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Preface

This booklet contains our notes for courses Math 152 - Calculus II at Simon Fraser University. Students
are expected to bring this booklet to each lecture and to follow along, filling in the details in the blanks
provided, during the lecture.

Definitions of terms are stated in orange boxes and theorems appear in blue boxes .

Next to some examples you’ll see [link to applet]. The link will take you to an online interactive applet to
accompany the example - just like the ones used by your instructor in the lecture. Clicking the link above
will take you to the following website containing all the applets:

http://www.sfu.ca/ jtmulhol/calculus-applets/html/AdditionalResources.html

Try it now.

Next to some section headings you’ll notice a QR code. They look like the
image on the right.
Each one provides a link to a webpage (could be a youtube video, or access
to online Sage code). For example this one takes you to the Wikipedia
page which explains what a QR code is. Use a QR code scanner on your
phone or tablet and it will quickly take you off to the webpage. The app
“Red Laser” is a good QR code scanner which is available for free (iphone,
android, windows phone).

If you don’t have a scanner, don’t worry, I’ve hyperlinked all the QR codes so if you are viewing this
document electronically then you can just click on the image. However, if you are viewing a printed version
then this is where the scanner comes in handy, but again if you don’t have one you can manually type in
the url that is provided below the image.

We offer a special thank you to Keshav Mukunda for his many contributions to these notes.

No project such as this can be free from errors and incompleteness. We will be grateful to everyone
who points out any typos, incorrect statements, or sends any other suggestion on how to improve this
manuscript.

Veselin Jungic
vjungic@sfu.ca

Jamie Mulholland
j mulholland@sfu.ca

Simon Fraser University
January 2, 2018
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Greek Alphabet

lower
case

capital name pronunciation lower
case

capital name pronunciation

α A alpha (al-fah) ν N nu (new)
β B beta (bay-tah) ξ Ξ xi (zie)
γ Γ gamma (gam-ah) o O omicron (om-e-cron)
δ ∆ delta (del-ta) π Π pi (pie)
ε E epsilon (ep-si-lon) ρ P rho (roe)
ζ Z zeta (zay-tah) σ Σ sigma (sig-mah)
η H eta (ay-tah) τ T tau (taw)
θ Θ theta (thay-tah) υ Υ upsilon (up-si-lon)
ι I iota (eye-o-tah) φ Φ phi (fie)
κ K kappa (cap-pah) χ X chi (kie)
λ Λ lambda (lamb-dah) ψ Ψ psi (si)
µ M mu (mew) ω Ω omega (oh-may-gah)

v
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PART 1: INTEGRALS LECTURE 1.1 AREAS AND DISTANCES 2

1.1 Areas and Distances

(This lecture corresponds to Section 5.1 of Stewart’s Calculus.)

1. Quote. One can never know for sure what a deserted area looks like.
(George Carlin, American stand-up Comedian, Actor and Author, 1937-2008)

2. BIG Question. What is the meaning of the word area?

3. Vocabulary. Cambridge dictionary:
area noun

(a) a particular part of a place, piece of land or country;
(b) the size of a flat surface calculated by multiplying its length by its width;
(c) a subject or activity, or a part of it.
(d) (Wikipedia) - Area is a physical quantity expressing the size

of a part of a surface.

4. Example. Find the area of the region in the coordinate plane bounded by the coordinate axes and
lines x = 2 and y = 3.

5. Example. Find the area of the region in the coordinate plane bounded by the x-axis and lines y = 2x
and x = 3.

6. Example. Find the area of the region in the coordinate plane bounded by the x-axis and lines y = x2

and x = 3.

http://www.youtube.com/watch?v=avZGOd7_cKU
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7. Example. Estimate the area of the region in the coordinate plane bounded by the x-axis and lines
y = x2 and x = 3.
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8. Example. (Over- and under-estimates.) In the previous example, show that

lim
n→∞

Rn = 9 and lim
n→∞

Ln = 9.

9. A more general formulation.
Ingredients: A function f that is continuous on a closed interval [a, b].
Let n ∈ N, and define ∆x = b−a

n .
Let

x0 = a

x1 = a+ ∆x

x2 = a+ 2∆x

x3 = a+ 3∆x

...
xn = a+ n∆x = b.

Define
Rn = f(x1) ·∆x+ f(x2) ·∆x+ . . .+ f(xn) ·∆x.

(”R” stands for ”right-hand”, since we are using the right hand endpoints of the little rectangles.)

10. Definition of Area. The area A of the region S that lies under the graph of the continuous function
f over and interval [a, b] is the limit of the sum of the areas of approximating rectangles Rn. That is,

A = lim
n→∞

Rn = lim
n→∞

[f(x1) + f(x2) + . . .+ f(xn)] ∆x.

The more compact sigma notation can be used to write this as

A = lim
n→∞

Rn = lim
n→∞

(
n∑
i=1

f(xi)

)
∆x.
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11. Example. Find the area under the graph of f(x) = 100− 3x2 from x = 1 to x = 5.

From the definition of area, we have A = lim
n→∞

(
n∑
i=1

f(xi)

)
∆x.

12. Distance Problem. Find the distance traveled by an object during a certain time period if the
velocity of the object is known at all times.
Reminder. distance = velocity · time
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13. Additional Notes
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1.2 The Definite Integral

(This lecture corresponds to Section 5.2 of Stewart’s Calculus.)

1. Quote. ”After years of finding mathematics easy, I finally reached integral calculus and came up
against a barrier. I realized that this was as far as I could go, and to this day I have never successfully
gone beyond it in any but the most superficial way.”
(Isaac Asimov, Russian-born American author and biochemist, best known for his works of science
fiction, 1920-1992)

2. The Definite Integral. Suppose f is a continuous function defined on the closed interval [a, b], we
divide [a, b] into n subintervals of equal width ∆x = (b− a)/n. Let

x0 = a, x1, x2, . . . , xn = b

be the end points of these subintervals. Let

x∗1, x
∗
2, . . . , x

∗
n

be any sample points in these subintervals, so x∗i lies in the ith subinterval [xi−1, xi].

Then the definite integral of f from a to b is written as
∫ b

a

f(x)dx,

and is defined as follows: ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

http://www.youtube.com/watch?v=lOhNeH1hOB4
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3. The definite integral: some terminology∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

•
∫

is the integral sign

• f(x) is the integrand
• a and b are the limits of integration:
• a - lower limit
• b - upper limit

• The procedure of calculating an integral is called integration.

•
n∑
i=1

f(x∗i )∆x is called a Riemann sum

(named after the German mathematician Bernhard Riemann,1826-1866)

4. Four Facts.

(a) If f(x) > 0 on [a, b] then
∫ b

a

f(x)dx > 0.

If f(x) < 0 on [a, b] then
∫ b

a

f(x)dx < 0.

(b) For a general function f ,∫ b

a

f(x)dx = (signed area of the region) = (area above x-axis) - (area below x-axis)

(c) For every ε > 0 there exists a number n ∈ N such that∣∣∣∣∣
∫ b

a

f(x)dx−
n∑
i=1

f(x∗i )∆x

∣∣∣∣∣ < ε

for every n > N and every choice of x∗1, x∗2, . . . , x∗n.
(d) Let f be continuous on [a, b] and let a = x0 < x1 < x2 < . . . < xn = b be any partition of [a, b]. Let

∆xi = xi − xi−1, and suppose max ∆xi approaches 0 as n tends to infinity. Then∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆xi
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5. Some facts you just have to know.1

(a)
n∑
i=1

i =
n(n+ 1)

2

(b)
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

(c)
n∑
i=1

i3 =

(
n(n+ 1)

2

)2

(d)
n∑
i=1

c = cn

(e)
n∑
i=1

(cai) = c

n∑
i=1

ai

(f)
n∑
i=1

(ai ± bi) =

n∑
i=1

ai ±
n∑
i=1

bi

1For visual proofs of (a) and (b) see Goldoni, G. (2002). A visual proof for the sum of the first n squares and for the sum of the first
n factorials of order two. The Mathematical Intelligencer 24 (4): 6769. You can access the Mathematical Intelligencer through the
SFU Library web site: http://cufts2.lib.sfu.ca/CJDB/BVAS/journal/150620.

http://cufts2.lib.sfu.ca/CJDB/BVAS/journal/150620
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6. Example. Evaluate ∫ 2

0

(x2 − x)dx.

7. Example. Express the limit

lim
n→∞

n∑
i=1

(1 + xi) cosxi∆x

as a definite integral on the interval [π, 2π].

8. Example. Prove ∫ 2

0

√
4− x2dx = π.
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9. Choosing a good sample point . . . .

Midpoint Rule. To approximate an integral it is usually better to choose x∗i to be the midpoint xi of
the interval [xi−1, xi]:∫ b

a

f(x)dx ≈
n∑
i=1

f(xi)∆x = ∆x [f(x1) + f(x2) + . . .+ f(xn)]

Recall the midpoint of an interval [xi−1, xi] is given by xi = 1
2 (xi−1 + xi).

10. Example. Use the Midpoint Rule with n = 4 to approximate the integral
∫ 5

1

dx

x2
.



PART 1: INTEGRALS LECTURE 1.2 THE DEFINITE INTEGRAL 12

11. Two Special Properties of the Integral.

(a) If a > b then ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

(b) If a = b then ∫ b

a

f(x)dx = 0.

12. Some More Properties of the Integral.

(a) If c is a constant, then
∫ b

a

cdx = c(b− a)

(b)
∫ b

a

[f(x)± g(x)]dx =

∫ b

a

f(x)dx±
∫ b

a

g(x)dx

(c) If c is a constant, then
∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx

(d)
∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx

13. Example. Evaluate
∫ 3

0

(
2x− 3

√
9− x2

)
dx.
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14. Example. Evaluate
∫ 3

0

f(x)dx if f(x) =

{
1− x if x ∈ [0, 1]

−
√

1− (x− 2)2 if x ∈ (1, 3]

15. More Properties of the definite integral.

(a) If f(x) ≥ 0 for a ≤ x ≤ b, then
∫ b

a

f(x)dx ≥ 0.

(b) If f(x) ≥ g(x) for a ≤ x ≤ b, then
∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx.

(c) If m and M are constants, and m ≤ f(x) ≤M for a ≤ x ≤ b, then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a)
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16. Example. Prove
1

e4
≤
∫ 2

1

e−x
2

dx ≤ 1

e

17. Example.

(a) If f is continuous on [a, b], show that∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx.

(b) Show that if f is continuous on [0, 2π] then∣∣∣∣∫ 2π

0

f(x) sin 2xdx

∣∣∣∣ ≤ ∫ 2π

0

|f(x)|dx.
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18. Additional Notes
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1.3 The Fundamental Theorem of Calculus

(This lecture corresponds to Section 5.3 of Stewart’s Calculus.)

1. Quote. ”All of my fundamental principles that were instilled in me in my home, from my childhood,
are still with me.”
(Hakeem Abdul Olajuwon, a former NBA player,1963-)

2. Problem. Does every continuous function f have an antiderivative? That is, does there exist a
function F such that

F ′(x) = f(x)?

3. Problem. What is the antiderivative of f(x) =
sinx

x
?

4. The Fundamental Theorem of Calculus, Part 1. If f is a continuous on [a, b], then the function
g defined by

g(x) =

∫ x

a

f(t)dt, a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and

g′(x) = f(x).

http://www.youtube.com/watch?v=AZL8pqGGTac
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5. Example. Apply the Fundamental Theorem of Calculus, Part 1, to find the derivative of the following
functions:

(a) g(x) =

∫ x

1

sin t

t
dt

(b) g(x) =

∫ x2

0

sin t dt

(c) g(x) =

∫ h(x)

0

f(t) dt

(d) g(x) =

∫ ex

−3x
ln(1 + t2)dt
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6. The Fundamental Theorem of Calculus, Part 2. If f is continuous on [a, b], then∫ b

a

f(x)dx = F (b)− F (a)

where F is any antiderivative of f . That is, a function such that F ′ = f .
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7. Example. Evaluate the following integrals:

(a)
∫ 1

0

xdx

(b)
∫ 3

2

exdx

(c)
∫ π

0

sinx dx

(d)
∫ 1

0

dx

1 + x2
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8. A Piecewise Example. Let

f(x) =


0 if x < 0
x if 0 ≤ x ≤ 1
2− x if 1 < x ≤ 2
0 if x > 2

and let g(x) =

∫ x

0

f(t)dt.

