Multiplying by f(θ)∑

Θi

f(θ′) on both sides and moving the θ term to the left-hand side,

−E[θ|θ ∈ Θi] = ki + κ

(

1− 2
∑

Θj ,j<i

f(θ)− 2
∑

Θi

f(θ)

1
∫

0

zd

(

1
∑

Θi

f(θ)

∑

Θi

f(θ)dAθ(z|k,Θi)

))

= ki + κ

(

1− 2
∑

Θj ,j<i

f(θ)−
∑

Θi

f(θ)

)

where the second line follows from Lemma 2, the belief constraint. This is precisely the
desired result.

Equipped with Theorem 4, we may now prove some properties of equilibria when the
distribution F satisfies certain conditions. We consider three scenarios:

1. F is continuous and θ + κ(1− 2F (θ)) is monotonically increasing;

2. F has a symmetric, single-peaked density f and θ + κ(1− 2F (θ)) is non-monotonic;

3. F is a two-point discrete distribution.

The next three propositions characterize the equilibrium in these three cases. Henceforth
we assume H is the uniform distribution on [−1

2 ,
1
2 ].

Proposition B.5. When F is continuous and θ+κ(1−2F (θ)) is a monotonically increasing
function, the cutoffs k(θ) satisfy k(θ) = −θ − κ(1− 2F (θ)).

Proof. We show that the partition described in Theorem 4 must consist of singletons in
this case. Suppose that θ1 < θ2 are the boundaries of equivalence class i of the partition.
By property (ii) of Theorem 4, we have

−θ1 − κ(1− 2F (θ1)) ≤ ki ≤ −θ2 − κ(1− 2F (θ2))

By assumption, −θ1 − κ(1− 2F (θ1)) > −θ2 − κ(1− 2F (θ2)), so this is impossible. Hence
the partition is indeed a collection of singletons, and k(θ) = −θ − κ(1− 2F (θ)) (again by
property (ii)).

Proposition B.6. Suppose F has a symmetric, single-peaked density f and θ+κ(1−2F (θ))
is non-monotonic. Let θ̂ = argmax

θ

f(θ). The equilibrium is characterized by a parameter

∆ such that
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• k(θ) = −θ − κ(1− 2F (θ)) for θ 6∈ [θ̂ −∆, θ̂ +∆],

• k(θ) = −θ̂ − κ(1− F (θ̂ −∆)− F (θ̂ +∆)) for θ ∈ [θ̂ −∆, θ̂ +∆],

• The parameter ∆ is the unique nonzero solution to

∆ = κ(F (θ̂ +∆)− F (θ̂ −∆))

Proof. Observe that under the assumptions on F , there must be only one interval [θ, θ]
where θ + κ(1 − 2F (θ)) is decreasing. All θ in this interval must belong to the same
equivalence class of the partition described in Theorem 4. We show this by contradiction.
If θ ∈ [θ, θ] is at the upper boundary of an equivalence class Θi, then by point (ii) of
Theorem 4 we have

ki ≤ −θ − κ(1− 2F (θ)) < ki+1

which is impossible because the cutoffs are monotonically decreasing in i.
Hence the entire increasing region [θ, θ] belongs to a single equivalence class of the

partition. At the boundaries of the equivalence class containing that interval, k(θ) must
be continuous (which follows by again applying the argument showing that there cannot
be two equivalence classes containing points in the increasing region). By the argument in
Proposition B.5, there cannot be an equivalence class of the partition containing only points
in the decreasing region, so it must be that the partition consists of a single equivalence
class [θ, θ] containing all values of θ in the increasing region and singletons for all θ outside
that interval.

Let k(θ) = k for θ ∈ [θ, θ]. Point (iii) of Theorem 4 implies that

k = −

(

E[θ|θ ≤ θ ≤ θ] + κ(1− F (θ)− F (θ))

)

(14)

Continuity of the cutoff at the boundaries of the interval implies

−
(

θ + κ(1− 2F (θ))
)

= k = −
(

θ + κ(1− 2F (θ))
)

Rearranging these expressions, we find

θ + θ

2
= E[θ|θ ≤ θ ≤ θ] (15)

θ − θ

2
= κ(F (θ)− F (θ)) (16)

The symmetry of the density f and (5) imply that E[θ|θ ≤ θ ≤ θ] = θ̂ and there exists ∆
such that θ = θ̂ −∆, θ = θ̂ +∆. Then (4) reduces to

k(θ) = −θ̂ − κ(1− F (θ̂ −∆)− F (θ̂ +∆))
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for θ ∈ [θ̂ −∆, θ̂ +∆] and (5) reduces to

∆ = κ(F (θ̂ +∆)− F (θ̂ −∆))

as desired. Finally, we must show that there is a unique nonzero solution ∆ to the above
equation. The derivative of the left-hand side with respect to ∆ is 1, and the derivative of
the right-hand side is 2κf(θ̂ +∆) by the symmetry of f . The derivative of the right-hand
side is greater than 1 for ∆ = 0 (since θ+κ(1−2F (θ)) is increasing at θ̂) and monotonically
decreasing towards zero, so there is a unique crossing point.

