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Heat 
Feeling and seeing temperature changes 
 
Within some reasonable temperature range, we can get a rough idea how warm something is by 
touching it.  But this can be unreliable—if you put one hand in cold water, one in hot, then plunge 
both of them into lukewarm water, one hand will tell you it’s hot, the other will feel cold.  For 
something too hot to touch, we can often get an impression of how hot it is by approaching and 
sensing the radiant heat. If the temperature increases enough, it begins to glow and we can see it’s 
hot! 
 
The problem with these subjective perceptions of heat is that they may not be the same for 
everybody. If our two hands can’t agree on whether water is warm or cold, how likely is it that a 
group of people can set a uniform standard?  We need to construct a device of some kind that 
responds to temperature in a simple, measurable way—we need a thermometer. 
 
The first step on the road to a thermometer was taken by one Philo of Byzantium, an engineer, in the 
second century BC.  He took a hollow lead sphere connected with a tight seal to one end of a pipe, 
the other end of the pipe being under water in another vessel.  
 

http://www.tmth.edu.gr/en/aet/5/79.html
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To quote Philo: “…if you expose the sphere to the sun, part of the air enclosed in the tube will pass 
out when the sphere becomes hot.  This will be evident because the air will descend from the tube 
into the water, agitating it and producing a succession of bubbles. 
 
Now if the sphere is put back in the shade, that is, where the sun’s rays do not reach it, the water 
will rise and pass through the tube …”   
 
“No matter how many times you repeat the operation, the same thing will happen. 
 
In fact, if you heat the sphere with fire, or even if you pour hot water over it, the result will be the 
same.” 
 
Notice that Philo did what a real investigative scientist should do—he checked that the experiment 
was reproducible, and he established that the air’s expansion was in response to heat being applied 
to the sphere, and was independent of the source of the heat. 

Classic Dramatic Uses of Temperature-Dependent Effects 
This expansion of air on heating became widely known in classical times, and was used in 
various dramatic devices.  For example, Hero of Alexandria describes a small temple where a 
fire on the altar causes the doors to open.  
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The altar is a large airtight box, with a pipe leading from it to another enclosed container filled with 
water.  When the fire is set on top of the altar, the air in the box heats up and expands into a second 
container which is filled with water.  This water is forced out through an overflow pipe into a bucket 
hung on a rope attached to the door hinges in such a way that as the bucket fills with water, it drops, 
turns the hinges, and opens the doors.  The pipe into this bucket reaches almost to the bottom, so 
that when the altar fire goes out, the water is sucked back and the doors close again.  (Presumably, 
once the fire is burning, the god behind the doors is ready to do business and the doors open…)  
 
Still, none of these ingenious devices is a thermometer. There was no attempt (at least none 
recorded) by Philo or his followers to make a quantitative measurement of how hot or cold the 
sphere was.  And the “meter” in thermometer means measurement.  

The First Thermometer 
Galileo claimed to have invented the first thermometer. Well, actually, he called it a thermoscope, 
but he did try to measure “degrees of heat and cold” according to a colleague, and that qualifies it as 
a thermometer.  (Technically, a thermoscope is a device making it possible to see a temperature 
change, a thermometer can measure the temperature change.)  Galileo used an inverted narrow-
necked bulb with a tubular neck, like a hen’s egg with a long glass tube attached at the tip.   

http://galileo.imss.firenze.it/museo/4/eiv07.html
http://galileo.imss.firenze.it/museo/a/eletter.html
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He first heated the bulb with his hands then immediately put it into water. He recorded that the 
water rose in the bulb the height of “one palm”.  Later, either Galileo or his colleague Santorio 
Santorio put a paper scale next to the tube to read off changes in the water level.  This definitely 
made it a thermometer, but who thought of it first isn’t clear (they argued about it).  And, in fact, 
this thermometer had problems. 
 
Question: what problems?  If you occasionally top up the water, why shouldn’t this thermometer be 
good for recording daily changes in temperature? 
 
Answer:  because it’s also a barometer!  But—Galileo didn’t know about the atmospheric pressure.  
 
Torricelli, one of Galileo’s pupils, was the first to realize, shortly after Galileo died, that the real 
driving force in suction was external atmospheric pressure, a satisfying mechanical explanation in 
contrast to the philosophical “nature abhors a vacuum”.  In the 1640’s, Pascal pointed out that the 
variability of atmospheric pressure rendered the air thermometer untrustworthy.  
 
Liquid-in-glass thermometers were used from the 1630’s, and they were of course insensitive to 
barometric pressure.  Meteorological records were kept from this time, but there was no real 
uniformity of temperature measurement until Fahrenheit, almost a hundred years later.  
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Newton’s Anonymous Table of Temperatures 
The first systematic account of a range of different temperatures, “Degrees of Heat”, was written by 
Newton, but published anonymously, in 1701.  Presumably he felt that this project lacked the 
timeless significance of some of his other achievements.  
 
Taking the freezing point of water as zero, Newton found the temperature of boiling water to be 
almost three times that of the human body, melting lead eight times as great (actually 327C, 
whereas 8x37=296, so this is pretty good!) but for higher temperatures, such as that of a wood fire, 
he underestimated considerably.  He used a linseed oil liquid in glass thermometer up to the melting 
point of tin (232°C).  (Linseed oil doesn’t boil until 343°C, but that is also its autoignition 
temperature!)   
 
Newton tried to estimate the higher temperatures indirectly.  He heated up a piece of iron in a fire, 
then let it cool in a steady breeze. He found that, at least at the lower temperatures where he could 
cross check with his thermometer, the temperature dropped in a geometric progression, that is, if it 
took five minutes to drop from 80° above air temperature to 40° above air temperature, it took 
another five minutes to drop to 20° above air, another five to drop to 10° above, and so on. He then 
assumed this same pattern of temperature drop was true at the high temperatures beyond the reach 
of his thermometer, and so estimated the temperature of the fire and of iron glowing red hot.  This 
wasn’t very accurate—he (under)estimated the temperature of the fire to be about 600°C. 

Fahrenheit’s Excellent Thermometer 
The first really good thermometer, using mercury expanding from a bulb into a capillary tube, was 
made by Fahrenheit in the early 1720’s.  He got the idea of using mercury from a colleague’s 
comment that one should correct a barometer reading to allow for the variation of the density of 
mercury with temperature.  The point that has to be borne in mind in constructing thermometers, 
and defining temperature scales, is that not all liquids expand at uniform rates on heating—water, 
for example, at first contracts on heating from its freezing point, then begins to expand at around 
forty degrees Fahrenheit, so a water thermometer wouldn’t be very helpful on a cold day.  It is also 
not easy to manufacture a uniform cross section capillary tube, but Fahrenheit managed to do it, and 
demonstrated his success by showing his thermometers agreed with each other over a whole range 
of temperatures.  Fortunately, it turns out that mercury is well behaved in that the temperature scale 
defined by taking its expansion to be uniform coincides very closely with the true temperature scale, 
as we shall see later. 

Amontons’ Air Thermometer: Pressure Increases Linearly with 
Temperature 
A little earlier (1702) Amontons introduced an air pressure thermometer.  He established that if air 
at atmospheric pressure (he states 30 inches of mercury) at the freezing point of water is enclosed 
then heated to the boiling point of water, but meanwhile kept at constant volume by increasing the 
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pressure on it, the pressure goes up by about 10 inches of mercury.  He also discovered that if he 
compressed the air in the first place, so that it was at a pressure of sixty inches of mercury at the 
temperature of melting ice, then if he raised its temperature to that of boiling water, at the same time 
adding mercury to the column to keep the volume of air constant, the pressure increased by 20 
inches of mercury.  In other words, he found that for a fixed amount of air kept in a container at 
constant volume, the pressure increased with temperature by about 33% from freezing to boiling, 
that percentage being independent of the initial pressure.  

Thermal Equilibrium and the Zeroth Law of Thermodynamics 
Once the thermometer came to be widely used, more precise observations of temperature and (as we 
shall see) heat flow became possible. Joseph Black, a professor at the University of Edinburgh in the 
1700’s, noticed that a collection of objects at different temperatures, if brought together, will all 
eventually reach the same temperature.  
 
As he wrote, “By the use of these instruments [thermometers] we have learned, that if we take 1000, 
or more, different kinds of matter, such as metals, stones, salts, woods, cork, feathers, wool, water 
and a variety of other fluids, although they be all at first of different heats, let them be placed 
together in a room without a fire, and into which the sun does not shine, the heat will be 
communicated from the hotter of these bodies to the colder, during some hours, perhaps, or the 
course of a day, at the end of which time, if we apply a thermometer to all of them in succession, it 
will point to precisely the same degree.” 
 
We say nowadays that bodies in “thermal contact” eventually come into “thermal equilibrium”—
which means they finally attain the same temperature, after which no further heat flow takes place. 
This is equivalent to: 
 
The Zeroth Law of Thermodynamics:  
 
If two objects are in thermal equilibrium with a third, then they are in thermal equilibrium 
with each other.  
 
The “third body” in a practical situation is just the thermometer.   
 
It’s perhaps worth pointing out that this trivial sounding statement certainly wasn’t obvious before 
the invention of the thermometer.  With only the sense of touch to go on, few people would agree 
that a piece of wool and a bar of metal, both at 0°C, were at the same temperature.  

Measuring Heat Flow: a Unit of Heat 
The next obvious question is, can we get more quantitative about this “flow of heat” that takes place 
between bodies as they move towards thermal equilibrium?  For example, suppose I reproduce one 
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of Fahrenheit’s experiments, by taking 100 ccs of water at 100°F, and 100ccs at 150°F, and mix 
them together in an insulated jug so little heat escapes.  What is the final temperature of the mix? 
 
Of course, it’s close to 125°F—not surprising, but it does tell us something!  It tells us that the 
amount of heat required to raise the temperature of 100 cc of water from 100°F to 125°F is exactly 
the same as the amount needed to raise it from 125°F to 150°F.  A series of such experiments (done 
by Fahrenheit, Black and others) established that it always took the same amount of heat to raise the 
temperature of 1 cc of water by one degree.  
 
This makes it possible to define a unit of heat.  Perhaps unfairly to Fahrenheit,  
 
1 calorie is the heat required to raise the temperature of 1 gram of water by 1 degree 
Celsius.   
 
(Celsius also lived in the early 1700’s. His scale has the freezing point of water as 0°C, the boiling 
point as 100°C.  Fahrenheit’s scale is no longer used in science, but lives on in engineering in the 
US, and in the British Thermal Unit, which is the heat required to raise the temperature of one 
pound of water by 1°F.) 

Specific Heats and Calorimetry 
 
First, let’s define specific heat: 
 
The specific heat of a substance is the heat required in calories to raise the temperature of 
1 gram by 1 degree Celsius. 
 
As Fahrenheit continues his measurements of heat flow, it quickly became evident that for 
different materials, the amount of heat needed to raise the temperature of one gram by one 
degree could be quite different.  For example, it had been widely thought before the 
measurements were made, that one cc of Mercury, being a lot heavier than one cc of water, 
would take more heat to raise its temperature by one degree.  This proved not to be the case—
Fahrenheit himself made the measurement.  In an insulating container, called a “calorimeter” he 
added 100ccs of water at 100°F to 100ccs of mercury at 150°F, and stirred so they quickly 
reached thermal equilibrium.    
 
Question: what do you think the final temperature was? Approximately? 
 
Answer:  The final temperature was, surprisingly, about 120°F.  100 cc of water evidently 
“contained more heat” than 100 cc of mercury, despite the large difference in weight!  
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This technique, called calorimetry,  was widely used to find the specific heats of many different 
substances, and at first no clear pattern emerged.  It was puzzling that the specific heat of mercury 
was so low compared with water!   As more experiments on different substances were done, it 
gradually became evident that heavier substances, paradoxically, had lower specific heats.  

A Connection With Atomic Theory 
Meanwhile, this quantitative approach to scientific observation had spread to chemistry.  Towards 
the end of the 1700’s, Lavoisier weighed chemicals involved in reactions before and after the 
reaction.  This involved weighing the gases involved, so had to be carried out in closed containers, 
so that, for example, the weight of oxygen used and the carbon dioxide, etc., produced would 
accounted for in studying combustion.  The big discovery was that mass was neither created nor 
destroyed.  This had not been realized before because no one had weighed the gases involved.  It 
made the atomic theory suddenly more plausible, with the idea that maybe chemical reactions were 
just rearrangements of atoms into different combinations. 
 
Lavoisier also clarified the concept of an element, an idea that was taken up in about 1800 by John 
Dalton, who argues that a given compound consisted of identical molecules, made up of elementary 
atoms in the same proportion, such as H2O (although that was thought initially to be HO).  This 
explained why, when substances reacted chemically, such as the burning of hydrogen to form water, 
it took exactly eight grams of oxygen for each gram of hydrogen. (Well, you could also produce 
H2O2 under the right conditions, with exactly sixteen grams of oxygen to one of hydrogen, but the 
simple ratios of amounts of oxygen needed for the two reactions were simply explained by different 
molecular structures, and made the atomic hypothesis even more plausible.)   
 
Much effort was expended carefully weighing the constituents in many chemical reactions, and 
constructing diagrams of the molecules.  The important result of all this work was that it became 
possible to list the relative weights of the atoms involved.  For example, the data on H2O and H2O2 
led to the conclusion that an oxygen atom weighed sixteen times the weight of a hydrogen atom. 
 
It must be emphasized, though, that these results gave no clue as to the actual weights of atoms!  All 
that was known was that atoms were too small to see in the best microscopes. Nevertheless, 
knowing the relative weights of some atoms in 1820 led to an important discovery.  Two professors 
in France, Dulong and Petit, found that for a whole series of elements the product of atomic weight 
and specific heat was the same!   
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Element Specific Heat Relative weights of 
the atoms 

Product of relative 
atomic weight and 
specific heat 

Lead 0.0293 12.95 0.3794 
Tin 0.0514 7.35 0.3779 
Zinc 0.0927 4.03 0.3736 
Sulphur 0.1880 2.011 0.3780 
 
The significance of this, as they pointed out, was that the “specific heat”, or heat capacity, of 
each atom was the same—a piece of lead and a piece of zinc having the same number of atoms 
would have the same heat capacity.  So heavier atoms absorbed no more heat than lighter atoms 
for a given rise in temperature.  This partially explained why mercury had such a surprisingly 
low heat capacity.  Of course, having no idea how big the atoms might be, they could go no 
further. And, indeed, many of their colleagues didn’t believe in atoms anyway, so it was hard to 
convince them of the significance of this discovery.  

Latent Heat 
One of Black’s experiments was to set a pan of water on a steady fire and observe the temperature 
as a function of time.  He found it steadily increased, reflecting the supply of heat from the fire, until 
the water began to boil, whereupon the temperature stayed the same for a long time.  The steam 
coming off was at the same (boiling) temperature as the water. So what was happening to the heat 
being supplied?  Black correctly concluded that heat needed to be supplied to change water from its 
liquid state to its gaseous state, that is, to steam.  In fact, a lot of heat had to be supplied: 540 
calories per gram, as opposed to the mere 100 calories per gram needed to bring it from the freezing 
temperature to boiling.  He also discovered that it took 80 calories per gram to melt ice into water, 
with no rise in temperature.  This heat is released when the water freezes back to ice, so it is 
somehow “hidden” in the water.  He called it latent heat, meaning hidden heat. 
__________________________________________________________________________ 

Books I used in preparing this lecture:  

A Source Book in Greek Science, M. R. Cohen and I. E. Drabkin, Harvard university Press, 1966. 

A History of the Thermometer and its Uses in Meteorology, W. E. Knowles Middleton, Johns 
Hopkins Press, 1966. 

A Source Book in Physics, W. F. Magie, McGraw-Hill, New York, 1935. 
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Thermal Expansion and the Gas Law 
Coefficients of Expansion 
Almost all materials expand on heating—the most famous exception being water, which 
contracts as it is warmed from 0 degrees Celsius to 4 degrees.  This is actually a good thing, 
because as freezing weather sets in, the coldest water, which is about to freeze, is less dense than 
slightly warmer water, so rises to the top of a lake and the ice begins to form there.   For almost 
all other liquids, solidification on cooling begins at the bottom of the container. So, since water 
behaves in this weird way, ice skating is possible!  Also, as a matter of fact, life in lakes is 
possible—the ice layer that forms insulates the rest of the lake water from very cold air, so fish 
can make it through the winter. 
 
Linear Expansion 
The coefficient of linear expansion α  of a given material, for example a bar of copper, at a given 
temperature is defined as the fractional increase in length that takes place on heating through one 
degree:  
 

( ) 01  when 1L L L L T Tα→ +Δ = + → + C  

 
Of course, α  might vary with temperature (it does for water, as we just mentioned) but in fact 
for most materials it stays close to constant over wide temperature ranges.  
 
For copper, 617 10 .α −= ×   
 
Volume Expansion 
For liquids and gases, the natural measure of expansion is the coefficient of volume 
expansion,β .  
 

( ) 01  when 1V V V V T Tβ→ +Δ = + → + C  

 
Of course, on heating a bar of copper, clearly the volume as well as the length increases—the bar 
expands by an equal fraction in all directions (this could be experimentally verified, or you could 
just imagine a cube of copper, in which case all directions look the same).  
 
The volume of a cube of copper of side L is V = L3.  Suppose we heat it through one degree.  
Putting together the definitions of ,α β above,  
 

( ) ( ) ( ) ( )3 33 31 , 1 , 1  or 1V V L L L L Vβ α α→ + → + → + → + .Vα  
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So ( ) ( 31 1 )β α+ = + .  But remember α  is very, very small—so even though 

( )3 21 1 3 3 3α α α α+ = + + + , the last two terms are completely negligible (check it out!) so to a 

fantastically good approximation:  
 

3 .β α=  
 

The coefficient of volume expansion is just three times the coefficient of linear expansion. 

Gas Pressure Increase with Temperature 
In 1702, Amontons discovered a linear increase of P with T for air, and found P to increase 
about 33% from the freezing point of water to the boiling point of water.  
 
That is to say, he discovered that if a container of air were to be sealed at 0°C, at ordinary 
atmospheric pressure of 15 pounds per square inch, and then heated to 100°C but kept at the 
same volume, the air would now exert a pressure of about 20 pounds per square inch on the sides 
of the container.  (Of course, strictly speaking, the container will also have increased in size, that 
would lower the effect—but it’s a tiny correction, about ½% for copper, even less for steel and 
glass.)  
 
Remarkably, Amontons discovered, if the gas were initially at a pressure of thirty pounds per 
square inch at 0°C, on heating to 100°C the pressure would go to about 40 pounds per square 
inch—so the percentage increase in pressure was the same for any initial pressure: on heating 
through 100°C, the pressure would always increase by about 33%. 
 
Furthermore, the result turned out to be the same for different gases! 
 

Finding a Natural Temperature Scale 
In class, we plotted air pressure as a function of temperature for a fixed volume of air, by making 
several measurements as the air was slowly heated (to give it a chance to all be at the same 
temperature at each stage). We found a straight line.  On the graph, we extended the line 
backwards, to see how the pressure would presumably drop on cooling the air.  We found the 
remarkable prediction that the pressure should drop to zero at a temperature of about −273°C.  
 
In fact, if we’d done the cooling experiment, we would have found that air doesn’t actually 
follow the line all the way down, but condenses to a liquid at around −200°C.  However, helium 
gas stays a gas almost to −270°C, and follows the line closely.   
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We shall discuss the physics of gases, and the interpretation of this, much more fully in a couple 
of lectures.  For now, the important point is that this suggests a much more natural temperature 
scale than the Celsius one:  we should take −273°C as the zero of temperature!  For one thing, if 
we do that, the pressure/temperature relationship for a gas becomes beautifully simple:  
 

.P T∝  
 

This temperature scale, in which the degrees have the same size as in Celsius, is called the 
Kelvin or absolute scale. Temperatures are written 300K.  To get from Celsius to Kelvin, just 
add 273 (strictly speaking, 273.15). 
 
An Ideal Gas 
Physicists at this point introduce the concept of an “Ideal Gas”.  This is like the idea of a 
frictionless surface: it doesn’t exist in nature, but it is a very handy approximation to some real 
systems, and makes problems much easier to handle mathematically.  The ideal gas is one for 
which  for all temperatures, so helium is close to ideal over a very wide range, and air is 
close to ideal at ordinary atmospheric temperatures and above.  