(a) Find an expression for g(x) similar to the one for f(x).
(b) Sketch the graphs of f and g.
(c) Where is f differentiable? Where is g differentiable?
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9. Additional Notes
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1.4 Indefinite Integrals

(This lecture corresponds to Section 5.4 of Stewart’s Calculus.)

1. Quote. ”At the end of some indefinite distance there was always a confused spot, into which her
dream died.”

(Gustave Flauber, French novelist, 1821-1880)

2. Reminder. The Fundamental Theorem of Calculus, Part 2:
If f is continuous on [a, b], then ∫ b

a

f(x)dx = F (b)− F (a)

where F is any antiderivative of f , that is a function such that F ′ = f .

3. Problem. So, to be able to evaluate an integral, we need a way to find any antiderivative F of the
given function f . How do we find antiderivatives?

4. A new name for an old idea....

Definition. The symbol
∫
f(x)dx is called an indefinite integral, and it represents an antideriva-

tive of f . That is, ∫
f(x)dx = F (x) means F ′(x) = f(x)

5. Warning! It could be confusing: The notation
∫
f(x)dx is used to represent

• the set of all antiderivatives of f ∫
f(x)dx = {F : F ′ = f}

• a single function that is an antiderivative of f .

http://www.youtube.com/watch?v=PRWJxFGaaoI
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6. Integrals you should know:∫
cf(x)dx = c

∫
f(x)dx

∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx∫

kdx = kx+ C

∫
xndx =

xn+1

n+ 1
+ C (n 6= −1)

∫
dx

x
= ln |x|+ C∫

exdx = ex + C

∫
axdx =

ax

ln a
+ C∫

sinxdx = − cosx+ C

∫
cosxdx = sinx+ C∫

sec2 xdx = tanx+ C

∫
csc2 xdx = − cotx+ C∫

secx tanxdx = secx+ C

∫
cscx cotxdx = − cscx+ C∫

dx

x2 + 1
= tan−1 x+ C

∫
dx√

1− x2
= sin−1 x+ C
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7. Examples. Find the following indefinite integrals:

(a)
∫
x−2/3dx

(b)
∫
t2(3− 4t5)dt

(c)
∫

(u− 1)(u2 + 3)du

(d)
∫

(4ev − sec2 v)dv

(e)
∫

cos z

1− cos2 z
dz
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8. The Net Change Theorem. The integral of a rate of change is the net change:∫ b

a

F ′(x)dx = F (b)− F (a)

9. Example. If f(x) is the slope of a hiking trail at a distance of x miles from the start of the trail, what

does
∫ 4

2

f(x)dx represent?

10. Example. (Linear Motion of a Particle)
A particle is moving along a line with the acceleration (in m/s2) a(t) = 2t + 3 and the initial velocity
v(0) = −4 m/s with 0 ≤ t ≤ 3. Find

(a) the velocity at time t,
(b) the distance traveled during the given time interval.
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11. Additional Notes
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1.5 The Substitution Rule

(This lecture corresponds to Section 5.5 of Stewart’s Calculus.)

1. Quote. Persuasion is often more effectual than force.
(Aesop, Greek fabulist, 6th century BC)

2. Problem. Find ∫
−2xe−x

2

dx

3. Hint. What if we think of the ”dx” above as a differential? If u = e−x
2

, what is the differential du?

4. The Substitution Rule. If u = g(x) is a differentiable function whose range is an interval I and f
is continuous on I, then ∫

f(g(x))g′(x)dx =

∫
f(u)du.

5. Notes:

(a) This rule can be proved using the Chain Rule for differentiation. In this sense, it is a reversal of
the Chain Rule.

(b) The substitution rule says that we can work with ”dx” and ”du” that appear after the
∫

symbols

as if they were differentials.

6. Examples. Find the following indefinite integrals:

(a)
∫
x2(x3 + 5)9dx

http://www.youtube.com/watch?v=myUBTqvbIjc
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(b)
∫

dt√
3− 5t

(c)
∫

sin 3t dt

(d)
∫

du

u(lnu)2

(e)
∫

sin(π/v)

v2
dv
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(f)
∫

z2√
1− z

dz

7. Computers are ideal for computing integrals, and Wolfram|Alpha (www.wolframalpha.com) gives you
easy access to this computing power. Use it as a tool to help you study.
But be warned: you still have to understand how to do these computations yourself, since Wolfram|Alpha
won’t be with you for quizzes and exams.
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8. Substitution Rule for Definite Integrals. If g′ is continuous on [a, b] and if f is continuous on the
range of u = g(x), then ∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du.

9. Notes:

(a) When we make the substitution u = g(x), then the interval [a, b] on the x-axis becomes the
interval [g(a), g(b)] on the u-axis.

(b) Writing ∫ b

a

f(g(x))g′(x) dx =

∫ b

a

f(u) du =

∫ g(b)

g(a)

f(u) du

would NOT be right.
Make the substitution AND change the limits of integration at the same time!

10. Examples. Evaluate the following definite integrals:

(a)
∫ 2π

π

cos 3t dt

(b)
∫ e2

e

(lnu)2du

u
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11. Again, use Wolfram|Alpha to check your answer.

12. Even or Odd? Let a > 0 and let f be continuous on [−a, a].

• If f is odd then ∫ a

−a
f(x)dx = 0

• If f is even then ∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx
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13. Examples. Evaluate the following definite integrals:

(a)
∫ 3

−3
(2x4 + 3x2 + 4)dx

(b)
∫ e

−e

e−u
2

sinu du

u2 + 10
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14. Additional Notes
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2.1 Areas Between Curves

(This lecture corresponds to Section 6.1 of Stewart’s Calculus.)

1. Quote. ”Mathematics knows no races or geographic boundaries; for mathematics, the cultural world
is one country.”
(David Hilbert, German mathematician, 1862-1943)

2. Problem. Find the area bounded by parabolas

y = 2− x2 and y = x2.

3. Area Between Curves. Suppose f and g are continuous and f(x) ≥ g(x) for all x ∈ [a, b]. The area
A bounded by the curves y = f(x), y = g(x), and the lines x = a and x = b, is given by

A =

∫ b

a

f(x)− g(x) dx.
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4. Example. Find the area bounded by parabolas

y = 2− x2 and y = x2.

5. Example. Find the area of the region bounded by the line y = x and the parabola y = 6− x2.

6. Example. Find the area of the region bounded by the line y = x/2 and the parabola y2 = 8− x.
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7. Doing this area calculation along the y-axis.... Suppose the area A is bounded by the curves
x = f(y), x = g(y), and the lines y = c, y = d, where f and g are continuous and f(y) ≥ g(y) for all
y ∈ [c, d]. Then the area is given by

A =

∫ d

c

[f(y)− g(y)]dy.

8. Example. Find the area of the region bounded by the line y = x/2 and the parabola y2 = 8− x.
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9. Additional Notes
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2.2 Areas in Polar Coordinates

(This lecture corresponds to Section 10.4 of Stewart’s Calculus.)

1. Quote. “These [equations] are your friends. Use them, know them, love them.”
(Donna Pierce, American astrophysicist, 1975-)

2. Problem. Sketch the curve and find the area that it encloses:

r = 1 + cos θ.

3. Area bounded by polar curves. The area of a polar region R bounded by the curve r = f(θ), for
θ ∈ [a, b], is given by

A =

∫ b

a

1

2
[f(θ)]2dθ =

∫ b

a

1

2
r2dθ.

AREAS AND LENGTHS IN POLAR COORDINATES

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle

where, as in Figure 1, is the radius and is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:

. (See also Exercise 35 in Section 7.3.)
Let be the region, illustrated in Figure 2, bounded by the polar curve 

and by the rays and , where is a positive continuous function and where
. We divide the interval into subintervals with endpoints , ,

, . . . , and equal width . The rays then divide into smaller regions with
central angle . If we choose in the subinterval , then the area

of the th region is approximated by the area of the sector of a circle with central angle
and radius . (See Figure 3.)
Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in (2) improves as . But the sums
in (2) are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area of
the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4, it is helpful to think of the area as being swept out by

a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section 10.3. Notice from
Figure 4 that the region enclosed by the right loop is swept out by a ray that rotates from
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4. Example. Find the area enclosed by r = 1 + cos θ.

5. Example. (Final Exam, Spring 2006) Find the area of the region enclosed by the 3-leaved rose r =
4 sin(3θ).
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6. Additional Notes
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2.3 Volumes

(This lecture corresponds to Section 6.2 of Stewart’s Calculus.)

1. Quote. ”I shall now recall to mind that the motion of the heavenly bodies is
circular, since the motion appropriate to a sphere is rotation in a circle.”
(Nicolaus Copernicus, mathematician, astronomer, jurist, physician, classi-
cal scholar, governor, administrator, diplomat, economist, and soldier, 1473-
1543)

2. Recall some classic volume formulas:

3. Problem. How do we prove these formulas? Moreover, how do we define the volume of a solid object?

4. Definition of Volume. . . simple beginnings.

(i) The volume of a general cylinder with cross sectional area A and height h is defined to be Ah.

Surprisingly, it turns out (by Cavalieris principle) that these cross-sectional area slices can be rear-
ranged and still give the same total volume.

(ii) The volume of a general solid is defined using integrals (calculus).
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5. Definition of Volume . . . the technique.

6. Computing the volume of a general solid S.
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7. Definition of Volume. Let S be a solid that lies between x = a and x = b. If the cross-sectional
area of S in the plane Px, through x and perpendicular to the x-axis, is A(x), where A is a continuous
function, then the volume of S is

V =

∫ b

a

A(x)dx.

8. Example. Find the volume of a pyramid whose base is a square with side b and whose height is h.

9. Solid of Revolution. A solid of revolution is a solid (volume) obtained by revolving a region (or
area) in the plane about a line.

In this case the cross-sections are disks or annuli (a.k.a disks or washers), so the the volume formula
V =

∫ b
a
A(x)dx is known as the washer method.

10. Example. Some regions in the plane are shown below. Draw the resulting solid if these regions are
rotated about the x-axis?



PART 2: APPLICATIONS OF INTEGRATION LECTURE 2.3 VOLUMES 46

11. Example. Find the volume of the solid obtained by rotating the region bounded by the curves

y = sinx, x =
π

2
, and y = 0

about the x-axis.

12. Example. Find the volume of the solid obtained by rotating the region bounded by the curves

y =
√
x, y = 1, and x = 0

about the y-axis.
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13. Example. Find the volume of the solid obtained by rotating the region R, which is enclosed by the
curves y = x and y = x3 in the first quadrant, about the line

(a) y = 3

(b) x = 2
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14. Example.

(a) Set up an integral for the volume of a torus with inner radius r and outer radius R.
(b) By interpreting the integral as an area, find the volume of the torus.
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15. Additional Notes
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2.4 Volumes by Cylindrical Shells

(This lecture corresponds to Section 6.3 of Stewart’s Calculus.)

1. Quote. Your pain is the breaking of the shell that encloses your understanding.

(Kahlil Gibran, Lebanese born American philosophical essayist, novelist and poet, 1883-1931)

2. Problem. Consider the region in the xy-plane bounded by the curves y = 3x2−x3 and y = 0. Imagine
this region rotated about the y-axis. How do we find the volume of the resulting solid?

3. Exercise your imagination!
Let 0 ≤ a < b and let a function f be continuous on [a, b] with f(x) ≥ 0. Let R be the region bounded
by

y = f(x), y = 0, x = a, and x = b.

If we rotate R about the y-axis, we get a solid volume S.

Next, take an x ∈ [a, b]. Let Lx be the line segment inside the region R, between the points (x, 0) and
(x, f(x)). Imagine that Lx is colored red. Now rotate Lx about the y-axis. Do this slowly so that you
can see how a red cylinder with the radius x and the height f(x) emerges. This is your cylindrical
shell, called Cx.
The shell Cx is made of ”skin” only. To calculate its surface we cut it along the line segment Lx and
then flatten it to obtain a rectangle with the width 2πx and the height f(x). Thus the surface of Cx
equals Ax = 2πxf(x).
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Almost there...
Note that each point of the solid S belongs to only one cylindrical shell Cx, for some x ∈ [a, b]. So
we can imagine that S is obtained by gluing all cylindrical shells together. Each cylindrical shell
contributes its surface (or ”skin”!) to the volume of S, or, in other words, the volume is the ”sum” of
all surfaces. Each x ∈ [a, b] gives one shell Cx with a surface area Ax, and so the ”sum” of all of them
is given by

V =

∫ b

a

Axdx = 2π

∫ b

a

xf(x)dx.