Proposition B.7. When F is a two-point distribution with support {θL, θH} (and θL <
θH) such that Pr(θ = θL) = µ, Pr(θ = θH) = 1− µ, the equilibrium cutoffs are

• k(θ) = −(µθL + (1− µ)θH) for all θ if θH − θL ≤ κ,

• k(θL) = −(θL + (1− µ)κ) and k(θH) = −(θH − µκ) if θH − θL > κ.

Proof. There are two possible cases when the support of F consists of two points: either
k(θL) = k(θH) or k(θL) > k(θH). We first suppose that the cutoffs are equal and derive the
restriction θH − θL = κ in that case. Recall from Lemma 3 that when k(θH) = k(θL) = k,

0 = k + θH + κ

(

1− 2

1
∫

0

zdAθH (z|k)

)

= k + θL + κ

(

1− 2

1
∫

0

zdAθL(z|k)

)

We will derive an expression that allows us to evaluate the integrals on the right-hand side
in terms of the cutoffs for small σ.

Consider the equilibrium with finite, nonzero σ. We have

E[v|kσ, kσ(θH)] =

kσ(θH)+σ
2

∫

kσ(θH)−σ
2

(

τ + θH + κ

)

h

(

k(θH)− τ

σ

)

dτ

− 2κ

kσ(θH)+σ
2

∫

kσ(θH)−σ
2

(

µ(1−H(
k(θL)− τ

σ
)) + (1− µ)(1−H(

k(θH)− τ

σ
))

)

h

(

kσ(θH)− τ

σ

)

dτ

= κσ(θH) + θH + κ(1− µ(1 + ∆2
H,L)− (1− µ))

= κσ(θH) + θH − κµ∆2
H,L

where the third line uses the fact that H is the uniform distribution on [−1
2 ,

1
2 ]. Similarly,

we find
E[v|kσ, kσ(θL)] = κσ(θL) + θL + κ(1− µ)∆2

H,L
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Suppose that as σ → 0, ∆H,L ≡ k(θH)−k(θL)
σ

→ ξ. Then these equations imply

k + θH − κµξ2 = k + θL + κ(1− µ)ξ2

so
θH − θL = κξ2

Clearly, ξ2 ∈ [0, 1], so we obtain
θH − θL ≤ κ

when the cutoffs are equal.
Now consider the case in which the cutoffs are not equal. Then when σ → 0, the cutoff

type k(θH) is certain that all type θL players received signals below k(θL), and type k(θL)
is certain that all type θH players received signals above k(θH). The equilibrium conditions
are then

0 = k(θH) + θH + κ(1− 2µ− (1− µ)) = k(θL) + θL + κ(1− µ)

by part (iii) of Theorem 4. Rearranging, we get

kL − kH = (θH − κµ)− (θL + κ(1− µ))

Given that kL > kH , we must have

θH − θL > κ

which completes the proof.

References

[1] Rossella Argenziano. Differentiated networks: Equilibrium and efficiency. RAND
Journal of Economics, 39(3):747–769, 2008.

[2] Bruno Biais, Christophe Bivière, Matthieu Bouvard, and Catherine Casamatta. The
blockchain folk theorem. Working Paper, 2017.

[3] Hans Carlsson and Eric van Damme. Global games and equilibrium selection. Econo-
metrica, 61(5):989–1018, 1993.

[4] Christian Catalini and Joshua Gans. Some simple economics of the blockchain. 2017.

[5] Jonathan Chiu and Thorsten Koeppl. The economics of cryptocurrencies– bitcoin and
beyond. Working Paper, 2017.

[6] William Lin Cong and Zhiguo He. Blockchain disruption and smart contracts. Working
Paper, 2017.

51



[7] William Lin Cong, Ye Li, and Neng Wang. Tokenomics: Dynamic adoption and
valuation. Working Paper, 2018.

[8] Douglas Diamond. Financial intermediation and delegated monitoring. The Review
of Economic Studies, 51(3):393–414, 1984.

[9] Lukasz Drozd and Ricardo Serrano-Padial. Credit enforcement cycles. Working Paper,
2017.

[10] David Easley, Maurenn O’Hara, and Soumya Basu. From mining to markets: The
evolution of bitcoin transaction fees. Working Paper, 2017.

[11] David Frankel, Stephen Morris, and Ady Pauzner. Equilibrium selection in global
games with strategic complementarities. Journal of Economic Theory, 108(1):1–44,
2003.

[12] Drew Fudenberg and Jean Tirole. Perfect bayesian equilibrium. Journal of Economic
Theory, 53(2):236–260, 1991.

[13] Arthur Gervais, Ghassan Kharame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,
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