P T∝

 

The Gas Law 
We say earlier in the course that for a gas at constant temperature  PV = constant  (Boyle’s Law).   
Now at constant volume, .   P T∝
 
We can put these together in one equation to find a relationship between pressure, volume and 
temperature: 
 

PV = CT 
 

where C is a constant.  Notice, by the way, that we can immediately conclude that at fixed 
pressure, V , this is called Charles’ Law.  (Exercise: prove from this that the coefficient of 
volume expansion of a gas varies significantly with temperature.) 

T∝

 
But what is C?  Obviously, it depends on how much gas we have—double the amount of gas, 
keeping the pressure and temperature the same, and the volume will be doubled, so C will be 
doubled.  But notice that C will not depend on what gas we are talking about: if we have two 
separate one-liter containers, one filled with hydrogen, the other with oxygen, both at 
atmospheric pressure, and both at the same temperature, then C will be the same for both of 
them. 
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One might conclude from this that C should be defined for one liter of gas at a specified 
temperature and pressure, such as 0°C and 1 atmosphere, and that could be a consistent scheme.  
It might seem more natural, though, to specify a particular mass of gas, since then we wouldn’t 
have to specify a particular temperature and pressure in the definition of C.     
 
But that idea brings up a further problem: one gram of oxygen takes up a lot less room than one 
gram of hydrogen.  Since we’ve just seen that choosing the same volume for the two gases gives 
the same constant C for the two gases, evidently taking the same mass of the two gases will give 
different C’s.   

Avogadro’s Hypothesis 
The resolution to this difficulty is based on a remarkable discovery the chemists made two 
hundred years or so ago: they found that one liter of nitrogen could react with exactly one liter of 
oxygen to produce exactly two liters of NO, nitrous oxide, all volume measurements being at the 
same temperature and pressure.  Further, one liter of oxygen combined with two liters of 
hydrogen to produce two liters of steam.  
 
These simple ratios of interacting gases could be understood if one imagined the atoms 
combining to form molecules, and made the further assumption, known as Avogadro’s 
Hypothesis (1811):  
 

Equal volumes of gases at the same temperature and pressure contain 
the same number of molecules. 

 
One could then understand the simple volume results by assuming the gases were made of 
diatomic molecules, H2, N2, O2 and the chemical reactions were just molecular recombinations  
given by the equations N2 + O2 = 2NO,  2H2 + O2 = 2H2O, etc.  
 
Of course, in 1811 Avogadro didn’t have the slightest idea what this number of molecules was 
for, say, one liter, and nobody else did either, for another fifty years.   So no-one knew what an 
atom or molecule weighed, but assuming that chemical reactions were atoms combining into 
molecules, or rearranging from one molecular pairing or grouping to another, they could figure 
out the relative weights of atoms, such as an oxygen atom had mass 16 times that of a hydrogen 
atom—even though they had no idea how big these masses were! 
 
This observation led to defining the natural mass of a gas  for setting the value of the constant C 
in the gas law to be a “mole” of gas: hydrogen was known to be H2 molecules, so a mole of 
hydrogen was 2 grams, oxygen was O2, so a mole of oxygen was 32 grams, and so on.  
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With this definition, a mole of oxygen contains the same number of molecules as a mole of 
hydrogen: so at the same temperature and pressure, they will occupy the same volume.  At 0°C, 
and atmospheric pressure, the volume is 22.4 liters. 
 
So, for one mole of a gas (for example, two grams of hydrogen), we set the constant C equal to 
R, known as the universal gas constant, and equal to 8.3 J/(mol.K) and PV = RT. 
 
For n moles of a gas, such as 2n grams of hydrogen, the law is: 
 

PV = nRT 
 

and this is the standard form of the Gas Law. 
 
 
 
(Footnote: after the discovery of isotopes, nuclei of the same element having different masses, 
and in particular of a form of hydrogen called heavy hydrogen present in small quantities in 
nature, the definition of the mole was refined to be equal to precisely 12 grams of the carbon 
isotope C12.  In practice, this is a tiny correction which doesn’t affect anything we’ve said here.) 
 

Early Attempts to Understand the Nature of Heat 
When Heat Flows, What, Exactly is Flowing? 
By the late 1700’s, the experiments of Fahrenheit, Black and others had established a systematic, 
quantitative way of measuring temperatures, heat flows and heat capacities—but this didn’t really 
throw any new light on just what was flowing.  This was a time when the study of electricity was all 
the rage, led in America by Benjamin Franklin, who had suggested in 1747 that electricity was one 
(invisible) fluid (it had previously been suggested that there were two fluids, corresponding to the 
two kinds of electrical charging observed).   

Lavoisier’s Caloric Fluid Theory 
Perhaps heat was another of these invisible fluids?   In 1787, Lavoisier, the French founder of 
modern chemistry, thought so, and called it the caloric fluid, from the Greek word for heat.  
(Lavoisier was the first to attempt to list a table of elements, to replace the ancient elements of earth, 
air, water and fire. His list of thirty-three elements included hydrogen, oxygen, sulphur, charcoal, 
etc., but he also included caloric—and light.)  
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Lavoisier and wife, by David, from Wikimedia Commons. 
 
The existence of such a fluid was really quite plausible—heat 
flowed from a hot body to a cold body, and the recent quantitative 
calorimetric experiments of Black and others seemed to establish 
that heat was a conserved quantity, as one would expect of a fluid.  
One could also understand some of the well-known effects of heat 
in terms of a fluid, and establish some of the fluid’s properties. 
For example, since it tended to flow from hot bodies into cold 
bodies and spread throughout the body, presumably its particles 
repelled each other, just like those of the electrical fluid.  
However, in contrast to electricity, which had no noticeable effect 
on the appearance of a charged object, when heat was added to a 
solid things changed considerably.  First the material expanded, 

then it changed to a liquid and finally to a gas, if sufficient heat could be delivered.  Further heating 
expanded the gas, or increased its pressure if it was held in a fixed container. To interpret this 
sequence of events in terms of a caloric fluid being fed into the material, one could imagine the fluid 
flowing between the atoms of the solid and lessening their attraction for each other, until the solid 
melted into a liquid, whereupon the caloric continued to accumulate around the atoms until they 
were pushed apart into a gas. It was thought that in the gas each atom or molecule was surrounded 
by a ball of caloric, like a springy ball of wool, and these balls were packed in a container like 
oranges in a crate, except that the caloric balls could expand indefinitely as heat was poured in. 
 
Various other effects could be explained by the caloric theory: when a gas is suddenly compressed, 
it gets hotter because the same amount of caloric is now occupying a smaller volume.  When two 
solids are rubbed together, some caloric is squeezed out at the surfaces, or perhaps tiny pieces of 
material are rubbed off, and lose their caloric, so heat appears. Radiant heat was presumed to be 

caloric particles flying through space. Recall that at that 
time (just before 1800) it was generally accepted that light 
was a stream of particles. 

Painting by Joseph Wright, Wikimedia Commons. 

The Industrial Revolution and the Water 
Wheel 
In 1769 a Lancashire wigmaker, Richard Arkwright, 
patented a successful cotton-spinning machine. 
Lancashire had been for a long time a center of the 
textile trade, but before Arkwright the fabrics were 
woven on hand looms by skilled weavers.  The new 
machines could be operated by less skilled workers, and 

http://www.spartacus.schoolnet.co.uk/IRarkwright.htm
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in fact were largely operated by children, although, in contrast to some of his competitors, 
Arkwright refused to employ any child younger than six.  The motive power driving the 
machines was at first hor ses, but in 1771 Arkwright built a large factory containing many 
machines all driven by a water wheel.  This was the beginning of the modern system of mass 
production.  Prices fell, and the skilled hand weavers became impoverished.  
 
Our interest in this, however, is not the social consequences, but just the water wheel.  
Previously, water wheels had been used for centuries to grind flour, and for other purposes, but 
their efficiency had not been a major concern.  In the factory, though, the more efficient the 
wheel, the more children could be spinning the cotton, and the bigger the profits.  Twenty years 
earlier, John Smeaton (the first Englishman to call himself a civil engineer) had investigated 
different types of water wheels, and found the overshot type (in which the water pours on to the 
top of the wheel) to perform best.  
 

Measuring Power by Lifting 
The power output of a water wheel can be measured by using it to raise a load—in those days, it 
would be how many pounds could be raised through one foot per second, say (we would now 
just use watts, and it’s amusing to note that the first unit of power, the horsepower, was proposed 
in 1783 by James Watt to be 33,000 foot pounds per minute).  The ultimate in efficiency would 
be a reversible water wheel, which could be run backwards, to raise the water back again. This is 
best visualized by having a wheel with a series of buckets attached.  Suppose the wheel is run for 
some time and its power output is used to lift a weight a given distance.  Now reverse it, let the 
weight fall, running the wheel backwards, making sure the buckets now fill at the bottom and 
empty at the top.  How much water is lifted back up?  A truly reversible wheel would put all the 
water back.  We know this isn’t going to happen, but if the reversed wheel manages to lift half 
the water back, say, then it’s 50% efficient.   
 
In building the first factory, the water wheel was not just placed under a waterfall. The water was 
channeled to it for maximum efficiency.  Smeaton had established that the flow of water into the 
buckets must be as smooth as possible.  Turbulence was wasted effort—it didn’t help the wheel 
go round. The water should flow onto the wheel, not fall from some height.  Finally, the perfect 
wheel (not quite realizable in practice) would be reversible—it could be run backwards to put the 
water back up using the same amount of work it delivered in the first place.   

Carnot’s Caloric Water Wheel 
Arkwright’s factory was so successful that within a few years similar factories had been built 
wherever a water wheel could be operated economically in Northern England.  The next step was 
to use steam power, which had been developed in the previous century to lift water out of mines.  
As steam engine design improved, the English economy mushroomed far ahead of European 



 19

competitors—but in contrast to the present day, these technological advances owed virtually 
nothing to basic science.  It was all inspired tinkering.   
 
The first attempt to analyze the steam engine in a scientific way was by a Frenchman, Sadi 
Carnot, in 1820—and he relied heavily on an analogy with the water wheel.  In the steam engine, 
heat is delivered to water to boil off steam which is directed through a pipe to a cylinder where it 
pushes a piston.  The piston does work, usually by turning a wheel, the steam cools down, and 
the relatively cold vapor is expelled, so that the piston will be ready for the next dose of steam.   
 
Where is the analogy to a water wheel?  Recall that heat was seen as an invisible fluid, impelled 
by its nature to flow from hot objects to cold objects.  Water always flows from high places to 
low places. Carnot saw these as parallel processes—and, just as a water wheel extracts useful 
work from falling water, he saw the steam engine extracting work from the “falling” caloric 
fluid, as it cascaded from a hot object to a cold object. 
 

How Efficient are these Machines? 
As we’ve discussed, an ordinary water wheel is most efficient if the water flows in and out very 
smoothly, so no energy is wasted in turbulence or splashing.  If we could make such a wheel 
with friction-free bearings, etc., then it could be made to drive a twin wheel going backwards, 
which could lift all the water back up again.  This idealized wheel would be 100% efficient.  
 
Carnot’s idealized heat engine had gas in a cylinder which pushed a piston as it expanded, doing 
work. Heat was fed into the gas, it expanded, then the heat supply was cut off, but the hot gas 
continued to expand and cool down at the same time. The piston then reversed direction, and the 
heat generated by the compression was allowed to flow out into a heat sink, until a certain point 
was reached at which the sink was disconnected, and the further compression heated up the gas 
to its original temperature, at which point the cycle began again.  We’ll be discussing this so-
called “Carnot cycle” in much more detail later, all we need to take away from it at this point is 
that heat is supplied to the gas at a high temperature, and it flows out to the sink at a lower 
temperature.   
 
This “falling” of the “caloric fluid” from hot to cold is the analogy to the water wheel.  Carnot 
argued that if all friction were eliminated, and the heat flow into and out of the gas were 
smooth—going from one place to another at the same temperature, just like the water moving 
smoothly on to the water wheel, not dropping on to it, then one could imagine a reversible heat 
engine: the work output could be used to drive a similar engine in reverse which would take heat 
from a cold place and expel it in a warmer place (that’s a refrigerator).  
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Carnot found, not surprisingly, that the amount of work a perfect engine could deliver for a given 
amount of heat increased as the temperature difference between heat source and heat sink 
increased.  Obviously, water wheels get more energy from the same amount of water if the wheel 
is bigger so the water has further down to go.   
 
For a given temperature difference, then, a given amount of heat can only deliver so much work. 
And, this is quite independent of the materials used in constructing the engine, including the gas 
itself.  
 
As we shall discuss in detail later, he was able to find for such an engine just how much work the 
engine could perform for a given heat input, and the answer was surprisingly low.  Furthermore, 
no engine could ever be more efficient than a reversible engine, because if it were, it could be 
used to drive the reversible engine backwards, replacing the heat in the furnace, with energy to 
spare, and would be a perpetual motion machine. 
 
Carnot’s basic assumption that heat is a fluid was flawed, but his reasoning was of sufficient 
generality that his conclusions about efficiency were correct, and proved to be a crucial step 
toward understanding engines, as we shall see. 

Count Rumford 
Picture from http://www.rumford.com/Rumfordpicture.html, 
 original Gainsborough painting in Fogg Museum, Harvard. 

 
The first real attack on the caloric theory of heat took 
place in a cannon factory in Bavaria, under the 
direction of one Count Rumford of the Holy Roman 
Empire. This Count was actually born Benjamin 
Thompson in Woburn, in the English colony of 
Massachusetts, in 1753, which he left in a hurry after 
choosing the wrong side in the Revolutionary War.  
He was a brilliant man, extraordinarily inventive as a 
scientist and engineer—but it is difficult to form a 
coherent picture of his character.  He seemed 
genuinely upset by the plight of the poor in Munich 
(see below) and made great personal efforts for years 
to ensure they were properly fed and clothed. 
Throughout his life, he invented practical devices to 
make daily living better: stoves, fitted kitchens, drip 
coffeepots, lighting, and many more. Yet, despite this 
love for humanity and his clear desire to make life 

better for everyone, Rumford did not apparently like—or get on with—actual people.  The only 

http://www.rumford.com/Rumfordpicture.html
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exceptions were those with power who might prove useful, and almost any attractive woman he 
met.  Rumford dumped his own family unceremoniously when war broke out and he fled to 
England.  When garrisoned on Long Island in 1782 (fighting for the British) he treated the local 
people horribly.  He always engaged in shameless self-promotion, often with little regard for the 
truth.  But he did make important contributions to many fields: food, clothing, work and education 
for the poor both in Bavaria and (less successfully) later in England, and all manner of engineering 
improvements, from the domestic devices listed above to state of the art artillery.  In fact, his 
artillery designs were so highly regarded that by 1799 US President Adams tried to persuade him to 
return to America to found a Military Academy, with assurances that all was forgiven. 
 
His father died when Benjamin was still a child, and although his mother remarried, he felt strongly 
that he had to take care of himself.  He worked hard at school, then at age eighteen began working 
as a tutor for children of rich families, and after a short time became a teacher in a school in 
Concord, New Hampshire. At nineteen, he married a rich young widow, who decided to upgrade his 
appearance to fit in better with her friends. She bought him a scarlet hussar cloak, they used a two-
horse chaise called a curricle, the only other curricle in the province belonging to the Royal 
Governor, John Wentworth.  The marriage took place one day after the Governor had reviewed the 
troops, and the bride and groom were guests at the Governor’s table.  Thompson assiduously 
cultivated the Governor. They went together on a surveying expedition exploring the hilly country 
of the province.  Thompson’s real ambition was military, and in 1774 Governor Wentworth 
appointed him a major in the New Hampshire Militia.  That year, the people were becoming 
increasingly rebellious against British rule and British taxes. Order was kept, at least in part, by the 
British Army. Thompson was part of a scheme to discourage desertion from that army, and when 
this became known to those plotting revolution, they declared him a “Rebel to the State”.  He 
moved rapidly to London, abandoning his wife and two-month-old daughter.  In London, he 
supplied military intelligence, and was rewarded with a salaried position involving no work.  
 
Ever the scientist (with a military bent), he spent a lot of time on gunnery experiments.  He used a 
ballistic pendulum to find how the speed of a bullet was affected by small changes in gun design 
and in the gunpowder mix. He disproved the widely held view that slightly damp gunpowder was 
actually more effective. 
 
He made a trip back to America in 1781. He wintered with a few hundred soldiers at Huntington, 
Long Island, in 1782, setting up camp in the churchyard, and forcing the local people to build 
fortifications for his camp using the church timbers and their rail fences.  He constructed bread 
ovens using the tombstones.  He designed a new gun carriage that could be disassembled, carried by 
three horses, then put together and fired in a minute and a quarter.  But the war was over. He burned 
all the wood, rather than give it back to the people, and returned to London.   
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Still enthusiastic for military adventure, he decided to go to Vienna, which seemed a likely trouble 
spot.  He first got himself promoted to full colonel, acquired the splendid uniform, and had his 
portrait painted by Thomas Gainsborough.  When he reached Strasbourg, it happened that a military 
review was underway.  Naturally, Thompson appeared in full regalia, impressing the reviewer, who 
was a nephew of the Elector of Bavaria. This landed him an important post in Munich, the capital of 
Bavaria.  Among his other duties, he was to organize the feeding and clothing of the army. He took 
a practical, scientific approach.  He had each garrison maintain its own vegetable garden, and gave 
directions on how to use them most effectively from a nutritional point of view.  He ran experiments 
on the relative thermal conductivity of various fabrics, and found that trapped air in fabrics was the 
most important measure of heat insulation.  He decided that uniforms should be cotton in summer, 
wool in winter.  He invented thermal underwear.  In 1792, he became Count Rumford. 
 
It should also be mentioned that he greatly improved the city in many ways: he invented the soup 
kitchen for the poor, an idea which spread throughout Europe. In Switzerland, the meal tickets had 
Rumford’s picture on them. He built workhouses, to provide work for the unemployed in making 
uniforms for the military.  He helped design and lay out a beautiful park, where a memorial to him 
still stands. He also worked on many domestic improvements, such as the Rumford stove for more 
heat and less smoke, coffee makers, and an efficient but soft light, this last at least partly because, to 
quote him, “that mysterious light which comes from bodies moderately illuminated is certainly most 
favourable to female beauty” and Rumford was a great connoisseur of female beauty. 

Rumford’s Theory of Heat 
The contribution to physics for which he is most remembered took place in Munich, and he 
stumbled into it more or less accidentally. But, as he remarks in presenting his findings to the Royal 
Society in 1798, “a habit of keeping the eyes open to everything that is going on in the ordinary 
course of the business of life has oftener led, as it were by accident,  … to sensible schemes for 
investigation … than all the more intense meditations of philosophers, in the hours expressly set 
apart for study.”   
 
What he was looking at was cannon boring, beefing up the Bavarian artillery in case of attack by the 
French, but what he was thinking about was whether or not Lavoisier’s calorific fluid really existed.  
He was skeptical.  Cannon were bored by turning an iron bit inside a brass cylinder, the power being 
supplied by horses.  The friction of the iron bit on the brass generated heat. This was accounted for 
in the caloric theory by the pressure and movement squeezing out caloric fluid, in particular from 
the fragments that were sheared off.  Rumford carefully collected these fragments and found them 
to be identical to the ordinary metal in heat capacity, etc., they didn’t seem to have lost anything.  
Then he measured the heat production for an extended period, by having the brass cylinder 
immersed in water, and insulated.  After extended grinding, the water (two gallons) began to boil.  
This was a startling event! To quote from his account: 
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“At 2 hours and 20 minutes it was 200°; and at 2 hours 30 minutes it ACTUALLY BOILED! 
 
It would be difficult to describe the surprise and astonishment expressed in the countenances of the 
by-standers, on seeing so large a quantity of cold water heated, and actually made to boil without 
any fire.” 
 
Rumford goes on the analyze the whole experiment quantitatively: he gives the weight of the box, 
and so estimates how much heat it absorbs, as well as other parts of the apparatus which became 
warm, and measures the rate of cooling with the grinding stopped to estimate how much heat leaked 
out during the run. Taking all these factors into account, he estimated that heat production was 
equivalent to nine ¾ inch candles burning continuously.  Long before the concept was formulated, 
Rumford had measures the mechanical equivalent of heat, at least approximately. In fact, many 
years later, Joule went over his Rumford’s figures and found he was within 20% or so of the right 
answer. Rumford realized, of course, this wasn’t a good way to produce heat—as he remarked, 
more heat could have been gained simply by burning the horses’ fodder. His real interest here was 
in demolishing the caloric theory.  He concluded: 
  

  ...we must not forget to consider that most remarkable circumstance, that 
the source of the Heat generated by Friction, in these Experiments, appeared 
evidently to be inexhaustible.  It is hardly necessary to add, that anything which any 
insulated body, or system of bodies, can continue to furnish without limitation, 
cannot possibly be a material substance: and it appears to me to be extremely 
difficult, if not quite impossible, to form any distinct idea of any thing, capable of 
being excited and communicated, in the manner the heat was excited and 
communicated in these Experiments, except it be MOTION.   