This is known as the cylindrical shells method (or simply the shell method) for computing the
volume of a solid of revolution.

4. Example. Find the volume of the solid obtained by rotating about the y-axis the region bounded by
curves

y = 3x2 − x3 and y = 0.
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5. Example. Find the volume of the solid that remains after you bore a circular hole of radius a through
the center of a solid sphere of radius b > a.
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6. Example. Consider the region in the first quadrant bounded by the curves y2 = x and y = x3. Use
the method of cylindrical shells to compute the volume of the solid obtained by revolving this region
around

(a) y-axis.

(b) x-axis.

(c) line x = 1.

7. Summary: A general guideline for which method to use is the following:

• If the area section (strip) is parallel to the axis of rotation, use the shell method.
• If the area section (strip) is perpendicular to the axis of rotation, use the washer method.



PART 2: APPLICATIONS OF INTEGRATION LECTURE 2.4 VOLUMES BY CYLINDRICAL SHELLS 54

8. Additional Notes
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3.1 Integration By Parts

(This lecture corresponds to Section 7.1 of Stewart’s Calculus.)

1. Quote. ”Warning: this material is for a mature calculus audience.”
Disclaimer on the web page The absolutely outra-
geous CALCULUS IS COOL webpage by Jochen Denzler,
http://www.math.utk.edu/∼denzler/CalculusND/index.html
(Jochen Denzler, German-born mathematician, 1963-)

2. Problem. Integrate ∫
xexdx.

3. Integration By Parts. Let f and g be differentiable functions. Then∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx.

Here is an easier way to remember this: for u = f(x) and v = g(x)∫
udv = uv −

∫
vdu.

4. Example. Integrate
∫
xexdx.
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5. Examples. Integrate

(a)
∫

lnxdx

(b)
∫

arcsinxdx

(c)
∫
x2e−xdx

(d)
∫
e2x cos 3xdx
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6. Check answers with Wolfram|Alpha:

7. Example.

(a) Prove the reduction formula∫
cosn xdx =

1

n
cosn−1 x sinx+

n− 1

n

∫
cosn−2 xdx
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(b) Use part (a) to evaluate
∫

cos2 xdx

(c) Use parts (a) and (b) to evaluate
∫

cos4 xdx
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8. Example. Evaluate ∫ √3

1

arctan

(
1

x

)
dx.
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9. Additional Notes
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3.2 Trigonometric Integrals

(This lecture corresponds to Section 7.2 of Stewart’s Calculus.)

1. Quote. ”Today, I am giving two exams...one in trig and the other in honesty. I hope you will pass
them both. If you must fail one, fail trig. There are many good people in the world who can’t pass
trig, but there are no good people who cannot pass the exam of honesty.”
(Madison Sarratt, Dean and then Vice-Chancellor at Vanderbilt University, 1891-1978)

2. Examples. Integrate the following:

(a)
∫

sin2 (3x)dx =

(b)
∫

cot2 (3x)dx =
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3. Products of Sines and Cosines.

To evaluate
∫

sinn x cosm xdx, there are only two possibilities:

(a) At least one of the numbers n and m is odd. For example,∫
sin3 x cos2 x dx =

(b) Both n and m are even. For example,∫
sin2 x cos2 x dx =

4. Example. Integrate
∫

cos5 x dx
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5. Integrating Other Trig Functions: Tangent, Cotangent, Secant, and Cosecant.

(a)
∫

tanx dx =

(b)
∫

cotx dx =

(c)
∫

secx dx =

(d)
∫

cscx dx =
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6. Additional Notes
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3.3 Trigonometric Substitutions

(This lecture corresponds to Section 7.3 of Stewart’s Calculus.)

Here our goal is to use trig functions to try to simplify the integrand, hopefully converting it to one that is
easier to integrate.

1. Quote. ”There is no harm in patience, and no profit in lamentation.”
(Abu Bakr, The First Caliph, 573-634)

2. Problem. Assuming that |x| ≤ a, evaluate∫ √
a2 − x2 dx.

3. Integration by Substitution (using Trigonometric Functions).

If the integral involves then substitute and use the identity

a2 − u2 u = a sin θ 1− sin2 θ = cos2 θ

a2 + u2 u = a tan θ 1 + tan2 θ = sec2 θ

u2 − a2 u = a sec θ sec2 θ − 1 = tan2 θ

4. Example. Integrate ∫ √
1− x2 dx, assuming |x| < 1
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5. Additional Notes
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3.4 Integration of Rational Functions by Partial Fractions

(This lecture corresponds to Section 7.4 of Stewart’s Calculus.)

1. Quote. ”It does not matter how slowly you go so long as you do not stop.”
(Confucius, Chinese Philosopher, 551-479 BC)

2. Problem. Evaluate ∫
x− 1

x2 − 5x+ 6
dx.

3. General Problem: Integrating Rational Functions.

Problem. Evaluate
∫
P (x)

Q(x)
dx, where P and Q are polynomials.

If degP ≥ degQ then (by long division) there are polynomials q(x) and r(x) such that

P (x)

Q(x)
= q(x) +

r(x)

Q(x)

and either r(x) is identically 0 or deg r < degQ. The polynomial q is the quotient and r the remainder
produced by the long division process.

If r(x) = 0, then P (x)
Q(x) is really just a polynomial, so we can ignore that case here.

Now
∫
P (x)

Q(x)
dx =

∫
q(x)dx+

∫
r(x)

Q(x)
dx.

We can easily integrate the polynomial q, so the general problem reduces to the problem of integrating
a rational function r(x)

Q(x) with deg r < degQ.

4. So, for the purposes of investigating how to integrate a rational function we can suppose f(x) = P (x)
Q(x)

with degP (x) < degQ(x).

5. Fact About Every Polynomial Q. Q can be factored as a product of linear factors (i.e. of the form
ax+ b)

and / or

irreducible quadratic forms (i.e. of the form ax2 + bx+ c, where b2 − 4ac < 0).
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Our strategy to integrate the rational function f(x) is as follows:

• Factor Q(x) into linear and irreducible quadratic factors
• Write f(x) as a sum of partial fractions, where each fraction is of the form

K

(ax+ b)s
or

Lx+M

(ax2 + bx+ c)t
.

• Integrate each partial fraction in the sum.

6. Question. How do we find K, L, and M?
Let’s look at some examples.

7. Example. Integrate

(a)
∫

4x2 − 3x− 4

x3 + x2 − 2x
dx
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(b)
∫
x3 − 4x− 1

x(x− 1)3
dx

(c)
∫

5x3 − 3x2 + 2x− 1

x4 + x2
dx
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(d)
∫

1

x(x2 + 1)2
dx
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8. Example. Find the volume of the solid obtained by revolving the region R between the curve

y =
x− 9

x2 − 3x

and the x-axis over the interval 1 ≤ x ≤ 2, around the y-axis.
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9. The steps to integrate a rational function f - A Technical Look
Suppose f(x) = P (x)

Q(x) with degP < degQ.

• Step 1: First factor Q(x) into its linear and irreducible quadratic pieces. If there are n distinct
linear factors and m distinct quadratic factors, then

Q(x) = (a1x+ b1)r1 . . . (anx+ bn)rn(c1x
2 + d1x+ e1)s1 . . . (cmx

2 + dmx+ em)sm

• Step 2: The f(x) can be written as a sum of partial fractions as follows

P (x)

Q(x)
=

A1,1

a1x+ b1
+

A1,2

(a1x+ b1)2
+ . . .+

A1,r1

(a1x+ b1)r1
+

...

+
An,1

anx+ bn
+

An,2

(anx+ bn)2
+ . . .+

An,rn

(anx+ bn)rn
+

+
B1,1x+ C1,1

c1x2 + d1x+ e1
+

B1,2x+ C1,2

(c1x2 + d1x+ e1)2
+ . . .+

B1,s1x+ C1,s1

(c1x2 + d1x+ e1)s1
+

...

+
Bm,1x+ Cm,1

cmx2 + dmx+ em
+

Bm,2x+ Cm,2

(cmx2 + dmx+ em)2
+ . . .+

Bm,smx+ Cm,sm

(cmx2 + dmx+ em)sm

• Step 3: Integrate each partial fraction in the sum.
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10. Additional Notes
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3.5 Strategy for Integration

(This lecture corresponds to Section 7.5 of Stewart’s Calculus.)

1. Quote. ”A math student’s best friend is BOB (the Back Of the Book), but remember that BOB doesn’t
come to school on test days.”
(Joshua Folb, High School Teacher, Winchester, Virginia)

2. Table of Integration Formulas. Constants of integration have been omitted.

You should know this table!∫
xn dx =

xn+1

n+ 1
, (n 6= −1)

∫
dx

x
= ln |x|

∫
ex dx = ex

∫
ax dx =

ax

ln a∫
sinx dx = − cosx

∫
cosx dx = sinx

∫
sec2 x dx = tanx

∫
csc2 x dx = − cotx∫

secx tanx dx = secx

∫
cscx cotx dx = − cscx∫

secx dx = ln | secx+ tanx|
∫

cscx dx = ln | cscx− cotx|∫
tanx dx = ln | secx|

∫
cotx dx = ln | sinx|∫

sinhx dx = coshx

∫
coshx dx = sinhx

∫
dx

x2 + a2
=

1

a
arctan

(x
a

)
∫

dx√
a2 − x2

= arcsin
(x
a

)
∫

dx

x2 − a2
=

1

2a
ln

∣∣∣∣x− ax+ a

∣∣∣∣∫
dx√
x2 ± a2

= ln
∣∣∣x+

√
x2 ± a2

∣∣∣
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3. Final Exam - Summer 2004. Integrate

(a)
∫

x+ 4

x3 + x
dx

(b)
∫ π/2

0

sin4 x cos3 xdx

(c)
∫
ex sin(2x)dx
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4. Final Exam - Fall 2005. Integrate

(a)
∫ e

1

lnx

x
dx

(b)
∫

cos2(5x)dx

(c)
∫
x3 lnxdx

(d)
∫
x sec(x2) tan(x2)dx

(e)
∫

3x+ 1

x(x+ 1)
dx
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5. Final Exam - Spring 2006. Integrate

(a)
∫
x2(lnx)2dx

(b)
∫ π/2

0

cos3 x sin(2x)dx

(c)
∫

3

x−1/2(x3/2 − x1/2)
dx

(d)
∫ √

x2 − 1

x
dx hint: Use the substitution x = sec θ.

(e)
∫ 3

0

dx

x2 − 3x− 4
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6. Final Exam - Summer 2006. Integrate

(a)
∫
x5e−x

3

dx

(b)
∫ 5

1

√
−x2 + 6x− 5 dx

(c)
∫ √

1 + x√
1− x

dx

(d)
∫

cosx

4− sin2 x
dx

(e)
∫

dx√
1 + x2

hint: Use the substitution x = tan θ.
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7. Additional Notes
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3.6 Approximate Integration

(This lecture corresponds to Section 7.7 of Stewart’s Calculus.)

1. Quote. ”All exact science is dominated by the idea of approximation.”
(Bertrand Russell, English Logician and Philosopher 1872-1970)

2. Problem. Evaluate
∫ 1

0

e−x
2

dx.

3. Reminder. If f is continuous on [a, b] and if [a, b] is divided into n subintervals

[a = x0, x1], [x1, x2], . . . , [xn−1, xn = b]

of equal length ∆x = b−a
n then ∫ b

a

f(x)dx ≈
n∑
i=1

f(x∗i )∆x

where x∗i is any point in [xi−1, xi].

4. Ways of choosing the sample points x∗i :

Endpoint Approximation.

The left-point approximation Ln and the right-point approximation Rn to
∫ b
a
f(x)dx with ∆x = b−a

n
are

Ln =

n∑
i=1

f(xi−1)∆x

and

Rn =

n∑
i=1

f(xi)∆x.

http://goo.gl/oAnj2
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Midpoint Approximation.

The midpoint approximation Mn with ∆x = b−a
n is

Mn =

n∑
i=1

f(xi)∆x

where
xi =

xi−1 + xi
2

.

Trapezoid Rule.

The trapezoidal approximation to ∫ b

a

f(x)dx with ∆x =
b− a
n

is
Tn =

∆x

2
[f(x0) + 2f(x1) + 2f(x2) + . . .+ 2f(xn−1) + f(xn)].
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5. Example. Calculate an approximation to the integral∫ 3

0

x2dx

with n = 6 and ∆x = 0.5 by using

(a) left-endpoint approximation
(b) right-endpoint approximation
(c) midpoint approximation
(d) trapezoidal approximation
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6. Errors in Approximation:
The error E in using an approximation is defined to be the difference between the actual value and
the approximation A. That is,

E =

∫ b

a

f(x) dx−A

It turns out that the size of the error depends on the second derivative of the function f , which
measures how much the graph is curved.
The following fact is usually proved in a course on numerical analysis (MACM316), so we just state
it here.