 
Exactly what Rumford meant by MOTION has been debated, but it was some type of internal 
vibration of material, perhaps only distantly related to our modern, atom based, picture of heat 
vibrations.  Still, by casting real doubt on the caloric theory, it was a step in the right direction.  He 
had also established that if a caloric fluid really existed, it was certainly very light!  He took three 
identical glass bottles containing equal weights of water, mercury and alcohol respectively, made 
them exactly equal in weight by tying small lengths of wire around the necks, then cooled them 
until the water froze, and weighed them again.  The latent heat of freezing, and the very different 
heat capacities of the three fluids, should have resulted in quite different amounts of caloric fluid 
leaving the three bottles, yet their weights remained exactly the same, within one part in a million 
(the claimed accuracy of the balance).   
 
After he returned to London in 1798, Rumford planned to repeat some of the public welfare 
successes in Munich. He wanted to build soup kitchens and workhouses for the poor.  He also 
planned to found an institution which would not only facilitate the implementation of new scientific 
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discoveries in improving living standards, but also train working class men to become mechanics. 
This became the Royal Institution.  Unfortunately, Rumford was difficult to work with, and he did 
not see eye to eye with the first director, a young Cornishman called Humphry Davy.  Sad to report, 
Rumford’s idealistic notions for schooling the poor and improving living standards did not become 
a priority for the Institution, except for a series of lectures for the public which evolved into 
entertainments for the wealthy.  Nevertheless, the Institution did maintain a first class laboratory in 
which Davy discovered new elements, including sodium and potassium, and has in fact been an 
excellent center of scientific research for the last two hundred years.   (Check it out here!) 
 
One more remarkable turn of events in Rumford’s life is worth mentioning.  Lavoisier, founder of 
the caloric theory, was beheaded by French revolutionaries in 1794, leaving a very attractive widow.  
Rumford married her in 1805.  Perhaps not too surprisingly, the marriage didn’t go well.  
 
In writing the above section, I used mainly the biography Benjamin Thompson, Count Rumford, by 
Sanford C. Brown, MIT 1979. I have only been able to mention a small number from the 
extraordinary range of Rumford’s inventions (and adventures!) described in this book. 
 
A more recent brief but readable biography: Count Rumford: The Extraordinary Life of a 
Scientific Genius, by G. I. Brown, Sutton (UK) 1999. 
 

 The Discovery of Energy Conservation: Mayer and Joule 
Robert Mayer and the Color of Blood 
Julius Robert Mayer was born in the mill town of Heilbronn, Germany, on the river Neckar, in 
1814.  The town’s whole economy was based on water power.  The ten year old Mayer had a 
great idea:  why not use part of a water wheel’s output to drive an Archimedean screw which 
would pump the water back up again?  That way you wouldn’t have to rely on the river at all! 
   
 
 
 
 
 
 
 
 
 
 

Archimedes’ Screw    (Wikimedia Commons)  
 

http://www.rigb.org/index.html
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He decided to build a model.  His first try didn’t work—some water was pumped back up, but 
not enough.  But surely that could be taken care of by putting in a gear train to make the screw 
run faster?  Disappointingly, he found the water wheel had a tougher time turning the screw 
faster, and he needed to supply a lot more water over the wheel, so he was back to square one. 
Increasingly ingenious but unsuccessful fixes finally convinced him that in fact there was no 
solution: there was no way to arrange a machine to do work for nothing. This lesson stayed with 
Mayer for life. 
 
Mayer studied to become a medical doctor (his studies included one physics course) and in 1840, 
at age 25, he signed on as a ship’s doctor on a ship bound for the tropics.  Shortly after reaching 
the Dutch East Indies, some of the sailors became ill and Mayer’s treatment included blood 
letting. He was amazed to find that the venous blood was a bright red, almost the same as arterial 
blood.  Back in Germany, the venous blood was much darker, and there was a reason: the 
chemist Lavoisier had explained that the body’s use of food, at least in part, amounted to burning 
it in a controlled way to supply warmth. The darker venous blood in effect contained the ashes, 
to be delivered to the lungs and expelled as carbon dioxide.  Mayer concluded that less burning 
of food was needed to keep warm in the tropics, hence the less dark blood.   
 
Now, Lavoisier had claimed that the amount of heat generated by burning, or oxygenation, of a 
certain amount of carbon did not depend on the sequence of chemical reactions involved, so the 
heat generated by blood chemistry oxygenation would be the same as that from uncontrolled old-
fashioned burning in air.  This quantitative formulation led Mayer to think about how he would 
measure the heat generated in the body, to equate it to the food burned.  But this soon led to a 
problem.  Anyone can generate extra heat, just by rubbing the hands together, or, for example, by 
turning a rusty, unoiled wheel: the axle will get hot.  Does this ‘outside’ heat also count as 
generated by the food?  Presumably yes, the food powers the body, and the body generates the 
heat, even if indirectly.  Mayer was convinced from his childhood experience with the water 
wheel that nothing came from nothing: that outside heat could not just appear from nowhere, it 
had to have a cause.  
 
But he saw that if the indirectly generated heat must also be included, there is a problem. His 
analysis ran something like this (I’ve changed the illustration slightly, but the idea’s the same): 
suppose two people are each steadily turning large wheels at the same rate, and the wheels are 
equally hard to turn.  One of them is our rusty unoiled wheel from the last paragraph, and all that 
person’s efforts are going into generating heat.  But the other wheel has a smooth, oiled axle and 
generates a negligible amount of heat. It is equally hard to turn, though, because it is raising a 
large bucket of water from a deep well.  How do we balance the ‘food = heat’ budget in this 
second case? 
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Mayer was forced to the conclusion that for the ‘food = heat’ equation to make sense, there had 
to be another equivalence: a certain amount of mechanical work, measured for example by 
raising a known weight through a given distance, had to count the same as a certain amount of 
heat, measured by raising the temperature of a fixed amount of water, say, a certain number of 
degrees.  In modern terms, a joule has to be equivalent to a fixed number of calories.  Mayer was 
the first to spell out this ‘mechanical equivalent of heat’ and in 1842 he calculated the number 
using results of experiments done earlier in France on the specific heats of gases. French 
experimenters had measured the specific heat of the same gas at constant pressure (Cv) and at 
constant pressure (Cp). They always found Cp to be greater than Cv.  Mayer interpreted this with 
the following thought experiment: consider two identical vertical cylinders, closed at the top by 
moveable pistons, the pistons resting on the gas pressure, each enclosing the same amount of the 
same gas at the same temperature.  Now supply heat to the two gases, for one gas keep the piston 
fixed, for the other allow it to rise. Measure how much heat is needed to raise the gas 
temperature by ten degrees, say.  It is found that extra heat is needed for the gas at constant 
pressure, the one where the piston was allowed to rise.  Mayer asserted this was because in that 
case, some of the heat had been expended as work to raise the piston: this followed very 
naturally from his previous thinking, and the French measurements led to a numerical value for 
the equivalence.  Mayer understood the sequence: a chemical reaction produces heat and work, 
that work can then produce a definite amount of heat.  This amounted to a statement of the 
conservation of energy.  Sad to report, Mayer was not part of the German scientific 
establishment, and this ground-breaking work was ignored for some years. 

James Joule 
Meanwhile, in Manchester, England, the center of the industrial revolution, the same problem 
was being approached from quite a different direction by James Joule, the son of a prosperous 
brewer.  Joule was lucky in that as a teenager, he was tutored at home, along with his brother, by 
John Dalton, the chemist who founded the atomic theory.  Manchester was at the cutting edge of 
technological progress, and one exciting idea in the 1830’s was that perhaps coal-driven steam 
engines could be replaced by battery-driven electric motors. Joule, in his twenties, set himself the 
task of improving the electric motor to the point where it would be competitive with the steam 
engine.  But it was not to be—after years of effort, he concluded that at best it would take five 
pounds of zinc consumed in a battery to deliver the work from one pound of coal.  But he learned 
a lot. He found an electric current in a wire produced heat at a rate I 2R, now known as Joule 
heating.  The caloric theory interpretation was that caloric fluid originally in the battery was 
released along with the electric current and settled in the wire.  However, Joule discovered the 
same heating took place with a current generated by moving the wire past a permanent magnet.  
It was difficult to see how the caloric fluid got into the wire in that situation.  Joule decided the 
caloric theory was suspect.  He generated a current by applying a measured force to a dynamo, 
and established that the heat appearing in the wire was always directly proportional to the work 
done by the force driving the dynamo.   
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Finally, it dawned on him that the electrical intermediary was unnecessary: the heat could be 
produced directly by the force, if instead of turning a dynamo, it turned paddle wheels churning 
water in an insulated can.  The picture below shows his apparatus:    

The paddle wheels turn through holes cut in 
stationary brass sheets, churning up the water. This is 
all inside an insulated can, of course.  In this way, 
Joule measured the mechanical equivalent of heat, 
the same number Mayer had deduced from the 
French gas experiments.   

 
Joule’s initial reception by the scientific 
establishment was not too different from Mayer’s.  
He, too, was a provincial, with a strange accent. But 
he had a lucky break in 1847, when he reported his 
work to a meeting of the British Association, and 
William Thomson was in the audience. Thomson had 
just spent a year in Paris.  He was fully familiar with 
Carnot’s work, and believed the caloric theory to be 
correct.  But he knew that if Joule really had 

produced heat by stirring water, the caloric theory must be wrong—he said there were 
‘insuperable difficulties’ in reconciling the two. 

But Who Was First: Mayer or Joule? 
Mayer and Joule, using entirely different approaches, arrived almost simultaneously at the 
conclusion that heat and mechanical work were numerically equivalent: a given amount of work 
could be transformed into a quantitatively predictable amount of heat.  Which of the two men 
deserves more credit (not to mention other contenders!) has been argued for well over a century.  
Briefly, it is generally conceded that Mayer was the first to spell out the concept of the 
mechanical equivalent of heat (although closely followed, independently, by Joule) and Joule 
was the first to put it on a firm experimental basis. 

The Emergence of Energy Conservation 
In fact, by the 1840’s, although many still believed in the caloric theory, it had run into other 
difficulties.  Before the 1820’s, almost everyone believed, following Newton, that light was a 
stream of particles.  Around 1800, Herschel discovered that on passing sunlight through a prism, 
and detecting the heat corresponding to the different colors, in fact there was heat transmitted 
beyond the red.  This suggested that radiant heat was caloric particles streaming through space, 
and no doubt very similar in character to light.  But in the 1820’s it was unambiguously 
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established that light was really a wave. Did this mean heat was a wave too?  Perhaps the caloric 
fluid was oscillations in the ether.  Things were now very confused.  In 1841, Joule wrote 
diplomatically: ‘let the space between these compound atoms be supposed to be filled with 
calorific ether in a state of vibration, or, otherwise, to be occupied with the oscillations of the 
atoms themselves’ (Joule 1963, p.52). 
 
It transpired, though, that the difficulties in reconciling Carnot’s theory and Joule’s experiments 
were not as insuperable as Thomson had claimed.  In 1850, a German professor, Rudolph 
Clausius, pointed out that Carnot’s theory was still almost right: the only adjustment needed was 
that there was a little less heat emerging from the bottom of the ‘caloric water wheel’ than went 
in at the top—some of the heat became mechanical energy, the work the steam engine was 
performing.  For real steam engines, the efficiency—the fraction of ingoing heat delivered as 
useful work—was so low that it was easy to understand why Carnot’s picture had been accepted 
for so long.  For the first time, with Clausius’ paper, a coherent theory of heat emerged, and the 
days of the caloric theory drew to a close. 
 
Books I used in writing these notes… 
Caneva, K. L.: 1993, Robert Mayer and the Conservation of Energy, Princeton University Press, 
Princeton, New Jersey. 
Cardwell, D. S. L.: 1989, James Joule: A Biography,  Manchester University Press, Manchester 
and New York. 
Cardwell, D. S. L.: 1971,  From Watt to Clausius, Cornell University Press, Ithaca, New York. 
Joule, J. P.: 1963, Scientific Papers, Vol. I,  Dawsons of Pall Mall, London. 
Magie, W. F.: 1935, A Source Book in Physics, McGraw-Hill, New York.  
Roller, D.: 1957, ‘The Early Development of the Concepts of Temperature and Heat: The Rise 
and Decline of the Caloric Theory’, in J. B. Conant and L. K. Nash (eds.), Harvard Case 
Histories in Experimental Science, Harvard University Press, Cambridge, Massachusetts, 1957, 
117-215. 

Kinetic Theory of Gases: A Brief Review  
Bernoulli's Picture 

Daniel Bernoulli, in 1738, was the first to understand air 
pressure from a molecular point of view. He drew a 
picture of a vertical cylinder, closed at the bottom, with a 
piston at the top, the piston having a weight on it, both 
piston and weight being supported by the air pressure 
inside the cylinder. He described what went on inside the 
cylinder as follows: “let the cavity contain very minute 
corpuscles, which are driven hither and thither with a v
rapid motion; so that these corpuscles, when they strike 

ery 
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against the piston and sustain it by their repeated impacts, form an elastic fluid which will 
expand of itself if the weight is removed or diminished…” (An applet is available here.)  Sad to 
report, his insight, although essentially correct, was not widely accepted.  
 
Most scientists believed that the molecules in a gas stayed more or less in place, repelling each 
other from a distance, held somehow in the ether. Newton had shown that PV = constant 
followed if the repulsion were inverse-square. In fact, in the 1820’s an Englishman, John 
Herapath, derived the relationship between pressure and molecular speed given below, and tried 
to get it published by the Royal Society. It was rejected by the president, Humphry Davy, who 
pointed out that equating temperature with motion, as Herapath did, implied that there would be 
an absolute zero of temperature, an idea Davy was reluctant to accept.  And it should be added 
that no-one had the slightest idea how big atoms and molecules were, although Avogadro had 
conjectured that equal volumes of different gases at the same temperature and pressure contained 
equal numbers of molecules—his famous number—neither he nor anyone else knew what that 
number was, only that it was pretty big.  

The Link between Molecular Energy and Pressure  
It is not difficult to extend Bernoulli’s picture to a quantitative description, relating the gas 
pressure to the molecular velocities. As a warm up exercise, let us consider a single perfectly 
elastic particle, of mass m, bouncing rapidly back and forth at speed v inside a narrow cylinder of 
length L with a piston at one end, so all motion is along the same line. (For the movie, click 
here!) What is the force on the piston? 
 
Obviously, the piston doesn’t feel a smooth continuous force, but a series of equally spaced 
impacts. However, if the piston is much heavier than the particle, this will have the same effect 

as a smooth force over times long compared with the 
interval between impacts. So what is the value of the 
equivalent smooth force?  

v 

L 

Using Newton’s law in the form force = rate of change of 
momentum, we see that the particle’s momentum changes 
by 2mv each time it hits the piston. The time between hits is 
2L/v, so the frequency of hits is v/2L per second. This m
that if there were no balancing force, by conservation of 
momentum the particle would cause the momentum of the 
piston to change by 2mv×v/2L units in each second. This is 
the rate of change of momentum, and so must be equal to 
the balancing force, which is therefore F = mv

eans 

2/L. 
 
We now generalize to the case of many particles bouncing 
around inside a rectangular box, of length L in the x-

1-D gas: particle bounces 
between ends of cylinder 

http://www.phy.ntnu.edu.tw/java/idealGas/idealGas.html
http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/Piston/jarapplet.html
http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/Piston/jarapplet.html
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direction (which is along an edge of the box). The total force on the side of area A perpendicular 
to the x-direction is just a sum of single particle terms, the relevant velocity being the component 
of the velocity in the x-direction. The pressure is just the force per unit area, P = F/A. Of course, 
we don’t know what the velocities of the particles are in an actual gas, but it turns out that we 
don’t need the details. If we sum N contributions, one from each particle in the box, each 
contribution proportional to vx

2 for that particle, the sum just gives us N times the average value 
of vx

2. That is to say,  
2 2/ /x xP F A Nmv LA Nmv V= = = /  
 

where there are N particles in a box of volume V.  Next we note that the particles are equally 
likely to be moving in any direction, so the average value of vx

2 must be the same as that of vy
2 or 

vz
2, and since v2 = vx

2 + vy
2 + vz

2, it follows that  
 

2 / 3 .P Nmv V=  
 

This is a surprisingly simple result!  The macroscopic pressure of a gas relates directly to the 
average kinetic energy per molecule.  Of course, in the above we have not thought about possible 
complications caused by interactions between particles, but in fact for gases like air at room 
temperature these interactions are very small.  Furthermore, it is well established experimentally 
that most gases satisfy the Gas Law over a wide temperature range: 
 

PV = nRT 
 

for n moles of gas, that is, n = N/NA, with NA Avogadro’s number and R the gas constant.  
 
Introducing Boltzmann’s constant k = R/NA, it is easy to check from our result for the pressure 
and the ideal gas law that the average molecular kinetic energy is proportional to the absolute 
temperature,  

2 31
2 2 .KE mv k= = T  

Boltzmann’s constant k = 1.38.10-23 joules/K.  

Maxwell finds the Velocity Distribution  
By the 1850’s, various difficulties with the existing theories of heat, such as the caloric theory, 
caused some rethinking, and people took another look at the kinetic theory of Bernoulli, but little 
real progress was made until Maxwell attacked the problem in 1859.  Maxwell worked with 
Bernoulli’s picture, that the atoms or molecules in a gas were perfectly elastic particles, obeying 
Newton’s laws, bouncing off each other (and the sides of the container) with straight-line 
trajectories in between collisions. (Actually, there is some inelasticity in the collisions with the 
sides—the bouncing molecule can excite or deexcite vibrations in the wall, this is how the gas 
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and container come to thermal equilibrium.)  Maxwell realized that it was completely hopeless to 
try to analyze this system using Newton’s laws, even though it could be done in principle, there 
were far too many variables to begin writing down equations.  On the other hand, a completely 
detailed description of how each molecule moved was not really needed anyway.  What was 
needed was some understanding of how this microscopic picture connected with the macroscopic 
properties, which represented averages over huge numbers of molecules.  
 
The relevant microscopic information is not knowledge of the position and velocity of every 
molecule at every instant of time, but just the distribution function, that is to say, what 
percentage of the molecules are in a certain part of the container, and what percentage have 
velocities within a certain range, at each instant of time.  For a gas in thermal equilibrium, the 
distribution function is independent of time.  Ignoring tiny corrections for gravity, the gas will be 
distributed uniformly in the container, so the only unknown is the velocity distribution function. 

Velocity Space 
What does a velocity distribution function look like?  Suppose at some instant in time one 
particular molecule has velocity ( ), , .x y zv v v v=

G  We can record this information by constructing a 

three-dimensional velocity space, with axes , ,x y zv v v , and putting in a point P1 representing the 

molecule’s velocity (the red arrow is of course vG ): 

vx axis 

vy axis 

vz axis P1 (vx, vy, vz) 

Point P1 represents the location of one molecule in velocity space 

 

Now imagine that at that instant we could measure the velocities of all the molecules in a 
container, and put points P2, P3, P4, … PN  in the velocity space.  Since N  is of order 1021 for 
100 ccs of gas, this is not very practical!  But we can imagine what the result would be: a cloud 
of points in velocity space, equally spread in all directions (there’s no reason molecules would 
prefer to be moving in the x-direction, say, rather than the y-direction) and thinning out on going 
away from the origin towards higher and higher velocities. 
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Now, if we could keep monitoring the situation as time passes individual points would move 
around, as molecules bounced off the walls, or each other, so you might think the cloud would 
shift around a bit.  But there’s a vast number of molecules in any realistic macroscopic situation, 
and for any reasonably sized container it’s safe to assume that the number of molecules in any 
small region of velocity space remains pretty much constant.  Obviously, this cannot be true for a 
region of velocity space so tiny that it only contains one or two molecules on average.  But it can 
be shown statistically that if there are N molecules in a particular small volume of velocity space, 
the fluctuation of the number with time is of order N , so a region containing a million 
molecules will vary in numbers by about one part in a thousand, a trillion molecule region by one 
part in a million.  Since 100 ccs of air contains of order 1021 molecules, we can in practice divide 
the region of velocity space occupied by the gas into a billion cells, and still have variation in 
each cell of order one part in a million! 
 
The bottom line is that for a macroscopic amount of gas, fluctuations in density, both in ordinary 
space and in velocity space, are for all practical purposes negligible, and we can take the gas to 
be smoothly distributed in both spaces.  

Maxwell’s Symmetry Argument 
Maxwell found the velocity distribution function for gas molecules in thermal equilibrium by the 
following elegant argument based on symmetry.  
 
For a gas of N particles, let the number of particles having velocity in the x-direction between vx 
and vx + dvx be ( )1 x xNf v dv .  In other words, ( )1 x xf v dv  is the fraction of all the particles having 

x-direction velocity lying in the interval between vx and vx + dvx.  (I’ve written f1 instead of f to 
help remember this function refers to only one component of the velocity vector.) 
If we add the fractions for all possible values of vx, the result must of course be 1: 
 

( )1 1.x xf v dv
∞

−∞

=∫  

 
But there’s nothing special about the x-direction—for gas molecules in a container, at least away 
from the walls, all directions look the same, so the same function f will give the probability 
distributions in the other directions too.  It follows immediately that the probability for the 
velocity to lie between vx and vx + dvx, vy and vy + dvy, and vz and vz + dvz must be:  
 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1x x y y z z x y z x yNf v dv f v dv f v dv Nf v f v f v dv dv dv= z  
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Note that this distribution function, when integrated over all possible values of the three 
components of velocity, gives the total number of particles to be N, as it should (since integrating 
over each f1(v)dv gives unity). 
 
Next comes the clever part—since any direction is as good as any other direction, the distribution 
function must depend only on the total speed of the particle, not on the separate velocity 
components. Therefore, Maxwell argued, it must be that:  
 

( ) ( ) ( ) ( )2 2 2
1 1 1x y z x y zf v f v f v F v v v= + +  

 
where F is another unknown function.  However, it is apparent that the product of the functions 
on the left is reflected in the sum of variables on the right.  It will only come out that way if the 
variables appear in an exponent in the functions on the left.  In fact, it is easy to check that this 
equation is solved by a function of the form: 
 

( ) 2

1 .xBv
xf v Ae−=  

 
This curve is called a Gaussian:  it’s centered at the origin, and falls off very rapidly as vx 
increases.  Taking A = B = 1 just to see the shape, we find: 

 

At this point, A and B are arbitrary constants—we shall eventually find their values for an actual 
sample of gas at a given temperature.  Notice that (following Maxwell) we have put a minus sign 
in the exponent because there must eventually be fewer and fewer particles on going to higher 
speeds, certainly not a diverging number.   

Multiplying together the probability distributions for the three directions gives the distribution in 
terms of particle speed v, where v2 = vx

2 +vy
2 + vz

2.   Since all velocity directions are equally 
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likely, it is clear that the natural distribution function is that giving the number of particles 
having speed between v and v + dv.  

From the graph above, it is clear that the most likely value of vx is zero.  If the gas molecules 
were restricted to one dimension, just moving back and forth on a line, then the most likely value 
of their speed would also be zero.  However, for gas molecules free to move in two or three 
dimensions, the most likely value of the speed is not zero.  It’s easiest to see this in a two-
dimensional example. Suppose we plot the points P representing the velocities of molecules in a 
region near the origin, so the density of points doesn’t vary much over the extent of our plot 
(we’re staying near the top of the peak in the one-dimensional curve shown above).   

Now divide the two-dimensional space into regions corresponding to equal increments in speed: 
  

0 to ,  to 2 , 2  to 3 ,v v v v vΔ Δ Δ Δ Δ …  

In the two-dimensional space, 2 2 constant x yv v v= + = is a circle, so this division of the plane is 

into annular regions between circles whose successive radii are vΔ  apart: 

Constant speed circles in a two-dimensional example 

vx

vy

 
Each of these annular areas corresponds to the same speed increment vΔ .  In particular, the 
green area, between a circle of radius 8 vΔ  and one of radius 9 vΔ , corresponds to the same speed 
increment as the small red circle in the middle, which corresponds to speeds between 0 and vΔ . 
Therefore, if the molecular speeds are pretty evenly distributed in this near-the-origin area of the 
(vx, vy) plane, there will be a lot more molecules with speeds between 8 vΔ  and 9  than 
between 0 and —so the most likely speed will not be zero.  To find out what it actually is, we 

vΔ
vΔ
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have to put this area argument together with the Gaussian fall off in density on going far from the 
origin.  We’ll discuss this shortly.  
 
The same argument works in three dimensions—it’s just a little more difficult to visualize. 
Instead of concentric circles, we have concentric spheres.  All points lying on a spherical surface 
centered at the origin correspond to the same speed.   
Let us now figure out the distribution of particles as a function of speed.  The distribution in the 
three-dimensional space ( ), ,x y zv v v  is from Maxwell’s analysis 

 

( ) ( ) ( )
( )2 2 2

2

1 1 1

3

3

# of particles in small box  

x y z

x y z x y z x y z

B v v v
x y z

Bv
x y z

dv dv dv Nf v f v f v dv dv dv

NA e dv dv dv

NA e dv dv dv

− + +

−

=

=

=

 

 
To translate this to the number of particles having speed between v and v dv+  we need to figure 
out how many of those little x y zdv dv dv boxes there are corresponding to speeds between v and  

.  In other words, what is the volume of velocity space between the two neighboring 
spheres, both centered at the origin, the inner one with radius v, the outer one infinitesimally 
bigger, with radius v ?    Since dv is so tiny, this volume is just the area of the sphere 
multiplied by dv: that is, .  

v dv+

dv+
24 v dvπ

Finally, then, the probability distribution as a function of speed is: 
 

22 3( ) 4 .Bvf v dv v A e dvπ −=  
 
Of course, our job isn’t over—we still have these two unknown constants A and B.  However, 
just as for the function ( ) ( )1 ,xf v f v dv  is the fraction of the molecules corresponding to speeds 

between v and  , and all these fractions taken together must add up to 1.  v dv+
That is, 

( )
0

1.f v dv
∞

=∫  

We need the standard result ( )22

0

1/ 4 /Bxx e dx B Bπ
∞

− =∫  (a derivation can be found in my 152 

Notes on Exponential Integrals), and find: 
 

3 14 1
4

A
B B

ππ .=  

 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/ExpIntegrals.htm


 36

This means that there is really only one arbitrary variable left: if we can find B, this equation 

gives us A: that is, 3 344 A Bπ
π

= / 2 , and  34 Aπ  is what appears in ( )f v . 

Looking at ( )f v , we notice that B is a measure of how far the distribution spreads from the 

origin: if B is small, the distribution drops off more slowly—the average particle is more 
energetic.   Recall now that the average kinetic energy of the particles is related to the 
temperature by 2 31

2 2mv kT= .  This means that B is related to the inverse temperature.  

In fact, since ( )f v dv  is the fraction of particles in the interval dv at v, and those particles have 

kinetic energy  ½mv2, we can use the probability distribution to find the average kinetic energy 
per particle: 
 

2 21 1
2 20

( ) .mv mv f v dv
∞

= ∫  

 

To do this integral we need another standard result: ( )24 2

0

3 / 8 /Bxx e dx B Bπ
∞

− =∫ .  We find: 

21
2

3 .
4
mmv
B

=  

 
.Substituting the value for the average kinetic energy in terms of the temperature of the gas,  
 

2 31
2 2mv kT=  

 

gives B = m/2kT, so  
3/ 2

3 3/ 244 4
2

mA B
kT

π π
ππ

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 

 
This means the distribution function 
 

2
3/ 2 3/ 2

2 / 2 2 /( ) 4 4
2 2

mv kT E kTm mf v v e v e
kT kT

π π
π π

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
where E is the kinetic energy of the molecule. 
Note that this function increases parabolically from zero for low speeds, then curves round to 
reach a maximum and finally decreases exponentially.  As the temperature increases, the position 
of the maximum shifts to the right.  The total area under the curve is always one, by definition.  
For air molecules (say, nitrogen) at room temperature the curve is the blue one below. The red 
one is for an absolute temperature down by a factor of two: 
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The distribution function for molecular speeds
as a function of absolute temperature is:

Enter mass and temperature below:
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f v v
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e mv kT( ) /= F
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What about Potential Energy? 
Maxwell’s analysis solves the problem of finding the statistical velocity distribution of molecules 
of an ideal gas in a box at a definite temperature T: the relative probability of a molecule having 
velocity  is proportional to .  The position distribution is taken to be uniform: 
the molecules are assumed to be equally likely to be anywhere in the box. 

v
G 2 / 2 /mv kT E kTe e− −=

 
But how is this distribution affected if in fact there is some kind of potential pulling the 
molecules to one end of the box?  In fact, we’ve already solved this problem, in the discussion 
earlier on the isothermal atmosphere.  Consider a really big box, kilometers high, so air will be 
significantly denser towards the bottom.  Assume the temperature is uniform throughout. We 
found under these conditions that with Boyles Law expressed in the form 
 

CPρ =  
the atmospheric density varied with height as 
 

0 0,  or equivalently  .Cgh CghP P e eρ ρ− −= =  
 

Now we know that Boyle’s Law is just the fixed temperature version of the Gas Law PV nRT= , 
and the density  
 

mass/volume /Nm Vρ = =  
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with N the total number of molecules and m the molecular mass,  
 

/ .CP Nm Vρ= =  
 
Rearranging, 
 

/ /APV Nm C nN m C,= =  
 
for n moles of gas, each mole containing Avogadro’s number NA molecules. 
 
Putting this together with the Gas Law, 
 

/ ,APV nN m C nRT  = =  
So 
 

/ /AC N m RT m kT= =  
 
where Boltzmann’s constant  as discussed previously. / Ak R N=

 
The dependence of gas density on height can therefore be written 
 

/
0 0 .Cgh mgh kTe eρ ρ ρ− −= =  

 
The important point here is that mgh is the potential energy of the molecule, and the distribution 
we have found is exactly parallel to Maxwell’s velocity distribution, the potential energy now 
playing the role that kinetic energy played in that case. 
 
We’re now ready to put together Maxwell’s velocity distribution with this height distribution, to 
find out how the molecules are distributed in the atmosphere, both in velocity space and in 
ordinary space.  In other words, in a six-dimensional space! 
Our result is: 

( ) ( ) ( )( )22 1/ 2 // 2 / /, , , , , , .mv mgh kTmv kT mgh kT E kT
x y zf x y z v v v f h v e e e e− +− − −= ∝ = =  

 
 That is, the probability of a molecule having total energy E is proportional to .  /E kTe−

This is the Boltzmann, or Maxwell-Boltzmann, distribution.  It turns out to be correct for any 
type of potential energy, including that arising from forces between the molecules themselves.  



 39

Degrees of Freedom and Equipartition of Energy 
By a “degree of freedom” we mean a way in which a molecule is free to move, and thus have 
energy—in this case, just the x, y, and z directions.  Boltzmann reformulated Maxwell’s analysis 
in terms of degrees of freedom, stating that there was an average energy  ½kT  in each degree of 
freedom, to give total average kinetic energy 3.½kT,  so the specific heat per molecule is 
presumable 1.5k, and given that k = R/NA, the specific heat per mole comes out at 1.5R.  In fact, 
this is experimentally confirmed for monatomic gases.  However, it is found that diatomic gases 
can have specific heats of 2.5R and even 3.5R.  This is not difficult to understand—these 
molecules have more degrees of freedom.  A dumbbell molecule can rotate about two directions 
perpendicular to its axis.  A diatomic molecule could also vibrate.  Such a simple harmonic 
oscillator motion has both kinetic and potential energy, and it turns out to have total energy kT  
in thermal equilibrium.  Thus, reasonable explanations for the specific heats of various gases can 
be concocted by assuming a contribution ½k from each degree of freedom.  But there are 
problems.  Why shouldn’t the dumbbell rotate about its axis?  Why do monatomic atoms not 
rotate at all?  Even more ominously, the specific heat of hydrogen, 2.5R at room temperature, 
drops to 1.5R at lower temperatures.  These problems were not resolved until the advent of 
quantum mechanics.  

Brownian Motion 
One of the most convincing demonstrations that gases really are made up of fast moving 
molecules is Brownian motion, the observed constant jiggling around of tiny particles, such as 
fragments of ash in smoke.  This motion was first noticed by a Scottish botanist, who initially 
assumed he was looking at living creatures, but then found the same motion in what he knew to 
be particles of inorganic material.  Einstein showed how to use Brownian motion to estimate the 
size of atoms.  For the movie, click here!  

 
 

Ideal Gas Thermodynamics: Specific Heats, Isotherms, 
Adiabats 
Introduction: the Ideal Gas Model, Heat, Work and Thermodynamics 
The Kinetic Theory picture of a gas (outlined in the previous lecture) is often called the Ideal 
Gas Model.  It ignores interactions between molecules, and the finite size of molecules. In fact, 
though, these only become important when the gas is very close to the temperature at which it 
become liquid, or under extremely high pressure.  In this lecture, we will be analyzing the 
behavior of gases in the pressure and temperature range corresponding to heat engines, and in 
this range the Ideal Gas Model is an excellent approximation.  Essentially, our program here is to 
learn how gases absorb heat and turn it into work, and vice versa.  This heat-work interplay is 
called thermodynamics.  

http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/brownian/brownian.html
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Julius Robert Mayer was the first to appreciate that there is an equivalence between heat and 
mechanical work. The tortuous path that led him to this conclusion is described in an earlier 
lecture, but once he was there, he realized that in fact the numerical equivalence—how many 
Joules in one calorie in present day terminology—could be figured out easily from the results of 
some measurements of gas specific heat by French scientists.  The key was that they had 
measured specific heats both at constant volume and at constant pressure.  Mayer realized that in 
the latter case, heating the gas necessarily increased its volume, and the gas therefore did work in 
pushing to expand its container.  Having convinced himself that mechanical work and heat were 
equivalent, evidently the extra heat needed to raise the temperature of the gas at constant 
pressure was exactly the work the gas did on its container.  (Historical note: although he did the 
work in 1842, he didn’t publish until 1845, and at first miscalculated—but then gave a figure 
within 1% of the correct value of 4.2 joules per calorie.) 
 
The simplest way to see what’s going on is to imagine the gas in a cylinder, held in by a piston, 
carrying a fixed weight, able to move up and down the cylinder smoothly with negligible 
friction.  The pressure on the gas is just the total weight pressing down divided by the area of the 
piston, and this total weight, of course, will not change as the piston moves slowly up or down: 
the gas is at constant pressure.  
 

Moveable  
piston 

Gas 

Gas at constant pressure 
 

The Gas Specific Heats CV and CP

Consider now the two specific heats of this same sample of gas, let’s say one mole:  
 
Specific heat at constant volume,  (piston glued in place), VC
 
Specific heat at constant pressure, PC  (piston free to rise, no friction). 
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In fact, we already worked out  in the VC Kinetic Theory lecture: at temperature T, recall the 

average kinetic energy per molecule is 3
2 kT , so one mole of gas—Avogadro’s number of 

molecules—will have total kinetic energy, which we’ll label internal energy,  
 

3 3
int 2 2 .AE kT N R= ⋅ = T  

 
(In this simplest case, we are ignoring the possibility of the molecules having their own internal 
energy: they might be spinning or vibrating—we’ll include that shortly).   
 
That the internal energy is 3

2 RT  per mole immediately gives us the specific heat of a mole of gas 
in a fixed volume, 
 

3
2VC R=  

 
that being the heat which must be supplied to raise the temperature by one degree. 
 
However, if the gas, instead of being in a fixed box, is held in a cylinder at constant pressure, 
experiment confirms that more heat must be supplied to raise the gas temperature by one degree.  
 
As Mayer realized, the total heat energy that must be supplied to raise the temperature of the gas 
one degree at constant pressure is 3

2 k  per molecule plus the energy required to lift the weight.  
 
The work the gas must do to raise the weight is the force the gas exerts on the piston multiplied 
by the distance the piston moves. 
 
If the area of piston is A, then the gas at pressure P exerts force PA.  

 
If on heating through one degree the piston rises a distance Δh the gas does work 
 

.PA h P V⋅Δ = Δ  
 
Now, for one mole of gas, , so at constant P PV RT=
 

.P V R TΔ = Δ  
 
Therefore, the work done by the gas in raising the weight is just R TΔ , the specific heat at 
constant pressure, the total heat energy needed to raise the temperature of one mole by one 
degree, 
 

http://galileo.phys.virginia.edu/classes/252/kinetic_theory.html
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.P VC C R= +  
 
In fact, this relationship is true whether or not the molecules have rotational or vibrational 
internal energy.  (It’s known as Mayer’s relationship.)  For example, the specific heat of oxygen 
at constant volume 
 

( ) 52 2OVC R=  

 
and this is understood as a contribution of 3

2 R  from kinetic energy, and R from the two rotational 
modes of a dumbbell molecule (just why there is no contribution form rotation about the third 
axis can only be understood using quantum mechanics).  The specific heat of oxygen at constant 
pressure 
 

( ) 72 2OPC R= . 

 
It’s worth having a standard symbol for the ratio of the specific heats: 
 

.P

V

C
C

γ=  

Tracking a Gas in the (P, V) Plane: Isotherms and Adiabats 
An ideal gas in a box has three thermodynamic variables: P, V, T.  But if there is a fixed mass of 
gas, fixing two of these variables fixes the third from  (for n moles). In a heat engine, 
heat can enter the gas, then leave at a different stage.  The gas can expand doing work, or 
contract as work is done on it.  To track what’s going on as a gas engine transfers heat to work, 
say, we must follow the varying state of the gas.  We do that by tracing a curve in the (P, V) 
plane.  

PV nRT=

 
Supplying heat to a gas which consequently expands and does mechanical work is the key to the 
heat engine.  But just knowing that a gas is expanding and doing work is not enough information 
to follow its path in the (P, V) plane.  The route it follows will depend on whether or not heat is 
being  supplied (or taken away) at the same time.  There are, however, two particular ways a gas 
can expand reversibly—meaning that a tiny change in the external conditions would be sufficient 
for the gas to retrace its path in the (P, V) plane backwards.  It’s important to concentrate on 
reversible paths, because as Carnot proved and we shall discuss later, they correspond to the 
most efficient engines.  The two sets of reversible paths are the isotherms and the adiabats. 
 
Isothermal behavior:   the gas is kept at constant temperature by allowing heat flow back and 
forth with a very large object (a “heat reservoir”) at temperature T.  From , it is PV nRT=
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evident that for a fixed mass of gas, held at constant T  but subject to (slowly) varying pressure, 
the variables P, V will trace a hyperbolic path in the (P, V) plane.   
 
This path, , say is called the isotherm at temperature T1PV nRT= 1.  Here are two examples of 
isotherms: 

Isotherms PV  = RT  for One Mole at 273K, 373K
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Adiabatic behavior:   “adiabatic” means “nothing gets through”, in this case no heat gets in or 
out of the gas through the walls.  So all the work done in compressing the gas has to go into the 
internal energy . intE

Adiabatic Compression 

Cylinder of insulating material 

Gas 

 
As the gas is compressed, it follows a curve in the (P, V) plane called an adiabat.  To see how an 
adiabat differs from an isotherm, imagine beginning at some point on the blue 273K isotherm on 
the above graph, and applying pressure so the gas moves to higher pressure and lower volume. 
Since the gas’s internal energy is increasing, but the number of molecules is staying the same, its 
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temperature is necessarily rising, it will move towards the red curve, then above it.  This means 
the adiabats are always steeper than the isotherms.   
 
In the diagram below, we’ve added a couple of adiabats to the isotherms: 
 

Isotherms and Adiabats for One Mole
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Equation for an Adiabat 
rresponds to  for an isotherm?   

n raising the gas temperature by , the change in the internal energy—the sum of molecular 

 
his is always true: whether or not the gas is changing volume is irrelevant, all that counts in 

r 

What equation for an adiabat co  1PV nRT=

 
O TΔ
kinetic energy, rotational energy and vibrational energy (if any), 
 

int .VE C TΔ = Δ  

T intE  
is the sum of the energies of the individual molecules (assuming as we do here that attractive o
repulsive forces between molecules are negligible). 
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In adiabatic compression, all the work done by the external pressure goes into this internal 
energy, so 

.VP V C T− Δ = Δ  
 
(Compressing the gas of course gives negative  positive .)  ,VΔ intEΔ

 
 
To find the equation of an adiabat, we take the infinitesimal limit 
 

VPdV C dT− =  
 

Divide the left-hand side by PV, the right-hand side by nRT (since that’s OK) to find ,PV nRT=

.
V

R dV dT
C V nT

− =  

 
Recall now that  and  It follows that ,P VC C nR= + / .P VC C γ=

 

1.P V

V V

C CnR
C C

γ
−

= = −  

Hence  

( )1 dV dT
V T

γ− − =∫ ∫  

and integrating 
( )ln 1 ln const.T Vγ+ − =  

 
from which the equation of an adiabat is 
 

1 const.TV γ− =  
 
From , the P, V equation for an adiabat can be found by multiplying the left-hand 
side of this equation by the constant PV/T,  giving 

PV nRT=

 
const.PV γ =   for an adiabat, 

 
where 5

3γ =  for a monatomic gas, 7
5  for a diatomic gas. 
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Heat Engines: the Carnot Cycle 
Flashlet here! 