Error bounds:

Suppose that |f”(x)| ≤ K for x in the interval [a, b]. If ET and EM are the errors in the Trapezoidal
and Midpoint Rules then

|ET | ≤
K(b− a)3

12n2
and |EM | ≤

K(b− a)3

24n2
.

7. Example. Since ∫ 2

1

dx

x
= ln 2

the Trapezoidal and Midpoint Rules could be used to approximate ln 2. Estimate the errors in the the
Trapezoidal and Midpoint approximations of this integral by using n = 10 intervals.
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8. Example.

(a) Use the Midpoint Rule with n = 10 to approximate the integral
∫ 1

0

e−x
2

dx.

(b) Give an upper bound for the error involved in this approximation.
(c) How large do we have to choose n so that the approximation Mn to the integral in part (a) is

accurate to within 0.00001?
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9. Approximation using parabolic segments:
Let f be continuous on [a, b] and divide the interval into an even number n subintervals of equal
length ∆x = b−a

n . Suppose the endpoints of these subintervals are, as usual, a = x0, x1, x2, . . . , xn = b.

Let Pi be the point (xi, f(xi)). For each even number i < n we approximate the area under the curve
y = f(x) over the interval [xi, xi+2] by the area under the unique parabola that passes through the
points Pi, Pi+1, and Pi+2 over the same interval.

10. Simpson’s Rule.

Let f be continuous on [a, b] and ∆x = b−a
n with n even.

Then we can approximate
∫ b

a

f(x) dx by the sum

Sn =
∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)].

11. Example. Approximate
∫ 3

0

dx

1 + x4
by Simpson’s Rule with n = 6.
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12. Error in Simpson’s Rule.
This time, the size of the error depends on the fourth derivative of f .

Error Bound in Simpson’s Rule

Suppose that |f (4)(x)| ≤ K for all x in the interval [a, b]. If ES is the error in using Simpson’s Rule,
then

|ES | ≤
K(b− a)5

180n4
.

13. Example. How large should we take n in order to guarantee that the Simpson’s Rule approximation

to
∫ 2

1

(1/x)dx is accurate within 0.0001?
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14. Additional Notes
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3.7 Improper Integrals

(This lecture corresponds to Section 7.8 of Stewart’s Calculus.)

1. Quote. You and I are essentially infinite choice-makers. In every moment of our existence, we are in
that field of all possibilities where we have access to an infinity of choices.
(Deepak Chopra, Indian ayurvedic Physician and Author, 1947-)

2. Problem. Evaluate the area of the region bounded by the curves

y =
1

x2
, y = 0, x = 1.

3. Improper Integral of Type I.

(a) If
∫ t

a

f(x)dx exists for all t ≥ a, then
∫ ∞
a

f(x)dx = lim
t→∞

∫ t

a

f(x)dx provided that this limit exists

(i.e. as a finite number).

(b) If
∫ b

t

f(x)dx exists for all t ≤ b, then
∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t

f(x)dx provided that this limit

exists (i.e. as a finite number).

The improper integrals
∫ ∞
a

f(x)dx and
∫ b

−∞
f(x)dx are called convergent if the corresponding

limit exists and divergent if the limit does not exist.

(c) If both
∫ a

−∞
f(x)dx and

∫ ∞
a

f(x)dx are convergent, then we define

∫ ∞
−∞

f(x)dx =

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx.
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4. Example. Investigate the improper integrals.

(a)
∫ ∞
1

dx

x

(b)
∫ ∞
1

dx

x2

(c)
∫ 0

−∞

dx√
1− x

(d)
∫ ∞
−∞

dx

1 + x2
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5. Problem. Evaluate the area of the region bounded by the curves

y =
1√
x
, y = 0, x = 0, x = 1.

6. Improper Integral of Type II.

(a) If f is continuous on [a, b) and is discontinuous at b, then∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx

provided that this limit exists.
(b) If f is continuous on (a, b] and is discontinuous at a, then∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx

provided that this limit exists.

The improper integral
∫ b

a

f(x)dx is called convergent if the corresponding limit exists and

divergent if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both
∫ c

a

f(x)dx and
∫ b

c

f(x)dx are convergent,

then we define ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.
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7. Example. Investigate the improper integrals.

(a)
∫ 2

1

dx

(x− 2)2

(b)
∫ 2

0

dx

(2x− 1)2/3

(c)
∫ 1

0

lnx dx

8. Comparison Theorem.
Suppose that f and g are continuous functions with 0 ≤ g(x) ≤ f(x) for x ≥ a.

(a) If
∫ ∞
a

f(x)dx is convergent then
∫ ∞
a

g(x)dx is convergent.

(b) If
∫ ∞
a

g(x)dx is divergent then
∫ ∞
a

f(x)dx is divergent.
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9. Example. Use the Comparison Theorem to determine if the following integrals are convergent or
divergent.

(a)
∫ ∞
4

dx

lnx− 1

(b)
∫ ∞
1

e−x
2/2dx
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10. Additional Notes
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4.1 Arc Length

(This lecture corresponds to Section 8.1 of Stewart’s Calculus.)

1. Quote. “As usual, Ronaldinho takes the free kick. He sent the ball whistling into the air with his
right foot. Just as ball looked to fly wide, it curled in a perfect arc and entered the net at the top right
corner.”
(From http://hvdofts.wordpress.com/2006/11/21/controversy-in-camp-nou/)

2. Problem. Find the length of the arc of the parabola y = (x− 1)2 between the points (0, 1) and (3, 4).

3. The Arc Length Formula.

If f ′ is continuous on [a, b], then the length of the curve y = f(x), a ≤ x ≤ b is

L =

∫ b

a

√
1 + [f ′(x)]2dx.
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4. Example. Find the length of the following arcs.

(a) y = (x− 1)2 between the points (0, 1) and (3, 4)

(b) x =
1

6
y3 +

1

2y
, 1 ≤ y ≤ 2

(c) y = x3, 0 ≤ x ≤ 5
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5. The Arc Length Function. Let a smooth curve C has the equation y = f(x), a ≤ x ≤ b. Let s(x) be
the distance along C from the initial point P0(a, f(a)) to the point Q(x, f(x)).

(a) Find the formula for s(x).

(b) Find
ds

dx
, as well as the differential ds.

6. Example. Find the arc length function for the curve y = 2x3/2 with starting point P0(1, 2).
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7. Additional Notes
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4.2 Area of a Surface of Revolution

(This lecture corresponds to Section 8.2 of Stewart’s Calculus.)

1. Quote. “Be like a duck. Calm on the surface, but always paddling like the dickens underneath.”
(Michael Caine, British Actor, 1933-)

2. Problem. Find the surface area of the paraboloid which is obtained by revolving the parabolic arc
y =
√
x, 0 ≤ x ≤ 2, about the x-axis.

3. Surface Area.
Let a smooth curve C be given by y = f(x), x ∈ [a, b].

(a) The area of the surface obtained by rotating C about the x-axis is defined as

S =

∫ b

a

2πf(x)
√

1 + [f ′x)]2dx.

(b) The area of the surface obtained by rotating C about the y-axis is defined as

S =

∫ b

a

2πx
√

1 + [f ′(x)]2dx.

4. Area formulas for surfaces of revolution.

Description of Revolution about Revolution about
curve C x-axis y-axis

y = f(x), x ∈ [a, b]

∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx

∫ b

a

2πx
√

1 + [f ′(x)]2 dx

x = g(y), y ∈ [c, d]

∫ d

c

2πy
√

1 + [g′(y)]2 dy

∫ d

c

2πg(y)
√

1 + [g′(y)]2 dy
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5. Examples. Find the area of the surface obtained by rotating the given arc about the corresponding
axis.

(a) y =
√
x, 0 ≤ x ≤ 2, about the x-axis

(b) y = x3, 0 ≤ x ≤ 2, about the x-axis
(c) y = x2, 0 ≤ x ≤

√
2, about the y-axis
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6. Example. Find the surface area of the torus.
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7. Additional Notes
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4.3 Calculus with Parametric Curves

(This lecture corresponds to Section 10.2 of Stewart’s Calculus.)

1. Quote. “Contrary to common belief, the calculus is not the height of the so-called higher mathemat-
ics. It is, in fact, only the beginning.”
(Morris Kline, American mathematician, 1908-1992)

2. Problem. Find the arc length of one arch of the cycloid

x = r(t− sin t), y = r(1− cos t), 0 ≤ t ≤ 2π.

Also find the area under this arch.

3. Some previous results in a new context . . .

Calculus with Parametric Curves:

Suppose the function y(x), for x ∈ [a, b], is defined by the parametric equations

x = f(t) and y = g(t) for t ∈ [α, β]

and let C be the corresponding parametric curve.

(We assume that f and g satisfy all conditions that will guarantee that the function y(x) has the necessary properties that
allow for the existence of all listed integrals.)

1. If f and g are differentiable with f ′(t) 6= 0, then
dy

dx
=

dy
dt
dx
dt

=
g′(t)

f ′(t)
.

2. If y(x) ≥ 0, then the area under the curve C is given by

A =

∫ b

a

y(x) dx =

∫ β

α

g(t)f ′(t) dt

3. If f ′ and g′ are continuous on [α, β] and C is traversed exactly once as t increases from α to β, then the
length of the curve C is given by

s =

∫ b

a

s

1 +

[
dy

dx

]2
dx =

∫ β

α

√
[ f ′(t)]2 + [ g′(t)]2 dt

4. If g(t) ≥ 0 then the area of the surface obtained by rotating C about the x-axis is given by

S =

∫ b

a

2πy

s

1 +

[
dy

dx

]2
dx =

∫ β

α

2πg(t)
√

[ f ′(t)]2 + [ g′(t)]2 dt
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4. Example. Find the slope of the tangent to the astroid x = a cos3 θ, y = a sin3 θ as a function of the
parameter θ. At what points is the tangent horizontal. Vertical? At what points does that tangent
have slope 1. What about slope −1?

5. Example. Find the area under one arch of the cycloid:

x = r(t− sin t), y = r(1− cos t), 0 ≤ t ≤ 2π.

Also find the arc length of this arch.
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6. Example. Find the area of the surface obtained by rotating the curve

x = 3t− t3, y = 3t2, 0 ≤ t ≤ 1

about the x-axis.

7. Polar Coordinates are just parametric equations. Really!!
Find the arc length s of the cardioid with polar equation

r = 1 + cos θ.

Also, find also the surface area S generated by revolving the cardioid around the x-axis.
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8. Additional Notes
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5.1 Sequences

(This lecture corresponds to Section 11.1 of Stewart’s Calculus.)

1. Mensa Puzzle. What number comes next in this sequence?

1 3 8 19 42 ?

What is the 100th number in the sequence?

2. Sequence.

A sequence is a function whose domain is the set Z+ = {1, 2, 3, . . .} of positive integers.

If the function is s : Z+ → R, then the output s(n) is usually written as sn, we also write the whole
sequence as s = {sn}.
Note: Sometimes the domain of a sequence is may be taken as N = Z+ ∪ {0}, in which case we write
{sn}∞n=0.

3. Examples.

(a) Write out the first few terms of the sequence

{cosnπ}∞n=2.

Is it possible to write this sequence in a different form?

(b) Graph the sequence
{

1 + (−1)n
n

}
.
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4. Definition - Limit of a sequence. (Informal definition)

A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by taking n sufficiently large.
If lim

n→∞
an exists, we say the sequence converges (or it is convergent). Otherwise, we say the

sequence diverges (or is divergent).

5. Definition - Limit of a sequence.
(Formal or mathematically rigorous definition, called the ”ε-N definition”)

A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if for every ε > 0 there is a corresponding integer N such that

|an − L| < ε whenever n > N.

6. Example. Is the sequence
{

2n
n+3

}
convergent or divergent?

7. Theorem. Consider the sequence f(n) = an where n is an integer.
If lim
x→∞

f(x) = L then lim
n→∞

an = L.

If you compare Definition 2 with Definition 2.6.7, you will see that the only difference
between and is that is required to be an integer. Thus
we have the following theorem, which is illustrated by Figure 6.

THEOREM If and when is an integer, then 
.