The Ultimate in Fuel Efficiency 
All standard heat engines (steam, gasoline, diesel) work by supplying heat to a gas, the gas then 
expands in a cylinder and pushes a piston to do its work.  The catch is that the heat and/or the gas 
must somehow then be dumped out of the cylinder to get ready for the next cycle. 
 
Our aim in this lecture is to figure out just how efficient such a heat engine can be: what’s the 
most work we can possibly get for a given amount of fuel?  We’ll examine here the simplest 
cyclical model: an ideal gas enclosed in a cylinder, with external connections to supply and take 
away heat, and a frictionless piston for the gas to perform (and to absorb) mechanical work: 
 

Carnot Engine
  

The efficiency question was first posed—and solved—by Sadi Carnot in 1820, not long after 
steam engines had become efficient enough to begin replacing water wheels, at that time the 
main power sources for industry.  Not surprisingly, perhaps, Carnot visualized the heat engine as 
a kind of water wheel in which heat (the “fluid”) dropped from a high temperature to a low 
temperature, losing “potential energy” which the engine turned into work done, just like a water 
wheel.   
 
(Historical Note: actually, Carnot thought at the time that heat was a fluid—he believed in the 
Caloric Theory.  Remarkably, the naïve “potential energy of a caloric fluid” approach gives 
exactly the right answer for the efficiency of an ideal engine!  Carnot accepted that there was an 
absolute zero of temperature, from which he figured out that on being cooled to absolute zero, 
the caloric fluid would give up all its heat energy.  Therefore, if it falls only half way to absolute 
zero from its beginning temperature, it will give up half its heat, and an engine taking in heat at T 
and shedding it at ½T will be utilizing half the possible heat, and be 50% efficient.  Picture a 
water wheel that takes in water at the top of a waterfall, but lets it out halfway down.  So, the 
efficiency of an ideal engine operating between two temperatures will be equal to the fraction of 
the temperature drop towards absolute zero that the heat undergoes.  This turns out to be exactly 
correct, even though the reasoning is based on a false model.) 

http://galileoandeinstein.phys.virginia.edu/more_stuff/flashlets/carnot.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/What%20is%20Heat.htm
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The water wheel analogy proved to be useful in another way: Carnot knew that the most efficient 
water wheels were those that operated smoothly, the water went into the buckets at the top from 
the same level, it didn’t fall into them through any height, and didn’t splash around.  In the 
idealized limit of a frictionless water wheel, with gentle flow on and off the wheel, such a 
machine would be reversible—if the wheel is run backwards by power supplied from the 
outside, so it raises water back up, it will take the same power that the wheel was itself delivering 
in normal operation. This idealized water wheel is clearly perfectly efficient, so the analogs of 
zero friction and gentle flow are what we need in the perfect heat engine. 
 
Getting friction as low as possible is obviously necessary, but what, exactly, is “gentle flow” in 
the heat engine?  For the water wheel, it meant having water at the top flow smoothly into 
buckets at the same height, no wasteful drop that would lose potential energy with no gain.  For 
the heat engine, the analog is to have heat flow from the heat supply into the engine with no drop 
in temperature. In a real engine, there must of course be a slight drop in temperature for the heat 
to flow at all (just as there is for a real water wheel), but this has to be minimized.   
 
So, as the heat is supplied and the gas expands, the temperature of the gas must stay the same as 
that of the heat supply (the “heat reservoir”): the gas is expanding isothermally.  Similarly, it 
must contract isothermally later in the cycle as it sheds heat.   
 
To figure out the efficiency, we need to track the engine through a complete cycle, finding out 
how much work it does, how much heat is taken in from the fuel, and how much heat is dumped 
in getting ready for the next cycle.  You might want to look at the flashlet to get the picture at 
this point: the cycle has four steps, an isothermal expansion as heat is absorbed, followed by an 
adiabatic expansion, then an isothermal contraction as heat is shed, finally an adiabatic 
contraction to the original configuration.  We’ll take it one step at a time. 

Step 1: Isothermal Expansion 
So the first question is: How much heat is supplied, and how much work is done,  as the gas 
expands isothermally?  
 
Taking the temperature of the heat reservoir to be TH  (H for hot), the expanding gas follows the 
isothermal path HPV nRT=  in the (P, V) plane.  
 

http://galileoandeinstein.phys.virginia.edu/more_stuff/flashlets/carnot.htm
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ΔV Vb

Pa

P 

Pb

V 

a 

b 

Va

Isothermal expansion from a to b along PV = nRTH

 
The work done by the gas in a small volume expansion VΔ is just P VΔ , the area under the 
curve (as we proved in the last lecture).  
 
Hence the work done in expanding isothermally from volume Va to Vb is the total area under the 
curve between those values,   
  

work done isothermally ln .
b b

a a

V V
bH

H
aV V

VnRTPdV dV nRT
V V

= = =∫ ∫  

 
Since the gas is at constant temperature TH, there is no change in its internal energy during this 

expansion, so the total heat supplied must be ln b
H

a

VnRT
V

, the same as the external work the gas 

has done. 
 
In fact, this isothermal expansion is only the first step: the gas is at the temperature of the heat 
reservoir, hotter than its other surroundings, and will be able to continue expanding even if the 
heat supply is cut off.  To ensure that this further expansion is also reversible, the gas must not 
be losing heat to the surroundings.  That is, after the heat supply is cut off, there must be no 
further heat exchange with the surroundings, the expansion must be adiabatic.   

Step 2: Adiabatic Expansion 
By definition, no heat is supplied in adiabatic expansion, but work is done. 
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The work the gas does  in adiabatic expansion is like that of a compressed spring expanding 
against a force—equal to the work needed to compress it in the first place, for an ideal (and 
perfectly insulated) gas.  So adiabatic expansion is reversible. 
 
To find the work the gas does expanding adiabatically from Vb to Vc, say, the Step 1 analysis 
above is repeated for the adiabat ,b bPV PVγ γ=   
 

1 1

adiabatwork done adiabatically .
1

c c

b b

V V
c b

b b b b
V V

V VdVW PdV PV PV
V

γ γ
γ γ

γ γ

− −−
= = =

−∫ ∫  

 
 

Again, this work equals the area under the curve from b to c in the (P, V) plane. 
 
Now ,c c b bPV PVγ γ=  so the expression can be written more neatly: 
 

adiabat .
1

c c b bPV PVW
γ

−
=

−
 

 
This is a useful expression for the work done since we are plotting in the (P, V) plane, but note 
that from the gas law  the numerator is just PV nRT= ( )c bnR T T− , and from this 

, as of course it must be—this is the loss of internal energy by the gas on 

expanding against the external pressure.  
(adiabat V c bW nC T T= − )

)

Steps 3 and 4: Completing the Cycle 
We’ve looked in detail at the work a gas does in expanding as heat is supplied (isothermally) and 
when there is no heat exchange (adiabatically).  These are the two initial steps in a heat engine, 
but it is necessary for the engine to get back to where it began, for the next cycle.  The general 
idea is that the piston drives a wheel (as in the diagram at the beginning of this lecture), which 
continues to turn and pushes the gas back to the original volume. 
  
But it is also essential for the gas to be as cold as possible on this return leg, because the wheel is 
now having to expend work on the gas, and we want that to be as little work as possible—it’s 
costing us.  The colder the gas, the less pressure the wheel is pushing against. 
 
To ensure that the engine is as efficient as possible, this return path to the starting point 

must also be reversible.  We can’t just retrace the path taken in the first two legs, that 

would take all the work the engine did along those legs, and leave us with no net output.  Now 
the gas cooled during the adiabatic expansion from b to c, from T

( ,a aP V

H to TC, say, so we can go some 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/SpHeatGas.htm
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distance back along the reversible colder isotherm TC.  But this won’t get us back to ( ) , 

because that’s on the T

,a aP V

H isotherm.  The simplest option—the one chosen by Carnot—is to 
proceed back along the cold isotherm to the point where it intersects the adiabat through a, then 
follow that adiabat back to a.  That route keeps the gas as cold as possible for as long as possible, 
minimizing the external work needed to get it back to the original state. 
 
To picture the Carnot cycle in the (P, V) plane, recall from the previous lecture the graph 
showing two isotherms and two adiabats: 
 

Isotherms and Adiabats for One Mole
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Carnot’s cycle is around that curved quadrilateral having these four curves as its sides.  
 
Let us redraw this, slightly less realistically but more conveniently: 
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h ef g V 

P 
d

c

b

a

 

Efficiency of the Carnot Engine 
In a complete cycle of Carnot’s heat engine, the gas traces the path abcd.  The important 
question is: what fraction of the heat supplied from the hot reservoir (along the red top isotherm) 
is turned into mechanical work?  This fraction is called the efficiency of the engine. 
 
The work output along any curve in the (P, V) plane is just ,PdV∫  the area under the curve, but 

it will be negative if the volume is decreasing!  So the work done by the engine during the hot 
isothermal segment is the area abfh, then the adiabatic expansion adds the area bcef, but as the 
gas is compressed back, the wheel has to do work on the gas equal to the area cdge as heat is 
dumped into the cold reservoir, then dahg as the gas is recompressed to the starting point.   
 
The bottom line is that: 
 

the total work done by the gas is the area of the circuit abcd 
 
 that is, the area of the curved “parallelogram” in the  (P, V) graph above.   
 
We could compute this area by finding PdV∫ for each segment, but that is unnecessary—on 

completing the cycle, the gas is back to its initial temperature, so has the same internal energy.   
 
Therefore, the work done by the engine must be just the difference between the heat supplied at 
TH and that dumped at TC.  
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Now the heat supplied along the initial hot isothermal path ab  is equal to the work done along 
that leg, (from the paragraph above on isothermal expansion): 
 

ln b
H H

a

VQ nRT
V

=  

 
and the heat dumped into the cold reservoir along cd is  
 

ln .c
C C

d

VQ nRT
V

=  

 
The difference between these two is the net work output. This can be simplified using the 
adiabatic equations for the other two sides of the cycle: 
 

1 1

1 1.
H b C c

H a C d

T V T V

T V T V

γ γ

γ γ

− −

− −

=

=
 

 
Dividing the first of these equations by the second, 
 

b c

a d

V V
V V
⎛ ⎞ ⎛

=⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 

 
and using that in the preceding equation for QC,  
 

ln .a C
C C

b H

V TQ nRT Q
V T

= = H  

 
So for the Carnot cycle the ratio of heat supplied to heat dumped is just the ratio of the 
absolute temperatures! 
 

, or   CH H H

C C H C

QQ T Q
Q T T T

= = .  

 
Remember this: it’ll be important in developing the concept of entropy. 
 
The work done can now be written simply: 
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1 .C
H C H

H

TW Q Q Q
T

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

 
Therefore the efficiency of the engine, defined as the fraction of the ingoing heat energy that 
is converted to available work, is 
 

efficiency 1 .C

H H

TW
Q T

= = −  

 
These temperatures are of course in degrees Kelvin, so for example the efficiency of a Carnot 
engine having a hot reservoir of boiling water and a cold reservoir ice cold water will be 

, just over a quarter of the heat energy is transformed into useful work.  This 
is the very same expression Carnot found from his water wheel analogy. 
1 (273 / 373) 0.27− =

 
After all the effort to construct an efficient heat engine, making it reversible to eliminate 
“friction” losses, etc., it is perhaps somewhat disappointing to find this figure of 27% efficiency 
when operating between 0 and 100 degrees Celsius.  Surely we can do better than that? After all, 
the heat energy of hot water is the kinetic energy of the moving molecules, can’t we find some 
device to channel all that energy into useful work?  Well, we can do better than 27%, by having a 
colder cold reservoir, or a hotter hot one.  But there’s a limit: we can never reach 100% 
efficiency, because we cannot have a cold reservoir at 0 ,CT K=  and, even if we did, after the 
first cycle the heat dumped into it would warm it up!   

 

The Laws of Thermodynamics and Limits on Engine 
Efficiency 
The Laws of Thermodynamics 
 
(Picture below from St. Andrews) 

In 1850, Rudolph Clausius, a German physicist, created the 
science of thermodynamics.  He was convinced by Joule’s 
experiments (he didn’t know about Mayer’s work at the time) 
that total energy, including kinetic, potential, electrical, and, 
importantly, heat, was conserved, he called this: 
 
The first law of thermodynamics: total energy, including 
heat energy, is always conserved. 
 

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Clausius.html
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  He explicitly assumed that heat was just the kinetic energy of the moving particles that made up 
a body.  He was the first to make clear that Carnot’s analysis of the heat engine (the cycle) was 
almost right except that the “caloric fluid”, meaning heat, wasn’t actually conserved—less of it 
was dumped in the cold reservoir than was taken from the hot one.  The difference of course was 
the work done (in an ideal engine). Engines at the time were so inefficient that this loss of heat 
energy wasn’t obvious. 
But abolishing the caloric fluid in favor of overall energy conservation raised another problem.  
The fluid theory had been highly successful in describing heat flow through solid materials, like 
electric current flow but with temperature gradients replacing voltage drops, different materials 
having different thermal conductivities, etc.   
 
(Note: Fourier revolutionized mathematics by inventing Fourier series, his method of analyzing caloric fluid flow.  
In fact Kelvin used it in 1862 to estimate the rate of cooling of the earth.  Kelvin’s conclusion that the earth was 
twenty million years old or so (much older would be much colder) led to decades of debate with Darwinians and 
geologists, both of whom needed much more time, for evolution and rock strata formation respectively.  The debate 
went on until the 1890’s when the discovery of radioactivity made clear that this unsuspected source of subterranean 
heat was keeping us all warm.  Once this extra heat was included, the heat flow analysis gave a much older earth—
and everyone was in agreement.)   
 
In the caloric theory, then, heat flowed naturally from a high temperature to a low temperature, 
just as a fluid flows downhill, or an electric current to a lower voltage.  And, of course, this heat 
flow is invariably observed in nature.   
 
But the first law makes no such prediction: the conservation of total energy would be 
equally satisfied if heat flowed from a cold body to a hot body.  
 
Conclusion: since the caloric theory is dead, we need to add this universally observed direction 
of heat flow as another law.  Here it is: 
 
The second law of thermodynamics: heat always flows from a warm body to a cooler one, 
never the other way.  An equivalent statement is that we cannot devise an engine, working 
in a cycle, that causes heat to flow from cold to warm unless we supply outside energy. 
 
Translation: your refrigerator won’t work if it’s not plugged into some power supply, and no-one 
will ever design one that does. 
 
Unlike the first law, there are many ways of writing this second law: our wording above is a 
paraphrase of Clausius’ original formulation.  Kelvin gave it a more “engineering” look: 
 It is impossible to devise an engine which, working in a cycle, shall produce no effect other 
than the extraction of heat from a reservoir and the performance of an equal amount of 
mechanical work. 
 

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Thomson.html
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Exercise: think about how you might prove these two definitions amount to the same thing. 
The second law can also be stated in terms of entropy, a concept we’ll cover in the next lecture. 
It’s important to note that the first law of thermodynamics, the conservation of total energy 
including heat, would not be violated by an engine that powered a ship by extracting heat energy 
from the surrounding seawater.  This second law is saying something new: you can’t do that!  
And, this second law does not follow from the first by logical deduction—it comes (like the first) 
from experiment and observation. 

How the Second Law Limits Engine Efficiency  
An important consequence of the second law is that no engine can be more efficient than the 
Carnot cycle.  Essentially, this is because a “super efficient” engine, if one existed, could be used 
to drive a Carnot cycle in reverse, which would pump back to the hot reservoir the heat the super 
efficient engine dumped in the cold reservoir, and the net effect of the two coupled engines 
would be to take heat from the hot reservoir and do work, contradicting the second law. 
To see this, we plot the heat/energy flow for the Carnot cycle: 

QH
Heat reservoir TH

 
Here (all expressed in Joules, of course). H CQ Q W= +

Since the engine is reversible, it can also be run backwards (this would be a refrigerator): outside 
work is supplied, and heat is extracted from a cold reservoir and dumped into a hot reservoir: 

W 

Heat dump TC

Work out 

QC

Energy flow in a Carnot cycle 
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QH Heat dumped at high 
temperature TH

 
Suppose now we have a super efficient engine, represented by the first diagram above, and 
dumping the same heat per cycle QC into the cold reservoir, but taking in more heat energy 

 Joules from the hot reservoir, and performing more work: WHQ + Δ +Δ .   
 
Now, we hook up our super efficient engine to the “Carnot refrigerator” in the other diagram 
above. The refrigerator sucks out of the cold reservoir all the heat the super efficient engine 
dumped there, and needs W Joules of work per cycle to do it.  The super efficient engine can 
provide this, and there are still  Joules of work to spare. Of course, the Carnot refrigerator has 
also dumped Q

Δ
H Joules of heat in the hot reservoir.  But the bottom line is that between them, the 

super efficient engine and the Carnot refrigerator have extracted Δ Joules of heat from the hot 
reservoir and performed  Joules of work—contradicting the second law.  Δ
 
The second law therefore forces the conclusion that no amount of machine design will produce 
an engine more efficient than the Carnot cycle.  The rather low ultimate efficiencies this dictated 
came as a shock to nineteenth century engineers. 
 
Exercise: prove that it is impossible to construct a reversible engine, operating between two 
temperatures, that is less efficient than the Carnot cycle.  (Hint: hook it to a Carnot cycle, drive 
one backwards.)  It follows that although we used an ideal gas in our analysis, that was 
unnecessary—the same efficiency would result with any reversible engine operating between the 
same two temperatures.  
 

W 

Heat extracted from cold 
object at TC

Work IN 

QC

Energy flow in a Carnot refrigerator 
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A New Thermodynamic Variable: Entropy 
Introduction 
The word “entropy” is sometimes used in everyday life as a synonym for chaos, for example: the 
entropy in my room increases as the semester goes on.  But it’s also been used to describe the 
approach to an imagined final state of the universe when everything reaches the same 
temperature: the entropy is supposed to increase to a maximum, then nothing will ever happen 
again.  This was called the Heat Death of the Universe, and may still be what’s believed, except 
that now everything will also be flying further and further apart. 
 
So what, exactly, is entropy, where did this word come from?  In fact, it was coined by Rudolph 
Clausius in 1865, a few years after he stated the laws of thermodynamics introduced in the last 
lecture.  His aim was to express both laws in a quantitative fashion.   
 
Of course, the first law—the conservation of total energy including heat energy—is easy to 
express quantitatively: one only needs to find the equivalence factor between heat units and 
energy units, calories to joules, since all the other types of energy (kinetic, potential, electrical, 
etc.) are already in joules, add it all up to get the total and that will remain constant. (When 
Clausius did this work, the unit wasn’t called a Joule, and the different types of energy had other 
names, but those are merely notational developments.)  
 
The second law, that heat only flows from a warmer body to a colder one, does have quantitative 
consequences: the efficiency of any reversible engine has to equal that of the Carnot cycle, and 
any nonreversible engine has less efficiency.  But how is the “amount of irreversibility” to be 
measured?   Does it correspond to some thermodynamic parameter?  The answer turns out to be 
yes: there is a parameter Clausius labeled entropy that doesn’t change in a reversible process, but 
always increases in an irreversible one. 

Heat Changes along Different Paths from a to c are Different! 
To get a clue about what stays the same in a reversible cycle, let’s review the Carnot cycle once 
more.  We know, of course, one thing that doesn’t change: the internal energy of the gas is the 
same at the end of the cycle as it was at the beginning, but that’s just the first law.  Carnot 
himself thought that something else besides total energy was conserved: the heat, or caloric fluid, 
as he called it.  But we know better: in a Carnot cycle, the heat leaving the gas on the return 
cycle is less than that entering earlier, by just the amount of work performed.  In other words, the 
total amount of “heat” in the gas is not conserved, so talking about how much heat there is in the 
gas is meaningless. 
 
To make this explicit, instead of cycling, let’s track the gas from one point in the (P, V) plane to 
another, and begin by connecting the two points with the first half of a Carnot cycle, from a to c: 
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Isotherm 

Heat QH supplied 

No heat supplied 

 V 

P 

c

b

a 

Adiabat 

 
Evidently, heat QH has been supplied to the gas—but this does not mean that we can say the gas 
at  has Q( , )c cP V H  more heat than the gas at .  Why not?  Because we could equally well 
have gone from a to c by a route which is the second half of the Carnot cycle traveled 
backwards: 

( , )a aP V

Heat QC supplied 

 V 

P 

d

c

a

No heat supplied 

 
This is a perfectly well defined reversible route, ending at the same place, but with quite a 
different amount of heat supplied! 
 
So we cannot say that a gas at a given (P, V) contains a definite amount of heat.  It does of course 
have a definite internal energy, but that energy can be increased by adding a mix of external 
work and supplied heat, and the two different routes from a to c have the same total energy 
supplied to the gas, but with more heat and less work along the top route. 
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But Something Heat Related is the Same: Introducing Entropy 
However, notice that one thing (besides total internal energy) is the same over the two routes in 
the diagrams above: 
 
 the ratio of the heat supplied to the temperature at which is was delivered: 
 

/ / .H H CQ T Q T= C  
 
 (This equation was derived in the last lecture.) 
 
Of course, we’ve chosen two particular reversible routes from a to c: each is one stretch of 
isotherm and one of adiabat.  What about more complicated routes?  
 
Let’s begin by cutting a corner in the previous route: 

g 

f
e

 V 

P 
d

c

a

 
Suppose  we follow the path aefgc instead of adc, where ef is an isotherm and fg an adiabat.  
Notice that  efgd  is a little Carnot cycle.  Evidently, then,  
 

,ef dg

ef C

Q Q
T T

=  

 
and 
 

,C dg gQ Q Q= + c  
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from which  

,ef gcH

H ef C

Q QQ
T T T

= +  

 
But we can now cut corners on the corners: any zigzag route from a to c, with the zigs isotherms 
and the zags adiabats, in other words, any reversible route, can be constructed by adding little 
Carnot cycles to the original route.  In fact, any path you can draw in the plane from a to c can 
be approximated arbitrarily well by a reversible route made up of little bits of isotherms and 
adiabats.   
 
We can just apply our “cutting a corner” argument again and again, to find  
 

/  is the  for all reversible paths
cc

i

a i a

Q dQ T same
T

=∑ ∫  

 
where the i labels intermediate isothermal changes. 
 
We can therefore define a new state variable, S, called the entropy, such that the difference 
 

( )

( )2 2

1 1

,

2 2 1 1
,

( , ) ( , )
P V

P V

dQS P V S P V
T

= + ∫  

 
 

where the integral is understood to be along any reversible path—they all give the same result.  
So knowing ( )1 1,S P V  at a single point in the plane, we can find its value everywhere, that is, for 

any equilibrium state.    
 
This means an ideal gas has four state variables, or thermodynamic parameters: P, V, T, S.  Any 
two of them define the state (for a given mass of gas), but all four have useful roles in describing  
gas behavior.  If the gas is not ideal, things get a lot more complicated: it might have different 
phases (solid, liquid, gas) and mixtures of gases could undergo chemical reactions.  Classical 
thermodynamics proved an invaluable tool for analyzing these more complicated systems: new 
state variables were introduced corresponding to concentrations of different reactants, etc.  The 
methods were so successful that a hundred years ago some eminent scientists believed 
thermodynamics to be the basic science, atomic theories were irrelevant. 
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Finding the Entropy Difference for an Ideal Gas 
In fact, for the ideal gas, we can find the entropy difference between two states exactly!  Recall 
that the internal energy of a monatomic gas, the total kinetic energy of the molecules, is 3

2 nRT  
for n moles at temperature T.   For a diatomic gas like oxygen, the molecules also have rotational 
energy because they’re spinning, and the total internal energy is then 5

2 nRT  (this is well-
confirmed experimentally).  The standard way to write this is 
 

total internal energy  VC T=  
 
because if the gas is held at constant volume, all ingoing heat becomes internal energy.  Note that 
CV is for the amount of gas in question, it is not specific heat per mole.  
 
Suppose now we add heat dQ, but allow volume variation dV at the same time. Then, for n moles 
of gas,  
 

V

V

dQ C dT PdV
dVC dT nRT
V

= +

= +
 

so 
 

( )

( )

( )

( )

( )

( )2 2 2 2 2 2

1 1 1 1 1 1

, ,

, ,

P V P V P V

V
P V P V P V

dQ dT dVC nR
T T

= +∫ ∫
,

, V∫  

 
and doing the integrals 
 

2 2
2 2 1 1

1 1

( , ) ( , ) ln ln .V
T VS P V S P V C nR
T V

− = +  

 
 
So the entropy change depends only on the final T and V, in other words, the final P and V since 
we always have PV = nRT.  This is just restating what we’ve already established:  
 

S is a state variable, 
 
the (macroscopic) state of the ideal gas is fully determined by P, V (or P, T), and therefore so is 
the entropy S.   
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This means we can get to the final state any way we want, the entropy change is the same, 
we don’t have to go by a reversible route!  

Entropy in Irreversible Change: Heat Flow Without Work 
 

 

       
       TH

 
       TC

 
Irreversible processes are easy to find—just hold something hot.  When heat Q flows from a 
body at TH  to one at TC , simply by thermal contact, by definition the entropy change is: 
 

0
C H

Q QS
T T
Δ Δ

Δ = − >  

 
since the temperatures must be different for heat to flow at all.  There is no energy loss in this 
heat exchange, but there is a loss of useful energy: we could have inserted a small heat engine 
between the two bodies, and extracted mechanical work from the heat flow, but once it’s flowed, 
that opportunity is gone.  This is often called a decrease in availability of the energy.  To get 
work out of that energy now, we would have to have it flow to an even colder body by way of a 
heat engine.  
 
Note that the increase in entropy is for the two bodies considered as a single system.  The hot 
body does of course lose entropy.  Similarly, when a heat engine has less than Carnot efficiency, 
because some heat is leaking to the environment, there is an overall increase in entropy of the 
engine plus the environment.  When a reversible engine goes through a complete cycle, its 
change in entropy is zero, as we’ve discussed, and the change in entropy of its environment, that 
is, the two reservoirs (hot and cold) taken together is also zero: entropy is simply transferred 
from one to the other.  
 
The bottom line is that entropy change is a measure of reversibility: 
 

• for a reversible process, total entropy change (system + environment)  ΔS = 0, 
 

• for an irreversible process, total entropy increases,  ΔS > 0. 

Entropy Change without Heat Flow: Opening a Divided Box  
Now consider the following scenario: we have a box of volume 2V, which is two cubes of 
volume V having a face in common, and that face is a thin partition in the box. 
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Gas Vacuum 

Before After 

 
At the beginning, n moles of ideal gas are in the left-hand half of the box, a vacuum in the other 
half.  Now, suddenly, the partition is removed. What happens? The molecules will fly into the 
vacuum, and in short order fill the whole box. Obviously, they’ll never go back: this is 
irreversible. 
 
Question: What happens to the temperature of the gas during this expansion? 
 
Answer:  Nothing! There’s no mechanism for the molecules to lose speed as they fly into the new 
space.  (Note: we don’t need a molecular model to see this—an ideal gas expanding against 
nothing does no work.) 
 
Question: What happens to the pressure?  Can you explain this?  
 
Question: What is the entropy change?  It is nRln2.   
 
But no heat flowed in on this route!   
 
If we had followed a reversible route, for example moving slowly along an isothermal, letting 
the partition gradually retreat to one end of the box like a piston in a cylinder, we would have 
had to supply heat.   
 

 
Isothermal Reversible Expansion of Gas 

Work out Heat in T constant 
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That supplied energy would have all been used in pushing the cylinder, the gas itself ending up 
in the same state as just removing the partition.  But we would have had a nonzero .   /dQ T∫
Just removing the partition quickly there is no heat transfer, and this action doesn’t correspond 
to any path in the P, V plane, since each point in that plane represents a gas in equilibrium at 
that P, V.   Nevertheless, the initial and final states are well defined (after the partition-removed 
state has reached equilibrium, which will happen very quickly) and they’re the same as the initial 
and final states in the isothermal expansion. So, even though there’s no heat transfer during the 
expansion into a vacuum, there is an increase in entropy, and this increase is the same as in the 
isothermal expansion.  
 
Clausius realized that the entropy measured both something to do with heat content, but also how 
“spread out” a system was.  This is clear for the ideal gas: the entropy change formula has two 
terms, one depending on the temperature difference, the other the volume difference.  We shall 
return to this in the next lecture, when we examine entropy in the kinetic theory. 

The Third Law of Thermodynamics 
Notice the argument above only tells us entropy difference between two points, it’s a bit like 
potential energy. Actually, though, there is a natural base point: a system at absolute zero 
temperature has zero entropy.  This is sometimes called the Third Law of Thermodynamics, or 
Nernst’s Postulate, and can only be really understood with quantum mechanics.  We don’t need 
it much for what we’re doing here, we only work with entropy differences, but it makes things 
convenient because we can now write S(P, V) without ambiguity. 
  

Entropy and the Kinetic Theory: the Molecular Picture 

Searching for a Molecular Description of Entropy 
Clausius introduced entropy as a new thermodynamic variable to measure the “degree of 
irreversibility” of a process.  He believed that his two laws of thermodynamics (conservation of 
energy and that entropy never decreases) were profound and exact scientific truths, on a par with 
Newton’s laws of dynamics.  Clausius had also made contributions to kinetic theory, publishing 
work as early as 1857, although unlike Maxwell he did not adopt a statistical point of view—he 
took all the molecules to have the same speed.  (Actually, this work inspired Maxwell’s first 
investigations of kinetic theory and his discovery of the velocity distribution.)  Clausius was the 
first to attempt a semiquantitative analysis of the effects of molecular collisions (see later). 
 
Obviously, if the kinetic theory is correct, if heat is motion of molecules, the fundamental laws 
of thermodynamics must be expressible somehow in terms of these molecular motions.  In fact, 
the first law of thermodynamics is easy to understand in this way: heat is just kinetic energy of 
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molecules, and total energy is always conserved, but now instead of having a separate category 
for heat energy, we can put the molecular kinetic energy together with macroscopic kinetic 
energy, it’s all ½mv2 with the appropriate masses.  
 
(Note: What about potential energy?  For the ideal gas, potential energy terms between molecules are negligible, by 
definition of ideal gas.  Actually, potential energy terms are important for dense gases, and are dominant during 
phase changes, such as when water boils.  The extra energy needed to turn water into steam at the same temperature 
is called the latent heat.  It is simply the energy required to pull the water molecules from each other working 
against their attraction—in other words, for them to climb the potential energy hill as they move apart.  The term 
“latent heat”— still standard usage— is actually a remnant of the caloric theory: it was thought that this extra heat 
was caloric fluid that coated the steam molecules to keep them away from each other!)   
 
But how do we formulate entropy in terms of this molecular mechanical model?  Boltzmann, at 
age 22, in 1866, wrote an article “On the Mechanical Meaning of the Second Law of 
Thermodynamics” in which he claimed to do just that, but his proof only really worked for 
systems that kept returning to the same configuration, severely limiting its relevance to the real 
world.  Nevertheless, being young and self confident,  he thought he’d solved the problem.  In 
1870, Clausius, unaware of Boltzmann’s work, did what amounted to the same thing.  They both 
claimed to have found a function of the molecular parameters that increased or stayed the same 
with each collision of particles and which could be identified with the macroscopic entropy.  
Soon Boltzmann and Clausius were engaged in a spirited argument about who deserved most 
credit for understanding entropy at the molecular level.  

Enter the Demon 
Maxwell was amused by this priority dispute between “these learned Germans” as he termed 
them:  he knew they were both wrong.  As he wrote to Rayleigh in December 1870: “if this world 
is a purely dynamical system and if you accurately reverse the motion of every particle of it at 
the same instant then all things will happen backwards till the beginning of things the raindrops 
will collect themselves from the ground and fly up to the clouds &c &c men will see all their 
friends passing from the grave to the cradle…”  because in a purely dynamical system, just 
particles interacting via forces, the system will run equally well in reverse, so any alleged 
mechanical measure of entropy that always supposedly increases will in fact decrease in the 
equally valid mechanical scenario of the system running backwards. 
But Maxwell had a simpler illustration o  for a 

o 
re, 

lier 

eper, 

f why he couldn’t accept always increasing entropy
mechanical system: his demon.  He imagined tw
compartments containing gas at the same temperatu
connected by a tiny hole that would let through one 
molecule at a time.  He knew, of course, from his ear
work, that the molecules on both sides had many 
different velocities.  He imagined a demon doorke

who opened and closed a tiny door, only letting fast molecules one way, slow ones the other 
way.  Gradually one gas would heat up, the other cool, contradicting the second law.  But the 

          
          A 

 
          B 
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main point is you don’t really need a demon: over a short enough time period, say, for twenty 
molecules or so to go each way, a random selection passes through, you won’t get an exact 
balance of energy transferred, it could go either way. 
 
Maxwell’s point was that the second law is a statistical law: on average over time, the two 

This 

Boltzmann Makes the Breakthrough 
sentially statistical nature of the second law, and 

an 

he best way to get a grip on what this statistical measure must be is to take a very simple 
 to 

Recall that we established in the last lecture that the change in entropy of n moles of an ideal gas 

gases will stay the same temperature, but over short enough times there will be fluctuations.  
means there cannot be a mechanical definition of entropy that rigorously increases with time.  
The whole program of formulating the entropy in terms of mechanical molecular variables is 
doomed!  Evidently, it isn’t at all like the first law.  

Despite Maxwell’s deep understanding of the es
Boltzmann’s belief into the 1870’s that there must be a molecular function that always increased 
and was equivalent to entropy, Boltzmann was the one who finally got it.  In 1877, eleven years 
after his original paper, his senior colleague at the University of Vienna Josef Loschmidt got 
through to him with the point Maxwell had been making all along, that a mechanical system c
run backwards as well as forwards.  At that point, it dawned on Boltzmann that entropy can only 
be a statistical measure, somehow, of the state of the system. 
 
T
system, one where we already know the answer from macroscopic thermodynamics, and try
see how the known macroscopic entropy relates to what the molecules are doing.  The example 
we choose is the ideal gas expanding to twice its original volume by removal of a partition: 
 

 
 

Gas Vacuum 

Before After 

on going from one state (specified uniquely by P, V ) to another to be: 
 

2 2
2 2 1 1

1 1

( , ) ( , ) ln ln .V
T VS P V S P V C nR
T V

− = +  
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For expansion into a vacuum there will be no temperature change, the molecules just fly through 
where the partition was, they can’t lose any kinetic energy.  The volume doubles, V2  = 2V1, so  
the entropy increases by 

ΔS = nRln2. 
 

So what’s going on with the molecules?  When the volume is doubled, each molecule has twice 
the space to wander in.  The increase in entropy per molecule is simply expressed using 
Boltzmann’s constant k, and the gas constant R = NAk, where NA is Avogadro’s number 
(molecules in one mole). 
 
On doubling the volume,  
 

there is an entropy increase of k ln2 per molecule. 
 

So part of the entropy per molecule is evidently Boltzmann’s constant k times the logarithm of 
how much space the molecule moves around in. 
 
Question: but from the equation above, you could also increase the entropy by keeping the 
volume fixed, and increasing the temperature.  For a monatomic gas, 3

2VC n= R , doubling the 

temperature will increase the entropy by 3
2 ln 2k  per molecule!  Does that relate to “more 

space”?   
 
Answer:  Yes.  Remember the lecture on the kinetic theory of gases.  To specify the state of the 
system at a molecular level at some instant of time, we need to say where in the box every 
molecule is located, plus giving its velocity at that instant.   
So the gas fills up two kinds of space: the ordinary space of the box, but also a sphere in velocity 
space, really a sphere with a fuzzy edge, defined by the Maxwell distribution.  It’s a good 
enough approximation for our purposes to replace this fuzzy sphere with the sharp-edged sphere 

having radius the root mean square velocity 2
rmsv = v .  Therefore the volume of the sphere 

is 34
3 rmsvπ , and this measures how much velocity space a given molecule wanders around in over 

time and many collisions.   
 
Now, if we heat up the gas, the molecules speed up—which means they spread out to take up 
more volume in the velocity space.  If we double the temperature, since 2 31

2 2rmsmv kT= ,  is 
doubled and the volume of velocity space the gas occupies, measured by the sphere, must go up 
by a factor of    

2
rmsv

3/22 .
 
But 3/2 3

2ln 2 ln 2= , so the entropy increase 3
2 ln 2k  on raising the temperature is exactly a 

measure of the increase in velocity space occupied by the gas, that is, the increase in entropy per 
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molecule is evidently Boltzmann’s constant k times the logarithm of the increase in the velocity 
space the molecule moves in, exactly analogous to the simple volume increase for the box. 

Epitaph: S = k ln W 
The bottom line, then, is that for the ideal gas entropy is a 
logarithmic measure of how much space a system is spread over, 
where space is both ordinary space and velocity space.  This total 
space—ordinary space plus velocity space—is called “phase 
space”. 
 
Boltzmann used W as a measure of this total phase space, so the 
entropy is given by 
 

ln .S k W=  
 
This discovery of the molecular meaning of entropy was his 

greatest achievement; the formula is on his grave. 

But What Are the Units for Measuring W ? 
We’ve seen how S = k ln W relates to Clausius’ thermodynamic entropy by looking at the 
entropy difference between pairs of states, differing first in volume, then in temperature.   But to 
evaluate the entropy for a particular state we need to have a way of explicitly measuring phase 
space: it would appear that we could move a molecule by an infinitesimal amount and thereby 
have a different state.  Boltzmann himself resolved these difficulties by dividing space and 
velocity space into little cells, and counting how many different ways N particles could be 
arranged among these cells, then taking the limit of cell size going to zero.  This is of course not 
very satisfactory, but in fact the ambiguities connected with how precisely to measure the phase 
space are resolved in quantum mechanics, which provides a natural cell size, essentially that 
given by the uncertainty principle.  Nernst’s theorem, mentioned in the last lecture, that the 
entropy goes to zero at absolute zero, follows immediately, since at absolute zero any quantum 
system goes into its lowest energy state, a single state, the ground state:  W = 1, so lnW = 0.  
 
Exercise: recall that an adiabat has equation  Show using the equation above 
that entropy remains constant: as the spatial volume increases, the velocity space volume shrinks. 

1 constant.TV γ− =

A More Dynamic Picture 
We’ve talked interchangeably about the space occupied by the gas, and the space available for 
one molecule to wander around in.  Thinking first about the space occupied by the gas at one 
instant in time, we mean where the molecules are at that instant, both in the box (position space) 
and in velocity space.  We’re assuming that a single molecule will sample all of this space 
eventually—in air at room temperature, it collides about ten billion times per second, and each 

http://en.wikipedia.org/wiki/Image:Zentralfriedhof_Vienna_-_Boltzmann.JPG
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collision is very likely a substantial velocity change.  Evidently, the gas as a whole will be 
passing rapidly through immense numbers of different states: a liter of air has of order 1022 
molecules, so the configuration will change of order 1033 times in each second.  On a 
macroscopic level we will be oblivious to all this, the gas will appear to fill the box smoothly, 
and if we could measure the distribution in velocity space, we would find Maxwell’s distribution, 
also smoothly filled.  Over time, we might imagine the gas wanders through the whole of the 
phase space volume consistent with its total energy. 
 
The entropy, then, being a logarithmic measure of all the phase space available to the molecules 
in the system, is a logarithmic measure of the total number of microscopic states of the system, 
for given macroscopic parameters, say volume and temperature.  Boltzmann referred to these 
many different microscopic states as different “complexions”, all of them appearing the same to 
the (macroscopic) observer.   

The Removed Partition: What Are the Chances of the Gas Going Back? 
We’ve said that any mechanical process could run in reverse, so, really, why shouldn’t the gas in 
the 2V enclosure happen to find itself at some time in the future all in the left hand half?  What 
are the odds against that, and how does that relate to entropy? 
 
We’ll assume that as a result of the huge number of collisions taking place, the gas is equally 
likely to be found in any of the different complexions, or molecular configurations—another 
common word is microstates—corresponding to the macroscopic parameters, the macrostate.  
(Note: A further mechanism for spreading the gas out in phase space is interaction with the 
container, which is taken to be at the same temperature, but individual molecular bounces off the 
walls can exchange energy, over time the exchange will average zero.)   
 