In particular, since we know that when (Theorem 2.6.5),
we have

if

If becomes large as n becomes large, we use the notation . The fol-
lowing precise definition is similar to Definition 2.6.9.

DEFINITION means that for every positive number there is
an integer such that

if then

If , then the sequence is divergent but in a special way. We say that
diverges to .

The Limit Laws given in Section 2.3 also hold for the limits of sequences and their
proofs are similar.

If and are convergent sequences and is a constant, then

lim
n l !

 an
p ! [lim

n l !
 an] p if  p " 0 and an " 0

 lim
n l !

 
an

bn
!

lim 
nl! 

an

lim
n l !

 bn
if lim

n l !
 bn " 0         

lim
n l !

 !anbn " ! lim
n l !

 an ! lim
n l !

 bn       

lim
n l !

 c ! c                                     lim
n l !

 can ! c lim
n l !

 an                       

 lim
n l !

 !an # bn " ! lim
n l !

 an # lim
n l !

 bn

 lim
n l !

 !an $ bn " ! lim
n l !

 an $ lim
n l !

 bn

c#bn $#an $

!#an $
#an $lim nl! an ! !

an " Mn " N

N
Mlimnl! an ! !5

lim nl! an ! !an

r " 0lim 
nl!

 
1
nr ! 04

r " 0limxl! !1%xr " ! 0
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8. Definition.
lim

n→∞
an =∞

means that for every positive number M there is an integer N such that

an > M whenever n > N.

9. Facts about sequences.

If {an} and {bn} are convergent sequences and c is a constant, then

(a) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

(b) lim
n→∞

(can) = c lim
n→∞

an (in particular, this means that lim
n→∞

c = c)

(c) lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

(d) lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
, as long as lim

n→∞
bn 6= 0

(e) lim
n→∞

(an)p =
(

lim
n→∞

an

)p
only for p > 0 and an > 0.

(f) If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

(g) If an ≤ cn ≤ bn for all n ≥ N , and lim
n→∞

an = lim
n→∞

bn = L, then lim
n→∞

cn = L.

(h) If lim
n→∞

an = L and a function f is continuous at L, then lim
n→∞

f(an) = f(L)

10. Examples.

(a) Show that the sequence { n
√
n} converges to 1.

(b) Is the sequence an = sin
(nπ

2

)
convergent or divergent?
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11. Examples.

(a) Does the sequence
{

cos (nπ)
n

}
converge or diverge?

(b) For what values of r is the sequence {rn} convergent?

12. Definition. A sequence {an} is called increasing if an < an+1 for all n ≥ 1, that is,
a1 < a2 < a3 < . . ..
It is called decreasing if an > an+1 for all n ≥ 1.
It is called monotonic if it is either increasing or decreasing.

13. Examples. Decide which of the following sequences is increasing, decreasing or neither.

(a) an = 1 + 1
n

(b) bn = 1− 1
n

(c) cn = 1 + (−1)n
n
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14. Definition. A sequence {an} is bounded above if there is a number M such that

an ≤M for all n ≥ 1.

It is bounded below if there is a number m such that

m ≤ an for all n ≥ 1.

If it is bounded above and below, then {an} is a bounded sequence.

15. Monotonic Sequence Theorem. Every bounded, monotonic sequence is convergent.

EXAMPLE 12 Show that the sequence is decreasing.

SOLUTION 1 We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

Since , we know that the inequality is true. Therefore and 
so is decreasing.

SOLUTION 2 Consider the function :

Thus is decreasing on and so . Therefore is decreasing. M

DEFINITION A sequence is bounded above if there is a number such
that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the sequence
satisfies but is divergent from Example 6] and not every mono-

tonic sequence is convergent . But if a sequence is both bounded and
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively
you can understand why it is true by looking at Figure 12. If is increasing and 
for all , then the terms are forced to crowd together and approach some number .

The proof of Theorem 12 is based on the Completeness Axiom for the set of real
numbers, which says that if is a nonempty set of real numbers that has an upper bound

( for all in ), then has a least upper bound . (This means that is an upper
bound for , but if is any other upper bound, then .) The Completeness Axiom is
an expression of the fact that there is no gap or hole in the real number line.

b ! MMS
bbSSxx ! MM

S
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$
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16. Example. Investigate the sequence {an} that is defined recursively by

a1 =
√

6, an+1 =
√

6 + an , for n ≥ 1.
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(example continued)
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17. Additional Notes
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5.2 Series

(This lecture corresponds to Section 11.2 of Stewart’s Calculus.)

1. Joke: An infinite crowd of mathematicians enters a bar. The first one orders a pint, the second one a
half pint, the third one a quarter pint ... “I understand,” says the bartender – and pours two pints.

2. Series. Suppose {an} is a sequence of numbers. An expression of the form

a1 + a2 + a3 + . . .+ an + . . .

is called an infinite series and it is denoted by the symbol

∞∑
n=1

an or
∑

an.

3. Partial Sum. If
∞∑
i=1

ai is a series then

sn =

n∑
i=1

ai = a1 + a2 + . . .+ an

is called its nth partial sum.

But does it make sense to ”add infinitely many numbers”?
Not directly, so we imagine adding finitely many terms, but more and more terms each time, and look
at what happens to these cumulative sums.
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4. Definition. Given the series
∑∞
i=1 ai = a1 + a2 + . . ., let sn denote its nth partial sum:

sn =

n∑
i=1

ai = a1 + a2 + . . .+ an.

If the sequence {sn} is convergent and lim
n→∞

sn = s exists as a real number, then the series
∑
an is

called convergent and we write
∞∑
i=1

ai = a1 + a2 + . . . = s

The number s is called the sum of the series.
If the limit above does not exist, then the series is called divergent.

5. Example. The series 1 + 1
2 + 1

4 + 1
8 + 1

16 + . . . has partial sums s1 = 1, s2 = 1.5, s3 = 1.75,

s4 = 1.875 . . . and in general it turns out that sn = 2− 1
2n−1 .

Since sn → 2 as n→∞, the series is convergent and has sum 2.

6. Example. Show that the geometric series
∞∑
i=1

ari−1 = a+ ar+ ar2 + . . . is convergent if |r| < 1 and

its sum is
∞∑
i=1

ari−1 =
a

1− r
, |r| < 1

If |r| ≥ 1, the geometric series is divergent.
(Here we are assuming a 6= 0, otherwise the series converges to 0 regardless of the value of r.)
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7. Examples. Determine whether the given series converges or diverges.

(a)
∞∑
n=1

( e
10

)n
(b)

∞∑
n=1

(−1)n
(

3

e

)n

8. Example. Express 0.5555 . . . as a rational number.

9. Example. Show that the series
∞∑
n=1

1

(n+ 1)(n+ 2)
is convergent and find its sum.
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10. Example. Show that the harmonic series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ . . .

is divergent.

11. Two Useful Results:

Theorem: Test for Divergence

(a) If the series
∞∑
n=1

an is convergent then lim
n→∞

an = 0.

(b) If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0, then the series
∞∑
n=1

an is divergent.

12. Example. Show that
∞∑
n=1

n sin (1/n)

is divergent.
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13. Theorem. If
∑
an and

∑
bn are convergent series and c is a constant, then

∑
can,

∑
(an + bn),∑

(an − bn) are also convergent, and

(a)
∑
can = c

∑
an

(b)
∑

(an + bn) =
∑
an +

∑
bn

(c)
∑

(an − bn) =
∑
an −

∑
bn

14. Example. If
∞∑
n=1

(
5

2n
− 26

(n+ 1)(n+ 2)

)
is convergent, find its sum.

From Examples 6 and 9 , we know that the series
∞∑
n=1

1

2n
and

∞∑
n=1

1

(n+ 1)(n+ 2)
are convergent, with

sums 1 and 1
2 , respectively.

The given series is convergent, since it can be written as

5

∞∑
n=1

1

2n
− 26

∞∑
n=1

1

(n+ 1)(n+ 2)
= 5(1)− 26( 1

2 ) = −8.
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15. Additional Notes
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5.3 The Integral Test and Estimates of Sums

(This lecture corresponds to Section 11.3 of Stewart’s Calculus.)

1. Quote. ”If you want to run, run a mile. If you want to experience a different life, run a marathon.”
(Emil Zatopek, Czechoslovakian athlete,1922-2000)

2. Problem. Compare ∫ ∞
1

dx

x2
and

∞∑
n=1

1

n2
.

3. Problem. Compare ∫ ∞
1

dx

x
and

∞∑
n=1

1

n
.
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4. The Integral Test.

Suppose f is a continuous, positive, decreasing function on [1,∞) and let an = f(n). Then the series∑∞
n=1 an is convergent if and only if the improper integral

∫∞
1
f(x)dx is convergent. In other words:

(a) If
∫ ∞
1

f(x)dx is convergent, then
∞∑
n=1

an is convergent.

(b) If
∫ ∞
1

f(x)dx is divergent, then
∞∑
n=1

an is divergent.

5. Example. Is the series
∞∑
n=2

1

n(lnn)2

convergent or divergent?

6. Example. Use the integral test to test the p-series
∞∑

n=1

1

np
for convergence.
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7. Remainder when using partial sums to estimate a series.

If
∞∑
n=1

an = s is convergent then the nth remainder is defined as

Rn = s− sn = an+1 + an+2 + an+3 + . . .

8. Remainder Estimate for the Integral Test.

Suppose f(k) = ak, where f is continuous, positive, decreasing function for x ≥ n and
∑
an is conver-

gent. If Rn = s− sn, then ∫ ∞
n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx.

The remainder is the error made when , the sum of the first terms, is used as an
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that is decreas-
ing on . Comparing the areas of the rectangles with the area under for 
in Figure 3, we see that

Similarly, we see from Figure 4 that

So we have proved the following error estimate.

REMAINDER ESTIMATE FOR THE INTEGRAL TEST Suppose , where 
is a continuous, positive, decreasing function for and is convergent. If

, then

EXAMPLE 5
(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With ,
which satisfies the conditions of the Integral Test, we have

(a)

According to the remainder estimate in (2), we have

So the size of the error is at most .

(b) Accuracy to within means that we have to find a value of such that
. Since

we want
1
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1
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The remainder is the error made when , the sum of the first terms, is used as an
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that is decreas-
ing on . Comparing the areas of the rectangles with the area under for 
in Figure 3, we see that

Similarly, we see from Figure 4 that

So we have proved the following error estimate.

REMAINDER ESTIMATE FOR THE INTEGRAL TEST Suppose , where 
is a continuous, positive, decreasing function for and is convergent. If

, then

EXAMPLE 5
(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With ,
which satisfies the conditions of the Integral Test, we have

(a)

According to the remainder estimate in (2), we have

So the size of the error is at most .

(b) Accuracy to within means that we have to find a value of such that
. Since

we want
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9. Example. In a previous example we showed that the series

∞∑
n=2

1

n(lnn)2

converges. Determine how many terms you would need to add to find the value of this sum accurate
to within 0.01. That is, how large must n be for the reminder to satisfy the inequality Rn < 0.01?
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10. Additional Notes
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5.4 The Comparison Test

(This lecture corresponds to Section 11.4 of Stewart’s Calculus.)

1. Quote. ”The will to win means nothing without the will to prepare.”
(Juma Ikangaa, Tanzanian marathoner, 1957-)

2. Problem. Test if
∞∑
n=1

1

n4 + en

is convergent.

3. The Comparison Test.

Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are series with 0 ≤ an ≤ bn for all n.

(a) If
∞∑
n=1

bn is convergent, then
∞∑
n=1

an is also convergent.

(b) If
∞∑
n=1

an is divergent, then
∞∑
n=1

bn is also divergent.

4. Example. Test if
∞∑
n=1

1

n4 + en

is convergent.
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5. Useful tip.

When applying the comparison test, you can often use geometric series or p-series.

6. Example. Test the series
∞∑
n=1

1

n!
=

1

1!
+

1

2!
+

1

3!
+ . . .

for convergence.
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7. The Limit Comparison Test.

Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are series with positive terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge or both diverge.

8. Example. Test for convergence

(a)
∑ 3n2 + n

n4 +
√
n

(b)
∑ 1

2n+ lnn



PART 5: INFINITE SEQUENCES AND SERIES LECTURE 5.4 THE COMPARISON TEST 130

9. Additional Notes
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5.5 Alternating Series

(This lecture corresponds to Section 11.5 of Stewart’s Calculus.)

1. Quote. ”When you win, say nothing. When you lose, say less.”
(Paul Brown, American football coach, 1908-1991)

2. Problem. We have already seen that the harmonic series
∞∑
n=1

1

n
is divergent. But what happens if

we alternately add and subtract the terms instead?
Is the series

1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

convergent or divergent?

3. Alternating series.

If {bn} is a sequence of positive numbers then

b1 − b2 + b3 − b4 + . . .

is called an alternating series.

4. The Alternating Series Test.

If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . , (bn > 0)

satisfies

(a) bn+1 ≤ bn for all n
(b) lim

n→∞
bn = 0

then the series is convergent.
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5. Example. Test if
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

is convergent or divergent.

6. Example. Test for convergence

(a)
∞∑
n=1

(−1)nn2

n2 + 2n+ 1

(b)
∞∑
n=1

(−1)n
(π

2
− arctann

)
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7. Alternating Series Estimation Theorem.

If s =

∞∑
n=1

(−1)nbn is the sum of an alternating series which satisfies

(i) 0 ≤ bn+1 ≤ bn and (ii) lim
n→∞

bn = 0

then
|Rn| = |s− sn| ≤ bn+1.

8. Example. Use the fact that
1

e
= 1− 1

1!
+

1

2!
− 1

3!
+

1

4!
− 1

5!
+ . . .

to compute e−1to four decimal places.
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9. Additional Notes
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5.6 Absolute Convergence and the Ratio and Root Test

(This lecture corresponds to Section 11.6 of Stewart’s Calculus.)

1. Quote. ”You cannot always run at your best.”
(Bill Rodgers, American runner, 1947-)

2. Problem. Test if
∞∑
n=1

n2n

n!

is convergent or divergent.

3. Definition. A series
∑
an is called absolutely convergent if the series of absolute values

∑
|an|

is convergent.

For example, the series 1 − 1

22
+

1

32
− 1

42
+

1

52
− . . . =

∞∑
n=1

(−1)n+1

n2
is absolutely convergent since

∞∑
n=1

1

n2
is convergent.

4. Definition. A series
∑
an is called conditionally convergent if it is convergent but not absolutely

convergent.

We have already seen that the series 1− 1

2
+

1

3
− 1

4
+

1

5
−. . . =

∞∑
n=1

(−1)n+1

n
is convergent, but we know

that
∑ 1

n
(the harmonic series) is divergent. Therefore we say the series

∞∑
n=1

(−1)n+1

n
is conditionally

convergent.

5. Theorem - Absolute Convergence vs. Convergence.

If a series
∑
an is absolutely convergent then it is convergent.
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6. Example. Determine if the series
∞∑
n=1

sinn

n2 + 2n+ 1

is convergent or divergent.
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7. Test for Absolute Convergence (Part 1).

The Ratio Test:

(a) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑
n=1

an is absolutely convergent.

(b) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞, then the series
∞∑
n=1

an is divergent.

(c) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L = 1, the Ratio Test is inconclusive; that is no conclusion can be drawn about

the convergence or divergence of
∞∑
n=1

an.

8. Examples. Test for convergence, using the ratio test.

(a)
∞∑
n=1

n2n

n!
(b)

∞∑
n=1

(−1)n3n

n2

(c)
∞∑
n=1

(−1)n

n
(d)

∞∑
n=1

1

n
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9. Test for Absolute Convergence (Part 2).

The Root Test:

(a) If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely convergent.

(b) If lim
n→∞

n
√
|an| = L > 1 or lim

n→∞
n
√
|an| =∞, then the series

∞∑
n=1

an is divergent.

(c) If lim
n→∞

n
√
|an| = L = 1, the Root Test is inconclusive; no conclusion can be drawn about the

convergence or divergence of
∞∑
n=1

an..

10. Examples. Test for convergence, using the root test.

(a)
∞∑
n=1

nn

31+2n
(b)

∞∑
n=1

(
5n− 3n3

7n3 + 2

)n
(c)

∞∑
n=1

(−1)n

n
(d)

∞∑
n=1

1

n
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11. Additional Notes
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5.7 Strategy for Testing Series

(This lecture corresponds to Section 11.7 of Stewart’s Calculus.)

1. Quote. ”You have to be fast on your feet and adaptive or else a strategy is useless.”
(Charles de Gaulle, French statesman, 1890-1970)

2. Given a series, the Main Question is: convergent or divergent?.

To help solve this question, we have the following tests:

(a) Test for Divergence (p. 120): if an 6→ 0 as n→∞, then series diverges
(b) If an ≥ 0, then we could use these tests:

• geometric series (p. 118) or p-series (p. 124)
• telescoping series (p. 119 for an example)
• integral test (p. 124)
• comparison test (p. 127)
• limit comparison test (p. 129)

(c) If an is alternating in sign, try the Alternating Series Test (p. 131)
(d) If an is any real number, then:

• check absolute convergence (p. 135)
• try the Ratio Test (p. 137)
• try the Root Test (p. 138)

3. Time Machine. Test for convergence.

(a) Spring 2002

i.
∞∑
n=1

n sin(1/n)

ii.
∞∑
n=1

1

2n+sinn

iii.
∞∑
n=2

(−1)n

n ln
√
n

(b) Summer 2002

i.
∞∑
n=1

(−1)n

n2 + 1

ii.
∞∑
n=2

(−1)n

lnn

iii.
∞∑
n=1

(−1)n

3n

iv.
∞∑
n=1

(n!)2

(2n)!
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(c) Fall 2002

i.
∞∑
n=1

(arctan(n+ 1)− arctann)

ii.
∞∑
n=1

(
−3

π

)n
iii.

∞∑
n=2

(−1)n

n lnn

(d) Spring 2003

i.
∞∑
n=1

1

np

ii.
∞∑
n=1

1√
n2 + 1

iii.
∞∑
n=1

1

(2n2 + 1)2/3

iv.
∞∑
n=1

2n

3n − n

(e) Summer 2003

i.
∞∑
n=1

4n

32n−1

ii.
∞∑
n=1

(−1)n

21/n

iii.
∞∑
n=1

2n

(2n+ 1)!

iv.
∞∑
n=1

tan−1 n

n
√
n

v.
∞∑
n=1

(
n
√

2− 1)n



PART 5: INFINITE SEQUENCES AND SERIES LECTURE 5.7 STRATEGY FOR TESTING SERIES 142

(f) Fall 2003

i.
∞∑
n=1

(−1)n√
n

ii.
∞∑
n=1

(−1)nn√
n5 + 4

iii.
∞∑
n=1

(−1)n2n

n2 + 1

iv.
∞∑
n=1

(−1)n(n+ 1)5n

n32n

(g) Spring 2004

i.
∞∑
n=1

(−1)n+1

n5

ii.
∞∑
n=1

1

n(n+ 1)

(h) Summer 2004

i.
∞∑
n=1

n4

(1 + n2)3

ii.
∞∑
n=2

1

n(lnn)2

iii.
∞∑
n=1

(−1)n+1(2n− 1)!

22n−1
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4. Additional Notes
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5.8 Power Series

(This lecture corresponds to Section 11.8 of Stewart’s Calculus.)

1. Quote. ”Knowledge is power.”
(Francis Bacon, English Philosopher, 1561-1626)

2. Power Series.

Recall that polynomial is a function of the form

p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

where n is a nonnegative integer, and the numbers c0, c1, . . . , cn are constants called coefficients of
the polynomials.

Similarly, we define a power series to be a function of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + . . .

where x is a variable and the numbers c0, c1, . . . are constants called the coefficients of the series.
A power series in x− a, or a power series centered at a, has the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . . .

3. Example. For what values of x ∈ R is the series

∞∑
n=1

(−1)n(x− 2)n

n · 4n

convergent?
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4. Example. The function J1 defined by

J1(x) =

∞∑
n=0

(−1)nx2n+1

n!(n+ 1)!22n+1

is called the Bessel function of order 1. What is the domain of J1.
(Note that 0! is by definition equal to 1.)

5. Where does a power series converge?

Theorem.

For a given power series
∞∑
n=0

cn(x− a)n there are only three possibilities:

(a) The series converges only when x = a.
(b) The series converges for all x ∈ R.
(c) There is a positive number R such that the series converges if |x − a| < R and diverges if
|x− a| > R.

Terminology.

• R - the radius of convergence
• the interval of convergence - the interval that consists of all values of x for which the series

converges
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6. Example. Find the interval of convergence of the following series.

(a)
∞∑
n=1

nnxn

(b)
∞∑
n=1

xn

n · 3n

(c)
∞∑
n=1

(−2)nxn

(2n)!
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7. Additional Notes
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5.9 Representation of Functions as Power Series

(This lecture corresponds to Section 11.9 of Stewart’s Calculus.)

1. Quote. ”I don’t want to imitate life in movies; I want to represent it.”
(Petro Almodóvar, Spanish film maker, 1949-)

2. Problem. Can the function f(x) =
1

1 + x
be written as a power series?

3. Representation as a series.

Let I be the interval of convergence for the power series
∞∑
n=0

cnx
n. For each x ∈ I, let f(x) denote the

series; that is,

f(x) =

∞∑
n=0

cnx
n, if x ∈ I

Then we call
∞∑
n=0

cnx
n a power series representation of f(x).

4. Examples. Find a power series representation of the following functions.

(a) f(x) =
1

1 + 4x2

(b) g(x) =
x

9− x2
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5. Theorem: Term-by-term differentiation or integration.

Suppose the power series
∞∑
n=0

cn(x−a)n has radius of convergence R > 0. Then, the function f defined

by f(x) =

∞∑
n=0

cn(x− a)n is differentiable on the interval (a−R, a+R) and

(a) f ′(x) =

∞∑
n=1

ncn(x− a)n−1

(b)
∫
f(x)dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

Both these series have radii of convergence equal to R.

6. Examples. Find a power series representation of the following functions.

(a) f(x) =
1

(1− x)2

(b) g(x) = ln(1 + x)

(c) h(x) = arctanx
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7. Additional Notes
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5.10 Taylor and Maclaurin Series

(This lecture corresponds to Section 11.10 of Stewart’s Calculus.)

1. Quote. ”I easily judged that the book of Taylor would please you very little. It seems to me that such
a writer is not at all fit to carry out the office of Secretary of the Royal Society.”
(Gottfried Wilhelm Leibniz (also Leibnitz or von Leibniz), German mathematician, 1646-1716)

2. Problem. Suppose the function f has a power series representation with radius of convergence R,
that is,

f(x) =

∞∑
n=0

cn(x− a)n, for all x such that |x− a| < R,

Can we express the coefficients cn in terms of the function f?
(Hint: what is the nth derivative of f , evaluated at x = a? That is, calculate f (n)(a).)
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3. Theorem: Power series representation is unique.

If f has a power series representation at a, that is, if

f(x) =

∞∑
n=0

cn(x− a)n, for all x such that |x− a| < R,

then its coefficients are given by the formula cn =
f (n)(a)

n!
.

Here we adopt the convention that 0! = 1 and f (0)(x) = f(x).

So if a function f has a power series representation at a, then this representation must be

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)

1! (x− a) + f ′′(a)
2! (x− a)2 + · · ·

and this representation is called the Taylor series of the function f at a.
For the special case a = 0, the Taylor series becomes

f(x) =

∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)

1! x+ f ′′(0)
2! x2 + · · ·

and this is called the Maclaurin series of f(x).

4. Examples. Find the Maclaurin series of the following functions.

(a) f(x) = ex

(b) f(x) = cosx
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5. Some Terminology.

(a) Tn(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i is the nth-degree Taylor polynomial of f at a

That is, Tn(x) = f(a) + f ′(a)
1! (x− a) + · · · + f(n)(a)

n! (x− a)n

Notice that lim
n→∞

Tn(x) =

∞∑
i=0

f(i)(a)
i! (x− a)i, the Taylor series of f .

(b) The remainder of the Taylor series is defined as Rn = f(x)− Tn(x).

6. Theorem. Suppose f(x) = Tn(x) +Rn(x), where Tn and Rn are as above. If

lim
n→∞

Rn(x) = 0, for |x− a| < R,

then f is equal to the sum of its Taylor series on the interval (a−R, a+R).

7. Bounds on the size of the remainder.
To show that any specific function f does have a power series representation, we must prove that
lim
n→∞

Rn(x) = 0.

To do this, we usually use the following two facts.

Fact 1: Taylor’s Inequality.