Thus the gas is wandering randomly through phase space, and the amount of time it spends with 
all the molecules in the left-hand half is equal to the corresponding fraction of the total available 
phase space.  This isn’t difficult to estimate: the velocity distribution is irrelevant, we can 
imagine building up the position distribution at some instant by randomly putting molecules into 
the container, with a 50% chance of the molecule being in the left-hand half.   In fact, we could 
just pick a state by flipping a coin, and putting the molecule somewhere in the left-hand half if it 
comes up heads, somewhere on the right if it’s tails, and do this N times.  (Well, for small N.) 
Suppose as a preliminary exercise we start with 20 molecules. The chances that we get twenty 
heads in a row are (1/2)20, or about 1 in 1,000,000.  For 40, it’s one in a trillion.   For 100 
molecules, it’s 1 in 1030

.    
 
Question: What is it for a million molecules?   
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But a liter of air has of order 1022 molecules!  This is never going to happen.  So the states 
having the gas all in the left-hand half of the box are a very tiny fraction of all the states available 
in the whole box—and the entropy is proportional to the logarithm of the number of available 
states, so it increases when the partition is removed. 

Demon Fluctuations 
Recall in the above discussion of Maxwell’s demon the point was made that for two boxes with a 
small interconnection, assuming molecules hit the connecting hole randomly from both sides, the 
energy flow will in fact fluctuate—and clearly so will the number of molecules in one half. 
 
Obviously, then, with our volume 2V, with free access from the left hand half to the right-hand 
half, the number of molecules in the left-hand half will be constantly fluctuating.  The question 
is: how much?  What percentage deviation from exactly 50% of the molecules can we expect to 
find to the left if we suddenly reinsert the partition and count the molecules? 
 
We can construct a typical state by the coin-toss method described in the previous section, and 
this is equivalent to a random walk.  If you start at the origin, take a step to the right for each 
molecule placed in the right-hand half, a step to the left for each placed to the left, how far from 
the origin are you when you’ve placed all the molecules?  The details are in my Random Walk 
Notes, and the bottom line is that for N steps the deviation is of order √N.   For example, if the 
container holds 100 molecules, we can expect a ten percent or so deviation each time we reinsert 
the partition and count. 
 
But what deviation in density can we expect to see in a container big enough to see, filled with 
air molecules at normal atmospheric pressure?  Let’s take a cube with side 1 millimeter. This 
contains roughly 1016 molecules. Therefore, the number on the left-hand side fluctuates in time 
by an amount of order √1016 = 108.  This is a pretty large number, but as a fraction of the total 
number, it’s only 1 part in 108!   
 
The probability of larger fluctuations is incredibly small. The probability of a deviation of m 
from the average value N/2 is (from Random Walk notes): 
 

22

( )
m
NP m Ce

−
= . 

 
So the probability of a fluctuation of 1 part in 10,000,000, which would be 10√N, is of order 

, or about 10200e− -85.  Checking the gas every trillionth of a second for the age of the universe 
wouldn’t get you close to seeing this happen. That is why, on the ordinary human scale, gases 
seem so smooth and continuous.  The kinetic effects do not manifest themselves in observable 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/RandomWalk.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/RandomWalk.htm
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density or pressure fluctuations—one reason it took so long for the atomic theory to be widely 
accepted. 

Entropy and “Disorder” 
You have probably seen it stated that entropy is a measure of “disorder”.  We have defined it 
above in terms of the amount of phase space the system is moving around in.  These are not 
really different concepts.  If we pinned a little label on the molecules, l or r depending on 
whether it was in the left or the right hand side of the box, the original state had all the labels l. 
The final state has a random selection of l’s and r’s, very close to equal in numbers. 
 
Another way to say the same thing is to visualize an initial state before removing the partition 
where the left hand half has “red” molecules, the right hand side “green” molecules (we’re 
making up these names for visualization purposes, they could be any two gases).  If the gases are 
ideal (or close enough) after removal of the partition both will have twice the volume available, 
so for each gas the entropy will increase just as for the gas expanding into a vacuum.  Thinking 
about what the state will look like a little later, it is clear that it will be completely disordered, in 
the sense that the two will be thoroughly mixed,  and they are not going to spontaneously 
separate out to the original state. 

How much did the entropy increase? 
 

Boltzmann himself commented on order versus disorder with the example of five numbers on a 
Lotto card.  Say the ordered sequence is 1,2,3,4,5.  The particular disordered sequence 4,3,1,5,2 
is just as unlikely to appear in a random drawing as the ordered sequence, it’s just that there are a 
lot more disordered sequences.  Similarly, in tossing a coin, the exact sequence H, H, T, H, T, T, 
T, H is no more likely to appear than a straight run of eight heads, but you’re much more likely 
to have a run totaling four heads and four tails than a run of eight heads, because there are many 
more such sequences.  

Summary: Entropy, Irreversibility and the Meaning of Never 
So, when a system previously restricted to a space is allowed to move into a larger space, the 
entropy increases in an irreversible way, irreversible meaning that the system will never return to 
its previous restricted configuration.  Statements like this are always to be understood as 
referring to systems with a large number of particles.  Thermodynamics is a science about large 
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numbers of particles.  Irreversibility isn’t true if there are only ten molecules.  And, for a large 
number, by “never” we mean it’s extremely unlikely to happen even over a very long period of 
time, for example a trillion times the age of the universe. 
 
It’s amusing to note that towards the end of the 1800’s there were still many distinguished 
scientists who refused to believe in atoms, and one of the big reasons why they didn’t was 
thermodynamics.  The laws of thermodynamics had a simple elegance, and vast power in 
describing a multitude of physical and chemical processes.  They were of course based on 
experiment, but many believed such power and simplicity hinted that the laws were exact.  Yet if 
everything was made of atoms, and Newton’s Laws applied to interactions between atoms, there 
was a problem. Any dynamical process will run equally well backwards in time.  But we always 
see heat flow from a hot object to a cold object, never the reverse.  How could this lack of 
symmetry come about in an atomic picture?  Boltzmann answered this with arguments similar to 
those given above in the example of the gas initially confined to one half of a box, then allowed 
to spread out against no resistance.  But this meant that ultimately the second law was a 
statistical statement, not an absolute truth; and, for small enough systems, it isn’t true.  But that’s 
the way it is.    

Everyday Examples of Irreversible Processes 
Almost everything that happens in everyday life is, thermodynamically speaking, an irreversible 
process, and increases total entropy.  Consider heat ΔQ flowing by direct thermal contact from a 
hot body at TH to a cold one at TC.  The hot body loses entropy ΔQ/TH , the cold one gains 
entropy  ΔQ/TC , so the net entropy increase as a result is ΔQ/TC − ΔQ/TH, a positive quantity.  
The heat flow in the Carnot cycle did not increase total entropy, since it was isothermal—the 
reservoir supplying the heat was at the same temperature as the gas being heated (an 
idealization—we do need a slight temperature difference for the heat to flow). 
 
Friction, or an inelastic collision such as dropping a ball of clay on the floor, converts kinetic 
energy to heat—so there is a nonzero ΔQ of heat entering some body, entropy is being generated. 
Since heat involves random motions of the particles involved, this is sometimes stated as a 
transformation of ordered energy (a falling ball, with the molecules all moving in the same 
direction) into disordered motion.  Yet another phrasing is that potentially useful energy is being 
degraded into less useful energy: the falling ball’s kinetic energy could have been utilized in 
principle by having it caught be a lever arm which could then do work.  The slight heat in the 
floor is far less useful energy,  some of it could theoretically be used by a heat engine but the 
temperature difference to the rest of the floor will be very small, so the engine will be very 
inefficient! 
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Molecular Collisions 

Difficulties Getting the Kinetic Theory Moving 
Oddly, the first published calculation of the average speed of a molecule in the kinetic theory of 
gases appeared in the Railway Magazine, of all places, in 1836. Why there?  Well, the 
calculation was by John Herapath—he owned the magazine.  He was definitely not part of the 
scientific establishment: a previous paper of  his on the kinetic theory had been rejected by the 
Royal Society.  But the calculation of molecular speed was in fact correct.  Another outsider, 
John James Waterston, submitted an excellent paper on the kinetic theory to the Royal Society in 
1846, to have it rejected as “nonsense”.  This was evidently still the age of the caloric theory, at 
least in the Royal Society.  In 1848, Joule (who had worked with Herapath, and was also 
something of an outsider) presented a paper at a meeting of British Association where he 
announced that of the speed of hydrogen molecules at 60F was about 1 mile per second, close to 
correct.  Again, though, this did not excite wide interest… 
 
Finally, in 1857, a pillar of the scientific establishment—Clausius—wrote a paper on the kinetic 
theory, repeating once more the calculation of  average molecular speed (around 460 meters per 
second for room temperature oxygen molecules). He mentioned the earlier work by Joule, and 
some more recent similar calculations by Krönig.  Suddenly people sat up and took notice!  If a 
highly respected German professor was willing to entertain the possibility that the air molecules 
in front of our faces were mostly traveling faster than the speed of sound, perhaps there was 
something to it…  

How Fast Are Smelly Molecules? 
But there were obvious objections to this vision of fast molecules zipping by.  As a Dutch 
meteorologist, C. H. D. Buys-Ballot, wrote: [if the molecules are traveling so fast] how does it 
then happen that tobacco-smoke, in rooms, remains so long extended in immoveable layers?”  
(Nostalgia trip for smokers!)  He also wondered why, if someone opens a bottle of something 
really smelly, like ammonia, you don’t smell it across the room in a split second, if the molecules 
are moving so fast.  And, why do gases take ages to intermingle?   
 
These were very good questions, and forced Clausius to think about the theory a bit more deeply.  
Buys-Ballot had a point: at that speed, the smelly NH3’s really would fill a whole room in 
moments.  So what was stopping them?  The speed of the molecules follows directly from 
measuring the pressure and density—you don’t need to know the size of molecules. If the kinetic 
theory is right at all, this speed has to be correct. Assuming, then, the speed is more or less 
correct, the molecules are evidently not going in straight lines for long.  They must be bouncing 
off the other molecules. Still, the standard kinetic theory pressure calculation assumed each 
molecule to be bouncing from wall to wall inside the box, collisions with the other molecules 
had always been ignored, because the molecules were so tiny.  Evidently, though, they weren’t.  
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The Mean Free Path 
Clausius concluded that the molecules must be big enough to get in each other’s way to some 
extent.  He assumed the average speed calculation was still about right, and that the molecules 
only interacted when they were really close. So, watching one molecule, most of the time it’s 
going in a straight line, not influenced by the other molecules, then it gets close to another one 
and bounces off in a different direction.  He termed the average distance between collisions the 
mean free path. 
 
But how could this be reconciled with the pressure calculation, the pressure from a single 
molecule being found by counting the times per second it bounced off a given wall?  Evidently 
each molecule will now take a lot longer to get across the container—will that lower the 
pressure?  The answer is no: although molecules now take a long time to do the round trip, they 
don’t have to—a molecule bouncing off the wall can hit another nearby molecule and go straight 
back to the wall.  The pressure on a wall depends on the density of molecules close to the wall 
(less than a mean free path away), and their velocity distribution.  This won’t be too different 
from the no-collisions case. 

Gas Viscosity Doesn’t Depend on Density! 
This fixed up the theory in the sense of answering Buys-Ballot’s objections, but it turned out to 
do much more. Maxwell took the concept of mean free path, and used it to prove the viscosity of 
a gas should be independent of density over a very wide range.  (Viscosity arises when fast 
molecules move into a slower stream: halving the density halves the number of fast molecules 
getting over, but they get twice as far, so penetrate into even slower streams.  For a much more 
detailed explanation, see my lecture on viscosity.)   Maxwell was startled (his word: Phil. Mag, 
Jan Jun 1860, p 391) by this result, and thought it probably spelled doom for the kinetic theory, 
because it contradicted experimental findings.  But the experiments, it turned out, were not very 
good, and had found the (wrong) answer they expected.  Maxwell did the experiments more 
carefully himself, and found agreement with the kinetic theory—the viscosity really didn’t 
depend on density!  Usually in physics good experiments knock down bad theories—this time it 
was the other way round. 

Gas Diffusion: the Pinball Scenario; Finding the Mean Free Path in Terms 
of the Molecular Diameter 
How does the mean free path picture handle mutual diffusion of two gases, say oxygen and 
nitrogen, when a partition initially separating them is removed? 
 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Viscosity.htm
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O2        N2

Before Some time after… 

For a box holding a  few liters, it takes of the order  an hour or so for the gases to mix. (We’re 
assuming the temperature is kept constant so that convection currents don’t arise—such currents 
would reduce the time substantially.)  Obviously, the rate of mixing must depend on the mean 
free path: if it was centimeters, the mixing would be pretty complete in milliseconds.  In fact, as 
we shall see, the mean free path can be deduced from the measured rate of  penetration of one 
gas by the other. 
 
First, though, we’ll show how to derive the mean free path in units of the diameter of the 
molecules, taking O2 and N2 to be spheres of diameter d. (You’re used to seeing them pictured 
like dumbbells and that’s true of the two nuclei, but the surrounding electron cloud is in fact 
close to spherical.)    
 
Think of one of the oxygen molecules moving into nitrogen.  So now visualize the little O2 
sphere shooting into this space where all these other spheres are moving around.  Temporarily, 
for ease of visualization, let’s imagine all the other spheres to be at rest.  This is a pinball 
machine scenario: 

 
Oxygen molecule flies into nitrogen gas 

 
How far can we expect the O2 to get before it hits an N2?  The average distance before a collision 
is the mean free path.  Let’s try to picture how much room there is to fly between these fixed N2 
spheres.  (Bear in mind that the picture above should be three-dimensional!)  We do know that if 
it were liquid nitrogen, there would be very little room: liquids are just about incompressible, so 
the molecules must be touching.  Roughly speaking, a molecule of diameter d will occupy a 
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cubical volume of about d 3 (there has to be some space left over—we can pack cubes to fill 
space, but not spheres.)  
 
We also know that liquid nitrogen weighs about 800 kg per cubic meter, whereas N2 gas at room 
temperature (and pressure) weighs about 1.2 kg per cubic meter, a ratio of 670.  This means that 
on average each molecule in the gas has 670 times more room—that is, it has a space 670 times 
the volume d3 we gave it in the liquid.  So in the gas, the average center-to-center separation of 
the molecules will be the cube root of 670, which is about 8.75d.  So the picture is a gas of 
spheres of diameter d, placed at random, but separated on average by distances of order 10d.  It’s 
clear that shooting an oxygen molecule into this it will get quite a way.  Let us emphasize again 
that this picture is independent of the actual size of d: we’re only considering the ratio of mean 
free path to molecular diameter.  
 
We now estimate just how far an O2 will get, on average, as it shoots into this forest of spheres.  
Picture the motion of the center of the oxygen molecule.  Before any collision, it will be moving 
on a straight-line path.  Just how close does the O2 center have to get to an N2 center for a hit?  
Taking both O2, N2 to be spheres of diameter d, if an N2 center lies within d of the O2 center’s 
path, there will be a hit. 
 
Note:  this picture is simplified in that we’re taking the molecules to be hard spheres. This is not a bad 
approximation, but the repulsive potential does not fall quite that suddenly, and consequently the effective scattering 
size varies somewhat with speed, i.e. with temperature.  This turns out to be important in finding the temperature 
dependence of viscosity, for example. 
 

 

If two spheres both have diameter d, they will 
collide if their centers get within d of each other 

 
So we can think of the O2 as sweeping out a volume, a cylinder of radius d centered on its path, 
hitting and deflecting if it encounters an N2 centered within that cylinder.  So how far will it get, 
on average, before a hit?  In traveling a distance x, it sweeps out a volume .  Now picture it 
going through the gas for some considerable length of time, so there are many collisions.  The 
volume swept out will look like a stovepipe, long straight cylindrical sections connected by 
elbows at the collisions.  The total volume of this stovepipe (ignoring tiny corrections from the 
elbows) will be just , L  being the total length, that is, the total distance the molecule 
traveled.   

2d xπ

2d Lπ
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If the density of the nitrogen is n molecules per cubic meter, the number of N2’s in this stovepipe 

 betwe
volume will be 2d Lnπ , in other words, this will be the number of collisions.  Therefore, the 
average distance en collisions, the mean free path l, is given by: 
 

2 2

total distance traveled 1mean free path 
number of collisions

Ll
d Ln d nπ π

= =  =

 
o what is n?  We estimated above that each molecule has space 670d 3 to itself, so n is just how 

herefore, the mean free path is given by  

S
many of those volumes there are in one cubic meter, that is, 31/ 670n d= .  
 
T
 

3

2 2

1 670 200 .dl d
d n dπ π

= = ≈  

 
e can see from this that the average length of stovepipe sections between elbows is 200 times 

r.)  

otice that this derivation of the mean free path in terms of the molecular diameter depends 

(W
the pipe radius, so neglecting any volume corrections from the elbows was an excellent 
approximation, and our diagram has the sections far too short compared with the diamete
 
N
only on knowing the ratio of the gas density to the liquid density—it does not depend on the 
actual size of the molecules!   
 

“Stovepipe” of volume swept out by 
oxygen molecule 

bounce! 

bounce! 
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But it does mean that if we can somehow measure the mean free path, by measuring how fast 
one gas diffuses into another, for example, we can deduce the size of the molecules, and 
historically this was one of the first ways the size of molecules was determined, and so 
Avogadro’s number was found. 

But the Pinball Picture is Too Simple: the Target Molecules Are Moving! 
There is one further correction we should make.  We took the N2 molecules to be at rest, whereas 
in fact they’re moving as fast as the oxygen molecule, approximately.  This means that even if 
the O2 is temporarily at rest, it can undergo a collision as an N2 comes towards it.  Clearly, what 
really counts in the collision rate is the relative velocity of the molecules.   
 
Defining the average velocity as the root mean square velocity, if the O2 has velocity and the 

N
1vG

2  , then the square of the relative velocity 2vG

 
2 2 2 2

1 2 1 1 2 2 1 2( ) 2v v v v v v v v− = − ⋅ + = +
G G G G G G G G2 , 

 
since 1 2v v⋅G G  must average to zero, the relative directions being random.  So the average square of 
the relative velocity is twice the average square of the velocity, and therefore the average root-
mean-square velocity is up by a factor √2, and the collision rate is increased by this factor.  
Consequently, the mean free path is decreased by a factor of √2 when we take into account that 
all the molecules are moving.  
 
Our final result, then, is that the mean free path 
 

2

1
2

l
d nπ

= . 

 
Finding the mean free path is—literally—the first step in figuring out how rapidly the oxygen 
atoms will diffuse into the nitrogen gas, and of course vice versa.   

If Gases Intermingle 0.5cm in One Second, How Far in One Hour? 
What we really want to know is just how much we can expect the gases to have intermingled 
after a given period of time.  We’ll just follow the one molecule, and estimate how far it gets. To 
begin with, let’s assume for simplicity that it tales steps all of the same length l, but after each 
collision it bounces off in a random direction.  So after N steps, it will have moved to a point  
 

1 2 3 NL l l l l= + + + +
G G G GG

… , 
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where each vector  has length l, but the vectors all point in random different directions.  jl
G

 
If we now imagine many of the oxygen molecules following random paths like this, how far on 
average can we expect them to have drifted after N steps?  (Note that they could with equal 
likelihood be going backwards!)  The appropriate measure is the root-mean-square distance,  
 

2 2 2
1 2 3

,
( )N i

i j
jL l l l l Nl l l= + + + = + ⋅∑

G G G G G GG
…  

 

Since the direction after each collision is completely random, 0i jl l⋅ =
G G

, and the root-mean-square 

distance 
 

2L N= l
G

. 
 

If we allow steps of different lengths, the same argument works, but now l is the root-mean-
square path length.  The important factor here is the N .    
 

This means that the average distance diffused in one second is 10 510 10l = l , say half a 
centimeter (justified in the next section).  The average distance in one hour would be only 60 
times this, or 30 cm., and in a day about a meter and a half—the average distance traveled is only 
increasing as the square root of the time elapsed!  
 
This is a very general result.  For example, suppose we have a gas in which the mean free path is 
l and the average speed of the molecules is v.  Then the average time between collisions /l vτ = .  
The number of collisions in time t will be / ,t τ  so the average distance a molecule moves in time 

t will be /r l t τ= . 