If ∣∣∣f (n+1)(x)
∣∣∣ ≤M for |x− a| ≤ d

then the remainder of the Taylor series satisfies the inequality

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

Fact 2. For every real number x, we have lim
n→∞

xn

n!
= 0.
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8. Example. Prove

(a) ex =

∞∑
n=0

xn

n!
, for every real number x

(b) cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, for every real number x
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9. Some important power series representations.
These Maclaurin series can be derived just as in the previous examples.

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + . . . (−1, 1)

ex =
∞∑
n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ . . . (−∞,∞)

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . . (−∞,∞)

cosx =
∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ . . . (−∞,∞)

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
= x− x3

3
+

x5

5
− x7

7
+ · · · (−1, 1)

10. Example. Find the Maclaurin series for the following functions.

(a) f(x) = x2e−3x

(b) g(x) = sin(x2)

(c) h(x) =
x

9− x2
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11. Example. Find the sum of the series.

(a)
∞∑
n=0

2n

n!

(b)
∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3 + 1
5 −

1
7 + · · · .

12. Example. Use series to evaluate

lim
x→0

1− cosx

1 + x− ex
.
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13. Example. Find the Taylor series for the following functions centered at the given value of a.

(a) f(x) = e−x, a = 1

(b) g(x) = sin(2x), a = π
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14. Additional Notes
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5.11 Applications of Taylor Polynomials

(This lecture corresponds to Section 11.11 of Stewart’s Calculus.)

1. Quote. ”Even if I don’t finish, we need others to continue. It’s got to keep going without me.”
(Terry Fox, Canadian hero, 1958-1981)

2. Reminder 1.
If f has a power series representation at a then

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

and this representation is called the Taylor series of the function f at a.

3. Reminder 2 - Taylor’s Inequality.
If ∣∣∣f (n+1)(x)

∣∣∣ ≤M for |x− a| ≤ d

then the remainder of the Taylor series satisfies the inequality

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

4. Example.

(a) Approximate f(x) = x2/3 by a Taylor polynomial with degree 3 at the number a = 1.
(b) Use Taylor’s Inequality to estimate the accuracy of the approximation f(x) ≈ T3(x) when 0.8 ≤

x ≤ 1.2.
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5. Example. Approximate the area between the curve y =
sinx

x
and the x-axis for −π ≤ x ≤ π.
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6. Additional Notes
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6.1 Modeling with Differential Equations, Direction Fields

(This lecture corresponds to Section 9.1 and the Direction Fields part of 9.2 of Stewart’s Calculus.)

1. Quote. Once you learn the concept of a differential equation, you see differential equations all over,
no matter what you do...If you want to apply mathematics, you have to live the life of differential
equations. When you live this life, you can then go back to molecular biology with a new set of eyes
that will see things you could not otherwise see.
(Gian-Carlo Rota in ’A Mathematician’s Gossip’, Indiscrete Thoughts (2008), 213)

2. Velocity of a Falling Object (considering air friction).
Imagine a sky-diver in free fall after jumping out of a plane. There are two forces
acting on the falling mass: gravity (Fg = mg) and air friction (Fa = −γv). Assume
air friction is proportional to the velocity of the object.
The physical law that governs the motion of objects is Newton’s second law, which
states F = ma, where m is the mass of the object, a its acceleration, and F the net
force on the object (in our case this is Fg − Fa).
Show that the velocity of the sky-diver satisfies this differential equation

m
dv

dt
= mg − γv

where g and γ are constants.

3. Examples of some differential equations.
type form

antidifferentiation
dy

dx
= x+ sinx

natural growth
dP

dx
= kP

Newton’s Law of Cooling/Heating
dT

dt
= k(T −M)

logistic growth
dT

dt
= P (1− P )

object falling under force of gravity (ignore friction)
d2s

dt2
= −g
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4. Terminology for Differential Equations.

A differential equation is an equation that contains an unknown function and one of more of its
derivatives.
The order of a differential equation is the order of the highest derivative that occurs in the equation.
A function f is called a solution of a differential equation if the equation is satisfied when y = f(x)
and its derivatives are substituted into the equation.
To solve a differential equation means to find all possible functions that satisfy the equation.
An initial value problem (IVP) is a differential equation together with an initial condition, which
is just some specified value that the function must satisfy. An initial condition is presented in the
form y(t0) = y0, which says we want the function y which satisfies the differential equation and has
value y0 at t = t0.

5. Example. Show that the differential equation
dy

dx
=
x

y
has solutions y =

√
x2 + c.

6. Example. (a) Show that y = e2t is a solution to the second-order differential equation

d2y

dt2
+
dy

dt
− 6y = 0.

(b) Show that y = e−3t is another solution.

7. Example. Find the value of c so that y =
√
x2 + c is a solution to the initial value problem

dy

dx
=
x

y
, y(0) = 3
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8. Direction Fields (also known as Slope Fields)
We now look at a visual approach for first-order differential equations.

Consider the differential equation
dy

dt
= 3− y.

If y = f(t) is a solution to this differential equation fill out values in the following table. Use this
information to sketch a graph of f .

t y
dy

dt
= f ′(t)

−3 1
−3 2

9. Example. Using the direction field, guess the form of the solution curves of the differential equation

dy

dx
=
−x
y
.
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10. Example. Match the differential equation with its corresponding slope field.

(a) y′ = 1 + y2 (b) y′ = x− y (c) y′ = 4− y

(i) (ii) (iii)

11. Example. The slope field for
dy

dt
= −y(y − 1)(y − 3) is given below.

(a) Sketch the solution curves satisfying the initial conditions
i. y = 2 when t = 0

ii. y = 0.5 when t = 0

(b) What is the long-run behaviour of y? For example does lim
t→∞

y exists? If so, what is its value?
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12. Additional Notes
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6.2 Separable Equations

(This lecture corresponds to Section 9.3 of Stewart’s Calculus.)

1. Quote. “Ideologies separate us. Dreams and anguish bring us together.”
(Eugene Ionesco, Romanian born French dramatist, 1909-1994)

2. Problem. Solve the differential equation

dy

dx
=
√
xy, x > 0, y > 0.

3. Separable Equation.

A separable equation is a first-order differential equation in which the expression for dy/dx can be
factored as a product of a function of x and a function of y:

dy

dx
= f(x) · g(y).
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4. Examples. Solve the initial value problems:

(a)
dy

dx
=
√
xy, y(0) = 1;

(b)
dy

dx
=
√
xy, y(2) = 2;
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5. Examples. Find general solutions.

(a)
dy

dx
= 2x

√
y − 1

(b)
dy

dx
=
y cosx

1 + y2
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6. Example. Find an equation of the curve that passes through the point (1, 1) and whose slope at (x, y)
is y2/x3.
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7. Orthogonal Trajectories.

An orthogonal trajectory of a given family of curves is a curve that intersects each member of the
given at right angles.

8. Example. Find the orthogonal trajectories of the family of the curves

x2 − y2 = k.

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2
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9. Example: A Mixing Problem
A tank contains 1000L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the
tank at a rate of 5 L/min. Brine that contains 0.04 kg of salt per liter of water enters the tank at a
rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at rate of 15 L/min.
How much salt is in the tank (a) after t minutes and (b) after one hour?
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10. Additional Notes
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6.3 Models for Population Growth

(This lecture corresponds to Section 9.4 of Stewart’s Calculus.)

1. Quote. A finite world can support only a finite population; therefore, population growth must even-
tually equal zero.
(Garrett James Hardin, 1915 2003. American ecologist)

2. Natural Growth Model - revisited
The Natural Growth Model for population growth assumes that the population P at time t changes
at a rate proportional to its size at any given time t. This can be written as

dP

dt
= kP

where k is a constant.
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3. Logistic Growth Model
The Natural Growth Model implies that the population would grow exponentially indefinitely. How-
ever the model must break down at some point since the population would eventually outstrip the
food supply. In searching for an improvement we should look for a model whose solution is approxi-
mately an exponential function for small values of the population, but which levels off later.
The Logistic Growth Model for a population P (t) at time t is based on the following assumptions:

• The growth rate is initially close to being proportional to size:

dP

dt
≈ kP if P is small

• The environment is only capable of a maximum population in the long run, this is called the
carrying capacity, usually denoted by M :

lim
t→∞

P (t) = M.

The simplest expression for the growth rate that incorporates these assumptions is

dP

dt
= kP

(
1− P

M

)
Logistic Growth Model

where k is a constant.
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7.1 Midterm 1 Review Package

1. Two weeks before the date of the exam an announcement will be posted on Canvas detailing which
sections will be covered on the midterm.
Make sure you know the definitions of the terms: Riemann sum, definite integral, indefinite inte-
gral, even function, odd function, substitution rule, and the statements of the theorems: Fundamen-
tal Theorem of Calculus, Net Change Theorem. Also, you should know all the properties of integrals
in Lecture 1.2, and the table of indefinite integrals in Lecture 1.4.

Make sure you review ALL the questions from the first 3 homework assignments. It is expected that
you will know how to do all of these at the time of the midterm.

2. Compute the following integrals.

(a)
∫ √π/3
0

x sin (x2) dx

(b)
∫
ecos t sin t dt
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(c)
∫

x2√
1− x

dx

(d)
∫ eπ/2

0

f(x) dx where f(x) =

e
2x if 0 ≤ x ≤ 1

cos (lnx)

x
if 1 < x ≤ eπ/2

3. True or False. Justify your answers.

(a) If f and g are continuous on [a, b] then∫ b

a

f(x)g(x) dx =

(∫ b

a

f(x) dx

)(∫ b

a

g(x) dx

)
.
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(b) All continuous functions have antiderivatives.

(c) If f is continuous on [a, b], then
d

dx

(∫ b

a

f(x) dx

)
= f(x).

(d)
∫ 3

1

x3 dx = lim
n→∞

n∑
i=1

(
1 +

2i

n

)3
2

n

(e) If
∫ 10

−π
f(x) dx = 5 then

∫ −π
10

f(x) dx = −5.

(f)
∫ a

−a
Ax2 +Bx+ C dx = 2

∫ a

0

Ax2 + C dx, where A, B, C are constants.

4. Find the derivative of the function g(x) =

∫ ex

x2

ln t

2t+ 1
dt.



PART 7: REVIEW MATERIAL MIDTERM 1 REVIEW PACKAGE 183

5. Compute the definite integral
∫ 3

1

(
x2 − 1

)
dx by using the definition of the definite integral as a

limit of a right-hand Riemann sum.
(Begin by finding explicit expressions for ∆x and xi in terms of n and i.)
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6. Find the volume of the solid obtained by rotating the region in the first quadrant bounded by the
curves y = x3 and y = 2x− x2 about the line y = −1.
To do this, use the washer method and sketch a typical washer.
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7. Find the area of the region that lies inside the circle r = 1 and outside the cardioid r = 1− cos θ.

(Begin by sketching the region by hand, and determining the points of intersection of the two curves.)
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Answers:
Only answers are provided here. You are expected to provide fully worked out solutions. If you need help
with solving any of these problems please visit the Calculus Workshop.

2. (a) 1/4 (b) −ecos t (c) − 2
15 (8 + 4x+ 3x2)

√
1− x (d) 1

2 (e2 + 1)

3. (a) F (b) T (c) F (d) T (e) T (f) T

4. g′(x) = xex

2ex+1 −
4x ln x
2x2+1

5. 20/3

6. 257
210π

7. 2− π
4
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7.2 Midterm 2 Review Package

1. Two weeks before the date of the exam an announcement will be posted on Canvas detailing which
sections will be covered on the midterm.
It is expected that you will know:

• the antiderivatives in the table of Lecture 3.5 (page 75)

• the trigonometric identities:

cos2 θ + sin2 θ = 1 1 + tan2 θ = sec2 θ

sin (2θ) = 2 sin θ cos θ cos (2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

• the midpoint, trapezoid and Simpson’s Rule and how to apply them. You will not be required to
memorize the error bounds, but you should know how to use/apply the error bounds.

Make sure you review ALL the questions from the homework assignments. It is expected that you
will know how to do all of these at the time of the midterm.

2. Compute the following integrals.

(a)
∫ π/3

0

x sinx dx

(b)
∫
x5e−x

3

dx
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(c)
∫

cosx

sin2 x− sinx
dx

(d)
∫

ln (tanx)

sinx cosx
dx
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3. True or False. Justify your answers.

(a) The antiderivative of
x2 + x+ 1

x3 + x
involves an arctan term.

(b) The integral
∫ ∞
1

1

x3
dx converges.

(c) The arc length differential ds is given by ds =
√

1 + (f ′(x))2 dx for y = f(x).

(d)
∫ b

a

2πx
√

1 + (f ′(x))2 dx represents the area of the surface obtained by rotating y = f(x), a ≤ x ≤

b about the y-axis.

(e) If lim
n→∞

an = 0 then
∞∑
n=1

an is convergent.
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4. Show that the circumference of a circle of radius r is 2πr.

5. Determine the area enclosed by the astroid x = a cos3 θ, y = a sin3 θ, and the length of its perimeter.
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6. Consider a torus with inner radius r and outer radius R as shown in the diagram.

(a) Show the volume is 2π2r2R using the washer method.
(b) Show the volume is 2π2r2R using the method of cylindrical shells.
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7. Use Simpson’s rule with n = 4 to approximate the integral
∫ π

0

sinx dx.

8. Evaluate the improper integral ∫ 4

0

lnx√
x
dx.
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9. Use the Comparison Theorem to determine whether the integral∫ ∞
1

x3

x5 + 2
dx

is convergent or divergent.

10. For what values of p is the integral ∫ ∞
1

1

xp
dx

convergent?
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11. Determine whether the series is convergent of divergent. If convergent, find its sum.

∞∑
n=1

(
1

en
+

1

n(n+ 1)

)
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Answers:
Only answers are provided here. You are expected to provide fully worked out solutions. If you need
help with solving any of these problems please visit the Calculus Workshop or the Discussion board
forum in Canvas.

2. (a) −π6 +
√
3
2 (b) − 1

3e
−x3

(x3 +1)+C (c) − ln (| sinx|)+ln (| sinx− 1|)+C (d) 1
2 (ln | tanx|)2 +C

3. (a) T (b) T (c) T (d) T (e) F
4. use the arc length formula.

5. area is 3πa2

8 , arc length is 6a.
6. The diagram shows the torus can be thought of a solid of revolution. Determine the equation of

the curve being revolved, and then evaluate the appropriate integrals representing volume.
7. π

6

(
1 + 2

√
2
)

8. 8(ln 2− 1)

9. Convergent.
10. Convergent if p > 1, divergent if p ≤ 1 (Note: we will use this result a fair bit in Part 5: Infinite

Sequences and Series)

11. Convergent. The series sums to
e

e− 1
.
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7.3 Final Exam Practice Questions

1. The final exam may test on all material covered from the beginning of the semester up to and includ-
ing material corresponding to Lecture 4.3.
We have covered quite a bit of material this term. This can be a little overwhelming so the following
list is intended to give you an idea of some of the things you are expected you to know. This list is
by no means exhaustive, but it does highlight some common questions I have been asked by a few
students over the term.

You are expected to know:

• the antiderivatives in the table of Lecture 3.5 (page 62) - some of these can be derived from
others in the table, and some can be derived using techniques we learned this semester. It is up
to you to determine how many you should commit to memory (probably first 5 rows should be at
your fingertips ready to be used in a pinch).

• all the various techniques for integration: substitution, by-parts, trigonometric substitution,
partial fractions (Part 3)

• the trigonometric identities:

cos2 θ + sin2 θ = 1 1 + tan2 θ = sec2 θ

sin (2θ) = 2 sin θ cos θ cos (2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

• the Midpoint, Trapezoid and Simpson’s Rule and how to apply them. You will not be re-
quired to memorize the error bounds. But you may need to know how to use them, in which case
they will be provided in the question.

• the formulas for arc length (Lecture 4.1), surface area (Lecture 4.2)
• area and arc length for curves given by parametric equations or polar coordinates (Lec-

tures 2.2 and 4.3)
• area of a surface of revolution for a curve given by parametric equations (Lecture 4.3)
• Differential equations (Lectures 6.1, 6.2, and 6.3.)
• Series Tests: integral test, comparison test, limit comparison test, alternating series test, ratio

test, root test (Lectures 5.2 - 5.6) (See chart in Lecture 5.7 for the ”big picture”.)
• techniques for approximating series
• the definition of Taylor Series and Maclaurin Series and how to compute these series for a

given function (Lecture 5.10)

Make sure you review ALL the questions from the homework assignments and midterms. It is ex-
pected that you will know how to do all of these at the time of the final exam.

The following questions can be thought of as a sample exam. The best way to use this resource is
to sit down in a distraction free place, put your notes and textbook away, and then pretend you are
actually writing the exam. Once finished, you should have an idea of what you still need to practice.
Solutions for the following questions will not be posted, though answers are included on the last page.
If you want to determine whether you have done a question correctly then you can visit the TA’s or
myself in the workshop.
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2. Compute the following integrals.

(a)
∫ 6

2

x+ 1

x2 + 2x− 3
dx

(b)
∫

ex

e2x + 2ex + 2
dx

(c)
∫
e

3√t dt

(d)
∫

x lnx√
x2 − 1

dx

3. Find the solution to the differential equation that satisfies the initial condition:

dy

dx
=
y cosx

1 + y2
, y(0) = 1.

You may leave the solution in implicit form.

4. Find the length of the curve

y =

∫ x

1

√
t2 − 1 dt, 1 ≤ x ≤ 4.

5. (a) The curve in the figure is called an Archimedean spiral
and it has parametrization

x = t cos t, y = t sin t 0 ≤ t ≤ 2π.

Compute the length of the curve.

Note: You may use
∫ √

t2 + 1 dt =
1

2

[
t
√
t2 + 1 + ln(t+

√
t2 + 1)

]
.

(b) Set up, but do not evaluate, the integral for the area of
the region bounded by the Archimedean spiral and the
x-axis as shaded in the figure.

(c) Set up, but do not evaluate, the integral for the area of the surface of revolution obtained by
rotating the part of the spiral in the second quadrant about the x-axis.

6. (a) Let R denote the region bounded by the curve

y = x2(x− 2) (0 ≤ x ≤ 2)

and the x-axis. Using the method of cylindrical shells
compute an exact value for the volume of the solid
of revolution obtained by rotating R about the y-axis.
Draw a typical cylindrical shell in the diagram.

(b) Formulate, but do not evaluate, an integral representing the volume of the solid of revolution
obtained by rotating R about x = 3. Sketch a diagram and indicate which method you are using:
Washer Method or Shell Method.
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7. Find the values of r for which y = ert satisfies the differential equation

y′′ − y′ − 6y = 0.

8. The population of a species of elk on Read Island in Canada has been monitored for some years.
When the population was 600, the relative birth rate was found to be 35% and the relative death rate
was 15%. As the population grew to 800, the corresponding figures were 30% and 20%. The island is
isolated so there is no hunting or migration.

(a) Write a differential equation to model the population as a function of time. Assume that relative
growth rate is a linear function of population (i.e. use a logistic growth model).

(b) Find the equilibrium size of this population.

(c) Today there are 900 elk on Read Island. Oil has been discovered on a neighbouring island and
the oil company wants to move 450 elk of the same species to Read Island. What effect would
this move have on the elk population on Read Island in the future.

9. For each series determine whether if is convergent or divergent. In each case, state the test(s) you
are using, justify the steps in using the test, and clearly indicate whether the series is convergent or
divergent.

(a)
∞∑
n=1

√
n2 − 1

n3 + 1

(b)
∞∑
n=1

n!

2n(n+ 2)!

(c)
∞∑
n=2

(−1)n
lnn

n

(d)
∞∑
n=1

an where an are defined recursively by the equations a1 = 2, an+1 =
2n

n!
an.

10. For each of the following power series compute the radius R of convergence and the interval I of
convergence. Justify your answer.

(a)
∞∑
n=1

(−1)n
xn

n27n

(b)
∞∑
n=1

2n(x− 2)n

(n+ 2)!

11. Suppose that
∞∑
n=0

cnx
n converges when x = −4 and diverges when x = 7. What can be said about the

convergence or divergence of the following series?

(i)
∞∑
n=0

cn(3)n (ii)
∞∑
n=0

cn(8)n (iii)
∞∑
n=0

cn(−5)n

12. Prove that the series
∞∑
n=2

1

n(lnn)p

is convergent for any p > 1.
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13. (a) Define the Taylor Series of a function f at a.
(b) Compute the Taylor series for the function f(x) = cos (3x) at a = π/2.
(c) If the degree 4 Taylor polynomial T4(x) for f(x) = cos (3x) at a = π/2 is used to approximate f on

the interval π/4 ≤ x ≤ 3π/4, use Taylor’s Inequality to estimate the size of the error. (You may
leave your answer in calculator-ready form.)

14. Suppose you want to approximate the integral
∫ b

0

f(x) dx where f is the function given in the figure.

You decide to use the Riemann Sum with 4 subdivisions (i.e. n = 4), but are debating whether to use
a right-hand approximation R4 or the Trapezoid rule T4. Which approximation will be more accu-
rate? Give an explanation supporting your answer and sketch the approximating areas (rectangles
or trapezoids) in the diagram.
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Answers:
Only answers are provided here. You are expected to provide fully worked out solutions. If you need help
with solving any of these problems please visit the Calculus Workshop.

2. (a) ln 3 (b) arctan (ex + 1) + C (c) 3e3
√
t(t2/3 − 2t1/3 + 2) + C

(d)
√
x2 − 1 lnx−

√
x2 − 1 + arctan (

√
x2 + 1) + C

3. ln |y|+ 1
2y

2 = sinx+ 1
2

4. 15
2

5. (a) π
√

4π2 + 1 + 1
2 ln (2π +

√
4π2 + 1) (b)

∫ 2π

π

−t sin t(cos t− t sin t) dt (c)
∫ π

π/2

2πt sin t
√

1 + t2 dt

6. (a) 16π
5 (b) shell method: −2π

∫ 2

0

x2(3− x)(x− 2) dx

7. r = −2 and r = 3

8. (a)
dP

dt
= 1

2P
(
1− P

1000

)
(b) 1000 elk (c) A population of 1450 is larger than the carrying capacity of

1000 so
dP

dt
< 0 which means the population would decrease back towards 1000 as time moved on.

9. (a) converges (b) converges (c) converges (d) converges

10. (a) R = 7, I = [−7, 7] (b) R =∞, I = (−∞,∞)

11. (i) converges (ii) diverges (iii) not enough information is given to decide convergence

13. (a) See definition in section 11.10 of textbook. (b)
∞∑
n=0

(−1)n32n+1(x− π
2 )2n+1

(2n+ 1)!

(c) |R4(x)| ≤ 35

(4+1)! (π/4)4+1 = 35

5! (π/4)5 for π/4 ≤ x ≤ 3π/4.
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p-series, 126

absolutely convergent, 137
alternating series, 133
Alternating Series Test, 133
arc length, 166
area, 2

polar curve, 40
surface area, see surface area

Bessel function, 147

Comparison Test (for series), 129
Comparison Theorem (for integrals), 92
conditionally convergent, 137

differential equation, 97
direction field, 98

endpoint approximation (left/right), 81

Fundamental Theorem of Calculus
Part 1, 16
Part 2, 18, 22

geometric series, 120

harmonic series, 122, 137

integral
definite integral, 7
improper of Type I, 89
improper of Type II, 91
indefinite integral, 22
properties, 8, 12, 13
terminology, 8

Integral Test, 126
integration

by parts, 56
partial fractions, 69
substitution rule, 27, 30
trigonometric substitution, 66

limit
of a sequence, 113

Limit Comparison Test, 131
logistic growth model, 109

Maclaurin Series, 154
midpoint rule, 11, 82

error in using, 84

natural growth model, 108

orthogonal trajectories, 105

parametric curves, 175
power series, 146

differentiation, 151
integration, 151
representation of a function, 150

Ratio Test, 139
Root Test, 140

separable equation, 101
sequence, 112

bounded, 116
decreasing, 115
increasing, 115
limit, 113
monotonic, 115

series, 119
p-series, 126
absolutely convergent, 137
alternating, 133
Alternating Series Test, 133
Comparison Test, 129
conditionally convergent, 137
convergent, 120
divergent, 120
geometric, 120
harmonic, 122, 137
Integral Test, 126
Limit Comparison Test, 131
power series, 146
Ratio Test, 139
Root Test, 140
Test for Divergence, 122

Simpson’s rule, 86
error in using, 87

solid of revolution, 45
substitution rule, 27, 30
sum
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properties, 9
surface area, 170

surface of revolution, 170

Taylor Polynomial, 155
Taylor Series, 154

remainder, 155
Test for Divergence, 122
Theorem

Comparison Theorem (for integrals), 92
Fundamental Theorem of Calculus, 16, 18, 22
Net Change, 25

trapezoid rule, 82
error in using, 84

volume, 43, 45
cylindrical shells method, 51
washer method, 45
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