Actually Measuring Mean Free Paths 
It should be clear from the above that by carefully observing how quickly one gas diffuses into 
another, the mean free path could be estimated.  Obviously, oxygen and nitrogen are not the best 
candidates: to see what’s going on, a highly visible gas like bromine diffusing into air would be 
more practical. However, there’s a better way to find the mean free path.  As we proved in the 
lecture on viscosity, the viscosity coefficient 1

3 nmvlη= , where n is the number density, m the 
molecular mass, v the average speed and l the mean free path.  The viscosity can be measured 
quite accurately, the mean free path in air was found to be 60 nml ≈ , or    86 10 m.−×
 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Viscosity.htm
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In 1865, Josef Loschmidt gave the first good estimate of the size of molecules. He used the 
viscosity data to find the mean free path, assumed as we did above that the molecules were more 
or less touching each other in the liquid, then used the geometric argument above to nail down 
the ratio of molecular size to mean free path.  He overestimated by a factor of three or so, but this 
was much closer to the truth than anyone else at the time.  
 
Here are some numbers: for O2, N2, 0.3nmd ≈ , 60 nml ≈ , the speed of the molecules at room 
temperature v is approximately 500 meters per sec., so the molecule has of order 1010 collisions 
per second. 

Why did Newton get the Speed of Sound Wrong? 
A famous mystery cleared up by arguments like this was that Newton predicted the speed of 
sound would be given by 2 /c B ρ= , as we discussed earlier in the course, with B the bulk 
modulus.  But when B was measured carefully by slowly compressing air, the result was in error 
by about 30%!  The speed of sound predicted a higher (stiffer) bulk modulus.    
 
The explanation turned out to be that in a slow measurement of the bulk modulus, the gas stays 
at the same temperature—the heating caused by slow compression leaks away.  But if the 
compression is rapid, the gas heats up and so the pressure goes up more than if it had stayed at 
the same temperature.  So the question is whether the compression and decompression as a sound 
wave passes through is so rapid that the heated-up gas doesn’t have time to spread to the cooled 
regions. For sound at say 1000Hz, the wavelength is 34 cm.   If compression heats gas locally, 
the hot molecules will diffuse away in a similar manner to that discussed above. They will be 
slightly faster than the average molecules.  In 1/1000 th of a second, they will have 107 

collisions, so will travel about 710 3000 0.2mml l× × .  This tiny distance compared with the 
wavelength of the sound wave means that during the compression/decompression cycles as the 
wave passes through, the heat has no chance to dissipate—so, effectively, it’s like compressing a 
gas in an insulated container, it’s harder to compress than it would be if the heat generated could 
flow away, and the bulk modulus is higher by an amount (around 30%) we shall work out in a 
forthcoming lecture. 

Brownian Motion 
See Applet here! 

Introduction: Jiggling Pollen Granules 
In 1827 Robert Brown, a well-known botanist, was studying sexual relations of plants, and in 
particular was interested in the particles contained in grains of pollen.  He began with a plant 
(Clarckia pulchella) in which he found the pollen grains were filled with oblong granules about 
5 microns long.  He noticed that these granules were in constant motion, and satisfied himself 
that this motion was not caused by currents in the fluid or evaporation.   Smaller spherical grains, 

http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/brownian/brownian.html
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which at first he took to be oblongs end-on, but later realized weren’t, had even more vigorous 
motion.  He thought at first that he was looking at the plant equivalent of sperm—they were 
jiggling around because they were alive.  To check this, he did the same experiment with dead 
plants.  There was just as much jiggling.  Perhaps all organic matter, everything that ever was 
alive, still contained some mysterious life force at this microscopic level?  Sure enough, he found 
the movement in tiny fragments of fossilized wood!  But then he went on to find it in matter that 
never was alive—tiny particles of window glass, and even dust from a stone that had been part of 
the Sphinx. The movement evidently had nothing to do with the substance ever being alive or 
dead, much to Brown’s surprise.  So what was causing it?  Perhaps it was evaporation currents, 
or the incident light energy, or just tiny unnoticed vibrations.  But none of these explanations was 
very satisfactory. 
 
Half a century later, a new possible explanation emerged.  The kinetic theory of heat developed 
by Maxwell, Boltzmann and others was gaining credence. If all the molecules in the fluid were 
indeed in vigorous motion, maybe these tiny granules were being moved around by this constant 
battering from all sides as the fluid molecules bounced off.  But there was a problem with this 
explanation: didn’t it violate the second law of thermodynamics?  It had been well established 
that energy always degrades, as friction slows movement kinetic energy goes to heat energy.  
This seemed to be the other way round—the molecular battering was certainly disorganized heat 
energy, but when the granule moved it had evidently gained kinetic energy.  Since many 
scientists regarded the second law as an absolute truth, they were very skeptical of this 
explanation.   
 
In 1888, French experimentalist Léon Gouy investigated the movement in detail, finding it to be 
more lively in low viscosity liquids.  He established that  it was unaffected by intense 
illumination or by strong electromagnetic fields.  Despite the second law, Guoy believed—
correctly—the random motion was indeed generated by thermal molecular collisions. 
 
It’s easy to see the Brownian movement, or Brownian motion (it’s called both) by looking 
through a microscope at tobacco smoke in air. We have a movie here.  

Einstein’s Theory: the Osmosis Analogy 
In 1905, Einstein published a theoretical analysis of Brownian motion. He saw it as a crucial test 
of the kinetic theory, even of the atomic/molecular nature of matter.  Previous discussions of the 
phenomenon had all been qualitative—Einstein demonstrated that careful observation of 
Brownian motion could reveal the actual size of molecules, that is, find Avogadro’s number.   
 
If the results of such experiments were consistent with other estimates of Avogadro’s number, 
based on unrelated phenomena such as gas viscosity measurements and van der Waal’s equation 
fit to isotherms of real gases, it would be a powerful argument for the kinetic theory.  On the 
other hand, if there was real disagreement then the kinetic theory was in serious trouble. 

http://demolab.phys.virginia.edu/demos/pictures/4d10-10.mpg
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Einstein’s approach was based on an analogy with osmosis: recall that osmosis involves one 
substance (the solute) dissolved in another, the solvent.  The solute has larger molecules.  Now 
imagine a container divided in two by a semipermeable membrane, meaning the solvent 
molecules can pass through the tiny holes in it, but the solute molecules are too big to get 
through.  Suppose on one side of the membrane there’s pure solvent, on the other side solvent 
plus solute (assumed fairly dilute), and initially the pressure on the two sides of the membrane is 
the same.  The pressure on the side with solute is generated by both solvent and solute molecules 
bouncing off the membrane, so necessarily the rate at which solvent molecules are hitting the 
membrane on this side is less than on the other side.  Some percentage of the solvent molecules 
hitting the membrane pass through the little holes, so what will happen is that more will pass 
through from the pure solvent side, and gradually pressure will build up on the solvent + solute 
side until equilibrium is reached, meaning equal numbers of solvent molecules going each way 
on average. 
 
Einstein’s insight was that a liquid containing a large number of tiny identical particles, such as 
those observed in Brownian motion, was really no different from a solvent containing solute 
molecules.  True, the Brownian particles were a lot bigger than molecules, but they were buzzing 
around, and would therefore bounce off the walls of a container, generating pressure. The formal 
analysis should be the same: the kinetic theory, with equipartition of energy, predicted they 
would have kinetic energy 1.5kBT.   If the concentration of particles varied spatially, they would 
flow to even it out.   

B

 
Here again he used an osmosis analogy: think of a cylindrical container, with a semipermeable 
membrane which is like a piston, free to move.  The solute concentration is initially greater to the 
left of the piston.  
 

Semipermeable membrane piston free to move 
Color represents solute concentration 

 
From the previous discussion, it’s clear that the solvent will flow to the left, raising the pressure 
there, so the piston will move to the right. The solute molecules cannot cross the piston, so the 
piston will move until the solute concentrations on the two sides are equal. 
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The rather surprising result is that if one assumes equipartition of energy, the pressure on the 
piston from the solute on one side is the same as if those solute molecules were freely moving in 
a vacuum.   
 
Their greatly reduced mean free path doesn’t matter: the pressure depends only on the 
concentration in the immediate neighborhood of the piston, and the speed of the molecules.  And, 
this is equally true if the solute molecules are replaced by tiny but macroscopic spheres.  At least, 
this is what Einstein asserted, and he gave a formal proof based on an evaluation of the free 
energy, assuming a dilute system (meaning interactions between the spherical granules could be 
neglected).   
So we can think of the little spheres as moving freely through space (!), and although their paths 
will actually be very different, calculations of local pressure based on this should be correct: the 
pressure on the walls from the granules is therefore given by the ideal gas law, that is, 
 

 2 21 2 1 2 2
3 3 2 3 3. .P mnv n mv n K E nW= = = =  

 
where the average kinetic energy is written W, and—if the kinetic theory is correct—this should 
equal 1.5kBT. B

An Atmosphere of Yellow Spheres 
 So how is this to be checked experimentally?  As we shall see in a moment, the first experiment 
used uniformly sized tiny spheres in place of granules. The first obvious thought is that if 

21
2 mv is predicted to be 1.5kBT, perhaps one can measure the jiggling velocity of the tiny sphere 
a few times and take an average. This, however, misunderstands the nature of the motion: a 
molecule will bounce off the sphere around 10 times per second, and although that only makes 
a tiny difference to the sphere’s velocity, in one hundredth of a second the average imbalance, 
√N, will be of order 10 , enough to make a change in a small sphere’s velocity. And all the 
successive changes are completely random in direction, so it’s as hopeless as attempting to 
measure the velocity of H

B

20 

9

2S molecules in air by releasing a few and measuring the time for the 
smell to reach the far end of a room.  
 
A slightly less direct method of finding 21

2 mv  is needed.  Now, it is well-known that in an 
isothermal atmosphere of an ideal gas under gravity the density falls off exponentially with 
height, this is established by balancing the gravitational force on a thin horizontal slice against 
the pressure difference between top and bottom.   It occurred to the French experimentalist Jean 
Perrin that this same argument should apply to a “gas” of tiny uniform spheres in a fluid: their 
pressure is generated by the Brownian motion.  In 1908, he chose gamboge, an emulsion used for 
water color, which contains bright yellow spheres of various sizes.  By various ingenious tricks 
described in his book he was able to separate out spheres all close to the same size.  He was able 
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to measure the size, he knew the density—and that of the “solvent”—so he could compute the 
gravitational pull.  He could also measure the decrease in density with height in isothermal 
equilibrium.  
 
The calculation is as follows: for a horizontal slice of thickness dh, with n spheres per unit 
volume, each of volume φ and density Δ, in a liquid of density δ (I’m using Perrin’s notation 
here), the gravitational downward force on the slice is ndh φ (Δ -  δ), this is balanced by the 
pressure difference: 
 
 ( )2

3 .Wdn ndhϕ δ− = Δ−  

 
This is easily integrated to give the exponential vertical density profile.   
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.  

 
Perrin could establish by observation and measurement every term in this equation except W, so 
this was a way of measuring W, assuming of course the validity of the kinetic theory. 
 
Now equating W to 1.5kBT gives a value for Boltzmann’s constant, and hence via the known gas 
constant R = N

B

AkBB, a value for Avogadro’s number. 
 
Perrin repeated the experiment with a wide variety of different substances, the experiments were 
very challenging, his results for Avogadro’s number were consistently between 5×1023 and 
8×1023.  He remarked that for the largest granules behaving like a perfect gas, a gram molecule 
would weigh 200,000 tons!  The results were consistent with the other quite different ways of 
finding Avogadro’s number, and these experiments convinced even the most recalcitrant anti-
atomic theory skeptics.  The kinetic theory was fully established. 

Langevin’s Theory 
In 1908, Langevin gave a more direct treatment of Brownian motion.  He focused on following 
one particle as it jiggled around.  We’ll follow him in restricting the motion to one dimension—
assuming the molecular collisions driving the motion are completely random, the motions in the 
three directions are uncorrelated, so can be treated separately and added.  Finally, we’ll neglect 
gravity and any other external force fields.  
 
Let’s assume, then, that we’re tracking a small spherical object, of mass m and radius a.  It will 
experience a viscous drag force -6πaηv (Stokes’ formula).  We’ll denote the random thermal 
molecular collision force by X, which clearly averages to zero.   
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Assuming the equipartition of energy applies also to the kinetic energy of our sphere,  
 

 
2

B
dxm k
dt

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠
T  

where the average is over a long time. 
 
The equation of motion ma = F  is: 
 

 
2
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Multiplying throughout by x,  

2
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which can be written 
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Now we’ll average over a long time: 

2
23 .d dx dx dm x m a x Xx

dt xt dt dt
π η
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Since X is random, 0.Xx =   Also, ( )2/ Bm dx dt k T= .   The operations of averaging and taking 

the time derivative commute, so we can write the equation: 
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To solve this differential equation, write 2 .d x y
dt

=  

The equation becomes: 

 26 Bk Tdy a y
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The solution is 
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 86

For the actual systems examined experimentally, the exponential term dies off in far less than a 
microsecond, so for a particle beginning at the origin: 
 

( ) ( )2 ,
3

Bk Td x t y t
dt aπ η

= =  

so  

 ( )2

3
Bk Tx t t
aπ η

=  

 
Hence by doing multiple experiments and averaging, Boltzmann’s constant kB can be found, and 
from that Avogadro’s number, as before. 

B

 
Note that the constancy of ( ) ( )2/d dt x t also appears in discussions of random molecular motion 

and the random path—this is all the same thing.  
 
Exercises: 

1. Estimate the decay time of the exponential term in the integrated expression for y(t) 
above.  You’ll need to find the viscosity of water, and estimate the sphere size as a few 
microns. 

2. Estimate how rapidly density of yellow spheres drops with height in Perrin’s 
“atmosphere”.  

3.  Notice the average distance traveled in the last equation above depends on the kinetic 
energy, the size, and the viscosity. This means a tiny lead sphere would diffuse the same 
distance, on average, as a tiny sphere of oil of the same size. But isn’t the lead moving a 
lot more slowly, since it has the same average kinetic energy?  Explain. 
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Heat Transport: Conduction, Convection, Radiation 
Conduction 
If different parts of an isolated solid are at different temperatures, heat will flow from the hot 
places to the cold ones until eventually all is at the same temperature.  By “isolated” here we 
mean that the solid is not able to exchange heat with  the outside world. 
 
Experimentally, it is found that for most substances the rate of heat flow at any point is 
proportional to the temperature gradient—how fast the temperature is changing with position. To 
give an example, consider heat flowing down a thin rod, heated at one end, and assume the rod is 
wrapped in insulation so all the heat flows down the rod, none escapes from the surface. The 
natural unit of heat flow down the rod is how many joules per second pass a fixed point in the 
rod.  It is found that: 

 dQ dT
dt dx

∝  

 
where Q is in joules, T in degrees Kelvin, x is meters down the rod. The heat flow rate is then in 
joules per second, or watts.  It is evident from this equation that if heat is supplied at a steady rate 
to one end of the rod, and drains from the other end, the temperature distribution will ultimately 
settle down to  = constant, a linear drop along the rod from one end to the other. /dT dx
 
It is also found experimentally that a rod of double the cross-section carries twice the heat 
current at the same temperature difference.  (This is also true for electric current, but remember it 
is not true for water in a pipe—the “caloric” fluid evidently doesn’t act like a viscous liquid.)  
 
This makes it possible to define a coefficient of  thermal conductivity κ for a particular material 
by  

dQ dTA
dt dx

κ=  

 
for heat flow across an area A (in square meters) for a given temperature gradient . /dT dx
 
The units of κ are watts/K⋅meters.  Some values: copper 390, stainless steel 13, glass around 0.8, 
white pine 0.11, air 0.026. 

Microscopic Picture of Conduction 
When a solid is warmed, the atoms jiggle around more—the heat energy is partially their kinetic 
energy of motion, partly the extra energy stores in the springy bonds between them as a result of 
their motion.  If one end of a solid is heated, the more vigorously moving atoms there bounce 
against their neighbors, which then begin to move more vigorously, and the motion diffuses 
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down the line. Obviously, this cannot be the whole story, because if we hit one end of the rod, a 
sound wave travels down by neighbor hitting neighbor, and moves far faster than heat. A more 
accurate picture (for a nonmetal) is that when one end is heated, tiny sound waves (called 
phonons) are generated by the fast moving atoms near the surface. these phonons travel into the 
solid at the speed of sound, but, unlike the massive compression wave when the end of the rod is 
hit, these phonons bounce off impurities or imperfections in the solid and follow random paths, 
only a few tens of atomic spaces between hits, typically.  This, then is very like the diffusion of a 
molecule in a gas we studied earlier, and it takes several minutes for heat to make its way 
through, say, half a centimeter of glass.  The picture is different for metals: the electrons which 
conduct electricity so efficiently do the same for heat.  However, heat transport by electrons 
cannot be understood without quantum mechanics: Pauli’s Exclusion Principle means only about 
1% of the electrons take part in the heat conduction, but it also means that they travel far faster. 
The thing to remember at this stage is that the electrons carry the heat, phonons do too, but make 
a negligible contribution.  As you might expect, good conductors of electricity are also good 
conductors of heat. This is why copper is used in saucepans (also, it doesn’t corrode too badly). 
 
Conductivity in liquids and gases can be measured—but usually heat transport in fluids is 
dominated by convection, see below.  Exceptions are, for example, a fluid heated from above, or 
a pond below 4 degrees Celsius being cooled from above on a winter night.   

American Units 
In the real world out there, the units are different. Heat flow (in construction jobs, for example) is 
measures in BTU’s per hour, temperature gradients in degrees Fahrenheit per inch thickness and 
cross-section area in square feet!   The R-value of  “thermal resistance” is the inverse of the 
thermal conductivity.  For one square foot of material, one inch thick, R relates the heat current 
to the temperature drop by an Ohm’s Law equation  ΔT = IR.  Different areas and thicknesses 
scale in the obvious way. For a wall made of layers of different materials, the R-values just add.  

Convection 
Convection is gravitationally-induced heat transport, driven by the expansion of a fluid on 
heating. The hot expanded fluid has lower density, so will rise to the top of colder, and therefore 
denser, fluid.  The simplest example is water in a kettle heated from below: hot water will rise in 
a central column, spread through the top layer, cooling, then flow back down around the outside. 
The pattern becomes more complicated if a fluid is being heated over a large area, with no 
obvious center. Convection cells can arise, each having a pattern like that in the kettle, the cells 
in a hexagonal pattern.  This can happen in weather: a storm can be such a cell. However, many 
patterns are possible: the fluid mechanics is extremely complex.  One important example of 
convection currents is inside the earth.  Such currents deep inside are believed drive the surface 
movement of plates, causing earthquakes, tsunamis, etc. 
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Radiation 
Heat from the sun reaches us as radiation, much of it visible light, the rest similar 
electromagnetic waves but at wavelengths our eyes are not sensitive to. All bodies not at absolute 
zero temperature radiate, at room temperature the radiation is in the infrared, wavelengths longer 
than those of the visible spectrum.  Microscopically, the radiation comes about because the 
oscillating ions and electrons in a warm solid are accelerating electric charges, and as you will 
find next semester, such charges radiate.  Different substances radiate with different efficiencies, 
those that radiate better also absorb incoming radiation better.  A perfect absorber is called a 
black body (such perfection is not found in nature, but some things are close).  This, then, is also 
a perfect radiator. It was found experimentally that for a perfect black body at an even 
temperature, the radiant energy output in watts per square meter of surface went as the fourth 
power of the absolute temperature:  
 4P Tσ=  
 
P being power per square meter, σ  is Stefan’s constant, 5.67 × 10−8 Watts/sq.m./K4. 
 
For a given T, the radiant power peaks at a certain wavelength, max constantTλ = .  This was well 
established: on heating a piece of metal, say, such as turning a dimmer on an ordinary light bulb, 
the first visible radiation is in the red, and an extremely hot object becomes white or even bluish. 
However, this was theoretically incomprehensible without quantum mechanics, and in fact the 
mystery of black body radiation led Planck to the first formulation of the idea of the quantum. 
 
I have a detailed discussion of black body radiation here.    
 
Exercises:  
1.  Estimate the sun’s surface temperature knowing the heat received here is about one kilowatt 
per square meter. 
 
2. Estimate the rate of heat loss from a naked body at skin temperature 33 degrees C in a room 
with walls at 20 degrees C.  (It would be zero for a body at 20 degrees!) 
 
 
 

http://galileo.phys.virginia.edu/classes/252/black_body_radiation.html
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